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Abstract 

The development of mathematics is foundational. For the most part in early childhood it is seldom 

insurmountable. Various constructions exhibit conceptual change in the child, which is evidence of 

overcoming the learning paradox. If one tries to account for learning by means of mental actions carried out by 

the learner, then it is necessary to attribute to the learner a prior structure , one that is as advanced or as 

complex as the one to be acquired, unless there is emergence. This thesis reinterprets Piaget's theory using 

research from neurophysiology, biology, machine learning and demonstrates a novel approach to partially 

resolve the learning paradox for a simulation that experiences a number line world, exhibiting emergence of 

structure using a model of Drosophila. In doing so, the research evaluates other models of cognitive 

development against a real-world, worked example of number-sense from childhood mathematics. The 

purpose is to determine if they assume a prior capacity to solve problems or provide parallel assumptions 

within the learning process as additional capabilities not seen in children. Technically, the research uses an 

artificial neural network with reinforcement learning to confirm the emergence of permanent object invariants. 

It then evaluates an evolved dialectic system with hierarchical finite state automata within a reactive Argos 

framework to confirm the reevaluated Piagetian developmental model against the worked example. This 

research thesis establishes that the emergence of new concepts is a critical need in the development of 

autonomous evolvable systems that can act, learn and plan in novel ways, in noisy situations. 
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Chapter 1 

1. Introduction 

"To put it most simply, the paradox is that if one tries to account for learning by means of 
mental actions carried out by the learner, then it is necessary to attribute to the learner a prior 
structure that is as advanced or complex as the one to be acquired" (Bereiter, 1985, p202). 

Pascual-Leone defines Fodor's problem as the learning paradox (pascual-Leone, 1976, 1980 cited by 

Bereiter, 1985, p202). This is a meta-theoretical problem defined by a meta-theoretical question: "How can a 

structure generate another structure more complex than itself?" Piaget's position on the learning paradox is that 

new concepts can be learned through the normal learning process without requiring that additional, but unused 

capabilities, exist (Fodor, 1980, pI42). 

The earliest example of the learning paradox is attributed to Plato's Meno dialogue (Plato, 1985). It is 

known as the "Paradox of Inquiry" (White, 1976, Matthews, 1999), or simply ''Meno's paradox" (Moline, 

1969; Benson, 1990). The thesis of the dialogue is restated by Socrates: "A man cannot inquire either about 

what he knows or about what he does not know - for he cannot inquire about what he knows (ed. deductively), 

because he knows it and in that case is in no need of inquiry; nor again can he inquire about what he does not 

know, since he does not know about what he is to inquire" (Plato, 1985). Thus, inquiry is impossible and by 

extension, learning is impossible: one can never acquire new knowledge. Yet, people know that they learn, 

hence the paradox. 

In the common usage of everyday discourse, a paradox is a judgment or an opinion, which is contrary to 

the general opinion or common sense. The learning paradox on this basis would be an obviously anomalous 

contention that someone seriously propounds, despite its conflict with what is generally regarded, as being true 

(Rescher, 2001, p6). 

Among philosophers and logicians, however, the term has come to acquire a more specific sense, with a 

paradox arising when plausible l premises entail a conclusion whose negation is also plausible. Thus, there is a 

paradox when a set of individually plausible theses {~ ... F,,} validly entails a conclusion C whose negation 

-,C , is plausible. This means that the set {~, ~ ... F" }, -,C is such that all of its members are individually 

I Plausible, meaning presumably true. What this means is that "we will endorse and employ the proposition 

(which may actually be false) insofar as we can do so without encountering problems, but are prepared to 

abandon it should problems arise" (Rescher, 2001, pI6). 
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plausible while nonetheless logically inconsistent overall. Rescher makes the statement that "A paradox arises 

when a set of individually plausible propositions is collectively inconsistent and the inconsistency at issue here 

must be real rather than merely seeming" (Rescher, 2001). Paradox is thus the product not of a mistake in 

reasoning but a defect of a substance: a dissonance of endorsements. A variant way of looking at a paradox is 

therefore as a conflict-engendering argument, a piece of deductive reasoning to a contradictory result 

(Rescher, 2001, p6). When graded in this way the learning paradox, is a paradox, since it instills the interest of 

the inquirer and its deeper meaning is the root of knowledge. 

The central question is, "How is complex knowledge constructed by the learner?" Learning obviously 

takes place, such as when students develop rational number-sense after developing whole number-sense 

(Bereiter, 1985, p202). Bereiter suggests that the process of learning is far more complex than is currently 

realized and that educators have overlooked important factors in the promotion of learning. If it is accepted that 

individuals possess and use an existing higher-level schema, then a large amount of everyday learning occurs 

by avoiding the learning paradox (Bereiter, 1985, p202). Understanding how the learning paradox can be 

resolved will improve an educator's capability to support more effective concept formation in their students 

(Bereiter, 1985, p202). 

Attempts have been made to resolve Meno's paradox: rejected as verbal trickery based on the 

equivocation of the two senses of manthanein (to learn in any way) (Nehamas, 1985, p3); establishing a 

broader semantic context to knowledge (Day, 1994); disambiguation of knowledge and belief (Fodor, 1980) or 

even dismissing it (Moline, 1969, p154). Socrates' provides a solution by using intuitive induction, based on 

the "sense-perception" of universals. As Hoffmann points out, intuitive induction faces the same problem as 

the learning paradox (Hoffmann, 2003). Perceptions are theory laden and based on preconceived 

representations, which is also related to the problem of possessing knowledge (as described in the Socratic 

example of geometry) and of having knowledge and using it to solve a given problem (Hoffmann, 2003). The 

theory of recollection is an original and inventive way of accounting for the understanding of mathematical 

kinds of truth. It has however been a great source of inquiry. Researchers have viewed different aspects of the 

learning paradox and applied it to the observation of emergence of new forms (novelty), both behavioral and 

cognitive on the ontogenetic timescale2
• Researchers principally focus on an individual's acquisition of 

language; however, it equally applies to the development of mathematics (Hoffmann, 2003, pI23). 

We could argue that the learning paradox is Kant's critique of pure reason in disguise - whereas 

empiricism asserts that all knowledge comes through experience, rationalism maintains that reason and innate 

ideas exist first (Kant, 1999). Kant argued that experience is purely subjective, without first being processed 

by, pure reason. That using reason without applying it to experience will only lead to theoretical illusions, 

hence the paradox. 

2 This notion of emergence defines a constraint under which any simulation that attempts to resolve the 

learning paradox would need to work under. We define this constraint as LP2: Exhibits Emergence of 

Hierarchical Concepts using Evolutionary Process. 
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There may be an alternate way of viewing the learning paradox. Consider the dialogue in "Through the 

Looking Glass" by Lewis Carroll, specifically the discussion between Alice and the Red Queen, "Can you do 

Division? Divide a loaf by a knife, what's the answer to that?" (Carroll, 2004, p255). The quote from Lewis 

Carroll hints at a paradox, which if there is sufficient interest by the reader, will lead them on to stop and 

ponder the conflict, "A loaf by a knife." The researcher believes this perplexing situation, in which conflict 

occurs, is central to self-awareness. If self-awareness of learning and knowing is considered the ultimate 

human accomplishment then rather than a meta--cognitive approach3
, this research paper considers that it is 

instead reflexivity. Reflexivity occurs "where we experience or are shown a situation where our existing 

beliefs are inadequate [so] our awareness of our own state of knowing is enhanced," which is central to growth 

through education (Duffy and Cunningham, 1996, p181). It is believed that this process of introspection is 

critical to the emergence of structure that enables us to resolve conflicts in the external world as well as resolve 

the learning paradox. 

The specific answer to the Red Queen's question was the response, "Bread and butter of course" (Carroll, 

2004, p255). Yet this is a difficult linguistic topic because of its metaphorical reasoning, and it is believed that 

it is far beyond the scope of a single Ph.D. research topic. A simpler problem, can be found in childhood 

mathematics. 

The study of mathematics and specifically fractions is foundational in mathematics, yet it is among the 

most difficult topics for school students (Cramer, Behr, Post and Lesh, 1997a and 1997b). Students have 

difficulty recognizing when two fractions are equal, putting fractions in order by size and understanding that 

the symbol for a fraction represents a single number. Students also rarely have the opportunity to understand 

fractions before they are asked to perform operations on them such as addition or subtraction. The development 

of fraction-sense from whole number-sense can be considered a conceptual change and such changes lie at the 

core of all learning (Bereiter, 1985, p202). 

Conceptual development clearly does take place, but some non-Piagetian theories have difficulties in 

accounting for this (Bereiter, 1985). These theoriesi are forced to assume that the learner already possesses the 

high-level concepts, or an equivalent higher-level capability; hence the learning paradox. It is believed that 

fraction-sense4 is too complex a problem for a research project and which requires a much simpler problem. 

Counting is one of the first number ideas taught to children, but the numbers they recite often have little 

meaning for them (Copeland, 1974, p82; Chilampikunnel, 2010, pI47). Children learn many things about the 

physical world in which they live before they develop the abstract idea of number, and this learning is 

incrementalS
, yet has observable stages (Furth, 1969; Copeland, 1974). Number, as a classification (based on 

3 A meta-cognitive approach stresses strategies for efficient processing. 

4 Fraction-sense is equated with rational number-sense. 

S The notion of incremental learning is seen as a critical feature of any system that attempts, even partially, to 

resolve the learning paradox, hence the definition LP5: Learns Incrementally with Minimal Innate Knowledge 

and Reflexes. 
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properties shared in common by a given set of objects) is not a physical object such as the color of the object. 

For instance, does the child who can count by matching number names to objects "being counted" understand 

the real meaning of number? One way to test this is to spread them out and give them more space. This is 

illustrated below (Piaget, 1952, p36 and Copeland, 1974, p83): 

••••• ••••• 
••••• ••• •• 

Figure 1-1 Piaget's bead problem which exhibits stage like variation - young children fail to detect the 

1: 1 correspondence, whereas older children recognize that they are the same and achieve conservation of 

number 

A youngster observes two sets of beads. He agrees that they are the same (in number). If one set were 

spread out, would the child still say they are the same? Most children of five or six years of age respond that 

there are more in the spread out set6• The spatial configuration of, or space occupied by the beads is to the 

child, the number idea. The spread out beads occupy more space, so there must be more beads (Copeland, 

1974, p83). The same child at seven or eight hardly pays any attention to the problem and returns the correct 

answer. This difference is the stage like variation that Piaget consistently refers to in his research (Piaget, 1952, 

p36). Some researchers believe that the number space problem is related to estimation skills with research 

suggesting that children ages five to six, frequently estimate numbers using a logarithmic scale, rather than a 

linear scale (Booth and Siegler, 2006, p189). The cognitive shift from logarithmic to linear scales at ages five 

to seven which results in better measurement, judgment, numerosities and computational estimation skills, may 

account for this discrepancy (Booth and Siegler, 2006, p 189). What is interesting in the bead problem is that it 

is a reversible transformation, which the student resolves through maturation. An examination of the 

development of number-sense, including the bead-problem, is the scope of this research. 

Research from cognitive science, machine learning and conceptual development all have different 

explanations for various forms of concept formation, and these will need to be reviewed to determine how they 

individually resolve the learning paradox, and specifically if they can resolve the bead problem devised by 

Piaget through maturation in their systems. 

Other researchers have considered concept formation, including conceptual blending (Fauconnier and 

Turner, 2002), metaphors (Lakoff and Nunez, 2001; Lakoff and Johnson, 1999), but these may not have 

considered the problems of the learning paradox. 

6 Piaget's bead problem is an example of conservation of number. It is used to define a constraint, LP4: Mirrors 

Real World Behavior of Children Learning Number-sense using a number line. It is also used in conjunction 

with the observation of children See § 2.5. 
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Bereiter suggests that when educators overlook the learning paradox, they simplify learning and miss 

important factors in the promotion of learning (Bereiter, 1985). The implication of Bereiter's analysis is that 

understanding how the learning paradox can be resolved will improve the educator's ability to support more 

effective concept formation in their students (Bereiter, 1985). 

1.1 Motivation 

1.1.1 Research Purpose 

The purpose of this research is to study the learning paradox as defined by Bereiter (Bereiter, 1985, p202) 

and Fodor (Fodor, 1980) by applying principles from Cognitive Modeling, Computer Science and Information 

Systems to the "real-world" development of number-sense in children. In doing so, a set of objective criteria 

are determined which are used to grade any potential (partial) resolutions to the paradox from the research 

literature. 

1.1.2 Research Questions 

Since Piaget suggests that resolution of the learning paradox occurs naturally in individuals as they 

mature, this produces a series of questions: 

1) How have researchers tackled the epistemological issues associated with the learning paradox? 

2) Since biology and evolution have already resolved the learning paradox, what can be learned by studying 

these disciplines? 

3) How does Piaget's model explain the process of maturation of an individual i.e., does his theory sidestep 

the main issues and can it be modeled in a simulation? 

4) If one were to construct an example problem based on the observed behavior of children as they develop 

number-sense, then how would other researchers view this example problem? 

5) Have other researchers in automated theorem formation (ATF) and automated theorem proving (ATP) in 

pure mathematics considered the learning paradox? 

6) Since much of human reasoning is metaphorical, how have researchers in the concept formation discipline 

tackled the learning paradox? 

7) How has the field of cognitive development, which uses various forms of machine learning (symbolic, 

emergent, hybrid), tackled the problem of the learning paradox? 

8) Have prior implementations of Piagetian models resolved the learning paradox as specified by Piaget's 

model? 

9) How have other machine learning frameworks, those not specific to cognitive development models (Ouch, 

Oentaryo and Pasquier, 2008, p123), resolved the learning paradox? 
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1.1.3 Research Hypotheses and Research Problems 

The hypotheses of this research are that (i) a Piagetian model of human cognition exists from which 

conceptual structures can emerge and resolve the learning paradox, (ii) a biologically plausible model of 

mathematical concept formation exists, and (iii) it is possible to emulate concept formation in a simulation by 

using a cognitive learning framework provided by Piaget. Hypothesis (i) assumes that Piaget's theories of 

learning and development (Piaget, 1964, p8), is far closer to a biologically plausible model than is currently 

suspected. To support this notion, it will be necessary to identify novel areas of Pia get's work (Furth, 1969 and 

Copeland, 1974) that were missed by earlier researchers. With this, the research problem can be defined as 

"Determine the conditions under which it is possible to exhibit emergence in a simulation and so overcome the 

learning paradox (albeit partially), within a constrained number line world using a biologically plausible 

model." 

1.1.4 Research Validity 

A Piagetian model of self-learning and development is used to establish a solution that handles novel 

situations by developing a digital network of circuits (propositional logic components as fmite state automata 

(FSA) where information is marshaled across this network using hierarchical finite state automata (HFSA). 

This is important for three reasons. First, current implementations of cognitive development models typically 

follow the dual-mind hypothesis' (Paivio, 1986; Paivio 2006; Anderson, 2005; Lieberman, Gaunt, Gilbert, 

Trope, 2002; Pyysiliinen, 2003, p617) and insert already formed symbolic language (propositional or predicate 

based) on top of sub-symbolic forms. In doing so they skirt around the symbol grounding problem. This thesis 

takes the genetic epistemological view and affirms that for a machine to approach resolution of the learning 

paradox on its own, it must form its own neural concepts. Second, by relating the learning paradox to the 

development of number-sense in childhood mathematics, the educational validity of this research is 

established. 

1.2 Aims of the Project 

In this research, the aims are to: 

1) evaluate epistemological solutions to the learning paradox, by interpreting research from the 

perspective of various researchers (Plato, Chomsky, Fodor, Piaget, Bereiter and Pascual-Leone) and 

compare and contrast a solution to the learning paradox as a form of emergence in Piaget's theory of 

genetic epistemology; 

, The dual mind hypothesis, often referred to as dual coding theory, asserts that visual information processed 

by the brain are analogue codes with verbal information being symbolic (Paivio 1986; Paivio, 2006). These 

already formed symbols, allow cognitive modeling researchers, to incorporate symbolic information into their 

systems in the form of propositional and predicate logics (Anderson, 2005). 
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2) evaluate sources of emergence, by reviewing models of neurophysiology and biological evolution to 

determine how emergence can be simulated in a computer system; 

3) provide a computational reading of Piaget 's theory, by re-interpreting his work from the perspective 

of neurophysiology, biological evolution and the epistemological constraints imposed by the learning 

paradox and in doing so, produce a worked example and a mechanism to grade models of emergence; 

4) clarify emergence in a real-world worked example using a number-line, by reviewing observations 

of the development of number-sense (as a form of mathematical conceptual learning) in children 

who are observed developing number-sense using a number line; 

5) compare and contrast different notions of mathematical concept formation, by reviewing human, 

machine learning, cognitive development and Piagetian models to understand how these support 

emergence to resolve the learning paradox; 

6) provide arguments to support a separation into an artificial neural network implementation and a 

dialectical system; 

7) evaluate the artificial neural network implementation, by testing the hypothesis that it is possible for a 

neural architecture to implement a model of Pia get based on Drosophila that exhibits emergence; and 

8) evaluate the dialectical system, in particular, by testing the hypothesis that it is possible to develop 

number-sense using Piaget's developmental model implemented as HFSA, and so partially 

overcome the learning paradox. 

1.3 Contributions 

This is a systematic analysis of Pia get's work that applies recent knowledge of neurophysiology, biology, 

evolution and machine learning to his theories. Since the works of Pia get span many decades, are, at times 

confusing, often misquoted and certainly misrepresented, this research confines itself to two theoretical 

reviews (Furth, 1969 and Copeland, 1974). In doing so, it was realized that there is a biological basis for 

Piaget's genetic epistemology and that a simple "generative model" of act/sense, learn and plan from 

Drosophila (Miesenbock, 2008, p52; Shang, Claridge-Chang, Sjulson, Pypaert and MiesenbOck, 2007, p601) 

can be mapped to Piaget's genetic epistemology (Furth, 1969). 

The second contribution is the development of algorithms for class-based evolution, which enable the 

evolution ofFSA and HFSA, provides evidence of resolution of Pia get's bead problem and of conservation of 

number. To do this, this thesis extended a computational model of evolution (Jacob, 2001) and binary FSA 

(Levy, 2002). 

Last, the contribution of a definition as a set of constraints (LPt - LP7) and a worked example (WEt -

WE5), that can be used to grade potential solutions to the learning paradox is made. 

1.4 Structure of the Thesis 

In chapter 2 is provided a review of the literature. In § 2.1, is introduced the epistemological issues of the 

learning paradox by describing theories of concept formation by Chomsky, Fodor and Piaget. This provides the 
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motivation to model Piaget's methods and places some constraints8 on a solution. The next step is to describe 

biological evolution as a basis for emergence of structure that enables children, naturally, to overcome the 

learning paradox, in § 2.2. Neurophysiology of Drosophila (fruit flies) is outlined in which it is suggested that 

reinforcement learning provides a neuronal construction mechanism, which can be implemented in an artificial 

neural network, to support emergence of concept primitives. Also identified are hierarchical finite state 

automata as a simulation mechanism for a dialectic system. In § 2.3, a review of the roots of Piaget's genetic 

epistemology is discussed with a re-interpretation of Piaget's work from Furth (Furth, 1969) and Copeland 

(Copeland, 1974). This interpretation is then mapped to the neurophysiology of Drosophila (fruit flies). Further 

developed is a set of features required by any simulation, which attempts to acquire number-sense using a 

Piagetian model along with a worked example9 against which this solution will be tested. In §2.4, the 

emergence of number-sense is reviewed in terms of the cultural effects of the number line as well as current 

theoretical approaches in the development of mathematical ideas. In doing so is confirmed the validity of the 

worked example. In § 2.5 the development of mathematical concepts in automated theorem formation and 

proving systems is compared and contrasted to the development of number-sense in children. In § 2.6 is 

reviewed the underlying basis of concept formation in metaphors and conceptual blending theories; Fauconnier 

and Turner's view that emergence must be based on evolution. In § 2.7 cognitive development models are 

reviewed which shows that emergent models provide a suitable basis for resolving the learning paradox, yet 

they are not capable of resolving the constraints based on the theoretical works of Piaget. Prior Piagetian 

implementations are reviewed and contrasted to the re-evaluated Piagetian theory, in § 2.8. Other frameworks 

that could resolve the learning paradox are surveyed, and it is concluded that some, such as visual perception 

may provide useful future features to extend this research, in § 2.9. The key points of the literature review are 

summarized and conclusions are reached by discussing the need for a hierarchical neural network 

implementation of the Piagetian model, to resolve fully the learning paradox. In addition, a solution is provided 

as an artificial neural network implementation and a dialectic system, to partially resolve the learning paradox, 

in § 2.10 

In chapters 3 and 4 the research methods utilized are defined along with a description of the architecture 

and the design of the artificial neural network implementation and the dialectic system. 

In chapter 5, an evaluation of a biologically inspired artificial neural network implementation of a 

Piagetian I Drosophila model using reinforcement learning and the dialectical system which implements a 

Piagetian model of development, is provided. 

Chapter 6 further describes ways to develop and apply this implementation model and chapter 7 

concludes this study. 

Appendix A contains more details on biological evolution as a basis for emergence. Appendix B reviews 

more issues with cognitive development models and their capability to resolve the learning paradox. Appendix 

8 Those constraints are identified as LPt - LP7. 

9 The worked example is described as WEt - WES. 
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C discusses Piagetian approaches to mathematics. Appendix D contains further examples of the evaluation of 

the dialectic system. 

1.5 Summary 

By observing the development of children, Piaget penned the theory of operative meaning lO (Furth, 1969 

and Copeland, 1974) which provides a model of learning and development, which, he believed, resolved the 

learning paradox. While many current researchers are aware of his work, none has provided a thorough 

analysis of his work from the perspective of neurophysiology, biology, evolutionary processes and machine 

learning. This research holds (i) that a Piagetian model of human cognition exists from which there is 

emergence of structure and so resolve the learning paradox, (ii) that a biologically plausible mechanism of 

mathematical concept formation exists and (iii) that it can be implemented in a simulation, where number

sense is an emergent property of the executing system. To evaluate these hypotheses two systems are 

developed: an artificial neural network implementation and a dialectic system. It is shown that the artificial 

neural network implementation demonstrates emergence of structure (the permanent object invariant, as 

described by Piaget), but cannot develop a Piagetian form of number-sense. It is further shown that the 

dialectic system can implement a fuller Piagetian model of development that reveals emergence of number

sense. In doing so, the state of the art of models of emergence and Piagetian models in particular are improved 

upon. 

10 We refer to Piaget's theories collectively as "genetic epistemology" (piaget, 1970a) using the two main 

reference sources of Furth (Furth, 1969) and Copeland (Copeland, 1974). 
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2. Literature Review 

This chapter begins with an introduction to some of the epistemological issues associated with the 

learning paradox, from the debate between Chomsky, Fodor and Piaget. A set of constraints are developed that 

need to be met by any simulation that attempts to resolve the learning paradox in § 2.1.8. Applying the 

assumption that evolution has already resolved the learning paradox, § 2.2 summarizes some key aspects of 

biology and evolution, and explains how these can be simulated, without contradicting the identified 

constraints. A re-evaluation of Piaget's model of cognitive development proceeds using work from Furth, 

Copeland, Pascual-Leone and Piaget in § 2.3. With this foundation in place, a description of the relationships 

of Piaget and Mathematics is provided along with a worked example that is used in an evaluation of models of 

cognition. The research approach is then reviewed and confrrmed using a number line world to test for 

emergence of number-sense with research from neuroscience, the cultural impacts of MNL and educational 

perspectives, in § 2.4. In § 2.5 automated theorem formation and proving systems in pure mathematics are 

reviewed and their philosophical basis is discussed along with the development of mathematics through 

simulated creativity to determine how these could support the constraints imposed by the learning paradox and 

the worked example. In § 2.6, is reviewed the underlying basis of emergence in metaphors, mental spaces and 

conceptual blending theories (Fauconnier and Turner, 2002). Examples of number line processing using 

conceptual blending are presented which help identify issues with the approach and the need by the authors 

(Fauconnier and Turner, 2002) for emergence of structure to enable the construction of blends. Cognitive 

development models in § 2.7 are reviewed to determine if any provide a suitable basis for resolving the 

learning paradox. This permits the identification of several issues that need to be addressed by present 

research. In §2.8, existing Piagetian implementations (Pascual-Leone, 1970; Drescher, 2002 and Chaput, 

2004), are reviewed and contrasted to the reevaluated Piagetian theory defined in §2.3, and the learning 

paradox. In §2.9, other frameworks of conceptual development are reviewed to determine if they can resolve 

the learning paradox, work within the constraints defined, and exhibit emergence as defmed by Piaget. The 

surveyed frameworks include case based reasoning, explanation based learning, unsupervised learning in 

visual perception and emotional/intuitive models. A summary of the literature review is provided in §2.1O. 
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2.1 Epistemological Issues 

This section introduces some of the epistemological issues associated with theories of concept formation 

(Chomsky, Fodor, Piaget Bereiter and Pascual-Leone), which have been proposed to resolve the learning 

paradox. In this analysis, a series of constraints (LPI - LP7) are devised which any solution would need to 

have resolved. The debate on the learning paradox is outlined in § 2.1.1. A discussion follows the positions of 

researchers in the debate, Chomsky in § 2.1.2., Bereiter in § 2.1.3, Fodor in § 2.1.4, Piaget in § 2.1.5 and 

Pascual-Leone in § 2.1.6. The constraints of a simulation are summarized in § 2.1.7 and a set of conclusions is 

described in § 2.1.8. 

2.1.1 The Debate on the Learning Paradox 

''No knowledge is possible unless concepts and hypotheses are already in the mind before 
anything is observed at all" (Piattelli-Palmarini, 1980, p258). 

The first major modem debate concerning the learning paradox occurred in October 1975 at the Abbaye 

de Royaumont (Piattelli-Palmarini, 1980). Two major issues dominated the debate between Noam Chomsky 

(the originator of generative linguistics), Jean Piaget (the originator of genetic epistemology) and Jerry Fodor 

(the originator oflanguage of thought): 

1) The origin of the fixed nucleus; and 

2) The specificity of the fixed nucleus. 

The fixed nucleus is the innate capacity or innate structures required to produce grammatical utterance; 

whereas the fixed nucleus contains representational content primitives. The specificity of the fixed nucleus are 

mental skills, especially linguistic ones. The protagonists debated from different positions, with Chomsky and 

Fodor as nativists opposing Piaget's genetic epistemology on various grounds. 

A summary of the positions of each of the participants is provided in the following sections. 

2.1.2 Chomsky 

For Chomsky, a genetically predetermined generative grammar is a possible explanation for observations 

of the quick acquisition of language by children (Chomsky, 1980, pI87). The direct origin of the fixed nucleus 

is a mental organ which is unaffected by cognition, general intelligence or sensory motor activity (Chomsky, 

1980, pI88). The argument that language is "underdetermined by experience" and the problem of mapping 

experience onto state transitions 11 forced Chomsky to take a nativistic stancel2 to explain the specificity of the 

fixed nucleus. In later works on binding theory, Chomsky continues to defend this position inferring that 

certain principles are "built into" the initial state of the human language systems (Chomsky, 2000, p50). 

II This nativistic stance can be explained in terms of the brain creating an endless variety of grammatically 

correct sentences from a limited vocabulary and being able to map new sentences within this grammar. 

12 The nativistic stance is that language, specifically grammars, must be innate. 
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Chomsky's aim was to decompose a particular behavioral13 whole into behavioral primitives, which 

either are no longer determined by experience, or have no internal structure of their own i.e., they can no 

longer be divided into behavioral sub-systems. Therefore, this logically ensures that these concepts, 

knowledge or behaviors must be preexisting in evolution, because they cannot depend on ontogenetic learning, 

nor on making input representations on primitives. Chomsky takes the innate structures to contain 

representational content and by applying computational theory to cognition, allows them to be decomposed 

into individual parts as rules and representations. Yet accounting for language from a selection vie""Point 

offers no more depth on the problem. The updated Chomsky hypothesis suggests that humans have a parameter 

setting device which sets the logical and syntactic forms of a given language based on sample sentences the 

child encounters (Chomsky 1986, p 146). However, this does not furnish a resolution to the learning paradox. 

2.1.2.1 Chomsky: Where is the problem? 

Piaget considers Chomsky position to flounder in formalization (Piaget, 1980b). First on the argument 

that no single logic is strong enough to support the total construction of human logic and that all the logics 

taken together are too rich to enable logic to form from a single basis i.e., formalization alone is not sufficient. 

Secondly, Godel's incompleteness theorems14 disprove of Chomsky's innate logic approach. Next, since 

epistemology sets out to explain knowledge as it actually is, any explanation must include the aspects of 

human psychology. Piaget rejects Chomsky and asserts that, "The fundamental hypothesis of genetic 

epistemology is that there is a parallelism between progress made in the logical and rational organization of 

knowledge and the corresponding formative psychological processes" (Piaget, 1970a, pI3). 

Chomsky leaves the task of explaining the postulated underlying device, the mental organ, to biologists. 

Cognition is thus computation on representations as symbol structures, with no indication of how symbol 

formation occurs. Piaget maintains that, the language generated by this "mental organ" is based on logic, and 

considers the deveiopment1S of this "logic" as innate (Piaget, 1970a, p 13). 

Ifit is presumed that some internal mechanism is provided by genetic inheritance, and that, for Chomsky, 

this genetic inheritance is the potential to learn grammars, (with the grammars being inherent structures 

supporting manipulation of, more or less, formal transformations from surface structures to hierarchical 

structures and back again), then the learning paradox can be resolved. What is not available is a mechanism to 

address novel situations, such as those that occur regularly to humans through evolution. Computational 

psychology also reveals some major problems with respect to a lack of fault or noise tolerance. 

13 Behavioral in this context can be interpreted as cognitive. 

14 For Godel, "within any formal system using only such concepts (recursiveness) and capable of expressing 

arithmetic, it is impossible to establish its own consistency" (Godel, 1992, p26). 

IS We refer to this development more appropriately as emergence. 
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Chomsky's decomposition positionl6 is decried by a theory of evolutionl7, which must, in principle, 

account for both holism and decomposition since both aspects are "observables" in the living (Pinker, 1994). 

Any valid solution must explain the parallel between the evolutionary and the ontogenetic level (between the 

whole and the parts). The key aspect is that the evolutionary hierarchy provides a partial ordering, which is 

reflected in the ontogenetic sequence, as evidenced by cognitive developmentl8. 

Representationalists like Chomsky explain the functioning of a system by assigning to it their own 

knowledge of the world. They can be seen as epistemic agents outside of the system who define an encoding 

relation that exists for observers, but is not inherent within the system under consideration itself. That is, the 

structure is not present in the external world, but only within the observer. 

Chomsky'S model of language acquisition does not account for the increase in complexity shown by 

individuals over time. Chomsky's model predicts decreasing structure, which is evidently not the case 

(Chomsky, 1995). The core question is, "How can the development of complex mental structures be accounted 

for by mechanisms that are themselves not highly intelligent, nor, richly endowed with knowledge" (Bereiter, 

1985, p205)? The central point is how bootstrapping, which is understood to be the progress toward higher 

levels of complexity and organization, is possible and occurs, without there already being an innate "ladder or 

rope to climb on" (Bereiter, 1985). For Bereiter, adding complexity is not simply a matter of adding elements 

or chunking. For Bereiter, the learning paradox is resolved in terms of a computer program, which includes 

itself as a subroutine and overcomes homunculus 19 (Bereiter, 1985, p 205). Researchers miss the significance 

of the learning paradox. First, for Chomsky the issue is innateness of knowledge, but more importantly, one 

should consider how experience modifies these cognitive structures (Bereiter, 1985, p202). Second, crude 

addition to efficient addition cannot be explained in terms of improved strategy in the learner, utilizing 

16 In the Minimalist Program, a part of generative grammars, Chomsky argues from a naturalistic and 

reductionist standpoint for the decomposition of sentences (typically) into phases under an optimal design (the 

universal grammar) that meet the conceptual and phonological needs of the individual (Chomsky, 1995). In 

linguistics, this holism is based on the belief that it is not possible to understand learning through analysis of 

small chunks. Often referred to as "whole language," it forms the basis of Chomsky'S generative grammars, 

which is evidenced in skill based instruction and the "whole part whole" approach, through the use of the 

language acquisition device. 

17 Evolution itself exhibits two fundamental characteristics of holism and decomposition (reductionism) 

(Smuts, 1927). Whereas holism focuses on how organisms, become increasingly intricate over time, 

reductionism focuses on how the most adaptive subsystems function and are selected in evolution. 

18 Development is assumed to define LP6: Children develop their learning process. In this, the construction of 

what is already known and the process by which that knowledge is acquired is altered by the maturing child 

(Furth, 1969, pI05). 

19 Homunculus is the process of infinite regress. 
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consistency detection and redundancy elimination, since this is just avoidance (Klahr and Wallance, 1976 cited 

by Bereiter, 1985). 

If the learning paradox is taken as the basis of the distinction between additive learning (elaborative 

learning) and learning that increases the structural complexity (Kohlberg, 1968 cited by Bereiter, 1985, p217) 

then rather than merely describing learning at different levels of abstraction (Bereiter, 1985), it becomes clear 

that the increase in structural complexity is not the difference between kinds of learning. This is the distinction 

between "kinds of learning that can be accounted for on the basis of knowledge schemas that the learner 

already possesses and learning that involves a new cognitive structure to which already existing schemes are 

subordinated" (Bereiter, 1985, p217). 

Any solution to the learning paradox must be capable of developing these structurally complex 

schemes20. Examples being second language development, creativity and rational numbers (Bereiter, 1985, 

p206). Bereiter defines a set of heuristics, as steps and a direction, for a theoretical solution of how to analyze 

the bootstrapping process (Bereiter, 1985, p206). Specifically, if some opportunistic kind of cognitive 

development can be shown to be significantly influenced by instruction, then evidence of learning a more 

complex cognitive structure has been produced (Brown, Bransford, Ferrara and Campione, 1983 cited by 

Bereiter, 1985, p208). The implication is that some form of supervised learning including an interaction 

between a teacher and student is critical to test this form of development. 

2.1.3 Bereiter 

Developing this approach, Bereiter and Scardamalia suggest the possibility of using defined factors ii 

within behavioral settings to account for learning new, complex cognitive structures and to overcome the 

learning paradox through bootstrapping (Bereiter and Scardamalia, 1983 cited in Bereiter, 1985, p204). 

Bootstrapping is important since it relates to hierarchical machine re-construction, which is, itself, related to 

theories of emergence (Crutchfield, 1994a and 1994b). 

From the assumption that babies have innate knowledge (Spelke, 1982; Carey, 1978 cited by Bereiter, 

1985), Bereiter assumes bootstrapping depends on characteristics not shared by computers21 and within a rich 

innate endowment, which places learning, as a nontrivial role in cognitive development. However, this does 

not explain the whole of development. Bereiter suggests avoiding genius because genius is subsequently so 

different from the norms of development and to look for areas where bootstrapping is chancy, and where 

achievements in development are less universal and depend on fortunate events or special circumstances. Most 

importantly, he assumes that teachability implies bootstmpping: and if some chancy kind of cognitive 

development can be shown to be significantly influenced by instruction, then evidence of the learning of a 

more complex cognitive structure has been shown (Brown, Bransford, Ferrara and Campione, 1983 cited in 

Bereiter, 1985, p208). 

20 Scheme refers to the conceptual structures that are developed by an individual. 

21 As computing was defined in 1980 (Pylyshyn, 1980 cited by Bereiter, 1985). 
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In conclusion, Bereiter's remarks point at the necessity of avoiding premature reductionism, since 

explanations may be more complex than the thing itself. This approach is a key feature in the solution brought 

forth in this thesis. 

2.1.3.1 Bereiter: Where is the problem? 

Even in defining the learning paradox, Bereiter and Scardamalia did not provide an implementation 

model of its resolution. They merely point at areas, like the defined factors and bootstrapping, which allude to 

a partial solution (Bereiter and Scardamalia, 1983 cited in Bereiter, 1985, p204). 

2.1.4 Fodor 

Fodor, as with Chomsky, adopted Plato's position and argued that any resolution to the learning paradox 

required that individuals already had higher level, but as yet, unused, capabilities in order to "learn" them 

(Fodor, 1980, pI49). Fodor argued from a meta-theoretical perspective in terms of the logic that would 

describe any set of lower level capabilities. Fodor's argument can be seen as a limitation on both human and 

existing artificial learning systems. Fodor viewed hypothesis formation and induction as central to conceptual 

learning and suggested: 

..... It is never possible to learn a richer logic on the basis of a weaker logic, if what you 
mean by learning is hypothesis formation and confmnation .... There literally isn't such a 
thing as the notion of learning a conceptual system richer than the one that one already has; 
we simply have no idea of what it would be like to get from a conceptually impoverished to a 
conceptually richer system by anything like a process of learning" (Fodor, 1980, pI49). 

Fodor's position is how one can learn a description without already having another description i.e., 

learning a description that can account for a problem with any degree of detail requires that the same level of 

detail already exists in the mind, and can be accounted for, at the same level of detail. In the debate and in 

earlier work on the language of thought (Fodor, 1975), Fodor argued that learning at higher levels of analysis is 

impossible from lower, more descriptive instances. If thought is mediated through the cognitive structures that 

are inherent in the brain, then thought is mediated through syntactic (not semantic) models. It does not make 

sense (logically or otherwise) to support learning descriptions at a higher level oflogic. Formulating a higher

level description is not possible unless it is already supported - so the system is not then operating at a higher 

level. 

Continuing these arguments, Fodor, suggests, "What people believe to be a theory of concept learning 

(concept acquisition or learning) is actually a theory of the fixation of belief by experience of an individual" 

(Fodor, 1980, pI44). Epistemologists including Putnam22 (putnam, 1975) provided the basis for Fodor's view 

22 In multiple realizability (Putnam, 1975), Putnam supports Fodor's argument and provides an effective 

argument against type-identity theories. The crux is that fixation of belief concerns a balance between 

interpretation and observation. Whereas identity theories purport a form of reductionism in which the mental 

item is nothing more than the physical item with which it is associated. The "likelihood argument" implies that 

Page 15 



Chapter 2. Literature Review 

and to get the theory of the fixation of belief to work and this is understood to mean the impossibility of 

acquiring more powerful structures requires a radical background in nativism (Fodor, 1980, pl44). Fodor 

explains this as: 

1) Most people assume that the fixation of belief occurs through inductive inference using some form of non

demonstrative inference using hypothesis formation and hypothesis confirmation, from some set of beliefs, 

to generalizations, as in the following experiment: 

a. X is miv, if and only if X has [critical attributes: specification attributes, rewards, relationships of 

attributes and rewards] ... 

2) The experiment makes the following assumption: 

a. The critical attributes, which form the hypothesis, are predetermined and fixed in the experimental 

situation; 

b. The concept miv is also known since it is provided in the hypothesis before it has been learnt. 

3) All the experiment tells us: 

a. How various selections of critical attributes affect the individuals convergence through experience 

(inductive learning) on accepting the right hypothesis; 

b. That the likelihood that a hypothesis will be accepted by an organism varies with the aspects of the 

organisms experience in the environment. 

c. That hypothesis formation and hypothesis confirmation is the only known method that can be used 

for any belief that can be fixed. 

4) What the experiment does not tell us is: 

a. Where the notion of hypothesis comes from; and 

b. How to acquire the concept, miv. 

5) Conclusion 1: Thus, a theory of the fixation of belief is not a theory of concept learning. It uses inductive 

inference. To accept the arguments of both implies that one is a nativist (Fodor, 1980, p 147). 

However, observations of children's behavior can be described in different ways: 

a. Tenet 1: Observations of children's behavior show that they develop stronger logics as they 

mature: As a child progresses through stages of development, they develop stronger forms of logic 

e.g., they learn transitive concepts then reversibility concepts in later stages. 

b. Tenet 2: These stronger logics contain weaker logics: Each stronger logic will asymmetrically 

contain the weaker logic2l
• Examples are: 

i. Stage 1: Propositional logic 

1. It is not possible to give truth conditions in formulas, for example24
: 

any low-level explanation of higher-level mental phenomena is insufficiently abstract and general. In the twin 

earth thought experiment, Putnam asserted semantic externalism, insisting that "meanings just ain't in the 

head" (Putnam, 1975, p227). 

23 More expressive logics have the former logic as a proper part (Fodor, 1980, pI48). 
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('\In )(:lm)( int( n) --+ (times (2,n,m) 1\ even ( m))) 

2. All you can say in propositional logic is that an instance is true: similarly the 

assertion X> I where x is a variable is not a proposition because you cannot tell 

whether it is true or false, unless you know the value of x. This can be restated, 

"you cannot quantify all the attributes in a propositionallogic,,25. 

11. Stage 2: Predicate logic 

1. A theory in propositional logic is always a theory in predicate logic, but a theory 

in predicate logic is not a theory in propositional logic. 

By accepting that children develop stronger logics as they mature and stronger logics contain weaker logics 

(from Tenet 1 and Tenet 2) then transition between developmental stages in Piaget's genetic epistemology 

cannot be a learning process since there is no such process as concept learning (from Conclusion I). A general 

form of argument for this is: 

1) If one assumes that learning is inductive inference: 

a. One has to be able to create hypotheses when Stage 2 concepts are instantiated 

b. One has to be able to characterize truth conditions on formulas containing the concepts of Stage 2 

while in Stage I. 

For Fodor, all that one can say is that concept development in humans occurs as a part of maturation. 

Secondly, that hypothesis and hypothesis confirmation through experimentation are the only models of 

learning known to exist. 

2.1.4.1 Fodor: \Vhere is the problem? 

Fodor uses the separation between propositional and predicate calculus to suggest that it is not possible 

for an organism that can do propositional calculus to formulate problems at a predicate level, from within the 

system itself. 

According to Fodor, formulating the learning paradox introduces a number of problems, which need to be 

resolved. First, identifying what concepts could be learned in the potential space of concepts to learn. Second, 

identifying what kind of description might be adequate for this problem i.e., how could the system learn it? 

Third, identifying what might be relevant from the current repertoire of concepts that might be worth noting 

which defines the description space. Last, identifying the evaluation strategy i.e., how does one decide between 

24 In the given example of predicate logic "every integer times itself is even," exhibits skolemization, the 

introduction of constants or functions. 

25 This infers the definition of LPl: Works within the constraints imposed by Fodor. Which is, using a 

propositional logic, one cannot use quantifiers (universal nor existential). Secondly, the starting point for 

processing, must, at most, only be propositional. This could be taken to imply a structure, with predicate logic 

operating in some hierarchy, and propositional logic doing some form of processing. 
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alternative strategies. Lastly, it is necessary to identify the mental resources that are needed in order to support 

concept formation by the individual. 

Fodor claimed that hypothesis formation is an inductive process (Bereiter, 1985, p201). This is a 

technical expression by researchers who create new knowledge by spending considerable time collecting 

"data" and that examination of these "data" then induces the hypotheses they define. This induction, Fodor 

asserts, is only possible if the logical structure of the hypothesis was in some form already present in the 

researcher. In review, it makes no sense to claim, as Fodor and Bereiter did, that because hypothesis formation 

is an inductive process, there is a learning paradox concerning all theoretical conceptual structures that cannot 

be gleaned directly from experiential data. Research shows (Von Glasersfeld, 1998; Fodor, 2008, p132) that 

every inductive inference involves the spontaneous creation of an idea that may turn out to fit the "data" but 

was not actually inherent in them. The same is true of conceptual accommodations and even of many 

elementary accommodations on the sensory motor level. In both cases, a conceptual step fits the pattern of 

abduction. The conceptual step generates new knowledge whenever the abduction proves viable (Von 

Glasersfeld, 1998, p9). 

Fodor's arguments for the learning paradox unravel when one considers encoding for novel situation: one 

can only learn what one already knows; experience can only select the appropriate inborn representation. This 

correspondence, between internal symbol and external phenomena, must have been constructed somewhere, 

since in Fodor's arguments there is no crossing between symbol and external phenomena. However, if, as 

Chomsky and Fodor suggest, learning cannot account for the basic encodings, how could evolution succeed in 

accounting for them26 ? 

The implication for the research is that a solution must model evolutionary development and in doing so 

account for both Fodor's arguments as well as Bereiter's. What is required is a model of how development 

could occur, one that accounts for the childhood issues such as incorrectly applied knowledge, the differences 

in levels of knowledge, novel situations, problems and, above all, the development of logics. 

2.1.5 Piaget 

For Piaget, the origin of the fixed nucleus is sensory motor activity, which is grounded in mechanisms of 

perceiving, behaving (acting), of feeling, and, the biological mechanism. Researchers referred to the sensory 

motor schemes as the "cognition-first assumption," or "front door approach" and, the "back door" to the 

processes of self-organization by assimilation and accommodation. Piaget assumed that sensory motor 

schemes are the pre-conditions for language, providing the mechanisms for linguistic structures e.g., point, 

penState, direction, movement and line for number-sense. Schemes are the conceptual relations, the "prime 

movers" in the process of acquisition, from which syntax is derived. In the debate, Piaget assumed that 

language is continuous, with generalization of those sensory motor schemes developing the specificity of the 

fixed nucleus (Pia get, 1980b). 

26 This becomes the definition for LP7: Children act in novel, noisy and opportunistic situations. 
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Piaget can be viewed as representing holism with a mechanism of adaptation that uses accommodation 

and assimilation to account for increasing complexity. This increase in complexity is observed as the 

differentiation and hierarchical integration, of cognition, within the individual. 

Piaget converged with Chomsky on five central issues (piaget, 1980, p57): 

1) The inadequacy of empiricism27 
- "fundamental relationship that constitutes all knowledge is not, 

therefore a mere association between objects, for this notion neglects the active role of the subject, but 

rather the assimilation of objects to the schemes of that subject" (Piaget, 1980a, p377; Furth, 1969, p93); 

2) Transitions between states using logic as rules derived through deduction, principles and constraints are 

formally constrained by logical necessity, which is constructed though interiorization and equilibration 

(Furth, 1969, p68-82); 

3) The internal activity of the subject generates language (for Chomsky) using its generative grammar and 

develops objects of thought (for Piaget) using its innate schemes and primary reactions following 

evolutionary and developmental trends (Furth, 1969); 

4) Development28 must be studied in real time using experiments with subjects; and 

5) Language is the product of intelligence. 

The main issues that wrestled between Chomsky and Piaget was the innateness of the fixed nucleus, 

which consists of cognition, self-organization, universal trajectoif9 and generalization (Piaget, 1980a, 1980b). 

First, cognition is adaptive self-organization, which occurs through the processes of assimilation and 

accommodation. Piaget addresses Fodor's concern: 

27 Piaget's position can be considered anti Kantian, since Piaget disagreed with the whole representation theory 

of knowledge upon which most symbolic processing is built (Furth, 1969, p93). 

28 The development of knowledge is spontaneous and tied to the whole process of embryogenesis. 

Embryogenesis concerns the development of the body, but it also concerns the development of the nervous 

system and the development of mental functions. In the case of the development of knowledge in children, 

embryogenesis ends only in adulthood. It is a total development process which one must resituate in its general 

biological and psychological context. In other words, development is a process which concerns the totality of 

the structures of knowledge. Learning presents the opposite case. In general, learning is provoked by situations 

- provoked by a psychological experimenter; or by a teacher, with respect to some didactic point; or by an 

external situation. It is provoked, in general, as opposed to spontaneous. In addition, it is a limited process -

limited to a single problem, or to a single structure (Piaget, 1964, p8). 

29 The universal trajectory is variously referred by Piaget as the purposeful developmental trend and, 

evolutionary trend. "The evolutionary trend towards a lesser degree of immediacy and specificity in behavior 

becomes, in intellectual development, a process of increased reflection, a turning inwards or an interiorization 

of action that changes coordinated external actions into systems of interior, reversible operations. Equilibration 

can be viewed as a compensatory response to these biological trends or better as guiding and regulating this 

trend towards the building up of more advanced structures" (Furth, 1969, p209). 
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"the fundamental relationship that constitutes all knowledge is ... the assimilations of objects 
to the schemes of that subject. This process ... prolongs the various forms of biological 
assimilations, of which cognitive association is a particular case as a functional process of 
integration. Conversely, when objects are assimilated to schemes of action, there is a 
necessary adaptation to the particularities of these objects ... It is this exogenous mechanism 
that converges with what is valid in the empiricist thesis, but ... adaptation does not exist in a 
pure or isolated state, since it is always the adaptation of an assimilatory scheme; therefore 
this assimilation remains the driving force of cognitive action" (piaget, 1980a, p24). 

Second, self-organization and self-stabilization are real features of biological systems, which can be 

described in logico--mathematical schemes. Piaget comments, "these mechanisms, which are visible from birth, 

are completely general ... The role of assimilation is recognized in the fact that an observable or a fact is 

always interpreted from the moment of its observation, for this observation ... requires the utilization of logico-

mathematical frameworks such as the setting up of a relationship or a correspondence, proximities or 

separations, positive or negative quantifications leading to the concept of measure ... " (piaget, 1980a, p377). 

Third, within the process of self-organization, a universal trajectory can be observed in which self

stabilization occurs repeatedly. Stability is lost just before the system makes a transition to a next stable state. 

Assimilation, accommodation30 and adaptation3
! provide concepts appropriate for describing the process of 

change, which are called "development,,32. However, this stability may well only exist as the observer and not 

the observed. This trajectory and the inherent nature of the arguments for inheritance (where living systems 

increase their level of organization) in evolution, reduced Piaget's arguments in the debate. For Piaget, 

innateness alone cannot explain novel solutions. He says, "If there were innateness, reason and language would 

be the result of selected accidents, but selected subsequently, after the fact, whereas the formation itself would 

be the result of mutations and would therefore occur at random ... I absolutely refuse, for my part, to think that 

logico--mathematical structures would owe their origin to chance; there is nothing fortuitous about them. These 

structures could not be formed by survival selection but by an exact and detailed adaptation to reality" (Piaget, 

1980a). 

Since the structure of language and the structure of learning are generalizations of already developed 

sensory-motor schemes, these schemes form the logical premises for cognitive structures. Specifically, "The 

functioning of intelligence alone is hereditary and creates structures only through an organization of successive 

actions performed on objects" (Piaget, 1980a). Later reviewers (Spencer, Smith and Thelen, 2001, p1327; 

Smith and Thelen, 2003; Van Geert, 2000 cited in Smith and Thelen, 2003) discuss this inheritance in terms of 

dynamic systems and accord Piaget with understanding the need to balance entropy with organization. 

Individuals are negative entropy systems, in which, through self-organization (equilibration), order 

spontaneously emerges out of chaos. These self-organizing systems seek new solutions that may be more 

efficient, effective or complex in direct opposition to the continually increasing disorganizing entropy. This 

30 Accommodation is seen as differentiation. 

31 Adaptation is seen as hierarchical integration. 

32 Development is seen as inclusion and generalization. 
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self-organization leads to adaptive behavior (accounting for novelty as accidental) and Darwinian selection 

acts on these behaviors. An increasing energy exchange with the environment is required to generate the 

increase in structure (prigogine, 1980, p 17). 

2.1.5.1 Piaget: Where is the problem? 

Monod clearly identifies issues with Piaget's approach (piattelli-Palmarini, 1980, p140). If the 

development of language in the child is closely related to sensor-motor experience, one can suppose that a 

child born paraplegic, for example, would have very great difficulties in developing language. In support of 

Monod, Fodor reasoned, "But then, why not say that any case of ethological triggering, where an arbitrary 

action is innately connected with a highly developed scheme of intelligence would count as learning? 

However, that merely trivializes the doctrine that intelligence arises out of sensory-motor activity and there is 

really hardly anything left" (piattelli-Palmarini, 1980, pI401). In this case, sensory-motor schemes are only a 

''trigger'' and are not necessarily isomorphous or analogous to the structure that puts it on the move. 

Some neo-Piagetian researchers have elaborated on Piaget's mechanisms of developmental change, 

incorporating the impact that biology, task requirements, culturally determined experiences and peer influence 

have upon a child's intellectual performance (Case, 1984; Case, 1996; Griffm, 2004; Schwartz and Fischer, 

1994). These researchers rejected the stage-like development so evident in Piaget's own observations of 

children and concluded that Piaget had also underestimated the capabilities of these children. However, if one 

were to apply the stage-like development only to schemes (§ 2.3.6) then one can clearly see that some children 

could possess unique capabilities earlier and/or later than other children could. However, other researchers 

have clearly seen that the child does go through some developmental cycles (Copeland, 1974, p83; Liebeck, 

1984; Karmiloff-Smith, 1996, p 19; Furth, 1969). 

With Chomsky and Fodor, one could easily adopt the belief that complete cognitive skills or abilities can 

be performed only because they can be decomposed into individual parts or features of the cognitive structures, 

which came into being on the evolutionary timescale. However, whenever confronted with the fact that many 

cognitive processes are deceptively simple and effortless, one may conclude with Piaget that these processes 

are governed by holistic principles, not necessarily inborn in an evolutionary blueprint, but at least to some 

extent dependent on the organization by "systems" with their "global dynamics" (Furth, 1969). 

The backbone of Piaget's genetic epistemology (epigenesis) consists of explanatory categories such as 

equilibration, self-organization and self-adjustment. These reflect the fundamental heuristic role played by 

Piaget's evolutionary model, which some researchers perceived as being anti-Darwinian. One can agree that 

Piaget's ideas are convoluted, awkward and sometimes just plain wrong, but it may be possible to review his 

work from a systems perspective and use this to construct a system that approaches human problem solving in 

novel situations. For this to work, it will have to deal with the major issues as outlined by Fodor and Monod 

(Piattelli-Palmarini, 1980, p140, Fodor, 1980, pI49). 
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Piaget's concept of ''phenocopy'' complicated the debate, since deeper analysis showed it to be 

Lamarckian - Piaget imposed a feedback from experience to genetic makeup. This approach may simply have 

been due to Piaget's lack of knowledge on genetics. 

Some researchers have noticed problems in the Piaget's methods and achieved a balance with Fodor's 

nativism (KarmilofT-Smith, 1996). In presenting a umosaic like" approach to cognition, they assume a 

representational model of development in children, as objects of cognitive attention, which change over time. 

In this approach, KarmilofT-Smith accepts the concept of an innate architecture for each of the five domains 

(the child as linguist, physicist, mathematician, psychologist and notator) and concludes that there are phases 

(not stages) of development. Rejecting Piaget's stage-like variation, KarmilofT-Smith favors a Urecurrent 

system in which three phases characterize the mastery of each conceptual domain" (Shultz, 1994, p728) and it 

is the internalization of experience that is critical and becomes the focus of change (KarmilofT-Smith, 1996, 

pI9). These objects are re-described into a Uhigher level language" that is common across all of the domains 

and it is this interlingua which opens up the Uinter domain representational links" (KarmilofT-Smith, 1996, 

p 19). What is lacking in KarmilofT-Smith's research is the mechanism that explains the development of this 

Uhigher level language." Piaget's genetic epistemology explains this mechanism in rational terms as the 

development of this language from logic (Piaget, 1970a, p13). Secondly, as Shultz points out "Verbalizations 

may be quite easy to document in representational redescription (RR), but nonverbal explicit representations 

seem to be more challenging" (Shultz, 1994, p729). Researchers have constructed machine learning systems 

based on RR (Wei and Fu, 2009) using a hierarchical object oriented processes. Yet, as will be seen, these still 

fail Fodor's arguments. 

It still needs to be proven that radical innatism and a mutation-selection hypothesis, can, in principle, 

provide a joint pattern of explanation for both phylogenesis and ontogenesis. One researcher, who attempted to 

resolve the learning paradox and implement a Piagetian model of development, explaining the stage-like 

development and identifying flaws in Piaget's work, was Pascual-Leone (Pascual-Leone, 1980, p280). 

2.1.6 Pascual-Leone 

Pascual-Leone defines the learning paradox as a meta-theoretical problem, which can be defmed as the 

meta-theoretical question "How can a structure generate another structure more complex than itselfl" 

(Pascual-Leone, 1976, 1980 cited by Bereiter, 1985). 

The abstract and technical theory of constructive operators (TeO) seeks to ''represent explicitly the 

underlying mechanism of dialectical equilibration and structural growth" (Pascual-Leone, Goodman, Ammon 

and Subelman, 1978, p252). TeO integrates three sorts of organismic constructs: schemes, basic factors and 

basic principles within a process model of the psychological organism, the meta-subject. It is called the meta

subject, to indicate that it is a "highly active hidden organization which is causally responsible for the subject's 

performance" (ibid, p252). Pascual-Leone posits that TeO is a viable process that explains and extends the 

Piagetian concepts of general stages and equilibration (Pascual-Leone, 1980, p280) and resolves the learning 

paradox. When TeO is used in conjunction with the meta-subjective task analysis, research shows that it is a 
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determinant of the demand for mental attentional energy (M Demand) required for cognitive tasks, which is 

consonant with the developmental stage of the subjects in the test. The theoretical conclusion ofTCO is that it 

provides a simulation and explains why complex embedded figures tasks (EFT) are accessible to 9 and 10 year 

olds given careful and sufficient practice but not to younger children that do not have sufficient mental 

attentional energy (pascual-Leone and Goodman, 1979, p347; Pascual-Leone, 1980, p271; Pascual-Leone, 

1996, p87). EFT is as an example of the Bi-Polar Dimensions style of cognitive, learning and teaching styles 

(pascual-Leone and Goodman, 1979, p308). The other main reason for reviewing Pascual-Leone is that it 

provides a theoretical model of Pia get's work. Thus, its utilization avoids "the theory is in the code" problem 

of many complex information systems. 

Piaget initially identified the mental attentional energy of an individual in terms of attention span, field of 

centration and field of equilibrium (Pascual-Leone, 1970, p302). Pascual-Leone refmed these into M

Capacity and posits that if its numerical characteristic were proven then it could be used to explain the 

transition from one stage to another. Pascual-Leone describes a machine like, abstract psychological model 

which is capable of explaining for instance, the appearance of the conservation of substance before the 

conservation of weight (Pascual-Leone, 1970, p303, p336). A key issue is that Piaget was not committed to an 

abstract representation and so could not provide an abstract model, whereas Pascual-Leone has built a 

complete model of genetic epistemology (Pascual-Leone, 1970, p336). 

In developing the TCO, Pascual-Leone enriches Piaget's concepts of general stages and equilibration 

with a theoretical model of deep information processing with two significant claims regarding cognitive 

psychology: 

Claim 1: That a subject's psychological organism is composed of a generative model and psychogenetic 

model. The generative model stimulates the processes that generates the subject's performance using recursive 

operators and is balanced by the psychogenetic model, which stimulates the organism's developmental process 

of change using innate recursive operators that develop in its lifetime (pascual-Leone, 1980, p263). 

Claim 2: Scientific theories and their constructs reflect the structural invariants of their databases, as 

filtered by the data analysts (scientists). Which is understood in terms of Claim 1, that the "epistemological 

function of reflection must be understood as signifying that the theories or constructs in question can simulate 

the psychogenetic or generative processes which caused the performances reflected in the data" (Pascual

Leone, 1980, p264). 

Pascual-Leone considers that the learning paradox does not apply to human cognition because there is no 

need for computational closure (generality) in human cognition (Pascual-Leone, 1980, p279). Further, that 

since situation specific structures cannot be learned without experience (the learning paradox), some unlearned 

(situation-free) organismic factor (F, which is similar to stimulus-response compatibility) must exist to 

support spontaneous inference in generative constructive tasks such as conservation or inclusion of classes 

when they are solved for the first time (Pascual-Leone, 1980, p275). 
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In explaining the learning paradox as acqulSltlon without learning, Pascual-Leone identifies an 

evolutionary paradox in which lesser animals (and included within this are computer simulations33
) cannot 

exhibit or develop abstract processing forms (Johnson and Pascual-Leone, 1989 cited in Pascual-Leone, 1996, 

p85). In rejecting the neo-Piagetian approach where processional forms are innate, Pascual-Leone proposes 

that the principles of praxis (goal directed activity), modular organization and equilibration cannot be fully 

expressed without the use of schemes, reflective abstraction (which is a processes that mediates transition from 

one level to another) and mental attentional energy (Pascual-Leone, 1996, p86-87). In addressing mental 

attentional energy, Pascual-Leone notes that only in misleading situations34 and novel situations3s do the 

Piagetian developmental stages appear. These stages appear "exhibiting a non-linearity, growing in time with a 

stepwise characteristic growth curve as a function of chronological age" (Pascual-Leone, 1996, p87). In 

attempting to explain the relationship between the psychogentic difficulty of Piagetian tasks and the "rank" or 

dimensionality of their problem solving strategies, Pascual-Leone (Pascual-Leone, 1980, p271) considers 

there to be a correlation to the M-Demand (mental attentional energy demand) for mental attentional energy. 

This M-Demand can be detennined using meta-subjective task analysis and is realized in experimental results. 

These stage like variations occur because "learned habits (or innate automatisms36
) become obstacles for good 

perfonnance" as these highly activated schemes tend to dominate (Pascual-Leone, 1996, p88). Obviously, 

performance does improve over time and one reason for this may be that there are multiple forms of learning: 

1) LC-Iearning - which is understood to be associative content learning, and 

2) LM-Iearning - which is understood to be logical (structural) learning37
• 

The effect of LCILM learning is that it makes accessible at the current M--Capacity of children (and of 

adults) previously inaccessible solutions; hence, it explains the learning paradox. It is also this LM-Learning 

which the organism uses with mental attentional energy (M-Capacity) to centrally inhibit (using an interrupt 

operator or I-Operator) schemes using the executive schemes (E-Schemes), that are task irrelevant. 

In TCO, Pascual Leone identifies two key problems that cognitive psychology is still struggling since 

originally posed by Plato. First, why, and how are proper concepts (universals,logico-rnathematical or generic 

knowledge) irreducible to, yet psychogenetically derivable, from proper experiences. Second, why, and how 

are, conceptual and experiential forms of knowing / processing continually adapting to the constraints of the 

current situation. In addressing the first problem, Pascual Leone suggests that mental attention is a determinant 

within both a Piagetian constructivist and interactionist framework that does not artificially separate the 

33 Computer Simulations in this context refers to work circa 1989, before evolutionary computation and 

machine learning had been widely read by cognitive science researchers. 

34 For Pascual-Leone, a situation is misleading when it elicits schemes that interfere with the task at hand. 

35 For Pascual-Leone, problems, are situations which are typically misleading. 

36 Innate Automatisms assume a definition of LP3: Operates Autonomously. 

37 As we shall see in the following chapters, cognitive architectures such as SOAR-R also introduce processes 

of optimization as a distinct form of learning. 
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emergence of both modes of processing from the same origin (Pascual-Leone, 1996, p84). In addressing the 

second problem, Pascual-Leone identifies the principle of scheme over-determination of performance (SOP) 

and the gestalt field factor (stimulus response compatibility, S-R compatibility or F-operator) as the drivers for 

the continuous representation problem. In this model, SOP restricts the dominance of schemes and the F

operator minimizes the number of schemes that apply to the stimulus. Mental attentional energy explains 

Plato's first problem of ''proper concepts" since it drives the development of the organism and increases with 

age (Pascual-Leone, 1996, p89). 

In rejecting Fodor's absolute, meta-theoretical argument on the impossibility of creating more complex 

structures, Pascual-Leone argued that although hypothesis formation is an inductive process, it is based on 

limited experimental data and that there is no limit to the theoretical conceptual structures that could be 

gleaned from experiential data (Pascual-Leone, 1976, 1980 cited by Bereiter, 1985, p201). Research by Von 

Glasersfeld suggests that inductive inference - which involves the spontaneous creation of an idea, which may 

turn out to fit the data - is not inherent in the data (Von Glasersfeld, 1998). The same is true of conceptual 

accommodations and even of many elementary accommodations on the sensory motor level. In both cases, 

there is a conceptual step that fits the pattern of abduction, a step that generates new knowledge whenever the 

abduction proves viable (Von Glasersfeld, 1998, p9). However, if abduction is all that is required and Von 

Glasersfeld is rather short on how abstraction can be supported as a process of learning to support abduction, 

this is less problematic in the sense that it requires less than Chomsky but there is a danger that it still assumes 

just what is needed to support his model of learning, it is also no less presumptive in metaphysical terms. 

Pascual-Leone identifies some success conditions for a computer simulation: namely, it must exhibit truly 

novel performances, cognitive conflicts, and affective conflicts, which include internal and external motivation 

(pascual-Leone, 1980, p288). 

2.1.6.1 Pascual-Leone: Where is the problem? 

Like its Piagetian predecessor of dimensional analysis, TCO and meta-subjective task analysis must 

begin by "assuming the strategy (and the structures) used by the subject" (pascual-Leone, 1980, p271). 

Further, the method's abstractness (its distance from the step-by-step concreteness of performance in data 

protocols) makes it "appear, and sometimes become, unreliable" (Pascual-Leone, 1980, p271). 

Meta-subjective task analysis still has validity is defining the resource constraints of children. First, for 

any simulation that attempts to implement a Piagetian model of development, it provides a mechanism to 

restrict the processing capacity of a solution. Second, the scheme over determination of performance principle 

(SOP) in itself assumes a traversal across all potential schemes that could fire as the result of a situation. 

Hence, Pascual-Leone fails LPI. Third, over time, the performance of the system would degrade since more 

schemes are continually being added, and this degradation of performance is not seen in human systems. 

Although Pascual-Leone asserts that schemes, equilibration, M-Capacity, C-Learning, LM-Learning, J

Operator, Executive Schemes, SOP, F-Operator and a modular organization together will resolve the proper 

concepts and the learning paradox, the description of the solution does not provide sufficient information for 
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the emergence of structure from a biological perspective. Also, attempts to develop a workable pure cognitive 

model based solely from printed works on the TCO proved to be too difficult, and so as an approach was 

rejected in this thesis. 

2.1.7 Constraints of a Simulation 

The key problem is the lack of a simulation which is capable of developing concepts in the way that most 

children do naturally, while also overcoming the learning paradox. Creating a mechanism that has emergent 

properties, ones that enables it to develop concepts (and so overcome the learning paradox), will be a 

significant advancement for the development of intelligent systems. Fortunately, Piaget provides descriptions 

of how this system might work. An outline definition is provided with a description of the constraints LPI -

LP7 believed to be necessary features of any simulation that attempts to resolve the learning paradox in a 

number line world. 

2.1.7.1 An Environment for a Simulation 

The obvious representation of the number line is a graph and it would be a trivial problem to adapt a 

graph grammar for concept formation (Jonyer, Holder, Cook 2002, p71), albeit using a high language. To 

implement a solution without the representational form of symbols becomes a much more difficult problem. 

The approach defined in figure 2-1 applies Piaget's genetic epistemology to the learning of number-sense in a 

number line world. It also serves to introduce a set of characteristics that are used to grade cognitive models, 

namely LPl- LP7. 

The original counting bead problem of figure 1-1, is reused to show how reflective abstraction allows the 

development of hierarchical concepts for schemes that develop from innate schemes through the sensory motor 

stage and into the pre-operational stage and beyond. 
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Sensory Motor Stage 

Pre-Operational Stage 

o 2 3 4 , 6 1 8 9 10 11 12 

From Imagining 
Points and Planes 

To the 
Transformation 

itself 

Scheme Oa [ Fx] Scheme Ob [ Oa [Fx ] : 

o 23 4 ' 618 9101112 

Figure 2- 1 Piaget 's bead problem resolved through refl ective abstraction: Moving from processing points and lines 

to processing the action itself. 

For Piaget, reflective abstraction arises from a shift of centration (attention) from action on objects, to the 

action itself. For the child generating mental images of linear transformations of points on planes using their 

figurative and operative sensory- motor schemes, (depicted as Scheme Oa flx] in figure 2- 1) is transformed 

through reflective abstraction into the emergence of pre -operational schemes that operate on the figurative and 

operative schemes themselves (depicted as function h[flx]] in figure 2- 1). Using reflective abstraction 

"generalized" cherne emerge to support adaptation by the individual. Other researchers have observed this 

and referred to it as reification of process, perceptual development or as algebra of transformations (Mason, 

Drury and Bills, 2007, p49). For Piaget, the emergence of pre-operational schemes from sensory motor 

scheme is due to the evolutionary trend, which alters the learning process of assimilation and 

accommodation38
• 

For this proces to occur, it is believed that there are seven key constraints that need to be overcome. 

Each constraint i de cribed in the following sections. 

2.1.7.2 LP1: Works Within the Constraints Imposed By Fodor' s Arguments 

The olution mu t be consistent with Fodor's arguments concerning logic (§ 2.104). First, that there is 

some external focu for concept creation (e.g. satisfying a need) and second that the proof does not depend on 

quantifying over all po iblc ituation. This implies that the solution cannot have an instantiated predicate 

38 It i thi emergence of tructure from sensory motor schemes which adds clarity to the definition of LP5: 

Learn Incrementally with Minimal Innate Knowledge and Reflexes. 
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logic or include instantiated grammars for processing and planning. It must also come to its own conclusions 

about the nature of truth, though this can be achieved through statistical prediction of outcomes based on its 

own view of the environment. 

2.1.7.3 LP2: Exhibits Emergence of Hierarchical Concepts using Evolutionary 
Process 

The system exhibits the emergence of hierarchical concepts, including what would be considered as the 

simulations "symbolic forms," which themselves are more complex than it's provided innate structures and 

reflexes (pascual-Leone, 1980, p263). This emergence is seen as adaptation, by the agent (as a simulation), 

within its environment, and is observed as the appearance of generalized behavior in its schemes. The 

development of these concepts may require the capabilities of evolution across an expanse of populations that 

increasingly exhibit projectable behavior. The assumption is that the emergence of these concepts partially 

resolves the symbol grounding problem (§ 2.7.2.1). Also anticipated is that emergence occurs through some 

evolutionary process. 

2.1.7.4 LP3: Operates Autonomously 

The system functions autonomously, with minimal innate knowledge and can overcome internal problem 

situations by being able to process using emergent concepts; it sidesteps the issue of designing perfect 

algorithms, but requires a contingency recovery procedure for each failure in which the system is organized to 

detect failures and recover from them as opposed to never failing (Firby, 1989). The autonomous operation 

may require epigenetic development. 

2.1.7.5 LP4: Mirrors Real \Vorld Behavior of Children Learning Number-Sense 
using a Number line. 

As a real-world problem, the solution must mimic the behavior that children demonstrate when they learn 

about numbers (Furth, 1969; Copeland, 1974). This must include the resolution of the bead problem (§ figure 

1-1.). It must include a preponderance for estimation and prediction offuture states, before effective control is 

achieved. Next, the solution must exhibit the emergence of its own "concepts" through interaction with the 

environment. Finally, the system must exhibit properties and processes of maturation including the acquisition 

of skills (procedural processes), facts (declarative knowledge), the development of conservation and the 

capability to make mistakes as well as to learn from them. The capability to predict is critical since it 

underlines the notion of truth and from this equivalence and composition is attainable. 

2.1.7.6 LPS: Learns Incrementally with Minimal Innate Knowledge and Reflexes 

The system uses incremental (sub-symbolic) learning based on an intrinsic reward based value system. In 

addition, the learning mechanism exhibits the capability to optimize the available knowledge base. Finally, the 
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learning mechanism provides the capability to bootstrap the complete developmental process from minimal 

innate knowledge and reflexes. 

2.1.7.7 LP6: Develops its Learning Process 

The observed behavior of the system exhibits stage like variation with emergence of more complex 

structures that are limited by the available mental attentional energy (M-Capacity), this, through the 

development of its learning process. This development is presumed to be through a process ofbottom-up 

learning where the agent acquires capabilities during its lifetime. 

2.1.7.8 LP7: Acts in Novel, Opportunistic and Noisy Situations 

The system (as an agent) must act in novel, opportunistic and noisy situations. In the present research, the 

simulated student (as an agent, composed of various Piagetian schemes) acts in a number-line world to 

develop number-sense to solve presented problems where misleading information is provided. 

2.1.8 Conclusion 

The learning paradox is concerned with the emergence of more complex structures from less complex 

ones. Piaget resolves the paradox through descriptions of a developmental cognitive process, which contrasts 

with Fodor and Chomsky'S innateness argument (Bereiter, 1985, p202). Bereiter and Scardamalia argue it is 

possible to overcome Fodor's logical arguments through bootstrapping because the less complex and more 

complex structure are composed of the same defined factors (Bereiter and Scardamalia, 1983 cited in Bereiter, 

1985, p204)39. Any simulation to test Piaget's theories needs to follow very closely his theoretical works. 

Therefore, two theoretical works will be referenced (Furth, 1969; Copeland, 1974)40. 

Pascual-Leone argued that there is no limit to the conceptual structures that can be gleaned from 

experience. However, there is a theoretical limit (M-Demand) that constrains what can be solved based on the 

meta-subjective analysis of the task difficulty. Though highly relevant, the work of Pascual-Leone will not be 

fully implemented in the present research. Further, the resolution to the bead problem (Furth, 1969), the 

development of number-sense (through counting) and the adherence to a set of constraints LPI - LP7 are seen 

as necessary conditions under which any simulation that attempts to resolve the learning paradox, using a 

Piagetian model, would need to operate. 

Since biological evolution, as exposed through children, has already overcome the learning paradox, § 2.2 

describes research from neurophysiology, biology and evolution to support the argument that to foster 

emergence, the simulation must apply evolutionary principles. 

39 Within this research, bootstrapping is understood to be the evolution from limited complexity to greater 

complexity within a simulation using a form of machine learning with external rewards that fosters emergence. 

40 The full depth of analysis of these works, cannot, for reasons of space be addressed in this thesis, but are 

contained in other research works (Rendell, 2008). 
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2.2 Biological Evolution as a Basis for Emergence 

"How does evolution produce increasingly fit organisms in environments, which are highly 
uncertain for individual organisms? How does an organism use its experience to modify its 
behavior in beneficial ways (i.e., how does it learn or adapt under sensory guidance)? How 
can computers be programmed so that problem-solving capabilities are built up by 
specifying what is to be done rather than how to do it?" (Holland, 1975, pI). 

In § 2.1.7, a set of constraints were defined (LPI - LP7) that would need to be met by any simulation 

that attempted to tackle the learning paradox using a Piagetian model. Since evolution has already resolved the 

learning paradox. This section summarizes some key aspects of biology and evolution, and discusses how these 

can be simulated, without contradicting the identified constraints. A more detailed discussion of these topics 

can be found in the appendices (§ A). 

2.2.1 Summary 

There is emergence of structure in the collective behavior of ant colonies, for instance in searching for 

food (Johnson, 2001, p45). This is evidence of them solving LP5 and LP7, as an optimization problem. This 

process can be simulated using swarm techniques where simple rules, embodied in agents using vast 

populations, are shown to exhibit novelty in opportunistic and noisy situations (Dorigo, Birattari and Stutzle, 

2006, p34). Current models are limited, since their simulations do not produce the more complex "ant social 

model" (Gordon, 20 I 0). Thus, there is a need to model aspects of human cognition. The assumption is made 

these swarm rules do not support a Piagetian model, since they do not have the capability to develop their 

learning process and so fail LP6. 

Wolfram sees emergence as order from randomness and uses simple cellular automata to simulate 

biological processes (Wolfram, 2003, p383 and p398) and this research agrees that simulations can mirror 

biological processes (Wolfram, 2003, p223). 

A model of Drosophila provides an internal engine that is more complex than a simple set of ant rules 

(MiesenMck, 2008, p52; Shang, Claridge-Chang, Sjulson, Pypaert and MiesenbOck, 2007, p60 1). Since many 

aspects of the basic neural pathways are probably conserved, evolutionarily, the fly studies research provides a 

simple model for cognition can provide a mechanism to resolve LP6. This model consists of acting {sensing, 

learning and planning (Shang, Claridge-Chang, Sjulson, Pypaert and MiesenbOck, 2007, p601). This requires 

implementation as a neural model, and it is assumed that the Drosophila model has similarities to a Piagetian 

model of learning and development. 

Given that evolution has produced a solution to the learning paradox in the cell and neural networks in 

fruit flies and human beings, a simulation mechanism that mirrors this process is needed. Two approaches are 

suggested, artificial neural networks (Carpenter, Grossberg, Rosen, 1991; O'Reilly and Munakata, 2000; Sun, 

2004; Drescher, 2002; Sutton and Barto, 1998 and Streeter, Oliver and Sannier, 2006) and FSA (Minsky, 1967; 

McCulloch and Pitts, 1943, p115; Kauffman, 1969; Kumar and Bentley, 2003; Hjelmfelt, Weinberger & Ross, 

1992, p383; Koza, 1999, p386). Good examples of ANNs are radial basis neural networks and linear neural 
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networks since these have been shown to mirror neuronal processing (Streeter, Oliver and Sannier, 2006). 

However, a lack of hierarchies in current implementations means that they cannot resolve LP2. FSA are useful 

solutions, because they mirror neuronal and cell processing, and are simpler to implement and evolve than 

ANNs. Recent brain research confirms the approach of using HFSA to model the brain structures with twin 

pillar hierarchies of perception and executive faction (Albus, 2008; Grainger, 2006a; Granger, 2006b). 

The dopamine-norepinephrine reward process is a mechanism for autonomously building internal neural 

structures based on external interaction. Actor-critic temporal difference learning is a simulation mechanism 

for reward processing that can be used to build artificial neural networks that learn incrementally (Suri and 

Schultz, 1998, p350; Schultz, 2000; Schultz and Dickinson, 2000, p474; Fiorillo, Tobler and Schultz, 2003, 

pI898). Using this mechanism, LP3 can be resolved. It is also possible to use reinforcement learning with FSA 

and HFSA to build their network, though this thesis will use a more constrained version. 

Since the set of constraints (LPl - LP7) dictate a biologically plausible model be used in a number line 

world, confirmation is required in this thesis that can show emergence of structure by identifying regularities in 

the environment e.g., point, line, direction, penS tate, and so be capable of addressing LP4. 

Since evolutionary computing is a software simulation mechanism that parallels evolution (De Jong, 

2006; Haynes, Sen, Schoenefeld and Wainwright, 1995; Koza, 1992; Jacob, 2001), it is assumed that this is an 

appropriate method to use with HFSA to resolve LP2. By separating out the propositional components (FSA) 

from the hierarchical components (HFSA) the simulation sidesteps LPl. 

To develop a simulation of Drosophila using binary FSA, a mechanism is needed to resolve some of the 

core issues, such as storage and concurrency (Maraninchi and Remond, 2001). A reactive systems approach 

using Argos (Maraninchi and Remond, 2001), provides this mechanism, which when combined with 

evolutionary computing (Jacob, 2001) and a form of reinforcement (Streeter, Oliver and Sannier, 2006), 

provides a way of resolving LP6 and produces a mechanism similar to evolvable hardware (Greenwood and 

Tyrrell, 2006). 

Using Crutchfield's model of intuitive emergence41 (Crutchfield, 1994a, p2) provides a mechanism for 

detection of the emergence of structure, and thus a strong foundation for a solution to attempt to resolve the 

learning paradox with a biologically plausible model. 

2.2.2 Conclusion 

The combined structure of an artificial neural network implementation (using radial basis and linear 

neural networks with TD learning) and a dialectic system implemented using a model of Drosophila with 

41 In intuitive emergence something new appears, but the "pattern is always referred outside the system to 

some observer that anticipates the structure via a fixed plate of possible regularities" (Crutchfield, 1994a, p2). 

Since our solution is a closed system, the emergence is of coordinated behavior that develops to control the 

internal processes. These internal processes, as HFSA would be observable. This is the approach that will be 

taken in this research. 
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HFSA using evaluation functions based on a model of reinforcement can address LPI, LP2, LP3, LP5, LP6 

and LP7 using a biologically plausible model. 

2.3 The Roots of Genetic Epistemology 

"I take from Jean Piaget a model of children as builders of their own intellectual structures. 
Children seem to be innately gifted learners, acquiring long before they go to school a vast 
quantity of knowledge by a process 1 call Piagetian learning or learning without being taught. 
For example, children learn to speak, learn the intuitive geometry needed to get around in 
space and learn enough of logic and rhetoric to get around parents - all this without being 
taught" (Seymour Papert, 1980, p7). 

