
Computational Methods 

For The Classification Of Plants 

James S. Cope 

2014 

Faculty of Science, Engineering and Computing 

Kingston University, London 



Abstract 

Plants are of fundamental importance to life on Earth. The shapes of leaves, 

petals and whole plants are of great significance to plant science, as they can 

help to distinguish between different species, to measure plant health, and even 

to model climate change. The current availability of botanists is increasingly 

failing to meet the growing demands for their expertise. These demands range 

from amateurs desiring help in identifying plants, to agricultural applications 

such as automated weeding systems, and to the cataloguing of biodiversity for 

conservational purposes. This thesis aims to help fill this gap, by exploring 

computational techniques for the automated analysis and classification of plants 

from images of their leaves. 

The main objective is to provide novel techniques and the required frame­

work for a robust, automated plant identification system. This involves firstly 

the accurate extraction of different features of the leaf and the generation of 

appropriate descriptors. One of the biggest challenges involved in working with 

plants is the high amounts of variation that may occur within a species, and 

high similarity that exists between some species. Algorithms are introduced 

which aim to allow accurate classification in spite of this. 

With many features of the leaf being available for use in classification, a 

suitable framework is required for combining them. An efficient method is 

proposed which selects on a leaf-by-leaf basis which of the leaf features are 

most likely to be of use. This decreases computational costs whilst increasing 

accuracy, by ignoring unsuitable features. 
Finally a study is carried out looking at how professional botanists view leaf 

images. Much can be learnt from the behaviour of experts which can be applied 

to the task at hand. Eye-tracking technology is used to establish the difference 

between how botanists and non-botanists view leaf images, and preliminary 

work is performed towards utilizing this information in an automated system. 
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Chapter 1 

Introduction 

Plants form a fundamental part of life on Earth, producing breathable oxygen, 

food, fuel, medicine and many more products that are of tremendous use to 

mankind. They help to regulate the climate, and provide food and habitation 

to a multitude of other organisms. As such, a good understanding of plant life 

is highly important. It allows us to improve agricultural methods, increasing 

productivity, to mitigate our effects on the environment and to develop new 

pharmaceuticals. In particular, there are threats to many ecosystems from a 

changing climate and the demands of a growing human population, and so a 

need to study the biodiversity of different geographical regions. 

Botanists are trained to be capable of examining and indentifying specimens, 

and discovering the connections between different species. As demand for such 

expertise increasing, there is, however a growing shortage of such individuals. 

As such, there is now an increasing interest in having an automated system 

for performing such tasks. Traditionally, botanists rely on largely qualitative 

descriptors of plant features. Collections of specimens, preserved in herbarium 

archives, such as those at the Royal Botanic Gardens in Kew, London, are also 
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of great use, providing known examples of species t hat can be referred back 

to (figure l.lb). There now exist some projects to digitise these collection , 

thereby making them increa ingly accessible. In recent years , well established 

morphometric techniques have been employed by some botanists, to further 

improve the understanding of the relatedness of certain pecies. 

(a) Isolated leaf 

Figure 1.1: Example of variou types of leaf image. (a) Isolated leaf on a plain 
background; (b) Herbarium specimen from Royal Botanical Gard n , Kew; and 
(c) live specimen with complex background . 

Whilst botanist may u e all aspects of a plant when trying to identify a 

specimen, for an automated y tern , certain organ · (eg. fl ower , leav , fruit) 

appear more appropriate than other . For many spe ie , the flowers are highly 

distinct , yet are only available for short periods of th y ar, and ar thre 

dimensional in nature, leading to diffi ulty in reliably apturing th r quir d 

details. These limitation are true al o for frui t and e d . Other organs, such 

as a tree's branches or the root y tem ar pr nt t hroughout the y ar, but 

are again difficult to capture in a form appropriat for automated analysi . A 

such, leaves appear to be the mo t ideal organ to u e. They are available for 

examination for much of the year, even year-round in the case of v rgr en 
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species. They are also typically more two dimensional (flatter), and therefore 

can be accurately imaged using a camera or a flat-bed scanner. 

1.1 Aims and Objectives 

The aim of this work is to help fill a gap in botanical expertise, by explor­

ing computational techniques for the automated analysis and classification of 

plants from images of their leaves, providing novel techniques and the required 

framework for a robust, automated plant identification system. 

There are several objectives towards achieving this. The first is to be able 

to extract and describe the required information from leaf images. Leaves have 

many components that can be useful for identification, including the shape, 

margin characteristics, the texture, venation patterns, and other aspects such as 

the presence of hairs. It is important to first be able to accurately extract these 

components from a leaf, and create adequate descriptors that can be compared 

to those from other leaves of known species. 

One of the main challenges for species identification comes from the fact that 

some species have high intra-species variation, whilst conversely, the variation 

between different species can be very low. As such, for some leaf components 

for some sets of species, there may be significant overlap. One of the objectives 

here to develop machine learning techniques that are capable of taking this issue 

of variation into account. 

A third regards how different modalities (i.e. leaf components and feature­

sets) can be combined. Whilst it may be possible to classify leaves with a 

reasonable accuracy using only single components, it seems obvious that there is 

great benefit in using multiple components. As such, an appropriate framework 

is required. Further to this, due to the aforementioned issues of inter- and intra­

variation, some components may be appropriate to use for some species, but 
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not for others. Therefore, a part of this objective is to allow for the automated 

selection of components and feature-sets to be used, on a leaf-by-leaf basis. 

A final objective is to learn how professional botanists view leaf images, 

and to apply this knowledge to the problem at hand. This will involve the 

establishment, through the use of eye-tracking technology, of the differences 

between how botanists and non-botanists perform this task, and, moreover, 

investigation into the application of this information in an automated system. 

1.2 Applications 

Potentially, there are many practical application of this work. One such ap­

plication is to provide tools to support botanists. As previously discussed, 

botanical expertise is currently in limited supply, and so automated identifi­

cation systems could help to reduce their workload. Furthmore, whilst some 

morphometric analysis of leaves is currently performed by some botanists, this 

typically requires time-consuming manual measurements to be made, and is not 

conviently available to many. 

An automated species identification system would also be of great use to 

amateur botanists, gardeners and other interested persons, who may desire to 

be able to indentify a plant but lack the skills and knowledge to do so unassisted. 

Indeed, with the increasing prevalence of smart phone devices, there currently 

exist a few rudimentary tools for doing so [3, 75, 143]. 

There has also been interest in this area from within the agricultural sector. 

New ways are constantly being sought to increase crop yield and farm efficiency 

whilst decreasing costs. There have been several studies [44, 125] into the use of 

robotic farm helpers for the purposes and both gathering crops and eliminating 

weeds. Both of these tasks would require to be able to distinguish between the 

crops being grown and other unwanted plants. 
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For both scientific and conservation purposes, the study of the geographical 

distribution of plants is of great interest, particularly in relation to the planet's 

changing climate. It is well established that the climate in which a plant grows 

affects the shape of its leaves (116], and so it is desirable to be able to quantify 

this, performing comparisons between different climate zones, and for different 

years within the same geographical location. As many habitats are currently 

shrinking, whether due to changing environment conditions or to human activity, 

it is important to be able to identify the distribution of different species in order 

to properly assess the impact. An automated identification system would allow 

the range of flora within a location to be catalogued without those performing 

it to require the specialist training that is in short supply. 

1.3 Outline 

The remainder of this thesis is structured as follows. In Chapter 4, numerous 

new methods for the extraction and description of the main leaf components, 

including the margins, texture and venation, are described. A comparative 

study of the most commonly used existing leaf-shape analysis techniques is also 

presented. Chapter 5 describes methods for reliably identifying leaves whilst 

taking into account the intra-species variation, before examining methods for 

combining the classification of multiple modalities, and the dynamic selection 

of feature-sets to use, to both increase accuracy, and decrease computational 

requirements .. In Chapter 6, a study, using eye-tracker technology, of how 

botanists study leaves is reported, looking at how this information could be 

used to improve computer-based systems. 
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Chapter 2 

Literature Review 

2.1 Introduction 

Although morphometries and image processing are well-established and broad 

disciplines, botanical morphometries presents some specific challenges.Leaves 

and flowers are non-rigid objects, leading to a variety of deformations. Many 

leaves have a three-dimensional nature, increasing the difficulty in producing 

good quality leaf images, whilst resulting in the loss of useful structure informa­

tion. Archived specimens may also be damaged as they are dried and pressed, 

but even live specimens may have insect, disease or mechanical damage. Auto­

mated systems must be robust to such deformations. 

Any system that is concerned with distinguishing between different classes 

of plants must be aware of the large intra-class (see Figure 2.1), and small inter­

class variation that is typical of botanical samples. For example, a number of 

classifiers have been developed (54, 75] that identify the species of a specimen 

from a digital image of it. These must be robust in order to distinguish between 

very similar looking specimens from different species, when a single species may 
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Figure 2.1: Variation in leaves taken from a single specimen of Quercus nigm. 

by itself produce a very wide range of different leaves. See Figures 2.3 and 5.5 

for further examples of the variety of leaf shapes found . 

Distinguishing between a large number of classes is inherently more complex 

than distinguishing between just a few, and typically requires far more data 

to achieve satisfactory performance. Even if a study is restricted to a single 

genu , it may contain many species, each of which will encompass variation 

between its constituent populations. The flowering plant genus Dioscor-ea, for 

example, contains over 600 species [47], o even ingle-genus tudi can be 

very challenging. On a related note,as the leaves develop, the shape may vary 

continuously a long a ingle tern , or di cretely (known as leaf heteroblasty), 

which can further confound hape analy is unles great cru·e is taken of the 

specimen sources. 

Different features are often needed to distingui h different categories of plru1t. 

For exan1ple, whilst leaf shape may be sufficient to di tinguish between ome 

pecies, other specie may have very imilar leaf hapes to each other, but have 

different coloured I aves. No single aspe t, or kind of asp et, may be suffici nt 

to separate all the categorie , making feature election a challenging problem. 

This chapter will give an overvi w of the previou work has been carried 

out in the field of computational method for the analysis of plants, covering 

techniques for the extraction and compari on of diffent plant features as well as 
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Figure 2.2: The main components of a typical leaf. 

outlining many of t he possible application of t hi work. 

2.2 Leaf Analysis Methods 

There are many aspects of a plant leaf 's structure and app ru·ance t hat ru·e 

used by botani ts in plant morphological research. The mo t u eful of the e 

leaf-components in comparative biology are u ually t he two-dim nsional hape 

of a leaf or petal, t he characters of t he leaf margin (such a the teeth), and t he 

structure of the vein network. Of t h se, th outline hap has received by far 

t he mo t attent ion when applying computational techniques to botanical image 

processing. 

2.2.1 Leaf Shape 

There are everal reasons underlying t he focu on leaf shap . Fir t ly, the shape 

has perhaps t he mo t di criminative power. Although I av from the same plant 

may differ in detail, it is often t he ase t hat different specie have characteristic 

leaf shapes, and t hese have often been used by botanist to identify pecies. 
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Whereas differences in margin character or vein structure may be fairly subtle, 

shape differences are often more obvious, even to the non-expert. In many cases, 

leaf size is largely determined by the environment, while shape is more heritable. 

Secondly, this is the easiest aspect to extract automatically. If a leaf is imaged 

against a plain black or white background, then simple threshold techniques can 

be used to separate the leaf from the background, and the outline can then be 

found by simply isolating those pixels of the leaf that border the background. 

Thirdly, there are numerous existing morphometric techniques which can be 

applied to leaf shape that have already proven their worth for other biological 

problems and which may already be fan1iliar to many botanists. Finally, the 

gross structure of a leaf may be preserved even if the leaf specimen is damaged, 

possibly through age. For example, many dried leaves turn brown, so colour is 

not usually a useful feature by itself. Note also that many of the shape-based 

methods discussed here have also been applied to petal, sepal or whole flower 

shape, as discussed in Section 2.2.6. 

Figure 2.2 shows some of the main components of leaves with their corre­

sponding botanical terms, while Figure 2.3 illustrates some of the variety of leaf 

shapes found. 

We now discuss a number of approaches to leaf shape analysis, including 

Fourier analysis, contour signatures, landmark analysis, shape features, fractal 

dimensions and texture analysis. 

2.2.1.1 Elliptic Fourier Descriptors 

The most common shape analysis technique applied to leaves appears to be 

the elliptic Fourier descriptor (EFD) [73]. Here, leaf shape is analyzed in the 

frequency domain, rather than the spatial domain. A set number of Fourier 

harmonics are calculated for the outline, each of which has four coefficients. 

This set of coefficients forms the Fourier descriptor, with higher numbers of 
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Figure 2.3: Example of I a f hape . 

harmonics providing more precise descriptions. (Hearn [54] suggest that 10 

Fourier harmonics are nece ary to accurately represent leaf hape to distingui h 

between a range of pecie .) Typically, principal compon nt ana lysi (P CA) i 

then applied to the de criptor, to reduce dimensionality and aid di crimination, 

identifying the main ources of variation within t he data. An arly exampl 

of this approach i by White et al. [142] who found EFD to b up rior to 

landmark measure , chain codes and moment invariant wh n characterizing 

leaf outlines. Elliptic Fourier descriptors can easily be normalised to represent 

shapes independently of their orientation, ize or location, easing compari n 

between hape . 

McLellan and Endler [90] compared Fourier ana ly i with everal other meth­

ods for describing leaf shap . They point out t hat ~ w landmarks are r adily 

identifiable on mo t leave , except perhap tho e that hav r gular lobes, and 

demonstrate that Fourier analysis can discriminate succe fully betwe n various 

leaf groups. They do note however that none of the m thod they considered 
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was greatly superior to any other. 

One advantage of EFDs is that a shape can be reconstructed from its descrip­

tor, as shown in Figure 2.4. Whilst this may be of little use from a classification 

standpoint, it can provide useful botanical information - a method for helping 

to explain shape variation is to reconstruct the shape for some "average" de­

scriptor, and then to create reconstructions from this descriptor as it is modified 

along the first few principal components. 

Hearn [54) used a combination of Fourier analysis and Procrustes analy­

sis (46] (a simple shape registration method, based on rotation, translation and 

scaling) to perform species identification using a large database of 2420 leaves 

from 151 different species, achieving a 72% classification accuracy. Other recent 

examples of the use of EFDs to analyze leaf shape include Andrade et al. [4], 

Furuta et al. [41], Neto et al. [99] and Lexer et al. (79]. 

A closely related method is "eigenshape analysis". Here, the sequence of 

angular deviations that define a contour (the angles between adjacent points 

positioned evenly around the contour) is measured, typically being normalized 

by choosing a common starting point defined by a landmark. Singular value 

decomposition is then used to identify the principal components [87], which 

can be used as inputs to a subsequent classifier or for comparison. Ray has 

extended this work and applied it to leaf shape analysis [113]. This work con­

sisted of dividing the outline into several segments using recognizable landmarks 

(see Section 2.2.1.3), and then analyzing each segment using singular value de­

composition. One difficulty with this approach is the problem of identifying 

homologous landmarks in leaves (ie. points which can be guaranteed to exist 

on all the leaves being examined). While this can be difficult within a single 

species, it is often impossible between species, as is discussed further in Section 

2.2.1.3. 
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Figure 2.4: An example of ellipt ic Fourier analysis. As more harmonics are u ed 
to reconstruct t he original outline, more detail is preserved. 

2.2.1.2 Contour Signatures 

A number of methods make use of contour signatures. A contour signature 

for a shape is a equence of values calculated at points taken around a leaf' 

outline, beginning at some start point , and t racing the out line in either a clock­

wi e or ant i-clockwise direction. One of the mo t t raightforward of the e i 

the centroid-contour distance (CCD). T his ignature con i t of the quence 

of distances between the centre of the hape, and the outline point . Other 

such signatures include the centroid-angle, and t he sequence of tangent to the 

outline. As with EFDs, the aim of creating contour ignatures i to repre ent 

the shape as a vector, independent of ori ntation and location. ormalisation 

can also be applied to enforce independence of scale. 

Meade et al. [91] attempted to increase accuracy when applying the CCD to 

leaves by correlating the frequency of points for measurement with the extent of 

curvature, whilst Wang et al. [140, 139] applied a thinning-based method to the 

shape to identify consistent start points for the CCD, avoiding th need to align 

t he signatures before t hey can be compar d . Ye et al. [146] used time- eries 
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shapelets. These are local features found in a contour signature that can be 

matched, rather than needing to compare entire signatures, and allow existing 

time-series analysis methods to be applied. 

One major difficulty for boundary-based methods, to which contour igna­

tures are particularly sensitive, is the problem of "self-intersection·' . This is 

where part of the leaf overlaps another part of the same leaf ( ee Figure 2.5) 

and can result in errors when tracing the outline unles particular care is taken. 

Self-intersection occurs quite often with lobed leaves, and may, moreover, not 

even occur consistently within a particular species. One attempt to overcome 

this problem was made by Mokhtarian et al. [95]. They assumed that darker 

areas of the leaf represented region where overlap occurred, and u ed this to try 

to extract the true out line. They then used the curvature scale space method 

(CSS) [94] to compare outlines. The main limitation of this method i that it 

may only work with thin and/or backlit leaves, where ufficient light can pass 

through the leaf to create the darker area~ of overlap. 

Figure 2.5: An example of a leaf exhibiting elf-inter tion - several of the 
lobes overlap neighbouring lobes 
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2.2.1.3 Landmarks and Landmark-Related Linear Measurements 

Another common morphometric method is the use of landmarks and linear 

measurements. A landmark is a biologically definable point on an organism 

(such as the insection-point, Figure 2.2), that can be sensibly compared between 

related organisms. In some cases, these are homologous points, but may instead 

be local maxima or minima (for example the points furthest from the central 

axis), as discussed by Bookstein [13]. Linear and angular measurements between 

them can then be used to characterize the organism's shape. Landmark methods 

have been successfully applied to various animal species, and have the advantage 

of being easy for a human to understand. "Traditional morphometries" analyzes 

measurements such as the overall length and width of an object, in contrast 

to "geometric morphometries", which uses either outlines (such as methods 

discussed in Section 2.2.1.1) or specific landmarks and the distances between 

them [2]. 

Haigh et al. [51] used leaflet lengths and widths along with measurements 

of flowers and petioles to differentiate two closely related species of Dioscorea. 

Jensen et al. [65] studied three species of Acer using the angles and distances 

between the manually located lobe apices and sinus bases. Warp deformation 

grids were also used to study variation. Young [148] used leaf landmarks to 

compare plants of a single species grown in different conditions. The plants 

were also imaged at different ages to discover when the method would have the 

best discriminatory ability. A related method is the inner-distance measure, 

a metric based on the lengths of the shortest routes between outline points 

without passing outside of the shape, which was used by Ling et al. [82]. 

A number of disadvantages exist, however, when applying landmark methods 

to leaves or other plant organs. The first of these is the difficulty of automatic 

extraction. For example the leaf's apex (tip) may be hard to distinguish from 
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the tip of a lobe, whilst the appearance of the insertion point (where the petiole, 

or leaf stalk, meets the leaf blade) may vary greatly depending on the base angle 

and how the petiole has been cut. Furthermore, even the length of a leaf may 

be hard to measure if the leaf is asymmetrical and the main vein does not align 

with the shape's primary axis. For these reasons, studies involving landmarks 

and linear measurements have often involved manual data extraction by experts, 

severely limiting the scale of any system based on them. 

The other major problem here is the inconsistency in available landmarks 

between different species or other taxa. Indeed, the only landmarks present in 

almost all leaves are the apex and the insertion point, and in the case of peltate 

leaves (where the stalk is connected near the middle of the blade), the latter 

does not even appear in the outline shape. As a result, most of the studies using 

landmarks concentrate on specific taxa where the required features are known 

to be present. 

One of the most significant developments in comparative biology in the last 

30 years has been the development of phylogenetic reconstruction methods using 

morphological data, and latterly nucleic acid or protein sequence data. These 

methods differ from those dealt with elsewhere in this section in that they 

use only shared derived characters to infer (phylogenetic) relationship rather 

than using total overall resemblance for identification or species delimitation. 

The concept of homology has particular importance in cladistics (the grouping 

of organisms based on the shared characteristics of their common ancestors) 

and is perhaps more tightly defined [106]. There has been theoretical debate 

over the use of continuous and hence morphometric morphological character 

data in cladistics. Several approaches have been suggested, such as that of 

Thiele [134]. Zelditch et al. [150] even attempted to use geometric morphometric 

methods, such as partial warps, to acquire novel phylogenetic character data in 
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fish, although such techniques have not been widely used in systematics as a 

whole or been taken up by plant systematists. 

2.2.1.4 Shape Features 

Similar to linear measurements are shape features, which are also typically lim­

ited to analysing the outline of a shape. These are various quantitative shape 

descriptors that are typically intuitive, easy to calculate, and applicable to a 

wide variety of different shapes. Commonly used features include the shape's 

aspect ratio, measures of rectangularity and circularity, and the perimeter to 

area ratio, amongst others. Some studies have also used more leaf-specific fea­

tures, for example Pauwels et al. [107] uses a measure of "lobedness". A more 

general set of features are "invariant moments", which are statistical descriptors 

of a shape that are invariant to translation, rotation and scale [58], [132]. 

