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Abstract 

In this paper, fatigue life estimation for delamination growth of laminated fibre reinforced 

polymer (FRP) composite structures in mode I and mode II based on fracture mechanics is 

presented. The proposed method was applied to delamination of glass/epoxy laminated 

composite. Both the threshold energy release rate (   ) and the delamination propagation 

based on Paris’ law were studied. The double cantilever beam (DCB) specimen for mode I 

and 3 points End-Notched Flexure (3ENF) specimen for mode II were used for monotonic 

fracture tests and the resistance     and      as a function of delamination length were 

determined. For DCB tests, the fatigue onset life test was conducted and the threshold 

energy release rate,     , was found for the subcritical region. Constant amplitude, 

displacement controlled cyclic fatigue test for both modes was conducted and the 

delamination crack growth rate (     ) as a function of maximum cyclic energy release 

rate       and        for DCB and 3ENF specimens were determined, respectively. From 

curve fitting to the experimental data, the Paris’ law material constants C and m for mode I 

and mode II were obtained. Finally, the SEM fractography studies of delaminated surfaces of 

3ENF static and fatigued specimens have been done and the different features observed on 

these surfaces were discussed. 

Keywords- Fatigue; Composite laminate; Delamination; Fractography  

 

  

                                                             
* Corresponding author: Dr H Hadavinia, email: h.hadavinia@kingston.ac.uk ; Tel: +44 20 8417 4864 

mailto:h.hadavinia@kingston.ac.uk


2 
 

1. Introduction  

Fibre reinforced polymer (FRP) composites have a high specific strength, high specific 

modulus, low weight and low cost relative to the metals.  As a result, FRPs are the preferred 

material for application in many advanced structures when the weight, strength, durability 

and cost are major concerns. Among FRPs, glass fibre reinforced plastic (GFRP) has lowest 

cost and for this reason it is used extensively in horizontal axis wind turbine (HAWT) blades. 

However, these materials are susceptible to delamination by separation of the plies in the 

low resistance thin resin-rich interface between adjacent layers particularly under 

compressive buckling load caused under cyclic loading. The out-of-plane stresses, which 

naturally cause delamination, occur at many types of structural details such as ply drops, 

skin-stiffener intersections, sandwich panel, free edge, and trailing edge areas, near 

geometric discontinuities such as holes, cut-outs, flanges, stiffener terminations, bonded 

and bolted joints (see Figure 1). All of these locations have potential to promote 

delamination initiation [1]. Other causes of delamination are the existence of contaminated 

fibres during the manufacturing process, insufficient wetting of fibres, curing shrinkage of 

the resin, and out-of-plane impact. 

 

 

Fig. 1. Common structural elements which generate interlaminar stress concentrations [1]. 

 

Characterisation of delamination toughness in mode I and mode II are necessary in 

advanced structural design. For mode I and mode II loading, quasi-static monotonic 

delamination testing standards have been developed using Double Cantilever Beam (DCB) 

and 3 points End-Notched Flexure (3ENF) specimens. Many publications under quasi-static 

monotonic loading for both modes are available. Williams [2] used beam theory to derive 
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the energy release rate from the local values of bending moments and loads in a cracked 

laminate. Further, Williams [3] extended his work to take into account the effect of arm 

shortening due to large displacements during crack growth. In their seminal work, Hashemi 

et al. [4] discussed the methods for analysing the DCB, ELS, and ENF fracture mechanics 

experimental data. Wang and Williams [5] used a correction factor for the crack length to 

modify the compliance and SERR expressions for ENF and ELS mode II fracture toughness 

tests. However, until now no standard has been developed for mode I and mode II 

delamination under cyclic loading. In the following, a review of some of the published works 

on DCB and ENF delamination under cyclic loading are presented. From this review the 

common testing conditions such as specimen size, the frequency range and R-ratio for both 

specimens under cyclic loading were established. 

For mode I DCB specimen Shivakumar et al. [6] reported the total fatigue life model for 

woven-roving glass fibre/vinyl ester in mode I loading. The study included delamination 

growth in subcritical, linear and final fracture regions. The tests were conducted under 

displacement control, at a frequency range between 1-4Hz and R=0.1.  