This section provides a re-evaluation of Piaget's model of cognitive development using work from Furth, 

Copeland, Pascual-Leone and Piaget. Piaget's notion of causality in outlined in § 2.3.1. Assimilation and 

accommodation are introduced in § 2.3.2. The association of assimilation and accommodation to figurative and 

operative schemes is described in § 2.3.3, the primacy of action in § 2.3.4 and a description of Piaget's 

knowing circle is provided in § 2.3.5. An outline of the inner working mechanism of the knowing circle is 

provided in § 2.3.6. This mechanism is then related to a model of Drosophila, in § 2.3.7. The importance of the 

developmental trend is explained in § 2.3.8 from which is described the impact of reflective abstraction on the 

developmental trend, in § 2.3.9. The impact of the evolutionary trend in development is illustrated by 

explaining the importance of interiorization, in § 2.3.10. Equilibration and disequilibration are explained in § 

2.3.11. With a foundation in place, the relationships of Piaget and Mathematics is clarified in § 2.3.12. The 

development of symbols using the knowing circle is examined in § 2.3.13, followed by a worked example as a 

series of tasks WEI - WE5 that is used in evaluating this research in § 2.3.14. A set of research conclusions is 

described in § 2.3.15. 

2.3.1 Causality 

A central issue is the notion of causality (causal relations). Piaget's contention is that "no physical living 

structure can be adequately explained in physico-causal terms alone and this is even truer of the structure of 

mature intelligence" (Furth, 1969, p207). For instance, "nor does 2+7 cause 9"; it is at the level of structural 

implication (equilibration) where "implication is a relation of logical necessity proper to intelligence and 

consciousness which cannot be reduced to the lawful relations of causality typical of physical manifestations" 

(Furth, 1969, p207). Piaget contends that operations are causal-temporal relations between constructive, 

operative knowing and symbol formation: thus the known object is real, only in the sense that it is present (has 

an existence) in the act of knowing. This act of knowing is not just the representational use ofa symbol (Furth, 

1969, p92). 

An area where Piaget's thinking goes most clearly against established views is in the area of figurative 

knowing (figurative scheme) and operative knowledge (operative scheme). Figurative knowing, defined as the 

sensorial content of an event (Furth, 1969, p47), is balanced by operative knowledge. Piaget defines operative 

knowledge as knowing that is transforming as a structuring kind of knowing action (Furth, 1969). 
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2.3.2 Assimilation and Accommodation 

For Piaget "Intelligence is studied through the general process of adaptation and adaptation is studied as 

behavior" (Copeland, 1974, p9). The most relevant aspect of intelligence is not what the person does (as 

external action), but the rules or organization within the individual that control or govern the action, which is 

much broader than stimulus-response (S-R) approach (Furth, 1969, p74). 

Piaget holds that behavior at all levels demonstrates aspects of structuring and he identifies that 

structuring with knowing (Furth, 1969, p45). In this light, assimilation is the tendency for an internal structure 

to draw external environmental events toward itself, contrasted with accommodation, which is the tendency for 

an internal structure to adapt itself to external environmental events (Furth, 1969, p45). Further, every scheme 

of assimilation "must be accommodated to the objects to which it is applied. Otherwise the assimilation would 

be deforming (assimilation pressure) or centered on the affectivity of the self, as is the case in symbolic play in 

which reality is modified according to the arbitrary desire of the moment" (Furth, 1969, p156; Piaget, 1962a). 

2.3.3 Relationship of Assimilation to Figurative Scheme and Accommodation to 
Operative Schemes 

Piaget refers to internal knowing (a person knows something) through active structures by different, yet 

equivalent psychological terms (Furth, 1969, p76). Piaget used the term figurative as the configurations or 

outlines "Gestalten" being the chief carriers of perceptive information (Furth, 1969, P 10 1), hence figurative 

schemes are created by assimilation. Piaget further considered figurative knowledge (as afigurative scheme) as 

the sensorial content of an event (Furth, 1969, p47). This sensory stimulation (perception) is not knowledge 

unless there is a structured scheme prepared to assimilate it and accommodate to it. In Piagetian terms, 

"operations (operative scheme) are no more than interiorized actions" (Furth, 1969, pl0!). Operability is the 

essential, generalizable structuring aspect of intelligence insofar as knowing means constructing, transforming 

and incorporating (Furth, 1969, p263). This implies that action is an aspect of intelligence, at all periods, 

including sensory-motor intelligence. Further, internal knowing (as a concept) is both the figurative as well as 

the operative aspect (existing as reversible operations) which cannot and must not be separated (Furth, 1969, 

pl02 and Furth, 1969, p263). 

2.3.4 The Primacy of Action 

Figurative schemes process the sensorial content of an event (the stimulus) as the perception, imitation 

and mental image aspects of cognition (Furth, 1969, p271). Since operative schemes consume these figurative 

schemes, so internal knowing is ultimately action based (Furth, 1969, p75; Furth, 1969, p92; Furth, 1969, pl02 

and Furth, 1969, p163; Furth, 1969, pI56). 

Before these operations (operative schemes) are formulated in language, there is a kind of logic of action 

coordination in the sensory motor stage. There is a sort of "generalizable action that prefigures classes and 

relations," examples include seriation of blocks of decreasing size or number on a number line, but these 

structures are not capable of being represented, until processing has reached symbolic functioning (piaget, 
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1963). These structures (schemes) are pre- configurations of the later notions of conservation and reversibility. 

These operations are independent of language during the concrete operations stage and are tied as actions 

related to objects (Piaget, 1963 cited in Furth, 1969, pI25). As an example of operational knowing, "The 

number system as an object of a person's knowledge is not something that exists apart from his number 

operations (as operational schemes)" (Furth, 1969, p61). The two expressions, "number operations" 

(operational schemes) and "the known number system" are two sides of the same coin. An argument could be 

made that the number system, be represented as symbols and then written into books. It would thus appear to 

be separate from the knowing operation42 but unless there is somebody who can reproduce them, the numbers 

and words in the book would remain empty lines and strokes, bereft of any intellectual meaning (Furth, 1969, 

p61). 

A visualization of the relationship of figurative scheme and operative schemes to assimilation and 

accommodation respectively can be defined (Furth, 1969, p78 and p l02). If one assumes a form of 

reinforcement for building hierarchical networks, then a conceptual design for the knowing circle and its 

scheme process will be the following: 

The Design of Assimilation and Accommodation with 
Figurative and Operative Schemes PMASAA·50.VSO 

Processes at the 
Student Lew!. 

Processes at the 
Scheme Level 

Figure 2- 2 An interpretation of the processes of assimilation and accommodation showing how operative schemes 

are created through accommodation and figurative schemes through assimilation using an external reward 

provided by the environment. The reward mechanism is based on the actor- critic model (Sutton and Barto, 1988). 

In figure 2- 2, the ob ervation and the reward associated with the action in the environment by the student 

are shown on two level . Fir t, proce sing by the student is through assimilation and accommodation. Second, 

the proce ing of the active operative scheme consumes the active figurative scheme. In this, the figurative 

scheme receive the reward [rom the environment, while the operative scheme performs the action on the 

environment. The proce es at the student level are the innate scheme and primary reactions provided by the 

individual ' genetic heritage. 

42 The eparation of ymbol from the knowing act is referred to as reification. 
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Within the tate macmne, the figurative scheme responds to and processes inputs from the environment. 

The operative scheme takes actions associated with the configuration of the environment. Thu the state 

switcmng, which take places at execution, efficiently utilizes the two levels of processing. Tms is seen most 

clearly in the evaluation of the arcmtecture and design which describes these state changes in terms of 

assimilation and accommodation, u ing counting as a worked example (§ 5.2.5.1). 

2.3.5 The Knowing Circle is an Abstract Process on Innate Scheme and Primary 
Reaction 

Furth align the notion of primary reactions to Gestalts (Furth, 1969, pI46). Specifically, gestalts are not 

equated to cherne and confirm that "neither perception nor assimilation leads to a more direct contact 

between ubject and an object. .. objectivity is con tructed progressively from the indissociable interaction of 

a imilation and accommodation" (Furth, 1969, pI47). These innate schemes are used to develop the other 

scheme through the proce S of the knowing circle and are seen as the innate gestalts that are not affected by 

development, remaining table over time. 

ometime there i a primacy of accommodation, sometimes a primacy of assimilation. When there is a 

balance of the two, thi i equilibrium (equilibration). Piaget saw equilibration, as the optimal path of 

adaptation, "Intelligent adaptation is the equilibrium between assimilation and accommodation" (piaget, 

1962b, p 4). In practice, a imitation and accommodation always go hand in hand, but the balance between the 

two will mIl Piaget refer to the two partial aspects (or phases) of anyone behavior pattern (conduct) as the 

proce of a simi/ation and accommodation, as de cribed in figure 2- 3. 

Knowing Circle 
"-'" 
• SUo.O-~.rn." Rudie,. 

. SUg.,-SO .... ."...,., r 
OStAg.2_ P,.ep.,lbonal 

Ist-oe 3 - Cenutt. Opt:ldoM 

'Slau.~- rorm.! Op.'.M 

a 
Sensory 
Input as 
features of 
\tie real 
event 

Assimilation 

oI) ., ... 41,... r.p,uent prm .. " 
,uelons th.t ., • .Iv.'" 
ucl~e4l1y .. MI,.,.. 
~oto_,_ kn ... 

Function. 
l"'*ionutlon 

_ on the dlagr .... "''''-''.~'''-8 
"' . IMng or ....... as .. ~.- knowtng 
(fwth, 1969, p75) _ extentlng willi the notion .
prlmalyr_ (F ...... 1969, p147). 

Figure 2- 3 depiction of Piaget's knowing circle. There is a constant dialectic interchange with the environment, 

first accommodation then as imilation. These processes deepen over time, as the child progresse through 

developmental tage and mature. 

Page 35 



Chapter 2. Literature Review 

In figure 2-3, two principal processes are at work: 

• Environment - organism as assimilation and 

• Organism - environment as accommodation. 

Piaget's knowing circle consists of a "main control loop," which undergoes progressive development i.e., 

the learning behavior changes over time. This development is referred to as being embryogenetic, which 

exhibits the various developmental functions. 

The knowing circle assimilates (incorporates) the real event into the inner structure (scheme) and at the 

same time accommodates their inner structure to the particular features of the real event (Furth, 1969, p75). 

The process is progressive with increasing interiorization and reflection (on the schemes created through 

assimilation-accommodation from the innate structures and primary reactions). 

Piaget observed four other stages of functional interiorization43 over the lifetime of an individual: 

1) Before the operations are formulated in language, there is a kind of logic of action coordination 

(Furth, 1969, p125). Only through closing the knowing circle (via externalized action of the 

semiotic function) is stage 1 complete. This development of a practical logic of seriation, 

hierarchical linking, ordering and generalization is referred to by Furth, as action coordination 

and includes the conservation of the permanent object invariant (Furth, 1969, p248). 

2) Only through closing the knowing circle (via functional interiorization and the development of 

the symbolic function) is stage 2 complete since actions are no longer tied to sensory-motor 

knowing and are related to the scheme of the permanent object, though the coordinated external 

action may remain an accompanying phenomenon (Furth, 1969, p98). 

3) Only through closing the knowing circle (via coordinating abstraction and the development of 

the structural function) is stage 3 complete, since it builds symbols using a figurative aspect 

(sensory motor event) and an operative aspect (significate). These symbolic relationships are the 

invariants of the concrete operations stage (Furth, 1969, p207). 

4) Only through closing the knowing circle (via the development of the operational function) is 

stage 4 complete which supports formal operations through the further development of the logics 

of implication, exclusion, hypothetical-deductive and syllogistic reasoning (Furth, 1969, p66). 

A close reading of Furth (Furth, 1969) reveals a deeper structure of the innate schemes and primary reactions. 

2.3.6 The Deeper Structure of the Knowing Circle 

Piaget asks, "[how] three levels of memory - recognition, reconstruction and evocation- fit in with 

developmental stages" (Furth, 1969, P 161). Further, "The figurative aspects of memory (perception, imitation 

43 Interiorization is considered to be the internal construction of a model of the environment. For instance a 

value from the environment is converted to an internal value to be used in both figurative and operative 

schemes. 
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and images)44" (Furth, 1969, p162) and "The schemes of memory are viewed as identical to the general 

operative schemes of intelligence ... all figurative knowledge is part of and controlled by some system of 

operative schemes" (Furth, 1969, p I63). This approach is clarified by Furth in the quote, "with reference to 

figurative aspects ... of the three types of memory; perceptual (perception) for recognition, imitative (imitation) 

for reconstruction, imaginable or linguistic (mental image) for evocation" (Furth, 1969, p154). 

In figure 2-4, these structures are related to the abstract classes of assimilation and accommodation. 

Legend 
Increasing Reflection 

-+ (Abstraction and Use by) 
other Figurative Scheme 
and Operative Scheme 

~ Figurative Scheme (Innate 
Scheme) processed in 
ASSImilation 

operative Scheme 
(Primary Reactions) processed 
in Accommodation 

Reinforce Predictive Model 

Increasing Reflection (Abstraction) 
(consumption) by Operational Scheme 

ProgressiVe Interiorization of Scheme 

Furth, 1969, p154-163 

Figure 2-4 A model of Piaget 's innate scheme and primary reactions, which are the abstract processes of 

assimilation and accommodation separated into act and sense, reinforce and predictive model (Furth, 1969, p162). 

The e ab tract clas e are named act / sense, reinforce (to indicate the learning style) and predictive 

model (to indicate the impact of planning). Each set is described in terms of Piaget's work in the following 

section. 

2.3.6.1 Perception and Recognition 

Piaget de cribe perception as "a balanced process including centration (with the senses focusing on a 

given point in the en ory field) and decentration (coordinating movements guided by perceptual schemes)" 

(Furth, 1969 p211). Perception thu illu trate an elementary state of perceptual equilibration where regulating 

activitie (decentration) tend to compen ate for the deforming effects of single centrations (Furth, 1969, p211). 

The e "Perceptual tructurc (per eption) as instruments of recognition" (Furth, 1969, pI59), are interpreted to 

mean that the e figurative chemes of perception are embodied within the operative schemes of recognition. 

44 We equate image with mental image. 
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In all sensory-motor knowing, "recognition occurs in the act of reacting meaningfully to a given object 

and requires no representational presence of any sort. For Piaget, infants of the sensory-motor stage are 

incapable of representational production and can have no mental images as understood by the term" (Furth, 

1969, plS0). 

Recognition is an intrinsic part of every sensory-motor habit and this recognition is different from 

perception (Furth, 1969, pI60), since perception is used by the operative scheme, recognition (Furth, 1969, 

plS8). 

2.3.6.2 Imitation and Reconstruction 

For Piaget, "imitation is the source of images" (Furth, 1969, plS9); that is, the development of imitation 

as a specialized sensory motor function leads to exterior models well before the formation of the semiotic 

function 4S (Furth, 1969, P 151). Thus, imitation, once it is capable of functioning in a deferred and internalized 

manner is the source not only of the mental image but also very probably of the semiotic function in general, 

insofar as the semiotic function implies a differentiation between signifier and significate (Furth, 1969, plS7). 

This is understood when one considers that imitation is evocation in action, which is midway between 

recognition and evocation (Furth, 1969, plS1). For Piaget, imitation is positive reinforcement, since children 

do imitate adults and repetition of new words and phrases is a basic feature of children's speech, though 

imitation alone cannot possibly account for all language acquisition. Piaget accounts for this conservation, 

through external reinforcement (Piaget, 1964, p13). The example given by Piaget's conservation of weight, but 

it equally applies to conservation in general. For Piaget, reinforcement (as in reinforcement learning) is 

responsible for imitation (Piaget, 1954, p4; Piaget, 1964, p 13). 

Further, Piaget says that "Reconstructive memory is based on imitation" (Furth, 1969, plS8). The 

schemes of reconstructive memory have an increasing capacity for accommodation and hence figurative power 

(Furth, 1969, P 163). Further, a memory reconstruction is different from an imitation (Furth, 1969, p 160). 

2.3.6.3 Mental Image and Evocation 

The derivation of mental images is "from perception to the image (mental image) by way of imitation" 

(Furth, 1969, pI60). In this, a mental image is the internal representation ofan external event. The image is one 

of the products of the symbolic function46, hence of intelligence in its total functioning; it is not a mere trace 

from passive perception (Furth, 1969, p261). Furth further clarifies Piaget's theory of images as "images are 

partially derived from what the child understands or misunderstands" (Furth, 1969, pI42-143). The notion of 

an image to a pre-operational child is as static as the notion of space using topological rules that predominate 

4S It could be argued in this research that the semiotic function IS the instantiation of the imitation I 

reconstruction process. 

46 It is argued that the mental image and evocation is the symbolic function, which is the key issue in 

development of symbols. 
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over Euclidean metric i.e., the developing child does not have conservation. Images of spatial relations 

become adequate precisely at the point at which children in the concrete operations stage have mastered the 

horizontal and vertical system of spatial co-ordinates i.e., when they have sufficiently increased their operative 

knowledge uch that they can bring this to bear on their figurative knowledge. This is further clarified, "Images 

(mental Image) as instrument of evocation" (Furth, 1969, pI59). 

Further, "Evocative memory is based on the image (mental image)" (Furth, 1969, p158) and the "Specific 

function of memory ... consi ts in the evocation of a particular past; this evocation is specifically related to the 

accommodative activity of knowing focu ed on the figural aspect of a particular event and temporally located 

at a certain point in time" (Furth, 1969, pI52). This is understood to mean that evocation (as a type of memory) 

is a memory of a pa t event a belonging to one's past - it is an accommodated knowing, which mayor may 

not have figurative a pecl. 

2.3.6.4 Summary 

What i clear from thi short urnmary is that Piaget's model of assimilation and accommodation can be 

re- interpreted into a impler, generative structure (Furth, 1969). 

2.3.7 Relationship of Piagetian Model to Biological Processing 

Piagel's model of as imilation and accommodation as provided by Furth (Figure 2.4) is strikingly similar, 

to the model of Dro ophila (Mie enbock, 2008, p52; Shang, Claridge-Chang, Sjulson, Pypaert and 

Mie enbock 2007, p601). Further, thi model is consi tent with the neuronal processing by Albus (Albus, 

2008; Albu , 20 I 0) and ranger (Granger, 2006a; Granger 2006b). These features are ummarized in table 2-

1: 

Table 2- 1 Thi table define the traceability matrix of relationships between the features exposed 

through biolog and evolution to the concepts in Piagetian theory. 

Features as e po ed through biology and evolution The concept in Piagetian Theory 

Thalamic loop (Albu , 2008; Albu , 2010b, p193; Knowing circle (Furth, 1969, p 147) 

Granger, 2006a; Granger 2006b) 

Event Hierarchie (Albu , 2008; Albu , 201 Oa and Accommodation as an abstract proce s (Furth. 1969) 

2010b) 

Receptive Field IIierarchies (Albu, 2008; Albu, A similation (Furth, 1969) 

20 lOb, p 193) 

Model ofDro ophila (Micsenbock, 2008, p52; Shang, Knowing Circle (Furth, 1969, P 147) 

laridge· hang, julon, Pypaert and Mie enbock, 

2007, p60 1) and traital y tcm ( ranger, 2006a; 

Granger,2006b). 
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Features as exposed through biology and evolution The concept in Piagetian Theory 

1) Cortex -+ matrisome projections (acting) 1) Act(Furth, 1969, p154- 163) 

2) Sense 2) Sense (Furth, 1969,p154- 163) 

3) SNc dopamine (DA) projections to both 3) Learn (Furth, 1969, p154-163) 

matrisomes and striosomes (learning through 

reinforcement) 

4) TAN projections to matrisomes (exploration) 4) Plan (Furth, 1969, p261) 

which relates to predictive modeling (planning) 

CCU (Albus, 2010b) The structure of a scheme (Furth, 1969; Copeland, 

1974) as a HFSA. 

Dopamine Reward Processing (Cannon and Bseikri, Reinforcement through the processes of imitation, 

2004; Schultz, 1997;Schultz, 2000) which constructs schemes (piaget, 1954, p4; Piaget, 

1964, p13). 

The unphcatlOn of thIS IS that there IS a bIOlogIcal baSIS for Plaget's work. 

2.3.8 The Importance of Developmental Trend 

According to Piaget, the progressive interiorization of a scheme goes hand in hand with an increase in 

mobility - where mobility is the range of a scheme's potential applications within the totality of available 

schemes (Furth, 1969, p162 and 154). The development trend is a progression of each scheme through the 

knowing circle. This proce is vi ualized in figure 2- 5. 

Developmental Trend 
of Innate Scheme and Primary Reaction 

Developmental Trend 

Legend 
Increasmg Reflection 

-... (Abstraction and Use by) 
other Figurative Scheme 
anoOperative Scheme 

Figurabve Scheme Onnate ~. 
Scheme) V 

• Operabve Scheme 
(Pnmary Reactions) 
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Figure 2-5 A model of Piaget's developmental trend that shows the impact of increasing reflective abstraction and 

progressive interiorization on the abstract processes of assimilation and accommodation (Furth, 1969, p162 and 

154). 

This developmental trend (Furth, 1969, p162 and p154) performs three key functions: 

1) First, it increases the coordination and use of existing figurative schemes by other figurative and 

operative schemes. Reflective abstraction47 enhances the inter-scheme communication, by 

providing the interfaces between accommodated schemes (Piaget, 1983 p 125). The increasing 

depth and complexity of schemes e.g., the capability to increase perception through the reuse of 

existing schemes, can be partly explained in the increase of M-Capacity (pascual-Leone, 1970, 

p336) 

2) Second, it increases the consumption (and therefore abstraction, through generalization) of 

figurative schemes by operative schemes. Examples include from immediate reaction to less 

immediate reaction to events, i.e., some events are deliberately ignored. 

3) Third, it increases the progressive interiorization of a figurative scheme and an operative 

scheme, by optimizing it. This is understood, to be an increase from less predictable to more 

predictable behavior, through an increase in the time spent in the use of a predictive model. 

As an example: a four year old child may be able to work out slowly that 5 + 3 = 8 by means of a scheme 

from the pre~perational stage of development that cannot, by itself, be applied to the problem of 3 + 5 = 8. 

Piaget explains this, as "the child's scheme of addition is not mobile enough to disregard the order of the 

elements and conserve itself as a stable system" (Furth, 1969, p62). In this example, the child has not fully 

developed a reversible scheme, and it needs further refinement through interiorization. 

2.3.9 The Impact of Reflective Abstraction on Development 

The movement to higher levels of development depends on "reflective abstraction," which means corning 

to know properties of one's own actions, or corning to know the ways in which they are coordinated (Furth, 

1969, p259). In his 1970 essay, titled simply "Piaget's theory," Piaget says that reflective abstraction "is the 

general constructive process of mathematics: it has served, for example, to construct algebra out of arithmetic, 

as a set of operations on operations" (Piaget, 1983 p 125). It abstracts from and generalizes over, the 

individual's prior ways of coordinating their actions. It is distinct from and opposed to empirical abstraction, 

which ranges over the properties of objects in the external environment. 

47 Reflective abstraction is considered to be the reuse of an Operative and Figurative scheme by another 

process of assimilation and accommodation. For example, a figurative scheme that is used for sensory motor 

perception is consumed by imitation and reinforcement (learning) changes this scheme. Later this same scheme 

can be used in planning (predictive model) and used for coordination, for example as in play. Each time, the 

scheme is becoming more abstract, i.e., it has more features added. 
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In considering reflective abstraction, an example is poignant: "Why is multiplication harder to understand 

than addition? .. They are both operations on numbers, after all. Piaget's analysis was that to understand 

multiplication it is not enough to center your thinking "on the objects that are being put together with other 

objects and thus on the result of this union. Multiplication also involves isolating the number of times that the 

objects are being brought together; it means enumerating operations as such, not just the results of those 

operations (Le., the number of objects transferred each time)" (Piaget, 2000b, p57). Further, any system would 

need to support the development of invariants since to understand Piaget's terms, it is necessary to distinguish 

between the external transformation and, the external instability of the physical attribute from the internal 

process of thinking (Furth, 1969, p215). Hence, there is a need to understand reflection. 

Piaget refers to reflection and in particular reflective abstraction as the notion of reflection on mental 

operations using abstraction and generalization. Some researchers refer to this process as interiorization -

where students solve problems presented to them with the existing schema using actions in their imaginations -

where feedback from the coordination or operational activities to the interior organization which enables it to 

"reflect" on the general form of the activities. This formal, reflecting abstraction is the principal growth of 

intelligence as general, logical knowledge (Furth, 1969, p259). 

In the developmental trend, there is increasing reflective abstraction (as consumption of schemes by other 

schemes) and lesser immediacy leading to generalization of action. This process of reflective abstraction 

generates more interconnected and complex processes, and so resolves LP6. Reflective abstraction is 

fundamental to the development of number-sense is a conclusion reached in this present research thesis. 

2.3.10 Impact of Evolutionary Trend on Development through Interiorization 

For Piaget, the evolutionary trend towards a lesser degree of immediacy and specificity in behavior 

becomes in intellectual development a process of increased reflection. This is a turning inwards or an 

interiorization of action that changes coordinated external actions into systems of interior, reversible 

operations. One important comment on Piaget's work on evolutionary development is that "what is transmitted 

through the genes cannot go beyond sensory motor intelligence because gene-transmitted structures are tied to 

specific organs and are therefore inseparably linked to the organs and the sensory content to which they 

selectively respond. This stable operative knowledge is predicated upon an increased freedom of schemes from 

subjective actions and specific content. Such knowledge cannot be handed through psychological devices 

alone. Not by chance are humans born more poorly equipped with innate mechanisms than any other species. 

This fact enables humans to exercise schemes of adaptive activity with a freedom from the specific and the 

immediate like no other animal. But at the same time it forces each individual to go through the process of 

development" (Furth, 1969, p232). The child's activity serves him both as a source of further progress and as 

an obstacle to overcome (Furth, 1969, p232). Thus, the basic mechanism ofleaming is not different from the 

equilibration process of the whole developing intelligence (Furth, 1969, p234). 

This interiorization or "turning inwards" is critical to development, and as a feature, is often mistaken for 

assimilation and accommodation, as seen in the work of (McClelland, 1995; Shultz, Schmidt, Buckingham and 
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Mareschal, 1995). The process of interiorization as described by Furth (Furth, 1969, p65, p209, p259; Piaget, 

1983, p125 ; Piaget, 2000b, p57) is provided in figure 2- 6. 

Combinations of Evolutionary Trend and Developmental Trends 

Developmental1l'end 

, . 
&oMd .... ~thIIt-vefnMntM-'-I 
Functions functiona,end aieting.m-_ .............. 

Sen~Moto< -.~-;-Objoct; 
F.nellon Identic8l0bjede.o.,OnIer"ReIIIIion: ......,.,.,.. 

Relation: s.IIItioft; Gel ...... n 

SeMiotic Function SillIUI: ...... &.It; "-tion; c:onc.t: 
SiIInificlile 

s,mbollc: F.nctlon ~ Known Ewnt:IIIoaninO:IIu"-"; logical 
CIIIMific8tion:TempcnlCoonI ..... ; 

5CructIIAI function __ : EJIdIoalon; HypoeIdCo DehctIWe; 

SyIogialic; c.uIity: ~ CCICII1IiMM 

OpeqlioNll Funclon ~._l ... CIOII_ 

Figure 2-6 A depiction of the impact of Piaget's evolutionary trend and developmental trend (Furth, 1969, Piaget 

1983) as it affects the learning process to develop more complex schemes, and so resolve LP6. 

In the evolutionary trend, there is increasing interiorization (as the internalization of sensory data by 

schemes) and les er immediacy leading to generalization of action. This process of interiorization generates 

more interconnected and complex processes, by allowing their networks to use the internalized values and so 

resolves LP6. Interiorization i fundamental to the development of number- sense, which is a conclusion 

reached in this research. 

2.3.11 The Impact of Equilibration and Disequilibration 

Equilibration can be viewed as a compensatory response to these biological trends (Furth, 1969, p209). 

Equilibration i the inner regulating factor, which in development leads to an increasing dissociation of the 

general forms of tructured behavior from particular content i.e., the building up of more advanced structures 

(Furth, 1969, p209). 

In tability in till en e occur when, for instance, the organism is acting / sensing and cannot process 

information from the environment. This instability forces the individual to change its processing state into 

learning or planning. In learning and planning, new schemes are generated that can handle the "input data" 

from the internal or eternal environment. 
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2.3.12 The Impact of Equilibration and Disequilibration Pia get and Mathematics 

"It is a great mistake to suppose that a child acquires the notion of number and other 
mathematical concepts just from teaching. On the contrary to a remarkable degree, he 
develops them himself, independently and spontaneously ... Children must grasp the principle 
of conservation of quantity before they can develop the concept of number" ( Piaget, 1953, 
p74). 

Piaget argued that the development of set theory and mathematics is an abstraction that humans 

developed using formal operations (Furth, 1969, p66). This present research focuses on the development of 

mathematics from a child's perspective using their primitive sensory motor functions, thus, there is no 

application of the rigidity of an axiomatic system. 

Von Glasersfeld describes the learning paradox. as "how can you know what you do not already know," 

and this would be true for any child that approaches mathematics (Von Glasersfeld, 1998, p9). To the child, the 

knowledge that spatial distance does not define number is an example of a conceptual system, one that 

develops through maturation (see for instance the bead problem § figure 1-1). Piaget's work on the conception 

of number is an example of rigorous empirical methods being applied to a cognitive psychological 

investigation of children in the concrete operations stage of development (Ages 7 through 11). 

Further, the notion of permanent (or "stable") mathematical concepts are rooted in perception and of trial 

and error processing that is finally solidified as logical and reversible mental operations (piaget, 1952). This 

research operates within the dichotomy of empiricism and rationalism which considers whether number 

conceptions arise from experiencing number in the external world or, instead, from reasoning using thought. 

Piaget suggests a general shift from the former to the latter in the child's construction of number. That is to 

say, number first manifests as a qualitative perceptual intuition (on the figurative plane, as a figurative scheme) 

of small numbers (up to about cardinal 5) but cannot progress further - one does not empirically experience all 

integers on the real number line, after all. It follows that the construction of number cannot remain within the 

field of perceptual intuition and can therefore be completed only on the operational plane - as an operational 

scheme, that embodies action (Piaget, 1952, pI54). This research thesis demonstrates this as action on a 

number line. For Piaget, these schemes are subjective operators of the meta-subject because they determine 

and operate upon both the content of the subject's experiences and their performance (Piaget and Morf, 1958 p 

86 cited in Pascual-Leone et aI, 1978). 

In the development of mathematical ability (Copeland, 1974), Copeland stresses the importance of 

developmental stages for each relation being not specifically tied to the child's developmental stage. Congruent 

with this are the development of various relations (Copeland, 1974, see also § C Piagetian Models and 

Mathematics for further clarification). The capability for the system to generate its own logical system is a 

critical aspect and underlies any development of language, which includes conservation of number, 

conservation of measurement/distance and length, equivalence, counting, subdivision and substitution 

(Copeland, 1974). 
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2.3.13 Development of Symbols 

For Piaget, "The representation theory of knowledge, reduces knowledge to a signal reaction even when it 

calls its mediators images, words, or symbols and it leaves unexplained the active relation of the knowing 

person to the representation which would be inherent in any true symbol behavior" (Furth, 1969, p93). Further, 

"A symbol is thus an observable state that derives from accommodating imitation and as a symbol, represents 

something other than itself' (Furth, 1969, pi 02). This process of relations is a critical feature for Piaget. 

Specifically, there are a set of relations of knowing that Piaget defines which are often referred to in other 

sources as causal relations, representational relational (representation relation) and intentionality. These differ 

in content to the representational theory of knowing as presented by other researchers (Furth, 1969, p78). For 

Pia get, the "relation of knower to representation as well as the relation of material cause and effect lies at the 

heart of Pia get's entire theory" (Furth, 1969, p93). 

In the representation theory of knowing, "we have a causal-associative relation of thing to sign and vice 

versa" (Furth, 1969, p95). This is balanced in Piaget's theory of operative knowledge (operative theory of 

meaning), which is unique in "dispensing with a meditational representation as far as the essential aspect of 

critical, objective knowing is concerned." With this approach, the words "representation" or "internalization" 

are not used in the developmental stages (Furth, 1969, p75). 

To support internal knowing, Piaget employs representation in the active sense and relates it to the 

symboliC function (symbol or linguistic sign) or semiotic function of intelligence. For Furth, Piaget's theory is 

never a matter of representation (Furth, 1969, p77). Piaget also distinguishes a representational sign (an 

imaginable symbol) from a linguistic sign. For Piaget, every symbol has two differentiated aspects. First, a 

figurative aspect48 (the plane of representation or representative plan) that refers to some sensory or motoric 

event in itself. Second, an operative aspect (the plane of operative or operative plane4~ that refers to meaning 

i.e., its significate. A concept stays fully within the plane of operative knowing. Each significate is thus a 

concept (Furth, 1969, p78). 

A symbol is experienced as some figurative thing that derives developmentally through the knowing 

circle. Further, the direct significate of a symbol is a knowing or concept (an operative scheme) and it is only 

through this concept that it can be said to represent the external thing. The development of symbols is the final 

stage in a development process that begins with action. A symbol is thus an observable state that derives from 

accommodating, imitation and, as a symbol, represents something other than itself (Furth, 1969, pl02). In 

illustrating the role of symbols and to point out that operations are real actions, Piaget uses the example in 

figure 2-7 (Furth, 1969, pI04): 

2+3=5 

Figure 2-7 A simple depiction oC Piaget's number example (Furth, 1969, pl04) 

48 The figurative aspect and plane of representation is referred to as the figurative scheme. 

49 The operative plane is referred to as the operative scheme. 
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When the operation of addition is performed on symbols, the specific symbols 2,3,5,+ = constitute the 

figurative aspect of thinking (figurative scheme) and are tied to the representation and communication of 

specific states. The reason it is real, is that transforming operations are manifestations of a thinking process 

constructed by the thinking subject (Furth, 1969, p104). 

Furth further clarifies Piaget's position on this symbolic function as "By being outside the thinking 

process, a symbolic instrument (symbol) can become a means of communication between persons and thus 

forms part of the external communication and thus forms part of the external symbolic environment to which a 

person responds. Knowing as a living process cannot be experienced or observed in itself, but only inferred 

from its manifestations; a symbol, in contrast, has an integral part that is external to thinking" (Furth, 1969, 

plIO). Thus, a sign is only as good as the knowing structure, which uses it since "the act of comprehending a 

symbol is similar to the operative process by which we know the referent" (Furth, 1969, pIll). A symbol is 

generated through a combination of the processes of assimilation, accommodation (as imitation and 

reconstruction) and influenced by equilibration with the evolutionary and developmental trends. In the 

development of symbols, the system must allow the relationship of actions and perceptions together (Furth, 

1969, p78; Furth, 1969, p92) in different but related reversible operations, to form a "concept" (piaget, 1963 

cited in Furth, 1969, pI25). 

Though important to Piaget, the notion of play (Furth, 1969, p96; Piaget, 1962a), is not covered in this 

research. 

2.3.14 \Vorked Example 

In this section, a worked example using a number line to describe the levels of a partial resolution to the 

learning paradox (WEt - WES), is developed. It is assumed that Piaget's empirical observations are correct 

and it is considered that there are both intrinsic and extrinsic rewards that allow the development of a scheme, 

as well as various levels of conservation, along with evolutionary and developmental trends. The positions of 

Piaget and Fodor at each of the levels of the development of mathematical relations are included (Copeland, 

1974). 

Piaget described three stages in the development of concepts (Copeland, 1974, p84): (1) no 

understanding. (2) partial understanding. (3) complete understanding. As the child develops a concept, the 

child's ability to develop and use the concept passes through each stage of understanding, until finally it has 

mastery of that concept. It is anticipated that the simulation would develop concepts in a similar way, and thus 

those relations normally observed in the development of a child's understanding of number, namely: equality, 

addition (counting), subtraction, "less than" and "greater than" (Fennell and Landis, 1994; Liebeck, 1984), 

would be observable in the executing simulation, in similar stages. It is suspected that all these relations (as 

behaviors) would be observable in WES. However, if we assume that (i) the aim of the simulation is a 

permanence of equivalence relations (Copeland, 1974, p94) and (ii) that addition (counting) is used by the 

relations of "less than" and "greater than" then addition is anticipated to appear earlier than WES. Further, the 

Piagetian concepts of spatial relations (proximity, separation, order and surrounding) and seriation upon which 

Page 46 



Chapter 2. Literature Review 

these relations (addition, subtraction, "greater than", "less than") are based, are anticipated to appear even 

earlier, potentially in WE3. This is expected because genetic epistemology predicts the emergence of more 

complex scheme from simpler forms50
. Since the simulation exists within a number-line world, the 

development of the e relations must occur as some function of the interaction with the environment and this 

interaction is understood to occur using a Piagetian model. Thus, first, in early development, the system must 

treat the number line and its components as continuous values, being based on perceptual shape, not value. The 

differentiation into units comes later and is used in counting (piaget, 1965, p80 cited in Copeland, 1974, p91). 

Second, Piaget's genetic epistemology defines a series of relations that are observed to occur, with stage like 

variation throughout the life of the child. As the child matures, these relations become increasingly interiorized 

and generalized. At any point in time, these relations are combined together using the processes of 

assimilation, accommodation and equilibration to produce the observable behavior. 

Since all con traints (LPI - LP7) apply throughout the life of the simulation, the level in which the 

constraint is most clearly ob erved to have been adhered to is identified. 

2.3.14.1 WEI - Base Level 

In this level, the student has an interface that provides a mechanism to change the pen state (either pen up 

or pen down) as well a to move forward and back. The starting point is a discrete quantity such as a point on a 

line where the di tance property is initially ignored. 

Figure 2-8 In WEt - Ba e Level, there is emergence of the capability to act and sense in a number line world. Tbe 

simulation learns to move, change its penState and use its innate scbemes and primary reactions to adapt to tbe 

continuous number line environment. 

1) For Piaget, it is assumed that a student has a set of innate schemes and primary reactions that 

enable the tudent to move along a continuous number line to perceive, recognize, imitate, 

recon truct, u e mental images and evoke those images. An operative scheme is learnt that 

con ume the figurative aspect and supports action on the number line by the student's pen. It 

upport the developing patial relations of topology (proximity, enclosure, separation and 

order) then the Euclidian propertie (Copeland, 1974, p91, p214, p226 and p232). 

2) For Fodor, the key is to generate an appropriate descriptive response to a given situation - but 

thi i common to mo t of the living world, so is not considered to be a learning paradox since 

a ca e can be developed that attaches properties to observations. 

3) In the e ample presented, "move" i emergent as the imulation achieves a steady state of 

fluency of it movement and the u e of its pen tate. At this level the simulation is operating in 

50 In the following de cription, the level within the worked example (WEt - WES) where observations of the 

relation are anti ipated, are de cribed. 
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the Piagetian Sensory Motor stage and so number-sense would not be directly observable, yet 

the schemes it is building lay the foundation for the future. 

4) In this level, adherence to LP3 and LP7 should be observed as: (i) LP3, the system should 

work unaided on its goals. (ii) LP7, the responses from the environment should include 

elements of noi e. Further, the simulation should show that it takes opportunities, as they are 

pre ented. 

2.3.14.2 WE2 - Constrained Level 

In this level, the continuous movement that the student perceives is prevented by the system, which leads 

to differentiation of a new type of scheme, the permanent object. 

Figure 2- 9 In WE2 - Constrained Level, there is emergence of "Stop" action. This action, not inherent in the innate 

schemes and primary reactions, is perceived as repeated constrained movement in a number line world. This 

constrained move ment is the precursor for unitized movements. 

1) For Piaget, emergence of a" top" cherne is clearly at a different level. Piaget explains this in terms of 

learning and it i thi feature that clearly must occur. Reversibility (Copeland, 1974, p90), is also required 

and would need to be tempered with the use of the penState, such that the student develops a scheme that 

can begin and top at the same place. Each stopping point would essentially be a different value. It must 

upport the development of the relations of conservation of measurement, length and distance (Copeland, 

1974, p24 , p267 and p253) and in many ways, the implied point must be observed. 

2) For Fodor, the key i to account for a higher- level descriptive framework "on top of' the lower level 

framework that ha any meaning above Base Level. This is treated as a modification of a descriptive lower 

level. The learning paradox starts with continuous movement which is then classified into discrete 

"terminal" point , which in turn are differentiated by distance. For this to occur, the student has initially to 

learn how to top and in the arne space, move left, stop of its own accord, as well as move right without 

being con trained. 

3) In the example pre ented, "Stop" is an ob ervation of the emergent behavior of the simulation. At this 

level the imulation i till operating in the Piagetian Sensory Motor stage and so number-sense would not 

be directly ob ervable. Yet, the appearance of the stop action along with repeated movement is the 

precur or of number- en e. 

4) In thi level , adherence to LP6 hould be observed as: (i) LP6, there hould be evidence that the 

imulation can e tend it exi ting lcarning proce s. 
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2.3.14.3 WE3 - Differentiated Level - Object 

The lines and points on the number line are classified in terms of lengths, and then with these lengths, 

comparisons can be made based on classifications and order. Much of the permanence of objects is based on 

the prediction that the object will be present. 

Figure 2- 10 In WE3 - Differentiated Level - Object, there is observation of the emergence of differ entiated objects 

as ets of coordinated movements in the number )jne world. The repeated observation by tbe simulation is necessary 

in order to provide t be capability to derive sets of values. 

1) For Piaget, at thi level, the appearance of unit lengths should agree with comparative human studies 

(Fennell and Landis, 1994; Liebeck, 1984). When the lengths of movement of the operative scheme is 

reinforced to a unit, the scheme will have developed object permanence (Furth, 1969, pI25). It is also the 

first appearance of the developing relations of equivalence, intersection, reversibility, inclusion, 

tran itivity and seriation (Copeland, 1974, p84 and p85- 87, p59, p90-92, p120, pl08 and p170, p79- 80) 

leading to a development of numbers. It is anticipated that the simulation would be, in Piagetian terms, in 

the border region between sensory motor and the pre-operational stages. 

2) For Fodor, it i at the implest "next" level of differentiated classification (forward and back) from where 

you tart. Thi i an ea y approach because any problem that needs to be solved within this framework can 

be solved by enumeration of the ca es that are currently known. 

3) In the example pre ented, " 1" i the ob erved behavior of the simulation as it moves ''unit'' values on the 

number line. However, it would not be possible to observe number-sense, because it had not yet 

internalized the concept of unit . It is expected that the bead problem (§ figure 1-1) would be directly 

ob ervable (or indirectly within the simulation it elf), since the simulation would only be capable of 

differentiating object - allowing it to manipulate its environment using these objects - there would be no 

value y tern upon which they could be mapped, and hence no notion of equivalence. The value of" 1" in 

this y tern, i arbitrary. 

4) In thi level, adherence to LPS hould be observed as: (i) LPS, there should be evidence of the system 

reu ing it knowledge, and incrementally changing it. 

2.3.14.4 WE4 - Hierarchical Level - Segmentation into Units 

At thi Ie el, there i an appearance of eriation and of ordering in general, such that points are made 

contiguou and there are progre ion of lines and relationships. Much, if not all of these relationships are 

ba ed on developing the con ept of equivalence and of truth. Truth is understood in this aspect to be 

prediction of perception of b th external and of internal relationships. 
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Figure 2- 11 In WE4 - Hierarchical Level, there is emergence of hierarchies. This hierarchy supports the necessa ry 

relationships of a value system and it is with this internally constructed value system that " units" emerge. The 

appearance of, and use of "connected units" in the value system, is the precursor for ordering, seriation and of 

equivalence. 

1) For Piaget, at this level, operative schemes should appear to add onto an existing line, rather than going 

back to the start. This would indicate a progression, such as 3+ 1 or 1+1+2 and show that lower level 

schemes are being consumed. The underlying relationships of signals and significate become important to 

differentiate how symbols can eventually be formed. It is the appearance of schemes for conservation of 

number, counting (Copeland, 1974, p83) combined with schemes of reversibility, transitivity, equivalence 

and seriation that populate the hierarchy. 

2) For Fodor, at the hierarchical level, general laws, need to be construed (and learnt) in terms of the lower 

levels (Base Level, Constrained Level, Differentiated Level). For instance, classification of the lines 

and points into meaningful units and series. 

3) In the example presented "1,1", the values of one unit movement on the number line, would be followed 

by a similar movement. At this level, the simulation should be observed to have acquired the concepts of 

seriation and ordering through the reuse of the units concept it had identified earlier. To achieve this would 

require the emergence of hierarchical structures to support the internalized concept of sets. It should also 

be observed that the bead problem (§ figure 1-1) is no longer a problem, since the simulation would have 

acquired the notion of units and with this, conservation of number. 

4) In this level adherence to LP2 and LP4 should be observed as: (i) LP4, the actions on the number-line 

should most clearly mirror those of children. (ii) LP2, there should be evidence of hierarchies being 

developed e.g., set of sets of repeated patterns. 

2.3.14.5 WE5 - General Level - Relationships of Unit Values 

At thi level, there should be comparisons of values in sets and series and general conformance to values 

and predictions. 

-----tIJt--~~, 

Figure 2- 12 In 5 - eneral Level, there is observation of more complex behavior by the simulation including the 

con truction of hierarchical relationships with ea rlier constructed schemes. In this case, the " units" developed 
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earlier. It is with the repeated observation of these relations, that the simulation has emergence of concepts such as 

equivalence, " less than" and "greater than". 

1) For Piaget, within these general laws, the expression of equivalence, truth, and logical connectives such as 

add, subtract, need to be considered. This would be possible if the evolutionary trend of stage like 

variation , which takes imaging of points and lines, is converted into the transformation itself using a 

process that acts on the processes of assimilation and accommodation (§ figure 2- 1, the bead problem, 

which is resolved through reflective abstraction). The appearance of part- whole relationships should be 

expected, along with the combinations of values. The external behavior may evoke the response 1+ 1, but 

that is merely within the representational system of the observer. At this level, there should be the 

appearance of the commutative property, along with multiplication and division and more appearance of 

introspection, c1as ification with subdivision and substitution (Copeland, 1974, p123 , p146, p184, p51-60, 

p80, pl59 and p252). 

2) For Fodor, at the Genera l Level "better general laws" need to be learnt in terms of the lower levels (Base 

Level, Constrained Level, Differentiated Level, Hierarchical Level). Within this simple framework, the 

relationship of numbers to et of units is introduced. 

3) In the example pre ented "1 +1---+2", the general relations of addition (counting) and equivalence are 

realized. At this level, the simulation should also be observed as having and using the relations of "greater 

than ' and "Ies than". Thi i anticipated through the addition of more complex hierarchical schemes 

which build upon the previou schemes. 

4) In this level, adherence to LPI should be observed as: (i) LPl, the relationships should not be defined in 

the ystem i.e. , there houJd be no rules upon which actions are taken. All actions must necessarily be self

generated. 

2.3.14.6 ummary 

It i believed that there are a number of constraints (LP} - LP7), that need to be accounted for by a 

simulation that attempt to develop number- ense using Piaget's genetic epistemology. Further, it is affirmed 

that it is nece ary to go through "stage like" development to overcome the learning paradox and equate the 

levels to a facet of the e developmental tages . Table 2- 2 ummarizes the relationships of the worked example 

to the con traint . 

Table 2- 2T his table describes the anticipated observations of a simulation as it acts and senses in a number line 

world. 1t is initially eeded with a Piagetian model of learning and developing along with a set of innate scbemes and 

primary reaction . s the y tern executes, it is anticipated that it will ex hibi t these levels of development. An 

example i pre ented that exhibit the progressive emergence of more complex structures, and this is mi r rored in an 

ex ternal representation. ince all constraints (LPl - LP7) apply throughout the life of tbe simulation, tbe level in 

which the constraint i mo t clearly ob erved to have been adhered to, is identified. 

External Anticipated level in wbich the constraint is most Presented 

Repre entation Level of clearly observed to have been adhered to. Example of 
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development LPI LP2 LP3 LP4 LP5 LP6 LP7 Emergence 

• ~ WEI. Base - - X - - - X "Move" 

• ~ I WE2.Constrained - - - - - X - "Stop" 

- - WE3.Differentiated - - - - - - X - - 1 
- Object 

- .- WE4.Hierarchical -- ::. ..- - X - X - - - t, t - - Units 

- - WE5.General -- ::. -- - - X - - - - - - 1+1-+2 - Relationships 

Smce the external enVlfonment does not dlrectly control the executlOn of the system, the order of 

appearance of the e "Level of Development" is indeterminate. 

2.3.15 Conclusion 

This ection provided a re- evaluation of Piaget's genetic epistemology using work from Furth (Furth, 

1969), Copeland (Copeland, 1974) and Piaget (piaget, 1962a; Piaget, 1962b; Piaget, 1963; Piaget, 1964; 

Piaget, 1965; Piaget, 1983; Piaget, 2000b). As an empirical observation, Piaget provides a plausible model of 

cognition that required exten ive work by other researchers, such as Pascual- Leone, Furth and Copeland to 

codify into a workable system, with only a few salient points for the design noted here. The roots of Piaget's 

genetic epi temology a biological evolution are confirmed and presented in an abstract model of assimilation 

and accommodation, which fit a neural model of Drosophila (Miesenbock, 2008, p52 ; Shang, Claridge-Chang, 

Sjulson, Pypaert and Mie enbock, 2007, p601). Further, this model is consistent with the model by Albus 

(Albu , 2008; Albus, 2010) and Granger (Granger, 2006a; Granger 2006b). A worked example of number-

en e acqui ition (WEt W ES), is provided which describes how these would be impacted by the constraints 

imposed by the learning paradox (LPl - LP7). Given these applications, a simulation would be capable of 

developing ymbolic knowledge using a Piagetian model and partially resolve the learning paradox. 

2.4 Number- Line Number Sense 

"You think becau e you understand one, you must understand two, because one and one 
make two. But you mu tal 0 under tand and" (Sufi, 12th Century). 

Thi ection re iews number en e from an educational perspective (Liebeck, 1984 and Fennell and 

Landis, 1994), in § 2.4 .1. The emergence of number- sense from a neuroscience perspective (Bugden, Price, 

McLean, and An ari, 2012; de Hevia, Girelli and Macchi- Cassia, 2012; Fuhrman and Boroditsky, 2010; 

Dehaene, 1997) i then reviewed, in 2.4.2, along with the cultural impacts of MNL (Shaki, Fi cher and 

Gobel , 2012; uerk, llelmrei h, Zuber, Moeller, Pixner, Kaufmann, 2011 ; Nunez, 2011 ; Dehaene, Izard, 
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Spelke and Pica, 2008), in § 2.4.3 and 2.4.4. Some conclusions of this research approach using a number line 

world are then given to end this section. 

2.4.1 Number-Sense from an Educational Perspective 

Fennell and Landis provide numerous answers to the question ''what is number-sense?" (Fennell and 

Landis, 1994, pI87). For them ''Number-sense is an awareness and understanding about what numbers are, 

their relationships, their magnitude, the relative effect of operating on numbers, including the use of mental 

mathematics and estimation" (Fennell and Landis, 1994, p187). They suggest that students must understand 

how numbers relate to each other (Fennell and Landis, 1994) and that the magnitude of numbers is a very 

important aspect of number-sense: magnitude helps the students break down the problem and look at relative 

size being supported by mental mathematics and estimation. For example, students must understand and use 

the basic properties of numbers when using the commutative property to know that 20 + 10 is the same as 10 + 

20. This determination, as well as the ability of the students to estimate, depends on the basic concepts of 

number-sense. 

Fennell and Landis define number-sense as "the foundation from which all other mathematical concepts 

and ideas arise" (Fennell and Landis, 1994, p187-188). They continue, ''Number-sense is good intuition about 

numbers and their relationships," and students with number-sense can automatically tackle a variety of 

problems and can break down the problem and use the numbers as references (ibid, pI88). In other words, 

they can make connections between their knowledge and newly learned mathematical concepts and skills 

(Fennell and Landis, 1994, pI87). In general, they know how to make sense of numbers, how to apply them 

and are confident that their problem solving processes will enable them to arrive at solutions. 

The importance of ''number-sense'' was identified by earlier researchers, specifically those that 

developed the National Curriculum as part of the 1988 education system act in Britain (Liebeck, 1984). 

Liebeck discusses how Piaget's theory was woven into the ideas of mathematics development (Liebeck, 1984, 

p71). A major aspect of this curriculum is summed up by Liebeck: "When we teach only for calculating 

competence, we get demands for understanding. When we teach only for understanding, we get demands for 

calculating competence. The real need is for both of these. It is through both of them, that we are equipped to 

solve real problems" (Liebeck, 1984, p11). Liebeck says that the reasons for teaching children the abstract 

hierarchical nature of mathematics are aesthetics and usefulness (Liebeck, 1984, p13). Further, this comes 

through the abstract progressive development of i) experience of physical objects, ii) spoken language that 

describes the experience, iii) pictures that represent the experience and iv) written symbols that generalize the 

experience, and facilitate problem solving (Liebeck, 1984, p 16). In early concept development, Liebeck sees 

four basic activities taking place: i) matching, ii) sorting, iii) pairing and iv) ordering (Libeck, 1984, p 17) while 

avoiding the associated noise that deters learning. Counting is seen as a successively more complex concept 

(process) that requires numbering, ordering, cardinals, linking which ultimately leads to conservation of 

number (Liebeck, 1984, p33). Numeration, addition and subtraction are seen as similarly complex forms that 

occur at similar times to shapes and length, capacity, weight and time (Liebeck, 1984, p55). 
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2.4.1.1 Implications for the Research 

From an educational perspective, Liebeck reviews Piaget, along with the works of Skemp, Bruner and 

Dienes and describes features of early concept formation as observed in children developing number-sense 

(Liebeck, 1984, p237 - 239). Fennell and Landis provide a similar view and assert the fundamental nature of 

number-sense to mathematics, without providing an abstract model, which can be implemented. 

These results conftrm the validity of a Piagetian approach and suggest some features that could be 

observed in a simulation that mirrors child development, including place matching, sorting, pairing, ordering, 

addition and subtraction. These observations are consistent with the views of Copeland, Fennell and Landis 

(Copeland, 1974 and Fennell and Landis, 1994). 

2.4.2 Biology and Neurophysiology on Development of Number-Sense 

While behavioral studies continue to reveal the relationships between an individual's symbolic number 

processing and their arithmetic performance, much of the neural foundations of arithmetic learning still 

remains unknown (Bugden, Price, McLean, and Ansari, 2012, p448). Some studies suggest that number-space 

mapping is innate, whereby small numbers induce a compression and large numbers an expansion of spatial 

extent (de Hevia, Girelli and Macchi-Cassia, 2012). Other studies presented evidence suggesting the existence 

of a mapping between symbolic and non-symbolic numbers and spatial magnitude, with "infants at 8 months 

of age transferring the discrimination of an ordered series of numbers to an ordered series of line lengths, and 

learning to productively use a rule that establishes a positive relationship between number and length, while 

failing to do so with an inverse relationship" (de Hevia, Girelli and Macchi-Cassia, 2012). Other researches 

also support the notion that children have an innate spatial representation for time and number (Fuhrman and 

Boroditsky, 2010, pI432). 

2.4.2.1 Implications for the Research 

The implication is that the approach of this thesis of constructing an abstract representation, in this case 

HFSA, does not violate existing knowledge from cognitive neuroscience on the development of number-sense. 

Further, the implication of innate number to space mappings (Fuhrman and Boroditsky, 2010; de Hevia, Girelli 

and Macchi-Cassia, 2012), confirms the research approach of using a MNL with an interaction mechanism that 

provides spatial values. 

2.4.3 Cultural Impact on Development of Number-Sense using a l\tNL 

Research suggests that cultural differences account for how individuals process numbers on the number 

line, with western children showing SNARe effect (small numbers associated with left responses and right 

responses for large numbers) as well as the automatic / plastic mapping between numbers and space (Shaki, 

Fischer and Gobel, 2012, p275). Without necessarily challenging earlier research on the cultural late 

development bias of numeric magnitudes in number line processing by preschool children, Opfer, Thompson 
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and Furlong hint that development of an early left-right bias improves performance in both estimation and 

reasoning skills (Opfer, Thompson and Furlong, 2010, p761). However, research shows that performance by 

children in Siegler'S number line task is indeed influenced by culture-specific language properties (Nuerk, 

Helmreich, Zuber, Moeller, Pixner, Kaufmann, 2011, p598). Evidence of the cultural impact on the MNL is 

provided by work on Australian Indigene, who, using merely a spatial strategy, were significantly more 

accurate that western children who relied on an enumeration strategy supported by counting words to perform 

addition tasks (Reeve, Lloyd, Reynolds and Butterworth, 2011, p630). 

Nunez argues convincingly that humans do not have a hard-wired, innate and consistent number to space 

relationship that can be mapped to a mental number line (MNL) (NUiiez, 2011, p652). Rather, the MNL 

emerges for each individual through top-down dynamics that are culturally mediated, reusing existing 

cognitive mechanisms which have been acquired through education, and which make use of the brain 

phenotypes that support number-to-space mappings (NUiiez, 2011, p652). They maintain that the left-right 

association of numbers is merely cultural. This is contrary to the views of Dehaene and SNARC coding (§ 

2.4.3). NUiiez also argues for the implausibility of an innate number line by showing diachronically that the 

ancient civilizations did not use it, with the first recorded publication being in 1685 by John Wallis (Nunez, 

2011, p654). In supporting this argument, Nunez refers to the lack of sophisticated numerosity in indigenous 

groups, concluding that "number line intuition is not universal and that number concepts can exist 

independently from MNL representations" (Nunez, 2011, p658). Moreover, Nunez says that the number line 

task "imposes an overtly spatial source domain for the mapping, not a target domain," which some cultures 

will have difficulty in manipulating, but that through education, it is possible to manipulate those environments 

(Nunez, 2011, p661). 

In describing cognition, Nunez refers to conceptual mapping - conceptual metaphor (§ 2.6) which "is an 

inference-preserving cross--domain mapping that allows the projection of the inferential organization from a 

source domain onto a target domain" (Nunez, 2011, p663). This approach supports an entire network of 

systematic inferences of concepts in terms of spatial experience (NUiiez & Sweetser, 2006 cited in NUiiez, 

2011, p663). Crucially, these conceptual mappings are universally available, but they are not genetically 

determined, allowing for cultural variation, historical mediation and development (NUiiez, 2011, p663). One 

such conceptual metaphor is the MNL and the related number space representations. Nunez points to the need 

for a better understanding of how these conceptual metaphors relate to the neural processing in the brain 

(Nunez, 2011, p663). 

2.4.3.1 Implications for the Research 

There are three impacts for this research thesis: 1) The SNARC effect (Shaki, Fischer and Gobel, 2012) 

will not be accounted for in this research, though potentially, it can be an object of follow-on work for future 

research. 2) The research approach of using a spatial strategy for the development of number-sense using a 

MNL, is supported by research in the field (Reeve, Lloyd, Reynolds and Butterworth, 2011, p630). 3) In 

addressing the need for a better understanding of conceptual metaphors in the development of number-sense, 
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Nunez points to conceptual metaphor as a solution (Nunez, 2011, p663). The role of conceptual metaphor is 

reviewed in the § 2.6. 

2.4.4 Number-Sense is Innate but Culture Makes a Difference 

2.4.4.1 Number-Sense is Innate 

Dehaene, as the subtitle of his 1997 work indicates, understands number-sense and all that goes with it, 

as created by the mind and brain (Dehaene, 1997). For Dehaene, the brain itself communicates in numerical 

codes. Nerve cells (neurons) convey messages by electrical pulses that pass down the nerve fiber (axon) until 

they reach the junction with the next neuron or an effector such as a muscle. There they release little packets of 

chemical transmitter that trigger the next cell to respond. The response depends on the frequency of electrical 

pulses and the quantity of transmitter released. Counting is thus an embedded feature of brainwork - much 

more fundamental than language, which partly explains Piaget's fascination (Piaget, 1970a, p13). 

2.4.4.2 Culture Impacts Development of Number-Sense 

For Dehaene, constructivist theories view mathematics as a set of cultural inventions that are 

progressively refined in the history of mathematics and are slowly acquired during childhood and adolescence 

(Dehaene, Izard, Spelke and Pica, 2008, pI217). All humans share similar intuitions which map numbers onto 

space, but that culture specific experiences alter the form of this mapping (Dehaene, Izard, Spelke and Pica, 

2008, p 1217). Yet, the acquisition requires a complex interaction between symbols and "non-symbolic visual 

and auditory numerosities" (Dchaene, Izard, Spelke and Pica, 2008, pI218). 

2.4.4.3 Evolution Provided a Deep Foundations for Number-Sense 

Conclusions drawn from Dehaene's research suggest that the mental construction of mathematics may 

have deeper foundations (Dehaene, Izard, Spelke and Pica, 2008, pI217). Mathematical objects may fmd their 

ultimate origin in basic intuitions of space, time, and number that have been internalized through millions of 

years of evolution in a structured environment and emerge early in ontogeny, independently of education 

(Dehaene, Izard, Spelke and Pica, 2008, p 1217). 

2.4.4.4 Observations of Logarithmic Use of Number line 

Observations of children positioning small and large values on a number line seem to obey Weber's lawsl 

and it is compatible with a logarithmic internal representation with fixed noise (Dehaene, Izard, SpeJke and 

Pica, 2008, p 1217). Dehaene suggests that since a logarithmic scale provides several orders of magnitude with 

fixed relative precision, it may have been selected by evolution for its compactness (Dehaene, Izard, Spelke 

SI Weber's law a ubiquitous psychophysical law whereby increasingly larger quantities are represented with 

proportionally greater imprecision. 
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and Pica, 2008, p 1217). Continued research on indigene supports this notion, and shows that it not only occurs, 

but that indigenous populations, those that do not have access to an educational culture, show continued use 

and development of logarithmic numerical estimation skills on the number line. They also do not develop the 

linear skills that are found in the educated children of western cultures (Dehaene, Izard, Spelke and Pica, 2008, 

p 1217). But, Dehaene retorts, "If humans' initial intuition of number is logarithmic, we wouldn't have had to 

wait until the 17th century to see the invention of logarithms through Napier's painstaking work" (Dehaene, 

Izard, Spelke and Pica, 2008, pI213). It could be that the sensory motor functions may not be sufficiently 

pliable. 

2.4.4.5 Implications for the Research 

There are several implications of Dehaene's work. First, the deep structures of cognition that impart 

mathematical ability (of space, time and number) justifies the architectural approach (Dehaene, Izard, Spelke 

and Pica, 2008, p 1217), which enables the random self-assembly of a simulation that exhibits mathematical 

ability (§ 4.2.2.5 on using evolutionary computing as a framework for learning schemes). Second, the 

observation of children's logarithmic use of a number line as described in numerical cognition (Dehaene, Izard, 

Spelke and Pica, 2008, p1217) and the perceived shift from logarithmic to linear could be an area for future 

research. 

2.4.5 Conclusions 

In this section, the emergence of number-sense has been discussed, reviewing the cultural effects of the 

number line as well as current theoretical approaches in the development of mathematical ideas. This research 

confirms a number of positions, and identifies areas for future research. First, the choice of a Piagetian model 

of number-sense development is supported by Liebeck (Liebeck, 1984, p237) with sets of common structures 

appearing in childhood development (Fennell and Landis, 1994). Second, while behavioral studies continue to 

reveal the relationships between an individua1's acquisition of symbolic number processing (Dehaene, Izard, 

Spelke and Pica, 2008) and innate structures (de Hevia, Girelli and Macchi-Cassia, 2012; Dehaene, 1997), and 

other researchers suggest that there are no clear models of cognitive mathematical development (Bugden, 

Price, McLean, and Ansari, 2012). This confirms the research approach of using an artificial neural network 

implementation to test for emergence of permanent object invariants as well as to implement a dialectic system 

as a Piagetian model with tests for emergence of number-sense. 

Even though research suggests a cultural bias of the MNL (Shaki, Fischer and Gobel, 2012; Opfer, 

Thompson and Furlong, 2010; Nuerk, Helrnreich, Zuber, Moeller, Pixner, Kaufmann, 2011), this will not be 

accounted for in this research. Further, the observation of a logarithmic to linear shift in the use of the MNL 

(Dehaene, Izard, Spelke and Pica, 2008) will not be considered in this research, though it could be considered 

for future-work. 
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2.5 Concept Formation in Automated Mathematics 

Since this research examines how the development of number sense in children resolves the learning 

paradox, in this section is reviewed automated theorem formation and proving systems in pure mathematics to 

determine if they have resolved the learning paradox. If they have, then potentially, they could be a candidate 

solution from which to develop the research in the present thesis. Philosophical foundations are presented in § 

2.5.1, and HR (Bundy, 1985; Colton, 2000; Colton, 2002) is reviewed as an exemplary system, in § 2.5.2. 

Conclusions reached are presented in § 2.5.3. 

2.5.1 Introduction 

Theorem formation and proving systems, otherwise referred to as automated theorem formation and 

proving (ATF/ATP) continues to be an active area of development (Pease, Colton. and Charnley, 2012), which 

reasonably began with Siekmann and Wrightson'S study on the automation of reasoning (Siekmann and 

Wrightson, 1983). 

The application of AI techniques to mathematical discovery has largely involved computer algebra 

systems: theorem provers with ad-hoc systems for generating concepts and conjectures (Colton and 

Muggleton, 2006, p25). Such ad-hoc systems have included the AM system (Lenat, 1982; Lenat, Prakash and 

Shepard, 1986), which worked in set theory and number theory; the GT system (Epstein, 1988 cited in Colton 

and Muggleton, 2006, p25), which worked in graph theory; the IL system (Sims & Bresina, 1989 cited in 

Colton and Muggleton, 2006, p25), which worked with number types and the Graffiti program (Fajtlowicz, 

1988 cited in Colton and Muggleton, 2006, p25), which has produced scores of conjectures in graph theory. 

While many theorem proving techniques are based on Herbrand's theorem (Chang and Lee, 1973), which 

uses inference rules in predicate calculus and a proof system using sequent and tableau methods (Bibel, 1981), 

attempts have been made using natural deduction, induction (Colton, 2002), recursion analysis (Stevens, 1988) 

or combining the methods of Lakatos to build collaborative agent based systems (Pease, 2007). 

Besides the obvious application of mathematical reasoning, many problems have been transferred into 

theorem proving problems. These include software verification, program-synthesis, hardware verification, 

question-answering systems, game design, state transformation systems and computational creativity (Colton, 

2000, p97). 

2.5.2 The IIR System 

In his 1999 Ph.D. thesis, Colton extended upon Alan Bundy's aim of producing a mathematical assistant, 

and delivered the HR system (Bundy, 1985; Colton, 2000; Colton, 2002, pI4). Colton considers three main 

applications for HR: (i) to find something about a given concept i.e., a definition or a property; (ii) to find an 

entirely new concept with a particular property; and (iii) to find a set of concepts, which cover all defmitions of 

a particular form (Colton, 2000, pI14). Automated theory formation in pure mathematics requires the invention 

of new concepts, the computation of examples, the making of conjectures and ultimately the proving of these 
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theorems (Colton, 2000). To do this HR uses various pieces of mathematical software, including Otter to prove 

conjectures and the MACE program to find counter examples (Colton, 2000, p28 and p98). It also uses model 

generators and databases, to build a theory from the bare minimum of information - the axioms of a domain. 

The HR system provides general purpose automated theory formation (ATF) as well as automated 

theorem proving (ATP) in mathematical domains using a frame representation (Colton and Muggleton, 2006, 

p31). Unlike other ATF solutions described by Colton such as AM, GT, IL, BACON and the Bagai et al 

program, Colton's motivation is focused on finding interesting patterns (Colton, 2002, p144 and p287), in a 

similar fashion to machine learning programs such as Progol52 (Colton and Muggleton, 2006, p2S). In so 

doing, it draws parallels with Piaget's assertion of the need for intrinsic motivation for the development of 

concepts (Furth, 1969, p246); however, the definition of what constitutes a concept differs. 

HR uses a frame system (for constants, concepts and hypotheses) on top of an object-oriented language 

(Java) as its knowledge representation (Colton and Muggleton, 2006, p2S). Theories are formed using 

production rules, definitions and "fine grained parameterizations," which describe how new definitions will be 

created by exploiting the production rules (Colton and Muggleton, 2006, p32). Three types of production rules 

are used in this process: 1) nullary (entity-disjunct), 2) unary (exists, match, equals, split, size, linear

constraint embed-algebra, embed-graph and record) and 3) binary (compose, disjunct, negate, forall, 

arithmetic and num-relation) (Colton and Muggleton, 2006, p3S). Theories defined using these rules are stored 

in first order predicate logic (Colton and Muggleton, 2006, p3S). 

In HR. theories typically contain examples of the objects of interest and concepts53 (Colton, 2000, p98). 

These theories also contain proofs, dis-proofs and counterexamples, as well as open conjectures for which the 

truth is unknown. An example conjecture is "All prime numbers are non-squares." Using standard 

terminology, statements are conjectures until they become theorems when proven via a series of logical 

inferences. Specifically, a theory in HR is a set of classification rules, which are expressed as a predicate 

definition, and a set of association rules, which are expressed as range-restricted clauses (Colton & Muggleton, 

2006, p29). 

In HR. concepts can be considered as invariants or parts of invariants if they represent properties, which 

remain unchanged in the domain (Colton, 2000, p16 and plS3). A concept in HR consists ofa tripartite ofa set 

of examples (a data table or set of data tables), a definition (with constants, variables or states) and a 

categorization. The categorization is the generation of the theory over the examples HR has available, and 

includes a set of conjectures involving the concept (Colton, 2000, p6). For example, in the concept of prime 

number, the objects of interest that are specified in the data table are the integers from 1 to 10, with a truth flag 

52 Progol is an implementation of Inductive Logic Programming used in computer science that combines 

"Inverse Entailment" with "general-to-specific search" through a refinement graph (Colton and Muggleton, 

2006, p2S). 

53 Concepts, which discuss the nature of those examples and statements, and highlight the relationships 

between concepts (Colton, 2000, p98). 
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"of being a prime" being indicated. The definition consists of the predicate rules and the categorization 

consists of the primes and non-primes based on the level of interestingness. Colton argues that a desirable 

property for a set of concepts in a theory is to be able to describe different ways of grouping the objects of 

interest that i) avoids redundancy, ii) achieves a high number of categorizations and iii) develops all the user 

driven concepts (Colton, 2002, pI68). 

Users in HR initially create a domain model of the concept they are interested in evaluating as a user 

supplied set of data frames. The data frames consist of i) optional set of axioms, ii) examples (as a 

classification), iii) termination conditions and iv) a background theory which consists of constants and 

predicates using its frame system (Colton and Muggleton, 2006, p28). This domain model is then used in 

theory formation. 

2.5.2.1 Searching for Definitions - The Process of Theory Formation in HR 

ATF in HR is driven by a set of theory formation steps, which attempt to define a new concept, using 

production rules, and the agenda mechanism (Colton, 2002, p142; Colton and Muggleton, 2006, p46). In the 

agenda mechanism, HR employs simple breadth first, best-first and look ahead strategies to improve its overall 

performance in generating interesting concepts (Colton and Muggleton, 2006, p47). 

HR generates hypotheses in first order predicate logic using an ILP routine which combines inductive and 

deductive reasoning to form clausal theories consisting of classification rules and association rules on the user 

supplied data (Colton, 2000, p12; Colton and Muggleton, 2006, p36). Specifically, HR uses the supplied 

frames and generates definitions using a set of production rules, interprets the definitions as classification rules, 

then uses the sets of the definitions to induce hypotheses in first order logic from which it extracts association 

rules (Colton and Muggleton, 2006, p25). The system makes use of 17 measures of interestingness including: 

intrinsic, developmental, relative, theorem based and learning to determine what to do based on what it has 

found (Colton and Muggleton, 2006, p47). Examples of interestingness include applicability - which estimates 

the proportion of objects of interest for which the concept / conjecture is applied; novelty - which evaluates 

how novel is the categorization of a concept with respect to others; comprehensibility - which measures how 

succinct the definition a concept is and variety - which measures the categorizations produced by a concept 

where less categorization means less change (Colton, 2002, p145). 

Colton suggests that "the initial choice of concepts will have a profound effect on the nature of the theory 

produced," since all new concepts will be based on them, and all new conjectures, theorems and proofs will 

involve them to some extent (Colton, 2002, p67). This in part, is due to the system bootstrapping from 

fundamental concepts to rich theories (Colton, 2002, p67). These existing concepts are supplied as part of the 

user data. 

Noisy and incomplete data is a common aspect of science, yet in mathematics, the opposite is true 

(Colton and Muggleton, 2006, p44). By supporting noisy data, HR, facilitates its use in more real-life 

situations. HR fixes faulty hypotheses (and conjectures) using abductive reasoning with methods inspired by 
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Lakatos (Lakatos, 1976 cited in Colton and Muggleton, 2006, p44; Pease, 2007, pI3). This enables HR to be 

applied to the more human specific cognitive development approaches. 

2.5.2.2 Future Work for HR 

HR's ability to induce conjectures from the data alone means that it can construct empirically plausible 

but non-trivial ones to prove hypotheses about the data. Colton's work supports the differentiation of 

automated theorem proving systems through the development of a standard library of first order theorems, 

which are used to benchmark other systems (Colton and Muggleton, 2006, p25). HR also supports 

modification of non-theorems using MACE (Colton and Muggleton, 2006, p53), and the reformulation of 

constraint satisfaction problems to find quasigroups (Colton and Muggleton, 2006, p54). 

HR has been applied to several machine learning tasks including: the invention of integer sequences, 

number sequence extrapolation, creative problem solving and puzzle generation (Colton, 2000, p97). The key 

to HR's success lies in the maturity of the production rules (Colton and Muggleton, 2006, p27). While HR is 

not mimicking the way mathematicians work (Colton, 2002, pI43), or for that matter, how children are 

observed to develop number-sense, the production rules have proven to be highly general by constructing 

many important existing concepts and many interesting new concepts for which they were not originally 

conceived (Colton, 2002, pI43). 

Over time, HR has been extended with new capabilities including Lakatos style reasoning (pease, 2007) 

and formal concept analysis (Colton and Wagner, 2007) to name two. These additional features suggest that 

HR is evolving towards more noisy and incomplete environments, and at some point may become a contender 

as a cognitive development model that could support a Piagetian model of development. 

2.5.2.3 HR: \Vhere is the Problem? 

Interestingly, Lakatos style reasoning (Lakatos, 1975) has been applied to Piaget (Roswell, 1983) as well 

as to HR (Pease, 2007). The evidence presented by Roswell suggests that in the early stages, the process of 

equilibration may result in false ideas being retained in a more complex form. What this implies, is that the 

child may go through a process similar to ATP and ATF, but that the underpinning of a predicate calculus is 

unlikely to be available directly to them as they are maturing. Further, the interestingness property in HR 

(Colton and Muggleton, 2006, p47) can be related to Piaget's notion of novelty in adaptation (piaget, 1980a, 

p24; Copeland, 1974, p9; Piaget, 1962b, p84). In HR, novelty looks for empirical relationships with existing 

concepts and forms conjectures when such relationships are found. It is also interesting to note that the 

desirable property of the concepts in a theory represent the experience of the concept in the domain space 

(Colton, 2002, pI68). Piaget would assert that this is the equivalent to acting in the environment. which is seen 

as critical to the development of the child. However, unlike a child, HR is not autonomous; it acts in its 

environment on specification by a user (Colton, 2002, pI41). 
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This research solution acts in situations that are noisy and incomplete, and in acting the system is not 

necessarily interested in being 100% accurate nor being necessary mathematically correct. With this is mind 

HR is not a suitable model to implement a Piagetian model, since Piaget crafted his approach on the 

development of children, and children are not observed to produce proof of their actions. It could be argued 

that children are not logical at all; however, once a child develops concrete operations (Piaget, 1963 cited in 

Furth, 1969, p12S; Furth, 1969, p207), the child may need to have the capabilities of an ATP system to enable 

them to operate in the formal operations stage of development (Furth, 1969, p66). 

HR (Colton, 2002), like most automated theorem proving systems comes already prepared with a 

predicate calculus, and mechanisms by which the user can direct the actions of the system, in doing so, it fails 

LPI. 

The random development of logical capability is the goal of this research thesis. There is no formal 

definition of concepts as in HR. Concepts are emergent from the processes of assimilation and accommodation, 

and there is no direct parallel to the predicate definitions of HR. What is interesting is that a concept in 

Piagetian terms is both externalized and internalized action. In Colton's work, there is a similar notion of 

action with a concept (Colton, 2002, p67). Specifically, it is the "categorization over examples HR has 

available as well as a set of conjectures involving the concept" that is important (Colton, 2000, pi 02). Though 

this is similar, it is not fully compliant with Piaget's notions of "concept." It does however suggest that the 

rules that the HR system has constructed, could be described as the exploration of the concept in a pure 

mathematics environment. 

2.5.3 Conclusions 

This section reviewed automated theorem formation and proving systems in pure mathematics (Colton, 

2000; Colton, 2002; Colton and Muggleton, 2006; Colton and Wagner, 2007; Pease, 2007). It reviewed their 

philosophical basis, the development of mathematics through simulated creativity and determined how these 

could support the constraints imposed by the learning paradox and the worked example. Discovered in this 

research was that even though A TF and A TP methods exhibit novelty in developing interesting new concepts 

for which they were not originally conceived (Colton, 2002, pI43), they fail Fodor's and Piaget's arguments by 

having too much "built in" (LPl), as compared to the observed capabilities of the developing child. As such, 

they are not a candidate solution upon which to build a solution. 

2.6 The Underlying Need of Emergence in Metaphors and Conceptual 
Blending 

§ 2.6.2 reviews the underlying basis of emergence of concepts in metaphors (Lakoff, 1992; Lakoff and 

Johnson, 1980; Lakoff and Nunez, 2001). This is followed by a review of mental spaces (Fauconnier, 1985) 

and conceptual blending theories (Fauconnier and Turner, 2002), which are then correlated with the constraints 

imposed by the learning paradox, in § 2.6.3. An example of number line processing using conceptual blending 

(Hutchins, 200S) is then presented along with an example of arithmetic from Guhe (Guhe et aI, 2011, p2S1). In 
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both examples, issues are identified with the approaches and then Fauconnier and Turner' views on the need 

for "emergence" to build cognitive structures in conceptual blending theory are highlighted. Finally, a review 

of conceptual blending as a basis of mathematics is given in § 2.6.4, followed by conclusions in § 2.6.5. 

2.6.1 Background 

In its first two decades, much of cognitive science focused on the mental functions of memory, learning, 

symbolic thought, and language acquisition (Fauconnier, 1985). These are the functions in which the human 

mind most closely resembles a computer (Fauconnier, 1985). Now, cognitive science is increasingly focused 

on the more mysterious, creative aspects of the mind, i.e., consider Ryle's ''wink'' (Geertz, 1973, p7). The 

"wink," more so than a twitch, imparts information that can be understood in terms of its cultural impact as a 

greeting or humor or parody. Cognitive psychologists have studied this aspect of the human condition and 

attributed to it various terms. Mithen refers to it as cognitive fluidity (Mithen, 1996); others as relational 

networks of symbols (Deacon, 1996), mental spaces (Fauconnier, 1985), blending (Geertz, 1973), conceptual 

blending (Fauconnier and Turner, 2002), and even to metaphors (Lakoffand NUfiez, 2001). 

2.6.2 Metaphor: Where Mathematics Comes From 

Lakoffs original thesis on conceptual metaphor was inspired by Reddy's work on the conduit metaphor 

(Lakoff, 1992, p204). Lakoff provides a definition, "metaphor is pervasive in everyday life, not just in 

language but in thought and action. Our ordinary conceptual system, in terms of which we both think and act, 

is fundamentally metaphorical in nature" (Lakoff and Johnson, 1980, p3). For Lakoff, metaphor is not a figure 

of speech (in language) but is a mode of thought and reasoning (Lakoff, 1992, p205). 

The idea of conceptual metaphor is pervasive through Lakoff's work and is grounded in the human body, 

brain, in cognitive capacities, and in common human activities and concerns (Lakoffand Nunez, 2001, p358). 

Specifically, "Conceptual metaphor is a cognitive mechanism for allowing us to reason about one kind of thing 

as if it were another .. .it is a grounded, inference preserving cross-domain mapping-a neural mechanism that 

allows us to use the inferential structure of one conceptual domain (say, geometry) to reason about another 

(say, arithmetic)" (Lakoff and Nunez, 2001, p6). In this, Lakoff and Nunez, suggest that many of the 

sophisticated mathematical procedures humans employ can be traced back to primitive schemas, an example of 

which is the "container schema" which they believe underlies set theory and Boolean logic (Lakoff and Nunez, 

2001, p33 and pI23). Like other primitive schema, the "Container Schema" is an abstraction from physical 

sensations (Lakoffand Nunez, 2001, pIOI). In this there is a clear parallel to Piaget's work (§ 2.3 on Piaget, § 

2.3.6 on innate schemes and primary reactions and § 2.3.10 on sensory motor schemes). 

