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Abstract 

It is expected nowadays that robots are able to work in real-life environments, 

possibly also sharing the same space with humans. These environments are generally 

considered as being cluttered and hard to train for. The work presented in this thesis 

focuses on developing an online and real-time biologically inspired model for teams of 

robots to collectively learn and memorise their visual environment in a very concise and 

compact manner, whilst sharing their experience to their peers (robots and possibly also 

humans). This work forms part of a larger project to develop a multi-robot platform 

capable of performing security patrol checks whilst also assisting people with physical 

and cognitive impairments to be used in public places such as museums and airports. 

The main contribution of this thesis is the development of a model which makes 

robots capable of handling visual information, retain information that is relevant to 

whatever task is at hand and eliminate superfluous information, trying to mimic human 

performance. This leads towards the great milestone of having a fully autonomous 

team of robots capable of collectively surveying, learning and sharing salient visual 

information of the environment even without any prior information. Solutions to endow 

a distributed team of robots with object detection and environment understanding 

capabilities are also provided. The way in which humans process, interpret and store 

visual information are studied and their visual processes are emulated by a team of 

robots. In an ideal scenario, robots are deployed in a totally unknown environment 

and incrementally learn and adapt to operate within that environment. 

Each robot is an expert of its area however, they possess enough knowledge about 

other areas to be able to guide users sufficiently till another more knowledgeable robot 

takes over. Although not limited, it is assumed that, once deployed, each robot operates 

in its own environment for most of its lifetime and the longer the robots remains in 

the area the more refined their memory will become. Robots should to be able to 

automatically recognize previously learnt features, such as faces and known objects, 

whilst also learning other new information. Salient information extracted from the 

incoming video streams can be used to select keyframes to be fed into a visual memory 

thus allowing the robot to learn new interesting areas within its environment. The 

cooperating robots are to successfully operate within their environment, automatically 

gather visual information and store it in a compact yet meaningful representation. The 

storage has to be dynamic, as visual information extracted by the robot team might 

change. Due to the initial lack of knowledge, small sets of visual memory classes need 

to evolve as the robots acquire visual information. Keeping memory size within limits 

whilst at the same time maximising the information content is one of the main factors 

to consider. 
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"If we knew what it was we were doing, it would not be called research, 

would it?" 

Albert Einstein, US (German-born) physicist (1879 - 1955) 

Chapter highlights: 

A multi-robot platform capable to work in real-time and able to 

visually learn and share memories between robots in a compact and 

meaningful manner is developed. The main contributions are in the 

fields of: 

• environment monitoring. 

• handling of visual information. and 

• information sharing. 

Introduction 

One of the biggest challenges in mobile robotics is full autonomy. In an ideal scenario, 

robots are deployed in a totally unknown environment and incrementally learn and 

adapt to operate within that environment. Over the last two decades considerable 

effort has been made in extending robot capabilities to be able to operate in human 

and other highly unstructured environments. These environments range from indoor, 

outdoor, underwater, air and even outer space. Moreover, the last decade has witnessed 

a realistic effort to embed intelligent systems in unmanned platforms. This thesis 

presents contributions towards the great milestone of having a fully autonomous team of 

robots capable of collectively surveying, learning and sharing salient visual information 

of the environment even without any prior information. 

1.1 Aims and objectives 

This research study aims to look at methods for the visual exploration and automatic 

interpretation of an uncharted environment by a team of robots. Cooperating robots 

are to successfully operate within their environment, automatically gather visual in

formation and store it in a compact representation. The storage has to be dynamic, 

as visual information extracted by the robot team might change. The way in which 

humans process, interpret and store visual information will be studied and their visual 

processes will be emulated with a team of robots. The human process will be abstracted 

in an algorithm and employed on-board the robot platforms. The idea is to design a 
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CHAPTER 1. INTRODUCTION 1.1. AIMS AND OBJECTIVES 

method using theories of visual understanding put forward by cognitive psychologists 

to embed a visual reinforcement process similar to the one used by humans to attend 

and recall relevant visual stimuli and ignore visual distracting elements of the scene. 

Such systems are of great value in applications where robotic platforms are necessary 

to solve a hard task without the help of humans. With the use of visual information, 

the knowledge about the environment will be enhanced by putting an understanding 

into what is within the environment. As an example, office blocks generally have the 

same geometrical layout, however, contents may vary between floors. Instead of just 

focusing on geometric map building, the idea is to also construct a graph of interesting 

scenes which are topologically linked. Assuming limited resources on the robot, an 

efficient way for the robot to learn the main scene differences and memorise them is 

needed. 

As will be further discussed in Section 1.2.1, the work presented in this thesis forms 

part of a larger team project to develop a multi-robot platform capable of performing 

security patrol checks whilst also assisting people with physical and cognitive impair

ments to be used in public places such as museums and airports. The robots could be 

operated in three modes depending on the specific application. These mainly consist 

of assisted living, autonomous patrolling and human controlled operation. 

• In the case of assisted living, the environment is somewhat structured by intro

ducing identification tags, barcodes or RFIDs. Apart from being of use for robot 

operation, humans can also be equipped with hand-held assistive devices to help 

them read such labels and make use of the additional knowledge available in the 

environment. 

• In the case of autonomous patrolling, such as security and surveillance appli

cations, the robots operate autonomously. In such a scenario, especially where 

humans are present, the robots must be capable of self-navigation and reactive 

obstacle avoidance, due to the dynamic nature introduced by people moving 

around. Also, robots are able to automatically recognise and make sense of an 

entirely unstructured environment. 

• In the third case, considering urban search and rescue (USAR) or area explo

rations as possible scenarios, humans such as security guards, can over-ride the 

robot's autonomous patrolling based on feedback coming from the robots. As 

robots are learning their new environment, they extract knowledge and relay it 

humans for further analysis. Humans could tele-operate the robot or instruct it 

on its next move or destination for better utilisation of the available resources. 

Moreover, in such a case, the environment may contain new features over time. 

so the robot learnt memory needs to evolve to reflect the new changes. 
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CHAPTER 1. INTRODUCTION 1.1. AIMS AND OBJECTIVES 

The work presented in this thesis aims to find a solution on how to amalgamate 

these areas onto a multi-robot platform, as suggested in Section 1.3, leading to the 

main contributions of environment monitoring, handling of visual information and 

information sharing, further described in Section 1.4. A detailed study on unsupervised 

learning techniques and feature extraction methods was carried out with the aim of 

finding a solution to producing a real-time and computationally feasible implementation 

for visual memories and saliency extraction. This research also relied on collaboration 

from Robot Vision Teaml (RoViT) at Kingston University who conducted pilot tests 

using an eye tracker and provided data and preliminary results. Also, some state of the 

art methods especially in pattern detection, map building and navigation techniques 

were implemented and applied on the robots so as to provide a complete working 

multi-robot platform. 

As will be seen in Section 2.3 topological maps have the advantage of compactly 

representing local variations, without keeping the raw visual information in memory. 

The basic idea is to design a method capable of handling complex visual information 

captured by one or more mobile cameras fitted on robot platforms forming part of a 

team. These camera equipped robots are used for surveying, monitoring and searching 

areas of interest whilst building a memory of the robot's environment. Both short 

and long term visual information, referred to as visual memories, are continuously 

elaborated to provide both a topology of landmarks and also building a knowledge 

base of objects or parts of the viewed scene and events deemed of interest. Visual 

information is encoded into a limited set of representative images on-line and with 

limited computational over-head. When there are several robots in an area, each doing 

its intended task, the visual information can be shared. One possible scenario could 

be that of having cleaning robots which are following a predefined route, and other 

robots tele-operated by security guards used for patrolling. If these robots are capable 

of creating visual memories, even though their intended applications are independent 

of each other, their memory can be shared, thus augmenting each others knowledge of 

other areas. A certain degree of redundancy is therefore expected which is considered 

as advantageous. These robots could reinforce the visual memory for salient points in 

the map whereas other low level features [5] will have memory decay. This would be 

somewhat similar to how ants reinforce their paths when foraging [6]. 

1.1.1 Challenges 

Autonomy and real-time operation are two of the main challenges which have to 

be tackled to reach the intended aims. The team of robots has to navigate successfully 

and coordinate with its team members to understand and represent the scanned scene 

1 http://sec.kingston.ac.uk/research/research-groups/rovit/ 
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CHAPTER 1. INTRODUCTION 1.2. APPLICATIONS 

as optimally as possible. Another challenge which has to be overcome is that of fast 
deployment. A method which could be deployed within a relatively short time (hours) 

would be desired. 

1.2 Applications 

The problem being studied could be related to several possible multi-robot applications 

and the proposed methods could be applied in a large number of domains. The op

erating environments could range from deep ocean sea to outer space. Some possible 

applications could include cleaning up a work site, performing search and rescue or 

extra-planetary exploration [7]. Also, the problem being tackled is not hardware spe

cific and any kind of robot equipped with visual input can be used. Teams of robots are 

expected to gather information autonomously and collectively learn their potentially 

inhospitable environment in an autonomous and unsupervised fashion. Such as in the 

case of search and rescue, the acquired information could be used by humans or other 

robots alike when entering into the area and, depending on the situation, be warned 

in advance of any dangerous areas to avoid or important landmarks to be reached. 

Such robots could be scattered over large areas to explore alien environments which 

are totally unknown to the human race and of which there is no prior information. 

Unmanned areal vehicles(UAV) could be used to reach areas which would otherwise 

be inaccessible from the ground, e.g. by unmanned ground vehicles (UGV). One such 

example is that of robot forest monitoring and analysis, possibly in the case of con

trolling forest fires. The most widespread approach for forest analysis is that of using 

airborne laser-scanning data from a LiDAR and aerial photographs [8, 9, 10]. Another 

closely related application is that of automatically learning to identify and classify trees 

for deforestation and ecosystem study [11], wood production, three-dimensional (3D) 

treetop positioning, height estimation, species recognition, crown width estimation and 

stem diameter amongst others [12, 10, 13]. One method is by using colour and texture 

features [14, 8] together with machine learning techniques [14, 15] for the prediction of 

species-specific forest attributes. 

Some more potential robotic application domains could include search and rescue 

missions and exploration missions in hazardous environments. At present, search dogs 

are the most useful tool to search for humans during search and rescue missions [16]. 

For such missions, a qualified dog needs at least 1.5 years for training and its effective 

working time is three years. Moreover, the dog cannot work for over two hours and 

continuous working time must not exceed 30 minutes [16]. At present search and rescue 

robots still struggle to reach these figures mainly due to the power storage on the robot. 

manoeuvrability and onboard sensors. This is however an active research area and it 

is expected to see some reasonable advances in the near future. 
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CHAPTER 1. INTRODUCTION 1.2. APPLICATIONS 

Another area of active research is in the field of ambient assisted living (AAL). At 

present, the use of guide dogs to help visually impaired people to navigate around is 

relatively common. For the same reasons mentioned above, and potentially additional 

benefits, robots are slowly but surely being introduced to help the elderly and less-able 

people. Some such robots include RIBA (Robot for Interactive Body Assistance)2 and 

smart wheelchairs [17, 18]. 

Surveillance of public managed spaces is yet another area which could benefit from 

the study presented in this thesis. Such places where surveillance is of crucial impor

tance and never enough would include airports, sporting venues and museums. In these 

environments, people need to feel safe without the feeling of being observed. Robots 

could be designed in such a way to allow people to interact with them. For humans 

to accept surveillance robots, they must be approachable, similar to police or security 

officers. There are several studies carried out on this, some of which will be discussed 

in Section 2.1.1. 

1.2.1 The application 

The work described in this thesis forms part of a larger project to develop a multi-robot 

platform capable of performing security patrol checks whilst also assisting people with 

physical and cognitive impairments to be used in public places such as museums and 

airports. When visiting such places, one would be aware that although the general 

layout of the environment does not change, the crowd density, flow and furniture layout 

change over time, with the expectation of clutter, complexity and unexpected events 

to happen. Therefore there is the need for robots to automatically adapt and learn 

their evolving environments with minimal human intervention. 

Robots would generally require a previously built map of the area for efficient 

navigation within the area. If however, were the map not available (blueprint), the 

robots would need to be able to build a fairly accurate map of the environment using 

simultaneous localisation and mapping (SLAM) techniques and make it available to 

mobile security guards and other robots working in the same area. A method where 

robots are deployed and create a map of their surroundings in a relatively short time is 

suggested. Once this is done, the deployed robots can start performing their designated 

task, be it guidance, surveillance or whichever task they are assigned to do. In the 

meantime, using visual memories, robots can start learning the contents of the area 

they are operating in and storing it in a compact yet meaningful manner. Also, the 

acquired knowledge is shared between peer robots and also personnel who request 

information from the robots in order to guide the robots to specific areas. 

Part of this project, supported by the U.S. Department of Homeland Security 

2http://rtc.nagoya.riken.jp/RlBA/index-e.html 
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(U.S.DHS)3 consists in emulating an airport security area and baggage collection. As it 

happens in border control, persons would enter the area, where a picture and other in

formation will be gathered by the camera system operated by security personnel. These 

data can be automatically transferred throughout the security network and available 

to other security guards and robots for person identification. Security guards would 

be equipped with tablets and would be able to access information about people and 

robots in the area. A two-dimensional(2D) plan view of the security area is available 

and the tracked persons and robots are marked. The guard can tap on specific persons 

and their picture and other relevant information shows up. In an airport scenario, if 

a person was marked as requiring special assistance when they purchased the ticket, a 

robot goes to greet the person and guide them to the baggage collection point and then 

to the exit. Security guards also have the capability of controlling the robot remotely 

and send it to specific areas for further inspection just by tapping the desired position. 

The robot can capture images, acquire more detailed information, or even use speech 

to give instructions to persons within that area. In such a scenario the robot's tasks 

are to: 

• guide users to their desired destination, 

• interact with peer robots by sharing visual memories thus highlighting changes 

within their environment, 

• share memories (obtained from other robots) and provide the user with what to 

expect at their destination, where another robot might be already there to take 

a handover, 

• perform routine security checks during remaining/idle time, possibly controlled 

by security guards, who also have access to visual information and robot memory 

images. 

For the robots to be able to perform as desired for the intended application, and reach 

the aims and objectives in a fully autonomous manner, the robots must be capable of 

performing the following tasks: 

• To know their environment (Map) 

• Interact with the user and environment (Obstacle avoidance / Human - Machine 

interaction) 

• Detect (Face / Pattern detection) and Identify its user (RFID / Tag identifica

tion) 

3U.S. Department of Homeland Security (U.S.DHS) Science and Technology Assistance Agreement 
No. 2011-ST-108-000021 awarded by the U.S. Department of Homeland Security. 

6 



CHAPTER 1. INTRODUCTION 1.3. MULTI-ROBOT PLATFORA1 

• Learn and adapt to changes (Visual Memories) 

• Identify important regions in the cene (Saliency) 

• Coordinate with other robots for efficiency (Teamwork) 

The items in brackets are the areas which need to be studied and developed in order to 

have a complete operational multi-robot platform. Figures 1.1 and 1.2 show snapshots 

from an actual implementation carried out at Kingston Hill Campus in August 2012. 

Figure 1.1 shows a robot performing face detection whist greeting a person requiring 

assistance (also using Text-to-speech) The sub-image in Figure 1.1 shows a snapshot 

from the robot camera with the face circled in blue. For the robot to be abl to recognise 

and identify the specific person, additional information. possibly coming from an RFID 

tag would required. As one of several pos ible options. the robot could then guide the 

person to the baggage reclaim area as shown in Figure l.2 . The sub-image in Figure l.2 

shows the 2D map previously created using SLAM techniques by the robot. The robot 

autonomou ly navigates to its final destination whilst avoiding obstacles. 

Figure 1.1: Face Detection 

The multi-robot platform needed to handle such tasks will be described next. Further 

details on each item will be provided in more detail in the coming chapters. 

1.3 Multi-robot platform 

One of the initial requirements for the application. was that of designing a multi-robot 

platform to handle the tasks highlighted in Section 1. 2. 1. The following factors had to 

be consid red: 

7 



CHAPTER 1. TNTRODUCTJO;-v 13. ;\IL'LTI-R0T30T PL\TFOH..\l 

Figure 1.2: Person Guidance 

• Platforlll design 

hardware architecture 

sofhvare framevvork 

• X etwork Infrastructure 

• ),Iulti-Robot control 

• Scene understanding (Colllputer Vision) 

• Informat ion fnsion 

Sensors & Actuators Robot, Control 

Sensors & Actuators Robot 2 Control 

Sensors & Actuators Robot N Control 

Figure 1.3: General O\"('r\'ie\\' of a ),Iulti-Robot Platform 
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Figure 1.3 shows the general overview of a multi-robot platform which would be able to 

work within an unstructured environment whilst learning its surroundings. The plat

form consists of a hardware architecture, operating system and software application 

frameworks. Each robot platform is divided in two main blocks which, in turn, are 

further divided into more specific ones. One block represents the sensors and actuators 

and the other block represents the robot's intelligent control. Information from the 

environment is gathered by sensors. Actuators are what make the robots able to react 

with the environment. Control is carried out on the robot's processor. Each robot 

would be able to scan the environment using its onboard sensors, such as a camera, 

identify interesting features and coordinate and share the information with the other 

team robots for combined learning. In the ideal scenario, robots should be able to 

be fully functional when operating independently and also able to handle information 

collectively when working within a multi-robot system (MRS). Items listed in the or

ange blocks are the necessary building blocks for an automated robot vision system 

capable of sensing, learning and reacting with the environment. Robots should be 

able to retain information that is relevant to whatever task is at hand and eliminate 

superfluous information. The red block reflects visual memories. Visual memory ca

pability allows each robot to construct its own memory base of important features and 

visual information detected in the area. Operating in a multi-robot scenario, necessi

tates successful information handling and sharing between robots, represented by the 

green block. Moreover, when working in a centralised rather than distributed fashion, 

robots should be able to coordinate and accept commands coming from a higher level 

multi-robot control system (represented by a blue block) for collaboration, memory 

sharing and information fusion. Figure 1.3 will be further dissected into six sections 

and analysed further in Chapter 2. 

1.4 Main contributions 

As already discussed in Section 1.1, the main aim is to monitor an environment by 

collectively executing the most effective strategies for gathering the best quality in

formation from it whilst overcoming the challenges highlighted in Section 1.1.1. Each 

robot has to explore, navigate and scan the environment using its own sensors, whilst 

sharing the visual and other relevant information with the other team robots over a 

wireless network. Using the proposed platform, as suggested in Section 1.3, this work 

focuses on advancing the state of the art in surveillance applications by enhancing 

multi-robot team learning based on computer vision techniques so as to provide a 

simple, real-time yet meaningful representation of the environment. Three main ar

eas, namely environment monitoring, handling of visual information and information 

sharing, were tackled. These are described next. 
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1.4.1 Environment monitoring 

Research in area monitoring involves various fields including exploration, identification, 

target tracking and localisation. Traditionally area monitoring relied solely on static 

sensory devices such as passive infra red (PIR) sensors and cameras (CCTV) and 

generally connected to a centralised control system. Acquiring visual information from 

moving cameras could be more beneficial. Apart from the standard fixed cameras, 

mobile robots can be equipped with cameras and use them to feed incoming streams to 

the central system but also use it to navigate or do other vision specific tasks. Moreover, 

mobile cameras can cover blind spots and share resources with the possibility for robots 

to acquire visual input from another robot's camera. As presented in [19] and [20]' a 

practical solution for environment monitoring using robots equipped with cameras was 

provided. Using a group of mobile robots equipped with cameras has several significant 

advantages over a fixed surveillance camera system [20]. 

• The proposed solution can be used in environments that have previously not 

been equipped with a camera-based monitoring system. The robot team can be 

deployed quickly to obtain information about an unknown environment. Also 

robots would interact with each other to give the best coverage of the area and 

share the load [21]. The cameras installed on the robots, which can position 

themselves within the environment at the best vantage points, are used in order 

to best acquire the necessary information. This is in contrast with a static camera, 

which can only perform observations from a fixed view point. 

• The robots in the team have the power to collaborate on the monitoring task and 

are able to pre-empt a potential threat. 

• The robots could be equipped with additional, specialised sensors, which could 

be delivered at the appropriate place in the environment to detect, for example, 

the presence of high temperatures, such as in the case of a fire. 

• The robot team can communicate with a human operator and receive commands 

about the goals and potential changes in the mission, allowing for a dynamic, 

adaptive solution. 

Most video analytics is carried out on video streams acquired from stationary cameras. 

This generally allows for background subtraction and is also relatively simple, fast and 

effective. However, many cameras are not stationary ego pan-tilt-zoom (PTZ) or even 

cameras fitted on cars, busses, handheld, head mounted, UAVs and robots. One of the 

biggest challenges with area monitoring using mobile devices is the fact that the area 

itself is unstructured and generally also shared with humans. Surveillance applications 

are generally required to operate in busy and crowded places such as commuter train 
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stations, airports or shopping malls. Taking the next step of transferring the fixed 

cameras onto mobile platforms has a great impact on the complexity of the problem, 

especially considering the health and safety factors of having robots roaming around in 

the same environment with humans. The robots would therefore need to be endowed 

with map building, localisation, navigation and obstacle avoidance capabilities to op

erate within such a complex environment. These processes are essential for robots to 

be able to move freely, without bumping into team robots, people, surroundings or 

getting stuck in dangerous places. 

1.4.2 Handling of visual information 

Once the robots are able to operate successfully within their environment, the focus 

shifted on robot perception, with special emphasis on visual senses. A study on the 

identification of salient areas and pattern recognition within the environment was car

ried out together with an in-depth study on visual memory and a study on how visual 

information can be optimally represented in a compact manner for visual recognition. 

As presented in [22] and [23] the idea is to learn landmarks and build a topology for 

efficient representation of visual information. Processes are required to store visual in

formation about the environment surrounding a robot in a compact representations and 

in re-usable format. A number of processes are involved with the extraction, fusion and 

manipulation of visual information. The extracted information is then used to solve 

either the recognition of a specific object, or the detailing of an area of space. Visual 

information is extracted using image and video descriptors using classifiers that can 

operate both online and in real-time. Available literature on human visual memory is 

studied with the aim to extrapolate the main processes involved with the extraction of 

image and video characteristics. Following the work suggested in [24] results obtained 

from controlled experiments using human subjects were used to indicate on how visual 

information can be extracted and interpreted. This is done by creating a bounded 

quantity of images gathered in separate clusters. This allowed the algorithm to create 

a flexible graph of nodes, each one holding a rich representation of a portion of space 

deemed of interest. It was then possible to recall and extract useful information from 

these images. 

1.4.3 Information sharing 

For better utilisation, the next step was that of getting the robots to successfully 

operate, communicate and collaborate within a heterogeneous environment. This not 

only allowed for the team of robots to manoeuvre within the same environment but 

also to collectively extract, share and elaborate visual information as a team. As 

presented in [25], the creation of a more holistic understanding of the environment was 
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therefore possible. The data captured by the heterogeneous sensors are combined in 

a decentralised manner to improve the results of monitoring targets when there is a 

lack of scene coverage [24J. By integrating computer vision and robotics components 

using algorithms for the distributed visual accrual and fusion of visual information, 

it is shown that it is possible to monitor a large area using fewer sensors providing a 

scalable solution commensurate to the dimension of the monitored environment [20J. 

1.5 Thesis outline 

The rest of the document is structured as follows: Chapter 2 provides an extensive 

review on the state of the art in multi-robot vision. Chapter 3 focuses on robot percep

tion and how these techniques can be applied to make robots aware of their dynamic 

environment. Chapter 4 discusses visual memories and describes the method of im

plemented visual memories and how they can be utilised and extended over multiple 

robots leading to Chapter 5 where the methods suggested in earlier chapters are com

bined over a multi-robot scenario so as to have smart monitoring of complex public 

scenes. Conclusions are finally drawn in Chapter 6. Appendices A, B, C, D and E 

provide some additional material related to this study. 
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"Though human genius in its various inventions with various instruments may 

answer the same end, it will never find an invention more beautiful or more 

simple or direct than nature, because in her inventions nothing is lacking and 

nothing superfluous. " 

Leonardo Da Vinci, Italian Renaissance polymath (1452 - 1519) 

Chapter highlights: 

This chapter looks at the state of the art in multi-robot vision, 

focusing mainly on human-robot collaboration, robot mobility, 

machine vision and machine learning techniques. 

Literature Review 

Research in robotics is moving at a relatively fast pace. Starting from single fixed 

robots aimed at performing repetitive tasks within industry; these robots were succes

sively transformed into mobile robots, not just confined into a specific location but also 

allowed to roam around for better resource utilisation. Further advancements allowed 

for groups of both homogeneous and heterogeneous robots to be created. This led to 

robots working within a team for a common aim. Some of these robots are nowadays 

also capable of interacting with humans [26]. One successful example where robots 

are allowed to roam, work in a team and interact with humans is the Kiva warehouse 

automation system1,2. It is therefore expected that, in the foreseeable future, collab

oration with humans will become common practice and an everyday experience for 

many. This necessitates communication between robots and humans carried out in a 

human understandable manner. Three important aspects which need to be addressed 

for a successful autonomous multi-robot and human interaction include: 

• Operators must be able to quickly "grasp" the situation without being over

whelmed by unnecessary information. 

• Robots in the system must act as an autonomous coordinated team: no direct 

human supervision should be required. 

• Humans must be able to interact with robots in a natural way. 

1 http://wv..W.kivasystems.com/solutions/ 
2http://wv..W.youtube.com/watch ?v=3U xZDJIHiPE 
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This chapter provides a review on the state of the art in multi-robot vision, Figure 1.3 

presented in Chapter ] will be dissected into sectiolls and anal,Ysed in fnrtlH'r (\C'tail. 

Yarious areas in the robotics realm including robot lllobili(v, cOlllPuter visioll alld 

machine learning techniqucs are explored, \Vays for team robots to intcrprct incoming 

data from sensors or from other robots through collaboration ovcr C'ommllllication 

I1ct\\'orks arc also studied, 

2.1 Robotics 

Robots can be gCllerall~' described as elcctrolllcchanical dcyices consisting of a ph.\'sical 

bod~' wit h sensors for fccdback. lllobili t~' to be able to 1ll0\'e 'vvi thin the cnvironlllcnt. 

alld rl'<tsollillg capauilitics to intdligentl,v conncct sC'nsing with actioll ::27], rut ill other 

words. an "intelligcnt" robot is one that can operate in a non-static ell\'ironlllent and 

deal wi t h uncertainties in sensors and effectors. OIlle inte lligcnt robots can also illl

pro\'(' thcir performancc through learning and adaptation [:27]. Toda<s robots can onl\ 

perform highly sI)('cialiscd tasks, and their opNatioll is cOllstrailled to a llCUTO\\' set of 

cnyirollments and objecls. :"loreove1'. the majorit)· of the \\'orlers eight million scn'ice 

robots are toys or drive in preprograml1led pattcrlls to deall floors or 1lI0W lawns. while 

most of the 1 million industrial robots repetiti\'d.\' perform preprogrammcc\ bchayiours 

to weld cars. spra~' paint parts. c1lld pack cartons [2 ]. It is a \\"idely accepted fact that 

rohots are a huge SllCC(,SS stor.\' within this sector. Robots \\'('rc originallY dC\'r\oped 

for an ind llst rial setting, These an' confined \\'i thin a struct ureel and tailor mack Cll \'i

rontllent and arc programmed to repeatedly do the samc task to provide fast. efficient. 

rcpeatable. accurate and reliable assembly of consumer products, Robotics research is 

a field \\'hich itl\'olws nuiolls engineerillg challenges encompassing sE'verrd disciplincs 

such as electrical and ckctronic engineering. lll('chc1tlical f'llgil1('eriug alld structural 

design. control eugineering. soft ware t'ugiut'eriIlg alld computer SciPIlC<', COll~id('rable 

effort is beiug made in tr~'illg to O\'elTome these challengcs allel cxtend robots to be able 

to operate in human and other highl~' unstructured cuvironlllents. Thes{' ('ll\'ironll1ents 

nlllge from indoor. olltdoor, ullderwater. air and ewu outcr spac(', Such pll\'irOlll1lellls 

pose far greater challcnges \\"hen compared to their st ruet lll"cd C'ounterpMt aIle! that is 

\\'hat makes robot ics all inter('stillg subject fur rl'sl'ardl. These t'm'irOllIlWllt. also led 

to the usc of ne\\" robot designs such as wheeled. legged. di\' ing and CWI1 H~'ing robots, 

. \dd i tional material on \'ariOllS robot t~'Jws can 1)(' foulld ill Appendix . \ , ('ction A.l. 

Possi bh'. t he most clwllellging of em'irollllH'llts is that \\. here bot 11 hllllWllS and 

robots share the same pm'irOlllJlPnt ami possibl~' illtcract: \\'ith hUllHUl safN~' being 

of highest COlleNt!. Part of tltp success ill hlllllall- robot interaction (HHl). fmther 

discussed ill Section 2,1.l. is related to the ('apabilit~ , of til(' robots to scnsc and pcr

('ein' their Cll\'irollllll'lIt cOITl'cliy usiug adequate S(,llsors, A~ \\'ill b(' further S(,(,ll ill 
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Figure 2.1: Sensors and actuators 

Section 2.1.2 . from the bionic aspect. the animals in nature sense the outside li\-illg 

space statc and environmcnt changes through \-arion::; scmiing apparatuses. According 

to the information gathered b~- sCllsing apparatuses. the~- dispose of the inforlllation 

comprehensivel.\" and reach the judgements. This process is referred to as llluiti-sensor 

information fusion [29]. Referrillg to Figure 2.1. robots withill the' natural world arc 

expected to sense the em-ironment and react to unexpected c,-ents accordingl.\-. (',-eral 

sensors ha\-e been created anci llsed in the robotics enyironment to capture sound. \-i

sion and motion made by hUlllans for the robot to be able to interact \\"ith its users in 

a more natural wa~-. Some of these sensors arc described inlllore detail in Appendix A. 

Section A.2 

In SOllle situations. a robot also needs to incrementally- learn certain tasks. This 

fmt her introd ueed new rc::;ear(;h COllcepts in the fielcl of robotics such as em-ironmcnt 

sensing. obstacle oetection. reactive control. real time planning ano increlllcntal learn

ing tC'chniques. For a lllobile robot application to be successful it has to opcn-lte ill real 

time with millilllrl.1 11111111'111 intcrv('ntion. Efficient rohot control. em-irollllWllt scnsiug. 

nayigat iOll. localizat iOll. explorM ion. ma p bui loing. comlllunica t iOll alld shrl. ri ng of in

formation between robots are SOUle of the ke~- factors to consider \\"hen \\-orkillg \\-ith 

mobile robots. These will be explained in more detail in t he ('ami ng sect iOllS. 

2 .1.1 Human - robot interaction (HRI) 

A part from humans and robots bring in('reasillgl~- llsed \\-i thin the SeUlle workspace. 

these han' to internet together in order to accomplish the o\-emll mission goals ::W_. 
Goodrich ami Schultz : ;31 ~ provide an in depth sunT~- on HRI. The," mention se\"('ri'll 

probleJll domains for such area of stud.,-. OIlle of these include selllTh and ITSCllC', as

sisti\"(' <md coucatiollal robotics . C'ntertainment, milit,u"- and policc. spac(' exploratioll. 

11 Ilmc1ll11ed aerial ,-chicles (CAY) rc.'conllaissan('c and llnl1lCllllWd llnderwCl ter \Thielrs 

(IT\") applicatious )(. iuger aIHI Akiu : ;~() : carr.\- Ollt a surn'\- of the held of ('ollah-
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orative human and robot team performance metric models, and examine existing overall 

team quantitative performance models to determine which are more applicable to fu

ture human and robotic space exploration missions. Murphy [32] describes how robots 

are being used for urban search and rescue (USAR) and discusses the human-robot 

interaction (HRI) issues encountered in such a scenario. Murphy presents a synopsis 

of the major HRI issues in reducing the number of humans it takes to cont rol a robot , 

maintaining performance wit h geographically dist ributed teams with intermittent com

munications, and encouraging acceptance within the existing social structure. Nourjou 

et al. [33] state that coordination is the key challenging problem that field teams face 

in USAR emergency response because of the geographic and uncertain environment. 

They propose an efficient approach that allows humans to collaborate wit h coordinator 

assistant agents so as to assign tasks to teams both in time and space, efficient ly and 

sufficiently in a way to op timize t heir coordination. Singer and Akin [30] analyze the 

performance of the heterogeneous teams to enable comparison between different team 

configurations. 
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Figure 2. 2: Mori's uncanny valley [1] 

One of the most popular theories applied in the field of HRI is the uncanny valley 

theory [1], shown in Figure 2.2. This theory relates human-likeness of a robot with 

the level of familiarity evoked in the person interacting wit h the robot . Mori hypoth

esized that , as robots appear more and more human-like, people's familiari ty with 

them increases until a point where this relationship ceases. Beyond t his cri t ical point , 

the appearance of the robot increases in human-likeness but the appearance no more 

evokes a feeling of familiarity. The robot instead is perceived as strange in appearance. 

Although the concept of the uncanny valley originated in robotics , it has generated 

higher levels of serious consideration in other areas related to human-like objects such 
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as dolls. masks, facial caricatures. avatars in virtual realit~, and characters in computer 

graphics movies [3-1]. Beer at a1. [35] caIT~' out a stud~" 011 robot acceptance in HRI 

with the goal to idelltif.v potential factors that predict user acceptance of pcrsonal 

robots. Amongst others the~' look into the robot's autonolll~' lew!. social capHbilit~" 

and appearance. The~: present a table of specific tasks younger and older cldults would 

want a robot to perform, Excluding the "other tasks" at (1l7c). the highest rank

ing ta .. ..,ks \\"e1'e "cleaning/ chores" (357c). "security" (107t) and "physical aiding" (9lJc) . 

The remaining lower ranking tasks amount to -1-.l %. Giwn that Kingston C niwrsit~, 

has strong links with visual surveillance groups and nursing / Hlllbient assisted living 

(AAL). the research provided in [35] further suggests the applicability of this study in 

hclying a multi-robot system to assist humans in surveillance and assistance to people 

requiring special needs. 

2.1.2 Biological inspiration 

\" ature (Life) evolved over millions of .\:ears. adapting and perfecting its living organ

isms. The way in which animals and plants successfull.v manage to survive and interact 

\\:itll each other is fascinating. It i8 therefore only wise to tr:v to understand how ::mch 

creatures operate and try to mimic them on artificial machines. Imperfections and mu

tations in nature lead to evolution. From a biological point of view nature evolved in a 

wa.\' to allo",; living organisms to interact with One another either b~" collaboration such 

as in ants and bees for foraging. Rocking and schooling ill birds Hnd fish for protection. 

\\'Olves and lions for hunting. and also sy'mbiosis betwecn different species for successful 

survi val [:3G]. This inspired researchers. both in the acadelllia and industry to look at 

these interactions within nature in order to replicate these OIl robots. 

Especially in the case of multi-cellular organisms. each organism is composed of 

sC'wral organs which in turn are further composed of even smaller specialised celis, 

Till'se specialised cells are generally unahk to survive b.v thC'lllsC'lw's naturally but 

they successfull~: thrivc when they coordinate together. e\'olviIlg illto something which 

is able to carr~' out complex tasks in a very efficient manner. One such organ is tile 

brain. Thi8 is considered as being one of the lllO::;t cOIllplex organs within the li\'ing 

bod.\' and consists of numerOllS. if not ullcountable neuroll cclls. A similar approach 

consisting of artificial neurons wa..., developed and applied for \"isual lllellloriC's. as \"ill 

be furt her described in Chapter -1. 

The lllost cOIlllllonly studied areas in distributed multiple robots gC'llerall.\· inclllde 

S\\'arlllS [:rio :r' ]. Cell Stl'llctures :39] and Genetic algorithms :-l():. Social insects an' 

worth (,Op~'iIlg becallse thc~' h<:1\'c no centralised control but "s~'steill-le\"el functiolling 

is robust. flexible allCl scalable" ~ ;37] . B,' replicating 8imple local control rules used by 

H1riollS biological socicties such as ants. bees and birds multi robot systellls are <l ble 
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to flock, disperse, aggregate, forage, and follow trails [41]. Some of the advantages 

include: 

• Robustness: "the swarm robotic system should be able to continue to operate, al

though at a lower performance, despite failures in the individuals, or disturbances 

in the environment". The robustness of biological swarms can be attributed to: 

- Redundancy: "any loss or malfunction of an individual can be compensated 

by another one" . 

- Decentralised control: destroying parts of the system will not stop the sys

tem as a whole from functioning. 

Simplicity of the individuals: individuals are simpler, making them less 

prone to failures. 

- Multiplicity of sensing: "distributed sensing by large numbers of individuals 

can increase the total signal-t<r noise ratio of the system" . 

• Flexibility: the system can generate solutions to different tasks. Ants for example, 

can perform several tasks such as chain forming, foraging and sorting. "Swarm 

robotic systems should also have the flexibility to offer solutions to the tasks at 

hand by utilizing different coordination strategies in response to the changes in 

the environment". 

• Scalability: the system can operate under a wide range of group sizes. 

As will be further discussed in Section 2.5, the above advantages however might come 

at the cost of lesser efficiency, increased cost and communication issues. Even though 

the individual entity cost and complexity may be less, determining how to manage the 

complete system may be more difficult and complex, because of the lack of centralized 

control or of a centralized repository of global information. Moreover, increasing the 

number of entities can lead to increased interference between entities, as they must act 

without complete knowledge of the other entities' intents [7]. 

Communication in nature can take various forms. The most common include the 

use of sounds, movement and chemical interactions. Some more advanced species elab

orated sounds to create semantics leading to a language. Same for body movements 

by creating expressions commonly understood by the population. Some other species 

release chemicals as trails and signals thus leading to indirect coordination between 

peers. This is known as stigmergy. Stigmergy was first observed in social insects [42]. 

Ants, for example, exchange information by laying down pheromones on their way 

back to the nest when they have found food, which other ants will eventually follow. 

Subsequent similar actions by other ants will then reinforce the trail leading to the 
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spontaneous emergence of coherent. apparentl~' systematic activit~,. Bechon clnd Slo

tine [..13] used a method known as Quorulll sensing to robustl~' s,vnchronize a group of 

humanoid robots. and to dClllonstrate the approach expcrilllcntall:v on a choreogrc1.ph~' 

of robots. Quorum sC'l1sing is a s.vstelll of stimulus and response correlated to popu

lation densi ty. :\Ian~' species of bacteria use it to coordinate gene expression accord ing 

to the density of their local population. III similar fashion. sOllle social insects llse 

quorum sensing to determilw \vhere to nest. 

