Computational Methods
For The Classification Of Plants

James S. Cope
2014

Faculty of Science, Engineering and Computing

Kingston University, London



Abstract

Plants are of fundamental importance to life on Earth. The shapes of leaves,
petals and whole plants are of great significance to plant science, as they can
help to distinguish between different species, to measure plant health, and even
to model climate change. The current availability of botanists is increasingly
failing to meet the growing demands for their expertise. These demands range
from amateurs desiring help in identifying plants, to agricultural applications
such as automated weeding systems, and to the cataloguing of biodiversity for
conservational purposes. This thesis aims to help fill this gap, by exploring
computational techniques for the automated analysis and classification of plants
from images of their leaves.

The main objective is to provide novel techniques and the required frame-
work for a robust, automated plant identification system. This involves firstly
the accurate extraction of different features of the leaf and the generation of
appropriate descriptors. One of the biggest challenges involved in working with
plants is the high amounts of variation that may occur within a species, and
high similarity that exists between some species. Algorithms are introduced
which aim to allow accurate classification in spite of this.

With many features of the leaf being available for use in classification, a
suitable framework is required for combining them. An efficient method is
proposed which selects on a leaf-by-leaf basis which of the leaf features are
most likely to be of use. This decreases computational costs whilst increasing
accuracy, by ignoring unsuitable features.

Finally a study is carried out looking at how professional botanists view leaf
images. Much can be learnt from the behaviour of experts which can be applied
to the task at hand. Eye-tracking technology is used to establish the difference
between how botanists and non-botanists view leaf images, and preliminary
work is performed towards utilizing this information in an automated system.
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Chapter 1

Introduction

Plants form a fundamental part of life on Earth, producing breathable oxygen,
food, fuel, medicine and many more products that are of tremendous use to
mankind. They help to regulate the climate, and provide food and habitation
to a multitude of other organisms. As such, a good understanding of plant life
is highly important. It allows us to improve agricultural methods, increasing
productivity, to mitigate our effects on the environment and to develop new
pharmaceuticals. In particular, there are threats to many ecosystems from a
changing climate and the demands of a growing human population, and so a
need to study the biodiversity of different geographical regions.

Botanists are trained to be capable of examining and indentifying specimens,
and discovering the connections between different species. As demand for such
expertise increasing, there is, however a growing shortage of such individuals.
As such, there is now an increasing interest in having an automated system
for performing such tasks. Traditionally, botanists rely on largely qualitative
descriptors of plant ‘features. Collections of specimens, preserved in herbarium

archives, such as those at the Royal Botanic Gardens in Kew, London, are also



of great use, providing known examples of species that can be referred back
to (figure 1.1b). There now exist some projects to digitise these collections,
thereby making them increasingly accessible. In recent years, well established
morphometric techniques have been employed by some botanists, to further

improve the understanding of the relatedness of certain species.

(a) Isolated leaf (¢) Live specimen

Figure 1.1: Example of various types of leaf image. (a) Isolated leaf on a plain
background; (b) Herbarium specimen from Royal Botanical Gardens, Kew; and
(c) live specimen with complex background.

Whilst botanists may use all aspects of a plant when trying to identify a
specimen, for an automated system, certain organs (eg. flowers, leaves, fruit)
appear more appropriate than others. For many species, the flowers are highly
distinct, yet are only available for short periods of the year, and are three
dimensional in nature, leading to difficulty in reliably capturing the required
details. These limitations are true also for fruit and seeds. Other organs, such
as a tree’s branches or the root system are present throughout the year, but
are again difficult to capture in a form appropriate for automated analysis. As
such, leaves appear to be the most ideal organ to use. They are available for

examination for much of the year, even year-round in the case of evergreen



species. They are also typically more two dimensional (flatter), and therefore

can be accurately imaged using a camera or a flat-bed scanner.

1.1 Aims and Objectives

The aim of this work is to help fill a gap in botanical expertise, by explor-
ing computational techniques for the automated analysis and classification of
plants from images of their leaves, providing novel techniques and the required
framework for a robust, automated plant identification system.

There are several objectives towards achieving this. The first is to be able
to extract and describe the required information from leaf images. Leaves have
many components that can be useful for identification, including the shape,
margin characteristics, the texture, venation patterns, and other aspects such as
the presence of hairs. It is important to first be able to accurately extract these
components from a leaf, and create adequate descriptors that can be compared
to those from other leaves of known species.

One of the main challenges for species identification comes from the fact that
some species have high intra-species variation, whilst conversely, the variation
between different species can be very low. As such, for some leaf components
for some sets of species, there may be significant overlap. One of the objectives
here to develop machine learning techniques that are capable of taking this issue
of variation into account.

A third regards how different modalities (i.e. leaf components and feature-
sets) can be combined. Whilst it may be possible to classify leaves with a
reasonable accuracy using only single components, it seems obvious that there is
great benefit in using multiple components. As such, an appropriate framework
is required. Further to this, due to the aforementioned issues of inter- and intra-

variation, some components may be appropriate to use for some species, but



not for others. Therefore, a part of this objective is to allow for the automated
selection of components and feature-sets to be used, on a leaf-by-leaf basis.

A final objective is to learn how professional botanists view leaf images,
and to apply this knowledge to the problem at hand. This will involve the
establishment, through the use of eye-tracking technology, of the differences
between how botanists and non-botanists perform this task, and, moreover,

investigation into the application of this information in an automated system.

1.2 Applications

Potentially, there are many practical application of this work. One such ap-
plication is to provide tools to support botanists. As previously discussed,
botanical expertise is currently in limited supply, and so automated identifi-
cation systems could help to reduce their workload. Furthmore, whilst some
morphometric analysis of leaves is currently performed by some botanists, this
typically requires time-consuming manual measurements to be made, and is not
conviently available to many.

An automated species identification system would also be of great use to
amateur botanists, gardeners and other interested persons, who may desire to
be able to indentify a plant but lack the skills and knowledge to do so unassisted.
Indeed, with the increasing prevalence of smart phone devices, there currently
exist a few rudimentary tools for doing so [3, 75, 143].

There has also been interest in this area from within the agricultural sector.
New ways are constantly being sought to increase crop yield and farm efficiency
whilst decreasing costs. There have been several studies [44, 125] into the use of
robotic farm helpers for the purposes and both gathering crops and eliminating
weeds. Both of these tasks would require to be able to distinguish between the

crops being grown and other unwanted plants.
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For both scientific and conservation purposes, the study of the geographical
distribution of plants is of great interest, particularly in relation to the planet’s
changing climate. It is well established that the climate in which a plant grows
affects the shape of its leaves [116], and so it is desirable to be able to quantify
this, performing comparisons between different climate zones, and for different
years within the same geographical location. As many habitats are currently
shrinking, whether due to changing environment conditions or to human activity,
it is important to be able to identify the distribution of different species in order
to properly assess the impact. An automated identification system would allow
the range of flora within a location to be catalogued without those performing

it to require the specialist training that is in short supply.

1.3 Outline

The remainder of this thesis is structured as follows. In Chapter 4, numerous
new methods for the extraction and description of the main leaf components,
including the margins, texture and venation, are described. A comparative
study of the most commonly used existing leaf-shape analysis techniques is also
presented. Chapter 5 describes methods for reliably identifying leaves whilst
taking into account the intra-species variation, before examining methods for
combining the classification of multiple modalities, and the dynamic selection
of feature-sets to use, to both increase accuracy, and decrease computational
requirements. . In Chapter 6, a study, using eye-tracker technology, of how
botanists study leaves is reported, looking at how this information could be

used to improve computer-based systems.
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Chapter 2

Literature Review

2.1 Introduction

Although morphometrics and image processing are well-established and broad
disciplines, botanical morphometrics presents some specific challenges.Leaves
and flowers are non-rigid objects, leading to a variety of deformations. Many
leaves have a three-dimensional nature, increasing the difficulty in producing
good quality leaf images, whilst resulting in the loss of useful structure informa-
tion. Archived specimens may also be damaged as they are dried and pressed,
but even live specimens may have insect, disease or mechanical damage. Auto-
mated systems must be robust to such deformations.

Any system that is concerned with distinguishing between different classes
of plants must be aware of the large intra-class (see Figure 2.1), and small inter-
class variation that is typical of botanical samples. For example, a number of
classifiers have been developed [54, 75] that identify the species of a specimen
from a digital image of it. These must be robust in order to distinguish between

very similar looking specimens from different species, when a single species may
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Tetid

Figure 2.1: Variation in leaves taken from a single specimen of Quercus nigra.

by itself produce a very wide range of different leaves. See Figures 2.3 and 5.5

for further examples of the variety of leaf shapes found.

Distinguishing between a large number of classes is inherently more complex
than distinguishing between just a few, and typically requires far more data
to achieve satisfactory performance. Even if a study is restricted to a single
genus, it may contain many species, each of which will encompass variation
between its constituent populations. The flowering plant genus Dioscorea, for
example, contains over 600 species [47], so even single-genus studies can be
very challenging. On a related note,as the leaves develop, the shape may vary
continuously along a single stem, or discretely (known as leaf heteroblasty),
which can further confound shape analysis unless great care is taken of the
specimen sources.

Different features are often needed to distinguish different categories of plant.
For example, whilst leaf shape may be sufficient to distinguish between some
species, other species may have very similar leaf shapes to each other, but have
different coloured leaves. No single aspect, or kind of aspect, may be sufficient
to separate all the categories, making feature selection a challenging problem.

This chapter will give an overview of the previous work has been carried
out in the field of computational methods for the analysis of plants, covering

techniques for the extraction and comparison of diffent plant features as well as
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Figure 2.2: The main components of a typical leaf.

outlining many of the possible applications of this work.

2.2 Leaf Analysis Methods

There are many aspects of a plant leaf’s structure and appearance that are
used by botanists in plant morphological research. The most useful of these
leaf-components in comparative biology are usually the two-dimensional shape
of a leaf or petal, the characters of the leaf margin (such as the teeth), and the
structure of the vein network. Of these, the outline shape has received by far
the most attention when applying computational techniques to botanical image

processing.

2.2.1 Leaf Shape

There are several reasons underlying the focus on leaf shape. Firstly, the shape
has perhaps the most discriminative power. Although leaves from the same plant
may differ in detail, it is often the case that different species have characteristic

leaf shapes, and these have often been used by botanists to identify species.
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Whereas differences in margin character or vein structure may be fairly subtle,
shape differences are often more obvious, even to the non-expert. In many cases,
leaf size is largely determined by the environment, while shape is more heritable.
Secondly, this is the easiest aspect to extract automatically. If a leaf is imaged
against a plain black or white background, then simple threshold techniques can
be used to separate the leaf from the background, and the outline can then be
found by simply isolating those pixels of the leaf that border the background.
Thirdly, there are numerous existing morphometric techniques which can be
applied to leaf shape that have already proven their worth for other biological
problems and which may already be familiar to many botanists. Finally, the
gross structure of a leaf may be preserved even if the leaf specimen is damaged,
possibly through age. For example, many dried leaves turn brown, so colour is
not usually a useful feature by itself. Note also that many of the shape-based
methods discussed here have also been applied to petal, sepal or whole flower
shape, as discussed in Section 2.2.6.

Figure 2.2 shows some of the main components of leaves with their corre-
sponding botanical terms, while Figure 2.3 illustrates some of the variety of leaf
shapes found.

We now discuss a number of approaches to leaf shape analysis, including
Fourier analysis, contour signatures, landmark analysis, shape features, fractal

dimensions and texture analysis.

2.2.1.1 Elliptic Fourier Descriptors

The most common shape analysis technique applied to leaves appears to be
the elliptic Fourier descriptor (EFD) [73]. Here, leaf shape is analyzed in the
frequency domain, rather than the spatial domain. A set number of Fourier
harmonics are calculated for the outline, each of which has four coefficients.

This set of coefficients forms the Fourier descriptor, with higher numbers of
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Figure 2.3: Example of leaf shapes.

harmonics providing more precise descriptions. (Hearn [54] suggests that 10
Fourier harmonics are necessary to accurately represent leaf shape to distinguish
between a range of species.) Typically, principal component analysis (PCA) is
then applied to the descriptor, to reduce dimensionality and aid diserimination,
identifying the main sources of variation within the data. An early example
of this approach is by White et al. [142], who found EFDs to be superior to
landmark measures, chain codes and moment invariants when characterizing
leaf outlines. Elliptic Fourier descriptors can easily be normalised to represent
shapes independently of their orientation, size or location, easing comparison
between shapes.

McLellan and Endler [90] compared Fourier analysis with several other meth-
ods for describing leaf shape. They point out that few landmarks are readily
identifiable on most leaves, except perhaps those that have regular lobes, and
demonstrate that Fourier analysis can discriminate successfully between various

leaf groups. They do note however that none of the methods they considered
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was greatly superior to any other.

One advantage of EFDs is that a shape can be reconstructed from its descrip-
tor, as shown in Figure 2.4. Whilst this may be of little use from a classification
standpoint, it can provide useful botanical information - a method for helping
to explain shape variation is to reconstruct the shape for some “average” de-
scriptor, and then to create reconstructions from this descriptor as it is modified
along the first few principal components.

Hearn [54] used a combination of Fourier analysis and Procrustes analy-
sis [46] (a simple shape registration method, based on rotation, translation and
scaling) to perform species identification using a large database of 2420 leaves
from 151 different species, achieving a 72% classification accuracy. Other recent
examples of the use of EFDs to analyze leaf shape include Andrade et al. 4],
Furuta et al. [41], Neto et al. [99] and Lexer et al. {79].

A closely related method is “eigenshape analysis”. Here, the sequence of
angular deviations that define a contour {the angles between adjacent points
positioned evenly around the contour) is measured, typically being normalized
by choosing a common starting point defined by a landmark. Singular value
decomposition is then used to identify the principal components [87], which
can be used as inputs to a subsequent classifier or for comparison. Ray has
extended this work and applied it to leaf shape analysis [113]. This work con-
sisted of dividing the outline into several segments using recognizable landmarks
(see Section 2.2.1.3), and then analyzing each segment using singular value de-
composition. One difficulty with this approach is the problem of identifying
homologous landmarks in leaves (ie. points which can be guaranteed to exist
on all the leaves being examined). While this can be difficult within a single
species, it is often impossible between species, as is discussed further in Section

2.2.1.3.
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Figure 2.4: An example of elliptic Fourier analysis. As more harmonics are used
to reconstruct the original outline, more detail is preserved.

2.2.1.2 Contour Signatures

A number of methods make use of contour signatures. A contour signature
for a shape is a sequence of values calculated at points taken around a leaf’s
outline, beginning at some start point, and tracing the outline in either a clock-
wise or anti-clockwise direction. One of the most straightforward of these is
the centroid-contour distance (CCD). This signature consists of the sequence
of distances between the centre of the shape, and the outline points. Other
such signatures include the centroid-angle, and the sequence of tangents to the
outline. As with EFDs, the aim of creating contour signatures is to represent
the shape as a vector, independent of orientation and location. Normalisation
can also be applied to enforce independence of scale.

Meade et al. [91] attempted to increase accuracy when applying the CCD to
leaves by correlating the frequency of points for measurement with the extent of
curvature, whilst Wang et al. (140, 139] applied a thinning-based method to the
shape to identify consistent start points for the CCD, avoiding the need to align

the signatures before they can be compared. Ye et al. [146] used time-series
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shapelets. These are local features found in a contour signature that can be
matched, rather than needing to compare entire signatures, and allows existing
time-series analysis methods to be applied.

One major difficulty for boundary-based methods, to which contour signa-
tures are particularly sensitive, is the problem of “self-intersection”. This is
where part of the leaf overlaps another part of the same leaf (see Figure 2.5),
and can result in errors when tracing the outline unless particular care is taken.
Self-intersection occurs quite often with lobed leaves, and may, moreover, not
even occur consistently within a particular species. One attempt to overcome
this problem was made by Mokhtarian et al. [95]. They assumed that darker
areas of the leaf represented regions where overlap occurred, and used this to try
to extract the true outline. They then used the curvature scale space method
(CSS) [94] to compare outlines. The main limitation of this method is that it
may only work with thin and/or backlit leaves, where sufficient light can pass

through the leaf to create the darker areas of overlap,

Figure 2.5: An example of a leaf exhibiting self-intersection — several of the
lobes overlap neighbouring lobes
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2.2.1.3 Landmarks and Landmark-Related Linear Measurements

Another common morphometric method is the use of landmarks and linear
measurements. A landmark is a biologically definable point on an organism
(such as the insection-point, Figure 2.2), that can be sensibly compared between
related organisms. In some cases, these are homologous points, but may instead
be local maxima or minima (for example the points furthest from the central
axis), as discussed by Bookstein [13]. Linear and angular measurements between
them can then be used to characterize the organism’s shape. Landmark methods
have been successfully applied to various animal species, and have the advantage
of being easy for a human to understand. “Traditional morphometrics” analyzes
measurements such as the overall length and width of an object, in contrast
to “geometric morphometrics”, which uses either outlines (such as methods
discussed in Section 2.2.1.1) or specific landmarks and the distances between
them [2].

Haigh et al. [51] used leaflet lengths and widths along with measurements
of flowers and petioles to differentiate two closely related species of Dioscorea.
Jensen et al. [65] studied three species of Acer using the angles and distances
between the manually located lobe apices and sinus bases. Warp deformation
grids were also used to study variation. Young [148] used leaf landmarks to
compare plants of a single species grown in different conditions. The plants
were also imaged at different ages to discover when the method would have the
best discriminatory ability. A related method is the inner-distance measure,
a metric based on the lengths of the shortest routes between outline points
without passing outside of the shape, which was used by Ling et al. 82].

A number of disadvantages exist, however, when applying landmark methods
to leaves or other plant organs. The first of these is the difficulty of automatic

extraction. For example the leaf’s apex (tip) may be hard to distinguish from
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the tip of a lobe, whilst the appearance of the insertion point (where the petiole,
or leaf stalk, meets the leaf blade) may vary greatly depending on the base angle
and how the petiole has been cut. Furthermore, even the length of a leaf may
be hard to measure if the leaf is asymmetrical and the main vein does not align
with the shape’s primary axis. For these reasons, studies involving landmarks
and linear measurements have often involved manual data extraction by experts,
severely limiting the scale of any system based on them.

The other major problem here is the inconsistency in available landmarks
between different species or other taxa. Indeed, the only landmarks present in
almost all leaves are the apex and the insertion point, and in the case of peltate
leaves (where the stalk is connected near the middle of the blade), the latter
does not even appear in the outline shape. As a result, most of the studies using
landmarks concentrate on specific taxa where the required features are known
to be present.

One of the most significant developments in comparative biology in the last
30 years has been the development of phylogenetic reconstruction methods using
morphological data, and latterly nucleic acid or protein sequence data. These
methods differ from those dealt with elsewhere in this section in that they
use only shared derived characters to infer (phylogenetic) relationship rather
than using total overall resemblance for identification or species delimitation.
The concept of homology has particular importance in cladistics (the grouping
of organisms based on the shared characteristics of their common ancestors)
and is perhaps more tightly defined [106]. There has been theoretical debate
over the use of continuous and hence morphometric morphological character
data in cladistics. Several approaches have been suggested, such as that of
Thiele [134]. Zelditch et al. [150] even attempted to use geometric morphometric

methods, such as partial warps, to acquire novel phylogenetic character data in

21



fish, although such techniques have not been widely used in systematics as a

whole or been taken up by plant systematists.