Hojo et al. [7] reported on delamination of CFRP prepreg under fatigue loading in mode I, 

using DCB test specimens. They used two CFRP prepreg laminates [0]16 of Toray 

T800H/3900-2 and [0]24 of Toho UT500/111. Tests were conducted at R-ratios of 0.1, 0.2 

and 0.5 at a frequency of 10 Hz. Specimen dimensions of length 140mm, width 20mm, 

thickness 3mm and pre-crack 20-25mm were used. In further mode I work, Hojo et al. [8] 

looked at DCB fatigue delamination of Z-reinforced CFRP laminates. CFRP cross-ply 

laminates were stitched with a high-strength, intermediate-modulus dry carbon fibre fabric. 

Test specimens stacking sequence were [0/902/0]s and DCB specimen dimensions of length 

150 mm, width 10mm, thickness 1.8mm and pre-crack 35mm were used. In the fatigue 

tests, the R-ratio has been set to 0.1 and 0.5, at a frequency of 10Hz. They reported stitching 

laminates in z-direction have 3.4-5.0 times higher fatigue threshold than without stitching. 

Pegorin et al.  [9] showed that z-pinning is more effective at resisting mode I than mode II 

fatigue cracking. 

Arai et al. [10] studied delamination of unidirectional CFRP prepreg under cyclic loading in 

mode I, using DCB specimens with dimensions of length 150mm, width 20mm, thickness 
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3.28-3.36mm and pre-crack length of 40mm. They reported an increase of 50% to the 

initiation delamination fracture toughness and 20% increase at the final fracture toughness 

when comparing the CFRP results to CFRP with carbon nano-fibre interlayer. 

Coronado et al. [11] studied influences of temperature on delamination in CFRP under cyclic 

loading. The mode I monotonic and cyclic loading tests were performed under operating 

temperatures of 90, 50, 20, 0, -30 and -60 C. They concluded during the initiation of fatigue 

delamination,        increased as the temperature rose, but significantly decreased after 

the crack initiation. The crack growth rates at -30C and -60C were significantly higher than 

those at higher temperature, showing the matrix has inherited brittle behaviour. 

For mode II ENF specimen, Hojo et al. [12] studied CFRP laminates under mode II fatigue 

loading. They tested CFRP unidirectional laminates [0]24 and with 50µm-epoxy-interleaved 

laminates [012/film/012]. Three point End Notched Flexure (3ENF) specimens with 

dimensions length 160mm, span 100mm, width 10mm, thickness 3mm and pre-crack 25mm 

were used. Tests performed at R ratio of 0.1 and 0.5 at a frequency of 10Hz. They showed 

initiation interlaminar fracture toughness of 50µm-epoxy-interleaved laminate is 1.6 times 

higher than the base CFRP and 3.5 times higher in the propagation values. 

Shindo et al. [13] studied the cryogenic delamination growth behaviour in woven GFRP 

laminates under Mode II fatigue loading using 4ENF specimens at a frequency of 2Hz at R 

ratio of 0.1. The test is conducted at three different temperatures: room temperature, liquid 

nitrogen (77K) and liquid helium (4K). The 4ENF specimens with dimensions of length 

90mm, width 20mm, thickness 3.65mm, pre-crack 30mm were used. They concluded that 

delamination growth rate is lower at low temperatures and when decreasing the 

temperature the threshold energy release rate becomes larger. They reported         values 

are about one-third of the      values at the different temperatures. Asp et al. [14] was 

observed similar ratio between the static and fatigue tests results on CFRP composites at 

room temperature. They reported the threshold values for delamination growth in fatigue 

are lower than the fracture toughness (  ). They reported the reduction is greatest for the 

ENF test for which        is only 10% of    and the threshold values for the MMB and DCB 

tests are also much lower than the fracture toughness, at 15% and 23%, respectively. 



5 
 

Landry et al. [15] explored CFRP material under mode II fatigue loading at a frequency of 

1Hz at R= 0.2. They investigated the effect of exposing the laminate to water, hydraulic fluid 

and deicing fluid experimentally and numerically. The specimens with dimensions of length 

94mm, width 20mm, thickness 2.25mm and 3mm and pre-crack length 35.5mm were used. 

They concluded that the results based on crack length measured using compliance 

calibration method are good and can be obtained with minimum number of specimens. The 

delamination toughness is adversely affected on those specimens that are exposed to fluids. 