When analyzing leaves, Lee and Chen [77] argue that "region-based fea­

tures", such as compactness and the aspect ratio, are more useful than outline 

contour features because of the difficulty in identifying meaningful landmark 

points, or in registering different contours against each other. They found that 

a simple nearest-neighbour classifier using region-based features produced bet­

ter results than a contour-based method, at least on the 60 species they used as 

a test case. 

Once such a set of features has been extracted from the images, a variety of 

classifiers can be used in their analysis. A "move median centres" hypersphere 

classifier was developed by Du and colleagues [33], [138] that uses a series of 

hyperspheres to identify species in a space defined by a set of shape features 

and invariant moments. Another study using shape features was carried out by 

Wu et al. [145], who used an artificial neural network to identify 32 species of 

Chinese plants from images of single leaves with 90% accuracy, and compared 

the results against a number of other classifiers. 
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While shape features have achieved some positive results, they are of limited 

use for understanding variation. Although the effects of some features may 

be obvious, such as changes to the height-to-width ratio, variation in other 

features may be hard to understand because of the difficulty or impossibility of 

reconstructing shapes from features. For example, the perimeter to area ratio 

provides a measure of the "complexity" of a shape, but there are many ways in 

which a leaf might be altered to produce the same change in this value, without 

affecting the values of many other common shape features. 

A more general risk with shape features is that any attempt to describe the 

shape of a leaf using only (say) 5-10 features may oversimplify matters to the 

extent that meaningful analysis becomes impossible, even if it is sufficient to 

assign a small set of test images to the correct categories. Furthermore, many 

such single-value descriptors are highly correlated with each other (90], making 

the task of choosing sufficient independent variables to distinguish categories of 

interest especially difficult. 

2.2.1.5 Polygon Fitting and Fractal Dimensions 

The fractal dimension of an object is a real number used to represent the di­

mensional space to which the object belongs. This can provide a useful measure 

of the "complexity" of a shape, which may then be used as an input feature for 

a classifier, for example. There are many ways to calculate an object's fractal 

dimension, with the Minkowski-Bouligand method [1] being a popular choice 

due to its precision and the existence of a multi-scale version. A few attempts 

have been made to use fractal dimensions to identify leaves. McLellan (90] used 

the fractal dimension as a single value descriptor alongside other descriptors. 

Plotze [108] used the positions of feature points in the curves produced by the 

multi-scale Minkowski-Bouligand fractal dimension, whilst Backes [6] also used 

the multi-scale Minkowski-Bouligand method, but compared Fourier descriptors 
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calculated for the curves. Bruno et al. (14] compare box-counting and multi­

scale Minkowski estimates of fractal dimension, and used linear discriminant 

analysis to identify a number of plant species. McLellan and Endler (90] showed 

that fractal dimension tends to be highly correlated with the perimeter to area 

ratio (or "dissection index"), suggesting it is of limited additional benefit. 

As with shape features, whilst some good results have been achieved, with 

Plotze (108] claiming a 100% identification rate on a database of 10 species of 

Passifiora, their usefulness in explaining variation is somewhat limited. Given 

the wide variety of leaf shapes present (e.g. Figure 2.3), characterizing shape 

by any single measure of complexity may discard too much useful information, 

suggesting that fractal dimension measures may only be useful in combination 

with other features. 

Du et al. (32] created polygonal representations of leaves, and used these to 

perform comparisons, while lm et al. [63] represented leaf outlines as a series of 

super-imposed triangles, which could then be normalized and registered against 

each other for comparison. The method was shown to correctly identify 14 

Japanese plant species, but relies on a number of heuristic assumptions, which 

may limit the method's applicability to more general tasks. 

2.2.2 Venation Extraction and Analysis 

After their shape, the next most studied aspect of leaves is the vein structure, 

also referred to as the venation. Veins provide leaves with structure and a 

transport mechanism for water, minerals, sugars and other substances. The 

pattern of veins in a leaf can be used to help identify the plant's taxon. Although 

the fine detail may vary, the overall pattern of veins is conserved within many 

species. Veins are often clearly visible with a high contrast compared to the rest 

ofthe leaf blade (see Figures 2.6 and 2.7). 
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Figure 2.6: Leaf vein tructur 
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A wide variety of m thods hav been applied to the extraction (and I often, 

representation) of the vein network , although arguably with limited su c 

thu far. Clarke t al. [25] ompared a couple of simple m thod (a cale- pa e 

analysi algorithm and a smoothing and edge detection algorithm) to r suit 

achieved manually u ing Adobe Photo h p. Th y report the quality of the 

re ult as judged by om exp rt botan ists, and although the manual r -ult 

were preferred, th r ul ts bowed om hope for a.utomati method. , for at 

least ome specie . 

Li and Chi [ 1] uc fully xtra ted the venation fr m leaf sub-ima.g s 

using Indep ndent Compon nt Analysi (ICA) [26], th ugh wh n u ed on wh I 

leave , the re ults w r n b tt r than u ing th Pr witt edge d te tion op rator. 

Artificia l ant warm w r u ed by Mull n [96] to trac v nati n and out line in 

leave via an edg detection m thod. ome of th b t v in xtra tion r ult 

were achieved by Fu and Chi [39] u ing a ombin d thr holding and neural 

network approach. Their xperiment w re, how ver, p rformed u ing leave 

which had been photograph d u ing a fluores nt light bank to nha.nce the 
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venation, and uch images are not generally available. Kirchg fin r [70] u ed 

a vein tracing method with extracted veins represented u ing b-splines, whilst 

Plotze [108] used a Fourier high-pass filter followed by a morphological Laplacian 

operator to extract venation. 

Whilst there have been several attempts at extracting venation , there have 

been fewer attempts to analyz or compare it, with most of these using ynthetic 

or manually extracted vein images. Park et al. [104] used the pattern of end 

points and branch points to classify each vein tructure as one of the main 

venation types (see Figure 2. 7) , and N am et al. [9 ] performed classification on 

graph representations of veins. Further evaluation is required before the general 

value of venation analysis can be det rmin d . 

Figure 2.7: Example of vein tructure . 

2.2.3 Leaf Margin Analysis 

The leaf margin, the outer edge of the lamina, often contains a pattern of "te t h ., 

- mall rrated portion of leaf, di t inct from the typically larger and smoother 

lobes (see Figur 2.8 for exampl ). D pit b ing a u eful aspe t for botani t 

to use wh n describing leav s, t he margin has en v ry li tt le u e in automat d 

leaf analysis. Indeed, it has be n claimed that "no omputer algori thm can 

reliably detect leaf te t h' [11 J as yet. Thi may be du to the fact that teeth 

are not present in all peci s of plant; that th y are damaged or mis ing before 
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or after specimen collection; or due to the difficulty in acquiring quantitative 

measurements automatically. Nonetheless, teeth are an important feature of 

many plant species, with botanists using qualitative descriptor of t he tooth 

curvature [36]. Teeth size and number can a! o be u eful indicators of climate 

and of growth patterns [117], and ar even used to make prediction about 

prehistoric climates u ing fossilized leaves [36]. 

Studies using t he leaf margin normally combine it with other features and 

measurement . Clark [23] [24] and Rumpunen [120] both use manually taken 

measurements of the tooth length and width , used alongside various linear shape 

measurements. McLellan [90] used the sum of the angle between lines connect­

ing adjacent contour points along with other ingle value leaf featur s, and 

Wang [139] compared histograms of the angles at points pread around the 

contour. 

For taxa that possess teeth, if sufficient, undamaged leaves ar avai lable, then 

teeth area, size and numbers may be useful parameter to measure. Clearly, for 

taxa that do not possess t eeth, other methods must be u ed - as noted in 

Section 2.1, different analytical tasks may require different features. 

Figure 2.8: Example of leaf margins. 
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2.2.4 Leaf Texture Analysis 

Besides analysing outlines, a number of both traditional and novel texture anal­

ysis techniques have been applied to leaves. Backes et al. have applied multi­

scale fractal dimensions [6] and deterministic tourist walks [8] to plant species 

identification by leaf texture, although their experiments involved very limited 

datasets which makes them hard to evaluate. Casanova et al. [18] used an array 

of Gabor filters on a larger dataset, calculating the energy for the response of 

each filter applied, and achieved reasonable results, whilst Liu et al. have pre­

sented a method based on wavelet transforms and support vector machines [85]. 

Other techniques used include Fourier descriptors and grey-scale eo-occurrence 

matrices. 

Whilst the above studies were all performed on texture windows acquired us­

ing traditional imaging techniques (i.e. cameras and scanners), Ramos [110] used 

images acquired using a scanning electron microscope (SEM), and Backes [7] 

used magnified cross-sections of the leaf surface epidermis (the outer-most layer 

of cells). While these provide interesting results, such images and devices are 

not commonly available on a large scale. 

Where texture is preserved in a specimen, such analysis may prove useful, 

especially when combined with outline-based shape analysis. 

2.2.5 Other Lamina-Based Methods 

There have been a few other studies which have used the leaf lamina (surface), 

or features present on it, in ways different from those already discussed. Gu et 

al. [49] processed the laminae using a series of wavelet transforms and Gaus­

sian interpolation to produce a leaf "skeleton" (a thin structure representing 

the interior of the leaf), which is used to calculate a number of run-length fea­

tures: measure of short runs; measure of long runs; distribution of grey-scales; 
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distribution of lengths and the percentage of runs. 

Qualitative descriptors of the hairs sometimes found on the lamina were 

used by Clark [24). These were manually identified and described, and pose 

a problem for automated systems due to their three-dimensional nature which 

makes positive identification from a two-dimensional image difficult, even at very 

high resolutions. Surface glands are another potentially useful lamina feature 

that have been largely ignored thus far in computational methods. 

One intriguing option is to apply 3D imaging and modelling methods to 

leaf shapes (or to flowers; see below). Ma et al. [86) describe one such method 

which uses volumetric information from a 3D scanner to reconstruct leaves and 

branches of plants, though it is not clear how this would would work on a 

large scale system. Teng et al. [133) combine several 2D photos of the same 

scene to extract 3D structure, and use the 2D and 3D information together to 

segment the image, using normalized cuts, finding the leaf boundary. They then 

use centroid contour distance (CCD, as discussed in Section 2.2.1.2) to classify 

leaves into broad classes, such as palmate or cordate (see Figure 2.3). Similar 

work is described by Song et al. [130], where stereo image pairs were analyzed 

using stereo matching and a self-organizing map. The resulting surface models 

contained sufficient detail to allow measurements of leaf and flower height, as 

well as shape. 

2.2.6 Flowers and Other Plant Organs 

Although the focus of this thesis, leaves are not the only plant organs on which 

image processing and morphometric techniques have been applied. Traditional 

"keys" often make use of descriptions of flowers and/or of fruits, but these are 

often only available for a few days or weeks of the year. 

A number of methods have been proposed to identify plants from digital im-
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ages of their flowers. Although colour is a more common distinguishing feature 

here, many methods used to analyze leaf shape can also be used (see earlier 

sections). Nilsback et al. [100] combined a generic shape model of petals and 

flowers with a colour-based segmentation algorithm. The end result was a good 

segmentation of the image, with species identification left to future work. 

Das et al. [28] demonstrated the use of colour alone to identify a range of 

flowers in a database related to patents covering novel flower hybrids. Their 

method allows the database to be searched by colour name or by example im­

age, although no shape information is extracted or used. A colour-histogram 

segmentation method was used by Hong et al. [57] and then used with the cen­

troid contour distance (CCD; see Section 2.2.1.2) and angle code histograms to 

form a classifier. They demonstrated that this method works better than using 

colour information alone to identify a set of 14 species. This again suggests that 

outline shape is an important character to consider, especially in combination 

with other features. 

Elliptical Fourier descriptors (Section 2.2.1.1} were used by Yoshioka et 

al. [147] to study the shape of the petals of Primula sieboldii, whilst Wilkin [144] 

used linear measurements of floral organs, seeds and fruits as well as leaves and 

PCA methods to investigate whether a closely related group of species in Africa 

were morphologically distinct or not. They discovered that they in fact formed 

a single morphological entity and hence all belonged to one species. Gage and 

Wilkin [42] used EFA on the outlines of tepals (elements of the outer part of 

a flower, such as petals and sepals) of three closely related species of Sternber­

gia to investigate whether they really formed distinct morphological entities. 

Clark [24] used linear measurements of bracts, specialized leaf-like organs, in a 

study of Tilia, and Huang et al. [61] analyzed bark texture using Gabor filters 

and radial basis probabilistic neural networks. 
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At a smaller scale, the growth of individual grains of barley has been mod­

elled by 3D reconstruction from multiple 2D microscopic images [50]. This 

allowed both "virtual dissecting" of the grains as an educational tool, and also 

visualization of gene expressions via mRNA localization. At a smaller scale 

still, Oakely and Falcon-Lang used a scanning electron microscope to analyze 

the vessels found in fossilized wood tissue [101]. They used principal component 

analysis to identify two distinct "morphotypes", which correspond to one known 

and one novel species of plant growing in Europe around 95 million years ago. 

Moving underground, a number of studies have used image processing tech­

niques to analyze root structures in the "rhizosphere" (the region that roots 

grow in, including the soil, soil microbes, and the roots themselves). For exam­

ple, Huang et al. [60] used digital images of roots captured by placing a small 

camera inside a transparent tube placed beneath growing plants. They then 

used expert knowledge of root shapes and structures (such as roots being elon­

gated and having symmetric edges), to combine multiple sources of information 

and to fit polynomial curves to the roots, and use a graph theoretic model to 

describe them. More recently, Zeng et al. [151] used image intensity to distin­

guish root pixels from soil pixels. They then used a point process to combine 

and connect segments to efficiently identify complete root systems. 

These studies show that while the clear majority of botanical morphomet­

ries research has focussed on leaves, due to their ready availability and use for 

discriminating between taxa, other plant organs, when available, should not be 

ignored. 

2.3 Applications 

In this section, discussion moves beyond specific algorithms in isolation and 

methods designed for the laboratory, to considering a number of complete sys-
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terns and prototypes, designed for practical use in the field. In order to have an 

impact in the real world, it is important to demonstrate that an algorithm can 

be applied in practice, and can scale up from a few idealised examples to larger 

and more complex problems. Systems designed to identify species from plant 

images; several agricultural applications; and scientific research tools regarding 

species variation and distribution, and how this relates to the climate are all 

reviewed. 

2.3.1 General-Purpose Species Identification 

Plant identification is currently particularly important because of concerns about 

climate change and the resultant changes in geographic distribution and abun­

dance of species. Development of new crops often depends on the incorporation 

of genes from wild relatives of existing crops, so it is important to keep track 

of the distribution of all plant taxa. Automated identification of plant species, 

for example using leaf images, is a worthwhile goal because of the current com­

bination of rapidly dwindling biodiversity, and the dearth of suitably qualified 

taxonomists, particularly in the parts of the world which currently have the 

greatest numbers of species, and those with the largest number of "endemics'' 

(species restricted to that geographic area). 

The species to which an organism belongs is often regarded as its most 

significant taxonomic rank. Accurately identifying an organism to species level 

allows access to the existing knowledge available linked to that specific name, 

such as what other species the taxon in question may breed or hybridise with, 

what its uses are, and so on. A robust automated species identification system 

would also allow people with only limited botanical training and expertise to 

carry out valuable field work. 

A number of systems have been developed that aim to recognize plant species 
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from the shapes of their leaves, based on algorithms such as those in Sec­

tion 2.2.1. One such plant identification system is described by Du et al. [32). 

They argue that any global shape--based method is likely to perform poorly on 

images of damaged or overlapping leaves because parts of the leaf perimeter are 

missing or obscured. Instead, they suggest that local shape--based methods are 

more robust for this type of task. Their system matches leaves from images by 

fitting polygons to the contour and using a modified Fourier descriptor with dy­

namic programming to perform the matching. It aims to be robust with regard 

to damaged or overlapping leaves, as well as blurred or noisy images. They claim 

a 92% accuracy for their method on one sample of over 2000 "clean" images, 

representing 25 different species, compared with 75%-92% for other methods, 

and that their method is more robust than others for images of incomplete or 

blurred leaves. 

The increasing power and availability of cheap hand-held computers, includ­

ing personal digital assistants (PDAs) and smart phones, has led to a number of 

prototype applications. The goal of allowing users, both professional botanists 

and interested amateurs, to go out into the field and identify plant species using 

an automated system is a highly desirable goal, although the task is challeng­

ing, not least because of the very large number of plant species that may be 

encountered. 

One major and ongoing project aims to produce an "electronic field guide'' 

to plants in the USA [3]. The user can photograph a single leaf, and the system 

will display images of twenty plant species that have the closest match in terms 

of shape according to their Inner-Distance Shape Context algorithm, which 

extends the shape context work of Belongie et al. [10]. A related prototype 

from the same project includes an "augmented reality" feature [9], and provides 

a visual display of a herbarium specimen for side--by-side comparison to the 
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plant in question [143]. 

The CLOVER system [97] allows users to provide a sketch or a photograph 

of a leaf using a hand-held computer, which then accesses a remote server. 

The server retrieves possible matches based on leaf shape, using several shape 

matching methods including an enhanced version of the minimum perimeter 

polygons algorithm, and returns the matches to the device to display to the 

user. The prototype described is demonstrated to work effectively at recognizing 

plants from leaves, using over 1000 images from a Korean flora, and with the 

inevitable trade-off between recall and precision. 

A similar system uses fuzzy logic and the centroid-contour distance to iden­

tify plant species from Taiwan [21]. However, this requires the user to select 

various characteristics of the plant from a series of menu options, rather than 

using morphometric analysis directly. 

Each of these general-purpose prototypes has been demonstrated to work 

successfully on at least a small number of species, and under more or less strin­

gent conditions. Currently, there is no such system that is available for everyday 

use, although interest remains high [83, 75). 

2.3.2 Agriculture 

Rather than trying to identify a plant as belonging to one particular species, it is 

sometimes sufficient to perform a binary classification of a plant (for example, as 

healthy or not healthy}, without needing to be concerned about the exact taxon 

to which it belongs. One goal of automated or "precision" agriculture [16] is to 

allow targeted administration of weed killer, fertilizer or water as appropriate 

from an autonomous robotic tractor, not least to minimize the negative impact 

on the environment of large scale agriculture. To do this, the system must 

obviously identify plants as belonging to one category or the other, such as 
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"weed" vs. "crop". 

As is often the case with machine vision systems, variable lighting conditions 

can make image processing very hard. One proposed solution is to control the 

lighting by building a light-proof ''tent" that can be carried on wheels behind a 

tractor, and which contains lamps inside it along with a camera. One such sys­

tem successfully distinguishes between crop plants (cabbages and carrots) and 

weed plants (anything else) growing in field conditions [56). Whether carrying 

round such a bulky tent is feasible or not on a larger scale, it is certainly not 

ideal. 

A similar system uses rails to guide a vehicle carrying the camera along 

carefully laid out plots [44). Rather than carrying its own lights, the system is 

only used under standardized illumination conditions (e.g. bright but overcast). 

This system extracts shape features such as leaf circularity and area and uses 

a maximum likelihood estimator to identify leaves that are weeds (specifically 

dock leaves, Rumex obtusifolius) in grassland, with around 85%-90% accuracy. 

A different system to identify dock leaves is described by Seatovic [125), which 

uses a scanning laser mounted on a wheeled vehicle to generate 3D point clouds. 

These are then segmented to separate out leaves from their background, and a 

few simple rules, based on leaf size, are used to distinguish the dock leaves from 

other leaves in the meadow. 

A related attempt to distinguish weeds, crops and soil in field conditions 

uses morphological image processing [129). This attempts to identify the centre 

of each leaf by using colour threshold segmentation and locating the leaf veins. 

The system locates the veins using a combination of morphological opening and 

hierarchical clustering. The final classification makes use of a priori knowledge 

about features of the target plant species. A similar system combines mor­

phological processing with an artificial neural network classifier has also been 
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suggested [103]. A combination of colour segmentation and morphological pro­

gramming has also been used towards the development of a robotic cucumber 

harvester [109]. A variety of methods to distinguish various crops from weeds 

and soil are discussed by Burgos-Artizzu et al. [16], including colour segmenta­

tion and morphological processing. The paper also provides a useful overview 

of research into "precision agriculture", which aims to use modern technology 

to optimize crop production, allowing for local variation in soil, landscape, nu­

trients and so on. 

2.3.3 Intraspecific Variation, Geographical Distribution, 

and Climate 

It has long been known that the climate in which a plant grows affects the shape 

of its leaves [118]. Recent work has extended this by using digital image analysis 

to enhance the botanical and climatic measurements. Huff et al. [62] collected 

leaves from temperate and tropical woodlands. They analyzed the leaves and 

measured the shape factor, and found a correlation with the mean annual tem­

perature. The work was then extended to a wider variety of environments (17 

in total) in North America [118]. Here, a variety of simple digital image analysis 

methods were used to semi-automatically measure features such as leaf blade 

area, tooth area, number of teeth, and major and minor axis lengths. These 

features were then compared to climatic measurements from the different field 

locations. Finally, correlations between leaf shape and climate were measured. 