2.2.1.4 Shape Features

Similar to linear measurements are shape features, which are also typically lim-
ited to analysing the outline of a shape. These are various quantitative shape
descriptors that are typically intuitive, easy to calculate, and applicable to a
wide variety of different shapes. Commonly used features include the shape’s
aspect ratio, measures of rectangularity and circularity, and the perimeter to
area ratio, amongst others. Some studies have also used more leaf-specific fea-
tures, for example Pauwels et al. [107] uses a measure of “lobedness”. A more
general set of features are “invariant moments”, which are statistical descriptors
of a shape that are invariant to translation, rotation and scale [58], [132].

When analyzing leaves, Lee and Chen [77] argue that “region-based fea-
tures”, such as compactness and the aspect ratio, are more useful than outline
contour features because of the difficulty in identifying meaningful landmark
points, or in registering different contours against each other. They found that
a simple nearest-neighbour classifier using region-based features produced bet-
ter results than a contour-based method, at least on the 60 species they used as
a test case.

Once such a set of features has been extracted from the images, a variety of
classifiers can be used in their analysis. A “move median centres” hypersphere
classifier was developed by Du and colleagues [33], [138] that uses a series of
hyperspheres to identify species in a space defined by a set of shape features
and invariant moments. Another study using shape features was carried out by
Wau et al. [145], who used an artificial neural network to identify 32 species of
Chinese plants from images of single leaves with 90% accuracy, and compared

the results against a number of other classifiers.
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While shape features have achieved some positive results, they are of limited
use for understanding variation. Although the effects of some features may
be obvious, such as changes to the height-to-width ratio, variation in other
features may be hard to understand because of the difficulty or impossibility of
reconstructing shapes from features. For example, the perimeter to area ratio
provides a measure of the “complexity” of a shape, but there are many ways in
which a leaf might be altered to produce the same change in this value, without
affecting the values of many other common shape features.

A more general risk with shape features is that any attempt to describe the
shape of a leaf using only (say) 5-10 features may oversimplify matters to the
extent that meaningful analysis becomes impossible, even if it is sufficient to
assign a small set of test images to the correct categories. Furthermore, many
such single-value descriptors are highly correlated with each other [90], making
the task of choosing sufficient independent variables to distinguish categories of

interest especially difficult.

2.2.1.5 Polygon Fitting and Fractal Dimensions

The fractal dimension of an object is a real number used to represent the di-
mensional space to which the object belongs. This can provide a useful measure
of the “complexity” of a shape, which may then be used as an input feature for
a classifier, for example. There are many ways to calculate an object’s fractal
dimension, with the Minkowski-Bouligand method [1] being a popular choice
due to its precision and the existence of a multi-scale version. A few attempts
have been made to use fractal dimensions to identify leaves. McLellan [90] used
the fractal dimension as a single value descriptor alongside other descriptors.
Plotze [108] used the positions of feature points in the curves produced by the
multi-scale Minkowski-Bouligand fractal dimension, whilst Backes [6] also used

the multi-scale Minkowski-Bouligand method, but compared Fourier descriptors
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calculated for the curves. Bruno et al. [14] compare box-counting and multi-
scale Minkowski estimates of fractal dimension, and used linear discriminant
analysis to identify a number of plant species. McLellan and Endler [90] showed
that fractal dimension tends to be highly correlated with the perimeter to area
ratio (or “dissection index”), suggesting it is of limited additional benefit.

As with shape features, whilst some good results have been achieved, with
Plotze [108] claiming a 100% identification rate on a database of 10 species of
Passiflora, their usefulness in explaining variation is somewhat limited. Given
the wide variety of leaf shapes present (e.g. Figure 2.3), characterizing shape
by any single measure of complexity may discard too much useful information,
suggesting that fractal dimension measures may only be useful in combination
with other features.

Du et al. [32] created polygonal representations of leaves, and used these to
perform comparisons, while Im et al. [63] represented leaf outlines as a series of
super—iniposed triangles, which could then be normalized and registered against
each other for comparison. The method was shown to correctly identify 14
Japanese plant species, but relies on a number of heuristic assumptions, which

may limit the method’s applicability to more general tasks.

2.2.2 Venation Extraction and Analysis

After their shape, the next most studied aspect of leaves is the vein structure,
also referred to as the venation. Veins provide leaves with structure and a
transport mechanism for water, minerals, sugars and other substances. The
pattern of veins in a leaf can be used to help identify the plant’s taxon. Although
the fine detail may vary, the overall pattern of veins is conserved within many
species. Veins are often clearly visible with a high contrast compared to the rest

of the leaf blade (see Figures 2.6 and 2.7).
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Figure 2.6: Leaf vein structure

A wide variety of methods have been applied to the extraction (and less often,
representation) of the vein networks, although arguably with limited success
thus far. Clarke et al. [25] compared a couple of simple methods (a scale-space
analysis algorithm and a smoothing and edge detection algorithm) to results
achieved manually using Adobe Photoshop. They report the quality of the
results as judged by some expert botanists, and although the manual results
were preferred, the results showed some hope for automatic methods, for at
least some species.

Li and Chi [81] successfully extracted the venation from leaf sub-images
using Independent Component Analysis (ICA) [26], though when used on whole
leaves, the results were no better than using the Prewitt edge detection operator.
Artificial ant swarms were used by Mullen [96] to trace venation and outlines in
leaves via an edge detection method. Some of the best vein extraction results
were achieved by Fu and Chi [39] using a combined thresholding and neural
network approach. Their experiments were, however, performed using leaves

which had been photographed using a fluorescent light bank to enhance the



venation, and such images are not generally available. KirchgeBner [70] used
a vein tracing method with extracted veins represented using b-splines, whilst
Plotze [108] used a Fourier high-pass filter followed by a morphological Laplacian
operator to extract venation.

Whilst there have been several attempts at extracting venation, there have
been fewer attempts to analyze or compare it, with most of these using synthetic
or manually extracted vein images. Park et al. [104] used the pattern of end
points and branch points to classify each vein structure as one of the main
venation types (see Figure 2.7), and Nam et al. [98] performed classification on
graph representations of veins. Further evaluation is required before the general

value of venation analysis can be determined.

-

Figure 2.7: Example of vein structures.

2.2.3 Leaf Margin Analysis

The leaf margin, the outer edge of the lamina, often contains a pattern of “teeth”
— small serrated portions of leaf, distinct from the typically larger and smoother
lobes (see Figure 2.8 for examples). Despite being a useful aspect for botanists
to use when describing leaves, the margin has seen very little use in automated
leaf analysis. Indeed, it has been claimed that “no computer algorithm can
reliably detect leaf teeth” [118] as yet. This may be due to the fact that teeth

are not present in all species of plant; that they are damaged or missing before
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or after specimen collection; or due to the difficulty in acquiring quantitative
measurements automatically. Nonetheless, teeth are an important feature of
many plant species, with botanists using qualitative descriptors of the tooth
curvature [36]. Teeth size and number can also be useful indicators of climate
and of growth patterns [117], and are even used to make predictions about
prehistoric climates using fossilized leaves [36].

Studies using the leaf margin normally combine it with other features and
measurements. Clark [23] [24] and Rumpunen [120] both use manually taken
measurements of the tooth length and width, used alongside various linear shape
measurements. McLellan [90] used the sum of the angles between lines connect-
ing adjacent contour points along with other single value leaf features, and
Wang [139] compared histograms of the angles at points spread around the
contour.

For taxa that possess teeth, if sufficient, undamaged leaves are available, then
teeth area, size and numbers may be useful parameters to measure. Clearly, for
taxa that do not possess teeth, other methods must be used - as noted in

Section 2.1, different analytical tasks may require different features.

U

Figure 2.8: Example of leaf margins.
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2.2.4 Leaf Texture Analysis

Besides analysing outlines, a number of both traditional and novel texture anal-
ysis techniques have been applied to leaves. Backes et al. have applied multi-
scale fractal dimensions [6] and deterministic tourist walks [8] to plant species
identification by leaf texture, although their experiments involved very limited
datasets which makes them hard to evaluate. Casanova et al. [18] used an array
of Gabor filters on a larger dataset, calculating the energy for the response of
each filter applied, and achieved reasonable results, whilst Liu et al. have pre-
sented a method based on wavelet transforms and support vector machines [85].
Other techniques used include Fourier descriptors and grey-scale co-occurrence
matrices.

Whilst the above studies were all performed on texture windows acquired us-
ing traditional imaging techniques (i.e. cameras and scanners), Ramos [110] used
images acquired using a scanning electron microscope (SEM), and Backes [7]
used magnified cross-sections of the leaf surface epidermis (the outer-most layer
of cells). While these provide interesting results, such images and devices are
not commonly available on a large scale.

Where texture is preserved in a specimen, such analysis may prove useful,

especially when combined with outline-based shape analysis.

2.2.5 Other Lamina-Based Methods

There have been a few other studies which have used the leaf lamina (surface),
or features present on it, in ways different from those already discussed. Gu et
al. [49] processed the laminae using a series of wavelet transforms and Gaus-
sian interpolation to produce a leaf “skeleton™ (a thin structure representihg
the interior of the leaf), which is used to calculate a number of run-length fea-

tures: measure of short runs; measure of long runs; distribution of grey-scales;
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distribution of lengths and the percentage of runs.

Qualitative descriptors of the hairs sometimes found on the lamina were
used by Clark [24]. These were manually identified and described, and pose
a problem for automated systems due to their three-dimensional nature which
makes positive identification from a two-dimensional image difficult, even at very
high resolutions. Surface glands are another potentially useful lamina feature
that have been largely ignored thus far in computational methods.

One intriguing option is to apply 3D imaging and modelling methods to
leaf shapes (or to flowers; see beiow). Ma et al. [86] describe one such method
which uses volumetric information from a 3D scanner to reconstruct leaves and
branches of plants, though it is not clear how this would would work on a
large scale system. Teng et al. [133] combine several 2D photos of the same
scene to extract 3D structure, and use the 2D and 3D information together to
segment the image, using normalized cuts, finding the leaf boundary. They then
use centroid contour distance (CCD, as discussed in Section 2.2.1.2) to classify
leaves into broad classes, such as palmate or cordate (see Figure 2.3). Similar
work is described by Song et al..[130], where stereo image pairs were analyzed
using stereo matching and a self-organizing map. The resulting surface models
contained sufficient detail to allow measurements of leaf and flower height, as

well as shape.

2.2.6 Flowers and Other Plant Organs

Although the focus of this thesis, leaves are not the only plant organs on which
image processing and morphometric techniques have been applied. Traditional
“keys” often make use of descriptions of flowers and/or of fruits, but these are
often only available for a few days or weeks of the year.

A number of methods have been proposed to identify plants from digital im-
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ages of their flowers. Although colour is a more common distinguishing feature
here, many methods used to analyze leaf shape can also be used (see earlier
sections). Nilsback et al. [100] combined a generic shape model of petals and
flowers with a colour-based segmentation algorithm. The end result was a good
segmentation of the image, with species identification left to future work.

Das et al. [28] demonstrated the use of colour alone to identify a range of
flowers in a database related to patents covering novel flower hybrids. Their
method allows the database to be searched by colour name or by example im-
age, although no shape information is extracted or used. A colour-histogram
segmentation method was used by Hong et al. [57] and then used with the cen-
troid contour distance (CCD; see Section 2.2.1.2) and angle code histograms to
form a classifier. They demonstrated that this method works better than using
colour information alone to identify a set of 14 species. This again suggests that
outline shape is an important character to consider, especially in combination
with other features.

Elliptical Fourier descriptors (Section 2.2.1.1) were used by Yoshioka et
al. [147] to study the shape of the petals of Primula sieboldii, whilst Wilkin [144]
used linear measurements of floral organs, seeds and fruits as well as leaves and
PCA methods to investigate whether a closely related group of species in Africa
were morphologically distinct or not. They discovered that they in fact formed
a single morphological entity and hence all belonged to one species. Gage and
Wilkin [42] used EFA on the outlines of tepals (elements of the outer part of
a flower, such as petals and sepals) of three closely related species of Sternber-
gia to investigate whether they really formed distinct morphological entities.
Clark [24] used linear measurements of bracts, specialized leaf-like organs, in a
study of Tilia, and Huang et al. [61] analyzed bark texture using Gabor filters

and radial basis probabilistic neural networks.
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At a smaller scale, the growth of individual grains of barley has been mod-
elled by 3D reconstruction from multiple 2D microscopic images [50]. This
allowed both “virtual dissecting” of the grains as an educational tool, and also
visualization of gene expressions via mRNA localization. At a smaller scale
still, Oakely and Falcon-Lang used a scanning electron microscope to analyze
the vessels found in fossilized wood tissue [101]. They used principal component
analysis to identify two distinct “morphotypes”, which correspond to one known
and one novel species of plant growing in Europe around 95 million years ago.

Moving underground, a number of studies have used image processing tech-
niques to analyze root structures in the “rhizosphere” (the region that roots
grow in, including the soil, soil microbes, and the roots themselves). For exam-
ple, Huang et al. [60] used digital images of roots captured by placing a small
camera inside a transparent tube placed beneath growing plants. They then
used expert knowledge of root shapes and structures (such as roots being elon-
gated and having symmetric edges), to combine multiple sources of information
and to fit polynomial curves to the roots, and use a graph theoretic model to
describe them. More recently, Zeng et al. [151] used image intensity to distin-
guish root pixels from soil pixels. They then used a point process to combine
and connect segments to efficiently identify complete root systems.

These studies show that while the clear majority of botanical morphomet-
rics research has focussed on leaves, due to their ready availability and use for
discriminating between taxa, other plant organs, when available, should not be

ignored.

2.3 Applications

In this section, discussion moves beyond specific algorithms in isolation and

methods designed for the laboratory, to considering a number of complete sys-
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tems and prototypes, designed for practical use in the field. In order to have an
impact in the real world, it is important to demonstrate that an algorithm can
be applied in practice, and can scale up from a few idealised examples to larger
and more complex problems. Systems designed to identify species from plant
images; several agricultural applications; and scientific research tools regarding
species variation and distribution, and how this relates to the climate are all

reviewed.

2.3.1 General-Purpose Species Identification

Plant identification is currently particularly important because of concerns about
climate change and the resultant changes in geographic distribution and abun-
dance of species. Development of new crops often depends on the incorporation
of genes from wild relatives of existing crops, so it is important to keep track
of the distribution of all plant taxa. Automated identification of plant species,
for example using leaf images, is a worthwhile goal because of the current com-
bination of rapidly dwindling biodiversity, and the dearth of suitably qualified
taxonomists, particularly in the parts of the world which currently have the
greatest numbers of species, and those with the largest number of “endemics”
(species restricted to that geographic area).

The species to which an organism belongs is often regarded as its most
significant taxonomic rank. Accurately identifying an organism to species level
allows access to the existing knowledge available linked to that specific name,
such as what other species the taxon in question may breed or hybridise with,
what its uses are, and so on. A robust automated species identification system
would also allow people with only limited botanical training and expertise to
carry out valuable field work.

A number of systems have been developed that aim to recognize plant species
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from the shapes of their leaves, based on algorithms such as those in Sec-
tion 2.2.1. One such plant identification system is described by Du et al. [32].
They argue that any global shape-based method is likely to perform poorly on
images of damaged or overlapping leaves because parts of the leaf perimeter are
missing or obscured. Instead, they suggest that local shape-based methods are
more robust for this type of task. Their system matches leaves from images by
fitting polygons to the contour and using a modified Fourier descriptor with dy-
namic programming to perform the matching. It aims to be robust with regard
to damaged or overlapping leaves, as well as blurred or noisy images. They claim
a 92% accuracy for their method on one sample of over 2000 “clean” images,
representing 25 different species, compared with 75%-92% for other methods,
and that their method is more robust than others for images of incomplete or
blurred leaves.

The increasing power and availability of cheap hand-held computers, includ-
ing personal digital assistants (PDAs) and smart phones, has led to a number of
prototype applications. The goal of allowing users, both professional botanists
and interested amateurs, to go out into the field and identify plant species using
an automated system is a highly desirable goal, although the task is challeng-
ing, not least because of the very large number of plant species that may be
encountered.

One major and ongoing project aims to produce an “electronic field guide”
to plants in the USA [3]. The user can photograph a single leaf, and the system
will display images of twenty plant species that have the closest match in terms
of shape according to their Inner-Distance Shape Context algorithm, which
extends the shape context work of Belongie et al. [10]. A related prototype
from the same project includes an “augmented reality” feature (9], and provides

a visual display of a herbarium specimen for side-by-side comparison to the
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plant in question [143].

The CLOVER system [97] allows users to provide a sketch or a photograph
of a leaf using a hand-held computer, which then accesses a remote server.
The server retrieves possible matches based on leaf shape, using several shape
matching methods including an enhanced version of the minimum perimeter
polygons algorithm, and returns the matches to the device to display to the
user. The prototype described is demonstrated to work effectively at recognizing
plants from leaves, using over 1000 images from a Korean flora, and with the
inevitable trade-off between recall and precision.

A similar system uses fuzzy logic and the centroid-contour distance to iden-
tify plant species from Taiwan [21]. However, this requires the user to select
various characteristics of the plant from a series of menu options, rather than
using morphometric analysis directly.

Each of these general-purpose prototypes has been demonstrated to work
successfully on at least a small number of species, and under more or less strin-
gent conditions. Currently, there is no such system that is available for everyday

use, although interest remains high [83, 75].

2.3.2 Agriculture

Rather than trying to identify a plant as belonging to one particular species, it is
sometimes sufficient to perform a binary classification of a plant (for example, as
healthy or not healthy), without needing to be concerned about the exact taxon
to which it belongs. One goal of automated or “precision” agriculture [16] is to
allow targeted administration of weed killer, fertilizer or water as appropriate
from an autonomous robotic tractor, not least to minimize the negative impact
on the environment of large scale agriculture. To do this, the system must

obviously identify plants as belonging to one category or the other, such as
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“weed” vs. “crop”.

As is often the case with machine vision systems, variable lighting conditions
can make image processing very hard. One proposed solution is to control the
lighting by building a light-proof “tent” that can be carried on wheels behind a
tractor, and which contains lamps inside it along with a camera. One such sys-
tem successfully distinguishes between crop plants (cabbages and carrots) and
weed plants (anything else) growing in field conditions [56]. Whether carrying
round such a bulky tent is feasible or not on a larger scale, it is certainly not
ideal.