In quasi-static monotonic testing delamination toughness reduced by 20-25% in water and 

deicing immersion, but only 4% reduction in hydraulic fluid. 

Fernandez et al. [16] investigated CFRP laminates under mode II fatigue loading. The [0]18 

3ENF specimens with dimensions of length 90mm, width 25mm, thickness 2.7mm, pre-crack 

length 45mm were used. The tests were carried out at a frequency of 4 Hz and R= 0.1. They 

used Paris’ law to establish the relationship between the fatigue crack growth rate and the 

applied strain energy release rate range. 

The general form of Paris’ law based on fracture mechanics for delamination growth as 

depicted in region II of Figure 2 is: 

                        
  

  
        (1) 

 

In the literature many versions of Eq. (1) has been proposed to take into account effects 

such as R-ratio, mode mixity, threshold and fast fracture regions. Two important points 

about the form of      in Paris’s law Eq. (1) should be discussed. Firstly whether we have to 

choose           or                  , and more recently           

where                  
 

 [17]. Secondly what parameter is suitable for 

normalisation? 

Until now no general consensus has been agreed by the research community on whether 

Eq. (1) should be a function of      or a form of   . Various versions of Paris’ law can be 

found in the literature. Both           and         have been successfully 

correlated with delamination growth by many researchers. The function           has 

been used in many studies such as [7], [8], [18], [19], while         has been used in 
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other researches such as [20] [21] [22]. Little difference has been reported when using 

either           or        . Wilkins et al. [23] discussed           is proportional 

to load ratio R and effectively      and    will be very close to each other. 

 

Fig. 2. Schematic curve of fatigue crack propagation. 

Recently Alderliesten [17] [24] and Yao et al. [25] reported that the intent in using 

             in analogy to    as a fracture mechanics parameter for delamination 

growth is not incorrect. They argued by using   , researchers have been attempting to 

introduce the similitude principle used for metal crack growth into their characterization of 

fatigue delamination growth in laminated composites. This definition of the strain energy 

release rate range implies similitude based on a specific combination of cyclic load range 

and mean (or peak) load without any physical basis. They showed that for a LEFM 

description of fatigue fracture using strain energy release rate and the principle of 

superposition, the strain energy release rate range,   , should be defined using      

             
 

 removing the mean load dependency present when using    

           

10
-7

10
-6

10
-5

0.0001

0.001

0.01

0.1

0.01 0.1 1

d
a

/d
N

 (
m

m
/c

y
c
le

)

G
Imax

/G
IR

Paris Law

Region I Region II Region III

G
Ith

/G
IC



7 
 

Jones et al. [26] showed that crack growth in a range of nano-composites can be reasonably 

represented by a variant of the Hartman-Schijve equation in the form of: 

                   
  

  
                           

 

 (2) 

where the values of A, B and D are constant parameters that are used for data fitting in the 

entire range. They showed Eq. (2) is applicable to delamination crack growth in both Modes 

I and Mode II in composites and to the environmental degradation of epoxies adhesive 

bonds. Jones et al. [26] reported when the delamination crack growth in FRP composites 

expressed in this form, the exponent of this variant of delamination crack growth is 

approximately     which is considerably lower than the exponent m in Paris law Eq. (1). 

They mentioned the large exponent m will cause small uncertainties in the applied load 

leads to large uncertainties in the predicted delamination growth rate.  

With regard to normalising the Paris’ law Eq. (1), many researchers adopted the form of 

     
    

  
  or       

  

  
  [27] [28] [29] and others the form of      

    

  
 [6] [30]  [31]  

[32] [33].  

In the classical fracture mechanics and for a given mode mix and environmental conditions, 

   is assumed to be constant. The quantity      is scaling of the crack-driving force relative 

to the material’s resistance. In this way the resistance to fatigue delamination is scaled 

relative to the static fracture toughness [34]. However, in some other works, e.g. [12] [35] 

[36] the assumption of correlation of resistance between static delamination growth and 

fatigue delamination growth has been questioned.  