They confirmed previous findings that plants growing in colder environments 

tend to have more teeth and larger tooth areas than similar plants growing 

in warmer environments. One of the goals of this body of work is to support 

analysis of leaf fossils, with the aim of estimating paleoclimatic conditions. By 

establishing how leaves from living plants have shapes that correlate with their 

36 



environments, it is hoped that fossil leaf shapes can indicate how the Earth's 

climate has changed in the past, at both a global and a local scale. 

An early study by Dickinson et al. [31] used manual digitization (via a tablet) 

to identify landmarks on cross-sections of leaves, and principal component anal­

ysis to analyze the data. They identified both geographic variation between 

collection sites and also identified intermediate forms of specimens, suggesting 

various hybridizations had occurred. As mentioned earlier, work by Wilkin and 

Gage [42] [144] used morphometric analysis to identify species boundaries. In 

botany, identifying taxon boundaries is often as important as identifying to 

which taxa a particular specimen belongs. 

2.4 Summary 

In this chapter, a wide range of morphometric methods used in a wide range 

of botanical applications have been discussed. It should be clear that no sin­

gle method provides a panacea for all problems, but rather that appropriate 

methods must be chosen for each task at hand. Plants are extremely diverse in 

shape, size and colour. A method that works very well on one group may rely 

on features that are absent in another taxon. For example, landmarks may be 

readily definable and identifiable for some taxa, such as those with distinctive 

lobes, but not for others. 

Given the large scale nature of botanical morphometries and image pro­

cessing, automation is essential. Any system that requires significant manual 

effort, for example in tracing leaf outlines or locating landmarks, is unlikely to 

be practical when scaled up to thousands of specimens. Despite this, in some 

cases the user may be remain involved in the process with no great cost: if an 

electronic field-guide provides say ten predictions of species, rather than one, 

the user may be able to readily choose the most likely answer [3]. Related to this 
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is the issue of processing speed. The user of a hand-held field-guide may require 

responses interactively and so (near) instantaneously, whereas if tool is to be 

used on a large set of images in a botanical laboratory, it may be acceptable to 

wait overnight for a comprehensive result - assuming no human interaction is 

needed. 
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Chapter 3 

A Leaf Dataset 

For analysing leaf classification techniques, a suitable leaf-image dataset is re­

quired. Within the literature, a wide range of different size and quality leaf­

image datasets are used. Few of these are publically available, and those that 

are are tend to either represent a small number of species, have few samples 

per species or are of inconsistent image quality. Due to this, a new dataset was 

compiled for this project, making use of the resources available at the R.oyal 

Botanic Gardens, Kew. This chapter discusses the construction of that dataset, 

including examples of all species included. 

3.1 Selection and collection of the leaves 

With specimen from over 30,000 species of plant it is important to make an 

appropriate selection of which to include in the dataset. As discussed in Chap­

ter 2, there are many different aspects to a leaf, each of which can take on many 

forms (for example, types of leaf shape include oval, lobed and palmate), and 

it is desirable to have as many of these as possible represented, to ensure that 

methods developed work well on all types of leaves. On the other hand, there 
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is a need to be able to distinguish between species with similar features. An­

other consideration is the inclusion of species with high intra-species variation, 

as these present a particular challenge. With these factors in mind, 100 different 

species were selected from a wide range of genera, including 38 species of Quer­

cus and 11 species of Acer to test the ability of methods to identify between 

closely related species. 

Leaves were all collected from species-labelled plants at the Kew Royal 

Botanic Gardens, and images were captured within an hour of collection, to 

minimise degradation due to having been removed from the plant. Where pos­

sible, healthy, undamaged, adult leaves were selected. Leaves were collected 

from multiple specimens of the same species where available, so that any inter­

specimen variation that may occur is represented. A total of 16 leaves were 

collected for each species, to provide adequate training and testing data. 

3.2 Capturing the leaf images 

Images were captured in an indoor, artificially lit environment using a 10 megapixel 

digital SLR camera. Natural light was excluded as far as possible and a light­

diffusion screen was set up to improve lighting consistency. Leaves were placed 

onto herbarium sheets (stiff white paper used for mounting herbarium sped­

mens) to provide a uniform, low-reflection background. For leaves that were 

curved in a manner which meant they did not lie flat, double-sided adhesive 

tape was used to hold them in place. The camera was held by a tripod approxi­

mately 40cm directly above the leaves, and a wired remote was used to operate 

it, to minimise any camera movement. Images were captured of both sides of 

each leaf, as these may contain different details. 
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3.3 Use of the dataset in this thesis 

Where possible the full dataset of 1600 leaves {lOO species, 16leaves per species) 

has been used for testing methods in this thesis. Due to the time required in 

collecting and preparing the dataset, a subset of 32 species is used in some parts 

(primarily Section 5.1.1), as the full set was not available at the time of testing. 

Likewise, some early work (Sections 4.2.2 and 4.5) was performed on a different 

dataset of 8 leaves each from 32 species of Quercus. 
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Chapter 4 

Feature Extraction 

Chapter contributions: 

• Comparative study of leaf-shape analysis techniques. 

• Methods for the extraction and description of the leaf macr~ 
and micr~texture, margin characters, and the venation 
patterns. 

As discussed in Chapter 2, plant leaves contain many different components 

that are used in their analysis, such as the shape, margin and venation. It is 

important to accurately extract these components from the leaves, and generate 

appropriate descriptors for them. 

The majority of previous work in this field has concentrated on the use of 

only the leaf shape, using a wide array of traditional and leaf-specific shape 

analysis techniques. This chapter will begin with a comparative study of the 

most popular shape-based methods, before continuing on to the primary focus 

of new methods based on the other major leaf components, namely the texture, 

the margins and the venation. 
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4.1 Leaf Shape 

As previously discussed in Section 2.2.1, by far the most commonly used leaf 

feature for automated analysis is the leaf shape. There are likely a number 

of reasons for this. It is perhaps the most obvious aspect to use - the wide 

variety of shapes can be easily observed, and might suggest a high discriminative 

power. The shape is also particularly easy to extract and can be done simple 

thresholding if the leaf is set against a plain background. Moreover, there is a 

large array of existing morphometric and shape analysis techniques that can be 

applied to the problem. In this section, the most commonly used techniques 

will be applied to the same dataset, in order to evaluate the advantages of each. 

4.1.1 Study of Existing Techniques for Leaf Shape Anal-

ysis 

Of the commonly used techniques some are apparently unsuitable for general leaf 

classification. Linear measurements, such as angles and spans measure across 

certain parts of the leaf [51], may appeal to botanists due to their similarity to 

traditional botanical descriptors, albeit less qualitative. However, some previous 

catagorization of the leaves, for example as lobed, un-lobed or palmate (lobes 

radiating from the base of the leaf), may be required in order to select an 

appropriate set of measurements, and some manual intervention may be required 

to locate the correct measuring points. Use of landmarks tends to be restricted 

to studies involving small sets of similar species, due to the lack of landmarks 

that can said to be common across all types of leaves. For example, Jenson et 

al [65] used the relative positions of the lobe tips and bases for comparing two 

5-lobed species of Acer. 

In this study, three common and widely applicable methods will be used: 

shape features, centroid-contour signatures, and elliptic Fourier descriptors. 
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Whilst several other techniques, including fractal dimensions and polygon fit­

ting, have been applied to the problem, their use has been limited, and they do 

not appear to hold any advantages over the above techniques. 

4.1.1.1 Shape Features 

Shape features are sets of non-leaf-specific geometrical and morphological char­

acteristics that have been selected as appropriate for adequately describing a 

leaf. One appeal of these is that they are somewhat intuitive, in that it is ap­

parent how a value, such as the aspect-ratio, relates to the leaf's shape. Despite 

this, these features contain insufficient information to allow for the reconstruc-

tion of the shape, and it is quite possible that two visibly different leaves could 

produce the same set of features. A further problem is that there will likely be 

a high level of correlation between some features, although this may be resolved 

through the use of feature selection techniques. Whilst there exists no definitive 

set of shape features, certain features suitable for the task of leaf classification 

have been used in multiple instances. The set used here is based on those. 

Firstly, the minimum bounding rectangle (MBR) and convex hull (CH) of 

the leaf are calculated. The leaf is orientated through calculation of the MBR. 

The following values can then be defined: height, h, and width, w, of the MBR; 

the areas of the leaf, MBR and CH as AL, AMBR and AcHi the perimeters of the 

leaf, MBR and CH as PL, PMBR and PcHi and the minimum and maximum 

distances from the centroid to the contour, CCDmin and CCDmax· The 8 

features used are then as follows: 

1. Aspect ratio 
h 

F1=­
w 
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2. Rectagularity 

3. Ellipticality 

4. Solidity 

5. Perimeter Convexity 

6. Sphericity 

7. Form factor 

8. Gravity 

Fa= 4AL 
hw1r 

F
6 

= CCDmin 
CCDmaz 

4.1.1.2 Centroid-Contour Signatures 

Contour signatures are sequences of values calculated at points spaced around 

the perimeter of a shape. The most commonly used of these is the centroid­

contour distance - the sequence of distances from the centroid of the shape to 

each boundary point, although several others also exist. Points on the contour 

can either be evenly spaced in terms of the distance around the perimeter or the 

angle around the centroid, although problems arise with this latter method when 

a line extended from the centroid crosses the contour multiple times. Some, such 
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as Meade et al. [91] have used uneven spacing, such as increased sampling at 

sections of higher curvature. 

Here, two different signatures are used, the centroid-contour distance (CCD) 

and the angle at centroid angle signature (CAS). 

X·- X Xo -X 
CAS(i) =I tan(-'--e)- tan( e)l 

Yi- Ye Yo- Ye 

Where Xi,Yi are the x and y co-ordinates respectively for the ith contour 

point, and Xe, Ye are the x and y co-ordinates of the leaf's centroid. 

The CCD is normalised such that all the values in the sequence sum to unity. 

When comparing two pairs of signatures, orientation invariance is achieved via 

cross-correlation, whereby the distance between them is measured for every 

offset of one against the other, and the minimum of these distances is used. 

This is equivalent to rotating one leaf in relation to another until the difference 

between the two is minimised. 

4.1.1.3 Elliptic Fourier Descriptors 

The Elliptic Fourier descriptor of a shape is comprised of the set of coefficients for 

the first k harmonics of the elliptic Fourier expansion of the contour coordinates. 

These are given, for the nth harmonic, as 

_ P """ ~Xi ( 2mrp; 2mrpi-1) 
an - 2n27r2 L...J ~p· cos -p -cos P 

i ' 

b _ P """~Xi ( . 2n7rp; . 2n7rp;-t) 
n - 2n27r2 L...J ~p· sm -p - sm p 

i ' 
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_ P ~ f).y; ( 2n1rp; 2n1rPi-l) 
Cn - 2n 21r2 LJ ~Pi cos -p -cos p 

• 

where x;,Yi are the coordinates for the ith point, Pi is the distance around 

the contour to the ith point, Pis the total perimeter distance, and ~Xi,~y;,~Pi 

are the respective distances between points i and i - 1. 

~Yi = Yi- Yi-l 

~Pi= Pi- Pi-t 

Elliptic Fourier descriptors are popular with botanists due to the ability to 

reconstruct the shape from the descriptor. By using PCA to find the main 

sources of variation within a dataset, this variation can then be visualised by 

creating descriptors for leaves that have been increased or decreased along each 

of the principal components [4, 41, 79, 147]. 

4.1.2 Results and Evaluation 

The methods are evaluated on a dataset containing 16 leaves from each of 100 

different species. A 16-fold cross-validation is performed, such that one leaf 

from each species is used each time in the testing set, whilst the remaining 

leaves are used as the training set. Classification is performed using the k­

nearest-neighbour technique, with k = 15. Table 4.1 shows the average rates 

of correct classification and standard deviations for each of the methods. The 

standard deviation given here is the deviation in classification rates between 
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different species. 

Method Result(%) SD (%) 
Shape Features 60.8 26.3 
Contour Signatures 59.6 33.4 
Elliptic Fourier 57.8 30.7 

Table 4.1: Results for the three shape analysis methods. 

As can be seen, all three methods performed similarly, with the shape fea­

tures producing slightly better results, at 60.8%. The shape features also had 

a lower standard deviation than the other two methods, at 26.3%, although for 

all three this is quite high. Looking at which species each method performed 

better than the others on helps to explain this high variance. 

Whilst the signatures and the EFD performed similarly on most species, 

there were several species on which they both performed significantly better 

than the shape features, and others on which the shape features performed much 

better. Examples of these species can be seen in Figures 4.1 and 4.2 respectively. 

Species for which the shape features performed best typically had more complex 

structures, often with high levels of intra-species variation. Many of these have 

lobed leaves with varying numbers of lobes from leaf to leaf, whereas species 

for which the number and position of lobes on each leaf remained constant 

tended to achieve comparable results for all methods. On the other hand, the 

contour signatures and elliptic Fourier descriptors got better results on leaves 

with simpler oval shapes, where the intra-species variance is less, but so too is 

the inter-species variance. The reason for this appears to be that it captures 

the general properties of the shape, and is so more resilient to these slight 

variations, whereas the other methods more precisely capture the more subtle 

details required for distinguishing between species with similar-shaped leaves. 

Although the results for all three methods were relatively low on a dataset 

of this size {100 species), when formulated as a retrieval problem, where the 
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Figure 4.1: Examples of species for which Elliptic Fourier and Contour Signa­
tures are more likely to achieve correct classification than the Shape Features. 

top n species are returned, shape-based methods can be seen as an effective 

means of eliminating the majority of species, aiding the accuracy and reducing 

the computational time required by other methods performed on top of this. In 

figure 4.3, the y-axis indicates the fraction of cases for which the correct species 

appears within the number of returned results in the x-axis. For example, for 

EFD approximately 90% of leaves tested had the correct species appear within 

the first 5 species retrieved. For shape features, the correct species appears in 

the first 8 species retrieved in over 99% of cases, whilst for all methods the 

correct species always appears within the first 14 out of the 100 species. This 

will be explored further in Chapter 5. 

4.2 Leaf Texture . 

Much of the texture present on a leaf is due to the venation, with other sources 

of texture including hairs and glands. The veins on leaves typically have a 

hierarchical structure, and this venation can be separated into two main groups: 

Figure 4.2: Examples of species for which Shape Features are more likely to 
achieve correct classification than Elliptic Fourier and Contour Signatures. 
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Figure 4.3: Species retrieval result , howing rat at whi h t he orrect pecies is 
within t he top n returned , for hape ~ ature ( F), centroid-contour ignatur 
(CCS) and ellipti Fourier d criptors (EFD). 

the low-order vein fram work consisting of the larg r primary and onda.ry 

veins, and the higher-order vein fabric which o upi the spa es in betw n 

(see Figure 2.6). Becau e of this, it i benefi ia l to on ider t h textur n 

both a macro ·cale and a micro cale. For t he form r , de criptors ar generat d 

t hat de cribe t he entire surface of a leaf, whil t for th latter the t :>.'i ur from 

between the larger vein is extracted . 

Another aspect of t he texture wort h con id ring i that on many I ave , 

t he lower (abaxial) ide and upp r (adaxial) id a.r very differ nt. Typically, 

the venation i more promin nt on tb abaxial id , with hair and glands a l o 

being common feature here, whilst t h adaxial id i mor lik ly to h v a 

waxy texture ( u ually to pr vent exc iv wat r lo ) . 
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4.2.1 Macro-texture 

Here, the desire is to generate a descriptor for the entire surface of the leaf, in 

a manner that will take account of the variations that may occur, due to, for 

example, lighting conditions, or damage caused by insects or disease. 

For each leaf image, a large number (up to 1024) of small, fixed-size windows 

are randomly selected from the surface of the leaf. For each window 20 features 

are calculated based on the responses from different filters applied to all the 

pixels in the window. 

The filters used are a rotationally invariant version of the Gabor filter: 

r 2 27rr 
g(x, y) = exp 

2
u2 cosT 

where r = Jx2 + y2 is the distance from the centre of the filter, u is the standard 

deviation, and A is the wavelength, set to be A = 3u. Five different scale filters 

are used, produced by varying u. The wavelength is fixed in relation to u so 

that the filters are scaled versions of each other. Each filter is convolved with 

the window and four features are then calculated for that filter for the window: 

1. Average positive value 

2. Average negative value 

3. Energy 

:E 'ij 

(i,j)EW IWI 
s3 ;::o 

:E 'ij 

(i,j)EW IWI 
s,$0 

:E 'ij2 

(i,j)EW IWI 
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4. Entropy 

_ L l/ij I log l/ij I 
(i,j)EW IWI IWI 

Where W is the current window, /ij is the response for the current filter at pixel 

{i,j), and IWI is the size of the window. 

Further details and analysis of the data generated here is performed in Sec­

tion 5.1.1, including discussion of parameters used, and techniques for classifying 

leaves based on this data. 

4.2.2 Micro-texture 

When working at a high enough resolution to be able to extract useful informa­

tion from the vein fabric, it is not practical, due to computational requirements, 

to cover the entire leaf surface. Instead, a selection of sample windows should 

be chosen. If texture samples (windows) are extracted randomly from a leaf, the 

level and quality of the vein framework present in a sample may vary greatly, 

depending on the precise position of the sample on the leaf. For this reason, 

a simple method is suggested for extracting samples which as far as possible 

contain only the vein fabric, as the contents of these samples should be more 

consistent {Figure 4.4). 

The first stage is to reduce the scale of the image by convolving it with a 

Gaussian kernel and then sub-sampling. This has the effect of smoothing out 

much of the detail in the vein fabric, whilst retaining the main venation. Next, 

the image background, the paper on which the leaf is mounted, is removed. This 

can be done using Otsu's thresholding method (102]. An edge detection operator 

is then applied to the foreground of the image to provide a rough measure of 

the areas with strong edges in this scale space. A large number of potential 

windows {10 times the number we intend to use) are sampled at random from 

the foreground (containing only the leaf) and are sorted according to the sum of 
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Figure 4.4: Ra ndom sampling (left) compared wit h desired sampling (right) , 
shown on an x-ray image for increased cont rast. 

t he squared edge magnit ude for all t he pixels within t he window. T he de ired 

number of non-overlapping sample windows (in t hi case, 8 were u ed) with the 

lowest sum can t hen be selected for use. A number of example of windows 

selected by t his method are given in Figure 4.5. 

Figure 4.5 : Extracted texture ample from 12 pecie of Quer u (Oak). 

4.2.2.1 Gabor Filters 

The texture analysis m thod presented here i bas d around t h joint d istribu­

t ions of responses to Gabor fil ters. A Gabor fil ter [30] i es nt ia lly a inu oid 

modulated by a Gaussian function. It can be expre ed a follow : 

x'2 + 'Y2Y'2 2?rx' 
G(x,y) = exp( 

2
<7 2 )eo( - >.- + .,P), (4 .1) 
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where: 

e X
1 = X COS 8 + y sin 8 

• y' = y COS 8 - X sin B 

• e is the orientation of the filter. 

• 1 is the filter aspect ratio. 

• o- is the standard deviation of the Gaussian. 

• >. is the wavelength of the sinusoid. 

• 1/J is phase offset. 

Gabor filters have been applied to a large range of computer vision problems in­

cluding image segmentation [124] and face detection [59]. Of particular interest 

are the links found between Gabor filter and the human visual syst m [29] . 

Figure 4.6: Examples of th Gabor filt r u d her . 

4.2.2.2 Texture Analysis From Gabor Co-Occurrences 

A bank of 128 Gabor fi lters is creat d, wher for filt r Gmn , 0" = 1.5 * 1.2m- J, 

>. = a; and e = ~g, with m E [0, 7] and n E [0, 15] r ferring t the filt r cal 

and angle respectively. For all filters, 1 = 1 and 1/J = 0. The full t of filt r 

is applied to each texture, but for ach cale only the valu corre ponding to 

the highest absolute response for all t he orientation i r rded for each pix I. 

This ensures that the method i rotation invariant. 
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The results of t he filtering for an image are combined into a eries of eo-

occurrence matrices [52], whereby for each pair of cales, t he re ul ting matrix 

describes the probability of a pixel producing one respon e valu for t he fir t 

scale, and another for the second. 

Ckl(i,j) = P(gk(x , y) = i , gl(x , y) = j) (4.2) 

where gm(x , y) = max (Gmn(x, y) * I (x, y)) i the maximum re pon e from 
n=O .. l 5 

convolving the fi lters for cale m with the image I a t point (x, y) , and (i, j) 

is a pair of re pon e values. Examples of t he e matrices for value k = 0 and 

l = lto7 are given in Table 4.2. The x-axi and y-axi for ea h matrix cover 

the range of respon e values for each of the two filters, with the grey ale va lu 

represent ing the frequency at which the two filter gave the corre pond ing pair 

of responses. 

I • 

.. ., 

Ilex 
'!!'; ,. ~';1' ~ 

.. ... 

' " ~- .. 'f ,. 
R.hysophylla 

' .. ... 
" ... .. ~ .... .,. 