A similar system uses rails to guide a vehicle carrying the camera along
carefully laid out plots [44]. Rather than carrying its own lights, the system is
only used under standardized illumination conditions (e.g. bright but overcast).
This system extracts shape features such as leaf circularity and area and uses
a maximum likelihood estimator to identify leaves that are weeds (specifically
dock leaves, Rumez obtusifolius) in grassland, with around 85%-90% accuracy.
A different system to identify dock leaves is described by Seatovié¢ [125], which
uses a scanning laser mounted on a wheeled vehicle to generate 3D point clouds.
These are then segmented to separate out leaves from their background, and a
few simple rules, based on leaf size, are used to distinguish the dock leaves from
other leaves in the meadow.

A related attempt to distinguish weeds, crops and soil in field conditions
uses morphological image processing [129]. This attempts to identify the centre
of each leaf by using colour threshold segmentation and locating the leaf veins.
The system locates the veins using a combination of morphological opening and
hierarchical clustering. The final classification makes use of a priori knowledge
about features of the target plant species. A similar system combines mor-

phological processing with an artificial neural network classifier has also been
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suggested [103]. A combination of colour segmentation and morphological pro-
gramming has also been used towards the development of a robotic cucumber
harvester [109]. A variety of methods to distinguish various crops from weeds
and soil are discussed by Burgos-Artizzu et al. [16], including colour segmenta-
tion and morphological processing. The paper also provides a useful overview
of research into “precision agriculture”, which aims to use modern technology
to optimize crop production, allowing for local variation in soil, landscape, nu-

trients and so on.

2.3.3 Intraspecific Variation, Geographical Distribution,

and Climate

It has long been known that the climate in which a plant grows affects the shape
of its leaves [118]. Recent work has extended this by using digital image analysis
to enhance the botanical and climatic measurements. Huff et al. [62] collected
leaves from temperate and tropical woodlands, They analyzed the leaves and
measured the shape factor, and found a correlation with the mean annual tem-
perature. The work was then extended to a wider variety of environments (17
in total) in North America [118]. Here, a variety of simple digital image analysis
methods were used to semi-automatically measure features such as leaf blade
area, tooth area, number of teeth, and major and minor axis lengths. These
features were then compared to climatic measurements from the different field
locations. Finally, correlations between leaf shape and climate were measured.
They confirmed previous findings that plants growing in colder environments
tend to have more teeth and larger tooth areas than similar plants growing
in warmer environments. One of the goals of this body of work is to support
analysis of leaf fossils, with the aim of estimating paleoclimatic conditions. By

establishing how leaves from living plants have shapes that correlate with their
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environments, it is hoped that fossil leaf shapes can indicate how the Earth’s
climate has changed in the past, at both a global and a local scale.

An early study by Dickinson et al. [31] used manual digitization (via a tablet)
to identify landmarks on cross-sections of leaves, and principal component anal-
ysis to analyze the data. They identified both geographic variation between
collection sites and also identified intermediate forms of specimens, suggesting
various hybridizations had occurred. As mentioned earlier, work by Wilkin and
Gage [42] [144] used morphometric analysis to identify species boundaries. In
botany, identifying taxon boundaries is often as important as identifying to

which taxa a particular specimen belongs.

2.4 Summary

In this chapter, a wide range of morphometric methods used in a wide range
of botanical applications have been discussed. It should be clear that no sin-
gle method provides a panacea for all problems, but rather that appropriate
methods must be chosen for each task at hand. Plants are extremely diverse in
shape, size and colour. A method that works very well on one group may rely
on features that are absent in another taxon. For example, landmarks may be
readily definable and identifiable for some taxa, such as those with distinctive
lobes, but not for others.

Given the large scale nature of botanical morphometrics and image pro-
cessing, automation is essential. Any system that requires significant manual
effort, for example in tracing leaf outlines or locating landmarks, is unlikely to
be practical when scaled up to thousands of specimens. Despite this, in some
cases the user may be remain involved in the process with no great cost: if an
electronic field-guide provides say ten predictions of species, rather than one,

the user may be able to readily choose the most likely answer [3]. Related to this
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is the issue of processing speed. The user of a hand-held field-guide may require
responses interactively and so (near) instantaneously, whereas if tool is to be
used on a large set of images in a botanical laboratory, it may be acceptable to
wait overnight for a comprehensive result — assuming no human interaction is

needed.
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Chapter 3

A Leaf Dataset

For analysing leaf classification techniqhes, a suitable leaf-image dataset is re-
quired. Within the literature, a wide range of different size and quality leaf-
image datasets are used. Few of these are publically available, and those that
are are tend to either represent a small number of species, have few samples
per species or are of inconsistent image quality, Due to this, a new dataset was
compiled for this project, making use of the resources available at the Royal
Botanic Gardens, Kew. This chapter discusses the construction of that dataset,

including examples of all species included.

3.1 Selection and collection of the leaves

With specimen from over 30,000 species of plant it is important to make an
appropriate selection of which to include in the dataset. As discussed in Chap-
ter 2, there are many different aspects to a leaf, each of which can take on many
forms (for example, types of leaf shape include oval, lobed and palmate), and
it is desirable to have as many of these as possible represented, to ensure that

methods developed work well on all types of leaves. On the other hand, there
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is & need to be able to distinguish between species with similar features. An-
other consideration is the inclusion of species with high intra-species variation,
as these present a particular challenge. With these factors in mind, 100 different
species were selected from a wide range of genera, including 38 species of Quer-
cus and 11 species of Acer to test the ability of methods to identify between
closely related species.

Leaves were all collected from species-labelled plants at the Kew Royal
Botanic Gardens, and images were captured within an hour of collection, to
minimise degradation due to having been removed from the plant. Where pos-
sible, healthy, undamaged, adult leaves were selected. Leaves were collected
from multiple specimens of the same species where available, so that any inter-
specimen variation that may occur is represented. A total of 16 leaves were

collected for each species, to provide adequate training and testing data.

3.2 Capturing the leaf images

Images were captured in an indoor, artificially lit environment using a 10 megapixel
digital SLR camera. Natural light was excluded as far as possible and a light-
diffusion screen was set up to improve lighting consistency. Leaves were placed
onto herbarium sheets (stiff white paper used for mounting herbarium speci-
mens) to provide a uniform, low-reflection background. For leaves that were
curved in & manner which meant they did not lie flat, double-sided adhesive
tape was used to hold them in place. The camera was held by a tripod approxi-
mately 40cm directly above the leaves, and a wired remote was used to operate
it, to minimise any camera movement. Images were captured of both sides of

each leaf, as these may contain different details.
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3.3 Use of the dataset in this thesis

Where possible the full dataset of 1600 leaves (100 species, 16 leaves per species)
has been used for testing methods in this thesis. Due to the time required in
collecting and preparing the dataset, a subset of 32 species is used in some parts
(primarily Section 5.1.1), as the full set was not available at the time of tes?ing.
Likewise, some early work (Sections 4.2.2 and 4.5) was performed on a different

dataset of 8 leaves each from 32 species of Quercus.
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Acer Acer Acer Acer
campestre capillipes circinatum mono
Acer Acer Acer Acer
opalus palmatum pictum platanoids
Acer Acer Acer Alnus
rubrum rufinerve saccharinum cordata
Alnus Alnus Alnus Alnus
maximowiczii rubra sieboldiana viridis
Arundinaria Betula Betula Callicarpa
simonii austrosinensis pendula bodinieri

Figure 3.1: Dataset part one.
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Castanea Celtis Cercis Cornus
sativa koraiensis siliquastrum chinensis
Cornus Cornus Cotinus Crataegus
controversa macrophylla coggygria monogyna
Cytisus Eucalyptus Eucalyptus Eucalyptus
battandieri glaucescens neglecta urnigera
Fagus Ginkgo Ilex Tlex
sylvatica biloba aquifolium cornuta
Liquidambar Liriodendron Lithocarpus  Lithocarpus
styraciflua tulipifera cleistocarpus edulis

Figure 3.2: Dataset part two.
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Magnolia Magnolia Morus Olea
heptapeta salicifolia nigra europaeca
Philadelphus Populus Populus Populus
coronarius adenopoda grandidentata nigra
Prunus Prunus Pterocarya Quercus
avium shmittii stenoptera afares
Quercus Quercus Quercus Quercus
agrifolia alnifolia brantii canariensis
Quercus Quercus Quercus Quercus
castaneifolia cerris chrysolepis coccifera

Figure 3.3: Dataset part three.
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Quercus Quercus Quercus Quercus
coccinea crassifolia crassipes dolicholepis
Quercus Quercus Quercus Quercus
ellipsoidalis greggii hartwissiana ilex
Quercus Quercus Quercus Quercus
imbricaria infectoria kewensis nigra
Quercus Quercus Quercus Quercus
palustris phellos phillyracoides pontica
Quercus Quercus Quercus Quercus
pubescens pyrenaica rhysophylla rubra

Figure 3.4: Dataset part four.
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Quercus Quercus Quercus Quercus
semecarpifolia shumardii suber texana
Quercus Quercus Quercus Quercus
trojana variabilis vulcanica hispanica
Quercus Rhododendron Salix Salix
turneri russellianum fragilis intergra
Sorbus Tilia Tilia Tilia
aria oliveri platyphyllos tomentosa
Ulmus Viburnum Viburnum Zelkova
bergmanniana tinus rhytidophylloides serrata

Figure 3.5: Dataset part five.
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Chapter 4

Feature Extraction

Chapter contributions:
o Comparative study of leaf-shape analysis techniques.

o Methods for the extraction and description of the leaf macro-
and micro-texture, margin characters, and the venation
patterns.

As discussed in Chapter 2, plant leaves contain many different components
that are used in their analysis, such as the shape, margin and venation. It is
important to accurately extract these components from the leaves, and generate
appropriate descriptors for them.

The majority of previous work in this field has concentrated on the use of
only the leaf shape, using a wide array of traditional and leaf-specific shape
analysis techniques. This chapter will begin with a comparative study of the
most popular shape-based methods, before continuing on to the primary focus

of new methods based on the other major leaf components, namely the texture,

the margins and the venation.
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4.1 Leaf Shape

As previously discussed in Section 2.2.1, by far the most commonly used leaf
feature for automated analysis is the leaf shape. There are likely a number
of reasons for this. It is perhaps the most obvious aspect to use - the wide
variety of shapes can be easily observed, and might suggest a high discriminative
power. The shape is also particularly easy to extract and can be done simple
thresholding if the leaf is set against a plain background. Moreover, there is a
large array of existing morphometric and shape analysis techniques that can be
applied to the problem. In this section, the most commonly used techniques

will be applied to the same dataset, in order to evaluate the advantages of each.

4.1.1 Study of Existing Techniques for Leaf Shape Anal-
ysis

Of the commonly used techniques some are apparently unsuitable for general leaf
classification. Linear measurements, such as angles and spans measure across
certain parts of the leaf [51), may appeal to botanists due to their similarity to
traditional botanical descriptors, albeit less qualitative. However, some previous
catagorization of the leaves, for example as lobed, un-lobed or palmate (lobes
radiating from the base of the leaf), may be required in order to select an
appropriate set of measurements, and some manual intervention may be required
to locate the correct measuring points. Use of landmarks tends to be restricted
to studies involving small sets of similar species, due to the lack of landmarks
that can said to be common across all types of leaves. For example, Jenson et
al [65] used the relative positions of the lobe tips and bases for comparing two
5-lobed species of Acer.

In this study, three common and widely applicable methods will be used:

shape features, centroid-contour signatures, and elliptic Fourier descriptors.
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Whilst several other techniques, including fractal dimensions and polygon fit-
ting, have been applied to the problem, their use has been limited, and they do

not appear to hold any advantages over the above techniques.

4.1.1.1 Shape Features

Shape features are sets of non-leaf-specific geometrical and morphological char-
acteristics that have been selected as appropriate for adequately describing a
leaf. One appeal of these is that they are somewhat intuitive, in that it is ap-
parent how a value, such as the aspect-ratio, relates to the leaf’s shape. Despite
this, these features contain insufficient information to allow for the reconstruc-
tion of the shape, and it is quite possible that two visibly different leaves could
produce the same set of features. A further problem is that there will likely be
a high level of correlation between some features, although this may be resolved
through the use of feature selection techniques. Whilst there exists no definitive
set of shape features, certain features suitable for the task of leaf classification
have been used in multiple instances. The set used here is based on those.
Firstly, the minimum bounding rectangle (MBR) and convex hull (CH) of
the leaf are calculated. The leaf is orientated through calculation of the MBR.
The following values can then be defined: height, h, and width, w, of the MBR,;
the areas of the leaf, MBR and CH as A, Ay gr and Acy; the perimeters of the
leaf, MBR and CH as P, Pypggr and Pcy; and the minimum and maximum
distances from the centroid to the contour, CCD,,in and CCD,ny,. The 8

features used are then as follows:

1. Aspect ratio

m
I
gl
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2. Rectagularity

A
F= AMLBR
3. Ellipticality
_ 44,
37 hwr
4. Solidity
A
Fy= ﬁ
5. Perimeter Convexity
P
Fs= Pcl;!
6. Sphericity
= GoDe
7. Form factor
Fr= 4’;2L
8. Gravity
a-ft-}

4.1.1.2 Centroid-Contour Signatures

Contour signatures are sequences of values calculated at points spaced around
the perimeter of a shape. The most commonly used of these is the centroid-
contour distance - the sequence of distances from the centroid of the shape to
each boundary point, although several others also exist. Points on the contour
can either be evenly spaced in terms of the distance around the perimeter or the
angle around the centroid, although problems arise with this latter method when

a line extended from the centroid crosses the contour multiple times. Some, such
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as Meade et al. [91] have used uneven spacing, such as increased sampling at

sections of higher curvature.
Here, two different signatures are used, the centroid-contour distance (CCD)

and the angle at centroid angle signature (CAS).

CCD(I) = \/(.’L’,' - -’l‘c)2 + (yi - yc)2

_zc

w0l

Ti ~ zc) - tan(—z0
- 0

CAS(%) = |tan(

1 c

Where z;,y; are the z and y co-ordinates respectively for the i** contour
point, and z., y. are the z and y co-ordinates of the leaf’s centroid.

The CCD is normalised such that all the values in the sequence sum to unity.
When comparing two pairs of signatures, orientation invariance is achieved via
cross-correlation, whereby the distance between them is measured for every
offset of one against the other, and the minimum of these distances is used.
This is equivalent to rotating one leaf in relation to another until the difference

between the two is minimised.

4.1.1.3 Elliptic Fourier Descriptors

The Elliptic Fourier descriptor of a shape is comprised of the set of coefficients for
the first k harmonics of the elliptic Fourier expansion of the contour coordinates.

These are given, for the n** harmonic, as

_ P Az, 2nmp; 2nmp;—y
an = 22 Z K-p: (COS P Ccos P

_ P Az; (. 2nmp; . 2nmpioa
by, = o2 Z A_p, (sm P sin P
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Ay; 2mrp, 2nmpi-1
= 2n21rZZAp,( TP )

Ay (. 2n7rpz . 2nTP;-1
dn 2n21rﬂzAp,( sihTp

where z;,y; are the coordinates for the it point, p; is the distance around
the contour to the i** point, P is the total perimeter distance, and Azx;,Ay;,Ap;

are the respective distances between points ¢ and ¢ — 1.

A.’L’,’ =i —Ti-1
Ay =y — yi1

Ap; = pi — pi-1

Elliptic Fourier descriptors are popular with botanists due to the ability to
reconstruct the shape from the descriptor. By using PCA to find the main
sources of variation within a dataset, this variation can then be visualised by
creating descriptors for leaves that have been increased or decreased along each

of the principal components [4, 41, 79, 147].

4.1.2 Results and Evaluation

The methods are evaluated on a dataset containing 16 leaves from each of 100
different species. A 16-fold cross-validation is performed, such that one leaf
from each spepies is used each time in the testing set, whilst the remaining
leaves are used as the training set. Classification is performed using the k-
nearest-neighbour technique, with k = 15. Table 4.1 shows the average rates
of correct classification and standard deviations for each of the methods. The

standard deviation given here is the deviation in classification rates between
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different species.

Method Result (%) [SD (%)
Shape Features 60.8 26.3
Contour Signatures 59.6 334
Elliptic Fourier 57.8 30.7

Table 4.1: Results for the three shape analysis methods.

As can be seen, all three methods performed similarly, with the shape fea-
tures producing slightly better results, at 60.8%. The shape features also had
a lower standard deviation than the other two methods, at 26.3%, although for
all three this is quite high. Looking at which species each method performed
better than the others on helps to explain this high variance.

Whilst the signatures and the EFD performed similarly on most species,
there were several species on which they both performed significantly better
than the shape features, and others on which the shape features performed much
better. Examples of these species can be seen in Figures 4.1 and 4.2 respectively.
Species for which the shape features performed best typically had more complex
structures, often with high levels of intra-species variation. Many of these have
lobed leaves with varying numbers of lobes from leaf to leaf, whereas species
for which the number and position of lobes on each leaf remained constant
tended to achieve comparable results for all methods. On the other hand, the
contour signatures and elliptic Fourier descriptors got better results on leaves
with simpler oval shapes, where the intra-species variance is less, but so too is
the inter-species variance. The reason for this appears to be that it captures
the general properties of the shape, and is so more resilient to these slight
variations, whereas the other methods more precisely capture the more subtle
details required for distinguishing between species with similar-shaped leaves.

Although the results for all three methods were relatively low on a dataset

of this size (100 species), when formulated as a retrieval problem, where the
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00006000

Figure 4.1: Examples of species for which Elliptic Fourier and Contour Signa-
tures are more likely to achieve correct classification than the Shape Features.

top n species are returned, shape-based methods can be seen as an effective
means of eliminating the majority of species, aiding the accuracy and reducing
the computational time required by other methods performed on top of this. In
figure 4.3, the y-axis indicates the fraction of cases for which the correct species
appears within the number of returned results in the x-axis. For example, for
EFD approximately 90% of leaves tested had the correct species appear within
the first 5 species retrieved. For shape features, the correct species appears in
the first 8 species retrieved in over 99% of cases, whilst for all methods the
correct species always appears within the first 14 out of the 100 species. This

will be explored further in Chapter 5.

4.2 Leaf Texture .

Much of the texture present on a leaf is due to the venation, with other sources
of texture including hairs and glands. The veins on leaves typically have a

hierarchical structure, and this venation can be separated into two main groups:

A AMARA A

Figure 4.2: Examples of species for which Shape Features are more likely to
achieve correct classification than Elliptic Fourier and Contour Signatures.
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Figure 4.3: Species retrieval results, showing rate at which the correct species is
within the top n returned, for shape features (SF), centroid-contour signatures
(CCS) and elliptic Fourier descriptors (EFD).

the low-order vein framework, consisting of the larger primary and secondary
veins, and the higher-order vein fabric which occupies the spaces in between
(see Figure 2.6). Because of this, it is beneficial to consider the texture on
both a macro scale and a micro scale. For the former, descriptors are generated
that describe the entire surface of a leaf, whilst for the latter, the texture from
between the larger veins is extracted.