In unidirectional FRP composites when characterising 0/0 ply interface, during delamination 

growth the plies tend to nest and multiple damage mechanisms, such as fibre bridging and 

matrix cracking occur which increase the apparent fracture toughness of the interface [6] 

[37] [38]. Therefore, it is suggested that       determined from a quasi-static delamination 

test is a better phenomenological parameter for normalisation as it combines many 

different effect that change resistance into one value (i.e. an R-curve). Hence, normalisation 

of the SERR by       rather than    in the form of      
    

  
, is suggested as       
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represents the changing resistance to delamination growth over the course of a fatigue 

loading history [6] [30]  [31]  [32] [33] [39].       is determined from the static R-curve at 

the delamination length reached during the fatigue testing. Note that unlike   , the       

curve is specific as it depends on the material, stacking sequence, and other forms of 

mechanisms involved. 

One of the benefits of normalisation by    is to reduce the spread in the delamination 

growth data. However, Murri [31] reported the magnitude of fibre bridging during fatigue 

loading is probably lower than during quasi-static loading. The use of the R-curve implies 

that the quasi-static delamination mechanism is the same as the fatigue delamination 

mechanism and therefore the resistance to quasi-static growth also determines the 

resistance to fatigue growth. Recent fractographic evidence [40] does not fully support this. 

It should be noted that a model to present the full range of sigmoidal shape of delamination 

growth model in fatigue cracking process including all three regions as shown in Figure 2 has 

been applied by many researchers, e.g.  [41] [42] [43], in the form of: 

                           
  

  
        

 
    

   
    

 
  

 

    
    
  

 
  

 
 (3) 

Where parameters C, m, n1 and n2 are found from fitting the full spectrum of fatigue test 

data. 

In conclusion as the fatigue life estimation based on Paris’ law has a phenomenological 

macroscopic empirical nature and Paris law is an empirical relation rather than a 

constitutive material law, as long as the relationship between       and a form of SERR 

describe accurately the crack growth, any form of SERR is acceptable. This will be true until a 

relationship based on a true physical nature of the fatigue crack propagation based on 

micromechanics damage develops in the future. As mentioned by George E. P. Box [44] 

“Essentially, all models are wrong, but some are useful”. It should be emphasised that by 

using      
    

  
 in Eq. (1), the Paris’ law coefficient m has no unit and C is the speed of 

crack propagation when         at fast fracture. 
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In this paper, fatigue life estimation for delamination growth of laminated fibre reinforced 

polymer (FRP) composite structures in mode I and mode II based on fracture mechanics will 

be presented. The proposed method was applied to delamination of glass/epoxy laminated 

composite. Both the threshold energy release rate (    ) and the delamination propagation 

based on Paris’ law were studied. Monotonic tests of DCB specimen in mode I and 3ENF 

specimen in mode II were conducted according to the ASTM: D5528 and ASTM: WK22949 

standards and the resistance     and      as a function of delamination length were 

established. For DCB tests, the fatigue onset life test was performed and the threshold 

energy release rate,     , was found.  

Constant amplitude, displacement controlled cyclic fatigue tests for both modes was 

conducted and the delamination crack growth rates (     ) as a function of maximum 

cyclic energy release rate       and        for DCB and 3ENF specimens were determined, 

respectively. From curve fitting to the experimental data, the Paris’ law material constants C 

and m for mode I and mode II were obtained. Finally, the SEM fractography studies of 

delaminated surfaces of ENF static and fatigue specimens have been done and the different 

features observed on these surfaces were discussed. 

2. Material properties and specimens preparation 

The UD prepreg E-glass fibre/E722 epoxy matrix material supplied by TenCate Ltd. was used 

for preparation of all specimens in this work. For analysis of delamination, mechanical 

properties of the GFRP are required. The mechanical properties of the FRP composite such 

as Young’s modulus, shear modulus, etc. were obtained by performing 0° and 90° tensile 

and compression and ±45° shear tests according to the standards. The tests results are 

summarised in Table 1. 

  

http://www.astm.org/Standards/D5528.htm
http://www.astm.org/DATABASE.CART/WORKITEMS/WK22949.htm
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Table 1. Mechanical properties of GFRP laminate measured from experiments. 