For Lakoff, the development of thought has been the process of developing better metaphors (Lakoff and 

Nunez, 2001, pl02). In the embodied mind, the content of mathematics is not given in advance; it evolves in 

the individual through the linking and blending of metaphor. This "Cognitive mathematics" also has a cultural 

dimension, which, from the perspective of embodied mathematics, is entirely natural (Lakoff and Nunez, 200 I, 

p358). 
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Applying the assumption that most thoughts are unconscious and unavailable to the conscious mind, 

Lakoff and Nunez point to general purpose conceptualizations that are used in every day processing, being 

reused in the development of mathematical concepts (Lakoffand Nunez, 2001, p29). In this reuse, they point to 

the combination of multiple image schemas (above, contact and support) to represent the English word "on," as 

in for instance, the '~ar is on the table" (Lakoff and Nunez, 200 I, p30). In this sense, "on" is an idea, and the 

idea does not "float abstractly in the world," it can only be embodied in the human. The same is true for 

mathematical abilities. Given that the brain has an innate arithmetic capability, with babies exhibiting 

characteristics associated with discriminating between collections of two and three items (Lakoff and Nunez, 

2001, p15; Dehaene, Izard, Spelke and Pica, 2008). Lakoff and Nunez argue that this occurs through a 

conceptual metaphor called subitizing (Lakoff and Nunez, 2001, pI5). Subitizing develops as the child 

matures, and leads the child through basic arithmetic and later to more complex mathematics in general 

(Lakoff and Nunez, 200 I, p26). It is the learning and development of these mathematical concepts that is the 

interest of this research thesis. 

2.6.2.1 Criticisms 

Madden reviewed the work of Lakoff and Nunez from the perspective of Poincare, elaborating their work 

on the foundational basis of intuition and logical processes (Madden, 2001, pI 182), by equating Poincare's 

position on unconscious processes to conceptual metaphor, which in turn can be equated to intuitionS4 (Lakoff 

and Nunez, 2001, pxv). Madden posits that they seem to have missed the essential need for conscious 

definitions of proof using logic, since without this two fold approach, meaning, for the individual, is lost 

(Madden, 2001, P 1182). Madden condenses his analysis around three core issues: the role of conceptual 

metaphor in mathematical cognition, the nature of mathematical truth and the techniques of mathematical idea 

analysis. 

Conceptual Metaphors and Mathematics 

The hypothesis of conceptual metaphor is based on two tenets. First, that thought is mainly unconscious 

(Lakoff and Nunez, 2001, pxv) and second, that conceptual metaphors are influenced by the human condition, 

its bodily senses and cultural identities (Lakoffand Nunez, 2001, p358). 

Even though the general theory of metaphors (Lakoff and Johnson, 1999) is referenced, there is little 

research presented on the actual use and manipulation of the conceptual metaphors (Madden, 2001, pI184). 

Second, having access to metaphors is quite different to learning to use them (Madden, 2001, pI 184). 

The Truth of Mathematical Meaning 

54 Specifically, mathematical intuition. 

Page 64 



Chapter 2. Literature Review 

Almost more important, than developing one's own conceptual metaphors, is the capability to 

communicate a shared understanding "of truths" between participants (Madden, 2001, p 1186). If one were to 

follow Lakoff and Nunez, then "meaning, existence and truth" are metaphorical entities that exist 

"conceptually" only "in the minds of beings with appropriate metaphorical ideas" (Lakoff and Nunez, 2001, 

p368 and p375). This is understood to mean that each individual holds similar metaphors, only because they 

have the same internal apparatus that enabled those metaphors to be constructed. In this respect, Lakoff and 

Nunez, are anti-Platonistic55
, and argue that because there is no mechanism whereby Platonism can be tested, 

it cannot really be considered a scientific hypothesis and so is rejected (Lakoff and Nunez, 2001, p4). Anti

Platonism is a difficult proposition to take, because the innate mechanism that allowed the conceptual 

metaphors to arise in the first place must have been constructed through evolution using those self-same 

"truths," which logically could not have existed in the external world. Balaguer (Balaguer, 1998) and § 2.1.3 

provide a description of universals and the impact to the learning paradox are more fully explained. 

Second, truth must be considered unambiguously in context: consider the case of the square root of -1, 

there is no answer on the real number line, but two of them in the plane. Alternatively, consider the notion of 

"1 +2=3" on a number line. This seems simple enough but it contains multiple ideas not the least of which is 

equality, which for Lakoff and Nunez consists in the blending of multiple conceptual metaphors including the 

grounding metaphors of object collection, object construction, measuring stick and motion along a line (Lakoff 

and Nunez, 2001, p75); as well as the space set blend (Lakoffand Nunez, 2001, p75), spaces are sets o/points 

(Lakoff and Nunez, 2001, p263) and rational number line blend (Lakoff and Nunez, 2001, p300). 

Finally, it is also difficult to reconcile Lakoff and Nunez's version of truth with how mathematicians 

think (Byers, 2007, p27): their metaphorical approach has to deal, in large part, with ambiguity, novelty and 

noise which is also not covered in their approach (Madden, 2001, p 1183). 

Mathematical Idea Analysis 

In defining mathematical idea analysis, Lakoff and Nunez provide a technique for separating apart the 

metaphorical parts of the subconscious that has generated the mathematical ideas (Lakoff and Nunez, 2001, 

p375). However, mathematical metaphors are "frequently misleading, sometimes just plain wrong" (Madden, 

2001, pI186), and this would be true of the metaphors in mathematical idea analysis as well. 

2.6.2.2 Metaphor: Where is the problem? 

An interesting reference is made by Madden (Madden, 2001, pI187), "Mathematics is its own mirror on 

the very thinking that creates it" (Cuoco, and Curcio, 2001, px). When viewed in the context that Mathematics 

is the only infinite human activity (attributed to Paul Erdos), it becomes possible to take a closer step to 

55 Platonism and the transcendental origin theory, is the philosophical doctrine that abstract concepts exist 

independent of their names. 
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conceptual understanding56
• That is, that mathematics, available innately to the individual, is used by the 

individual to construct the conceptual metaphors, which are then used to perceive and act in the world. This is 

also true for learning and planning. The capability to construct new metaphors (and thus handle infinity) is the 

key to perception, an example of which is the evidence of children having difficulty understanding 

mathematics, misusing, or being unable to generate new metaphors as conceptual blends (Lakoff and Nunez, 

2001, p102). When given examples of a new metaphor, the child can understand the set problems (Madden, 

2001, pI184), but this implies that the child can receive new blends and use them appropriately. This sharing 

and coordinated development is not well covered in Lakoff and Nunez. In addition, the catalog of over-lapping 

metaphors (Lakoffand NUfiez, 2001, p368) suggests that it is not that the metaphorical approach is necessarily 

wrong, it is that a more appropriate mechanism would be a meta-cognitive metaphor that enables the 

construction of metaphor. 

Conceptual metaphors may explain how an individual develops concepts and reasons, but the conceptual 

metaphor framework (Lakoff and Johnson, 1980; Lakoff and Johnson, 1999; and Lakoff and NUfiez, 2001) 

does not provide enough details for the construction of a machine-learning framework, and is so rejected as a 

candidate solution for the present research. Specifically Lakoff and Nunez defme a set of categories of 

metaphors, rather than a mechanism by which individuals and act and sense, learn and plan in the world and 

develop their own categories (§ 2.3 refer to Piaget). The, emergence of new structure is seen as a basic need to 

resolve the learning paradox (§ 2.1.7 refer to LP), but the conceptual metaphors framework does not support 

the notion of emergence of new structure very well. Potential observations of an implementation of the 

Piagetian framework may show emergence of metaphor through a shared interaction of more complex forms of 

reasoning, but this capability to reason in metaphor is deemed to be at too high a level for the current research. 

It is possible that an analysis of conceptual metaphors could form part of later research, as well as a fuller 

comparison of Piagetian and conceptual metaphor frameworks. As a final point, metaphorical mappings 

(Lakoff and Johnson, 1980; Lakoff and Nunez, 2001) alone are not sufficient to account for how mathematical 

concepts develop in an individual (Guhe et aI, 2011, p251). 

2.6.3 Conceptual Blending 

By suggesting that any theory of human cognition (cognitive powers) must not only account for the 

richness and variety of human innovation, but also show how that innovation is guided (Fauconnier and 

Turner, 2002, p31 0), Fauconnier and Turner form an argument for concept formation, which is analogous to 

evolutionary development. In this, human beings use conceptual integration to create rich and diverse 

conceptual worlds, and "the construction of meaning is like the evolution of species" (Fauconnier and Turner, 

2002, pl71 and p309). The guiding constraints of this conceptual integration are a combination of constitutive 

principles and governing principles with the overarching goal to "achieve human scale" (Fauconoier and 

Turner, 2002, p346). 

56 This meta-cognitive metaphor (Madden, 2001, pl184), can be interpreted as Piaget's "knowing circle." 
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The constitutive principles make use of matching and counterpart connections, generic spaces, blending, 

selective projection and emergent meaning, which ultimately leads to the development of emergent structure in 

the blend by forming networks of concepts (Fauconnier and Turner, 2002, p31 0). 

The governing principles occur not as all-or-nothing constraints on networks, rather they "characterize 

strategies for optimizing emergent structure" (Fauconnier and Turner, 2002, p311). These governing principles 

scale a single relation, compress one or more relations, create new relations or they borrow compressions from 

one concept to another (Fauconnier and Turner, 2002, p312). Other governing principles cover areas such as 

topology, pattern completion, integration, unpacking and relevance (Fauconnier and Turner, 2002, p346). 

Creativity and novelty are consequences of this conceptual integration, which are themselves dependent on a 

background of firmly anchored and mastered mental structures or mental spacesiii (Fauconnier and Turner, 

2002, p382). 

The co~ceptual blending process of networks and prototypes has been evolving since it first appeared in 

the mammalian line, but it is the human development of double scope blending that provides more benefit 

(Fauconnier & Turner 2002, p171). 

2.6.3.1 Networks and Prototypes 

There are four main types of prototypes that anchor intuitive everyday notions about meaning to a unified 

understanding of the unconscious processes. These are simplex, mirror, single-scope and double-scope 

(Fauconnier & Turner, 2002, p1l9). These networks integrate and compress, disintegrate and decompress 

concepts iv (Fauconnier & Turner 2002, pl19). It was the evolutionary emergence of double scope conceptual 

integration that enabled the rapid development of human culture, and enables the child to understand and 

develop rational number-sense (Fauconnier and Turner, 2002, p389; Fauconnier and Turner, 2002, pl13). 

Page 67 



Chapter 2. Literature Review 

Double Scope Conceptual Integration and Language 

Double-scope blending, consists of selectively integrating (using a mapping capacity) the inputs of two 

or more conceptual arrays whose frame structures and vital relations57 conflict to create a novel conceptual 

array whose frame dynamically develops emergent structure not found in the inputs (Fauconnier & Turner 

2002, p391). 

Double-scope blending is a necessary feature of human higher-order conceptual singularities 

grammatical constructions and language (Fauconnier & Turner 1996, p113), for its equipotentialitys8 

(Fauconnier & Turner 2002, pI82). Intermediate stages of the mapping capacities (between conceptual 

blending and double scope blending) are useful and adaptive, but not for language, which demands 

equipotentiality (Fauconnier & Turner 2002,pI82). This explains the absence of intermediate stages of 

language as an observable product (Fauconnier & Turner 2002, p 179). 

Of critical importance in the development of meaning, the association of a compression pattern with a 

linguistic form, which is the maximizing and intensifying of vital relations (Fauconnier and Turner, 2002, 

p353). These vital relations connect a represented element with a representing element in different input spaces 

using a representation (Turner, 2011, p48). In the development of meaning lies an assumption, "A language 

already has all the grammatical forms it needs to express almost any conceptual blend" (Fauconnier and 

Turner, 2002, p365). 

Stability of Events and Time 

Reasoning processes require stable representations of constraints achieved whether through cultural 

stability or material stability (Hutchins, 2005, pI555). One such stability is the vital relation of time, which is 

bound up in mental spaces (Fauconnier, 1985). Events as singularities are bound up in event spaces, which can 

include subjective experience of those events. For example motion is an event, which through physical space

from point a to point b - holds corresponding objective and subjective experience (Fauconnier & Turner 2002, 

p376; Hutchins, 2005, p1568). As structure emerges from the blended space, the universal event becomes a 

universal spatial length, and therefore a measure, analogous to inches and feet, and so on. This explains why an 

event has a length - it is a minute long, an hour long, etc., (Fauconnier & Turner 2002, p376). Similarly, in the 

blend, with objective time, the shared universal events, such as hours, minutes, etc.) exist - egos are 

constrained to move at the same rate (Fauconnier & Turner 2002, p376). If agency is projected onto the causal 

constraint, all egos are moved through the shared universal events at the same rate by an agent, in this case the 

57 Vital conceptual relations include cause-effect, identity, time, space, modality, participant structure, 

disanalogy and role (Fauconnier & Turner 2002, p391). 

58 Equipotentiality is the ability oflanguage to be used effectively in any situation, not just those that fit a finite 

list of frames (Fauconnier & Turner 2002, pI82). 
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agent i often referred to as "Time" (Fauconnier & Turner 2002, p96). In this new blend, the emergent entity 

"Time" derives its motion from the network in which times move, but derives its anchor from the network in 

which individual moves (Hutchins, 2005, pI563). 

Emergence through Composition, Completion and Elaboration 

In blending theory, the constitutive principles and governing principles achieve human scale through the 

emergence of structure in the blend (the blended scheme) in three interrelated ways: composition, completion 

and elaboration v (Fauconnier & Turner 2002, p 143). In this approach, language is seen as a system of prompts 

for integration (Fauconnier & Turner 2002, p I43), such that when one views words on a page, these are 

triggers for the imagination, which are used to "call up some of what we know and to work on it creatively to 

arrive at a meaning" (Fauconnier & Turner 2002, p143). This is very close to the notion of figurative schemes, 

with the as ociated operative cherne acting on it to generate meaning (§ 2.3.6 on Piaget and 4.2.2.2). 

2.6.3.2 Example of Conceptual Blending on a MNL 

A model of counting on a number line is presented using conceptual blending theory (Hutchings, 2005, 

p1576). Thi extended example exposures some weaknesses of the theory including the idea that conceptual 

blending is merely an internalized cognitive process (Hutchings, 2005, p1576; Fauconnier & Turner 2002, 

p195- 216) . The objective of the example is to count the number of points in a line and occurs as a set of steps: 

1) If one were to con ider the points on the line, the cultural practice initially creates a spatial memory 

for the order of the points. 

Conceptual Blending of 
Points on a Line 

Selective Perception I 
Projection 

Blend 

Figurc 2- 13 onccptual blcnding of points on a linc, rcquircs a matcrial anchor (thc linc) shown as enclosing box to 

blend the input paccs of 1\ and 12 using thc gestalt principlc of lincarity and the conceptual structure notion of 

scquential ordcr to con trucl the qucue of pOints uch that they can be counted. In Hutchins' interpretation, the 

external envi ronment i a material anchor for the points themselves (Ilutchins, 2005, p1561). 
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2) Next, the gestalt principle of linearity makes the line configuration perceptually salient; however, 

human perceptual systems have a natural bias to find line like structures. 

3) Using composition, there is a conceptual blending of physical structure of the line with the imagined 

trajector which enables the experience (phenomenologically) of the emergence of the ordered queue 

from the line. This ordering of elements was not present in either I, or 12 . The vital relations in the 

composition are the trajector and the virtual locations. 

4) Using completion, other elements are recruited so that experiencing the queue makes sense in the 

cultural context for example the symbols and their values: one, two and three. 

5) Using elaboration, once there is emergence of a queue, other reasoning options become possible such 

as which one is first, which one is in the middle, and which one is bigger, which one is smaller. 

6) In the standard strategy for counting objects in the queue, attention is applied to each object, which is 

accompanied by a transition on a sequence of number names (Hutchings, 2005, pI561). Orientation 

of the objects in the queue on the trajector, are maintained with sufficient immutability, allowing the 

counting operation to be applied to each one. This counting takes place in a mental space i.e., not in 

the representation of the external environment (Hutchings, 2005, p1562). 

In Hutchings approach, when using material anchors, there is no need to posit a separate mental 

representation of the material structure of the input space I" since doing so would obscure the use of the 

environment to define its frameS9 (Hutchings, 2005, p1561). The blending with the material anchor of the 

"line" facilitates stability, which enables the more complex operation of counting to take place (Hutchings, 

2005, pI562). The physical structure of the input space I, is not a material anchor because of the way it is 

used, and not because it has some intrinsic quality (Hutchings, 2005, pI562). 

The benefit of Hutchings' material anchor approach is the reduction in the amount of cognitive 

processing required, by a factor of 2 in this number line example (Hutchings, 2005, pI562). Similar benefits 

would accrue with fictive motion of objects on the number line, in which, for instance, sequences were being 

predicted (Hutchings, 2005, pI565), as well as the impact of cultural on the conceptual blending (Hutchings, 

2005, pI569). 

2.6.3.3 Conceptual Blending: Where is the problem? 

There are a number of noted differences with Hutchings approach and that of Fauconnier & Turner 

(Hutchings, 2005, pI572), as well as conceptual blending overall. Each of these, is covered in tum. 

Issues with \Vhere Concepts Come From 

The key issue in conceptual blending is how the new concepts are formed (Guhe et aI, 2011, p250). 

59 In the alternate real-space approach, it would be necessary to use two stages of selectivity (Hutchins, 2005, 

pI561). 
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Issues with Material Anchors 

Fauconnier & Turner extend Hutchings notion of material anchors to include spoken and written 

language (Fauconnier & Turner 2002, p210-21l), implying that "every symbol and sign is a material anchor 

for a conceptual blend," which Hutchings rejects on the basis that cross-space mappings are not 

representations (Hutchings, 2005, pI572). For Hutchings, abstract symbols will appear as the weakest material 

anchor. For instance, in the example of the number line, the name of the object is the weakest material anchor. 

In spoken or written language, the temporal or spatial organizations of sentences are the material anchors for 

some portion of the grammatical conceptual structure (Hutchings, 2005, pI573). Similarly, a sign (§ 2.3.5 on 

Piagetian signs) is a very weak form of material anchor. This is clearly in line with Piaget's notion of meaning 

(§ 2.3.6.1 on Piaget i.e., the theory of objective meaning is not a representational form of meaning). For Piaget, 

the strongest referent is the counting mechanism that counts the value of the object, since it enables the 

internalized operation. 

Hutchings concludes that "conceptual models embody/express/hold constraints about conceptual 

elements. In order to playa role in the reasoning process (which is elaboration), a conceptual model must be 

cognitively stable" (Hutchings, 2005, pI572). This stability is garnered by simplicity, culture (social) and its 

material or imaginary anchors (Hutchings, 2005, pI575). 

The benefits of a conceptual model, be it symbolic, spatial or image, is that it builds the constraints of the 

task into the structure of the model. Hutchings suggests that the first conceptual models to arise were not 

symbolic (Hutchings, 2005, pI575), but were material or culture (social). Thus, language emerged after the 

material anchors had been internalized. 

Issues with Double Scope Conceptual Integration and Language 

It is the assumption "A language already has all the grammatical forms it needs to express almost any 

conceptual blend" (Fauconnier and Turner, 2002, p365) that causes problems. Consider how the child learns a 

language and develops their grammatical forms. The statement by Fauconnier and Turner implies that the 

language that the child uses is already fully learnt, with enough structure for learning, but from where did the 

language originate? 

Issues with Having Too Much Built In 

The approach taken by (Fauconnier & Turner 2002) is too prescriptive, their theory lacks the formalism 

to describe how the system develops autonomously, bootstrapping from simpler forms. If they had provided 

this mechanism, then their theory would be a candidate solution to resolve the learning paradox. 

Issues with a Lack of an Implementation Model 
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There is little mention of learning and development. The examples given are at a very high level. This 

may be adequate for discussing metaphors, but it makes it difficult to determine an implementation 

mechanism. 

2.6.4 Conceptual Blending as a Basis for Mathematics 

In crucially asserting, "blending is not algorithmic" (Fauconnier and Turner, 2008, p59, Fauconnier and 

Turner contend that new structure spontaneously arises through rethinking, without providing a mechanism for 

this emergence. Yet, some mechanism must generate this new structure. In addressing this issue, Guhe, from 

the perspective of multiple worlds, proposes that a combination of structure mapping theory and anti

unification combined with a theory of intuitions (from conceptual blending) provides a valid algorithm for 

mathematical discovery and the construction of mathematical concepts (Guhe, Pease, Smaill, Martinez, 

Schmidt, Gust, KilHnberger and Krumnack, 2011, p251). 

Guhe's work is based on the assumption that metaphorical mappings are a special case of conceptual 

blending (Guhe, 2011, p251), and that metaphor (Lakoff and Johnson, 1980; Lakoff and Nunez, 2001) alone is 

not sufficient to account for how mathematical concepts develop in an individual (Guhe et aI, 2011, p251). 

Guhe's work suggests that concepts, and specifically mathematical concepts, evolve over time in children 

(Guhe et aI, 2011, p250). 

By taking a different approach than the traditional view of how people make cognitive mathematical 

discoveries using deduction, mathematical induction, abductive reasoning (Liebeck, 1984), Guhe makes the 

assumption that analogy, metaphor and conceptual blending are the core processes used (Guhe et aI, 2011, 

p250). In doing so they define an algorithmic process of discovery using conceptual blending that consists of 

exploration, recognition/goal formulation and discovery using a first order predicate logic (Guhe et aI, 2011, 

p250). 

The aim of Guhe's work is two fold: 1) To ground the mathematical notions in basic cognitive capacities 

and 2) To define the relationship of these cognitive capacities to abstract arithmetic conceptualizations (Guhe 

et aI, 2011, p249). 

An analogical mechanism for mapping between conceptual domains is implemented using structural 

mapping theory (Gentner, 1983; Gentner and Markham, 1997, cited in Guhe et aI, 2011, p250), where the 

theoretical models for concepts is based on a combination of mental spaces (Fauconnier, 1985), conceptual 

blending (Fauconnier and Turner, 2002; 2008), as well as the underlying metaphors (Lakoff and Johnson, 

1980; Lakoff and Nunez, 2001). 

Guhe et al. apply Anti-unification theory (Plotkin, 1970) in the form of heuristic driven theory projection 

(HDTP) to enable a mapping between source and target domains via a computed generalization (Guhe et aI, 

2011, p250). HDTP works by iteratively computing the least general generalization that subsumes each 

formulae (that maps a domain), using a first-order logic language (Guhe et aI, 2011, p250). In doing so HDTP 

sidesteps the limitations of classical anti-unification's failure to detect structural commonalities. Lakoff and 

Nunez identified arithmetic as being a conflation of the object collection and object construction metaphors 
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(LakofT and Nunez, 2001, p96), commented: use metaphors of motion along a path (MOP), the measuring stick 

(MS) for their research on fractions (LakofTand Nunez, 2001, p69 and 71). 

By assuming the innateness of the basic metaphors of arithmetic, Guhe sidesteps the critical issues 

concerned with how new concepts are formed (Guhe et ai, 2011, p250), and wraps these metaphors into 

conceptual frames consisting of a fIrst order predicate calculus with explicit use of the existential quantifier 

(Guhe et aI, 2011, p256). This allows for the formation and evaluation of various theories manually constructed 

by conceptually blending a prescribed set of concepts and heuristics. 

Guhe provides a worked example of a conceptualization of rational numbers using points on a mental 

number line, to explain how the measuring stick, object constrnction and motion along a path metaphors are 

blended into a conceptualization (Guhe et aI, 2011, p255). In general terms this explains why conceptual 

blending is a valid mechanism for mathematical discovery that may fmd a parallel in neurophysiology (Guhe et 

aI, 2011, p264). 

In the future, researchers may attempt to test the partial implementation with a larger number of cases 

studies (Guhe et aI., 2011, p263), though there is no hint that it will be attempted to implement this within a 

machine learning, or conversely within an existing framework such as HR (Colton, 2002). 

2.6.4.1 Conceptual Blending: Where is the Problem? 

In making use of a fIrst order predicate calculus (Guhe et al., 2011, p255), Guhe sidesteps Fodor's 

arguments for LPI. Further, it has not been observed that children have an awareness of the fIrst order 

predicate calculus, so their mechanism cannot be used as an implementation for a Piagetian model. Lastly, 

Piaget considered metaphor as analogous to symbol which was constructed by the symbolic/semiotic function, 

bootstrapping from lower levels of complexity (Furth, 1970, P 13 8). 

2.6.5 Conclusions 

This section provided an evaluation, with examples, of both metaphors (LakofT and Johnson, 1980; 

LakofT, 1992; LakofT and Nunez, 2001; Lakoff and Johnson, 1999) and conceptual blending theory as they 

apply to concept formation in mathematics (Fauconnier and Turner, 2002; Fauconnier and Turner, 1996; 

Fauconnier, 1985; Fauconnier, 1997; Hutchins, 2005; Langacker, 1987; Mithen, 1996; Turner, 2011). 

Research presented by Fauconnier and Turner, show that humans use metaphors when communicating 

with others and that blending theory can classify metaphors and describe the processes used to create6O
, modify 

and destroy them (Fauconnier and Turner, 2002). A description of the relationship to linguistic forms is 

provided, but the theory lacks a coherent formalization of how those same linguistic forms are generated 

(Fauconnier and Turner, 2002, p365). Analysis reveals that the authors of conceptual blending theory 

understood the need for a biological basis for emergence (Fauconnier and Turner, 2002, p146), and the 

60 This creation is assumed to be from earlier, more primitive forms, but there is no mention if how these 

earlier forms are made. 
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appearance of an emergent logic (Fauconnier and Turner, 2002, p44). The key issue is how are these new 

concepts are formed (Guhe et aI., 2011, p250). In the examples of the development of mathematical sense 

presented by Guhe (Guhe et aI., 2011, p249), their research uses a fIrst order predicate logic, which is more 

capacity than is observed in childhood. These metaphors may be at a conceptual level different from the 

concepts envisioned in this research thesis. Piaget did account for metaphors in later stages of development 

(Furth, 1969. p59), and these could be considered in future work. The double scope blending (Fauconnier and 

Turner, 2002, p365) approach differs with Piaget's observations on the development of language using 

assimilation and accommodation (§ 2.3.6). For Piaget, the set of schemes is not fully prescribed, as in the 

formulation by Fauconnier and Turner. It may be that double scope conceptual blending is the way humans 

develop language. The research in this thesis may provide the basis of a mechanism for testing the 

development of conceptual metaphors; however, that is not the purpose of this research. 

2.7 Cognitive Development Models and the Need for Emergence 

"There are side effects that deserve attention too. Any program that will successfully model 
even a small part of intelligence will be inherently massive and complex" (Drescher, 2002, 
pii). 

In this section, cognitive development models are reviewed (Duch, Oentaryo and Pasquier, 2008, p123) 

to determine if any of these models provide a suitable basis for resolving the learning paradox and its 

constraints (LPl - LP7). Also addressed is the worked example (WEt - WES) in order to identify several 

issues that need to be addressed by this thesis. A brief introduction follows in § 2.7.1 after which symbolic 

models, the issues associated with symbol grounding, Searle's Chinese room argument and various ways of 

resolution are examined in § 2.7.2. Emergent and hybrid models using examples are illustrated in § 2.7.3, along 

with dual-process theories and conceptual change, in § 2.7.4. Conclusions follow in § 2.7.5. Further analysis of 

conceptual models is provided in Appendix B. 

2.7.1 Foundations 

"What distinguishes generally intelligent entities is their ability to solve not just a single 
problem using a specific method, but the ability to pursue a wide variety of tasks, including 
novel tasks, using large bodies of diverse knowledge, acquired through experience, in 
complex dynamic environments" (Laird, 2008, p225). 

2.7.1.1 Background 

A cognitive model embodies a scientific hypothesis about those aspects of human cognition, which are 

relatively independent of task and constant over time (Langley, Laird and Rogers, 2008, p 142)61. The cognitive 

61 Laird's research provides support for the definitions of LP3, LPS and LP7. 
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architecture assigns a design model, which poses constraints on the implementation, providing a definition of 

an abstract machine to support programming of a cognitive model. The function of the abstract machine is to 

provide the most useful set of processes and representations for developing such models and the machine 

usually comes commented: with a programming language to build those components (Langley, Laird and 

Rogers, 2008). These components provide the underlying structure to tackle a wide range of integrated 

research and commercial problems that require increasingly intelligent cognitive behavior. 

2.7.1.2 Why a Solution is Needed 

Beginning with production systems in the early 1970's and, despite the development that has occurred to 

date in many disciplines, including simulated training, computer tutoring systems and interactive computer 

games; there is increasingly a need for more general intelligent systems (Langley, Laird and Rogers, 2008, 

pI42). 

2.7.1.3 \Vhat is the composition of that solution? 

Langley, Laird and Rogers posit a number of abstract features that enable systems, composed of them, to 

exhibit intelligent behavior (Langley, Laird and Rogers, 2008, pI45). A system requires the ability to recognize 

in dynamic situations, those patterns or events as similar situations. Recognition requires categorization, and 

recognition is closely related to the assignment of objects, situations and events to existing concepts. Other 

features include decision-making and choice, perception and situation assessment, prediction and monitoring, 

problem solving and planning, reasoning and belief maintenance, execution and action, interaction and 

communication, remembering, reflection and learning (Langley, Laird and Rogers, 2008). The architecture 

should also contain a set of properties, namely: representation of knowledge; organization of knowledge; 

utilization of knowledge; acquisition and refinement of knowledge (ibid, pI42). The architecture should also 

contain evaluation criteria of cognitive architectures, namely: generality, versatility and task ability; rationality 

and optimality; efficiency and scalability; reactivity and persistence; improvability; autonomy and extended 

operation. The fact that these features should be found in any workable solution in one form or another is not 

disputed (Georgeon, Ritter and Haynes, 2009). 

2.7.1.4 A Suitable Problem. 

If one were to account for much of natural growth, with a cognitive model of learning and development, 

then most of what is needed to resolve the learning paradox could be tested in a simplistic simulation (WEt -

WE5), albeit with an as yet, unresolved complex infrastructure. The key problem to address is the capacity of 

the cognitive model, as a specification of those principles imposed by the problem (LPt - LP7), to resolve the 

learning paradox. 

"A cognitive architecture specifies the underlying infrastructure for an intelligent system" 
(Langley, Laird and Rogers, 2008). 
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2.7.1.5 Grading Cognitive Theories 

Anderson and Lebiere propose using Newell's12 Criteria Test to measure the high level capacity of 

cognitive theories to exhibit the underlying behavior that is representative of human cognitive processes 

(Anderson and Lebiere, 2003, p579). These criteria are themselves constraints for the whole of cognitive 

modeling, which have largely defined the development of cognitive models from 1980 onwards. To implement 

a full human intellectual capacity Anderson and Lebiere suggest that the architecture must satisfy a minimal set 

of cognitive architectural functional achievement criteria. These are the following: behave as an (almost) 

arbitrary function of the environment as a universal computational machine, operate in real time, exhibit 

rational i.e., effective adaptive behavior, use vast amounts of knowledge about the environment, exhibit 

dynamic behavior62
, integrate diverse knowledge both sub-symbolic and symbolic, use (natural) language, 

exhibit self-awareness, a sense of self and learn from its environment. To achieve this human like capacity, the 

architecture must also satisfy a minimal set of cognitive architecture implementation criteria including: 

acquiring capabilities through development; arising through evolution and being realizable within the brain. 

The criteria emphasize that any cognitive architecture must have a correspondence to human cognition and be 

capable of practical application in a domain such as education (Anderson and Lebiere, 2003, p579). 

2.7.1.6 Problems with Newell's 12 Criteria Test 

Even though Newell's 1 2 Criteria Test is not exhaustive, there are noted difficulties. Agassi points to the 

problem of not understanding how natural language occurs (Anderson and Lebiere, 2003, p594). This is seen 

as a fundamental limitation of existing systems. Agassi concludes that perhaps a simpler problem should be 

tackled, one whose solution could improve the overall approach. It is within this frame that the problem set for 

this research is cast, namely the development of number-sense. 

Commons and White suggest that Newell's12 Criteria Test should include stage like variations, where 

actions at a higher order of hierarchical complexity are defined in terms of lower order actions, organize and 

transform lower stage actions and which solve more complex problems through the non arbitrary organization 

of actions (Commons and White, 2003, p606). Commons and White's arguments run parallel to Bereiter and 

his examples of second language development, being able to use knowledge critically and rational numbers 

(Bereiter, 1985). There is also agreement with Piaget and the need to develop hierarchical structures (Furth, 

1969 p38; Copeland, 1974, p62). 

Newell's 12 Criteria Test (Newell, 1990), have been analyzed and applied to ACT-R, SOAR and 

classical connectionist architectures but such fine-grained categorization makes comparison of different 

systems rather difficult (Duch, Oentaryo and Pasquier, 2008, p123). Duch, Oentaryo and Pasquier reclassify 

the cognitive architectures into symbolic, emergent and hybrid models. It is within this framework and through 

62 Dynamic behavior includes the capability to behave robustly in the face of error, the unexpected condition 

and the unknown. 
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the constraints of the learning paradox (LPI - LP7) where the cognitive architectures and models are 

examined. 

2.7.2 Symbolic Models 

"Few existing cognitive architectures have the capability to create new symbolic structures -
they are a prisoner of the original encodings provided by a human programmer" 
(Laird, 2008, p232). 

One of the most difficult challenges, and this is true of SOAR, is to provide necessary initial structures 

without compromising flexibility so that the agent can adapt (learn) the specifics of the task and environment 

(Laird, 2008, p225). By using predicate logics to support both the long term and short-term memories, as well 

as the structuring of operators, SOAR, like ACT -R and other symbolic architectures, assume the "hypothesis 

that there are useful abstractions and regularities above the level of neurally based theories" (Laird, 2008, 

p225). Therein lies the problem of the learning paradox. To resolve the paradox, the system must be capable of 

generating a structure more complex than that which it already contains. Using a top-down, analytic approach, 

symbolic architectures focus on information processing using high-level symbols with declarative knowledge 

(Laird, 2008). These structures provide a representational model of reality and it is questionable if 

representation alone is sufficient. 

Examples of symbolic models include PRODIGY (Carbonell, Knoblock and Minton, 1990), SOAR 

(Laird, Newell and Rosenbloom, 1987; Newell, 1990; Wray and Jones, 2005), EPIC (Meyer and Kieras, 1997; 

Kieras and Meyer, 1997), ICARUS (Langley and Choi, 2006; Langley and Messina, 2004), FORR (Epstein, 

1992), AIS (Hayes-Roth, Pfleger, Lalanda, Morignot and Balabanovic, 1995), APEX (Freed, 1998, p922), 

CIRCA (Musliner, Goldman and Pelican, 2001, p2124), Emile (Gratch, 2000), ERE (Drummond, Bresina and 

Kedar, 1991), GLAIR (Shapiro and Ismail, 2003), 3T (Bonasso, Firby, Gat, Kortenkamp, Miller and Slack, 

1997) and RAA (Pell, Bernard, Chien, Gat, Muscettola, Nayak, Wagner and Williams, 1997). 

However, there is a key issue that has bearing on the use of symbolic models and that is the symbol 

grounding problem. 

2.7.2.1 Symbol Grounding Problem 

The symbol grounding problem is the difference between human cognition and cognitive modeling using 

computer systems, whereby a computer system, that merely contains arbitrary symbols, is not be capable of 

approaching understanding (Harnad, 1990, p337). Even after 15 years of research, all of the current strategies 

are semantically committed and hence none of them provides a valid solution to the symbol grounding problem 

(Taddeoa and Floridi, 2005). Any solution that attempts concept formation would need to resolve this problem 

and, by consequence, satisfy LP2. 

Human Vs. Computer Understanding 
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Hamad observed that humans have a behavioral capacity (Hamad, 1990). Through this behavioral 

capacity, discrimination63
, manipulation, identification64

, description of objects and descriptions of events and 

states are associated to their names. Along with the capability to respond, the human mind conceives syntactic 

symbols and attaches a semantic meaning to those symbols. Through this, a human mind can be said to 

understand. 

By comparison, computer systems are syntactic, in that they consist solely of strings of symbols (Hamad, 

1990). The symbol is arbitrary and is not related to its meaning or content. Because no amount of syntax will 

ever produce semantics, there is no mechanism that a computer system running a symbol only program will 

ever be able to understand. Without sub-symbolic to symbolic processing and the capability to leam and 

develop, the purely symbolic cognitive architectures fail LP2. 

2.7.2.2 McCarthy as an Early Symbolic Model 

As an early example of a symbolic system, McCarthy'S "advice taker," was to form it's experience as 

effectively as humans, using a trial and error approach to leaming with innate structures consisting of recursive 

expressions in a predicate logic (McCarthy, 1968). Whereas a human is instructed mainly in declarative 

sentences which describe the situation in which action is required together with a few imperatives that say what 

is wanted, "advice taker" was instructed mainly in the form of sequences of imperative sentences (McCarthy, 

1968, p406). Bar-Hillel identifies issues with its transitive relations, the lack of temporal relations and the use 

of deductive logic (McCarthy, 1968, pll). This is in agreement with Piaget's observations that children have 

innate schemes and primary reactions but that logics appear through development (Copeland, 1974, p183; 

Furth, 1969, p216). 

Noting that humans are the product of millions of years of evolution, McCarthy attests that the world's 

structure in not directly describable in terms of the input-output relations of a person (McCarthy, 1997, p5). 

This is an extension of earlier work on "advice taker" and suggests that the adequate structures for creating a 

well-designed child are more complex than Chomsky'S universal grammar. The implication is that there is also 

a set of definitions that describe how the world works, a set of mental characteristics and a set of abilities that 

would be useful to the developing simulation along with a set of features of a language of thought (McCarthy, 

1997, pI8). 

When McCarthy's position is compared to the research constraints (LPI - LP7), several issues arise. 

First, McCarthy was attempting to create a robot with child-like capabilities. The research that is the content of 

this thesis only seeks to resolve the leaming paradox and create a more complex structure in a number line 

world. Thus, some of the arguments for definitions of how the world works seem not to be necessary, such as 

distributed mechanisms and senses. In terms of innate abilities, McCarthy'S system includes a predicate logic, 

63 Discrimination is through sub-symbolic iconic representations. 

64 Identification of the invariant features as categories, as classes of objects or from the discrimination of iconic 

sub-symbolic representations. 
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so fails Fodor's arguments for LPI. It does not seem to need to exhibit hierarchical concepts, so fails LP2. It 

also does not seem to have a trajectory of matching the observations of a developing child, so may fail LP4, 

through if it is based on "advice taker," it may learn incrementally and so support LPS. In McCarthy's 1997 

paper, it could not be seen that it needed to develop its learning process and so fails LP6 (McCarthy, 1997). 

Finally, and this is a constraint for all reactionary systems, it was intended to work in novel, noisy and 

opportunistic situations and so may meet (LP7). However, McCarthy's research skirts the symbol grounding 

problem, with addition of a predicate logic. 

2.7.2.3 Searle's Chinese Room Argument 

The symbol grounding problem is associated with the Chinese Room Argument (CRA) (Searle, 1980; 

1984; 1990) in the sense that both are concerned with forms of cognition. The CRA addresses the symbol 

system hypothesis, which can be formed by a question, "If a machine can convincingly simulate an intelligent 

conversation, does it necessarily understand?" A depiction makes it easier to understand the arguments and 

realize that Searle wraps the original Turing Test (Turing, 1950) between two layers of machine translation. 

Here the Turing compliant program is an instance of a "Script Applier Mechanism" as a story-understanding 

program (SAM) (Schank and Abelson, 1977). It is this, which Searle takes for his example (figure 2-14). 

Chinese Room ,..-------..., 
Machine 

Translation 
Chinese to English 

T ......... > 
Turing Compliant 

Artificial 
Intelligence 

Program 

Machine 
Translation 

English to Chinese 

Translati .. > 
Figure 2-14 A depiction of Searle's Chinese room argument (Searle, 1980, p417) 

With the 1980 and 1984 work frequently reviewed and often misquoted, Searle summarized the main 

argument (Searle, 1999), as: 

"Imagine a native English speaker who knows no Chinese locked in a room full of boxes of 
Chinese symbols (a data base) together with a book of instructions for manipulating the 
symbols (the program). Imagine that people outside the room send in other Chinese symbols, 
which, unknown to the person in the room, are questions in Chinese (the input). And imagine 
that by following the instructions in the program the man in the room is able to pass out 
Chinese symbols which are correct answers to the questions (the output). The program 
enables the person in the room to pass the Turing Test for understanding Chinese but he does 
not understand a word of Chinese" (Searle, 1999). 
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For Searle, the person in the Chinese room is doing exactly what a computer would be doing ifit used the 

same rules to engage in a grammatically correct conversation in Chinese. Thus, if manipulating Chinese 

symbols according to formal rules is not sufficient for the person to understand Chinese, then it is not sufficient 

for a computer to understand Chinese either, since both are engaging in "mindless" symbol manipulation 

(Searle, 1990, p27). The symbol system hypothesis states that the key aspects of intelligent behavior are 

properties of formal symbol systems. For Searle, computation, as it is standardly defined (in terms of the 

manipulation offormal symbols), is not, by itself, constitutive of, nor sufficient for, thinking. The syntax of the 

implemented program is not the same as the semantics of actual language understanding. 

A reading of some critiques of CRA including those that were part of the initial paper (Searle, 1984; 

1990; 1999; Fodor, 1991; Churchland and Churchland, 1990; Rey, 1986) provides three common 

misconceptions. First the interpretation that "computers cannot think" is restated into computation as 

standardly defined in terms of the manipulation of formal symbols is not by itself constitutive of, nor sufficient 

for, thinking. Second, the misunderstanding that "machines cannot think" is corrected by the following 

argument. The brain is a machine. If a machine is defined as a physical system capable of performing certain 

functions, then there is no question that the brain is a machine. Since brains can think, it follows immediately 

that some machines can think. Last, the concept that it is "impossible to build a thinking machine" is restated. 

If one assumes that thinking is caused by neurobiological processes in the brain and since the brain is a 

machine, there is no obstacle in principle to building a machine capable of thinking. Furthermore, there is no 

theoretical argument against the possibility of building a thinking machine out of substances unlike human 

neurons. 

What CRA shows is that it is not possible to build a thinking machine using a formal symbol system. 

Hamad and Searle conclude that the CRA deals a knockout blow to strong AI65 (Hamad, 1993). This can easily 

be seen with an example of an early symbolic cognitive architecture, the SOAR project (Laird, Newell and 

Rosenbloom, 1987). The implication for this research is to answer the question "Is it possible to use a different 

medium, in which to evolve a symbol system?" 

2.7.2.4 SOAR 

The goal of SOAR was to define an architecture for a system that was capable of general intelligence 

(Laird, Newell and Rosenbloom, 1987). SOAR is fundamentally a search architecture (Laird, Newell and 

Rosenbloom, 1987). Its knowledge is organized around tasks, which it represents in terms of problem-spaces, 

states, goals and operators. SOAR provides a problem-solving scheme as a means to transform initial problem 

states into goal states. Laird, Rosenbloom and Newell consider universal sub-goaling, which is the property of 

being able to do problem solving to make any decision, to be one of the most important contributions of 

65 Strong artificial intelligence is the view that suitably programmed computers (or the programs themselves) 

can understand natural language and actually have other mental capabilities similar to the humans whose 

abilities they mimic. 
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SOAR. This problem solving capacity is referred to as the ''problem space hypothesis,,66 (Newell, 1980b). In 

addition, SOAR is based on the physical symbol system hypothesis67 (Newell, 1980a, pl3S). As previously 

stated, there are problems with the symbol system hypothesis and as will be shown, there are also issues with 

the problem space hypothesis as well. 

The problem space hypothesis assumes that all symbolic cognitive activity can be modeled as heuristic 

search in a symbolic problem space. In particular, Newell claims that reasoning, problem solving and decision 

making can all be captured as searches in appropriately defined problem spaces. The problem space is usually 

an implicit space defined by the combination of all possible states with the transformations similarly atomized 

and encoded. In this space, an initial state and a goal state are specified and the abstract task is to find, using 

trial and error a path from the initial state to the goal state via the allowed transformations. The search need not 

necessarily be blind trial and error, but can use heuristic information to enhance the process; it might even 

become algorithmic. However, this not only presupposes encoding in the presumed implementation of the 

problem space, it inherently restricts all such variation and selection searches to the combinatoric possibilities 

given by generating the set of atomic encodings. In particular, there is no possibility in this view of generating 

new "emergent" representations as trials toward possible solutions of the problem, as possible satisfiers of the 

goal criteria. The only representational states allowed are the syntactic combinations of already available 

atomic "representations." In this respect, as Bickhard points out, SOAR is over committed to Fodor's 

necessary innateness argument (Bickhard, 1991a; 1991b) and therefore fails LPI. 

In contrast, CRA does not impact weak AI68 and it is within this weak AI approach that this research 

thesis is undertaken. In fact, the experimental position of the research could be cast into a CRA, with 

"Chinese" being replaced with integer and number-sense. The key issue is overcoming the physical system 

hypothesis and its pseudonym the symbol-grounding problem. 

2.7.2.5 Resolution of Symbol Grounding Using Sub-Symbolic Sensory Data 

To resolve the symbol grounding problem and overcome the physical symbol system hypothesis, Mayo 

advises the use of sub-symbolic sensory data (Mayo, 2003, pS7). The sensory data (of experience) upon which 

the symbols are grounded is continuous and fluid. Artificial neural networks can be used to provide non-

66 The problem space hypothesis, assumes that all symbolic cognitive activity can be modeled as heuristic 

search in a symbolic problem space (Laird, Newell and Rosenbloom, 1987, pS8). 

67 The physical symbol system hypothesis: "A physical symbol system has the necessary and sufficient means 

for general intelligent action" (Newell and Simon, 1976, p 116). The physical symbol system hypothesis is also 

called a formal system. 

68 Weak artificial intelligence claims only that the computer is a useful tool in studying human cognition, as it 

is a useful tool in studying many scientific domains. Those computer programs which simulate cognition will 

help us to understand cognition in the same way that computer programs which simulate biological processes 

or economic processes help us understand those processes. 
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symbolic representations of the environment. A category is thus a selection of continuous sensory data, but 

without some sort of bias, the selection of category is computationally intractable. 

A computer system could acquire its symbols as it learns new tasks, the bias is then provided by the task 

(Mayo, 2003, p 57). The symbol is essentially discrete and static and is an arbitrary assignment to a category of 

sensory data that can be detected in the environment through a process of decontextualization. The rules for 

reasoning, which are themselves the combination of strings of symbols, are themselves arbitrary symbol 

strings. A computer system typically has pre-programmed categories in its sensory motor apparatus and 

constrains which categories can be developed. By enabling a computer system to develop its own categories, 

would enable the system to side step the symbol grounding problem. 

Symbols can be used to designate abstract concepts, but the issue is where do the abstract concepts come 

from. Connectionism could provide the important sub-symbolic categorizations; another approach is theory 

tethering (Sloman, 1985). 

2.7.2.6 Resolution using Theory Tethering 

On addressing symbol grounding and specifically concept fonnation, Sloman proposed, "a machine may 

use symbols to refer to its own internal states and to abstract objects" (Sloman, 1985, plOOO). Sloman indicated 

how it might refer to a world to which it has only limited access, relying on the use of "axiom-systems to 

constrain possible models and perception-action loops to constrain possible completions" (Sloman, 1985, 

pl000). In concluding that these constraints leave the "meanings" partly indeterminate and indefinitely 

extendable and even that some use of causal links reduce some of the indeterminacy, Sloman opens up the 

resolution of the symbol grounding portion of the learning paradox through a Piagetian approach to causality. 

For Piaget, the symbol grounding problem is the development of meaning through action. For Sloman, 

understanding is more than a collection of symbols: 

"Without a functional architecture supporting distinctions between beliefs, desires, plans, 
suppositions, etc., a machine cannot assign meanings in the way that we do. Merely storing 
infonnation and deriving consequences, or executing instructions, leaves out a major 
component of human understanding, i.e., that what we understand matters to us" (Sloman, 
1985, p999). 

Further, Sloman identifies some key areas that would need to be addressed, including the nature of truth, 

mathematical concepts like "not, all, or, number, minus" that do not directly refer to experience, the 

incompleteness of semantics, concept learning, abstract concepts as references to inaccessible objects and 

generalization amongst others (Sloman, 1985). 

In rejecting the existing mechanisms to resolve the symbol grounding problem and its earlier definition of 

concept empiricism, Sloman concludes that AI researchers must not restrict their ontologies to patterns and 
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relationships in artificial neural networks (Sloman, 1985). Further and this follows Piaget69
, they must not 

ignore the structure of the environment (Sloman, 1985). In addition, concept formation, which is the essential 

notion of symbol grounding, requires that a successful system must be able to generate new concepts. This 

approach coincides with the view of emergent behavior (Crutchfield, 1994a, 1994b) as well as evolutionary 

development (§ 2.2 and A, for a fuller discussion on emergence) in the learning process. 

For Sloman, symbol tethering "shows that events and processes in a machine can constitute a model for a 

significant subset of "axioms implicitly defining mentalistic concepts" (Sloman, 1985, p996). As an example, 

Sloman constructs a Euclidean model, as a set of axioms of points, lines, intersects, and explains the different 

ways that this model can be used to interpret the world. The model for this set is not, as sometimes suggested, 

another symbolic structure denoting the world. These models are portions of the real world (Sloman, 1987, 

p372). It is symbol tethering which constructs understanding through the rich semantics expressed in a 

formalism that allows conclusions to be drawn in a formal way. Thus, when a machine interrogates its 

memory, states of the memory can cause appropriate new symbols to be constructed and stored (Sloman, 1987, 

p370). 

Theory Tethering: Where is the Problem? 

There are issues with the theory tethering70 approach, especially if one were to try to resolve LPI - LP7 

(§ 2.1.7), then a number of issues arise. First, it is necessary to work within the constraints imposed by Fodor's 

arguments. It is evident that there is too much built in to Sloman's formal system, so theory tethering fails 

LPI. Second, any system that purports to exemplify human cognition would need, certainly in an educational 

sense, to be able to recreate the milestones through which a child grows through (§ figure I-Ion Bead 

Problem). Sloman must also be careful to ensure that these "concepts" are not forced into having a "formal" 

logical construction, if they have an operational meaning that is relevant to causality or basic sets. This is not to 

argue that such concepts are trivial, for this would not justify working so long with "sets" in primary schools if 

this was so. There is no evidence that theory tethering could successfully resolve LP4 and it is the relevance to 

educational research that typifies the complexity of the research problem. The problem is not that Sloman's 

formal model with "non-derivative" semantics could exhibit emergence of hierarchical structures, so as to 

resolve LP2. The issue is having adequate examples of where the systems that implement theory tethering have 

been shown to exhibit the emergence of new structure and so resolve LP2. 

69 A functional exchange between a biological organization and the environment presupposes an internal 

structure and leads to a structuring of the environment. For Piaget, action is not limited to external action. It is 

generally synonymous with behavior (Furth, 1969, p259). 

70 Theory tethering is also referred to as symbol tethering. 
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2.7.2.7 Resolution of Symbol Grounding using SOAR-R 

One potential solution to the symbol grounding problem and LP2 is to provide hybrid cognitive modeling 

systems that learn their symbols using bottom up learning (Georgeon, Ritter and Haynes, 2009). This is 

covered in more detail later (§ 2.7.4). 

2.7.2.8 Resolution using Piagetian Approach 

Piaget disagreed with the whole representation theory of knowledge upon which most symbolic 

processing is built (Furth, 1969, p93). Piaget asserted that the whole of knowledge is based on action and that 

this action, through the processes of assimilation and accommodation differentiates itself into semiotic and 

latterly the symbolic functions through a process of meta-genesis (§ 2.3.5 on Piaget Knowing Circle). 

2.7.2.9 Symbolic Models: Where is the Problem? 

By utilizing predicate-based logic for reasoning and optionally, planning, symbolic models such as EPIC, 

CIRCA, EMILE, RAA and 3T all fail Fodor's argument for LPI. First, these most often require specific 

domain knowledge to generate an understanding of the required problem space. Second, the developer of the 

solution provides this domain model. Third, they do not exhibit the learning and developmental characteristics 

of a young child (LP4), nor exhibit the stage like variation. Lastly, many of the system use means end analysis, 

which earlier research has demonstrated to be necessarily included apriori. In this sense, they also fail LPI. 

However, symbolic models exhibit interesting features. 

First, RAA (Pell, Bernard, Chien, Gat, Muscettola, Nayak, Wagner and Williams, 1997) uses a 

constrained resource limitation feature similar in nature to Pascual-Leone's M-Demand (Pascual-Leone, 

1980, p271). 

Second, the autonomous operation of 3T systems is due in large part to the embodiment of the principle 

of cognizant failure, in each layer (Gat, 1998). Cognizant failure is based on the idea of designing a system to 

detect failures and recover from them as opposed to never failing (Gat, 1998, p198). Originating on Firby's 

research on adaptive control (Firby, 1989), like nature, it sidesteps the issue of designing perfect algorithms, 

but requires a contingency recovery procedure for each failure. It also presumes that the multiple possible 

outcomes of actions are easily categorized as success or failure and those failures are inevitable. The benefits 

of implementing this approach are shown by the 3-year autonomous operation of 3T systems (Bonasso, Firby, 

Gat, Kortenkamp, Miller and Slack, 1997). 

Systems such as PRODIGY (Carbonell, Knoblock and Minton, 1990) have made use of CBR and EBL 

algorithms, to learn new search control rules. As will be described in § 2.9.1, these approaches cannot discover 

new facts, only recombine existing facts into new combinations and as such fail LP5. 
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2.7.3 Emergent Models 

"The challenge for the future is to develop general artificial systems that can pursue a wide 
variety of tasks (including novel ones) over long time scales; with extensive experiential 
learning in dynamic, complex environments ... cognitive architecture provides the building 
blocks to meet this challenge" (Laird, 2008, p234). 

Emergent models use low-level activation signals flowing through an artificial network consisting of 

numerous processing units, relying on the emergent self--organizing and associative properties of 

connectionism (O'Reilly and Munakata, 2000). Within the space of emergent architectures, there exists a broad 

range of biological cognitive features that have been transposed into machine learning architectures. Two 

examples are reviewed mCA (O'Reilly and Munakata, 2000) and ART (Carpenter, Grossberg and Rosen, 

1991; Carpenter and Grossberg, 2002). 

2.7.3.1 IBCA 

In the area of computational cognitive neuroscience, the goal of Integrated Biologically-based Cognitive 

Architecture (mCA) (O'Reilly and Munakata, 2000) is to understand how the brain embodies the mind by 

using biologically based computational models comprised of special artificial neural networks. Extending 

parallel distributed processing (McClelland and Rumelhart, 1988) with biologically sound models; mCA 

embodies a model of cognitive psychology. Motivated by physical reductionism, reconstructionism, levels of 

analysis and scaling issues, computational cognitive neuroscience is bracketed by two important questions: 1) 

How does emergence occur within an organism and 2) How does one encourage emergence within a 

simulation. Any simulation addressing these questions includes features such as parallelism, gradedness, 

interactivity, completion and learning using neural networks. By combining these networks, the constructed 

systems exhibit capabilities such as visual encoding, spatial attention, episodic memory, working memory, 

semantic representation, task directed behavior and deliberation, as well as features of explicit cognition that 

are observed in early child development. 

IBeA: Where is the Problem? 

First, Poldrack makes the case that much of what is interesting is early development - beyond one and a 

half years of age - is poorly understood, and at age five, cortical patterning is almost completed (Poldrack, 

2010). This is readily understood, by the reasoning that correlations of neural imaging do not provide sufficient 

information to discern what is going on developmentally. In this sense, mCA fails LP2 and LP6 because 

current examples do not exhibit hierarchical concept formation nor development of their own learning process. 

Second, common inferences made in mCA are descriptive and often logically incoherent (poldrack, 

2010). The mCA architecture may well prove to be a more correct model than a Piagetian model. For now 

though, it seems to be too immature to account for the observations of childhood development that Pia get has 
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observed (Furth, 1969; Copeland, 1974) and so fails LP4 . More importantly, it does not tackle the symbol 

grounding problem, which is evidently approachable within the confines of this thesis. 

2.7.3.2 ART 

Adaptive Resonance Theory (ART) (Carpenter and Grossberg, 2002) is a theory on aspects of how the 

brain processes information. It describes a number of neural network models, which use supervised, 

unsupervised learning and self-organizing methods to address problems such as pattern recognition and 

prediction (Carpenter, Grossberg, Rosen, 1991). Using the concept of resonance, ART reconciles sub

symbolic distributed features to symbolic categories, as coherent context sensitive states. By using fuzzy 

methods, these symbols and rules become resonant, i.e., the system becomes aware of these new states though 

a process of synchronous equilibrium. ART supports dynamic behavior including mimicking of motor skill 

learning and performance (Grossberg and Paine, 2000; Carpenter, Grossberg, Markuzon, Reynolds and Rosen, 

1992). 

ART: Where is the Problem? 

One criticism of ART is that it has a statistically unacceptable as a method of learning categories - noisy 

data can produce a vast proliferation of categories with severe over-fitting (Williamson 1995). Over-fitting of 

data is itself, not necessarily invalid in educational terms, since language learning typically demonstrates over

generalization and incorrect learning7I. The danger occurs when it becomes impossible to correct invalid 

learning - as identified by Gold (Gold, 1967, p465) - as occurs with learning a grammar. Secondly, 

performance has a dependence on the parameters chosen for training. The choice of these parameters requires 

good knowledge of these architectures and often requires some experimentation to get the best results using 

these architectures, a computationally intensive proposition. Since foreknowledge is required, ART fails LP3. 

Researchers have tackled this problem by combining a genetic algorithm to evolve the weights in the neural 

network (Kaylani Georgiopoulos, Mollaghasemi, Anagnostopoulos, Sentelle and Zhong, 2010). Since 

generalization occurs in the sub-symbolic layers, it seems that the capability to generalize and generate 

concepts using a form of concept formation (LP2) in the symbolic layers has not been considered. Therefore, 

its use in solving the learning paradox is put into doubt. Further, it has not been shown that ART could develop 

its learning process and so fails LP6. 

2.7.4 Hybrid Models 

Hybrid architectures combine the properties and processes of symbolic and emergent architectures 

together. Sun suggests that a lack of support for symbol grounding in SOAR and ACT -R, led to the 

development of hybrid architectures (Sun, 2004). 

71 Over-fitting, as in learning the wrong thing. 
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This review of hybrid models initially covers the necessity of dual-process theories (§ 2.7.4.1) and the 

need for a structure for conceptual change (§ 2.7.4.2). It then reviews a selection of hybrid models (§ 2.7.4.3) 

and compares them to the needs of the leaming paradox (LPI - LP7). 

2.7.4.1 The Necessity of Dual-Process Theory 

Pyysiliinen finds it difficult to reconcile criteria one (generality) and criteria twelve (evolution) in 

Newell's twelve Criteria Test (Newell, 1990), on the basis that an evolved implementation cannot be 

computationally universal (Pyysiliinen, 2003, p617). By observing that some tasks are more difficult than 

others, Pyysiainen posits that this supports dual-process theories (Pyysiliinen, 2003, p617). The disconnected 

structure in cognitive modeling, which has connectionist models at one-side and production systems on the 

other, can be positioned on a continuum with hybrid systems somewhere between both approaches. An 

example of which is CLARION (Sun, Merrill, Peterson, 200 I, p205). Dual process theories (Epstein and 

Pacini, 1999) have been variously labeled and represent two different ways of processing information. 

Although definitions vary, Pyysiliinen notes that there is considerable overlap in processing, examples include: 

intuition and implicit learning versus deliberative, analytic strategy (Lieberman, 2000); a reflexive and a 

reflective system (Lieberman, Gaunt, Gilbert, Trope, 2002, p2l0); associative versus rule-based systems 

(Sloman, 1996; 1999); an experiential or intuitive versus a rational mode of thinking (Epstein and Pacini 1999) 

and implicit versus explicit cognition (Holyoak and Spellman 1993). 

The two supporting biological systems of dual process theories are the spontaneous system (using the 

lateral temporal cortex, amygdala and basal ganglia) and the rational system (using the anterior cingulated, 

prefrontal cortex and hippocampus). The rational system either generates solutions to problems encountered by 

the spontaneous system, or it biases its processing in a variety of ways. To quote Pyysiliinen, "A pre-existing 

doubt concerning the veracity of one's own inferences seems to be necessary for the activation of the rational 

system" (Pyysiainen, 2003, p 117). The rational system thus identifies problems arising in the spontaneous 

system, takes control away from it and remembers situations in which such control was previously required. 

These operations are plausibly considered to consist of generating and maintaining symbols in working 

memory, combining these symbols with rule based logical schemes and biasing the spontaneous system and 

motor systems to behave accordingly (Lieberman, Gaunt, Gilbert, Trope, 2002; Pyysiliinen, 2003, p617). 

These hybrid models resolve Hamad's symbol grounding problem by allowing a connectionist category 

to be related to an arbitrary symbol. A problem with this approach is with the assignment of an appropriate 

symbol. The symbols themselves cannot be fully formed, otherwise one is back to the symbol grounding 

problem. 

Stressing the importance of the bridge between connectionist and the rule based approaches of dual 

process theories, Wang, Johnson and Zhang discuss having a theory ofrnind that provides explanations of the 

development of symbols from the non-symbolic connectionism that exists in the mind (Wang, Johnson and 

Zhang, 2003, p626). This provides the backdrop for the learning paradox and Piaget in particular (§2.3.5 on the 

Permanent Object Invariant). 
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2.7.4.2 Conceptual Change 

In the general problem of concept formation Clancey comes close to identifying the learning paradox and 

refers to it as ''thinking new thoughts" and even referring to Plato's "unchanging forms in the mind" (Clancey, 

2001, p395-400). Clancey appears to provide a loose definition: 

"Concepts fall more on a spectrum, both specific and abstract, not either-or. Abstraction, as 
it is naturally found in human thinking, should not be contrasted with concrete ideas 
(Amheim, 1969) ... the spectrum is obvious when we consider that not all abstract relations 
are mathematical. Other kinds of abstract relations are possible, involving causality, 
classification, temporality, etc. Abstraction, per se, is the relation of one concept to another, 
not a specific set of relations which are mathematical (e.g., spatial configuration relations)" 
(Clancey, 2001, p 394). 

It is based on the assumption that general conceptual processes exist and there is no need to separate 

mathematical and other abstractions. In this respect Clancey is much closer to the original Piagetian approach 

as a scheme of coordinated actions and not just schemes of objects, or where behavior is a recorded structure. 

The key theoretical notion is that "something other than specific domain facts and rules, organizes changes in 

human behavior" (Clancey, 2001, p418). This organizing process is abstraction and is applied to the 

"progressing from previous organizations of behavior" (Clancey, 2001, p418). Learning is thus a 

trans formative process and "occurs as and through action itself." Clancey concludes that cognitive modeling as 

a discipline should view knowledge and learning in terms of conceptual coordination using a neural based 

process in which sensory motor systems and abstraction is blended, sequenced and composed. The key issue is 

how this occurs within the individual (Clancey, 2001). 

Formally, one can write the symbols as a model in a grammar (such as ENBF), but the question remains, 

"How did an organism such as a human create such sophistication, grounded as it is within the substrate of a 

neuronal network?" This alludes to the symbol grounding problem (Harnad, 1990). Similarly, if cognitive 

architectures embody the framework: "people solve problems by means end analysis," then this poses a 

question about the nature of the knowledge of means end analysis in cognitive skills, because if the knowledge 

of means end analysis is required for the process of skill acquisition, then it must be apriori knowledge. If it is 

not then would one learn anything, since theories such as ACT -R (Anderson, 2007) require means end analysis 

for learning. If it is apriori, then the philosophical arguments about conceptual change hypothesis and 

knowledge apply. If one assumes that people can learn in ways other than means end analysis, then one has to 

question the boundaries between procedural and declarative knowledge and the functions which transfer 

declarative knowledge to procedural knowledge. 

When one considers the learning paradox and the need to ground symbols, Clancy's observation of 

Anderson and Lebiere becomes important (Anderson and Lebiere, 2003, p595). Not only does the conceptual 

change hypothesis (Clancey 1999a cited in Anderson and Lebiere, 2003, p595) form a bridge between non

symbolic and symbolic knowledge, there is also a direct correspondence of second order categorizations to 

Piaget's scheme model. Further, the work of Pascual-Leone (Pascual-Leone and Goodman, 1979, p311; 

Pascual-Leone, 1980, p280; Pascual-Leone, Goodman, Ammon and Subelman, 1978, p252) has been shown 
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to explain this developmental trend. As will be seen in the design, the conceptual change hypothesis is closely 

related to the Piagetian scheme process (§ 2.3 .6 and figure 2- 1 on building symbols through development of 

the learning process). 

2.7.4.3 Analysis of Hybrid Models 

Like symbolic models, the hybrid models all fail some of the constraints defined in this study. 

PolyScheme (Cassimatis, Trafton, Bugajska and Schultz, 2004, pI9), fails LPl and does not mirror 

observations of child development (LP4). CLARlON (Sun, 2004, p342 cited in Georgeon, Ritter and Haynes 

2009) is not constrained by Fodor's arguments (LPl), but it is difficult to determine if CLARlON can fully 

support autonomy (LP3) or observed to exhibit the stage like variation observed in children (LP4) . Neuro 

SOAR (Neuro-SOAR (Cho, Rosenbloom and Dolan, 1991 cited in Laird, 2008, p225) is a significant 

improvement on other cognitive models. However, Neuro SOAR misses the mechanism of the knowing circle 

and the process of evolutionary trend and the developmental trends (Furth, 1969) and so fail LP6 and LP7. 

Research on ACT - R has led to the comprehensive computational theories of a wide variety of human 

phenomena including brain activity (Anderson, 2007, cited in Laird, 2008, p233). However, they have ignored 

many of the cognitive capabilities in SOAR including episodic memory, emotion, and visual imagery. Like 

other hybrid models, they fail Fodor' s arguments (LPl) and further, are not seen to develop the stage like 

variation observed in developing intelligence (LP4). CogAff (Sloman, 2001, p42) fails because it does not 

specify an implementation that could resolve the learning paradox; it also fai ls Fodor' s arguments (LPl). 

Further, it has not been shown to develop its learning process (LP6). RCS (Albus, ] 975; Albus, Pape, 

Robinson, Chiueh, McAulay, Pao and Takefuji 1992; Albus, 1991; RCS, 2009) possesses many characteristics 

that are nece sary in any autonomou system, but lacks the capability to generalize or to change the way it 

learns over time. ReS includes its own abstract symbolic language and with frame based knowledge structures 

and inbuilt logics, fails Fodor' argument (LPl). It also has not shown the capability to develop the stage like 

variation observed in developing intelligence (LP4). 

2.7.5 Conclusions 

The problem with cognitive architectures and cognitive modeling is that they are not theories themselves, 

but merely implementations u ing high- level languages, thus they lack sufficient explanatory power 

(Tadepalli, 2003 , p622). Tadepalli uggests that the model extant from these architecture can and should be 

evaluated empirically. The evaluation criteria used within this research (LPl - LP7) was designed for this 

purpo e with table 2-3 ummarizing the re ults of the analysis. 

Table 2- 3 valuation of cognitive development models to support LPl - LP7 

# Category Model Summary Evaluation 

1 Symbolic McCarthy Fai ls LPt , LP2 and LPS at least 

'2 Theory Tethering Fails LP1 , LP2 and LP4 
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# Category Model Summary Evaluation 

EPIC, CIRCA, EMTLE, RAA and 3T Fails LPI at least 

"'3 Symbolic SOAR Fails LPI 

4 Emergent mCA Fails LP2, LP4 and LP6 at least. 

"5 ART Fails LP2 and LP6 at least. 

6 PolyScheme Fails LPl, LP2 and LP4 at least. 

-=;- CLARION Fails LPl, LP2 and LP3 at least. 

'8 Hybrid SOAR- R Fails LP6 and LP7 at least. 

T ACT- R Fails LPI and LP4 at least. 

~ CogAff Fails LPI and LP6 at least. 

~ RCS Fails LPI and LP4 at least. 

From table 2- 3 It IS clear that no one system proVldes a complete solutIOn to the evaluation criteria 

established to resolve, albeit partially, the learning paradox. Further, a series of principles have been identified 

that will be carried forward into the architecture and design namely: symbol grounding, conceptual change, 

dual process theorie and the need for emergence. 

2.8 Piagetian Implementations 

This section reviews existing Piagetian implementations (Pascual- Leone, 1970; Drescher, 2002 and 

Chaput, 2004), and contra ts them to the reevaluated Piagetian theory (§ 2.3). 

2.8.1 Pascual-Leone 

Pascual- Leone developed the abstract and technical theory of constructive operators (TCO) (§ 2.1 .6) as a 

mechanism to te t a Piagetian model (pa cual- Leone and Goodman, 1979; Pascual- Leone, 1970; Pascual

Leone, 1980; Pascual- Leone, 1996; Pa cual- Leone and Johnson, 1999; Pascual- Leone, Goodman, Ammon 

and Subelman, 1978). Though hi work has significance e.g. , the roles of an executive, resource constraints 

and the approach to learning (§ 2.1.6 on Pascual- Leone), attempts by this research to develop a workable pure 

cognitive model based olely from printed works on the TCO proved to be too difficult. The Teo learning 

mechani m could not be implemented in an artificial neural network, so Pascual- Leone's approach had to be 

rejected. 

2.8.2 Dre cher 

Drescher ' implementation of the schema mechanism starts with a set of primitive items and primitive 

actions (Dre cher, 2002). It then explores the environment to create a set of sensory motor chernas. These 

schemas form the ba i of new ynthetic item . They are also used in the creation of goal-directed composite 

actions. U ing the e technique , an agent can build a hierarchy of items to describe its environment and a 

hierarchy of en ory motor chema can be combined into a plan to achieve some goal. Drescher created a 
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micro-world of blocs and made a one-armed, one-eyed simulated agent to reconstruct the main developmental 

milestones described by Piaget. These included the construction of causality, the fusion of the different 

sensorial modalities and the construction of the notion of permanent object invariants (Drescher, 2002). 

Drescher's model of emergence of perceptual systems agrees with Bickhard's conjecture that interactive 

representation is the most fundamental form of representation (knowledge) since it satisfies the crucial meta

criterion of being able to tell when the system is in error (Bickhard, 1996). 

Drescher presents a simulation of Piagetian sensory motor skill that invents a series of approximations to 

the persistent object concept and discovers correspondences among its senses. This schema mechanism is 

engineered to pursue two fundamental objectives: to gain knowledge by constructing or revising symbolic 

assertions about the world and to use those symbolic constructs to gain further knowledge (Drescher, 2002, 

pSI). This conflicts with Piaget, who asserted that language develops from action and action is non-symbolic 

(Furth, 1969, p77-84). 

Drescher's research replicates early Piagetian milestones in the infant's acquisition of the concept of the 

physical object (Drescher, 2002, p3) and to do this it must have minimal innate knowledge of its environment. 

Drescher uses the assimilation-accommodation aspects of Piagetian development (Drescher, 2002, p23), but 

assumes that Piaget did not specify explicit rules governing the activity and modification of schemes. A close 

reading of Furth (Furth, 1969 and Copeland, 1974) provides clear evidence of the complex interactions of 

assimilation-accommodation and the nature of the schema process through the development of the knowing 

circle (§ 2.3.5). It is also uncertain, ifthe overall development of the knowing circle was clear to Drescher, as 

he makes the assumption "The schema mechanism is engineered to pursue two fundamental, symbiotic 

objectives: to gain knowledge by constructing or revising symbolic assertions about the world and to use those 

symbolic constructs to gain further knowledge" (Drescher, 2002, pSI). This perspective runs against the notion 

that development in sensory-motor and pre--operational areas, is non-symbolic. Furth contends that 

development occurs through a process of action with semiotic functions and symbolic functions emerging 

through the development of the learning process (Furth, 1969). 

A different approach is taken in this research thesis that a neural network will develop actions that can be 

controlled by emergent schemes, where the schemes themselves go through a developmental process, that 

enable the attribution of semiotic, then symbolic functions. Essentially, emergence in terms of Crutchfield 

(Crutchfield, I 994a, pi) occurs through the development of a model that enables prediction of the components 

of the environments. 

An interesting aspect of Drescher's work is "that the bootstrapping of intelligence involves assembly of 

concepts from special-case fragments" (Drescher, 2002, p40). This is in agreement with Bereiter's notion of 

bootstrapping (Bereiter, 1985, p206). The notion that there is "no apriori reason to expect a constructivist 

mechanism to exhibit stage like regularities at all" (Drescher, 2002, p41) can be understood to go against 

Pascual-Leone with the stage like variation occurring when new growth in schemes occurs. Drescher also 

notes that empirical learning "having structures learn from within, rather than from without - is crucial for 

constructivist bootstrapping," which is most clearly seen in the development of concepts (Drescher, 2002, 
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pI90). Overall Drescher's work can be seen as taking Piaget's work as an approximate working hypothesis, 

even if it is diluted by modem research. However, Drescher articulates six key problems that will need to be 

tackled by any research that attempts to develop general intelligence using a symbolic approach: 

1) symbol grounding problem in ascribing meaning; 

2) problem ofnaYve induction, the GruelBlean paradox; 

3) problem of non-absurd generalizations, like cognizant failure, one assumes they must occur and are, 

eventually, overcome; 

4) problem of using only projectable concepts; 

5) problem of preferring entrenched concepts, when more than 1 generalization applies; and 

6) resolving the problem of induction conflicts and deduction overrides and the issues with induction and 

counterfactuals. 

For any system that uses primitives, as a symbol, a key issue is ascribing meaning (the symbol grounding 

problem). Resolving this symbol grounding problem can be achieved within a sensory-motor process by 

assigning them as perceptions and actions (Drescher, 2002, p89). Within Drescher's research, the grounded 

symbols are the innate schemes that are pre-defined within an artificial neural network, which allows them to 

be adaptive. 

The Goodman GruelBleen Paradox of confirmation (Rescher, 2001, p 227-230) alludes to the basic 

problem of identifying which generalizations are reasonable (Drescher, 2002, pI67). To overcome the 

Goodman GruelBleen Paradox (Rescher, 2001) it is important to realize that a deductive override mechanism 

must exist to escape the fallacy ofnaYve induction (Drescher, 2002, pI73); however, to overcome homunculus, 

a fixed point must be established through the establishment of explicit beliefs about generalization that resolve 

conflicts at different levels of abstraction. 

In the problem 0/ non-absurd generalization, in which applying only non-absurd generalization, a 

system assumes that it will not generate absurd generalization by ensuring that the generalization itself is 

verified from experiential data (Drescher, 2002, pI68). The determination of which predicates lend themselves 

to be more useful generalizations and which ones should be avoided (Drescher, 2002, p 169). 

The problem of entrenchment occurs when more than one generalization can apply to a particular 

situation (Drescher, 2002, p 169); this is a determination of the relative reasonableness of the competing 

concepts. 

Given any agent that can act, it will consistently generate a series of generalizations that will require a 

choice amongst the generalizations - such a measure is "implausibly restrictive - it contradicts the fact that we 

make generalizations about concepts that could not have been anticipated by evolution - and wholly 

ineffective" (Drescher, 2002, pI74), since, as the Goodman GruelBleen Paradox shows, absurd generalizations 

can be recast in terms of mundane concepts. 
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Drescher makes plain the notion that a schema can make counter/actual assertions72
, and a synthetic 

item. which reifies the validity conditions of its host schema's counterfactual assertions has to be resolved, but 

his research shows that as at present, this problem is unresolved (Drescher, 2002, p175). 

Drescher classifies schemes as symbolic representations (Drescher, 2002, p 184), albeit hybrid and 

discloses that using single layer neural networks could not compute disjunctive normal forms (DNF) formulae. 

This problem could potentially have been resolved using multi-layer neural networks. Rather than "using 

intermediate processing units to compute conjunctions, each schema has its own extended context, in effect, its 

own entire connectionist network" (Drescher, 2002, p186). The advantage of this approach is simplicity to the 

overall design and alignment with biological reward processing on which it is based. Second, it utilizes these 

sensory motor objects within hierarchical networks, to facilitate structuring. 

2.8.2.1 Drescher: Where is the problem? 

By the utilization of a predicate-based logic, Drescher fails Fodor's arguments (LPl). It also does not 

allow the development of its learning process and so fails LP6. 

2.8.3 CLA 

Inspired by Piaget, Chaput (Chaput, 2004), proposed a new learning architecture called CLA: 

Constructivist Learning Architecture which itself is an extension of Drescher's schema mechanism (Drescher 

1991). 

In reworking Drescher's schema mechanism. Chaput implements schemas as self--organizing maps 

(SaM) (Kohonen, 1997) because of their neural plausibility. SOMs map the patterns of behavior, as input 

vectors into a feature coordinate system (feature map). After training, the SaM will organize itself as a 

network of nodes, where each node represents a prototype vector of the input. By utilizing multiple 

hierarchical layers of SOMs, with each layer taking input from the layer below, the architecture allows the 

system to learn increasingly abstract schemas. Chaput shows how the CLA implements the same 

functionalities as the schema mechanism, but without facing the scale-up limitation. Primarily a rework of 

Drescher's foraging goals and recovery task with reinforcement learning using delayed feedback and high 

values for completion of foraging tasks (Compare to § A.6.2 Actor-Critic Temporal Difference Learning as an 

implementation mechanism). With state value functions and policy functions spread through the prerequisite 

schemas enabled the robot to organize its behavior according to the assigned task. 

2.8.3.1 CLA: Where is the problem? 

It is evident from Chaput's research that it did not support the capability to develop its learning 

mechanism (LP6) nor its own symbols (LP2) nor the observation that it fully exhibits the stage like variation 

72 A counterfactual assertion is an assertion about what would be the case if some (perhaps false) premise were 

true. 
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observed in developing intelligence (LP4). However, like other hybrid models, CLA identifies the need for 

emergence. 

2.8.4 Conclusions 

It is evident that the existing Piagetian implementations (pascual- Leone, 1970; Drescher, 2002 and 

Chaput, 2004) were attempting to solve a different problem that the learning paradox. Also, they were not 

attempting to produce a model that was fully biologically plausible, though they do provide some interesting 

insights, into the development of emergent structures. Table 2-4 provides a summary analysis: 

Table 2-4 Evaluation of Piagetian models to support LPI - LP7 

# Category Model Summary Evaluation 

1 Symbolic Pascual-Leone Unable to implement. 

2 Emergent Chaput Fails LP2, LP4 and LP6 at least. 

3 Hybrid Drescher Fails LPI and LP6 at least. 

2.9 Other Frameworks 

This section reviews other frameworks of conceptual development to determine if they can resolve the 

learning paradox, work within the constraints defined by LPl - LP7 and exhibit emergence as defined by 

Piaget. The surveyed frameworks include case based reasoning (Schank, 1982; Kolodner, 1983); explanation 

based learning (S0rmo, assens and Aamodt, 2005); unsupervised learning in visual perception (Le, Ranzato, 

Monga, Devin, Chen, Corrado, Dean and Ng, 2012) and emotional / intuitive models (Maturana, 1988b; 

Maturana and Varela, 1980; Maturana, 1988a; Jaauregui, Jauregui and Jauregui, 1995). 

2.9.1 Case Based Reasoning 

Ca e Based Reasoning (CBR) traces its roots to the work of Roger Schank on dynamic memory (Schank, 

1982). Early implementations include CYRUS (Kolodner, 1983) and IPP (Lebowitz, 1983) which solved new 

problems based on the olutions of similar past problems. The main criticism levied against CBR is that by 

accepting anecdotal evidence a implicit generalizations without confirming its statistical relevance, does not 

guarantee that the generalization i correct. This is balanced by the observation that all inductive reasoning, 

where data is too carce for tati tical relevance, is inherently based on anecdotal evidence. 

Explanation- based learning (EBL) as a form of machine learning exploits a very strong, or even perfect, 

domain theory to make generalizations or form concepts from training examples, is considered in this research 

to be a pecialization of BR ( ermo, Ca ens and Aamodt, 2005). By inference, it therefore suffers from the 

same is ues. 