Another aspect of the texture worth considering is that on many leaves,
the lower (abaxial) side and upper (adaxial) side are very different. Typically,
the venation is more prominent on the abaxial side, with hairs and glands also
being common features here, whilst the adaxial side is more likely to have a

waxy texture (usually to prevent excessive water loss).
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4.2.1 Macro-texture

Here, the desire is to generate a descriptor for the entire surface of the leaf, in
a manner that will take account of the variations that may occur, due to, for
example, lighting conditions, or damage caused by insects or disease.

For each leaf image, a large number (up to 1024) of small, fixed-size windows
are randomly selected from the surface of the leaf. For each window 20 features
are calculated based on the responses from different filters applied to all the
pixels in the window,

The filters used are a rotationally invariant version of the Gabor filter:

r 27r

g(z,y) = exp 257 €08 5~
where r = /22 + y? is the distance from the centre of the filter, o is the standard
deviation, and ) is the wavelength, set to be A = 30. Five different scale filters
are used, produced by varying 0. The wavelength is fixed in relation to o so
that the filters are scaled versions of each other. Each filter is convolved with

the window and four features are then calculated for that filter for the window:

1. Average positive value

> fij
W]
(5,7)EW
8;20

2. Average negative value

3. Energy
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4. Entropy
5 Ul s
W2 W1 B W]
J)EW
Where W is the current window, f;; is the response for the current filter at pixel
(i,7), and {|W] is the size of the window.
Further details and analysis of the data generated here is performed in Sec-
tion 5.1.1, including discussion of parameters used, and techniques for classifying

leaves based on this data.

4.2.2 Micro-texture

When working at a high enough resolution to be able to extract useful informa-
tion from the vein fabric, it is not practical, due to computational requirements,
to cover the entire leaf surface. Instead, a selection of sample windows should
be chosen. If texture samples (windows) are extracted randomly from a leaf, the
level and quality of the vein framework present in a sample may vary greatly,
depending on the precise position of the sample on the leaf. For this reason,
a simple method is suggested for extracting samples which as far as possible
contain only the vein fabric, as the contents of these samples should be more
consistent (Figure 4.4).

The first stage is to reduce the scale of the image by convolving it with a
Gaussian kernel and then sub-sampling. This has the effect of smoothing out
much of the detail in the vein fabric, whilst retaining the main venation. Next,
the image background, the paper on which the leaf is mounted, is removed. This
can be done using Otsu’s thresholding method [102]. An edge detection operator
is then applied to the foreground of the image to provide a rough measure of
the areas with strong edges in this scale space. A large number of potential
windows (10 times the number we intend to use) are sampled at random from

the foreground (containing only the leaf) and are sorted according to the sum of
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Figure 4.4: Random sampling (left) compared with desired sampling (right),
shown on an x-ray image for increased contrast.

the squared edge magnitude for all the pixels within the window. The desired
number of non-overlapping sample windows (in this case, 8 were used) with the
lowest sum can then be selected for use. A number of examples of windows

selected by this method are given in Figure 4.5.

Figure 4.5: Extracted texture samples from 12 species of Quercus (Oak).

4.2.2.1 Gabor Filters

The texture analysis method presented here is based around the joint distribu-
tions of responses to Gabor filters. A Gabor filter [30] is essentially a sinusoid
modulated by a Gaussian function. It can be expressed as follows:

2 2,72 e
. 2tz ,
20’?;” )cos( + ). (4.1)

G(z,y) = exp(*



where:
e 1’ = rcosf+ ysinb
e Yy =ycosh — xsinf

e { is the orientation of the filter.

7 is the filter aspect ratio.
e o is the standard deviation of the Gaussian.

A is the wavelength of the sinusoid.

L ]

e ¢ is phase offset.

Gabor filters have been applied to a large range of computer vision problems in-
cluding image segmentation [124] and face detection [59]. Of particular interest

are the links found between Gabor filters and the human visual system [29].

NZas

Figure 4.6: Examples of the Gabor filters used here.

4.2.2.2 Texture Analysis From Gabor Co-Occurrences

A bank of 128 Gabor filters is created, where for filter Gy, 0 = 1.5+ 1.2,
A= and § = %, with m € [0,7] and n € [0, 15] referring to the filter scale
and angle respectively. For all filters, v = 1 and ¢» = 0. The full set of filters
is applied to each texture, but for each scale only the value corresponding to

the highest absolute response for all the orientations is recorded for each pixel.

This ensures that the method is rotation invariant.
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The results of the filtering for an image are combined into a series of co-
occurrence matrices [52], whereby for each pair of scales, the resulting matrix
describes the probability of a pixel producing one response value for the first

scale, and another for the second.

Culi, j) = Plge(z,y) = t,qi(x.y) = j) (4.2)
where g, (z,y) = l_lllilﬁl_{(;'m,,[.r. y) * I(x,y)) is the maximum response from

convolving the filters for scale m with the image I at point (r,y), and (i,))
is a pair of response values. Examples of these matrices for values k& = 0 and
[ = 1to7 are given in Table 4.2. The x-axis and y-axis for each matrix cover
the range of response values for each of the two filters, with the greyscale value
representing the frequency at which the two filters gave the corresponding pair
of responses.

CU'.!

Cog - Cos Cos

Ilex

Rhysophylla

Shumardii

Table 4.2: Examples of Gabor co-occurrence matrices for 3 species of Quercus

4.2.2.3 Classifying Micro-Textures

To classify textures, the corresponding co-occurrence matrices for different tex-
] I £

tures are compared directly. This is done by treating the co-occurrence matrices
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as probability distribution functions (pdfs), by simply dividing each value by
the sum of all values, and using the Jeffery-divergence distance measure - the
symmetric version of the Kullback-Leiber divergence [15]. For two pdfs, f, and

fb, the distance between them, JD(f,, f3), is calculated as follows:

— s g 2fa(z!.7) .. 2fb(7'9.7)
TPUerf)= 2. Z,.:f“(” Yoagan +hap TG 7D
(4.3)
The distance between two images A and B is then:
D(4,B)=3_ > JD(C{.Ch) (4.49)

k Li#k

Where C{} and CJ are respectively the co-occurrence matrices at scale k,! for
images A and B.

The final classification is performed using the the k-nearest neighbour method,
with k = 3. The most frequent class of the 3 closest texture samples to the one
being classified is chosen. In the case that all 3 classes are different, the class of
the single closest texture sample is used instead. This strategy was chosen as it

reduces the risk of classification errors due to outliers.

4.2.2.4 Experiments

Datasets. The method was evaluated using two texture datasets. The
first dataset was constructed using the method described previously. For each
of 8 leaves from 32 different species, 8 64 x 64 windows were selected. This
window size was chosen as it was found to be small enough to allow the windows
from leaves with dense vein frameworks to fit between the main veins. Eight
windows were then used to provide an adequate overall sample size, whilst more

would require more computation and may not be possible for particularly small
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leaves without significant overlap between windows. Each of the 8 samples for
a leaf was filtered, using the set of Gabor filters, before they were combined
into a single set of co-occurrence matrices. The second dataset used 8 windows
sampled at random from the same leaves, to illustrate the value of the texture

extraction method for selecting suitable windows.

Comparison Methods. For comparison, the above datasets were also

used with a number of traditional texture analysis methods:

e Fourier Coefficients:
The Fourier Transform of each window was calculated. From this, a vector
of 64 features was found, whereby the i** feature f; = 3¢ _, |F(i,6)l,
where F(r,8) is the Fourier Transform in polar form, and w is the half the

image width [66].

e Gabor Filters:
The same set of Gabor filters used in Section 4.2.2.2 is applied to each
image. The energy in each resulting image is then calculated as e,¢ =
Y2 2y(Gmn(x,y) * I(z,y))%. The set of energies for each scale are then

averaged resulting in 8 rotationally invariant features.

e Co-occurrence Matrices:
The traditional co-occurrence matrices were produced, using angles of
0 rad,§ rad,§ rad and 37"5 rad and distances of 1,2 and 3. For each

distance, a set of 14 textural features is calculated, as described by Har-

alick [52].

4.2.2.5 Results

The results for the experiments are given in Table 4.3, with values representing

the percentage of leaves correctly classified. All the algorithms performed better
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on the dataset created using the method in Section 4.2.2 than on the dataset
of randomly selected windows, showing the value of this method of leaf texture
extraction. For all datasets the new method performed best, with the basic
Gabor method performing worse. The improvement between the two datasets
was greatest for the Fourier method, suggesting that it is better at capturing
finer detail presented in the vein fabric, however its performance was still not

able to match the proposed method.

Vein Random
Fabric |[Windows
Gabor Co-occurences |85.16 79.69
Gabor 50.78 45.70
Fourier 82.42 62.89
Co-occurrence Matrices|69.14 61.72

Table 4.3: Results for the two datasets (%)

4.3 Margin Characteristics

Study of the leaf margin - the pattern around the edge of the leaf including
details such as the teeth (see Figure 2.8 for examples) — provides valuable infor-
mation about climate and other conditions in which a plant species has evolved.
It is therefore important to be able to accurately extract the margin from the
leaf, independently of the shape, and allow for meaningful comparison between

different leaves’ margins.

4.3.1 Extracting The Margin

The first step is to extract the leaf’s margin. Having extracted a mask of the
leaf, a modal filter is applied to the mask to acquire a smoothed version of the
leaf’s shape (see Figure 4.7). This filter sets each pixel of the smoothed leaf to

be part of the leaf if the majority of the original pixels within the filter’s radius
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were part of the leaf, and to be part of the background otherwise. This has the
effect of removing the tips of the teeth and filling in any small gaps. By varying
the filter's radius, different levels of smoothing can be achieved, with sutficiently
large radii remove all detail from the margin. Here, a radius of 15 pixels was
used. From this, m evenly spaced points around the contour are calculated (in
this case, m = 8192 was used), encompassing the entire outline. For each of
these points, a corresponding point on the original outline is calenlated. This
is done by first estimating the line that is normal to the edge of the leaf at this
point as being perpendicular to the line which runs between the two points at
distance k either side of the current point. The sub-pixel point at which this
line intersects the original leaf’s outline is then found by linear interpolation.
The distance between this point and the current point is then caleulated (sece
Figure 4.8), and these distances for all the points in the smoothed outline are
combined in order to produce a margin signature, s = (81, ..., 8, ). Examples ol

extracted margin signatures are given in Figure 4.9.

(a) The original mask (b) After modal liltering (¢) Ditlerence

Figure 4.7: Using modal filters to extract the teeth.

The extracted margin is partitioned into n overlapping windows, x = (ry,
vy ), of equal size and spacing (in this case n = ' and the window size used
is 155). This is done for a number of reasons. Firstly, the exact number of tecth

will vary between leaves of the same species, which may cause problems when
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corresponding
margin point

~ .S}\-(-"‘/.

current point distance between original

and smoothed margin

line indicating gradient

Figure 4.8: Calculating a point on the margin signature,

attempting to align their margins. By using windows, each window will provide
a description for the area of the margin within it, and so be more robust to this
ariation. Furthermore, this allows for an adequate description of the margin
whilst using a much smaller number of datapoints, and so reducing computation
time to as little as one-eighth. By overlapping the windows, sensitivity to their
exact position in s is reduced.

For each point within a window, r;, 3 values are calculated:

1. Magnitude - This is the signed distance between the smoothed margin
point and its corresponding point in the original margin, where the sign
is determined by whether the original margin point lines inside or outside

of the smoothed margin.

2. Gradient - The signed difference between the current point in the margin

signature and the next point.

3. Curvature - The angle at the current point between the previous point

and the next point in the signature.



{c) Quercus cerris

Figure 4.9: Examples of segments from extracted margin signatures. The y-axis
represents the distance from the smoothed margin and the original margin,

For each of these, 2 features are then calculated for the window, giving a

total of 6 features per window:

e Average positive value:
2

e ||

a,=>0

(] A\'('.I'ilg(‘ ll(‘gilti\'(‘ value:

/B
X,
8,Ex, I ’r
5, <0

Where r; is the current window, s; is the value at a point within the signature,

and [r;] is the size of the window.
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4.4 Locating The Apex And Insertion Point

The only two landmarks which consistently exist are the ‘insertion point’ - where
the petiole, or stem, attaches to the leaf - and the apex - the tip of the leaf (see
Figure 2.2). It would therefore be useful to be able to locate these two points.
To do this, the extracted margins can be utilised.

To locate these two points, potential candidate points are first identified by
selecting the local maxima from the margin signature which have an absolute
magnitude greater than 25% of the global maximum. This value of 25% was
used as it was found to small enough so that, for all leaves in the dataset, the
true apex and insertion points were selected amongst the candidates. Based on
the principle that both sides of a leaf - from insertion point to apex - will be
approximately a reflection of each other, dynamic time warping can be used to
identify the two points on the margin for which the difference between the two

sides is minimised, and so are most likely to be the insertion point and apex.

4.4.1 Dynamic Time Warping

Dynamic time warping (hereon DTW) [122] is a technique for measuring the
similarity between two different sequences. During the comparison, it allows
parts of the signals to be stretched or compressed to a certain extent, thereby
accounting for the sequences being of different lengths (for instance, due to
differences in speed) or containing natural distortions. A typical application
for DTW is speech recognition, where people may speak at different speeds, or
elongate different sounds. It has also seen use for a number of computer vision
problems, including face detection [136] and action recognition [126].

Given two sequences X = (Z1, ...y i), ¥ = (Y1, oy Yn) 81 m X 1 cost matrix C
is calculated, whereby value ¢;; is the distance between points z; and y;. Under

the assumption that point z; corresponds to point y; (i.e. the same starting
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points), and z;, to y., & monotonic path through C is found, beginning at
coo and ending at ¢y, such that the sum of the values at the nodes visited is
minimized. This path then represents the optimal alignment of points in x to
those in y. This can be calculated relatively efficiently (quadratic complexity)

by recursively accumulating the costs in a matrix D. The value d;; is calculated

as follows:
,
Cij if@i=1Aj=1)
00 fE=1Ai>1)V({i=1Ai>1)
dij = ¢ dio1; (4.5)
cijtminf g, , otherwise
| di-1,5-1

Once all the values in D have been calculated, the measure of the similarity
between the two sequences is given by dpmn.

There are a number of extensions to the standard DTW ealgorithm that have
been proposed in the literature {122, 123]. Calculating d,; by using Equation
( 4.5) results in a path which travels monotonically between adjacent cells,
either horizontally, vertically or diagonally. Since a continued horizontal or
vertical movement represents the compression of a subsequence to unit length,
or the stretching of a single point to a much longer length, this could result in
unrealistic distortions. To counter this we add the condition that every step
that is made horizontally or vertically must also be accompanied by a diagonal
step (see Figure 4.10). This restricts the maximum distortion of a subsequence
to a level that is realistic for this type of data, whilst ensuring that distortions

carry an additional cost due to resulting in longer paths.

68



(i-1,j) (i,3) (1,))

——e- @ ] (e
® L)
(i1, 1) (i,j1) (2§ (iL3D)
e [ ] L] [} ® ®
(i-1, j-2)
(a) The standard formulation (b) Step functions used here

Figure 4.10: Legal steps for path when calculating DTW,

If two sequences are similar, the optimal DTW path will be close to the
diagonal of the cost matrix, where i = j. If the optimal path diverges from this
by more than a certain amount, it is unlikely that the two sequences are from
the same class. This allows a constraint to be added to improve the speed of the
algorithm. By only calculating d;; for |i — j| < k, the complexity can be reduced
from O(n?) to O(kn) where k < n, without risking finding a sub-optimal path,
when the two sequences are from the same class [123]. With these improvements

included, the equation for calculating d;; becomes:

00 ifli-jl>k
Cij ifi=1Aj=1)
00 fGE=1A>1)V(E=1Ai>1)
dij = {
di—2j-1+Ci-1,
cij + min dicy j-2 + Cij-1, otherwise
di-1,-1

(4.6)
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4.4.2 Finding The Points Of Margin Symmetry

For a given candidate point, the corresponding window, z; is identified from
the circular sequence of windows x = (zy, ..., z,) for the leaf. Two sequences,
a = (aj, ...,a;‘;ﬂ,), b = (b,.., b§+w) are generated, where a; = b = z,
a; = Tiyj, by = Tk and n is the total number of windows. Since the insertion
point and apex may not lie directly opposite each other, the sequences a and
b are continued for a distance of w beyond the mid-point 44, such that the
ends of the sequences are overlapping. A value of w = § was used.

The accumulated cost matrix D is generated as described in Section 4.4.1.
Because the last w points in the two sequences are the reverse of each other,
similarity is calculated as the minimum dj; where j+k& = n. Using this method,
the insertion point and apex were correctly identified in 97.75% of test cases,
with one or the other being correctly found in 99.25% of the 1600 leaves in the
dataset.

These apices and insertion points are used in Section 5.1.2 for performing

classification of leaf based on the above leaf margin descriptors.

4.5 Venation Patterns

In this section a couple of techniques are presented for the extraction of leaf
venation. The first method uses a genetic algorithm to evolve classifiers for
detecting veins on a pixel-by-pixel basis, whilst the second utilizes an ant colony

algorithm to try to extract continuous vein segments.
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4.5.1 Extraction By Evolved Vein Classifiers

4.5.1.1 Classifying The Vein Pixels

A genetic algorithm is used to evolve a set of classifiers for detecting vein pixels.
Each classifier consists of a pair of bounds for each of the features used. If the
values of all the features for a pixel fall within all the bounds for a classifier,
then it is classified as vein. The vein pixels found by all the classifiers in the set
are combined, and all other pixels are classified as non-vein. These classifiers
are similar to those used by Liu & Tang [84]. More specifically, the set of vein

pixels, V, is determined as follows:

V={(z,)0<z<w,0<y<h,

3c € C|Vfi € Fpy,ci0 < fi < car}
where
o w,h are the image height and width respectively

o C is the set of all classifiers

e ¢;o is the lower bound for the it? feature for the classifier ¢

¢;1 is the upper bound for the ¢** feature for the classifier ¢

F3y is the set of feature values for the pixel at (z,y)

fi is the value for the it* feature

4.5.1.2 Feature Extraction

A set of 9 features are extracted for each pixel for use in classification. The

features used are as follows:
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1. Pixel greyscale value f; = I(z,y).
2. Edge gradient magnitude (from Sobel), fa2.

3. Average of greyscale values in a 7x7 neighbourhood,

=g X 16G.d).

z-3<i<z+3
y-3%i<y+3

4. Greyscale value minus neighbourhood average,

1 ..

fi=lwy) -5 3 16.0)
z-3<i<z+43
y-333y+3

5. Greyscale value minus leaf lamina average,

1
fo=I(z,y) - e I1(i, §).
llaminal . <oian
0<j<height
(¢,7)€lamina

Where lamina is the set of all pixels which are part of the leaf’s lam-
ina, found by using Otsu’s thresholding [102] to remove the leaf from the

background.