Shumardii 

Table 4.2: Exampl of Gabor co-occurren matrice for 3 pe i f Qu r u 

4.2.2.3 Classifying Micro-Textures 

To classify textures, t he orre ponding co-occurren ma.tric ~ r cliff r nt tex­

tures are compared directly. This is done by treating t h co-o urr nee matri s 
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as probability distribution functions (pdfs), by simply dividing each value by 

the sum of all values, and using the Jeffery-divergence distance measure - the 

symmetric version of the Kullback-Leiber divergence [15]. For two pdfs, fa and 

!b, the distance between them, J D(fa, /b), is calculated as follows: 

J ( I) ~~I(' ') 2fa(i,j) I(' ')/ 2/b(i,j) 
D faub = L.JL.JJa Z,J log 1 (' ") + 1 c· ") +;b Z,J og 1 (" ·) + 1 (" ") . . Ja Z,J Jb Z,J Ja Z,J Jb Z,J 

• J 

(4.3) 

The distance between two images A and B is then: 

D(A,B) = L L JD(cj,c:Z) (4.4) 
k l,l# 

Where Cj and Cf: are respectively the eo-occurrence matrices at scale k,l for 

images A and B. 

The final classification is performed using the the k-nearest neighbour method, 

with k = 3. The most frequent class of the 3 closest texture samples to the one 

being classified is chosen. In the case that all 3 classes are different, the class of 

the single closest texture sample is used instead. This strategy was chosen as it 

reduces the risk of classification errors due to outliers. 

4.2.2.4 Experiments 

Datasets. The method was evaluated using two texture datasets. The 

first dataset was constructed using the method described previously. For each 

of 8 leaves from 32 different species, 8 64 x 64 windows were selected. This 

window size was chosen as it was found to be small enough to allow the windows 

from leaves with dense vein frameworks to fit between the main veins. Eight 

windows were then used to provide an adequate overall sample size, whilst more 

would require more computation and may not be possible for particularly small 

61 



leaves without significant overlap between windows. Each of the 8 samples for 

a leaf was filtered, using the set of Gabor filters, before they were combined 

into a single set of eo-occurrence matrices. The second dataset used 8 windows 

sampled at random from the same leaves, to illustrate the value of the texture 

extraction method for selecting suitable windows. 

Comparison Methods. For comparison, the above datasets were also 

used with a number of traditional texture analysis methods: 

• Fourier Coefficients: 

The Fourier Transform of each window was calculated. From this, a vector 

of 64 features was found, whereby the ith feature /i = E;=O IF(i~,O)I, 
where F(r, 0) is the Fourier Transform in polar form, and w is the half the 

image width [66]. 

• Gabor Filters: 

The same set of Gabor filters used in Section 4.2.2.2 is applied to each 

image. The energy in each resulting image is then calculated as eafJ = 
Ez E 11 (Gmn(x, y) * I(x, y))2• The set of energies for each scale are then 

averaged resulting in 8 rotationally invariant features. 

• Go-occurrence Matrices: 

The traditional eo-occurrence matrices were produced, using angles of 

0 rad,i rad,~ rad and 3; rad and distances of 1,2 and 3. For each 

distance, a set of 14 textural features is calculated, as described by Har­

alick [52). 

4.2.2.5 Results 

The results for the experiments are given in Table 4.3, with values representing 

the percentage of leaves correctly classified. All the algorithms performed better 
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on the dataset created using the method in Section 4.2.2 than on the dataset 

of randomly selected windows, showing the value of this method of leaf texture 

extraction. For all datasets the new method performed best, with the basic 

Gabor method performing worse. The improvement between the two datasets 

was greatest for the Fourier method, suggesting that it is better at capturing 

finer detail presented in the vein fabric, however its performance was still not 

able to match the proposed method. 

Vein Random 
Fabric Windows 

Gabor Co-occurences 85.16 79.69 
Gabor 50.78 45.70 
Fourier 82.42 62.89 
Co-occurrence Matrices 69.14 61.72 

Table 4.3: Results for the two datasets (%) 

4.3 Margin Characteristics 

Study of the leaf margin - the pattern around the edge of the leaf including 

details such as the teeth (see Figure 2.8 for examples)- provides valuable infor­

mation about climate and other conditions in which a plant species has evolved. 

It is therefore important to be able to accurately extract the margin from the 

leaf, independently of the shape, and allow for meaningful comparison between 

different leaves' n1argins. 

4.3.1 Extracting The Margin 

The first step is to extract the leaf's n1argin. Having extracted a n1ask of the 

leaf, a modal filter is applied to the n1ask to acquire a sn1oothed version of the 

leaf's shape {see Figure 4.7). This filter sets each pixel of the sn1oothed leaf to 

be part of the leaf if the n1ajority of the original pixels within the filter's radius 
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were part of the leaf, a nd to be part of t he backgro und otherwise. T hi !111;; the 

effect of removing t he t ips of t he teet h a nd filling in a ny sma ll ga ps. By va ry ing 

t he filter 's rad ius, different levels of smoothing can be achieved , wit h sufficiently 

large radii remove all det ail from the margin . Here, a rad iu of 15 pixels was 

used . From this, m evenly spaced points around t he contour a re ca lc ulated (in 

t his case, m = 8192 was used), encompas ing the entire outline. For each of 

t hese points, a corresponding point on t he orig ina l outline is ca lculated . T his 

is done by first estimating t he line t hat is normal to t he edge oft he lraf at this 

point as being perpendicular to t he line which runs between the two points nt 

dist ance k eit her s ide of the current po int.. T he s ub-pixel point a t which this 

line intersects t he orig ina l leaf 's out line is t hen found by linc11.r int f' rpolat ion. 

T he dista nce between t his point and t he current po int. is t h n ca l ulntt'<l (see 

Figure 4.8) , and t hese distances for a ll t he points in t hr ·•noothed outliur nrr 

ombined in order to produce a margin ignature, = (s 1, ••• , s111 ). Xl llllples of 

extracted margin s igna tures a re given in Figur 4.9. 

(a) T he original rnask (b) After 111 dal fi l tering (c) Di ffcr!' IIC!' 

F igure 4.7: U. ing moda l fil ters to xtract· tht• t l'<' th . 

The e>:t racted mru·gin i partitioned into n ov rlnpping wi nd >ws, = (.r 1, 

... , Xn), of equa l ize a nd pac ing (in this a ·c n = !!!. a nd t-11 window s iz 11 :'<• 1 

is 1';'8 ) . T his is done for a num ber of reason . F irst ly, t he xnr t nun1 bcr f t ec• th 

will vru·y between leaves of the same speci s, which may ro ll s<• problems when 
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current point 

line indicating gradient 

corresponding 
margin point 

distance between original 
and smoothed marg in 

Figure 4.8: Calculating a point on the mar gin s ignnt m e. 

attempting to a lign their margins. By using windows, each window will prov ide 

a description for the area of the margin within it , and so be more robust to this 

varia tion. Furthermore, this a llows for an adeq ua te' dC'scription of t hC' mnrgin 

whilst using a much smaller number of da ta points, and so reducing romput.11tion 

time to a little a.s one-eighth . By overlapping the windows, sC'nsiti vi ty to thrir 

exact pos ition in s i reduced. 

For each point within a wiudow, :r; , 3 values aJ·C' n1lculat Nl: 

1. Magnitude - Thi. is t he signed distance betwC' n thC' s tnootlH'd mnrgiu 

point and its correspond ing point in the rigina l mnrgiu , whC' n ' thC' s ign 

is determined by whether the orig ina l ma rgin point line's ins ide' or out s ide• 

of the smoothed ma rgin . 

2. Gradient - The signed clifrerenre between t he r mrent point ill t.ht' 111 trgin 

signature and the uext point. 

3 . Curvature - The a ngle at the current poiut betwccu t.h (• prC'v ious poiut. 

a nd the next point in the signature. 
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(a) Acer circinatu m 

(b) Populus grandidenta la 

V V 
(c) Q uercus ccrri s 

Figure 4.9: Examples of egments from extracted margin sigunt11 rPs. T he• y-n.x is 
represents the distance from the smoothed mnrgiu nud t h<' original 111nrgin . 

For each of t hese, 2 fpatures ru·e then Alculat"<>d for tlw window, giving n 

total of 6 feat ures per window: 

• Average posit ive value: 

• Average n<>ga tivC' val11e: 

Where X; is the current window , ·1 is t he va l11c nt 11 point wi thin t! IC' signntlll'<' , 

and /x; / is t he size of the window. 
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4.4 Locating The Apex And Insertion Point 

The only two landmarks which consistently exist are the 'insertion point'- where 

the petiole, or stem, attaches to the leaf- and the apex - the tip of the leaf (see 

Figure 2.2). It would therefore be useful to be able to locate these two points. 

To do this, the extracted margins can be utilised. 

To locate these two points, potential candidate points are first identified by 

selecting the local maxima from the margin signature which have an absolute 

magnitude greater than 25% of the global maximum. This value of 25% was 

used as it was found to small enough so that, for all leaves in the dataset, the 

true apex and insertion points were selected amongst the candidates. Basf'd on 

the principle that both sides of a leaf - from insertion point to apex - will be 

approximately a reflection of each other, dynamic time warping can be used to 

identify the two points on the margin for which the difference between the two 

sides is minimised, and so are most likely to be the insertion point and apex. 

4.4.1 Dynamic Time Warping 

Dynamic time warping (hereon DTW) [122] is a technique for measuring the 

similarity between two different sequences. During the comparison, it allows 

parts of the signals to be stretched or compressed to a certain ext.E'nt., tht>rf.'by 

accounting for the sequences being of different lengths {for inst.anC'e, due to 

differences in speed) or containing natural distortions. A typical application 

for DTW is speech recognition, where people may speak at different 11peeds, or 

elongate different sounds. It has also seen use for a number of computer vision 

problems, including face detection [136) and action recognition [126). 

Given two sequences x = (x1, ... , X m), y = (y1, ... , Yn) an m x n cost matrix C 

is calculated, whereby value e;; is the distance between points x, and 'lli· Under 

the assumption that point x1 corresponds to point y1 (i.e. the same starting 
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points), and Xm to Yn, a monotonic path through C is found, beginning at 

Coo and ending at Cmn, such that the sum of the values at the nodes visited is 

minimized. This path then represents the optimal alignment of points in x to 

those in y. This can be calculated relatively efficiently (quadratic complexity) 

by recursively accumulating the costs in a matrix D. The value d;; is calculated 

as follows: 

if ( i = 1 " j = 1) 

00 if ( i = 1 1\ j > 1) V (j = 1 1\ i > 1) 

d;,· = d i-l,j (4.5) 

C;; + min d;,;-t otherwise 

Once all the values in D have been calculated, the measure of the similarity 

between the two sequences is given by dmn· 

There are a number of extensions to the standard DTW algorithm that have 

been proposed in the literature [122, 123]. Calculating d;J by using Equation 

( 4.5) results in a path which travels monot.onically betw{'('n adjact>nt Ct'lls, 

either horizontally, vertically or diagonally. Since a continued horizont.al or 

vertical movement represents the compression of a subsequent·e to unit length, 

or the stretching of a single point to a much longer length, this could result in 

unrealistic distortions. To counter this we add the condition that f'Vt>ry step 

that is made horizontally or vertically must al..'iO be accompanied by a diagonal 

step (see Figure 4.10). This restricts the maximum distortion of a subsequence 

to a level that is realistic for this type of data, whilst ensuring that distortions 

carry an additional cost due to resulting in longer paths. 
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( i-l,j) (i ,j) 

• 

/i • 
( i-l,j-1) (i,j-1) 

• • • 
(a) The standard formulation 

~//i 
(i-2,j-l) (1-1,/ 

• • • 
(1-1, j-2) 

(1 ,j) 

(b) Step functions used here 

Figure 4.10: Legal steps for path when calculating DTW. 

If two sequences are similar, the optimal DTW path will be dose to the 

diagonal of the cost matrix, where i = j. If the optimal path diverges from this 

by more than a certain amount, it is unlikely that the two sequences are from 

the same class. This allows a constraint to be added to improve the spero of the 

algorithm. By only calculating dij for li-il ~ k, the complexity can be reduced 

from O(n2 ) to O(kn) where k « n, without risking finding a sub-optimal path, 

when the two sequences are from the same class [123). With these improvemt-nts 

included, the equation for calculating dij becomes: 

00 

00 

di-2,j-l + Ci-l,jt 

c;3· + min d + ,., i-l,j-2 ...... j-lt 
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if li- il > k 

if(i=l/\j=1) 

if ( i = 1 1\ j > 1) V {j = 1 1\ i > 1) 

otherwise 

(4.6) 



4.4.2 Finding The Points Of Margin Symmetry 

For a given candidate point, the corresponding window, Xi is identified from 

the circular sequence of windows x = (x~o ... , Xn} for the leaf. Two sequences, 

a = (a1, ... , at+w), b = (b1, ... , bt+w} are generated, where a1 = b1 = Xi, 

ai = xi+i• bk = Xi-k and n is the total number of windows. Since the insertion 

point and apex may not lie directly opposite each other, the sequences a and 

bare continued for a distance of w beyond the mid-point Xi+f• surh that the 

ends of the sequences are overlapping. A value of w = ~ was used. 

The accumulated cost matrix D is generated as described in Section 4.4.1. 

Because the last w points in the two sequences are the reverse of each othPr, 

similarity is calculated as the minimum djk where j + k = n. Using this method, 

the insertion point and apex were correctly identified in 97.75% of test cases, 

with one or the other being correctly found in 99.25% of the 1600 leavrs in the 

dataset. 

These apices and insertion points are used in Section 5.1.2 for performing 

classification of leaf based on the above leaf margin descriptors. 

4.5 Venation Patterns 

In this section a couple of techniques are presented for the extraction of l<•af 

venation. The first method uses a genetic algorithm to evolve classifiers for 

detecting veins on a pixel-by-pixel basis, whilst the second utilizes an ant colony 

algorithm to try to extract continuous vein segments. 
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4.5.1 Extraction By Evolved Vein Classifiers 

4.5.1.1 Classifying The Vein Pixels 

A genetic algorithm is used to evolve a set of classifiers for detecting vein pixels. 

Each classifier consists of a pair of bounds for each of the features used. If the 

values of all the features for a pixel fall within all the bounds for a classifier, 

then it is classified as vein. The vein pixels found by all the classifiers in the set 

are combined, and all other pixels are classified as non-vein. These classifiers 

are similar to those used by Liu & Tang [84]. More specifically, the S('t of vein 

pixels, V, is determined as follows: 

V= {(x,y)JO :S; x < w,O :S; y < h, 

3c E CJV/i E F, 11 ,Cio :S; /i :S; c;J} 

where 

• w,h are the image height and width respectively 

• C is the set of all classifiers 

• Cio is the lower bound for the ith feature for the classifier c 

• cil is the upper bound for the ith feature for the cla...,sifier c 

• F,11 is the set of feature values for the pixel at (x, y) 

• /i is the value for the ith feature 

4.5.1.2 Feature Extraction 

A set of 9 features are extracted for each pixel for use in classification. The 

features used are as follows: 
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1. Pixel greyscale value h = I(x, y). 

2. Edge gradient magnitude (from Sobel), h 

3. Average of greyscale values in a 7x7 neighbourhood, 

/3 = :9 L I(i,j). 
z-3<i<:r+3 
11-3~iSII+3 

4. Greyscale value minus neighbourhood average, 

1 /4 = I(x, y)-
49 

L I(i,j). 
:r-3<i<z+3 
11-3~iSII+3 

5. Greyscale value minus leaf lamina average, 

1 "' /5 = I(x, y)- il . I L... I(i,j). 
amma O<i<width 

OSj<h~ight 
(i,j)Eiomino 

Where lamina is the set of all pixels which are part of the leaf's lam­

ina, found by using Otsu's thresholding [102] to remove the leaf from the 

background. 

The average local gradient direction of pixels in a 11 x 11 neighbourhood 

around the current pixel is calculated. This size neighbourhood was cho.'lt>n be­

cause for most vein pixels this will include both sides of the vein. The greyscale 

values of the points 5 pixels from the current one in both directions along the 

gradient and perpendicular to the gradient are calculated. If the cum•nt pixf'l 

is part of a vein, the pixels perpendicular to the gradient direction are likely to 

also be vein pixels, and so similar to the current pixel, whilst the pixt>ls along 
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the gradient direction are likely to be non-vein, and therefore quite different. 

i1 = I(x + 5sin(a), y + 5cos(a)) 

i2 = I(x- 5sin(a), y- 5cos(a)) 

i1 = I(x + 5sin(a + ~ ), y + 5cos(a + ~ )) 

h = I(x- 5sin(a + ~),y- 5cos(a + ~)) 

Where a is the gradient direction. 

The remaining features are then: 

6. The absolute difference between pixels, i 1 and i 2 , either side of potential 

vein /6 = li1 - i2l 

7. The absolute difference between pixelsil and h, along potential vein 

h=lil-hl 

8. Greyscale value minus average value of the two pixels either side of the 

potential vein 
il + i2 /s = I(x, y)- -

2
-

9. Greyscale value minus average value of the two pixels along the pot.tmtin.I 

vein 

( ) il + h fg=l x,y --2-

To allow the same genetic operators to be used on features with very varied 

distributions, the feature values for the training data are mapped to a uniform 

distribution. This mapping is recorded and applied to any data being subse­

quently classified. 
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4.5.1.3 Evolving The Classifiers 

Classifiers are evolved one after another using a genetic algorithm, and added to 

the classifier set until no more classifiers with a fitness above a certain threshold 

can be generated within a maximum number of iterations. The only genetic 

operators used are mutations, as crossover operations are likely to combine 

classifiers that work on different types of vein pixels, thereby having a negative 

effect. For example, a classifier that finds thin sections of vein may require higher 

edge gradient values and lower greyscale values than a classifier finding the pixels 

in the middle of thicker veins. Crossing over these two classifiers would result 

in ones which classified neither of these vein pixel types. Bounds are mutated 

with probability 0.3 by adding or subtracting an amount randomly drawn from 

the range [0,0.01). The population is re-initialised after each classifier is added 

to the set. Each individual is initialised by centring the bounds around the 

feature values for a vein pixel randomly selected from the training data, with 

the width of the bounds drawn from a Gaussian distribution. This increases 

the likelihood of the classifier being effective, as one vein pixel will always be 

correctly classified by it, along with any similar vein pixels. 

The fitness function used is as follows: 

where: 

• T; is the set ofvein pixels correctly classified by classifi(~r i (true positivl.'s). 

• Fi is the set of non-vein pixels incorrectly cla..o;sified by classifier i (false 

positives). 

• 0 is the current set of classifiers selected in previous iterations and k is a 

constant. 
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This function grants high fitnesses to individuals which, if added to the classifit>r 

set, would significantly increase the number of true positives, but not the number 

of false positives. The fitness of a classifier is therefore dependent on the order in 

which they are selected. The constant k is used to adjust the balance bt>tween a 

high true positive/false positive ratio, and a high total number of true positives. 

If k is set too low the ratio will be very high, but the final classifier set may 

over-fit the training data. If k is set too high it will result in a high number of 

false positives. A value of k = 5 was found to be appropriate. 

4.5.1.4 Redundancy 

Classifiers can potentially be made redundant by other classifiers added to set 

later. In other words, a classifier may no longer uniquely classify many vein 

pixels whilst still incorrectly classifying some non-vein pixels. It is beneficial to 

remove such classifiers as this may greatly reduce the number of false positives 

whilst only slightly reducing the number of true positives. 

Redundant classifiers are identified by removing candidates from the set 

and measuring any improvement in overall classification quality. The classifier 

whose removal produces the largest increase in quality is permanently removed 

from the set. This process is repeated until no more dassifiers are found to be 

redundant. 

4.5.1.5 Results 

The classifier was trained using 8000 pixels manually sPltl<~ted from 14 lt>nf im· 

ages, 2 from each of 7 species. These pixels were then manually labt>llt!d as eit.ht>r 

vein or non-vein. The resulting classifier was then tested on 7 new l<~af imagt~s, 

one from each of the species used for training. The ROC curve in Figure 4.11 

shows the results (solid line). With a false positive rate of 0.0166, a true positive 

rate of 0.853 was achieved. 
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F igure 4. 11: ROC Curve. Solid line - evolved clas. ifi ers. Das hed line - nut 
a lgori t hm . 

T he classifier was a lso u ed on t he full leaf image from t l1e t.es t S<'t, in ord <' r 

to extract t he full venat ion pa ttern . Exam ples of the~e r<'sul ts or<' shown in 

F igure 4.12. 