BR pre urnes that a ingle example can be both learnt as correct and reused "forever" and that the 

example can be generalized to ome extent without further consideration of how/why the generalization does 

Page 94 



Chapter 2. Literature Review 

occur. This potentially suggests that a learner will only need to be shown one single, difficult example and they 

will need no further examples. However, instant learning is atypical of ordinary learning behavior and the need 

for simple examples before complex ones would seem to be a fundamental aspect of understanding why a 

problem is solved in some particular way. In this respect, CBR fails LP5. 

2.9.2 Unsupervised Visual Learning 

In machine learning, unsupervised learning refers to the problem of trying to find hidden structure in 

unlabeled data. Since the examples given to the learner are unlabeled, there is no error or reward signal to 

evaluate a potential solution. This distinguishes unsupervised learning from supervised learning and 

reinforcement learning (Sutton and Barto, 1998). Unsupervised learning includes topics such as self

organizing algorithms (§ 2.8.3 CLA and SOM by Chaput), conceptual clustering using discrimination nets 

(Fisher and Langley, 1985) and connectionism research by Kohonen, Grossberg, Rumelhart and Zipser, 

amongst others. Two forms of unsupervised learning are considered: Adaptive Resonance Theory and the work 

at Goog\e (Le, Ranzato, Monga, Devin, Chen, Corrado, Dean and Ng, 2012). 

2.9.2.1 Adaptive Resonance Theory (ART) 

A fundamental problem of perception and cognition concerns the characterization of how humans 

discover, learn, and recognize invariant properties in the environments to which they are exposed (Carpenter 

and Grossberg, 1987, p54). Carpenter and Grossberg considered this stability-plasticity dilemma and devised 

algorithms (ART) to find patterns, categories and correlations in essentially binary data using massively 

parallel neural networks without a feedback signal from a teacher i.e., the data is unlabeled. 

In their approach, after learning self-stabilizes with recognition codes being detected in the input 

patterns, the search process is automatically disengaged (Carpenter and Grossberg, 1987, p54). Thereafter 

input patterns directly access their recognition codes without any search. Thus, recognition time does not grow 

as a function of code complexity. A novel input pattern can thus directly access a category if it shares invariant 

properties with the set of familiar exemplars of that category (Carpenter and Grossberg, 1987, p59). The 

invariant properties of a learned critical feature pattern (prototype) emerge from the statistical regularity in the 

data (Carpenter and Grossberg, 1987, p55) which itself is centered on the appearance of novelty, using 

differential equations to characterize its class of network. 

ART: Where is the Problem? 

Several issues have been identified with the ART approach (§ 2.7.3.2), namely that its structures are 

determined before hand (and so fails LP3) and that it has not considered symbolic knowledge nor developed its 

learning process (and so fails LP6). However, one of the goals of this research is to determine if and how other 

systems could implement a biologically inspired Piagetian model oflearning and development. Within Piaget's 

model are a number of processes including assimilation, accommodation, interiorization and reflective 

abstraction which have particular characteristics (§ 2.3). From the review of Carpenter and Grossberg 
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(Carpenter and Grossberg, 1987), it is evident that although the processes modeled reflect some aspect of 

cognitive development, is cannot be directly translated to the work of Pia get (§ 2.3). 

2.9.2.2 Self-Taught Learning Framework 

An alternate method of "unsupervised learning," specifically supervised learning on unlabeled data, has 

been proposed (Le, Ranzato, Monga, Devin, Chen, Corrado, Dean and Ng, 2012). Their work is based on the 

theoretical existence of specific neurons in the inferior temporal cortex that respond selectively to highly 

specific complex objects73 (Desimone, Albright, Gross and Bruce, 1984, p2051) and is an example of the self

taught machine learning framework approach (Raina, Battle, Lee, Packer and Ng, 2007, p759). 

In the Google approach, a neural network was presented with 10 million digital images each with 

200x200 pixels, from randomly selected YouTube videos. Using model parallelism and running on a cluster 

with 1,000 machines (16,000 cores) for three days, the network learned invariances in the training data (Le, 

Ranzato, Monga, Devin, Chen, Corrado, Dean and Ng, 2012, p7). 

Once trained, it performed far better than any previous efforts and obtained an accuracy of 15.8% 

accuracy in recognizing faces from 20,000 object categories from ImageNet, a relative improvement of70% on 

earlier efforts (Le, Ranzato, Monga, Devin, Chen, Corrado, Dean and Ng, 2012, p2). 

In the self-taught machine learning framework approach (Raina, Battle, Lee, Packer and Ng, 2007, p761) 

the network initially learns basic elements e.g., rows of pixels which are then developed into more abstract 

representations such as edges using a modified sparse coding algorithm. The self-taught machine learning 

framework compares favorably with other methods such a principal component analysis (PCA) and other 

techniques such as Gaussian discriminant analysis (GDA) and support vector machines (SVM) (Raina, Battle, 

Lee, Packer and Ng, 2007, p763), as is evidenced by recent results (Le, Ranzato, Monga, Devin, Chen, 

Corrado, Dean and Ng, 2012). 

2.9.2.3 Unsupervised Learning - Where is the Problem? 

Though sparse coding algorithms have been shown to have a biological parallel in the visual cortex (Lee, 

Battle, Raina and Ng, 2007), being used to identify regularities in the environment, it is not a Piagetian solution 

to concept formation. Within Piaget's model are a number of interacting processes including assimilation, 

accommodation equilibration and disequilibration which have particular characteristics (§ 2.3.2 and 2.3.11). 

From the review of unsupervised visual learning (Lee, Battle, Raina and Ng, 2007), it is evident that although 

the processes reflect aspects of cognition, these cannot be directly translated to the work of Piaget (§ 2.3). 

Further, it has been shown in the analysis of the Piaget's theory that there is a coordination of the activities of 

interiorization and reflective abstraction (§ 2.3.9 and 2.3.10) which reuses the assimilated structures. This reuse 

is not encompassed within the solution provided by Lee, Battle, Raina and Ng. Thus Google was not applying 

73 Neuroscientists have discussed the possibility of what they call the "grandmother neuron," specialized cells 

that fire when they are exposed repeatedly or "trained" to recognize a particular face of an individual. 
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a Piagetian concept mechanism (§ 2.3), specifically one that changes through maturation and is based on 

assimilation and accommodation. By this definition unsupervised learning fails LP5. Further, though the 

capability of recognizing a face is seen as an important step in early childhood development (Field, Woodson, 

Greenberg and Cohen, 1989, p 179; Piaget, 1962b, 1952) - making use as it does of the fusiform face area in 

the brain - it is widely recognized that some 2-2.5% of a people in Germany may suffer from psosopagnosia 

(Blank, Anwander and von Kriegstein, 2012, p60S), the same may be true for other countries. With this in 

mind, facial recognition is not seen as critical to the development of concepts. What can be taken from the 

Google approach (Le, Ranzato, Monga, Devin, Chen, Corrado, Dean and Ng, 2012), is the scale of their work. 

It terms of Piaget and the learning paradox, they are developing the sensory motor schemes (§ 2.1.5) upon 

which the more complex schemes are laid down. In this respect, they are at too Iowa level for this research. 

2.9.3 Emotional I Intuitive Models 

Other scientific models exist to describe human reasoning and in doing so resolve the learning paradox. 

These models propose much more complex epistemologies requiring the use of terms such as emotion and 

intuition (Maturana, 1988b; Maturana and Varela, 1980; Maturana, 1988a; Jaauregui, Jauregui and Jauregui, 

1995). These approaches are not addressed in this research, since they have no formal implementation 

methodology. 

2.9.4 Conclusions 

This section reviewed unsupervised learning in visual perception (Le, Ranzato, Monga, Devin, Chen, 

Corrado, Dean and Ng, 2012), case based reasoning (Schank, 1982; Kolodner, 1983); explanation based 

learning (S0rmo, Cassens and Aamodt, 200S), emotion and intuition (Maturana, 1988b; Maturana and Varela, 

1980; Maturana, 1988a; Jaauregui, Jauregui and Jauregui, 1995) frameworks to determine if they could resolve 

the worked example and support a Piagetian model of development. It concluded that these frameworks bypass 

the need for learning and development, but have valuable features, which could be incorporated into future 

research to improve on a resolution to the learning paradox. 

Specifically, Piaget considered that identifying invariances in the environment (through visible perception 

for example) occurred through the normal development of the child through the creation and modification of 

figurative and operative schemes which identify those regularities (§ 2.3.3). The position taken in this research 

is that the dialectic system assumes that such regularities in the environment will have already been generated 

by the artificial neural network implementation (§ 4.1 and S.1.). 

Though it may be useful to add visual processing to this research, it should be considered for future 

research. For example, the eigen-background approach (Rymel Renno, Greenhill, Orwell and Jones, 2004) 

could be used to detect moving objects on a number line. Similarly, line trajectories (Ren, Orwell, Jones and 

Xu, 2004) could be used to predict ending movements on a number line. This research could use these 

approaches to "see" statistical regularity and "geometry," which would extend processing into three 

dimensions. 
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Table 2- 5 provides a summary analysis. 

Table 2- 5 Evaluation of Other Piagetian Frameworks to support LPl - LP7 

# Category Model Summary Evaluation 

1 Symbolic CBR Fails LPS at least. 

2 Emergent ART Fails LP2 and LP6 at least. 

7 Google Fails LPS at least. 

4 Unable to determine Emotional - Intuitive Unable to determine. 

2.10 Summary - The Two- Fold Need 

In § 2.1 , is de cribed a Piagetian epistemological solution to the learning paradox (Furth, 1969; Copeland, 

1974). In § 2.2, is described the biological basis of a solution to the learning paradox and presented a model of 

Drosophila (Miesenbock, 2008, p52; Shang, Claridge- Chang, Sjulson, Pypaert and Miesenbock, 2007, p601), 

that it is believed, exhibits emergence. It is assumed that any full solution to the learning paradox would need 

to be fully realized in an artificial neural network implementation, one that mirrors the learning and 

development of children. Since one could not find a hierarchical neural architecture that could be suitably 

modified, and time was not available to develop such a solution, another approach was used. By taking 

Minsky'S position, that a neuron can be implemented using FSA (Minsky, 1967; McCulloch and Pitts, 1943), it 

was conjectured that a neural Piagetian model could be fully implemented using HFSA. Thus, a two-fold 

solution as an artificial neural network implementation and a dialectic system was proposed. In § 2.3, a 

reevaluated model of Piaget was presented. It was asserted that the Piagetian model mirrors Drosophila. A 

worked example on the development of number- sense (WEt - WES) was presented and related to the needs 

of the learning paradox (LPt - LP7). In § 2.4, the worked example was compared to research on the MNL and 

the cultural effects of its use . It was concluded that the worked example is sufficient, real- world example. In § 

2.5, the constraints of the learning paradox were compared to ATF and ATP systems, and it was concluded that 

they were solving a different problem than envisioned in this research. In § 2.6, a review of the underlying 

basis of evolutionary emergence in conceptual blending theory was described, and it was posited that this 

provided an effective mechanism of concept learning in this research. In § 2.7, is reviewed the literature on 

cognitive development model and concluded that they were not attempting to resolve the learning paradox, 

nor were they u ing a Piagetian model. It is anticipated that this research will further these discussions. A 

review of exi ting Piagetian implementations was provided in § 2.8. It was concluded that these 

implementation were attempting to olve different problems and were unaware of the biological basis of 

Piaget's model. In 2.9, other frameworks were reviewed and their potential future impacts on the research 

wa discu ed. The re earch problem and scope can thus be defined. 
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3. Research Methods 

"The first rule of discovery is to have brains and good luck. The second rule of discovery is 
to sit tight and wait till you get a bright idea" (Polya, 1988, p 172). 

This chapter identifies the research question, purpose, defines an effective problem statement, and 

methods to use in this research thesis. To achieve this, a series of research goals along with a research 

framework of observations, hypotheses, tenets and constraints are identified. A research design is proposed 

along with a set of experiments designed to determine the conditions under which structure will emerge in both 

the artificial neural network implementation and the dialectic system. 

3.1 Research Area 

3.1.1 Research Question 

A review of the research literature distinguished Pascual-Leone's definition of Fodor's problem as the 

learning paradox (Pascual-Leone, 1976, 1980 cited by Bereiter, 1985, p202), which is a meta-theoretical 

problem. The problem is defined by a meta-theoretical question: "How can a structure generate another 

structure more complex than itself?" 

3.1.2 Research Purpose 

The purpose of this research is to review the research literature on the implications of the learning 

paradox (Bereiter, 1985, p202; Fodor, 1980) as it applies to concept formation in early childhood mathematics 

and to discern an implementation of a cognitive modeling framework as defined by Piaget (Furth, 1969; 

Copeland, 1974 and Pascual-Leone, 1980) that attempts to exhibit emergence as a natural process of 

maturation in the simulation. The epistemological issues as identified in the debate between Chomsky, Jean 

Piaget and Jerry Fodor (Piattelli-Palmarini, 1980), will be reviewed (§ 2.1). As part of this review a set of 

constraints, that any solution which attempts to resolve the learning paradox, will be identified (§ 2.1.7). Since 

a biologically plausible mechanism of emergence needs to be built, a review of emergence in evolution and 

biology will be conducted (§ 2.2.). A literature review will be conducted to confirm biologically plausible 

mechanisms in Piaget's model, as well as identify experiments (worked example) that can be conducted to test 

for emergence (§ 2.3). An analysis of number-sense will be undertaken to confmn the development of early 
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childhood mathematics and define the educational setting (§ 2.4) . A literature review of automated theory 

fonnation and theorem proving will be conducted to determine if mechanisms used in these approaches resolve 

the learning paradox (§ 2.5.). The role of metaphor and conceptual blending will be analyzed to determine if 

there are biologically plausible mechanisms that can be used to implement a Piagetian model (§ 2.5). A review 

of cognitive development models will be conducted to determine if they exhibit emergence as defined by 

Piaget (§ 2.7). Similarly, a review of existing Piagetian models will be conducted to determine if they describe 

a biologically plausible model (§ 2.8). Finally, a review of other machine learning frameworks will be 

conducted to determine if the constraints imposed by the learning paradox are sidestepped, or if they could 

implement a Piagetian model of emergence (§ 2.9.). 

3.1.3 Research Problem 

The research problem i to determine the conditions under which it is possible to exhibit emergence in a 

biologically pIau ible simulation and so overcome the learning paradox (albeit partially) within a constrained 

number line world. 

3.2 Research Method 

Typical for a research area that covers multiple disciplines and specifically to tackle the needs of the 

research problem, a combination of approaches is required since each of the scientific, mathematical and 

engineering method has a number oflimitations. These limitations are described in table 3-1. 

Table 3-1 Research Method 

Step Mathematlca. SdentlOc Method Engineering Method 

Method 

I Under tanding Observation : from experience Define a need and do background 

(characterization, ob ervations, definitions and research, 

measurements of the subject (phenomena of 

inquiry) 

2 Analy i Hypothe is : a proposed explanation, Establish design criteria e.g., use a 

hypothe e (theoretical, hypothetical requirements engineering process 

explanations of observation and such as Rational Unified Process 

mea urement of the subject) (RUP) 

3 Synthe i Deduction (predictions) (reasoning including Prepare preliminary designs and 

logical deduction from the hypothesis or build prototype 

theory) 

4 Review- Extend Experiment to te t characterization , Te t and redesign as neces ary 

hypothe e and prediction 

5 ConcJu ion Conclu ion analyze and pre ent re ult ) Present results 
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To be usable, the research method must address the following needs: 

1. Need-I: It must enable the research to be described in a scientific way so that a hypothesis is 

formed without bias, predictions can be made. The method must also define the experiments that 

will be undertaken as well as support the recording and running of experiments. The method 

must also remove the bias from the analysis of the results and support publication of the results 

in a clear and consistent format that shows the relationships of cause and effect. 

2. Need-2: It must support the analysis of the problem and its solution in a simple, effective and 

standard way that allows for induction, deduction and proof of the mathematical elements of the 

experiments. 

3. Need-3: It must support the engineering of the simulation so the results can be shown to be 

consistent with other similar projects. 

To tackle the needs of the research problem a combination of approaches is required since each of the 

scientific, mathematical and engineering methods has a number of limitations: 

• The scientific method provides a solution to meet Need-I, but not Need-3 and only some of 

Need-2. 

• The mathematical method provides a solution to meet Need-2, but not Need-3 and only some of 

Need-I. 

• The engineering method (Rational Unified Process) provides a solution to meet Need-3, but not 

necessarily Need-2 or Need-I. The engineering method of the Rational Unified Process 

(Jacobson, Booch and Rumbaugh, 1999) will be used. 

Since one cannot "prove" a hypothesis statistically, many researchers use a null hypothesis. The logic of 

null hypothesis testing is analogous to proof by contradiction, and since the null hypothesis, as an identity, can 

and should only be rejected, statistical hypothesis testing is not a relevant approach to use for this research. 

Thus, the mathematical method and engineering method must be combined and used within a framework of the 

scientific method so that the problem can be defined, a simulation built and the experiments identified, 

executed and results evaluated. 

3.2.1 Research Goals 

The primary research goal is to determine if it is possible to build a dialectic system that implements a 

biologically plausible Piagetian model using an evolutionary computing framework (Jacob, 2001; Levy, 2002) 

and a reactive systems framework (Maraninchi and Remond, 2001) within a simulated number line world that 

exhibits emergence of number-sense. 

The primary goal is predicated on confirming that an artificial neural network implementation using the 

Verve toolkit (Streeter, Oliver and Sannier, 2006) (i) can identify the permanent object invariants as defmed 

by Piaget (§ 2.3.5); (ii) a mechanism can be defined to allow these objects to be transferred to the dialectic 

system; (iii) the solution must adhere to the identified constraints of the learning paradox (LPI - LP7), and (iv) 
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implement a workable solution to the worked example (WEI - WES). The intrinsic property of this 

architecture is the strict adherence to a Piagetian model that is biologically plausible. 

3.3 Research Framework 

3.3.1 Observations 

The literature review defined a series of observations that lead us to the belief that the correct problem is 

being solved. First, Piaget's observations of the stage like development of number-sense including the bead 

problem (§ figure 1-1) and the permanent object invariant (§ 2.3.5). Second, a set of constraints were defmed 

that must be met by any solution that can overcome the learning paradox (LPI - LP7) (§ 2.1.7). These 

constraints have been evaluated against solutions in the research area, and there is consistency in the results of 

this analysis (§ 2.4 - 2.9.). 

3.3.2 Research Hypotheses 

The current structure of the research is based on a number of accepted principles and a set of developed 

tenets. By classifying the research into two dimensions: cognitive modeling and computing / information 

systems, an appropriate research strategy unfolds through the definition of three major hypotheses, which are 

described in figure 3-1 : 

1) Hypothesis 1: A Piagetian model of human cognition exists that explains emergence and 

therefore resolves the learning paradox. 

2) Hypothesis 2. A biologically plausible model of mathematical cognition exists. 

3) Hypothesis 3. Hypothesis 1 and 2 can be modeled and implemented in a number line simulation 

with number-sense as an emergent property of the executing system. 
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Relationships of Research 
Hypotheses 

R .... rch Problem determllle the 
conditions lRier which it is possible to 
exhibit emergence in a simulation and 
so overcome the leamlng paradox 
(al>eit partialyl, WIthin a constrained 
number-lne world 

HypolhHls2 
A biologicaly plausible model of 
mathematical cognbon extsts 

HypoIhHIe 2.1 
A set of siroolation Constrall"iS 

can be defined (LP1 thru LP7) 
based on biology and 

obsefVBbons of chlkIlood 
deYeIopfnerf 

Legend 

o Cognltrve Modeling 

o Compumg/lnformation Systems 

o OVerall Program Goal 

Hypothesis 1. 
A Plagetlan model of lunan cogrition extsts that explains 

emergence and so resoIIIes the learning paradox 

HypothesIa 1.1 
The stage ~ke deYelopmert of number ...... 

as observed in children is an exalT1>le of 
emergence and can be codIfied. 

HypothHis 1.1.2 
Resolving the bead problem, 
WE1 thru WE6 and comting 
are exalJ1)les of emergence 

within number ...... 

Hypothesis 3. 

Hypotheaia 1. 1.1 
The appearance of the 
permaned object is an 
exalf1)le of emergence 
and a prerequisite for 

number ...... 

HypothesIS 1 and 2 can be modelled and Implemented in a 
number-line sImulation with number ... n .. as an emergent 

property of the executing system. 

Rese3lth Hypotheses-1Qpji 

Figure 3- 1 The relationship of the research hypotheses. 

Each hypothesi is explained in detail below: 

Hypothesis 1 can be cia ified further. A Piagetian model of human cognition exists that explains 

emergence and resolve the learning paradox (Furth, 1969; Copeland, 1974). Within Hypothesis 1, there are a 

number of other hypothe e : 

1. Hypothe is 1.1 : The stage like development of number- sense as observed in children is an 

example of emergence and can be codified ( 2.1,2.3,4, and 5.) 

2 . Hypothe i ] .1.1 : The appearance of the permanent object is an example of emergence and a 

prerequi ite for number en e (§ 2.3.6). 

3. Hypothe is 1.1.2 : Re olving the bead problem (§ figure 1- 1), WE I - WES (§ 2.3.14) and 

counting are example of emergence within number- ense. 

Hypothesis 2 can be further cia ifled. A biologically plausible model of mathematical cognition exists. 

Within Hypothe i 2, another hyp the i i defincd: 

1. Hypothe i 2.1 : t of imulation con traints can be defined (LPl - LP7) ba ed on biology ( 

2.1.7 and 2.2) and ob ervation of childhood development ( 2.3). 

Hypothesis 3 can be cia i!ied rurthcr. Hypothesis 1 and Hypothesis 2 ean be modeled and implemented 

in a number line imulation with number en c a an emergent property of the executing sy tern (§ 4.) 
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3.3.3 Research Tenets 

The hypotheses are based on a number of accepted tenets as defined in the literature review. 

3.3.4 Research Constraints 

The scope of the work is limited by a number of constraints defined in the literature review (LPI - LP7) 

see § 2.1.7. 

3.4 Research Design 

The scope of the engineering design for this research is described in figure 3- 2. 

Madline Leaminc Framework 
as the arrificiaI ~UrOJ 

nrnwNt impImJ~ntDtion [I) 

Reartiv~ Syst~ms 

Framework [4) 

Time 

USe5- st!lticllltt- bound 

Research Design 

Figure 3- 2 An outline of the design and runtime components of the research. 

Uses
statical ly 
bound 

1) Machine Learning Framework: Thi research will recon truct the Verve toolkit (Streeter, Oliver 

and annier 2006) to te t for the emergence of permanent object invariant' s in an artificial 

neural network implem ntation within a number line world. 

2) Simulated tudent: Thi re earch will build a Piagetian / Dro ophila model (Furth, 1969; 

Copeland, 1974; Mie enbock, 2008, pS2; hang, Claridge-Chang, Sjulson, Pypaert and 

Mie enb6ck, 2007, p601) a a et of innate chemes and primary reactions using the 

development framework and in tantiate it in a imulated tudent. 
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a. The innate schemes and primary reactions enable the student to act/sense, learn and 

plan. The act and sense process uses schemes that have been retrieved from memory, to 

act and sense in the number line world. The learn process builds new schemes. The plan 

process reuses and reorganizes schemes to internally model the external enviromnent. 

b. The simulated student will be composed of networks of schemes as networks binary 

FSA and HFSA. 

3) Simulated Teacher: This research will build a simulated teacher using the development 

framework. The teacher contains various automated testing scripts using a worksheet metaphor. 

4) Reactive Framework: This research will build a run-time Argos reactive framework (Maraninchi 

and Remond, 2001) using the development framework. This will be used to enable run-time 

connection between the binary FSA and the binary HFSA. 

5) Evolutionary Computing Framework: This research will build an evolutionary computing 

framework (Jacob, 2001 and Levy, 2002) using the development framework. The evolutionary 

computing framework will be used by the learn process to dynamically build schemes (as 

networks of binary FSA and binary HFSA). 

6) Number line World / Dialectic system: This research will build a number line world (the 

dialectic system) consisting of a workbook metaphor with student and teacher number lines that 

will enable interaction between the simulated student and simulated teacher. The number line 

world will be constructed using the development framework. 

7) Development Framework: This research will use Mathematica 8 enviromnent (Wolfram, 2003) 

as the development framework. 

8) Execution Framework: This research will use a Mathematica 8 run-time environment (Wolfram, 

2003) within which to execute the number line world. 

In the design of the dialectic system, this research assumes that the controllable factors are population 

size, # children, # mutations, evaluation criteria and selection criteria. The uncontrollable factors are time, 

randomness, population of chromosomes, resource usage, ordering of actions by the teacher and the student. 

3.5 Research Experiments 

A series of experiments will be performed against the artificial neural network implementation and the 

dialectic system to determine (i) if results show that they meet the predictions made from Piaget's model, (ii) 

how closely they handled the constraints imposed (LPt - LP7), (iii) if they solved the worked example (WEt 

_ WE5), (iv) if they solved the bead problem and (v) exhibit emergence of number-sense. 

Figure 3-3 classifies the six levels of experiments that will be conducted across the constructed systems. 
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Obsenled 
.tructure in the 

execut/nl 

Anticipated Emergence of structure in 
Executing System(s) 

Ualectlc system 1----------------------;,,, 

L.eve14 

Level 3 

Level 2 

Levell 

Arti/icigl Neurol Network 
\ _ Implementlltion .... 

---------~------------~ 

Observed 
structure in the 

executi"
artifidal neural 

network 
Implementation 

Level 2 

Levell 

to Time : Note: The permanent object invariants : t-

: are transferred to Dialectic System : 
~---------------------~ 

Figure 3- 3 This diagram summarizes the anticipated emergent structure that will be observed in the executing 

system. The artificial neural network implementation exhibits regularities in the environment (the permanent obj ect 

invariant) and coordinated movement. the dialectic system identifies regularizes using the permanent object 

invariants identified by the artificial neural network implementation and exhibits other, more complex structures 

such as coordinated movement, internalized FSA structures and interactions as HFSA. Each of the structures in the 

dialectic system is imagined to occur in levels (stages of development) as the system matures. 

3.5.1 Experiments: Artificial Neural Network Implementation 

A series of experiment are planned on two levels: 

Levell 

1) Determine the conditions under which the system can identify regularities in the environment using 

different configuration values for discrete or continuous sensors and various reinforcement learning 

rates. Specifically, determine if there is emergence of the permanent object invariants of point, line, 

direction, pen tate (penUp, penDown, Stop) and movement. 

2) Determine the condition under which the sy tern can act and sense using the regularities it has 

identified in the environment, and in doing 0 navigate in the number line world as a form of 

coordinated movement from relative and tatic positions. 

3) Determine the condition under which the ystem can plan a et of actions rather than relying on 

merely acting/sensing the environment, and 0 improve its performance. 

Level 2 
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4) Determine the conditions under which the system can resolve the needs of the worked example (WEI 

- WES). Specifically determine if the system resolve the bead problem, count and exhibit emergence 

of number-sense. 

3.5.2 Experiments: Dialectic System 

A series of experiments are planned in 4 discrete levels: 

Levell 

1) Determine the conditions under which the system can learn regularities in the environment using the 

permanent object invariants provided by the artificial neural network implementation. Specifically, 

detennine if there is emergence of the pennanent objects of point, line, direction, penState (penUp, 

penD own, and stop) and movement. 

2) Determine the conditions under which the system can act and sense using the regularities it has 

identified in the environment, and in doing so navigate in the number line world in a fonn of 

coordinated movement from relative and static positions. 

Level 2 

3) Determine the conditions under which the system can resolve the needs of the worked example (WEI 

- WES). Specifically detennine if the system can resolve the bead problem, count and exhibit 

emergence of number-sense. 

Level 3 

4) Determine the conditions under which the system can learn to build internal structures that represent 

propositional logic components (AND, OR, Buffer, Not etc.) and dialectic actions (success, failure, 

student actions, teacher requests etc.). The emergence of internalized structure is a prerequisite for 

the Piagetian model, since it enables the simulated student to act on its internal structures and so 

develop number-sense. 

Level 4 

5) Determine the conditions under which the system could construct Piagetian schemes as networks of 

binary HFSA and binary FSA that mirror predictions from Piaget's theory. Specifically determine the 

conditions under which the following could occur: 

a. Equivalence schemes. 

b. Less than schemes. 

c. Processes of Equilibration and Disequilibration. 

d. Encoder Schemes. 

e. Decoder Schemes. 

f. Counting schemes which can resolve the worked example (WEI- WES). 

6) Detennine how closely the structure of the solution meets the needs of the Piagetian model. 
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3.6 Summary 

A research design has been proposed for both the artificial neural network implementation and the 

dialectic system. A series of experiments have also been defined to determine the conditions under which 

emergence of structure arises in the systems, and if they can resolve the worked example, bead problem or 

exhibit emergence of number-sense as defined by Piaget. 
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4. Architecture and Design 

This chapter describes the architecture and the design of the artificial neural network implementation and 

the dialectic system solution to resolve (partially) the learning paradox, with each system being described in 

turn. 

4.1 Artificial Neural Network Implementation 

4.1.1 Architecture 

The architecture for the Verve toolkit has already been defined (Streeter, Oliver and Sannier, 2006). It 

uses a model of reinforcement learning using an actor-critic approach (Sutton and Barto, 1998, plSI) that 

mirrors the reward processing and prediction response in animals (Suri and Schultz, 1998, p3S0, see elsewhere 

Schultz, 2000; Schultz and Dickinson, 2000, p474; Fiorillo, Tobler and Schultz, 2003, pI898). It uses radial 

basis function and linear neural networks to implement a simulation that acts/senses, learns and plans its 

movements in a grid world. The original grid world has been modified to support penS tate (up, down) 

directions (left, stop, right) and movements with integer, real, discrete and continuous values from its sensors. 

4.1.2 Design 

Verve has been constructed with two distinct components that work together to enable the simulation to 

adapt to its environment by switching between acting/sensing, learning and planning (Streeter, Oliver and 

Sannier, 2006). 

The reinforcement learning component works as follows. Based on the given observation, the policy 

chooses an action, and the state value function estimates the value of the current state. A prediction error is 

computed and used to train the state value function and the policy. Further, the reinforcement learning 

component processes incoming observations into an internal state representation (using radial basis function 

neural networks) that provides more informative features. Each radial basis function in the state representation 

is a separate neuron with its activation proportional to its Euclidean distance from the input data point. The 

system supports two types of sensor states, continuous and discrete. Discrete sensors have an index value. 

Continuous sensors have a value between -I and 1 and represent, for example, a distance value returned by 

measurement. These continuous sensors have a "resolution sensor" to determine their acuity. Agents use a 
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dynamically growing radial basis function as state representations. This combines sensory inputs into higher

level features and allows generalizations to unseen inputs. Agents are updated in real-time with each time step 

using a delta learning rule (which is a supervised learning rule, because the actual environment provides real 

examples that can act as training examples. Thus, it must function differently than the gradient descent rule 

used for TD Learning) that specifies how much time has elapsed since the previous update. The usual way of 

setting a neural network learning rate parameter is by using a time constant value that affects how far each 

weight is adjusted per update. However, this is translated to seconds when displayed. For example, a learning 

rate time constant of 0.1 s causes the system to attempt to reduce errors to 37% of their initial value after 0.1 s 

regardless of the size of the Agent update time delta. The system uses linear neural networks to represent the 

state value function and the policy. These neural networks are trained using a TD error signal. In this 

reinforcement learning component, learning can be enabled or disabled based on internal or external decisions. 

Agents have a policy, which learns to select from a finite number of actions, and are selected using a roulette 

selection scheme. The agents use a softmax action selection scheme, which maintains separate selection 

probabilities for each action. 

The predictive model component includes observations, observation selectors, reward selectors and an 

uncertainty selector function. The predictive model predicts the next observation and reward based on the 

current observation and action. The predictive model component trains itself by computing prediction errors 

between the actual and predicted values. It also maintains the uncertainty estimate for its own predictions. The 

predictive model component can train its reinforcement learning component using its predictive models 

predictions. This allows it to iteratively step through long planning trajectories in the agents "imagined" 

environment. These planning sequences end when the prediction uncertainty is too high. 

The predictive model component can also be put into curious planning mode in which case, a small 

curiosity reward is provided for encountering novel situations (as determined by prediction uncertainty). This 

drives the system to explore unfamiliar states, and improve its adaptability to the environment (Singh, Barto 

and Chentanez, 2004). In this respect, curiosity uses the same uncertainty estimations as planning. The system 

is provided with curiosity rewards at each planning step proportional to the estimated uncertainty for the most 

recent prediction. 

4.1.2.1 The Learning Task 

The Verve agent lives in constrained number line world, a square 2D 10*10 grid of number lines. The 

goal of the agent is to move from a starting location to a goal location within the problem space, and to 

appropriately make use of its penS tate (penUp, penDown) to draw lines along its path. The resolution of set 

problems is not part of the sensory motor evaluation, refer to the subsequent §4.2, for this. 

The agent has two sensors that detect the agents' x and y position. It has five actions move left, right, 

penUp, penDown, or do nothing. The agent must learn to move to the goal as quickly as possible. As soon as 

the agent reaches its goal, the trial is ended. In attempting to reach the goal, the agent can run with different 

learning architecture modes and various configuration options. These include: 
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1) Learning Architecture 

a. Reinforcement Learning (RL), 

b. Planning i.e., Model Learning (Model) or Planning with Curiosity (Curiosity) 

i. Model Learning Rate = 0.1 

2) Temporal Difference Learning Rate = 0.1 (Low policy learning Rate) 

3) Policy learning multiplier = 10 

4) Number of runs averaged = 5 

5) Number of trials per run = 81 

6) Maximum number of steps per trial = 1000 

7) Use Discrete Sensors 

a. Position input discretization = 20 

8) Use Continuous Sensors 

a. Use Continuous Rewards = TruelFalse 

b. Continuous sensor resolution = 15 

c. Radial Basis Function resolution = 70% of grid world resolution 

Learning performance is measured in a number of ways including the number of steps taken before 

reaching the goal, the cumulative reward, the mean squared error (MSE) for observations and reward 

predictions using the predictive model using planning or curiosity and average reward per time step. The 

actions of the agent, along a simulated number line, are analyzed along with the development of the agent's 

sensors as radial basis functions and its state value functions. 

4.1.2.2 Sensing the Environment 

Each agent uses a dynamically growing radial basis function as a state representation for its two types of 

sensors either discrete inputs or continuous inputs pertinent to the type of sensor created. This combines 

sensory inputs into higher-level features and allows generalizations to unseen inputs. 

Discrete sensors take an index representing one of several distinct values. When an agent is created, for 

each discrete sensor state, the number of discrete values that the sensor can represent must be specified. 

When an Agent is created, for each continuous sensor used there is a global "resolution" that determines 

how many radial basis functions span each continuous input dimension. These radial basis functions have no 

center position, and they are maximally active i.e., activation = 1, when they match the discrete input data, 

otherwise activation = O. This value also determines the width (distance of one standard deviation from the 

center) of each radial basis function, which is set to 2/resolution. Where 2 represents the range of -1 to 1. Each 

continuous sensor has an additional Boolean circular parameter that specifies whether the sensor is detecting a 

circular input range that can jump instantly from -1 to 1 e.g., the end of a line. 

A continuous sensor is converted into a linear value to reduce the complexity. A continuous sensor has a 

value between -1 and 1 and represents for example, a distance value returned by measurement. A continuous 

sensor has a "resolution sensor" to determine their acuity and use radial basis function, as recommended by 
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Sutton and Barto (Sutton & Barto, 1998, p85; p193; p202). The continuous sensors' acuity is 2/Gridsize-l 

therefore with a 10/10 grid, the continuous sensor changes at a rate of 0.222, which is approximately 2/9th
• 

4.1.2.3 Example Execution of ANN Implementation 

In a typical reinforcement learning setup, the environment provides observations and rewards and the 

agent (the simulation system) responds with actions (Sutton and Barto, 1998, p52). The system is driven based 

on the reward provided by the environment. In this research sequence, a grid-world is laid out as a number line 

world and the simulation attempts to identify invariants in the world such as point, lines and penStates. It 

receives rewards based on how quickly and efficiently it achieves it's desired objectives which may include 

drawing a line from the origin, drawing a line with a penState of penUp - to represent movement, drawing 

lines with the penS tate of penD own to represent a numeric quantity on the number line. 

4.2 Dialectic System 

4.2.1 Architecture 

The architectural strategy is to use the knowledge gleaned from literature review to create a design that 

meets the constraints (LPl- LP7) and the research goal (§ 3.2.1). 

The research hypothesis I (§ 3.3.2) requires that certain specific processing in the Piagetian model must 

be accounted for. The use of a biologically plausible model of mathematical cognition (research hypothesis 2 § 

3.3.2) requires that key features of Drosophila (§ 3.1 and A) and reinforcement learning (§ 2.2) be 

implemented in the design. To support this need, the research follows the approach of evolvable hardware 

(Greenwood and Tyrrell, 2006, p12) and builds reusable networks as digital circuits that can count, amongst 

other things (Wirth, 1995). The simulation evolves networks of binary FSA (as propositional logic 

components, and schemes that can detect regularities in the external and internal environment) to process 

infonnation. It evolves networks of hierarchal FSA to marshal information across discrete networks of FSA, 

with each integrated hierarchy being referred to as a scheme. These networks are stored and retrieved from 

memory. Various classes of FSA are constructed with each having a discrete externally provided evaluation 

function (§ figure 5.2.2.1 for example). HFSA are constructed in a similar manner. The simulation uses a 

control mechanism to switch between acting/sensing, learning and planning. The simulation uses a scheme 

selection mechanism to determine which scheme to apply in a given situation, and an exception process which 

identifies when it cannot process information (§ 4.2.2.5 for the process of adaption, as it is exposed through 

learning as evolution). When an exception occurs, the system switches between ignoring the input or changing 

its structure to handle the input (which is equated to equilibration). Within each Piagetian scheme there is a 

mandated switch between the processes of action (which is equated to accommodation § 2.3.2) and structuring 

(which is equated to assimilation § 2.3.2). The simulation, as a simulated student adapts to its number line 

world using sensory input and sensory output based on an EBNF grammar (EBNF Interaction Grammar § 

4.2.1.1). Rewards are provided by the environment in a similar fashion to (reinforcement learning § 2.2). The 
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execution and evolution of the simulation is externally observed for its behavior, and the internal structure of 

the simulation is observed (to determine the types of schemes that have evolved). When schemes are learned, 

copies of those schemes can be reused in the simulation, and become part of its larger organization: 

1) When the simulation evolves (learns) a new sensor e.g., to change the penS tate to penDown to 

draw a point on a number line, then that scheme can be reused. 

2) When the simulation evolves (learns) a new sensor e.g., to reuse the penDown sensor and evolve 

a move, it can draw a line on a number line, then that scheme can be reused (This effectively 

resolves WEI § 2.3.14 ). 

3) When the simulation evolves (learns) a new sensor e.g., to reuse the penDown sensor and evolve 

a move, and reuse PenUp it can draw a line on a number line, then that scheme can be reused 

(This effectively resolves WE2 § 2.3.14). 

4) When the simulation evolves (learns) to differentiate objects on a number line, by reusing 

existing schemes (This effectively resolves WE3 § 2.3.14), and is an example of conservation of 

length). 

The literature review identified several architectural issues that need to be resolved. Each issue is treated 

in turn. 

For the symbol grounding problem (§ 2.7.2.1), this research takes a genetic epistemological view, 

asserting that for a machine to approach resolution of the learning paradox, the simulation must form its own 

hierarchical concepts. The basis of this structuring comes from using sub-symbolic sensory data (Mayo, 2003, 

p57), blended into task based experience by the simulation. The sub-symbolic sensory data is provided to the 

dialectic system by the artificial neural network implementation as the permanent object invariants embedded 

within the EBNF grammar (§ 4.2.1.1). This approach adheres to the Piagetian notion of substitution (Copeland, 

1974, p252). The appearance of the permanent object invariants is identified by Piaget (Furth, 1969, p98) as a 

key aspect in the development of cognition It is also identified as WE2 in the worked example (§ 2.3.14). 

To sidestep naive induction (§ 2.8.2) and the Goodman GruelBleen Paradox (Rescher, 2001) - where 

deductive override mechanisms exist to escape the fallacy of absurd generalizations (Drescher, 2002, p 173) -

this research builds evolvable hardware circuits. To overcome the associated homunculus, a fixed point is 

established as the permanent object invariants, which resolves the conflicts at different levels of abstraction. 

This research reuses schemes by using a reflective abstraction mechanism § 2.3.9). The issue of non-absurd 

generalizations (§ 2.8.2) is similarly sidestepped. 

The issue of using only projectable concepts (§ 2.8.2) is resolved by the reuse of skills (scheme) that the 

simulation has evolved based on action on the environment. Similarly, the issue of preferring entrenched 

concepts - when more than 1 generalization applies (§ 2.8.2) - are sidestepped by reuse. Similarly, the external 

reward mechanism and may build sets of conflicting networks, but this is consistent with performance of 

children, so is not an issue. 
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The issue of induction conflicts and deduction overrides (§ 2.8.2) occurs in Drescher's work because of 

the symbolic nature of processing (Drescher, 2002, p89). This research builds binary schemes which execute as 

evolvable hardware (Greenwood and Tyrrell, 2006), and so sidesteps these issues. 

Cognizant failure (§ 2.7.2) is utilized, whereby imperfect algorithms are created with a mechanism to 

detect failure and rectify the imbalance (§ 2.3.5 on Piagetian Equilibration I Disequilibration). The 

identification occurs when inputs (from the external or internal environment) cannot be processed, is rectified 

by the reconstruction of a scheme that can process the input. The example provided in the evaluation concerns 

counting (§ 5.2.5.1). 

Reinforcement IS implemented as an evaluation function for each class of schemes (§ 4.2.3.5 for 

example). 

4.2.1.1 Key Implementation Features 

There are several key features of the implementation that need to be accounted for. Each feature is 

described separately. 

In this implementation the Piagetian notion of a "concept" for example number, is the execution of 

information through the set of schemes, as digital circuits, that can internalize the externalized "value" and 

processes it through assimilation and accommodation (Furth, 1969, p76-78). 

The simulation makes use of an interaction grammar. This is an extension on the use of the permanent 

object invariant, to allow the simulation to interact both externally and internally using the processes of 

assimilation and accommodation. By using EBNF, the simulation can be constructed in a modular fashion, 

which reduces the overall development time. As can be seen in the ERD in figure 4-1, the simulation makes 

use of list structures to hold the environmental information. 
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All the scripts and interactions make use of the EBNF grammar that defines what can and cannot be interacted on the worksheet and on the number line. 

The image below, figure 4-1, describes the entity relationship diagram (ERD) of the grammar: 
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Figure 4-1 An entity relationship diagram of the EBNF grammar of the system, which defines the relationships in the number line world. 

The relationships in the EBNF are defmed with the following image, figure 4- 2: 
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Figure 4-2 The ERD of actions (through accommodation) that the simulated student can take to process their number line world, The student makes random choices 

and the environment responds, Then resultant observation and rewards are passed back to the student through the process of assimilation. 
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Another way of viewing the ERD is to see it as a set of actions that the simulation can perform through 

the process of accommodation. These controlled actions are intercepted by the executing system and perform a 

series of housekeeping duties, as detailed in table 4.1: 

Table 4- 1 The set of actions that the simulated student can randomly select from to adapt to the environ ment. 

# Action Description 

I Action-007 Student Randomly chosen, this allows the student to get the answer. Potentially, this could provide a 

Request, what 's moniker to the student, which could be stored with the HFSA. 

solution <worksheet 

ill> 

2 Action-008 Student Randomly chosen, this allows the student to change the worksheet. 

Request, T give up, 

give me another 

worksheet 

3 Action-009 Student When a worksheet is completed, the student can randomly choose this action to get more 

Request, Explain feedback on the same problem. 

Teacher <Worksheet 

ID> 

4 Action- OIO Add Adds a segment at the end at the end of the current number line. This is typically used in 

Segment at End play. 

S Action-Oll Delete Delete the last segment in the current number line. This is typically used in play. 

last segment 

<Segment ill> 

6 Action- Ol2 Get Gets the reward from the environment and updates the activation of the currently active 

Reward HF A (scheme). 

7 Action- O 13 Reset Reset i used to clear the current actions and return the system to the last stable state. 

8 Action-OI4 This is called by the Student to deliberately store a memory (which is a combination of the 

memorize ob ervation and the HFSA that processes it). This is an aspect of accommodation. 

9 Action- OIS Observe The command passed from the Teacher to the student is decoded by the Executive and a 

Command determination of what to do is executed. This entails finding a HFSA to respond to the 

request. 

This could al 0 provide a description to the Student, of what the Piagetian scheme is to be 

used for e.g., equivalence. This is an aspect of assimilation. 

10 Action- O 16 Traverse The next number line segment is observed and passed to the student. There being an inherent 

umber line order in the inputs. This is an aspect of accommodation . 

II Action-OI7 Start This i called by the Student when they want to start a new number line. This is typically 

umber line u ed in play. 

12 Action-OI8 Start This i called by the Student when they want to stop a new number line. This is typicalJy 

umber line u ed in play. 

13 Action- 019 Pas to Pa e the value to a imilation. This i an aspect of accommodation. 

Assimilate 
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# Action Description 

14 Action-020 Act and The environment triggers the Student to change into the Act and Sense mode. 

Sense 

15 Action- 021 The environment triggers the Student to change into the learning mode of reinforcement. 

Reinforce 

16 Action-022 The environment triggers the Student to change into planning mode. 

Predictive Model 

17 Action-023 CVB Converts the observed value into a binary form. This conversion is akin to pixilation of an 

image. This is an aspect of Assimilation. An argument could be made that CVB and CVO 

are synonyms for the action of substitution. Given enough time, this conjecture could be 

proven. 

18 Action-024 CVO Converts the internal binary form observed external value. This is a critical piece and may 

require the substitution of machines that are "related" to the observed properties of the 

environment. 

An argument could be made that CVB and CVO are synonyms for the action of substitution. 

Given enough time, this conjecture could be proven. 

19 Action- 025 Execute This command executes the previous HFSA values over the selected HFSA. This 

over <HFSA> serialization is the mechanism that allows for instance the equivalence machines to work and 

is an aspect of accommodation. It is also the process by which machine can consume one 

another. The issue is how the machine can consume the processes of the other machine, 

unless it has some form of introspection .. . the capability to build a new HFSA. For instance, 

this would allow the system to bootstrap from FSA to HFSA. 

20 Action-026 Substitution is used in the Piagetian "less than" machine to replace the result of the Piagetian 

Substitution Equivalence machine of 0, I with an internal e.g., O=Move I Left, I is Move I Right etc. 

Substitution is used in the Piagetian "counting machine" to replace the external movement of 

I, with an internal value of binary I . Thus, substitution, which takes an external value and 

replaces it with an internal one and an internal value with an external one, is the basis of 

interiorization. 

There IS no need to generate a system action to execute, because the machines are inherently bwlt WIth 

the Argos reactive framework with externalized action in mind e .g., A prediction machine includes commands 

such as Action- 006 which cau e a movement on the number line, thus when this machine is executed, it causes 

actions on the external environment. 

Page 11 8 



Chapter 4. Architecture and Design 

4.2.1.2 Summary of Major Architectural Features and Design Elements 

A summary of the major architectural features and design elements are related to the literature review in table 

4 .2 below: 

Table 4- 2 This ta ble defin es th e tr aceability matrix of relationships between the features exposed through biology 

and evolution, to the concepts in Piagetian theory and the architecture and design features used in the simulation. 

Features as exposed through biology The concept in Piagetian Theory Architecture and Design Feature 

and evolution 

Thalamic loop (Albus, 2008; Albus, Knowing circle (Furth, 1969, p 147). The student as state machine (§ figure 

20 lOb, pI 93; Granger, 2006a; Granger 4- 8) which executes the inputs over 

2006b). the hierarchical schemes. 

Event Hierarchies (Albus, 2008; Accommodation as an abstract process The thread through the executing 

Albus, 20 I Oa and 20 I Ob). (Furth, 1969). hierarchical schemes that process 

actions (both externally or internally) 

Receptive Field Hierarchies (Albus, Assimilation (Furth, 1969). The thread through the executing 

2008; Albus, 201 Ob, pI 93). hierarchical schemes that process 

observations and rewards. 

Model of Drosophila (Miesenbock, Knowing Circle (Furth, 1969, pI47). The student as state machine (§ figure 

2008, p52; Shang, Claridge-Chang, 4-8) which switches states. 

Sjulson, Pypaert and Miesenbock, 

2007, p601) and traital Sy tern 

(Granger, 2006a; Granger, 2006b). 

I) Cortex -+ matrisome projections I) Act(Furth, 1969, pI54-163). I) The accommodation side of a 

(acting). scheme (§ 2.3.2) which acts 

internally or externally. 

2) Sen e. 2) Sense (Furth, 1969, pI54-163). 2) The assimilation side of a scheme 

(§ 2.3.2) that receives input from 

the external or internal 

environment and builds 

structures. 

3) SNc dopamine (DA) projection 3) Leam (Furth, 1969, pI54-163). 3) The evolution of scheme as 

to both matri orne and networks of FSA and HFSA (§ 

strio omes (learning through 4 .2. 1.1 ). 

reinforcement) . 

4) TAN projection to matri orne 4) Plan (Furth, 1969). 4) The reuse and reconstruction of 

(exploration) which relate to schemes that internally model the 

predictive modeling (planning) external environment to predict 

along with actor critic TD future states. 
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Features as exposed through biology The concept in Piagetian Theory Architecture and Design Feature 

and evolution 

learning. 

CCU (Albus, 2010b). The structure of a scheme (Furth, The FSA structure which processes 

1969; Copeland, 1974). information, combined with the HFSA 

that processes information across the 

FSA network. 

Dopamine Reward Processing Reinforcement through the processes The externally constructed evaluation 

(Cannon and Bseikri, 2004; Schultz, of imitation, which constructs schemes functions for the FSA and HFSA. 

1997;Schuitz, 2000). (piaget, 1954, p4; Piaget, 1964, p 13). 

The ImpitcatlOn of the mformatlOn In table 4- 3, IS that there IS a plaUSible bIOlogICal ImplementatIOn for 

Piaget's work that agree with other researchers. 

4.2.2 Design 

The research consists of a set of frameworks (§ 3.4). Each key process of the design is detailed below. 

4.2.2.1 Number line World 

The following image, figure 4- 3 shows the extemalization of the simulation, i.e., the teacher; student and 

auditor all interact within this environment. 
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Figure 4- 3 An image of the user interface provides the simulated student access to its number line world using a 

worksheet metaphor. 

Displayed within this image, are the worksheet, the automated teacher's number line along with the 

students own number line. The auditor, a au er, can configure values on the user interface, display results, as 

well as stop and restart proce ing. The auditor, can al 0 set checkpoint and export the current content of the 

students short term, long- term memory. A number line is visualized in the following diagram, figure 4-4: 

3 

+ 2 

z 

Figure 4-4 A depiction of the number line world that the simulated student receives observations from and 

performs actions on, using the information from the ERD. 
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The properties and methods of the number line are available, with the details being specified in the EBNF 

grammar. Methods include movement, stopping, pen- up, pen-down and attributes include point, length, 

direction and distance. The e actions by the teacher and internal and external actions of the student are 

available as a list of action values. 

The inputs and outputs to the external environment are all defined in the EBNF and are accessed as an 

environment structure (§ 4.2.1.1). 

4.2.2.2 Simulated Student 

The simulated student consists of a main processing loop which allows them to act/sense, learn and plan 

as dictated by Piaget (§ 2.3 .5) and Dro ophila (§ 2.2). 

Act and Sense as a Process of Assimilation and Accommodation 

The process of act and en e (§ 2.3.6) consists of selecting from memory existing schemes to adapt to the 

environment (external or internal input) . Acting i the process of accommodation (§ 2.3.2) which acts on the 

environment, with sensing being the proce s of assimilation ( 2.3.2). Schemes are selected based on the 

capability to process the environmental input. Once a scheme is selected, it is executed over the environmental 

input. 

Earlier, a model of Piagetian proces e was presented. Within the constraints imposed by HFSA, this 

model can be realized, a de cribed in figure 4- 5. 

Initially only innate scheme(s) & primary reaction(s) exist with 
differentiated FSA 

A HFSA IS a 
Pla!!etlan Scheme 

These examples 
areaJ l Acl and 

Sense 
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Figure 4-S The abstract processes of act and sense, is a generalization of the processes of assimilation and 

accommodation and is used to produce the Piagetian processes of perception, recognition. This is the mechanism by 

which system automatically responds to and acts on the environment. 

In acting and sensing, the system perceives and recognizes the environment using a set of HFSA that 

marshal information between processing units (FSA). The system is constrained to use only those HFSA (as 

schemes) that are currently available to sense (process inputs) and act on the environment. All of these 

machines (HFSAs) have been evolved from lower level prediction FSAs. Acting and sensing however, cannot 

build new machines, it cannot learn. All it can do is reuse what it already has. This is consonant with Pascual

Leone's ideas ofM- Capacity, i.e., learning is expensive, so it acts and senses first. 

Reinforce as a Process of Assimilation and Accommodation 

6. 

The process of learning generates new schemes using the evolutionary framework as detailed in figure 4-

Reinforcement generate HFSA in response to 
environment, un=.nlll 

Classes of Chromosomes (as FSA) 
mutate over gener.bons, producing 
populations with non cocing HFSA. 

Chromosome 

FSA provIde basis 
for HFSAs which 

dynamlC8llyadapt 
on Inleractlon. 

FSA for Number-lines, well the 
'mutabon' ofnew H~ 

Reinforce " 

-.... _--_ ... ---_ ... -

· · · 

Figure 4-6 A depiction of reinforce, which is the mechanism through imitation and reconstruction which generates 

(learns) new schemes that can predict environmental information (internal/external) and act differently. 

Reinforce, i a proce of building new !IF A ba ed on the environmental demand to adapt. This 

Piagetian proce s, allow for imitation and recon truction of the ob ervation of the external and internal 

environment. In doing 0, it reu e exi ting IIF A and con truct new HFSA. The reinforce process cannot 

make predictions. 
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Planning as a Process of Assimilation and Accommodation 

The process of planning reorganizes existing schemes to make an internal predictive model of the 

environment as described in figure 4- 7. Planning is not implemented in this research. 

Predictive model. uses experiences to 
deve HFSA. 

Classes of Chromosomes (as FSA) 
mutate over generations. producing 
populationswith noncodingHFSA. 

dynamically adapt 
on InteradJon 

Predictive 
Model 

reuses the 
schemes on 

prior 
experiences 

'. 

.----'"'-- ... _-_ .. -

· · • · · · , 

Figure 4- 7 A depiction of the Piagetian processes of mental image and evocation that enables the use of an internally 

constructed model of the world from existing schemes. It is used for planning and play. 

This predictive model, can make u e of newly acquired and existing HFSA and construct, what Piaget 

referred to as "mental image" of the environment. From the e a HF A can evoke (as in plan), new actions. 

The key aspect is that it can u e it memory, which i the execution and storage ofHF A with environmental 

values attached i.e., the number line action are tored in memory along with the scheme (HFSA) that process 

them. This is different to other cognitive development model. It al 0 begins to explain why some memories 

" feel Like childhood." Thi pre ent orne intere ting properties for future work. For example, recalling from 

memory a scheme of 1, will in fact, pull from memory, the execution of that HFSA, with its latent values 

attached. An analogy would be the recon truction of a number Line and the evocation of a change in 

configuration. 

Student as State Machine 

The Student it elf i implemented a a tatc machine. Thi ensure that it processing i consistent and 

provides a balanced, determini tic implementation of a Piagetian model of proee ing ( 2.3.). The following 
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diagram (figure 4- 8) provides details of the valid states and transitions that the Student can pass through. This 

switching is reflected in the student scheme process, which calls accommodation first, then assimilation, 

continuously. 
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,., 1003-tsThaTrue. WOII< ... <W~I[» 
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rrhe' POoess abrs br. FSA ... HFSA to be 
~ -1.!.~~ Jep-.ly 
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Figure 4- 8 A depiction of the simulated student as a state machine. T his is seen as a critical piece of the architecture 

and design, since it suggests that the student operates using the same processes of assimilation and accommodation. 

From this, it can easily be seen that the student's state can change, either by external or internal action. Of 

significance is that there is a dichotomy of processing, first accommodation then assimilation, consistent across 

the distinct approaches of acting/sensing, reinforce and predictive model. This dynamic switch is embodied in 

an executive, modeled after the theory of constructive operators (Furth, 1969, p75; pI47). 

Schemes 

There are 3 classes of machine (EVTypes), that the class- based evolution builds Prediction schemes, 

Argos schemes and Piagetian schemes. 

Prediction machines are purely F A. There are different classes of prediction machines each with a 

unique, externally provided evaluation function that constructs it based on a set of inputs and outputs. For 

instance, prediction machines can be constructed a Boolean components in a network, such as OR, NOT, 

AND machines or as machine that act on, or receive input from the environment. For instance, the system can 

construct a scheme to repre ent 3 a 1+ J 1 or 2+ 1. 
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Argos schemes are HFSA that process information across networks of FSA. This enables digital circuits 

to be constructed that follow the synchrony hypothesis (Maraninchi, 1992; Maraninchi and Remond, 2001). 

Argos schemes contain the static linkages between FSA and other HFSA Argos schemes. By themselves, 

Argos schemes cannot be executed, they need to be contained with a Piagetian scheme. 

To follow Piaget (§ 2.3.5), each Piagetian scheme must consist of assimilation and accommodation steps, 

accommodation flrst. assimilation next. Each Piagetian scheme includes a set of Argos schemes. This enables 

the simulation to interact with the number line world and experience the world as a thread of processing. 

Other Processes 

Interiorization (§ 2.3.10) is process of conversion of external values into binary values, and reusing these 

values through the scheme. Reflective abstraction (§ 2.3.9) is considered to be the reuse of existing schemes in 

a new scheme. It is imagined that the system enables truth (validity, equivalence) as a scheme by using the 

planning (using the predictive model) to accurately make predictions about the world. Truth then is no more 

than a successful prediction made about the world, which exists as a set of schemes. This means there can be 

different levels of truth. 

Merely stringing Argos schemes together will not produce a viable Piagetian system that can count. The 

system itself must interact with the environment and through a process of assimilation and accommodation 

oscillate between equilibration and disequilibration, acquiring structures that are more complex. The key 

question to resolve within the given Piagetian framework is "How do more relevant executive schemes flnally 

become strong enough to overcome the irrelevant scheme" (Pascual-Leone and Goodman, 1979, p309). 

To interact with the environment, the simulation needs to determine which schemes to apply (become 

active and consequentially deactivated). This requires Piagetian, Argos and Prediction machines to connect 

together to respond both to inputs and observations of the environment, as well as to internal structural 

changes. Since the model proposed by Furth (Furth, 1969) is incomplete, it cannot be executed because the 

mechanism to marshal information between schemes was undeflned. The research by Pascual-Leonevi 

(Pascual-Leone and Goodman, 1979) is used to provide an executive an interrupt processes and those 

additional features required to build a workable system. 

4.2.2.3 Simulated Teacher 

The teacher is a construction of various teaching scripts, configured by the auditor as worksheets using 

the EBNF grammar. The teacher completes these worksheets, they solve the "teacher side" of the problem e.g., 

Solve 1 + 1 = ? using the features of the environment. In turn, these worksheets are given to the student to 

interact with. The student works on the worksheets and when completed, these are marked by the teacher. The 

results are passed back to the student for further downstream analysis. This provides the basic reward 

mechanism for the student. The rewards are used to strengthen schemes. 
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4.2.2.4 Auditor 

The simulation provides the role of auditor who can perform real- time configuration of the currently 

executing environment. 

4.2.2.5 Learning as Evolution - Using Evolutionary Computing to Learn Schemes 

The evolutionary computing framework produces new schemes (as in learn concepts). Each scheme 

exists in a clas of scheme , and there may be many classes of schemes. Each instance of a scheme has a 

specific set of value in its chromosome structure. Each class of chromosomes may go through many 

evolutionary cycles. Each cycle of evolution uses mutation to change the structure of the finite state and HFSA. 

Mutation can randomly change every feature of the automata as states, inputs, output and transitions. 

To support restart in processing, generations of chromosomes and their associated classes are stored 

offline, typically in files . These files can be read and the simulation restarted from its last invocation point, as 

shown in figure 4 9: 

• Step 1 - Get the populnlon 

..he !:lIGen, E"IIOlrn.osc.eClusID 

!\ICl~s las the prev10US generation In tbi, case, the 1n1tl.al1zed values .) 

Cllena.e • 'E\IGen'; EIIGen • Get[C11ena.e] ; (. Get the lat""t E\IGen Count .J 
!'IGen • 1 ; 

C11......- • ·E"IIOl~s.-classID · o EllGenText[E\lGen] ; E"IIOl~usID • Get[ Cllena.e] ; (. Get the ~someCla.uID .J 
Cll......- • ·E"IIOl~sc.eID· o E\lGenText[E\lGen] ; !\ICbl"CllOS .... ID • Get[ Cllenue] ; Ie l.n1Ualized !IIOlrCllllO'ClllleID .J 

C11_ . ·E"IIOl~s.-c14SS · ... EllGenText[E\lGen] ; !\ICb~lus. Get[ fll_]; (. Get the !\ICbra.os.-clas'.J 

r~lena.e • 'l!\IParents ' .... IIIGenText[EIIGen] ; l!\IParents • Get[ fllena.e] ; ;., rent populaUon oC cb~SC*eS .J 
EIIGen 

getlM:lauU.t[] 0 Get th list of the ~as es oj 

F igure 4-9 An example execution that retrieves populations of chromosomes from external storage. T his allows the 

agent to be reactivated and restarted from known positions. 

In this example, generation 1 is being retrieved from storage. It is concei vable that III long running 

sequences of interaction , this process of storage and retrieves occurs automatically. 

Chromosome tructure 

Each instance of a cherne belongs to a scheme class, and has a unique chromosome structure. The FSA 

are encap ulated within a chromosome that consists of the qualitati ve values of fitness / prediction quality, the 

FSA, the strategy parameter that describe its ID, its class and parental history ( 4.2.3.1 for a definition of 

prediction quality u ing Algorithm 1 and § 4.2.3.3 for a definition of fitness using Algorithm 3). A depiction of 

a simple chromo om i shown in figure 4- 10: 
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Initial Chromosome 
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Figure 4-10 A simple depiction of a chromosome with transitions 

This initial static chromosome is depicted on the left of figure 4- 10 and with the transitions as they can be 

processed as inputs by the FSA on the right of figure 4- 10. 

The chromosome structure is depicted in the figure 4- 11 below: 

chromo [q [{ 0.5, O. }) , p [- Automaton - I , s [{709069., 1., Class-l, 0., 0., O})] 

Head z chromo 

q-----------
fitness z 0.5 

predicti on Quali t y . O. 

p-----------
Head • Automaton 

Type • Healy 

States. {l, 2} 

FromState Input 
1 o 
Initi al State z 1 

Final States • {I } 

Embeddinq • { } 

Alphabet. { Ot l } 

s-----------
Chromo ID z 709 069. 

Chromo Class . 1 . 

ToState 
1 

Chromo Class Name - Class- l 

Chromo Mutati on At:.tempts z O. 

Figure 4- 11 Structure of a chromosome 

Output 
1 

There are a set of simple rules for building FSA and HFSA. These are depicted in figure 4- 12: 
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Figure 4-12 The entity relationship diagram ror chromosome. it contains the rules by scbemes are mutated. All tbe detail s are included in the hO structure in tbe 

chromosome. It supports both FSA and HFSA (Prediction, Argos and Piagetian schemes). 
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All FSA scheme are evolved, with every mutation producing a valid set of transition rules. A reward is 

provided by the environment ba ed on its utility and warranty, which strengthen their use. 

Like transition in FSA, HF A u e synchronizations to statically bind chromosomes together. This gives 

them temporal duration and enable con istency of processing. This static binding does not, however, lend 

itself to the need for interaction with a dynamic environment (both internal and external). Consider, for 

instance how counting occur . Fir t, a structure cannot be pre- built to handle every set of inputs; the system 

must construct a mechani m to handle the interaction. Second, and more importantly, the mechanism by which, 

a ripple carry adder implemented a a et of Argos schemes, works is that, over time, it takes a set of inputs, as 

observations by figurative scheme, of the typical values of 1 or 2 and accumulates each one separately. This 

means that the ripple-carry adder cherne mu t remain active over a period of time and more importantly, 

when disequilibrium occur for in tance, attempting to add 3 values with a single 2 bit machine, the system, 

must add an additional machine in series, such that it remains in equilibrium. Since the ultimate goal for the 

counting scheme i to count, the cherne mu t be rewarded to generate these structures. 

For a FSA to proce value, the ob erved external values must be converted to a binary representation. 

The most obviou approach i to have the ystem convert these values automatically. However, this simplistic 

approach goes again t early ob ervation of children (Copeland, 1974), which suggests that they are focused on 

the external environment. However, ince the aim of this research i to test the internal construction of 

concepts and not ju t the external manipulation and detection of objects, this research assumes a simplistic 

stance and require that the ob ervation of the environment be detectable and constructible by a FSA. Thus the 

interiorization ofa prediction scheme, one that can identify a unit measure, with a binary "1," which is suitable 

for counting, i simply a sub titution. To be con istent with this approach, the system builds a "binary 

machines" to proce the e value u ing Prediction schemes and Argos schemes as digital circuits. The key 

question, of "when does the y tern detect regularities in the environment," has previously been addressed 

using the Verve toolkit ( treeter, Oliver and annier, 2006, p3) (see § 2.3.5 on permanent object invariant). 

Simple Mealy Machine: the Ba i of all Other Machines 

All of the cherne tart from thi Mealy machine (Mealy, 1955, pI045), figure 4- 13: 

( two8i tMactune • NakeAutoeaton (Mealy, 

(1, 2}, 

«l,O,l,l} 

}, 
1, 
{l}, 

(0, 1} 

) II SbowAutoeaton 

~---- - - --- Slllt 

Bead • Auto_ton 

Type • Healy 

States. {l, 2 ', 

() 

Initial State • 1 

Final States • ( 1 ) 

""socated with ChrOllOSOllll! 10 • () 

Alphabet. (0, I ) 

Figure 4- 13 The structure of a impJe mealy machine, The base for all other F A 

This F A i compo ed of two tate, with tate I being the tarting state and ending state. 
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Prediction Scheme: Buffer 

Each prediction scheme starts from the simple mealy machine and is evolved to make predictions about 

the external world based on the characteristics of the class. For instance, if an environmental input is provided, 

and no machine can process it, then a machine is evolved to process it. 

In figure 4-14 the simple Mealy machine is randomly mutated, such that given a 0 as input they produce 

a zero as output and given an input value of 1, produce a 1 as output. Over 2 generation steps, they generate 

chromosome 300093, with a prediction quality of 1.0 and a fitness of 1.55 (§ 4.2.3.1 for a definition of 

prediction quality using Algorithm 1 and § 4.2.3.3 for a definition of fitness using Algorithm 3). 

Fitnesses of Cbss 1. 
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Output. 
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Initial Chromosome with Trmsition 

{US,!.} / 5 

300093 / Cbss-I 

Figure 4-14 The evolution and evaluation of a class (Evc1ass 1.) of mealy machines, in this example a simple buffer 

machine from the simple mealy machine. 

What figure 4- 14 show i that this evolved machine has 5 states, with only 1,4 and 5 being valid states. 

The transition values 010 and 1/1 are shown between the initial state 4 (shown in green) and the final states 5 

and 1 (shown in blue). The graphs of titnes and prediction quality show a non- normal distribution, which is 

anticipated due to the evaluation and election mechanism u ed. The majority of chromosomes have a 

prediction quality of 0.5, i.e., they do not correctly predict the next state. Only a small percentage has a 

prediction quality of 1. Figure 4 15 how that 604 attempts were made to evolve this initial class, with the top 

5 being shown for each generation tep. 
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Prediction machines are e sentially of two types, those that generate predictions using the permanent 

object invariants from the ENBF, and those that generate components of a digital circuit. In generating digital 

circuits, the inputs are all the possible set of internal binary values. Each separate class of schemes has a 

prediction quality and fitness evaluation functions . 

An evaluation function for the buffer not class is listed m figure 4-15. This IS typical of the evaluation 

functions required: 
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Figure 4-15 Evaluation function for BufferNot class. 

A prediction quality function for the buffer not machine is listed in figure 4-16. 
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fitne .. V&luu _ Tabl.(.'l / ..... rOn rv.l,*,. Il ). ( n~rQnQIIUt.VaJ.ueaJ l ; 

1. " 0 ; 

fitbU.va.lllU .. C Tabl.(., ... l. 1.10 . ') , ( m.m.l'Or.t."i .. ») II a.v.f'M) : 

P'r1ntl"r1~QoU .. . ~1tnMaVa.l"1 
allOUtpI1tUat .. PartJ,uonlrlat~ltirn_I"bT..clI UIplt.), oatput.} ) • 1. nIIIIbe"lOO"II'QtSeu ) ; , . Step 1 ,c t U. A and. II' a aM 'btpatJII toQ1:beT 171 row •. 9. 

P'r1nt(-abQutputLut . , Al:O.It:p.Itl..latl : 

Ut .. 0 . 0 ; 

1 .. 0 ; 

T&bl_( C 

t.bia~t • Take'&lO.Itp; .ut U 1U ...... l'On .. u.u): • "Utl orU:t tbe nu.ber of 1nput WllU9 DOt t.be- espoctod output . , 

Prl.otC ·tb.i..t..,ut •• U,Lalnpu.tJ: 

cu;pectecD&tpUt .. Drop l.tOatputU. ((lJl,lWIItletOrI..,utSela); • Get tlw upKte<OJtout to ""0IIPIf'e &Q4ina:t the I"UpaGH . ) 

Pr1nt( ·~tAIK).ItpUt .... uper:tA«Dltput l ! 

(actu.l.lAUponM. lutSut.) .. auu.at.ooRa.lponH ,_ut. Uualnput) ; c. RetUrNi "' - r 

pr1nt(oo(.etu.a~ , l ... U:tat.. l •• , (.ct~,lut5U.t4I)): 

Ir(.....,.lOlr1Aallu.tu l.at), lUUUit41) , (lfll.ull.t:tua~) •• e.xpectA<l)utput{( l }] I fit •• rttnea.Jv..lQM ((1}J. fit •• a . o J) , fi t .. a . O) : 

I . I'-"'I...,. .... ' ... ·'1lI 
( lit , H(Ht _ 1. . Tna , ralH) . I ntH .. 1. . 1'nae , ra.lM]) .tu. the dDrl'Nd f.1t:.us . ) 

Figure 4- 16 Prediction quality function for BufferNot class. 

As in most functional language ,parameters can be passed; in this case, they are used to control evolution 

through evaluation functions . The definition of these parameter are included in the function headers in the 

respective function, including those needed for the evaluation functions . The critical piece for this class is the 

definition of the scheme cia s, which provide in the input and output values, as shown in figure 4- 17. 
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!VOlrc.os~ass = {} : • Ir.~ t~ l~ze as - parer.ts 1 = children • 

<lesc E "Buffer Machine- I"; inputs . {{O}, {I}} ; outputs • {{O}, {I}}; alphabet = {O, 1} ; 

.1I.ddE\A:lass [ inputs , outputs , BtlFl'KlUDT, alphabet , Description ~ <lesc , Eval.uationFunction -+ evalBufferNot , 

Response!'unction -+ aut~tonResponse , AvailableStrategy -+ {fmST, FITPBOP} , 

G -+ 3, M -+ 50 , L -+ 50J ; 

Figure 4-17 The definition of a class of machines (EVClass 1.), in this case a BufferMac hine. 

The argument that nature does not provide these supervised values, in this case (0, 1), is countered by the 

argument of cell evolution74 (Kauffman, 1969; Kumar and Bentley, 2003). 

A simple reading of Pia get on self- organization and self- stabilization (piaget, 1980a, p24; Piaget, 1980a, 

p59; Furth, 1969, p209 among others), could assert that this simple machine and the functions that manufacture 

it follow adaptation. For instance, the process of assimilation builds the structure of the FSA: accommodation 

outputs the transition values and equilibration, which seeks a balance to the environment, is the evaluation 

function itself. This research thesis disagrees with this approach and posits that even in the event of a 

biologically inspired reward function (Schultz, 1997, p2; Cannon and Bseikri, 2004, p742; Sutton and Barto, 

1998 and others) and a level of reinforcement that Piaget said occurred75 (piaget, 1954, p5; Piaget, 1964, p13) 

upon which the evaluation functions are based, that Piaget's work was more concerned with higher level 

functions. Had he been aware ofF A, he may have reconsidered his approach. In this research, the focus is on 

the development of higher- level functions as evidenced in his empirical observation of the relationship of 

language and logics (Furth, 1969, p233; Piaget, 1970a, 1970b, p13; Furth, 1969, p66). 

The chromosome clas itself is built dynamically from the environmental input. For instance to process a 

number line, the simulation will construct a prediction machine to read it. Essentially the system builds a 

machine to understand the external number line world using its permanent object invariants. 

Argos Scheme: An Exa mple of Equivalence 

Argos schemes are HFSA that mar hal environmental (external or internal) information across a network 

of prediction schemes. 

Argos schemes are evolved from impler prediction schemes. Each Prediction scheme has a prediction 

quality of 1, such that they can tran form their inputs to the desired outputs as required. 

74 Each FSA can be considered as an ab traction of very simple biological cells. The initial state can be 

compared to the maternal factor for a zygote cell. The inputs are the inter-cellular communication proteins, 

hormones and environmental factor . The outputs are the physiological properties of the proteins produced by 

behavioral gene . Each tate bit, i a binary ab traction of the concentration of one or more specific proteins, 

synthesized in the cell (Kauffman, J 969; Kumar and Bentley,2003). 

75 Piaget makes it clear in hi early work (Piaget, 1954, p5; Piaget, 1964, p13) that reinforcement is responsible 

for imitation. 
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EVClassID Description EVChromosomeID 
1. Buffer Hachine-1 300089 
2. NOT Machine-2 302625 
3. Sensory Motor Move 1-3 312713 
4. Basic Gale AND Hachine-4 398187 
5. Basic Gale OR Hachine-5 433882 
6. Basic Gale XOR Hachine-6 450962 
7. Basic Gale NAND Hachine-7 513953 
8. Basic Gale NOR Hachine-B 551349 
9. Basic Gale XNOR Machine-9 574876 

Figure 4- 18 A simple depiction of chromosome (FSAs) used in the random construction of more complex as classes, 

such as Argos full adder schemes. 

When these prediction schemes are randomly combined into a hierarchy, the inputs, outputs, channel 

capacities and the respective configurations of initial, input, output and final processing needs must be 

accounted for. Within a HFSA, a consumed FSA essentially becomes a "state" in this larger machine. 

Table 4-3 Depiction of the channel capacity of FSAs. This channel capacity is used when automata are randomly 

combined. 

Classic Channel Capacity 
EVClassID Description Symbol Input Output 

1. -t>- Buffer Machine 1 1 

Buffer 

2. -(:»- Not Machine 1 1 

NOT 

3. N/A Sen ory Motor Move 1 1 n/a 

4. D- AND Machine 2 1 

AND 

5. =v.- OR Machine 2 1 

6. 

~ 
XORMachine 2 1 

7. 0- NAND Machine 2 1 

8. V NOR Machine 2 1 

9. ~ 
XNOR Machine 2 1 

Of the po ible configuration of lIF A, there is an optimized set of connections between states that can 

produce the required re ult . The e configuration are 1) initial states, 2) input states, 3) output states and 4) 
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final states. To be consistent with FSA, there must be a series of transitions (alternatively called, 

synchronizations) between these states. A HFSA, merely marshal's information between FSAs and other 

HFSAs. The system randomly evolves these connections based on the input and output channel capacities of 

the contained machines. 

One constraint imposed by the Argos approach, is the necessity to always produce a valid configuration. 

As such, when the HFSA is mutated, each configuration is valid, with the veracity of its utility and warranty, 

ascertained through evaluation. To execute the transformations that a contained FSA produces using 

synchronizations, requires that additional buffer machines be added as the final and output configurations of a 

HFSA. 

Using this proces a 4- bit equivalence machine is classically depicted in figure 4-19. 

4 Bit Equivalence Machine 
L10 
L20 

L11 
L21 

8 

Legend 

Initial 

• Final 

12 

.... . . . In!XIt 

Returns 1 if both L 1 and L2 
and the same 

or 0 if they are different 

Figure 4- 19 The depiction of an Argos Equivalence scheme using initial, fin al, input, output and ordi nary states. 

This 4 th example shows that the process of randomly selection "States" of machines, works. 

Table 4.4, describe the tate in the Argos equivalence scheme: 

Table 4-4 A Table of states in the Argos equivalence scheme 

State EVClassID Parent Type Capacity Initial Input Output Final 

m State State State State 
Input Output 

I 6. 772354 AND 2 I Y - - -

2 6. 772354 AND 2 I Y - - -

3 6. 772354 AND 2 I Y - - -

4 6. 772354 AND 2 I Y - - -

5 6. 772354 AND 2 I Y - - -

6 6. 772354 AND 2 1 Y - - -

7 6. 772354 AND 2 I Y - - -
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State EVClassID Parent Type Capacity Initial Input Output Final 

Tn ". ", _ .. ". _ .. c<. 

8 6. 772354 AND 2 I Y - - -

9 7. 825480 OR I I - - - -

10 7. 825480 OR I I - - - -

II 7. 825480 OR I I - - - -

12 I. 300093 Buffer I I - - - y 

The proce smg for the Argo equIvalence scheme IS shown below m table 4- 5. 

Table 4- 5 Equivalence - synchronizations (transitions) 

From To ParaDel Sequence Description 

State State Seq Ordinal 

I 5 I I The initial inputs from the environment (LI ° andL2°) are processed and 

passed to tate 5. 

2 6 I 2 The initial inputs from the environment (Ll l andL21) are processed and 

pa ed to tate 6. 

3 7 I 3 The initial inputs from the environment (LPandL22) are processed and 

passed to tate 7. 

4 8 ) 4 The initial input from the environment (L) 3andL23) are processed and 

pa sed to tate 8, 

I 5 2 5 The initial input from the environment (LI 0) and the output from State I are 

proce sed and passed to State 9. 

2 6 2 6 The initial input from the environment (L1I) and the output from State 2 are 

proces ed and pa sed to State 9. 

3 7 2 7 The initial input from the environment (L12) and the output from State 3 are 

proce ed and pas ed to tate 10 

4 8 2 8 The initial input from the environment (L13) and the output from State 4 are 

proces ed and pa sed to tate 10 

9 II 3 9 The output from tate 5 and 6 are proce ed and passed to state I I. 

10 II 3 10 The output from tate 7 and 8 are processed and pas ed to state II . 

I I 12 4 II The output from state 9 and 10 are proce ed and pas ed to state 12 

The passing of alue from the environment to the HFSA, especially when inputs are passed to more than 

one machine i a problem of thi approach. The assignment occur randomly, with valid machines being 

cap able ofproce ing the input into the de ired outp ut, thi cause an overhead in evolution, but it works. 

The execution of the e ynchronization i the proces ing of input provided by the environment and the 

production of the following campi set of value (table 4.6). 
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Table 4-6 Equivalence Table - Example Outputs. These outputs, provided by the environment are used in the 

evaluation of this class of machines. 

Lt° LP LP LP L2° L2' L2' 

o o o o o o 
o o o o 

o 
There are 16 tuples of a 4-blt machine. For every set of Ll inputs, there are 16 possible combinations of 

L2 tuples, only one of which is equivalent to the Ll inputs. It is suspected that when a child is developing the 

notion of equivalence, the reward process builds an equivalence table that is used to construct the HFSA. Over 

time, it gets constructed and reconstructed based on the changes in values. Sometimes it builds valid machines 

from the start, other time the e machines are not built correctly at all. This though is consistent with how 

children develop number- sense: sometimes it takes them a long time, with lots of small improvements, and 

then dramatic changes. 