The average local gradient direction of pixels in a 11x11 neighbourhood
around the current pixel is calculated. This size neighbourhood was chosen be-
cause for most vein pixels this will include both sides of the vein. The greyscale
values of the points § pixels from the current one in both directions along the
gradient and perpendicular to the gradient are calculated. If the current pixel
is part of a vein, the pixels perpendicular to the gradient direction are likely to

also be vein pixels, and so similar to the current pixel, whilst the pixels along
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the gradient direction are likely to be non-vein, and therefore quite different.
iy = I(z + 5sin(a),y + 5cos(a))

iy = I{x - 5sin(a), y — 5cos(e))
, , T T
J1=I(z + 5sin(a + 5), y + 5cos(a + 5))
. . T T
Ja = I(x - 5sin(a + 5), y — Scos(a + —2-))

Where « is the gradient direction.
The remaining features are then:
6. The absolute difference between pixels, i) and ia, either side of potential

vein fg = |¢; — éa]

7. The absolute difference between pixelsj; and j,, along potential vein
fr=1i-jl

8. Greyscale value minus average value of the two pixels either side of the
potential vein
iy + 12
fo = 1(z,y) = —5—
9. Greyscale value minus average value of the two pixels along the potential
vein
J1+J2
fo=1Iz,y) - 152
To allow the same genetic operators to be used on features with very varied
distributions, the feature values for the training data are mapped to a uniform

distribution. This mapping is recorded and applied to any data being subse-

quently classified.
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4.5.1.3 Evolving The Classifiers

Classifiers are evolved one after another using a genetic algorithm, and added to
the classifier set until no more classifiers with a fitness above a certain threshold
can be generated within a maximum number of iterations. The only genetic
operators used are mutations, as crossover operations are likely to combine
classifiers that work on different types of vein pixels, thereby having a negative
effect. For example, a classifier that finds thin sections of vein may require higher
edge gradient values and lower greyscale values than a classifier finding the pixels
in the middle of thicker veins. Crossing over these two classifiers would result
in ones which classified neither of these vein pixel types. Bounds are mutated
with probability 0.3 by adding or subtracting an amount randomly drawn from
the range [0,0.01]. The population is re-initialised after each classifier is added
to the set. Each individual is initialised by centring the bounds around the
feature values for a vein pixel randomly selected from the training data, with
the width of the bounds drawn from a Gaussian distribution. This increases
the likelihood of the classifier being effective, as one vein pixel will always be
correctly classified by it, along with any similar vein pixels.

The fitness function used is as follows:

ITi\Ujec Tl
[Fi\Ujec Fil + %’

Sfitness; =

where:

e T; is the set of vein pixels correctly classified by classifier { (true positives).

e F, is the set of non-vein pixels incorrectly classified by classifier i (false

positives).

e C is the current set of classifiers selected in previous iterations and k is a

constant.
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This function grants high fitnesses to individuals which, if added to the classifier
set, would significantly increase the number of true positives, but not the number
of false positives. The fitness of a classifier is therefore dependent on the order in
which they are selected. The constant k is used to adjust the balance between a
high true positive/false positive ratio, and a high total number of true positives.
If k is set too low the ratio will be very high, but the final classifier set may
over-fit the training data. If k is set too high it will result in a high number of

false positives. A value of k = 5 was found to be appropriate.

4.5.1.4 Redundancy

Classifiers can potentially be made redundant by other classifiers added to set
later. In other words, a classifier may no longer uniquely classify many vein
pixels whilst still incorrectly classifying some non-vein pixels. It is beneficial to
remove such classifiers as this may greatly reduce the number of false positives
whilst only slightly reducing the number of true positives.

Redundant classifiers are identified by removing candidates from the set
and measuring any improvement in overall classification quality. The classifier
whose removal produces the largest increase in quality is permanently removed
from the set. This process is repeated until no more classifiers are found to be

redundant.

4.5.1.5 Results

The classifier was trained using 8000 pixels manually selected from 14 leaf im-
ages, 2 from each of 7 species. These pixels were then manually labelled as either
vein or non-vein. The resultingv classifier was then tested on 7 new leaf images,
one from each of the species used for training. The ROC curve in Figure 4.11
shows the results (solid line). With a false positive rate of 0.0166, a true positive

rate of 0.853 was achieved.
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True Positive Rate

0.001 001 01 1
False Positive Rate

Figure 4.11: ROC Curve. Solid line - evolved classifiers. Dashed line - ant
algorithm.

The classifier was also used on the full leaf images from the test set, in order
to extract the full venation pattern. Examples of these results are shown in

Figure 4.12.

4.5.2 Extraction By Ant Colonies

The second approach to vein extraction is to use an ant colony algorithm. A
population of ant-like agents are placed at random across the image. These
“ants” then move across the image, moving from pixel to pixel based upon some
heuristic evaluation of that pixel, known as the pixel's visibility, and also based
on the level of “pheromone” at that pixel. The pheromones are an indicator
deposited by ants to signal to other ants the value of a particular pixel. As
time progresses, the pheromone levels build up to create a pheromone map for
the image, with high levels in desirable regions, and low levels in undesirable
regions. In this case, the edge magnitude is used as the measure of visibility,
to encourage the ants to traverse along the veins, thereby extracting continuous

sections of venation.
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(b) Quercus Rubra

(¢) Quercus Ellipsoidalis

Figure 4.12: Results for extraction by evolved classifers
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The probability, P;;, of an ant at pixel i moving to pixel j is calculated as

follows:

T?n@
———L—J_ﬂ ifj € K;
{49
- > e
Pij = kek.
0 otherwise

Where 7; and 7; are the pheromone level and visibility respectively at pixel
J, o and B are the weightings for these two components, and K is the set of
pixels neighbouring pixel i. To prevent the ants converging on the strong edges
outlining the leaf instead of the venation, the visibility for all background pixels
(again calculated using Otsu’s method) and all pixels within a short distance of
the background (in this case, a distance of 10 pixels) is set to 0. After all the

ants have performed one move, the pheromone levels are updated:
Tigr = (1= p)7i + Sasm;

Where p is the rate at which pheromones evaporate, 4 is the update rate, and
a; is the number of ants at pixel i, There is a risk that ants will simply move
between the same small set of pixels, building up pheromone levels until it is
highly unlikely for them to escape. This is prevented by keeping a list of the
last 10 pixels visited by each ant, and forbidding the ant from re-visiting any
of these pixels. After a set number of moves have taken place, the pheromone

map is thresholded to produce a binary vein classification.

4.5.3 Results And Comparison Of Methods

Figure 4.13 contains examples of typical results obtained using this method. For
each leaf the algorithm was run for 500 steps, using 2000 ants. The pheromone
map was then thresholded at 2% of the maximum pheromone level. These values

were chosen as they appeared to give the best qualitative results. The results
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differ from those obtained using the evolved classifiers in a number of ways.
Firstly, due to the use of only the edge gradients to guide the ants across the
image, the results contained only the hollow outline of the venation, whereas
the other method extracts the full vein. One advantage of using ants is that
it helps in extracting continuous venation, whilst the evolved classifiers extract
veins with many small gaps in them. On the downside, when a vein contains
a section with only a low edge magnitude, the ants are unable to continue to
extract the rest of that vein as the pixel-by-pixel evolved classifiers are able to
do. The effects of this can be seen near the top of the first image in Figure 4,13,
where a large section of venation is completely absent. Furthermore, whereas
much of the false positive results from the first method are isolated pixels that
can be easily removed, the ants produce larger, connected areas of noise, that

may be harder to distinguish from the actual venation.

L

Figure 4.13: Results using the ant colony algorithm.

By applying morphological closing, the hollow vein centres can be filled in
(Figure 4.14). From these, quantitative results can be calculated, as shown in
Figure 4.11 (dashed line). It can be see that the ant algorithm still performs
worse than the evolved classifiers, except when the true positive rate falls below

approximately 0.63.



Figure 4.14: Results after morphological closing

4.6 Summary

This chapter has provided techniques for the extraction of many of the key
components of the plant leaves (primarily the venation, margins and texture),
providing appropriate descriptors which can be used in the automated compar-
ison and classification of species. Further to this, a comparative study has been
-arried out of the most popular techniques used for the analysis of leaf shape,
demonstrating that for the purposes of classification, both elliptic Fourier de-
scriptors and shape-features perform well, dependent on the characteristics of

the leaf.
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Chapter 5

Machine Learning for

Plant Leaf Analysis

Chapter contributions:

incorporate intra-species variance to improve results.

e Probabilistic classification combining multiple leaf
feature-sets.

to use, on a leaf-by-leaf basis.

o Methods for classification of the leaf lamina and margins that

e A technique for the automatic selection of which feature-sets

5.1 Incorporating Intra-Species Variation into

Plant Classification

One of the key challenges to automated analysis of plant leaves lies in the large

amount of possible variation, even within a single species, as was illustrated in

Figure 2.1. As well as the natural variation one can expect from any organic
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object, variation in leaves can come from a number of sources. Much variation
comes from the age and developmental stage of the leaf. In terms of shape,
growth in a young leaf often primarily occurs length-wise, becoming broader
later in development. In some lobed species, the lobes may not be apparent
until a certain point. Furthermore, some species, such as certain Eucalyptus,
may feature different types of leaves on young and mature shoots. As with
lobes, margin characteristics, such as teeth, may not develop until the leaf has
reached its full size, often appearing first near the apex, then gradually growing
further back towards the insertion point. Pigmentation may also alter as the
leaf develops.

Another source of variation is from damage that may occur to the leaf,
particularily as a result of disease or attack from insects. Disease most com-
monly affects the surface of the leaf, ranging discolouration to disctinct mark-
ings, whilst insect damage often alters the leaf shape, where parts of it have
been eaten, but there are many exceptions to both cases.

Much variation can also occur in the image capture process. Lighting con-
ditions can play a large role here. Many leaves feature waxy surfaces which
may reflect light differently depending on the relative position of the lighting
source, and the amount of light that’s allowed to pass through the leaf may af-
fect the visibility of features such as the finest venation. Indeed, some leaf data
sets have been created using a specific backlighting system. Camera focus and
resolution will also affect the level of texture information available. Moreover,
cameras are not the only devices that have been used to capture leaf images,
with other examples including flat-bed scanners, x-ray devices and even electron
microscopes.

This section explores methods for increasing the reliability of leaf classifica-

tion by taking account of the intra-species variation that may be present.
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5.1.1 Utilizing The Hungarian Algorithm For Improved

Classification Of Leaf Laminas

For the leaf macro-texture, data of the type generated in Section 4.2.1 - where
the leaf to be classified is described by a distribution of points within a feature
space - can be classified using a number of existing methods.

When described using histograms, the difference between two probability
density functions (pdfs) can be calculated using bin-by-bin methods, such as
the Jeffrey-divergence metric, however these methods encounter problems when
the data has a high dimensionality, where a large number of bins makes the cal-
culation expensive, whilst the sparse population of bins produces poor results.
The earth mover’s distance (EMD) [119] deals with this by using signatures,
and provides an accurate and intuitive measurement. These ‘signatures’ are
weighted points within the feature space. This is akin to clustering data points
drawn from the distribution, and weighting each cluster centroid by the number
of points in the cluster. Another method is to use kernel density estimation [105]
to estimate a probability density function using points sampled from a distri-
bution, and then to use this estimation to predict the probability of another
sampling of points belonging to the same distribution. More recently, ‘bag-of-
words’ methods have enjoyed increasing usage for this problem, particularly in
the guise of ‘bag-of-visual-words' [128] for image retrieval.

To overcome the probiems inherent to the leaf's macro-texture, presented
here are two different methods which utilize information generated in the cal-
culation of the earth mover’s distance in order to allow for more robust classifi-
cation of pdfs, particularly when there is high intra-class variation. The first of
these methods combines this with the strengths of the ‘bag-of-words’ method,
whilst the second uses this information more directly in order to try to model

the intra-class variation.
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5.1.1.1 Background

The Hungarian Algorithm and The Earth Mover’s Distance. The
earth mover’s distance (EMD) [119] is a measure of the difference between two
pdfs. The analogy is that, to reform one mound of earth as another, the effort
required would depend on the sum of the distances that each unit of dirt must be
moved. Whilst bin-by-bin methods only consider the amount of ‘earth’ in each
location, the EMD considers how far it must be moved. There are two forms of
pdf descriptions that allow the EMD to be calculated: histogram binning and
the aforementioned signatures. Since the binning is analogous to using evenly
spaced signatures, only the latter needs to be considered.

Whilst there may be many ways of reforming one pdf into another, the EMD
is calculated as being the one that requires the minimum total movement (the
sum of the distances that each unit of ‘earth’ is moved). See Figure 5.1 for an
example of how one set of data may be mapped to another in this manner. The
standard way of determining this is to model it as the transportation problem
~ the assignment of sources to destinations subject to a set of transportation
costs. There are a number of methods for solving the transportation problem,
but by reforming the data so that each signature has an equal weight, it becomes
equivalent to the simpler assignment problem, which can be solved using the
Hungarian algorithm [74]. Whilst the original Hungarian algorithm was O(n?),
an O(n?) version has since been found by [35].

The EMD only uses the minimum cost calculated by the Hungarian algo-
rithm, but in the usage here the corresponding mapping between signatures will
also be recorded, as it provides not only a measurement of the difference between
the pdfs, but also information about in what way they are different. The EMD
normally uses the Euclidean distance as the cost of moving ‘earth’ between two

points, but here the squared Euclidean distance is used, as this helps to preserve
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Figure 5.1: The mapping via the Hungarian algorithmm between two sets of
points.

the topology /ordering of the points (Figure 5.2), since the pairing of points over

increasing distances is penalised.

{a) Euclidean distance

A OA oA

A A, A®

(b) Squared Euclidean distance

Figure 5.2: Using the squared Euclidean distance as the cost function preserves
the topology.

The Bag-Of-Words Model. The ‘bag-of-words’ model was originally
used for the retrieval of text documents [131]. The idea was to represent doc-
uments as the frequency of occurrence of different words, and to find similar

documents by comparing these frequencies. In recent years this concept has



been extended to allow for the classification of more general forms of data.
Typically, a large number of points are sampled from the training distributions
and then a clustering is performed on these. The cluster centroids are used as
the ‘codewords’ in a ‘dictionary’ used to perform a quantization of the data,
by assigning each data-point to its nearest ‘codeword’. A set of points from a
distribution can then be described as the frequency of occurrence of each ‘code-
word’. This concept has seen much use recently in the field of computer vision,

for tasks such as image retrieval [128, 135, 20] and texture analysis (78, 137).

5.1.1.2 Notation

The problem is defined as follows. A leaf is described by a set of n data points,
X = {%,,%2,...%p}, windows sampled from the leaf’s surface. Each data point
T is a feature vector, ¥ = [z1,Z2,..., Z4], Where d is the number of features.
Given a number of different species, where species i is described by another
set of n data points, C; = {#,,%2,...Iin}, randomly sampled from all leaves in
the training set that belong to the species, the wish is to determine the species
to which the leaf described by X most likely belongs. This is calculated using

Bayes theorem:

= argcmax P(Ci|X) (5.1)
= arg max P(X|Ci)P(C))/ P(X) (5.2)
= argcma.x P(X|C)P(Cy) (5.3)

The term P(X) in Equation 5.2 is discarded as it is constant for all .
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5.1.1.3 Data-Point-Mapped Bag-Of-Words

The method involves first generating a set of codewords from the training set,
suitable for representing the data. All points in the training leaf and species
objects are assigned to their nearest codeword. A mapping is calculated between
the data points in each training leaf object and its corresponding species object.
For each species, the joint distribution is calculated for a training object point
assigned to one particular codeword being mapped to species object point that
is assigned to a second codeword. That is, for each pair of codewords and each
species, the probability is calculated of a mapping having its training object
point assigned to the first of these codewords and its species point assigned to
the second. For classification, the same codeword assignments and mappings
are performed, and the previously calculated probabilities are used to determine

the species which the leaf belongs to.

Generating A Dictionary. Within the literature there has been much
discussion on the appropriate methods for generating, and ideal size of, the
codeword dictionary (127, 67, 69]. The simplest approach is choose points evenly
distributed throughout the feature space. The main disadvantage of this is that
large portions of the space may not be used, resulting in redundant codewords,
whilst other, more useful areas may receive inadequate representation. Another
simple method is to use randomly selected points from the training data as
the codewords. This largely eradicates the above problems, although using the
centroids from a clustering performed on the training data normally provides a
better representation. Another approach is to perform a separate clustering for
each class and combining the generated codewords. This ensures that each class
has some appropriate codewords, but may result in very similar codewords in
the combined dictionary. It was found that a k-means clustering of the whole

training set produces an appropriate dictionary for this method.
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There is no consensus on the size of a dictionary, with suggestions varying
greatly, but for this method it was found that, with objects described using 1024
points, a dictionary of size 256 produced good results, with larger dictionaries

providing little or no improvement. D; is the i** codeword in the dictionary.

Producing The Class Models. For each species, a species object is pro-
duced by randomly selecting n points from the species’s examples in the training
set. For each training leaf, a mapping is found from its data points to those of
its species object using the Hungarian algorithm. This mapping pairs the points
in one object to those in the other, such that the sum of the squared Euclidean
distances between paired points is minimised (see Figure 5.1). The point in the
species object C; to which point Z is paired is defined as M (%, C;).

Each point in the training data is assigned to its nearest codeword. For each
species i, for each pair of codewords, (D,, D}), the conditional probability is
calculated of a point # in that species’s training data being assigned to codeword
D,, given that the corresponding point in the species object has been assigned

to D,. This is calculated as follows:

P(W(Z) = Da|W (M(2,Ci)) = Ds) (5.4)

_ P(W(z) = Do, W(M(2,C.)) = Ds) 655
P(W(M(Z,C;)) = Dy)

where

|~
—
(5]
=
~—

P(W(Z) = Do, W(M(Z,C;)) = D) = Z
W W(Tu )=D¢
(W(M(Tis,C))=Ds
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D
P(W(M(z,Cy)) = Dy) = gP(W(f) = D4, W(M(3,Ci)) = Ds)  (5.7)
d=0

where T;; is the j** point and |T;| is the total number of points in the training
data for species i, |D| is the number of codewords, and W (%) = D, indicates
that point Z has been assigned to codeword D, (likewise, W (A (Z,C;)) = Dy

indicates that the point which Z is paired with is assigned to codeword D).
Equation ( 5.6) calculates the probability of a point in D, being mapped to
a point in Dy as the fraction of training points for a species C; for which this
occurs. The probability of a point, from any codeword, being mapped to one in

D, is then the sum of these for all codewords (Equation ( 5.7)).

Performing The Classification. To classify a leaf, again all of the leaf's
data points are assigned to determine their nearest codewords. The object is
mapped using the Hungarian algorithm to each of the species objects. The
species to which the leaf most likely belongs can then be determined using a

Bayesian classifier,

¢ = arg max P(X|Ci)P(C:) (5.8)
N Tl .
P(Cy) = 1151 (5.9)

PXic)= [] PW(z)=DJW(M(zC:))=Ds) (5.10)
W(z)=X
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5.1.1.4 Intra-Class Variation Models

The second method attempts to improve reliability by modelling the variation
within each species. Each species object’s data points are separated into a
number of clusters. We model the movement (in the transformation from one
pdf to another) within each of these clusters under the mapping between the
species object and its training examples (Figure 5.3). This essentially aims to
describe how each portion of the distribution typically varies for that species.
These models are then used to determine to which species another leaf most

likely belongs.