As 'vvill be seen ill ect iOll 3.1. some organisms. inc! ueling humans hel \"(' perfccted 

t heir capability of handling visual inform8 tion. The ke~' at tent iOllal lllcchanism. kllO\yn 

as salienc~' detection. facilitates learning and survival b~' enabling organisllls to focus 

their lilllited perceptual and cognitive resources 011 the most illlPortallt areas within 

their ellvironment . Parker [-t Il suggests that competitioll . such as that found in ani

lllals with higher intellect. including humans. call J)(' applied for lllulti-rohot s~'stcms. 

One such application is that of multi-robot soccpr. :\Ioreover. stucl.\'ing coo]wration 

techniques wi thin animals working in packs. such as wolves. has gCllerated ad vances 

ill cooperative control. morc commonly known as predator - pH'.\' sn;tellls. Robot 

coopcration will be further discllssed ill Appelldix ection A.6 .3 . 

2.2 Robot vision 
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, 
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Figure 2.3: Computer yi:3ion 

Robot \'i:3ion and image proccs:';ing pla\' critical rolc:,; in the fast clllnging robotics 

lllHrket. offering grcat opportunities for rcseardwrs . robot manufacturers. HI)(I \'isioll 

COmpOlll'nt wuclors [-! I]. As drfincd by the R ohot \ ' isio11 Groll p. J lll[H'riHI College 

LOlldon:.!. robot \'isioll is related to the stud~' of 1'eal- t illle com plI t ("I' \'isiOIl t ('('h11 iq llt'S 

(\ pp licablp to robot ics or ot hcr delllanding re<1.1- \vorld. l'c<ll- t illlc 1'\ pplicH t iolts. :\ Ior('()\"(·r. 

Batchelor :..1.'): states that l11<1chi!le vision and computcr \'isiO!l are !lot a. .... SYlIOll.\'lllOllS 

'\hnp: / \n\"\v2.imp rial.ac .uk robotyision web:-itc php 
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as one might expect even though they both refer to artificial vision. Computer vision 

is the science of analysing and processing digital images whereas machine vision is 

the application of computer vision to industrial tasks. Moreover, in machine vision 

it is generally accepted that the environment is more structured when compared to 

computer vision which tries to tackle problems in real world unstructured environments. 

Embedding computer vision technology in mobile robot platforms (see Figure 2.3), 

provides a more holistic view of a scene and augment the human visual experience 

from a new, so far little explored perspective. When one has to work with vision as the 

main sensorial input for the robot, various factors have to be considered. Sensing using 

vision still has lots of unsolved problems. Generally so far, its use is still restricted 

to a relatively structured and controlled environment. Ongoing research exists within 

the computer vision community to successfully identify the same object within the 

environment under varying illumination, perspective, motion, occlusion, orientation 

and distortion, to mention some. When using vision on robot systems, special attention 

has to be focused on ensuring that there will be no situation where the robot can get into 

a blind spot and unable to 'see' its environment due to physical / kinematic restrictions. 

This highly depends on the task required and the navigation plan intended for that 

particular robot. One has to consider the limitations of the cameras being used and 

when best to use one camera rather than another. The basic decision mainly revolves 

around monocular cameras when just one standard camera is used, stereo cameras when 

two fixed monocular cameras are used together and omnidirectional cameras, which 

provide a 3600 view of the environment. Moreover, it has to be borne in mind that 

robot motion can be characterised by the constraints that restrict the motion, generally 

caused by the mechanical construction of the robot itself. When measurements need to 

be extracted from an image, it is important for the camera to be compensated for lens 

distortions and calibrated by calculating the intrinsic and extrinsic camera parameters. 

Intrinsic parameters refer to the focal length in pixels, the principal point and the skew 

coefficient. The extrinsic parameters reflect the rotation and translation of the camera 

of a point on the grid reference plane onto the camera reference frame. The most 

common form of calibration is with the use of a calibration grid [46]. Recent studies 

also look into self calibrating techniques [47]. The two main stages in digital image 

processing for robots include [48]: 

• preprocessing, which is a data preparation step for contrast enhancement, noise 

reduction or filtering 

• feature extraction, for retrieving non-redundant and significant information from 

an image. This operation is targeted at achieving time efficiency at the cost of 

data reduction followed by object detection, localization and recognition, which 

determine the position, location and orientation of objects. 
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\lorc material on image processing and comparison techniqucs is provided ill AppC'lldix 

Section _\ .3 

2.2 .1 Object detection 

In literature, one finds several objcct detection techniques. ome tcchniques Ilscd 

include principal component anal.\'sis(PCA), neuralnetworks(\'\' ), support v('ctor ttla

chillCS(SV\I), Hough transforIu(HT), geollletrical U'lllplat<' lllatching(GT\[) and colour 

anal~-sis [2]. As will be S(,(,11 in ('dion 2.-1 \'arious machill(' learning techniqllPs C'xist. 

Onc of the most notable successes of application of machine learning for object d('(('c

tion in computer vision is the Viola-Jones face detector [ 19, .jO,' Cnder the machine 

learning paradigm. this detector is said to be of the supelTised learning t~'pe. For su

pervised learning. the s~'stem needs first to I e thought what it is expected to r('cognise. 

This is done through an iterative process b~- teaching the algorithm what and what not 

the object of interest to detect is. This detector is slow in training. howe\'('r is \'('r~' fast 

in detection and can be used in real-time robot applications, Apart from faces, this 

technique works also fairl:v' well all other. lllostly rigid. objects that han' distinguishing 

views HG~ . The \-iola-Jones detector "va..", used on the robots first to detect faces and 

then was later adapted for tag detection as further described in ection 3,2,1. 

Viola-Jolles propose using a ca..",cade of classifi 'rs by training a set of \\'eak Haar 

like classifiers, The weak classifiers are then combim'd to make a strong classifier. The 

classifier builds a form of Adaboost organised as a boosted rejection cascade where 

t.\'picall~· histogralll- and size-equalised images patches arc presentc'd to the c:lassifieL 

which arc then labelled as containing (or !lot contaiuing) the object of interest. Th(' 

\\'eak classifiers that it boosts in each llode arc decision trees that oftcn are olll.\' one 

IC'n'l decp. Each classifier is trained on a single feature so the rdation 1)('t\H'C'1l the 

cl<1ssifiers and the features in onc to one. The set of features llsed to traill the \\'{'clk 

classifiers are selected ell! tomat icall~' using an Adaboost met a-learning algori t hm. The 

learning algorithm to learn each c:lassificr is indepcndellt Oll t he selected fcat un'. The 

comparison is very simple, If the \'aille of a particular feMure is above a thrc::,hold it 

would indicate the presence of an object. and not if otherwise ~ 10: . The first stages of 

t he cascade use onl~' fe\\- features while the cOlllplcxit~, increases in later stnges. A data 

point weighting distribution is initialised, telling the algorithm how lllllCh misclassifyillg 

a data point \\'ill "cost" . During boosting, as the algorithm progresse~. thp cost \\'ill 

en)lvp so t hat weak cla.ssifiers trc1iued later \\'ill fOCllS on t he riM a point s t ha t t 11(' earlier 

t rained weak da:-;:-;ifiers teuded to do poorly OIl. :-Hi:. 
During the detection pha:-;e a :-;caulling ",indo\\' is llsed to ~cnn the input illlngc 

ill differellt locations and scales. elected katul'cS nrc extracted frolll ('ach \\'illc!()\\' 

and fed to the filial classifier which decides if all ohject i~ prescnt in that \\'illdO\\' or 
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not. True class detection is declared only if the computation makes it through the 

entire cascade. As in the case of faces in an image. the object of interest generall~' 

comprises of a small percentage of the image. For each node. a "not in class" result at 

an.v stage of the cascade terminates the computation. and the algorithm then declares 

that no face exists at that location. Rejection cascade::; can therefore greatly reduce 

total computation because most of the regions being searched for terminate quickl.\' in 

a nonclass decision [-W]. 

2.2.2 Depth and 3D measurement 

Recentl.v there has been a great interest in processing data acquired using depth lllea

suring sensors due to the availabilitv of cheap and efficient RGB-D cameras. Before the 

introduction of Kinect-l . most researchers used lllethods such as paralla .. \: and epipolar 

geometr:v in stereo cameras to obtain depth information. The most collllllonly llsed 

stereo call1cras arc tllOse provided l>y Point Grey,5 and Videre6
. tereo correspondence 

\vas however generally considered as being both tillle and computationally intensive 

and only systems equipped with high proce::;sing capahilities could obtain usable l'('

sult::;. ). Ioreover. cameras mounted on moving robots require specialised engineering to 

approach the needed precision [51 ]. The Einect camera developed b.\' Prime Sense and 

:'Iicrosoft has considerably changed the situation. providing a three-dimensiollal(3D ) 

camera capable of providing an RGB and depth image at a wry affordable price. The 

3D ]'('construction problem is solved basecl 011 the understallding 011 multiple \'ie\\' ge

ometry and generally consists of 3 steps [52]: 

• Feature Detection and Tracking 

• 3D reconstruction 

• \'ormalization and upgrading to true structure. 

Feature detection techniques are methods of identifying points of interest v,hich could 

be compared between similar images. \ "isual descriptors outlilll' the detected \'isual 

featurcs in images or \'ideos. The term visual descriptors sometimes also refers to 

algorithms or applications that produce sllch descriptions. They describc elementary 

characteristics such as shape. colour. texture. location or motion. among others. Ideall~'. 

feature descriptors should be scale . rotation. illumination clllcl \'ic\\'point illYariant . To 

achiew all im'aric-1nt dcscription is particularly' complcx in the case of yisllal landmarks. 

sincE' tllE' a ppccuance of a point in space varies grca t I." wi t h vie\\'poillt chclllg<.-'s. III 

('Ollseq uellCC . t he cia t a association problem becomes hard to soh"('. \ Y11cn t here is Cl 

Iht t p: \\'\\'\\' .xbox.coll1 cn-GB/ hT\,ECT 
:; http: \\'\\\\'. pt gfe.\·.colJl / prod uers stefE'o.1-l.-;j) 
(; Ilttp: \\·\\"\\,.\,ioere.colll ( possibJ~" discontinued ) 
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region of no-texture, e.g. white wall or a grassy land seen from afar, trackers simply 

fail. On the other hand, when there is repeating structure, e.g. bricks on a brick 

wall, and when no global context is used for tracking, there is no method of finding 

true matches. Therefore, the requirements of the problem are 2-fold: there should be 

features and they should be distinct [52]. 

3D reconstruction can be performed to extract the robot location and scene struc

ture. When two cameras (or a single moving camera) view a 3D scene from two distinct 

positions, there are a number of geometric relations between the 3D points and their 

projections onto the 2D images that lead to constraints between the image points. 

These relations are derived based on the assumption that the cameras can be approx

imated by the pinhole camera model and is known as epipolar geometry [53]. The 

pinhole camera model is the most widely used camera model mainly due to its sim

plicity but which none the less provides enough accuracy in calculations. The essential 

matrix contains information about the translation and rotation that relate the two 

cameras in physical space and the fundamental matrix contains the same information 

as the essential matrix in addition to information about the intrinsic parameters of 

both cameras. The fundamental matrix can be used to simplify the matching process 

between the viewpoints and to get the camera parameters in active systems where opti

cal and geometrical characteristics might change dynamically depending on the image 

scene [54]. This subject has been comprehensively addressed in classic books by Hart

ley and Zisserman [53], Faugeras and Long [55] and Ma et al. [56]. 3D reconstruction 

algorithms are often designed to provide different tradeoffs between speed, accuracy, 

and practicality. In addition, even the output of various algorithms can be quite dif

ferent. Lu et al. [57] survey a number of 3D reconstruction algorithms that exploit 

motion parallax. Fusiello [58] provide a review on 3D reconstruction techniques using a 

single camera with unconstrained motion and unknown parameters, highlighting auto 

calibration methods. 

2.3 Robot mobility 

One very important part in robot mobility is knowing where the robot stands within 

a map. This is known as localisation and is the ability to get one's position and 

orientation, correctly within the map. Mapping is the capability of the robot to create 

either a metric or topological map of its surroundings. Navigation is the capability to 

trace a route from point A to point B. This requires the determination of one's own 

position and to be able to plan a path towards some goal location [59]. Path planning 

can be therefore defined as devising the route for Navigation. This usually requires 

the use of a representation of the environment (a map), and the ability to interpret 

that representation. Topological maps are simplified maps where unnecessary details 
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arc rellloved and only vital information i ' maintained. These maps lack scale. distance 

and direction and are subject to change and variation. but the rciationship b('t\\"('(' ll 

points is stored much as the tube lllap retains useful information despite bearing littlr 

resemblance to the actual layout of the underground system. This contrasts with 

llletric maps where distance and direction are plotted a('curatel~' and most. if not all. 

of the acquired data is maintained. In the case of an application wh re no objccts arc 

specified. then change will be the main driw' of the algorithm. 

\nlcn working in an unknown or unstructured cnvirolllll<.'llt the lllap is not available 

alld the robot Intl ' t be capable to explore unknown and unvisited area~·;. III order to 

chart a map. lllap building and localisation have to be carried out silllultaneousl~' \vhist 

exploring the ell\·ironlllent. leading to what is known within the robotics comlllunity 

as Simultaneous Localisation anci :\lapping ( LA.:\I). 

Although COll1plelllentan·. exploration is a totall.\' different iSSll<:' [roIll 1.:\1. LA.:\I 

algorithms do not consider the computation of the mOVC'lllcnts that need to be per

formed b.\' the rohots sinc(' t his is generall,\' consic\ered as a different probkm denotec\ 

as exploration [GO]. Generall~'. when a robot or H team of robots explore an unknown 

ellvironlllcnt and build a map, thc objective is to acquirr as Illllch nr\\' information a.s 

possible with c\'er~' scnsing cycle. so that the time need eo to cOlllpletel~' explore it is 

minimized [-12], ExplorHtioll algorithms try to optimize the paths to be followcd such 

that the arCH to be explored is co\'cr('<.\ in thc fastest possible tinl(' and Hyoid reyisiting 

all'('1:ul\' known areas. This howcyer CHuses H problPm to SLA\I as LA.:\1 needs these 

places to be re-visitcd to inCTC<l,sc the 1<.'\'<.'1 of cOllfideuce. ExtCllsiH' work has been 

carried out 011 robot mapping of the cnvironment [ol. 02 . ();~ . G 1;. Thrun :(il ; pro\'idcs 

a comprehensive introduction into the field of robotic indoor mapping. Durrallt and 

\\" h~,te ~o:2 . 6:3] also pro\'ide a good explHnation on the topic . describing and comparing 

various probabilistic techniques, as they a re applipd to ll1uhile robot lllappillg prohl(' l1ls. 

LA:\1 is discussed in more detail in Section 2.3.2 . 

2.3.1 Navigation, path planning and obstacle avoidance 

As alreacl~' highlighted earlier. ano referring to Figme 2.1. llH\'igation requires the de

termination of one's m\'11 position and to be able to plan a pclth towards SOllle goal 

location llsing path planning techniques based on a lllap representation of the ell\'iron

lllellt. \ \" ilile humans arc able to na\'igate quite well based only OIl \'isual infnrll1rll ion. 

illlagos llsllHlly reqllire huge compllter procC'ssing pO\\'eL This lllcans that for real-time 

robot operation. yisual information is often <:1\'oided. Othcr scnsors. such HS sonar 

or lHser range hnclers. prm'ide i:lcc uratC' inforIlwtioll c1t 1:1 llluch lm\' r COlllputHt iOllal 

('ost :(i.c:;:. Albeit. \'islla l lW\'igatioll and localisation arc net i\'c area of r(,:--parch. OlH' 

t('chlliqup coulcll)(' that of lIsing llli.l<.'hine Jcarning tcchniquC's for robot \'iSII8.l lll(,lllOri('s 
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Figure 2. -1:: Path planning . obstacle avoidancc ane! navigation 

which is further discussed in ection 2...1 . \" avigation ba.'icci on \' isual memories is w'r.\' 

CUllllllon alllong humans [66]. :\ Ioreon'L \-vhell planning long trips . ltlore sophisticated 

representations of the environment arc created. ueh representations could include 

topological lllaps where conllect ions bC'tweell pat hs are easil~' notC'c\. The cngincer

ing and computing cOlllnlllllities use such research as im;piration to C(:UT~' 011 applied 

research to emulate visual memory onto machines. 

In an unstruct med environment the planned pat h will olll~' be based 011 t he part iall." 

known map. Pat h planning gets trickier w hell t he ph~'sical robot const raints. a.'i those 

mentioned in Append ix Section A.1. arC' t akell into account. In t hc Cc'lse of all unknown 

area explora tion is J1('cessat'.". " -it h an unknov,;n lllap t he robot ha.'i to explorc its 

surroundings anel be able to navigate in real time b." de\'ising its best \va." ill a reac-tiH'. 

rather than pre-planned. manner. This therefore l'l'CILlircs the introduction of obstacle 

a\'uiclance capabilities. Obstacle a\'oidnnce is the nbilit~, to detcct the pn-'S<.'11C(, of 

obstacles bet\n'en the robot's initial position and some goal position to be re8.ched. 

auci de\'isillg a suitablc \\'ay to circlllllvcnt the' obstacle. DC' om:a ct a!. :G7: pro\'ided 

a survey Ull visiull fur mobile robot 111:wigatioll. 

2.3.2 Simultaneous Localisation and Mapping (SLAM) 

As alread~' mentioned. for the robot to be able to na\'igate sll(Tes~·;fllll ,\ · withill the 

cm'ironmcnt a lllap needs to he constmctccl. Robots would use 5L:\\1 techniques, 

dcpicted in Figure 2. ;) . to huild a map \\'hilst locating thl'lllsl'!\'('S \\'ithin that map. 

This wuuld gCllcrall.\' be cl gcometriccll ltlap represeuting the fret' anel occupied areas 

in which the robot call evelltuctll,\' nCl\'igate or not. In LA:\L both the trajectOlY of 

t he platform and the loccltioll of all laudlllclrks are estilllated online without the lleed 

of a 11\' r1 priori knO\dedgr of location. Tlwrdol'(' the SLA:\1 problem (' 1:111 1)(' separated 

illto t\VO parts :li():: 

:2:> 
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Figure 2.5: SLA.\I 

• Tho C'stimatioll of the trajoctory of the robot. 

• The cstimation of thc lllap b~" means of a series of mea... ... ;urclllents. 

The main problem raised with SLA.\ I cOllles from the llIlc-ert aint~' of t hc lllca .. <-;ure

ments. dup to the sensor~" noise or tcchnicallimitatiolls. Probabilistic models arc wielely 

us('d to reducE' the inherent ('rrors and provid(, satisfying estilllations [G~l. SLA.\1 is 

considered to be a cOlllplC'x task due to the mutual dependency betwC'cn the lllap of 

the em'ironment and the pose of the robot. This llleans that. if an error is 1111"lcie in the 

estimation of the pose. this would induce an error ill the estimation of the map and \·ice 

\"('rsa. Smith et al. introduced the Kallllan Filter (0 the field of robotic map-building 

~G!) ; . The Kalman filter onl~" handles lillear s~·stellls. bowever for nonlinear s~'stellls the 

ExtC'llded Kalman Filter (EKF) can be used. The two k('~' computational solutions to 

the SLA.\l problem arc through t he use of the Extended Kalman fil tel' (EI"":F -SLA.\I) 

and through the llse of Rao-Blackwt'llized particle filter (FastSLA.\f) [(i()J. The I"":nlmHll 

niter reciuccs the computatioll loaci by the assumptioll that the sensor noise follows a 

Gaussian distribution. Instead of maintaining the transition among all the st<:1tes. onl~" 

the Gaussian distribution parameters arc maintained for each state. The particle hlter 

reduces the computation load by reducing the numher of salllpies - through iteratiw 

resClmplc process: the particles ('Ollwrgc at the real robot location. A comparisoll be

h\"ecn these two met hods is pro\'ided in :,0]. Thrull et al. :71 ] edso proposed c1 mer hod 

llsing Sp1:HSe cxtended information filtering ( ElF) allCi state' that it compelrt'S \\"e11 \\"ith 

the Extendcd l-":almclll Filter. Also. Chen et al. [52: idellt if~" the inhc'l"('nt rclat ionshi p 

lwt\\"C'en the statC' estimation \'ia the I"":alman Filter \'C'rsus Pelrtidc FiltC'r ellld Expecta

tiun .\ [1"l.'\illlisalion techniques, ell! of \\"hich eIre deri\"ations of Bct.n'sian techniques and 

makf:' use of Ba~'esian rules to COlTt'ct posterior information b~' prC'\'iolls a('tioll~ and 

Iwrc('ptions. ChC'n ct al ~ ')2 : also co\"cr the non-probabilistic approelches not covercd in 

other sun"c\"S. \Iorc reC'('nth·. methods rd.\·ing on pos(' gmphs to modd and illlpron' 

the estimations \\"oro also prcselltl'd ill literat lire :uc:. 
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Data association is a fundamental part of the SLAM process, since wrong data 

associations will produce incorrect maps. Loop closing and kidnapped / wakeup robot 

problems must also be tackled for a successful SLAM implementation. The term 'kid

napped' is used when the robot is lifted from its current (generally known) place in 

the map and taken to another part of the map. 'Wakeup' is when the robot is first 

started. In the case of kidnap the robot should be able to re-Iocalise itself. In the 

case of wakeup the robot needs to figure out where it is within the map. Loop closure 

occurs during exploration and is when the robot revisits the same place [68]. The robot 

should be able to recognise the place and amend the map if necessary. 

Multi-robot SLAM 

Ozkucur et al. [72] extended the map building onto a multi-robot platform where 

robots can observe each other and non-unique landmarks using visual sensors and 

merge maps by propagating uncertainty. Gil et al. [60] state that the SLAM problem 

becomes harder when more robots participate in the construction of the map, since the 

dimension of the state increases and indicate that multi-robot SLAM approaches can 

be grouped in one of the two following solutions: 

• Approaches in which each robot estimates its own individual map using its ob

servations. At a later stage, a common map is formed by fusing the individual 

maps of the robot team. 

• Approaches where the estimation of all the trajectories and the map is made 

jointly. A single map is computed simultaneously using the observations of all 

the robots. 

Visual SLAM 

Mapping alone does not give information about the environment itself. This is espe

cially so when maps are built on data provided by laser and sonar scanners combined 

with odometry. Most of robotic mapping is performed using sensors that offer only a 2D 

cross section of the environment around them, the most common being laser scanners. 

With the introduction of digital cameras, this later evolved into Visual SLAM whereby 

more knowledge about the environment could be obtained and included within the 

map. In the past decade various attempts were carried out to create a SLAM system 

just based on camera vision, some of which were very successful. Structure from motion 

in computer vision and SLAM for mobile robots could be considered as two views of the 

same problem. Most of the approaches to visual SLAM (VSLAM) are feature-based 

where a set of significant points in the environment are used as landmarks [60]. When 

the robot observes a visual landmark in the environment, it obtains a distance mea

surement and computes a visual descriptor as will be further discussed in Section A.3.4. 
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The \'SLA~I process can be described as estimating the poses of the camera from its 

data stream (video and depth). in order to reconstruct the ent ire ('l1\"irollmf'nt while 

the camera is moving [G l Some of the most common met hods for calculating oepth 

from vision sensors are discussed in Section 2.2.2 . Influential works 011 VSLA\1 include 

the ,vork by Davison et a1. [73] in '\'IonoSLA~I using an Extended Kalman Filter. 

FastSLA.\.I by ~1ontemerlo et a1. [7-1 . 75] using Rao-Blackwcllized particle filtering. 

RatSLA.\.I [76] b:v .\.1ilford et al. which is based on biologicall~" inspired visual SLA.\.I 

systelll lllouelling a rouents brai11 aud PTA'\'1 [77] / PTA.\.L\I [78] b.v Klein. Castle ct al. 

In PTA.\-1 the aim is to track a calibrated hand-held camera in a pre\'iousl~" unknown 

scene without any known objects or initialisation target. while building a lllap of this 

environment. Klein at a1. [i'7] state that the two IllOst convincing systems for tracking

while mapping a single hand-held camera are those of Davison et al. [7 :~ ] and Eade 

and Drumlllond [79 . 0]. Both systems can be seell as adaptations of algorithms de

\"eloped for SLA.\.1 in the robotics uomain (respectivciy these arc EKF -SL:\'\'1 ~ L: ane! 

Fa....,tSLA.\.I 2.0 [75] and both are incremental mapping methods: tracking and mapping 

are intimateh" linked, so current camera pose and the position of e\"('ry landmark are 

updated together at every single video frame. 1\:1ein at a1.[77] argue that although the 

work b~" Davsion et al. [73] and Eade and Drullllllond [79] go to great lengths to a\"oid 

data association errors they still do not achieve good enough robustness. These two 

SLA)'I methods start with covariance-driven gating ("active search"). and then further 

perform binary inlier / outlier rejection with Joint Compatibility Branch and Bound 

(.JCCB) [82] (in the case of [7:3]) or Random Sample Consensus (RA~SAC) [X3] (in the 

case of [79]). This concern motivated a split between tracking and mapping ill :77:. If 
these two processes are separated. tracking is no longer probabilistically sla\"eo to the 

map-lllaking procedure. and any robust tracing method desired can be used, \Ybereas 

the work in [73] is limitrd bv the frame-to-frame scalabilih" of illcrclllrntal mapping 

approaches which mandate "a sparse map of high qualitv features". l"':'lcin et ell. [77] 

implement the alternative approach. using a far denser lllap of lower-quality features. 

In PTA.\.I howewr. the scene should be mostl~" static and t he user \\"i ll spend most of 

his / her time in the same place, Explorator~" tasks such as running around a cit~" are 

not supported. As alI-ead.\-" highlighted in Section 2.2 .2. there arc two major problellls 

to be soh'ed in order to exploit the richness of vision for robot SLA.\.I: the feature 

recognition ami tracking problem. and the 3D reconstruction problem :.")2 . b( Feature 

tracking is th problem of estimating the locations of features in an image sequence. 

details of which can be found in Appcndix A in Section A.3. -± . Gil et a!. [GO: state that 

the case of ,"isllal SL:\.\.1 is particularly diffic1llt since: 

• The lalld Illarks call1lot el] \\"el~'S be det ed ed frollt d iH'prellt "i('\\"poin ts. As a con

sequC'llcC'. it is d i fficul t to re-dctl'ct pre,"iolls]y lllapped lalldlllarks. 
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• The description of the points must be illYariant to changes in vie\\'ing distance 

(scale) and viewing angle. 

Two steps must be distinguished in the selection of \'isual landmarks: 

• The detection of interest points in the images that can be used as reliable land

marks. The points should be detected at different distances and \'ie\ving anglcs. 

since the~' will be observed b.\' the robot frolll di rl'ereut poses in the em'ironlllcnt. 

• The interest points arc described by a featurc v('ctor \\'hich is computcd using 

local image information. This descriptor is usee! ill the data association problem 

anel decides ,,'hether the current observation cOlTesponds to Olle of the lanclmarks 

ill the map or is a new one. 

2.4 Machine learning and robot memories 

Encoders 
Sonar 
laser 

Robot 1 Control 

Figure 2.6: :'-.Iachillc learniug and \'isunl memories 

:'-.Iachinc learning aud robot lllemorics go hand in haml (see Figure 2.6 ). \\'ithin 

the scope of this th('sis, robot lllcmories arc restricted to lllnilll~' \'i~.;ual lllelllor~'. which 

is the abilitv to recall previou::;l.\' learnt \'isual information. ;"Iachine learning is c1 sci

entific discipline \\'ithin the artificial intelligence domain which takes input empirical 

data. s1lch as that from sellson; or databases to ~'ield information b~' C'xtracting rules or 

pattel'lls from t hat cia t a :-.w:. \ 'arious types of lllachine learning met hods arc a\'ai la hie 

and the lllethod llsed highly dep('nds on the application and datH availability. SOlllP 

of t IH' most ('0 III III 0 11 Illet hods illclude slIlwn'ispo. UllsuIH'n·isecl. SPill i-Sll pen'isecl Hnel 

online learning. III additiull to t Ilt'se kill(b of learning. there em:' ot hers. such as re

inforcclllellt leal'lli Ilg \V hereby' the learning met hod i Ilt eract s wi t hit S pll\'irullluent by 

proclucillg actiolls that result ill l'l'\yarus or punishlllC'nts. These 1('lUllillg lllethods <He 

dist inguished b~' \\' hat kind of feed hark t h(' CTi tic prm'id(':-, to tll(' l('amp!'. In slllWITis('u 

2!) 
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learning, the correct output is provided wherea' in ullsupen'ised leaming, no fecdback 

is provided at all. In reinforcement learning a quality ass SSlllcnt is providcd in the 

form of a rcward / punishmcnt based on thc learner's output [ ;j ] . :\lorc literatlll'C' about 

the various learning methods is provided in Appendix Section A .-1 . 

In robotics, the most comlllon use of visual memory involves a robotic agent which 

is first taught a route and then hcLS to localize itself \vithin the envirOlllllcnt and re-track 

thc path followed previously by' recalling what lllcmorised earlier [ G. 7. CL , !) . 91) , <)l. 

92 . G5:. A similarity score between the vicw acquired by the camel'<) and the database 

images is used as illJ)Ut for thc controller that leads the robot to its final destination 

[92:. The most \videspread approaches to visual navigation arc the model-based, and 

t lw appearance-based approaches [92]. :\Iodel-based a pproaches rely' on the knO\dt'<ige 

of a 3D lllodel of the navigation space. The model utilizes perceived featurcs (e.g .. 

lines. planes, or poillts), and a learning step can be usC'd for estimatillg it. CO\lvcrsely'. 

tIl(' appearancc-based approach does noL require a 3D model of the cm'ironmcnt. and 

works directl,\' in the sensor space. The euvironlllent is described b\' a topological graph. 

where each noele corresponds to the description of a position. anel a link between two 

uocles defines t hc possibility for t he robot to move au tOllOlllOUSl\' betwccn the t \Yo 

positions. Cherubini ct al. [9:2] compare six appearance-based controllers rel\'ing on 

\'iSllal memory. A similari t,\' score betwC'en the \'i('\\' acquired by' t he camera and the 

database image ' is used as input for the controller that leads the robot to its final 

destination. Pattern recognition and machine learning for vision are important in 

t his context '!j2 ]. During leami ng in vision- basorl navigat ion, not e\'('ry singk image 

needs to be stored [G.')]. There are scellarios. such c1.S corridors. i Jl \\' h icll the "iews are 

H'r,\' similar for a long period of time. Those images do not provide da t a useful for 

navigation. Therefore, they can be filtered out during the learning stage. so that oul,\' 

illlages which are sufficiently different from their predccessors must be storrci. ~leud('s 

et al. :G!j ~ used the parse Distributed ~Iemor:v(SD~[) to carry out SlIdl task. in SD\[ a 

UC\\' image is only' stored if there is no image within a prcdefiued radius of tho 'D~I. :\('W 

illlcLges that are less thall the actinltion radius from an alrccldy stored image cHr most 

probably UllllecessalT and can be discarded with no risk of impniring the performance 

of t he S~'st(,lll. Visual memories \\'ill be studied ill more det ail in eha pteI' l. \\. here the 

contributioll to\\'i'trrls bettering the state of the art is also pro\'icled. 

2.5 Multi-robot systems (MRS) 

\\'ith tIlt' basic problems concerning single-robot scnsing and control being fairl.'· \\'ell 

uuderstood. mobile robot deplonllcnt scenarios arc rapidlY o\'oh-ing from single rohot 

to lllult iplC' robot s,\'stellls (\IRS) \\'ithin n cooperative parncligm '-1 r . \IR ' call ;'l('('()Ill

plish tasks tlli:1t no single robot call accomplish b" itself. sincC' llltimatdy' c1 single roh()t, 
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2.5 .• HG·LTl-RODOT S)·STE.\lS (A IRS) 

Robot 1 Control 

: Sensors & Actuators H Robot> Control }-1 
i ~ ________________ ~ __________________ -J 

[ Sensors & Actuators H~ ________________ R_Obo_ t_N_Co_nt_ro_1 ______________ -J}-J 
Figure 2 .7: Team Collabora tion 

no matter hm\! capable. is spatiallv limited [93]. \IRS provide the advantage of having 

lllany robots being distributed within the available space to carr:v out div('I"se tasks 

at the same time. Ideally. as seen in Figure 2.7 . such tasks are carried out b~' robots 

collaborating and working together as a team in order to ach ieve the required goal. A 

key driving force in the development of cooperative autonomous :"IRS is their potential 

for reducing the need for human presence in dangcrous applications. To mention some 

examples. such tasks could include search and rescue or surveyillg <-mel patrolling of 

large a reas. There are still manv open issues in :\ITIS SOllle of which include 1) swann 

control and fault tolerance. 2) authority' delegation and action selcction. 3) cOllllllunica

tion structure. -1) heterogeneity versus homogeneity' of robots . 5) resolution of confEcts 

and other rdaterl issnes [91]. Some possihle solutions are discllssed next. 

A :"IRS generally' starts with a collecti \'e of hOlllogeneolls or Ill'terogelleolls set 

of mohile robots \vhich arc generally expected to operate in both open unstructured 

landscapes and structured outdoor and indoor cnvironmcnts [9.5]. Collective behaviour 

dC'llotes any behaviour of agcnts in a system having morc than one agent ~ !J:3 : . This 

generally introd uces redundancy ancl one t herefor(' exp('cts t he collect i \"(' to be ItlorC' 

fault-tolerallt \\-·hen compared to its single robot cOllllterpnrt . As \v ill he discussed ill 

Section 2.5.1. another possible adYaIltage COlUPS with the lISC' of robot tealllS capable 

of merging overlappillg information and thus compensating for sensor ullcertaint~· :9li:. 
r\ \IRS is not just the extension of a single robot b.\" putting in lllorc robots in the 

C'l1vironl1lent and it cannot 1)(:' simply regarded as a generalization of the single robot 

case. \\'hen using a \IRS. each robot lllay be designed for a different task. and tIl(' 

fCC! uir('ci goal is achiewc1 wi t h proper colla bora t ion b~' t he robots. This \\'oulcl proyidc 

a more gcncl'lC structure as the rohots would 1)(:' able to rcconfigure rhclllsel\-es <:1.-'; 
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required. One question is about the effectiveness of :-'IRS over single-robot verSlOns. 

and to vvhat extent adding additional robots brings diminishing returns. The proposed 

approaches for :'IRS need to be preciseh' characterized in terms of assumptions about 

the environment and in terms of the internal system organization [97]. III the last 

decade several studies have been carried out 011 the use of :'IRS including strategies. 

formations. task distribution and delegation. There \vas also an increase in complexih·. 

nam!:'ly larger team sizes and greater heterogeneit.Y of robots and tasks [D8]. Several 

studies on coordination architectures and demonstrations of coordinatecl beha\' iour 

in multi-robot s,'v'stems ha\'e been carried ou t. ~Iost of these systems however lack 

a theoretical foundation that call explain or predict the behaviom of a multi-robot 

sy'stem. Gerkey et al. [98] provide a candidate framework for stud.ving sHch systems. 

Due to significant achievements in :'IRS research one nov\' expects to sec inCl'E'a8ingly 

larger robot teams engaged in concurrent and diverse tasks over extended periods of 

time rather than just having nmltiple robots observing similar targets or large robot 

groups flocking together [98]. Robots are now expected to be reliable and robust. able 

to improve their capabilities by learning from their environment through interaction 

with people and other robots. adaptable and autonomous in a dy'namic ullstructured 

environments, modular. collaborative with other robots and hUlllans such that they 

are able to tackle problems and carr.\" out tclSks which otherwise they' would not be 

able to can'~' out by themselves and also able to evolve. capable to elaborate strategies 

according to what the em'ironment necessitates [Ju]. A :-'IRS should be a solid network 

of robots capable to interact successfully and share information. 

Cooperating robots have the potential to accomplish a 8ingle task faster than a 

single robot. Having said that however. due to the extent and dynamics of the en

virollment it is difficult to achieve efficienc~' and applicability' for general-purpose co

operative robot sy'stems. \\'hen a :\ fRS is being designed for a particular task or set 

of tasks . se\'e1'al factor8 need to be considered. One ha...., to decide. giWll on the ('11-

vironment in \v hich the lllulti-robot system will operate. if t he system "'ill consist of 

homogeneous or heterogeneous robots. have a centralized or distributed organization. 

the tasks to be performed will be 100se1\' or tightl~, coupled together and if the robots 

are to vyork on va rious tasks in an ensemble rat her than indi\'idually. These ,,'ould 

generall.\' defin(, the multi-robot team architecture which will be further discus8ed in 

Section 2.5 .2 . Also. there are other robot issues one has to consider such as ho\\' C0111-

lllllllication between robots \\'ill be carried out. how the tasks will be assigneci anel if the 

robots will haw their 0\\'11 spe('iHlisHtioll. For H rohot to Iw able to work ill i:'1 :'IRS oue 

\\'ould t~'pically' i Ilcorporate wireless Ethernet as the bHsis for COllllll llllicat iOIl. \'ision 

based sC'llsing alllongst ot her in pu t sellsors and an oil-board COlli pu tel'. hellce ha\'illg 

the abilit~· to support a significant le\'el of autonolllY as \\'('11 as robot-robot awl hll111clll

robot coopera t iUll ~D;j ] . :. IorcoH'r. gi \'Cll t hat not hing is ideal in t he real \\·orlel. Olle 
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has to expect and compensate for uncertainty in measurement reading from sensor and 

resulting action from actuators, ~IRS need to take into account the uncertainty'. the 

limitations. and the mistakes arising from the processing of sensor information [07]. 

In recent years. research on intelligent mobile robots for area monitoring is taking 

place and applied for area coverage [99. 100]. Folgado lUll ] highlights some \'ideo

surveillance projects such 1:-18: VSA)'I. CAVIAR and a large number of projects related 

to traffic surveillance, among others. Coopera.tive multi-robot approaches have heen 

proposed for surveillance [102. 103. 10-1]. ~lRS could contribute to solving problellls 

especially when it comes to robot positioning. \Vithout a priori knowledge. the uncer

tainties in the environment increase the complexity of system design, Best configura

tions have to be analysed and cases such as ways to avoid occlusion could be identified. 