Piagetian Scheme: An Example of Equivalence 

A Piagetian cherne con i t of a set of Argos schemes that can adapt to the environment. For example, 

the equivalence relation is critical to the development of logical thought and occurs throughout the 

developmental stage (Copeland, 1974, p84). Often called "one to one correspondence," it is seen to develop 

early. To be able to determine equivalence u ing a Piagetian model is not as simple as using an operator such 

as "=" or "=," the operator it elf ha to be constructed by the system before it can be used, otherwise the 

system falls foul of Fodor' LPl argument. The bead problem is evidence of the issues associated with 

equivalence (Copeland, 1974, p8S- 87 and p91 - 92). In this research, equivalence is the appearance of a 

machine that compares the propertie of one machine against another in binary using an AND machine (a FSA) 

that is wrapped up into an Argo cheme. The internalization is an action of accommodation, which produces 

the "binary value." Thi i to be compared, with different actions for the different combinations penS tate 

(penUp, penDown), direction (left, right), stop a well as length. When the values are the same, it returns a 1; 

when they are different, it return a zero. In more complex arrangements, the predictive model tests the states, 

inputs and output of variou machine to ee if they are equivalent. In essence, the equivalence relation 

determines the truth of validity of a et of machine. 

Equivalence i u ed by other relation, uch a ordering and seriation. It is anticipated that equivalence is 

part of a developmental trend of increa ing di cretization (differentiation) of the environment. This would 

suggest that a child icon tantly c mparing and contrasting elements in the environment, even from the 

earliest stage. The diagram below i of a hypotheti al equivalence machine (figure 4-20). 
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Piaget Equivalence 
machine using HFSA 

Argos 

r --
}~r~og : , 

I 

Main l 
Thread: r-- ..

. 1 

Figure 4- 20 Piagetian Equi valence cheme. 1n this image, the twin processes of assimilation and accommodation are 

clearly seen as eparate action. This process follows Piaget 's knowing circle and makes use of chromosomes as 

Argos and Piagetian machines to process the inputs from, and act on the envi ronment. The processing is separated 

into Prolog, Main T hread and Epilog processing. 

The second principle at work here i that for the sy tern to actually work the "states" and 

synchronizations within the Piagetian cherne have to be tailored, in that they have prolog and epilog 
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processing. A depiction of an executable Piagetian scheme that can count is shown in the evaluation (§ 

5.2.5.1). For operative schemes and if one uses the example of counting this consists of the details in table 4.7. 

Table 4- 7 Prolog and Epilog processing for Piagetian Schemes 

Accommodation 
Step Accommodation Action Assimilation Action 

Process 

Prolog 
Argos- Do Nothing, Student Action-OOO. Argos- Observe Co=and Action-O 15 e.g., 

I) 
002 - Solve. 

Main Thread "Process the number line segment" etc. "process and count the number line 
2) 

(Repeated) Segments" etc. 

"Pass counted values to be decoded and "Decode values, external get reward and 
3) Epilog 

move decoded results". update scheme relevance". 

An assumption i made that the assimilation process of "Argos- Observe Command Action-015," which 

decodes the commands, made by the teacher to the student (in this example, it would be Solve 1 +2 = ?) is 

recognized and "understood" by the Student. This piece of processing is implemented as a change in state. The 

same assumption is made for other types of commands (§ figure 4- 8, which contains the lists of commands). 

The interesting feature is that the accommodation steps 2 - 5 needs to be repeated for all the inputs 

provided (either from the environment, or internally generated). The same is true for the assimilation step; it 

must be repeated for all the actions that are taken. This simplistic process thus provides a basis for the 

execution of Piagetian schemes. Each Piagetian Scheme (one could even rename these to dynamic HFSA) 

contains only 1 HFSA for construction and one I-IFSA for action. In this example, CVE Action- 023 converts 

the outputs of the preceding machines to a binary representation. This includes details of movement, penState, 

direction and thus allow for left and right. Further, the main thread reuses the executable Argos scheme. It is 

assumed that 4- bit Argo equivalence HFSA has already been constructed using the AND and OR basic gates. 

A Piagetian equivalence machine is displayed in figure 4- 2l. 
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Cop~~ frca ~s.-ID 

~s.-ID 

0 2036026 
772354 2036029 

772 354 2036030 

112354 2036031 

112354 2036032 

112354 2036033 

112354 2036034 

112354 2036035 

712354 2036036 

825 teO 2036037 
825480 2036038 
825teO 2036039 
300093 2036040 

EVl:lauID 

83. 
6. 

6. 

6. 

6. 

6. 

6. 

6. 

6. 

1-
1. 
1. 
1-

{OJ,O 5} / 2 

2036026 / Class-S3 

~hthocI-LaymdD,p~hDm"q 

Arzos - Eqw\Uace 

~serlpuon 

A Rooe Occur. t,,~ee 

fUltly l.n pra.re.nt then se.condly to deaarcate co.rpone.nts. 
Root-Argos - !:qu1valence 
lIa.le Gale AlID Kach1ne-6 

llade Gale ABO Machine-6 

llade Gale AlID Machlne-6 

llasie Gale ABO Machine-6 

Basic Gale ABO Mach~e-6 

lIa.le Gale AlID Machine-6 

llade Gale ABO Mach~e-6 

llade Gale AlID Mach1ne-6 

llasie Gale OR Machine - 1 
llade Gale OR Machine-1 
llade Gale OR Machine-1 
Buffer Mach1ne-1 

Innial Inpue Ouepue final 

Scaee Stau Suee State 

na na n. na 

.J 

.J 

.J 

.J 

.J 

.J 

" .J 

" 
Figure 4-21 A depiction and composition of a binary equivalence machine that compares the binary values of two machines. From the composition, one can imagine that 

its simple construction of only and, or and buffer machines, would appear early, which is part explains Piaget's observation of seriation and order, before more complex 

structures such as counting. 
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The interesting feature of this equivalence machine is the representation with three different branches. 

The reason for this is simple, the root node connections to the separate branches is not being shown. This 

research suggests that the notion of permanent (or "stable") mathematical equivalence is a notion rooted in 

perception, trial and error processing which is finally solidified as logical and reversible mental operations 

(Piaget, 1952). 

An assumption is made during the assimilation process of "Argos-Observe Command Action- 015," 

which decodes the commands, made by the teacher to the student (in this example, it would be Solve 1 +2 = ?) 

is recognized and "understood" by the student. This piece of processing is implemented as a change in state. 

The same assumption is made for other types of commands (§ 4.2.l.1) such as main control loop, act/sense and 

learn. A series of conclusions can be drawn about processing by the student: 

1) When the "act and sense" executive is processed, a search is made for Piagetian Schemes. The 

Piagetian scheme accommodation step is executed continuously until it determines when to stop. 

2) When the "reinforce" executive is processed, Piagetian, Argos and Prediction schemes are 

constructed, based on needs. 

3) When the "predictive model" executive i processed, only Piagetian schemes are executed in memory. 

When the predictive model it used, the actions are internalized on a "virtual" number line. 

Class Based Evolution 

A class- based evolutionary mechanism was recreated from earlier work (Jacob, 2001). This allows 

prediction, Argos and Piagetian schemes to be evolved. In the figure below, is a definition of a typical class 

(figure 4-22) of schemes : 

Opt.100a [~.) • {EValUAUool'unct1on ... .valAuto.atoo, Ruponael'uncUon ~ auto.at.onRlupcJnae , De.scrl,ption ... ToStriD; (1)at.eL1.st [] 1 , If ... !liO , L ... !liO , 

Avu.lableStrateqy .. (BBST , BLITZ . rITPSIlP , RARIilt.UI:D , ~, ~), G .. 3. S~tPerrectlon .. True, Copies .. 50 . Vanil..l..a. .. 10}: 

AddrM:a ... ( iJlpUu_, ootpub_, CV!'ype_' .aJ.pbabe:t_, opb_l :. 

Hodule[( newCla..s., evType, wal..lct, cleac, respFct,lVInputllaq, l\OJ.t.putrlllo, ava.i.l&bleStr.ateqy, q, at 1, stopA.tPerrectiOll, COPies, ~.), 

evU.l'ct • Bva.luat.l.ooFuDct.1.oa /. (opU) /. ~t.iONtI~".J ; 

resp!"ct • Re5pOn5eruncUon I. (""to) I. ",UOIUI(A<IdI!IICl».] : 

availableStrateq"1 • AvUlableStroteQy I. (opy) I. ",tiona (Md!IICl ... ]; 

dese . 'Sensory Motor Move Illoht 1 Uhlt-5"; 1JlPUts . {I, 5 , 6 , 10403 , 4} ; outputs . (); alphabet . {t, ' , 5 , 6 , 10403} ; 

Ad<!!\ICl.us(1lIput. , output. , PlW)ICTIni , alphabet , Descrl.ptl.on .. <lese , Eval.uationFunction .. l!ValAIIt....ton. 

Responael'Unct1on ... u_toc>Ra~, Avu.lableStrateqy .. {BBST, FITPRlP} , G .. 20 , K .. 100 , L .. 100) ; 

Figure 4- 22 Example code of the creation of a class of chromosomes used in class- based evolution. 

In this example (figure 4 22), a prediction scheme is created, the aim of which is to randomly create a 

machine that can predict an input equence. The example below is the definition of a class of chromosomes 

(figure 4- 23): 

ze a , " uldren • 

<lesc = "Burfer Hachule-l"; inputs .. ({O) , {l}}; outputs " {{OJ, {l}} ; a.lphabet % {O , l}; 

At:IdJ!VClASs [lllputS , outputs , BUlI"!lUlJT , alphabet , Description ... desc, Bval.uationFunction ... eva1BufferNot, 

Responsel'unctJ.on ... auu.AtonResponse , AV&l.lableStratecn ... {BEST, lITPROP} , 

G ... 3, M ... 50 , L ... 50) ; 

Figure 4-23 The definiti on of a class of machines (EV lass 1.), in this case a Buffer Machine 
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In this particular case, it is a class of a buffer machine. 

Act, Sense and Reinforce: Producing Schemes and Using Them 

The approach taken in this research is to use class-based evolution as a process for learning. In this 

section, the terms used in the thesis to the algorithms employed in the process of learning are related. A 

description follows about how they are utilized in the design by providing sample code. A detailed definition 

each of the algorithms used in the Piagetian "act and sense" and "reinforce" processes (§ 2.3.6) is provided. 

The Process of Adaption 

This section examines how finite state automata (as Prediction schemes) are constructed using the 

processes of assimilation and accommodation, using a set of algorithms which allow the system to adapt to 

changing environmental inputs. The basic structure of these algorithms is an extension of the work by Christian 

Jacob (Jacob, 2001, p327), but in the present approach, when the system determines that learning needs to 

occur, the system switches into the "reinforce" state (§ 4.2.2.2.). Once a scheme has been constructed, that has 

learnt how to process the environmental inputs; the system simply switches back to "act and sense." These 

algorithms do not consider the executive process as described by Pascual-Leone (§ 2.1.6 and 2.8.1), and as 

such only represent an intermediate step in a full solution. Using an event process chain diagram, the process 

of adaptation is described in figure 4-24. 
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58_State 
ofActllld Sf!Me 

Acco .. noocI.te tile .po., Le .. 
Ike Alcorl~ ... to .ct o. tile 
.te ... 1 ftvlro._.t .. d 

Ian selle_I to P"'C6III.,.ts 

_ ... ,"U .... tllII ••• MOtivIt, 

The Process of Adaptation 

$witt. States 
to AdudSf! .. e 

•• terM VEater .. 1 
Enlrolfllf!llt.1 

Io.,.u 

Figure 4-24 The proce of adaptation as described using an event process chain diagram, shows the switching from 

act and ense to reinforce when the inputs from the environment cannot be handled by the sense activity. 'Vhen the 

scheme have be n con tructed to handle the input, the system switches back to using its repertoire of schemes. This 

two state proce ing of a imilation and accommodation, i the key to understanding the Piagetian approach used in 

this research. 

In the event hain diagram (figure 4 24), the Piagelian proces e of a imilation and 

accommodation ( 2 .. 6) are related to the algorithmic approach of !hi research. Table 4-8 lists those 

algorithm by the type fPiagetian pr e ing they perform. 
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Table 4-8 This table Ii ts the name of the algorithms employed in the system and their relationship to the Piagetian 

processes. Since the overall proce s consists of the processing of a state machine (as described in figure 4-24), only 

the included algorithm are listed. 

# State Abstract Piagetian Primary Algorithm Name and list of included 

Piagetian Term algorithms. 

Proces 

2 Act and A imilation Act Algorithm 16 - Act (piagetian Recognition) 

Sense • Algorithm 2 - Automaton Response 

'"3 Accommodation Sen e Algorithm 17 - Sense (piagetian Perception) 

2 Reinforce A imilation Imitation Algorithm 18 - Imitation (piagetian Imitation) 

'"3 Accommodation Reconstruction Algorithm 19 - Reconstruction (piagetian Reconstruction) 

• Algorithm 5 - Evolve Classes 

Table 4.8 mtroduce the et of algonthm used by the system, WIth each algonthm descnbed ill more 

detail elsewhere (see § 4.2.3). 

The Piagetian Functions 

In figure 4- 25 , e ample code i provided that executes algorithm 18 - imitation and algorithm 19 -

reconstruction u ing their named function a an executable trace showing the output of the mutation learning 

process . 

Cl ear[EVChroaosODeClass l ; 

EVChroeosOlleClass • { 

{"Class - 1 ", {{EVMotattonOperator , 0.9!!}, {l':VCopyOpera.tor , O. O!!}}, True , {l , 1, 1 , 1}, 1., {O, 1}, 

10, PLUS , 10, 1, 20 , eVlllAnta.a.ton , 10, !!, O.!!, 10, O.O!!, " Cl a ss- 1 - 001", 

{BEST , EUTE , FITPROP , RANKBAS1!ID , RANIX»I , TOURNAMENT), (), (), "Standard Inp u t Predi c ti on Machi ne", 

0, False , {) , PREDICTION ) ) ; 

qetEVClassLt st () 

EVChroooosOlleCla.ss [[All, !!ll (. f'leld 5 - Get all the EVChromosOlieClassIDs .) 

(1. ) 

(l. ) 

popFSACIasS1Genl • BVEvolveClasses [ pop [ll ; 

AddTrans,(,on:AhtadyUltd from statt and Input alphabtl) II alrtady a tranlltlon 

AddTranlot,on IUrtldyUltd tram st tt and Input Ilphabtt I II .,rtady a transition 

AddTransrtlonAlreadyUltd from statt and InpuHalphabtt) "ahtady a transition 

Gtneral :stop : Furttltr output at AddTransltlon::AlrudyUltd will bt suppreutd dunng thIS calculation . ,. 

p~cc1on Qual lCY : Class- l.genCounc-1-genScep-0 ( 0.5, 0.25, 0.25, 0.25, 0.25 ) 
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Otltt.F'NISt~t. Inv.HdSt t. Tht final St.t. to d.ltlt . dOtl not .. 1st 'n tht .utoINton 

Gtntr.h top furth .. oulpul 01 Otltttf,nalStatt ·lnv.lle1St.t. will bt supprtlltd dunng thIS calculat,on. ,. 

ChlngrTrinsltlonO\ltputDuphCltflransdlon ' Tht nf'W trlnSltlon lirt.dy tXlsts 

OtltttStatt,:lniWtStatt Cannot dtlttt on~",1 statt 

Otltl.St.tt~ t"'tlalSt.tt Cannot dtlttt ,n,toal lt.t. 

PrtdicUon QuaUey: Cl ... -1.qenCoWle-3-qenSeep-1 11..1..0.25.0.25.0. ) 

pop (ch~ (q {I 1.75. 1. )1 . p (- AueOlllAeon - I . s ( 300519. 1.. Class-l. 1.. 0 .• ( 300407. »1 . b l under )) . 

chrc-. (q ( O. 0625. 0. 11 . p (- Aueomar.on - I . s ( 300SiB, 1., Cl.ass-l, 1., 1., (300410., 300HS}}I . b (under ll , 

chrcao{q ( O.2812S, 0.25 }1 . p {- Aur.c.ar.on - ) , s ( 300S39, 1., Class-1, 2., 0., ( 300402., 300472 }} ). b {underll . 

cbrcao (q {{ 1.75, 1. )1 . p (- Aur.omar.on - I , s ({ 3005i9, 1., Class-l. 1.. 0., (300407. })I , b {underll , 

chrcao (q ({ 0.2I1i2S, 0.25 ) ], p (- Aueomar.on - I . a ({ 300S3l, 1., Class-i, 2., 0., 1300402., 300472 }}1 . h (unde!] )) 

plo~lass ... (popl'SACl.aa.i00n21 ( . Analyz it . ) 

Figure 4- 25 Thi figure provide an executable trace of algorithm 18 (to imitate through building a chromosome 

class), and algorithm 19 (to recon truct, through building schemes that can predict the given input equence, as 

finite state automata for the chromo orne class). In the example code provided, the system passes the inputs from 

the environment that it cannot processe , and creates a scheme that can process this information. Initially tbe 

chromo orne cia and then the chromosome themselves are constructed. In the example shown, warning messages 

from the system show the attempt d mutation that have taken place. In the final step, chromosome 300519 is 

generated with a pr diction quality of 1.0, having reached perfection, and a fitness of 1.75. 

In till example of figure 4 25, the proce ing for the algorithm i hown to produce valid output, with 

the resultant machine h wing a prediction quality of I and a titne of 1.75. 

4.2.3 Algorithm 

Several global tructure are u cd by the y tern, the e are defined in table 4-9: 

Table 4- 9 Global truclure u ed in the research. 

# 

2 

3 EVPopulalioll 

4 EVChromo Ol11elD 

5 EVClassOp ralor 

What follow 

e ecutlon or the y tern. Each cIa or chromosome mayor may not have a set of 

the TO or the last EVChromosomeClass created In 

the p pulation or all the chromosome generated in the executing 

ytem. The p pul tion i c ntained within a Pop[J tructure. Each chromo orne in the 

p pul It n I onstructed within a chromo[] structure. Each chromo orne holds the ID of 

E h chr rno orne in EVPopLilaliol1 has a unique chromo orne TO. The EVChromosomeID 

that define all the po 

finite state automata (see § 4.2.3.4 Algorithm 4). 

a definition of ea h of the key alg rithm u ed in thi re earch. 
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4.2.3.1 Algorithm 1 - Prediction Quality 

We describe the prediction quality algorithm for evaluating mutated finite state automata against a 

benchmark. Given a list of finite state automata, and a definition of the output requirements of the finite state 

automata, this algorithm determines the prediction quality of each finite state automaton in turn. Since there 

can be many types of prediction schemes, the input values and expected output values for each type is stored in 

a chromosome class, and the values are passed to this algorithm as a list of values. 

Algorithm 1 The prediction quality algorithm for evaluating mutated finite state automata. 

Require: Given ajinite-state automata, the environmental inputs and the initial-position, then: 

1. Compute the response list and last-state for the automaton by applying the environmental 

inputs to the givenfinite-state-automata using Algorithm 2. 

2. Set the last-prediction to be the last element in the response list. 

3. Set the to-prediction list to be the environmental input list. 

4. Set hits to be response - prediction. 

5. Set the prediction-quality to be the numeric count of 0 hits divided by the number of items 

in the environmental inputs. If the count of 0 hits is zero, thenprediction-quality = O. 

6. If last-state is a final state for the finite-state automata and the prediction-quality is 1, 

then 

a. Set prediction-quality = 1. 

7. If last-state is final state for thefinite-state automata, then 

a. Setjinal-state = TRUE. 

8. Else 

a. Setjinal-state = FALSE. 

9. If last-prediction is equivalent to first element in the environmental inputs then 

a. Set last-eq-first = TRUE. 

10. Else 

a. Set last-eq-first = FALSE. 

11. Return {prediction-quality, last-eq-first, jinal-state} 

As an example, if the environmental inputs are {1,O,1,1,1,O,O,1,1,1,O,J} and the initial-position is 1 and 

the output produced by the automata is {1,O,1,1,1,O,O,1,1,1,O,1} then it will {I., TRUE, TRUE} because the 

last-prediction is the first element in the environmental inputs i.e., it is cyclically correct. It will also return 

TRUE because the last-state is a final state in the automata. This process follows the work of Christian Jacob 

(Jacob, 2001, p330). Two variations of this algorithm are generated, one for basic gate finite state automata 

(which receive an input list and an output list of binary values to generate 2 bit binary processing units include 

OR, AND etc.) and one for a buffer not machine (which receive only single bit values and allow for the 

creation of Buffer or Not machines). 
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The definition of a chromosomes prediction quality (algorithm 1) is augmented by the definition of 

fitness (algorithm 3) which determines how well the chromosome is adapted to the environment. 

4.2.3.2 Algorithm 2 - Automaton Response 

The automaton response algorithm used in this research for determining the response of a given finite 

state automata to a given set of inputs is described. It is used by both the prediction quality and fitness 

algorithms (algorithm 1 and algorithm 2 respectively), to determine if the mutated automata can be 

constructed to mirror the given input values. The automaton response is also used to execute the automata 

against the internal or external environment. From a given input, the automaton will produce a given output, 

since finite state automata are inherently deterministic. 

Algorithm 2 The automaton response algorithm for executing a given automata against a given 

set of inputs. 

Require: Given ajinite state automata and an list of environmental inputs, then: 

I. Pass each of the environment inputs in tum to the jinite state automata and collect the 

output-values from the transition. 

2. If the automata is at the final state then 

a. return {output values, TRUE} 

3. If the automata is not at the final state then 

a. return {output values, FALSE} 

4. Else 

a. return {output values, FALSE} 

As an example, if a finite state automata has been mutated to 8 states, whose aim is to reproduce the 

following input sequence {I ,0,1,1,1,0,0,1,1,1,0,1 }, and it has a set of transitions defined that mirror these input 

values to the output values, and state 1 is the initial state and the final state. Then the automaton response 

algorithm will return {True, I,O,I,I,I,O,O,I,I,I,O,I}. This process follows the work of Christian Jacob (Jacob, 

2001, p328). Several variations of this algorithm are generated, one for automata that process binary 

information as buffer and not machines, one for basic gate machines (to support the generation of AND, OR 

type circuit components) and one for Prediction Schemes which process a multitude of inputs value ranges. 

4.2.3.3 Algorithm 3 - Evaluate Automaton Fitness 

Described is the fitness algorithm for determining how adapted each finite state automata; it is based on 

its mutations. Given a list of finite state automata, and a definition of the output requirements of the finite state 

automata, this algorithm determines the fitness of each finite state automaton in tum. Since there can be many 

types of prediction schemes, the input values and expected output values for each type is stored in a 

chromosome class, and the values are passed to this algorithm as a list of values. 
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Algorithm 3 The fitness algorithm for evaluating the adaptation of a finite state automata. 

Require: Given afinite state automata and a set of environmental inputs, then: 

1. Compute the prediction-quality of the given finite state automata using algorithm 1 

(algorithm 1 will return {prediction-quality, last-eq-first ,final-state}. 

2. Set the fitness to be the prediction-quality. 

3. If last-eq-first =TRUE i.e., the first input state is the same as the last input state, then 

a. Add a scalar (0.25) to fitness. 

4. If final-state = TRUE i.e., the automata is at its fmal state. This is preferred approach to 

building automata that mirror the external environment, then 

a. Add a scalar (0.25) to fitness. 

5. Add a scalar (0.5 I number of usable states) to fitness. This effectively reduces the 

development of a large number of states in an automata. 

6. Return {fitness, prediction-quality}. 

Example: If the environmental inputs are {l,O,l,l,l,O,O,l,l,l,O,l} and the initial-position is 1 and the 

output produced by the automata is {l,O,l,l,l,O,O,l,l,l,O,l} and the last-prediction is the first element in the 

environmental inputs i.e., it is cyclically correct, then the returned prediction-quality will be 1.0. If the 

automata is at its final state, and if it has no extraneous states then the fitness returned will be 1.54 . This 

process follows the work of Christian Jacob (Jacob, 2001, p329). The definition of fitness uses, and modifies 

prediction quality (algorithm 1). As such, the measure of fitness will always be a numerically greater value, 

than prediction quality. 

Two variations of this algorithm are generated, one for evaluating the fitness of basic gates (AND, OR 

etc) and one for evaluating buffer not machines. 

4.2.3.4 Algorithm 4 - Operators 

A description of the operator algorithm used in this research, returns a number of mutated or copied 

children into a population of chromosomes for the given class. The mutation operators include the full rang of 

. h l'. fi' 76 possible pomt c anges lor a Imte state automata . 

Algorithm 4 The Operators algorithm mutates or copies the passed parent popUlation depending 

on the passed parameters. 

76 A set of mutation operators are supported, namely: add final state, add state, add transition, change initial 

state, change final state, change transition input signal, change transition output symbol, change transition 

source, change transition target, delete final state, delete state and delete transition. 
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Require: Given a population of chromosomes for a class, the chromosome class ID, an optional 

number of copies from their EVChromosomeClass, an optional stopAtPerfection flag and the 

available mutation operators in EVClassOperator, then: 

I. Set parent, to be passed set of chromosomes. 

2. If stopAtPerfection and one of the chromosomes in the parent population has a prediction 

quality >= I. then 

a. Return {parent}, as the population of chromosomes. 

3. Create a table of mutation operators for the class (class-operators). Each mutation operator 

is a function that can be called to mutate a feature of a finite state automata. 

4. For each chromosome in parent, then for each set of copies: 

a. Randomly select one operator from c/ass-operators as selected -operator. 

b. Get the prediction quality of the chromosome. 

c. If the prediction quality >= 1., then 

i. Set the EVClassOperator to be COPY. 

d. If the EVClassOperator is COPY, then 

i. Copy the chromosome. 

e. Else 

1. Mutate this chromosome using the selected -operator, which will provide 

a random mutation on the selected chromosome (newChromo). 

f. Append the new chromosome (newChromo) to the children population. 

5. Return {children} 

As an example, if the number of generations is set to 5, and the selection strategy is COMMA (to use 

only children), and the number of parents is set to 50, the number of children is set to 50, the number of copies 

is set to 5, and the environmental input values are {l,0,1,1,1,0,0,1,1,1,0,1}. Then the system will generate an 

initial set of parents by using algorithm 8 (create chromosomes), then it will add the strategy parameters to the 

chromosome s[] structure, then evaluate the fitness and prediction quality of the chromosomes by using 

algorithm 3 (Evaluate Automaton), then algorithm 4 (Operators) is used to evolve 5 copies of each of the 

chromosomes in the population. This process is a significant departure from the work of Christian Jacob 

(Jacob, 2001), and enables the system to work more autonomously, by cycling through various evolutions to 

enable the system to adapt to its environment. 

4.2.3.5 Algorithm 5 - Evolve Classes 

A description of the algorithm for evolving classes of chromosomes and selectively, the chromosomes 

within this class follows. This is a modification of the process described by Christian Jacob, for evolving finite 

state automata that can successfully predict the next input sequence (Jacob, 2001, p288). Each class of 

automata has an entry in the global structure EVChromosomeClass, which holds various properties of the class. 
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These properties include: the name of the evaluation function that computes prediction quality (algorithm 1), 

fitness (algorithm 3); the response function of the automata (algorithm 2); the search strategy to use in the 

evolutionary process (§ 4.2.3.7 on strategy); the population of parents to keep in each generation; the 

population of children to propagate through mutation; the number of copies of the mutation operators to use 

per evolutionary step; various flags to determine when to stop evolving for instance to stop evolving at 

perfection; the number of vanilla entries to add at each generation; and the value of inputs and the expected 

outputs of the automata. The evolutionary classes themselves are never removed from the system, thus the 

system has a record of every type of class generated. There is no upper bound limit to the number of classes 

that can be evolved; however, the only evolutionary reward is adaptability, and there may be some value in 

having this evolutionary record. Specifically, algorithm 5 (Evolve Classes), is a 12 step process, that drives 

the performance of the whole system by adding newly mutated chromosomes to the popUlation of 

chromosomes (in the structure pop []) and removes selected chromosomes from this population based on the 

properties of the class of chromosomes. This is a general-purpose algorithm which supports evolution through 

mutation from an initial population of two-bit chromosomes through to mature populations, which have been 

evolved through successive generations. The information in the chromosome class may prevent the further 

mutation, of the chromosomes themselves. 

Algorithm 5 The evolve classes algorithm for evolving classes of chromosomes using the class 

based definitions for these chromosomes held in EVChromosomeClass. 

Require: Given the population of chromosomes popFSA, the optional class ID of chromosomes 

to evolve through mutation, the flag save-top-chromosome, the population of all chromosomes 

stored in the parents structure, then: 

1. For every class passed: 

a. Get all the evolution strategy properties for the chromosomes for this class, from 

the S [] structure. 

b. Index all the strategy parameters for each chromosome, so one then has a 

position/in matrix from which to process. 

c. Get and store all the chromosome IDs for this class in thisC/assIDList. 

d. Get all the IDs of the chromosome for this class and store in 

statclassChromosomesList. 

e. Save the IDs of the chromosomes, since some will need to be deleted, in 

de/eteIDList. 

f. Get the positions of all chromosomes for this class in parents, and store in 

thisC/assPosList, so one then has a position/in matrix. 

g. Build the index of all chromosomes to be deleted in thisClassPosDeleteList, based 

on their individual strategy values. 

h. Copy all the chromosomes for this class into pope/ass and then call algorithm 6 
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(Evolve Chromosome For Class) with popC/ass to evolve chromosomes for this 

class. 

i. If save-top-chromosome, then 

1. Create a population of chromosomes using only those chromosomes with 

the highest fitness and store in popClass. 

j. Get the positions in the new population {po pC/ass) of all the chromosomes that 

were selected for deletion. 

k. Delete the selected chromosomes from the original population, parents. 

I. Join the new evolved class population pop Class with parents. 

2. Return {parents} 

As an example, if the initial population of chromosomes is null, and a class definition has been created 

which can draw a value on a number-line, then algorithm 5 (Evolve Classes) will generate a population of 

chromosomes that have been mutated from the simple 2-bit machine that can perform this function. The 

resultant population will be stored into a global structure, which is used through the execution of the system. 

This process follows the work of Christian Jacob (Jacob, 2001, p246), with the addition of new strategy 

parameters to monitor and randomly control, the mutation rates of individual chromosomes. 

4.2.3.6 Algorithm 6 - Evolve Chromosome for Class 

A description of the evolve chromosome for class algorithm, which mutates chromosomes in the passed 

population (EVParents) for the given chromosome class ill using the chromosome class parameters follows. 

These parameters dictate how the operators are randomly chosen to mutate each of the chromosomes. 
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Algorithm 6 The evolve chromosome for class algorithm mutates a population of chromosomes 

using the parameters specified in the class. 

Require: Given a population of chromosomes (parents) and a Class ID, and the parameters in 

EVChromosomeClass, then: 

1. Get the counts of tournament-competitors, bestCount, input-values, stopAtPerfection from 

the EVChromosomeClass using the ClassID. 

2. Increment and store the generation-count for this class. The generation-count is used in the 

evolutionary analysis. 

3. If there are no chromosomes in the passed population (parents), then: 

4. Else 

a. Use algorithm 8 (Create Chromosomes) to create the initial population of 

chromosomes for this class. 

b. For each chromosome, use algorithm 3 (Evaluate Automaton) to determine the 

prediction quality and fitness of each chromosome. A different evaluation function 

exists for each class of scheme (prediction, Argos or Piagetian). 

c. Store the population in eva/uatedlnitia/Parents. 

a. Store the current population (parents) in eva/uatedlnitiaIParents. 

5. If stopAtPerfection and a chromosome has a perfect prediction quality of>=l.O, then 

a. Return {evauatedlnitiaIParents}, since there is no need for further mutation. 

6. Initialize the children chromosome population to be pop []. 

7. For every g generation and i independent runs defined in the class: 

a. Increment the count of generations gen by 1. 

b. Set parents to be the initia/Parents, and then after each generation, assign parents 

to be the pruned population in parents. 

c. If the class requires the creation of vanilla children, rather than mutating the 

chromosomes from the population, then: 

i. Use algorithm 8 (Create Chromosomes), and generate an initial 

population of chromosomes into initia/Parents. 

ii. Add the strategy parameters to each chromosome in the population. 

iii. Use algorithm 3 (Evaluate Automaton) and evaluate the prediction quality 

and fitness of each chromosome in the population and store in 

evauatedVanillaParents. This process is varied based on the type of 

scheme (Prediction, Argos or Piagetian) being mutated. 

iv. Join the eva{uatedVanillaparents to the parent's population of 

chromosomes. 

d. Set children to be the result of the mutation of the chromosomes in parents using 
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algorithm 4 (Operators). This is fundamentally, the main evolutionary process for 

the system. 

e. Use algorithm 3 (Evaluate Automaton) and evaluate the fitness of each 

chromosome in the children population and store in children. 

f. Based on the class selection pool mechanism either a PLUS strategy, or a COMMA 

strategy, set selPool) to be either the parents plus the children, or children only. 

g. Use algorithm 7 (Evolution Strategy) to choose the selection strategy to use from 

the class of chromosome. 

h. Execute the selected strategy to return the set of chromosomes into the parents 

structure, one of: 

i. algorithm 9 (Best Selection); 

ii. algorithm 10 (Random Selection); 

111. algorithm 11 (Fitness Proportionate Selection); 

iv. algorithm 12 (Rank based Selection); 

v. algorithm 13 (Elite Selection) or 

vi. algorithm 14 (Tournament Selection). 

8. Return {parents}, which contains the evolved population of chromosomes. 

Example: If the initial population of chromosomes (EVPopulation) is null, and a class definition (in 

EVChromosomeClass) has been created which can draw a value on a number-line, then algorithm 5 (Evolve 

Classes) will process each of the classes and will call algorithm 6 (Evolve Chromosome For Class) to evolve 

the chromosomes for this class. This will generate a population of chromosomes that have been mutated from 

the simple 2-bit machine that can perform this function. The resultant population will be stored into a global 

structure (EVPopulation), which is used through the execution of the system. 

This process follows the work of Christian Jacob (Jacob, 2001, p247), with modification to support 

classes of chromosomes, rather than a single chromosome class. 

4.2.3.7 Algorithm 7 - Evolution Strategy 

A description of the evolutionary strategy algorithm for increasing the speed of evolution for a class of 

chromosomes, by using a selection mechanism based on historical analysis of the trend of the evolution, is 

given. Each chromosome stores in it's "s (]" structure, its own evolutionary path. The algorithm can use these 

structures to development a coefficient assuming that the final destination of the automata can be determined. 

In the initial tests of the system, it was determined that a simple random selection mechanism be used, and this 

is described below. The selection strategies available are best, elite, fitness proportionate selection, random, 

rank based and tournament. These selection strategies are described in algorithm 9 - algorithm 14. 

Algorithm 7 The evolutionary catch-up strategy algorithm for varies the selection mechanism 
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for a class to improve the evolution of the class based on the trend of the evolution. 

Require: Given a class ID, then: 

1. For each chromosome: 

a. Determine the list of unused-strategies from the information stored in the 

chromosome. 

b. If there are no unused-strategies, then 

i. Randomly select from the list of all-selection-strategies for the class. 

c. Else 

i. Randomly select one from the unused-strategies. 

2. Return {selection-strategy} 

As an example, if a class has been defined to use only best, elite and tournament, then the system will 

randomly select from this list of selection strategies e.g., tournament, elite or best then start again, and 

randomly select one from the list. This process was not included in the work by Christian Jacob (Jacob, 2001). 

4.2.3.8 Algorithm 8 - Create Chromosomes 

A description of the create chromosome algorithm, which creates a population of random automata based 

on the passed number, the maximum number of states and an alphabet is given. This algorithm is used to seed 

the population within the system. 

Algorithm 8 The create chromosome algorithm builds a random set of finite state automata. 

Require: Given a number of chromosomes to build (how-many), the maximum number of states 

(maxStates) and an alphabet, then: 

1. The system formats a population structure as pop [chromo [q [undef], p n, s n, p []] where a 

random finite state automata has been constructed and stored in p n for each how-many 

chromosomes. 

2. Return {pop}, the population of finite state automata. 

As an example, if algorithm 8 is called with {50,10,{0,1,2,3,4}] then it will randomly create a population 

of 50 finite state automata with a maximum number of 10 states using an alphabet of {O, 1 ,2,3,4}. This process 

extends the work of Christian Jacob (Jacob, 2001, p246), with additional strategy parameters. This population 

structure, and its embedded "chromo" structure, is the basis of all the schemes in the system. 

4.2.3.9 Algorithm 9 - Best Selection 

A description of the best selection algorithm for selecting chromosomes for mutation is provided. Like all 

selection mechanisms, the selected chromosomes pass their characteristics onto the next generation. 
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Algorithm 9 The best selection algorithm for selection of chromosomes. 

Require: Given a population of chromosomes (parents) and the best-count of chromosomes 

required, then: 

1. Sort the chromosomes in parents, into descending order of fitness. 

2. Return {best-count set of chromosomes from parents} 

As an example, if there are 100 chromosomes in a population, and best-count is 5, then algorithm 9, will 

return 5 chromosomes with the highest fitness. This process follows the work of Christian Jacob on genetic 

algorithm selection mechanisms (Jacob, 2001, pI61). 

4.2.3.10 Algorithm 10 - Elite Selection 

A description of the elite selection algorithm for selecting chromosomes for mutation is given. Elite 

selection is similar to rank based selection. Each individual is given a ranking based on their fitness, and a set 

of individuals are chosen at random. The aim is to get a uniform distribution of individuals, and so increase the 

variability of the population. This is achieved by selecting a range of individuals e.g., 10, or selecting a % of 

those individuals by rank and then randomly choosing within that rank, the best individuals to form the next 

parent population. 

Algorithm 10 The elite selection algorithm for selecting chromosomes for mutation. 

Require: Given a population of chromosomes and the elite-count and best-count of 

chromosomes required, then: 

1. Sort the population of chromosomes by fitness in descending order. 

2. If elite-count is Integer, then 

a. Set eliteSet to be the top elite-count chromosomes in population. 

3. Else 

a. Set eliteSet to be the top elite-count % of chromosomes in population. 

4. Return {best-count randomly selected chromosomes from eliteSet} 

As an example, if the elite-count is .32 and best-count is 5, then algorithm 10 will return 5 chromosomes 

from the top 32% of the population. This process follows the work of Christian Jacob (Jacob, 2001, pI66). 

4.2.3.11 Algorithm 11 - Fitness Proportionate Selection 

A description of the fitness proportionate selection algorithm for selecting chromosomes is given. In the 

fitness proportionate selection, a balance between exploitation (previously explored regions of the search space 

i.e., existing schemes) against exploration (new organizations of scheme which might only be accessible via 

low fitness areas) is undertaken. The probability of an individual being reproduced into the next generation is 
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proportionate to its fitness. These fitness values can be arranged as segments on a roulette wheel, with the size 

of each segment being directly proportionate to the corresponding individual's fitness (Jacob, 2001, pI62). 

Algorithm 11 The fitness proportionate selection algorithm for selecting chromosomes for 

mutation. 

Require: Given a population of chromosomes and best-count of chromosomes required, then: 

1. Create jitpropSet as the set of cumulative fitness values for the population of chromosomes. 

2. Return {best-count randomly selected chromosomes fromjitpropSet}. 

The standard problem of convergence to a local optima (rather than global optima) occurs in fitness 

proportionate selection when there are a few individuals in a population with high fitness values compared to 

the rest of the population (Jacob, 2001, pI64). Rank based selection overcomes this issue. 

4.2.3.12 Algorithm 12 - Rank Based Selection 

A description of the rank based selection algorithm for selecting chromosomes for mutation is given. 

Rank Based selection avoids the undesirable convergence of fitness proportionate selection, by normalizing 

differences in fitness values. In this approach, the individuals are sorted then selected not based on the value of 

their fitness, but on an individual's position within a fitness rank scale. 

Algorithm 12 The rank based selection algorithm for selecting chromosomes for mutation. 

Require: Given a population of chromosomes and the best-count of chromosomes required, 

then: 

1. Sort the population into descending order of fitness of the chromosomes. 

2. Set rank-positions to be rank of the fitness values of the chromosomes. 

3. Return {best-count chromosomes with the highest rank-positions} 

As an example, given a population of 100 chromosomes with the sorted fitness values of {0.88, 0.88, 

0.84,0.84, 0.7, O.6 ... }, and a best-count of 2, then algorithm 12 will return 4 chromosomes. This process 

follows the work of Christian Jacob (Jacob, 2001, pI64). 
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4.2.3.13 Algorithm 13 - Random Selection 

A description is given of the random selection algorithm for selecting chromosomes for mutation. Given 

a population of chromosomes, a random selection is returned. 

Algorithm 13 The random selection algorithm for selecting chromosomes for mutation. 

Require: Given a population of chromosomes and the random-count of chromosomes required, 

then: 

1. Return {a random-count set of randomly selected chromosomes from population} 

This process follows the work of Christian Jacob, which contains further discussions on deterministic and 

stochastic selection methods (Jacob, 2001, pI67). 

4.2.3.14 Algorithm 14 - Tournament Selection 

A description is provided for the tournament selection algorithm for selecting chromosomes for mutation. 

Each individual is randomly selected from the population to compete in a tournament of size tournament

competitors-count, against a set of similarly randomly selected chromosomes. Each of the competitor's fitness 

values are compared to a randomly selected set of individual. The number of the times the competitors fitness 

are worse than the randomly selected individuals, are counted. This number is denoted as the individuals score. 

After these tournaments, all individuals are ranked in descending order of score value. The best-count of 

individuals with the highest score are randomly selected to form the next parent population. 

Algorithm 14 The tournament selection algorithm for selecting chromosomes for mutation. 

Require: Given a population of chromosomes and the tournament-competitors-count and best

count of chromosomes required, then: 

1. Set random-Population to be a random selection of tournament-competitors-count 

chromosomes from population. 

2. Set competitors to be a random selection of tournament-competitors-count chromosomes 

from population. 

3. For each chromosome in random-population 

a. Set wins to be the count of the number of times the chromosome fitness in 

competitors is < chromosome fitness for each chromosome in the random

population. 

b. Store wins into the random-population by chromosome. 

4. Sort into descending order, the random-population, by wins. 

5. Return {best-count set of randomly selected chromosomes from the random-population}. 
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The maintenance of diversity in a population is often the key to success in a given task, since diversity 

prevents premature convergence to a local optima. In many such systems, diversity is maintained through 

selection schemes, which encourage the population to break into separate sUb-populations that occupy distinct 

niches of the search space. These "niche operators" maintain diversity in the population by fitness sharing. 

Theoretically, fitness sharing should distribute the number of individuals in various areas proportionally to the 

height of peaks in those areas. With a limited population size, only the "highest" regions will be covered. 

Fitness sharing works well with fitness proportional selection schemes, whereas tournament selection 

decreases the stability of the fitness sharing algorithm (Jacob, 2001). 

As an example, if there are 11 fitness values with tournament-competitors-count of 5 and best-count of 

5, then if fitness values as {0.31, 0.43, 0.52, 0.20, 0.17, 0.78, 0.99, 1.02, 0.35, 0.52, 0.61}, then the result of the 

tournament selection would be the chromosomes at positions {6, 7, 8, 10, II}. This process follows the work 

of Christian Jacob (Jacob, 2001, p324). 

4.2.3.15 Algorithm 15 - Add Class 

A description is given of the add class algorithm which creates a descriptor of a new class of 

chromosomes (schemes) which will be stored in the global structure, EVChromosomeClass. Given a set of 

environmental inputs (from either an external of internal source), this process will generate a descriptor for the 

class. This descriptor is then used by the system to build a scheme that can process the environmental inputs. 

These inputs may come from both the external or internal environment. 

Algorithm 15 The add class algorithm for adding a new class of chromosomes. 

Require: Given a set of environmental inputs, outputs, the type of class (Prediction, Argos or 

Piagetian), the alphabet and an optional evaluationfonction, response function, set of available

strategy (best, elite, fitness proportionate, rank, random, tournament), number-of-generations, 

description, number-of-parents, number-of-children, stop-at-perfection, number-oj-copies, 

count-oj-vanilla. 

1. The system generates an entry into the EVChromosomeClass, giving it a unique 

chromosome class ID, as well as the passed parameters. 

2. Increment the chromosome class ID by 1. 

3. Return {TRUE, chromosome-class-ID} 

As an example, if algorithm 15 is passed {{l,0,0,1,1,2},{l,0,0,1,1,2}, Prediction, {0,1}}, then the 

algorithm will generate an entry into EVChromosomeClass as a prediction scheme using the standard 

prediction quality function (algorithm 1), the standard automaton response (algorithm 2), as well as the 

standard evaluate automaton (algorithm 3). 
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4.2.3.16 Algorithm 16 - Act on Environment 

A description is given of the act algorithm as the implementation of the Piagetian term "recognition," 

which enables the execution of a selected scheme against the environment. The environment may be either the 

internal or the external environment. 

Algorithm 16 The act algorithm for executing against the environment. 

Require: Given the currently selected scheme, then: 

1. Use algorithm 2 (Automaton Response) to generate the outputs from the automata and then 

pass these to the environment. The result of the execution is that the environment is changed. 

2. Pass control to algorithm 17. 

As an example, if the scheme 10115 sets the penS tate to penDown, sets the direction to right, and then 

sets the duration to 3, then when this scheme is executed, a line is drawn on the external number-line. A direct 

relationship to the Piagetian processes can clearly be seen (§ 2.3.6.1). 

4.2.3.17 Algorithm 17 - Sense Environment 

A description is given of the sense environment algorithm, as the implementation of the Piagetian term 

"perception," which observes the environment and then determines how that information can be used. The 

focus of sensing is the assimilation of inputs from the environment. The environment in this context can be 

either the internal or the external environment. 

Algorithm 17 The sense algorithm for assimilating the environmental input. 

Require: Given the environment in a specific state, the environment provides a set of 

environmental inputs. These inputs are passed to the algorithm along with the 

EVChromosomeClass, EVChromosomeID and EVPopulation then: 

1. Assimilate the environmental inputs by determining if a scheme exists, that can process the 

inputs by comparing the inputs to the inputs in the set of chromosome classes. 

2. If a scheme has been found that has a prediction quality of >= 1. (perfection), then 

a. Pass control to algorithm 16, to process the inputs using the selected scheme. 

3. If a scheme has not been found that can process the inputs, then 

4. Else 

a. Change state to "reinforce" and pass control to algorithm 18 and, by consequence, 

algorithm 19, to enable imitation and reconstruction on an existing or new scheme. 

a. Pass control to algorithm 16. 
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As an example, if the environmental input is {l,O,l,O,l} and chromosome Class 12 can process this input, 

and scheme 12345 has a prediction quality of I., then the system will use continue in the state of "acting and 

sensing" to process this input. A direct relationship to the Piagetian processes can clearly be seen (§ 2.3.6.1). 

4.2.3.18 Algorithm 18 - Imitation 

A description is provided of the imitation algorithm (used in this study), as the implementation of the 

Piagetian term "imitation," which describes how the system imitates the environmental inputs and potentially 

creates a new class of scheme to process those inputs. 

Algorithm 19 The imitation algorithm assimilates the environmental inputs and imitates them. 

Require: Given a set of environmental inputs, the EVChromosomeClass, EVChromosomeID and 

EVPopu/ation then: 

1. If a scheme is close enough to be evolved to handle the inputs (the prediction quality < 1.0, 

so more learning through evolution is required), then 

a. Pass control to algorithm 19 to enable reconstruction (continued learning through 

evolution) on the existing scheme. 

2. If a scheme has not been found that can process the inputs, then 

3. Else 

a. Use algorithm 15 to create a chromosome class. In this case, there will be no 

chromosomes in the population, and as such, they will be built from the 2-bit 

machines (the simplest of all finite state automata). 

b. Pass control to algorithm 19 to enable reconstruction (creation through continued 

learning through evolution) of the new scheme. 

a. Pass control to algorithm 19. 

As an example, if the environmental input is {l,O,l,l,l} and there are no schemes to process this input, 

then the system will use algorithm 15 to create a chromosome class and then pass control to algorithm 19 to 

build a prediction scheme that can process this input. A direct relationship to the Piagetian processes can 

clearly be seen (§ figure 4-3). 

4.2.3.19 Algorithm 19 - Reconstruction 

A description follows of the reconstruction algorithm (used in this study), as the implementation of the 

Piagetian term "reconstruction," which creates a new class of scheme or continues to modify an existing 

scheme if the prediction quality of the scheme is less than 1.0 (perfection). This algorithm can be used for a 

particular class or for multiple classes of chromosomes. In most cases, it will be for a single class. 
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Algorithm 19 The reconstruction algorithm for creating new scheme or moditying an existing 

scheme. 

Require: Given a set of environmental inputs, EVChromosomeClass, EVChromosomeID and 

EVPopulation and an optional chromosome-class-ID, then 

1. Use Algorithm 5 to evolve classes of chromosomes. 

2. Select a scheme from the population as the selected scheme. 

3. Change state to "act and sense" and pass control to algorithm 16 to enable action on the 

environment by the selected scheme. 

As an example, if the system was in the state of "act and sense," and algorithm 17 - sense environment, 

could not process the environmental input of {I, 0, 1, 1, I}, then algorithm 17 - sense environment, would 

have changed the state of the system into "reinforce" and passed control to algorithm 18. Algorithm 18 would 

have created chromosome class ID 1234567 to imitate the input in EVChromosomeClass, and then passed 

control to algorithm 19. Algorithm 19 then uses algorithm 5 to build a prediction scheme that can process 

this input. For example, chromosome class 1567 could have been built to process the inputs {I,O,I,I,I}. In 

building the new scheme, the following algorithms will be used in turn algorithm 5, algorithm 6, algorithm 

8, algorithm 3, algorithm 8, algorithm 3, algorithm 4, algorithm 3, algorithm 7 and algorithm 9. When 

the evolutionary cycle has completed, and a scheme with chromosome ID 1871787 (it may be a partial scheme) 

has been built, then algorithm 19 will change the state to be "act and sense" and then pass scheme 1871787 

and control to algorithm 16 to act on the environment. From this example, it is hoped that the relationship 

between the Piagetian processes of assimilation and accommodation and the algorithmic solution are clearly 

seen (§ 2.3.6.2). 

4.2.4 Example Execution of Dialectic System 

An example execution of the dialectic system is provided in table 4-10. It specifically lays out the 

required set of evolutions required to meet the needs of the worked example (§ 2.3.14), and occurs over a set of 

generations of schemes. This also provides a model of the evaluation that adheres to the research design (§ 

3.4). The algorithms defined in (§ 4.2.3) describe how the Prediction schemes are constructed. The Prediction 

schemes are directly related to Levell - regularity, Level 2 - Coordinated Action, Level 3 - Internalized 

Structure, and partially Level 4 - Symbolic Functions. Each of the levels is described in summary, below. 

4.2.4.1 Level 1- Regularity 

Starting from the simplest FSA, prediction schemes are evolved through mutation that can detect 

regularity in the environment, including point, line, movement and penState. 
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4.2.4.2 Level 2 - Coordinated Action 

Reusing the F A of levell, network ofFSA are produced that move discrete units along a number line 

(Furth, 1969, p125). 

4.2.4.3 Level 3 -Internalized Structure 

FSA are evolved that internalize external value. The simplest structures are components of digital 

circuits. The e networks reu e the F A of levelland 2. 

4.2.4.4 Level 4 - yrubolic Functions 

HFSA a Argo cherne are evolved together to produce circuitry such as equivalence machines, 

encoders, decoder, half adder, full- adders. HFSA as Piagetian Schemes machine are evolved together to 

produce interaction with the envirorunent to upport the processes of assimilation and accommodation, to 

support more comple proce ing. The IfF A reu e and chemes of levell, 2 and 3 to produce schemes that 

for instance can count u ing a proce of a sirnilation and accommodation. 

The normal operation of thi imulation consists of a set of steps. Though the steps themselves are not 

programmed into the y tern, there i a natural equence of operations, which occur. A simplistic sequence is 

given in table 4- 10: 

Table 4- 10 ormal Operation of the system. 

# Description 

I) The simulation execute and the teacher creates a worksheet. 

2) The teacher interact u ing the worksheet with a tudent, responding with rewards. 

3) From it primary reaction and innate cheme, the tudent interacts with the worksheet, plays and 

develop it en ory motor m del of the world and in doing so works through WEt - WE5. 

4) The tudent continue work on it work heet adapting its sensory motor schemes and developing its 

proce e ora imilation and accommodation, using its hierarchical machines to expand its repertoire of 

action and con truction it figurative and operative schemes of perception-recognition, imitation-

recon truction and mental image evocation. 

5) In experiencing the number line world, over time, there are emergent schemes that enable a student to 

attempt 10 re olve the pre ented problem by enabling the agent to control the interaction. 

6) Typically, the environment will evolve ba ic FSA of ba ic gates, buffers, not machines and prediction 

machine and from the e con truct hierarchical machines for interaction and marshaling the processing of 

information. 
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4.3 Summary 

This chapter described the architecture and the design of the artificial neural network implementation and 

the dialectic system solution to resolve (partially) the learning paradox. It included definitions of the major 

algorithms in the system that are used to construct Prediction schemes. For the dialectic system, it shows that 

an evolutionary path of at least 4 levels is required. In Level-I, simple mealy machines are evolved to detect 

and predict regularities in the external environment using the number line. In Level 2, these prediction schemes 

are to make more complex predictions with the environment, to coordinate actions. In Level-3, prediction 

machines are evolved that can internalize values from the environment so as to form digital circuits. In Level-

4, the schemes from Levell, 2 and 3 are combined into hierarchies to develop Argos schemes, which can 

process inputs from the environment, and Piagetian Schemes that can fully interact with the environment using 

a process of assimilation and accommodation. In this it can be seen, that a Piagetian simulation is only 

possible, after the evolution of the preceding levels has occurred. 

The architecture sidesteps Fodor's arguments for LPI by having a propositional layer (of Prediction 

schemes) and a predicate layer of Argos and Piagetian Schemes. Potentially the system can operate 

autonomously (LP3) and has the capacity for LP5, with some potential for development (LP6). It is yet to be 

seen if it can resolve the issues of emergence of hierarchical concepts using evolutionary process (LP2), or act 

in novel, opportunistic and noisy situations (LP7) or more importantly mirrors the real world behavior of 

children developing number-sense (LP4). It has been shown that it has the potential for developing machines 

that can count. It is suspected however, that the machines would have to go through wholesale reorganization 

and make use of many of the mathematical relations, which Piaget observed during child hood development 

(Copeland, 1974) to develop schemes that can develop number-sense. 
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5. Evaluation 

In § 1.2 the aims of this project were defined as: (i) evaluate epistemological solutions to the learning 

paradox (§ 2.1), (ii) evaluate sources of emergence (§ 2.2), (iii) provide a computational reading of Piaget's 

theory (§ 2.3), (iv) clarify emergence in a real-world worked example (§ 2.3.14 and 2.4), (v) compare and 

contrast different notions of mathematical concept formation (§ 2.3, 2.4, 2.5, 2.6 and 2.7), (vi) provide 

arguments to support a separation into an artificial neural network implementation and a dialectical system (§ 

2.10 and 3.4), (vii) evaluate the artificial neural network implementation. and (viii) evaluate the dialectical 

system. 

The aim of this chapter is to evaluate the research solution to determine ifproject aims 7 and 8 (§ 1.2) are 

met. To do this, requires a series of evaluation criteria; namely, a set of constraints that, any solution that 

attempts to resolve the learning paradox would have to resolve (§ 1.2.7 for a definition of LPt - LP7). Next, 

an example problem of numerosity in a number-line world (§ 2.3.14 for a definition of WEt - WES) is 

defined that was used to evaluate candidate concept formation solutions during the literature review. Next, 

Crutchfield's intuitive emergence approach (Crutchfield, 1994a, p2) is identified as a mechanism to detect 

emergence in the behavior of a system (§ 2.2.1). The review of the literature asserted that a Piagetian model of 

genetic epistemology (Furth, 1969 and Copeland, 1974), which is mirrored in the model of Drosophila 

(Miesenbock, 2008, p52; Shang, Claridge-Chang, Sjulson, Pypaert and MiesenbOck, 2007, p601) could be 

capable of providing an archetype for emergent behavior, and identified this as the primary research goal (§ 

3.2.1). The execution of this implemented architecture and design is evaluated in this chapter, against these 

evaluation criteria. 

This chapter is organized as follows: in § 5.1 is provided an evaluation of the biologically inspired 

artificial neural network implementation of a Piagetian / Drosophila model using reinforcement learning, 

against the requirements of the research experiments (§ 3.5). In § 5.2 the biologically inspired Piagetian / 

Drosophila modeled dialectic system is assessed in relationship to the requirements of the research experiments 

(§ 3.5) and the needs of the worked example (WEI - WES). This approach is justified based on the evaluation 

of results that suggest a Piagetian model of cognition (Modha and Singh, 2010, p13488; and Albus, 2000; 2008 

and 2010b, p193). A summary is provided in § 5.3. 
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5.1 Evaluation of Artificial Neural Network Implementation 

This section evaluates the biologically inspired artificial neural network implementation of a Piagetian / 

Drosophila model using reinforcement learning against the requirements of the research experiments (§ 3.5). 

Specifically, there are two levels of tests (i) the identification of the permanent objects in the environment, and 

(ii) coordinated movement. Each set of experiments is described separately. 

5.1.1 Levell - Identification of Permanent Objects Invariants 

Within the permanent object tests there are 3 discrete levels: detect regularities in the environment, 

coordinate movements in the number line world and plan actions. Each is covered in turn. 

5.1.1.1 Detecting Regularities in the environment 

The aim is to determine the conditions under which the system can identify regularities in the 

environment using different configuration values for discrete and continuous sensors and various 

reinforcement learning rates (§ 4.1). Specifically, to determine if there is emergence of the permanent object 

invariants of: point, line, direction, penS tate (penUp, penD own, Stop) and movement. 

The task for the Verve Agent was to move from a starting location to a goal location within the problem 

space and to appropriately make use of its penS tate (penUp, penDown) to draw lines along its path. The agent 

could sense its environment using both discrete and continuous sensors. As the agent explorers different parts 

of the state space, it adds new radial basis functions (RBFs). Eventually, all the states that are actually 

experienced, get covered in RBFs, as shown below, figure 5-1: 
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Figure 5-1 A comparative state space representation of a radial basis function neural network with discrete and 

continuous sensors - used in the detection of regularities in the environment. In this case, RBFs detect the point "1" 

in the environment. 

In figure 5-1, the circle diameters are meaningless: the RBFs overlap significantly. In the example from 

test-27, the starting location is never evaluated; this is true for both discrete and continuous sensors. As the 

agent solves more complex problems, these RBFs will cover more of the state space. What figure 5-1 shows is 

that the system can identify regularities in the environment. 
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The purpose of the state value function is as a "critic" that criticizes the actions made by the agent and 

reinforces action u ing prediction error ( utton and Barto, 1998, p 151). The evaluation of the discrete state 

value function is repre ented in the following 3D contour maps (figure 5- 2): 

Figure 5-2 A depiction of a state value function using discrete sensors (from test 26), that show that the agent using 

a Jinear neural network and reinforcement learning can draw a line and identify points in a number line world and 

so achieve WEI - WE3 of the worked example. 

In figure 5 2 it i clear that the agent progre sively develops a negative reward gradient that lead towards 

a localized po itive rna ima, the goal point. Tills is understood, when one realizes that the reward function 

drives the development of the tate value function. An alternate view of the state value function for discrete 

sensors for test- 26 i depicted in the fo llowing heat maps, figure 5- 3: 
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Figure 5- 3 A heap map of a state value function using discrete sensors and continuous sensors (from test 26), that 

show that the agent using a linear neural network and reinforcement learning can draw a line and identify points in 

a number line \, orld and 0 IIchic\ e WE I WE3 of the worked example. 
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In figure 5- 3, the tate value function is shown as a progressive development of the awareness of finite 

points along the number line. It can be een that the agent develops a state value function that accurately 

depicts the land cape in which it inhabit . As a result, it identifies regularities in that environment, including, 

as depicted, a point, line and movement in its number line world. 

5.1.1.2 Coordinated Actions in the Number Line World 

The aim is to determine the condition under which the system can act and sense using the regularities it 

has identified in the en ironment, and in doing so navigate in the number line world as a form of coordinated 

action from relative and tatic po itions. 

In the compari on below, (figure 5-4) from te t- 26, the performance of the agent using continuous 

sensors is better than that of u ing di crete sensor : 

200 step. to C-oal 

150 

!"riC! 

Figure 5-4 Comparison of I arning performance - continuous vs. discrete sensors for a verve agent navigating an a 

number Ijne world the specific test was to identify "3" as 1 + 1 +1 as a number Hne. 

What can be gleaned from thi i that whcn continuous values are used as real numbers, the accuracy of 

the movement i clearly h wo. When a reward for curio ity is used, the processing is the same as when 

continuou en or are u ed. Thc implication are that when the agent is operating in a number line world, 

curiosity reward lead to impr ved perG rmanee. 

5.1.1.3 Planning Action Te t 

This aim of the planning te tit dctcrmine the condition under which the system can plan a set of 

action rather than relying on merely a ting! en ing the environment, and so improve its performance. In the 

compari on belo\! (figure ), fr m te t 26, le t 27 and te t- 28, the reward urn for reinforcement learning is 

compared again t planning and uri ity. 
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Figure 5-5 A comparative graph of reinforcement learning performance using reward sum for learning only, 

planning and with curiosity. This hows that it is possible to learn over a reward gradient, with curiosity improving 

performance. In this e ample, the aim is to draw 1 + 2. 

In figure 5- 5, it i clear that the u c of planning improves the learning performance by increasing the 

average reward 0 er the trial wherea reinforcement on its own is limited. The similarity of planning to 

curiosity is explained in term of the condition of the e tests; there was only one numeric reward in the test. 

Curiosity, which enable the agent to explore unexplored states, is ineffective where the reward gradient a 

single maxima. 

When the predicti e model i utilized for planning and curiosity (figure 5- 6), the mean squared error for 

observation and reward predicti n tail off con idcrably over the number of trails and typically becomes 

optimal after fi e trial when u ing di crete en or . For continuous sensors, it takes 20 trials to reach optima. 
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Figure 5-6 A comparative analy i of mean squared error (MSE) using a predictive model to detect objects in the 

environment with discr te and continuous sensors. It shows tbat planning witb continuous sensors provides benefits 

over other model. In thi te t, the aim wa to receive a reward after drawing I + 1 then 2. 

There i proce ing 0 erhead (a hown in the right hand diagram: the planning cost is greater than the 

curiosity co t) when u ing a predictive model. Thi overhead is caused by the generation of the predictive 

model. This i countered by the improvement in the number of planning steps taken over time. This is simply 

displayed in the diagram below (figure 5 7): 

u 

10 

, 

, 

- CllriOOllY 

Figure 7 A comparath e model of the number of steps to reach the maximum reward, howing tbe improvement 

when curiosity i embedd d into the rewllrd grlldient . Thus an IIgent which explorers achieves greater reward. 

The e proces e pro~i de the ba i for en ory motor scheme in a Piagetian model. In thi test, tbe aim was to 

receive a reward aft r dnl\\ ing 2 + 2 (hen 4. 
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One noticeable point in figure 5- 7 i the trending of planning and curiosity at 6 steps. Given that test 26, 

27 and 28 only u ed 0 trial . A longer planning se ion would quickly smooth out and reach an optimal value 

of6. 

5.1.2 Level 2 - Coordinated Movements 

The aim of the e experiment i to determine the conclitions under which the system can resolve the needs 

of the worked example (WE t WES). pecifically determine if the system resolve the bead problem, count 

and exhibit emergence of number en e. 

Even in thi tri ial example, a trace of the actions of agent, in this case test- 26 (figure 5- 8), using 

discrete data, produce a trace of the path of the agent. 

--~~-------.. 11 
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Figure 5- 8 A plot of Ih a tion ' of trial run 4 trial 9 lesl- 26 of a agent composed of linear neural networks, as the 

operate in a number line \\ orld re eiving a reward gradient. In th is example, the red dotted line represents penup 

and the black line, p ndo\\ n. 

Whenever the pen tatc chang' (pen p, penDown), a new number line segment is constructed and for 

the purpo e of intelligibility a virtual bridge on truct not pre ent in the actions of the agent is added for 

visual contrast. , hat figure h w i that the agent ean traverse the search space and reach its goal! The 

interesting feature i that th' r ward fun ti n mu t provide di tinct reward , so that the agent can draw 

uninterrupted line . ub equent te ' ts ho\ that the agent reache the goal con istently, without interruption. 

Thi re ult 1 mt re "lmg be au e when a child tackle a number line u ing a pen on paper, he/she initially 

draw lines that arc n 1 lraight, n r parallel to the worksh el number line. The child draws mall disconnected 

stages; hi (her pen d 1 u h the page. ]n lhe examples pre enled (figure 5- 8), the agent plainly 

get the reward and mirr r lh' hlld likl.! tnll.!rplay. 
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Over time with repeated performance and with a reward gradient that rewards the agent for drawing a 

line with the correct pen tate, a one continuou line, the agent will mirror the more accomplished child. 

5.1.3 Summary 

From the re ult pre ented it i clear that Verve, through its use of actor--critic reinforcement learning, 

with radial basi function and linear neural networks, provides a mechanism for defining an alphabet of 

interaction, the permanent object invariants. A summary is presented in table. 5- 1 , below: 

Table 5-1 A ummary evaluation of the sensory motor development (actions in the external world) of an agent 

composed of linear neural network operating with continuous and discrete sensors (as radial basis function neural 

network) as the explore their number line world and develops an internal network that corresponds to objects in 

the external world. 

# Need VI uallzalion Analysis 

I WEI - 8a e Level • ~ 
The agent can draw lines using reinforcement learning. 

2 WE2 - Constrained • -I The agent can stop at points along a continuous line. This is 

Level Piaget's con ervation oflength and distance (Copeland, 1974, 

p2S3) and the implied point. 

3 WE3 - Differentiated - J- The agent has developed a notion of an object; this is Piaget's - .:-
Level - Object object permanence (Furth, 1969, p125). This is clear in the 

vi ualization of the reward gradient and its repeated 

performance. 

4 WE4 - Hierarchical - .- It is doubtful if a convincing argument could be made that -- ::. ..... 
Level - egregation into -- -- the e result support WE4, because the agent does not yet 

Units understand the notion of the application of unit. 

The re ult conflrm that a hnear neural network ImplementatIOn usmg remforcement learnmg (Streeter, 

Oliver and annier, 2006); can build the primary reaction and innate chemes (Furth, 1969 p162, p186, p197, 

p224 and p231) the alphab t f intera tion (point, line, direction) that the dialectic solution needs to use. 

This alphabet i th et of p rmane11t object iI/variant, predicted by Piaget. Till agrees with results of other 

Piagetian re earchcr ( haput, 2004) and c norm the appearance of con ervation of line, distance, 

measurement up n whi h the d el pm nt of Piagetian mathematical ability is based. It also appears that the 

solution can perform Plagellan a ti n 0 rdination, and the identification of the permanent object invariant 

(Furth, 1969, p24 ). 

A imple a umptl n IS mad' at thi ' p int, that ymb lie external environmental alues are substituted for 

the e ub ymbolien · ry \ alues (May ,200 ,pS7). Tlli allow for the development of dialectic system to 

manipulate it. ne f the re n f< r n I de cl ping further a hi rar hical linear neural network olution was 

the time it to k to budd the neural network .• en for trivial problem like thi , it took 2 week running at 

100% P on a quad c rc machine. It sc '111 ' that this pr ces is very inefficient method of building a network. 
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5.2 Evaluation of Dialectic System 

This section evaluates the biologically inspired Piagetian I Drosophila modeled dialectic system against 

the requirements of the research experiments (§ 3.5) and the needs of the worked example (WEt - WES). 

Specifically, there are four levels of tests of emergence (i) regularities in the environment; (ii) coordinated 

action; (iii) internalized structure, and (iv) symbolic functions, which will make use of the tests for intuitive 

emergence (§ 2.2, A.9 and Crutchfield, 1994a; 1994b). 

5.2.1 Levell - Regularities in the Environment 

There are two discrete aims. First, detect regularities in the environment. Second, perfonn the processes 

of acting and sensing using those identified regularities. 

5.2.1.1 Detecting Regularities in the environment 

The aim is to detennine the conditions under which the simulation can learn regularities in the 

environment using the permanent object invariants provided by the artificial neural network implementation. 

Specifically, to detennine if there is emergence of the pennanent objects invariants of point, line, direction, 

penState (penUp, penD own, Stop) and movement as required by the worked example (WEt- WES). 

Further, to detennine if the simulation can generate Prediction schemes from the EBNF grammar that will 

allow the simulation to control its external and internal the environment. These Prediction schemes include the 

penStates of penUp and penDown. 

Initially, an evaluation of the evolutionary process used to construct Prediction schemes from simplest 

type of mealy machine is described. 

Learning as Evolution 

The evolutionary process used to construct Prediction schemes takes as its input the simple mealy 

machine described in the architecture and design (§ figure 4-13). It also includes, the class definition, which 

provides the required input and output values using the selected evolutionary strategy, which evolves the 

required prediction scheme. 

Figure 5.9 is the result of the evolution ofa class (EVClass 1.). Copies of the simple Mealy machine, that 

were described in the design are randomly mutated, so that given an 0 as input, they produce a zero as output 

and given an input value of I, produce a 1 as output. Over 2 generation steps, they generate chromosome 

300093, with a prediction quality of 1.0 and a fitness of 1.55. 

Page 172 



Chapter 5. Evaluation 

F"~ of Class 1. 

o "$0 1 000 l.l1O 1.500 

8u!ter ", .. eb1ne-l 

{l .SS. 1. ) I S 

300093 I Cl •• s-l 
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o 
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Iupu~ 

o 
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1h6r~1 

{US, 1.}f.5 

300093 / CI&u-l 

() 
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Figure 5-9 The evolution and evaluation of a class (Evc1ass 1.) Of a prediction buffer scheme. The top two graphs 

describe the litne and prediction quality (x axis) against population (y axis). In both the distributions of the 

measures are non- random, a would be expected. The central image describes the input and output values of the 

prediction scheme. The bottom image provides a representation of the prediction scheme with the starting states in 

green ( tate 4) and the 2 final tate ( tates 1 and 5) in blue. The tran ition values are also shown. 

What Figure 5 9 demon trate i that thi evolved scheme has 5 states, with only states 1, 4 and 5 being 

valid state . The tran ition value % and 111 are shown between the initial state 4 (shown in green) and the 

final states 5 and I (hown in blue). The graph of fi tness and prediction quality show a non- nonnal 

distribution, which i anticipated due to the evaluation and selection mechanism used. In the following diagram 

(figure 5 10), it how that 604 attempt were made to evolve this initial clas , with the top 5 being shown for 

each generation tep. The maj rity of chromo orne have a prediction quality of 0.5, i.e., they do not correctly 

predict the next tate and only 3 of the 604 have a prediction quality of 1. 

A simple tep mechani m, a a et of command, is u ed to evaluate all the classes of Prediction schemes 

that have not reached a predi lion quality of I . An example is presented in figure 5- 10: 
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• St"l-" Evolve the classes .J 
EVParents (. SL parents, tlus should 1nclude an1 constructed values 0) 

EVCh~lu.ID; 

EVCh~"""ID ; 

EVCh~c:.eClu,. ; 

EVParents • EV!volveCl.as,uIEVParents l ; • lnitull:t this 15 Just pop II , 

CIill~ ... t ..LO 1 

other cla~~es .• 1 

pop {] 

-.e or d. es 1n the Qll>al structure. If tlus changes 1t should not evolve an:t 

IDs-r1cness -~ct1on Quality: Class- l.0enCount-l-qenScep-0 rvctassID: ALL 

« 300049,0.55, 0.5 ) , ( 300050,0.04, O. ) , ( 300048,0.05, O. ) , ( 300047, 0.04, O. ) , ( 300046,0.03, D. }} 

ChangtFlnalState: NotAFlnalState The IromState IS not a final State 

changtFlnalStatt: NotAfmalStatt The IromStatt IS not I fInal Statt 

ChanOtFlnaIStat.=NotAF",aIStatt : ThtfromStatt IS not a fInal Statt 

General .stop Furthtr output 01 ChangtFlnaIStatt:: NotAFinaIStatt will bt supprtsstd dUring thIS calculatIOn. ,. 

IDs-Ficness - Pred1ct1on Quality: Clssa- 1.0enCount-2-0enStep-l rvctass ID: ALL 

« 300604,1.55, 1. }. ( 300093,1.55, I. ) , ( 300604,1.55, 1. ) , ( 300110,0 . 55, O.S ) , ( 300080,0.55, O.S )} 

Figure 5- 10 Commands to evolve a cia s of schemes, in this case the buffer class as a Prediction scheme. Initially, 

the population of chromosomes is empty (pop [J). After evolution, chromosomes are added and mutated to produce 

machines that meet the requirements of the evaluation function. In this example, chromosome 300604 has a fitn ess 

of 1.55 and a prediction quality of I. 

The conunand call the volve la se function with a null population of chromosomes (pop []). The 

EVEvolveClas es function u e the values in EVChromosomeClass and evolves each class in turn (§ 4.2.2.5 

and figure 4- 22 on cIa tructure and cla based evolution). The first few lines of output of this function 

show the Chromo orne ID , fitne and prediction quality of the top 5 chromosomes for the class. After 

generation count 2, the litne and prediction quality of chromosome 30604 reached 1.55 and 1.0 respectively. 

This simulation has correctly produced a prediction scheme as a FSA that can correctly predict the input 

sequence. Thi prediction cherne can be u ed to act in the world and sense in the world. However, this is a toy 

example. 

Each cia ha a election mechani m of processes that can be used and varied. The class- based evolution 

function proce e ea h p pulation of ehemcs for the class, as a list and each defined class has a specific 

evaluation function . Typically, all proce sing in Mathematica is list based. The chromosome itself "chromo [q 

[J, p [- Automaton ), [] , h [])" hav a number of parameters that are used both to capture its construction and 

its proce sing: q hold th ntne and prediction quality, p is the automaton s holds the strategy parameters, 

including all the detail of the cla . The h [] tructure contains all the details about the hierarchy. An analysis 

of all the evolved cla e ~ r generation I produce a list of classes with the top ranked chromosomes and their 

byte count being hown below (figure 5 11): 
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tvC1 ... ID Do.cr1p~10n EVChromo.""",ID tvC1u.NUII! BYl'~un~ F1cnu. 
1. Butter IIIochille-1 300093 BUHDlNOT 774 392 1.5S 
2. NOT IIIoch.ilIe-2 303176 BUHDINOT 774360 1.5S 
3. Binary Ou~pu~ 1-3 306204 BUHDINOT 774504 1.5S 
4- lIino.ry Ou~pu~ 0-4 306379 BUlT!:RNOI 774200 1.52 
5. Son.ory Mo~or Move IUgh~ 1 Uol ~-5 327264 PREDICTION 775112 1.5 
6. Basic Gde AIID II.ochine-6 172354 IlASICGAll 777880 1. 67 
7. Ba.1c Gde 011 Kac:h1ne-7 825480 BASICGAll 775928 1.68 
s. Ba .• ic Gale XOR II.ochine-8 1559639 BASICGlUt: 775960 1.68 
9. Ba.lc Gale IQIiIl II.ochioe-9 1616465 BASICGAll 783944 1.32 
10. Ba.ic (ide NOR 1IIoch1.oe-l0 16230ee aASICGlUt: 775968 1.66 
11. Basic Gale XNOR Machine-ll 1337873 IlASICGAll 775648 1.68 
12 . J.ct:loo-000 Do Nothing-12 1671354 PREDICTION 789008 1. 5625 
13. ""~ion-OOl penDovn-13 1350070 PR!:DICTION 783760 1.625 
14. J.ct:ion-002 pen\lp-14 1354679 PR!:DICTION 177248 1. 66667 
15. J.ct:1OD-003 Lett-1S 1356139 PR!:DICTION 7B0304 1.6 
16. ""don-004 5~0p-16 1360594 PREDICTION 781152 1.625 
17. ""10100-005 IUgbt-l1 1363337 PREDICTION 777536 1. 75 
18. ""tioD-006 IIove <duraeioll>-18 1365466 PREDICTIOH 782176 1.625 
19. A<:tioo-007 StudeDt Requ .. ~. lihae' tIlo .01utlon-19 1368519 PREDICTION 7628eO 1.625 
20. J.ct:lon-OOe Studon~ Requen. I Qive uP-20 1375069 PR!:DICTION 179 BBB 1. 66667 
21. ""tioo-OOg Studtn~ Requelt. tJrpllill 501ut100-21 1379 899 PR!:DICTION 777312 1.625 
22. ""1:100-010 Add ~o~ .1: tnd-22 1676911 PREDICTION 77652! 1. 75 
23. ""~lOD-Oll Do1eu LIn ~nt-23 1393955 PREDICTIOH 778096 1. 75 
24. ""tioo-012 Ge1: Revard l.I.1.a11.~lon : -24 1395849 PREDICTION 7B1680 1.6 
25. J.ct:loo-013 ll ... et-25 1684712 PR!:DICTION 784672 1.55556 

Figure 5- 11 An ex ample execution of class- based evolution showing the top ranked chromosomes from generation 

1. 

Prediction cherne: penUp 

The aim ofthi Prediction cherne (figure 5 12) is to be able to sense a change in its penState of pen Up, 

which corre pond to action 2 being provided by the environment. Table 5- 2 describes the action in terms of 

the EBNF grammar ( figure 1). 

Table 5-2 Parameters to change the pen tate to penUp in the environment. 

i# Aetioa Delcriptioa 

1 2 penUp 

Once built, the Pr di tion cherne penUp can be u ed to act on the environment and change the penState, 

and even detect the pen p pen tate in the current environment. 

The arne proce i foil wed Ii r all Prediction cherne and for all unary values in the EBNF grammar (§ 

4.2 .1.1) 
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Figure 5-12 An example of a prediction scheme that correctly detects regularities in the environment, in this case 

the pen tate of pen p a action 2. The graph in red show the value that needs to be detected. The graphs in blue 

show the values the cheme predicts. The bottom right graph shows the prediction scheme has correctly predicted 

the input value. ince this is only a single value, the bottom right image is a perfect 1:1 match on input values. 

Figure 5- 12 how that the irnulation can build Prediction schemes that correctly predict the 

environment value. A depi tion ofthi Prediction cherne is shown in figure 5-13. 

Actioo-OOl penUp-l..t 

(1.6666"' ,1.) / 3 

135 6 9 Class-l4 

End 

InitW Chromosome with Trmsition 

{1.66667, I.} / 3 

/ 
-I" 

135-16 9 / Class-14 

3 

Figure 13 A depiction of hromosome 1354679 as la8s- 14 as a prediction scheme, that updates penState. This 

scheme ha a pr diction qualit) of I and 11 fitness value of 1.66. In the image on the left, the start state is shown in 

green, and the h\ 0 end tates in blue. In image on the right shows the same chromo orne with the values of the 

transition hown. 
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Chromosome 1354679 i hown from the two perspectives: without (left) transitions and with transitions 

(right side). In both image the prediction quality is shown as I, which means that this scheme can accuratly 

detect the feature in the environment. econd, it shows the fitness values of 1.66. This fitness value is 

computed a the prediction quality plu a factor. The factor changes for each class, and goes down that there 

are a large number of unu ed tate or tran itions. 

All the image of Prediction cherne follow this same structure. 

Prediction cherne: witch to Reinforce 

The aim of the Prediction cherne in figure 5- 14 is to switch the simulation into the Reinforce process 

i.e., to enable it to learn. 

Table 5-3 Parameter for the reinforce action. 

t# Actioa DaertpdOll 

1 21 penUp 

Table 5- 3 pro ide the input parameter for this prediction scheme. 

Action-021 Switch to R.etnforce-33 

'1.6,1.} / 5 

1450S49 / CWs-33 

5 

3 

Initial Chromosome with Transition 
{U,l.} /5 

1450849/ Class-33 

Figure 5-14 Evolution of a prediction cherne that moves the simulation into the reinforce-learn process. T he switch 

is provided as a p rman nt obje t iO\ lIriont. In this example, the cherne correctly generates the required structure 

with a prediction quaJit of 1 and a fitn ss of 1.6. 

In thi example m 14 0 49 in cia 33, the simulation ha correctly built the scheme to 

switch to a learning tatc. h' Prcdi ti n heme can be u ed to read a command from a teacher, and to be 

used internally t\\it h t te . Thu allowing the ludent some mea ure of autonomy to re pond, and 

randomly change It bchavi r. 
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Prediction Scheme Learning Rate using Mutation 

Figure 5- 15 below provide an evaluation of the number of mutations required to detect regularities in 

the environment u ing Prediction cherne . 