Figure 5.3: Descriptors are generated to model the movement between the class
object and another object in terms of each cluster

Training The Classifier. For each species, a species object is created
as before. Next a small number, &, of cluster centroids are found, for each
species, using the clustering algorithm described in Figure 5.4. This method
of clustering creates clusters of equal size, and thereby helps to ensure the
centroids are appropriately spread thoughout the distribution, with centroid

density approximately proportional to the density of the data points. Any
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Figure 5.4 Clustering algorithm
Initjalise cluster centroids at randomly picked data points
repeat
for all clusters do
Sort points according to distance from centroid
end for
repeat
for all clusters do
Assign next nearest unassigned point to cluster
end for
until all points assigned to clusters
for all clusters do
Calculate centroid as mean of points in cluster
end for
until sufficiently converged, or max iterations reached

clustering algorithm with similar properties could also be used. All the points
in the species object are then assigned to the cluster of their nearest centroid.
The change between objects will be measured relative to these clusters. The j**
cluster for species ¢ is denoted as K;.

For each training leaf object X} for species i, a movement descriptor F{ is
generated, after the species object C; has been mapped to the training object
(as before, using the Hungarian algorithm). Each element in the descriptor is
the sum of the movements of points within a particular cluster, for a particular

dimension and in a particular direction.
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Fl={fll0<a<k;0<b<d} (5.11)

Foy=fle fis-] (5.12)
fary = '—kr >z -M(EC) (5.13)
IXi ' EEX:

zp=-M(Z,Ci>0
M(2,Ci)EKa

S Y m-MEC (5.14)
zeX;}

zp-M(2,Ci)p<0
M(:t,C.-)eKh,

where d is the number of dimensions, k is the number of clusters, and ¢t is the
training instance. Z € K, indicates that point Z is assigned to the a'® cluster
for species ¢, and ) refers to the value in Z corresponding to the b'* feature
(likewise for M(Z,C;)s).

Equations ( 5.13) and ( 5.14) calculate the elements of the descriptor for
cluster a, in the positive (z, — M(Z,C;)p > 0) and negative (x5 — M (Z,C;)p < 0)
directions, respectively, along dimension b. These are calculated as being the
sum of the distances between training points and their mapped species points,
where the mapped point is in the given cluster (M(Z,C;) € Kiq). These are
normalized by multiplying by the number of clusters, &, divided by the number

of points in the training object (|X}|).

Classification. To classify a leaf X, for each potential species, the map-
ping and generation of a movement descriptor, F;, is performed as per the train-
ing stage. We then use a Parzen window method [105] with a Gaussian kernel

to calculate the likelihoods for each species, and determine the classification.
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¢* = arg max P(X|C;)P(C;) (5.15)

P(X|C;) = P(F|Cy) (5.16)
a<d b<k -
= [1 I1 P(asicd) (5.17)
a=0 b=0
_ 1 & o
P(JalC:) = = 3 P(fabl fas) (5.18)
3 =0
P(fal F2) = (1125 = Fabll) (5.19)

where T; is the number of training examples for species ¢ and ¢(x) is a normal

distribution function with mean, s = 0 and standard deviation, o = 0.002.

5.1.1.5 Experiments

In this section the new algorithms are empirically evaluated by comparing it
to a selection of other techniques. For these experiment we have 32 different
species, with 16 examples of each, performing a 16-fold cross validation. Each
example’s object has 1024 data points, generated as described in Section 4.2.1.
For the first method (Section 5.1.1.3) we use dictionaries of up to 256 codewords,
and for the second method (Section 5.1.1.4) we use up to 64 clusters for each
species. Whilst results are show to improve up to these values, no significant

improvement was found in using higher values.
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Methods For Comparison. The three methods we use for comparison
are kernel density estimation, the earth mover’s distance, and a bag-of-words

method using a Naive-Bayes classifier.

e Kernel Density Estimation:
Kernel density estimation is used to predict the probability density func-
tion for each species. This estimate of the pdf is then used to calculate

the likelihood of the leaf belonging to that species.

P(x|cy) = [] P(zic)

e X
3 =z
Z€X §eCy IC"

where ¢(z) is a normal distribution function with mean, g = 0 and stan-
dard deviation, ¢ = 0.1. This kernel function was used as it appeared to

give the best results for the dataset.

o Earth Mover’s Distance:
For this we use the pure value calculated by the earth mover's distance
instead of utilizing the mapping between objects. Each leaf is classified
as belonging to the species whose object is closest to it according to the

EMD metric.

o Naive-Bayesian Bag-of-Words:
For the bag of words method, we use the same codeword dictionary as for
the new method, to allow fairer comparison. We use a Naive-Bayes clas-
sifier, as it is both one of the most common classifiers (along with SVMs)
used for bag-of-words [27), and is similar to that used in the proposed

method.
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Results. Tables 5.1a, 5.1b, and 5.1c give the results, respectively, for the
first proposed method (Section 5.1.1.3), bag-of-words method, and second pro-
posed method (Section 5.1.1.4), used different numbers of data points, and
different dictionary sizes/numbers of clusters. The exact same dictionaries were
used for both the first method and bag-of-words method. The overall results of

the experiments are given in Table 5.2.

n=256{n=512|n = 1024
|D| =16 | 67.97 | 73.05 75.39
|D| =32 | 75.39 | 80.66 81.64
[D| =64 | 84.77 | 85.35 88.09
|[D| = 128] 86.13 | 90.04 90.06
|D| = 256| 90.02 | 91.02 92.97

(a) Method 1, data-point-mapped bag-of-words,
varying object and dictionary size (in %)

n = 256]n = 512|n = 1024
[D[=16 | 57.03 | 63.28 | 63.28
|D|=32 | 6270 | 65.82 | 67.19
ID| =64 | 60.73 | 74.02 | 74.02
|D| =128] 7441 | 76.76 | 77.54
ID| =256 77.15 | 79.30 | 80.27

(b) Bag-of-words method, varying object and
dictionary size (in %)

n = 256[n = 512|n = 1024
k=8 | 69.73 | 80.08 | 86.33
k=16{ 83.79 | 90.63 92.97
k=32) 91.21 | 93.75 98.05
k=64 94.73 | 96.48 | 98.05
(c) Method 2, intra-class variation models,
varying object size and number of clusters

(in %)

Table 5.1: Results for each method.

As the results show, the new methods both performed far better than the
standard bag-of-words method. This is because when the difference between
pdfs means that points are assigned to different codewords, the standard method

considers only that these points are no longer assigned to the same codeword,
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Method n=256|n=>512(n = 1024
First Proposed Method 90.02 | 91.02 | 92.97
Second Proposed Method | 94.73 | 96.48 | 98.05
Kernel Denisty Estimation| 69.73 | 73.83 77.73
Earth Mover’s Distance 73.83 | 79.88 | 85.35
Bag-of-Words 7715 | 79.30 | 80.27

Table 5.2: Overall results, using best parameter values for each method (in %).

whereas the new methods both consider where in the feature space those points
may exist, given that particular class. The kernel density estimation and earth
mover’s distance methods both performed worse than the other methods. These
methods both directly compare samplings from distributions, and so are suscep-
tible to noise produced by the sampling. The bag-of-words methods eliminate
much of this noise, by quantisation via assignment to codewords, as does the
second new method, by using the behaviour of different parts of the distribution.

Of these two methods, the second method performs better for plant leaf
classification, at 98.05% of leaves correctly classified versus 92.97%. This is
likely because this method deals better with the variation within each species,
which for this dataset may be quite high, due to varying levels of damage or
disease present on the leaves, and slight differences in lighting conditions. For
other data where there is either less intra-class variation, or it is less quantifiable,
it is possible that the first method may still perform best.

Given that the EMD must be calculated in performing the new methods, it
may be possible to improve the results by incorporating the EMD metric. In this
case, however, doing so produced no change in results. As would be expected,
increasing the number of points used to describe objects increases the quality
of the classification, but the new methods still perform better than the other
methods when a smaller number of points are used, making them particularly
suitable when larger samplings are not practical.

Due to O(n®) nature of the Hungarian algorithm, the method presented here
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can be quite slow compared to some other methods, requiring approximately 6
seconds per leaf in these tests, with n = 1024. Despite this, for many applica-
tions the additional time required is entirely acceptable given the improvement
in accuracy, and the cost can be mitigated to some extent, for example, by using
a faster, less reliable method to eliminate the least likely classes first. Further-
more, these methods still performed better than the other methods tested here
when n = 256, greatly reducing the time required, and allowing accurate classi-

fication even when less data is available.

5.1.2 Comparing Leaf Margins Using
Dynamic Time Warping

With the leaf margins, there is again much variation within some species, largely
due to the different size and coverage of teeth as the leaf develops. In order to
compare two margins, a common starting point on the margin must first be
selected. The obvious candidates for this are the apices and insertion points.

Whilst these have been identified (in Section 4.4), it is not known which is
which. When performing a comparison, all four combinations (possible pairings)
for sequence start points are therefore used. Some species’ leaves have a degree
of asymmetry. Whilst the details along the margin in these cases will be similar
on either side of the leaf, the distance between insertion point and apex may
be quite different. To account for this, the margin signatures (generated as per
described in Section 4.3) are oriented to always procede along the shortest side
first. The DTW algorithm (Section 4.4.1) is applied for all four configurations,
and the smallest measurement is selected as being the difference between the
two leaf margins.

Following the assumption in Section 4.4 that the maximum difference be-

tween the lengths of the two sides of the leaf will be 2w, where w = §, the value
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of k used in Equation ( 4.6) is also set to g, as this is the point in the sequences

where the most distortion is expected to occur.

5.1.2.1 Results

The method is evaluated on a dataset containing 16 leaves from each of 100
different species. A 16-fold cross-validation is performed, such that one leaf
from each species is used each time in the testing set, whilst the remaining
leaves are used as the training set. Classification is performed using the k-
nearest-neighbour technique, with k = 5, with this value chosen as it was found
to produce the best results. For comparison, two other techniques are also used

on the same data:

e Cross-correlation:
For two sequences, a = (ay, ..., am), b = (b1, ..., bm), the distance between
the two is calculated for every possible offset of one sequence against the

other. The lowest distance calculated is used for the classification.

n
distance = Olsnil?njz_‘:) llaj = bj+i mod nll

e Bag-of-Words:
A large number of feature vectors are sampled from the entire training set,
and a k-means clustering is performed on these. The cluster centroids are
used as the codewords in a dictionary used to perform a quantization of
the data, by assigning each data-point to its nearest codeword. A margin
sequence can then be described as the frequency of occurrence of each
‘codeword’ [27). For classification, the distance between two sequences is

then calculated as the Jeffrey-divergence metric for their two histograms.
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The results for the three methods are shown in Table 5.3 as the rates of correct

classification.
Method Result (%)
Cross-Correlation| 57.12
Bag-of-Words 74.51
Proposed Method| 91.32

Table 5.3: Results for the three methods.

As the results show, the proposed method performed significantly better
than the other two. The cross-correlation method conserves the order of the
sequence but is too rigid to account for the variations that occur in leaves, for
example in the exact positions of the tips of lobes, which appear as peaks in
the signature. By ignoring the order of the sequence, the bag-of-words method
describes only the content of the margin, and loses valuable information. By
using the DTW algorithm, the proposed method can utilize the order of the
sequence, whilst having enough flexibility to deal with the variation inherent to

natural data.

5.2 Combining Different Leaf Features

Whilst it has been shown previously that high classification accuracy can be
achieved using single aspects of plant leaves, it seems apparent that greater ac-
curacy could be achieved by effectively combining multiple leaf-components. As
dataset sizes increase, certain aspects for certain species will become unsuitable
for distinguishing them, due to both high intra-species and low inter-species
variation causing overlap within the search space. For example, the leaves on
a large number of different species have a similar oval shape (Figure 5.5). In
these cases, whilst shape by itself may be insufficient, combining it with texture

information may prove adequate for accurate classification.
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Figure 5.5: Many species have similar leaf shapes

As well as desiring a robust method of performing classification by combining
different leaf feature-sets, it would be useful to be able to assess the utility of
each feature-set, not just in terms of general classification accuracy, but in
terms of how likely it is to be a useful feature-set for classifying a particular
leaf. Given the computational requirements of the extraction and comparison,
it must be assessed as to whether there is value in using all of the leaf components
and methods available. Furthermore, it is plausible that some feature-sets are
correlated with each other, reducing the value in using both together. Another
concept worthy of investigation, is whether it is best to employ a small selection
of highly rigorous, but computationally expensive methods, or to use a larger

number of simple yet quick methods.

5.2.1 Probabilistic Classification From K-Nearest-Neighbour

Here, the use of k-NN classifiers for producing probabilistic classifications from

multiple leaf feature-sets is explored. Typically with k-NN classifiers, the class
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for which the highest frequency of neighbours belongs to is selected as the classi-
fication, however there have been a number of proposed methods for producing
a probability for each class from the set of neighbours. The two methods in-
vestigated here are Fukunaga & Hostetler’s [40], and an extended version by

Atiya [5].

5.2.1.1 Posterior Probability Estimation

For each species/class, ¢;, the probability of a leaf, z, belonging to it is calculated

as

M5, Pilalz)
Yo [1j=1 Pr(cila)

where Py(c;|z) is the probability of class ¢; for the leaf feature-set f, and F'is

P(cilz) =

the total number of feature-sets to be used.

Fukunaga’s method. To calculate the probability from feature-set f, two
different techniques are used. The first is that of Fukunaga,

K;
Pi(ale) = 5=

where K is the total number of neighbours being used, and K is the number

of those neighbours belonging to class ¢;.

Atiya’s method. Atiya extended this to include weights, calculated from

the training set.

K
Py(cilz) = 3 v; By

=0
where v; is the weight for the j** neighbour, and B is a matrix with K + 1
columns, and C rows, with B;; set to 1 if the j** neighbour is from class §, and

0 otherwise. The elements in the final column are all set to 2.
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The weights v;, j = 1..K are calculated as

evi
Kl Sy )
k=1

with w; determined by maximising the likelihood of the data. Each value is

initialised to be equal, and then updated by

N
B, j(n)e*s Nevs
wj=w;+7 E S -
T [ ! Beni(m)ews .5 e

where B(n) and c,, are the B matrix and class, respectively, for the n** training
sample, and 7 is the step size. This update is repeated until the change in

weights becomes negligible.

5.2.1.2 Experiments

To evaluate these two methods, 4 different leaf feature-sets are used:

1. Shape features - set of 8 features as described in Section 4.1.1.1.

2. Elliptic Fourier descriptors - as per Section 4.1.1.3. Used as well as the
shape features, due to there ability to distinguish between species that the

shape features cannot.

3. Margin histogram - a 32-bin histogram was generated by quantizing the

data generated in Section 4.3.

4. Lamina histogram - the histograms generated in Section 4.2.1 were used.

Due to the superior results previously seen in using the lamina and margin,
compared to the shape, smaller dictionary and sampling sizes were used for the
data here, to better show the value in combining multiple feature-sets. A 16-

fold cross-validation was performed on the 100-species dataset (16 samples per
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species). Results were generated for every combination of the four leaf feature-
sets. These results are shown is Table 5.4. The accuracy stated is the fraction of
leaves correctly classified using that method and combination. The deviation,
is the standard deviation for the accuracy between different species. A high
deviation shows that the combination performs much better for some species

than for otherwise, whilst a low deviation shows that it works similarily for all

species.

Method Shape | EFD | Lamina | Margin | Accuracy | Deviation

Fukunaga v 0.5456 0.2739

v 0.5987 0.3108

v 0.6056 0.2897

0.6825 0.2796

v v 0.7531 0.2609

v v 0.8625 0.1709

v v 0.8731 0.1359

v v 0.8756 0.1315

v v 0.8831 0.1626

v v v 0.8937 0.1579

v v v 0.9093 0.1119

v v 0.9143 0.1048

v v v 0.9587 0.0656

v v v v 0.9625 0.0712

v v v 0.9643 0.0601

Atiya v 0.6437 0.2344

v 0.6593 0.2577

v 0.6643 0.2779

v 0.7212 0.2345

v 0.7887 0.2249

v v 0.8762 0.1533

v v 0.8925 0.1182

v v 0.8981 0.1437

v ' v 0.9025 0.1458

v v 0.9050 0.1184

v v v 0.9262 0.1098

v v 0.9337 0.0717

v v v 0.9681 0.0602

v v v v 0.9681 0.0640

v v v 0.9688 0.0553

Table 5.4: Results for each combination of leaf feature-sets.
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As would be expected, in both cases, the accuracy generally increased as the
number of feature-sets used increased. Furthermore, Atiya's method slightly
outperformed Fukunaga’s, indicating the value in weighting the contribution of
each neighbour. It is worth noting that when all the feature-sets except the EFD
were ﬁsed, the accuracy was slightly higher than for all four feature-sets. This
shows that in some instances, the use of certain features may be detrimental to
the result.

Of the single feature-set cases, use of the margin performed best, whilst the
lamina performed the worst. Despite this, the three feature-set instances in
which the lamina was used but only one of the shape-based feature-sets were,
achieved significantly better results than when both shape-based feature-sets

were used, illustrating the need to use a diverse set of features.

5.2.2 Automatic Feature Selection

As has been previously noted, different leaf feature-sets are better suited to
classifying some species than others. With intra-species variation in many cases
being greater than inter-species variation, certain features will not be adequate
for distinguishing between species for which this is the case. Indeed, use of
some features could be detrimental to the correct classification. For example,
it is possible that, for a given feature, none of the nearest neighbours belong
to the correct species, resulting in an incorrect classification, despite whatever
value other features may be. As such, it may not always be best to use all of the
features available. This can be seen in Table 5.4 where some three feature-set
combinations performed better than using all four.

Further to this, as datasets, and the number of species therein, increase in
size (it has been estimated that there may be in excess of 400,000 species of

plant) the computational cost of identifying a species could become very great.
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Given that every feature-set used to this end would add to the cost, there is
further benefit in reducing the number of features which need to be used.

A large amount of work has been done in the feature selection field. Most
techniques aim to find suitable subsets, either by searching through candidate
subsets (Wrapper methods) or by using prior knowledge to predict the best
features (Filter methods). Wrapper methods range from basic techniques such
as forward selection and backward elimination [71] to more modern methods
such as those of Chen et al [19] and Rashedi et al [112]. Filters methods include
correlation-based selection techniques [149] and Markov blanket filters [72].

Since some leaf feature-sets have been shown to work well for indentifying
some species, whilst others perform better for others, it may be beneficial to
dynamically select which feature-sets to use based on the leaf in question, rather
than using a predetermined set of features. Furthermore, it may prove possible
to evaluate the utility of a particular component for classifying a particular leaf
without needing to generate a full set of features for it. Here, a method and
a number of metrics are explored for dynamically selecting feature-sets on a

leaf-by-leaf basis, along with an evaluation of their effectiveness.