4.5.2 Extraction By Ant Colonies 

T he second approach to vein ext raction is t.o liS<' a n ant co lony a lgor it h111. A 

population of a nt- like agents a re placed a t rn.ndom across th <' imag<•. T h<'s<• 

"a nt s" t hen move across t he image, moving from pix I t.o p ix<'l l>o ~t>d upon sonl<' 

he urist ic evaluation of tha t p ixel, known os t he pixel's vis ibili ty, ond nlso !m . .;<• I 

o n t he level of "pheromone'' a t t ha t pixel. T he phcrom li<'S n.r<' lltl ind irn t or 

deposited by an t to s igna l to ot her ru1t · t he va lue of n pnrt.i r ulnr pix<' l. s 

t ime progresses, t he ph romone levels build up to crea te n phcro tnon<' n1np for 

t he image, wit h high levels in de ·irable region , and low l<'v Is in uudC's irnhl<• 

regions . In t his case, t h edge magni t ude is used as t hl' m a.~ur<' of v isibilit y, 

to eucourage t he ants to t raverse along t he vein , t hcr by xt.rar ti ng onti unous 

sect ions of vena t ion . 
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(a) Quercus humardii 

(b) Quercus Rubra 

(c) Quercu Ellip oidali 

Figure 4.12: Result · for extra t ion by v lv d !as if r 
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The probability, Pii, of an ant at pixel i moving to pixel j is calculated as 

follows: 

otherwise 

Where Tj and T/i are the pheromone level and visibility respectively at pixel 

j, o and f3 are the weightings for these two components, and Ki is the st>t of 

pixels neighbouring pixel i. To prevent the ants converging on the strong edges 

outlining the leaf instead of the venation, the visibility for all background pixels 

(again calculated using Otsu's method) and all pixels within a short distance of 

the background (in this case, a distance of 10 pixels) is set to 0. After all the 

ants have performed one move, the pheromone levels are updated: 

Where p is the rate at which pheromones evaporate, o is the update rate, and 

ai is the number of ants at pixel i. There is a risk that ants will simply move 

between the same small set of pixels, building up pheromone levPls until it is 

highly unlikely for them to escape. This is prevented by ke<'ping a list of the 

last 10 pixels visited by each ant, and forbidding the ant from re-visiting any 

of these pixels. After a set number of moves have taken place, the phPromone 

map is thresholded to produce a binary vein classification. 

4.5.3 Results And Comparison Of Methods 

Figure 4.13 contains examples of typical results obtained using this nu•thod. For 

each leaf the algorithm was run for 500 steps, using 2000 ants. The ph«>romone 

map was then thresholded at 2% of the maximum pheromone level. ThPSe valut>s 

were chosen as they appeared to give the best qualitative results. The results 
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differ from tho. e obtained using the evolved clnssifi rrs in o nuut ber of ways. 

Firstly, due to the use of only the edge gra.dieuts to guidr the auts arro ·s I he 

image, t he resul ts contained only the hollow outline of the vrnation, whcrea.-; 

the other method extracts the full vein . One advantage of us ing aut s is I hat 

it helps in extracting continuous venation, whilst I he evolvrd clas. ifi r rs rxtro I 

veins with many small gaps in t hem. On t he down. idr, wheu a vei n rout ai us 

a section wit h only a low edge magn it ude, t he ants are tumb le to ro nt intw to 

extract the rest of t hat vein as the pixel-by-p ixcl rvolvrd elassifi r r nrr nhlr to 

do. T he effects of this ca n be seen near the top of thr first. imogr in Figurr -U:I, 

where a. large section of venat ion is completely Hbs nt . Furt hN tn re , when'ns 

much of t he fa lse po it ive re ul ts from the fir t method a rc iso lated pixe ls t hnt 

can be easily removed , the ants produce larger , coun cl rd nrrns of uoise. I h 11 

may be haJ'Cier to dist inguish from t he a.c t.uol venation. 

Fig ure 4.13: Resul ts usin t.he nnt co lony olgorit hut. 

By apply ing morphological closing, t hr hollow vC'i n cC'nln•s <'11 11 Ill' fiiiPd in 

(Figure 4. 14) . From t hese, ()llantita t.ivc res ul ts ro u b ra lculnt<·d , ns shown in 

Figure 4. 11 (dashed line). It can be se t hat t h 111!. nlgorithlll s till p •rfonns 

worse thru1 t he evolved class ifiers, except wh n thr trtll' posit iw rnt.r fn.l ls lw low 

a pproximately 0.63. 
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Figure 4. 14: Re ults a fter morphologica l I si ng 

4.6 Summary 

T his chapter has provided techniqu s for t he xtra tion of many of th£> k£>y 

components of t he pla nt leaves (primar ily the v£' 11 nti n , mnl'gins a nd If' · ture), 

providing appropriate dc:;criptors which can be 11 . din tl l(' nut onlfl t('(l C'O illpn.r-

i on and classificat ion of spec ies. Further to this, n complll·nti vc st udy hn . ..; IH'<'ll 

carried out o f t he most popular techniqu us d for the nun ly:; is o f I nf :;hnp<' , 

demon ·trating t hat for t he pmposc of class ification, bot h f' lli ptir Fouri l'r cl£'-

scriptors and sha pe- featur s perform well , d£'pend ut on th£> chnrnr tN ist ics of 

t he lea f. 
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Chapter 5 

Machine Learning for 

Plant Leaf Analysis 

Chapter contributions: 

• Methods for classification of the leaf lamina and margins that 
incorporate intra-species variance to improve results. 

• Probabilistic classification combining multiple leaf 
feature-sets. 

• A technique for the automatic selection of which feature-sets 
to use, on a leaf-by-leaf basis. 

5.1 Incorporating Intra-Species Variation into 

Plant Classification 

One of the key challenges to automated analysis of plant leaves lies in the lnrge 

amount of possible variation, even within a single species, as was illust.ratt~ in 

Figure 2.1. As well as the natural variation one can expt'l<'t from any organic 
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object, variation in leaves can come from a number of sources. :Much variation 

comes from the age and developmental stage of the leaf. In terms of shape, 

growth in a young leaf often primarily occurs length-wise, becoming broader 

later in development. In some lobed species, the lobes may not be apparent 

until a certain point. Furthermore, some species, such as certain Eucalyptus, 

may feature different types of leaves on young and mature shoots. As with 

lobes, margin characteristics, such as teeth, may not develop until the leaf has 

reached its full size, often appearing first near the apex, then gradually growing 

further back towards the insertion point. Pigmentation may also alter as the 

leaf develops. 

Another source of variation is from damage that may occur to the leaf, 

particularily as a result of disease or attack from insects. Disease most com­

monly affects the surface of the leaf, ranging discolouration to disctinrt mark­

ings, whilst insect damage often alters the leaf shape, where parts of it have 

been eaten, but there are many exceptions to both cases. 

Much variation can also occur in the image capture process. Lighting con­

ditions can play a large role here. Many leaves feature waxy surfaces which 

may reflect light differently depending on the relative position of the lighting 

source, and the amount of light that's allowed to pass through the lt•af may af­

fect the visibility of features such as the finest venation. Indet>d, some leaf dnta 

sets have been created using a specific backlighting system. CamPra focus and 

resolution will also affect the level of texture information available. Moreover, 

cameras are not the only devices that have been used to capture leaf images, 

with other examples including flat-bed scanners, x-ray devices and even f'lt•<:tron 

microscopes. 

This section explores methods for increasing the reliability of leaf classifica­

tion by taking account of the intra-species variation that may be prest•nt. 
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5.1.1 Utilizing The Hungarian Algorithm For Improved 

Classification Of Leaf Laminas 

For the leaf macr~texture, data of the type generated in Section 4.2.1 - where 

the leaf to be classified is described by a distribution of points within a ft>ature 

space - can be classified using a number of existing methods. 

When described using histograms, the difference between two probability 

density functions (pdfs) can be calculated using bin-by-bin mt>thods, such as 

the Jeffrey-divergence metric, however these methods encounter problems when 

the data has a high dimensionality, where a large number of bins makes the cal­

culation expensive, whilst the sparse population of bins produces poor results. 

The earth mover's distance (EMD) [119] deals with this by using signatures, 

and provides an accurate and intuitive measurement. These 'signatures' are 

weighted points within the feature space. This is akin to clustering data points 

drawn from the distribution, and weighting each cluster centroid by the numbt>r 

of points in the cluster. Another method is to use kernel density estimation[l05] 

to estimate a probability density function using points samplt>d from a distri­

bution, and then to use this estimation to predict the probability of another 

sampling of points belonging to the same distribution. More recently, 'bag-of­

words' methods have enjoyed increasing usage for this problem, particulu.rly in 

the guise of 'bag-of-visual-words' [128] for image retrieval. 

To overcome the problems inherent to the leaf's macr~texture, prewuted 

here are two different methods which utilize information gem~rated in the cal­

culation of the earth mover's distance in order to allow for more robullt dussifi­

cation of pdfs, particularly when there is high intra-class variation. The first of 

these methods combines this with the strengths of the 'bag-of-words' mf'thod, 

whilst the second uses this information more directly in order to try to moch•l 

the intra-class variation. 
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5.1.1.1 Background 

The Hungarian Algorithm and The Earth Mover's Distance. The 

earth mover's distance (EMD) [119] is a measure of the difference between two 

pdfs. The analogy is that, to reform one mound of earth as another, the effort 

required would depend on the sum of the distances that each unit of dirt must be 

moved. Whilst bin-by-bin methods only consider the amount of 'earth' in each 

location, the EMD considers how far it must be moved. There are two forms of 

pdf descriptions that allow the EMD to be calculated: histogram binning and 

the aforementioned signatures. Since the binning is analogous to using evenly 

spaced signatures, only the latter needs to be considered. 

Whilst there may be many ways of reforming one pdf into another, the EMD 

is calculated as being the one that requires the minimum total movement {the 

sum of the distances that each unit of 'earth' is moved). See Figure 5.1 for an 

example of how one set of data may be mapped to another in this manner. The 

standard way of determining this is to model it as the transportation problt•m 

- the assignment of sources to destinations subject to a St't of transportat.ion 

costs. There are a number of methods for solving the transportation problem, 

but by reforming the data so that each signature has an equal Wt'ight, it bt>eOIIlf'S 

equivalent to the simpler assignment problem, which can be solved using the 

Hungarian algorithm [74]. Whilst the original Hungarian algorithm was O(n4}, 

an O(n3 ) version has since been found by (35]. 

The EMD only uses the minimum cost calculated by the Hungarian algo­

rithm, but in the usage here the corresponding mapping betw('('n signatures will 

also be recorded, as it provides not only a measurement of the differen<'e ht'tW('('ll 

the pdfs, but also information about in what way they are different. The EMD 

normally uses the Euclidean distance as the cost of moving 'earth' betwt'tm two 

points, but here the squared Euclidean distance is used, as this ht'lps to prest'rve 

84 



Figure 5. 1: The mapping via t he Hungaria n a lgorithm uct wl'l' n two ::>l'ts of 
po in ts . 

t he topo logy /ord ering of the points (Fig m e 5.2) , sincl' t h pa iring o f poin ts ovrr 

increasing dist a nces is pena lised . 

(a) Euclid a n di st lulcc 

{b) Squa.red •ucl idca n di stnnn' 

F igure 5.2: Us ing the squa red E uclidcan dista nce as t hr cost fnn ct ion prrs<'rvrs 
t he t opo logy. 

The B a g-Of-Words Mode l. T hl' ' bng-of-wo rds' 111od I wn:-; or i~ i n n lly 

used for t he retrieval o f text documents !131]. T h ' id l'tl wo.<; t.o n•prrsrnt doc­

ume nt as t he frequency of occurr uce of differeut wo rds, a nd t find s i111ilnr 

d ocuments by compru·ing t hese freq u ncie . In r cl'nt yl'nrs this c )llt'('pt hn:-; 

85 



been extended to allow for the classification of more general forms of data. 

Typically, a large number of points are sampled from the training distributions 

and then a clustering is performed on these. The cluster centroids are used as 

the 'codewords' in a 'dictionary' used to perform a quantization of the data, 

by assigning each data-point to its nearest 'codeword'. A set of points from a 

distribution can then be described as the frequency of occurrence of each 'code­

word'. This concept has seen much use recently in the field of computer vision, 

for tasks such as image retrieval [128, 135, 20] and texture analysis [78, 137]. 

5.1.1.2 Notation 

The problem is defined as follows. A leaf is described by a set of n data points, 

X = {x11 f2, ... fn}, windows sampled from the leaf's surface. Each data point 

x is a feature vector, x = [xt. x 2, ... , Xd], where d is the number of features. 

Given a number of different species, where species i is described by anot hPr 

set of n data points, ci = Hh' Y2' ... fin}' randomly sampled from all leaves in 

the training set that belong to the species, the wish is to determine the spedes 

to which the leaf described by X most likely belongs. This is calculated using 

Bayes theorem: 

c• = arg max P( C, IX) (5.1) 
c, 

= arg max P(XICi)P(C,)/ P(X) (5.2) 
c, 

= argmaxP(XIC,)P(C,) (5.3) 
c, 

The term P(X) in Equation 5.2 is discarded as it is constant for all i. 
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5.1.1.3 Data-Point-Mapped Bag-Of-Words 

The method involves first generating a set of codewords from the training Sf't, 

suitable for representing the data. All points in the training leaf and species 

objects are assigned to their nearest codeword. A mapping is calculatt>d betwet>n 

the data points in each training leaf object and its corresponding species object. 

For each species, the joint distribution is calculated for a training object point 

assigned to one particular codeword being mapped to species object point that 

is assigned to a second codeword. That is, for each pair of codewords and ea<·h 

species, the probability is calculated of a mapping having its training object 

point assigned to the first of these codewords and its species point assigned to 

the second. For classification, the same codeword assignments and mappings 

are performed, and the previously calculated probabilities are used to dt>termine 

the species which the leaf belongs to. 

Generating A Dictionary. Within the literature there has bet>n much 

discussion on the appropriate methods for generating, and ideal size of, the 

codeword dictionary [127, 67, 69]. The simplest approach is choose points ev('nly 

distributed throughout the feature space. The main disadvantage of this is that 

large portions of the space may not be used, resulting in redundant rodt•words, 

whilst other, more useful areas may receive inadequate representation. Anoth(lr 

simple method is to use randomly selected points from the training data as 

the codewords. This largely eradicates the above problems, although using the 

centroids from a clustering performed on the training data normally providt•s a 

better representation. Another approach is to perform a separat.e clustering for 

each class and combining the generated codewords. This ensures that ead1 rlnss 

has some appropriate codewords, but may result in very similar rodewords in 

the combined dictionary. It was found that a k-means clustering of the whole 

training set produces an appropriate dictionary for this method. 
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There is no consensus on the size of a dictionary, with suggestions varying 

greatly, but for this method it was found that, with objects described using 1024 

points, a dictionary of size 256 produced good results, with larger dictionaries 

providing little or no improvement. Di is the i1h codeword in the dictionary. 

Producing The Class Models. For each species, a species object is pro­

duced by randomly selecting n points from the species's examples in the training 

set. For each training leaf, a mapping is found from its data points to those of 

its species object using the Hungarian algorithm. This mapping pairs the points 

in one object to those in the other, such that the sum of the squared Euclidean 

distances between paired points is minimised (see Figure 5.1}. The point in the 

species object Ci to which point x is paired is defined as .M(f, Ci}· 

Each point in the training data is assigned to its nearest codeword. For etu·h 

species i, for each pair of codewords, (D0 , Db), the conditional probability is 

calculated of a point x in that species's training data being assigned to codeword 

Da, given that the corresponding point in the species object has been assigned 

to Db. This is calculated as follows: 

P(W(x) = DaiW(.M(f,q}} =Db) 

_ P(W(x) = Da, W(M(x, C;}} = Db) 
- P(W(M(x, Ci}} = Db) 

where 

P(W(x) = Da, W(M(x, C;)) = Db) = 
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(5.5) 

(5.6) 



IDI 
P(W(M(x,C;)) =Db)= LP(W(x) = Dd, W(M(x,C;)) =Db) (5.7) 

d=O 

where Tii is the lh point and m 1 is the total number of points in the training 

data for species i, IDI is the number of codewords, and W(f) = Da indicat.es 

that point x has been assigned to codeword Da (likewise, W(l\f(.f,C;)) =Db 

indicates that the point which xis paired with is assigned to codeword Db). 

Equation ( 5.6) calculates the probability of a point in Da being mapped to 

a point in Db as the fraction of training points for a species Ci for which this 

occurs. The probability of a point, from any codeword, being mappffi to oue in 

Db is then the sum of these for all codewords (Equation ( 5.7)}. 

Performing The Classification. To classify a leaf, again all of the lt>af's 

data points are assigned to determine their nearest codewords. The obje<·t is 

mapped using the Hungarian algorithm to each of the species objE'<'ts. The 

species to which the leaf most likely belongs can then be determined using a 

Bayesian classifier. 

(5.8} 

(5.9} 

P(XICi) = IT P(W(x) = DaiW(M(x, Ci)) =Db) (5.10} 
W(~)=X 
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5.1.1.4 Intra-Class Variation Models 

The second method attempts to improve reliability by modelling the variation 

within each species. Each species object's data points are separated into a 

number of clusters. We model the movement (in the transformation from one 

pdf to another) within each of these clusters under the mapping between the 

species object and its training examples (Figure 5.3). This es entially aims to 

describe how each portion of the distribution typically varies for t hat pecies. 

The e models are then used to determine to which species another leaf mo t 

likely belongs. 

Figure 5.3: Descriptors are generated to model the mov ment between the cla 
object and another object in terms of each cluster 

Training The Classifier. For each pecies, a p ci s obje t i er ated 

as before . Next a small number , k, of clu ter centro id are found , f r ach 

species, using the clustering algorithm de cribed in Figure 5.4. This method 

of clustering creates clusters of equal size, and thereby h lp to n ur t he 

centroids are appropriately spread thoughout the di tribution, with c ntroid 

density approximately proportional to the density of the data points. Any 
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Figure 5.4 Clustering algorithm 
Initialise cluster centroids at randomly picked data points 
repeat 

for all clusters do 
Sort points according to distance from centroid 

end for 
repeat 

for all clusters do 
Assign next nearest unassigned point to cluster 

end for 
until all points assigned to clusters 
for all clusters do 

Calculate centroid as mean of points in cluster 
end for 

until sufficiently converged, or max iterations reached 

clustering algorithm with similar properties could also be used. All the points 

in the species object are then assigned to the cluster of their nearest centroid. 

The change between objects will be measured relative to these clusters. The j 111 

cluster for species i is denoted as Kij· 

For each training leaf object Xf for species i, a movement descriptor F/ is 

generated, after the species object ci has been mapped to the training obje<"t 

(as before, using the Hungarian algorithm). Eoch element in the dt>srript.or is 

the sum of the movements of points within a particular cluster, for a particula.r 

dimension and in a particular direction. 
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~ex: 
Zb-M(~.C;)h>O 
M(~.C;)EK;a 

xb - M(x, c,)b 

(5.11} 

(5.12} 

(5.13} 

(5.14} 

where d is the number of dimensions, k is the number of clusters, and t is the 

training instance. x E Kia indicates that point x is assigned to the a'h cluster 

for species i, and Xb refers to the value in x corresponding to the b1h feature 

(likewise for M(x,Ci)b). 

Equations ( 5.13} and ( 5.14} calculate the elements of the descriptor for 

cluster a, in the positive (xb -M(x, C,)b > 0} and negative (xb -M(.r, C;)b < 0} 

directions, respectively, along dimension b. These are calculated as being the 

sum of the distances between training points and their mapped spf'<'ies points, 

where the mapped point is in the given cluster (M(x, C;} E K;4 ). Th('S{' are 

normalized by multiplying by the number of clusters, k, divided by the numht>r 

of points in the training object (IX!I}. 

Classification. To classify a leaf X, for each potential SJ>t'des, the map­

ping and generation of a movement descriptor, Fi, is performt><l as p«'r the trniu­

ing stage. We then use a Parzen window method [105] with a Gaussian kf'rncl 

to calculate the likelihoods for each species, and determine the classification. 
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c* = argmaxP(XjC;)P(C;) 
i 

a<db<k 
= II II P(fablq) 

o=O b=O 

T,. 

P(fabiCi) = ~. :t P(fablf!b) 
't=O 

(5.15) 

(5.16) 

(5.17} 

(5.18} 

(5.19) 

where 7i is the number of training examples for species i and t/>(.r) is a normal 

distribution function with mean, J.l = 0 and standard deviation, u = 0.002. 

5.1.1.5 Experiments 

In this section the new algorithms are empirically evaluated by comparing it 

to a selection of other techniques. For these experiment we have 32 ditft>rent 

species, with 16 examples of each, performing a 16-fold cross validation. Ea<'h 

example's object has 1024 data points, generated as deS<·ribed in S(>etion 4.2.1. 

For the first method (Section 5.1.1.3} we use dictionaries of up to 256 codt•words, 

and for the second method (Section 5.1.1.4) we use up to 64 dusters for E'adl 

species. Whilst results are show to improve up to these values, no signifkaut 

improvement was found in using higher values. 
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Methods For Comparison. The three methods we use for comparison 

are kernel density estimation, the earth mover's distance, and a bag-of-words 

method using a Naive-Bayes classifier. 

• Kernel Density Estimation: 

Kernel density estimation is used to predict the probability density func­

tion for each species. This estimate of the pdf is then used to calculate 

the likelihood of the leaf belonging to that species. 