Material property   

Longitudinal Young’s modulus E11 (GPa) 38.9±0.2 

Transverse Young’s modulus E22 (GPa) 13.0±1.5 

Shear Modulus G12 (GPa) 5.0±0.2 

Poisson’s ratio υ12 0.24±0.01 

Tensile strength in fibre direction Xt (MPa) 619±6 

Tensile strength normal to fibre direction Yt (MPa) 69±6 

Compressive strength in fibre direction Xc (MPa) 230±15 

Compressive strength normal to fibre direction Yc (MPa) 180±10 

Shear strength S (MPa) 47±1 

Fibre volume fraction 61±2 

 

The lay-up of DCB and 3ENF specimens for static and fatigue testing were [015//015], where 

the sign // refers to the plane of the artificial starter delamination from one end. The DCB 

and ENF specimens have a total length of 180mm and 160mm, respectively, both with a 

width of b=20mm and beam thickness of 8.5 mm (The details of specimens are shown in 

Figure 3). The specimens were manufactured by hand lay-up and a vacuum bagging 

technique. A PTFE release film with thickness of 20 m was used as a crack starter of length 

55mm from one end of the beam for all specimens. After curing, the specimens were 

returned to room temperature. For DCB specimen epoxy adhesive ESP110 with thickness of 

0.5mm was applied to the steel end tabs of 10×10×20mm with a hole of 5mm drilled at the 

centre. Next the end tabs were clamped to the beam on the pre-crack side, returned back to 

the oven and cured for 60min at 120oC. Finally, the edges of both DCB and ENF specimens 

covered with white correction fluid and lines were marked at the edges from the crack tip at 

every 1 mm. During the tests, the crack length was observed and recorded using a travelling 

microscope. All tests were performed at ambient conditions. 
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(a) DCB specimen 

 

 

 

 

 

 

 

 

 

 

(b) 3ENF specimen 

Fig. 3. Dimensions of (a) DCB and (b) 3ENF test specimens. All dimensions are in mm.  

3.  Mode I fatigue delamination growth in GFRP laminates 

Delamination is a major weakness of laminated composite materials and understanding the 

resistance of the FRP materials to interlaminar fracture under cyclic loading is essential for 

establishing guidelines for allowable and damage tolerance design in the structures.  

Fracture mechanics based models for prediction of fatigue lifetime and estimation of the 

remaining life of metallic components are well established. In FRP composite also 

delamination growth models are required for predicting fatigue lifetime and establishing 

suitable inspection intervals. In a structure when delamination is detected, repair should 

have been done long before the critical length or the stress at the crack tip exceeds the 

residual strength of the component. Similar to metals, in FRP composite materials fatigue 

delamination growth follows a sigmoidal curve when     
  

  
  plotted against     
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stress and     is the mode I delamination instantaneous resistance. This curve consists of 

three regions- Region I covers the threshold. Below the fatigue threshold,     , the crack 

growth is normally less than 10-7 mm/cycle (see ASTM: E 647). Region II is the stable growth. 

This region emerges after the fatigue threshold limit and continues up to the delamination 

fracture toughness of the material. Region II follows the Paris’ law equation: 

                          
  

  
   

        

      
 
 

 (4) 

Finally, in Region III the crack propagation becomes unstable and is characterized by its 

rapid and catastrophic failure. The life of a structure can be estimated by using the entire 

Paris’s law curve.  

3.1. Mode I quasi-static test 

In unidirectional composites laminates, the delamination resistance increases during crack 

growth due to matrix cracking and fibre bridging due to nesting of the laminates. As 

discussed in the introduction these effects can be accounted by normalizing the applied load 

      by the instantaneous resistance value     obtained from a static test. Therefore, 

determination of        for fatigue crack propagation is required.  

Quasi-static DCB tests were conducted and initiation fracture toughness               

and variation of the critical energy release rate     as a function of crack length were 

determined. A power law equation was fitted to the experimental data as shown in Figure 

4(b). The resulting resistance equation for DCB specimens is: 

                                                 
     (5) 

Where a is the instantaneous crack length and a0 is the initial crack length both measured 

from tip of the crack to the load line. The strain energy release rate (SERR) was calculated 

using the modified beam theory (MBT): 

                                 
   

         
  (6) 

In the above P is the applied load,  is load line displacement, and b is the specimen width. 

The delamination length correction parameter              was determined from the 

http://www.astm.org/Standards/E647.htm
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plot of the specimen compliance and delamination crack length data from quasi-static test 

(For details see [3] , [45] and [46]). 