5.2.2.1 Metrics For Feature Utility

Given a vector for a particular leaf component, there are a number of different
metrics which could be used to estimate that component’s utility for classifying
the leaf, prior to performing the classification. The metrics explored here are
based upon the neighbourhoods the sets of nearest neighbours) used in the
previous section for classifying the leaves. These metrics are calculated for all
examples in the training set. When a new vector is presented, the methods to
be described in Section 5.2.2.2 use these past calculations to estimate the value

for the new vector.
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. Same vs K - The fraction of the K nearest neighbours which belong to
a training examples true species - K;/K, where Ky is the number of
neighbours from the same species as the training example. This metric

reflects Fukunaga's method in Section 5.2.1.1,

. Same vs Next Highest - The number of neighbours from the correct class
divided by the number of neighbours for the second highest scoring class.
This gives a measure of the likelihood that the vector would have been

correctly classified.

. Neighbouring Classes - 1 divided by the total number of different classes
represented within the neighbourhood. If all the neighbours are from
different classes, the vector is less likely to classify correctly than if they

are all from the same class.

. Entropy - Provides a measure of uncertainty, with low values indicating a
high level of predictability. Calculated as

Y8, ples) log plei)

E=1- log K

where p(c;) is the fraction of neighbours belonging to class ¢;. This metric
has the advantage of giving the same value for a vector regardless of which

species in came from, in relation to the neighbours.

5.2.2.2 Estimation of Feature Utility

For estimating the utility of a new vector, a feed-forward neural-network is

trained via back-propagation on the training vectors, with the utility metric

values for those training vectors as the expected output. The network consists

of two hidden layers, each with twice as many nodes as the number of input

nodes, and a single output node. The number of input nodes was dependent
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on the leaf feature-set being used. Sigmoid functions (f(r) = (1 +e~*)~!) are
used at each hidden and output node. Training was performed by introducing
all of the training vectors to the network in a random order. This process was
repeated until the decrease in the average output error dropped below a small
threshold. Once trained to sufficient convergence, the utility of a new vector

can be estimated by inputting the vector to the trained network.

5.2.2.3 Classification With Leaf Feature Selection

Once an estimate of the utility of each of the four feature-sets has been acquired
for a leaf by using the trained neural-network, this information can be used to
minimise the number of feature-sets required to perform a classification. The leaf
is first classified using the feature-set with the highest utility, and the probability
for the top result is calculated as per Section 5.2.1. If this probability is greater
than some predetermined threshold (to be discussed in Section 5.2.2.4), the
result is accepted, else the feature-set with the next highest utility Is selected
and the probability recalculated, until the threshold is passed.

In cases in which all the available features appear to be necessary, the con-

tribution from each feature-sets is weighted according to its estimated utility:

MT}wy Prleilr)es
o T

P(c]r) =

5.2.2.4 Experiments and Results

The method is tested using the same data as in Section 5.2.1. The networks
used consisted of two hidden layers, with 2d nodes per hidden layer, where d is

the size of the input vector.

107



The method was run for each of the metrics, using the four leaf feature-set
described in Section 5.2.1.2, and with the total number of feature-set to use
being varied from one to four. When less than four of the feature-set are used,
they are selected in order of estimated untility (i.e. when three are used, the
feature-set with the lowest estimated utility is ignored).

These results are shown in Table 5.5. When all four features are used, the
results are naturally the same, but as the number of features used is reduced,
an increasing improvement can be seen over using fixed sets of features. In
Table 5.4, the highest performance from using a single feature-set was 0.7212,
but by selecting which feature-set to use on a leaf-by-leaf basis, here an accuracy
of 0.8037 was achieved. Of the four metrics, the fourth one, based on the entropy
performed best. This metric seems the natural choice as it directly relates to

the predictability of the result for a given part of the feature space.

No. Features
Metric 1 2 3 4

1 0.7575 | 0.8938 | 0.94006 | 0.9681
2 0.7738 | 0.8994 | 0.9275 | 0.9681
3 0.7763 | 0.9150 | 0.9456 | 0.9681
4 0.8037 | 0.9231 | 0.9538 | 0.9681

Table 5.5: Classification accuracy for each number of feature-set and metric.

Table 5.6 shows the frequency that each combination of features was used,
and the corresponding accuracies, For example, when two feature-set were used,
the combination of EFD and margin was used for 55.25% of the leaves, As would
be expected, for most combinations the accuracy is higher than when applied
to all the leaves in the test set, with those combinations that perform better in
general being used with higher frequency. The combination of shape features
and lamina achieved 100% accuracy, however the combination was only selected
for a very small number of leaves The final two columns, Pirue a0d Pyatae, Show

the average Fukunaga probability (used to determine the classification) when
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the result is correct and false respectively. The Fukunaga probability can be
seen as a measure of confidence that a leaf has been correctly classified. This
value is typically far higher in the former case, when the classification is correct,
suggesting it could be of use in determining when to stop increasing the number

of feature-set used, as increasing the number of feature-set also tends to increase

this value.
Shape | EFD | Lamina | Margin | Acc | Frequency | Pirue | Pratee
v 0.9080 0.0544 0.4077 | 0.2887
v 0.8437 0.2719 0.4169 | 0.2817
v 0.8186 0.1412 0.4013 | 0.3048
v 0.7688 0.5325 0.3982 | 0.2678
v v 0.9744 0.0487 0.9186 | 0.5677
v v 1.0000 0.0144 0.8583 | 0.0000
v v 0.9682 0.0981 0.9198 | 0.4298
v v 0.9746 0.0737 0.9044 | 0.4208
v v 0.9038 0.5525 0.8845 | 0.5401
v v 0.9176 0.2125 0.8502 | 0.4058
v v v 0.9600 0.0312 0.9656 { 0.5826
v v v 0.9383 0.3950 0.9702 | 0.5743
v v v 0.9851 0.0419 0.9605 | 0.3027
v v v 0.9624 0.5319 0.9514 | 0.5593
v v v v 0.9681 1.0000 0.9779 | 0.6706

Table 5.6: Frequency and accuracy of each combination,

In Table 5.7, the results are shown for the weighted and unweighted methods
of selecting features, and for a method using the same features for each leaf, with
the order of application predetermined, based on their individual performances
(in this case, the order is margin (accuracy 0.7212), shape features (0.6643), EFA
(0.6593) and then texture (0.6437)). Both the weighted and unweighted methods
perform significantly better than the fixed method when a reduced number of
features is used. When more than one feature-set is used, the weighted version
is able to perform slightly better than the unweighted.

Finally, we examine whether the number of feature-sets required for accurate

classification of a leaf can be determined from the calculated Fukunaga proba-
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No. Features
Mode 1 2 3 4
Fixed 0.7212 | 0.8981 | 0.9025 | 0.9681
Unweighted | 0.8037 | 0.9231 | 0.9538 | 0.9681
Weighted 0.8037 | 0.9256 | 0.9575 | 0.9700

Table 5.7: Results for the three methods of selecting features.

bility. This will allow the minimisation of the number of feature-sets used. The
threshold on this probability is varied from 0 to 0.9, with additional feature-sets
being added until this threshold is passed. Once the threshold has been passed
the leaf is classifed as the species with the highest probability. Figures 5.6
and 5.7 show the frequency for which each number of features is required at
each threshold, for the unweighted and weighted forms respectively. Here, a five
indicates that the threshold was not met even when using all four features. In
most cases, only two features were required to meet this target. In all cases, the
modal number of features needed, before the maximum accuracy was reached,
was two or less. In the weighted case, higher thresholds (above 0.5) required

more features to be used, but did not result in an improvement in accuracy.

1.00
0.90
0.80 —m=—0,1 (0.8037)
070 ()2 (0.8213)
60 0.3 (0.8900)
e (0.4 (0.9350)
050 e )5 (0.5463)
040 ~— 0.6 (0 9588)
e (] 7 (0 5618)
0.30 —a— (.8 (0.9663)
0.20 - [ 9 (0.5669)

Figure 5.6: Frequency (y-axis) of number of features (x-axis) required to meet
probability threshold, unweighted case. Number in brackets indicates the ac-
curacy achieved at that threshold. Five indicates threshold was not met when
using all features.
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040 === 0,6 (0.9700)
030 85— 0.7 (0.9700)
030 —a— 0.8 (0.9700)
0.9 (0.9700)

010

Figure 5.7: Frequency of number of features required to meet probability thresh-
old, weighted case.

Figure 5.8 show the accuracy achieved at each threshold, in relation to the
average number of features required. As can be seen, the accuracy increases
as the average number of feature-sets is increased, but there is little improve-
ment in the results beyond the use of a threshold which achieves an average of
two feature-sets being used. Furthermore, in the weighted case the maximum

accuracy required an average of three, rather than the previous four, features,
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Figure 5.8: Accuracy (y-axis) when different average number of features (x-axis)
used. Blue - unweighted; Orange - weighted.
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5.3 Summary

This chapter has introduced a number of machine learning algorithms suitable
for used in plant leaf classification. One of the biggest challenges involved in
working with plants is the high amounts of variation that may occur within a
species, and high similarity that exists between some species. Algorithins have
been described here for which increase the classification accuracy, based on the
macro-texture and margin signatures, by incorporating this variation.

Furthermore, a framework has been provided for combining the classification
from multiple sources of information. This has included the leaf-dependent
selection of suitable feature-sets, in order to improve the classification whilst
simultaneously decreasing computational costs, but automatically eliminating
detrimental feature-sets.

There is still much work that can be done in this area. Continuing the
incorporation of intra-species variation into the classification, it would be useful
to have a similar such method based on the leaf shape, where there can be a
large difference between leaves even on the same plant. For the selection and
combination of feature-sets, there are several further avenues worth exploring.
One is whether the utility of a leaf component can be reliably estimated using
simplified, faster to extract descriptors, and so removing the cost assocciated
with compiling the more detailed descriptors used here, if it is found to be of
low utility. Another avenue is to include the time required for each feature-
set into the decision making process, as it may be more beneficial to use two

fast-to-compare feature-sets, than one slower but more relinble one,
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Chapter 6

Botanists’ Vision

Chapter contributions:

o Study of the difference in eye-movements between botanists
and non-botanists when viewing leaf images, using eye-tracker
data.

o Preliminary work towards replicating a botanist's observation
points, based on this data.

Given that professional botanists have received extensive training and expe-
rience in studying and identifying plants, it may be passible to improve upon
computational methods, but making use of information regarding how they view
leaf images. These data can be captured through the use of eye-tracking tech-
nology, since a botanist may not in fact be aware of the precise process they are
performing.

When viewing any detailed image, such as an advertisement, website or some
particular object, the attention of the human visual system is attracted to cor-
tain features, known as salient regions. This process of observation is to a large
extent innate and subconscious, although can become less 8o through prior-

knowledge of the observed image, or experience in viewing particular types of
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image. Research into eye-movement is involved in a several fields, including and
beyond the study of perceptual systems. The study of eye-fixation points and
saccades (fast eye movements between points of interest/stimuli) can provide
insight into cognitive processes such as written language comprehension, mem-
ory, mental imagery and decision making [114). Eye movement research is of
great interest in the study of neuroscience and psychiatry, as well as ergonomics,
advertising and design {141]. Since eye movements can be controlled, to some
degree, voluntarily, and detected and recorded by modern technology with great
speed and precision, they can now be used as a powerful input device for many
practical applications in human-computer interactions [115].

Wearable eye-tracking devices allow collection of eye-movement information
for natural scenes, involving the use of generally unconstrained eye, head, and
hand movements. The most commonly sought eye-tracking metrics include the
number, duration and location of fixations, both across the entire scene and
within set areas of interest, and the sequence of movements between them,
among many others {92, 64]. Longer fixation periods generally indicate greater
cognitive processing of the fixated region, possibly due to a higher level of detail
or a lower scale feature of interest, and the percentage of total fixation dedicated
to a particular area may indicate its saliency [34, 121).

With sufficient knowledge and experience, an expert in a particular field can
become highly eflicient at analysing certain types of images, This could be a
physician searching for anomalies in images produced by medical scanners, a
botanist studying images of leaves to determine a plant’s species, or a security
personnel identifying suspicious behaviour in CCTV footage. Using advanced
eye-tracking technology, we can capture and analyse in great depth the process
through which a human expert analyses such images. This chiefly involves

identifying their fixations, and analysing the sequence in which these fixations
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are visited. Through this it may be possible to enable a computer system to
more accurately replicate the human expert's fixation process, This could lead
to advances in the use of computer vision techniques to perform such tasks, as it
would allow more efficient processing of the images, and may reveal additional
information which current techniques are overlooking.

In terms of plant classification, this could aid in the identification of which
parts of the leaf are most important for the task, or inspire new processes that
may not yet have been considered.

In this chapter, eye-tracker data is used to perform preliminary work towards
understanding how botanists study leaf images, and for replicating a botanist's

observation points when performing a leaf recognition task.

6.1 Comparing The Eye-Movements Of Botanists
and Non-Botanists

Before the eye-tracker data can be utilized in this manner, it is important to
first establish that the knowledge and experience acquired by botanists does
indeed have an effect on their fixation points, and the sequences thereof, whilst
viewing leaves. Here, a pilot study is conducted, demonstrating the difference
in eye-movements between botanists and non-botanists. In the process, initial
data will also be gathered for use towards the aforementioned alms of replicating
the botanists observations.

The experiments performed involve subjects performing a simple leaf recog-
nition task. Subjects are shown an image of a leaf for a short period of time,
Afterwards, they are allowed to view images of leaves from elght ditferent species,
one of which is from the same species as the initial leaf. The subjoct is tasked

with identifying which of the eight leaves is the one from the same species,
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Sets of species are chosen such that the leaves portray similar visual qualities
(for example, similar colouration or shape), and thereby making the task non-
trivial. This was carried out at two different display intervals for the initial
images, 1500ms and 4000ms. Each of these intervals was used eight times, with
a different set of leaves being used each time.

During this task, the subject was wearing a head-mounted eye-tracking de-
vice. This involves a camera capturing the view in front of the subject, a second
camera capturing a video of one of their eyes, and software capable of calculat-
ing, from the eye-movements, precisely where in their field of view they were
looking. These observation points are recorded and translated back onto the
original leaf image. Before each set of tests, the tracker was calibrated, and the
subject was asked to try minimise head movement during the test. Between
each set of the tests, the subjects were allowed a short period of rest.

The task was performed by nine volunteers - four botanists and five non-

botanists.

6.1.1 Results and Analysis

The heatmaps - visualisations of where on an image the subject looked « from
a selection of the leaf images used are shown in figures 6.1 and 6.2, for the
1500ms and 4000ms cases respectively. These show the areas on which the
subject fixated, with the brightest red representing the regions where their gaze
remained for the longest. These were generated as a Gaussian mixture model of
each point the eye-tracker detected the subject looking at. They are normalised
such that the point on which the subject's eyes spent the most time is shown
as pure red. To begin with, it can be observed that in the 1500ma case, the
botanists typically viewed smaller, more select regions of the leaves than the

non-botanists. This effect was diminished In the 4000ms case, when more time
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was available to look over the entire leaves. Another observation is that the focal
points fell more often outside the surface of the leaves for the non-botanists than
the botanists, suggesting that the non-botanists are using more the details of
the shape of the leaf, than its interior characteristics.

In Figure 6.3, the histograms of the fixation lengths - the length of time
spent fixating on a single point - for both groups are presented. It can be seen
that the botanists’ fixations tended to be longer (at an average of 0.272 seconds
versus 0.209 at 1500ms, and 0.353 versus 0.284 at 4000ms) indicating that areas
were observed in greater detail. In the 1500ms tests, the non-botanists had over
half of their fixation in the 0.12 second interval, indicating that they did not
concentrate for very long on any one part of the leaf, instead opting to cover a
larger portion of the leaf in the time permitted.

The saccade amplitudes (eye-movement sizes) are shown in Figure 6.4. Here
there appears to be little significant difference between the two groups. The
largest portion of saccades in all cases were around 3°, equating to approximately
one tenth of a leaf’s length, indicating a tendency to move from one region to a
another relatively close by, rather than hopping from one side of the leaf to the
other,

Table 6.1 gives the average fixation lengths, saccade amplitudes and densities
for each of the subjects, Here the density refors to a measure of the portion of
a leaf viewed, with lower scores indicating that the subject concentrated on
a smaller area of the leaf. Confirming the difference in fixation lengths, the
botanists average fixations were longer than all but one of the non-botanista
at 1500ms, and longer than all of them at 4000ms. For saccades, there was
quite a high variation between individuals, with the average amplitudes ranging
from 3.954° to 6.642°, but no particular trend between the groups. In terms

of the densities, when the viewing time was limited to 1500ms, all botanists
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Figure 6.1: Example heatmaps from when the subjects were shown the leaves
for 1500ms.
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Figure 6.2: Example heatmaps from when the subjects were shown the leaves
for 4000ms.
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Figure 6.3: Histogram of fixation lengths for botanists (blue) and non-botanists
(red) for both 1500ms and 4000ms cases, showing length (x-axis. in seconds)
against frequency (y-axis).
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Figure 6.4: Histogram of saccade amplitudes for botanists (blue) and non-
botanists (red) for both 1500ms and 4000ms cases, showing amplitude (x-axis,

in degrees) against frequency (y-axis).

had lower scores. When the time was increased to 400ms, however, whilst all
densities increased, for two of the botanists the densities were similar to those
of the non-botanists, whilst for the other two, they remained significantly lower,
demonstrating that not all botanists exhibit the same behaviour.

From this initial data, it would appear that there is indeed a difference
between how trained botanists and non-botanists view leaf images, during a
recognition task. The main quantifiable difference is that the botanists preferred

to study small parts of the leaf in high detail, whilst the non-botanists attempted
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Fixations Saccades Densities
Subject 1500ms { 4000ms | 1500ms | 4000ms | 1500ms | 4000ms
Botanist 1 0.249 0.327 5.495 6.492 | 17218.0 | 351744
Botanist 2 0.301 0.338 4.557 4.800 | 17660.8 | 35174.4
Botanist 3 0.254 0.348 4.293 5.516 | 18585.1 [ 23744.1
Botanist 4 0.282 0.399 5.714 5.910 | 18401.2 | 26539.0
Non-Botanist 1 | 0.206 0.262 6.254 6.072 | 25323.6 | 34644.9
Non-Botanist 2 | 0.168 0.280 6.642 6.252 | 22752.0 | 36157.9
Non-Botanist 3 | 0.194 0.263 3.954 4.668 | 21155.7 | 34299.7
Non-Botanist 4 | 0.261 0.319 5.427 5.762 | 20735.3 | 33704.9
Non-Botanist 5 | 0.218 0.295 5.105 4.913 [ 22283.4 | 33422.8

Table 6.1: Average statistics for each subject.

to acquire information from a larger portion of the leaf, and consequently in less
detail. There is also suggestion that the non-botanists relied more on the shape-

related features than on internal features.