This would require the robots to be able to localize themsc!ves and navigate \vithin the 

unkno\vn space. There is a lot of research interest in the study of robot learning that 

can let robots adapt to the environment and other variables to accomplish surwillance 

tasks. ~Ioreover studies on how robots can cover each others blind spots need to be 

investigated. Furthermore. the system should be reliable enough to continue working 

even if parts of the s.';stem, e,g., SOUle robots. fail ill functioning. One such solution is 

provided by Feng et a1. [105]. Several methods arc also available for exploration and 

target searching including. potential field-based exploration [lOG]. swann intelligence 

exploration [107]. landmark-based exploration [10 ] and hop-count gradient-oricnted 

searching [109]. Variolls nllliti-robot formations arc possible. each suited best for the 

particular application. SOllle possible formations include: swarms, colonies or simplv 

robot-collectives [97]. 

A lot of effort is currently being put b~' researchers on RoboCup', The main focus 

of RohoCup is Robotic Soccer (RoboCup Soccer). although other application domains 

exist focusing on different scopes like disaster rescue (RoboCup Rescue). robotics ('d

ll('a tiol1 for .VOllllg students (RoboCupJunior) and hUllH1n assisti:"l.llCe on C'vcr:vda." life 

tasks (Robocup6.Home) [110]. In RoboCup Soccer the aim is that of ha\'ing r1 team 

consisting of gellerall,,' homogeneous robots to interact together in a const ruct i \'e wa\' 

in order to playa game of soccer and scoring b~' shooting a ball in tilt, opponents goal. 

This environment is considered as hostile due to the opponents team interfering actions. 

hiener and St,nk [Ill] provide a case study of c1 strongl.\' hetcrogC'llC'ous autonolllOllS 

robot team composed of a highh' articulated humanoid robot and a wheeled robot with 

the maill task being that of finding and following a ball and finally kick the hall into 

the goal. Based ill the RoboCup scenario Pagello ' ll2' pro\'ides all olllnidirectional 

distrilmted \'isiOll s~'stelll (OD\,S ) whC're the." stuuieu wa.vs to cnhann' tl](' l"uoperatin' 

capabilities of thC' robots allowing them to track moving objects in a highly dyn<1111ic 

ell\'ironment b,\' sharing the information gathered b~' e\'C'l"\" single robot. 

'http: \\"ww.ro\)ocup.org! 
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In : '5]. Panait and Luke surve:v a large spectrum of areas lIseful for llllliti-agrnt 

S~"StClllS. including reinforcelllent learning. evolu tionar.\· compu tat iOll. gamE' t heor~". 

complex s:vstems. agent modelling alld robotics. The~' most l~ " focus on C'ooperati ve 

multi-agent learning. where multiple agents are cooprrating rath('t" than competing 

with one another to soh"e a joint task or to maximise utilit~". Bu~onill et al. [1 n: state 

t hat significant progress in the field of lllllltiagent learning call be achievcd b~" a lllore 

intellsi V(' cross fertilization betwecn t he fields of mach inc learning. game t hcor.\". and 

cont rol t heor~". Learning involves intcract ion amongst team lllembers. wi t h ot hers ex

ternal to the team. ami \\'j t h t he environment. Exposure to illdi \"id \lals wit h diffcrE'nt 

expertise and experimce is a vital source of team leaming. Interaction wi t h dissimilar 

others promotcs learning b~" exposing actors to new paradigllls and b~' enabling the 

cross-fertilization of ideas. Tcam learning \vill be further discllss('el ill ('etion 2.5.3 . 

\Iost of \IRS S~"stellls so far have been testcd on simulation envirolllllcnts alld IS 

onl~" lately t ha t t he shift frolll simulat ed to real cnvironlllCllts ca 11 1)(' seC11. Tr~"i11g 

to simulate a real environlllent has its own limitations. A. robot will onl~" 1)(' able to 

replicate what was observed in simulations within the real environlllent olll~' a."i lllllch 

as the simula t ion can fait hfllll\' replicatc Cl rcal environll1ent. :\1 ult i pie-robot S~"s tellls 

ha\"c illlplicit "rcal-world" em"ironment constraints. which arc morc difficult to model 

and reaSOll about than traditional cOlllPonents of distributed s~"stcm em"ironments 

[93]. Real cnvironments using real robots pose bigger challenges than thcir sillllliated 

counterparts a.";; SOllle' factors snch as background and sellsor noise. ll11expecte'd dynamic 

1ll0H'lllPnt and condit ions wi t hill t hc cll\"ironmcllt canllot be fil tercel out or ignored as is 

clotle in simula t iOllS. The acquisi tion of know ledge fWIll the em"ironlllcnt. makes it lllore 

challcnging to build actual experimentation settings for )'IRS [D7:. \lckee and Varghese 

r9.j1 highlight four issucs which need to be considercd \\"hen v,:orking wit h lllllltiple 

robots ill C1 real (,llvironmcllt. Onc has to considC'r \\"hC't 1wr the team is composed of 

hOlllogelleolls or hetcrogeneolls robots. what happclls ill case of pHltial or total failure 

of a particular robot. thc coordination required for a succcssful completion of a task 

ano what intcrfaccs arc' useo betwccn the robots . Apart fwm motion orift errors \\'hich 

were ah'ead~" present in real robots. in a multi-robot sccnario lle\\" issues COIlle up. 

OIle being interfcrence betwecll robots. If the robots nrc homogeIlcous or usC' similar 

act i \'(' scnsors. such as lascr. Kincd and sonars the o\"crnll pcrform;) IlCC cnIl be rc<l u('cd 

due to (Toss-talk / interfercncc betwcen the sensors and worse still data acqllir!'cl by 

OIle robot could be corrupted b\" another robot in the same e!l\"ironment. Also. tlie 

lllOl'(' robots arc used the longer detours nw\" be n('('('ssar~" ill order to m"oid collisiolls 

\\'ith otllf'r llll'lllbcrs of thc team :DG:. III practice. OIlC <llso has to (ked with a lilllited 

(,Ulllllllllli('cltioll range between robots. This could either happen duC' tu large dist clllC'(,S 

bet\\"('ell robots or b~" temporal llet\\"ork errors . .\lr(lsur('s IwH' to he takell t () bridge 

iarg,(' d ist ClllC't':-. hetw('t'n robots to maintain COlllllHlllication owr t he \\"irell's~ 11Pt\mrk. 
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Robots have to be able to work independently' \\'hen sHch cOllllllunication interruption 

occurs and devise wa.\'s to lllaintain optimalit.\-, as llluch as possible. In the case of 

lllulti-robot exploration robots lllight end up revisiting areas previously explored b.\· 

other robots leading to suboptimal behaviour [96]. Robot cOllllllunication. networking. 

cooperation and collaboration are further discllss('cl in Appendix A. Section A.u. 

2.5.1 Robot teams 

A team is a gronp of entities with a full set of complellwntar.\' skills required to completc' 

a task. A task . is a subgoal that is necessary to achie\'C thc on'rall goal of the s.\'stem. 

and t hat can be ctchieved indepenclelltl.\' of ot her su bgoals ~%] . Robot tealllS are \'(~ r.\ ' 

useful when it comes to carry out collaborative tasks which otherwise would han' been 

illfeasi hIe for cl single robot. Some such si tUcltions include the C'xplorat ion of hazardous 

enyironnl('nts. the moving of heav.\· or large objects and til(' dfectiw patrolling of an 

area. Robot tealllS are also expected to complete a task more rapidly. execute ta..."ks 

beyond the limits of a single robot and gain bet ter performancc b.v using llluitiple 

specialised robots rather than ol1e superbot. Robot teams also ha\'e the advi:1lltagc of 

haying highly dist ri bu ted sensors. The use of robot teams int rod uces new challenges. 

In particular a critical onc is how to bC'st take ad\'antage from thC' vC1rirty' of ayailable 

resources [114]. An optimal performing tram is one which is able to take adYC1ntage of 

the strong points of cach availablc robot. Thi ' is cyen 1110re strong,!.\' clllphafii:-icd ill i:1 

heterogeneous envirollment where robots are not the samc. Various t,\'PCS of robots, 

some of \vhich are discllssed in Appendix Section A.1. call be used in tCC1111:-i as long as 

they' are able to comlllunicate. These could be of different size. diffeH'nt construction. 

and also hayc different onboard sensors and actuators. Burgard et al. :!)()j pro\'ide a 

solution for llsing tealllS of heterogeneous robots in a real-world sccnario . 

:-'Ickee and Varglwsc [9'>] p ropose' a lllulti-team model for :-'[RS. whereb.\· multiple 

subsets of robots are drawn fwm a larger pool to form lllultiple teams. Each U\aIll ha~ 

an assigncd task that is to be distributed among the members of the teaIll. \"ou\'a11 et 

al. [11."): present a self-organizcd S.Ystclll of robots that displa.\'s a d.\'11i:1lnical hiC'rarch.\' 

of kalll\\'ork (with cooperation also occurring alllong higher order C'ntitie's). Thcir stud.\' 

shows that teamwork require'S neither incliviclual recognition nor differences bet\\"('C'n 

indi\'iduals. Bradsha\\' et al. ) 1 b] discuss some of the challcnges anel requirclllcnts 

for successful coordination in a lllul t i- tea III hUlllall- robot field exercise. Hofflllan ami 

Breazeal ) 11; propose an adaptiw action selectioll lllPclwnislll for a robotic tral1l111c1tc 

to a human. making anticipatory df'cisiollS based 011 the confidellce of their \"alidit\" 

and their relatin' risk thus expecting all illlpWY(,lIlent in task efficiC'nc\' <-mel HU('ncy' 

comparrd to (1 pllrel.\' t"cadin' process. 

Sharing knowledge brt\H'en robots requires lllet hods to (,H'pctiwl\' pncod(' . ('xciwng<' 
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and n'lb( clata. R{)hot~ an' abo expect<.'d to interact \\'ith other slllart de\'ice::- ::-uch 

a;-; illtdli~pnr ~ur\"('ill,tll('(' CClllH:'ra:-.. tablet~ anel mobile c1e\·ices. Therdore. :\lachinp-to

IllClCbiIH' (:\ [2:\[ J \\'irl'h';:,~ cOllllllunication~ i~ becoming more illlpurtam than the CUlTPnt 

paradigm fucll:-.ing on macbinl'- to- h Ull1an or human-to-llUlllan inforlllat ion exchange 

11 CUlllparatin'h' little research has acldre~:-,ecl the sharing and reuse of kno\\'kcige 

'2 ", . .'OIlH' re~earl'hl'r~ haH' proposed sharing puoled data Ilsing an Interuet ~ear('h 

E'll!.!,iw' ur a dowl cmnpmin!.!, framl'\york. Others han' ~ugg('stl)d l'llllwddillg kno\\"ledge 

direct h' illtu ubjl'( t~ .. -\ttl'IllPts ~Udl a:-- the planning domain definition language target 

t he ~t andard i~a t ion uf pIau languag('~ and planning domain sp<'ci fica tiOl!~. Allot her 

appwilch alllr--. at (Tl'ating ah~tract n'pre~entation~ for high-le\'el knm\"ledge that ('an 

1)(' ...,hared ,HTOSS lllultipll' platforms. An ambitious project called RohoEart h ) : ailll~ 

a t (oiled illg. ~torillg and ...,haring dat a bet\\"een robots. indepencient of their spl'cific 

bard\\·arl'. :\[o!"('oH'r data b ~tored in 1:1 form of linkpd databa.",e \\'here computer-aided 

dl'~i~n (c. \D lllodds. their semant ic desni ptors and ot her propert ies and reb t ion~ 

t() ()ther uh.l('ct..., (an be stored. This might also include otl1<.'1" robot instructions for 

halldlillg :-;\I('h ohjt'd. 

2.5.2 l\lulti-robot architecture and team structures 

For "11('( I'~sflll ('alll operations it i~ llsdlll to haw clrchitl'C'ture~ ill \yhich indi\'idual 

r()I)(,I..; Hn' i1\\'are of lH'il1~ part of a te,Hn illld act clccordingh' as teall! p!c:lyer!-- :1)-;-:. 
:\lo!"( ·oH'r. \yll('l1 d('''''lgning lllulti-rohot iuchitPctllrl'~ and srtting up t(',Ull strucl llre~. ont' 

tri('~ to m<lXilllis(' (lIlt;..., rt'!--o\lrce:-;. Rohot~ han' to Iw allocc1ted accordingly. drlwlHlillg 

Oil rill' ta . ...,k at hand ilnd dl'('i~lOlb lH'l'd to 1)(' taken on \\'hich rohot ~hould ex('('utl' \\'hich 

ta~k 11 q . q " \\'urking \\'illl Ill11lti-robot teams also creates chalipuges ill ('OI1l111HIlCl 

aIld «(llltrnl. WIll'r1H'1 (up-down. htlttolll-llp. or a (,lllllbination of thf'~(' ,()";:. Th('~(' 

IIlll"t hl' rdipcled ill tltt' (apabiliti('s ill('orporclted in the rohnt architecture il:-.elf (\lId 

III flIt' glohal ('(lIllIlWlld:-; thill IlPt'd to 1)(' tnlnSlaled illto al'tiOIl~ [or indi\'idllal rohoh . 

. \n hit!'( '1 \11(·..., pwp()~t'd f(lr :\1R. tl'nd to foc\l~ OIl pwyidillg a specific t\'lw of l'i:lpahility 

t() tIll ' ('( )ordill(ltill!!, mhut t(',Ull :U 1 . . 

. \-.. alnwh· dist lb~('d ill ~l'( rioll :2 .1 .2 n):-'l'ardle~ \\'pre inspired h.\· li\'ing organi:-'Ill~ to 

C'!"';[ I,· t h, '11' IIlUIt 1- mh()t an hit \'('111 rt's l1li !!licking hiulogical ~~'sl eIllS. OllH'r n'~l '<1 rcill'l'!-

III )\\', \ ','r. [IHllld Ill~plr.lti()n fn Ill! ()I Ill'r ~()un 't'~ nt'ilting ('{)nlpll'x lll()(it'b ari"ing fWIll 

(·o!.!,llil i\'t' ...,( ·WIl{(' alld ('(·OllOllll("" <)-;- . G('rkt' \' l't al. :!J : slru\\"('d ho", :\[ulli-Rohot 

Ta:--h .\ lIl1(·.!II(!!1 :\IHT.-\ pwhl('llb (dll hl' ~tlldi('d in a fUrIllili lllillllH'r h\' ilt!aptillg to 

II )I)t II I, ... ~(IlIlt' ()f Ill<' t Il<'()r~' d( '\'pj()p<,d ill rl'\l TiUlt d i~( i plill(,~ t lw t st 1\( h· urg,anil.<l t iOllal 

illlll'Ipllllli/ali()ll PJ'()I)\t>llb. Tb"...", di!--("ipltllt'~ illclwkd OIH'rdtiOlh l'<'''''('ilnll. (,t'()ll')l!li('~. 

-.., IlI'dldlll\.!,. I}('(\\'tlrk !II"'· .... alld ('(JIllI,ill(l (ll'lal optimi/iltioll I : . \ ·H.?, and .\d;\lll:-' I~() 

plt· ... '·lll(,d il Ill.tl'k"I-I).I,,(·d la~k ,!llo('atioll pr(l('vdllr(' hil . ...,('d OIl rohot IJlddillg. 

,\(i 
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TIH'J'(' are sl'wral propl'rt ies t ha t cUP d('~irahl(' in t Iw allocation m('('halli~m of a 

r()hutic t("tlll and \\'hich should Iw considered "'hen dC'~igning ~uch archiU'ctures such 

as tcbk plclllning, mathematical soundness, distrilmtabili,\", decentralisation, scalahilit~·, 

fault tolerancp, HpxiiJilit\', adaptabilit~" responsin'np~s. S\\"ell'ln cuntrol. hUlllclll design of 

lllission plall~ and rule assigllllH:'llt :l)7 . <)-1 . 11-( , One abu ha~ to look at executiull mod

l'l", t ollstrctillts, optimisatiun and computational C'omplexit," ) 1{ , Adapti\'it,\' refers to 

tht' aiJilin' of the .\IRS to modify its own beha\'iour 0\"('1' time, depending on changes 

d lit' tu the d \'llalllic em·ironlllent. chcUlgcs in t ht' s~'stcm lllis~i()n or changes ill the 

s\'stPIll ('ompositioll or capabilitil>s, so that till' perfOl'lllcUlCe of the elltire S\'stelll call 

('itlll'r Ill' impwn'd ur at ll'ast not degraded, Fault tolerance i~ the ahilit~, of the .\[R 

t () deal wi t h inciI dd ual robot failures or communication failures, betweell n\'o or more 

wiJ()t ic ,H!,t'llh, t ha t mel\' ot cur n t clll~' t imC' during t he mission. .\ lR \\·hidl pn'sent 

both tilt' alh)\,(, fl'atll!,('" (all he "aid to Iw robll~t. \\'here robustn('~s i~, therefore, the 

abilin' of til(' '\rR ' to hl' hoth adaptin> and fault tolemnt :U7:, 
To facilitate robust and spee(h' deplonllent of robot teams, tl\:Hll\\'ork architectures 

HI'(' ill( n·,l."ill!!,h· u..,\,d to (1\ltomat(' the illtl'ractioll::' bl't\\'ccl1 tealll-lllelllber~, such <1 .. "" 

~yn('hn III iz ('ci task ('Xt'( 'utilln and ta.""k allocation, This aUo\\'::. the designer tu focl1s OIl 

d('\'('l()pin!!, the td:-..k \wrk. rathcr than the tealll\\"(lrk ):21 " .\Iost of the \\'ork in.\lH 'ha." 

I)('<'n dpmtpd to tilt' definition of different architcctur('~ and sewml architectures \\"erc 

d(','plolwd iwill!!, either 1) lJfhlll'/Our-ba.-.td (lrchlff('tlLrh ruling til(' interdction Iwt\\'cen 

thl' Iwh,l\'i()lll'S of indi\'id\lal robots :--12:. 2) St 1/,"( -JJod( I-Plan-Act nT'chi/( dul'( ," \\'here 

t 1)(' ,,\.,,[(.!Il d('\'('\up:-; an intel'llill lllodl'l upon \\'hidl to condul't its plauIlcr :122: or 

:3) lu/fim/ IJ 1'('/11 ,(( tU1'l," \\'hirh an' a cOlllbination of both of the abu\'e nll'thods ):2 :~ :, 

TIl\' adopt ('d (,Ollt rol ctrrh i tpet lin' for Ill<lll\' robot ,,\·~tellls, ci t her alone or \\"orking in a 

{(',\I1l is a Il\'!>rid l (llllpri"ing ddiIH'r<ni\'(' Hnd I)('h,l\'ioural COlllPOnl'Ilts "'ith thp balallce 

l)pt\\'('('11 t hi' r\\'() dl'tt'rllliIll'd 1)\' rhl' task perforllH'd ami rll(' :-;(,<l\(' anclllUl11lH'r of rohot 

..;\,,,tt'1ll:-.. ' ~ 17 , G()( HI l('(Ull (\J'chitl'(,(llral clbign al\o\\'s for a puol of robots to fmlll 

illtll (\ ,,('t of t(',\llb ,lllei a t('alll (an form into sllIHl'HlllS tlm:-.. tasks and roll's <H(' not 

()Ilk il.""iu,llt'd tn Indi\'idu<ll whuts but <llso to tpams :Cj'j ', Rohot arrilitl'(,(llr('S can be 

III'I1('l'<l1h' da~:-..ifil'd a~ l'itlll'r iwing a l'Plltraliscd <1['chitcct1ll'C' ur othl'l'\\'ise ,1 distrihllted "" . 

dl'('ltitl'( tll!'!' '!..r;- \\"IH 11 (Plltrali:--;t'd rohot..; foll()\\· a hiC'ral'chical ordf'r alld tll<' :-..\·"tl'lll 

I" Ill'~ani"t'd h~' !In\'lllu, (\ roi>oti(' ngPIlt ,H,ting <:l .. " a h'adt'r that is in c1lHl'gp 1)1' urganising 

tilt' \\'(,rk ,)f tIll' tltll<'1' I'()i>ot", III ('Plltralizt'd <lrchit('('tll),(-'. onl' ('('utral ('()Iltl'ol unit 

1I1dll;I:.!,('" \\ !l()]I' inftlrlll,lt ion ai>out t'll\'irollnlt'llt <lnd :-..ui>ortiinatt' wl>oh, c\('('(lIlIPO:--'P" 

ilIld rI .... "I~II" t <l"k..., t hrtlllu,h plan algorit Illll and optimizl' cd~oritlllll, organil.('~ rohot..., to 

( (oIlIpl(,t I' t d~b 1)\ Sl,!ltllll~ ('lllllIllaIld", TIlt' l(,,1<h'r Is ill\'()ln'd ill t 11(' dl'( 'I:-..itlnal pro(,I''';S 

f'l!' t lIt' \\'1 I! d(' tt ', Ull, \\"hill' th(, 0\ hl'l' lll<'llli>(')'s <ll t ac(,()rding \0 the din'ctiolls of til<' 

1",\11"1 Elt 'lII t'llt" 'Ill tIlt' l()\\·(,,,t-]t'H'1 art' rukd h\· ,\ 1'('''' 1'I(,l1)('nh OIl hight'r l(,\·!'! .... , 

nil' "I~.lllil..ltltl)1 awl dl"[lli>utltlll ()f ('OIllplt'x!t\· l()llb likt' a lIlilitalT P\Ti\lllid: hiu,h 
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complexity below and a low complexity on the top. This system is sometimes 81so 

referred to as having a 'vertical operational principle'. This model h1:18 disadvantages 

in flexibility. integrity. expandabilit~, and fault tolerance [9 1]. On the othPr hand , when 

distributed. the s~'stem is composed of robotic agents which arc completely autollomous 

in the decisional process with respect to each oth r; in this class of s.vstems a leader does 

not exist. Each individual operates on local information. The global goals would ei t her 

be implicit or known. The control rules may be fuzz.\" and t hc com plcxi t.\· is similar 

on all levels of ahstraction. This configuration can sOlllctimcs 1)(' a lso bc rcfcrrcd (0 as 

following the . horizontal operational principle' [:3G]. 

2. 5 .3 Team learning 

Several studies 011 team learning \vithin multi-robot teams have I)(,C11 carried out [12 1. 

125 . 12G . 127. 1:2 . 129. 130. :::i ]. Team learning llla~' bc di\'idl'd into two categories: 

homogeneous and heterogeneous team learning [c :i]. In homogellCOIlS tcam learning. all 

robots arc assigned identical behaviours. even though tllt',v I118Y not 1)(' identical (c.g. 

different construction or different processing powcr). HOlllOgCW'ous learlH'rs cll'vclop a 

single robot behaviour which is used b~' every robot on tIl(' team. On thc ot h('J' hawl. ill 

heterogenous team learning. the team is composcd of robots wit h diffcrcnt bcha\'iotll's. 

with single learner trying to improve the team as 11 whole. Heterogelleous team learners 

can develop a unique behaviour for each robot with the bulk of l'c's(';u'cl! focused on 

til(' requirement for the emergence of specialists, gen('J'Hll~' providing 1)('( ter solutiolls 

througb robot specialisation. Agents call act heterogelleously (' \ '(' Il in 1:\ homogelleous 

team learning cnvirollluent. This happcns WhCH the hOlllogencous behavioUl' sp('ci fi es 

sub behaviours that are different ba..'ied on thc robot's initial condition or its relationship 

with o( her agents. As will be seen ill Section 5.2.2 this approach was 1ISC<1 b,v havillg 

a homogeneous set of robots learning the environment with 011C robot having different 

initial conditions and set up as bcing visually impaired ncccpting input olll~' frOl11 the 

other rohots and not from the ell\'ironmcnt itself. 

Yang and G u [1 :31 ] pro\-ide a SUITe.\" 011 multi-agent rC'i 11 forccll1cut learning for 111111 t i

robot s,\·stems. As highlighted in both [131] and [L;)] scal8bility is a problclll for lnany 

learning techniques but ('speciall~' so fo r lllulti-ag('nt learniug. Yallg ,mel Gll lUl l state 

that th('J'e is a lack of theoretical grounds which Cc111 bc uscd for pro\'ing thl' ('Ollwrgel1cc 

and predicting performance. Panait and Luke [L) f) ] makc <l bold st1:1teIllcllt and say that 

onc canllot learn the ent ire joint behaviour of 8 large. heterogeneous. stl'Ollgl.\· i nter

C()lllI111lllic8ting llluiti-agent SYS(('lll. In [113] BU!1onill ('( al. discuss ill drt8il s('\'(' ral 

lll lliti-agellt reinforcelllent lcamillg techniques for [1111.\ ' coopcrativc. fnl1\' compel it iv('. 

;lW! mixed tasks. \ \ 'hen it COllles to multi-robot s(,(,ua rios . ('om pdi t i \'C' l)('hH\'iolll' would 

gCll('l'<111.\· consist in pursuit-e\'asioll or on('-on-oI1P ('olllp<'titin' gamcs ~ !J:3 ] . Bll!10l1ill ('t 
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al. [113] state that control theory can contribute' in addressing issues such as stclbil

ity of learning cl,\"llamics and robustness against uncertaint:v in observations or thC' 

ot her agents' d,vnamics. The most common altel'llC1 t ive Lo team lcarning ill coopcrat i vc 

llluiti-robot s.vstcms is concurrcnt learning. whcrc ll1ultipk ICeulling proccsses at tClllpt 

to improve parts of the team [ 5], Typically each robot has its OWl! uniquc leHming 

process to modify its behaviour. \Vhell applyiug single-robot karnillg to stHtionar)' 

environlllents. t he agent experiments wit 11 ciiffcl'('llt bchavio1ll's Ilnti I hopefully' cI isco\'

ering a globally' optimal behaviour. In clYllalllic ('Ilvirolllllcnts however. t he robot lllay 

at best try to keep up with the changes 011 the cnvirollm('llt etuel constHntl,v track the 

shifting optimal behaviour. Things are eveu more complicated ill llluiti-robot s,vstellls. 

where t he agents lllay aclaptivcly change each ot hel's' IC'Hrnillg cllvirolllllc'lltS. 

2.6 Summary 

This chapter analysed iu detail \'<UiOllS areas related to Illulti-robot V1S10 ll. The sug

gcsted lllulti-robot platform wa.''; dissectrd into six sectiolls and thc Stelte of thc' art for 

each of thcse sectiollS was presented. This chapter looked at variolls lllethods available 

in the literature which tackle problems related to human-robot collaborHtion and how 

some of the authors were inspired b:v biological systems. Variolls HrCi'lS in the robotics 

field related to llC1Yigation. path planning. mapping and explo ration were presented. 

COlllPuter visioll. with special elllphasis 011 object detection methods. depth ccllcula

tion and 3D measurements \\'el'e discussed. :\Iachine learnillg technique'S alld bow the.\' 

can be used to create robot memories were also discussed. Finally' lllethods on how all 

these different areas can be combined and extc'lldec\ onto multi-robot platforms w('[e 

presented. 

Over the cOlllitlg chapters. the aboW' lllethods are stlldied. i'ldapted cllld improved 

in order to haw' a llluiti-robot plc1.tforlll successfully operc1ting ill a heterogellous c'llvi

ronll1f'nt. whilst learning. sharing and fusing saliC'llt inforlllatioll about the el1\'iWlllll(,llt 

bet ween lllobile robots. fixed call1eras and humans. 
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"Science is nothing but developed perception, interpreted intent, common sense 

rounded out, and minutely articulated." 

George Santayana, Spanish Philosopher (1863 - 1952) 

Chapter highlights: 

This chapter discusses a method which makes robots aware of their 

dynamic environment and identify both known objects and other yet 

unknown salient objects by using a mix of top-down and bottom-up 

approaches. 

Robot Perception 

Focusing mainly on robot vision, this chapter discusses methods on how robots are 

made aware of their dynamic environment and solutions are provided for integrating 

some methods related to areas of robotics, computer vision and machine learning. In 

the coming sections, the integration of various methods described in Chapter 2 were 

implemented and improved where necessary so as to achieve robots which are capable 

of sensing and processing visual input. Some of the covered methods include the com

parison of images, the detection of areas which are of interest within the environment 

and also the capability for robots to identify specific objects. This chapter discusses 

a method which allows robots to find and identify both known objects and other yet 

unknown salient objects which might of interest. A mix of top-down and bottom

up approaches is suggested. The same methods could be used to support persons in 

an assisted living environment to identify objects and receive information about the 

object. Part of the task was therefore to design tags containing patterns which are 

both salient to humans and robots [22J. These tags, further described in Section 3.2.1, 

consist of a set of five coloured circles on a black rectangular background. A study 

was carried out to identify what people identify as salient within an image with the 

aim to replicate that onto our robots using efficient methods capable of operating in 

real-time. Section 3.1 looks at perception, visual attention and saliency and how these 

can be applied to robots using a bottom-up approach. Section 3.2 focuses on top-down 

and analysis on visual tag detection performance is carried out. 
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3.1 Perception, visual attention and saliency 

Perception is the ability to sec, hear, or bccollle aware of SOlllet hillg through the s('ns('s. 

The lllllllan visual s~'stelll is extremely efficient at dealing ,vitti vast Clll10unts of infor

mation. Humans can voluntarily focus their visual attentioll 011 a specific 10(,Ht iOll. or 

be involuntarily attracted b,Y" things of visual interest. The saliellC'.v of an itelll is till' 

state or quality by which it stands out rC'lHtivc to its lleighbours. Visllal C1ttCllt ion has 

been studied in great depth. b.\' \'ision scientists awl ph.ysiciclllS. alld 11101'(' recclltl.\-' b~' 

computer \'ision and robotics researchers [1 :3:2 . l:n . U I. \:3.rJ . U(i]. 

In the domain of computer vision. efforts have beell made to model the ll1cclwnislll 

of human at tention. especially the bOttOlll-li p at tellt ionalmechallislll. uch a process is 

also called visual saliency detection. Saliellcy is used for object / p('rson segment Ht ion. 

object / person recognition and compressioll of visual data [137] and for imagc rd rieval 

[13 ]. Chang et al. [139] also suggest the usC:' of gist by capturing holi stic characteristics 

and layout of a '('ene together with saliency to be appli('d for robot vision. 

A pilot study to identify points of general interest identified by humans 011 images 

using an eye-tracker was carried out. This was don(' ill collaboratio ll with ot her re

searchers l forming part of the Robot Vision Team (RoViT) at Killgston l.: uive[sit.\-'. A 

saliency model. further described in Section 3.1.1 w(t .. 'l abo dc\'clopcd [2 1] to cll1ulate 

the human visual interest on a robot. This model combines both the bottom-up visual 

attention approach and the top-down task-oriented a pproach. bot b important for the 

robot application described earlier in Section 1.2,1. 

Thirteen subjects between the ages of 20 and -:15 participated ill this pilot stl lc1~ '. It 

was assllmed that all visual functions were sound for all subj ects, A set of 250 images 

was generated . This consisted of a mix of images taken from the internet and others 

taken from the robot camera. These images, which were ('xpected to contain items 

which humans would consider as salient. were then displayed 011 a computer screen. 

Each subject was asked to look at each image for five scconds with a onE' sccond break 

bet\\'een each image. The subjects were also instructed not to look at anytbing specific. 

After fifty images a blank black screen was clispla~'('(l for nve seconds. This rt'sltltCc\ in 

a database of 250 heat map images highlighting the gt' ll era l regions of visual interest of 

our SlI bjects. Figure 3.1 (left) shows the original viC'ws from a rohot ca 1llC'ra \\'orking ill 

a mock environlllent with placed tags [22] (Section 3,2,1 ) <:-111(1 pic( 11l'(,S o[ [act's [ llO]. A 

tRg <mel a face can he seen on the right hane! side of Figure 3.1 (top-left). The IHullHn 

fixation points captured llsing an eye-tracker a re iudiC(1(ed in Figure 3.1 (right ) where 

til(' red blobs represent the points of gene ral interest of all thirtecll people C(llT~'illg ont 

the lest. The \\'hite regions vvithin the reel blobs indicntC' the strongest fixation points. 

Looking at Figure 3.1 (right), 011e C1:111110t(' that H hUllIan subject c\utolllaticall.y looks at 

I Dr .\laria Valera Espina and .Jallle~ Cope 
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hoth tags and facE's and also at any other promincnt charactcrist it of the environlllcnt, 

all ha\'ing strong fixation points on them. 

Visually impaired persons might find it hard to quickly icientif.v specific objects, 

depending on their impairment. In compll tel' vision, a wel1- t railled oh jed detector 

can perform such tasks reliably and in feal-tilll(' and CHn be 11sed to help persons 

needing assistance. The object detector however will only work for known objects Hlld. 

\vithout llser intervention. it is unable to lcam allY new inLerestillg objects withill its 

environment. 

Figure 3.1: (left) Original View froIll robot camera, (right) Fixation points 

Two different t.\;pes of attention processing call be evoked when looking for objects 

of interest. If the search is voluntary and know ledge and goal orient cd (i.e. speci ncall\ 

looking for something stich as a face or specific object) then it will he H top-clown 

lllechanism. In this case the guiding mcchanislll is gCllcrall~' m('mon'-dependent Hlld 

11ses anticipatory mechanisms to look ahead on v:here to look. This is the case with 

tracking ll1o\'ing objects. On the other hand if thC' at tplltioll is illH)lulltary Hlld t riggeJ'{'d 

onl.\' b.v seusitivit.\, to salient stimuli then it is said to 1)(' a bottolll-liP approach. III this 

case t he hot tOlll-ll p approach is con::>idcrcd to be III PIIlO 1'.\ ' - freC' clll<l rcnd j \'(' [1 It. I l:2]. 
A !lumbcr of saliellcy lllodels have bcen proposed ill t l1e litera! IIrC [I :t2 . 1 :r,o 1/:3. 
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1-1-1 . 1-15 . 14c6 . 1-17. 11 ]. Thc bottom-up approach is the most common approach to 

salienc~' lllap creatioll however a hybrid method combining bottom-up anel top-clown 

has been proposed by [1·1:3 . 1-16 . 147. 1-19]. Salicllc.V maps have beeIl llsed ill rapid scellC 

anal:v'sis [1-1 ]. video surwillance [150] and compression for data transmission [119]. The 

fcatures often used to extract salicllc:v' are based on gradicnt. orientntion and colullr 

information [132. 151. 11 . 1-16. I-t7 . 143. IS2. 111 . ISO]. Frequency domain allal.vsis 

[11.5] and wavelets [152. 150] were investigated as a Illcans to extract l he feal mes 

needed to obtain the salicncy maps. Sll elml Takcdl1'1shi [ I;}:~ ] introduccd the concepl of 

an importance lllap which is a scalar value image t hat topographicall~' 1'('I)I'('S(,lIts the 

pcrceptual importance of a visual scene. Sa1icnc.y maps were applied in image regioll 

segmentation, object detection and robot vision silllulation [1.1:3]. Lill ct al. [1!j 1] 
introduce a new computational visual-attcntion model for static and d:v'naltlic sali('lIc~' 

maps and improve owr Itti's model of \'isllal attention [1:32]. Liu t't al. sllggest t be 

Llse of the earth 1ll0\'cr's distance (E:-ID) to llleasure the centre-surround differCllC(' in 

the receptive field instead of using the difference of Gaussians (DoG) filt('\' adopted b~' 

ltti's 11lodel tl :32]. The~' also consider a nonlinear operation for cOlllbillillg features into 

a set of super JeatLL"f~ fullowed by a winncr-takc-all CWTA) 1ll{'chanislt1. Lin C't al. also 

construct dynamic saliency maps from an input video b:v' extellding the cOlllputatioll 

of the center-surround difference over the spatio- telll pOl'<11 rc('c'pl i \'(, h('ld (STR F). 

L' P lIut il prcsent. most of t he salienc~' algori thms are timc consllming and COlllpU

tationall.\' intensive. therefore ullsuitable for rcal tillle operation 011 a robot, Su and 

Takahashi [15:3] state that the low-resolutioll output and }lC'H\'Y cOll1putatiollal COlll

plexity of the saliency map still rcmain as crucial limitations for a wider utilizatioll of 

the salicncy map. Butko et al. [155] provide a real-time solution for visual salic'llc.v 

b.Y' proposing a fast approximation to a Bayesian lllodd by using C1 Differcucc of box 

filtcrs (DoB ) ovcr the image intcllsity channel. They elllpiricall~' evalllatc' the saliell(,~' 

mode I in t hc domain of controllillg saccades of a ca 111ew in soci<11 robot ics si llw t ions 

by orienting a camera as quickly as possible towards hUtllall faccs. Chang et al. [1:m] 
prescnt a \'ision basc'd navigation and localisa tion system [or robots based on gist <-1llel 

saliency. 

All the aboH" Ulentioned methods try to emulate thc' visual attention of humans. 

Typically these methods are evaluated on how \\:e11 the.\' predict the actual specific 

locatiolls that Immans haw fixated in e~'e-tra('king expni1l1ellts wher(' Illlllwns arc' 

()] d.\' inst mcted to look at SOlllC imagc' wi t h no SI)('cific t argC't [1.-);)]. Eye t rC1ckillg is 

t he process of Illeas lll'ing the poillt of gaze (fixation) alld 1l1otioll of all {'.H' (saccade 

and smooth pursuit) relat iw to the head and is dOll(' llsillg ('.H' trackers. There arc a 

IlI11nber of methods for ll1easlll'illg cye 1ll0H'lllellt. The 1I10st pop1l1ar variant liSPS \'ideo 

images from \\'hich the r~'(' position is extracted. As st ated ill [1 !)(i] apart frolll eye 

lll(}\'ClllC'llts thr re arc other important aspects of attentioll which l1e('d to 1)(' cOllsid('J'('d 
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when carrying out model evaluation. Some other metrics might includc the accuracy in 

correctl:v reporting a change in an image or predicting what att<:'lltiOll grabbing items 

one will remember. Borji and Itti [1.56] rcview, frolll a conceptual perspect iV(', t he basic 

concepts of attention implemented ill nearly 65 lllodels. prcscnting thcir tcL'.;:QllOIllV 

providing a critical comparison of approachcs. their capHbilitics Hnd shortcomings. 