 

(a)  

 

(b) 

Fig. 4. (a) Load versus load line displacement in DCB test, (b) Energy release rate versus 

delamination growth length for GFRP laminate in [015//015] DCB test using MBT method, 

GIC = 764 J/m2. 
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3.2. Determination of mode I threshold toughness using onset life test 

All fatigue tests were conducted under constant-amplitude tension-tension displacement 

control at a cyclic load frequency of 5 Hz with the ratio of minimum to maximum 

displacement, R = δmin/δmax , of 0.1 on a Zwick/Roell Amsler 25kN servo hydraulic fatigue 

testing machine (see Figure 5). The DCB specimens were connected to the test rig by self-

aligning hinges. The corresponding information of load, displacement and number of cycles 

were stored by the machine software at a rate of 40 samples per cycle in a text file enabling 

data evaluation after the test. 

 

 

Fig. 5. Mode I fatigue testing of DCB specimen and loading fixture. 

The ASTM: D6115 standard  recommends two criteria for determining the threshold onset 

life, namely 1% and 5% increase of compliance compared to the compliance at the first cycle 

N=1 (see Figure 6). The number of cycles measured at 1% and 5% increase in compliance has 

been recorded to determine the initiation threshold. The DCB specimens were used for 

onset test. In each test      was chosen to apply a Gmax from 20% to 40% of GIC and      

was calculated from R=0.1. The tests were terminated after an increase of 5% to initial 

compliance was achieved. Some samples were used more than once by choosing a new 

     resulting in a different Gmax while keeping R=0.1 unchanged. 

The delamination threshold fracture toughness     can be determined by a curve fit to 

          and number of cycles N measured at 1% and 5% increase of compliance from the 

fatigue onset life test.  

http://www.astm.org/Standards/D6115.htm
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Fig. 6. Compliance versus number of cycles in DCB initiation test together with 1% and 5% 

increase in compliance for loading at            . 

Figure 7 shows the plot of           versus log N for 1% and 5% criteria for the data 

collected from all the tested DCB specimens and the first data point is obtained from the 

quasi-static test. O’Brien [47] and suggested a linear relationship between       and log N 

data for 100<N<106 and then he obtained the     value from fitted equation calculated at 

N=106. For the present study following Shivakumar et al. [6] a power law curve was fitted to 

the data and the fitted equation (see Figure 7) is: 

                                 
     

   
               (7) 

And they also obtained the threshold SERR value at N=106. 

In the present study the threshold strain energy release rate (   ) calculated from Eq. (7) at 

N=107 cycles is            . As a result if the applied SERR is less than 15% of mode I 

delamination fracture toughness, the speed of crack is very slow and the crack speeds will 

remain unchanged until 10 million cycles. 
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Fig. 7. Variation of onset fatigue life with GImax/GIC. 

3.3. Fatigue crack propagation tests in mode I 

The same set-up and three of DCB specimens that were used for fatigue onset life tests 

were also used in the fatigue propagation tests. All DCB crack propagation tests were 

conducted with displacement control at a frequency of 5Hz and a tension-tension 

displacement ratio R=0.1. All test specimens were already precracked in onset life tests and 

for fatigue delamination growth test the new initial delamination lengths were measured 

and recorded. 

Delamination growth rate data was generated by applying the Imax corresponding to 

(         ) between 0.3 and 1. The fatigue test was run for a predetermined number of 

cycles. The test was stopped, the travelling microscope was examined to measure the final 

crack length at the end of the loading cycle and loads and delamination lengths were 

recorded. When no measurable delamination propagation was observed after some 

interval, the load has been increased. At the end of each set of N, the test was stopped 

and N, N, a, a, PImax and Imax were recorded. From these results,      ,      , and     
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 (8) 

                    was obtained from the quasi-static fracture test. Results of three 

delamination crack growth tests in DCB specimens are shown in Figure 8. 

The test data and the equation are bounded by the limits           and           1. 

The     from the onset life test was determined at        . From the fitted curve to the 

propagation data, the Paris’ law coefficients for the GFRP for mode I loading were found to 

be m= 5.27 and C= 4.47×10-2. Therefore, the       equation representing region II 

delamination growth is: 

                          
  

  
           

        

      
 
    

 (9) 

 

Fig. 8. Crack propagation in DCB specimens. 
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a pre-crack that leads to shear loading at the crack tip. Recently the 3ENF test is also used 

for measuring the behaviour of mode II interlaminar delamination under cyclic loading. 