1 2 

Example Mutation of Prediction Machines to Detect 
Regularities in the Environment 

.~ 1 +-~~~~----~--~----~--~----~------
'ii 
o DB +-~~--~~~~~----------~----~~--------------

g 0.6 +-~--~~--~--------~--~--~~----------------
n I~-;~~~ __ ~~~~~~~ ______________ ___ .- 04+ 
~ 

~ 02 ~~~~~~~~--~~~~----------------------

o 10 

Do Nothing 

Stop 

20 30 

Mutation # 

penDown ~penUp 

Right -- Move 1 

40 50 

--Left 

Figure 5- 15 Thi graph provid s an example of the mutation rates for Prediction schemes to detection of 

regularitie in the environment. T his proces is complete when the prediction quali ty gets to 1. In the examples 

provided, the ma imum number of mutations required is 42 for the pen Up action. 

What figure 5 15 h w i that finally after 42 generation, the imulation has constructed a set of 

Prediction cherne to ac urately d tect the c regularitie in the environment, and more importantly, can make 

these action in the en ir nmenl. 

5.2.1.2 Acting and en ing the Environment 

The aim i t delerrnin th' c ndili n under which the imulation can act and sense the environment 

using it Predi tion . h m . 
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Acting in the E nvironment 

Figure 5- 16 hows how the regularities in the environment are used by the simulation to act in the 

environment. 

10 

- 8 
c -Q 6 u 
~ 
en 4 (o:J 

til 
:::::I 

2 

0 
o 

1\. 
~ 

4 

~ 

.. uU 

Using Prediction Scheme to 
Act in the Environment 

~) f/, 1 

I~ Will 

" k ~ 

') Vi ~ 

~ ~ 'Vi j U l! to. 

10 20 30 

Run # 

-+-- Do Nothing -- penDown --*:- penUp 

___ Stop ~ Right --Move 1 

~ 
1 J1" 

II ~ 

~ 
II ~ 'li.&. 

40 

--Left 

Figure 5- 16 This diagram shows the number of times a particular prediction scheme is used over a number of 

executions. It shows that simulation can use its prediction schemes to act in the environment. There is however, no 

discernible patte rn, these are random actions. 

The results in figure 5- 16 how that the simulation randomly selects actions and applies them to the 

environment. There is no di cemible pattern to these actions. 
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Sensing the Environment 

The simulation use its learnt Prediction schemes to sense the environment as represented in figure 5- 17, 

which presents a sample form 129 separate executions (runs) of the simulation. 
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Sensing the Environment Using 
Learnt Prediction Schemes 

9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 

Run# 

0 % Predict ion Schemes Created and Used IJ Max % of Permanent Obj ect Invariants 

Figure 5-17 Sensing the environment using learn prediction schemes. This diagram compares the number of 

prediction schemes created and used against the maximum number of permanent object invariants in the EBNF 

grammar. 

These results show that the imulation can build schemes to sense the environment, but that there are 

always some permanent object invariants that were not created. This implies that the simulation will always 

need the capability to build prediction chemes. 

More importantly, ince this re earch is interested in building internal structures, the variances and 

nuances of perception uch a hadow , perspective and obliqueness have not been covered. For instance, 

when a teacher draws a mark on a number line, that boundary needs to be determined by the student. This issue 

has been sidestepped in thi re earch. 

Support ror the Worked Example 

The aim of the e te t i to confirm how far the simulation can support the worked example (WEI -

WES). 

WEI- Ba e Analysi 

The following diagram (figure 5 I ) describes the range of motions observed through a set of separate 

executions (run) of the imulation. 
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WEi - Base Tests 
Maximum Range of Continuous 

Movements drawn from Origin in Selected Run # 

Selected 
Run # 

1 thru 6) 

• Max Right 
Movement 

o Max Left 
Movement 

-4 -2 o 2 4 

I I I I I 
6 5 4 3 2 1 

2 3 2 3 3 2 

-1 -2 -2 -3 -1 -1 

Maximum Continuous Movement from Origin 

• Max Right Movement 0 Max Left Movement 

Figure 5-18 WEI- Base tests shows the maximum continuous movements made in six selected runs by the 

simulation using the prediction schemes that it has created. These are continuous movements because the notion of 

" number" is not known; they are just actions that have been selected by the simulation. 

What figure 5- 18 illustrates is that the simulation can randomly select actions to apply, and make 

movements on a number line. These movements are "continuous" in the sense that they are unconstrained; 

there is no notion of "number. " These results confirm that the simulation at this level can meet Level's 1 of the 

worked example (WEt). 

WE2-Constrained Analysis 

In figure 5- 19, an analy i of the constrained objects tests which counts the number of times that a 

particular movement occur i provided. 
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10 
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WE2-Constrained Test: 
"Instances of observations of constrained object 

by selected run 

2 +-----~~--~~~---r----•. --~----~~--~~------~----

2 3 4 5 6 7 8 9 10 

Run # 

_e_ Move Right 1 -a- Move Right 2 -+- Move Left 1 --lr- Move Left 2 

Figure 5-19 This figure illustrates the WE2-Constrained Tests. It compares the number of instances of constrained 

movements by the selected run. It illustrates a random pattern of movements. 

What figure 5-19 confirms is that the simulation can make repeated constrained movements. These 

movements exhibit no patterns, and are senseless movements along a number line. This implies that only until 

discrete Prediction schemes can be constructed where they control a number of permanent object invariants 

such as penState, direction, movement and stop, is there the notion of the differentiated object. As such, the 

simulation at this level can only meet level 2 of the worked example (WE2). 

5.2.1.3 Summary 

Level-t starts from the evolution of simple schemes to identify objects in the number line world. Level-l 

results confirm that the simulation can act/sense, learn in a number line world. Specifically, the dialectic 

system can detect regularities in the environment of point, line, direction, and penState using a Prediction 

Scheme. Results show that it can only support tasks WEI and WE2 in the worked example. Observations 

suggest the emergence of structure in the simulation as a set of Prediction schemes, which are used to act in 

and sense the environment. 

5.2.2 Level 2 - Coordinated Action 

The aim of these tests is to determine the conditions under which the simulation can develop coordinated 

action; for instance, to learn Prediction schemes that have discrete actions to draw number lines and sense 

number lines in the environment. The secondary aim is to determine if these coordinated actions can resolve 

the needs of the worked example (WEt - WES), the bead problem, count and exhibit emergence of number-

sense. 
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5.2.2.1 Prediction Scheme: Move Right 

To be able to create Prediction Schemes, a class definition needs to be provided. In figure 5- 20 a 

definition is provided that will enable the simulation to move right one unit in a coordinated fashion. 

",Uooa(Add!VClus] • (Bvaluauonrunct1.on -. evalAut.-aton , b.poosel'unCUOll .... autc:.&tonRu:poose , Description .... ToStriDg [DateL1..lt (] ], H -+ 50 , L .... 50 , 

Aval...lable.Stratocn .. (SST . ILITI , rITPKF . RA&1lASID . RAIKJCM . 'I'IJURHMIEIIT). G ... 3 , StopA.t.PerfecuCJll .. True , Capl.es ... 50 . Vanll..la ... IO } ; 

Ad<IPM:lUs (iDput.s_, OGQ>au_, lV!lPe_, .4I/I4bOt_, "I'U_] :. 

Hodule[(newCl .... , evT'ype, evall'ct, de.lc, nt.plet, I\I'lQputl'laq. !\OJtputl'laQ, ava..ilabl.eStrateQy, q, a, 1, .~tJlerrection, copies, vanilla), 

evalI'ct • Bval.uauon1'uDcuOG /. lop") /. Opt.i""'(~.l ; 

reoplct .~on /. (opts] / . Options(AdcII!VCl ... ) ; 

avallobl.Str.~ • AvUlAbloStra~ /. (cpu) I. Opt.iooa[~ ... ); 

desc . "Sensory IIootor Nave Rl.gbt 1 U\u.t-~" ; inputs . {1, ~ , 6 , 10 ( 03 , (} ; outputs . (} ; alphabet . 11, ( , 5 , 6, 10'03}; 

Add!\I'Clau [inputs, outputs, PREDICTItII, alphabet, i>escription .. desc, Bvaluationl'unction ... evalAntc.a ton, 
lIesponsel"UnctJ.on .. auto.atonReaponae , AVlU.l.abl.eStraUlgy ... {BEST, l'ITPIDP}, G .. 20 , K ... 100 , [. .. 100] ; 

Figure 5-20 Example chromosome class code used in the evolution of a set of chromosomes to move right 1 unit on a 

number line. 

This definition i typical for Prediction chemes and includes the name of the evaluation functions, 

"evalAutomaton," along with the et of election strategies to use (best and fitness proportionate selection), the 

number of generation (20) , the number of members of the population (100), and the number of children (l00). 

It also provide the alphabet of action that the Prediction scheme can use, along with the set of inputs that it 

needs to predict. The et of input are the permanent object invariants from the EBNF grammar (§ 4.2.1.1). 

Table 5-4 is a repre entation of the e elected values: 

Table 5-4 Parameter for Move Right I Unit in the environment. 

• Actloa DeIcrlpdoa 

1 1 penDown 

2 5 Right 

3 6 Move <duration> 

4 10403 The duration to Move 

5 4 Stop 

A set of chrom om i evolved to predict the input sequence correctly. An example of one such 

Chromo orne (327264) , a a Prediction cherne is displayed in figure 5- 21. 
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Sensory Motor Move Right 1 Unit - :5 

(1.5, I.} / 4 
327264 / Class- :5 

2 ~-....... ,"",""- -

3 

Initial Chromosome with TtuSition 

{L5, 1.} / 4 

327264 / CIass-5 

\ 

\ 
4 

Figure 5-21 The representation of a Prediction scheme, chromosome 327264 in class 5, that can move 1 unit on a 

Dumber line. The image on the right shows the Prediction schemes with the transition values. The image on the left 

is the base scheme. 

Chromo orne 354393 i another example of the class that can perform the draw a number line as well as 

sensing it (figure 5 22). 

Sensory M otor Move Right 1 Urut- 5 

{U5, l.} / 6 

35~393 i Class-5 

Initial Chromosome with Transition 

1135, L} / 6 

/ 
.I 

354393 / Class-5 

6 

Figure 5- 22 An alC ernate example of a class 5 chromosome. This Prediction scheme can move right 1 unit on the 

number line, a well as en e it. In the image on the left four states are shown, with state 4 being the start state and 

state 2 the end state. The ame chromosome is shown on the right hand side with named transitions and transition 

values. 

The proce of building Prcdi tion scheme to match an input equence has a mirror in cell biology, 

where the D A i read t pr duce for in lance, protein . The interesting feature of figure 5- 22 is that some 

scheme have a greater lito' 1. , 1 .. 
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5.2.2.2 Prediction Scheme: Move Right 1 Micro Unit 

In figure 5- 23 , an example is presented of a Prediction Scheme that can move 1 micro unit - the smallest 

sensory movement that the environment allows. This enables the simulation to make continuous movements in 

the environment. 

InputSip1s 

Sensoty Motor MO\-"e~t I ficro Unit-36 

{U , I.} /3 
15I0137 / 0ass-36 

Input (Red) vs. 

Automaton Response (Blue) 

Sensoty Motor Move Right 1 Micro Unit-36 

{lJ, I.} /3 
1510137 / CIas-36 

Automaton Response 
Sensory Motor Move Right I Micro Unit-36 

{U , I·}/ 3 

1510137 / CIass- 36 

Figure 5-23 hromosome 1510137 is an example of a Prediction scheme that moves left 1 micro unit. The top row 

images show the input value (red) vs. the prediction values (blue). These values are overlaid in the bottom left 

image. In the bottom right image a perfect t : 1 match of input values to prediction is shown. 

Figure 5- 23 rno t clearly how the mcchani m by which the Prediction scheme matches the input 

sequences. In the top row, the input equence are presented in red on the left, and on the right are the 

prediction equence . The b tt n left image hows the prediction sequence superimposed on the input 

sequence, and in !he b tt m right image , the values are mateched pairwise. These results show that the 

prediction scheme can be evol ed orrectly. A depiction of !he chromosome 1510137 for class 36 in shown in 

figure 5- 24. 
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2 

MoyeRight 1 Micro Uuit

{U r 1.. J 3 

151013 I Cbss-36 

Initial Chromosome with Transition 

{l..5. L} / 3 

1510137 / Class-36 

EDd _--2 ... ~~{ty. 1 - Stan '. /1 
3-6.6( l , '6 

1-515.1 1'S I 

Figure 5-24 Depiction or the Prediction scheme that moves t micro unit in the number line world. 

In figure 5 24 the image on the left how the initial tate in green and the final state in blue, with a 

series of tran ition . The e match the required input. 

Prediction cherne: Move Right I micro unit. 

5.2.2.3 Mutation Rate for Coordinated Action 

Over everal generation a erie of Prediction chemes are mutated and used to act and sense in the 

environment. Figure 5 25 pre ent the results to build the e differentiated objects. 

Example Mutation of Prediction Machines for 
Coordinated Action in the Environment 

i!' 1.2 

~ 1 t-----------------~==~~~~~~~~~~r_ 
~ 0.8 +---------------------,~~·~--~--~-~-~~-~--7i~·r~-----'~~----r_I-
..... .J ~.1 .J f 
g 06 +------~~~~=,Z!~!!t ......... -..J. .... - ....... ~L 

~ 0 4 +-=~e!'~ ~m~~· ~!.,;o.~~tJ=:~~·--~;;~~~~/== 
~ 0.2 t .1. 

~ 0 ~~~~~aA-I----~----------~----------._----------~-
o 50 100 

Mutation # 

150 200 

penDown-Move Right 1-Stop -- penDown-Move Right 2-Stop 

penUp-Move Left 2-Stop -- penDown-Move Right 3-Stop 

penUp-Move Left 3-Stop 

Figure 25 Eu mpJe mutation or Prediction scheme that enables coordinated action and ensi ng in the 

environment. 

What figure 2 sh ws i that rnutati n provide a uitable mechani m to combine, in particular 

sequence , eparat pl!rmolJ('lIt ohj('c t ilJl'orionts together to form di crete object u ing coordinated action. 
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These are more complex structures than previous schemes and occur after the simulation has been running for 

extended periods of time, as shown by the number of mutations (202 in this example). 

5.2.2.4 Support for Worked Example 

The aim of these tests is to confirm how far the simulation can support the worked example (WEt -

WES). 

WE3-Differentiated Object Analysis 

The following diagram (figure 5-26) describes the range of differentiated objects that were sensed and 

acted (drawn) by the simulation over a set of generations. 

16 

14 

-= 12 
Q) 

~ 15110 
Q) Col 

~ ~ 8 0; 
.... c 6 
Q-
~ 4 

2 
o 

WE3-Differentiated Object Test: 
# Observations of Differentiated Object 

OverTime 

2 3 4 

Time Step # 

5 6 7 

-.- Move Right 1 _ Move Right 2 -+- Move Left 1 -lr- Move Left 2 

Figure 5-26 WE3-DiITerentiated Object Tests - showing number of instances of structures appearing in the 

simulation over time 

What is clear from the example in figure 5-26 is that the simulation can regularly identify differentiated 

objects in the environment and thus resolve WE3. However, it cannot resolve WE4, since this requires that it 

have hierarchical relationships, which for a single layer FSA is not possible. 

5.2.2.5 Resolution of Bead Problem through Conservation 

If one considers how the child approaches the bead problem, there is a large degree of dialectical 

exchange, for instance in the teacher asking the child "which one is greater?" The child in this respect already 

has the "description" of the concept of greater, but not the mechanism by which to control or act on it. The 

approach of this study is to look at the control mechanisms that enable the child to experience such 

constructions as greater, less then etc. 
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The bead problem of spatial awareness conflicting with number- sense in early childhood (piaget, 1952, 

p36 and Copeland, 1974, p83) and latterly being resolved by the child can be explained using the coordinated 

action Prediction Schemes that support WE3- Differentiated Objects. The diagram below (figure 5- 27), shows 

the classic dispersal of beads (left image) with an arrangement of number lines segments in the number line 

world. 

A Reformulation of the Bead Problem 
using Number-Line Segments 

Original 

••••• ••••• 
••••• 

••• •• 
Legend 

New 

PenDown, Move RIght 1 Unit, 
Equivalent to 1 Bead in the original Specification 

PenUp, Move RIght 2 Unit, 
EqUIvalent to Large Space in the original Specification 

PenUp, Move RIght 1 Micro Unit, 
Equivalent to Small Space in the original Specification 

Figure 5-27 A depiction of Piaget 's bead problem (Figure 1- 1) as number line segments with pen- up in red and 

pen- down in black. The accompanying text indicates that a more primitive simulation would determine tbat the 

spread-out line is bigger, because the penUp movements are greater. After conservation of number, this is no longer 

a n issue: space has no value. This figure therefore presents a solution to the bead problem tbrough conservation. 

This research demon trate that the simulation processes inputs from the number line world as set of 

command sequence . The ftr t et of bead would be repeating sequences of {Action- OOl, Action- OOS, 

Action-006, 10403, Action 004 .. . }. The econd set would be repeating sequences of {Action-OOl, Action-

005, Action-006, 10403, Action- 004}, a well a repeating sequences of {Action- 002, Action- ODS, Action-

006, 10403, Action 004}. The econd et includes sequences that define the spaces and in this number line 

world, the spaces are actual value: thc pen tate in these instances is penUp {Action-002}. This can be related 

to the depiction of the bead problem and the a sociated use of reflection (§ figure 1- 1 and figure 2- 1). 

Figure 5- 28 provide an analy i of how long it takes to build these Prediction bead schemes: 
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Attempts to contruct the Bead Problem as a penUp 
and penDown Prediction Schemes 

~ 1.2 

~ 1 ,===~:::::=====~~= o 0.8 +-

o 100 200 300 400 500 600 700 800 

# Mutation in 1100 

Run 1 penDown --- Run 50 penDown 

-.- Run 200 with penDown - Run 500 penUp 

--Run 1000 with penUp Run 750 penUp 

Figure 5- 28 Attempts to construct the bead problem as a mutation process, shows that a simulation can accurately 

produce a pred.iction scheme that exhibits the bead problem as " pen Up" and " penDown" variants after 802,000 

mutations. 

Figure 5- 28 how that it i po ible to build prediction schemes that mirror Piaget's bead problem. If 

one were to compare the ize of the e Prediction schemes, then the one with the red penUp penS tate would be 

larger, they are not equivalent cherne . 

However, this require the creation of a mechanism to test for equivalence between prediction schemes. 

Since Fodor commented: an operator uch as "=" or "=" cannot be used, the operator itself has to be 

constructed by the simulation beforehand, otherwise this solution falls foul of Fodor's LPI argument. In 

addition, it is belie ed that thi equivalence process requires the interiorization of the external values. The 

following analysi explain the need for interiorization. 

5.2.2.6 The Need for Interiorization to Develop Number- Sense 

When doe a imulation know the meaning of I? Given the metaphor of the number line, the key issue is 

to define the context of the interaction between the simulation and its environment. For the simulation, the 

context is defined by the relation hip of it innate capabilities, its alphabet of changing its pen state (pen- up, 

pen down), changing dire tion (lcft, right), moving duration and stopping its actions as it takes in the external 

world and by ob erving change in thc environment. 

Using a cognitive m del pr vided by Piaget, if the simulation assimilates to and accommodates actions 

using this "di fTerentiated bje t heme" of what is externally attributed to the value of "I" on a number line, 

then it has acquired a ens ry motor 'cherne of" I." Thi is achieved through the development of a figurative 

scheme (as a Prediction cherne to hold for in tance of the action {Action-OOI, Action- OOS , Action- 006, 

10403, Action 004 }), well a. the p ralive cheme to proce s the actions. Further, if the simulation, 
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consumes, within a hierarchical structure, this prediction scheme and attributes a binary value of I, then it is 

said to have abstracted the notion of the sensory motor scheme into a more complex scheme (more complex, 

because it is internalized). The interiorization is a random action that the simulation can take, with an internal 

binary prediction scheme that it has constructed which is substituted for the externalized value. The 

substitution is a critical aspect of Piaget's work on mathematics (Copeland, 1974, p252). This may begin to 

explain why a child initially guesses at meanings, using verbal associations (Copeland, 1974, pili). 

5.2.2.7 Summary of Levell and Level 2 Results 

Level-l starts from the evolution of simple mealy machines to identify objects in the number line world. 

Level-l results confirm that the simulation can act/sense, learn in a number line world. Specifically, the 

dialectic system can detect regularities in the environment of point, line, direction, and penS tate using a 

Prediction Scheme. Results show that it can only support task WEI and WEl in the worked example. 

Observations suggest the emergence of structure in the simulation as a set of Prediction Schemes, which are 

used to act in and sense the environment. 

Level-l results show that the evolved dialectical system exhibits coordinated action using more complex 

schemes and resolves WE3-Differentiated Objects. Using these schemes, it can act and sense the environment 

and provide an explanation for Piaget's bead problem (conservation of number). However, to produce a 

mechanism that can support equivalence, as well as the other features of Pia get ian mathematics as identified by 

Furth (Furth, 1969) and Copeland (Copeland, 1974), and this includes the work by Liebeck (Liebeck, 1984), 

the simulation needs to be able to internalize values (§ 2.3 and C). 

5.2.3 Level 3 - Internalized Structure (Interiorization) 

The aim of these tests is to determine the conditions under which the simulation can develop internalized 

structures, for instance, to learn Prediction schemes that can construct digital circuits. The secondary aim is to 

determine if these coordinated actions can resolve the needs of the worked example (WEl- WE5), count and 

exhibit emergence of number-sense. 

5.2.3.1 Prediction Scheme: OR Prediction Scheme 

Using the class-based evolutionary mechanism described earlier, the example in figure 5-29 of 

chromosome 626128 shows the result of the mutation of an OR chromosome from the OR class as a Prediction 

Scheme: 
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F~ of Class 1. Pnoctiction QlWity Class 7. 

40 

30 

'20 

10 

1.50 2.00 0.9$ 1.00 

Basic Gal., OR Mach1ne-7 Input; El\pect;ed Actual 1.,51; 

{Le, L } I 5 B Output Output: Result; 

626128 Claao-7 

Input 
A 

o 

IIasac Gale OR MadUae
IU,1) S 

62612S Class-I 

o 

o 
1 

o 
1 

1 

o 
1 

1 

lIutia1 C'btomosome ... ith Tnnsition 

(l.S, I.) S 

626U8 / CIass-1 

a 
0.1 

I 

<0 
Figure 5-29 A depiction of an evolved prediction scheme that possesses the properties of a logical OR. Chromosome 

626128 bas a prediction quality of 1, and the results show that it accurately performs its logical or function. What 

this diagram shows is that mutation can easily produce these logical components. 

The intere ting feature of the e Prediction schemes is that they use the same mutation process as the 

Prediction scheme that en e and act in the environmental. All of 2- bit propositional logic components can be 

built in thi way. 
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5.2.3.2 Prediction Scheme: XOR Prediction Scheme 

An example of an XOR Prediction scheme is presented in figure 5- 30. 

Basic Gale XOR Machine-8 

{1.68. I.} / 7 

1559639 / CIass-8 

Initial Chromosome with Trmsition 

{1.68, l.} / 7 

1559639 / Class- 8 

o I :1/JI 3 

Start . • 2 '-1/ ~, -- • End ~ - , 11- 4 ~ 
6 .... 1/ 5 ' 

Basic Gale XOR Hachine-8 Input Expected Actual Test 
{ 1. 68, 1. } 7 B OUtput OUtput Result 
1559639 Class-8 

Input 

A 
0 0 0 0 ..J 
0 1 1 1 ..J 
1 0 1 1 ..J 
1 1 0 0 ..J 

Figure 5-30 An exa mple of an XOR Prediction scheme that has been mutated from the simple mealy scheme. 

Chromosome 1559639 ha a prediction quality of 1 and a fitness of 1.68, which suggests that it is an efficient 

processor. 

The intere ting feature of the e Prediction cheme 

mechanism to pas them information, to proces . 

5.2.3.3 Final Evolution of Classe 

that they merely process information; they need a 

The progre ive mutation of clas e of chromo omes, ultimately lead to the instances of chromosomes 

that each have a prediction quality of 1. This i de cribed in figure 5- 31 . 
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lVClusID OuCriPCiOD !:VChromo~o~ID rvclas5N~ Fitness P=<I-Qlal 

1. Buff@r 1lach1n@-1 300093 BUFFERI/OI 1.55 1. 
2. NOl Machine-2 303178 BUrn:IWOI 1.55 1-
3. Binary OUcpuc 1-3 306204 BUffERNOl 1.55 1. 
4. BinAry OUtpuC 0-4 306379 BUFFERNOI 1.52 1. 
5. Sensory Motor Mow RiqhC 1 Unit-5 327264 PRElJICTION 1.5 1. 
6. Basic Gale AND Hachine-6 772 354 SASICGAIE 1.67 1. 
7. Basic Gale OR Hachine-7 825480 8ASICGATI: 1. 68 1. 
8. Basic Gale XOR llach1ne-8 1559639 SASICGATI: 1.68 1. 
9. Basic Gale NAND Hach1ne-9 1616465 SASICGAIE 1.32 1. 
10. Basic Gale NOR Machine-l0 1623088 SASICGATI: 1.66 1. 
11. Basic Gale XNOR Hach1n@-ll 1337873 SASICGAIE 1.68 1. 
12. Act1on-000 00 NochiDQ-12 1671354 PR!llICTION 1. 5625 1. 
13. Action-OOl penOown-13 1350070 PRElJICTION 1. 625 1. 
14. Accion-002 penUp-14 1354679 PR!llICTION 1. 66667 1. 
15. Accion-003 LefC-15 1356139 PR!llICTION 1.6 1. 
16. Accion-004 Scop-16 1360594 PRElJICTION 1.625 1-

17. Accion-005 RiQhc-17 1363337 PREDICTION 1.75 1. 
18. 1.ecion-006 Mow <cruracloD>-18 1365466 PRElJICTION 1.625 1. 
19. AcclQD-007 Scuelent Request, Whats che solucion-19 1368519 PRElJICTION 1.625 1. 
20. 1.cclon-OOe Scuclent Requesc. I give up-20 1375069 PREDICTION 1.66661 1. 
21. AeciOD-009 Scuelent Requesc, txplain Soluclon-21 1379899 PREDICTION 1.625 1. 
22. 1.ccion-010 Adel SeQJDenc aC enel-22 1676911 PREDICTION 1. 75 1. 
23. Accion-Oll Delete Laoc Se<JlIII'nt-23 1393955 PREDICTION 1. 75 1. 
24. Action-012 Gec Reward (Asaimilation ) -24 1395849 PR!llICTION 1.6 1. 
25. 1.eCion-013 Reuc-25 1684712 PREDICTION 1.55556 1. 
26. 1.c101on-014 IIoJIIorue NUllberline-26 1405050 PREDICTION 1.75 1. 
27. Accion-015 Observe Ca.anel ' Assimilation -27 1655530 PREDICTION 1.6 l. 

Figure 5- 31 Evaluation of classes 

In figure 5- 31, a set of chromosome clas es have been selectively evolved to reach a prediction quality of 

1. This example how that the mutation of all 27 classes takes approx 1.6 million mutations. These 

chromosomes can then be u ed by the simulation, to perform useful work. This is further explained in figure 5-

32 below. 

~ 1.2 
~ 1 
::::s 
a 0.8 
c 0.6 0 
.:; 0.4 u 
~ 0.2 41 ... 
n.. 0 

0 

Prediction Schemes Learning Rates for 
Internalized Structures 

5 10 15 20 

Mutation t/. 
-+- Buffer Machine-1 - Not tv1achine-2 

25 

---k- Basic Gate OR tv1achine-5 -- Basic Gate AND Machine-4 

_ Basic Gate XOR Machine-6 

_ Basic Gate NOR Machine-8 

-+- Basic Gate XNOR tv1achine-9 

Figure 5-32 Learning rate for Prediction schemes to develop 2 bit propositional logic components. 
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What is clear from figure 5-32 is that it is a simple process to mutate the simple mealy machines into the 

propositional logic components. 

5.2.3.4 Support for Worked Example 

The creation of Prediction Schemes to internalize structures adds no additional value to resolving the 

worked example. 

5.2.3.5 Summary 

Additional evolution of the dialectical system at Level 3, shows that the dialectical system can develop 

internalized structure as propositional logic components in digital circuits along with dialectical student actions 

from a teacher. Level 3 results suggest that it can work autonomously; yet even this is not the appearance of 

number. Further evolution of the dialectical system to Level 4 is necessary to enable the dialectical system to 

generate hierarchical schemes to reuse existing prediction schemes, and with evolutionary computing, 

internally construct digital circuits. 

5.2.4 Level4a- Argos Schemes for Symbolic Functions 

The aim of these tests is to determine the conditions under which the simulation can develop hierarchical 

structures (Argos Schemes) as digital circuits that include the prediction schemes. The secondary aim is to 

determine if these schemes can resolve the needs of the worked example (WEt - WE5), count and exhibit 

emergence of number-sense. A series of Argos schemes are described in the following sections. 
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Argos Scheme: Move Right 

Figure 5-33 presents an Argos scheme that was mutated to include a chromosome from class 5, to move 

1 unit along a number line. 

Cop1ed [rca 
tv'Ch~ __ lD Evta ••• lD 

~.~ID 

0 2000054 U. 
32726f 2000059 s. 

100093 2000060 1. 

(0-', 0-') / 2 
20000S6 / CIau-4S 

104ot>od-~ 

Atp-M<n .. R,pt I Uoit 

o 

Dr..er1.pl:1011. 

.l Root. Oc:cun twlee 
t1.rn-ly ill pII.H.Dt then .ecocdly to c:te..e.rc.tc ~ta. 

lOOt.::x;g:oa - Move l1Qht. 1 Oni t 
Seuo.ry Motor MaYe Riljlbt 1 On1t:-S 

Jutter tMch1De-l 

Init.ial IDpOt. OUcput 

Seate StUe Suu 

Figure 5-33 The depiction of an Argos cherne (chromosome 2000056, class 48) that includes a copy of chromosome 

327264 and 300093 that allows the Argos scheme to draw a number line segment. The prediction quality and fitness 

are set on these schemes to be 0.5. 

The depiction of Argo cherne 2000056, presented in figure 5- 33 illustrates the execution of the sensory 

motor Prediction cherne 2000059 against the environment, drawing a number line. A similar process is 

followed by all the Argo cherne that mar hals information across their embedded prediction schemes based 

on the synchronization table that have themselve been mutated. 
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5.2.4.1 Argos Scheme: Internalize Values 

In a similar vein, Argo chemes can be evol ved to make use of prediction schemes that internalize values 

(figure 5- 34). 

Copied rl'Oll ~'-ID 

tvCh%'C*)~IO 

• 20000'1 
306204 20000'. 

5 ••• 93 200006$ 

(O-'. OJ) 1 
2000061 c-~9 

MdIIod-~ 
/up - B..,. o.rp. 1 

tvCl .. alD 

... 
3. 

1. 

Dl!:1c.r1ptlOD Initial I nput Out.put. fina l 
A Root. Occur. evict: !Ute 5&ate S&ate SUte 

fintly 1n paH.nt. tben aecondly to ~rcat.e CCJIII)OQenu. 
Root.....A.r9o. - Dinary OU~t 1 
l.i.nl ry OUt.put 1-3 .J 
Buffer Mldline · 1 .J 

Figure 5-34 Chromosome 2000061 is an example of an Argos Scheme mutated to internalize a value using 

Prediction Scheme 306204. When executed, it can pass a binary value to another Argos or Piagetian scheme. This 

low- level scheme allow for the co nstruction of more complex hierarchies. 

In the example pre ented in figure 5- 34, the Argos schemes are shown with the initial states, input states, 

output states and final tate . The e follow the process defined in the architecture and design (§ 4.2.1.1 analysis 

of design ofHFSA). 

What is clear from thi example i that Argos schemes provide a mechanism for coordinating processing. 

Other examples of Argo cherne are included in appendix § D. 

Being able to internalize external value will not provide the capability to develop number- sense. There 

must be a way of encoding the information and then using it. In the design, is discussed the need to generate 

digital circuits. What follow are example of digital circuits that can be mutated as Argos schemes (§ 4.20n the 

design of digital circuit u ing ITF A). 

5.2.4.2 Argo cherne: Binary Encoder 

On their own, equential gate cannot count sequential values; they need binary coded information. 

Encoders and compo ite dec der are required to provide the low- level support for sensing and acting. This 

implies a progre ion of cherne from implc to more complex varieties that must persist in memory to allow 

the simulation to u e them. What follow i a de cription of these binary encoders, using information from the 

analysis of the architectur and de ign ( 4.2). 

The binary encoder n ert a et of erial inputs, provided by the environment, into a form usable by an 

Argos cherne. A cia i implementation fa 4 bit encoder is given below (figure 5- 35), although there are 

several po ible configurali ns that an pr du e the arne re ull. 
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Encoder 

Do 
Legend 

D, Initial .- .. Input 
' .. . 

• Final ~ Output 
D, 

Eoot 
D, 

9 

Figure 5- 35 A classic depiction of a complete 4- bit Argos Binary Encoder scheme. In this diagram, the initial, final , 

input and output tates are shown. During mutation, these states are randomly chosen, which partially explains why 

now and then the simulation makes mistakes, but over time, corrections can be, and are made. 

In the depiction, tates (as Prediction schemes) receive input from the environment at their initial state; 

produce outputs at the designated states and final values at their final states. They also receive inputs from 

pervious scheme at their input state . The encoder does not make use of these inputs, though other Argos 

schemes do . 

This last tran ilion i critical to processing since it signals to the controlling Argos scheme that it has 

finished proce s. To en ure that the contained Prediction schemes are executed, a Prediction Scheme buffer is 

added as the actual la t output and final state. This ensures that the information can be marshaled through the 

constrained Argos cherne . Thu , the depiction of the encoder is different to the classic interpretation. The 

following table (table 5- 5) de cribe the encoder in lhese terms. 

Table 5- 5 This table describes the states in a Argos binary encoder scheme. Since these Argos schemes are 

randomly evolved, thi i the depiction of viable schemes. 

State EVClas ID Parent Type Capacity Initial Input Output Fina1 

ID State State State State 
Input Output 

I 2. 303178 NOT 1 1 Y - - -

2 6. 772354 AND 2 1 Y - - -

3 6. 772354 AND 2 1 - - - -

4 2. 303178 NOT I 1 - - - -

5 2. 303 178 NOT 1 1 - - - -

6 6. 772354 AND 2 1 Y - - -

7 2. 303178 NOT 1 I - - - -

8 6. 772354 AND 2 1 - - - -
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State EVClassID Parent Type Capacity Initial Input Output Final 

ID State State State State 
Input Output 

9 6. 772354 AND 2 1 Y - - -

10 7. 825480 OR 2 1 - - - -

11 7. 825480 OR 2 1 - - - -

12 6. 772354 AND 2 1 - - - -

13 I. 300093 Buffer I I - - y -

14 I. 300093 Buffer I 1 - - y -

15 I. 300093 Buffer I 1 - - - y 

Some concJu ion can be drawn: First, the final and output states of an Argos scheme are always single 

bit buffer machine . Second, the inputs from the environment are always passed to the initial states of an Argos 

scheme. Finally, through not directly inferable from this example, the outputs from proceeding Argos scheme 

always pass to their value to input tates in sub equent schemes. 

The key, as can ea ily be een, i that the processing takes place on the transition to the next state. Table 

5- 6 provides the et of ynchronizations of a fully evaluated scheme. When these synchronizations are 

executed, the value of the Prediction cheme must be saved. In this way each prediction scheme, becomes a 

push down automata. Memory, when seen in this context, is the storage of the execution of these schemes at 

particular states. The initial value provided to the environment are consumed by those schemes that are initial 

states. 

Table 5-6 ynchronizations (Transitions) for Argos binary encoder scheme. 

From To Parallel Sequence Description 

State State eq Ordinal 

1 4 I I Initial I bit value (DO), provided by the environment is processed. 

1 2 I 2 Initial I bit value (DO), provided by the environment is processed. 

1 9 I 3 Initial I bit value (DO), provided by the environment is processed. 

1 3 2 4 Initial I bit value (DO), provided by the environment is processed. 

2 3 2 5 Initial I bit value (D') provided by the environment, along with the output 

from tate I is proces ed in the same synchronization step and passed to state 

3. 

2 8 4 6 Initial I bit value (D') provided by the environment, along with the output 

from tate 1 is processed in the same synchronization step and passed to state 

2 5 4 7 Initial I bit value CD') provided by the environment, along with the output 

from tate I is proces ed in the ame synchronization step and passed to state 

3 6 3 8 The output from state I and 2 are processed and passed to state 6. 

4 10 5 9 The output from state 1 i proces ed and passed to tate 10. 
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From To Parallel Sequence Description 

State State Seq Ordinal 

4 II 5 10 The output from state I is processed and passed to state II. 

5 10 5 II The output from state 2 is processed and passed to state 10. 

6 7 4 12 Initial I bit value (D2) provided by the environment, along with the output 

from state 3 is processed in the same synchronization step and passed to 7. 

6 8 4 13 Initial I bit value (D2) provided by the environment, along with the output 

from state 3 is processed in the same synchronization step and passed to 8. 

10 13 6 14 The outputs from state 4 and 5 are processed and sent to state 13, which is an 

output tate (QO) . 

7 II 5 15 The outputs from state 6 is processed and sent to state II. 

II 14 6 16 The outputs from state 4 and state 7 are processed and passed to state 14 and 

output state (Q'). 

8 12 5 17 The outputs of state 6 and state 2 are processed and passed to state 12. 

9 12 5 18 Initial I bit value (DJ) provided by the environment, along with the output 

from state I is processed in the same synchronization step and passed to state 

12. 

12 15 6 19 The output of state 8 and 9 are processed together and passed to state 15, 

producing the final value (Eout) 

What is intere ting i that to build an Argos scheme of this complexity will take a considerable amount of 

processing power. Perhap thi could explain why 0 much of early childhood development has no noticeable 

output in term of re pon e to timuli . In addition, the parallel sequence for synchronization is always more 

that the maximum number of tran ition of any proceeding transition. It seems likely, that the best way to 

construct the e cherne i to a ume that the final state (and there is only ever 1) always has the highest 

parallel sequence, and then work backward. 

The execution of the e ynchronization i the production of the following encoding (table 5- 7). 

Table 5-7 The e are the outputs of Argos binary encoder scheme, which are used in the evaluation function to test 

the random chemes. When cheme scale up in complexity, the reward is an aspect of the environment, which 

weights the network in the Argo scheme. 
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To build an encoder of more than 2 bits requires the Argos schemes to be strung together. A visualization 

of a binary encoder as an Argos scheme is provided in figure 5-36. 
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{OJ , O.S} , :2 

1009191 / Class-38 

Method-LayeredDigrapbDrawing 

Argo~ - Encoder 

Figure 5-36 A depiction of a binary encoder as Argos schemes that marshal information across prediction schemes to allow them to process the information. The Argos 

schemes are in red and green. The Prediction schemes are blue and grey. The lines between the points represent the transitions and synchronizations. 
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The format and function of the Argos Scheme as a binary decoder is described in figure 5- 37 below: 

!:VOIro.>SOllle I 0 tvClassID Descript.ion Init.ial Input. OUt.put. Final 

St.at.e St.,ate State St.at.e 

1009191 38. Root.-Argos - Encoder na na na na 
1009194 2. NOT Machine-2 

'\I 

1009195 6. Basic Gale AND Hachine-6 

" 1009196 6. Banc Gale AND Hachine-6 
1009197 2. NOT Hachine-2 
1009198 2. NOT Hachine-2 
1009199 6. BaSl.C Gale AND Hachine-6 

" 1009200 2. NOT Hachine-2 
1009201 6. Basic Gale AND HaChine-6 
1009202 6. BaSl.C Gale AND Hachine-6 

" 1009203 7. Basic Gale OR Hachine-7 
1009204 7. Basic Gale OR Hachine-7 
1009205 6. BaSl.C Gale AND Hachine-6 
1009206 l. B~fer Kachine-1 

" 1009207 l. Buffer KaChine-1 

" 1009208 1- Buffer Kachine-1 

" 
Figure 37 T he compo ilion of ch ro mosomes that make use up an Argos binary encoder scheme as chromosome 

1009191 

What i clear from the depiction of the binary encoder is that the architecture and design approach work. 

It provide a impler mechani m to mutation of Prediction schemes to evolve Argos Schemes. 

5.2.4.3 Argo cherne: Full-Adder 

U ing the arne mechani m a Encoders, an Argos scheme for a single full adder can be constructed. A 

depiction i pro ided in figure 5 38. 

COpied. rna ~.o.lD tvCl ... lD 

r;YChr'<a:I.c.e 1 0 

0 20000n U. 
1$5"" 2000022 I . 

77235. 2000023 t. 

77235. 2000024 6. 

IU'U' 1 000 O.u I. 

8.25410 200002' 1. 

3000n ::0000.1'7 1. 

,00 on 2000021 1. 

DI.cript1oft 

A Root. Occurs twice 

[0.5,0.51 /2 

2000019 / CU-45 
Method-LayeredDigrllphDra~ing 

Argos - Full Adder 

ID1Ul.l l_t OU~ptlt 

'U1;e SUeo State 
fir.tly 111 plll'~nt then Hcondly to cte.arcete CCIIIPOCl~~. 

loot::xrvo. - Full Mde.r •• •• klle kh lOR Me.chine_e 

a.ue .. lc lRD Me.ctuDf:-6: 
~ 

a.l1e Gt,le AND KacMnt- 6 

...ie Gel, XOR Hlch.1Dt_1I 

.. de Gtile OR Haehine_' " 
kttu Kacb1D.e_l 

ktftr Hach1ne ~ 1 
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Figure 5-38 The depiction of a full adder as an Argos scheme as chromosome 2000019, class 45. It includes a set 

Prediction schemes and Argos schemes. This is only a single full-adder. It can be connected in series to other full

adders using the Argos mutation process. 

In this, the Argos scheme, chromosome77 2000019, EVClass 45, is composed of a set of schemes. The 

interesting point is that these schemes are not perfect. They have outliers, as in the far right of figure 5-38 that 

are not part of the main thread of processing, but at a future mutation point, may become significant. The 

Argos Scheme synchronizes the processing of inputs from the environment across the contained prediction 

schemes using the information in its synchronization table, which allows it to count 2 bits. It works as a digital 

circuit (§ D.5 for a fuller description of a full adder). 

The second interesting point is that the Argos schemes must remain active over a period of time, such that 

the simulation can count a range of values provided through the interaction with the environment. In 

supporting the work of Piaget, Pascual-Leone imagines a model of processing where schemes can remain 

active, in equilibration, until the system itself is forced into a process of disequilibration and other schemes 

become dominant. For instance, if the system is counting and it cannot count anymore because it has run out of 

processing units, it regains equilibrium by adding more full-adders and continues counting until either the 

input from the environment stops and it finishes or some other scheme becomes active and dominant e.g., 

boredom. This processing is essential to the overall utility and warranty of the system. An alternate depiction 

of an Argos scheme full adder is described in figure 5-39. 

77 As an aside, in this architecture, the evolution of chromosomes occurs within the lifetime of Student, in 

this respect "chromosomes" are more akin to "neurons" and this is a throwback to the original implementation 

from which this solution has grown (Jacob, 2001, p213). Thus the process of evolving a class of chromosomes, 

is the learning process employed by this system and is the resolution ofLP5. 
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{0.5, 0..51 / 2 
1009209 1 C1ass- 39 

Method-RadWDrawing 

Ar!:os - Full Adder 

Figure 39 An alternate depiction of a full adder as a set of Argos scbemes (red node) and prediction scbemes (blue 

and green node ). The rgos chemes marshal information across their prediction scheme network using a series of 

numbered tran itions in grey. it i an example of a binary executable HFSA machine that is mutated to interact with 

the envi ronment. 

It i through the e highly tructured combinations of full adders and ripple carry adders that the 

simulation ha the pr pen ity to fully "count" in a similar way to a child. For instance, an improperly built 

ripple carry adder will m lime get the right value and sometimes not. There is a clear correspondence with 

Piaget' ob ervation of children ( opeland, 1974). 

5.2.4.4 Argo cherne: FuU- Adder Evaluation of Resource Usage 

A uming a resource count of 1 for each random mutation, to achieve the desired configuration of Argos 

encoder , fuJI adder , full ubtractor and decoders requires the following resource demand78 (table 5- 8): 

78 It would be an inlere ling pr ~e t I con truct values for M-Demand and M-Capacity based on the machine 

size, and build lime, to ee h they ompare to the publi hed results of Pascual-Leone. 
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Table ummar of reso urce usage in Argos schemes 

# # # # Measure of Resource Cost / 
Type of Argos # # 

Initial Input Output Final Complexity Value 
cbeme tat yncbronization 

States States States States 

Encoder 15 19 4 0 2 1 41 

Full Adder 7 6 2 2 1 1 19 

Full Subtractor 10 II 4 I 2 I 29 

Decoder 10 8 5 0 3 1 9 

Evaluation 12 II 8 0 0 1 32 

If a imllar m del e i t in children, it i a umed that (i) there are computational reasons why adding, for 

children i impler than ubtra tion, (ii) decoding information from the environment is much easier then adding 

structured information ba k to the en ironment, and (iii) once a useful scheme has been constructed, then 

creating copie and haining them together i much easier. This 3'd point is especially important. Observation 

and experience teach u that when children finally begin to count on their own, he/she begin to count 

everything in their em ironment. 

If one agree v ilh Piaget79 that the development of language, in this case mathematical language, begins 

from the de el pm nl of I gic , then the e re ult partially explain why it takes so long to develop number

en e. A great numb r of upporting cherne need to be created first. 

5.2.4.5 upport for Worked Example 

The aim of the e Ie I i to confirm how far the imulation can support the worked example (WEt -

WES). 

79 "Before the operali n arc formulated in language, there is a kind of logic of action coordination in the 

en ory-molor lage lhere i · a rt of "generalizable action that prefigures classes and relations," examples 

include eriatIon f blocks of decreasing ize or number on a number line, but the e structures are not capable 

of being repre nted, untIl pr e ing ha reached ymbolic functioning. These structures (schemes) are pre

configuration · f the lalcr n tion, f con crvation and rever ibility. These operations are independent of 

language durtng the cOllerl!le opl!raliolls lage and are tied as actions related to objects (Piaget, 1963 cited in 

Furth, 1969, P 12 ). r r Piagcl, "L gi is but the formalization of an equilibrated structure" (Furth, 1969, 

p216). WIth I glcal neccity being in the tructure of adaptation that ha been developed and where this 

logical nece Ily IS a logIcal c hcrcncc, an implication that one part tand and falls with the whole (Furth, 

1969, p233). 
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WE4-Hierarchical Units Analysis 

To support hierarchical units, the simulation needs to be able to internalize external values and then 

manipulate them through encoding, counting, decoding their values. It is assumed that since hierarchical Argos 

schemes can be mutated, and can process these binary values, that a future implementation would support 

WE4. It has been shown that these Argos schemes can process hierarchical information across their embedded 

network to encode, decode, count and encode. 

WE5-General Relationships Analysis 

Since the assumption is that hierarchical unit analysis (HE4) is a prerequisite for general relationships 

(WE5), the simulation at this point cannot support WE5. 

5.2.4.6 Summary 

Using the mutation process discussed in the architecture and design (§ 4.2.1.1), it has been shown that 

Argos schemes can internalize external values, and be mutated into encoders, full-adders, subtractors and 

decoders. This, it has been demonstrated that the propensity to develop digital circuits in a form similar to 

evolvable hardware (Greenwood and Tyrrell, 2006, pI2). In the examples presented, the Prediction schemes 

are the propositional components and the Argos schemes are the "predicate." In this way, they follow the 

Esterellike formalism (Maraninchi and Remond, 2001, p65) and sidestep LPl. 

That the simulation has the propensity to resolve WE4 has been demonstrated, however, to develop 

number-sense in a Piagetian model requires that the processes of assimilation and accommodation be blended 

into the Argos scheme process. This is covered in Level-4 Piagetian Schemes. 

5.2.5 Level 4b- Piagetian Schemes for Symbolic Functions 

The aim of these tests is to determine the conditions under which the simulation can develop hierarchical 

structures (Piagetian schemes in a Piagetian Model) and include the Argos Schemes as the marshaling 

component of digital circuits with the Prediction schemes as the propositional logic components of these 

circuits. These Prediction schemes also form the sensory motor capabilities to sense and act in the 

environment. 

The secondary aim is to determine if these Piagetian schemes can resolve the needs of the worked 

example (WEl- WE5), count and exhibit emergence of number-sense. 

5.2.5.1 Piagetian Scheme: Counting as a Worked Example 

In this example, there is adherence to Piaget's knowing circle (§ 2.3.5 on Knowing Circle), which 

assumes a process of accommodation then assimilation through every interaction. 

The initial image (figure 5-40) provides a legend to the process in figure 5-4l. This legend is used in the 

other presented examples. 
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Increasing Reflection 
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by Operational Schemes 
Ina-easing Reflection 

(Abstraction and Use by other 
Figurative and Operative 

Figure o T hi i th leg nd for examples of Piagetian chemes implementations. 

Figure 5 0 eplain th pr cc ing of thi Piagetian Counting Scheme, which would be mutated in the 

similar way t the h me u ing the arne ynchrorUzation table structures. 
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} 

r-
-I~rolog 

e 

Piaget Counting 
using HFSA. 

}-~~ning Scheme 

r-
I Main Thread: 

I 

r-
_ J Epilog: 

I 

\\ orked e\ample of counting using Piagetian schemes showing assimilation, accommodation and the 

embedding of rgo ch me \\ hi h enable interaction with the environment. The interesting feature is the alternate 

proce ing of accommodation lind a imilation lind the use of named chromosome - the inclusion of new copies of 

chromo orne n II riti al to the de, elopment of a simulation that can adapt to the environment through 

mutation of it internal tructure. 

The pr r c unting depicted in figure 5 I u ing Piagetian chemes is described below: 

Prolog 

I) Thi i the pr log heme. It handle the initial invocation and i an existing Piagetian scheme (a copy of 

047). 

Main Thread 

The main thread e 'c ute until the end f thc environment input, or an interrupt occurs. In thi example, there 

j only 1 Item on the numbcr line, so, it unts a only 1 value. 
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2) Through accommodation, the simulation acts on the number line and through assimilation builds a 

figurative scheme (a copy of chromosome 20000056) that predicts the environment, in this case an 

external value of 1. 

3) Through accommodation, a substitution is used to replace the "Move-I" figurative scheme (a copy of 

chromosome 20000216) with an internal value, in this case, binary 1. This binary value is itself a 

Prediction scheme (a copy of chromosome 2000061). It is this process of progressive interiorization, 

where there is substitution along with an internalized action that is critical for the simulation to adhere to 

Piaget's knowing circle and switch between accommodation and assimilation (§ 2.3.5 on Knowing Circle). 

4) The process of accommodation then executes an operative scheme (a copy of chromosome 20000061) that 

contains a figurative (a copy of chromosome 2000019), which is a full-adder, and then passes the 

substituted binary value of 1. The binary value of 1 is then counted by the full adder. 

Epilog 

The epilog occurs once, and closes any processing. 

5) The process of accommodation using an operative scheme (as a copy of chromosome 2000081) passes the 

outputs of the preceding assimilation (the full adder as a copy of chromosome 2000019) to its contained 

figurative scheme (which is an Argos decode, as a copy of chromosome 2000043). The decoder converts 

the binary values to external values. 

6) The output from the decoder (a copy of chromosome 200043) is the externalized action by an operative 

scheme of move 1 (which is a copy of chromosome 2000056). The figurative scheme (a copy of 

chromosome 2000086) receives the reward from the environment. This reward processing is similar to 

reinforcement learning (§ 2.3.5 on Knowing Circle). 

A case could be made for Step 3 and 4 to be combined with Accommodate on Step 3, connecting to 

assimilate on Step 4. 
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UML equence Diagram for Counting 

Figure 5 2 i a vi ualization of the sequence of processing for the Piagetian Scheme: 

Execution of HFSA (Schemes) in the process of counting 
Using Act & Sense, Reinforce 

Figure 5 2 1L sequence diagram of the Piagetian counting scheme. It shows how disequilibration and the 

stabilizing proce es of equilibration occur to enable the system to count larger values. This is important because it 

shows how the stem can regain tability using the internally constructed schemes and confirms Piaget's approach 

to adaptation. 

To adhere to th prin iple of ognizant failure the Piagetian schemes themselves have to adjust to errors 

and interrup . The ML 'equen e diagram hows thi process as an interrupt, which causes the simulation to 

mutate, adding additional Argo adder cheme in order to process the input. 

The tep in figure 2 are de ribcd in tabJe 5 9. 

Table 5-9 Th tep in th ML sequence for counting. 
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Step Environment Student 

Student command Executive of Student Wakes Up and Student responds ok (Action 000). This ok scheme is 
I. 

OOJ - Wak p now the current active scheme. 

Student command Executive select scheme to respond, interrupts currently executing scheme and deactivates 
2 

002- olve ? it then activates selected scheme. 

3 Accommodation: Student Action 000 (Do nothing). 

Student Command A imilation: Observation of student Command Solve 1+1 =? 
4 

ok 

Accommodation:-Student Action (Move 1) as execution of predictive FSA PenDown, 
5 

Right, Move Duration 10403, Stop. 

Student Command A imilation: Observation of Movement of I, Count 1 using Argos Full Adder.!!lT 
6 

ok 

Accommodation: Student Action (Move I) as execution of predictive FSA PenDown, 
7 

Right, Move Duration 10403, Stop. 

Student Command A imilation: Ob ervation of Movement of I, Count (1+1) using Argos Full Adder. 
8 

ok 

Accommodation: Student Action (Move 1) as execution of predictive FSA PenDown, 
9 

Right, Move Duration 10403, Stop. 

Student Command A imilati n: Ob ervation of Movement of I, Count (1 + I + I) using Argos Full Adder. 
10 

ok 

Student put into a state of disequilibration (overflow on Full Adder). 

II E ecutive Interrupt proce sing and attempts to put student into state of Equilibrium. 

E ecutive call reinforce processing to dynamically generate Argos schemes that can 

proce more input and in doing so return to state of equilibrium. This processing is 

dependent on the M Capacity available to the student. 

12 Continuation of A imilation, Count (1+ I + I) using Argos Full Adder. 

Accomm dation : Student Action (Move 3) as execution of predictive FSA PenDown, 
13 Right, Move Duration 10403, Stop 3 times. 

Teacher Mark A imilation of reward and trengthening of Argos Scheme Interaction stored in memory. 
14 

tudent re p n e 

80 Like all counting tep, thi tcp a ume that a prior step has evolved a Figurative Scheme (a Piagetian 

Scheme as a IlF ) that ha nverted an ob ervation of wlit movement of 1 unit, to a internal action of binary 

value of 1. InitiaJly thi binary value can be eriated and eventually is reused in the counting process. Without 

this, the proce f ounting i mcaningle . The development of an internal binary of 1 for an external 

movement of 1 underpins the development of eriation. This implies that the Piagetian scheme of counting 

require the additional level f e ·ternal conversion ofrepre entation. 
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The diagram shows how the self correcting mechanism of the Piagetian scheme of counting (currently a 

full adder) is re--executed to bring the system back into equilibrium though the addition of a new full-adder. 

The presupposition that the addition of a new full-adder is the self-correcting mechanism is explained in terms 

of the initial creation of the full-adder. Initially, the student cannot count. In response to this, the reinforce 

process is used to generate Piagetian schemes of assimilation and accommodation. The reward for assembling 

such a scheme is provided by the Teacher. The utility of this process is the reuse of this scheme to enable the 

system to count ever-larger numbers. These steps show that the design can resolve the counting issue using a 

Piagetian model albeit, with the Student tracing out all the requests from the student command. This also 

presupposes that the Student has already constructed schemes that can relate the actions on the number line. 

However, this process does not make use of the predictive model. A worked example of the predictive model is 

included (§ appendix D.6). 
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Piagetian cherne: Prolog 

Becau e of the tw fold process of assimilation and accommodation, each Piagetian scheme is a 

complete proce which can be executed separately. The prolog and epilog processing in the design is one 

such separation. A depiction and analysis of its process in provided in figure 5-43 . 
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Figure 5-43 A depiction of a Piagetian prolog scheme with Argos schemes (red nodes) and contained Prediction 

schemes (blue and green nodes) that form part of the basic process of assimilation and accommodation. 

The intere ting point i that the prolog processing is a reasonably self- contained process that works 

within the Argo reactive y tern framework. It is imagined to be included into each Piagetian Scheme and is 

an example of the hierarchical nature of the Piagetian Schemes. The epilog processing, should work ill a 

similar way. 

Piagetian cherne: ounting Example 

Figure 5 4 i a depiction of a Piagetian Scheme that attempts to count using a network of Argos and 

Piagetian cherne. 
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{O.j~ O.5} / 2 

1200070 I Clas:s-16 

Method-RadiaIDrawing 

HFSA-3 PLO\GET ~lachine MOv"el~ Count 

Figure 5-44 A depiction of a Piagetian scheme that moves (reads) along a number line, interna1izes eacb of tbe 

values and then coun t them producing the res ultant counted value. The Argos scbemes (red nodes) and the 

Prediction cbeme (green and blue nodes) arc connected through synchronization and transitions to enable 

adaptation with the envi ronment. 

The intere ling feature is that all the processing takes place at the edges of the Scheme, since these 

contain the Prediction cherne. The central channel contains the set of Argos schemes that marshal the 

information to the Argo and Prediction chemes. The second interesting feature is its simplicity; it represents 

an executing cherne, but all it contain is hierarchies of finite state and HFSA, held together by an Argos 

framework. 

The compo ition of the Piag tian cherne is listed (figure 5-45): 
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~.a.eID EVCla .. ID Dueript;i01l Iut;ial Input; Out;put; rinal 
suu suu SUI;e suu 

1200070 16. Root;-PlAGtI(201l, 11, 27, 22, '0, 1.'900S7'} na na na na 
1200073 U. lJI.GOS(2011, 11, 27, 12, 50, 3'.5'11836] 

" 1200074 11. lJI.GOS(2011, 11, 27, 12, 49, 58.642l303} 
1200075 1. Buffer MachiDe-l 

" 1200013 U. Root;-ARGOS{2011, 11, 21, 12, 50, 3'.5U1836} na na na na 
1200060 1. Buffer MachiDe-1 

" 12000" 11. Root-lJI.GOS{2011, 11, 27, 12, '9, Se.6'21303} na na na na 
1200022 6. Bailie Gale XOR Machine-6 

" 1200023 ,. Basic Gale AND Machine-4 

" 1200024 ,. Bade Gale AND MachiDe-4 

" 1200025 6. Bailie Gale XOR MachiDe-6 

" 1200026 5. Basic Gale OIl Machine-S 
1200021 1. Buffer Machine-1 

" 1200028 1. Buffer Machine-1 

" 
Figure 5-45 This image depicts the contents of the Piagetian scheme for counting, showing how the different Argos 

and Prediction schemes are connected together using synchronization and transitions as described in the 

architecture and design. 

As for Argos schemes, Piagetian Schemes use the same mutation mechanism. The surprising thing is that 

a simple set of mutation rules (§ 4.2.1.1) can produce unexpected complexity to process and marshal 

information across a network. 

Piagetian Scheme: Evaluation 

Although this facet of the working simulation has not been shown, sufficient evidence of how a 

simulation could, given enough time and sufficient reward gradients, mutate a Piagetian Scheme that counts 

using embedded Argos and Prediction schemes has been provided. 

5.2.5.2 Evaluation of Complexity Values 

Using the resource usage information from the Argos schemes (§ 5.2.4.4) and performing a straight 

accumulation of values, for the different types of schemes, the following graph is produced (figure 5-46): 

Page 215 



Chapter 5. Evaluation 

Measures of Complexity 
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Figure 5-46 Mea ure of complexity of instances of scheme classes by type of scheme. Here the complexity is a 

simple measure of machine ( cherne) size. 

When one compare the complexity of Prediction, Argos and Piagetian Schemes one can get a sense of 

what Piaget referred to a maturation proce (§ 2.1.7.5,4.1, 2.3.5 and 2.3.11). The number of instances of 

different cla e of Prediction cheme and their low level of complexity is balanced by the complexity of the 

Piagetian cherne and their relative complexity, with the Argos schemes sitting in between. The element of 

time can al 0 be introduced on thi graph with the appearance in Level 1 of the Prediction Schemes. They 

coordinated action in Level- 2 and finally the interiorization of action in Level-3, then the appearance of Argos 

scheme to mar hal the information aero the prediction schemes in Level-4, and finally, the appearance of 

Piagetian cheme to be able to make u e of these Argos and Prediction Schemes through the internalization of 

the hierarchical pro c c . 

Once can al 0 draw parallel to the ob ervation of children, with their frequented repeated patterns of 

behavior and movement, with the example of the repeated movements on the number line which give way in 

later matunty to more omple behavior. 

5.2.5.3 upport for Worked Example 

The aim of the e te tit confirm how far the simulation can support the worked example (WEI -

WES). 

WE4-Hierarchical nit and WES General Relationships 

To upport hicrar hi al unit, the imulation need to be able to internalize external values and then 

manipulate them through en oding, counting and decoding their value . Evidence has been presented where a 
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Piagetian scheme can be mutated and can process these binary values. However, this is merely an architecture 

with worked examples that could support this processing. As such, the simulation fails both WE4 and WES. 

5.2.6 Satisfying the Constraints (LPI - LP7) 

The research has defined a set of constraints LPl- LP7 (§ 2.1.7) that any solution would need to resolve 

to be able to tackle the learning paradox. The results presented in this evaluation confirm the following. 

5.2.6.1 LP1: Works Within the Constraints Imposed By Fodor's Arguments 

By utilizing Prediction Schemes and Argos Schemes, Fodor's arguments and the need for a predictive 

model and how that will be used in the determination of truth has been discussed. 

5.2.6.2 LP2: Exhibits Emergence of Hierarchical Concepts using Evolutionary 
Process 

In chapter's 3 and 4, was developed an argument that concluded that the Piagetian model of learning and 

development used in this research is mirrored in the model of Drosophila. An analysis of how binary FSA and 

HFSA have parallels in developmental biology was then presented. Further, it was demonstrated that 

evaluation functions could be formulated in a similar fashion to TD Learning to form networks. From this, it 

was assumed that the Piagetian model was biologically plausible. In using mutation as an evolutionary process, 

it was shown how there is emergence of structure from a simple mealy machine to Prediction Schemes using 

the innate structures and reflexes (Pascual-Leone, 1980, p263) through Argos Schemes and to Piagetian 

Schemes. The development of symbolic forms through counting is an example which exhibits the properties 

defined by Piagetian schemes as "coordinated action" (Furth, 1969, p 125). The simulation exhibits the 

emergence of hierarchical concepts, including what would be considered as the simulations "symbolic forms," 

which themselves are more complex than its provided innate scheme and primary reactions (Pascual-Leone, 

1980, p263). It was demonstrated how Crutchfield's intuitive emergence (§ 2.2 on Crutchfield and A.9) can be 

used to detect these structures through visualization of the resultant forms. 

By utilizing the mutation mechanism, the capacity to develop increasingly projectible behavior, resulting 

in "concepts" such as "number" through the appearance of digital circuits as evidence of partially resolving the 

symbol grounding problem has been demonstrated. 

5.2.6.3 LP3: Operates Autonomously 

Aspects of the simulation where it works autonomously with minimal innate knowledge and can 

overcome internal problem situations by being able to process using earlier forms, for instance through the 

inclusion of prediction schemes has also been demonstrated. The process of equilibration and disequlibrization, 

which work to overcome errors, has been described. Described also is how the mutation mechanism always 
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produces valid schemes, but these may not necessarily produce the right answer. In doing so, correspondence 

to Firby (Firby, 1989) and cognizant failure has been explained. 

5.2.6.4 LP4: Mirrors Real World Behavior of Children Learning Number-Sense 
using a Number line 

As a real-world problem of developing number-sense, a solution to Piaget's bead problem (§ figure 1.1) 

has been produced. Also described are various scenarios where the cumulative behavior is similar to children, 

namely the development from simpler forms of Prediction Schemes to Piagetian Schemes and the expression 

of counting using composed digital circuits. The formalization of Piaget's bead problem (§ figure 2-1) using 

reflective abstraction is demonstrated as possible using the interiorization mechanism (§ 5.2.6). Though a 

complete solution that can be fully mapped to childhood development e.g., the development of all the 

mathematical forms observed in childhood (Copeland, 1974; Liebeck, 1984; Fennell and Landis, 1994) has not 

been developed, a foundation for further research has been laid, especially when one considers the use of a 

predictive model to ascertain truth. 

Further, it has been shown that Piaget's notion of genetic epistemology, and the development of the 

"logical and rational organization of knowledge and the corresponding formative psychological processes" 

(Piaget, 1970a, p13) is mirrored in the development of digital circuits principally using Prediction and Argos 

schemes. A workable explanation of the processes of assimilation and accommodation has also been developed 

using through the development of the Piagetian schemes, which is an improvement on present research 

(Drescher, 2002; Chaput, 2004). 

5.2.6.5 LP5: Learns Incrementally with Minimal Innate Knowledge and Reflexes 

It has been shown that the simple model of cognition from Drosophila (MiesenbOck, 2008, p52; Shang, 

Claridge-Chang, Sjulson, Pypaert and MiesenbOck, 2007, p601) can be mapped to a Piagetian Model (§ 2.3.5 

on Piagetian Model in Architecture and Design). The permanent object invariants emergent from the artificial 

neural network implementation can be utilized to produce more complex structures that allow the simulation to 

adapt to its environment using what it has already learnt. It has been demonstrated how the use of evaluation 

functions mirrors TD learning that allows the system to effectively bootstrap into more complex structures. All 

these processes use a trial and error approach, which is consonant with Piaget observations of early childhood 

(Furth, 1969, pI91). Because of their "binary nature," all these schemes are executable. If their "logic" is 

flawed', it is evidenced by their interaction, they make mistakes and recover. The solution of this research thus 

overcomes LPS. 

5.2.6.6 LP6: Develops its Learning Process 

The simulation uses a mutation prediction mechanism to construct schemes (Prediction, Argos and 

Piagetian) that exhibit required input sequences. It has been demonstrated that the system can learn to predict 

input sequences, based on what it has already learnt, by allowing the system to recombine existing schemes. 
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For example, a Prediction OR scheme, or Argos Full-Adder or Piagetian Prolog Scheme can be reused, so the 

system does not need to learn this process again. In doing so, the simulation supports LP6. 

5.2.6.7 LP7: Acts in Novel, Opportunistic and Noisy Situations 

For example, in showing the evolution through mutation of prediction schemes, it has been illustrated 

how the system acts in situations with noisy data. Though examples of opportunistic and novel situations have 

not been specifically shown, a sound basis on which to conduct further research has been established. 

5.2.7 Scalability 

This research has principally focused on the development of number-sense on a number line using a 

Piagetian / Drosophila (MiesenbOck, 2008) model. Though not complete, results have been provided from an 

artificial neural network implementation in which has been identified the emergence of permanent object 

invariants in the environment (§5.1.1) and coordinated action using the identified permanent object invariants 

(§5.1.1). This research has shown how a dialectic system identifies regularities in the environment e.g., pen 

state, point, line, distance, using predictive FSA (§5.2.1) and exhibits coordinated action using combinations of 

sets of identified regularities, in the environment e.g., drawing a line (§5.2.1). It has also been illustrated how 

the Piagetian process of interiorization (§5.2.1) can occur through the development of propositional logic 

components using internalized binary values (§5.2.3). It described how Argos machines (hierarchical finite 

state machines that include embedded propositional logic components) can be evolved into digital circuits e.g., 

full adders, encoders and decoders (§5.2.4). It also explained how counting using Piaget's scheme process 

could work by reusing existing Argos machines (§5.2.5). Further, these results have described how Piagetian 

processes81 can be understood in terms of a simulated student that uses evolution as its learning process 

(§4.2.2.5) using FSA and HFSA that manipulate digital circuits. This approach is valid because the process of 

evolving circuits has been shown by other researchers to be universal (Koza, 1992, p647; Greenwood and 

Tyrrell, 2006). This research further concludes that the internalization and development of digital circuits using 

a Piagetian model (§2.3.6 and 5.2.4) where schemes are assimilated and accommodated using a simple 6 

algorithm process (algorithm 16, 17, 18 and 19, see §4.2.3) provides a constrained mechanism for interaction 

with the environment. This process, where the simulated student uses schemes to act / sense, learn and plan in 

a number-line world with external rewards, provides a structure for evolving machines for basic arithmetic on 

"small numbers." 

Though this "small numbers" approach has not been specifically proven in this research, a simulation 

could be scaled to include other Piagetian forms, such as logical connectives, spatial concepts, separation and 

order which are used in more complex mathematics (§C.l). Since this research has shown how the developed 

solution resolves the Piagetian bead problem (§ figure 1-1, figure 5-27 and 5.2.2.5) through conservation, it 

81 Piagetian processes, for example: knowing circle, assimilation, accommodation, equilibration and 

developmental trend (§2.3). 
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can be further predicted, that a suitable solution could be extended to include other mathematical forms, such 

as those observed in childhood (Copeland, 1974; Liebeck. 1984; Fennell and Landis, 1994). These could 

include the following: place matching, sorting, pairing, multiplication and division, once the fundamental 

construction of Piagetian schemes emerges. Using this approach, it is believed to be possible to address the 

development of rational number-sense as originally postulated by Bereiter (Bereiter, 1985, p202) and 

described elsewhere (§C.2). Since the process in the system developed in this thesis essentially bootstraps from 

simpler forms - in this paper, the simple mealy machine (§ figure 4-13), using evolutionary computing - it is 

suspected that it could perform more complex processes, once the simulation matures. 

It could be argued that all this research creates is what Dehaene refers to as the underlying "innate" 

ability for small number (Dehaene , 1997; Dehaene, Izard, Spelke and Pica, 2008; Fuhrman and Boroditsky, 

2010; de Hevia, Girelli and Macchi-Cassia, 2012). On reflection, this may well be true, yet Piaget had already 

observed this aspect of childhood development and associated it with features of assimilation and 

accommodation (piaget, 1952, p 154). In terms of scalability, this project has merely provided a base for further 

analysis of his theories, which, it is suspected, will be relatable to the work by other researchers. 

5.2.8 Resemblance of Argos Schemes to Macaque Brains 

An interesting parallel can be drawn between recent research on the processing pathways in Macaque 

brains (Modha and Singh, 2010, p13488) and Argos schemes (figure 5-47) 
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Figure 5-47 Comparison of processing in Macaque (left Side) and Piagetian schemes (Right Side), (Modha and Singh, 2010, p13485). 
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In their directed network "Hubs distribute information, whereas authorities aggregate information" (Modha and Singh,2010, p13488), one can tangibly 

correlate hubs with Argos Schemes that marshal information over Prediction Schemes, which is how authorities process information as a digital circuit. 
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Further, when one reviews the work of Albus, one can draw parallels to the Piagetian architecture of 

figurative schemes and assimilation to receptive field hierarchy and the event hierarchy to accommodation and 

operative schemes (Albus, 2000; 2008 and 2010b, pI93). Only future work will be able to evaluate this claim. 

5.2.9 Summary of Dialectic Evaluation 

This chapter provided an evaluation of the dialectical system with a series of results being produced 

(Level-l - Level-4). 

Level-l starts from the evolution of simple schemes to identify objects in the number line world. Level-l 

results confmn that the simulation can act/sense and learn in a number line world. Specifically, like the 

artificial neural network implementation, the simulation can detect regularities in the environment of point, 

line, direction, and penState using a prediction mechanism. In also supports tasks in WEI and WE2 the 

worked example. Observations suggest conservation and the development of structure in the simulation as a set 

ofFSA. 

Level-2 results show that the evolved dialectical system exhibits coordinated action including acting and 

sensing and learning using movements from fixed and relative positions. These Level-2 results confirm an 

explanation for resolving WE3 and Piaget's bead problem (conservation of number). It would seem that these 

results suggest the emergence of number, but Piaget would attest that number can only be experienced as 

internalized action, and that these are intermediate results. 

Additional evolution of the dialectical system at Level-3, show that the dialectical system can develop 

internalized structure as propositional logic components in digital circuits, along with dialectical student 

actions from a teacher. Level-3 results suggest that it can work autonomously: yet even this is not the 

appearance of number. Further evolution of the dialectical system to Level-4 is necessary to enable the 

dialectical system to generate Piagetian schemes, which can reuse existing Argos and Prediction schemes and 

with evolutionary computing, internally construct digital circuits. 

Observations of Level-4 results suggest the emergence of structure, specifically number through 

internalized action. Presented examples include the Piagetian mathematical operations of equivalence (§ 

4.2.2.5), counting (§ 5.2.5.1) along with encoders (§ 5.2.4.2) and adders (§ 5.2.4.3). It is at Level 4 that support 

for all the defined tasks of worked example could be achieved. These Level-4 results show that equivalence 

requires interiorization, and that disequilibrationlequilibration is a stabilizing mechanism for Piaget's 

developmental trend. It is also at Level 4, that Piaget's need for a parallel in the development of learning and 

logic is realized (Piaget, 1970a, pI3); since the digital circuits in the Piagetian and Argos Schemes, form their 

own "logic of co-ordination" (Furth, 1969, p 125). 

A discussion on the scalability of the approach considered how a series of tests could be performed to 

support more complex mathematical forms including multiplication, measuring (Copeland, 1974) and other 

methods (Liebeck, 1984), as well support the development of rational number-sense. 
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5.3 Summary 

In this chapter was described an evaluation of an artificial neural network and a dialectical system 

implementation of a Piagetian model of cognition. Its purpose is to determine if project aims 7 and 8 (§ 1.2) 

have been met. The main evaluation criteria used were those constraints any solution that attempts to resolve 

the learning paradox will need to resolve (§ 1.2.7 for a definition of LPI - LP7). The solution was evaluated 

against an example problem of numerosity in a number-line world (§ 2.3.14 for a definition of WEI - WE5), 

which were included in these research experiments (§ 3.5). Finally, this project was discussed in terms of 

scalability and considered related work. 
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6. Further Work 

This project is an evaluation of the epistemological implications of the learning paradox, as it applies to 

the childhood development of number-sense using a number line. This thesis has argued that Piaget's genetic 

epistemology (Piaget, 1970a; Furth, 1969; Copeland, 1974) provides a framework for a solution that explains 

childhood development, but not its biological basis. An analysis of biology and evolution provided a plausible 

model of emergence of structure using a model of Drosophila (Miesenbock, 2008). A case is made that FSA 

and reinforcement learning provided a plausible mechanism to build a simulation for emergence. In 

reevaluating the roots of Piaget's genetic epistemology, it is demonstrated that his cognitive processing of 

assimilation and accommodation is mirrored in the model of Drosophila. A review of the observations of the 

development of the mental number line, provided arguments to support using a number line in the development 

of number-sense by the simulation. By contrasting this approach to emergence against other mathematical 

concept formation models (Colton, 2000; Colton, 2002), this simplistic model is at a much lower level. 

Similarly, in evaluating models of metaphorical concept formation (LakofT, 1992; LakofT and Johnson, 1980; 

LakofT and Nunez, 200 I; Fauconnier, 1985 and Fauconnier and Turner, 2002) this approach provided a model 

of emergence as suggested by Fauconnier (Fauconnier and Turner, 2002, p146; Guhe et al., 2011, p250). By 

comparing and contrasting this method to models of cognitive development, issues that would need to be 

addressed including the symbol grounding problem were identified, and it was concluded that this approach is 

an emergent model. By comparing and contrasting this reevaluated model of Pia get to existing Piagetian 

implementations, uncovered the fact that they were not solving the same problem. Finally, in reviewing other 

machine learning frameworks, the conclusion was reached that they were not specifically addressing the 

learning paradox, only providing interesting areas for further work. 

There are many ways this research thesis could be extended. These include improving the implementation 

of Piagetian methods described in § 6.1, deepening the model of cognition, described in §6.2 and extending 

this model to fully resolve the learning paradox, described in § 6.3 and § 6.4. These improvements and an 

estimation as to whether each improvement would be a long or short-term project will be discussed in this 

chapter. 
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6.1 Improving the Implementation of Piagetian Methods 

6.1.1 Singular Evolution for Finite and Hierarchical Automata 

For expediency, the architecture of the system was separated into FSA and HFSA. A more appropriate 

solution would be to assume an initial hierarchical perspective and then separately evolve Prediction, Argos 

and Piagetian Schemes This would further provide evidence to support Piaget's notion that a "genetic 

epistemology" (piaget, 1970a) is a mechanism to partially resolve Fodor's learning paradox (Fodor, 1980). 

This is a small project, but the development of a set of libraries would significantly add to discussions on 

evolutionary development. 

6.1.2 Developing the Predictive Model 

Though not implemented, the design suggests that making use of a predictive model, one that consumes 

schemes, would be a useful avenue for future research for two reasons. First, it is expected, like planning in 

reinforcement82
, that using a predictive model would speed up the cognitive process. Second, Piaget 

anticipated that abstract forms only occur through play and the use of the predictive model is indicative of play 

(Furth, 1969, p95-98; Furth, 1969, pI56). It is believed that planning is an evolutionary process to conserve 

resource usage, which would add greatly to the range of activities and problems that could be tackled. 

Appendix D - Further Examples of Dialectic Evaluation (§ 0) provides a simple model of how the predictive 

model would work. The development of the predictive model is believed to be a substantial project. 

6.1.3 Using Intrinsic Rewards 

The dialectic system's implementation could be improved by adding intrinsic motivations; the current 

reward process is built using evaluation functions. This could be completed by fully implementing the rewards 

process used in TO learning (§ A.6.2 on TO Learning and § 4.2.1.1 in Architecture and design). This would 

make the system more autonomous by allowing it to make use of curiosity rewards (as occurs in the artificial 

neural network implementation) and support the development of the predictive model. 

6.1.4 Incorporating Emergent Schemes 

Changes to the mutation mechanism may allow the use of emergent schemes based on observed 

regularity in the environment. This would, enable the simulation to "fully reuse" what it has already learned 

and more easily adapt to its environment. These emergent schemes effectively give the simulation, the capacity 

that Bereiter referred to as bootstrapping (Bereiter, 1985, p202). Ideally, this would be combined with the use 

of intrinsic motivations. This will be a medium size project. 

82 Reference is made here to the evaluation of reinforcement planning stages. 
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6.1.5 Expanded Use of Memories 

Since this research builds memories as Prediction, Argos and Piagetian schemes (as FSA and HFSA), it is 

quite possible that memories could be added to the system. Since memories are executable machines, these 

memories would provide the system with new capabilities. For instance, a scheme could be hand crafted, or 

have a specific evaluation function to classify objects, or it could have new senses that the system could utilize. 

Similarly, sets of executing systems in different domains could share "schemes." A problem that would need to 

be overcome is what constitutes a shared ontology. This is important for multiple reasons, not least of which is 

that the majority of what schemes do is classify, but if this classification is provided externally, it could 

provide significant benefits for the simulations predictive capabilities. This is thought to be a medium sized 

project that would benefit to the overall approach. 

6.1.6 Using Play to Develop Metaphors 

Consideration was given to the possibility that Piagetian play might support the development of 

metaphors (Fauconnier and Tumer, 2002). For instance, Piaget considered play essential to the formation of 

language (Furth, 1969, p156; Furth, 1969, p96). Play in the Piagetian sense is a form of planning. Therefore, 

the development of a predictive model is thought of as an essential step to expand the capabilities of this 

model. This will be a medium sized project. 