SPATIAL 
MULTISCALE 

OBJECT 
RECOGNITION 

DETECTION 
OF 

RELEVANT 
INFORMATION 

LEARNING 
ENVIROMENT 

Figure 3.2: Robot Perception ).[ocicl 

A llUX of top-dO\vn and bottolll-up approaches wcrc cOllsid('red. Bottom-lip Hp

proaclics were 11S('<1 for the initial identification of sc-1licllt area.s in the region. l'llsuper

vised machine learning and object detcction. which arc able> to opcrate ill n'HI-tillle. 

were used for the rcst. For thc bottom-up approach, the computMiollalmoc\cl of visual 

at tention called saliency maps formulated by It ti ct al. [1:3:2] w herc the ccut re-surround 

mechanism is used to extract low-level features such as colour. int('nsit~·. aJl(1 oricnta

tiOl) that are different from surrounding l:UCa." was studicd. For top-clO\vn. n wa~' of 

combining lllachinc learning with salient'." ill a wa." that the robot learns the tllore 

probable areas where interesting objects arc likel.\' to OC'Cllr within a SCCI1C, ,vas trstcci. 

Thesc learnt areas would event ually becoming a visual lllClllor~' (fnrt her 0 iSCllSSCc\ in 

Chapter -I ). For other known objects. such as faces and tags boostro cla,ssificl's WCI'C 

uscd. Thesc are further descrihed in Section 2.2.1 . Figurc 3.2 illllstrntct-l tile robot 

perception model used on thc proposed ple:1tforlll. This model tc-1C'kles thc followillg 

lillli t <1 t ions: 

• clllplo~'cd robots havc limited storagc space and processillg power: 

• although the OIl-board pattrrIl detector ,\-'orks ill rCHI- tillle'. it ,\'ill onlv Sllcc('ssfllll~' 

detect thc objects for which it bas bcc11 traim'd. (11IOrCoH'r. trailling is timc 

c011slIming l:lIld needs a \'C1'\' large t rai !ling sct of labell('d da t H): 
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• saliency algorithms Cilll identify unkllown regions of intere'st wi t hill a sCe'Ile'. how

ever they are computationally intensive and unsuitable' for real-( ime' operation 

[15;3]. 

This allows to take advantage of the real-time' ci:1pabilit.v of pMtern de'tec( ion, the' 

ability to detect new salient areas alld the abilit~, to lllcllloris(' S(,Clll'S diicientl.v in 

order to haw a robot capable of autonomollsly ide'ntif\,itlg kllOWl} objccts whilst n]so 

learning new ellvirollments. Although not limi tcd. it is HSSlllll('d that, Oll(,C dcplo.\'('d. 

t he robot will operate in t he' same envi ronment for most of its Ii fe'l ime; t he' longer the 

robot remains in the area the more refined its memory will become [2 ; ~ ] . As the' robot 

explores an area. looking for objects for which it has already beell trained. thc illj)ut 

\'ideo stream is temporarily recorded into a buffer. As soon as the robot ])(,COlll('S idle. 

the robot begins processing the captured video as a background task, looking for salient 

regions. If the portions of the video contain suffie-ielltlv salicl1t illfol'lllatioll (whell 

compared to what humans would generally filld as being of illterest) the kc'~'frames 

will then be stored onto visual memory. This ellsures that onl,\' regiolls of interest arc 

stored. Saliency maps im plelllent the ext raction of low-level feat m es sucll a~ colour. 

illtcnsi ty. and orientation t hat are differell t from their surrolllldi ng areas [1 ; ~:2 ] . The 

implemelltation is described in the coming sections. 

3.1.1 Saliency model 

Saliency was calculated for a set of uniforlllly spaced :25 x :25 windows wi t hi 11 t hc image 

based Oll ('olour, entropy and orientations present within cach window. Eutrop.\' filte'rs 

are used to statistically llleasure t he level of randolllness and to detect H re<\.s \\'i t h high 

rates of change. Furthermore Gabor filters arc ('mplo~'cd to detect edge orielltCltion Hnd 

the H CL (hue. chrolllH. lightlless) colour space was \lsed for ext re)et ion of cololll' (,Oll( ell t 

[24 ]. The saliellc~' for each window is calculated from (he silllilarities of' these fee)( mcs to 

those for the other ",indo\\'s within the image. This is done at th rce different scaks Cllld 

then combilled to achieve the final saliency. The eye-tracker pilot tcst indicates that 

humans tend to give more attention to the celltral region of the illlage ratll('l' (IWll the 

lateral sides. To replicate t his. a Gaussian weighting wa.s thus Ilsed OWl' the 011 tCOlllC. 

gi ving a lower weight to salient points which arc fmt her aWi:l.v from (II(' image ('ellt re. A 

threshold was also \lsed. This threshold wa..-; set based Oil ('XIWrilllcntal (,\'idcll(,('. whcl1 

cOlllpared to e~'e tracker ground truth dHtn. If the resulting salicnt point is less than 

the threshold (low se"liency). the pixel value is set to O. oth('l'wist' its \'aluc is }'('taiJled. 

Fig. :3 .:3 shows the results of the algorithlll. The left image' ('ontains th(' sali('ll('.\· obtained 

from the algorithllls Oil the imagcs provided ill Fig. 3.1. It lllUSt ])(' noted that the face.' 

and tag haw ' trang fixation points on thelll but also there is also fixatioll happcning 

in the central rrgioll. Thi~ is captmec\ llsing the C(,l1t1'(, regioll Gc\llSSiall filter. If the 



CH,\PTER J. ROBOT PERCEPTION 3.1. PERCEPTION. VTS(TAL ATTESTION AS!) SAL/ESC)' 

ratio value (salienc~' in centre/ overall saliellce) is low. as ill Fig, 3.3 top right. then 

the framc is not fed into visual lllelllory. If Oll the other hand thc value is high . as 

in Fig.3.3 bottom right . the frame is fcd into thc visual lllCIll 0 r:v. O\l("C proc('ssing is 

completed. the recorded video stream can be discarcied and a Hew video sc'qU('Il(,C is 

recorded for further training. The resulting visual llH.' III 0 1'.\' is <wailable fo r fut 111'(' usc 

for em'irollment matching and recognition or possibly for sharing betweell other rohots 

as descri bed in [2.5]. 

Figure 3.:3: (left) aliency outcome, (middle) Threshold pixels, (right) lTlltrc fixation 

In the coming sections. the filters used to identit\ saliellc~' arcas within a franl(' and 

for object / tag identification as mentioned above 811d illustrclted ill Figure ;3,:2 will 1)(' 

described in more detail. 

Entropy filt er 

In order to highlight image al"('as with high rates of change. an eutrop" filter n." cIescrihed 

ill Appendix ection B.2 was used. A llleasur<,' of the gr('~'scal(' \'arintioll is proclucC'd. 

A histogram is calculated for the gre~'s('alc values of the pixels within an iUJag(' pHtch. 

using eight equal-siz('c! bins [2 1]. A nlC'asure of entropy for the p<1tch is thell calculated 

using Equation 3.1 where p(.1J is the fract ion of the' pixclH whose' grc'\'scalc' values pinel' 

them in bin i. 

~ 

JJI') = - L p(.rJ log p(.J'/) (:3 .1) 
1=0 

A r('as wi th high gt'('~'s('alc variallC(, (all ('\'('11 d iHt ri btl tiOlI of g r ('.\ 'S(,H Ie' \'ariallcC') will 

produce a high entropy \'alue. \\'hilHt a uniform areH will .\' i('ld tIl(' lllillillllllll \'a lm', 

The ent rop\' image is t hell normalized usmg Equntioll ;3.2 . To II ighl ight big dl<111ges 

-16 
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and climinate slllall changes. different normalization factors WOl'(' usocl HS showll ill 

Equation 3.2 where D is a decay rate and N is tho llum\)or of pixels withill H patch. 

( ;3.2) 

Figurc 3.-1: (left) Original Image, (center) Entropy Filter outcoll1e whcll passed OWl' 

grayscalo image. (right ) :\'ormalised entrop.v image 

The larger is the D exponent factor. the faster valucs close to 0 will decCly WII(,11 

compHred to those closc to 1. E.g. 0.2" = 0.00032 wlic'rens O. ~) - O.32 /(j8. This fastcr 

deca~' can 1)(' seen in Figure 3. ~1 whore D was set to 10. 

Colour (I) - Probability of density colour filters 

Intuitivel,v. regions with oloUl's which stand out ,,1.1'(' IllOrc' likely to be salien t . A colour 

seglllentation techniqlle ba..'.;ed on assigning weighs to pixels in the scene (sec bottOlll~ kft 

of Figure 3.5 ) with values which arc invcrsC'ly proportionHI to the (\c'llsit.y of tile specific 

colour detected in relation to the whole image. Initialh', tile illl<1gC is segllH'utcd illto 

6 main colours: red. ,,·ellow. grcen. cyan. blue. magenta. and black Hnd v"hite resulting 

in a total of segmcnted regions (see top~right of Figure 3.5 ). 

Colour :-;cgmentation llSCS the method of colour centroid segmentatioll (CSS). sllgge:-;tec! 

bv Zhang et al. [2]. This lllothod transforllls th(' 3D colour SP<1C(, to 2D coordinate' 

s~'stelll by using the colour triangle showll in Figure ;3.6 (ldt)(b). To (Teate t l1e colour 

triangle. a standard 2D Cartesian coordinate system is llsed to describe recL grcc' ll and 

blue \'rd ll es and thcn transform it to polar coordinate S~'stclll as shown ill Equations ;3 .3 . 

R: /' ( ~ ) - l' yR R, (.pR = 90°. U :s I'/? :s 255) 

G: I'(yc) = J'c· (-;(; = :210°.0 :S J'(;:S 255) (3.3) 

B: 1'(-;8) = J'H· (-;H - 330". () :s 1'/1 :s 25G) 

..J7 
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Figure 3.·5: (top-left) Original Image. (top- right) CoIOur-SC'glllClltcd IlllH)!;C. (hOt\Olll

kft) Colour density weighting. (hottom-right) Colour histogrclll1 

J----~ B 

(a) RGB color cub«' 

~-~! 
~TB 

(b) RGB color trUngle 
a.. 

' -" A 
~.:, .. aiiiiiiIL'~ ' .. .... -

Figure 3.6: Colour seglllcntation - [:2] 

The colour triangle is created by: 

1. create a standard 2D polar coordinate system 

' . 

2. crcate' thre colour wctors to reflect red. grc('n and blue colours: cwr~" vcc(or's 

value rangc is O. 25.5 \vith H 1200 phase. 

:3. gelll'rate the colour triangle by joilling the three ;-1pic('s . 

ince the R. G. B vectors direction is fixed and the \"alll C's V(U'~' 1'1'0111 0 to 255. 

different colour triangIrs arc cr('i:lted for clifi'erent R. G. B V<1I 1I('S. This illlplies that 

(,Heh triangle \"ill hHW' n uniquc cC'lltroid (with the C'xccptioll of HII V1:lll1(,s being ('qllal. 

wi t h t he cent wid being zero). The ccnt raids from cach colour t ric1llgl(' are d ist ri htt t cd 

<llong H hexagonal region aB shown ill Figure 3.G (right). This h('xagoll is d ividt'd illto 
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7 regions: R (Red). G (Grccn). B (Blue), C (Cyall), :-'1 (~lagellta). Y (Ydlow) (llld L 

(Luminance. achromatic) regions. The colour iuformatioll is directly proportional to 

the centroid distance from the origin. Taking (n, G. B) - (255. O. 0) as all exalllple 

would generate a centroid at the peak of the hexagon sho'vvll ill Fig1l\'C' ;3.G . \\ 'hell 

the R, G and B values an' ver:v silllilar to each other. indcpelld('ll( of tIl(' valtlC'. the 

cC'ntroid will be ver~' close to ZNO. This ll1eans that the nCB \'nl\l('s jllst IH'O\'ide the 

luminance lew 1 (gre~'scale) with very millimal colour illforlllcllioll. The thn'shole! for 

the luminance region is defined b~': 

The other six colour thresholds arc defined c1.S follows: 

jJ Rrgioll : ('-PH:::; '-P :::; <.(J/l/), 1'/11 > 1' L 

RRc.giOl1 : (YM :::; y :::; '-PH) ' I'/( > 1'1, 

) ' Region: (<Pn:::;-.p:::;-p ) ). 1') > " L 

GR( gi01l : ( ~) ' < ,,< ~C) 'r' - 'r' - 'r' ' ' I'c; > "L 

C Region: (-pc :::; '-P :::; -pel "c > "L 

BRrgiol1 : (-.pc :::; -.p :::; ;J IJ ) . I'/J > I'L 

The initial thresholds for the above are s(>t to 5, GO°. 120", 180(). 210" . 30(Y' nnd 3(jO° 1'('

spccti\·ely. These values however Illight ueed to bC' fiue tUllCe! to rcfiect bet tn thc colour 

segmenta tion. )'loreover , this algorithm / filter doc's not cl ist iugllish betwcen v./ hi tt' and 

black as all grey scale values arc considered as not Iwving any colour information. 

Therefore a simple thresholding on the greysC'CI \(, illlHge is carried out H.lld thc white is 

reintegrated within the segmeIlted colom illlage. Following this. H llistogrHlll is ('I'C'<1ted 

to estilllatc the density of each colour \vitbin the illlage (sc(' hottolll-right or Figlll'(, ;{..':i ). 

A new gra~'scalc image is created whcr(' each colour patch is s('( to a \';-due' ill\'('rsd~' 

proportiollal to the dcnsi t.\· of t he colour. TIl(' mor(' frequellt t hc colour in t h(' illli-1.ge. 

the lower ,'alnC' its weight woulrl he (hottom-Ieft of Figurr 3.S ), This is cOlllpllted lIsillg 

Equation :3 ... 1-. \\'I1('1'e n'(' is the normalized weight fur (Iw res pective colour Clud D is the 

decay mte. 

(3.-1) 

This lllethod was fouud to \\'ork pa1'ticull:lri.\' well for tag i<iC'utificHt ion which is ['mthel' 

described in ScctiOll ;3.2.1 . 
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Colour{II) - Hue, chroma and lightness colour filters 

For each 2.5 x 25 image patch. the average RGB valuC' is calculated frOll! all the pixels 

'within the patch. This is then converted into a point wit hill thc Ilel} (1-111 ('. Chroma. 

Lightness) colour space [2-1] represented by Equation 3.G. In SOIllC colour models. sllch 

as HSV and HSL. colours that are peI'ccptibl.,· simihn (sllch a~ those with low V(1111(' in 

HSV model) llla~' !lot be part icularl:v close within the 1I10d(' l. The di Jll('nsiOllS i Jl sllch 

model spaces lllap poorly to perceptual properties and ('llC'OllrClg(' the llSC or II ighl~' 

saturated colours [157]. l-IeL is a pcrceptuHll.v-baseci colour lllodel that lllitignl<'s these 

problems. 

(3.5 ) 

Orientat ion 

Orientat ion can also be import ant in sal i C'llc~' detection. To prod lice a dcscri pt o r for 

the orientation within a window. the image is nrst convolved with a set of four Gabor 

filters. with orientations of () = D.~ . ~. :l~ ~L I]. descrihed h~' EqllHtioll 3.G . 

. 1"'2 + ,,? 1/2 2rr.r' 
GO(l·. V) = exp( - .).) ('os(- + v) 

2(;- A 
(3.6) 

\Vhere: 

• J.t = .1' cos () + .lJ Sill () 

• V' = V cos () + .r sin () 

• "/ is the filter aspect ratio. 

• (J is the standard deviation of the Gc\l\ssiim. 

• A is the wavelcngth of the siuusoid. 

• l' is t he phase offset. 

For each orif'ntatioll . the average absolute' response for the nIter at H11 the pixels within 

the winclO\\' j is calculated a.'> .9o(j). c1e'scrib('cl h.v Eqllatioll :3.7 . 

Ii)) = (goU)· 9f (j). 9~ (j) .. (}:I~ (j) ) (:3.7) 

2http ://www.hllf>\·a]u(.chronm.com/ O ) l.php 

.iO 
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Filter combination 

A measure of salience is first calculated for each of the above featmC's. The s<1lietlce of (\ 

window depends not on the value of thl' feature for tile willdow. but 011 the comparisoll 

of that value to other windows within the illlage [:2.1]. The dift'en'llC('S l)('(we('ll two 

winclows. /L't. u'J' for each of the features is calculated <1S follows: 

dc(i.j) 

dg ( i. j) 

lidi) - flU)1 
Ilfo9(i) -lqU)11 

(C; Sill HI - C, Sill H.J 2+ 
(c, cos HI - C, cos fJ.J)2+ (3.8) 

The value of I ill the calculation of dr (i.j) in Equatiou 3. ) is llsed (U coIltrol the eH'ed of 

lightness. where lightnC'ss is dC'filled as the perceiv(,d brightuess of all object compared 

to that of C1 perfect white object ranging fWIll from dark (01){ ) to fllll,Y illulIliIlHted 

(lOO'lcr3. In our experiments a value of' = -! is used. based OIl experimental ('\'iekllce. 

reducing the influence of the lightness. relative to the lllle and chroma. For CHCI1 

\VillelOW. the similarity to each of the other windows in the illlHge is calculated. The k 

most similar windows arc thell selected as set /\-. This is dOllC' . ]wcausc' for c111\- willclow, 

be it salient or not. a large portion of the other windows will still he quit (' diH'('rcllt 

from it. t hercforc considering only the I.: most simila r wi lldows should be su ffici(,ll t for 

determining the salicnt regions, whilst considering all the windows wOllld dilute' the 

result. A value of k = lL/ lO was used. where ll' is the total llulllber of windows. 

It is also important to consider the distance. \vitbill the illHlge, betw('en two win

dows. If <l similar window is dosc to thc object window, t bCIl it is Iikcl.\- to be part of 

the same salient object. However, if a very silllilar window is physicall,\- fm from tho 

objcct wineio\\', this likely indicates that the object willdow is not part of a salicnt n'

giOll. \ \ -hen calculating the saliencc. the diffcrence measurc's (d('(i. j) . . , .) is lllultiplied 

by' a sigmoid function of the Euclidean distance bet weell t he two windows as shown in 

Equation 3.9 . ,r 1.J is the Euclideall distance between windows i H lld .i: n is tile fll net ion 

gail! and 3 is a shift ill the .r-cL-xis . 

n 
s (.r I)) -:: 1 + ( j ) . 1 + C I .1" ) 

(3.9 ) 

.llIttp: / wW\\·.llllc m!ucchroIllH,COJU 081.php 
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The final saliency. for a particular scale. for window i. S(i) . is thell calculated as pre

sented in Equation 3.10 . 

c(i) = L Rc(i. j) 
jEi', 

(3. 10) 

Based on experimental ('vidence. the weights IIs('d to control thc inHtH'll(,(' of e(lch 

feat urc were set to tL'c = 1.6. U'c = 1.2 and /l'g - 1.0. 

Figure 3. T shows the integrated saliency lllap approach. The \)ottOIll-tlP (lppro<lch 

is carried out b~' applying three filters and the top-down approach is illlplc'lllellted by 

adding a face detection module to the system. It can be llot('d that if <1 f(1('(1 is detected, 

a lllask (i.e. biuar~' imagc) is created arollnd the ['egioll of the detccted facc . This lllask 

is theu combine with the rest of the filters. 

~ 
Entropy 

Filter 

• 
Colour 
Filter 

• 
Gabor 
Filter 

Figure 3.7: Bottom-up and top-dowll saliellc,\' llla]) computatioll 

M ult iscale 

This process is performed 011 a lllltltiscale pyramid ('onsist illg or t he full iUl<1ge, half 

alld C111arter scales. resizing the image each timc, but r('(aillillg (111 ot]]('1' parallH'tel' 

\'o lues [:21] . The positions of the' ",illdo'vv (,ClltH'S ,liT adjusted so that the,\' rder to the 
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same point within the image. For each window. the final, multi-scalC' sali(,llC'~' is t;:lkell 

as being the llleall of the saliellc.v fo r the three scalC's. Figurc 3. i llllst ratcs t 11(' fi llal 

salieIlcy lllap as a result of a StUll of the saliellcy lllap at differcut scales. 

100% 

Saliency map 
computation 

50% 

Saliency map 
computation 

25% 

Saliency map 
computation 

Figure 3. ): :"Iulti-scalC' sali('llC'~' ('olllplItation 

3.2 Pattern detection 

: :- -
~ . 

, 
-- "--

Face I O~++~'·n l 

Detection 

Section 3.1 indicated that the systelll architecture proposed makes lIS(' of both bot t0111-

up and top-down approaches for saliency detect iOIl. Thc bot tOlll-lIP (\ ppro(lch WHS 

prcscnted in Section 3.1.1. The top-dowIl approach. which was iutegrnted ill the S.YstClll 

architecture mentioned earlier. will be prcsented n('xt. III SC'ctioll ;L2.] (\ method 

developed to locate and retrieve infol'lnat ion about objects ill a hOUle is d('scri beel. 

This lllet hod was originally developed as a 'LcllldaloI1c device to assist perS011S Sll ffering 

from melllory and other cognitiw impairments (sllch as delllentia. Alzheilller's disease. 

etc.) to help them locate allCl retrieve information about objects in a hOIl1(,'. This 

method however can also be applied for object detect ion alld locali/'atiotl ['or a 1llohilc 

rohot ::i opnating ill all ambient assisted living ellvirollment. This lllct hod lIses tIl(' 

sallle princi pIe as t 11(' face detector and can also be Llsed wi thin 0\11' t op-do\\'Jl C1 pproach 

[or salien('~' detectioll. These tags will be described next. 

I htl p: 1 1\\'\\'\V.~·()\ltuhe.C'om /watC'h ·) \·=O\I-J·w h: \. D:jE 
~ http ://\\'ww .you t u be.C'oml watch '!\. - t Afu k-JqL\IE 
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3.2.1 Smart-home tags 

This section looks at systems that employ labdling technolog~' to identif,v objects and 

also provide our own illlplemclltatioll. III [15K, 1 S9] rat her t hall addiug Cl Hew t ng. 

the existing characteristics of the object to be identified .. He IN'd . .'.Ierler C't HI. [I S, '] 

look into the challenge of recognizing food itellls such a .. "> i:l call of SOILP in a visually 

cluttered cnvironment. They dc 'cribe a vision-ba . ..,rd objrct rccognitioll systelll to rcc

ognize f!;roceries in a groccry store using training i lllClge dat a capt ured under laburn t orv 

conditions. ~arasil1lhal1 et a1. in [1 59] simplify the problelll by n'ading harcodes foulld 

on most grocery items. The s~'stelll, an aid for visually illlpaired shoPlwrs, is bns('d 

011 a smartphonc. The types of labels catered for arc CPC bar codes and RFID as 

found on items of clothing. The reading is at dose' range, ill t be range of I tl ill i met res, 

and the llser must be guided towards the items. The two SVStCIHS dcscri\)ed a\)ove rei .\' 

on reading t he label and ret ricving the iuforlllat ion prO\'idc<! b.\ ' the lllHllIlfi-'cI mers of 

t he labeled product. The systems descri bed llCxt cio not usc' the lllet! III fad II rcr "·,Iwl 

but rather a proprietary labeling and information content SystClll. There arc a tlulllbel' 

of RFID-based localization and newigatioll s,vstellls fOlltld in thc litcratme. SonH' are 

considerecl here. Hallberg et al. [lGO] localize household object which Iw\'(' beell HFID 

tagged to assist persons suffering from detllelltin; the localizatioll algorithllls ('lllplo.v 

Rrceivcd Signal Strength Illte1l8ity (RSSI) on the reader. I\:ulYllkill et (\\. [Uil . 1(;:2 ] 

also employ RFID taf!;s for an illdoor assisted navigation 8~'stCIll: the RFID tags me 

dispersed in tlw ellvirollllH'nt and the rcader lOCH ted 011 a lllobi Ie objcct ielent i riCH t iOIl 

and retrieval ill a smart home robot plat form. ~ loving <lWHV from R FID t('('hnolog~·. 

localization 8ystellls that use a 2D visual pattern arc considcrrel. Lnbdling tedlllology 

and label reading techllology has evolvcd frolll the simple onc-dimcllsiolla] bar ('Ode 

read (scallned) b~' an opt ical decoder to two dilllensionH] lllat riccs kllowll as H dn t a 

lllHtrix. The technolog:v employs a machiuc-H'cHlahlc dHtn code tlwt is printecl onto n 

tag which is attacheo to an objcct. Therc' arc a lllllll\)cr of proprietary <llld OPCll-SOlllT(' 

systell1s available: differing in the representatioll HI1c1 (,llcoding of the data which ill 

turn determines the method llseci to reael the code. Thc ~Iicrosort Tag is 1ll('lltiollrd 

hrrc as it uses colour to iU(Tea.se data capacity. The High Ca.pacity Colour Barcocle 

(HCCB) IlSCS clllstel's of colourcd triangles. The data de])sit .\' is illc'['cas('d h~' Ilsillg 

a palette of -! or colours for the triangle8. III a ~Iicrosoft THg. the HCCB contains 

a hyperlillk. which when read. sends the HCCB data to a \Iicrosoft s('rvel'. wllich ill 

tum returns the publishers intender! eTIL. The Tag reader directs the llsers lllobile 

browser to the appropriate website. All assistiw dcvic(' elllploying Illachim' \'isioll. \\'a~ 

describC'd b~' Coughlan et al. [lli3 . lG.l]. The focus is lli:lvigat ion for t Ill' \ ' iSllall~' im

paired: employing a mobile phOll(' CCllllCl'C1 to drtcct the ('olollr targ<'ls situated ill the 

('I1\'irOlllllellt. The use of colollrl'd targets with specific pnttnns allows t he target to hc 
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detE'cted at a distance and in seconds. Another COIlllllon tag which is becollling very 

popular is the QR Code. The HCCB alld QR code arc llsed ns shortcuts to lllobile 

webpages. Figure 3.9 and Figure 3.10 show the HCCB and QR Co(\e respcctivd.v, both 

pointing to the author's PhD blog \vebsiteo. 

Figure 3.9: :"1icrosoft Tag - HCCB Figure 3.10: QR -Cock 

lthough these tags arc becollling quite popular to llse 011 smart phollcs. Ht the 

time of testing it was [ounel out that these tags were not pHrticlllarl\' suit able ('or all 

ambient assisted livillg application. Due to the relative cOlllpkxit~, of the illlHge aud 

therefore the software llsed to dcci pber t hem, at her altcl'llat ives had to 1)(' fouud. It 

was noted that for such tags to be useful. tile captured illlage would Ileed to haw the 

tag in the centre of t h(' capt nrecl image. Also. the t Hg need to take most of the i Il1Hge 

area. :"1oreove1'. the camcra needs to be rclativ('\.\-' stable. Duc to this tags to lll('Ct t IlC' 

specific application needs had to be designed H."i will be discussed next. 

The proposed tag relies on computer vision techniques to 10(,Hte a tag 011 all object 

when it is within the field of vie'w of the ckviee'. The VioIH-.JollC's object detector 

(described in Section AA.l ) is uSe'd ill order to detC'ct tags. Cololll' segment at iOIl 

techniqucs (describcd in Section 3.1.1 ) were thell applied to idclltify the c\ctrcted tags. 

The tag is conceptually similar to 2-dilllellsional 1<1 bcls tbM Ilotel i tCll! or prod lid 

information such as the QR -code or the' \Iicrosoft tag lll('llt iOlled abo\'('. Howevcr 

there arc t\VO main differellc('s: the detection range and rohllstllCSS to tremor/ jitter. 

The tag is a 2D colour printed pattern with H detection range' <:-mel <l field of view 

such that the 11ser nl1:1~' point from a e1istance of well over Olle llletre with a (,(lIm'rel 

resol ution as low as 320 x 2-10. wi t h dist ance inC'l'easi lIg wi t h higher camera ['('soil! ( iOll. 

The target users are elderly perSOllS, particularl.\· those with !l1elllor~' ;-mel / or ph\'sical 

impairment. Robustlless will ensurc tremor or effects of an ullstr(1(I.v h<1nd me r(,lllO\·('c1. 

To satisfy thcse requirelllents. the range and the field of view (FOY) are such that tbe 

11ser (or robot ) ma.v point from a elist Hllce of over one' lllel re. The tag \\' i 11 be detect eel 

as long as the FOY is withill ±300 and c1uclio fpcdback will guide the' user or robot 

towards the object until thr user or robot faces the object. A slllall foot prillt for the 

tag. 57711111 X 70111111. will llsure it ('<-Ill be placed Oil slllaller hOllsehold ilt'llIs . The 

detectioll l'Cmgc is constrained b.\' the Call1CJ'(1 resolutioll Hlld till' tag sizt'o Tlll' rHnge 

a nd FOV \\'ill clCIWI1c1 on the CCllllt'l'a characteristics. bllt ('rlll 1)(' ill('l'(,rls('d by IlSlllll' 
, " 

Ii bt tp:/ I w\\'w .mpliaclgH'chphd. blogspot .eo.tlkl 

.) ;) 
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a higher resolution camera. or increasillg the tag size. Inforlllation <l bOll t 111(' object 

pointed to is contained within a database held 011 the' hand-held device. It is ('!l\'isagec! 

that a dedicated standalonc device is developed. howcvcr thc s,vstellls software lllCl\ 

operate on a generic PDA or mobile phonc with a Cillll('L'a. 

Figure 3.11: Proposed Prototype' Tag 

Thc prototy'pe tag is shown in Figure 3.11 . It compris('s of five circles (dols) where 

each circle can take 011 any of the' 6 colours - ['eel, grecll. hlue. Ill a~~;t'nl <1 . cnlll, alld .ycUow. 

The border. surrounding the circle'S. allows the tag to 1)(' detected. akin 10 the fiuder 

pattern in a data matrix and facilitates localizing. Orie'l1tCltioll is delermilled 'v\' ith a 

marker indicating a point of reference. In tllis scellario, the colour order is importallt 

ilnd repetitions arc allowed. This provides for II
r perlllutatiollS. whcre II is the 11I11IIher 

of llsed colours aud ,. the ll1111lber of llsed dots, III this case. I here are (j" - IlfG 

pcrtnutations. If repetitious are not allowed thCll til(' 1l11l11ber of I)('rtlltlt al iOlls is ('ul 

down lo 720 according to 
1/! 

(3.11) 
(11 - r)! 

In the context of object recognition for alllbieut ass isted li\·illg. t his provides <1 

sufficient number of unique pat terns to identif.v a 11 requ i reel objccts. The rM iOllClle for 

t h(' tags design. from a COlll pli ter vision pcrspecti ve. is case of prod \let ion. using allY 

colom laser prilllcr: the usc of prilllary colours facilitates SCglllClltl1tiOll. 1-Uld oricllt ;-ltioll . 

The requirements are for thl' tag to be detectable from at least 0 11 (' metre with a 

320 x 2 .. 10 pixcls camera and lip to t\\'o lllet res wi t It a G-lO x -l 0 pixels (,<l111(' r (\ (t he 

target is Qetectcd up to 1/ IOOth of image sizE'). The detect ion of the t <lg patt crn ill 

an upright position allo\\'s for 11 tilt / skcw of lip to ±30° . Detectioll lllust 1)(' robusl 

ullder different lighting conditions anel in a \"isuall~' ('Iut t(,l'ed cllvironmenl. The data 

('olltained within the tag is E'xtrHcted with a call1era llIollnted OIl (\ sllwll iIand h('ld 

devicE' stich HS <l Slllart phoU(' so that stnlldcud (,Olllpiltcr vision k('hniqllcs can 1)(' 

cmployed. Tag data extractioll is perforllled ill two steps: 111(' detect i011 of the ov('n-lll 

tag sha pe followed by a seglllent;-l t iOIl <1llci extrc1ct ion of t he' colourcd ('i reles. T 11 1 he (,Hse 

of the robot. tIl(' tag is detectee! using n camera mouuted Oil tIl(' robot. If de\('dion is 

,j!i 
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dOlle llsing I-\:inect or similar technologiC's. the dist,UlC'c of thc tag frolll tll(' rooot can 

also be measured. 

Retrieving data from the tag necessitates thrcc steps, namel.Y tC1g dctectioll. Ing 

identification and lllcta-data extraction. For this i III plcl1lcllt at ion. ,1 lllC't hod which is 

fairl.v robust and very fast to nUl was Ilccded. For tag detect ion t he sa Ill(' met hodologv 

as that for the face cktection discllssed ill edioll 2.2.1 was 11S(,([. I his tillle how('\'('l' 

training the Haar boosted classificr on tags rather than fact'S. Trnilling is relnl iveh- I illl(' 

consuming. however. consid('ring that trainillg is olll.\' perforlll('d ol1ce c1111'ing scI I iug 

up. this time cOllstraint is acccptable. Once the tag shapt' is det cctcd and r(,cognizcd 

succ('ssfully. tag identincation is obtained b.v carryi JIg Ollt colo\ll' segl1lClltat ion as de

scribcd in Section 3.1.1. This ",'ould tl1('n prolllPt a database qller:v ill which database 

information pertaining to the object is kcpt. III order to trC1iu the classifier SII('('('ssfllll.y. 

numerous well-seglllC'nted data w('re required. This would gellcrall~' lIl('all I I!ollsallds 

of object examples and tellS of thousClnds of llOll-objcct exal \I pl('s (i 11 om case. tag 

and no tag imag('s). Given the rigidity of the proposed tag bow('ver, Illuch less imag('s 

for training were required and which still provided illlpressive].v good )'('sl1lts. Also. ill 

orcl('r to have good classifiers, data should not be mixed. [f bot It lilt ('d and upright 

tags need to be identified then the training da t a should bc di \' io('d alld two dassi Ii('rs 

are created [46]. For proof of concept case, only upright tags w('re considered ,11Id it 

was assumed that these tags will be always affixed in all upright position. For good 

training data should also be well-segmented and cOtlsistcntly box('d. Sloppiness ill box 

boundaries of the training data will OftCll lead the dnssilier to correct for fictitious 

variabilit.\' in the data [·Hi]. Om training set consists of 212 posit iV(' ililages (some 

contrlining multiple tags) and 384 negative illlages. Posit ivc images refel' to illlag('s 

in \vhich tags are present and negative images arc images which do llUt cOlltaill tags. 

The tags were then located and cropped from the positive imag('s. \Iorcov('r. 0111.\ ' six 

of the possible 7776 tags were used for traiuing. The rationale for tIlLS choic(' was to 

im'('stigate the performance with a low training s('t. Two training sets were treated 

using different cameras for cross validation. The first datas('t, set I, comprised illlages 

gellen'ltecl using two differ('nt hand held Call1ercl..'i and a robot call1('ra. The second 

dataset. set II. was generated using the robot camera. Durillg ('valuHtion. validation 

was performed with dataset I I whell training was carried out with dataset I alld \'ic(' 

versa. \\'hile the first datas('t (set 1) consisted of images of tags luc-at<'d l'aIHlullll.\' ill 

th(' environment: dataset I I was gellCratcd witll the robot Call1el'<1 located nt the llod(' 

positions in Figure 3.12 . The test image wa.s capt11lwi at 3() /J interval. 

.'){ 
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Figure 3.12: Test pc-1ttcrn gellcration 

Experimental setup and results 

Soft\vare development was carried out using thc OprllCY librarv [Hi] on a laptop COll

nccted to c1 robot and to a GSB wrb camcra. 0PCll 'V is all 0PCll SO lll"C(, d('\'('I()Plll(,lIt 

library written in C, and it is specifically suited for reH I tillle a ppli catio lls . Tests were 

carried out to investigate the praticality of our SystClll. These tests im'olved: a) var~'

ing the distance and the orientation to drtermine the maximum (\l'tcctio ll rangl' of (he 

system. and (b) employing different cameras and light conditiolls to assess robust 11(,SS 

and (c) exposing the system to s vere ji ttcr to reRect t hc C'ollC\i t ion of t he act ua I llser for 

whom this application is intcuded. Additional tests (d) w(,r(, ca rri (,d out to ill\'('stig<1t(' 

performance with the tag applied to non-Rat surf;-Lccs. 

[J , - U A ~ 

Figure 3.13: Tag detectioll (lc£'t) and idl'lltificat ion (right) 

Til the experilllcntal setup. the tag size was 57111111 x 70,,1111 and the Ci-lllWnl was set lip 

to a resolutioll of 320 x 2--10 pixl'ls. III practice. the sys(('tll is able to detect tags as low as 

10 pixds x 10 pixels: the limitat iOll is to allow for cololll" segllll'll tatioll / dct l'et iOIl wit hill 

the slllall \\'hit(' hows. FiguH' :U;~ shows results with four tags. III Figure :~.U (I('rt ) . 

the b11l(, and l'yi1.11 arc adjc1u'llt ill th(' colom SI)(-l("(' ho\H'vrr t I1t'st' \\"('1"(' Sll(,(,t'ssflll1~ ' 
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identified, as shown in Figure 3.13(right ). Tag detection capabilil .\' of segllle'lli s in the 

images affected by skew and affinity can bc scen in both Figure 3.13. In the protot~· p c. 

the detec tion area is fixed and contained within the sllla ll whit e' boxes thus r(,stri c t illg 

the angle of detectioll to ± 30. This can be improved b~' elllployillg Cl rotation ddection 

algorithm . The top right tag and bottom lcft show the cluT('nl skew lilllita tion: if the 

skew nngle were to be increased furthcr these tags will Ilot be ckt ect c'd. 