P(XICi) = I1 P(xiCi) 
zex 

= rr L <P(IIii- xil) 
zex ~ec, ICil 

where l/l(x) is a normal distribution function with mean, p. = 0 and stan­

dard deviation, u = 0.1. This kernel function was used as it appE>ared to 

give the best results for the dataset. 

• Earth Mover's Distance: 

For this we use the pure value calculated by the earth mowr's distance 

instead of utilizing the mapping between objects. Each )(!af is rlassifiNI 

as belonging to the species whose object is closest to it according to the 

EMD metric. 

• Naive-Bayesian Bag-of-Words: 

For the bag of words method, we use the same codeword dictionary as for 

the new method, to allow fairer comparison. We use a Naive-Bayf'll das­

sifier, as it is both one of the most common classifiers (along with SVMs) 

used for bag-of-words [27), and is similar to that used in the propo~W<i 

method. 
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Results. Tables 5.1a, 5.1b, and 5.1c give the results, respf'<'tively, for the 

first proposed method (Section 5.1.1.3), bag-of-words method, and socond pro­

posed method (Section 5.1.1.4), used different numbers of data points, and 

different dictionary sizes/numbers of clusters. The exact same dictionaries were 

used for both the first method and bag-of-words method. The overall results of 

the experiments are given in Table 5.2. 

n = 256 n = 512 n = 1024 
IDI = 16 67.97 73.05 75.39 
IDI =32 75.39 80.66 81.64 
IDI=64 84.77 85.35 88.09 
IDI = 128 86.13 90.04 90.06 
IDI = 256 90.02 91.02 92.97 

(a) Method 1, data-point-mapped bag-of-words, 
varying object and dictionary size (in %) 

n = 256 n = 512 n = 1024 
IDI = 16 57.03 63.28 63.28 
IDI=32 62.70 65.82 67.19 
IDI=64 69.73 74.02 74.02 
IDI = 128 74.41 76.76 77.54 
IDI = 256 77.15 79.30 80.27 

(b) Bag-of-words method, varying object and 
dictionary size (in %) 

n= 256 n = 512 n = 1024 
k=8 69.73 80.08 86.33 
k = 16 83.79 90.63 92.97 
k= 32 91.21 93.75 98.05 
k = 64 94.73 96.48 98.05 

(c) Method 2, intra-class variation models, 
varying object size and number or clusters 
(in%) 

Table 5.1: Results for each method. 

As the results show, the new methods both performed far bt~tt.er than the 

standard bag-of-words method. This is because when the difft•renre bt-t~n 

pdfs means that points are assigned to different codewords, the standard method 

considers only that these points are no longer assigned to the same codt•wc)rd, 
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Method n = 256 n = 512 n = 1024 
First Proposed Method 90.02 91.02 92.97 
Second Proposed ~1ethod 94.73 96.48 98.05 
Kernel Denisty Estimation 69.73 73.83 77.73 
Earth Mover's Distance 73.83 79.88 85.35 
Bag-of-Words 77.15 79.30 80.27 

Table 5.2: Overall results, using best parameter values for each method (in %). 

whereas the new methods both consider where in the feature space those points 

may exist, given that particular class. The kernel density estimation and earth 

mover's distance methods both performed worse than the other methods. These 

methods both directly compare samplings from distributions, and so are susrE'p­

tible to noise produced by the sampling. The bag-of-words methods eliminate 

much of this noise, by quantisation via assignment to codewords, as does the 

second new method, by using the behaviour of different parts of the distribution. 

Of these two methods, the second method performs better for plant leaf 

classification, at 98.05% of leaves correctly classified versus 92.97%. This is 

likely because this method deals better with the variation within eac·h spt~il'S, 

which for this dataset may be quite high, due to varying lewl'l of dtunage or 

disease present on the leaves, and slight differences in lighting conditions. For 

other data where there is either less intra-class variation, or it is lt>ss quantifinhle, 

it is possible that the first method may still perform best. 

Given that the EMD must be calculated in performing the IIE'W nwthods, it 

may be possible to improve the results by incorporating the EMD Ul('tric. In this 

case, however, doing so produced no change in results. As would he E'XJlt'<·tt>d, 

increasing the number of points used to describe objects inrreast'l! the quality 

of the classification, but the new methods still perform better than the otlwr 

methods when a smaller number of points are used, making tht>m particulnrly 

suitable when larger samplings are not practical. 

Due to O(n3) nature of the Hungarian algorithm, the method prl'Sented lu•re 
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can be quite slow compared to some other methods, requiring approximately 6 

seconds per leaf in these tests, with n = 1024. Despite this, for many applica­

tions the additional time required is entirely acceptable given the improvement 

in accuracy, and the cost can be mitigated to some extent, for example, by using 

a faster, less reliable method to eliminate the least likely classes first. Further­

more, these methods still performed better than the other methods tt>Sted here 

when n = 256, greatly reducing the time required, and allowing accurate classi­

fication even when less data is available. 

5.1.2 Comparing Leaf Margins Using 

Dynamic Time Warping 

With the leaf margins, there is again much variation within some species, largely 

due to the different size and coverage of teeth as the leaf develops. In order to 

compare two margins, a common starting point on the margin must first be 

selected. The obvious candidates for this are the apices and insertion points. 

Whilst these have been identified (in Section 4.4), it is not known whkh is 

which. When performing a comparison, all four combinations (possible pairings) 

for sequence start points are therefore used. Some species' lt>aves have a dt>gn-e 

of asymmetry. Whilst the details along the margin in these cases will be similu.r 

on either side of the leaf, the distance between insertion point and apE>X may 

be quite different. To account for this, the margin signatures (generated as pt•r 

described in Section 4.3) are oriented to always procede along the shortetlt side 

first. The DTW algorithm (Section 4.4.1) is applied for all four configurations, 

and the smallest measurement is selected as being the difference ~tween the 

two leaf margins. 

Following the assumption in Section 4.4 that the maximum difft~rence be­

tween the lengths of the two sides of the leaf will be 2w, where w = i 1 the value 
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of k used in Equation ( 4.6) is also set to i, as this is the point in the sequences 

where the most distortion is expected to occur. 

5.1.2.1 Results 

The method is evaluated on a dataset containing 16 leaves from each of 100 

different species. A 16-fold cross-validation is performed, such that one leaf 

from each species is used each time in the testing set, whilst the remaining 

leaves are used as the training set. Classification is performed using the k­

nearest-neighbour technique, with k = 5, with this value chosen as it was found 

to produce the best results. For comparison, two other techniques are also used 

on the same data: 

• Cross-correlation: 

For two sequences, a= (a1, ••• ,am}, b = (b1, ... , bm}, the distance between 

the two is calculated for every possible offset of one sequence against the 

other. The lowest distance calculated is used for the classification. 

• Bag-of-Words: 

n 

distance= min L lla;- bJ+i mod nil 
0:$•<n j=O 

A large number of feature vectors are sampled from the entire training set, 

and a k-means clustering is performed on these. The cluster centroids are 

used as the codewords in a dictionary used to perform a quantization of 

the data, by assigning each data-point to its nearest codeword. A margin 

sequence can then be described as the frequency of a<:currence of eiU~h 

'codeword' [27]. For classification, the distance between two sequences is 

then calculated as the Jeffrey-divergence metric for their two histogrants. 
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The results for the three methods are shown in Table 5.3 as the rates of correct 

classification. 

Method Result(%) 
Cross-Correlation 57.12 
Bag-of-Words 74.51 
Proposed Method 91.32 

Table 5.3: Results for the three methods. 

As the results show, the proposed method performed significantly better 

than the other two. The cross-correlation method conserves the order of the 

sequence but is too rigid to account for the variations that occur in leaves, for 

example in the exact positions of the tips of lobes, which appear as peaks in 

the signature. By ignoring the order of the sequence, the bag-of-words method 

describes only the content of the margin, and loses valuable information. By 

using the DTW algorithm, the proposed method can utilize the ordPr of the 

sequence, whilst having enough flexibility to deal with the variation inherent to 

natural data. 

5.2 Combining Different Leaf Features 

Whilst it has been shown previously that high classification accura<'y can be 

achieved using single aspects of plant leaves, it seems apparent that greater ac­

curacy could be achieved by effectively combining multiple leaf-components. As 

dataset sizes increase, certain aspects for certain species will become unsuitable 

for distinguishing them, due to both high intra-species and low inter-spt~it'S 

variation causing overlap within the search space. For example, the lt~aves on 

a large number of different species have a similar oval shape (Figure 5.5). In 

these cases, whilst shape by itself may be insufficient, combining it with texture 

information may prove adequate for accurate classification. 
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Figure 5.5: Many pecie have similar leaf hape 

As well as desiring a robu t method of p rforming las ification by combining 

different leaf feature-sets, it would be us ful to b ab! to as e s the ut ili ty of 

each feature-set, not just in terms of general clas ification a curacy, but in 

terms of how likely it i to be a u eful feature- et for clas ifying a parti ular 

leaf. Given th computational requirements of the xtra t ion and ompari n 

it mu t be asses ed as to whether there is va lue in u ing all f t h I af mp n nt 

and method available. Furt hermore, it is plau ible t hat 

correlated with each oth r , reducing th value in u ing both togeth r. An t h r 

concept worthy of investigation, is whether it i b t to m pi y a mall t ion 

of highly rigorou , but computationally xp n iv m thod , or to u a larg r 

number of simple yet qu ick method . 

5.2 .1 Probabilistic Classification From K-N are t-N ighbour 

Here, the use of k-NN classifier for producing probabili t i m 

multiple leaf feature- ets i explored . Typi ally with k-NN !as ifi r , t h cl 
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for which the highest frequency of neighbours belongs to is selected as the classi­

fication, however there have been a number of proposed methods for producing 

a probability for each class from the set of neighbours. The two methods in­

vestigated here are Fukunaga & Hostetler's [40], and an extended version by 

Atiya [5]. 

5.2.1.1 Posterior Probability Estimation 

For each species/class, c;, the probability of a leaf, x, belonging to it is calculated 

as 

where P,(c;ix) is the probability of class c; for the leaf feature-set /, and F is 

the total number of feature-sets to be used. 

Fukunaga's method. To calculate the probability from fpature-St•t /,two 

different techniques are used. The first is that of Fukunaga, 

where K is the total number of neighbours being used, and K, is the numbPr 

of those neighbours belonging to class c;. 

Atiya's method. Atiya extended this to include weights, cakulat.ffi from 

the training set. 
K 

P,(c,ix) = L vjBij 
j=O 

where Vj is the weight for the ;th neighbour, and B is a matrix with K + 1 

columns, and C rows, with Bsj set to 1 if the jth neighbour is from dnss i, and 

0 otherwise. The elements in the final column are all set to b. 
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The weights Vj, j = l..K are calculated as 

with Wj determined by maximising the likelihood of the data. Each value is 

initialised to be equal, and then updated by 

where B(n) and en are the B matrix and class, respectively, for the nth training 

sample, and "1 is the step size. This update is repeated until the change in 

weights becomes negligible. 

5.2.1.2 Experiments 

To evaluate these two methods, 4 different leaf feature-sets are usPd: 

1. Shape features- set of 8 features as described in Section 4.1.1.1. 

2. Elliptic Fourier descriptors - as per Section 4.1.1.3. Used as well as the 

shape features, due to there ability to distinguish betwf'E'n species that the 

shape features cannot. 

3. Margin histogram- a 32-bin histogram was generated by quantizing the 

data generated in Section 4.3. 

4. Lamina histogram- the histograms generated in Section 4.2.1 were used. 

Due to the superior results previously seen in using the lamina and margin, 

compared to the shape, smaller dictionary and sampling sizes were used for the 

data here, to better show the value in combining multiple feature-sets. A 16-

fold cross-validation was performed on the lOO-species dataset (16 samples ptlr 
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species). Results were generated for very combination of the f ur leaf fea tur 

sets. These results are shown is Table 5.4. The ac ura y tated i th fraction f 

leaves correct ly classified using that method and combination. Th d viati n 

is the st andard deviation for the accuracy b tween different sp A high 

deviation shows that the combination performs much b tter for 

than for otherwi e, whilst a low deviation shows that it work imilarily f r all 

sp cies. 

Method Shape EFD Lamina Margin Accura y 
Fukunaga ./ 0.5456 

Atiya 

./ 0.59 7 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 0.6056 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 0.6 25 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

0. 731 
0. 756 
0. 31 
0. 937 
0.9093 
0.9143 
0.95 7 

0.1359 
0.1315 
0.1 2 ) 
0.1579 
0.1119 
0.104 
0 .06~6 

0.0712 

0.2r. 77 
0.277 
0.23 5 
0.22 
0.1r.33 
0.11 2 
0.1437 
0.1 45 
0.11 

.10 
0.0717 
0.06 2 
0.0 0 
0.0553 

Table 5.4: Results for ach combinati n f I a.f ~ tur ts. 
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As would be expected, in both cases, the accuracy generally increased as the 

number of feature-sets used increased. Furthermore, Atiya's method slightly 

outperformed Fukunaga's, indicating the value in weighting the contribution of 

each neighbour. It is worth noting that when all the feature-sets except the EFD 

were used, the accuracy was slightly higher than for all four feature-sets. This 

shows that in some instances, the use of certain features may be detrimental to 

the result. 

Of the single feature-set cases, use of the margin performed best, whilst the 

lamina performed the worst. Despite this, the three feature-set instances in 

which the lamina was used but only one of the shape-based ft>at.ure-!lt'ts wt-re, 

achieved significantly better results than when both shape-based feature-sets 

were used, illustrating the need to use a diverse set of ft~atures. 

5.2.2 Automatic Feature Selection 

As has been previously noted, different leaf feature-sets are bet.t.er suitt'<l to 

classifying some species than others. With intra-species variat.ion in many Cast'S 

being greater than inter-species variation, certain ft~atures will not be adt'<)uate 

for distinguishing between species for which this is the ca.o;e. Indt>t'<l, Ust> of 

some features could be detrimental to the correct classification. For f'Xrunplt', 

it is possible that, for a given feature, none of the nearest neighbours bt>long 

to the correct species, resulting in an incorrect classification, dt•spite whatevt•r 

value other features may be. As such, it may not always be best to use all of the 

features available. This can be seen in Table 5.4 where some three ft•ature-Ht-t. 

combinations performed better than using all four. 

Further to this, as datasets, and the number of species therein, incrt>asf' In 

size (it has been estimated that there may be in exct'SII of 400,000 spt'<'it'S of 

plant) the computational cost of identifying a spec it~ could become wry grt•at. 
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Given that every feature-set used to this end would add to the cost, tht>re is 

further benefit in reducing the number of features which need to be uSNI. 

A large amount of work has been done in the feature selection field. Most 

techniques aim to find suitable subsets, either by searching through candidate 

subsets (Wrapper methods) or by using prior knowledge to predict the best 

features (Filter methods). Wrapper methods range from basic t(>('hniquet~ sueh 

as forward selection and backward elimination (71] to more modc•rn mt•thods 

such as those of Chen et al (19] and Rashedi et al [112]. Filters mt>thods indude 

correlation-based selection techniques [149] and Markov blankt>t filters [72]. 

Since some leaf feature-sets have been shown to work well for indPntifying 

some species, whilst others perform better for otht>rs, it may be l)('rlt'fidal to 

dynamically select which feature-sets to use based on the lt•af in quet~tion, ratht>r 

than using a predetermined set of features. Furthermore, it may prove pOSHible 

to evaluate the utility of a particular component for classifying a partkular lt•af 

without needing to generate a full set of features for it. H<'re, a mt•thod and 

a number of metrics are explored for dynamically selecting ft!at.ure-!M'ts on a 

leaf-by-leaf basis, along with an evaluation of their eff(>('tivt•ness. 

5.2.2.1 Metrics For Feature Utility 

Given a vector for a particular leaf component, there are a numb<'r of diff(•rt'nt 

metrics which could be used to estimate that component's utility for dt~S~o~ifying 

the leaf, prior to performing the classification. The mt>trks explored ltt•re are 

based upon the neighbourhoods the sets of nearest ut>ighbours) u!Wd in the 

previous section for classifying the leaves. These metrks are cal<·ulntc>d for all 

examples in the training set. When a new vector is presented, the ntf'thodll to 

be described in Section 5.2.2.2 use these past calculations to et~timate tho value 

for the new vector. 
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1. Same vs K - The fraction of the K nearest Ut>ighbours whi<·h bt'long t.o 

a training examples true species - Kt/ K, where K 1 is the munlwr of 

neighbours from the same species as the training E'Xa.mple. This nwtric 

reflects Fukunaga's method in Section 5.2.1.1. 

2. Same vs Next Highest - The number of neighbours from the corr('(·t chWI 

divided by the number of neighbours for the !lffond higlu'!lt S<"oriug dnss. 

This gives a measure of the likelihood that the V('('tor would have ht>t>n 

correctly classified. 

3. Neighbouring Classes - 1 divided by the total number of difft•rt-nt clas.'ll-s 

represented within the neighbourhood. If all the nt>ighbours a.re from 

different classes, the vector is less likely to clas.'lify corr('(·tly tluu1 if tlwy 

are all from the same class. 

4. Entropy- Provides a measure of unct>rtainty, with low valut>s iudkuting a 

high level of predictability. Calculated as 

where p(ci) is the frru'tion of U£•ighbours bc•longing to rlnss ~'•· Thi11 nwtric 

has the advantage of giving the same value for a Vt'<'tor rt•gnrdlt'HII of which 

species in came from, in relation to the lll'ighbour~~. 

15.2.2.2 Estimation of Feature Utility 

For estimating the utility of a m•w ve<·tor, a ft'<'d-forwnrd awural-awtwork 1H 

trained via back-propagation on the training wdors, with the utility nwtrk 

values for those training vectors as the expectt>d output. The rwtwork rcmsi11tlt 

of two hidden layers, etwh with twice as many node'S M t.he numlwr of Input. 

nodes, and a single output node. The numbt>r of input nudt'!t was dt•pc•udt•ut. 
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on the leaf feature-BE>t being used. Sigmoid functions {J{z) = {1 +e-")- 1) are 

used at eac:~h hidden and output node. Training was pt>rformt'd by iut.rodudng 

all of the training Ve<'tors to the network in a random ordt•r. This pron'll!l WIUi 

repeated until the de<'rease in the average output error droppt'd bt•low a small 

threshold. Once trained to sufficient conwrgt>nce, the utility of a lli'W Vt'dor 

can be estimated by inputting the Ve<'tor to the trainf'd nt>twork. 

5.2.2.3 Classification With Leaf Feature Selection 

Once an estimate of the utility of each of the four ft•at ure-St•ts has btot•n acquin'<l 

for a leaf by using the trained neural-nt'twork, this informnt ion rnn be u!it'd to 

minimise the number of feature-sets required to pt>rform a rlassificat ion. The lt•nf 

is first classified using the feature-set with the highf'Ht utility, and the pmbability 

for the top result is calculated as pt>r St>ctionl'i.2.1. If this probnbility i11 grt>ntt>r 

than some predetermined threshold (to be discuS!It'd in St'<·tion 5.2.2.4), the 

result is accepted, else the feature-!lt't with the nt>xt hight'Ht. utility is m•lt'<'h'<l 

and the probability re<'alculated, until the thrf'Hhold is passt'<l. 

In cases in whic·h all the available fpatures appear to be nt'<'f'HIW'Y, t htl rou­

tribution from eac:~h ft!ature-sets is weighted ac:·cording to ih1 t'Htinuth>tlutility: 

5.2.2.4 Experiments and Results 

The method is tested using the same data as in St'<·tion 5.2.1. The' 1wtwurkr~ 

used consisted of two hiddt>n layers, with 2d nod<'ll pt•r hiddt•n layc•r, wlwre d 111 

the size of the input vector. 
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The method was run for each of the mt>trics, using the four lt>af ft>ature-m•t 

described in Section 5.2.1.2, and with the total numbt>r of ft•ature-S('t to use 

being varied from one to four. When less than four of the ft>ature-S('t are ullt'd, 

they are selected in order of estimated untility (i.e. wht>n three are ullt'd, the 

feature-set with the lowest estimated utility is ignored). 

These results are shown in Table 5.5. When all four ft•aturt'S are ullt'd, the 

results are naturally the same, but as the number of ft•aturt>S um>d is reduct>d, 

an increasing improvement can be seen over using fixed S('t.S of ft>aturf'S. In 

Table 5.4, the highest performance from using a single ft>ature-S('t was 0.7212, 

but by selecting which feature-set to use on a leaf-by-leaf bw;is, l1t•re an auuracy 

of 0.8037 was achieved. Of the four metrics, the fourth oue, bast>d 011 the t>ntropy 

performed best. This metric seems the natural choke as it dif(>('tly rt>latf'S to 

the predictability of the result for a given part of the feature llpnce. 

No. Ff'atures 
l\Ietric 1 2 3 4 

1 0.7575 0.8!:138 0.9406 0.9(iSl 
2 0.7738 0.8994 0.9275 0.9()81 
3 0.7763 0.9150 0.9456 0.9()81 
4 0.8037 0.9231 0.9538 o.m)81 

Table 5.5: Classification accuracy for each numbt•r of ft•ature-ii«•t and mc•tric. 