6.1.7 Constraining Resources to Force Planning 

By building a model of resource constraints (pascual-Leone and Goodman, 1979; Pascual-Leone, 1980 

insights will be gained into the formation of concepts in a Piagetian model. Consider how the limit of 1 m 

CCUs (Albus, 2008; 2010) would affect the building of the receptive field hierarchy and the event hierarchy. It 

is anticipated that the simulated model of Drosophila would rely on planning (mental image and evocation) to 

make more effective use of available resources and so be more adaptive to its environment. Further, it would 

be interesting to correlate this research to Pascual-Leone's notions of M-Capacity and M-Demand (Pascual

Leone, 1976, 1980 cited by Bereiter, 1985, p201). The limit of the availability of mental attentional energy 

(M-Capacity), as well as the resources required to complete the assigned tasks (M-Demand), could be 

identified in the simulation and compared to published results for students in the concrete operations stage of 

development (Bereiter, 1985, p221). If improvements could be identified in the simulation and transposed to 

changes in human performance, then the educational validity of the approach could be established. Similarly, it 

may be possible to formally relate the work of Pascual-Leone strategy to the approach used in this research to 

form a bridge between the two Piagetian views. This will perhaps be a medium project, since the development 

of the planning process would need to be completed first. 
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6.2 Deepening the Model of Cognition 

There are several ways to improve upon this research's understanding of cognitive models. The 

coordinated evolution from simplistic schemes to more complex hierarchical schemes may provide interesting 

insights to the interaction of acting/sense, learning and planning in humans. 

6.2.1 Extended Evaluation for Rational-Number-Sense 

An active area for further development would be to complete the implementation of HFSA and then run 

the simulation against the worked example WEt - WES, including the definitions for rational number-sense 

(§ C.2.1). The WE6 results could then be compared to the results from the rational number project (Cramer, 

Behr, Post and Lesh, 1997a and 1997b). This would provide further evidence that the solution approach was 

valid or conversely was not valid. A useful process would be to provide executable traces of the system and 

relate these to the assumed Piagetian cognitive processes, the design features and a trace of a child performing 

similar "novel" tasks. This could provide deeper insights into the processes of learning and development, and 

of emergence of structure itself. It is suggested that this is a large project which would extend the range of 

features of the system and include aspects of § 6.1.1 singular evolution and § 6.1.2 using the predictive model. 

6.2.2 Comparisons to Models of the Mental Number line 

An interesting area for future research would be to evaluate Siegler's number line task (Nuerk, 

Helrnreich, Zuber, Moeller, Pixner, Kaufmann, 2011, p598) against benchmarks for students and this research. 

In a similar vein, it may also be possible to determine the Piagetian Stage of the student. This would provide an 

effective way of grading the systems capabilities. It may also be able to analyze the logarithmic to linear shift 

as observed in the use of the MNL (Dehaene, Izard, Spelke and Pica, 2008) against this research to see if bias 

could be added. It may be possible to determine the specifics of a mechanism for spatial representation of time 

and number using a MNL (Fuhrman and Boroditsky, 2010, p1432). Similarly, further work could determine 

the mechanics of left right bias using a MNL (Opfer, Thompson and Furlong, 2010, p761). This would be a 

very difficult project, for it relies on the complete development of a solution and the construction of sensory

motor bias mechanisms. 

6.2.3 Comparison to Other models of Mathematical Cognition 

With a complete solution it may be possible and interesting to make comparisons to other models of 

mathematical cognition; for instance, to determine how the appearance of structure compares to formal models 

of mathematical discovery (Colton, 2002), as well to compare the Piagetian model of the childhood 

mathematics development (Copeland, 1974; Furth, 1969) to the more formal model of mathematicians 

(Lakatos, 1976 cited in Pease, 2007, p218). Similarly, it may be interesting to compare the algorithmic 

approach to conceptual blending (Guhe et aI., 2011, p253) against an emergent structure approach as used in 
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this research. This will be a difficult project, for it requires the development of a full solution, as well as the 

integration of different conceptual models. 

6.3 Extending the l\Iodel 

6.3.1 Using Vision to see Beyond a Number line 

It may be possible to extend the dialectic system using techniques from machine vision. For example, the 

eigen-background approach (Rymel Renno, Greenhill, Orwell and Jones, 2004) could be used to detect 

moving objects on a number line. Similarly, line trajectories (Ren, Orwell, Jones and Xu, 2004) could be used 

to predict ending movements on a number line. This research could use these approaches to "see" statistical 

regularity and "geometry" which would extend processing into three dimensions. It may also be possible to 

relate the notion of concept formation to concepts in visual systems (Le, Ranzato, Monga, Devin, Chen, 

Corrado, Dean and Ng, 2012). This would be a small project, which could be undertaken in a reasonable 

amount of time. 

6.3.2 Optimization and Simplification through Formal Methods 

It may be possible to simplify the approach by writing out the deterministic equations of assimilation and 

accommodation and compare them to TD Learning (Streeter, Oliver and Sannier, 2006; Suri and Schultz, 1998, 

p350; Schultz, 2000, p201; Schultz and Dickinson, 2000, p475; Fiorillo, Tobler and Schultz, 2003, pI898). 

This may provide insights into the process of emergence, which has been shown to occur in the use of the 

Verve toolkit (§ 5.1 on evaluation of artificial neural network implementation). It may also be then possible to 

compare the model developed in this thesis the formal model provided by Pascual-Leone (Pascual-Leone and 

Goodman, 1979; Pascual-Leone, 1980; Pascual-Leone and Johnson, 1999). This would be a small project, 

which could be undertaken immediately, but would be tricky because it would need to account for 

development of the learning process. 

6.4 To Fully Resolve the Learning Paradox 

It may be possible to fully resolve the learning paradox. This research provides an initial bridge between 

multiple disciplines by showing how a cognitive model originally proposed by Piaget (Piaget, 1952) in the 

early part of the 20th century still has validity in the current age of neurophysiology and machine learning. This 

can be accomplished in three ways (1) By correlating the Piagetian model of genetic epistemology to a model 

of Drosophila (MiesenMck, 2008, p52; Shang, Claridge-Chang, Sjulson, Pypaert and Miesenbock, 2007, 

p601). (2) By identifying the similarities of the outputs of HFSA / FSA solution developed in this thesis to 

recent representations of brain scans (Modha and Singh, 2010, P 13488) - in which there is a separation of 

processing. (3) By showing the similarities to the cognitive processing models provided by Albus and Grainger 

(Albus, 2000; 2008 and 2010b; Grainger, 2006a, pI8 Granger, 2006b) to the model of Piaget. There are 

remaining issues that need to be resolved. Each of these issues has been discussed in the preceding section, 
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though only those critical areas are listed: expanded use of memories (§ 6.1.5); developing the predictive 

model (§ 6.1.2); using intrinsic rewards (§ 6.1.3); incorporating emergent schemes (§ 6.1.4); using play to 

develop metaphors (§ 6.1.6); constraining resources to force planning (§ 6.1.7) and using singular evolution (§ 

6.1.6). This would be a complete research project requiring a great deal of skill as well as resourcefulness to 

accomplish. 

6.5 Applications of this Research System 

Four key applications of the techniques used in the research solution are identified. 

6.5.1 Classification Systems 

It was suggested that it is possible to build a Piagetian model of concept formation. This may provide new 

techniques in the development of classification systems. 

6.5.2 Concept Formation using a Piagetian Model 

This research suggests that it is possible to build a simulated Piagetian model using mutated binary 

HFSA. This simulation builds digital circuits to count using a process of assimilation and accommodation. This 

is an interesting area for concept formation, since Piaget's notion of developmental action coordination is 

significantly different from other surveyed methods of concept formation. This is notable for two reasons: (1) 

It sidesteps the existing limitations of cognitive development models (§ 2.1.7 Fodor on LPI - LP7) and 

provides an action graph of the concept, through the processes of assimilation and accommodation. (2) The 

basis of the model is the development ofa reactive system (Maraninchi and Remond, 2001; Maraninchi, 1992) 

as a form of evolvable hardware (Greenwood and Tyrrell, 2006). Given the significant amounts of research on 

both these topics, it seems feasible that it provides a fertile ground for further research. If the system can 

generate novel concepts, and can be given sufficient sensory motor capabilities, then it may be possible for text 

classification to emerge in a similar way to its emergence of number-sense. 

6.5.3 Piagetian Studies 

It may be possible to apply this approach to the continuing study of Piaget's work, since it provides an 

interesting view of interiorization, assimilation, accommodation and the abstract process of the knowing circle 

(§ 2.3 on The Roots of Genetic Epistemology). 

6.5.4 Conceptual Blending 

As an evolvable mechanism, this research provides an interesting area for further analysis of concept 

formation, especially when one realizes the need for a model of emergence of concepts in conceptual blending 

theory (Fauconnier and Turner, 2002, p146; Guhe et al., 2011, p250). 
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6.6 Conclusion 

This project evaluated the learning paradox from a number of research perspectives and developed a set 

of constraints (LPt - LP7) and a worked example (WEt - WES) by which to grade potential solutions. In this 

way, it produced a biologically plausible model of Piaget's genetic epistemology and implemented it using a 

mutation model of binary HFSA. Though not complete, it provides a sound basis to conduct more research on 

the childhood development of number-sense. The hope was to demonstrate that, it is both possible and useful 

to provide a computational reading of Piaget's ideas. This work is only a preliminary reading and there are 

many future directions, which the project could take. These directions have been discussed in this chapter. 

Further possibilities, which could be valuable and interesting endeavors to pursue, include the following: 

(i) Improving the implementation model through the singular evolution of finite automata and the 

implementation of a predictive model to support the notion of play and metaphors. The use of intrinsic rewards 

and emergent schemes would support behavior that is more autonomous. A more complete model could be 

supported by expanding the use of memories and play by constraining resources to force planning. 

(ii) By extending the model to support rational numbers along with comparisons to early childhood 

mathematics research and concept formation would deepen the model of cognition. 

(iii) By extending the model through the use of machine vision would allow the system to explore other 

spaces, and provide interesting areas for concept formation. 
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7. Conclusions 

Pascual-Leone defines Fodor's problem as the learning paradox (pascual-Leone, 1976, 1980 cited by 

Bereiter, 1985, p202) which is a meta-theoretical problem and is defined by a meta-theoretical question: "How 

can a structure generate another structure more complex than itselfl" Piaget's position on the learning paradox 

is that new concepts can be learned through the normal learning process, without requiring that additional, but 

unused capabilities exist (Fodor, 1969). Piaget's work is still relevant today, as evidenced by the continued 

work on his theories (Drescher, 2001 and Chaput, 2004). 

Piaget's work is of interest to researchers in cognitive psychology and artificial intelligence, since it 

provides an account of the emergence of structure that is biologically plausible, which is also rich in detail and 

structure. The field artificial intelligence and neurophysiology provides the tools to gain a novel perspective on 

Piaget's work. This thesis is the story of the present exploration of the relationships between these three fields. 

The main hypothesis of his research study is that a Piagetian model of human cognition exists that 

explains emergence and so resolves the learning paradox. A secondary hypothesis is that a biologically 

plausible model of mathematical cognition exists. Finally, a hypothesis is proposed that hypothesis 1 and 2 can 

be modeled and implemented in a simulation with number-sense as an emergent property of the executing 

system. In § 7.1 strong evidence has been provided for these positions. In § 7.2, the contributions of this thesis 

is discussed and brought to a conclusion in § 7.3. 

7.1 Have the Aims Been Achieved? 

In § 1.2 the aims of this project were to: 

1) evaluate epistemological solutions to the learningparadox; 

2) evaluate sources of emergence; 

3) provide a computational reading of Piaget 's theory; 

4) clarify emergence in a real-world worked example using a number-line; 

5) compare and contrast different notions of mathematical concept formation; 

6) provide arguments to support a separation into an artificial neural network implementation and a 

dialectical system: 

7) evaluate the evaluate the artificial neural network implementation: and 
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8) evaluate the dialectical system implementation. 

Achieving the first of these aims provides evidence for the primary thesis. It was shown that a possible 

epistemological resolution to the learning paradox occurs through normal development, as formalized by 

Piaget's theory of genetic epistemology (Furth, 1969; Copeland, 1974). The remaining seven aims suggested 

ways in which providing such a reading would be a useful endeavor to undertake. 

The first aim was achieved by reviewing the epistemological issues associated with the learning paradox 

in which the need for emergence was identified (§ 2.1). This included identifying a set of constraints (LPt -

LP7) any solution would need to overcome to resolve the learning paradox. Candidate solutions were graded 

using these constraints. 

The second aim was accomplished by reviewing the biological basis of emergence where it was 

detennined that a simple model of emergence in Drosophila was probably preserved in evolution. Also 

confirmed was that actor-critic temporal difference learning provides mechanisms for emergence (§ 2.2). 

The third aim was fulfilled developing a computational model of emergence of Piaget's theory through a 

close reading of Furth (Furth, 1969) and Copeland (Copeland, 1974), in (§ 2.3). Parallels were drawn between 

Piaget's theory and a model of Drosophila that inferred a biological basis for Piaget's theory. A worked 

example was also developed (WEt - WES) based on an analysis of Piaget's theory that was used to evaluate 

the research solution. 

By comparing and contrasting the worked example of Pia get ian development (WEt - WES) to research 

on concept formation using the mental number line, the fourth aim was met (§ 2.4). 

The fifth aim was accomplished by using the constraints (LPt - LP7 and the worked example WEt -

WES) to review and determine if existing solutions have emergent concept formation without side stepping the 

issues associated with the learning paradox. The following solutions were considered: automated reasoning and 

theory formation in pure mathematics (§ 2.5), metaphors and conceptual blending theory (§ 2.6), cognitive 

development models (§ 2.7), existing Piagetian implementations (§ 2.8) other machine learning frameworks 

not covered by cognitive development models (§ 2.9). 

In performing the literature review, a set of principles under which any solution would need to work were 

identified, and then, through determining a limitation of existing artificial neural network solutions, the need 

for a two-part solution as an artificial neural network implementation and a dialectical system was identified 

(§ 2.10), thus achieving the sixth aim. 

This research system has enabled the evaluation of the methods used, thus achieving the seventh and 

eighth aim, by allowing the conduction of empirical experiments and their evaluations. Specifically, a worked 

example was defined (WEt - WES) based on Piagetian theory (§ 2.3.14) demonstrating how a simulation 

working only in a number-line world could have emergent number-sense using a biologically inspired 

Piagetian model (§ 2.3). The architecture and design was constrained to a biologically plausible model of 

Piaget that also worked within the constraints that were defined in this study (§ 4). Further, the experiments 

that were defined identified the emergent behavior that was anticipated would be observable in the executing 

system (§ 2.3). 
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These results are described in chapter 5. In particular, three hypotheses have been tested: 

1) Is it possible for an artificial neural network implementation to show emergence of permanent 

object invariant as predicted by Piaget? 

2) Is it possible to build a computational model of Pia get (the dialectic system) that adheres to the 

constraints imposed (LPI - LP7)? 

3) Is it possible to build a full computational model of Pia get (the dialectic system) that adheres to 

worked example (WEl- WES)? 

Results from this evaluation (§ 5.1) show that the artificial neural network implementation has met point 

1 (the seventh aim). Further results (§ 5.2) show that point 2 has been met, but not point 3 (the eighth aim). 

Further work is required to develop a full solution that can resolve the learning paradox with a biologically 

plausible model of Pia get's theory that shows how a simulation can develop number-sense. 

7.2 Contributions 

This is not the first, but is a thorough investigation of Piagetian theory as it applies to the emergence of 

number-sense. A contribution is made in the following areas: computational cognitive psychology, 

evolutionary computing and concept formation systems. 

7.2.1 Computational Cognitive Psychology 

A contribution to computational cognitive psychology has been made by providing a novel perspective on 

Piagetian theory. The computational model of Piaget's genetic epistemology draws parallels to a model of 

Drosophila (Miesenbock, 2008, p52; Shang, Claridge-Chang, Sjulson, Pypaert and MiesenbOck, 2007, p601) 

and actor-critic temporal difference learning. This computational similarity has suggested new ways to view 

the Piagetian processes of assimilation, accommodation, reflective abstraction and interiorization as facets of 

biological processes, which have been related to other sources (Albus, 2008; Albus, 2010). The emergence of 

these "digital circuits" as Piagetian schemes provides an argument for reexamining Piaget's "logic of 

development" (Piaget, 1970a, pI3). It also provides the "emergent logic," as required for the emergence of 

concepts in conceptual blending theory (Fauconnier and Turner, 2002, p44 and pI46). 

7.2.2 Evolutionary Computing 

A contribution to evolutionary computing has been made by extending the capabilities of a computational 

model of evolution (Jacob, 2001) and binary FSA (Levy, 2002) with classed based evolution. This improves 

upon existing methods and builds digital circuits by providing a separation of concerns for mutated 

propositional and predicate components that use a Piagetian model of emergence. 
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7.2.3 Concept Formation Systems 

A contribution to concept formation systems has been made by defining a set of constraints (LPt - LP7 

and a worked example WEt - WES) has been used to grade existing candidate solutions. This improves upon 

existing evaluation criteria by providing a benchmark of early childhood development of number-sense, which 

can be used to determine if there is the emergence of concepts, and so resolve the learning paradox. 

7.3 Conclusions 

Understanding how to overcome the learning paradox (creating a structure more complex than itself) is a 

challenge to researchers in the field of artificial intelligence, as well as to cognitive psychologists and 

educationalists. Piaget has shed some light on the problem and provides a model of how children naturally 

overcome it as they mature. Piaget's insights and theory has been used to develop a model of evolved cognition 

that is mirrored in a model of Drosophila. This thesis has demonstrated that an artificial neural network 

implementation shows emergence of structure, but cannot develop a Piagetian form of number-sense. It also 

shows that a dialectic system can implement a fuller Piagetian model of development that exhibits emergence 

of aspects of number-sense. In doing so, this thesis improves upon the state of the art models of emergence and 

Piagetian models in particular. 
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A. Evolution and Emergence 

In § 2.1.7, a set of constraints (LPI - LP7) is defined that would need to be met by any simulation that 

attempted to tackle the learning paradox using a Piagetian model. Since evolution has already resolved the 

learning paradox, in this appendix some key aspects of biology and evolution are reviewed, and then discussed 

with the purpose of discerning how they can be simulated and tested for emergence without contradicting the 

identified constraints. Specifically, simple models of emergence of structure in ant colonies and fruit flies are 

discussed. These are related to techniques to model neural networks, and the nature of hierarchical models and 

the need to validate the approach of using a number line world are evaluated. Also evaluated are the 

mechanisms that simulate evolution as well as how the storage and concurrency issues can be resolved by 

using FSA within a reactive systems framework. 

A.1 Simple Models of Emergence of Structure 

"How does evolution produce increasingly fit organisms in environments which are highly 
uncertain for individual organisms? How does an organism use its experience to modify its 
behavior in beneficial ways (i.e., how does it learn or adapt under sensory guidance)? How 
can computers be programmed so that problem-solving capabilities are built up by 
specifying what is to be done rather than how to do it?" (Holland, 1975, pi) 

There is emergence of structure in the collective behavior of ant colonies, for instance in searching for 

food (Johnson, 200 I, p45). This is evidence of them solving LP5 and LP7, as an optimization problem. This 

process can be simulated using swarm techniques where simple rules, embodied in agents, using vast 

populations, are shown to exhibit novelty in opportunistic and noisy situations. They can solve problems of 

routing, assignment, scheduling and subsets (Dorigo, Birattari and Stutzle, 2006, p34). Wolfram sees this 

emergence as order from randomness and uses simple cellular automata to simulate these characteristics 

(Wolfram, 2003, p223). These processes can be mapped to biological processes (Wolfram, 2003, p383 and 

p398). The current swarm models are not applicable to this research, since their simulations do not produce the 

more complex ant social model, and it is necessary to model aspects of human cognition. These swarm rules do 

not support a Piagetian model, since they do not have the capability to develop their learning process, nor 

planning and so fail LP6. 
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A.2 Fruit Fly Models of Emergence 

A model of Drosophila provides an internal engine that is more complex than a simple set of ant colony 

rules, and explains how their brains switch between acting/sensing, learning, planning (MiesenbOck, 2008, 

pS2; Shang, Claridge-Chang, Sjulson, Pypaert and MiesenbOck, 2007, p601). Their research engineered the 12 

neurons in Drosophila so that these could be switched on artificially by the use of an external light source 

(blue/red). Experiments showed that this switch was a determining factor in whether the fly incorporated 

experiences which were "learned," "remembered/performing" or whether they became negative experiences, 

even when the experiences would not normally lead to any change in behavior (MiesenbOck, 2007). Since 

many aspects of the basic pathway are probably conserved evolutionarily, the fly studies research provides a 

simple model for cognition that can provide a mechanism to resolve LP6 and this requires implementation as a 

neural model. It is assumed that this model of Drosophila has similarities to a Piagetian model of learning and 

development. 

A.3 Techniques to Model Neural Networks 

Given that evolution has produced the neural networks in fruit fly and human brains, and also cell 

networks, it is important to use a biologically plausible simulation mechanism. Two approaches are suggested, 

artificial neural networks and FSA. 

A.3.1 Artificial Neural Networks 

Many researchers have used artificial neural networks with supervised, unsupervised learning and self

organizing methods to address problems such as pattern recognition and prediction (Carpenter, Grossberg, 

Rosen, 1991; O'Reilly and Munakata, 2000; Sun, 2004; Drescher, 2002; Sutton and Barto, 1998 and Streeter, 

Oliver and Sannier, 2006). These researchers make use of back-propagation, linear and radial basis neural 

networks amongst others. The approach used in this research are linear and radial basis neural networks, 

principally because they were available in the Verve toolkit (Streeter, Oliver and Sannier, 2006). 

A.3.1.1 ANNs: Where is the Problem? 

A lack of hierarchies in current artificial neural networks means that they cannot resolve LP2. In 

addition, neural networks are seen to be difficult to implement. When this is combined with a need for a "full" 

Piagetian model, the decision was made not to pursue a pure artificial neural network implementation. 

A.3.2 Finite State Automata 

Minsky proved that every "finite-state machine is equivalent to, and can be simulated by some neural 

net" (Minsky, 1967). In this, Minsky showed that McCulloch and Pitts neurons (McCulloch and Pitts, 1943, 

p 115) could be modeled, by Mealy machines. A FSA can also be considered as an abstraction of very simple 

biological cells (Kauffman, 1969). The initial state can be compared to the maternal factors for a zygote cell. 
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The inputs are the inter-cellular communication proteins, hormones and environmental factors. The outputs are 

the physiological properties of the proteins produced by behavioral genes. Each state bit is a binary abstraction 

of the concentration of one or more specific proteins synthesized in the cell (Kauffman, 1969; Kumar and 

Bentley, 2003). More recent research has shown that even chemical reactions can implement FSA, with some 

even being able to count (Hjelmfelt, Weinberger & Ross, 1992, p383). 

A FSA can be implemented as a synchronous sequential circuit consisting of a sequential logic section 

and a combinational logic section (Minsky, 1967). The outputs and internal flip flops (FF) progress through a 

predictable sequence of states in response to a clock and other control inputs. Each FSA contains a state 

variable which holds its present state and a memory section and a control section that controls the next state of 

the machine (by clocks, inputs and present state). FSA read their input once and are deterministic. They seem 

trivial, yet they playa major role in the modem analysis of hardware and are used to prove the decidability of 

complex logical theories, one example being Presburger's Arithmetic. Two main methods exist: Moore 

machine and Mealy machines. A Moore machine outputs are generated as products of the states i.e.; the output 

values are determined solely by its current state. A Mealy machine output values are determined both by its 

current state and by the values of its inputs i.e.; the outputs are generated as products of the transition between 

states (Mealy, 1955, pl045). Mealy machines have been more closely related to biological process (Yang, 

2006) than Moore machines. 

FSAs have been utilized in evolutionary computation (Rechenberg, 1965 and 1973; Fogel, Owens and 

Walsh, 1966, cited in Koza, 1999, p386). Other researchers have produced self-reproducing FSAs (Ray, 1991 

cited in Koza, 1992, p647) that incorporate aspects of introspection and others that use the mechanism for ant 

foraging (Jefferson et a!., 1991 cited in Koza, 1992, p54). 

To mirror biology, Boolean mealy machines would need to be used rather than the traditional symbolic 

approaches. 

A.3.2.1 FSA: Where is the Problem? 

FSAs have trouble dealing with external resource conflicts and storing information. Solutions to make 

FSAs concurrent are typically external to the FSA itself, either as support logic or as a set of tools to make 

them concurrency safe. FSAs provide no easy way to synchronize multiple modular behaviors together, unless 

reactive system or a synchronous language, such as Argos is used. Mealy machines on their own cannot 

resolve LP2. Koza points to the need for self-organization of hierarchies (Koza, 1994, p93), but this can be 

achieved using HFSA. 

A.3.3 Conclusions 

Radial basis neural networks and linear neural networks mirror neuronal processing and are good 

examples of artificial neural networks (Sutton and Barto, 1998 and Streeter, Oliver and Sannier, 2006). FSA 

are useful because they mirror neuronal and cell processing and are simpler to implement (Minsky, 1967; 

Rechenberg, 1965 and 1973; Fogel, Owens and Walsh, 1966, cited in Koza, 1999, p386; Ray, 1991 cited in 
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Koza, 1992, p647). A lack of hierarchies in current limitations of artificial neural networks means that they 

cannot resolve LP2. A lack of hierarchies in FSA means that they cannot solely be used to resolve LP2 and 

must be augmented with a hierarchy. 

A.4 Hierarchical Nature of Brain Networks 

Albus provides a model of the brain as a hierarchical signal processing and control system, with distinct, 

interconnected networks: the receptive field hierarchy and the event hierarchy (Albus, 2000; 2008 and 20 lOb, 

pI93). 

In the model (Albus, 2008; Albus, 2010 and Sherman and Guillery, 2001) a synapse is an electronic gate 

with complex biochemistry and the site for long-term memory. A neuron is a computational element with 

non-linear processes on many inputs and decisions. An axon is an active fiber connecting one neuron to others 

(it transmits a scalar variable on a publish-subscribe network with bandwidth - 500 Hz). There are two kinds 

ofaxons, a driver and a modulator. A driver neuron preserves topology and local sign data vectors or arrays of 

attributes and state-variables i.e., images, objects, events, attributes and state which provide color, shape, size, 

position, orientation and motion. A modulator does not preserve topology nor local sign. It consists of context 

and broad--cast variables, addresses and pointers. These modulators select and modify algorithms, set 

parameters and define relationships. Axons work in receptive field hierarchies, which are defined by driver 

neurons flowing up the processing hierarchy and are relatively fixed (as will be seen, receptive field 

hierarchies can be considered to be Piagetian figurative schemes). Event hierarchies are defined by modulator 

activity that can establish or break networks of "belongs-to" and "has-part pointers," which typically occur in 

_. 10 ms (as will be seen, these event hierarchies can be considered to be Piagetian operative schemes). 

Neurons are clustered into functional units, which perform arithmetic or logical operations, correlations, 

convolutions through which they coordinate transformations (Albus, 2008; 2010). These neuron clusters can 

be modeled as FSA, and are constructed into hierarchies with set of rules, a grammar using direct and indirect 

addressing (Albus, 2010). The cortical structure (cortex) consists ofa 2d cortical sheet approx. 2000 cm 2 and 

is partitioned into functional regions. Each region is segmented into arrays of columns are arranged into 

hierarchical layers. Each of these cortical hyper-column and the thalamic loop (which provides the raw 

processing power) is a cortical computational unit (CCU). Each CCU can be implemented as FSA with 

memory, with the cortex containing approx. I million CCUs, which provides the resource constraint for a 

simulation. 

Research by Grainger (Grainger, 2006a, p18 Granger, 2006b) confirms a HFSA approach to model brain 

structures as well as providing evidence of the correlation to the simple model of Drosophila (Miesenb6ck, 

2008, p52; Shang, Claridge-Chang, Sjulson, Pypaert and MiesenbOck, 2007, p601). For Granger, the entire 

striatal system can be understood in terms of four subassemblies (Granger, 2006a, pI8): 

1) Cortex - matrisome projections (acting) 

2) Cortex - striosome projections (evaluation/sensing) 

3) SNc dopamine (DA) projections to both matrisomes and striosomes (learning through reinforcement) 
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4) TAN projections to matrisomes (exploration) which relates to predictive modeling (planning) 

A.4.1 Conclusions 

Recent brain research confIrms the approach of using HFSA to model the brain structures (Albus, 2008; 

Grainger, 2006a; Granger, 2006b) with twin pillar hierarchies of perception and executive (action), and using a 

processing model that mirrors Drosophila (MiesenbOck, 2008, pS2; Shang, Claridge-Chang, Sjulson, Pypaert 

and Miesenbock, 2007, p601; Granger, 2006a; Granger, 2006b) that supports acting/sensing, learning and 

planning. 

A.S The Need to Validate a Biologically Plausible Model 

Since the set of constraints (LPI - LP7) dictate a biologically plausible model, there is a need to confIrm 

that it is possible to use the research model in a number line world. It is therefore necessary to confIrm that an 

artifIcial neural network implementation can identify regularities in the environment e.g., point, line, direction, 

penS tate, and so be capable of addressing LP4. 

A.6 Mechanisms for Structuring Networks 

Human behavior is determined by the way in which humans assign values to different situations and it is 

suggested that reward based reinforcement learning facilitates this behavior (Sutton and Barto, 1998). The 

benefIt of reinforcement is that it enables autonomy in a system (Sutton and Barto, 1998, pI6), and provides a 

mechanism to resolve LP3 and LP5. Reinforcement learning also enables resolution of the temporal credit 

assignment problem (Streeter, Oliver and Sannier, 2006, p2) structural credit assignment problem (Streeter, 

Oliver and Sannier, 2006, p4) as well as resolve the problem of exploration vs. exploitation (Streeter, Oliver 

and Sannier, 2006, p4). Although identifIed as problems, they will not be tacked in this research. Any future 

research which seeks to fully resolve the learning paradox will need to account for them. 

A.6.1 Biological Basis of Reinforcement Learning 

Neurophysiology experiments have revealed that neurons in the mammalian midbrain use the 

neurotransmitter dopamine to process information about rewards and reward-predicting stimuli (Schultz, 1997, 

p2). Cannon and Bseikri (Cannon and Bseikri, 2004, p742), and classify these rewards into 2 categories, 

though their research questions if dopamine is actually required for brain reward processing. The categories are 

(1) hedonistic, and (2) sensory cues, which have an associated incentive value. This second category of 

association must be learned since most sensory cues are initially neutral and the incentives associated with the 

cue are initially not known. 

For rewards to affect future behavior, sensory events must fIrst be detected. Research by Schultz confIrms 

this to be true: dopamine neurons in certain brain areas, including the substantia nigra in the midbrain, are 
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sensitive to these sensory events (Schultz, 1997, p2; Schultz, 2000, p201). These rewarding events are sensed 

through the same sensory modalities as all other sensory events; there are no special "reward sensors." 

The capability to predict sensory information is a fundamental brain function (Schultz and Dickinson, 

2000, p475-495), with the purpose being: given a set of sensory inputs (event occurrences) an association is 

learned that maps sensory events to rewards, enabling the prediction of future rewards. The temporal gap 

between event occurrence and future consequences allows the brain to predict what the world will be like after 

some time. Sensory prediction entails calculating the discrepancy between actual and predicted sensory inputs 

(Rao and Ballard, 1999, p79). In Rao and Ballard's model, only unexpected sensory information is passed to 

higher levels of sensory processing. This is ideal from an information theory standpoint since only uncertain 

events contain information. In the model of Drosophila, this is the predictive model (MiesenbOck, 2008; Shang, 

Claridge-Chang, Sjulson, Pypaert and MiesenbOck, 2007). 

Research shows that norepinephrine neurons respond to reward-predicting stimuli i.e., the events signal 

that a reward is imminent, but not to primary rewards. This suggests that brains are able to form chains of 

reward-predicting stimuli that eventually lead to primary rewards. Climbing fibers, stretching from the inferior 

olive to Purkinje neurons in the cerebellum, output error-driven teaching signals (Shultz, 1997, p26). This 

activity constitutes a prediction error in motor performance: at first dopamine is released only when the reward 

is received; however, given some reward-predicting stimulus, over time the dopamine neurons respond to the 

reward-predicting stimulus rather than the reward itself. If the reward is then omitted, the dopamine activity 

drops below baseline at the time of the predicted reward. 

It has been shown that attention is proportional to prediction errors, that is if an event is surprising 

(surprising event), it elicits more attention from an individual (Tobler, O'Doherty, Dolan and Schultz, 2006, 

p302). If reward occurrences always match predicted rewards, then nothing is learned. During exploratory 

learning, these surprising events guide individuals to spend more time focused on those situations where their 

predictions are inaccurate and where there is more information. 

By evaluating outcomes (by comparing the actual state with the predicted state) learning can be 

improved. In effect, learning from errors increases the learning rate. In the biological system, this occurs 

through the dopamine learning rate of the association between sensory events and rewards which depends on 

the dopamine prediction error (Schultz and Dickinson, 2000, p473). Prediction enables the imagining/planning 

features that allow individuals to "adapt to the predictive and causal structure of the environment" (Schultz and 

Dickinson, 2000, p474). Further, the generation and use of prediction errors "may contribute to the self

organization of goal-directed behavior" (Schultz and Dickinson, 2000, p495). Prediction-based learning and 

behavior can take place over large time scales: events that occur now may affect behavior in the distant future. 

These are the structural credit assignment problem and the temporal credit assignment problems discussed 

earlier (§ A.6). 
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Re earch on human motor control provides evidence that humans learn to predict 7 12 times faster83 than 

to being able to control the outcome of their actions84 (Flanagan, Vetter, Johansson and Wolpert, 2003, p147). 

Actually thi capability to predict becomes critical to the development of an autonomous system, since 

prediction of performance enable the system to construct a model of the world and leads to differentiation of 

con truct uch a the "truth of some of its assumptions about the world." What is needed is a mechanism to 

implement thi reward proce ing within a simulation. 

A.6.2 Actor- Critic Temporal Difference Learning as an Implementation Mechanism 

Biological reward ignal in the mammalian mid- brain are very similar to modem computational learning 

models ( chultz, 2000, p20 J; Montague, Hyman and Cohen, 2004, p760). Montague, Hyman and Cohen 

sugge t that behavioral control i in eparabJe from the valuation of objects and circumstances. In effect, value 

function are nece ary for behavior. In addition, TD Learning "has informed both the design and 

interpretation of experiment that probe how the dopamine system influences sequences of choices made about 

reward " (Montague, Hyman and ohen, 2004, p760). 

Table A- I below ummarize the relationships of the biological basis for rewards to TD Learning: 

Table A- J Relation hips of temporal difference learning (TD Learning) to biology 

# Behavior Based Reward Mapping to TD Learning Source 

1 Hedonic experience . direct external rewards. Cannon and Bseikri, 2004, 

p742. 

2 Sen ory cue that have an Matche states with high estimated Cannon and Bseikri, 2004, 

a ociated incentive value. value. p742. 

3 Midbrain dopamine neuron Matches TD Learning and the Suri and Schultz, 1998, 

reward dopamine learning rate notion of learning from p350; Schultz, 2000, p201; 

depend on thc dopamine errors/uncertainty. Schultz and Dickinson, 

prediction error. 2000, p475; Fiorillo, Tobler 

and Schultz, 2003, p1898. 

4 Prediction re P n e pr ce ing TD Learning. Schultz and Dickinson, 

(Predict en ry inC! nnation) 2000, p474, 495. 

u ed in imagining and planning 

and elf organization of goal 

directed behavi r. 

83 Predict: mapping m t r c mmand to expected en ory inputs, a forward model. 

84 Control: mapping de ired utcomcs to the motor commands required to produce those outcomes, an inverse 

model. 
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# Bebavior Based Rewards Mapping to TD Learning Source 

5 The tructure of the ba al Resembles the actor critic model in Suri and Schultz, 1998, 351; 

ganglia: the triaturn TD Learning. Multiple Khamassi, LacMze, Girard, 

corre pond to the actor and the 

nigro triatal dopamine neuron 

corre pond to the critic. 

architectures have been developed 

to support different approaches for 

support ill unpredictable 

en vironments. 

Berthoz, Guillot, 2005, 

p13l. 

6 Behavioral control State value functions are necessary Montague, Hyman and 

in eparabJe fr m the valuation 

of object and circum lance . 

for behavior. Cohen,2004,p760. 

7 Dopamine neuron in certain Sensory stimuli are sensed as Schultz, 2000, p201. 

brain area, in luding the events. 

sub tantia nigra are en ilive to 

the e en ory evcnt but 

there arc no p cial reward 

proce or. 

8 Sensory prediction entail Only unexpected sensory Rao and Ballard, 1999, p79. 

9 

calculating the di crepancy information is passed to higher 

between actual and predicted levels of sensory processing. 

sen ory input (Rao and Ballard, 

1999). 

Human learn to predict the 

outcome of action before they 

learn to control the outcome 

it elf. 

Prediction maps motor commands 

to expected sensory inputs, 

(forward model) whereas control 

map desired outcomes to the 

motor commands required to 

produce those outcomes (an 

inver e model). 

Flanagan, Vetter, Johansson 

and Wolpert, 2003, p147 . 

From thl , It can been that the proce s of TD Learrung closely matches research results on midbrain 

dopamine neuron reward pro e ing and prediction response processing in animals (Suri and Schultz, 1998, 

p350; chultz, 2000; hultz and ickin on, 2000, p474; Fiorillo, Tobler and Schultz, 2003, pI898). More 

specific re earch by uri and hultz ( uri and Schultz, 1998, p353) present results from a computational 

model of TD Learning f d pamine neuron that encode reward prediction errors. Their research suggests that 

after conditioning, re ard pr di tfig timulj e entially become rewards themselves. 
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A.6.3 Conclu ion 

The dopamine norepinephrine reward proce i a mechanism for autonomously building internal neural 

tructure based on eternal interaction. Actor critic temporal difference learning is described as a simulation 

mechani m for reward proce ing that can be u ed to build artificial neural networks that learn incrementally. 

In doing 0, LP3 can be re olved. It i al 0 po ible to use reinforcement learning with FSA and HFSA to build 

their network, though thi re earch will u e a more constrained version. 

A.7 Mechani m to Model Evolution 

The underlying idea of computational evolutionary strategies (ES) is the separation of solutions for a 

particular problem e.g., a rna hine from de cription of tho e solutions in memory (De Jong, 2006). 

Evolutionary trategie (E) uch a evolutionary computation (EC), explore this multi- parameter space of 

olution alternati e for a particular problem, by mean of a population of encoded strings (where each 

program tand a an altemati e) which undergo variation (cro sover and mutation) and are reproduced in a 

way a to lead the p pulation to ever more prorni ing regions of this search space (selection) (De Jong, 2006, 

p27). E "rk on the de ription and not on the solutions themselves, that is, variation is applied to 

de cription , while the re pe tive olution are evaluated and the whole (description-solution) is selected 

according to thi c aluation. 

If it i umed that evolution tangled with the learning paradox, then there may be some interesting areas 

where evolutionary trategie have provided olution that can be appropriate. Table A- 2 summarizes the basic 

difference between E (Holland, 1975) and the capabilities found in nature: 

Table - 2 Difference between early evolutionary computing and biology (Holland, 1975) 

# Capability 

nature 

1 

of . atural Mechanism 

o separation 

de ription/solution: 

Evolutionary Computation Strategy 

of De cription/Solution are separated into description 

(memory) and solution (individual in a population) 

attra t r behavior of tate using a pects of von eumann's non- trivial self

reproducing scheme
85 

- increasing complexity is determined dynamic 

y 'tem arc memory- Ie , emergent (Mitchell, 1992, p7) but they do not self 

elf rganization ba ed on organize, since they rely on selective external 

internal dynamic that pre sure (memory ba ed selective organization 

m del ab tract, internal, scheme) and are based on stochastic (popUlation) 

of matter. variation. 

85 In von eumann's n n-tri ial 'clf-reprodu tion, reproduction i through a complicated process of self

in pection. 

Page 243 



Appendix A. Evolution and Emergence 

# Capability of Natural Mechanism Evolutionary Computation Strategy 

nature 

2 Variation. Variation i non stochastic: Variation is stochastic: transition rules are not state 

tran ition rules are state determined. 

determined. 

3 Selection. Selection i internal and Selection is external to the population 

external 

4 Fitne Environment- organism ECs reduce the problem to the optimization of a 

coupling (problem) dictates multi- parameter function (Dejong, 2006, p27). 

elective pressure and the 

olution are the organisms 

them elves. 

From table A 2 one realize that early EC were modeling very different design principles. As a variety 

of E , genetic programming ( Ps) formulates a search mechanism that maps an input- output structure to 

solve problem in ymbolic proce ing, optimal control, automatic programming, empirical discovery and 

machine learning u ing a computer program (Haynes, Sen, Schoenefeld and Wainwright, 1995, p3). Evolution 

uses chance (randomne ) but chance has no memory. However, organisms pass on their particular capacity to 

acquire certain characteri tic , rather than any of the characteristics they actually acquire i.e., the GP algorithm 

produce a kill but the kill i projectible (Dennet, 1995, p323). GPs could potentially solve the problem of 

developing number en e and have two main advantages. First, the programs are understandable by humans 

who can make prediction about the future behavior of the system (Koza, 1992). This is because the GP 

produce a program par e tree that repre ent a syntactically correct computer program where branches in the 

par e tree repre nl function which take argument's; the leaves represent zero argument functions, variables 

or con tant . e ond, P have bcen hown to be very general and successfully applied to a wide variety of 

problems. E ample in ludc emergent behavior, subsumption, evolution of building blocks and hierarchies 

(Koza, 1992, p527 3). 

The emerg nt behavior in sand pecifically GPs is from the repetitive application of seemingly 

simply, elf g eming rule which can lead to complex behavior in cellular automata, fractals and 

Lindenmayer Y tem (K 73, 1992, p329). U ing ub umption, the collective effect of the asynchronous local 

interaction of the primitive ta k achieving behaviors, provide an alternative mechanism for the control of 

robot (Br ok , I 91). In th> emergence of building blocks, the primary strategy is to use existing symbolic 

function et in luding" D, R, AND and NOR" (Koza, 1992, p529) to facilitate the emergence of 

automated fun Ii n d 'finilion . When thc e emergent function definitions, are enabled with the capacity to call 

exi ling function , hierar hi emerge (Koza, 1992, p529). Overall, these strategies improve the ruggedness 

and performan e f E 
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A.7.1 Evolutionary Strategies: Where is the Problem? 

Like other evolutionary strategies, GPs fall foul of having too much built in, i.e., they are purely symbolic 

in nature and do not work within the limits of Fodor's argument. First, many solutions use production systems 

to govern selection. Second, the search for the optimal individual of the population is a search across of all 

individual members of a population, hence GP's fail LPI. Further, since "learning" occurs at the selection of 

members of a population, that exhibit the correct behavior, learning does not occur incrementally, hence GP's 

fail LP5. 

However, Jacob presents a mechanism by which ECs can build binary mealy machines (Jacob, 2001). In 

this evolutionary approach, the evaluation functions could be constructed using techniques similar to TO

Learning to construct their networks. Collectively these could resolve LP3, LP5 and LP7 as well as 

incorporate a model of Drosophila. 

A.7.2 Conclusions 

Evolutionary computing, as a software simulation mechanism, can be used to evolve software in similar 

ways to evolution, and when used with binary mealy machines resolve LP3, LP5 and LP7. There are two 

constraints: (1) the FSA (as propositional components) must be separated from their hierarchies to adhere to 

LPl, and (2) the storage and concurrency issues must be resolved. 

A.8 Resolving Issues with FSA 

A.S.I HFSA 

Given the biological basis of FSA, the usefulness of FSAs can be dramatically increased by extending 

them with structuring and communicating mechanisms. Through the introduction of the "Statecharts" (Harel 

and Pnueli, 1985), nested state machines using an implicit hierarchy. Orthogonality (which induced parallelism 

between state machines) and re-usability of components in different contexts popularized their use. HFSA tend 

to be extremely useful, primarily because they capture the links between the states and can hide complexity 

through nesting. A hierarchy allows a state of an FSA to be refined into another FSA as a set of sub-states. 

Concurrency allows multiple simultaneously active states, each refined as an FSA with the capability to 

communicate through a common messaging mechanism. 

One way to implement FSA and HFSA is using a reactive system framework. As a primitive synchronous 

language for reactive systems86
, Argos is primarily a set of Boolean mealy machines which follow the 

synchrony hypothesis. Argos provides a set of operators that allow for parallel combination of these 

86 Reactive systems are deterministic whereas interactive systems are not. Most reactive systems employ two 

types of activities: data handling and control. At one extreme are the signal processing systems for data 

intensive systems and at the control end are pipelines and buses of operators. Argos, like Esterel are tailored to 

control-intensive applications (Berry, 2000, p4). 
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hierarchical automata (Maraninchi and Remond, 2001, p61; Maraninchi, 1992, p553) and specify the syntax 

and correctness of programs. These operators are the Cartesian product operator (ANDrii
, the refinement 

operatorviii, the inhibiting operatot" as well as the combination of operators that produce temporized statesX and 

incorrect compositionsxi
• 

The proofs of Argos semantics have been defined, but not specifically included here (Refer to 

Maraninchi, 1992, p560 and Maraninchi and Remond, 2001, p75). What is clear is the need to support a robust 

"error handling" process within the reactive system, to prevent "inappropriate programs" from developing too 

far, as well as a process to check "loops." 

By following the control constructs of Esterel, Argos controls the logical behavior of what the program 

must do and cannot do. Included within this range of behavior are the Boolean operators of AND, NOT, NOR, 

NAND, XOR, which are constructed as an arrangement of a hierarchical Mealy machines. Included within this 

is a Boolean algebra, as a mathematical system for the manipulation of variables that have the values of true or 

false, as well as the orders of precedence. Also included are the processes of the Boolean identities and 

DeMorgans laws. Though predicates have been integrated with FSA (Van Noord and Gerdemann, 2001, p263), 

it is certain mealy machine implemented in Argos cannot generate a form of predicate logic. 

Argos, like Esterel allows incorrect compositions of FSA. Through the use of competitive processes, 

these "incorrect programs" can be routed out, but not completely. A suitable selection/detection process is 

given by Maraninchi and Remond, "The quality of the detection mechanism is good, if it does not reject 

correct programs, too often" (Maraninchi and Remond, 2001, p65). Argos also contains mechanisms to 

optimize hierarchical FSA into single sequential FSA as is shown with their Modulo-8 counter example 

(Maraninchi and Remond, 2001, p66-68). The approach taken in this research is to evolve hierarchical FSA 

and not optimize the resulting FSA. 

A parallel can be drawn between this research approach and that of evolvable hardware (Greenwood and 

Tyrrell, 2006, pI2). The use of evolution in this approach uses a variety of stochastic search algorithms using 

evolutionary computing. Self-adaptation is used to compensate for failures or anticipated changes in the 

operational environment, and "As complexity increases, so do faults and errors in these systems" (Greenwood 

and Tyrrell, 2006, pI). In this respect, the simulation is evolved, with the solution fit for its purpose of adapting 

to a number line world but not necessarily an optimal design. The simulation is tolerant of faults, i.e., it can 

identify errors and adapt by creating new networks of hierarchical and FSA to process information. Ultimately, 

the systems produced are unverifiable. Like most current, circuit adaptation systems it could lack have issues 

with scalability, risk mitigation, fault detection and isolation (FDI), fault recovery and fitness evaluation 

(Greenwood and Tyrrell, 2006, p97). Fortunately, because of the way the simulation is generated (it does not 

include loops), the solutions it produces are autonomous and their adaptation are based on external reward, it is 

an open system. 
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A.8.2 Further Problems 

A further problem associated with FSA and this is true of any system that attempts to resolve the learning 

paradox is the set of criteria defined by Fodor (Fodor, 1980), namely, that the system cannot introduce a 

concept that the system does not already know. In this situation, the notion of a variable e.g., point, line etc., 

must be provided in the system as an innate scheme (§ 2.3.5 Piaget on Innate Scheme). Thus, to confirm the 

Piagetian model and working within Fodor's constraints as well as adhere to the reactive notion of Argos, a set 

of additional characteristics must be added. These include the innate schemes of variable, inhibiting operator, 

the refinement operator-which is seen as the capability to create a hierarchy, the Cartesian product operator 

and the temporized states operator. It is assumed that these operators are part of the Piagetian process. 

However, given the set of operators, Argos combines FSAs with a synchronous/reactive model to deliver 

a perfectly synchronous semantics in the sense of Esterel. Maraninchi and Remond show that Argos is 

compositional, with respect to the trace equivalence of Boolean Mealy machines and FSAs in Argos have been 

shown to count (Maraninchi and Remond, 2001, p68). As a mechanism, Argos provides the grounding of a 

reactive system from which FSA, which has already been shown to exist in nature and it provides a way of 

evolving functional programs that control the behavior of the simulation and develop, as a reactive system, 

concepts, in a very Piagetian sense. 

A.8.3 Conclusions 

In developing a simulation of Drosophila using binary FSA, a mechanism to resolve some of the core 

issues, such as storage and concurrency, is needed. A reactive systems approach using Argos, provides this 

mechanism, which, when combined with evolutionary computing (Jacob, 2001) and a form of reinforcement 

(Streeter, Oliver and Sannier, 2006), provides a way of resolving LP6. The combined structure can address 

LPl, LP2, LP3, LP5, LP6 and LP7. 

A.9 The Need for a Model of To Test for Emergence 

A model of emergence by which to evaluate this approach is needed. Crutchfield distinguishes 3 notions 

of emergence: intuitive emergence; pattern formation and intrinsic emergence (Crutchfield, 1994a; 1994b). 

A.9.1 Intuitive Emergence 

In intuitive emergence something new appears, but the "pattern is always referred outside the system to 

some observer that anticipates the structure via a fixed plate of possible regularities" (Crutchfield, 1994a, p2). 

Since the solution presented in this research is a closed multi-agent system, the emergence is of 

coordinated behavior that develops to control the internal processes. These internal processes, as HFSA would 

be observable. This is the approach taken in this research. 
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A.9.2 Pattern Formation 

In pattern formation, an observer identifies "organization" in a dynamical system. In this approach, the 

"relationship between novelty and its evaluation can be made explicit by thinking always of some observer that 

builds a model of a process from a series of measurements" (Crutchfield, 1994a, p3). The basic problems are 

these: (i) how does one understand the process; (ii) how does one measure structure; (iii) when does one 

attribute order to chaos (information or error) and (iv) when does the datum confirm or deny the hypothesis 

i.e., how can assumptions be changed? Crutchfield (Crutchfield, 1994a, p5) suggests that a balance between 

information and error can be obtained by using measures of information processing structure from 

computational theory (Crutchfield and Young, 1989, p68 cited in Crutchfield, 1994a, p7) by building a model 

of the process as a discrete time series using the language defined for the process enabling the creation of 

hierarchical models of the environment. The tools available are dynamical systems theory, the mechanisms and 

structures inherent in computation theory, and inductive inference as a statistical framework. 

A series of innate structures and a set of primary reactions as an implementation model of Drosophila 

using HFSA have been identified in this thesis. These are the structures and processes which will be used to 

act/sense, learn and plan in a number line world. The construction of a statistical framework for analysis of 

emergence of pattern formation (Crutchfield, 1994a; 1994b), this research believes is beyond its scope. 

A.9.3 Intrinsic Emergence 

In intrinsic emergence, the system itself capitalizes on patterns that appear i.e., to innovate using 

inductive inference on the existing models. Crutchfield implements these calculi of emergence as a set of 

processes that: 

1) Measures the structure of the minimal machine reconstructed from a given process in terms of the 

machines size; 

2) An algorithm for reconstructing the machine given an assumed model class; and 

3) An algorithm for reconstructing the hierarchical machine, which uses inference to detect regularity in a 

series of increasingly accurate models. These regularities are part of the new representation. 

In Crutchfield's model, it seems the arguments turn on distinguishing several levels of interpretation: 

1) A system behaves; 

2) That behavior is modeled; 

3) An observer (in the system) detects regularities and builds a model based on prior knowledge; 

4) A collection of agents model each other and their environment; 

5) Internal observers as agents themselves create models and try to detect changes, using a method such as 

the scientific method. 

In this framework, emergence is the process of discovery, which can be considered as an underlying 

model for biological cognition. This was highlighted by Chomsky'S as the "deep structures" and as linguistic 

universals (§ 2.1.2 See Chomsky on universals). When one views the neural and HFSA model of Drosophila. 
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One can see aspects of planning that can meet Crutchfield's comment that there is an overwhelming need "for 

a theory of biological structure and a qualitative dynamical theory of its emergence" (Crutchfield, 1994b, p47). 

It is assumed in this research, that it is possible for a simulation using a model of Drosophila, to measure 

its predictive model of the environment and from this to hierarchically reconstruct it (Crutchfield, 1994a, p49; 

Crutchfield, 1994b, p47). It is through this reconstruction that a new class of structure emerges. The 

construction of a statistical framework for analysis of emergence of pattern formation (Crutchfield, 1994a; 

1994b) is beyond the scope of this research. 

A.9.4 Conclusions 

Anticipated is that the model of intuitive emergence provided by Crutchfield provides a mechanism by 

which the proposed model in this thesis can be evaluated. A strong foundation for a solution to attempt to 

resolve the learning paradox has thus been built 

A.10 Conclusions 

There is emergence of structure in the collective behavior of ant colonies, for instance in searching for 

food (Johnson, 2001, p45). This is evidence of them solving LP5 and LP7 as an optimization problem. This 

process can be simulated using swarm techniques where simple rules, embodied in agents using vast 

populations are shown to exhibit novelty in opportunistic and noisy situations (Dorigo, BiraUari and Stutzle, 

2006, p34). The current models are limited, since their simulations do not produce the more complex "ant 

social model," and there is a need to model aspects of human cognition. In addition, these swarm rules do not 

support a Piagetian model, since they do not have the capability to develop their learning process and so fail 

LP6. 

A model of Drosophila provides an internal engine that is more complex than a simple set of ant rules 

(MiesenbOck, 2008, p52; Shang, Claridge-Chang, Sjulson, Pypaert and MiesenbOck, 2007, p60l). Since many 

aspects of the basic pathway are probably conserved evolutionarily, the fly studies research provides a simple 

model for cognition that can provide a mechanism to resolve LP6. This model needs to be implemented as a 

neural model, and it is further assumed that the Drosophila model has similarities to a Piagetian model of 

learning and development. 

Given that evolution has a solution to the learning paradox in the neural networks in fruit-fly and human 

brains and cell networks, a simulation mechanism is needed. Two approaches are suggested, artificial neural 

networks and FSA. Radial basis neural networks and linear neural networks mirror neuronal processing are 

good examples, but a lack of hierarchies in current implementations means that they cannot resolve LP2. FSA 

are useful solutions because they mirror neuronal and cell processing and simpler to implement. Recent brain 

research confirms the approach of using HFSA to model the neural processing and brain structures (Albus, 

2008; Grainger, 2006a; Granger, 2006b). 
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Since the set of constraints (LPI - LP7) dictates a biologically plausible model be used in a number line 

world, this is a need to confirm that this approach can show emergence of structure by identifying regularities 

in the environment e.g., point, line, direction, penState, and so be capable of addressing LP4. 

The simulation in this research needs a mechanism for structuring its internal network to resolve LP3. 

The dopamine-norepinephrine reward process (implemented as actor-critic temporal difference learning) is 

one such method. It is also possible to use reinforcement learning with binary FSA and HFSA to build their 

network, though a more constrained version will be used. 

Since evolutionary computing is a software simulation mechanism that parallels evolution. It is assumed 

that this is an appropriate method to use with HFSA to resolve LP2. By separating out the propositional 

components (FSA) from the hierarchical components (HFSA) the simulation sidesteps LPI. Crutchfield's 

model of intuitive emergence provides a mechanism for detection, and thus a strong foundation for a solution 

to attempt to resolve the learning paradox with a biologically plausible model. 
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B. Models of Development 

In this appendix, a more detailed analysis of hybrid models of cognitive development. 

B.l Hybrid Model 

B.I.I SOAR 

"Most of the agent's competence arises from the encoded knowledge representations (i.e., 
the set of rules) that SOAR's mechanisms operate on. Thus, agent knowledge 
representations must be created to realize any high-level intelligent capability" (Wray and 
Jones, 2005, p80). 

From its beginnings in the study of human problem solving, the SOAR cognitive architecture was 

developed as an implementation platform to explore the requirements for general intelligence and to 

demon:strate general intelligent behavior (Laird, Newell and Rosenbloom, 1987; Laird and Rosenbloom, 1995; 

Newell, 1990; Rosenbloom 1995 cited in Wray and Jones, 2005, p56). 

Despite eight major revisions between 1982 and 2007, SOAR provided a multi-agent framework for 

cognitive modeling that was limited to symbolic processing (Wray and Jones, 2005). In response to 

observations of human reasoning, additions were made to SOAR in two major areas which are described in the 

following architecture diagram (figure B-1) and in the accompanying text. 
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Soa r Arch itectu re 
Lone Term 
Symbolic 

Procedural 

~symbol 

~ 
N~symbolic 

From Laird, 2008, p226-228. 

Ef),vironment 

Figure B- 1 A depiction of the OAR Architecture (Laird, 2008, p22S-228). 

Symbolic: 

I) Apprai a1 detector generates emotions and internal reward for reinforcement using a 

computational implementation of an appraisal theory. In SOAR, appraisals lead to emotions, 

emotion influence mood and mood with emotion determine feelings. Individual appraisals 

produce either categorical or numeric values, which combine to form the intensity of the current 

feeling. The intensity becomes the numeric internal reward for reinforcement. 

2) Reinforcement learning is invoked when a new operator is selected and adjusts the selection of 

action in an attempt to maximize rewards using numerical values of the operator evaluations. RL 

applie to every operator selection, on every decision, even when there is no impasse. 

3) emanlic learning U es cues in short term memory to search for best partial match. This 

knowledge i independent of when and where it was learned. The retrieval of semantic memories 

occur on the input pha e so that "the results are available on the next input cycle" (Laird, 2008, 

p232). 

4) emanti kn wledge ymbolie fact as declarative knowledge. 

5) Epi di Learning a working memory activation is updated when rules fire and holds the recent 

and relevan e of hort term memory elements. The retrieval of episodic memories occurs on the 

input pha e, 0 that "the re ults are available on the next input cycle" (Laird, 2008, p232). 
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6) Epi odic knowledge temporally ordered snapshots of symbolic short term memory, including 

what and when a rule was learned. 

ub ymbolic 

1) Long term vi ual knowledge and a short term visual knowledge - depictive representations of 

vi ual image , including the inherent space combining numeric and symbolic values. This 

proce ing i co ymbolic, in the sen e that it provides an alternate way of reasoning about the 

world (Laird, 200 , p232), making use of spatial data for analysis. The retrieval is based on 

deliberate recall u ing a symbolic referent. In many ways, this is significantly different to the 

Piagetian view. 

2) lu tering u e tati tical regularity in a winner take all retrieval (using classification networks) 

in the perception of input to create new symbolic structures (symbols) that represent these 

regularitie . 

3) ing the re earch by Richard Granger on thalamocortical loops in the brain where there is 

"clu tering and ucce ive ub-clu tering of inputs using winner takes all, circuits" (Granger, 

2006a cited In Laird, 2008, p232), SOAR added clustering which improves reinforcement 

learning. 

Like other ymbolic y tern, there is a proce sing cycle within SOAR, as described in the figure below 

(figure B 2) : 

The Soar Processing cycle 
-""'lcq---'1i=-erm--;:OSym-'boIic= ' ~ 

ProcedInI 
K 

Usin, Short Term Symbolic Knowled,e (Directed Graphs) 
~------------~ L, 
t ~_"urrwnc I: " I _ ______ _ _ __ __ J ~ 

I----------~~-----
I Elaboration ' : 
I ~ 
I [~ 
I 
I 
I 
I 
I 
L _____ ----------~ 

I -- .. , I 
, I 

, I 

I 
I 
I 

,------------------------------, 
I RccunM, Hie..ctUal.JUbco*ond -. .... Ioctian I 

: .uf JppIiation. : 
I Re:-eoe:n.'tnIrlt ad intc ...... cf""". I 

: o,.unJrin'CItae~ ruIa frcwnread:ive~~ : 
,- - - - - - - - - - - - - - - - - - - - - - - - - - - - __ I 

51Mbon -U~vi<ooment '",,",m"-< - ~~~ 
From laird, 2008, p227. 

Figure 8- 2 The OAR decision cycle OAR v9 2008 (Laird, 2008, p227) 
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1) Perception I Input: Changes to perception are processed as inputs and sent to short tenn memory. 

2) Elaboration: Rules compute entailment on short tenn memory objects including the proposal of 

operators that are appropriate to the input perception. 

3) Elaboration: Rules are evaluated and preferences are created for the proposed operators using 

numeric or symbolic values. 

4) Operator Selection: A fixed decision cycle uses the preferences of the generated operators and 

selects the current operator. 

5) Impasse Processing: If the preferences are insufficient for making a decision, SOAR 

automatically creates sub-states and recursively applies and selects them to resolve the impasse. 

This impasse processing allows the Agent to deliberate within the same processing cycle. 

Chunking, the learning mechanism in SOAR creates rules from sub-goals in impasse processing. 

This meta-reasoning provides the common strength in the architecture. Chunking is based on 

traces of rule firings in sub goals. 

6) The actions of the current operator are performed by rules that match the current situation and the 

current operator structure. By supporting multiple rules firing in parallel and in sequence supports 

an expressive mechanism for encoding operator actions. 

7) Actions are passed to the motor system. 

There are obvious limitations in this approach. All the knowledge is encoded in predicate logic, which is 

too rich a mechanism and has not been observed in children until much later in their life. This is at a time after 

they have resolved the learning paradox and can apply that knowledge to actively solve novel problems. 

SOAR assumes any problem can be formulated as a problem space containing a set of possible states and 

a set of operators which individually transform possible states to goal states. The series of steps from the initial 

state to the goal state forms the solution (behavior path). When an impasse occurs (within the PSCM module), 

sub-goals and sub-states are determined and decisions made, this automatic "sub goaling" enables task 

decomposition from a hierarchy of distinct states. All versions of SOAR implement this ontology of impasse 

types, which is seen both as a performance advantage and as a limitation, since it assumes that all decision 

making is of this form, it cannot generalize to hidden states. 

Even through the addition new sub symbolic and symbolic forms, the control of behavior of SOAR 

agents (v9 circa 2008), through encoding production rules to select and apply operators using predicate logic, 

remains the same (Laird, 2008, p232). 

SOAR implements a maintenance component for agents to remember historical states and when SOAR 

finds a successful solution to a problem, it uses its chunking process (its learning mechanism) to convert the 

results of its problem search into new knowledge, which includes a summary of the impasse process, a 

preference that defines why learning occurs. The drawback is that learning must be realized within the 

constraints imposed by its multi-step inductive reasoning algorithm (chunking) which has been carefully 

constructed to provide the desired result (Young and Lewis, 1999, cited in Wray and Jones, 2005, p75). 
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Chunking as an inductive learning mechanism is seen as a severe limitation since it does not allow for 

generalizations to hidden states. Learning in SOAR models occurs by repeatedly considering whether to 

attempt to retrieve an object from declarative memory (knowledge search) or to construct the desired object 

(problem search). Similar to JESS, SOAR performs knowledge searching using the Rete algorithm that is 

limited because unless one chooses object representations carefully, chunking can result in rules that are 

computationally expensive to match (Tambe, Newell and Rosenbloom, 1990 cited in Wray and Jones, 2005, 

p76). As a consequence of the parsimonious nature of SOAR research, to find the minimal set of mechanisms 

that can be used to realize the full range of intelligent behavior, SOAR defines a low-level machine for 

implementing algorithms (Wray and Jones, 2005, p60). In this way, representations are built up (using 

chunking, as the main learning mechanism) from low-level components. 

By integrating a number of different algorithms into comprehensive cognitive models, SOAR has been 

used for developing intelligent systems in wide areas of domains with albeit with accurate but biased solutions. 

These fme grained encoded models allow for the depiction and prediction of human behavior from an agent 

simulation in the areas of expert systems, intelligent control; natural language; executable models of human 

behavior for simulation systems; as well as exploration into the integration of learning and performance; 

concept learning in conjunction with performance; learning by instruction; learning to correct errors in 

performance knowledge as well as episodic learning (Wray and Jones, 2005, p53). 

A SOAR agent can be described through descriptive observations of its behavior (at its "knowledge 

level"). Assumptions can be made about the representation of its knowledge, which exist as a set of symbols 

(at its "symbol level"), while the fixed mechanisms and representations from the architecture, which are used 

to realize the symbol system (at its "architecture level"). These layers allow distinct separation of processing 

and as a consequence of its symbol system, universal computation is possible. Thus, "it should be sufficient for 

any application requiring intelligent behavior (assuming intelligence can be captured in computational terms)" 

(Wray and Jones, 2005, p56). 

The core problem is that the symbol system is encoded into the system - there is no mechanism in SOAR 

(pre 2005) to develop symbols. In fact, few SOAR models (excepting SOAR-Teamwork, NL-SOAR) reuse 

any existing knowledge or symbols of prior implementations. Even the current enhancements to SOAR 

including the development of more efficient methods of capturing, encoding and reusing agent knowledge; 

through neural networks; encoding and reusing agent knowledge through the use of language extensions; 

design patterns or through the use of more scalable knowledge bases do not resolve the symbol grounding 

problem. This failure to account for symbol development is explained away as the fundamental limitation of 

symbol systems (Wray and Jones, 2005, p58). 

Developments of SOAR including the use of decay, is seen as critical, since it tends to reduce 

interference (Altmann and Gray, 2002, Cited in Wray and Jones, 2005). There is an obvious parallel to the use 

of decay constants in reinforcement learning. SOAR supports productions (in long-term memory as a series of 

procedural rules), assorted memory objects (in a blackboard style) in highly structured short term\working 

memory, stored as a directed graph, where each object is a triple of identifier, attribute and value. The memory 
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graph is structured into state partitions where every state has a pointer to its super state, as the root node in the 

graph and preferences. In preference memory, candidate operators compete for selection e.g., acceptable, best 

using various semantic procedures. SOAR operators are composed from all of these and consequently span all 

three memories (Wray and Jones, 2005, p62). There is separation between these layers: productions cannot 

access preferences directly to determine, for instance if one set of operators is better than another (Wray and 

Jones, 2005, p64); all that the production can do is to test the preference for acceptable use. 

SOAR operators are conceptually equivalent to operators in state based planning systems, such as 

STRIPS (Fikes and Nilsson, 1993 cited in Wray and Jones, 2005, p65). When an operator is selected during the 

execution of a decision procedure, SOAR creates an operator object in working memory, which can then 

trigger productions that produce post--conditions (as actions). Like most agent systems, SOAR acts in a sense

decide-act (SDA) cycle. During the input phase, SOAR invokes the input function using its blackboard (short

term memory). The reasoning within the decision cycle is focused on the selection and application of 

operators, which contribute new commands to execute in the output phase (Wray and Jones, 2005, p67). Each 

decision consists of three phases: elaboration (the iterative firing using SOAR truth maintenance system to 

compute "all available logical entailments,,87); the decision phase (where preference semantics are used to 

determine the operator to apply) and finally the application phase (where operator application production rules 

fIre, resulting in the creation of output commands). The decision phase maps directly to the BDI loop, common 

to agents (Wooldridge, 2000) with some differences. SOAR does not support plans and its control process 

(decision and reconsideration) is fixed, unlike most BDI implementations. 

Whereas Belief Desire Intention (BDI) agent architectures do not make explicit distinctions between 

justified assertions and persistent assertions, they usually use a form of belief revision (Gardenfors, 1988 cited 

in Wray and Jones, 2005, p76). SOAR makes these distinctions explicit, using its operator construct. In using 

this uniform approach to reconsideration, SOAR systems must be designed to be reentrant at every step of 

execution - the reconsideration (reason maintenance) algorithm assumes that it is cheaper to retract and repeat 

some problem search, rather than attempting to decide whether some deliberate section should continue to be 

supported (Wray and Laird, 2003, p362). BDI systems in contrast allow execution of plans of arbitrary length 

or even traditional procedures within a single pass of the control loop, with the immediate benefit of supporting 

complex plans and procedures. The lack of a plan representation in SOAR means that the SOAR developer 

must design a representation for the problem space that supports inherent interruption and reentrancy. 

Given the research problem, it seems possible to implement the problem within the SOAR landscape, 

however, the child when faced with learning fraction problems obviously does not have this lUXury. 

A problem associated with the uniform representation within SOAR is that any new problem 

representation must be implemented as a symbolic representation, rather than simply reusing the architecture _ 

the architecture does not readily support decision and conflict resolution that does not map directly to current 

decision process. Further, it is inefficient if not impossible to split the execution of a procedure over multiple 

87 The operator object itself fails Fodor's arguments for LP 1, since it goes against all members of a set. 
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deliberation steps. Which leads to compromises to ensuring the problem is constructed to fit possible solution 

spaces (Wray and Laird, 2003, p79). 

SOAR is a production system, where each production is expressed as a set of "If Then" rules using 

predicate logic rather than the propositional logic used in procedural programming languages and is specified 

by a series of conditions and a set of actions. Conditions are matched against memory objects and when all 

conditions are satisfied, the rule actions are executed. This execution usually involves changing and 

exchanging memory objects. SOAR does not map individual production rules to operators such as occurs in 

traditional rule based systems such as OPS5 (Forgy, 1981), CLIPS (Giarratano, 1998), JESS (Friedman-Hill, 

2003) and production system cognitive architectures such as ACT -R (Anderson and Lebiere, 1998) and EPIC 

(Meyer and Kieras, 1997; Kieras and Meyer, 1997). This provides an advantage in that SOAR can bring to 

bear any available knowledge relevant to the current problem i.e., conflict resolution occurs by choosing 

between candidate operators, allowing the decision to be mediated by the preferences, rather than relying on 

the syntactic features of the situation. To do this, SOAR uses associative pattern matching in its parallel 

match-fll"e production system (Wray and Jones, 2005, p69). 

Typical for rule-based systems, every change to an agent's context must be the result of a deliberate 

commitment. This leads rule-based systems to over--commit to courses of actions i.e., it is difficult for them to 

change their beliefs. This causes the perception that rule-based systems are "brittle." In deference, SOAR 

applies reason maintenance to every non-persistent object in its blackboard (short-term memory) and uses this 

to update its beliefs about the world. This allows the agent to be responsive to their environment (Wray and 

Jones, 2005, p71) by allowing the objects in memory to decay over time and thus, no longer apply. It also 

allows the agent to generally recover from interruptions. SOAR uses an activation and decay mechanism, with 

similar properties that allow the objects in memory to decay over time (Anderson and Lebiere, 1998 cited in 

Wray and Jones, 2005, p72). 

For SOAR, preference and deliberation - which for an agent in a dynamic environment are the 

capabilities to deliberate and commit to goals from the set of all possible actions and goals - is the selection 

mechanism it uses as its automatic reasoning system in its decision cycle. The advantage of rule-based systems 

(RBS) is obvious: an RBS that has a precondition and action in a single rule has to reason across its entire rule 

base. In contrast, SOAR reasons across options - which include its historical information (Anderson and 

Lebiere, 1998 cited in Wray and Jones, 2005, p72). 

Laird raised the question, "does the addition of neuro architectures such as Neuro-SOAR (Cho, 

Rosenbloom and Dolan, 1991 cited in Laird, 2008, p225), which is similar to the ACT -RlLiebre hybrid 

(Taatgen, Juvina, Herd, Jilk and Martens, 2007 in Laird, 2008, p225) improve performance?" Given the nature 

of the learning paradox and the symbol grounding problem, it is obvious that SOAR is a step in the right 

direction. Even through the addition of new sub symbolic and symbolic forms, the control of behavior of 

SOAR agents (v9 circa 2008), through encoding production rules to select and apply operators using predicate 

logic remains the same (Laird, 2008, p232). 
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SOAR is a competitor to the research because in using Richard Granger's research on thalamocortical 

loops, they have understood that the way to resolve the learning paradox is to use what ones has, in this case 

statistical regularity as the basis of unitizing from continuous values (Granger, 2006a cited in Laird, 2008, 

p232). However, SOAR falls on the innateness argument, because the system would need to be constructed 

with the knowledge to solve the problem using a predicate logic - a logic more powerful than the "logic" 

observed in children at the age when they are observed to develop fraction-sense and so resolve the learning 

paradox (Wray and Jones, 2005, p62). In doing so, it fails Fodor's argument for LPI. 

B.l.l.1 Bottom-Up Learning using SOAR-R 

In addition to the framework of the symbol system hypothesis (§ 2.7.2.3), SOAR is based on the problem 

space hypothesis (Newell, 1980b). The problem space hypothesis assumes that all symbolic cognitive activity 

can be modeled as heuristic search in a symbolic problem space. For Newell, reasoning, problem solving and 

decision making can all be captured as searches in these appropriately defined problem spaces. 

The aim of bottom-up learning is to reduce the amount of innate knowledge that an agent would need to 

be constructed with. In this respect, using SOAR as a bottom-up cognitive model (Georgeon, Ritter and 

Haynes, 2009) is innovative and as a result it can partially and fully support many of the features required to 

resolve the learning paradox (LPI - LP5). By grounding symbols in activity, they resolve the symbol 

grounding problem (Harnad, 1990) by allowing the agent to self-organize its behavior, such that one can infer 

goals and knowledge in the agent, when, we, observe their activity. 

By not using many of the abstract features of SOAR such as: impasse mechanism, chunking, reward 

mechanism. stochastic exploration policy, and use of operators or the pattern matching principles. It affords the 

bottom-up learning agent another knowledge representation, one that it has developed for itself (Georgeon, 

Ritter and Haynes, 2009). It is noted that the implementation lacks the capability to support recursive schemes 

in SOAR and this may well be a limitation to fully implement a Piagetian model. 

Bottom up learning (Georgeon, Ritter and Haynes 2009), assumes a constructivist epistemology using a 

Piagetian schema mechanism. Extending Drescher's schema model of context, action and result (Drescher, 

2002) into context, action, expectation. Bottom up learning using this mechanism to support sequence 

learning, which is understood to be hierarchical ordering of schemes using hierarchical reinforcement learning 

(Sun and Sessions, 2000 cited in Georgeon, Ritter and Haynes 2009). 

Hierarchical sequence learning transforms {context, action, expectation} into: 

context - sub-scheme + status 

action as intention - sub-scheme + status 

satisfaction as expectation - satisfaction (context) + satisfaction (intention) 

weight - number of actions 

It is through this process that sequences of schemes emerge. Though useful and including features such as 

trial and error learning (evolutionary), knowledge is grounded in praxis (pragmatic) and is self-oriented 
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(teleological); it lacks schema management. Its great benefit is that it allows the development of the Piagetian 

invariants, in their case, the development of the knowledge that invariant objects exist in the environment. 

Bottom Up Learning in SOAR: Where is the Problem? 

As discussed, bottom up learning in SOAR is a significant improvement on other cognitive models. 

However, they miss the mechanism of the knowing circle, the process of evolutionary trend, and the 

developmental trends (Furth, 1969) and so fail LP6 and LP7. 

B.l.2 PolyScheme 

PolyS cherne is based in part on the belief that multiple computational mechanisms are required for 

general intelligence (Cassimatis, Trafton, Bugajska and Schultz, 2004, p19). By integrating multiple 

representations with reasoning methods and problem solving techniques, PolyS cherne builds intelligence into 

physical robots. PolyScheme specifically addresses the problems of data fusion by (1) generating a coherent 

model of the environment through senses; (2) grounding symbols through integrating perceptual structure to 

symbolic structures; and (3) flexibly combining reasoning, planning, perception and action using Bayesian 

networks, Stanford Research Institute Problem Solver operators (STRIPS) and partially observable Markov 

decision processes (POMDP). PolyScheme uses a propositional logic for communication between its 

specialists (agents within a multi-agent system). Representation is in a form of directed graphs and a neural 

language is used by its "specialists" to deal with perception using these networks. Symbol grounding is 

resolved through associating the perception of objects by its neural specialists to its rule specialists, which 

contain rules in propositional logic (Cassimatis, Trafton, Bugajska and Schultz, 2004, p19). PolyScheme uses a 

number of inbuilt algorithms including case based reasoning; prediction; counterfactual reasoning; 

backtracking; backward chaining; theorem proving; truth maintenance and Bayesian inference. By assigning 

all structures with a basic set of relations about time, space, events, identity, causality and belief Poly Scheme 

makes a strong semantic commitment. 

B.1.2.1 PolyScheme: \Vhere is the Problem? 

PolyScheme suffers from using symbolic forms of reasoning using predicate functions, specifically in its 

inbuilt logic and algorithms. It thus it fails Fodor's arguments (LPl). It does however address the symbol 

grounding problem in a realistic way, yet this has not been shown to exhibit emergence (LP2), nor mirror 

observations of child development (LP4). 

B.l.3 Neuro-SOAR 

"Most of the agent's competence arises from the encoded knowledge representations (i.e., 
the set of rules) that SOAR's mechanisms operate on. Thus, agent knowledge 
representations must be created to realize any high-level intelligent capability" (Wray and 
Jones, 2005, p80). 
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From its beginnings in the study of human problem solving, the SOAR cognitive architecture was 

developed as an implementation platform to explore the requirements for general intelligence and to 

demonstrate general intelligent behavior (Laird, Newell and Rosenbloom, 1987; Laird and Rosenbloom, 1995; 

Newell, 1990; Rosenbloom 1995 cited in Wray and Jones, 2005, p56). 

Despite eight major revisions between 1982 and 2007, SOAR provided a multi-agent framework for 

cognitive modeling that was limited to symbolic processing (Wray and Jones, 2005). In response to 

observations of human reasoning, additions were made to SOAR in for symbolic and sub-symbolic processing 

including Neuro-SOAR (Cho, Rosenbloom and Dolan, 1991 cited in Laird, 2008, p225). 

B.1.3.1 Neuro-SOAR: \Vhere is the Problem? 

Neuro SOAR (Neuro-SOAR (Cho, Rosenbloom and Dolan, 1991 cited in Laird, 2008, p225) is a 

significant improvement on other cognitive models. However, they miss the mechanism of the knowing circle 

and the process of evolutionary trend and the developmental trends (Furth, 1969) and so fail LP6 and LP7. 

B.1.4 ACT-R 

Even though ACT -R has both sub-symbolic and symbolic layers, new features have only recently been 

added to ACT -R to support the learning of new rules (Taatgen and Lee, 2003, cited in Anderson and Lebiere, 

2003, p600). Yet these rules are produced by compiling production rules. ACT-R has a declarative memory for 

facts (that is accessible by introspection and represents conscious awareness offacts) and a procedural working 

memory of production rules that is not available by introspection (Anderson, Bothell, Byrne, Douglass, 

Lebiere, Qin, 2004). ACT-R theory defines a data structure, the "chunk," for memory as " ... the units in which 

knowledge is represented in working memory ... " (Anderson, 2007). The system performs pattern matching on 

perceptions and facts, mediated by the real-valued activation levels of objects. Learning in ACT -R involves 

creating new facts and productions, as well as updating activations and utilities associated with these 

structures. In effect "Complex cognitive processes are achieved by stringing together a sequence of such 

(production) rules by appropriate setting of goals and other writing to working memory and by reading from 

working memory" (Anderson, 2007; Anderson, Bothell, Byrne, Douglass, Lebiere, Qin, 2004). The system 

executes these rules to affect the environment or alter declarative memory (Anderson, 2007; Anderson, 

Bothell, Byrne, Douglass, Lebiere, Qin, 2004). 

B.1.4.1 ACT -R: Where is the Problem? 

Research on ACT -R has led to the comprehensive computational theories of a wide variety of human 

phenomena including brain activity (Anderson, 2007, cited in Laird, 2008, p233). However, they have ignored 

many of the cognitive capabilities in SOAR including episodic memory, emotion, and visual imagery. Like 

other hybrid models, they fail Fodor's arguments (LPl) and further, are not seen to develop the stage like 

variation observed in developing intelligence (LP4). 
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B.I.S CogAff 

Stemming from a need for an ontology of intelligent agents, the cognitive affect (CogAff) architecture is 

a balance between central, sensory and motor processes and between reactive (alarm driven), deliberate and 

meta-management processes (Sloman, 2001). By superimposing the two-three way divisions, a sufficiently 

rich schema can be assembled that exhibits properties of emotions (Sloman, 2001, p42). CogAff is an 

architectural specification that does not define any requirements for implementation, with individual 

researchers using a variety of techniques to implement the information subsystems. The hierarchical perception 

mechanism, long term associative memory, motive activation process and a set of persona is blended with 

three central processing systems: (1) A reactive mechanism which uses hierarchical condition-action 

associations to sense internal and external conditions and respond by producing external state changes or 

internal state changes using a variable threshold attention filter. (2) A deliberation mechanism that supports 

planning, decision making and "what if' reasoning using a hypothetical representation system. (3) A reflective 

or meta management mechanism provides the ability to attend to, monitor and evaluate the affect of the 

operation of the system on the state of the agent i.e., its emotional state (Sloman, 2001, p42). 