D et ection range and orienta tion 

Duriug the testing phase it was expected that all the six pattel'lls O ll which the l railling 

was carried out would be easily recognizable . A fllrthC'r six illlagc's comprised tIl(' 

independent test set. The independent test da t a were sllccess[u lly recognized. Figlll'e 

3.1-1 shows the dcte tion percent age a t a givC'n d ista llcC' Cllld orient H t ion resp('ct i vd~·. 
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The tests were carried out usmg the robot placed at a fixed distance clllC l angle 

from the tag to be detected, Increasing detection range call be achieved wit 11 a highc'r 

resolution camera. It is also worth noting that for a 6-10 x 480 pixc'ls resol l1t iOIl (k

tection was achieved in real time, However the 320 x 240 pixels resolution, was uscd 

to enable the system to be integrated into off-the-shelf cmbedded s,vstellls wi t II lower 

camera resolution, The light intensity was varied from good li ghti llg to dill! li ghting 

and the pattern was again successfully recognized Hlld colour scglllC'utcd as shown ill 

Figures 3.15 and 3,16, 

Figure 3.15: High light intensity 

Figure 3,16: Low ligh t int('llsit,\' 

D etection under conditions s imulating tremor (jitter) 

As an assistivc device, detection pcrfol'ln HIl(x' lllllst 1)(' lllaintaillcd whell subject to 

tremors: as when used b~' H person suffning from Pmkinsol1s disease or an," ot her 

condition ill which the user is unable to hold thc Ci::llll('J'(\ stead,\", A 3D accelerollleter 

was c1ttHched to a wc\)cHm to mcasure and coarsely' clClssify the sillllllated trcmOl', The 

C'xperilllcnts \\"ere repeated with jitter included to simlllatc <111 IIllstC'ad,v hllnd , Th(' 

reslllts arc ShO\\"ll in Figme 3,17: the left illlc1ge d('arl~ ' shows tll(' blmrillg Hlld the 

Olle on the right is the real tillH' det'ection of the patlc'l'Ils, The trlgs w(,re SI I ('('('SSrllll~ ' 

detected with vHriollS degree'S 0(' .iit tN, The' detectioll limitatioll COllies fro 11 I hlllrrillg 

C'Hllscd WhCll \'eloC'ities arc high, It C'Hll be SCCIl tllclt S,\'st ('Ill pcrf'ol'llls w('11 lludc'r S(,\'(, I,(, 

jitter, 

(ill 
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Figure 3.17: Detectioll under conclitiom, of jitter, blurr('d IlllHge (ldt) and detected 

tags Detection on Curved S1ll'face (right) 

III a hOlllC cllvirolllllOllt. the tag Illa.\' 1)(' fixed to a ntlmber or objects: sOllle objects 

might have a curvcd ::;hape. vYhell the pattcl'll is fixed to (\ curved surfacc t 11(' circles 

will become ellipses. however. the Haar classificr, will detect thesC' patten.;, C'V('ll t hOllgh 

training v,'as carried out on flat surfaccs. Thc rcsult ('all be sccn ill Figmc J. l ~ . 

r Cl~. - [J x rli~ .. -- - I!lIImI"~ 
- - -

Fig1lI'<' :t 18: Tag on a curvcd object 

3.3 Summary 

This ('118 pter discusscci a met hod which uses a nux of lop-doWll and bot t 0111-11 P H p

proachC's. to make robots awarc of thoir d)'W,lllie ellvirolllllcnt Hlld capahh- of idcllti

h ' ing both known objects and )'ct llllknowll salicnt objects. Such robots will gCllcrall)' 

work ill cluttered. hard to train for. envirOlllllents. Bv appl,v'iug computer \' isiOll <lIld 

lllachinc learning tcchniq ues. robots are endowed wi t 11 t hc ('(1 pabili t,' to IWI'C'c'i,'(' illld Iw 

1118dc awarc of s8licllt regiolls \\'ithin their ellvirollmcnt. Somc of thc propos('d I1H'll1ods 

arc inspired b:v how hUlIlHllS look at illt('['cst ing iUC'l:),S within their (' ll\' irOlllll('nt. This 

chapter 1:11so lookcd illto the dcsign of ic\elll ificrltiOll tc1gs which allo\\'s robots \\'orking 

in ambicnt assisted living to guiclc peoplc to spccific arc'as nne! possibh' also prm'idillg 

HJ 
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them with metadata about the object to which tag is attached. Results show that 

tagged objects can be detected at over one metre using image resolution of 320 x 240 

pixels and tags of size 57mm x 70mm even in poor lighting conditions as well as under 

conditions of jitter. A combination of larger tags and higher resolution images would 

increase the detection distance. 

The next chapter describes how the robot capability is further enhanced by applying 

an unsupervised machine learning mechanism allowing robots to extract previously 

undetected salient information from an incoming robot video stream. This then feeds 

into a visual memory which in turn can be used to provide robots with a more selective 

searching capability. 

62 



··The difference bet"·eell false memories and true 01les is the SH1lJe itS for je'l"('is: 

it is alm·l.' ·s the false ones thM look the most real. the lllOst brilliant.·· 

Salvador Dalf. SU7'rralist SpILl/ish pail/tc"/' (l904 - 1989) 

Chapter highlights: 

This chapter presents an efficient method for the real-time and 

online evolution of very concise and compact robot visual memories 

stored in a flexible graphical representation using a Growing Neural 

Gas (GNG) network. 

Vi ual Memories 

Chapter 3 looked at how visual perception call be implelllcntcd 011 robots, ltlc\king 

them aware of their environment by using a combination of top-clown <l1l(1 hottO lll-UP 

approaches. \ \ ·hilst some alllollnt of pre-programming or tn·lilling call be' nppli('d to 

robots to provide thcm with the abilit:v to det('ct ('('rtnill obj('cts. it is !lot possible 

to predict all the situations that the robots will have to d('al with ill C"OlllpleX con

ditions [1 (j:j ] . In this chapter the robot's performance over the llld hods Sllggcsl<'d ill 

Chapter :3 are extended by focusing on methods to endow the robots with learning 

capabilities. 

An efficient lllet hod for learning and mcmorising onli!l(, alld in renl- t illle n n ('I1V)

ronment from a sequential input \"idco stream in a vcry cOllcis(' i:md compact UWllll('r 

using robots is proposed. The idea is to generate a grHph of snlClll siz(, as a reduced 

rcprC'senta t ion of the environment that could be easily shared among robots or n dis

tributed set of computational nodes Anc! e'asy to grow in cooperation. In this context. 

real-tillle llleans that the sampling input frequcllcy is sufficientl,\· higll to re'H('ct Hlly 

changes within the em"irolllllent srelle. The encoding aw l storillg of til(' visu<11 appear

ance of locations b,'; robots memorising scelle'S aims at rre<1ting H gellcralll!l( I('rstrlllciillg 

of the (' Il\·irotllllPnt which is easily understood and referellced b,v h llltlflllS. n () hots lw\'(' 

their O\\"ll III C'U 10 r.\" represented by a graph with node'S eHcoding t h(' \·islli:ll illfortll<:ltioll 

of i:1 video strec1111 as 1:1 limited set of representative' imag('s. Tllis appror1cil alluws CIl! 

('nyirollllH'nt to he topologicclll.\" lH\)ellcd. for lllapping <11](1 self-Io('alizat iOll purposes. 

As discllssed in Sectioll 2,1.:2 . biological systems have pro\'('d to work H'r,V dfici(,llth·. 

G3 
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mostly attributed to millions of years of evolution. Thereforc, it is thought that silll

ilarl.\- to what happens with humans [6,5]. only salicnt images. call('d kedralllcs. arc 

stored. thus requiring less processing power and storage space; how('v('r still all the rel

cvant information is maintained. :'Iethods are studied and developed to allow robots 

to learn kcyframes describing their environments. Thcse keyfnulH's aI'(' d.\'ll<lItliC' Hnd 

evolve so as to replicate \\'hat is CUT'Tently unfolding in the ellvirolllll('nt. A robot needs 

to he ahle to learn and adapt these keyframcs whicll could bc sharcd bdwC'Cll otbcr 

robots and other humans. such as security guards. using such s.\'st ('Ill. 

Section -1:.1 looks at the human memory, followed bv lllCt hods to repl iC(1 te it 011 

rohots h.\' using unsupelTised learning techniques, discussC'd ill Scctioll "1.2. As will 

1)(' described in the coming sections. the robot's visllal lllC'll10ries HI'(' illcrClllClltHIl~' 

built llsing the gro\\-ing neural gas (G-:\'G) self-organising model. G:\G was chosell 

because it pro\-ides fiexibilit~- and portabilit~-. b:v d)'I1H.lllicall)' buildillg a reprC'sC'lltativC' 

graph of the input space. in this case a video or scC'ne video seC[U('I]('('. G:\G networks 

are self-organising neural networks that can d.vnamicallv adapt their ref('I'('Il(,C vcctors 

and topology. Frames are sequentially proccs:->ec\ by the GNG, autolllat ie-all,\' ge1lcrat

ing noeles. est ablishing connect ions between t hC'lll and cree) tillg d llst('!'S d.vnCllllicHlly. 

G"\'G forms clusters of similar images in vidco streams. averages of which arc used 

as ke.\-frames representing the (potentiall)-) distinguishing parts of the ellvirOlllllmts 

shown in the strcams. This is then all combined in Scction -1.3 so as to he1\'e visual 

memories coming frolll robot video streams. 

4.1 Human visual memory 

Visual mE'mOl'.\- is the abilit.v to recall infol'mc1tion that was prcvioll:->ly prc:->ented III 

\'isual form such as images. maps and lists of words [WG ]. I t is t hC'rdore t hH t pent of 

mClllor~- presen-ing SOIllC chamcterist ics of the SCllses pert aining to \'isllal ('xpcricllC'('. 

ResccHch. carried out in biology and psychology. studies how hUllJans and animals 

rel~- Oil \-iSllal lllelllor~- to interact between thClllScl vcs amI t hei r cllvi rOlllll('nt. H u

lllan memory can be divided into short-term lUt'lllOl'.\' (ST:' I) (\ lle! IOllg- t ('\'Ill lllClllOl'Y 

(LT).I) : IGG ~ . ST:\I is llsed to telllporaril~- retain informatioll ill Hl1 Hcti\'c'. rcadilv 

cm"lilablc state for 1:1 short period of timc. whereas LT:\[ holds inforlllat iou for llluch 

longer and in some cases. ('\'('n permanently within the brain. HunHlIls S('(,1ll to rcl\

Oil ~'cars of prior cxpericnc(' ill lllaking decisions bas('d Oil \\' hat their ('.VCS S('('. Pc'ople 

nUl gcnerate robust \-isual mel1l0r~- reprC'sE'ntatiolls of natural sccm's. ('S l )('('iall~- from 

featmc:-> of objects and their locations. Th(' ellcodillg of stable \'is1\c\l information rc

lics 011 attention. scarch strMegy. and the abilih- to ret rie,-c cncodcd lll('lllOrics. Thc 

rdatiollship bet \\,('(,ll \ 'isunl perception. att('lltiOll. awl llH'lllor.\-. cdl d)-JJcUllic alld seri<11 

cognit iv(' PI'O(,(,ss(':-'. ('xtcnds over spacc Hlld timC'. iun' visllal cncoding is s\lpprcssed 
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during saccadic eye movements [167]. visual inputs from the SCC1Jllliug of a SC('I1(' arc 

partitioned into discrete episodes. weighted by' th('ir salicllc.\' and held tog('t her ill a 

memor.\' buffer. Visual memory supports the accUllllllatioll of illfortllCl t ion ['roll 1 scores 

of individual objects in scenes via iconic. short-term and long-tCrtll storage stn-ltegies. 

Iconic m(,lllor~' is precise. but \'olatile. brief « 300m.';) cllld highl.\' sllsccptible to iutcr

ference from !le",' sensory proccssing. If the scene is !'('ll1oved or pcrccpt lIal proccssing 

otherwise interrupted, sensory persistence decays quicklY <md is llot integrntcd fWIll 

one \'iew of the scene to thc next. Visual short-terlll III ('11 lOry' (VST:-l) has a liI11il<'d 

capacity of 3--1 objects and less spatial precisioll than iconic lllCllIOl'y' alt hough it CHIl 1)(' 

maintained for seconds and across saccades, Visual IOllg-term 11l('1l10l',\' (VLT!-. l ) clllows 

acculllulation of visual information from score's of individllal object s. leadillg tot he 

retent ion of t he scene gist ra t her than to the retcntioll of viSl1<'ll (\<'1 Hi Is ill pilot ogrn phs 

over relativelv long periods of time. People can gellerHtc robust vis1lal lll('lllOI)' rcp

resentations of natural scenes. especially from fcatures of objects and thcir IOCHt ions. 

The encoding of stable visual information relics on attclltion. s('at'ch st rnt('g,Y. Hlld thc 

ability' to retrie\'e eucoeled lllC'mories. SCclrch strategies help keepitlg trHck of' tmg<'ls 

and efficient 1.\' guide attention to the one's that appear ill predictHble IOCHt iOl1s wit hill 

real-world environments [We]. Directing attention to HIl objcct / scCll(' allov"s th(' for

mation of a coherent visual representation and the cOllsolidHtioll of' that l'epl'('s('lltatioll 

into a more stable V T)'I. Recent studies by Konkle aile! ('ollcngm's [I m ]. hm'(' showll 

that observers can store thousands of objects imagcs as wdl as s('('n('s in VLTl\ I with 

high fidelity. suggesting that scenes alld objects n1n~' bc I)('st t 1'('<1 t ('d as Cllt it it,s <1 t H 

similar level of conceptual abstraction. providing tIl(' sC'1l1antic strllct llr(' ll('('('ssar,\' to 

support recognition and lllemory of visnal details. Data in [IW] nlso indicHtcd tlwt 

observers' capacity' to retrie\'e \'isual inforlllation ellco(IPd in VLT:\I d('pendcd llIore 

on COlln-'ptual structure than perceptual distinctivcll(,ss [17tl]. :\Ieltlol,)' for tll(' spatial 

la.vout of a scene amI memory' for specific objcct positions call efficielltlv guid(, search 

within scenes. as it helps to keep track of objects tltHt hHV(' alre'cH I.\' he('ll cXaJllillCd 

ancl C'ffici(,lltly guides attention to targets that appC'ar in prcdictahIP locatiolls within 

l'eal- world environments [1 (j ] . As suggestecl in [171] t hel'(, are two i-ll t ernat i vc (heories 

of how memories are (,llcoded in the brain. 011(' t heOl'y slIggests t 11<1 t a si nglc IlH'11l0r.v 

is stored in a distributed fashion with bits and pi('c('s distributcd across 11IilliollS of 

nelll'ons. The altrrnati \'E' \ 'iew. which has gain('d more scient ific (,I'('d i hil i t.v, holds f('wcr 

neurollS. Ilumbering in the thousands if not less and cOllstitllt(' a spars(, l'('Pl'cs('lltalioll 

of the image. These slllall groupings of ('clls may' rcpresellt lllilll,\' installc('s of Oil(' 

thing. This iclea is gCllcrally' kllO\Yll \vithin the resenl'ch ('0111 llllllli t,\' as "p;mlldll\othcr 

cells". The aim of this reseC'll'ch is to replicate the lattN t Iworv into nil artificinl rohot 
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4.2 Robot visual memory 

As already mentioned in Section 2...1 . variolls methods to store visllal ('xp('ricllc(' ('xist 

within the robotics domain especially for localisation ,mel IIiwigntioll pmpos('s . This 

thesis mainly focllsed on the use of G0"G self-organising Uloelel for vitlll<11 lll('lllor~' ilnd 

relllions for the use of such model will be givell in the comillg s('ctiolls. V,triolls inplIt 

sensors and other possible methodologies were also snggetltcci ill tile lill' rHtlln' . SOulC 

of these methods a rc further described ill ApPclldix Sectiotl A .S. 

G:\ G \vas also considered by other retlearche rs [L 72 . (;(j , I (j ;) , I i; ~ ] a tJ( I ('V('lI t }lOllgh 

these studies offer some relc\"ance to the problelll being tackled ill t Ilis thesis. nOIl(' SCt'IlI 

take into account the HRI aspect of t he application. ~ [0 ["('O\'eL <1S is t Iw ('(1se ill [I C;;) ]. 

the main concern to address v:ith using a database is the iSSlI(' of 11H'1Il0r,\' m<tnl:\g(' lll(,llt 

and finding efficient ways of limi t ing the lllelllory size i1S the i lll<1gC dn t H bns(' grows 

large, 

Cao and Suganthan [172] proposed the usc of GNG lletworks 10 iutcgrnt(' Itlllltip\e 

frame difference features to effi cientl.\' det ect camera shot boltnda ric's (s('eu(' (' ll<lltgCS ) 

captured in the video with special emphasis on tcmporal scgltlclttntiotl. Th(' seglll('I1-

tation method in\"olves computing multiple differellce ltlCaSltl'('S for eHch frallle pHiI' 

in a sliding window. based on a combiunt ion of histogram-Iwscc\ com pa risotl Hnd ttlO

tion compensated block-based comparison. and then utilises lI\c lI11s11pervis('c1 G:'\G. 

Kirstein et al. [Go] propose an appearance based object rccogn i t iOIt m('\ hod, also COll

sicicring short term and long term memories, I-(it ('\ ,d. 's [ 1 7; ~ ] llIethod tlses G:'\G 

together wi til a low dimensional represcntation of visual feel t mcs to rn pidly id(' llt ify 

regions of challge \yitiJin an image, Saponaro alld Bernardino [Hi;) ] studied a wa,v for 

personal robotic assistants to deal with dynamic alld ullc('J't a ill illforInatioll whcll t he~" 

a rc deployed in private and Pllblic scttings . They try to Clddress the problem of n('ating 

visual memoriC's of salicnt objects a rising ill a cert ain ellvirolllllclI t "l1d the" hili I \" of rc

calling them at a later stage. In their method, imagcs arc comparcd using Cl histogram 

illtersection technique by using the hue and ::-;aturation compollcllts ill the HSV / HS l 

colour space. They start with the assumption that the robot is illitiall~ ' lI11l:l\VHre of its 

environment and start buildillg a database consist ing of v iSlla I UleUlor~ ' C lasscs , 

As al ready stated in Sectioll 1.1. the aim of this thcsis is t () r('prcseul I he eltviron

tlIeut in which the robot \\'orks ill a ll efficient cmel compact \\'n~ ' . with 111(' memorised 

dClt;'l being easih- understood b~ " people. The lllcthodolog)" to achievC' this is descrihed 

ll(,Xt. 

4 .2 .1 Learning strat egy 

Section L 1 described that human nH:'ltlO r~- does not rd aill all det ai ls of a SC(,ll(, Hne! 

lllemorised i mages can be blurred or sOlllewhl:1 t ullcicl:1l' . It is rn tller i mpossi ble for 
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someone to learn and remember all the details, however, sufficient inforlllC) t ion is re

tained to recall relevant information from memory about a part of <l SCC'llC' [ 11,1]. III 

the case that something of importance is noted and further data g<lt h('ring is required 

ill that area. supervised learning or reinforcement learning could be L1sed b~' glliding 

the robot to the area of interest and providing it with fccdback. SilllilHr to whrlt is 

dOll(, with children. Children are attracted b),' obj('cts which arc more interestiug than 

others and which the~' would instinctivcl~' learn [17!)]. Besides that, parents Hl1d edu

cators channel them and guide them to learn things which arc also illlportallt for their 

survival however which require schooling (education and training), such as readillg or 

playing an instrument [176]. 

This study focuses mainly on unsupervised learnillg met hods for robots (0 I('cun 

their environments. s.vnon~·lllous to the i llstillcti ve learning n)(,ll( iOlled i:') bow'. l'llsll

pervised learning is performed using only clat a wit hOll t any teach i ng signals Pl. The 

main characteristic of learning-based approaches is t]wir abilit~! (0 adjust (heir in(er

nal structure according to input and respective desired 011tPUt data pairs ill order to 

approximate the relations implicit in the provided (training) data. (hus ('legau(l.\' sim

ulating a reasoning process. :-'lethods for clusterillg t lH' 11ew1\' lemn( illforlllil t ion are 

studied. Self-organising lllap ( 0:\1), ncural gas (.\G). growing cell S(ructllJ'('S (GCS) 

and growing neural gas (G\'G) are well known ullsupcrvised Icaruing mC'thods Pl. 30:-1 

is one of t he most sllccessful and \-videiv used clustering lletwork sllggested by I-':obo

nell [177J lIsing a set of heuristic procedures which is not based 011 the minimization 

of any known objccti\'c function. SO~[ performs clustering while preserving topolog\' 

wherE' the number of nodes and the topological structurc of Senl is designcd before

hand ~ :~ ] . \Yhcll working with SO),1, OIle has to kccp ill miud (belt SO:\I has Cl forced 

termina tion. unguara Ilteed con\"('rgcnce. the proced urc is llot opt i llliscc\ and I he 011 ( 1m t 

is often clcpelld(,llt on the sequellce of input data [ 17~l . Van Hulk [17!>] ('X<llllil]('S so~r 

in deti1.il together with other net\vorks such as the .!\G, whicb is Cl\sO t ackhl ill [1 I~] . Dll 

[1 78] states that unlike the SO)'1. which uses predefined static neighhomhood )'elnt ions. 

the \'G determines a d~'nalllicallleighbourhood relation HS lCcll"llillg procceds. Thc :\G 

is an efficient and reliable clustering algorithm. which is not sellsitivr to the nellron 

initialisation. In \'G. the number of nodes is fixed beforchand. hut the topological 

stl'llcturc is updated according to the distribution of sample cla(Cl Pl. Fmllkawa [ l~() ] 

proposed all extcnsion to the SO:-'1. calling it SO:-'I of ' O~\ls. Hc "Iso illdicaU's (hal this 

Illethod can casil~' be generaliscd to any combinatioll of SO=---I families illcluding (',.Lscs 

of \'G. :-'IoreowI' G\'G. originally introduccd by Fritzke [ 1~l l is ,) \"G which grows ovC'r 

timC'. ThE' growi11g lllechanism of G\'G's hidden 1a.\"(')' is similar to thc 011e of GCS. the 

main diffC'rcllcc bring that G:\C uses H t ,vpr of C0111])('( itiv(' Hcbbinll lcnming (CHL) 

to lllodif~' the topolog\' structure of thr gn)pb. This allows C\"G ll('t\\'{)rks (0 forlll 

lleighhomhood graphs E'lllbeddE'c\ in a spm·C'. whos(' dilll('llSiol1alit~· vmi('s by adapting 

()/ 
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to local. oatH. oistribution profiles. Apart form the afo rementiolled ciiffc]"('llC'(,S, G:'\G 

and GCS are structurally the same [1 2]. \Yhcreas GCS docs not deletc llod('s clud 

edges. G:\G can delete nodes and edges uellied Ull the concept of HgCS. Furthermore, 

GCS lllllSt consist of k-c1imensional simplices whereby k is a positive iuteg('r chosell in 

advancc [ :~ ] . 

G:\G \\'as proved to he superior to existing ullsupervised Ilwthocis, such as sclf

organising Kohonell maps (SO~ I). K-lllcan8 anel growing ("ell st rll ctures [I t{:~ . It-> 1. I~fi ] . 

In a G:\G graph. nodes can be disconllected whilst thc !let work is evolving, (Tent illg H 

separation between uncorrelated nodes. Thc number of nodes lleed !lot 1)(' fixed i1 priori. 

since t he.\" a re incrementally adoed during execution. Insertion of !lCW nocles C('H.s('S 

when a set of llser defined performance criteria is met. or a lt el"llativch" the lIlClxi11l11l1I 

network size is reached. The algorithm iterativdy learns to identify si lllilarit ics of 

input data and classifies them into clusters. Florez et al. [l K:~ ] cOllc lllde t hit t lid works 

having an evolving topology adapt better to the input manifold t IHUI HUY HCt work 

with pre-established topologies. ~Iore recent work [:3] c11so corro \)oratt's t bc cO ll clllsions 

mcntioned in ' l L :3 . 1 2:. Sasaki et al. [:1] stud.v til(> usc of G~G, cOlllpa rillg it with ot her 

ullsupervised ll]('thods to be used for intelligent rohot visioll llsi !lg H rangc i!lwgillg 

camera. 

(a) SOM (b) NG 

(e) GCS (d) GNG 

Figurc -1.1: Comparison among (a)SO~L (b) :\G . (c)GCS illld (d)(; :\G [:3 ] 

a.saki d a1. ~ :3 : conclucted cOlllparison of thcse mcthods llsing s<1l11pl(' delta of t I1r('c 

l"lugs. Figurr 1.1 sho\\'s the final stages of SO~L ~G. GCS <1 11d G .'\G afte r snooo 
iteratiolls. resp('cti\"CI~". Table 1.1 shows the compar ison of ('vilimllio ll \'1"1lil('s 1"11ll01lg 

SenI. :\C. GCS and G:\G. The computatiollal tilll(' of GCS is tli(' shortest I)('('al ls(' tli e 

origillal GCS docs not delete nodes and edges. :\ G !lecds 111\\("11 11lUIT ("(>Ill pll t i1 t iOlla I 

t i IllC t hall ot bers because the algorit hIll of sort ing of tlOel('S is ;1( lop(('<1 (' \"(' r.\" i It'l"C1 t iUIl. 
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Calculation 
Nodes Edges 

Deleted 
Cost (ms) Edges 

SOM 2100 100 180 0 

NG 8600 100 193 280 

GCS 1200 169 501 0 

GNG 1900 168 369 392 

Table -1.1: Comparison of evalnat iOll values p] 

Following the results provided above. and cons ideril1g the tH'c'd for <til ltllsupervised 

learning technique to cater for the application. the results Hlld cottcinsioll prr'sC'lIt cd 

in [1 2] indicate that G:\G and GCS provide ver:v sat i sfi:1ctor~' resltlts, Consic\erillg 

the results provided in [3] and also taking into aCcollnt sepHrate clustering, SO:' [ and 

GCS are discarded hecause the.\! do not provide separate clusterillg. \fC has (l fixed 

number of nodes and is wry slov; compared to its COltlltNpc1rts. On the ot h('r hand. 

G:\G provides a good performance in clustering ('apab ilit~· as well as ("olllpll latiolHll 

cost making it the unsupervised learning technique or dwire. 

The GNG algorithm 

G:\G was origillally introduccd by Fritzke [1 1], a.s an llllsupervi:·wd lc<1rnillg l('("hnicple 

where no prior training is needed. The system starts with two linked nodes: llew tlO(ks 

are inserted at ('\'e'rv fixed number of input cycles up until the llIaxilllUlll tlltlllbN of 

allowed llodes is reached. Connections bet\veen nodes a re also i ttsC'rtcd aIld rctlloved 

adaptillg the network topology. ~Ioreowr. nodes which HrC' c1isCOllllC'clcd nrc r<'lllOVCc! 

thus Hllowing for 11e\\" nodes to be inserted in a bettC'r positioll within the top()lo~ical 

map. This results in a net\\'ork having a topological strl1ctlll"C' composed of S llo(ks ill 

]\' clll'ters cOllnected by edges doseh" reflecting the topology of the feature distribu tiotl. 

The G~G algorithm operates as showll in Algorithm 1 with further dct ni l provided in 

Appendix C. The G:;G net\\'ork is specified as: 

• A set .Y of llodes (uC'Ul"ons ). Ench 1lode n E .iI.! has its associat ed rden'llC<' vector 

W I.: belollging to the illPut space ( 0 x 60 greyscHlc ill1HgCS) . 

• A set of edges (conllections) behvcen pairs of nodes. Thesc ("OlltlCct ions me llol 

weightrd and its purpose is to clen.n the topological struct \1]"('. All ('d~(' ageillg 

schellle is used to relllOW connections that are illvalid clue to l he aclaptal ion of 

the noele d mi ng the learning process. 

TIl(' cOllventional wav of trclillillg C:;G Plltails havillg (1 trnining clal<1sC't [roltl which 

itelll:" clU' ranclollll ,\" selected awl fed into th(' llctwork. TIl(' C:;C nlgorithnl was llsed in 
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[1 3. 1 6. I t IJ to map 2D nodes onto an image. The generateclmap WelS thell ('lllp l o~'ed 

for visual object recognition and categorization. GI\'G is ideal dllc to its illCTCll1Clltal 

learning characteristic. the insertion of new nodes where required awl the capHbilitv 

of representing newl~' occurring data. This generally ensure's that the G~G ('volvcs ill 

a distributed manner and is more likely to represent the input <latH lllore (1ccuratdy. 

G:\"G suffers from the cOl1vrntional initialisation problems. i.e. c'\'{'r~ ' tilll(' the G:\TG 

algori t hm is run it might evol V(' slightly eli fferent ly. depending 011 the illi t inl secdillg 

and also on the way the node weights are adjusted. 

Algorithm 1 G"\'G Algorithm 

Set two nodes containing random \'alucs. age edge - (), error =- 0 

while (Stopping Criterion = false ) do 
- capture an input image vector x 
- fro111 all nodes. find winning node .'i[ and second bcst nod c' 8'2 

- increase the age of all the edges from 81 to it s topologieHI lH'ighbo1lrs 
- update the error of 8l 

- move 81 and its neighbours tmvards x 

if (.<;[ and 8'2 are connected b~' an edge) then 
- set the age of the edge to O. 

e lse 
- create an edge between them. 

e nd if 

if edges are older than age threshold then 
- remove edges 

e nd if 
- remove isolated neurons 

if (current iteration is a multiplc of A) and (lllc1Xillllllll Ilode COllnt - false ) then 
- find node u \\'ith largest error. 
for all neighbours of u do 

find nod(' t' with largest error 
e nd for 
- insert a lle\\' node r between IJ and I' 

- create edges bet\Well II and,.. and l' and ]' 
- remo\'(' edge bet'vvrell /I and t' 

- decrease t he error variables of II and I' 

- set t he error of !lode ,. 

end if 
- dect'('c1SP (,I'mr HlltH' of all nodes 

end while 

TO 
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clusterO cluster3 cluster4 clusterS 

Figure -1.2: Training Images (Left) and Generatee! G~G Clustered Nodes (Ri g ht ) 

Figure -1.2 illustrates an example of how G~G st ru ctures the n('(work topology. As will 

be further discussed in Section -1.3 . rather than mapping 2D nodes onto HIl illlHge, each 

node consists of an 0 x 60 pixel greyscale grid representing an evolving lllemory illlHge. 

In this example. a fixed set of training images and a ma,x:imulll llllllllwr of !lodes have 

been used. After a random iteration of the trained images illustra ted on the ldt of 

Figure -1.2 . G:\"G creates the links between the nodes and the dusters. which a rc shown 

on the right hanrl sirle of Figure -1.2 . One can note thcl.t SOllle' of the images we re ll}(' rgcd 

together. This is mainl~- due to the feat1ll'E' vector usee! . In this (,H.sr the fratmc vrcto r 

is the greyscalc pixel value. so images having similar grayscale distributions tend to 

cluster together. The more defined the input feature vector th(' better th(' c1("\..ssificMion 

is expected to be. Details on feature vector selection is discussed llext ill Sectioll 4.2.2 . 

4.2.2 Feature vector selection 

Once the lllost appropriate learning network is chosen, the next step is to ei pcic\(o on 

the best feat me \"ectors to use for the training phase. Givell the H pplication descri I)('ei 

in Section 1.l. the generated robot memory ha..") to be ca.s ily understuud by hlll1l<U1S . 

.\Ioreo\"er. a user would not llecessaril,v be a teclmical pCl"::-iOn in t II(' fidd of robotics 

or related areas. Therefore. the uutcome should be ("\..") ullei('rstalleiHblc and 'Ilnturnl' as 

possible to the layperson. Although not restrictive. the following aSs lllllptiollS call be 

made: 

• The robot camera Illotioll is constrained (c .g. illlag(' alwa,vs upright relativ(' to 

the grolllld ) . 
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• robot yisiL same places in a similar fashion (t' .g. rohot lllOV(,S ill C('tl t r(' of corridor 

most of the times / unless restricted ), and 

• persons using the system are able to identify objects evct! ill blurred Illl<llScs. 

\Yith these gi \'en assumptions. the followiug research qucstions arc pused: 

• Is there a relativel:v simple way to perform imagc COLTC'SpOIl(\(-nC(' which would 

still provide an understandable rcsult '? 

• To what extent is complex feature extraction llC'ccssary to reach both r('cll- t illl(' 

and good enough performance for HRI applications? 

The most COIllmon image descriptors gellerall.v incl tide colour. lext u r<'. sllH pe. IIlO

tion and locatioll amongst others [18 ]. As shown in Figure 1. 2 mId cotlsiek ri ll lS thc 

above assumptions and requirements. it might be argued t lwl Sll lIicif'111 ill ron lIat iOI1 

can be stored in memory using a reduced size 0 x 60 pixel gn'.vs(,<1 le illlage'. A (,Ollllter 

argument could be that othE'l'. more descriptive featu res. could 1)(' llsed to t mill the 

G:\ G rat her than t he scaled greyscale images. Allot ll('r possi ble opt ion could he that 

of ferding in a higher semantic level to the GNG. This . howevc'r. requires all object dc

tection stage prior to feeding the information to the learning llel work. This could work 

well in an em:irOllll1Cnt \\-'here contcnts nrc known and sOlll('whn t expected. itO\\,('vcr. 

it \yould completel~' fail ill a totally ll(,W and unS(,Cll ('llvirOlllllclIt . F('Mme' ext \'i:1C't iOIl 

(informat ion provided in Appendix Section A.3.-1 ) is still cOllsid('\'cc! as a relnt ivel.\' 

tillle cOllsullling process. As an cxam pIc. th(' b('st opt i mis('d i ll1 pklllellt H t iOll of S [TI F 

ba;;l'd rccogni tion technique found in Ii t erature [1 9] claims H Ii llI(' red net iOll from 39 

seconds to 7 :1 0 milliseconds and is a imed to run 011 slllall embedded robot plHtfonns 

with limited processing resources. 

I-\: C'e ping the 1:1 pplica tiOll in mind. unless tIl(' selected f('al mes {\ r(' high].\' dcscri pt iV('. 

and si nee only these feat ures \yill be memorised. t herc is no \V<1~ ' to rcvert bH Ck to the 

original image. This would make it im possi ble for a human to llllderst <1IHI st ra ight 

awa~ ' what the robot has Illemorised. Duc to this , interest poillts such as corners or 

other similar spccific descriptors were not considered as fcasible options. A redllc('d 

size 0 x GO pixel image was therefor(, used. ExpC'rilllental anal.\'sis to stn'llgtIH'll t h(' 

argument are pro\'jc!cd next. 

4.2.3 Experimental analysis 

Looking at Figure -1.3 . a silll plC' visual comparison shovys simila ri t i('s hetwe(,ll the /1,(' 11-

ercltecl no(ks (mcIllory iIllages ) and the framcs of thC' o riginal ill])lIt illlagc's. This gives 

hUl1lcllls sufficiC'llt infoflllcltion to recall a scelle \\'i thill the (, ll\'iJ'()lllll('Ut. HO\\'cwl'. for 
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clusterO clusterl cluster2 cluster3 cluster4 clusterS 

Figure -1.3: Training Images (Left). Gellcrated G\"G Clustered ~odes (Top- Ri ght ) i'l 11d 
KedramC's (Bottom-Right) 

a robot. a quantitativc assessmcnt is requirC'd. A llletric to 111('nSlll'(' the silllilarity 1)('

twecn what is currcntly seen and what was mcmorised carlier is req11ired , III Fig\ll'c I.;~ 

each Hode contains RGB colour values, One can note that similar illlagcs arc c]lls(']'(,d 

together. based 011 the similarit~ ' measurclllcnt criteria. Figure 1.:3 (Bot(olll- [{ight ) 

shO\\'s the generatC'ci keyframes, ThesC' were gcncrH ted bv calclllat i Ilg t be H v('rage pcr 

pixC'1 of all the image nodes \\'it hin each cluster. The lllorc CO lllpleX tllc fCClt\ll'(' vector 

withill cach node is, the slowcr the algorithm will rtlll duc to llJorc cOlllparisons requi red 

per noele. Therefore. the greyscale YerSiOll was also implclIlclltcd , this having olll.\' one 

('olom channel rather than three channels nms threc tillles faster. The outcollle is 

shown ill Figure ·t .. L One can notice tll<1t although t h('1'c is SOllle' Illinor dirrcrcll('(' ill 

thc c\'olution of the netwurk clue to less colour infornHltioll til<' gelleral Ollt cOllle W(1.-; 

the sallle. including the number of clusters. This led llS to concludc that ('0111 pn'ssill l!, 

the illlage further down to grcyscale ,vas a feasible option. However. a silllilarit), llletric 

betwcen the input and the memorised images \vas required to cbcck if what is \'isllall.v 

intuiti\'C' for humans \\'ould gi \'e the same results for a robot. 

As ciiscllssecl in Appcndix ectioll A .3 variolls image cOlllpnrisoll tedllliqll{,s Hre 

available III this case. the mC'tric used is tile image Euclidean distancc (CdEI ) orig

itlall~' proposed b.\' \Yang et a1. ~ l!)O] using the col1vollltion standardizing trClllSfol'l1l 

(CST ) a:--; sllggestpd by Sun and Feng [191], Given all i mage wi t h fixed sizc .\/ x .\'" 

writtcll a:--; a wctur x = {.r l 
.. /'2 .... , .l"~I.'V} the stanclnrd (, lIc li</(,HI1 distal1('e d~JI'.,lj) 

betwecll \'ectoriscd images .1'[ and ·1'2 is gi \'('n in Eql1<1 t iOll 1.1. This 110\\'e\'('1' does not 

take into cOIlsideration the spatial relationship bet weCIl pixels . 
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dusterlJ duster) 

clusterO clusterl cluster2 cluster3 cluster4 clusterS 

Figure -1"'!: Training Images (Left). Gellerated Gl\G Clustered :\'O<ll's (Top- l1ight ) <111(1 

Ke~'fralllcs (Bot tOlll- Right) 

( -1.1) 

\Vang et a1 ill )00] proposed all image distallce llleaSl1reUH.'llt which tHk('s illto 

consideration both the spatial re lationship and the gray level relatiollship hetW(,Cll 

pixels in images Xl and }'2 is dennC'd by Equation 1.2. 

, .) ( ) '\"' .\1 S ,\",M .V (,I ,I) ( ,.1 .J) 
(7t; ,fl' ,1'2 = L.... i = 1 L.... j = 1 glj ,II - ,/ 2 ,II - ,1. 2 

(XI - X2rr G (XI - X2) ( -1 .2) 

where G = ( YIJ ) .\IS X.\lS is a s~'lllmet ric and positi\'e defillite matrix . Fllll d et<1 ils 

together with a derivation of G can be found in [UH]. Thc o rigilH1ll11dhod suggested b.v 

\ \ 'allg et al ill : 1~)()] is ver~' (,Oltlplltationall~' intensivE' a nd infeasible to lise ill real - tilllC' . 