6.2 Reverse Engineering Expert Visual Obser-
vations

Here, a first step is presented towards utilizing this type of eye-tracking data for
computer vision purposes, concentrating on its use in the study of the classifi-
cation of plant leaves, from the perspective of the expert in plant systematics,
which uses tools based on morphology for identification and is one of the princi-
pal branches of study in plant biology. Plant systematists are responsible for the
organisation and accessibility of plant diversity data which is underpinned by
accurate identification and naming. Figure 6.5 illustrates the typical sequences
of fixations when an expert in plant systematics studies a leaf. In the approach
here, neural-gas algorithms [89] are applied for filter parameter learning, to dis-
cover a set of filters which are particularly well suited for identifying the fixation

points on an image of a leaf.
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Figure 6.5: Synthetic examples of typical sequences of fixation for eye-tracker
data from an expert botanist.

6.2.1 Related Work

In Filter Parameter Learning (FPL) [11, 55, 76], a set of image filters are de-
scribed by some parameters whose values change dynamically through the course
of some learning process. There have been numerous approaches to this prob-
lem. In [55], Heidemann presents an object recognition architecture based on
feature extraction by Gabor filter kernels, and performs feature classification
by an artificial neural network. The parameters of the Gabor filters are opti-
mized to the specific problem by minimizing an energy function. These Gabor
filters can then be used to extract features that can be more easily classified
by a neural network. Alain and Shigeru in [11] used a discriminative feature
extraction method applied to a bank of filters for the modelling of speech. A
method proposed by Koray et al. [68] automatically learns the feature extrac-
tors in an unsupervised fashion by simultaneously learning the filters and the
pooling units that combine multiple filter outputs. The method generates to-
pographic maps of similar filters that extract features of orientations, scales,
and positions. By doing this, locally-invariant outputs are produced. In [43],
Gautama et al. force the filters to partition the input space in an equitable

manner: each filter is tuned to a different frequency region and contributes
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equally to the extraction of localized features. Here, a set of Gabor filters is
learnt for processing images, due to their well-known properties in extraction
of features from their parameters of frequencies, orientations, and smoothing of
the Gaussian envelope [111, 48, 22, 80]. Furthermore, links have been identified
between Gabor filters and the human visual system [30], and as such they may
have added benefit for our purposes.

In the field of neural networks many different architectures and training rules
exist, from the perceptrons (from single-unit to multilayer versions), Hopfield-
type recurrent networks (including probabilistic versions strongly related to sta-
tistical physics and Gibbs distributions) and the Self Organizing Map (SOM),
among others [37, 53]. In a self-organising map, the network being trained has a
fixed topology throughout, however there exist several variants where, based on
errors within the network, elements of the network are added or removed. The
neural-gas algorithm [89] is one such variant. It uses a fixed number of nodes
which are initially distributed either randomly or uniformly throughout the in-
put space. Connections between these nodes/neurons are added or removed so
that for every input pattern, the two closest nodes are connected in the final
network, In short, the organization of neurons, according to their distance to
the input pattern, and subsequent modification of its reference vector, produces
the neuron expansion within the input space. The neurons’ positions and their
connections become configured to accurately represent the data distribution.
Subsequently, by adding and deleting edges, a triangulation between different
processing elements is provided. An extension to this, the growing-neural-gas
algorithm (GNG) [38] is initialised with just two nodes, and adds more over
time. Furthermore, it removes any nodes which have become separated from
the network in an unused area of the space. This removes the requirement

for a priori knowledge about the topological dimension of the space of input
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vectors [93]. The method here is based on this form of the neural-gas algorithm.

6.2.2 Methodology

The approach here finds a set of image filters that can be used to efficiently
identify possible fixation points on an image of a plant leaf. Firstly, data was
collected for where such fixation points lie by using an eye-tracking device to
capture a botanist’s eye movements as they study a series a leaf images. Each
leaf was shown to the botanist for a set period of time, during which they were
asked to verbally give as much information as possible about the leaf. This was
not recorded, but was done to ensure the manner in which the leaves were stud-
ied was realistic and relevant, as it meant the botanist had to look at areas of the
leaf which would provide the most useful information. The fixations which have
been discovered are used as input into an algorithm which attempts to find a set
of filters which give high responses to fixation windows (Section 6.2.2.1). The
filters learnt are based upon the Gabor model (Section 4.2.2.1), The learning is

performed using a variant of the growing-neural-gas algorithm (Section 6.2.2.3).

6.2.2.1 Fixations and Filter Responses

A fization point is defined as being a point on an image where a person focuses
their attention a short amount of time (typically more than 100ms [12]). Using
eye-tracking technology, where these fixation points are can be identified, as a
series of images are shown to a subject. If the images are each only shown for
a particularly short amount of time (no more than a few seconds), the fixation
points found may correspond to the most salient parts of the image [88]. If,
however, the expert is allowed to study an image for a longer period of time,
the fixation points discovered will indicate the most important parts of the

image required for the expert to analyse it. Furthermore, the time that the
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expert spends concentrating on each fixation point, and the order in which they
move their vision between them, can provide important information and insight
into the experts’ processes.

In analysing and searching for fixation points, a firation window is defined as
a square region centred around a fixation point. The size of this window should
correspond to the scale of the feature which the expert is studying, which may
correspond to the time which the expert spends looking at that feature. At this
stage, however, it has been chosen to fix this at 100 pixels in width.

The method described in here is intended to discover filters which will be
useful for identifying fixation points. To achieve this the response is calculated
for a particular filter being applied to a particular fixation point as being the
sum of the absolute values of the convolution between filter and image at each
pixel within the fixation window. The algorithm will search for a set of filters

which produce high responses to fixation points.

6.2.2.2 Gabor Filters

The aim is to find a set of n filters, F = {f1, f2,..fn}, that can be used to
efficiently identify fixations. For this purpose, Gabor filters have been chosen.
These have been applied to a large range of computer vision problems including
image segmentation [124] and face detection [59]. Gabor filters have been used
in models of the human visual system, therefore are expected to prove useful
here [29]. Gabor filters have been described in Section 4.2.2.1.

It is possible to produce a wide variety of different filters, through the use
of only a small set of parameters. To this end, the following parameter ranges

were used: 6 € [0, 5}, ¥ =0.6,0 € [1,10], A € [0,80] and ¥ € {0, §}.
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6.2.2.3 Learning The Filters

In order to learn the set of filters, a neural gas algorithm is used. Fixations
are chosen one at a time at random from the training set, and a filter is found
which gives a high response for that fixation. This filter is then used as an
input pattern for the neural gas algorithm. Filters are selected by testing a set
number of filters sampled from the portion of the input space occupied by the
neural gas (see Algorithm 1 for details), and then chosing the one that provided
the highest response. The advantage of this is that it helps speed convergence,
and avoids wasting computation time by only testing filters that are likely to
prove useful.

The particular neural gas algorithm used here is a modification of the growing-
neural-gas algorithm [38]. The original algorithm was initialised with two neu-
rons, and grown by adding a new neuron every set number of iterations. Since
it is desirable, for our purposes, to only find a minimal number of filters (using a
large number of filters would reduce efficiency when searching for fixations), the
algorithm is instead started with the maximum required number of neurons,
and only adds new neurons whenever the algorithm removes a neuron which
has become separated from the network, thus the number of neurons remains
constant. The advantage of using this approach over the standard neural-gas
algorithm is that it replaces neurons that appear less useful, thereby aiding con-
vergence. Furthermore, the removal of connections allows the gas to separate
if discrete regions of the space need to be occupied. Once the algorithin has
converged, post-pruning [17] is applied to further improve the final set of filters.
The post-pruning algorithm removes clusters of neurons from unused parts of
the space, and adjusts the positions of others, to achieve better final results.

The algorithm can be summarised as follows:

1. Initialise the neural-gas:
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e Neurons are uniformly distributed through filter-space, within pre-
determined bounds for each parameter.
e Connections are created between neighbouring neurons. Each con-

nection has an age, which is initially set to 0.
2. Until stopping criteria is met, repeat:

(a) Select a fixation from the training set.

(b) Generate k filters, drawn from the distribution of neurons, as per
Algorithm 1, which generates random filters returning the first which
matches the criteria.

(c) Calculate the response for each of the filters being applied to the
training fixation.

(d) Apply one step of the neural-gas algorithm (see Section 6.2.2.3), using
as the input pattern the parameters of the filter with the highest

response in the previous step.

3. Apply post-pruning [17] to the final neural-gas.

Algorithm 1 Kernel density estimation algorithm for selecting filters

repeat

£ « random filter vector

z+0

for all neurons f; € F do ,

1 -~ =gy
T T+ W exp 30

end for r

y + random value in range [0, 72'-,;!'1-]
until y <x
return §

A Modified Growing-Neural-Gas Algorithm At each step the mod-
ified growing-neural-gas algorithm calculates the new positions of its neurons

according to an input pattern §:
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. Find the two neurons, fi, fa closest (by Euclidean distance) to the input

pattern £.

. Increment the age of all connections between f and its neighbours.

. Increase f;’s accumulated error by || f; — €|},

. Move f) and its connected neurons towards &, by fractions €,e, (here 0.2

and 0.1) respectively:

H=hH+elE-f)
fo = fo + €& — fo)for all direct neighbours ¢ of f,

. If no connection exists between f, f2, create a new connection, else reset

the connections age to 0.
. Remove any connection with an age above some threshold.

. Remove any neurons which have become disconnected from all other neu-

rons.
. For each neuron removed in step 7, insert a new neuron as follows:

(a) Find the neuron, f;, with the largest accumulated error (from step 3),

and the neuron, f;, with the highest accumulated error of all f;'s

neighbours.

(b) Insert a new neuron, fi, between f; and f;:

Ji— fr

fo=HH

2

(c) Replace the connection between f;, f; with new connections between

fi’fk and fj,fk
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(d) Decrease the accumulated errors of f;, f;, by multiplying them by

some constant. Set accumulated error of fx equal to that of f;.

9. Decrease all error variables by multiplying them by some constant.

6.2.3 Evaluation

Due to the nature of the data acquired by an eye-tracker, quantitative results
are difficult to obtain. This is because there are no definitive negative testing
examples. For example, when studying a leaf, a botanist may only need to look
at the margin on one side of the leaf to obtain the information they require from
it. If the margin on the other side of the leaf goes un-viewed, this does not mean
it is any less relevant, since the decision to use one particular side may have been
arbitrary, due to leaf symmetry, and may be different on a second viewing of
the same leaf. Because of this, instead of trying to identify all possible fixation
points on a leaf image, the evaluation method instead tries to locate a couple of
different leaf features, and treat all other areas of the leaf as negative examples.

From the data collection using a professional botanist, it has been identified
that a leaf’s insertion point (where the petiole (stem) joins the leaf) and apex
(the ‘tip’ of the leaf) are fixation points on most leaves (Figure 6.6). The filters
which have been learnt are used to identify these points from a set of points
randomly taken from some leaf images. In the first experiment (Section 6.2.3) we
use a nearest-neighbour classifier to label image windows as either an insertion
point, apex or other, In the second (Section 6.2.3), the points on each leaf that
are most likely to be the apex and the insertion point are found. The results are
compared to those using filters similar to the popular Leung-Malik and Root
Filter Set filter banks [78, 45). Results are discussed in Section 6.2.3.

The images used were automatically oriented according to the leaf’s primary

axis, and were scaled so that each leaf had an area within the image of approx-
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imately 2'® pixels. A fixation window width of 100 pixels was used, as this

allowed for an appropriate size region around the apices and insertion points.

Experiment 1. In the first experiment, the suitability of the filters that
have been learnt for identifying whether a given window is fixation window or
not is analysed. The training set used consists of the windows centred around
the insertion points and apices of 240 leaves from a total of 30 different species.
The testing set is then comprised of windows centred around the insertion point,
apex and four other points on a different set of 240 leaves (see Figure 6.7 for some
examples). Having learnt a set of filters using the training set, each fixation in
the training set is processed using the learnt filters to produce an n-dimensional
vector of filter responses that can be used to describe the fixations. Filter
response vectors are then generated for the fixations in the test set. A nearest-
neighbour algorithm is used to classify the test fixations, whereby the nearest
training vector to a test vector is found, and if the distance between them is
less than some threshold, the test fixation is assigned the class of the training
fixation, else it is classified as not bring a fixation.

For comparison, a set of filters based on the Leung-Malik and Root Filter
Set filter banks is also used. These filters are evenly distributed throughout
the parameter space, using the same parameter ranges as for the new method.

The results of these with 16, 36 and 128 filters are given in Table 6.2, with

Figure 6.6: Heatmaps from eye-tracker data, indicating the insertion points and
apices as fixations.
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values indicated the percentage of windows correctly classified. The ROC curve
shown in Figure 6.8 was produced by varying the threshold used to perform
the classification, for the sets of 16 filters. The accuracies given in Table 6.2
correspond to the threshold value which gave the best results for each set of

filters.
Table 6.2: Results for experiment 1

Method 16 filters|36 filters| 128 filters
New method| 93.68 93.26 93.61
Filter bank 80.97 89.58 93.68

Figure 6.8: ROC curve for experiment 1. Solid line = our method, dashed line
= standard filter bank.
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Experiment 2. In our second experiment, we attempt to find the insertion
point and apex on leaf from amongst 16 possible windows. This experiment
more accurately reflects the final task, as it attempts to discover the most likely
fixation points on each image. The training is performed as per experiment 1.
To test, for each leaf image, the response vectors for windows centred around
the insertion point, apex, and 14 other randomly selected points on the leaf are
compared to the response vectors for the training set. The windows closest to
an insertion point and apex from the training set are selected as being these

respective points on the new leaf. Table 6.3 shows the results for this experiment.

Table 6.3: Results for experiment 2 (%)

Method 16 filters|36 filters|128 filters
Our method| 91.25 95.00 95.08
Filter bank | 77.92 91.76 94.58

Results. The results show that whilst both sets of filters achieve a similar,
high level of accuracy when using a large number of filters, the set of filters learnt
using the algorithm retain their quality when the number of filters is reduced to
just 16, whilst the filters based on the standard filter banks perform significantly
worse. With the filter banks, when the total number of filters is reduced, filters
are removed indescriminately from useful areas of the parameter space, which
causes a loss of accuracy. The filters that have been learnt by our algorithm,
however, still perform well because they only occupy the useful regions in the
space. With a large number of filters, there is a redundancy in these areas of the
space, so when the number of filters is reduced,only this redundancy is removed,
and do not lose any quality. This allows for the same level of accuracy whilst

only requiring a fraction of the amount of processing.
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6.2.4 Summary

For many practical applications, speed and efficiency are particularly important
for a method for discovering the fixation points in an image, because large areas
of the image need to be processed. By developing an algorithm that allows the
learning of a small set of filters that is capable of distinguishing fixation points
with as high accuracy as a larger filter bank, a step has been taken towards this.
Further work in this area could explore how efficiency can be further improved
by intelligently selecting only the best subset of our filter to use on any given
part of the image. It may also be profitable to investigate the use of different
methods of classification for improving the accuracy.

Beyond this, how the sequences for the fixations can be discovered need to be
considered. One possibility may be the use of hidden Markov models, involving
spatial and temporal information, as well as data generated by the filter set.
With a system for accurate estimation and replication of the methods in which
a human expert studies an image, the hope is to able to improve the efficiency
and robustness of automated computer vision systems for performing such tasks,
although further investigation will be needed into whether such information can
indeed allow for more accurate leaf classification. Further to this, it is hoped
that we may be able to discover new knowledge about how human expert achieve

this task.
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Chapter 7

Conclusions

This thesis has presented work covering a range of aspects associated with the
computer-assisted identification and analysis of plant leaves. In Chapter 2, a
comprehensive review was carried out of the work previously carried out in this
field, identifying the challenges involved in this task, and those areas in which
progress still needed to be made. Chapter 4 presented a number of new methods
for the extraction and description of various components of the leaf. A com-
parative study of the most commonly used shape analysis techniques was also
performed, demonstrating the strengths and weaknesses of each method. One
of the challenges in this field is in coping with the high intra-species variation
present in leaves, and in Chapter 5, new techniques are presented for doing so,
in regards to the leaf macro-texture and margins. Also in Chapter 5, methods
of combining the different leaf feature-sets were presented, including a method
for automatically selecting which feature-sets are most appropriate to use when
trying to classify a particular leaf. Chapter 6 offers a preliminary study into
how botanists view leaves in contrast to non-botanists, including a look at how

this information might be used to improve automated techniques.
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7.1 Achievements

This work has made several achievements, with regards to the challenges in-

volved, making great progress in this field.

Extraction of information. New methods have been presented for the
extraction and description of the leaf macro- and micro-texture, margin charac-
ters, and the venation patterns, showing strong performance in comparison to
existing techniques. Though there has been much work previously carried out
on the analysis of leaf shape, there has been little in the way of comparison of
* the different techniques. Here, the merits of the most popular techniques have

been highlighted and contrasted.

Dealing with intra-class variation. One of the key challenges associ-
ated with the identification of plant species relates to the often high intra-species
variation. Here, methods have been developed for solving this problem, in re-
gards to the leaf macro-texture and margins. The methods presented for the
former of these could also be applied to many other machine-learning problems

where intra-class variation is a significant issue.

Combining modalities. With many different components of the leaf avail-
able for use for classification, it was important to develop an appropriate method
for combining the information. In particular, due to the wide variety of forms
many leaf features can take, and the low inter-species variation found for some
leaf features between some sets of species, there was a desire to be able to au-
tomatically select the best subset of modalities to use on a leaf-by-leaf basis.
A method has been presented here, which achieves improved accuracy and re-
duced computational requirements by predicting the value of each feature-set

when classifying a given leaf.
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Understanding how botanists view leaves. Much can be learnt from
the behaviour of experts which can be applied to the task here. Eye tracking
technology has been used to establish the differences between how botanists
and non-botanists view leaf images whilst performing a leaf recognition task.
Further to this, preliminary work has been performed towards replicating the
botanists’ observation points, so that this information could be utilized in an

automated system.

7.2 Future Work

The work presented in this thesis makes several advancements towards the goal
of automated classification and analysis of leaves, however, there are still some
areas in which further progess could be made. Whilst a relatively accurate
method for the extraction of venation patterns was put forward in Chapter 4,
as yet there is no suitable method for describing and comparing venations, al-
lowing them to be used alongside the other leaf components when performing an
identification. Again, the method would need to take into account the variation
that is present, particularly since the number of secondary and tertiary veins
will vary from leaf to leaf within a species.

The methods for leaf-shape analysis discussed in Section 4.1 are existing
methods for general shape and morphometric analysis, rather than being entirely
tailored to the leaf-specific task. Future work could include the development a
shape analysis method that is more suitable to the subject matter here.

In Chapter 5, a framework was proposed for the selection and combination of
different leaf feature-sets. This framework managed to improve the classification
accuracy whilst reducing the number of feature-sets required, however there
remain a number of extensions worthy of exploration. One such thing is whether

simple, fast-to-extract descriptors can be reliably used to predict the value in
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using the more complex descriptors, which require more processing to extract.
This could greatly reduce the computational requirements. Further to this, it
may be desirable to factor in each extraction/comparison’s computational needs,
when determining the feature-sets to use. From this, it may emerge that there
is greater value in using many simple but fast methods, than the more advanced

but costly ones, despite them producing better results when used individually.
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