Table 5.6 shows the frequt•ncy that eac::h <'Ombinatiou of ft•uturf'll was U!it>tl, 

and the corresponding accuracies. For example, wlwn tw<> foaturt>-m•t \wre U!it>tl, 

the combination of EFD and margin was ullt'd for 55.25% of tht'lt•a\'f'll, As would 

be expected, for most combinations the ac<·uracy h1 hight•r thtul wlwn applit>cl 

to all the leaves in the test S('t, with those combinations tlu\t pt'ffurm ht•Ut•r In 

general being used with higher frequency. The combination of sha~ ft•nt urt'tl 

and lamina achieved lOO% accuracy, however the combimtt.iun was only m•lt'<·t~><l 

for a very small number of leaves The final two rolumns, P1rue and PJol•r• show 

the average Fukunaga probability (used to dt•t.t'rmine the dal!Sitkat.iun) wlwu 
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the result is correct and false respectively. The Fukunaga probability ran bt> 

seen as a measure of confidence that a leaf has been rorrt><'tly dassififfi. This 

value is typically far higher in the former rase, when the da..'!Sification is rorft><'t, 

suggesting it could be of use in determining when to stop inrreasing the number 

of feature-set used, as increasing the number of feat.ure-st>t also tends to increase 

this value. 

Shape EFD Lamina Margin Arc Frt>quenry Ptrur Pja/ar 
,( 0.9080 0.0544 0.4077 0.2~7 

./ 0.8437 0.2719 0.4169 0.2817 
./ 0.8186 0.1412 0.4013 0.3048 

./ 0.7688 0.5325 0.39H2 0.2678 
,( ./ 0.9744 0.0487 0.9186 0.5677 
,( ,( 1.0000 0.0144 0.8583 0.0000 
,( ./ 0.9682 0.0981 0.9198 0.4298 

./ ./ 0.9746 0.0737 0.9044 0.4208 

./ ./ 0.9038 0.5525 0.8845 0.5401 
./ ,( 0.9176 0.2125 o.8r,tl2 0.4058 

./ ./ ,( 0.9ti00 0.0312 0.9ti56 0.582fi 
,( ./ ,( 0.9383 0.3950 0.9702 0.5743 
./ ,( ,( 0.9851 0.0419 0.9fi05 0.3027 

./ ,( ,( 0.9624 0.5319 0.95U 0.559:1 
./ ./ ./ ,( 0.9()81 1.0000 0.9779 0.67{)() 

Table 5.6: Frequenry and ~U'rurocy of t>acb romhinlltion. 

In Table 5. 7, the results are shown for the W«'ight(l(J and uuwt•ight.t'<f nwt hodl'l 

of selt>cting features, and for a method using the satllt> ft•ahart>H for t•1wh lt•tu, with 

the order of applkatiou predett>rminffi, based on t.ht>ir individual Jwrfornuuu·t'll 

(in this case, the order is margin (ocrurocy 0. 7212), !ihap(' ft•ahart'll (0.6fl4:\), EFA 

{0.6593) and tht>n texture {0.6437)). Both the weightt'<i aud uuwt•ightt'<l nwt hod11 

perform significantly bt~tter than the fixt>d uwthod whNl a rt'<hlt't'<l numlwr uf 

features is used. When more than one ft•aturP-m~t is uMt>d, the Wt•lght.l'<f wndnn 

is able to perform slightly tx~tt<~r than the unWt•ight(l(l. 

Finally, we examine whether the munb(•r of fenturP.III.•ts rrquln'<i for occumtt> 

classification of a leaf can be df'tt•rmint>d from the rakulnh'<i Fl1kum~a Jlrolm-
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No. Features 
Mode 1 2 3 4 
Fixed 0.7212 0.8981 0.9025 0.9681 

Unweighted 0.8037 0.9231 0.953 0.96 1 
Weighted 0.8037 0.9256 0.9575 0.9700 

Table 5.7: Results for the three methods of selecting feature . 

bility. This will allow the minimisation of the number of feat ure-set u ·ed. Th 

threshold on this probability is varied from 0 to 0.9, with additional feature- et 

being added until thi tlue hold is passed. Once the tlue hold has been pas ed 

the leaf is clas ifed as the species with th highest probability. Figure 5.6 

and 5. 7 show the frequency for which each number of features is required at 

each threshold , for the unweighted and weighted form respectively. H re a fi v 

indicates that the threshold was not met even when u ing all four features. In 

most cases, only two feature were required to meet this targ t. In all a , the 

modal number of features needed, before the maximum accuracy was r a h d, 

was two or less. In the weighted case, higher threshold (above 0.5) r quired 

more features to be used , but did not result in an improvem nt in accura y. 

o.so --.m~ .... 
0.40 

0.30 

0.20 

0.10 

0.00 
2 3 4 5 

- o 1 (O.B037) 

--0.2 (0.8213) 
0 3 (0.8900) 

- 0.4 (0.9350) 

- os (0.9463) 
0.6 (0.9588) 

- o 7 (0.9619) 
0.8 (0 9663) 

--0.9 (0.9669) 

Figure 5.6: Frequency (y-axis) of numb r of feature (x-axis) r quired t m t 
probability threshold , unweighted case. Number in brack t indicat the a -
curacy achieved at that threshold . Five indicate thr shold was not m t wh n 
using all features . 
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Figure 5. 7: Frequency of number of features required to meet probabili ty t hre. h­
old , weighted case. 

Figure 5.8 show t he accuracy achieved at each t hreshold , in relation to the 

average number of features required . A can be een, the accuracy incr ase 

as the average number of feature-sets is increa. ed, but t here i little improve­

ment in the results beyond the use of a t hreshold which a.chi ve an averag of 

two feature-sets being used. Furthermore, in t he weighted case the maximum 

accuracy required an average of three, rather than t h pr vious four , ~ ature . 
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Figure 5.8: Accuracy (y-a."d ) when different averag numb r f ~ atur (x-axi ) 
used. Blue- unweighted ; Orange- weighted . 
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5.3 Summary 

This chapter has introduced a number of nuu·hine lt•arniug algoritlum1 suitable 

for used in plant leaf classification. One of the biggt'!lt challt•ng<'8 iuvolVt'd in 

working with plants is the high amounts of variation that may Ol'cur within a 

species, and high similarity that exists bt'tWt't'n some spt'Cit'S. Algorithms bavt> 

been described here for which increase the classification m·curary, ba.wd on the 

macro-texture and margin signatures, by incorporating this variation. 

Furthermore, a framework has been provided for combining the clllSIIifkation 

from multiple sources of information. This has lndudt'<i t h«> lt•tU'-dt'JM'IIIIt•nt 

selection of suitable feature-~~ets, in ordt>r to improve the cln.'il'lifkatiou whil11t 

simultaneously decreasing computational costs, but automat irally t>liminut ing 

detrimental feature-sets. 

There is still much work that can be done in this art'a. Continuing the 

incorporation of intra-spec it's variation into the classifkat ion, it. would lw UNt•ful 

to have a similar such mt>thod based on the lt>af shaJM', wbt•re tht•re can bt> a 

large difference between leavtlS even on the same plant. For tht> t~elt'<·tion and 

combination of ft•ature-~~ets, there are llt'Veral furtht•r avt•nut'H worth t>xploring. 

One is wht•ther the ut,ilit.y of a lt•af component can be rt•liltbly t>Htimllh'Ciu~<ing 

simplified, faster to extract dt•11c·riptors, and NO rt>moving t.bt• Ct)lit asNtK'dntt'CI 

with compiling the more dt>tailt>d dt'I!Criptors UNt'CI ht•rt>, if it ill found to lK' uf 

low utility. Anoth«>r awnue is to iudude the timf' rt'<tllirt'CI for t>nda ft•llt urt>­

set into the decision making proc·c'SS, a.11 it m11y he mort> lwnc•fkiul to Ullt' two 

fa.~~t-t"compare feature-~~t•ts, than one slowrr but more rt•linhlc• cmc>. 
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Chapter 6 

Botanists' Vision 

Chapter contributions: 

• Study of the difference in eye-movements between botanists 
and non-botanists when viewing leaf images, using eye-tracker 
data. 

• Preliminary work towards replicating a botanist's observation 
points, based on this data. 

Given that professional botanists have re<·t>iwd l'XtRnKive training and rxpt'­

rience in studying and identifying plants, it may he pussihlt• to improve> upon 

computational methods, but making uHe of information r«'gnrding how t lwy vh•w 

leaf images. These data can be captured through the u~~e of t>yt>-t.nu·klng t.t•d•· 

nology, since a botanist may not in fuct be aware of the prc><·bw pro<'«'IIS t ht•y are 

performing. 

When viewing any detailed image, SU<'h as an atfwrtist•mt•nt., W«•lmitt' or IIUIIIt' 

particular objoct, the attention of the human viKual SYKtt>m 1!1 attnuott'<l to C'C'f· 

ta.in features, known as sa.Jient rE'gions. This prort'tl8 of ul)tl('rva.tiun bl to a lar~tt 

extent innate and subconsdouK, although ran ~omt' lt'IIS so t.hruu~h J'riur• 

knowledge of the observed image, or expt•rittnre in vit•wlng particular type'S uf 
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image. Research into eye-movement is involved in a !W\'f'ral fil•lds, induding and 

beyond the study of perceptual systems. The study of f'ye-fixation points ami 

saccades (fast eye movements between points of interest/stimuli) can providt> 

insight into cognitive processes such as writt.t>n language comprt>hen11ion, ntt>lll· 

ory, mental imagery and decision making [114]. Eye mowmt•nt rt'S('arch 111 of 

great interest in the study of neuroscience and psychiatry, as wt•ll as f'rgonomks, 

advertising and design [141]. Since eye movt>ments can be controlJNt, to some 

degree, voluntarily, and detected and recorded by modt•rn tN·lmology with gn•at 

speed and precision, they can now be u!Wd as a po\\>t>rful input dt•vke for many 

practical applications in human-computf'r interactions [115]. 

Wearable eye-tracking devices allow collection of E>ye-movemt•nt Information 

for natural scenes, involving the u~~e of gPnerally unconHtraint>d PyP, ht>ad, and 

hand movements. The most commonly sought eye-trading nwtrks lndudt~ the 

number, duration and location of fixations, both acrOHS tltf' t>ntire IK't•nc> ruul 

within set areas of interest, and the Sf'<)Uence of lliO\'t>llll'llt.S lwtwtlf'n tlwm, 

among many others [92, 64]. Longer fixation pt>riods gt'lwrally indkate grelltt•r 

cognitive processing of the fixated region, po1111ihly due t.o a higlwr lt•wl of dt•tnU 

or a lower scale feature of interest, and the pt>r<'f•ntagt> of total fixation dt>tlkah>tl 

to a particular area may indicate its salit•ncy [34, 121]. 

With sufficient knowlt>dge and experiPnt·e, ftll exJwrt In a pnrt kulnr fit• Id cnu 

become highly efficient at analysing certain typ('S of lmngt'll. Thill could lw a 

physi<~ian searching for anomalies in imtlgt'll prod\ll·ed by lllt'<lkul ~~t·ruuu•rs, a 

botanist studying images of leaves to d(•lt!rruine a plluat.'s lll>t'<'it'll, or a IIC't'Urity 

personnel identifying suspicious behaviour In CCTV foot.ag.-. U11iug tuiVIUU'«'<I 

eye-tracking technology, we cru1 capture and ru1aly!l(' In gn•nt dt•pth tht> prcX'f'llll 

through which a human exptlrt anulyses such lmagt'll. Thi11 l'hit•fty luvulwtt 

idtmtifying their fixations, and analysing the Sf'<Jilt'llt't' In whkh tlu'llf' fixtd luiUI 
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are visited. Through this it may be possible to t>nahlt' a computt•r syt~tt'm to 

more accurately replicate the human expt•rt 's fixation process. This could lt•nd 

to advances in the use of computer vision techniques to pt•rform !nll·h tasks, as it 

would allow more efficient procffising of the imagffi, and mny rt>Vl'nl ndditionnl 

information which current tedmiquffi are overlooking. 

In terms of plant classification, this could aid in the idt•ntifi<·ation of whkh 

parts of the leaf are most important for the task, or inspire aww proct>SIK'S t hnt 

may not yet have been consid<•red. 

In this chapter, t>ye-tracker data is ust>d to perform pn•liminary work towards 

understanding how botanists study lt>af images, and for rt>plicating a lx1t anist 's 

observation points when performing a lt•af rl'Cognition task. 

6.1 Comparing The Eye-Movements Of Botanists 

and Non-Botanists 

B<~fore the eye-tnwker data can be utiliZt>d in this mrumt•r, it is lmportru1t to 

first establish that the ka10wlt>dge and t>Xpt>ril'll<'e a<'quirt>d by lx•taniNht dcH'II 

indeed have an effect on th<•ir fixation points, and the llt'Qtlt'lll'I'S tlac•n•nf, whilllt 

viewing leaV('S. Ht•re, a pilot study is con<hwh>d, dt•mont~trat ing t hc> difft•n•n<'t' 

in eye-movements between botanists and non-botruliNts. In tht> pruc-c'lll'l, initilll 

data will also be gathert>d for use toward11 the afort•mc•ntimwd alms of rc•plkatlng 

the botanists observations. 

The experinwnts performed involve suhj<"Cts pt•rforming a simple• lt•llf rc'<'oJ(• 

nitiou task. Subjtl<'ts are shown an image of a lt•af for a 11hort pt•rlod nf time>. 

Afterwards, they are allowed to view imagt'fl of ll•aV<'!I frum t•lght difft•rt•nt 11pt•dtlf4, 

one of which is from the same SJ>(I('ii'S as the Initial h•af. The subjc>c·t l11 tMk(l(l 

with identifying which of the flight leaws !11 the out' from tht• 111uuc• Mpc>c·lc'll. 
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Sets of species are chosen such that the leaves portray similar visual qual it it'll 

(for example, similar colouration or shape), and thereby making the task non­

trivial. This was carried out at two different display intervals for the initial 

images, 1500ms and 4000ms. Each of these intt>rvals was ust'd t>ight tim<'S, with 

a different set of leaves being used each time. 

During this task, the subject was Wt>aring a hf'ad-mountt>d eyt--tr~«·king dt>­

vice. This involves a camera capturing the view in front of the subjt'<'t, a !lt'<'ond 

camera capturing a video of one of their eyt>S, and software capable of ralt·ulat­

ing, from the eye-movements, precisely where in their fit>ld of vit•w they wt•re 

looking. These observation points are recordt>d and translatt>d h1«·k onto thf' 

original leaf image. Before each set of tests, the trat·kt>r was calibrat.f'd, and the 

subject was asked to try minimise bead mowment during tht> tE>St. &hllf't'n 

each set of the tests, the subjects were allowed a short pt>riod of CE'St. 

The task was performed by nine vohmtt>ers - four botanists and five non­

botanists. 

6.1.1 Results and Analysis 

The heatmaps - visualisations of where on an inulge the subjc><·t lookc><l • from 

a sel<~tion of the leaf images used are shown in figurt'll 6.1 and 6.2, for the> 

1500ms and 4000ms cases respedively. Tll<'se show the art>tUI un whkh the• 

subject fixated, with the brightt>St red reprt'St'nt.ing t.ht> rc•glonH where tlwlr g~W> 

remained for the longest. These were generatt>d as a GauAAiMl mixture modt•l of 

each point the eye-tracker dc•tected the subjt'<·t looking at. Tht•y nre normali~~t'<l 

such that the point on whkh the subject's t>ytlS spc•nt tht• Ull)llt t.lmt• IH 11hown 

as pure red. To begin with, it can be ot)!lt'rvt'<l that In the 1500mll CftlM', tht! 

botanists typically vit>wed smaller, more 8{•lect rt>glonll ur the lt•avt'8 than tbt• 

non-botanists. This efft>ct was diminished In thP 4000mH raM•, wlwn more time• 
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was available to look over the entire leaves. Anotht>r obst>rvation is that tht' f<K'N 

points fell more often outside the surfoce of the leaves for the non-botauists than 

the botanists, suggesting that the non-botanists are using more the dt•tails of 

the shape of the leaf, than its interior charocteristks. 

In Figure 6.3, the histograms of the fixation lE>ugths - the lE>ngth of timt' 

spt>nt fixating on a single point - for both groups are prt>st'ntf'd. It ran bt' H«'«'ll 

that the botanists' fixations tended to be longer (at an avt>ragt> of 0.272 st>Con<is 

versus 0.209 at 1500ms, and 0.353 versus 0.284 at 4000ms) iudkating that arf'RS 

were observed in greater detail. In the 1500ms tests, the non-botauists hnd owr 

half of their fixation in the 0.12 S<'<'ond interval, iudit·atiug that tltey did not 

concentrate for very long on any one part of the lt>af, im•tt-ad opting to cowr a 

larger portion of the leaf in the time permittt>d. 

The soccade amplitudes (eye-movement sizes) are Hhown in Figul'f' 6.4. Ht•rt> 

there appears to be little significant difft•rence lK•twt'«'ll the two groups. The 

largest portion of soccades in all cases were around 3', «>quat ing to approximatt>ly 

one tenth of a leaf's ltmgth, indicating a t.endt'ncy to movt> from ont> r.-giun to a 

another relatively close by, ratbt>r than hopping from one side of the lt•ul to th«' 

other. 

Table 6.1 gives the average fixation le:>ngt hs, tw•cadt• amplit udt'll aud dt•nr~it ic'll 

for eoch of the subjt't't.s. Here the dt•usity rt•fc•rs to a Ult'JII'IIIrt~ (If t ht> purt ion of 

a leaf viewed, with loWt>r S<~ores lndicat.iug that tlu• !lubjt•<"t cour't'nt ratt'<i on 

a smalh•r araa of the leaf. Confirming th«> diffc•rem'f! In fixnt.iun lt•ngt ht~, t ht> 

botanists av(lrage fixations were longer than aJl hut out• uf tht• n<m-hotnnit~hl 

at 1500ms, and longer than all of the:>m at 4000ms. Fur IW't'adc'll, t lu•re WIUI 

quite a high variation bt•twNm individualH, with the av.•n•gt' amplitudc'tt ran~tlng 

from 3.954' to 6.642'. but no particular trend bt>tM>t•n t.ltt' groups. In tt•rms 

of the de:>nsities, wht-n the viPwing tim«> WM limitt>tl to tr)(l0ms, all IK,tnuiMt-S 
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Non-Botanist 2 
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Non-Botanist 4 

Ion-Botani t 5 

Figure 6.1 : Example heatmap from when th 
for 1500ms. 
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Botanist 3 

Botanist 4 

on-Botanist 1 
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Non-Botanist 4 

Non-Botanist 5 

Figure 6.2: Example heatmap from when th 
for 4000m . 
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Figure 6.3: Histogram of fixation length for botani t (blue) and non-botani t 
(red) for both 1500ms and 4000ms cases, showing length (x-axis, in econd ) 
against frequency (y-axis). 
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F igure 6.4: Histogram of saccade amplitudes for 
botanist (red) for both 1500ms and 4000m ase 
in degr es) against frequency (y-axi ). 
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botani t (blu ) and n n­

howing ampli t ud (x-axi 

had lower cores. When the time was incr a d to 400ms, how v r, whil t all 

densities increased , for two of the botanist the den ities w r similar t th 

of the non-botanists , whilst for th other two, they r main d ignifi antly I w r , 

demonstrating that not all botani ts exhibit th am b haviour. 

From this initial data, it would appear that t h r i ind d 

between how trained botani ts and non-botani ts vi w leaf imag , during a 

recognition task. The main quantifiable dif:J) ren i that th botani ts pr ~ rr d 

to study small parts of the I af in high detai l, whi l t th non-bot8J1i t att mpt d 
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Fixations Saccades Dt>nsitit'lfl 
Subject 1500ms 4000ms 1500ms 4000ms 1500ms 4000ms 

Botanist 1 0.249 0.327 5.495 6.492 17218.0 35174.4 
Botanist 2 0.301 0.338 4.557 4.890 17660.8 35174.4 
Botanist 3 0.254 0.348 4.293 5.516 18585.1 23744.1 
Botanist 4 0.282 0.399 5.714 5.910 18401.2 26539.0 

Non-Botanist 1 0.206 0.262 6.254 6.072 25323.6 34644.9 
Non-Botanist 2 0.168 0.280 6.642 6.252 22752.0 36157.9 
Non-Botanist 3 0.194 0.263 3.954 4.668 21155.7 34299.7 
Non-Botanist 4 0.261 0.319 5.427 5.762 20735.3 33704.9 
Non-Botanist 5 0.218 0.295 5.105 4.913 22283.4 33422.8 

Table 6.1: Average statistics for each subject. 

to acquire information from a larger portion of the leaf, and conS('Quently in lt'SS 

detail. There is also suggestion that the non-botanists relied more on the shapt>­

related features than on internal features. 