The nwthocl proposed ill [HH ] solves this problem by rC'ciu c ing t II(' SPH(,(' cOlllplexit.y 

from O( .\12 S'2 ) to O( 1). and the t illle complexity froIll O(.H '2 N 2
) to O( J\I .V) for .\1 x S 

illHlgCS. The calculation of nIED bC'tweell images X I Hud X 2 cnll 1)(' cOllvert ed to 

til(' calculation of the traditional EuclideHll dist ance betw('cn U I alld u :.! as s hov;n 

in Equation -1 .3 . As s\lgge::;ted ill [191 ] to calculat e the I\lED betw('('n the input 

frallle image and the stored lllelllor~' image, both image::-; a rC' c(Jl1voIVl'd hrs t with (11(' 

COil \'011.1 t ion tClll pIa t (' K (gC'llemt('d from G , [I ~ll ]) as ill Eq 11M io n 1. I <111(1 t bell a 

standard Euclide<Hl distHl1cC' lllCelSUH.'lllcnt i::-; carri('d ou t 011 t 11(' two I'<'Slllt illg imnges 

u I and u~ llsing Equation .. 1. l. 

T-l 
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where I is the input image and 

0 

0.12 

K = 10- 2
. 0.29 

0.12 

0 

4.3. BUIL[)ING \"IS L'r\L MSAlOrUSS 
OF' VIJ)SO STHS:\i\JS 

(XI - x 2fG(Xl - Xl) 
T 1/,) I j'I (Xl - X2) G -G -(XI - X2) 

T (Ut - U2) (UI - UJ 

U = K * I 

0.12 0.29 0.12 0 

--1.71 11.98 4.71 0.12 

11.9 30.-l6 11.9 0.29 

-l .1l 11.98 -l.1l 0.12 

0.12 0.29 0.12 0 

( -1.:3) 

(·1.-l) 

Tables --1.2 and --1.3 show the normalised outcome per cluster kevfrnll]( ' WIH'll COlll 

pared to the original input images. For each ke.\'frallle tile closest llwt cil to a ll (,\('llIel1t 

in the input set would be 0 and the least matching would be 1. \V1Ie!l look illg (\t tlt(' 

results shown in Table --1.2 . olle can sec that the outcollle is fairlv accurale. TIl<' \'<1I1]('s 

in bold font show the best Input - Cluster match. ~ l oreowr, cOllsiclc'rillg I he eight 

input images and the six generated clusters, th('t'(' are two keyframes (Cl uster () Hnd 

Cluster 1) which have a mix of at least two images as seCll ill Figure 1.:3 . Having said 

that. the closest two input images for these clusters a rC' Inputs and 2 ill the cast' of 

Cluster 0 and Input 7 and Input 2 for Cluster l. However In])111 2 has a closer lllHtch 

in Clustcr O. This shows that en.'n though t he Kc~'frame has ill t ('rlacecl images ill it. it 

is still a good tool to idplltif~' and cluster input images afte r training. l1 esu its ror the 

gre\'scale version shown ill Tables -l.3 prO\-idc similar. if !lot, sOIIl(,\\'I1<1t hetter \'('sults, 

thus reinforcing the original assllmption that lIsi11g greyscaiC' illmges will giv(' liS p;oo<l 

[csnlts for the application. 

4.3 Building visual memories of video streams 

Taking inspiration from \'ideo segmentation tcch11iques. this SCctiOll looks Mall eHiciC'llt 

lllethod for learning and uH,'l1lorizing <-lll CllvirollllH'lll ill real-ti llle' hOlll (\ S('quellt ial i11-

put video strealll in a v('r~' cOllcisc clud compact lllalllH'r, prinl<lril~ ' ill\('lI<1t'd [or robot 

lInderstallding of its 0\\,11 ('m'ironment and possibh' localisi:1tion. \ 'H rious \' i<l('o sq!;JIlC'll

tatioll mrthods ('xist in literat1\l'c [1U2. 1 72 . l!J:~ . I!) 1. L!J.ri . I !Jb. I !li . 1 q~l (111 <1 SOIll(' e1\'(' 

('xt ensin' l.\' \,('\' ie\\TcI )D9. 20n. 2()1. 202. 2m, l!J,']. The ge1H'l'<lIi.\' (1('('(' pt ecl COllt('llt -

T.) 
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ClusterO Cluster1 Cluster2 Clus ter3 Cluster4 

Inputs 

1. 0.711.5 0.690-1 0.0000 0.9437 0.9929 0.619 

2. 0 .2233 0.3-173 0.6953 0.6567 () . 57-1-1 O.(j;307 

3. 1.0000 O. "0-11 0.7510 0.7G3-1 J .0000 0.0000 

-1. 0.-1953 0.6521 1.0000 O. 112 0.0000 0.8J 60 

5. 0.6 -1 0.5533 0.90 3 0 .0000 0.7525 (). (j2f)() 

G. 0 .. 5 92 0.3626 0.7110 0.8017 0.5509 ().G77J 

7. 0.-1992 0.0000 0.5915 0.-1606 0.6 l50 (U7G7 

0.0000 1.0000 0.9 1 ~1 1.0000 O.71G1 1.0000 

Table -1.2: :\ormaiisrd similarity scorr - colom (O-IlWX. 1-lllill) 

ClusterO Cluster1 Cluster2 Clus ter3 C lus ter4 Cluster5 

1.0000 0.-1 "32 1.0000 1.0000 0.0789 O. 96-1 

0.·563G 0.56-13 0.-1961 0. 121 ) 0.:3015 0.0000 

0.976-1 0.0000 0.770 0.7931 0.5-193 O. 632 

0.7273 1.0000 0.66 5 0.0000 1. DOOO 1.0000 

O. "912 0.93-16 0 .0000 0.:3-10-1 O. ) )5 0.9260 

0.0000 0.6595 0.659-1 0.5-122 0.6397 0. ) 127 

0 .. 5.57·5 0.52-l2 0.52-17 O.325-l 0.0000 0.50 11 

O. -') " 
1- 0.9695 0.5223 0.1393 0.7-158 0.8221 

Table -1.3: :\ot'lnnlisrd simiL-uity SCOl'(' - gr('ysC'Hlt' (0- 1I1<1X. I - lllin ) 
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based video segmentation approach is to first break up thc vic\co scqucnccs into tem

poral homogencous segments called shots. then to cOndCllS(' th('sc seglllents into OIl(' or 

a few representative frames com monly referred to a..<; kcyfralllcs. Hnd fillally to organise 

similar shots based on the ke~'frames or other audiovisual dwract('ristics to COIlSt ruct 

a compact and hicrarchical representation of video for hrowsillg awl rdricval [172]. 

KF KF KF KF KF KF KF KF 

~ ~ ~ ~ ~ ~ ~ ~ 
came~ l ~I __________________________________ ~ 

Came~ 2 

Edited LI -----t -t "----------' 

time 

Scene Change 
(Cut) 

Scene Change 
(Cross Fade) 

Figure -1.5: Keyframes and scenC' challges in "idco segll)('lltatioll 

Figure -1.5 pro"ides a graphical description of k('~"fralllcs (a bbn' ,"iat('d <IS I"':F ) awl 

scenc changes. Having an edit('d video from two Cc1nl('ras. thc t\\'o most COllllllOIl S(,(,I1(' 

changes betwecn call1eras are generally cu ts and cross facies. III C'1l ts t h(' change is 

abrupt whereas in cross fades the transition is carricd out o\'er C1 nUlllber of fnuIH's 

with Olle' scene is fading out whilst the othcr is fadillg in. The simplest wa., ' of Slllll

marizing a "ideo sequence is that of grabbing a ke.d'rallle CWI)" X Illlmber or frmllCS. 

Another more ela borate 'v\"l:ly of providing kc~rfrallles describing variolls sc('ne changes 

is to first detect SCClle changes or change of evcnts ill a "idco SCQIl(,l1CC Hnd t hell tIt(' S('

quellce is tra\'('rsed again to select best keyframe reprcscntiltg each extracted shot [I ~ ) f) ] . 

The main limitation of such methods gcncrall,v is tlwt the." cantlot St'guH'llt alld all

notate in real-time and aSSUlllC that the video is stored 1-1nd call 1)(' post -processcd . 

~Ioreo\"er. some algorithms can also be vcry cOlllPutatiollally itttellsive [2m]. Cltatzi

giorgaki alld kodras [1%] sugges t a method for rcal-timc keyframe ('xt rae( iolt Imsec\ 

011 a sequcntial search algori thm that hypases the process of telll poral vidco segllleu ta

tion. \' ga 11 and Li in :203~ highlight four main challetlges in image/ vid('() seglllcllt at iotl. 

The first challenge is how to bridge cff('c tivel~' the sC'lllantie gap bel W(,('ll low-It'wl attd 

high-level features. The second is how to yield acc1lI'Hte seglllt'lltatioll i1lld how to 

ext ract accura tc llllL'iks. The third chall('nge is that of working ill rcal- t illl(' wi t hall t 

com protttising accuracy and the fourt h is t he need to devdop a ppropria te vnlidat iOll 

and ('\"alua tiOll i1 pproaches. b,'v' providing a COllllllon <In! a basc nlld b\" dcveloping ,U] 

evaluatiolt tcchuiquc. \'gall and Li sta.tc that most t'Valll<ltioll lllC'thods ill the t'lllTCtlt 

literatlll'(' cUl' ba.-ed Oll the computation of thc scorcs bdwcCll tll(' ground truth llla~k 

clud the segllH'l1ted result. It is ['('asOlwhle but not sufficicnt to addn'ss the S('gllH'llt,\-

ii 
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tion qualit~·. Gao et al. [202] state that the usage of machine l('aming (cchniqu('s has 

proven to be a robust methodology for semantic scene anal~lsis alld tlndcrst clllding . As 

neural networks are capable of learlling the ch aracte ristics of various video seglllcnts 

and clustering them accordingl:v, in this section. a neural tl('twork brlsed tC'Chlliqll(, is 

developed to segment the video sequence into shots autolllC1ticClIl.v and wit It H millill111111 

number of user-defined parameters [172]. 
As highlighted in Section 4.2.1. G:':G has the lllCl in advHIl(ag('s of growing ove r 

time. cater for adapti \'e cl usteri Ilg and all toma ticall.\· d c termilH' the IItllllb(' r of c11 1st e rs 

based on the characteristics of the data. The way C);C is llsed ill this st11dy hears 

SOllle resemblance to \\.'eU-knO\vn video anllotation and seglll(,ll tat ion met hods [ :W:~ ] n Ild 

[204]. ho\\,('ver with the main advantage of having s('gll1('ntation evol\'(' Cl lltolllHti call)' 

ill real-time. Video segmentatioll techniques generally look for specific changcs ill (11(' 

video segment such as scene challge or cross fad i Ilg \wtW('(,J I S(,C'I1('S. TlJe~' a lso 11Sl' 

morc complex segmenta tion algorithms such as graph-cll ts and eigcll-based tlH't hods. 

~Io reover. in video segmentation. a keyframc is generally (Il' fillcd a.<; a frall1l' ill the 

time line where something new appears . Also, such a lgorithlll would be iutcn's (ed ill 

C'xt racting specific fram es in the time- line. In this casc, ra tbe r tl1H11 jllst localing n ncw 

appearance in time. the main aim is to extract knowledge frolll (Ile visual illPut Hud 

store it compactly in a \-vay that both humans and robots can US(' it to gR ill kll owlcdg(' 

of their envirolllllent. Csing G):G cach incoming fram C' contributcs to evolve the \'is llal 

memory as opposed to j us t gra bbing specific frames as clone ill video s('glJ1cnt i-l t iOll. 

This would evolve in a clustered gra ph with nodcs representing silllilar S(,('J)('S. TIl(' 

generat('ri topological graph will link nodes based Oll si lllilari t.v rat her t hall t ('Ill pora l i (\'. 

Therefore. for thi ' applicat ion. a keyframc call repr('scll t m ore than onc fmIll('. CO ll1 -

pacted together and ~'e t still representative of the input visua l illforIlIHtiol1 as showlJ 

ill Section 4.2.3 . 

4 .3.1 Visual m emOrIes U SIng GNG 

In robot \'ideo 5t rPH ms. Cll ts arc generaily not expected , bu t raJ hcr H !engt Ity cont illllOllS 

video sequence is prO\·icled. This is eWll more so if robots are no( sharing inforJ1wtioll 

and each robot is \yorking independently with 110 inpl lt t'Olllillg fro]]] other sources. 

Scene changes t herdore can hapP(,1l ov(,1' a very wide spall of fra 1ll('S. Til is 11('(' .'lsi t M('s 

the l}(,(,ci of a continuously adapt able topolog~'. It is t herefor(' slIgg('sl<'d t Iw ( r<1 (her 

than storing images \\'h(,ll there is a drastic chHnge as suggesU,d ill [1(;:)] aw l o(lH'r 

\yorks mentioned earlier ill Section 1.2 the propos('d method Hd Hpts il11;-1f!;t's wit hill 

lllPlllory through a set of evoh ' ing nodes within a ll etvvork . Following frolll (11(' bio logicrd 

inspira t ion c1esrri bed in earlier sect ions. the proposed Hlgori ( II III docs !lo t prod lIet' <1 

pNfC'ct photogrclPhic lll(,lll()1'~·. but rather retaillS imagC' rC'prcsc llt "1( iOlls. which cOllt ai !l 
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meaningful information about the explored environlllent. This choicc provides sC'VC'rnl 

advantage ' when implemented for a robot. Storing and transmitting a video st reHIlI 

requires a large alllount of mClllor~' and a high bandwidth, usuall:v scarc(' 011 a rohot. 

For the robot application, fceding a random sample from rl stored sequ(,llcr (as is 

generally done in unsupervised training trdmiques) is noL possible. 

A s,vstem which is capable to learn, adapt its knowledge, accepl a continuous vi<i('() 

stream and process it in real-time is required. Kirstein rt al. [GG] state Ihnl t IH' C:\7G 

was originally cipsiglled for offl ine trail! ing. t hercforc an adH pt HI iotl for I II(' C::\ c: 10 he 

capable of accepting video ' treams was necded. In [23] the cas(' of USilll?; G\'G Oil .. \ 

robot streaming sequential images from its C'llvirolllllcnt was studied aIld H solutioll for 

sequential streaming as opposed to standard neural lletwork tn-lining tc'chniqllC's was 

provided . 

Figure' .J.G: GCllerated images framlllovie trailers (Inceptioll alld Rnugo ). autulll .. 1t icalh' 
memorispd and sorted into clusten3. 

G\'G's performance was initially tested with tho strllldHrcl sct tlp alld vid('o S('

CjlH:'llC'es (1\'ailable all the internet and sequellces captun'd b~' t h(' robot (,H llleras . For 

t hes(' experimC'nts. (\ n('\\' nociC' \\'as int raduccd ill t hr llctwork (I\'('r.\' 50 frail H'S 11 P I () H 

1ll{;L'\:inlUlll of 20 llories. \'odes "'hich becolllc isoh~t('d ar(' l'(1]llO\'(ld . Figm(' U) sho\\'s 

the Olltcollle obtaillC'd whe11 fpedillg movir trailers to thr G\'G. This ,,\ins thell rep('nt('d 

llsing all inpl1t stream from the robot ('Hill en! which Wets s('t up to (,Hpll1],(1 (\ \'i<\(>o of 

the la lJorator~ '. Figure 1.1 shO\\'s the O ll tcOl1le for two of the 1l\(' llloriscd i Ilwges ( ri gh I) 

i::llongside an original frame imagc (lcft). Figur(ls -l .t and l.D silO"" the diH'(I]'(I]l('(1 ill 

apph'ing G\'G directl~' all two video streams. olle which is slllooth <111<1 t h(' ot h('r which 
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Figure .t.7: Original framE' image on the left atlclmelllorised frrllllC' illli"lge Oil t ]H' right 

Figure .t. ~ : Clustcrs formcd [roIll a smooth movlng (,Hll]('J"() 

is 1ll0\"E,d swift l~' and stoppcd at fixat iOll points. The smoot h 1ll0\'Cl1I('11 t was ill t cnded 

to represellt the com'cntional way of fillllillg or grabbillg a video. Thc lllovcment of the 

camera was ill a \\'ay to mimic hUlllan fixations, basically looking at a plac(' alld locking 

Oil it [or some tillle if it is of interest. looking randomly sOlll('where elsc, agHin locking if 

s('('ing something of iutcrcst. looking back to original pose ane! looking <It random when 

llothing of interest is found. This could. in a ,\·a.\', be cOllsi(krcd as all "('diu'd" vi(ko 

or a movic dip with s('\'eral shots takcl1 from various <1ng1cs. gain. as clOIH' ill t 11(' 

filming indllstr~'. having sllcidelll~' changing shots grabs ntt('lltioll. Th(' n'slIlls oht HillCd 

!J\' J1lO\'ing the camcra sllIoothl,' \'erSllS rapidly with vcr.v elist inc{ lookillg direct iOllS 

W('l'e as ('xppctcci. A lllcLximum !lumber of 20 nodcs w(,re erc'Hted ill l hc G:'\G. The 

s!llooth lllo\'ing CCllllera G\'G Olltput r('sulted ill the 20 nodes of wry silnilm ('onse( 'u

ti\'(' images tlH1t arc all merged iuto a sillgle cluster as showl! ill Figl1l'cs IX TIl(' C.\C 

<'\0 
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Figure -1.9: Clusters formed using a r;:\llc!Olll / fixatioll IllovlIlg Ultl}('J"H 

fed with frames from the camera sweep with a more raudolll 11lOV('Ill('nt evolved iuto 

3 dusters a.s shown in Figure 4.9 . It can be noticC'd that wlt('l} H vic!<'o sweep COII}('S 

froIll a smooth mo\"ing camera. due to the adaptability of tile C:.'\lG, the !lodes have 

time to slowly adjust and becoll1C' relatively similar ill Oil(' big dust<'r. However, ilS the 

movements become more rapid. so does the element of ralldOllllH'SS. This I('ads to the 

creation of \"er:-' distinct cOllsecutive images leading to hdt('t" clllst<'ritlg lH'rf"orIllHllC('. 

The G:\"G would \vork relativcl~' well if the camera \.\'as affixed 011 (\ persotl 's 

head (C'.g. camera on security guard ). Even if this solutioll wa .. ') impl<'lllelltl'd as is . 

as a possible sol1ltion. having a robot continuously lookillg Clt ralldom at the ('llvirOIl

lllent is not ideal for various reasons . Extra hardwarc alld interfaces wOId<! he n'<lllin'd 

to rotate the camera. Also. this would lead to morc mechallical mOV(' lllellt implyillg 

faster power depletion. which is a vel"\' im portant and liIll i ted resource ill il robot. D11e 

to the sequcntial nature of the robot's visual data acquisitioll, sOll1e mo<iiiinll iOlls were 

r quired on the G:\"G lcarning lllC'chanislll ovcr the proposed methodology illdicHt('d in 

Section 4.2.1. This was initially tested 011 lllovie tn1ilcrs alld thcll Ollto actl\al robot 

video streams as will be further seen ill Section 1.3.3 : 

• As also highlighted ill [65]. during testing it \Vas noted that the best lllatching 

unit (8:\IC) is the sallle one for a numher of consccutive frames which (\1"(' wr.\' 

similar. In this case it is gooel. howf'Y<'r one nceds to br caref1l1 ltot to o\·crtraiu. 

If this happells OI1C possihle optiOll could be that of skipping input fra11les. 

• A fast learning rate is a lso required. The B:\[C is 1I11Hk to cOllwrge to thc aclllClI 

input \ 'e r~' ql1ickl~" by adding a large proportion of the error I)('t W('l'll lll(' inpllt 

and the B:\IC This basicallY sets the B:\Il" to the iupul illlage. 

• Thc secoud B:-.rC (for the same frame) is slight1~· adj1lsted. This lIH'nllS tll a t 

\\"herea,,') the B:\1C is lllHde to convcrge vcr,'" fast ( 907c or elTor) , the s('cOIld 

8:\1 C is onl\" made to conwrge lllinimall~" (+ 17c of error) . Til is {\ llows for Illon' 

information stmnge \\"itbill the SHllle dustn, rathN thall Il r1\'illg s('v('ral nudes 

with the SHUl(' value within the clustf'r. 

~J 
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• A new node is inserted at a relatively fast rate (e.g. every other iteration). Thus 

allowing for a large number of nodes to be used from early age and new nodes 

are inserted soon after isolated nodes are removed . 

• For the short term memory case (Described in Section 4.3.4)' an extra step to 

remove 'old' clusters whose nodes do not contribute to recent information was 

included. 

4.3.2 Parameter tuning 

Several parameters need to be set in GNG. Although the way the input video is de

signed (e.g. the number of cuts and camera changes present) and the processing power 

available on the robot influence the parameter selection, a general trend for such se

lection can still be defined as will be described next. A good compromise between the 

number of meaningful formed clusters (keyframes) and performance time was required. 

The most crucial factors affecting the graph real-time performance are the maximum 

number of allowed nodes, the insertion rate of new nodes, and the maximum age al

lowed for edges between evolving nodes. The more nodes present in GNG, the more 

processing intensive the algorithm becomes. For this application, the parameter and 

maximum node number selection criteria consist of the ones resulting the largest num

ber of meaningful non-repeated keyframes obtained in real-time on the robot. To select 

the parameters a video sequence1 suggested in [195] was used. An initial experiment 

showed that an edge age greater than 20 would result in one big cluster. On the other 

hand, a too small number would remove nodes too quickly. For this video sequence, 

the edge age was set to 4. 

Maximum number of nodes 
New node every 

10 20 30 40 50 100 200 500 
X input frames 

2 3 3 5 6 7 12 14 16 
4 3 4 8 8 8 10 11 11 
8"' 3 4 5 7 6 8 8(110) 8(110) 

16 4 7 8 9 9 9(52) 9l52T 9\52T 

32 2 2(13) 2(13) 2(13) 2(13) 2(13) 2(13) 2(13) 

* processing 16 20 25 27 28 45 51 51 
time (sec.) 

Table 4.4: Parameter selection (Numbers in brackets indicate the number of nodes 
reached when the number of final nodes is less than maximum number of nodes al
lowed.) 

Table 4.4 was generated by keeping gain coefficients constant and a maximum edge age 

1 http://www.youtube.com/watch?v=mSkP43A-LQ4 
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set to 4. The insertion of new frames was varied at powers of base 2 and run over GNG 

with set maximum number of nodes ranging between 10 and 500. Gain coefficients for 

the best and second best matching units were set to 0.3 and 0.003 respectively and 

/3 was set to 0.005. To find out the best combination in relation to time, the video 

images are made available in a sequential manner and the GNG algorithm processes 

them as quickly as the robot processor allows. The robot processor used was an Intel® 

Core™2 Duo CPU T8100 @ 2.1OGHz x 2, 3.9GB Memory running Ubuntu 12.04 32 

bit. The numbers in brackets indicate the number of nodes populating the network by 

the end of the video sequence. These are only displayed when this value is less than 

the maximum number of allowed nodes. The video sequence is 30 seconds long, when 

run at 30 frames per second. This means, that given the processor on the robot, the 

best combination for real-time operation / useful cluster outcome would be: 

• number of nodes: 50, 

• new node every 16 input frames, and 

• an edge age of 4. 

Allowing more than 50 nodes, each consisting of 80 x 60 RGB values, would compromise 

real-time operation. The GNG graph and keyframes generated using the above settings 

are shown in Figure 4.10. 

The nine generated visual memory keyframes were then compared to the 25 MPEG

B-frames with the values provided in Table 4.5. It can be noted that most MPEG 

keyframes match the visual memory keyframes with a very high score (~O.O). The 

worst match occurs on MPEG keyframe 15, being most similar to Cluster 7. In this 

case, the best matching score obtained is that of 0.4616 which is much higher than the 

ideal expected 0.0 value. Intuitively, one would rather match this keyframe to Cluster 

O. Although from the values obtained, Cluster 7 appears to be the least performing, 

one has to note that in the MPEG frames, no keyframe appears to visually match 

Cluster 7. 
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Figure -l .10: Generated G\'"G graph and COlT('::>pollding kt'.d"nlIlH'S 
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4 .3. 3 R obot video streams 

-1.3. BU/LOINe VISUi\L ,\/El\10HlPo8 
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As suggested in Section -1.3 movie trailers have scene and CHlIlera changcs, uSllnllv 

a brupL which would generally imply that a llCW duster reprc'scllI illg (\ 1l('W SC('Il(' wi II 

start eYoh-ing within the network. However. inputs frolll robol camcras do 1101 lInvc 

sllch changes and a way to test the above method was lleeded. Vidco sqJ;Ill('llt a( iOll 

is application oriented so it is very difficult to mea::;ure H givell segmcllta( iOll qJl(dit~' 

based on a uniform crit er ia [203] . 

Following the results obtained ill Section -1.3.2 . in this s(,ctiol1 111(' prilct ic ;dil~' of' 1 he 

method proposed is tested to see how it compares to a realli[e robot sitllilt iOIl by reedillg 

a video sequence obtained from a robot platform navigating t hrollgh a corridor. 11 

i ueloor navigation and localisation testillg dataset avai la bk 011 you ( UI)('2. Tit is cOllsis( s 

of a camera fixed on a mobile robot moving along corridors. This video s( J'( 'il lll was 

fed ill the algorithm consisting of a mcL'\:imum of 50 ll()(ks. Tltc GO gC IH'rntcd llodes 

were automatically divided into four clusters wil h Figure -1 . 11 sllUwing t 1)(' four cllls(er 

keyframes. 

Cluster 0 Cluster 1 Cluster 2 Cluster 3 

Figure -1.11: Corridor h.q'fraUl('S 

The next step ill\'olvcd the usc of these thes(' keyfranl('s b~' the rohot ror localisat iOIl 

purposes. A check. batlC'd 0 11 the comparisoll principle (ksnii>ed in S('cI iOll 1. 2.:3 . 011 

whether the robot is capable of identifying ill \\'hieh regio ll of t he corridor it finds 

it self in is ca rried out. In this case . the testing c1lld traillillg dHt ,I COllI(' froll1 t ll( ' smtl(' 

video source. 11owe\-er. since frames are skipped to m:oid overt rainiug (as suggested ill 

Scction -1 .2.1 ) sllch skipped frames can be employed for tC'sting. ~I()r('over , it is C1ssulllcd 

that the robot will navigate along the corridors in a rclH( iVC'l.\' similar wa.v eHcll t illle . 

Figure 1.12 shows the outcOllle. In this plot. the x-Hxis represellts the ('mill(' ItllJllber 

of the in put ,-ideo stream Clnd the y-axis represellts the CO III parisoll va It 1(' lwtw('('1l the 

input frallle and the matching keyframe . Each illput J'rculH' was cOlllpared to nil fum 

kcdrr1llH's and t he Best :\ fa tching L ni t (B:'1'C') was 1l0U'd. The proposed HId hodolop-y 

successfully mallages to iclentif:v the best ke.vfra lllc based 011 the Cllrrellt rohot posit ion . 

Althougb tile ground truth call be reIHtivcl~' {'lIZZY in (his ('(-1S(' (dIll' to the hU1lll111S ' 

sllhjC'C'tiH' beha\'iour in st c1ting consistently in which pmt or I he corridor robot is [2m]) 

2 htl p: / / \\·W\\· . . HHl ttl be.com / watch '!y= L:3R i F-VASe 1 
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• Cluster_O 

• Cluster_l 

Cluster _2 

. Cluster_3 

Figure 4.12: Comparison of a node with C1 llCW incollling vidco st rC,tI I \. The lower t Ite' 
value. the more similar the illcollling illlage is tot hc lllclllorised i IllHgC. 

Figure 4.12 shows that the B\IC (selected keyfrallle ) for the illput frame IllHtchcs are, 

more often than not, correct. This is furthcr reinforc(,d hv th(' [(1ct tltal Ill(' Illatcltes 

arc consistent for consecutivc frame which is thc case for C1 robot Il rWip;C1t illp; mOllud 

corrirtors. This allows for out liers to be easil.\' identified and possihl .' · COLTlTt cd. 

4 .3.4 Temporal memory 

As alread:v discllssed in ection -1. 1. human lllemory can 1)(' dividcd into short t CrIll and 

long term IlH'llIories (ST:" 1 and LT:"I). This sect ion propos('s <1 lll('( hod \\' It iclt elldows 

robots with (such) JllClllOr~' capabilities. :"Ioreovcr. a lime factor to wltCIl the IIH'llIorisl'd 

scene took place was incorporated. again stored in a compact r('prcsclIt al iOIl. 

III this implementation G.\G is used to gcneri:lte the ST\1 frolll \\'hi('h infortllC1t iOIl 

is pxtracted to feed a linked list populating th ' LT)'L Th(' Teillporal LT~d would p;iv(' 

us a rough OC'(,UlTC'llCE' indication of tIw sCC'lle rclat ive to all i 11 i (illl st or<lge pil(1~l'. T:-'! 

shollld onl.\" contain recent lllclllor:v. On(' WHy of lllH i 11 t H i ni ll )?; ST:\! is to \'('!I10V(' !lodes 

(which arc) not contributing to recent illforlllatioll. This 111('(1I1S t b ell llodes which 

have bcC'n st a t ic for a long period of timp are relllov('d frOlll I he Ill'! work. These free 

nodes can thus be inserted in a lllore dYllalll it clus«'r of t h(' B('I work 10 rd\('c( h l'l tel' 

t he incoming visual st rp1'l.lll. Tlw i II formation wi thill the 'old' llodl'S how('v('r lUllSt 1)(' 

retained. This is \\"herc LT:,1 COIllCS in. For LT:"r, 1:1 :-iu1'l.psllUt of thc dusters is takcll 

clnd stor('d as a ke~"fralllc. The lllcan of the cluste r is caklllat('c\ <11\(\ (ltl' output is 

one [('suIting; image. ome infc[('llC(, 011 thc illlportallCl' of clt ls(n (,OIl[('llt call nlso 
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be inferred from its age and size when generating keyframes. A large cluster would 

generally indicate that there are several nodes holding similar information and that the 

cluster is relatively young. Each time a node is updated, its age is reset to o. Therefore, 

it is expected that reoccurring scenes will remain in the STM. On the other hand, less 

frequently occurring scenes stored in STM nodes will stop being updated, however 

their age will keep increasing. Since similar nodes will form their own cluster, the 

overall cluster age would represent how 'old' the information within that cluster is. It 

is argued that clusters with an average age above a certain threshold could be classified 

as containing static data and therefore its contents can be transferred to LTM, leaving 

space in the STM for new, more dynamic information storage. Figure 4.13 shows some 

of the clusters obtained when feeding a movie trailer (Up in the air)3 to the visual 

memory as suggested in Section 4.3: the subset of the generated clusters and the 

keyframes obtained as their means. These keyframes further reduce the information 

used to generate the LTM images. A video of the evolving GNG can be watched on 

youtube4 . Figure 4.13 merits some comments: 

• Cluster _0: The cluster contains two virtually identical images and in this case 

the keyframe has a very sharp image stored. 

• Cluster_I: The two images in the nodes represent different scenes, however, 

they are very similar. The keyframe in this case is somewhat blurred where the 

actors appear however there is still a good understanding of the scene. 

• Cluster~: In this case, the cluster contains very sharp images of scenes of 

the movie trailer however this provides us with a blurred keyframe. Still, some 

information can be inferred from this. By time, links in the cluster will start 

breaking up due to the age constraint on the edges. 

• Cluster _3: is the youngest cluster with lots of similar nodes. this again provides 

a sharp mean image. 

• It can therefore be deduced that ClusteLO and CiusteL1 are older than CiusteL2 

and Cluster _3. 

As shown in Algorithm 2 the temporal LTM works as follows. At every X number 

of iterations the oldest cluster within the GNG is identified and its average image 

taken. The cluster age is calculated by summing up and averaging the age of each 

neuron within its cluster. This is compared to existing images within the LTM. If a 

very similar image is found the same node within the LTM is updated and the last 

node in LTM is linked to this most similar node. If not a new node will be created and 

3http://www.youtube.com/watch ?v=e7k6Fw XJhNk 
4http://youtu.be/vISLJWQvI5M 

90 



CHAPTER -4. VISLlL .UEMORIES 
-4.:1. BUILDING V ISU,IL I\IF.;I\IOIUE::i 

OF \ ' /D EO STHE:\'\/S 

Figure -1.13: h:eyfralll('S of the Gem'rated Cltlsters 

Ii nked to the last node. The temporal link would gi W Hll iJld iC(l t iOIl Oil buy\, C J lIstt'rs 

\vere formed in time. The oldest cluster and all its llo(ks arc deleted froll1 the C:\C 

( T\I) thus allowing for new data to be learued at a lllllCh ['askr n1l('. g i\'('11 t hHl III HIl~' 

morc noues arc available. Figure -1.Ll. shows the resultillg LT.\J whilst til(' l11os1 I'('('('tlt 

illforlllatioll rcmains within the ST:"I as Sl'(,11 ill Figme 1. J G. 
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clusterO 

clusterl cluster2 

Figure 1.15: hort Tcrm :-'Ielllor\' 

4.4 Summary 

This chapter prm'ided a method whcrc robots dficiclltl,Y kHru Hlld Illclllorize their ('11-

vironment ill rea l-timc frol11 a sequcntial input vic\eo strealll into <1 Hexihlc gmphicHl 

representation using a Growing :'\eural Gas (G:\'G) nclwork, The S,\'stCItl \vas ((-stet! 

Oll various video st rcams, oot 11 lllllllUfacturec\ (lllOvie t r;-l i leI's) alld rmv (['rolll rohot ), 

Experimclltal rcsults show that thc proposed lllcthod suits its illku<ied applic(ttioll Hlld 

a ver~' concise n't meaningful represelltatioll of illPut della is obtaillec\, Th(' proposcd 

s,\'stem is feel v;ith the scaled omv11 raw imagcs, \\'hilst cnrr,\' illg OlIt cxpNilllClltS it \\'11S 

llotrc\ that if the 1ll0\'ClllCllt of thc robot is 110t s11100th. S('C/ll('n('(' frHIlH'S capt 11I'illg I he 

samc SC(,l1(, will gCllernt(' a different ElIClidcnl1 distc1llC'(' tllliS icc\(ling 10 Ill(' tCIl<lCtl( ',V 

of g('ncrating multiple clusters of the same scelle \vhich alt hongll Itot (Tit ical ('(\1\ bc (1 

tllliSrlllC'(, at timcs and [('an's spacc for further Hlgorithut ('llhHIl(,(,II1(,l1t, 011(' possihle 
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CHAPTER 4. VISUAL MEMORIES 

Algorithm 2 Generating Temporal LTM 

while (Stopping Criterion = false) do 
if (current iteration is a multiple of X) then 

- Identify oldest cluster within the STM 
- Produce cluster average image (keyframe) 
- Compare to existing images within the LTM 

4.4. SUMMARY 

if (very similar image node found within the LTM = true) then 
- most similar LTM node is updated 
- Last LTM node is linked to this most similar node 

else 
- A new node is created 
- Linked to the last node 

end if 
- Delete oldest cluster and all its nodes from STM 

end if 
end while 

way to overcome this is by using features which are position invariant and video stabil

isation techniques such as those suggested in [9]. This however might compromise the 

real-time capability and also leads to a higher processing time due to more complex 

computations on the incoming video stream. 

As will be seen in Chapter 5, this work is also extended to a team of robots col

laborating together and sharing visual memories focusing on the capability of robots 

learning from each other with the final aim of having robots working together as a 

team for environment monitoring and learning. 
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"\-Fe iln: drOlvning ill information but st<lIved for knowledge." 

John "nisbitt. A.mencan author- and public spIllk !' ,. (JDJD - ) 

Chapter highlights: 

Combining work presented in earlier chapters, this chapter presents 

an actual multi-robot platform implementation in which robots 

operate in a modular fashion, sharing and merging information, thus 

creating a more holistic picture of their dynamic environment . 

M ulti-Robot Information Fusion 

As working elwirol1ments becolllc larger and tasks to 1)(' pcrforJll('d I)('('oll](' ilIon' COII1-

plex. the probletll of capability limitation of c1 sillgle robot I)('('olllcs ilIOn' ohviolls [:W;) ~ , 

hence the n cd for multi-robot interactioll. This require's robots (0 1)(' <1hl(' 10 slime 

illformation cOllling frolll variolls sources. \lV-hcn data arc shan'd, ('\,('11 (!tough i( is 

not exactl.\' the same. it provides a llseful starting point - Cl prior [~~ ] " III (\(Idit iOIl, 

as robots continue to perform their tasks and gather (hci I' d<\ t n, I he (111<11 i 1.\' or prior 

iuformat ion improves and begins to reveal the ullclerlyi II!!; patt NilS <llld corr('l<1 I iOlls 

about the d eplo.\"ed robots anel their ellvirOlllllents [2,']. I T]litt1flte].\;. the' 1l1l<1I1( '('d fllld 

complicated nature of hllma n environlllcnts CClnllot 1)(' sYl1thesized with (1 lilllited sc't 

of spccifications. but requires robots to systematically share dell fl and build Oil slwred 

experience [2S]. 
The pre\'ious chapters describcd how robots call 1)(' llsccl to perceivc nlld gai1l k1lowl

edge about their t'uvi rolllllcllt. Tilis chapter prcseuts lllct huds to make robols opcnlle, 

share and combillC' information succcssfull.\', within their (,llvirollllleJ)I, bllSl'c! Oil Illidt i

robot s'\'stcm architectures. coordination and ('oopemtioll 1}l'('\' iOlISh- discussed ill Sec

tion 1.5. \\"hib.,t keeping lllodulclrity of sensors, i-lctllHtors a1ld proC('SS('S. hot h 011 t 11(' 

robots themseh'cs and also those scMtered within the ellvirollIlIl'Ilt, illfortlwt ion fusioll 

techniques \\"cre studied and dcwloplllellt frallw\\,orks Hre <\l1al.\'s('<I . \[ethods 011 how 

all the acqui red inforlllatioll is fused so as to obtain a lllon' aCC'llrate awl g lo\)ill pict lire 

of thc enyirOll!llCllt and also lllcthodologics to filter out thl' U('('('SSflr.\· illformation <lnd 

avoiding informal ion owrloacl is prcsented. 