4.1. Mode II quasi-static test 

As in the case for DCB specimen, there are standards and many publications regarding mode 

II delamination toughness test of FRP laminates under quasi-static monotonic loading. 

However, until now no standard has been developed for mode II delamination under cyclic 

loading. As a consequence of its success in the literature reviewed, in this work the 3ENF 

test was chosen to perform mode II fatigue crack propagation tests on GFRP laminates (see 

Figure 9). The analysis is based on the application of Paris’ law as a function of energy 

release rate for mode II loading to characterize fatigue behaviour in this mode. 

 

 

 

 

 

 

 

 

Fig. 9. Mode II Fatigue testing of 3ENF specimen. 

As in the case of mode I crack propagation test, quasi-static 3ENF tests were performed to 

obtain the      at initiation and also the resistance curve      during the crack propagation. 

Figure 10 shows the results of quasi-static 3ENF test. The onset of the nonlinear part was 

used to calculate the conservative initiation mode II delamination fracture toughness value. 

 



19 
 

 

Fig. 10. Load-displacement diagram for 3ENF mode II loading. GIIC= 1150 J/m2. 

The initiation delamination fracture toughness for 3ENF test was determined from the direct 

beam theory (DBT) method: 
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where  is the central deflection and L the half distance between lower loading points, C is 

the compliance and b is the width of the specimen (see Figure 3) [4] [5] [48]. It should be 

noted that measuring the crack length in mode II is very difficult as due to the formation of 

microcracks inclined to the crack plane (for details see [49]). This is the reason why the 

results of mode II is more scattered than mode I tests. 

The delamination resistance in 3ENF specimens at different crack lengths were calculated 

and the results of      were plotted against the crack length as shown in Figure 11. The 

equation of fitted curve to these data is: 

                                                             (11) 
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Fig. 11. Energy release rate versus delamination growth length for GFRP laminate in [015//015] ENF 

test using MBT method. 

4.2. Fatigue crack propagation tests in mode II 

Delamination growth rate data was generated by performing constant displacement fatigue 

tests. All ENF fatigue tests were conducted at a frequency of 5Hz at a displacement ratio 

R=0.1. Each ENF fatigue test was run for a predetermined number of cycles. The test was 

stopped, the travelling microscope was examined to measure the final crack length at the 

end of the loading cycle and loads and delamination lengths were recorded. When no 

measurable delamination propagation was observed after some interval, the load was 

increased. At the end of each set of N, the test was stopped and N, N, a, a, PImax and 

Imax were recorded. From these results,       was calculated. The maximum strain energy 

release rate,       , was found from DBT method in Eq. (10) and      was calculated from 

Eq. (11). Finally the calculated data of          was plotted against                 as 

shown in Figure 12. In this plot, the best linear curve was fitted to the experimental 

propagation data and the Paris’ law coefficients for the GFRP in mode II were found to be 

m= 4.0 and C= 13.49. Therefore the       equation representing region II crack growth is: 
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Fig. 12. Crack propagation in ENF specimens. 

4.3. Fractography analysis of fracture surface in Mode II static and fatigue tests 

A SEM fractography analysis was performed on samples of material extracted from the 

crack growth zone of specimens tested under mode II monotonic and cyclic loading. The 

samples were cut from the ENF beams, and gold-coated using a Polaron SC7640 gold sputter 

coater evacuated with a vacuum pump. All fracture surface analyses were performed on a 

ZEISS EVO 50 scanning electron microscope (SEM), operated at 20kV accelerating voltage, 

controlled by ZIESS software. The samples were then observed at high magnifications. 

The schematic diagram in Figure 13 shows the locations of SEM images shown in Figures 14-

16 on fracture surfaces. The distance of SEM images from starter precrack are at about 