B.I.S.I CogAff: Where is the Problem? 

CogAff (Sloman, 2001, p42) fails because it does not specify an implementation that could resolve the 

learning paradox, it also fails Fodor's arguments (LPl). Further, it has not been shown to develop its leaming 

process (LP6). 

B.I.6 RCS 

RCS (Albus, Pape, Robinson, Chiueh, McAulay, Pao and Takefuji 1992) is an architectural framework 

for developing intelligent physical agents. Expertise resides in a hierarchical set of knowledge modules, each 

with its own long-term and short-term memories. Knowledge representation is heterogeneous, including 

frames, rules, images and maps. Modules operate in parallel, with a sensory interpreter examining the current 

state, a world model predicting future states, value judgment selecting among alternatives and behavior 

generation carrying out tasks. Higher-level modules influence their children in a top-down manner, whereas 

children pass information back up to their parent modules. Similar to human control systems, there are 

constraints of hard deadlines for problem solutions; reliability long with limited observability; concurrent 

operations. 

Heavily influenced by biological models of motor control such as the Marr-Albus model of the 

cerebellum and the cerebellar model articulation computer (Albus, 1975), the real-time control system (RCS) 

(AlbUS, 1993) is a reference model architecture. It is not a design nor is it a specification to implement a 

specific system; what it does provide is a comprehensive six step methodology for engineering solutions as 

well as a software reference library (ReS, 2009). 

RCS partitions the control problem into 4 basic elements: (1) Behavior generation, which is understood to 

be task decomposition. (2) World modeling, an internal representation of the external world including 
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predictions, what if scenarios and updates to its world model. (3) Sensory processing including recognition of 

1:1 correspondences and the comparison of entities. (4) Value judgments are evaluation functions of 

perceptions and plans based on cost-benefit, which are an essential part of planning or learning, as well as 

perception, knowledge, learning, costs, recursive state estimation, planning and execution. 

RCS clusters elements into computational nodes within hierarchical layers, with all control nodes sharing 

a generic node model e.g., a computational hierarchy as a command tree which when executed produces a 

behavioral hierarchy of state/time trajectories. Based on the underlying biological model, RCS makes use of 

simultaneous and continual planning, cyclic re-planning as well as execution of tasks at all levels of the 

hierarchy. 

Using an entity frame data structure to represent task knowledge, RCS utilizes a propositional logic to 

control relations as state variables and to define rules (Albus, 1991). It also has considerable apriori knowledge 

encoded into the system. RCS can also use and store images and maps across all its modules. An integral part 

of many RCS implementations is the use of human designers to interact with the system, as well as to provide 

apriori knowledge for autonomous interaction. RCS uses CMAC as a form of neural network associative 

memory, which has been utilized in reinforcement learning. Practical use of the model is limited by the amount 

of memory size required. 

RCS utilizes a theory of intelligence in which "the ability to act appropriately in an uncertain 

environment, where appropriate action is that which increases the probability of success and success is the 

achievement of behavioral goals" (Albus, 1991, p27). This theory adheres to a number of tenets. First, both 

goals and success criteria are generated in the environment, external to the agent. Second, higher levels of 

intelligence require the abilities to recognize objects and events, store and use knowledge about the world and 

to reason about and plan for the future. Third, advanced forms of intelligence have the abilities to perceive and 

analyze, to plot and scheme, to choose wisely and plan successfully in a complex, competitive, hostile world. 

The amount of intelligence can grow through programming, learning and evolution. Intelligence is the product 

of natural selection wherein more successful behavior is passed on to succeeding generations of intelligent 

systems and less successful behavior dies out. Natural selection is driven by competition between individuals 

within a group and groups within the world. 

When implemented within a machine, Albus defines a set of criteria that any solution would need to 

adhere to: the amount of intelligence is determined by the computational power of the computing engine, the 

sophistication and elegance of algorithms, the amount and quality of information and values and the efficiency 

and reliability of the system architecture (Albus, 1991). 

B.l.6.1 ReS: Where is the Problem? 

RCS (Albus, 1975; Albus, Pape, Robinson, Chiueh, McAulay, Pao and Takefuji 1992; Albus, 1991; RCS, 

2009) possesses many characteristics that are necessary in any autonomous system, but lacks the capability to 

generalize and to change the way it learns over time. It also suffers from having too much built in including its 

abstract symbolic language. Dy using frame based knowledge structures and inbuilt logics, RCS fails Fodor's 

Page 262 



Appendix B. Models of Development 

arguments (LPl). It also has not shown the capability to develop the stage like variation observed in 

developing intelligence (LP4). 
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C. Piagetian Models and l\fathematics 

This appendix describes a Piagetian model of mathematics by Copeland (Copeland, 1974), in § C.l. 

Some notes on the development of fraction sense - as a classification of WE6, which is an extended part of 

the worked example - in § C.2 as also provided. 

C.l Piagetian Mathematics 

To be able to claim adherence to a pure Piagetian approach, it is necessary to first identify and define the 

relations (concepts) that Piaget observed in children as they develop mathematics (Copeland, 1974). The 

definition of the key relations and dependencies are listed in this appendix. 

Since the implementation affects how these relations are constructed, this analysis could only take place 

once the implementation strategy (IIFSA using a dialectic method) had been selected. Therefore, the following 

analysis assumes that the reader has an awareness of the implementation strategy. Analysis of the relations 

suggests that a set of principles need to be taken into account and applied along the anticipated developmental 

path that the simulated student will take. 

First, in early development, the system must treat the number line and its components as continuous 

values, being based on perceptual shape, not value. The differentiation into units comes later and is used in 

counting (Piaget, 1965, p80 cited in Copeland, 1974, p91). Second, Piaget's genetic epistemology defines a 

series of relations that are observed to occur, with stage like variation throughout the life of the child. As the 

child (simulated student) matures, these relations become increasingly interiorized and generalized. At any 

point in time, these relations are combined using the processes of assimilation, accommodation and 

equilibration to produce the behavior. Further, since the implementation develops FSAs, with HFSA to marshal 

their processing power, it is conceived that the "dominant machines" that are used for adaptation will be 

composed of the more generalized machines. For example, ifPiaget is correct (Copeland, 1974, p79-80), then 

those machines that produce serialization should evolve into counting machines. This may not be the case; only 

the execution of the system can determine this. As the student develops inductive and deductive 

generalizations e.g., a conservation relation or a relation such as seriation, these "rule based mechanisms" are 

implemented as HFSA which consume more primitive machines, thus continuing the execution of binary 

machines. Within this approach, deductive reasoning is considered to occur after a generalization has been 
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1 1 1 1 
made e.g., - + - = - + - the child then makes use of this induction and without examining the details of a 

a b b a 

1 1 1 1 
specific case e.g., - + - = - + -, and concludes that they are the same. The generation of deductive 

3 4 4 3 

reasoning allows the student to make further judgments (Copeland, 1974, p203). 

The current implementation mechanism of assimilation and accommodation are separated into act and 

sense (using existing schemes), reinforce (learning new schemes), and predictive model (performs planning, 

generating more complex/generalized schemes) with equilibration and disequilibration exigent from an 

overflow or exception handled by an executive. One can ask, "How do the relations generalize?" There are two 

approaches: (1) In the first approach, each relation exists in a class with its own defined evaluation function, 

which over time increases its complexity as a function of the increasing "processing time available" by the 

machine. There seems to be little evidence for this, since, the existence of the evaluation functions would be 

common across all students and all students would show evidence of all features, all of the time. (2) In a 

second approach, as the system executes using a common evaluation function, these relations appear in the 

field of execution. Evidence for this rests with Pascual-Leone theory of constructive operators (Pascual-Leone 

and Goodman, 1979), which suggests that as a Piagetian system executes, its capacity increases with a 

determinate factor over time. This increasing capacity allows for more complex structures to be built; these 

complex structures are the generalizations that appear e.g., conservation of number, but also the appearance of 

apparent dependencies in the relations. Therefore, if seriation really does occur before counting, then there 

should be evidence of this in the execution of the machines. Further, all things being equal, it should be 

possible to assess the M-Demand of these machines as they execute, learn, evolve and be able to relate this to 

the M-Capacity of the simulation itself. Comparison should also be possible against the benchmark from the 

rational number project. 

The following section defines the necessary relations, which are believed to be required for the 

development of rational numbers from integers based on observations by Piaget's on the appearance of certain 

features. It also includes their anticipated implementation method, as well as the age at which the relation is 

initially observed e.g., Logical Connectives at age O. 

C.I.1 Logical Connectives 

The logical connectives are basic FSA that are evolved as the student executes. These binary machines 

(OR.AND,NOT,XOR,NAND,NOR and XNOR) are incorporated into Argos style HFSA which marshal the 

transformation of information from and to the environment. These logical connectives are also utilized by the 

student themselves, which is an interesting mix of internalized and externalized action. 

C.I.2 Spatial Concepts 

Piaget asserted that a child's understanding of spatial concepts is topological (being composed of 

proximity, enclosure, separation and order) rather than Euclidian, which treats distance, length, angles, lines 

Page 265 



Appendix C. Piagetian Models and Mathematics 

etc as if they were "real elements in space" (Copeland, 1974, p226; p232) by observing that the child's 

pictorial renderings of their world are topological rather than Euclidian. Children of the age of 4 ~ to 5 

evaluate discontinuous quantities as if they were continuous values (Piaget, 1965, p80 cited in Copeland, 1974, 

p91). At age 5, the child is using their perception of the environment and can for instance, estimate the number 

of "shorter lines" that are required to match "3 larger lines," however, the space between the arrows is taken 

into account. In addition, they have discretized the environment (Piaget, 1965, p80 cited in Copeland, 1974, 

p91). Thus, the system initially can only utilize topological spatial concepts in continuous spaces using 

proximity, separation, order and surrounding. Through maturation, the environment becomes discretized by the 

student and so Euclidian awareness comes to the fore that enables them to identify point, length and distance, 

leading to conservation of numbers. 

This conversion between continuous spaces to discrete spaces has been shown to occur through the use of 

the Verve development toolkit and linear neural network. This research assumes that this switch (to a discrete 

environment) has already occurred, hence the unitized values passed in the environment to agent interface. 

C.I.3 Proximity 

Proximity ("nearby-ness") is the first perception based mechanism that develops in a child, with the 

nearness of an object being crucial to them (Copeland, 1974, p214). 

Proximity is the appearance of a class of machines that can determine the relative distance from a given 

point. Once these machines with distances emerge, the relative proximity of number line segments based on 

penDown can be created. Typically, the proximity of machines is reused to form the basis of unitization. 

C.I.4 Separation 

As a child grows older, they are able to separate one object from another or to distinguish the parts of an 

object (Copeland, 1974, p214). 

Separation is the appearance of a class of machines that can separate out objects in a class of objects 

(Copeland, 1974, p214). It is the appearance of machines for particular facets of the environment penUp, 

penD own, Left, Right, and Movement. Overtime, these machines can be combined together in hierarchies and 

identify new and more complex structures. Typically, the separation of machines is reused. 

C.I.S Order 

The spatial relation of order develops in the young child and enables them to, for instance, order a set of 

beads on a line (Copeland, 1974, p214). 

Order is the appearance of a class of machines that can, from a provided set of number line segments, 

determine which ones precede and come after other ones. 
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C.I.6 Surrounding 

The fourth spatial relation that develops in a child is surrounding (otherwise referred to as enclosure) for 

example ABC, where B is enclosed by or between A and C. (Copeland, 1974, p214). 

Surrounding is the appearance of a class of machines that can, from a provided set of number line 

segments, determine which ones surround other ones. 

C.I.7 Conservation of Point 

Though not mentioned by Copeland (Copeland, 1974), conservation of point is achieved through the 

generation of a prediction machine that can match the stop action on a number line. Since it is a point, direction 

is ignored. 

C.I.S Conservation of Length 

Perceiving a straight line and being able to reproduce it, are two separate problems (Copeland, 1974, 

p248), with both not fully complete until the concrete operations stage (age 7 / 8). The basic problem is that 

the child age 6, when moving along a number line, only considers the end points, thus two lines, one straight 

and one crooked, which end and start at the same point, are considered the same length. Similarly, adults take it 

for granted that the ruler maintains its length when being used, but this is not the case with young children. 

Conservation of length is achieved through the process of reinforce (Furth, 1969, p154 and pI62), which 

through imitation (as an process of assimilation) and reconstruction (as a process of accommodation) builds a 

prediction machine that can match the observed input of a number line segment and wraps this within HFSA 

Argos schemes inside a Piagetian container. Typically, this machine includes the penState (of penDown), 

direction (left and right) and movement (10403 units) of the number line segment. This generation may reuse 

existing proximity machines. This research assumes that the student has already switched between topological 

to Euclidean geometry (Copeland, 1974, p226, p232) which typically occurs at the age of (4/5 years). 

Along with the order relation, the preponderance of these unitized machines is critical to the 

development, since they are reused repeatedly. 

C.I.9 Conservation of Distance 

When subdividing line segments, young children in Stage 1 are unable to conceive of the length of a 

journey as an interval (distance) between two points (Copeland, 1974, p267). In stage 2, they use a trial and 

error approach and finally in stage 3 (age 7 Y2), they have developed a generalized procedure for subdivision 

and substitution and therefore have a generalized procedure for conservation of length and conservation of 

distance (the two of which, are inseparable). 

The establishment of conservation of distance is seen as a critical aspect of the system and occurs when a 

HFSA can generate machines of unit lengths, e.g., 1,2 and 3 etc. Conservation of distance is achieved through 

the generation of a prediction machine that can match the observed input for number line segments that have a 
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penState of pen Up, since this is the distance between two points on a number line. This also takes into account 

the direction taken. 

C.1.10 Equivalence 

The equivalence relation is critical to the development of logical thought and occurs throughout the 

developmental stages (Copeland, 1974, pS4). Often called "one to one correspondence," it is seen to develop 

early. The bead problem is evidence of the issues associated with equivalence (Copeland, 1974, pS5-87 and 

p91-92). 

Equivalence is the appearance of a machine that compares the properties of one machine against another 

in binary using an AND machine (a FSA) that is wrapped up into an Argos scheme. The internalization is an 

action of accommodation, which produces the "binary value" to be compared, with different actions for the 

different combinations penState (penUp, penDown), direction (left, right), stop as well as length. When the 

values are the same, it returns a I, when they are different it returns a zero. In more complex arrangement, the 

predictive model tests the states, inputs and outputs of various machines to see if they are equivalent. In 

essence, the equivalence relation determines the truth of validity ofa set of machines. 

Equivalence is used by other relations, such as order. I suspect that equivalence is part of a developmental 

trend of increasing discretization (differentiation) of the environment. This would suggest that a child is 

constantly comparing and contrasting elements in the environment, even from the earliest stages. 

C.I.II Subdivision 

The concept of arithmetical fractions implies that all the parts are equal, yet young children may leave a 

part of the whole undivided. Piaget suggested that there could be no thought of fractions until subdivision is 

exhaustive, there can be no remainders, yet young children ignore this (Copeland, 1974, piSS). When the 

concept of subdivision is operationalized, then children realize the dual nature of fractions - that they are part 

of a "whole" but also a "whole on their own" - which can be further subdivided (as a nested series). Since 

fractions relate to the whole from which they came, the whole remains invariant (is conserved). Conservation 

of a whole is an essential condition for operational subdivision (Copeland, 1974, p1S9) and occurs at 6 to 7 

years of age. 

Subdivision occurs when the system generates HFSA that can subdivide a given length without any 

remainders. Two questions remain, "What is the determination of when that point is reached" and "Is this by 

symmetry or length, or some other factor?" Another significant factor is the determination of when a value 

cannot be subdivided. Exceptions such as these will need to be detected when encountered. The antithesis of 

subdivision is continuity and when one is developed, so should the other. A concern is that subdivision is an 

operation like counting, it arises from number-sense. 
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C.1.12 Substitution 

Substitution allows a child to apply or substitute one part (the measuring rod) upon another (the object 

being measured) an appropriate number of times, thereby building a system of units (Copeland, 1974, p252). 

In its earliest manifestation, substitution is aligned with subdivision within PMIAS to enable the 

generation of machines that can develop to show the relation of seriation as well as intermediate operations 

such as "greater than," "less than." As explained in the following diagram (figure C-I): 
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A simple 'Less Than' machine build using Subdivision and 
Substitution which later forms the rational numbers 
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Figure C- l A UML sequence diagram that shows the Piagetian mathematical relations of substitution and subdivision being used in a less than machine to determine if 

two counted values are different. It shows the interaction of the executive with the process of act and sense. 
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In this, subdivision and substitution are coordinated together in 6 steps to determine the relationship 

between Ll and L2. In this, Ll is "less than" L2. This example emphasizes how the system can learn one 

process (in this case equivalence) and reuse it. The processes of counting, subdivision and substitution are all 

examples ofHFSA. 

Even this example is simplistic, since it does not show the length of L3, nor how the counted value is 

returned. Further, the standard unit is not used; this length L1 could be any value. In this respect, the processes 

are similar to a child measuring one block with another. There is also no shared moniker that defines the 

relationship "less than," though this could easily be added by the teacher, if this behavior is observed long 

enough. What it does show is that this whole machine is acting as an operator. 

It is possible that this geometric88 subdivision and substitution could lead to both division and 

multiplication and when it is applied repeatedly, it leads to the possibility of developing machines that can 

determine for instance that a unit value of I, can be divided a number of times as in 1 = .!. +.!. +.!., which 
3 3 3 

forms the basis of rational numbers. 

C.l.13 Conservation of Measurement 

Measurement in one dimension produces length and distance. The capability to measure is not fully 

completed until at least 11 years of age (Copeland, 1974, p247-70). This capability is based on earlier work by 

the child, which can be explained in a simple example: perceiving a straight line and being able to reproduce 

one, are two separate problems (Copeland, 1974, p248) and both are not fully complete until the concrete 

operations stage (age 7 / 8). The basic problem is that the child age 6, when moving along a number line, only 

considers the end points, thus two lines, one straight and one crooked, which start and end at the same point are 

considered the same length. Whereas adults take it for granted that a ruler maintains its length when being 

used, this is not the case with children. 

Conservation of measurement appears as machines that can accurately measure the length of number line 

segments. In this implementation, conservation of length and measurement are commingled. The classic 

problem associated with this phenomena is the Piaget's bead problem (§ figure 1-1, figure 2-1 and figure 6-

19). 

C.l.14 Intersection 

Children of 8 years of age, still have difficulty with intersection e.g., the intersection of those numbers 

divisible by two and three (Copeland, 1974, p59). As a facet of classification, intersection includes disjoint 

88 Geometric in the sense that the HFSA, built from observations of the number-lines, use the Euclidian length 

property of the observation - as it is, converted to binary for the equivalence operation and counting. 
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sets, intersecting sets (all or some), one set or subset. Piaget considered that intersection is critical for the 

conservation of the whole. This is a tentative conclusion. 

This process would be available through the appearance of machines that could links sets of 

characteristics between sets of machines. It is conceivable, that such a machine would appear. 

C.I.IS Reversibility 

It is the freeing from perception that marks the beginning of an operation on the intellectual rather than 

perceptual level and it is a lack of reversibility that limits the development of a child that merely uses 

perception (Copeland, 1974, p90-92). Examples of reversibility relation include: 1 + 2 = 3 is reversible to 

2 + 1 = 3 (Copeland, 1974, p 90-92) which is observed at the age of 7 years (Copeland, 1974, pI24). This 

particular example is dependent on the conservation of number. 

Reversibility is achieved through the appearance of a machine that can fully reverse the operation (action) 

of existing machines e.g., reverse the order of a given set of number line segments, reverse the order of a set of 

number line segments, reverse the set of actions. It finally appears in the predictive model and enables the 

simulated student to test various scenarios. As such, it is a machine, which consumes the outputs and inputs of 

other machines. It can be chained together into a new HFSA. 

C.I.16 Inclusion Relation 

The inclusion relation in the addition of numbers is concerned with ensuring conservation of the whole 

(Copeland, 1974, p1l2, p1l7 and pI20). As an operation of classification, the inclusion relation provides a 

mechanism to use an existing classification and determine if a set of input I outputs I machines I monikers fit 

within that classification. 

Inclusion is generated in the predictive model to determine if the characteristics fit within a property of 

perception (initially) and then within the bounds of executing machine e.g., a machine tests for primes and it 

determines if the outputs of a machine i.e., a number is a prime or not. As such, this inclusion relation is 

dependent on conservation of number, reversibility, classification, seriation in varying degrees. 

C.I.17 Transitivity 

The logic of relations includes the transitive relation as in "IfB>A and C>B then C>A" (Copeland, 1974, 

p 12; pi 08 and p 170). It is this ordering of relations, around 7 years of age that is critical to further 

development. 

For transitivity to occur, there must be a mechanism to internalize a classification value to associate "A 

something" and "B something". This may be an internal value associated with the output of surrounding. The 

system also needs to identify, in this instance, the logical connective "greater than." It also needs to be able to 

connect (serialize) the output to another machine. Transitivity is achieved through the appearance of a 

generalized machine, constructed in the predictive model. It presupposes a number of conditions that can only 

appear when the internalized structure is validated internally. The predictive model generates random machines 
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that classifying a set of participant values, orders them, provides them with a moniker e.g., A or B, reuses the 

reversibility machines and makes use of logical connectives to determine a generalization that can be reused by 

other machines, that always holds true. This generalized machine is used in planning to shortcut the planning 

process. Transitivity is critically dependent on reversibility. 

C.I.IS Seriation 

Seriation should be compared to the process of classification within logical relations since it is the 

"capability to order such as from smallest to largest or to count at the operational level that is with true 

understanding of the inclusion relations involved" (Copeland, 1974, p79). With this, it is understood that 

counting (addition and subtraction) as well as multiplication and division are specialization of seriation. It is 

noted that seriation develops earlier than classification this is because it is easier to use a perception property 

such as length, than it is to define the properties ofa class (Copeland, 1974, p80). 

Seriation initially makes its appearance as a machine, created by the predictive model that can order a set 

of objects based on length. Over time and reuse, seriation develops through specialization into machines of 

counting and multiplication through the internalization of binary values associated with a perception of 

external objects. It is this specialization by the predictive model of machines that can count, from those that 

can serialize, that simplify the Piagetian model. Seriation itself is dependent on the use of both continuous and 

discrete values, as well as on transitivity, reversibility and equivalence. 

An early instance of seriation is understood to be the operators of "less than," "greater than", which both 

reuse equivalence. The Piagetian "less than" machine utilizes equivalence and provides a different 

representation of the binary output value i.e., it is substituted for something else. The interesting thing to note 

is that the calling of the Piagetian equivalence machine encompasses both assimilation and accommodation. 

Later fOnDS of Seriation are the appearance of more ordering and structuring. 

A depiction of the "less than" operator as a Piagetian HFSA is provided in the following diagram (figure 

C-2): 
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2 A worked example of a Piagetian " less than" scheme that includes a Piagetian equivalence scheme. It 

hows how revcrsibl machine are recombined into hjerarchies. In this example, "less than" becomes an operator. 

In a imilar way, the Ie than machine can be represented by this sequence diagram (figure C-3): 
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Figure C- 3 A UML sequence diagram showing an alternate view of a Piagetian " less than" scheme, which uses more sophisticated subdivision and substitution. 
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In this, the sequence, operations of processing are described as a series of actions against hypothetical 

machines. 

C.l.19 Conservation of Number 

Copeland expresses an initial view of conservation of number with a re-iteration of the bead problem (§ 

figure 1.1 as described in Copeland, 1974, p83). Observations suggest that conservation occurs through 

developmental stages, and this is true for the equivalence relation, which is required to resolve the bead

problem (Copeland, 1974, p84). The fundamental factor of this development being reversibility of action 

(Copeland, 1974, p92). 

In the worked example (§ 2.3.14) provides a description of the emergence of conservation and is 

dependent on the invariance of number, rather than perceptual cues (length of the line). Conservation of 

number is achieved when the observed behavior of the simulated student, no longer takes account of the 

distance between points on a number line where the number line segment has a penState of penUp. This is a 

direct reference to the bead problem implemented on a number line. It is achieved when the student 

internalizes a binary value for the unit value that it has observed. This raises an interesting question "Are all 

appearances of conservation e.g., length, volume, the appearance of an internalized structure, that can be 

reused by other HFSA?" It is assumed that this is an accurate statement. 

C.l.20 Counting 

Children use rote memorization when first introduced to counting (Copeland, 1974, p83), which leads in 

part to the bead counting problem. Observation shows that there are 3 levels of counting (Copeland, 1974, 

p89-90), which develop over time. 

Counting is achieved through the dynamic evolution of machines that process the internalized structure of 

conservation of number, i.e., they process the values observed in the environment as binary values and through 

the use of an externalized reward, provide the correct answers. This requires the machine to add in binary and 

to decode those values such that they can be presented to the teacher for evaluation. 

An interpretation ofa counting machine is described in § 5.2.5.1. 

The machine itself is a construction of multiple sub-machines organized in a hierarchy. In this machine, a 

binary output of 1, is machine constructed by the system that substitutes the movement of 1, with a single 

binary value of 1. This substitution is an aspect of interiorization. 

C.l.21 Commutative Property 

Using an inductive procedure, the child realizes that by trying other sets of numbers such as 4 + 4 and 7 + 

1, that the order of the number does not alter the sum. The child then concludes or generalizes that "the order 

of adding whole numbers does not change the sum" (Copeland, 1974, pI23). The commutative property is 

achieved through the development of a HFSA that is a generalization, developed by the predictive model, that 

indicates that the way information is processed through the machine can be reversed e.g., 1+3 = 3+ 1 and still 
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achieve the same result. It makes use of the equivalence relation to test the outputs and reuses the reversibility 

machine to reverse the order of its processing. In this way, the commutative property can hold for different 

types ofinfonnation being processed. 

C.l.22 Multiplication and Division 

The basic notion of multiplication being continued addition, division as continued subtraction is 

necessary for the part to whole evaluation of fractions and proportions (Copeland, 1974, pI46), and it is 

realized that multiplication and division are dependent on reversibility and equivalence. 

Multiplication and division is achieved through reusing the counting HFSA, in series. The machine itself 

is generated through the predictive model, which allows it to test various configurations of machines and to 

make use of counting, classification, transitivity, and reversibility and equivalence machines. 

C.l.23 Introspection 

A lack of consciousness of one's own thoughts occurs up to the age of seven, after which there is more 

effort to become conscious (introspective) of one's own thinking process (Copeland, 1974, pI84). 

Introspection is implemented as the mechanism of planning (using a predictive model) which interrogates 

chains of HFSA to improve their processing and use them to solve problems that are more complex. 

C.l.24 Classification 

The classification relation is the appearance of class using groupings (Copeland, 1974, pSI and p60). An 

object may have multiple classifications (Copeland, 1974, pSI and p60). Some of which may be hierarchical 

and some simple. They may also be logically incorrect. It is noted that seriation develops earlier than 

classification, because it is easier to use a perception property such as length, than it is to define the properties 

of a class (Copeland, 1974, p80); as such classification is not specifically tackled, even though it will allow the 

use of a internal monikers as "variables" and support more complex processing such as transitivity and logical 

relations, it is deemed beyond the scope of this research. Classification is probably implemented as a HFSA, 

which contains references to other machines, in this way the system can generate its own classification 

hierarchy, based on what it perceives as useful to solve given problems. These classification mechanisms are 

seeded based on the topological and Euclidian properties available e.g., length, distance etc. 

C.l.2S Ordinality and Cardinality 

Like most other relations, Piaget identified 3 states of the development of ordinality and cardinality 

(Copeland, 1974, p97). The feature of ordinality and cardinality is implemented within the system as the 

constrUction ofa machine that can numerically identify the positions within a set of values . 
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C.1.26 Fractions and Proportions 

The emergence of the capability to process fractions and proportions (rational numbers) is seen as a 

specialization of number and is based on seven characteristics (Copeland, 1974, pI58-159) which include the 

following: a divisible whole, determinate number of parts, no remainders, fixed relationships, all parts are 

equal, each part is a separate whole and the whole is conserved, i.e., the reversible inclusion relation is used. 

The divisible whole is implemented as a HFSA that can successfully partition, based on length a number 

line segment into a unitary set of parts and then realize that the set of partitions is equivalent to the whole. A 

thirds machine can then be utilized to partition another segment into thirds. The property "No remainder" is the 

specific case where there is no remainder from the intended subdivision. This processing probably takes place 

in the predictive model, which determines potential machines. 

The determinate number of parts is an implementation of subdivision (Copeland, 1974, p252). 

Subdivision is a generalized HFSA that determine how many parts a whole can be produced through by 

division. Since "numbers" are implemented from conservation of length using binary values and division is a 

mechanism to divide a numerical value (in this implementation at least), subdivision is seen as division "with 

no remainders." This processing must occur within the predictive model, because this process allows the 

simulated student the capability of making numerous trial and error approaches, the results of which are tested 

in the environment. This predictive model produces machines that can divide and strings them together in 

composite chains of processes. If the processing is successful, then a reward is provided which strengths the 

machine, enabling it to be reused. 

The property of "fixed relationships" is an altogether different class of problem and requires that the 

machine used in building subdivisions, maintains the set of relations. This is perhaps the reuse of the 

equivalence machine, which compares the movements of each of the individual machines. 

In a similar way, the property "all parts are equal" is an implementation of the equivalence relation. The 

interesting feature is the "each part is a separate whole," since this will need to be a machine that is recursive 

and finds all the potential subdivisions that are possible for a machine. 

The property of conservation of the whole is a critical machine that must evolve to reject subdivisions if 

they (their collective length) do not equal the full length. There must be some mechanism that allows these 

collections of machines to execute together, i.e., such that the machines are self-correcting. 

C.l.27 Generalization 

The process of transduction, which is understood to be a lack of generalization, occurs up until the age of 

7 years (Copeland, 1974, pI86). After this age two classes of generalization, inductive and deductive appear 

regularly. An inductive generalization (basically a rule) about rational numbers is commonly determined by 

1 1 7 
children who realize, for example, when presented with - + - = - also realize that multiplying the 

3 4 12 

denominators of the addends 3 and 4 produces the denominator of the sum, i.e., 12 and that adding the 
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7 
denominators of the addends produces the numerator of the sum, i.e., 7, thus producing -. If the child can 

12 

apply this to other unit fractions, then they have made an inductive generalization (Copeland, 1974, p195). In 

comparison, Deductive reasoning is considered to occur after a generalization has been made e.g., 

~ + ..!.. = ..!.. + ..!.., the child then makes use of this induction and without examining the details of a specific 
a b b a 

1 1 1 1 
case e.g., - + - = - + - and concludes that they are the same. The generation of deductive reasoning allows 

3 4 4 3 

the student to make further judgments (Copeland, 1974, p203). Generalization is imagined to be the result of 

HFSA that consume other HFSA and FSA. In doing so they encompass the behavior of those consumed 

machines using an optimized structure. In part this would explain Piaget's assertion of reflective abstraction (§ 

2.3.9 on Piaget and Reflective Abstraction). 

C.l.28 Other Conditions 

Piaget identified several other relations that were required for the development of logical thought. These 

included egotism, which is seen as the attention focused solely on the individual's perspective, and 

transduction, which is the lack of available generalization that is not typically observed in children until they 

reach concrete operations and almost always by formal operations (Copeland, 1984, pI83). Whereas egoism 

cannot be reigned in, in this research, transduction is considered to be ameliorated through the use of the 

predictive model. The planning performed by the student, produces generalized schemes through the schemes 

consuming previously produced HFSA. Several other conditions were defined by Furth (Furth, 1969) that has 

previously been discussed in this thesis. 

Several features of Pia get ian development are not required for the development of rational numbers; these 

include the generalized adaptations of conservation of measurement, area, volume, singular class, weight, 

quantity as well as angle. More complex features such as subtraction are not part of the research. One 

limitation on the research approach, is the lack of social interaction, which Piaget indicated was a necessity 

developing a coherent whole (Pia get, 1952, p46 Cited in Copeland, 1974, p46), though this is important, the 

research focus is on the development an internal model of concept acquisition and so is left out. An interesting 

aspect of Copeland's review of Piaget is the linking of seriation to the development of memory (Copeland, 

1974, p48 and p97). 

Last, substitution, which takes an external value and replaces it with an internal one and an internal value 

with an external 1, is the basis of interiorization. 
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C.2 Rational Number-Sense 

C.2.1 WE6 - Rational Level- Relationships of Unit Values to Continuous Values 

Thi definition of WE6 Rational Level is included for completeness, since it is believed that it is 

required for the development of rational number- sense. It is as an extension of the worked example. 

At thi level, there should be ignificant differences between the processing for units and for rational 

values. There hould al 0 be the appearance of schemes that exhibit the behavior of control and prediction of 

point and plane to the tran formation it elf. This is shown metaphorically in figure C-4 as the overlaid 

repre entational compari on of rational values to the unit values. This representation also exhibits the use of 

prediction to determine that "double the rational tructure," is equivalent to the unit structure. 

De elopmentally, if there i appearance of a concept of a fraction as a single entity, it is the conclusion 

that conceptual knowledge ha been developed since a rational number is a more complex symbol 

repre entation than for a whole number (Cramer, Behr, Post and Lesh, 1997b, p3). Likewise, ordering fractions 

i more comple than ordering whole numbers (Cramer, Behr, Post and Lesh, 1997b, p3). However, this brings 

to the forefront the need to de elop ymbols. "Comparing 1/4 and 116 conflicts with children's whole number 

ideas. ix i greater than four, but 114 i greater than 116. With fractions, more can mean less. The more equal 

parts you partition a unit into, the mailer each part becomes." At issue is understanding how external values 

(as ymbol ) can b pa ed to a tudent, without encoding too much into the student. It is suspected that the 

student would have to go thr ugh all the developmental stages. 

Tn the image below (figure -4), the u e of relations is described. 

Figure 

r----------------------------------------, 
t , 
t , 
t , 
t I 
I , 
t _ , 
I , 
I 
I 
I , - ' t , 
I , , , 
t , 
I , 
I , 
I , , , 
I , 
L ______________________________________ __ I 

WE6 - Rational - Level - the sixth action to appear in a number line world, where there are sets of 

repeated relation. Thi designates that the processing by the student is making more complex arrangements on 

their number line world. Though Ii ted, the rational feature will not be evaluated in the research and is included 

only for complctene . 

I) For Piagct, th i ue with numerator and denominators (Nason and Martin, 1990), will not be a 

problem in this repre entation. However, the use of unit (and two sub-units making up this unit) 

i termed equi alent to the whole number interference problem (Behr, Wachsmuth, Post and 

e h. I 4; Po t, Wa h muth, Le hand Behr, 1985; Post and Cramer, 1987). Similarly, the use 

of mi ed rra tion 
1 

u h a 2 - - may be problematic (Mack, 1990, p22) and will require that 
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the simulation differentiate the rules at two different levels, once for the whole and one for the 

part. Using estimation, a student may be able to compensate for potential errors that they 

discover. The core issue here is that estimation must be part of a developmental or evolutionary 

trend that exists within the student itself. For Piaget, reflective abstraction, which is understood 

to be the transfonnation from imaging points and planes to the transfonnation itself, is the core 

principal at work. This reflective abstraction is seen in the backdrop of the evolutionary and 

developmental trends. At this level, there is the first appearance and development of ordinality 

and cardinality, as well as fractions and generalization (Copeland, 1974, p97, p158-159, p186 

and 195). 

2) For Fodor, at the rational level "rational laws" need to be learnt in tenns of the lower levels 

(Base Level, Constrained Level, Differentiated Level, Hierarchical Level, General Level) 

that allow for the resolution of the paradox i.e., the unit processing on the number line, being 

transposed to the rational process (of parts of units) on the number line. 
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D. Further Examples of Dialectic Evaluation 

Thi appendix contains further examples from the evaluation of the dialectic system. Specifically it 

contains the following example: Argos Scheme - Movement, in § D.l, Argos Scheme - Full Subtractor, in § 

D.2, Argos Scheme - Decoder, in § D.3, Argos Scheme - Counter, in § D.4, Argos Scheme - Full- Adder, in § 

D.5 and a Piagetian cherne - U ing Planning to Count, in § D.6. 

D.I Argos Scheme - Movement 

In the example below (figure D- l), Argos scheme ]200056 was evolved to move along a number line 

using variou Prediction cherne that control penState, directions and movements. 

S1II!kD1 Number- LIM 

(G.) , O.5} / 2 

1200056 1 Class-14 
Method- RadialDraw1ng 

Move 
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Figure 0-1 A depiction of an Argos cheme that exhibits coordinated movement on number lines. In this depiction, 

the movement on the number line are random, there is no coordinated control. 

What i clear from figure D- l is that the simulation can mutate Argos schemes to move ill the 

environment, receiving rewards for accurate movement. 

D.I.I Argo cherne - Start Number line 

In figure D 2, an Argo cherne wa mutated to include a prediction scheme to start a number line. 

~ 0 

Copied !rca ~~ID EVCh .. ID 

t:YCh.f"(.c).c.eID 

0 2006116 72. 

1661 512 4: 000 17. 2'. 

300093 2000180 1. 

!Cl..I.O.lJ 2 
2000176 CIoro-n 

M_-~"" 
Alp - SUr! _ ACboa-017 

~.erlp't10b 

A Root Occur_ twice 

fir.tly 1D paru:t then secondly 'to ~te COIII)OIle.Du. 

Roo't~OI - Start ltaIIbe..rl1ne! Act;1cm-017 
AcUon-Ql1 Sun RUllbe..rllDe-29 

Ba.tfer Mac:hl.ne-l 

Inleid 

St.ete 

n. 

Input OUtput 

St.e'Ce Stat.e 

na na 

Tinal 

SU<e 

n. 

Figure 0-2 Example of a mutated Argos Scheme to start number line using a prediction scheme that is used to tell 

the environment that it wants to build a new number line. This has the effect of initializing the worksheet. 

Since the learning proce for Argos schemes can randomly select any chromosome that exists in its 

memory, the imulation can randomly construct numerous types of schemes. Only a few examples are 

presented. 

D.2 Argos Scheme - Full Subtractor 

The cia ical depiction of a full subtractor, is shown in figure D-3. 
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Full Subtractor 1 

2 

11 !----+--+-+--r-- B I 

5 

Le!J!nd 

IIaI ~.'.: I", 

• F I I~ 0Up;J1 

o 

Figure D- 3 The classic depiction of an Argos full subt ractor scheme using randomly selected initial, final, input, 

outpu t and ordinary states. 

The following table (table D- l) describes the states in the full subtractor: 

Table D-l tates in an Argos Full Subtract or Scheme 

State EVClassID Parent Type Capacity Initial Input Output Final 
m State State State State Input Output 

I 2. 303178 NOT 1 1 Y - - -

2 6. 772354 AND 2 1 - Y - -
3 6. 772354 AND 2 1 Y - - -

4 6. 772354 AND 2 1 Y - - -

5 8. 1559639 XOR 2 1 Y - - -

6 8. 1559639 XOR 2 1 - - - -
7 I. 300093 Buffer I 1 Y - Y 

8 7. 825480 OR 2 1 - - -

9 7. 825480 OR 2 1 - - - -

10 7. 825480 OR 2 1 - - - -

II I. 300093 Buffer I I - - y -
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The proce ing for the full- ubtractor is shown below (table D-2). From this it is realized that there is 

significantly more proce ing required for subtraction, as opposed to addition (§ D.5 full-adder). 

Table D-2 ynchronizations (transitions) in an Argos fuD subtractor scheme 

From To Parallel Sequence Description 

State tate eq Ordinal 

I 2 I I The Initial I bit value (DO), provided by the environment is processed and 

pa ed to State 2. 

I 3 I 2 The Initial I bit value (DO), provided by the environment processed and passed 

to tate 3. 

2 9 2 3 The output from state I is combined with the input (Bin) from a preceding 

Argos Scheme (or zero ifnone is available) and passed to state 9. 

3 9 2 4 The input from State I and the Initial I bit value (D') provided by the 

environment, is processed by passed to State 9. 

3 8 2 5 The input from State I and the Initial I bit value (D') provided by the 

environment, is processed by State 3 and passed to State 8. 

4 8 2 6 The Initial I -bit value (D') provided by the environment and the input (Bin) is 

proces ed and passed to State 8. 

8 10 3 7 The outputs from state 3 and 4 are processed and passed to State 10. 

9 10 3 8 The outputs from states 2 and 3 are processed and passed to State 10. 

10 II 4 9 The outputs from state 8 and 9 are processed and passed to state I I, the output 

tate as a value (Bout). 

5 6 5 10 The Initial I bit values (Do and D') provided by the environment is processed 

and passed to state 6. 

6 7 6 II The output from State 5 and the Initial I bit value (D') provided by the 

environment, is processed and passed to state 7, the final state as a value (D). 

ince the Argos Scheme, is at the final state it stops. 

The execution of the e ynchronizations, is the processing of inputs provided by the environment and the 

production of the following value (table D- 3): 

Table D-3 Outputs of an Argos full ubtractor scheme. 

Borrow (8) 

In 

o o 

Borrow (B) 

Out 

o 
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Borrow (B) Borrow (8) D 
D° 0' Comments 

In Out (Do-Bin- Dl) 

0 0 0 1-0-1=0, No borrow. 

0- 1- 0 = - 1 (bin= 1), borrow 2, 
0 0 

so: 2-1 = 1. 

0 0 0-1- 1= - 2, borrow 2, so: 2- 2=0. 

0 0 0 1- 1-0=0, No borrow. 

1- 1- 1=-1, borrow 2, 

So 2- 1 = 1. 

Like full add r • full ubtractor can be erialized, as in the figure below (figure D-4) with the 'bout" 

and "bin" value progrc ing through the scheme. 

Figure 0-4 The depiction of a ripple carry ubtractor as a collection of full- subtractors as an Argos scheme. 
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Figure 5 An rgos cheme that implements a full subtractor. 

The depiction fall w the arne tyle as other Argos schemes. 

D.3 Argo cherne - Decoder 

U iog the am me hani m a the Argos schemes, a 2: 4 bit decoder can be built, as depicted in figure 

D- 6. 

Decoder 

6 

Legend 

Initial " ': Input 
'" r:. Output 

8 
, 
I' 

-~ ~'-- - D.3 
1 , 
, / 

7 

Figure J)-{) D piction of an Argos decoder scheme using initial, final, input, output and ordinary states. 

Table D de cribcs the tate in the decoder. 

Table D-4 tatc in an Argos decoder cheme, Each state is a Prediction scheme. 

State EVeia TO Parent Type Capacity Initial Input Output 
ID 

Input Output 
State State State 

I 2. 303178 NOT 1 1 Y - -

2 2. 303178 NOT 1 1 Y - -
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State EVCla ID Parent Type Capacity Initial Input Output Final 

ID State 
Input Output 

State State State 

3 6. 772354 AND 2 1 - - - -

4 6. 772354 AND 2 1 Y - - -

5 6. 772354 AND 2 1 Y - - -

6 6. 772354 AND 2 1 Y - - -

7 I. 300093 Buffer 1 I - - y -

8 I. 300093 Buffer I I - - y -

9 l. 300093 Buffer I 1 - - y -

10 I. 300093 Buffer I I - - - y 

The pr e ing for the decoder i hown in table D-5 . 

Table 0-5 Decoder - ynchronizations (Transitions) 

From To Parallel Sequence Description 

State tate eq Ordinal 

6 7 I I The initial inputs from the environment (I0) and (I') is processed and passed 

to tate 7 a output (D3). 

I 3 I 2 The initial inputs from the environment (1°) is processed and passed to State 

3. 

I 5 I 3 The initial inputs from the environment (I0) is processed and passed to State 

5. 

2 3 I 4 The initial inputs from the environment (I') is processed and passed to State 

3. 

2 4 I 5 The initial inputs from the environment (I') is processed and passed to State 

4. 

5 8 2 6 The initial inputs from the environment (1') and the output from state 1 is 

proce ed together and produces the output (D2) 

4 9 2 7 The initial inputs from the environment (I0) is combined with the output of 

state 2 and proce ed and passed to state 9 as output (D'). 

3 10 3 8 The output from State 2 and State 1 are combined, processed and passed to 

tate J 0 a the final State (DO). The Scheme stops processing. 

What i clear from table D , i that the ynchronizations are that the output of an Argos scheme always 

goe to a buffer heme. end, th randomly cho en final state must be the last parallel state constructed. 

The e c ut i n f thcs 'synchr ninltion i the processing of inputs provided by the environment and the 

production of the f, lio" ing values in table D 6: 

Table D-6 utpul or IIIl rgos decoder scheme 
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Th value ' tn thi table a re' with the clas ical alue. 

(0.5, 0.5) / 2 

1000043 I Class-47 

Method-Radia!Drming 

.~os - Decoder 

Figure 0 7 0 pi lion of an rgo decoder cheme with Argos schemes in red and Prediction schemes in green and 

blue. he tran ition lind nchroni.fation are hown in grey and green lines with the appropriate transition values. 

The n lnJ li n f th S' rg cherne follow the mutation selection mechanism as prediction 

cherne . 

0.4 ro ch m - ounter 

The cxarnpl' 'I \ is )f an rg ' unting cherne (figure 0-8). With its composition: 
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Figure 0 - 8 d picHon of Ih compo ilion of Argo scheme as a counter showing the graph of initial, input, output 

and final tat . The c tatc~ arc all randomly cho en as the Argos scheme is mutated. 

\ hal I vldent fr m thi that 0 rdinated development is required to construct these machines. A 

depictIOn fan Arg heme!l cn der, counter and decoder is detailed in figure D- 9 
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Figure D-9 A depiction of an Argos scheme counter scheme which includes full adders, decoders and internalized actions, 
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D.S Argos cherne - Full-Adder 

U ing the arne mechani m, a full adder can be constructed (figure D-10): 

Dv-_~_~ 

Full Adder 

Carry 
In 

Carry 
7 ,_1_, Out 

\ I 

Y 
I 

4 
Sum 

6 

Legend 

. Intial ~ •• Input 
·.0+ 

• Fhal G°ut;>ul 

Figure D- 10 depiction of a full adder as an Argos scheme showing that common schemes can be randomly 

con tructed using mutation of their initial, final, input and output states. 

The following table ( 7) de cribe the states in the full adder. 

Table 0-7 tate in an Argos full- adder scheme. 

State EVC)a ID Parent Type Capacity Initial Input Output Final 

ID State State State State Input Output 

I 6. 450962 XOR 2 I Y - - -
2 6. 772354 AND 2 I Y - - -

3 6. 772354 AND 2 I - Y - -

4 8. 1559639 XOR 2 I - Y - -
5 7. 825480 OR 2 I - - - -

6 I. 300093 BufTer J J - - - y 

7 I. 300093 ButTer 1 1 - - y -

The ynchr nization required for thi full adder are shown below (table D- 8): 
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abl D 8 ) n hroni/stion ('fran ition ) in an rgo full Adder cherne 

From To Parallel Sequence D cription 

tat State Seq Ordinal 

I 4 I I The initial bit (Do, D I) provided by the environment are processed and passed 

to tate 4 . 

I 3 I 2 The inttlal mput bits provided by the environment (Do, D I) are processed and 

pas ed to tate 3. 

2 5 2 3 The inttial bit (Do, D I) provided by the environment are processed and passed 

to tate 5. 

3 5 2 4 The output from State I i combined with the Carry In (from a previous 

hierarchical machine, or zero ifno such machine exits), is processed and passed 

to ·tate 

5 7 3 5 The output from tate 2 and tate 3 are processed and passed to state 7. The 

output tate a value ( arry Out). 

4 6 4 6 The output from State I i combined with the Carry In (from a previous 

hierarchical machine, or zero if no such machine exits), is processed and passed 

to tate 6 the Final tate ( urn) . This is the final state for the Argos Scheme, so 

proce ing top . 

There i . n fccdba k 10 p for pro e ing a can be seen in thi example. Further, all processing is unique; 

ther n ' harcd pro e ' ing for the e Argo tyle cherne . To be able to appropriately process the 

informatl n, it is es 'cntial that en h in tance of a cia of chromo orne used in an Argos scheme is copied as a 

unique 10 tan e int th p pulati n, allowing thc Argo scheme to "grow their own" inter- connections. As 

with en der , thes' . heme an be ombined in erie, with the outputs of one scheme being passed to the 

input fubequent s h me. 

The e e ution of the e yn hronization i the proces ing of inputs provided by the environment and the 

producti n fthc following alues (table D 9) 

abl D 9 utput of n rgo full- adder cherne. 

Carry Out 

o o o 
o o o 

o o 
o 
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riti al apc t of the outpu 

con tru led hemc . 

o 

Carry 

In 

o 

Sum Carry Out 

o 
o 

that they provide a mechanism for the system to evaluate the 

Arg hem an al 0 b combined in erie. For example, a ripple carry adder can be constructed from 

pie fthcimplcr Argo cheme, the full adder. 

Ripple Carry Adder as an example of a HFSA 

A set of full adder's are 
combined together into a 

HFSA, to form a ripple 
carry adder. 

Carry 

In ~ 

Do~ D,Q D7~ 
I I C , I I C5 C6~ 

FA ~ ~ I FA ~---~ 
Carry 
Out 

Figure 0 11 depiction of an Argos scheme as a ripple carry adder. howing tbe inputs, outputs, initial and final 

tates. his i onl one example, others exist. 

Thi rai e the i ue that the Argo Scheme must remain active over a period of time, such that it can 

ount a range of value pro ided through the interaction with the environment. In supporting the work of 

Piaget, Pa ual Lc ne imagine a model ofproce sing where schemes can remain active, in equilibration, until 

the y tcm it elf i for ed into a proce of di equilibration and other schemes become dominant. For instance, 

if they tern i ounting and it cannot count anymore because it has run out of processing units. It regains 

equilibrium by adding more full adders and continues counting until either the input from the environment 

top and it fini he or orne other cherne become active and dominant e.g., boredom. This processing is 

e ential to the 0 crall utility and warranty of the system. 

ing imple rule set of Argo schemes can be randomly evolved together as a more complex Argos 

ull dder heme a de ribed in figure D- 12: 
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Figure 0-12 The depiction of a full adder as a Argos hjera rchical fin ite state machine otherwise called an Argos 

scheme. 

..J 

In thi , the Argo cherne, chromosome89 2000019, EVClass 45 is composed of a set of schemes. The 

interesting point to note is that the e schemes are not perfect; they have outliers, as in the far right of figure 12-

12. The e outliers are not part of the main thread of processing, but at a future mutation, may become 

significant. The Argos Scheme synchronizes the processing of inputs from the environment across the 

contained F Au ing a et of rules, as shown in the following diagram (figure D- 13): 

89 As an aside, in this architecture, the evolution of chromosomes occurs within the lifetime of Student, in 

this re pec! 'chromosomes ' are more akin to 'neurons' and this is a throwback to the original implementation 

from which thi olution has grown (Jacob, 2001, p213). Thus the process of evolving a class of chromosomes, 

is the learning proce s employed by this system and is the resolution ofLPS. 
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chl'ODOStatesLi.st = { 
{8.,1559639, "XIJR", "InitialState", "", "", "", l}, 

{6. , 772 354, "MID", "InitialState", "", "", n", 2}, 

{6., 772354, "AND", "", "InputS tate" , n", '''', 3}, 

{8.,1559639, "XIlR", "", "InputState", "It, "", 4}, 

{7., 825480, "OR","", "","", "", 5}, 

{l., 300093, "Buffer", "", '''', "", "FinalState", 6}, 

{l., 300093, "Buffer", "", "", "OUtputState", "" r 7} 

} ; 

chl'ODOSyncList = { 

{l,4,1,1}, 

{l, 3, 1, 2}, 

{2, 5, 2, 3}, 

{3, 5,2, 4}, 

{5,7,3,5}, 

{4, 6, 4, 6} 

} ; 

Figure D-13 The depiction of the structure of an Argos scheme as a full-adder. In execution, these synchronizations 

are chosen randomly and evaluated using external rewards by the simulation. They are depicted here in a similar 

fashion to FSA. 

The behavior of basic gates can be expressed using finite state machine; for instance, AND, NOT, XOR 

can all be evolved from minimal single state machines, using appropriate evaluation functions. Combinations 

of these gates can then implement Boolean expressions, producing a specified output (almost) at the instant 

when the input values are applied. These combinational circuits (otherwise referred to as sequential circuits or 

combinational logic circuits) can have multiple inputs and more than one output e.g., a second output can be 

provided for the complement of the operation. Combinational circuits give us many useful devices with one of 

the simplest are the "Half Adder," which finds the sum of two bits. The sum can be found using the XOR 

operation and the carry using the AND operation. The example full- adder is shown below and is described in 

figure D- 14: 
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{O.5, 0..5} 2 

1009209 C1as.s-39 

_ fethod-RadialDra"'in! 

Argos - Fun Adder 

l~ 1 JDV" 
;) I , 

o 
Figure D-14 The depiction of a full adder as a set of Argos schemes (red node) that marshal information using their 

parallel synchronization table across prediction schemes (blue and green nodes) that process the information using 

a series of numbered transitions in grey. It is an example of a binary executable machine that is evolved to interact 

with the environment. 

Through more highly tructured combinations, full adders and ripple carry adders can be created. These 

then have the propensity to fully "count," in a similar way to a child. For instance, an improperly built ripple 

carry adder will ometime get the right values and sometimes not. There is a clear correspondence with 

Piaget ' ob ervation of chi ldren (Copeland, 1974). 
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D.6 Piagetian Scheme: Using Planning to Count 

The example below describes how planning (using a predictive model) would change the processing of 

assimilation and accommodation and lead to a potentially faster processes of counting. It is included in this 

appendix for completeness. 
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Execution of HFSA (Schemes) - Using Predictive Model 
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Aaon (0<XH>0 NcIImg Coftllue) I ® 
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e 
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Figure 0-15 A UML sequence diagram that shows the use of a predictive model to overcome disequilibration in a worked example of counting. 

Page 299 



Appendix D - urther ample of Dialectic Evaluation 

The tep in the proce are de ribed in table D-IO. 

Table 0-10 teps in the UM equence for planning 

Step Environment Student 

Student command Exe utive of Student Wake Up and Student responds ok (Action 000). This ok scheme is 
J. 

001 'I ake p now the current active cherne. 

Student command Executive elects cherne to respond, interrupts currently executing scheme and deactivates 
2 

002 olve? it then activate elected scheme. 

3 Accommodation: Student Action 000 (Do nothing). 

Student Command A imilation: Ob ervation of student Command Solve 1+ 1 = ? 
4 

ok 

Student put into a tate of disequilibration (there must be a better solution). 

5 Executive lnterrupts processing and attempts to put student into state of Equilibrium. 

Executive call the Predictive Model to dynamically generate Argos Scheme that can 

proce S more memory and plan a better solution to this problem and in doing so return to 
6 

tate of equilibrium. This processing is dependent on the M- Capacity available to the 

student. 

7 Continuation of A imilation, Count (I + 1+1) using Predictive model returns 3. 

Accommodation: Student Action (Move 3) as execution of predictive FSA PenDown, Right, 
8 

Move Duration 10403, top 3 times. 

Teacher Mark A Imllation of reward and strengthening of Argos Scheme. Interaction stored in memory. 
9 

tudent re pon e 

" Other example of planmng would enable the development of a solunon to Solve 2 + 4 ?" It IS Imagmed 

that the y tern mo e 2 and then add 4 at the end of the existing movement, rather than going back to the start 

again. 

There are in fa t two et of heme required to be mutated as described in table D- ll: 

Table I I et of clion to represe nt t bit 

Scbeme A imilatlon Accommodation 

A Predlcti n . heme of Move I Unit, is The a imilation ofthe Prediction Scheme is related to the 

J. u ed to b rYe the movement of unit I, on accommodation (acting internally) ofa BUFFERNOT machine 

a number hne. producing a binary value of I. 

A Prediction heme as a BUFFER OTof 
The assimilation ofthe Prediction Scheme is related to the 

2. 
blOary value of I I u. similat d internally. 

accommodation (acting externally) of a Prediction cheme of 

Move I Unit. 

, The e two pro e e arc needed a a precursor to countmg, scheme 1 allows the bIt to be counted by a 

follow on full adder heme. Thc second supports serialization i.e., the repeated action of i-bit, moves the 

number line unit. 
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Glossary 

10 ar 

# Term Description 

I) Act The Piagetian accommodation proce of "recognition" (§2.3.6.1 and § 4.2.1.2) is 

implemented by the y tern u ing the act algorithm (§ 4.2.3.16 for algorithm] 6). This 

enable the sy tern to act on the environment. 

2) ArtifiCial Neural Thi re earch created an artificial neural network implementation to te t for emergent of 

etwork permanent object invariants. 

Implem nlauon 

3) ATF ATF i a ynonym for automated theory formation (Colton, 2000). 

4) ATP ATPi a ynonym for automated theory proving (Colton, 2000). 

5) Automaton Each Prediction cherne, as a finite tate automata, is de igned to take a given input and 

Re pon e pr duce a given output, u ing it tran ition . The output of an automaton is it automaton 

r p n e (§ 4.2.3.2 for algorithm 2). 

6) BaldWin Effect The genetic pecification alone doe not determine what can be learned neurally, but what is 

learned affect learning. Otherwi e referred to as the Baldwin effect (Baldwin, 1896; 

Waddington, 1942), it can be under tood, as what is passed through the genome is not so 

mu h neural learned behavior, but the dispo ition to learn that behavior. 

7) Cognizant failure Cognizant failure i based on the idea of de igning a sy tern to detect failure and recover 

from them a oppo ed to never failing (Gat, 1998, p 198). Originating on Firby's re earch on 

adaptive control (Firby, 19 9). Like nature, it sidestep the i sue of designing perfect 

alg rithm, but require a contingency recovery procedure for each failure. In this 

implementation, the executive i used to handle error situations. 

8) Comple v. Wherea complicated y tern have many parts, each part can be reduced and studied 

omplicated separately through a proce of deduction i contrasted with complex y terns such a 

human cognition, which are not fully predictable, so cannot be decomposed. More 

importantly, the model u ed to de cribe these complex system induce principle based on 

empirical ob ervation . 

9) Concept A concept is a mental tructure, which generalizes over at least two feature of the 

en ironment, in order to mediate behavior (Gold tone, teyvers and Larimer, 1996, p243). 
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# Term Description 

Tn thi ense, generalization is the capability to correctly respond to situations that have 

previou Iy been available; mediation is the capability to modularize situations, as 

collections of ub structures where adaptation is the capability for the subject to learn in the 

environment that it is placed in. Within the system, a concept is a finite state automata that 

has been evolved through mutation to be able to predict the next state of the environment. 

The intention of the ystem is to test the development of concepts using a Piagetian model 

of learning and development (§2.3). 

10) Con tructivi m The interaction between a genome and the environment allows concepts to emerge through 

the phenotype. 

II) Creating Concept The y tern initially creates a concept through the addition of a class of chromosomes (§ 

4.2 .3.15 for algor ithm 15), and then the evolution through mutation of a population of 

chromo orne that attempts to meet the definition supplied by the class (§ 4.2.3.8 for 

algorithm 8). 

12) Cuno Ity Reward 
The curio ity reward is the value of the reward produced by the environment at time t , 
that i in re pon e to orne curiosity behavior on the part of the Agent. The curiosity reward 

i a pecial ca e of reward. 

13) Current Reward 
The value of the current reward as produced by the environment at time t 

14) De ign Con traints De ign Con traint limit the design such as requiring an agent design. 

IS) Development Development is assumed to define LP6: Children develop their learning process. In this, the 

con truction of what is already known and the process by which that knowledge is acquired 

i altered by the maturing chi Id (Furth, 1969, pi 05). 

16) Dialectic Sy tern The Dialectic Sy tern is generated by thi research to test a Piagetian model of cognition 

u ing hierarchical finite state automata. 

17) Dual Pro e s The dual mind hypothesis, often referred to as dual coding theory, asserts that visual 

Theorie information proces ed by the brain are analogue codes with verbal information being 

ymbolic (Paivio 1986; Paivio,2006). These already formed symbols "allow" cognitive 

modeling researchers to incorporate symbolic information into their systems in the form of 

propo itional and predicate logics (Anderson, 2005). Two supporting biological systems of 

dual proce s theorie (dual mind hypothesis) are the spontaneous system (using the lateral 

temporal cortex, amygdala and basal ganglia) and the rational system (using the anterior 

cingulaled, prefrontal cortex and hippocampus). The rational system either generates 

olution to problem encountered by the spontaneous system, or it biases its processing in a 

variety of way. To quote Pyysiainen, "A pre-existing doubt concerning the veracity of 

one' own inference seems to be neces ary for the activation of the rational system" 

Pyy iainen, 2003, p617. The rational ystem thus identifies problems arising in the 

pontaneou ystem, takes control away from it and remembers situations in which such 

control was previou Iy required. The e operations are plausibly considered to consist of 

generating and maintaining ymbol in working memory, combining these symbols with 

rule ba ed logical schemes and biasing the spontaneous system and motor systems to 

Page 324 



Glo ary 

# Term De cription 

behave accordingly (Lieberman, Gaunt, Gilbert, Trope, 2002). 

18) Embedded Figure The Embedded Figures Task (EFT) is designed to measure disembedding, a restructuring 

Task kill , which results from the use of tyle. According to Bonham (Bonha.rn, 1987), the EFT 

wa adapted rrom Gottschaldt 's figures by adding colored patterns to increase complexity. 

a h complex figure included an embedded simple figure, which the subject is to identify 

quickly a pos ible; there are 24 figures in the EFT. 

19) Embryogene i and The development of knowledge is a spontaneous process, tied to the whole process of 

Learning and embryogene is. Embryogenesis concerns the development of the body and it includes as 

De elopment well the development of the nervous system and the development of mental functions . In 

the cn e of the development of knowledge in children, embryogenesis ends only in 

adulthood . It is a total development process in which one must resituate in its general 

biological and p ychological context. In other words, development is a process, which 

concerns the totality of the structures of knowledge. Learning presents the opposite case. In 

general , learning is provoked by situations - provoked by a psychological experimenter; or 

by a teacher, with re pect to some didactic point; or by an external situation. It is provoked, 

in general , a opposed to spontaneous. In addition, it is a limited process - limited to a 

ingle problem, or to a single structure (piaget, 1964, p8). 

20) Empinci m All concept are learned through experience. In empiricism, the brain mediates the 

interaction between the world and the body, by the formation of concepts about the body it 

i contained on and the environment it is embedded in. 

21) Executive An executive is the process by which the governing processes of Act and Sense, Reinforce 

and Predictive Model, determine if disequilibrium has occurred and following the 

developmental trend , make corrections to put the system into a state of equilibrium. 

Evidence uggest that there is a biological basis for this switching (MiesenbOck, 2008, p52; 

hang, laridg hang, Sjulson, Pypaert and Miesenbock, 2007, p60 I). 

22) Fitne Fitne i the mea ure of a Prediction scheme to adapt to the environment. It augments 

prediction quality with attributes that assess usefulness (§ 4 .2.3.3 for algorithm 3). 

23) FSA FSA i a ynonym of finite state automata. 

24) Functionality Functionality includes the architecturally significant system- wide functional requirements. 

25) Geneti Genetic Epi temology deals with both the formation and the meaning of knOWledge. The 

pi tern I gy e entia I que tion is : "By what means does the human mind go from a lower to a higher 

level of knowledge?" The fundamental hypothesis of genetic epistemology is that there is a 

paralleli m between the progress made in logic (or the rational organization of knowledge) 

and the corre ponding formative psychological processes" (piaget, 1970a, P 13 cited in 

opeland, 1974, p5). Piaget, as a constructivist, held some basic assumptions about his 

genetic epi temology that can be fitted to the research concerns. 

Firs t, ontinuity Vs discontinuity. 

As a stage theorist, Piaget contends that there is a discontinuity that occurs at various stages 

of development (A will be seen by this research, the development of levels of discontinuity 

i not doubted, but the attribution to developmental stages for an individual is su pect). One 
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26) Genotype 

27) HFSA 

28) Imitation 

29) Leaming Conccpt 

30) Learning Paradox 

31) Learning St p 

32) Learning Strategy 

Description 

intere ting que tion is what is the impact to conflict on development? Would an increase in 

conflict, how an increase in development? 

cond, ature v. urture. 

I) An individual i born without "mind" i.e., they have some innateness -instincts (Furth, 

1969, p261) and primary reactions (Furth, 1969, p 146) - but that development of 

intelligence i operational (Furth, 1969, p244). Using this definition, Piagel supports both 

nature and nurture. 2) An individual has hereditary organic reactions i.e., there is support 

for the notion of nature; 3) An individual is naturally active and engages with the world i.e., 

Piaget thu upports the notion of nurture; 

Third, Knowledge Generation and Meaning. 

An individual needs to adapt to their environment. In this sense, Piaget supports innate 

re on and ideas ince the e are u ed and developed over time as schemes. Piaget also 

upports orne of the notions of empiricisms, in that the external world is a construction by 

the indi idual, who cannot initially be separated from it. Also, to adapt, an individual 

organize hi /her thinking into structures (schemes) and for Piaget, the essential 

determinant of genetic epistemology IS the construction of these structures using 

as imilation and accommodation and the control of these through equilibration that allows 

for the emergence of intell igence. 

Genotype describe the genetic con titution of an individual that is the specific allelic 

makeup (An allele is an alternative form of a gene - which may have a different 

characteri tic, e.g., color of line etc.,) of an individual, usually with reference to a specific 

character under consideration. 

HFSA is a synonym of hierarchical finite state automata. 

The Piagetian accommodation process of "imitation" (§2.3.6.2 and § 4.2.1.2) is 

implemented by the system using the imitation algorithm (§ 4.2.3.18 for algorithm 18). 

Thi enable the ystem to imitate observations in the environment by making an internal 

accommodation. This internal accommodation, as imitation, leads the reconstruction. 

The y tem u e the evolution of classes of chromosomes, as the conceptual learning 

mechani m. This proce s of evolution through random mutation, is encapsulated within an 

algorithm (§ 4.2 .3.5 for algorithm 5). 

"To put it mo t imply, the paradox is that if one tries to account for learning by means of 

mental actions carried out by the learner, then it is necessary to attribute to the learner a 

prior tructure that is as advanced or complex as the one to be acquired" (Bereiter, 1985, 

p202). 

The ystem may take many attempts to develop a concept (as a constructed automaton 

within a population of chromosomes with a specific class); this process is encapsulated in 

the mutation of copies of chromosomes (§ 4.2.3.6 for algorithm 6). The quality of learning 

i defined by the chromo ome's prediction quality. 

The ystem u e an evolutionary strategy to implement the Piagetian concept of learning 

through a imilation and accommodation (§ 4.2.3.7 for algorithm 7). 
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33) LP A et of con tmint for a sy tern that overcomes the learning paradox, as defined in § 2.1.7 : 

LPt : Work Within The onstmint Impo ed By Fodor's Arguments. 

LP2: Exhibit mergence of Hierarchical oncepts using evolutionary process. 

P3 : Operate Autonomously. 

LP4: Mirrors Real World Behavior of Children Learning umber Sense using a umber 

linc. 

LP5: Learn Incrementally with Minimal Innate Knowledge and Reflexes. 

LP6: Develop its Learning Proce 

LP7: Act in ovel, Opportunistic and oi y Situations. 

34) MNL MNL i a synonym for the mental number line (Dehaene, Izard, Spelke and Pica, 2008). 

35) Molecule of In this re earch, an argument i made that cognition is the emergence of structure from 

ognltl n network of F A and HFSA (schemes as discrete machines). Since there is reuse of binary 

component depending on need, that these machines are molecular. From this, one could 

argue that cognition (in this simulation at least) is molecular and that the general approach 

de cribed in this re earch is the appearance of molecules of cognition. 

36) Nattvi m All concepts have an innate basis: the available atomic symbols and the rules for 

combination are pecified beforehand and remain unchanged. Thus all concepts are 

provided in the genome, at a genetic level. This contrasts with the experimental evidence of 

tage tmn ition. 

37) Neuron Sensory neurons transmit information from ensory receptors throughout the body. Motor 

neuron transmit information from brains to muscles. eurons contain nucleus to hold 

genetic information as well a a membrane, mitochondria, golgi body and cytoplasm. 

eurotran mitters released by axon (nerve fibers) and dendrites (branches) pass through to 

ynapse to other neurons. There are 100's of types of neurotransmitters with each using a 

di tinctive chemical signa\. The human brain has 109 
neurons and 1012 

. synaptic 

onncction . F A can repre ent any neuron (Minsky, 1967). 

38) Ontogene i Sequcnce of events involved in the development of an individual organism from the 

tran lation of the genome onto the actual phenotype. 

39) Operat rs There are a set of mutation opemtors that are designed to enable the construction of finite 

tate automata u ing random evolution (§ 4.2.3.4 for algorithm 4). 

40) Package A pa kage i a elf-contained unit that can be developed and deployed in a controlled 

fa hion to achieve the aims of the ystem. A package has a series of interfaces that enable it 

to be u ed and te ted independently and by de ign reduce the risk of the whole system not 

functioning correctly. By design, each package aims to have high cohesion and low 

coupling with other packages. They also need to be self-contained and can be consumed by 

other package . A package is generally related to a feature or set of features of a system, or 

they may meet a peci fic need or et of needs as defined in the vision of the system. The 

package become a mechani m to trace the developed solution back to the initial 

requirement and cope of the solution. 

41) Performance Performance involves throughput of data, system respon e time and recovery time. 
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42) Permanent ObJe t The permanent object invariants are emergent from the sensory motor processing, and in 

Invariant thi y tern repre ent the external environment features of point, line, direction, penState 

(pen p, penDown, and stop) and movement. (Furth, 1969, p248) (§ 2.3.5). 

43) Phenotype Ph en type i the ob ervable constitution of an organism; Phenotype is the appearance of an 

rgani m re ulting from the interaction of the genotype and the environment; A phenotype 

de cribe any ob erved quality of an organism, such as its morphology, development, or 

behavior, a opposed to its genotype - the inherited instructions it carnes, which mayor 

may not be expre ed. 

44) Phylogenei Evolutionary development of a species or feature of an organism. 

45) Ph leal Con tra int Phy ical constraint include physical hardware and networking environment. 

46) Pred lclI n Quali ty Prediction Quality i the measure of a Prediction Scheme to correctly predict a sequence of 

input value from the environment (§ 4 .2.3.1 for algorithm 1). 

47) Rec n tructi n The Piagetian a similation process of "reconstruction" (§4.6.2 and § 2.3 .6.3) is 

implemented by the y tern using the reconstruction algorithm (§ 4.2.3.19 for algorithm 

\9). This enable the sy tern to recon truct observations in the environment through the 

generation of chromosomes. 

48) Reliabili ty Reliability includes aspects uch as availability, scalability, accuracy, recoverability. 

49) Scheme and Schema Schema does not refer to the work of Poli (poli, 2001 , p19; Poli and McPhee, 2003a, 

2003b) who pre ent a general schema theory for genetic programming. A scheme for 

Piaget i "the coordination and organization of adaptive action, considered as a behavioral 

tructure within the organi m, such that the organism can transfer and generalize the action 

to imilar and analogous circumstances" (Furth, 1969, p44). 

50) Sele \Ion The y tern uses a number of selection mechanisms in its evolutionary strategy, these 

include be t election (§ 4.2.3.9 for algorithm 9), elite selection (§ 4.2.3.10 for aIgorithm 

10), titne s proportionate selection (§ 4.2.3.11 for algorithm 11), rand based selection (§ 

4.2.3.12 for algorithm 12), random election (§ 4.2.3 .13 for algorithm 13) and tournament 

election (§ 4.2.3. 14 for algorithm ]4). 

51 ) Sen e The Piagetian as imilation process of "perception" (§2 .3.1) is implemented by the system 

u ing the en e algorithm (§ 4.2.3.17 for algorithm 17). This enables the system to observe 

( en e) the environment. 

52) TCO TCOi a ynonym of Theory of Constructive Operators (pascual- Leone, 1970). 

53) UML Sofiware architecture and design is commonly organized into a set of views, with 

each view repre enting a set of system elements and the relationships among them. Since no 

con en u exists on which symbol- set or language should be used to describe each view, 

the nitied Modeling Language version 2.2 will be used (Booch, Jacobson and Rambaugh, 

2000). The UML delineates into two categories, with structural diagrams defining the 

tructure of the olution and behavior diagrams, defining the dynamic behavior of the 

function, I requirements. The RUP method of cIa sification adopted by this thesis is known 

a FURP +. Where "FURPS" indicates Functionality, Usability, Reliability, Performance 

and upportability and "'+" indicates design constraints, implementation constraints, 
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interface constraints and physical constraints that the system must perform number. 

Further, these non- functional requirements can be considered those features of the 

y tern that provide the structure to enable the Agents, in the simulation, to have the 

nece ary observed behavior. It is this epigenetic framework, which the agent cannot 

manipulate. Over generations, student performance is enhanced, through selective breeding 

based with tudents with better performance characteristics. 

54) Usability U ability includes user interface issues such as accessibility, interface aesthetics, 

con i tency. 

55) WE The worked example, as defined in § 2.3 .14 

WEI Base Level. 

WE2 on trained Level - Conservation of Length, Measurement, Point. 

WE3 Differentiated Level - Object - Conservation of Object. 

WE4 Hierarchical Level - Segmentation into Unit - Conservation of Number. 

WE5 General Level - Relationships of Unit Values. 

WE6 - Rational Level - Relationships of Unit Values to Continuous Values. 
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End Notes 

i Various theories are discussed in the literature review, these include: Generative Linguistics (Chomsky, 

1980); Fixation of Belief (Fodor, 1980); Genetic Epistemology (Furth, 1969; Copeland, 1974; Piaget, 1954; 

Piaget, 1964); Theory of Constructive Operators (Pascual-Leone, Goodman, Ammon and Subelman, 1978); 

Constructivist Theories (Liebeck, 1984; Furth, 1969; Dehaene, Izard, Spelke and Pica, 2008); Thalamic loops 

(Albus, 2008; Albus, 201Ob, Granger, 2006a; Granger 2006b); Event Hierarchies (Albus, 2008; Albus, 2010a 

and 2010b); Receptive Field Hierarchies (Albus, 2008; Albus, 2010b); Herbrand's theorem as used in 

automated theory formation and proving systems (Chang and Lee, 1973; Pease, Colton. and Charnley, 2012; in 

Colton and Muggleton, 2006; Colton, 2002; Colton, 2000); Theory of Metaphors (Lakoffand Nunez, 2001); 

Conceptual Blending Theory (Fauconnier, 1985; Fauconnier and Turner, 2002; Hutchings, 2005;Guhe, Pease, 

Smaill, Martinez, Schmidt, Gust, KiiHnberger and Krurnnack, 2011); Theory Tethering (Sloman, 1985); 

Adaptive Resonance Theory (ART) (Carpenter and Grossberg, 2002) ; ACT-R theory (Anderson, 2007; 

Anderson, Bothell, Byrne, Douglass, Lebiere, Qin, 2004); Scheme Theory (Von Glasersfeld, 1998); Intelligent 

Agent Theory (Wooldridge and Jennings, 1995); Dual-Process Theory (Pyysiainen, 2003;Epstein and Pacini, 

1999) and Theory of Emergence (Crutchfield, 1994a, 1984b) amongst others. 

ii For Bereiter, the defined factors are: chance plus selection; piggy-backing; affective boosting of schemas 

(attention is regulated by effect; attention is regulated by field effects; attention is regulated by bias); emotion 

as a separate information processing system; field facilitation; imitation; learning support systems (scaffolding, 

field facilitation in LM Learning, LC learning, See § 2.6), use of spare mental capacity and the need for 

coherent self-concept (Bereiter, 1985, p208). 

iii Mental spaces are described as an aspect of cognitive linguistics that develop constructs during discourse. 

Distinct from linguistic constructs, they are established by linguistic expressions (Fauconnier, 1985), and 

provide explanation of problems in philosophy and cognitive science concerning thought and language. Mental 

spaces consist of elements and the relations between them (Fauconnier & Turner 2002,pl02). These elements, 

potentially from multiple domains located in both short and long term memory are related in working memory 

and when "organized as a package that we already know about, we say that the mental space is framed" 

(Fauconnier and Turner 2002, pI03). 
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iv In simplexes, one input consists of a frame and the other consists of specific elements. A frame is a 

conventional and schematic organization of knowledge such as ''buying gasoline" (Fauconnier & Turner 2002, 

pI20). In mirrors, a common organizing frame is shared by all spaces in the network (Fauconnier & Turner 

2002, p 122). In single-scope, the organizing frames of the inputs are different, and the blend inherits only one 

of those frames (Fauconnier & Turner 2002, pI26). In double-scopes, essential frame and identity properties 

are brought in from both inputs (Fauconnier & Turner 2002, p131). It is double-scope blending which can 

resolve clashes between inputs that differ fundamentally in content and topology and is the powerful source of 

human creativity (Fauconnier & Turner 2002, p139). 

v In composition, the projections from the inputs make new relations available that did not exist in the separate 

inputs (Fauconnier & Turner 2002, p146; Fauconnier, 1997, p150; Hutchins, 2005, pI556). The mapping 

schemes, by contrast, are "predictable from the language forms used to evoke them" (Fauconnier & Turner 

2002, pI47). In completion, knowledge of background frames, cognitive and cultural models, allows the 

composite structure projected into the blend from the inputs to be viewed as part of the larger self-constrained 

structure in the blend. The patterns in the blend triggered by the inherited structures is "completed" into the 

larger, emergent structure (Fauconnier & Turner 2002, p44; Fauconnier, 1997, pl5l; Hutchins, 2005, p1556). 

In elaboration (also called running the blend), cognitive work is performed within the blend according to its 

own emergent logic (Fauconnier & Turner 2002, p44; Fauconnier, 1997, p151; Hutchins, 2005, pI556). 

vi Pascual-Leone, Goodman, Ammon and Subelman's abstract and technical theory of Constructive operators 

seeks to "represent explicitly the underlying mechanism of dialectical equilibration and structural growth" 

(Pascual-Leone, Goodman, Ammon and Subelman, 1978, p252). The theory of constructive operators 

integrates three sorts of organismic constructs: schemes, basic factors and basic principles within a process 

model of the psychological organism, the meta-subject. It is called the meta-subject, to indicate that it is a 

"highly active hidden organization which is causally responsible for the subject's performance." Refined over 

several years, the theory of constructive operators (TCO) (Pascual-Leone and Goodman, 1979, p303) is based 

on a series of principles: Principle of assimilatory praxis as well as the associated principle of schematic over

determination of performance (SOP), Principle of equilibration and the Principle of bi-Ievel psychological 

organization. These principles need to be combined with several other elements of Pascual-leone's work, 

including: Executive schemes, Interrupt function, M Capacity, Principle of scheme inhibition and decay, 

Schemes, Silent operators. Some aspects of Pascual-Leone's work had to be set aside; this was due to 

restrictions on development time, though in any future research, their utility and warranty may be proven. 

These deprecated features include: Affective schemes, personality biases and belief systems, Sensorial field 

factor, Content Learning, LM Learning, LC Learning. 

vii The Cartesian product operator is implemented as parallel composition of independent systems, where each 

system is a FSA. When the FSA communicate with each other, it is through encapsulation with dedicated 

signals. The encapsulation allows for refinement and the parallel composition is always symmetric 

(Maraninchi and Remond, 200 I. 
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viii The refinement operator otherwise called the encapsulation operator, is a unary operator that restricts the 

scope of signals i.e., it makes them local to the encapsulation for both parallel and hierarchical consumption. 

The refinement operator is asymmetric, since one of the FSA is the controller and the other(s) FSA are 

controlled. The refinement operator allows for interruption, exceptions and terminations of programs 

(Maraninchi and Remond, 2001). 

ill The inhibiting operator can be preemptive and prevent a parameter to a FSA from being present. The 

inhibiting operator also allows the controller to "kill" the controlled FSA (Maraninchi and Remond, 2001) 

"Temporized states is the capability to attach "delays" to states within the macro-notation of "multiform time." 

This "multiform time" allows an external input event to be used a clock for the system, "which may count 

meters as well as seconds" (Maraninchi and Remond, 2001, p77). 

"i Incorrect compositions or causally incorrect compositions of components occur when "an encapsulation 

operator is applied to a reactive or deterministic component and yields a system which is either non

deterministic or non-reactive" (Maraninchi and Remond, 2001, p79). This breaks the basis of reactive systems. 
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