CHAPTER 5. ,'JULT/-ROBOT INFORMATION FUSION 5.1. ROBOT PLATPOHM INTFX:U,\T ION 

5.1 Robot platform integration 

Based on the application . described in Section 1.2.1, security operators ,He ill(")"e(lS

ingly interested in solutions that can provide an a u tOlllnt ic ullclerst alld i llg of pot cu

tially crowded public environments [206]. R obots arc OIlly O1IC sc( of lillks ill " bigger 

chain. There is therefore the need to creatc a hetcrogcllcous illtelligent llllllti-sellsor 

platform. combined over a multi-robot / multi-agcnt SCell1"uio, so as to hHV(' smart tllOll

itoring of complex public 'cenes to monitor, understand Hlld illt('t'prct CO lllpleX ptlhlic 

environments consisting of: 

• human security guards equipped with sensors and SIlHut devi ce's. 

• mobile robotic platforms. and 

• fixed cameras. 

From the robots' perspective. robots should 1)(' a hlr to corrcc t I.v per('civ(' their S lll"

l"Oumlings so as to successfully operate within this bighly dYll<l.llli e ('llvirolliltellt; (l 1lc! 

this had to be taken into consideration whilst sCtt illg up t ilc robots. nnsed Oil tIl<' Ilullt i

robot platform introduced in Section l.3 . seen in Figure G.1 (SH IlIC HS F'igun' I .; ~ bllt 

repeated for clari t~-). a practical. robust and effi cient sol11 t iOIl for I ltc' ad 11<11 i III ple lll('ll

tation of this application was required. Solutions for illtdlig<' l1t in(('g ra t iOIl of s('nsoriHI 

information coming from different sourccs toget her wi th <'f["cct ive h tllltH ll - rohot ill (('r(lc

tion methods within the lllulti-human. multi-robot panH liglll are required . ~Ior('()ver. 

an effecti ve wa~' of coordination among robots, yisiOll S(,lISOl"S (llIei It III wIn g ila rds is ,1Iso 

required. As already mentioned in Sect ion l.l. robot s should 1)(' (1 bl(' t () o pcnl t (' ill 

thcir envi ronment. whilst ('xt racting information of tntc'rest, bot h HlltOtnHt i(,Cl IIy and 

all demand. by: 

• operating in a top-clown fashion through a ceutra l dil'l'ct iV(', ,)w l/ or 

• trigger bottom-up operation prompted bv illfol"l11C11 ion ('xl nH'tcd alld nnnl .\'sed 

from illdi vid ual robots. 

One of the main challenges in settillg lip the robots consists or lliwing r1 ('o lltplck 

platform which operates ill real- time. scalable over multipk ro bot plett r(mlJS Hlld Hlso 

capable to cOllllllunicate with other external systems. Thc vnriolls ('oill pouellts Cl v(\il 

nbl(' on the robots are lIsuall~r COllt ro lled by software llloduks dev('\oped lJ.\· dif!"erellt 

mauufacturers usillg diH'ereut prugrammillg languagcs. Thes(' componellts llWy abo 

usc c1iH'erent COlllllluIlication mE'chauisllls. Softwnn' lIlodulcs me nlso 1I('('d l'd to proccss 

S(,Ilsor information (lIld cont rol actuators to p erfo rm ('olll pllt cltionaL vision ;!lld cogni

tive tasks like plallning. wwigatioll and user intl'wC"lioll. As aln'Cl(I\' stnl('d. ('o lnpl('( ' 
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Encoders 
Sonar 

Laser 
IR 

~ Sensors & Actuata-s H Robot> Control ] . 

i ~----------------~----------------~ 

: Sensors & Actuata-s H~ _______________ R_obo_ t_N_Co_nt_ro_1 ______________ ~l· 

Figure 5.1: General Overview of a ~ Iulti-Robot Plc'ltJO l"m (sall l(, as Fip;me 1.:3 ) 

integration for real-time operatioll is of utmost illlportau("('. T IH' right dloic(' for the 

best suited development platform is still considc rcd as 0 11(' of the Illajo r h()t t 1(,11('("ks ill 

large scale multi-robot design especially due to thc lack of set sta lldards l207]. 

In the real world not all hardware/software is developed OJ} t he Si:lllle ["rH lll('vvork alld 

generally OIlC only' has control over oIle's own developmcIlts. The proposcd 1\1('( ho<iology 

allows for the integration of tailor madc develoPlll('n ts t ogC't It er wi t il ot h(' r HI r<',\( I.v 

existing frameworks. \\'hich as generally haPPclls. arc not I1cc('ssa r ily workillg Oil the 

same fralllework. As in this casc, it was nccessary to in t('r fHc(' soft.wa re v\'orkiulS Oll 

rcmote machines having different operatillg systellls. na illcl.\" LiIlI IX. Alldroid (t ilhld) 

and Windows. In this case data was transferred using TCP/ lP pro tocol over Et IH'rIlC't. 

Table 5. 1 shows the main compollents of e(1ch robot plat fOrlll reqlli red to op('rilte 

for the desired application. as described in cctioll 1.2.1. illlplelllcll ted at- Kingstoll Hill 

Campus ill August 2012. Each robot platform cOtlsists of C1 hardwa re Hrchi(ect m('. <1 

software dewlopment framework and additional equipm('nt reqllired to int('rfr1( '(' \vit It 

other existing agents ill the cllvironment. The hanlwHl"C' arc-hike( me is fur t 11('1" <1('

scri bed in Sections .3.1.1. A bstract Sect ion A .G. J 11 ighligll t s vmiolls soft warc c\('wlop

tlH'ut and middlcwarc frnlll('vvorks available. frolll which t h(' preferred Illet hodology fo r 

the robot platform \\"as then selected and presented. :\ IOl"(,O\T r. fmlller details OIl the 

required setup for the robots call be found in Ap pendix D. 

5.1.1 Hardware architecture 

III classical robot design. robots w('rc dedicated lll<1chil1cS dcsig11('d t () <lclti('Vl' sl)('cific 

tasks and manufactured as onc single unit [:201'\]. As rohot pla t forms l)('cH11 1<' IHrge r. 
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Hardware Software Other 

• Erratic hase rahat ' • Uhuntu lilllLx Wi-Fi COllllllllllic;-1t ion 

Kinect cameras ROS 
ov('r TCP l IP 

• • 
• PC webcams • OpellC'v 

• laser scanners 

• laptop 

Table 5.1: Rohot Plat form 

Figurc 5.2: Robot exa1llple-

lack of ll1odularit.\' implied that high levcis of size a1l(1 ('01 11 p]exi t\' lIlade it diffindt for 

rohots to be constructed, evolved, and maintailled [20!)] . Re(,(,llt t rends ill rohot ics 

show a lllllch morc modular design and constructioll. ill orelcr to avoid SII('1t prohlellls. 

Robots are usuall.\' equipped with llumcrous diffcrent types or S('IlSors, t () 1)(' Ils(,d bot It 

for p!l\'irolllllcnt percept iOll and da t a coll('ctioll. ~Iorcov('r. III 0 1'(' robot s H rc ('0111 posed 

of hetcrop;cneolls intercollllccted he-ue! ware C0111 pOllonts ('el pH hie or shari 1lP; illforlllil t iOIl 

on a COllllllon protocol aiming at develoPlllcllt ti lllC nne! cost redllctioll [ ~() ll ] . 

FuU()\\'ing table ,). 1. the hardware for each robot COllsists of (\11 Errnt i(' bHS(' robot, 

a hinpct call1era. a pc webcc1m. a lascr scanu('l' Hud <1 l<lptop (s('(' Figlll'(, ;).2 ). TItI' 

Kim'ct sCl1sor is front facing and is main]!' uscd HS Hll n ~B illPllt (\l1d dept It 1l1('(\Slll'('

ll1('nt call1cra applied towards object c1rtection Cll1d lllilp hlli]dil1~. The IrlS('r S(,(lIltl('r. 

bcing more (lCClll'Hte than the hincct (H~ ,,-ill 1)(' fmther disclIssed ill Sect iOIl G. I .: \) , is 

lll<l.illl~' used for lllap building Hllci obstacle avoidallc(, to~t'tll('r wit 11 the w!te('l ('!l('oders 
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available on the robot base. The PC webcam, attached to the laptop , is rc',u f(\cill~ is 

was used to detect if a person is act ually looking at the robot. Fmther illformatioll 011 

sensors and hardware is available in Appendix Section A .2 <111 d Appcndix Sect iOll D . J 

respectively. 

5.1.2 Robotic Development Environment (RDE) 

A framework \vhich can handle various inputs coming fWIll dirrereut scnsors <1 11<1 ca p<1 -

ble of processing them in real time is necessary. Thcse proCCSS('S call 1)(' ci t her SLA ~ l. 

navigation . obstacle avoidance. human-machine intcractio1l, object dct cct iOlI nud idcll

tification or visual memory amongst others. ~lodular £"rellll('Works elf"(' ('x l)('c t eel to 

perform many different tasks in parallel, although not llcc('ss(l,ril .v rc(plir illg il ll of t 1)(' 

available functionalities and features together at the samc tilll('. These t H.'iks Illllst 1)(' 

coordinated and 1110ni tor d properly to achieve the des ired gOH !. H <111 COl li POII (' llt s wen' 

to require different interfaces . system complexity would rapidly ~row [2()D]. T his t h('l"c

fore requires a modular or component-ba..'icrl lllidrllcwarc t ltCll pruvides clIs tullli z<l hl(' 

solutions based on the integration of the lleeded C0111POllCUts to design <1Jl d dC'vclo p the 

required robotic system [210 . 20 ]. Although modular design has IllHlly ndvalltHgcs ill 

engineering. it raises some integration issues sllch as COlllllll lllicHtion, int('rop(,nl i>ilily. 

and configuration. All the different modules have 1"0 rtlll ill talldelll wit hOllt "f rcct ing 

one another and yet. when necessary they have to share illCOrll1Htiol1 . Also. it is 1l('(,('S

sary for various software to access informatioll cOlllill~ [roltl tile S"l.I11C ll ;-mlwHre. OIIC 

particular example. encountered during the implelllC'lltation , was t l1e Kill e('\ i>ei ll g lIsed 

by both the pattern detector and also for navigation. This Ihcrdore IIc('('ssi tHtcs t hc 

need of having a way to avoid conflicts when different pieces of soft wme <1 1'(' H('('('ssiJlg 

the sallle hardware. As further described in Appendix Section A.G. 1 s('vcI"<11 robotic 

development environments (RDEs) exit. Out of all thc C1vHi lnblc RDEs, RO~' (Hobot 

Operating S:vstem) rtlnning over the Linux OS Wel,S c11 ose1l HS the pre["n rcd l1liddlewHrc 

framework to be used for the robot configurations. [or 11ll11l('l"OlIS reHSOIlS. The Ill aiu 

rcaSOllS fo r using ROS. were that: 

• the algorithms can nUl as separate llIultiple robot illSt " 11(,(,S rIl11llill g; as separatc 

nocies / threads, 

• the designed algorithms call rUll 011 both real robots amI siuml"t i011 ,vit h lllillilll<11 

challges . 

• the input to the robot learning algorithm ClUJ cOllle frOIll <11l ~ " visllfll cH plmill g; 

de\"icc a\"ailable OIl the robot / ROS network. and 

I http: //www.ros.org/ wiki / 
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• robots can join or leave at any point. This also caten', for the likely casc thaI 

robots become inactive either due to lack of power or malfunction. 

Further details on ROS are provided in Appendix Section A .6.1. 

5.1.3 Implem entat ion 

This section looks at the actual implementation based 011 the' pial form shown III Fig

ure 5.1 and the hardware architecture and software framework described ('Hrli('r; till!:''; 

allowing for real-time robot navigation. video image capt llI'e' illle! efricient visuHI infor

mation sharing owr the network. Visual lllemory sharing will 1)(' flirt her disCllsscd ill 

Section .5.2.2 . 

As already discussed ill Section 2.2.2 methods 10 ('['cMe <l full t hl'('(,-diIlH'llsiolwl (:30) 

lllap of the environment do exist. Although possible to implelllcnt. it Illight Ilot hc (\ 

feasible option due to the power limitations of robots. It is argl1ed I hat ill t II is s('cIl<l1'io, 

a full 3D map reconstruct ion was not a feasible opt ion to hHV(' (,OIlSt Hilt I.V !'llllll i Il l-!; Oil 

the robot. This generally requires a dedicated lll<1.chiuc with rehlt ivdy larg(1 proccssing 

po\ver. 'uch as a graphics processing units (GPU). which was 110t "l\milnble Oil t 11(1 

robot. Also. generally. 3D reconstruction still aSSl1l11CS n static ellvirollllH'ut [:2 11 ]. All 

environment. especially one shared between humans aw l robot s, is cOllsid('l'cd t () he il 

highl:v dynamic onc [212]. 

The robots can perform t.vpical indoor lllappi ug, local i Z(l t iOIl ,11 \( I llll viga t iOll f'UIlC

tionalities based on eit her a laser rangc finder or Kiucct. KiIlCd is a CIH'lllwr opt iOll 

t o work with compared to laser range finder. :'v1orcovcr the T\:illect will also provide 

all RGB image without the need of an extra call1era. However, duriIlg testing it was 

fOllIld out (and which was also somewhat ('xpected). that having H laser ratlge fillder 

at tachcd on the robot gi ves bet tn lllap building and navigat ion Cil pH bi lit it's. A Iso. the 

Kinec t could not detect objects ,,,·hich arc closcr thall 50CIll to it illlel this nfkd('d til(' 

map building especially ill cluttered envirollmcnts. Agaill , the laseI' SCHl1!l('[' perfOl'lllCd 

better in sHch scenario. I~inect anclla..'.;er specifications C,\l1 \)(' foulld ill Appel1dix D. 

For experilllentation, map builcling:2 was dOlle IlSillg H ROS illlp\CIll(ltltHt iOll of 

G:' 1a pping3 which uses Rao-Blackwellizcc\ particlc fil tel'S [2 1 :~ ] . Tlt is 111('\ hod ('ollsist s 

of a higld.\· efficicnt Rao-Blackwcllized particle filer to 1('Hl'll grid llInps frolll Ins('r rHllge 

data and is an dfecti\'e means to solve the si lllul tan ('OILS local iZH t ion (\1Id Ill il ppi llg 

(SLA:'I) problelll [21-1]. III this approach each particle cHrri('s HIl ill(\ivi<illn.\ Ill<tp of' t\t(' 

oll\'ironlllen t and all adapt in' a pproach to reducing the Illlll1b{'r of pnrtic\es is used . 

Figure .). 1 shows the map building using the method suggcsted ill [2 1 I] bv \Ising usi11g 

the Killed sensor to measure the depth . The gellcrnted ll)HP, ill g rey, v\";ts sllpcrilllpos('d 

2http: WW\\· .youtU\)C.COIll \ratch '!" - gI\:TUTtpExCg 
:l ht tp: op('n~lalll.org/ glllappiJlg. htllli 
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Figure .5.3: Robot SLA.\I. :\ ayiga tion anel vidC'o Cll pt 1Ir(, frolll I\: i II(,C( 

on the blueprint of the actual floor which is llsed H.') the gro ulld (1'111 h . 011(' ("(111 1I0\(' 

that. although it gives a fairly accurate map buildillg, there w(,r(, SOI1H' iSSII('s wil h I he 

leftmost part of tIl(' map. Better results were obI ailled whell I his was l"('p( '£1 1 cd wil!J 

the laser scannC'r as ShO\\'11 ill Figure 5.5 . Robot llavignt iOll I Hlld ollst He\(' avoid£1Il('(' 

were carried out llsing the ROS navigation stack. This illlpl('IUCllt Ht iOIl COllsists of HIl 

ndapti\ 'e ~donte Carlo-based locali zation. a nd cos tmap- b<1;,;('d JlHvigH t iOIl (\lId ollst ;tcl(' 

avoidance method as suggested in [215]. Further details 011 the rohot sci lip IlSillg I ~OS 

can be found in Appendix Section D.2 . 

r - - - - -- ;- r ...,...- r - - -

: ... : ..... -----

Figure 5.-1: '\Iap building llsing h: illcct 

5.2 Information fusion 

Recent years have seen the first successful examples of clUglllclltillg the COlllPlltHt iOllal 

power of indi\'idual robots systelllS with the sha.rcel IllClll()r~' oC Illllltip](' robots [2, ]. 
Although not uiredly related to this projcct, RohoEarth [2, 1 is bHscd Oll H silllilnr prin

ciple' (,PJltred aroulld the idea of allo,,-ing robots to reuse and cxpalld ('<1('11 o t I\(' r 's kll()",l

cdgr h~' uploading it to a distributed da tabase. As already hi g hli ghted ill S('ct ioll :2 .S . 

sharpd \\'orld lllodds include research 011 11l1lltiagent s~ 'st ('illS. slIcl1 as HohoC1Ip [II ()J. 

Illt rp : \\.\\.\\. ) '011 t II he .COlll / watch '!v= A bFz_02wcco 
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Figure 5.5 : ~Iap building using Ins(' r 

where sharing sensor informat ion has becn shown to increase the SllC(,(,SS rH ((' of t rack

ing dvnamic objects . collf'ctivc mapping of C1 utOlllllOliS vehiclcs. or distrihllt t'd s(, lIs ill !!, 

llsing heterogeneolls robots [2 ]. Inform a l ion fusiotl r(,fers to t.he ilcqllirillg. proc ·('SS illg. 

and intelligently combining of information gat 11(,1'<:d b.Y variOllS k 1IOW kd!!,(' sum('( 's a lld 

sensors to pro\'icle a better understanding of the plH'llOlllCIIOII tlllder cOllsidCrtlt iOIl [21 Ii]. 
).[lllti-sellsor information fusion involves the combillatioll of illfo rm ed iOIl illt 0 a lIew s('( 

of information towards reducing uncertainty. This implies H proc('ss 'v",lli('1l gC' IH 'nlll .v 

elllploys both correlation and fusion processes to (rHnsfonli sClisor lIH'<lS IIJ'( ' lIH' lIts illto 

updated states and covari ances for entity tracking and which integ ra t ('s vmiolls fi(,lds 

such as control theory. signal processing, bioni cs . a rtificinl in\c llig(' lI(,(' alJ(1 Ill ;.lt II('lIl<1t 

iut! statistics [29]. everal studies and compa risons on inforlllation fu s ioll 11m'(' \)( '('11 

carried out [21(; . 1. 217 . 218 . 29 . 19 . 20 . I til with the IllHiu illforlll<1t iOll flls ioll lI)('t h

ods in robotic applications generall.\' being: wcightcd (lvc rngl' 11)(' t !tod . I\H I I 11 ;111 fi I t ('ri lIg. 

Bayes estimation. Dempster-Shafer evidenti al reasoll illg. fu zz \' logic or 11('lmtl nc ' t works 

l20 ~ . 
\'akalllura et al. [-1; suggest that thcre a rc thrcc t.vpc's or illfUrIllHt iOIl hls io n : CO Ill -

pIclllentar.". redundant and cooperat ive fusion l:~ shown ill ]; igurt, :>.0 . COl1lph'llH'llt (\)'.\' 

information fusioll is Hchie\'(~d whell info rlllat ion is obtained using se llsors or SOIll'(-CS 

pcrcei\'ing diffe rellt properties of thc cl1vironmC'nt. This is reprcscll( ec\ ill FiglJ)'(' :'>.(j 

with sellsors 51 and 52 \vhich provide different inforlllation. 0 1lC' cOllling frolll : \ alJd 

thc othcr from B. merged together. thus achievillg n I>rorHI('[' infoL'lllatioll (0 h) (,OI11-

posed of nOll-red undal1t picces (I aJl( I b. Red ullclnnt ill format iOll is \\' ht' ll i lIdep t' IHlc 'lI t 

sources pro\'ioe the samp piece of infol'lnatioll B. \\'hich is thell fused to ill(T('rlS( ' the 

clssociated confidencc. Sources 52 alld 53 ill Figure S.C; prO\'idc' the S<1 l1)( ' illforIll nt iOll. 

b. which is fused to obtain more aCClll'ntc information. (b). Coop('rat ive illforJllHt iOIl is 
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FUSED 
INFORMA liON 

INFORMA liON 
FUSION 

SOURCES 

INFORMA liON 

Figure 5.6: T.vpes of information fusion based Oll t he rel<l t io llship Cl ll lOllg til e SO ll l"{'('S [ I] 

when the information provided b:v independent sources is fllSl'd i lit 0 ll(',V ill ro n llil I iO ll 

(usllally'more complex than the origina l da ta) t hat, from the a ppli ca lio ll p('l"s pe(' li V('. 

better represents the realit.\'. Sources 5.J and 55. ill F igure I).G . p rov ide d ifi'e re lll illfor

lllation, c and c'. both coming from C' that an' fuscd int o (c). whi ch het ter (\(>snihcs 

t he scene compared to c and (" illdividually. Two of t hes(' ill [O I'IllH t iO Il l"ll s io ll 11 1('1 il ods 

were considered. namely cooperative fusion in Sect ion .').2. l a lld c0I11pl e lll (' llt ;-lry fllSio ll 

III ection ·5.2.2 . III both cases t he fo llowing a ppro<1Ch was cons ide red : 

• miclcUeware framework approach as c\escribed in Scct ion 5. 1.:3 , 

• distributed approach. allowing for com plete c\ecoupl illg h(' lw('(' 1I act iv(' llod('s Cl lld 

services and where any active nod e (sC'nsor o r serv in') III t hl' s vStc ll I IlI n\" .lO ll! H 

sen'ice that suits its purpose, 

• the frmllC'work allows fo r pervasive (ubiq uito lls) comput ill g witbill I h(' IIlIII1 HlI 

em'ironment \vhere all a\ 'ailable sen 'ices a re published Oil t h(' (, lItire s,vs t (, lI l. aw l 

• COlllllHlllieation between acti \ 'e llodes is PCC I'-to- ])c(' 1". 

5 .2. 1 Coop erative fusion - stationary and mobile n ors 

The llluiti-robot platform suggested ill ectioll 5. j was Hpplicd ill [I !)] rl lld [:2()] as par t 

of the DH projC'ct described ill Sectioll 1.2,1. B.\" illt('gri"1till~ (,OllJpl llc' r \"isio ll Hll d 

robotics C'omponellts. it i::-; ::-;howll that it is possible to monito r (\ Img<' ml'Cl lIs illg fl' \vl' r 

scnsors pw\'iding <l scalable' solution COlll ll le'nsurHtc to t il t, dilll l'llsio ll o f ti l(' llIolli torl'd 

environment. The cU"chitccturc is composed of stc' reo call1cras a lld lllohi lc> ro bo ts. a ll d 

the data cnptuH'd by these heterogellcous t'CIlSors ,,1\'(' (,O Illhill( 'd ill <I c\ c(,(,ll tr ,\I is('d 

manllC'L The combined information was obtaincd lIsing C1 data fllsion process tha i II S(,S 

a I'cliabilit.\' aSSeSSlllellt of information ::-;011 [,(,(,8, 
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Two distinct stereo camera systems were . using diffeH'llt vIsion <1 pproadH's [I !)] . 

One stereo vision system was applied to reason 011 object lllalliplliniioll ('v{'nts, \vhilst 

the other system was used to detect all ev('nt s11ch as r1 P('l"S011 I{'avinp; il bng ill I h(' 

corridor. The results from either of these two s,vstems W('l'(' (,1l(,clPSllIHlt'd ill r1 sl rillg 

message and sent via a wireless network to the llluiti-robot SYStC'lll which, Oil al<1l' 1 II , 

dispatches a robot to monitor the region of interest. The 11itilllale goal was I hill of 

maximising the quality of information gHthered frolll a giv{,1l etn'H, t h1ls illlpl(,ttH'111 illl-!, il 

heterogenous mobile and reconfignrablc llllllti-CHlllcrl-l. vid{'{) SII I'v('i 11<1 11("(' sysl ('Ill. I II [I D] 

the implementation of the multi-robot environnlC'lltal lllonitorilll-!, Ils('d ill I his Pl'oj('('1 

was developed and tested both on two erratic robots a nd 011 llUlI l,V silllltln t('d roiJo ls. 

The team of robots monitors the environment while waiting for rC('('ivillg ('will IIH'SS<1g('s 

from the vision sub-system. A Bayesian filterillg uH'lhod WilS Ils('d for S('I1S0r dell ,I 

fusion. In particular. a particle filter was used for the setlsor illPllts <ll1d ('v(,1l1 <1('«'('1 iOIl 

layer. In this way. the probability density functions (PDFs) dcsnibi ll g (1)(, 1)(' li('f of 

the system about the events to be detected are described as scts of Sillllpl('s, providillp; 

a good compromise between flexibility ill the reprc's('utHtioll alld complllell iOllet! ('[fori. 

Localisa tion and mapping arc based on a standard part i(' k fi I 1<' 1' lOCH I iSil I iOll Iud hod 

and a well-known implementation G~IappiIlg that has be(,11 sll('('('ssflllly ('xperillH'llkd 

as described earlier in Section ,5.1.3 . 

This work was theu extended to provide an enhallced 111111 t i- robot ('oord i 11<1 (iOll i\ Ild 

vision-based activity monitoring techniques [20], III [20] H <1 is tri i>l ll ('d, Ill ll ll i- roi>ol 

solu t ion to envirollment lllonitoring. in ord('r to dcted or prcvelll II tldcsi r{'d {'WIl Is. 

such as intrusions. leaving unattendedluggHge and ltigll l<'lllpcnlt tires (sllch a.'i il lire) 

is provided. The problem of detectillg and responcliug to thrc(1ts through slIrwill(\ll('e 

techniques is particularly well suited to a robotic SOlllt iOIl comprising or (\ «',lIll of 

multiple robots. For large elwironments. the dist r iblll(,d llal lIlT o\" I h(' lll1ll l i- robot 

team pro\'ides robustness and incrcased pcrfonnallcc of I he sllrwi lin 11('(' sysl ('lll. 

5.2.2 Complementary fusion - sharing visual memOrIes 

This work extends the ideas suggested ill Chapter 4- to b1lild vis\l(lI uH'llIorics o\" video 

streams to a multi-robot sC'cnMio. Several robots call 1)(' lIsed to eT('Hle (\ \' isl l,11 IIH'Ill

or.v of the em'ir01l1l1Cnts in a faster and more cfficicll l mallllN, Each robot ill the 

team is requireo to melllorise its OW11 arc a allo at tIl(' same t illl(' Shelr(' SOlll(' of' ils 

acqui reel knowkdge \vi th its peers ill an efficient and COIIl pad 'vvn~·. As it hil I> P('llS 

v:ith hUlllan llwlllory. detail::; of a scene arc rctained and 1l1CIlIOrised illlnges ('illl be 

blurred or Sotllf'\\'hnt unclear [21!J]. Howe\,cr, sufficient illformntioll is r<'lnill('d 10 1'('

call rC'lp\· ... lllt inforlllation from mcmory ahout 1-1 pmt of I h(' scclle [17 1], Likewise', the 

proposcd algori t hill ooes not prod nee a perfect photogrll ph ic IIH'1l10r\', 1>11 t rn I her l'('-
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tains image representations. \vhich contain meanillgful infortllH l iOll ahotl I tl](' explored 

environment. In this method each node consists of all 0 x GO pixd ).!; l"('.vs("1:1k ).!; rid 

rcpresenting an evolving lllelllory image. Qne basic way of h,wiu).!; n globalllll(krstHlld

illg of the ellvironment is to have each robot surveying its OWIl (1["('<\. ).!;('Ilernt iup, their 

own set of clusters and then feeding them into anothe r karuill).!; ll<'lwork to ('1"(,,1((' H 

COlllmon cent ral memory. This however has SOlllC disadvH.lll ages. Asi(k from t 11(' fact 

there is reliance on a centralised system, robots would ollly kllow I heir Hrc'H alld wOllld 

be totall.v unawarE' of ,'V'hat other robots are experiellcing ill ot her nreClS. Tllis IlI('ClUS 

that if a robot is faulty or without any battery pov.:er left, nil the in("orlllCltiotl oi>t,1il1ed 

from the robot would be lost. unless it has already \)CCI1 providcd to I he' ('('Ill rnl s.vs

teIll. A distributed s~'stem to complemcnt the el \)OV(' id('1:1 is rcqllir('d so I hal if 011(' 

robot ceases to operate along the process, somc of its mosl r('l('v<1I1 1 ill forlWltioll \vill h(' 

retained. It is therefore 'uggested to have several robots ('(1cb willi its OWl! ViSllC11 111(' 111-

or.v within a distributed cm'ironment. Robots are to llH'lIloris(' wlwL tlwv S('(' ,111d nlso 

accept incoming visual information frolll l1eighbouri Ilg ro\)ots , d iCli!,l"il II111Jal i('ally sllowl! 

in Figure 5.7 . Taking inspiration from the "i81aud modC'\" gellet it" al).!;oritlllll [~~() l (,<1cll 

Visual 
Memory 

Visual 
Memory 

Visual 
Memory 

Visual 
Memory 

Figure .5.7: Concept behind the distrihuted vi8l1al 111('11101".' · 

robot will start generating clusters of similar images within its own viswd nH'lllO\Y 

This method revolves arollnd the concept of migration wllere (,Hc ll is l,"ld (in this cas(' 

a robot ) p('riodicall~' exchollges a portion of it::; populatioll (nodes) wit h otlle'r islallds . 

Each robot titcuts generating clusters of similar images withill its OW II vis ll <11 lI\('IIIUI"\'. 

The average of each clu ,ter is then calculated aud a single iUHlge is produccd I hus 

gelleratillg Olle image per cluster (ke:vfrC'lll1e ). 01]C of th('s(' gCllNal('d il11Hg('S is 111<'11 

ticlected at random and shan.'d with the other robots. ·With the sllggcs(('d mcthod. Olle' 

'an ha\'e both a di8tributed and ccntralisC'ct s~'stelll workillg togel her. The distrihllted 

s~'stem consists of robots which memorise lllOtill.v thcir ('II ,' irolllllellt with SOIlI(' ill[llI

CI1("e froll1 othcr robots and the centralised s~'titcm to haw a ge llemJ 1I1lderstalldill).!; of 

all the Cll\·irOllltH'lIts \)C'ing lllonitored. One W8." to clo this ill a dist rihllkd 1111111 11<'1" is 
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to have a "\-isuall,v impair d" robot together with the other "visual!.v c1lahled" rohots. 

This means that this robot would only receive in pH t s CO lll i ng frolll ot h('r roilot salle! 

share its own clusters based on these inpll ts . Referri ll g t () Figll 1'(' .'>.H t h(' llois(' cllls t ('I' 

5 is m ost likely generated by the "visually impairc'd" robot itself SillC(, ill t itt' first it 

erat ion it could only share noise as it had secn nothing hefore . At tillH'S this ("ll1s t('r 

can evolve into meaningful images but at others, ;-1.'·, ill tbis case, it Illight lingn ill t 1)(' 

robot network. Each robot will operates using the procedure pn'S(' lltC(\ ill Algort 11111 :L 

c1usterO c1usterl cluster3 

clusterl6 ctusterl7 

cluster2 

cluster7 cluster8 

cluster9 c1usterlO clusterll c1usterl2 cluster13 clusterl 4 clusterlS 

Figme 5. ): \-isuall~· Illlpaired R obot - This robots only IlH'1110ris('s what o t h(')' rohots 

share 
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Algorithm 3 Robot Learning and Sharillg Procedure 

while ( topping Criterion = false ) do 
- Capture image from the environlllent 

if (broadcast image from other robots = true) then 
- Accept broadcast image 

end if 
- Scale and conwrt captured images to greyscalc 

5.2. INFO/ll\1,\TION PUSION 

- Feed images into memory icarning algori Lhm {leartli Il g algori t !ltll st il rt s g(,1 I('nl t-
ing its own clusters} 
if (specified o r random timc elapsed - true) then 

- select a cluster at random and broadcast its HV('rHg(' illlrlg(' (kC\"l"nllllt' ) 

end if 
end while 

In the proposed algorithm each robot is thc "CXPN!" of its <1I"(,H, Ilow('wr it will ltm'(' 

enough illfurmation from the other robots, to know what ('Is(' ('xists ill til( ' SIIITOlllldillgS. 

Figure 5.9 shows a SUlllmary of how clustcr sharing ta kcs pl(\c(' betw(,(,ll robots. nobot s 

1 and 2 gcnerate an average duster (keyframc) illlag(' ",hieh is sh(ll'ed wit h nobot :l. 

Robot 3 generates its o\v'n keyframe which in till'll is shCll'e<l wit h t 11(' ot Ill'r rohots , 

One can note that the outcome fid elit.\' is reduced. illlilar to hlllllrlllS. wll(' l1 p('rsoll 

A and person B say something to person C', it is highly ulllikel.\" that persOIl (' will 

rela,v accurate information to person D. Robot Iearuillg is silllilar to t hat of H ciJild. 

Initially its knovvledge will be "blurred". As time' pass('s, its cillsters ,viII he hdtn 

defined and therefore it will start sharing "bettcr" illful'lllatioll . Sillllt' ilpplies t() WhCll 

it has to share its knowledge. A child will havc ullC'lear or "blurr('d" illformatioll which 

\~'ill become more clear b:v time [219], The llI (tiIl advalltagl' it tlwt or illitializillg s('('ds 

within the peer robots with information about SCClles which w('rt' tlot pn'\' iollsl ,\' SC(, II 

by that robot. This seeel would a llo,v rohots to 1<'<1l'11 a II(,W ('llvirotlllH'lrt fns!!'!'. if it 

happens to bc the similar to ol1e alr('ad~' visitf'd and s it ilr('d h.\'" o[ her rohots, 

In this stml,\', the way on how individllalleamillg evolv('s with the challge ill llllllllH'r 

of robots a1ld image injection rate from other robots W<lS atlal~'s('d. 0111\' vid('o itlPllts 

were required. The video st reams were capt llI'ec\ using <1 dig ital CH lll('ra (111(\ ft'<I illt () the 

RO environlllent as a camera nude to which cHch robot subscrii>('d usillg its 11l('lllor.\' 

nodc. A range between two and fi\"e robots was lIscd, ('Hell havill g <l differclIt illPut 

video Sf'q llcnce all of same length (2500 frcUlH'S). Robots 1 H!lel 2 sU]'\'(' ,\"('d t\\'o d iff'ercllt 

corridors, Robot 3 was lllo\-ing along an outside passagl'way l)(' tW(,(,1l two huildings, 

Robot -l was movillg outside along a pavement ill a ('1'1 1' park and Hohot 5 W<lS ill <l Wild 

leading to the car park. The G:\G pmamC'ters and th(' IllHX illllltll llllll1h(' r of llodes 

WFIS kept fixed. so as to allal ~'se till' effcct of varying t hI' lllllllhl'l' of rohot s alld the 

rate of sharillg. The llli:1xilllUlll lllllllber of llodes ill the G:'\ G \\'(\s sct t () !)O "lid ;1 11('\\' 

node was inserted e\'cr~- .5 itenltions, In the proposed il igorit itlll. the h('s t llllltchillg 
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Robot 3 

Figure 5.9: Cluster Sharing 

unit coefficient is set to 0.95 and that of its neighbours to (l.OOt. The IIlrlxillllllll ('dg(' 

age was sct to 2 and for eV('r~' itcration the crror of each !lode is d('('\'('(\s('<1 h.\' (\ filet or 

of 0.005. For each set of robots (2. 3 . .,1, 5) C1 difF('t'ent shmillg 1'(\1<' WHS llsed (011(' 

image shared by each robot ever.\' 5.15.25.35, .15.55 iterntiolls). This led to i\ totnl 

of .,1 differcnt graphs. 12 for 2 robots, 1 for 3 rohots , 2-1 for 1 rohots i\lId ;m for .J 

robots. Each graph was checked for which nodes in thl' vislwl 111(,11l0\'\' w('rc lIot fr()111 

the rohot's input but rather from the common pool by IllHlllIHII.\· ('olllp(\\'illg it to til(' 

ground truth data. The perccntagc sharing bctW('Cll robots was thell ('(\lclll .. lled Ilslng 

100 1/ .r(i) 
- 11 L z(i) 

1= 1 

v\'here 1'(;) is the number of lludes within the ViSIWI mClllOl'." of robot i not originn! illg 

from the onboard camera and :(i) is the total llulllber of nodes withill t 11<11 lH't work. 

The obtailleel valLles me 'hOW11 ill Table 5.2 emel the' OULcOlll(' was plot ted ill Rigul'(' S.lO 

showing the percentage of me III 0 1'.\ ' originating from tIl(' otlwr robots (\'-axis) \'('rSI1S 

frame sharing rate' (x-c1.:-.;:is). TablC' 5.3 shows tIl(' C'qUr1tiOJl for ('H('II (,1ll'\'C. 

TIl(' highrr the rate of sharing between the robots. til(' higher is t II(' IWI'('('llt Hg(' of 

shared llle'lllOl'Y het\\'eell the robots. A monotonic curV(' wit 11 lIegnt in' gradiellt ('oIIid 

t hel'efOl'e be assumed. GiVC'1l a llumbC'r of rohots (wei (\ desired IWITt'lIt Hg(' of shHJ'('d 

lllelllOl'Y to bc storcd. the frame shming rate should be set "l('('o rdill gl.\·. Til o\'(kr to find 

the best fitting curve' a 3 robot case s(,C'llario was used . Tile s ilming 1',1Ie WHS \'mied 

from '2 up to .,10 ill steps of 2. As showl! ill Figure !). j 1 mriolls Ctll'\'('S where lit t ('d 

alld tll('ir R-squarcc! \'(llu(' noted. Out of HII the CUl'V('S fit ted, the I)('st IIl<ttch \\, .. lS I h,1I 
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50 neurons pel rDllO( 

Number of 01 Robots 
I nJecion raht 2 3 4 

from other RobOts 

R1 10 
R2 10 
R3 4 10 
R4 6 
R5 20 

7 13 18 50 

R1 3 12 

R2 2 4 

15 R3 0 4 

R4 13 
R5 8 

« 14 g 41 

R1 3 
R2 0 

2S R3 2 
R4 0 
R5 5 

3 13 4 20 

R1 
R2 0 

35 R3 
R4 
R5 5 

3 5 3Z 

R1 0 
R2 0 5 

R3 3 4 

R4 5 5 
R5 1 

1 13 11 

R1 
R2 0 4 

R3 0 3 3 
R4 6 10 
R5 3 

3 11 27 

Table 5.2: \ Iulti robot slwrillg 

N umber of Robots Best Fit Curve 

5 .IJ = -5.599111(.r) + 31.170 
-1 Y = - 1.-172111(.1') + 9.039 
3 .IJ = - 2.966111(.1') + 15.197 
:2 .IJ = - 2.029111 (.r) + 9. 927 

Table 5.3: Cur\'(' Fitt ing 
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Figure 5. 10: Percentage memor.v sharing (v-axis) vs fn111l( ' slwrittg nlte (x-ilxis) for 

various team sizes. 

llsing a polynomial of order 3. followed by c1 log. then power. expollclltial illld fillHlk 

the least accurate being the straight line c1 pproximat ion . \ \'licll var~' ill g t lie 1l1l11l1)('r of 

robots (from 2 up to 5) . the best overall curve fitt illg perfOrtllClllC(' WilS g iv(,1l by t It(' 

log curve with an R-squared value of over O. for the 2 Clttd 5 robot C<1S(' illlel il (J .G for 

the 3 robot case. The -l robot case performed at 0.2, stillllighel' tliall the strnight lilll' 

approxilllation. 