6.2 Reverse Engineering Expert Visual Obser-

vations 

Here, a first step is presented towards utilizing this type of eye-tracking data for 

computer vision purposes, concentrating on its use in the study of the rltl.'ll'lifi­

cation of plant leaves, from the perspective of the expert in plant 11yst.ematks, 

which uses tools based on morphology for identification and is one of the prind­

pal branches of study in plant biology. Plant systematists are rl't!ponsible for the 

organisation and accessibility of plant diversity data which is underpimwd by 

accurate identification and naming. Figure 6.5 illustrates the typkal !W<JIIt'll<'t'S 

of fixations when an expert in plant systematics studies a leaf. In f,he approad1 

here, neural-gas algorithms [89] are applied for filter parameter IE•arning, to diH­

cover a set of filters which are particularly well suited for identifying t,he fixation 

points on an image of a leaf. 
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Figure 6.5: Synthetic examples of typical equences of fixation for ye-tra k r 
data from an expert botanist. 

6.2.1 Related Work 

In Filter Parameter Learning (FPL) [11 , 55, 76], a set of imag filter ar de­

scribed by some parameters whose values change dynarni ally thr ugh th our 

of some learning process. There have been numerous approa h to thi prob­

lem. In [55], Heidemann presents an object recognition archite t ur b d on 

feature extraction by Gabor filter kernel , ru1d perform ~ atur !as ification 

by an artificial neural network. The parameter of the Gabor fi lt r ar pti­

mized to the specific problem by minimizing an energy fun t ion. Th Gab r 

filters can then be u ed to extract ~ atur t hat can b more a ily la ifi d 

by a neural network. Alain and Shigeru in [11] u d a di riminativ ~ t ur 

extraction method applied to a bank of filter for th m del ling f p 

m thod proposed by Koray et al. [6 ] automati a ll learn th fcat ur xtra. -

tors in an unsupervised fashion by imul taneou ly learning the fi lt r and th 

pooling units that combine multiple fil ter utput . T h m thod g n rat s t 

pographic map of similar filter that xtract ~ atur ri ntati ns a l 

and positions. By doing thi , locally-invariant output ar pr du d. In [43], 

Gautama et al. force the filter to partition th input pac in an qui tabl 

manner: each filter is t uned to a differ nt fr qu n y r gi n and contribu t 

122 



equally to the extraction of localized features. Here, a set of Gabor filters is 

learnt for processing images, due to their well-known properties in extraction 

of features from their parameters of frequencies, orientations, and smoothing of 

the Gaussian envelope (111, 48, 22, 80]. Furthermore, links have been identifit•d 

between Gabor filters and the human visual system (30], and as such they may 

have added benefit for our purposes. 

In the field of neural networks many different architectures and training ruk>s 

exist, from the perceptrons (from single--unit to multilayer versions}, Hopfield­

type recurrent networks (including probabilistic versions strongly related to sta­

tistical physics and Gibbs distributions) and the Self Organizing Map (SOM), 

among others [37, 53]. In a self-organising map, the network being traim>d has a 

fixed topology throughout, however there exist several variants where, bast>d on 

errors within the network, elements of the network are added or removed. The 

neural-gas algorithm [89) is one such variant. It uses a fixed muubt•r of nodt>s 

which are initially distributed either randomly or uniformly throughout the in­

put space. Connections between these nodes/neurons are addt>d or removt>d 110 

that for every input pattern, the two closest nodes are connet·ted in the final 

network. In short, the organization of neurons, according to tlwir distruwe to 

the input pattern, and subsequent modification of its reft•rence vet'tor, prodlt<'t>s 

the neuron expansion within the input space. The neurons' po~litions and tlwir 

connections become configured to accurately repr(lS(>nt the dat.a distribution. 

Subsequently, by adding and deleting edges, a triangulation betWt't'n diffNf'nt 

processing elements is provided. An extension to this, the growing-neural-gas 

algorithm (GNG) (38] is initialised with just two nodt>S, and adds mure owr 

time. Furthermore, it removes any nodes whic·h have bt'<'ome seJ>arated from 

the network in an unused area of the space. This remows the rt'CJUlrt•mt•nt 

for a priori knowledge about the topological dimension of the spm•e of Input 
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vectors (93]. The method here is based on this form of the neural-gas algorithm. 

6.2.2 Methodology 

The approach here finds a set of image filters that can be used to efficiE>ntly 

identify possible fixation points on an image of a plant leaf. Firstly, data was 

collected for where such fixation points lie by using an E>ye-trM·king device t.o 

capture a botanist's eye movements as they study a series a leaf images. Each 

leaf was shown to the botanist for a set period of time, during which they were 

asked to verbally give as much information as possible about the leaf. This was 

not recorded, but was done to ensure the manner in which the leaves were stud­

ied was realistic and relevant, as it meant the botanist had to look at areas of the 

leaf which would provide the most useful information. The fixations whic·h have 

been discovered are used as input into an algorithm which attE'mpts to find a set 

of filters which give high responses to fixation windows (Section 6.2.2.1). The 

filters learnt are based upon the Gabor mod(~l (Section 4.2.2.1). The leu.ruing ill 

performed using a variant of the growing-neural-gas algorithm (Se<'tion 6.2.2.3}. 

6.2.2.1 Fixations and Filter Responses 

A fixation point is defined as being a point on an image whE>re a pt•rson foruSC'II 

their attention a short amount of time (typically more than lOOms (12)}. U11ing 

eye-tracking technology, where these fixation points are can be ldc•ntific'<l, as a 

series of images are shown to a subje<'t. If the imagf'S are f>tl(~h only 11hown for 

a particularly short amount of time (no more than a ff'w llf'Ccmd11), the fixntlun 

points found may correspond to the m011t salient parts of the image [~SJ. If, 

however, the expert is allowed to study an image for a longer period of time, 

the fixation points discovered will indicate the m011t important part11 of the 

image required for the expert to analyse it. Furtbt~rmore, the time thut th<' 
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expert spends concentrating on each fixation point, and the order in whkh they 

move their vision between them, can provide important information and insight 

into the experts' processes. 

In analysing and searching for fixation points, a fixation window is defint>d as 

a square region centred around a fixation point. The size of this window should 

correspond to the scale of the feature which the expert is studying, which may 

correspond to the time which the expert spends looking at that feature. At this 

stage, however, it has been chosen to fix this at 100 pixels in width. 

The method described in here is intended to discover filters which will be 

useful for identifying fixation points. To achieve this the response is calculatt>d 

for a particular filter being applied to a particular fixation point as bt-iug the 

sum of the absolute values of the convolution between filter and image at eMh 

pixel within the fixation window. The algorithm will search for a st•t of filtt•rs 

which produce high responses to fixation points. 

6.2.2.2 Gabor Filters 

The aim is to find a set of n filters, F = {/i, fl, .. /n}, thnt can be ullt'<l to 

efficiently identify fixations. For this purpostl, Gabor filters have bet•n dlot~t•n. 

These have been applied to a large range of computer vision problt>ms induding 

image segmentation [124] and face detection (59]. Gabor filtt'rs have bt't'n Ut~t'<l 

in models of the human visual system, therefore are expfl<'ted to prove ut~t•ful 

here (29]. Gabor filters have been described in Section 4.2.2.1. 

It is possible to produce a wide variety of difft•rt'nt filters, through the Ul'lt' 

of only a small set of parameters. To this end, the following paramc•t.t•r rangt>H 

were used: (} E (0, i ], "'( = 0.6, q E [1, 10], ~ E (a, 8u] and ~· E {0, f }. 
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6.2.2.3 Learning The Filters 

In order to learn the set of filters, a neural gas algorithm is used. Fixations 

are chosen one at a time at random from the training set, and a filter is found 

which gives a high response for that fixation. This filter is then used as an 

input pattern for the neural gas algorithm. Filters are selected by testing a set 

number of filters sampled from the portion of the input space occupied by the 

neural gas (see Algorithm 1 for details), and then chosing the one that provided 

the highest response. The advantage of this is that it helps speed convergence, 

and avoids wasting computation time by only testing filters that are likely to 

prove useful. 

The particular neural gas algorithm used here is a modification of the growing­

neural-gas algorithm (38]. The original algorithm was initialised with two neu­

rons, and grown by adding a new neuron every set number of iterations. Since 

it is desirable, for our purposes, to only find a minimal number of filters (using a 

large number of filters would reduce efficiency when searching for fixations), the 

algorithm is instead started with the maximum required number of neurons, 

and only adds new neurons whenever the algorithm removes a neuron whkh 

has become separated from the network, thus the number of neurons remains 

constant. The advantage of using this approach over the standard neural-gas 

algorithm is that it replaces neurons that appear less useful, thereby aiding con­

vergence. Furthermore, the removal of connections allows the gas to S<'parate 

if discrete regions of the space need to be occupied. Once the algorithm has 

converged, post-pruning [17] is applied to further improve the final St>t of filters. 

The post-pruning algorithm removes clusters of neurons from unused parts of 

the space, and adjusts the positions of others, to achieve better final results. 

The algorithm can be summarised as follows: 

1. Initialise the neural-gas: 
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• Neurons are uniformly distributed through filter-space, within pre­

determined bounds for each parameter. 

• Connections are created between neighbouring neurons. Each con­

nection has an age, which is initially set to 0. 

2. Until stopping criteria is met, repeat: 

{a) Select a fixation from the training set. 

(b) Generate k filters, drawn from the distribution of neurons, as per 

Algorithm 1, which generates random filters returning the first which 

matches the criteria. 

(c) Calculate the response for each of the filters being applied to the 

training fixation. 

(d) Apply one step of the neural-gas algorithm (see Section 6.2.2.3), using 

as the input pattern the parameters of the filter with the highest 

response in the previous step. 

3. Apply post-pruning (17] to the final neural-gas. 

Algorithm 1 Kernel density estimation algorithm for selecting filters 
repeat 
e ~ random filter vector 
x+--0 
for all neurons /i E F do 

/1(-/,113 
x~x+~exp-~ 

v21ra• 
end for 
y +-- random value in range (0, Jk~~sl 

until y ~x 
return e 

A Modified Growing-Neural-Gas Algorithm At each step the mod­

ified growing-neural-gas algorithm calculates the new positions of its neurons 

according to an input pattern e: 
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1. Find the two neurons, JI, h closest {by Euclidean distance) to the input 

pattern e. 

2. Increment the age of all connections between fi and its neighbours. 

3. Increase !I 's accumulated error by 1111- {11 2
• 

4. Move 11 and its connected neurons towards{, by fractions lb,Ec {here 0.2 

and 0.1) respectively: 

le =le+ le({- le) for all direct neighbours c of 11 

5. If no connection exists between 11, /2, create a new connection, else reset 

the connections age to 0. 

6. Remove any connection with an age above some threshold. 

7. Remove any neurons which have become disconnected from all other neu-

rons. 

8. For each neuron removed in step 7, insert a new neuron as follows: 

(a) Find the neuron, 11, with the largest accumulated error (from step 3), 

and the neuron, f;, with the highest accumulated error of all /i 's 

neighbours. 

(b) Insert a new neuron, lk, between /i and /;: 

!k = li- lk 
2 

(c) Replace the connection between fa, IJ with new connections between 

li,lk and f;,lk 
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(d) Decrease the accumulated errors of /i,/1, by multiplying them by 

some constant. Set accumulated error of fk equal to that of fi· 

9. Decrease all error variables by multiplying them by some constant. 

6.2.3 Evaluation 

Due to the nature of the data acquired by an eye-tracker, quantitative results 

are difficult to obtain. This is because there are no definitive negative testing 

examples. For example, when studying a leaf, a botanist may only need to look 

at the margin on one side of the leaf to obtain the information they require from 

it. If the margin on the other side of the leaf goes un-viewed, this does not mean 

it is any less relevant, since the decision to use one particular side may have been 

arbitrary, due to leaf symmetry, and may be different on a second viewing of 

the same leaf. Because of this, instead of trying to identify all possible fixation 

points on a leaf image, the evaluation method instead tries to locate a couple of 

different leaf features, and treat all other areas of the leaf as negative examples. 

From the data collection using a professional botanist, it has been identified 

that a leaf's insertion point (where the petiole (stem} joins the leaf} and apex 

(the 'tip' of the leaf) are fixation points on most leaves (Figure 6.6). The filters 

which have been learnt are used to identify these points from a set of points 

randomly taken from some leaf images. In the first experiment (Section 6.2.3) we 

use a nearest-neighbour classifier to label image windows as either an insertion 

point, apex or other. In the second (Section 6.2.3), the points on each leaf that 

are most likely to be the apex and the insertion point are found. The results are 

compared to those using filters similar to the popular Leung-Malik and Root 

Filter Set filter banks (78, 45]. Results are discussed in Section 6.2.3. 

The images used were automatically oriented according to the leaf's primary 

axis, and were scaled so that each leaf had an area within the image of approx-
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imately 218 pixels. A fixation window width of 100 pixel was u ed, a thi 

allowed for an appropriate size region around the apice and insertion point . 

Experiment 1. In the first experiment, the uitability of the filter that 

have been learnt for identifying whether a given window i fixation window or 

not is analysed. The training set used consists of the window centr d around 

the insertion points and apices of 240 leaves from a total of 30 different p i . 

The testing set is then compri ed of windows centr d around the in ertion point , 

apex and four other points on a different set of 240 leaves (see Figure 6. 7 for om 

examples). Having learnt a et of filter u ing th training et, ach fixati n in 

the training set is proces ed using the learnt fil ter to produc an n-dim n ional 

vector of filter respon that can be us d to d crib the fixation . Filt r 

response vectors are then generated for the fixation in the te t t . A near · t­

neighbour algorithm is u ed to classify the te t fixation , wh r by t he n ar t 

training vector to a test vector i found , and if th di tance b tw en th m is 

less than some threshold , the test fixation i a ign d the !as of t h training 

fixation , el e it i classift d a not bring a fixation . 

For compari on, a et of ftlters bas d on th Leung-Malik and Ro t Filt r 

Set filter bank i a] o used . Th e filter ar v nly di t ribut d thr ugh ut 

the parameter pac u ing th arne param t r rang a ~ r t h n w m thod . 

The result of the e wi th 16, 36 and 12 filter ar giv n in Tab! 6.2, with 

Figure 6.6: Heatmaps from ye-tra ker data , indi ating t h in rti n p int and 
apices as fixations. 
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(a) Insertion points (b) Apices 

Figure 6. 7: Examples of the thr cla 

values indicated the percentage of windows correctly classified . Th ROC urv 

shown in Figure 6.8 was produced by varying the t hreshold used to perform 

t he classification, for the sets of 16 filters. The accuracie given in Tab! 6.2 

correspond to the threshold value which gave the be t re ul t for a h t of 

fi lters. 

Table 6.2: Results for experiment 1 

Method 16 fi lters 36 filters 128 filters 
New method 93.68 93.26 93.61 
Filter bank 80.97 89.58 93.68 
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Figure 6.8: ROC curve for exp riment 1. olid !in = ur meth d d h d lin 
= standard filter bank. 
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Experiment 2. In our second experiment, we attempt to find the insertion 

point and apex on leaf from amongst 16 possible windows. This experiment 

more accurately reflects the final task, as it attempts to discover the most likely 

fixation points on each image. The training is performed as per experiment 1. 

To test, for each leaf image, the response vectors for windows centred around 

the insertion point, apex, and 14 other randomly selected points on the leaf are 

compared to the response vectors for the training set. The windows closest to 

an insertion point and apex from the training set are selected as being these 

respective points on the new leaf. Table 6.3 shows the results for this experiment. 

Table 6.3: Results for experiment 2 (%) 

Method 16 filters 36 filters 128 filters 
Our method 91.25 95.00 95.08 
Filter bank 77.92 91.76 94.58 

Results. The results show that whilst both sets of filters achieve a similar, 

high level of accuracy when using a large number of filters, the set of filters learnt 

using the algorithm retain their quality when the number of filters is reduced to 

just 16, whilst the filters based on the standard filter banks perform significantly 

worse. With the filter banks, when the total number of filters is reduced, filters 

are removed indescriminately from useful areas of the parameter space, whieh 

causes a loss of accuracy. The filters that have been learnt by our algorithm, 

however, still perform well because they only occupy the useful regions in the 

space. With a large number of filters, there is a redundancy in these areas of the 

space, so when the number of filters is reduced,only this redundancy is removed, 

and do not lose any quality. This allows for the same level of accuracy whilst 

only requiring a fraction of the amount of processing. 
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6.2.4 Summary 

For many practical applications, speed and efficiency are particularly important 

for a method for discovering the fixation points in an image, because large areas 

of the image need to be processed. By developing an algorithm that allows the 

learning of a small set of filters that is capable of distinguishing fixation points 

with as high accuracy as a larger filter bank, a step has been taken towards this. 

Further work in this area could explore how efficiency can be further improved 

by intelligently selecting only the best subset of our filter to use on any given 

part of the image. It may also be profitable to investigate the use of different 

methods of classification for improving the accuracy. 

Beyond this, how the sequences for the fixations can be discovered need to be 

considered. One possibility may be the use of hidden Markov models, involving 

spatial and temporal information, as well as data generated by the filter set. 

With a system for accurate estimation and replication of the methods in which 

a human expert studies an image, the hope is to able to improve the efficiency 

and robustness of automated computer vision systems for performing such tasks, 

although further investigation will be needed into whether such information can 

indeed allow for more accurate leaf classification. Further to this, it is hoped 

that we may be able to discover new knowledge about how human expert achieve 

this task. 

133 



Chapter 7 

Conclusions 

This thesis has presented work covering a range of aspects associated with the 

computer-assisted identification and analysis of plant leaves. In Chapter 2, a 

comprehensive review was carried out of the work previously carried out in this 

field, identifying the challenges involved in this task, and those areas in which 

progress still needed to be made. Chapter 4 presented a number of new methods 

for the extraction and description of various components of the leaf. A com­

parative study of the most commonly used shape analysis techniques was also 

performed, demonstrating the strengths and weaknesses of each method. One 

of the challenges in this field is in coping with the high intra-species variation 

present in leaves, and in Chapter 5, new techniques are presented for doing so, 

in regards to the leaf macro-texture and margins. Also in Chapter 5, methods 

of combining the different leaf feature-sets were presented, including a method 

for automatically selecting which feature-sets are most appropriate to use when 

trying to classify a particular leaf. Chapter 6 offers a preliminary study into 

how botanists view leaves in contrast to non-botanists, including a look at how 

this information might be used to improve automated techniques. 
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7.1 Achievements 

This work has made several achievements, with regards to the challenges in­

volved, making great progress in this field. 

Extraction of information. New methods have been presented for the 

extraction and description of the leaf macro- and micro-texture, margin charac­

ters, and the venation patterns, showing strong performance in comparison to 

existing techniques. Though there has been much work previously carried out 

on the analysis of leaf shape, there has been little in the way of comparison of 

the different techniques. Here, the merits of the most popular techniques have 

been highlighted and contrasted. 

Dealing with intra-class variation. One of the key challenges associ­

ated with the identification of plant species relates to the often high intra-species 

variation. Here, methods have been developed for solving this problem, in re­

gards to the leaf macro-texture and margins. The methods presented for the 

former of these could also be applied to many other machine-learning problems 

where intra-class variation is a significant issue. 

Combining modalities. With many different components of the l<!af avail­

able for use for classification, it was important to develop an appropriate method 

for combining the information. In particular, due to the wide variety of forms 

many leaf features can take, and the low inter-species variation found for some 

leaf features between some sets of species, there was a desire to be able to au­

tomatically select the best subset of modalities to use on a leaf-by-leaf basis. 

A method has been presented here, which achieves improved accuracy and re­

duced computational requirements by predicting the value of each feature-set 

when classifying a given leaf. 
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Understanding how botanists view leaves. Much can be learnt from 

the behaviour of experts which can be applied to the task here. Eye tracking 

technology has been used to establish the differences between how botanists 

and non-botanists view leaf images whilst performing a leaf recognition task. 

Further to this, preliminary work has been performed towards replicating the 

botanists' observation points, so that this information could be utilized in an 

automated system. 

7.2 Future Work 

The work presented in this thesis makes several advancements towards the goal 

of automated classification and analysis of leaves, however, there are still some 

areas in which further progess could be made. Whilst a relatively accurate 

method for the extraction of venation patterns was put forward in Chapter 4, 

as yet there is no suitable method for describing and comparing venations, al­

lowing them to be used alongside the other leaf components when performing an 

identification. Again, the method would need to take into account the variation 

that is present, particularly since the number of secondary and tertiary veins 

will vary from leaf to leaf within a species. 

The methods for leaf-shape analysis discussed in Section 4.1 are existing 

methods for general shape and morphometric analysis, rather than being entirely 

tailored to the leaf-specific task. Future work could include the development a 

shape analysis method that is more suitable to the subject matter here. 

In Chapter 5, a framework was proposed for the selection and combination of 

different leaf feature-sets. This framework managed to improve the classification 

accuracy whilst reducing the number of feature-sets required, however there 

remain a number of extensions worthy of exploration. One such thing is whether 

simple, fast-to-extract descriptors can be reliably used to predict the value in 
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using the more complex descriptors, which require more processing to extract. 

This could greatly reduce the computational requirements. Further to this, it 

may be desirable to factor in each extraction/comparison's computational needs, 

when determining the feature-sets to use. From this, it may emerge that there 

is greater value in using many simple but fast methods, than the more advanced 

but costly ones, despite them producing better results when used individually. 
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