6mm, 12mm and 18mm on fracture surface at 0/0 ply interface at the centre of ENF 

specimen after static and fatigue tests. The fracture morphology under mode II monotonic 

loading in Figures 14(a), 15(a) and 16(a) show fracture features such as the fibres imprints, 

matrix cracking, fibre breakage and shear cusps. No visible matrix remains was observed on 

the debonded fibres and the amount of broken matrix cusps on fracture surface are 

relatively small. The cusps formation is due to matrix shear cracks. These shear cracks are 
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formed at low load level lower than GIIC [14]. However, the images of fatigued ENF surfaces 

in Figures 14(b), 15(b) and 16(b) show that the fibres debonded with cohesive failure of the 

matrix through the matrix and remains of the resin debris on the debonded fibres are visible 

and some polymer matrix whitening at the cohesive zone is apparent. Unlike the monotonic 

case, the edges of fibre imprint on the fracture surface of fatigue specimens are whiten 

showing plastic deformation of the matrix. In fatigue surfaces plenty number of broken 

resins are formed when friction between upper and lower surfaces tear the shear cusps 

from the fracture surface. These pieces of matrix are called as matrix rollers [14]. Also as can 

be seen in Figure 16, the size of matrix fragments on monotonic loading surfaces is many 

times bigger than those of fatigue fracture surfaces. In both monotonic and fatigue fracture 

surfaces the typical fibre bridging as well as broken fibres are also observed. Shindo et al. 

[13] reported similar fracture surface and Landry et al. [15] also experienced resin debris on 

the fracture surface of the fatigued ENF specimens. The conclusion is that fibre/matrix 

interface decohesion and formation of shear cusp and pull off of shear cusps during the 

fatigue test play major role on delamination growth mechanism in Mode II. The SEM images 

of fracture surface in ENF fatigue tests revealed resin debris as a dominant feature also 

reported by other researchers [50]. 

 

 

 

 

 

 

Fig. 13. Schematic diagram showing the position of SEM images shown in Figures 14-16 on fracture 

surface at 0/0 ply interface at the centre of ENF specimen after static and fatigue tests relative to 

starter precrack. 
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(a) Static at crack advance of 6mm 

 

(b) Fatigue at crack advance of 6mm 

 

Fig. 14. High magnification SEM images of fracture surface after 6 mm crack advance generated at 

0/0 ply interface at the centre of ENF specimen in static and fatigue tests (direction of delamination 

from top to bottom). 
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(a) Static at crack advance of 12mm 

 

 

(b) Fatigue at crack advance of 12mm 

 

Fig. 15. Comparison of SEM images of fracture surface after 12 mm crack advance generated at 0/0 

ply interface at the centre of ENF specimen in static and fatigue tests (direction of delamination from 

top to bottom). 
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(a) Static at crack advance of 18mm 

 

 

(b) Fatigue at crack advance of 18mm 

 

Fig. 16. Comparison of SEM images of fracture surface after 18 mm crack advance generated at 0/0 

ply interface at the centre of ENF specimen in static and fatigue tests (direction of delamination from 

top to bottom). 
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5. Conclusions  

In this paper different aspects of delamination propagation of GFRP under cyclic loading 

were investigated. Firstly the onset life test for 0//0 interface of GRFP laminate in mode I 

loading was performed using DCB specimens. The mode I threshold stain energy release 

rate,     , from the onset life test at N=107 was determined to be        . Further from the 

equation of fitted curve to mode I experimental propagation data, the Paris’ law coefficient 

for the laminated GFRP in mode I was determined at m= 5.27 and C= 4.47×10-2. 

Secondly the mode II fatigue crack growth at 0//0 interface of GFRP laminate was 

investigated using 3ENF specimens. In this mode also the fatigue propagation behaviour is 

described by Paris’ law as a function of energy release rate in mode II loading. From the 

fitted curve to mode II experimental propagation data, the Paris’ law coefficient for the 

laminated GFRP in mode II was determined at m=4.0 and C= 13.49.  

The fractography images of fracture surfaces of mode II monotonic ENF tests show that the 

fibres are debonded at interface with no visible matrix remains on the debonded fibres 

being observed and some matrix debris created from shear cusps. However, the images of 

fatigue surfaces show that the fibres debonded cohesively through the matrix and remains 

of the matrix on the debonded fibres and whitening of polymer matrix especially around the 

edges of fibre imprints are visible. Also the size of matrix fragments on monotonic loading is 

many times bigger than those on failed fracture surface under cyclic loading, though their 

numbers are less. In both monotonic and fatigue surfaces the typical fibre bridging as well as 

broken fibres can be observed. The conclusion is that fibre/matrix interface decohesion and 

formation of shear cusp and pull off of shear cusps during the fatigue test play major role on 

delamination growth mechanism in Mode II.  
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