Due to the initialisation process of the GXG and the ralldOlll IlHt \tI"l' of cilister illlHge 

selection to feed other robots. the content of each visuHI llH'tllo r .v will he difkr(,lIt (i.('. 

not repeatable). This lllcans that Figure 5.10 callnot 1)(' reproduccd ('X;1('t Iy for e\'('r.\· 

ntll. however the general negative trend still holds . If the rate of sltming is low robots 

\vill tend to learn onh' their em'ironmellt with low inHm'Il(,(' frolll the lleighbollt'illg 

robots. If. on the other hawl. the sharing ra te is t.oo high. tlH'll , iI Illighl he I hHt 

sOllie robots could be overw helllled wi th i !lfmllla t iOll coming frolll ot her robot S (\ Ilel 

eud up learning what others are lllelllorising rather than building (\ IIH ' llIory of Iheir 

cllvirollment . As the results telld to indicate. this s it Itatiolls IW('OIlH'S IIIUr(' 1\(' lIt(' 1IS 

tIl(' 1111ttlber of robots illCTca.-;('s. 

11 0 



CHAPTEH J. :\Jl'LTI-HOBOT f.VFORAl i \TTON FUSION 

o 
o 

70 • 
60 ~ 

>- SO 
c 
E 
~ 40 

1l 30 
~ .c; 

'" 20 "#. 

10 -

0 

0 

10 IS 20 
Frame SMring 'hit. 

11 from • .very X from_) 

(a) Pol~'nolllial 

• 3 Robots 

- Poly. (3 Robot') 

25 y . '()0267x1 t 1 .0142x2 
·12 .07b+ 65.872 

R'= 0604 

70 

60 

~ 
0 

SO 
E 
~ 40 .., 
j 30 

"II 20 

10 

t 

t I 1 70 

! ----I .-r--
. r 

I ., 
I 

·t - ,.... 

• • • ....- • 
10 IS 20 

Frame Shanng Rat. 
Il from • .very X fromes) 

(c) Power 

70 

60 

>- SO 
~ 
~ 40 
.., 
~ 30 

~ 
"#. 20 

10 

25 

• 

• 3 Robots 

- Power (3 RobolS) 

y = 51.018.-" '"' 
R' = 0 .4544 

. ! . 
.~ 

• • ----- .... 
o 10 IS 20 

f nlme Shnng Rate 
(I from •• very X fromes ) 

(e) Linc,u 

60 

~ SO 

E 
~ 40 .., 
j 30 

'" "#. 20 

10 

+1 

25 

0 

o 

5.2. lNFOHfllATION P[lS lON 

• 

• 

t l 
•• 

• 

· 1 

\0 IS 20 
Frame Shilnng Rate 

(1 frlme every X frames ) 

(h) LOf.!;Hrt.il ll lic 

10 15 25 
Frame Sharing Rate 

(1 from • .very X fromes ) 

(d) l ~xp() Il (' Il t. i il l 

• 3 Robot, 

linCJr {J Robots) 

F 1 1774 .. 38 .263 
R' 03145 

25 

• 3 Robol> 

Lot! (3 Robot') 

y · 11 181 .. (,) • 49 567 
R' 05351 

• ] Robou 

Expo" (J Robo!» 

v 36 .921e°{N '"' 
R' 03304 

Figure 5.1l: Curve Fitting 

I II 



CHAPTER 5. MULTI-ROBOT INFORMATION FUSION 5.3. SUMMARY 

5.3 Summary 

This chapter looked at how the multi-robot platform introduced in Chapter 1 was im

plemented, looking at the best robot hardware architecture and software development 

framework for the application. In the implementation, the same hardware could be 

accessed by different nodes and processed information was made globally available. 

This chapter looked at how various sensors spread over the environment can be used, 

useful information is extracted, shared and fused for a better representation of the en

vironment. Non overlapping sensors implies better sensor utilisation although leading 

to less (if no) redundancy. Different kinds of information fusion were discussed with 

particular interest on cooperative fusion and complementary fusion, where most of the 

work was focused. Cooperative fusion was used within the area monitoring scenario, by 

fusing information coming from various heterogeneous inputs. Complementary fusion 

was used for team visual learning by sharing visual memories. 
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"Anyone whose disposition leads him to attach more weight to unexplained 

difficulties than to the explanation of a certain number of facts will certainly 

reject my theory." 

Charles Darwin, English Naturalist (1809 - 1882) 

Chapter highlights: 

This chapter summarises the achievements in overcoming three 

main challenges, namely: 

• autonomy, 

• real-time operation, and 

• fast deployment; 

thus advancing the state of the art in real-time multi-robot 

perception and environment understanding. 

Conclusions 

The work presented in this thesis covers a method for the visual exploration and auto

matic interpretation of an uncharted environment by a team of robots, automatically 

learning new and interesting scenes within the environment. Whilst robots operate au

tomatically, they cooperate by gathering, sharing and storing visual information in a 

compact and dynamic representation to reflect the visual input extracted from a chang

ing environment. The state of the art in multi-robot vision was reviewed in Chapter 2 

and various possible ways for robots to interpret incoming data from sensors or from 

other robots through the network to collectively achieve the expected targets high

lighted in Chapter 1 were studied. In part based on biological inspiration, Chapter 3 

focused on robot perception and how these techniques can be applied to make robots 

aware of their dynamic environment. Focusing mainly on robot vision, techniques to 

locate salient regions in a scene and the capability of robots to identify specific objects 

such as faces and tags were studied. The robots' performance was then enhanced in 

Chapter 4 by focusing on methods endowing robots with learning capabilities, allowing 

them to learn keyframes in real-time from a sequential input video stream and store 

them into a flexible topologically linked graphical representation network. Chapter 5 

looked at the capability of robots sharing visual memories with other robots, possibly 

residing in different areas within the building. Moreover, methods introduced in ear

lier chapters are combined onto a complete platform so as to have robots capable of 

sensing, processing and learning their environment allowing for object detection and 

identification, SLAM, navigation and obstacle avoidance. Also, robots are capable 
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CHAPTER 6. COSCLL'SIONS U. l. f\ (,f-Jl E \ 'EA /ENTS 

to work in a heterogeneous environment, succC'ssfully sharing a nd fusing illformat ion 

between mobile robots. fixed cameras and humans for smart IllOllitoriug of (,Ol npl('x 

public scenes . 

6.1 Achievements 

The work presented in this thesis looks a t advancing the state or Ill(' mt III illtellig<'llt 

monitoring applications by providing a simple, rcal-tilll(, .vet llH'rlllillgflll r('I>I"{'s(' I1I <1-

tion of the environment by Llsing a team of robots enh a ll ced with lerlrllillg Ill<'ChlllliSlllS 

and computer vision techniques. Processes reqnirC'd 10 store viSIl<l1 illforlllHtion H\)OIIl. 

the ell\'i ronment surroullding <:1 robot in a cOlllpact represellL-l t iOlls i1l1cl ill 1"('-11Sil hl(' 

format. Also. as ill thE' case of AAL. the cllvirolllll(,1l1 is s ltan'd b.Y hoth 11l11l1<111S ilnd 

robots. This implicd that when designing vislI allllarkings, as descri l)('d ill Scct iOIl ;L~.l 

and presented in [22]. these had to be salicllt for bot 11 it III Il<l liS rllld robots alikc. Fol

lowing the work suggested in [2.1] resul ts obtaiuecl froll1 COllt rolled <'xperinl!'llts 11sillg 

human subjects \vC' re llsed to indica te 011 how \'isual illforJlIHt iOIl ('illl be <'x t met ('d illld 

interpreted. 

As highlighted 1ll ection 1.-1 . three lll,un 1:Hca .. '·', lli:1ltlC'l.V cllvirOllllH'llt lIH)llitorillg. 

handling of \"isual information and information sha.ri ng W('IT tack led . :.. r on'oV('1". so ilS 

to achieve the aims. ill this thesis three lllain cllallellg<'s had to h(' OV(' ITOlll('. ll i1l11('J.V 

autonolllY. real-time operation and fast deploymeut . Th(' adli(' \'('IlH'llts ill O\'('n·olllillg 

these challenges arc highlighted next. 

6.1.1 Autonomy 

As drscri bed in eha pter 5 and also presented in [19] and [:W] , H prllct iCill soil! t iOll for ('11-

Vir01l1l1ellt lllonitorillg using robots eqllipped with C'amerns was provided . T IH's(' rohots 

arc also endowed with map building, localisation . IlH v iga t iOll a lid ohst ae Ie> iwoidilll('(' 

capabilities to operate withill a complex envirolllllent. Thes(' pro("('ss<'s H l"(' ('SS('llt iil l for 

robots to be able to move freely. without humping int o tcmu rohots , Sml"Olllldillgs or 

gettillg stuck ill dangerous places. The tealll of robots is nb1c to HlltOllOlllOllSIv ll il\"i /!,a l<' 

and coordinate succeSSfllll~" with its peers. 

6.1.2 R eal-t ime operation 

Renl- tinl(' operation was all importallt challenge to J)(' overcome' Cor this nppli("nt iOll. 

\\"hell \vorking ill a d.\"llamic PllvirolllllPllt. robuts hav(' to reac t tu llllfon's('(' ll ("i lTll111-

stallC(,S such as the circumvention of obstacles. This is also t 1)(' ('ilS(' wit It HH 1 ",J1('1"(' 

robots lwn' to interact with hUl1lans. \\"itllout real-t illl(, (';-lpilbilit,·. illltOl10111.' · ilS Sllg

g('sl ed ill ection G.1.1 \,"ould he limit('d . :"lor('oV('l'. workillg witl! COlllpllt('r "is i()ll is 
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CHAPTER 6. CO,\'CLI..':SJO,',;S G. I. . \ (' I n F; V F;fd F;,',;TS 

considered as being very computationally intensive. This I)(,COllH'S (,V(,11 hmder whcll 

considering the processing power and energy limitations of the robots. Th(\ llH'1 hods 

suggested in Chapters 3 and -1 , together with the work ])1"('S('11I('d ill [2:2], [2:1] <1lld [2.'i] 

took this into consideration. Saliellc.\' detectioll, as c\escril}('d ill C'llHpl('r :~ , sl ill post's 

some challenges to successfully operate in real-time 011 () rohot, Illninl.\' dll(' 10 III<' llll

merous filters being applied. A compromise to overcol1l(' this chnll('ll g(' is 10 provide 

a compact encoding of saliency b~' combining saliclIcy d('1 (\ct iOll wi I h \' iSllill III(,lllory 

techniques as suggested ill [2-1]. machine learning IIlCc11ilUislll ( t II(' C:'-JC: Ill('("llillli s lll 

as suggested ill Chapter -1 ) allows the robots to l1lc'llloris(' sa I i(,11 t me(lS previollsl .\' 1111-

detected by a robot within the envi rollmcllt. Olln' I(';tml, r(,ca llillg IIH'1I1Ul".\ ' is 1IIII<'h 

faster than recalculating saliency. thus providing Ihe robols wilh ;) r('nl - lillle SOilllioll 

for a more selective searching capability, 

6.1.3 Fast deployment 

Another factor of great importance for the usdulnesti of n ])Hrl iClIlm pin I fortn is I h(' 

time required to have ever:v,thing up and running and working ill H milllst IllHIlIl('l". III 

Chapter 5, a multi-robot platform which, onc(' d('sigll('d 10 h<1l1dk all Ih(' 1]('("('SS<1 I".\' 

tasks, could be deployed within a relatively ~hort time (homs) was p]"('s(' III('d . COllsid

ering the heterogclleous ellvirollment. a lllulti- robot pl<1 t fortll CH p<1 h 1(' or hosl i IIg s(,v(,rn I 

different hardware on a common middlcwarc fram(,work WHS pr('s(,lIll'd, This <l llows ["or 

a 1ll0dulM approach and sharing of re~ourc('s wil bOlll (T('nt iuld, cOlll licts. Allot her ["H("

tor is the ability to cater for scalability. This b ecolll(,s mOl"(' i III pori all t ilS I h(' 1l11l1li>(,1" 

of robots increases. This modular approach also giv(\s Ilt(' g r('at adwllt<lg(' of r(,lIsillg 

available tools without the need to reconfigure t hc whole s('( 1I p. [ll r('lnl iOIl I 0 r<l~t 

deployment. the follovving items were SUCT('ssfully I a("kl('d: 

• ~Iap building can be done llsing LA~r tcchniques in a l"C'l<ll i\'('I~ ' shorl lillI(' illld 

shared between devices thus ltlRking it HVHilabk 10 llIobil(, sl'c ilrily gllClr( ls Hlld 

other robots working in the same area. 

• \\' ith the proposed platform, new robots 01" harcl'vvme Cllll i>e <ldd('d, H'IlI()\'(\d or 

rdocated \yi th lllinimal configura t ion changes. 

• Taking into account the usc of tags suggesteri ror AA L ill (,IHlpl ('I" ;L 111( '1"(' is 

no need to retrain t he robots as th(' suggested mcl hod is roi>ust <llId ("all o]wrat (' 

ullder various ellvirOllment al ('ondi tiOll~. ~Iol"('ovcr , t 1]('s(' I rt gs nrC' (,ilS~ ' 10 prod lIC(, 

and affix to specific placcs for guidc1llce o r for the rctric";ll 0[" 11I('lad<1I;\ [ :?~ l . 

• \\'ith the \'i~lla1 Illelllorie~ suggcsted ill Chapter 1 1111<1 ('xl!'II<i('<i 10 (\ ItlUIt i- robol 

s(,C'll<uio in eha pter .j . robots can st art colla born t i Ilg I () Ill(' 1(,(\]"11 i IIg <IS SOOIl ilS 

th .\' join tIl(' te81ll [:2;)], 



CHAPTER 6. CONCLUSIONS 6.2. FUTURE WORK 

6.2 Future work 

Although good progress is being made, there are still numerous open problems which 

need to be tackled for successful and efficient integration of robot security systems 

in human environments. One of the challenges addressed in this thesis is to provide 

a flexible graphical representation of the robot's environment. When it comes to vi

sual memories, research can be further extended onto methods using better feature 

extraction techniques thus providing a more faithful and descriptive representation the 

environment. Such features could possibly include colour histograms and edges, to 

mention some. Visual memories can even be extended to learn more specific objects. 

This would require further research into efficient feature extractors and descriptors 

which would allow the objects, not necessarily the same, but falling under the same 

category, to be identified from various angles and orientations, automatically cropped 

and fed into memory; this further leading into researching methods for automatic se

mantic descriptions of the memorised objects. 

Optimisation of saliency algorithms is another open problem which can be tack

led to allow for real-time operation. These algorithms are still computationally more 

intensive compared to their well trained pattern detector counterpart. Having more 

computationally efficient saliency detectors would allow for a better top-down and 

bottom-up combination; this again with the intention of embedding them onto robot 

platforms to extract salient objects within the environment automatically be used as 

an input feed the robot learning mechanism. 

Apart from platform robustness, robots, especially those used in surveillance, have 

to operate in complex environments where crowded situations may occur at random 

times. Such environments are generally cluttered and hard to train for. This thesis 

mainly looked at how robots can be made aware and react to their environment. The 

capacity to successfully track people and luggage is also another open problem which 

is being tackled. Taking again the airport baggage reclaim as an example, the shape, 

size and pose of people carrying luggage varies considerably. Methods to automatically 

detect the density and entropy of crowds need to be developed. These can then be used 

to further enhance security and surveillance by being able to send personnel or even 

automated robots to disperse or aggregate crowds accordingly using the appropriate 

means. Most of the crowd analysis mechanisms are based on fixed cameras using 

background subtraction for person tracking. These would fail in the case of using 

mobile cameras such as the ones attached to a mobile robot. This is another unsolved 

challenge in the area of robot visual intelligent monitoring. 
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Additional Literature 

A.I Robot Types 

As researchers, industrialists and engineers keep investing time, money and resources 

towards robotics research, many varieties of robots have been created, making it pos

sible for us humans to conquer even the most remote location on the earth, being sky 

high, buried deep in the ground in mines, the deepest ocean abyss and even outer 

space. Figure A.1 illustrates some of the most common types of robots. Robots could 

have a general design such as a wheeled robot or a more complex humanoid robot, 

to more tailor specific designs. Other designs also include fiying and diving robots. 

Multiple legged robots can also be found. These are generally capable of navigating 

on uneven terrain such as that found in woods, parks. Tree climbing robots such as 

Woody, Treebot and Rise [221] can also be found within in the research community. 

Some of the most commonly used robot types used will be discussed hereunder. 

A.I.1 UGV - unmanned ground vehicles 

Unmanned ground vehicles (UGVs) are vehicles that operate in contact with the ground 

and without an onboard human presence. UGVs can be used for many applications 

where it may be inconvenient, dangerous, or impossible to have a human operator 

present. These can generally be classified as either holonomic or nonholonomic con

straints. A holonomic kinematic constraint can be expressed as an explicit function of 
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APPE:VDIX A .. \ DDITIO;\,AL LITERATL'RE .. \ .1. IWHOT TYPF;S 

Mobile Robots 

Non Guided Fr .. ranging 

Oifr.rential Drive Synchronous Drive 

Figure A .l: l\ laill mobile robo t t .VP(IS 

position variables only and docs not involve derivat i\'(ls 0[' t IH'S(' varin hl es. /\ Il o ll holo

nomic kinematic constraint ["equires a differellt iCl I rc lrl t io Jl ship , s1lch as t 11(' (\(- rivn t in' 

of a position variable. Furthermore, it call1lot be int egra t ec\ to prov ide H (,O lls t mi llt ill 

terms of thc position variables only. An example of a lIo ll holo ll Olllic (,O l1 st millt is t he 

movement of a wheel on an axle. The veiocit), of t hc (,O l1t <1('( poi llt he t w('e ll whee l (\ 11< 1 

ground ill the direction of the cL\:le is const raincd to zel"O: t lie Il lo t io tl o f t hl' wlw('1 is 

therefore subject to a nonholonomic const rai ll t [222], A It ho ugh t h(' 1'(1 are mor(' CO I1 -

figurations for land lllo\'ing robots (car like, walking ro lJo ts, ('tc.), d ifk r(, llt inll ,\' dr iv(, 11 

(llonholollomic) [22:3] and thrpe omnidirect iona l whe('1 pla t fo rms (hoionoilli c) [22 1] "viiI 

be considered for our study as they provide a good pla t forlll fo r om ('x p(' rill H' llt S. l'\ll 

Erratic Basel and Ro\'io robot:! were llsed fo r our ('XIWri lll('nt s. Dif ['(' rcnt in l dr ive is 

a met hod of cont rolling a robot wi th only two motorized whc(l ls. T h(' t (' rt II • d if i'c re ll

tial' means that robot turning speed is determinecl by tlie sp(I(ld dif'i'('I'(' lI c(' l)(' t W(,(,1l 

both wheels, each on either side of the ro bot. The ci if['c rentirll s t p(l rill g S.\'s t (' 1Il is filll lil

iar from ordinar,\' life becausE.' it is the arrangelllent llsed ill H wil('('klini r . H ho t Ii d r iv(' 

wheels tnrn in tandelll, the robot moves in H st raight lillC'. If 0 11 (' wll('('1 t ll rns fns t (' r 

than the other. the rohot follo\\'s a curved trajecto ry aholl t a poin t n d is tn l}(,(, f? awn,v 

from the centre of the robot. changing both the robot 's posi t iOll rll HI orie llt il t iOIl . 1f t h(' 

wheels turn at equal speeds. but in opposite dil'('ctiollS, the robot p ivo ts Hhollt its g(IO

llletric centre. Ollltlidirect ional driving can be obtai \l ed bv llsi ng t 1lr(1(' UllIll id i I'(I(' t iOllid 

motorised wheels placed at 120° to each other. \\'i tl! t his confiv,l lra t ion tIl(' robo t ('ill1 

be 1ll0\'C'c! in all~' direction independent of tbe orientation, This (,OIlH'S hall d ~' whcll t IH' 

robot is fitted with i1 fixed front facing camera. The ro bo t CH ll 1l10V(' sid('\\'cl\'s a lld s till 

usc the camera to scan the frontal \'iev" This is not possible wit It H d if i'c r(, llt inl dr iw 

robot as there is lIO \yay the robot call mow sidcwH.vs. 

I btt p: \\·W\\'. yidl're . CO III ( possihl~' dis('ont ill ll rci) 
2ht tp: W\\·\\·. \\·oww('(' .COlll/ en / support / rO\'io / 

1 111 



APPENDIX :\ . ADDITIO.\'. \ L LITERATURE : \. J. HOBOT T\ 'PES 

A. 1.2 U A V - unmanned aerial vehicles 

H aving robots capablC:' of flying au tonomously and silllultaneously wllilsl ()('r{'(' lvIIIg 

and reacting to their environment pOiSe eV(,ll further dwlkJJges to Ilu' whot i('s ('0 111-

lllllnit~·. The current challenge is to havc GAYs that call !i.\' (1UIOIlOlllollsly or S(' llIi

autonomollsly and carry out a purposrfulmissioll , At presellt , tIle IIlHjoritv of t rAV 

systellliS in the literature are not autonomous a nd rcquire (\ (,H ilI o f pilot s, e ll g ill ('e rs 

and technical persollllel to carry Oll t a mission, 'ollllllon t asks of P A V s i 11('1 ude: semch 

and reiScue operat iOlliS. remote a reas inspcction a lld sCllsi II g, h;lZMdol IS IIl n krinl )'( '('ov

cry. real-t ime forest fire monitoring. surveillanc(' of s(,llsi t i V(' (1 1'(\(1S (borders . porI s. oi I 

pipelines), etc . [225]. Fl~'ing robots provide additional (,Ollstnlillts wltell ('o llipilrcd to 

their simulated and even rcal ground cOllnterparts Illainlv d\1e 10 th('ir (,O l1slrtl<'liOIl 

and data capture mechanisms, Somc such ('hallcllges iJJ('IIIc\C lilllitcd pn,\' loild ('npilhil

it,V. ve r.\· limited batter~' life. the llccd of C1 more rohust s tability (,Ollt rol IIH'(' I1ill1i s lll 

[22;)] and a faster rcactioll time to extel'llal for(,(,s S1\ch (lS willd , Th(' S(,IISors lIsed Oil 

thesc \'chicles play an important factor. Using CPS b,Y itself is \lot nl\\,;l,\ 's I'cli ,lhl <' 

fo r GAYs due to effects like shadowillg or mllltipalh ill ('ilv- lik<' <'lIvirolllll(,llls [ II ], 

Ar.Dronc 2,03 is a relatively successful 't o,v ' robot wlii('h ('0111<1 (,<Lsil,\' 1)(' (,()III rolled 

from mobile devices and which is equipped with a frolltal alld a has(' ('a II l( ' l'il , Tllis 

makes it ideal for CAY robot ics resea rch within an illd oor ellvirolll1l('IlI, The ilppli

cation domains of 'search and rescuc' anel 'intellig(, tlt Illol\itorillg' wilh CAYs, ;l lIcI ill 

particula r l'AYs cndowcd \\'ith machinc visioll tccllllOlog,v bHV(' 1)('('11 pmt inllv ('xplor('d 

in [22G, 221 . nt. , 229 . no, 231], Due to the power , weight al\(I ('olll()Illalioll lilllilaliolls 

inherent in the field of l.:AVs, the sensor-feeels alld tlie algorithllls t Iwt pro('('ss t h(,llI 

asually yield slow and noisy update rates includillg delays. awl ill 1 he case of 1II01l()(,

ular \ 'is iOll, unkllown scale of position lllea.smelllC'Il( S [:2:t~ ], This poses II(,W c1l<l1l(,lIgt's 

to the rescarch COllllllunit~', Cntil prcsent , most vicko nlt<ll.\,ti('s have 1)('('11 ("l rri('d Ollt 

0 11 , 'ideo st reams acqui red from statiollary surveillance (',\lll(' l'HS or pilrt i,I \I ,\' 1I10hil(' 

cameras. such as PTZ or camer a....., mouuted on robotic rovers wit h lilllit ('d s('ope, Liu 

and Dai :2:3:3: present a surw,v of computer vision applied ill rl('ri;11 rohoti c \'('hicl('s 

highlighting visual llCwigatiol1, aeria l surveilla nce allel a irborll(, visual SLA ~ I. ('hoi et 

al. [22 : propose an algori t hlll ba:-;cd most ly on opt ica l How <1 lJcI g('o- Io('a t iOIt for I mget 

tracking from a 'CA\, with 110 knowlrdge asslllllcd about the t<1rge \. apmt frolll Iwillg 

in motion. Riehl et a1. [229] present a receding- ho ri zon ('oo peral iv(' s(,Hrch a lgor it IlIll 

that joilltl." optimizes routes and sensor ori e lltatio lls for a te<1l1l or illll01l011l01lS ng(,llls 

searching for a Illobile target in a dosed a lld boun<1('(\ regioll, TIl<',\' s how t hilt this 

algorithm Illakes dtectiw lI~e of agents and have al~o Sll('('('SSfllll,\' «'st<'d t iJis rllgorit 111\1 

a board of t",o small C AVs equipped witli call1eras [:2'2!J], [11 [:n I] t 1\(, )'('I (\ t iv(' POSt' 

:l http: //ardrollP:2 .parrot ,C01ll 
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of two robots in absolute scale ami ill real-timE' using one mOllocldar (,H 11H' rH 011 e(lelt 

robot is calculated. This is achieved by combining llle(lSIlH' lIl(' nt S frolll l he Oil hOH rd 

inertial s('tlsors 011 each platform with information oi>L'lillec\ frolll f( 'a t m(' COlTeSpOIl

dences betv;een camera.'> llsing a n ex tended Kalllla n hlter (EKF). Tltis fmlllS ;1 flexihle 

stereo rig. providing the ability to treat the two robots iLS Olle sitll!,le dYll illllic sellsor. 

which can adapt to the envirotlment and thus illlProve ('llviroIlIlH'llt;lI lIl<lppill l!,. o l)st <1-

de avoidance and navigation. Goodrich et al. [22u] (,lJIpltasiz(' Oll t IH' pmd ic;1I Cl.'.;p('c(S 

of visual-based aerial search. present. analyz.C' a ge llcral izcc\ COll tom s('arclt ;11 I!, 0 I' i t It Ill. 

and relate this search to exist ing coverage searches. Goodrich ('t nl. [220] also showed 

that const ructing temporally localized illlage lllosaies is more Ils('flll th illl St il hili z. ill )!; 

video imager~·. Anclriluka et a l. [227] address the task of Hl ltOlll<1t icnll.v findill g people 

lying on the grollnd in images taken frolll the 011- board (,(11l1('r<1 of (\ L' A V. TII('.\· ('v;1I 

uate various state-of-the-art visual people dC'tection lll<'llIods ill tiH' (,Oll\('xt of visiOJl 

based victim detection from an CAY. AlJ( lriluki-l. pt HI. [227] disciiss t IH'ir st n'll g t hs 

and weaknesses and demonstrate that by combinillg IIlldt ipk IlH)(I(+.; t It(, n ' linhilit .\· of 

the s.vstelll can be increased. The top performing approiwltes ill t Itis (,O lll\lill'isOll me 

those that rely on fl exible part-based repr('sC'utatiolls alld disnilllill(] t ivcl .v trni ll('d pmt 

detectors. Andriluka et al. [227] also dcmonstrate that til(' ddcctioll lH'rfortllnll(,(' (,(] II 

be substantially improved by integrating the height alld pit('h illforlll<lt iOll prm' id('d b\' 

on-board seusors thus providing a substantial step towards lll<lkillg nllto llOlllOllS viet illl 

ddectioll for l'AVs practical. 

A.1.3 U UV / AUV - unmanned / autonomous underwater 

robots 

In [2:3S]. s('wral appli at ion ar('i::L.'I for undC'nvater robots HI'(' lli ghli ghted. As nlso Sllg

gcsted in [236] underwater robots can be used in case of oil spills. to llH 'Cls ttr(' t 1)(' \\,C\(('rs 

temperature. salinit~· and also the mOVClllent of thc' dispersed oil ill order to (ktec( .illst 

ho\v polluted the water \\'as. l'nclenvater cnnvler robots call 1)(' lIs('d for geologic;) 1 ;) lld 

biological survcys. 

A.l .4 Robots in outer space 

Outer space is a harsh Cl1\'irOUlllc llt with extrellle t(' tllpcrntUl'('s. \"H'lllillt. mdint iOIl. 

gra\·ity. and great distances. human access is vcr.v difflcltlt Hud !Jazmdolls and is t he)'( '

fore lilllitC'd. Yoshidrl [:237] explores th(' li:ltest achi('v('IlH' llts of robots 1IS('d ill oltter 

spacp highlightillg tC'dlllologics 1lsed. CUlTeHt resea rch ill)(1 tccltllologiul! cltnll(,lIgcs 

ahead. Of latest interest ill spac(, robotics is tilc' Curiosity Rover Sll('('('ssfltlh' sellt 
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A.2 Sensors 

For a robot to be able to react wi t h the ellvi rOll ll1C llt it shollld \)(' il bl{' I () S('IIS(' i Is 

surroundings. Various sensors a re availa ble. Ollle of these itlcitl(l(' wIH'('1 ('IIC'Odcl's. 

inertial sensors. cameras and ultrasonic. infra rcd and 1(l,s('1' I'Hnge fi lid (' I'S (Figl1re J\ .:2 ). 

Tradi tionally robots have used sonar, infra-reel o r las('l' rang(' fi Ilci(' I'S I () 1l1(';IS I Jr( ' d is

tance from obstacles and identify areas which a rc sa[r 10 IlHvig;tI( , ill. LIs('I's £Ire ilIon' 

accurate in providing depth informa tion howcver I hey me ('01 11 PiHHI in' I.\' ('XIH'lIsiV<'. 

Sonars are good for nearb~' obstacle detectiOlI however 011(' wOltld hilve 10 d(,<l1 \vil h ill

terferellce issues. Infra red sensors arc more accurate I hal \lll rnsollic bttl sttlkr sillliln\' 

problems. The introduction of the I\:illec t in ~ov(, lllb('r :...010 provided 1'('s('arc\l('rs wil It 

a sensor which is relatively chea p compared to laser alld previollsly aVilil"l>le nC:131) 

cameras. These are able to pro\' ide both a digital illl age alld (kpl h illforlll,,1 iOIl In' 

integrating a camera for images a nd an infra red struC'lltred 111 ,\1 I'ix tl'aIlSlllill( ' 1' alld 

receiver for depth. Some of these scnsors iucluding the Kill(,('( ,\1'(' d('sni\)('d ill IIIO\'(' 

detail in ectioll D .!. Borenstein et a1. [2:~ ] provide all i III rod \l('( iOIl I () vmiOl tS . clm;

sicaI' sensors available for robot localisa tion a nel St'llsiug of 111l' (' IlVirolllll(' III, how('vel' . 

since it is relati\'el~' old. not much focus is put 011 vision. Also il dot's 1101 ill c lllde 11](' 

CUlTcnt advauces in digital imaging when it CO lll('S to (It-pl I! ('st ilW1I iOI1 <llld ;31) posi

tioning. Digital cameras ha\'(~ becollle very cheap and ('<lsi k Hva i In hl(, ill 1'(,(,(,111 .\'(';lI'S. 

They ha\'e opened up ne\-v possibilities as a se11sor for rohol pel'cepl iOIl. C,\I1H'nIS 11(1\'(' 

the advantage of gathering colour informa tion: something which is not ,l\'aiIHbl(' wit h 

other sensors. \\'hereas vision prO\'ides rich data , llseful infonnal ion luighl lIot be I'('<ld

il.v available: ho\\'('\'er this can be extracted using the approprial(' IIIHIIH'lIlnlics . Thel'(, 

arc variolls formats in which this iufonnation can be stored till' IlIosl COIlllllOII h('illg 

RGB. Ll'V and HSI. These. so called co lour spac('s us(' thrC'(' COlllPOI1('llls to I'dl('('1 

colour information and facilitate the speci fi cation o f co loms ill SOIlIC' slalldard, g<' II('I'

all~' in an accept cd wa~' [239], P ascalC' [210] provides <l r(,view of I It(' Val'iOllS co lom 

spaces availabl(' \\'hilst Bhattachary~;a H '] surV('\,S SOlllC colour illlage preproc('ssillg 

and seglllcutation techniq1lPs. 

Wheol Encoden 

Figure .2: Sellsors 

I http : e ll . \\·ikipedin.org, \\'iki / Curiosit~· J'OVE'r 
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For wheeled mobile robots, the conventional and sim p lrst WHy of d('t ('1'111 i II i li p, t 11(' 

robots position is by counting the number of plliscs from tile wh('('1 ('I1('od('l"S Hlld 

thus calculate t he relative position fro111 the ini t ietl st mting poi Ilt. Til is is 11101"(' ('0 111-

monly refcrrcd to as odolllet r~', \\'ith the successful illt rodud i011 of vis ioll ill robot 

applica t ions, visual odolllet ry became another opt iOIl. Vis IIHJ OdOlll('\ r,Y Cllp,ori t hillS 

[211. 2·12. 73 , 2-13 , 2-11], are capable of reconstructillg tile S('CI1C c1 lld. ;\1 t 1](' SCllll(' t illl(" 

estimate the position of the camera with rcs(wd to an cxtcrllal ("oordill;t!(' fl'a II 1(,. 

\Vithin the computer visioll community this is bet tel" knowtl its ('gOll\ot iml il llc! is de

fined as the 3D Illotion of a camera within an e11virol1l1l('11I. The process or ('st illlilt illg iI 

camera 's motion \vithin an ell\'ironment involves thc lise of visucd OdOIlH' t r,v t( '(" llIli<lII(,S 

011 a sequence of images captured by the moving ('HIllen). This is t.\'pi(,ilIIr dOIH' IISill ).; 

feature detection to construct an optical Aow from two illHlg{' [rilll\('s ill Cl S('<lII(,Il(,(' g(' Il

crated from either single cameras or stereo eHlllcnlS. C si ll g sl ('l"CO i tIIn gc pil i rs ["or ('nclt 

frame helps reduce error and provides additiollal depth alld scak illforlllHt iOll [:2 J:)]. 
:\ister et al. [2-12] present a system that estillHttes t It{' 11IotiulI of il st('r('o 11(,<1d or n 

single moving camera based on video input. The systelll operntes ill r(,<1I -t illl( ' wit It 

low delav and the Illotion estima tes arc used for tlHvigatiolla l pmposes, ;\rlll<tllg ll(' d 

al. [21G] survey several methods for 3D motion ('stitIl<1tioll unifyillg t 11(' Illilt Itclwll ics 

cOllvention which are then adapted to the common case of a llIobil(' rohot 1I10\"illg Oil 

a plane, Table 1 in ~2 !o] highlights some of the IIlaitI l!lot iOll ["ccover,V 111('[ Ilods . 

A.3 Image comparison techniques 

Several image comparison methods exist, Comp<1 rison techniqucs could ('i titer 111<1 ke 

lise of image pixel values directly. such a5 th Image ElIdickHll Distl1l1('dl~rEI) ) or 

else featu res or othrr llletrics could be first extracted and t 11('11 t Ite cO lllpmisoll is 

carried out depending on the similarity of fea tures . ll1.vtelaars <l nd :"likolnjczyk [ ~ 1 7] 

provide a \'ery good and detailed survey 011 featul"l' extractioll <1lld illl(1gt' l'U lllp<1r is()1l 

techniques, In the coming sect ions some methods which W('I'( ' invest i).;Htcd illld lIsed for 

our applications are discussed, 

A.3.1 Image Euclidean distance 

The Euclidean distance bet\\'Cell between two points is til(' ICllg t It of I lit' lill( ' S{'glll('111 

connecting them clnd is giH'll b)' the P)"thagorcall fortl111I<1 . This 111<'1 hod ('<Ill 1)(, used 

to quantify by how much two illlages differ by (,H Jculatillg til e colollr di s tHIlct' I)('r 

pixel. Tllis method works well when the images mc fairl,v stat ie, llo'v\,(,\"(,1" it lllight 

Din' fa1:,;(' results if tIter is n minor Call1(' l"n shift sillce all t ht, 1"( 'S P('ct iv(' pix(,ls 'vV()l1ld 
" ('out ain ("(lllsidera bl~' different Y<:1.1ues eWll though hot 11 i 11 Jagcs WOI dd he s i llli 1m (l\,nn II. 
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As a wa.\" to overcome this problem , \\.'ang et al. [190] proposcd all illtnge d is lal1("(, 

measurement v,'hich takes into consideration both thc spatial rclat iOllship illle! I he g rH.\" 

level relationship hetween pixels. 

A.3.2 Joint probability distribution 

Another possible solution for image comparisoll is tlwt of ("ak lllal illg I It t' ('Ill ropy 0[" " 

J oint Probability Distributioll betweell two images of <l S("CI1('. This gC II('rnll.\' illvoh'('S 

the creation of a probabilit~· density function from C1 lIol"lllrdis('d Iti slogrillli vvlti('1t is 111< ' 11 

matchrri. llsing SOllle PDF matching techniques such HS tite Kullba (' k- L('ihl('J" e!iV<' rg('IH '(' 

( ee B.3 for more details) or the J effrey dist a llcr to 11\(' lIt iOIt SOll]('. 

A.3.3 Histograms 

Histograms provide a cOlllpact representat ion of all illl<lgC, I h\ls reqlliriJl g less IIH' lllOry 

space. Image histograms are invariant to rotatiol1 of Ill(' image Hrollll( l I Itt' opl iCed "xis, 

making it particularl~' att ractive to omnidirectiollHI (,HllIC!"ilS. Also , IlislogrilJll s ,liT Ilot 

ver,v sensit ive' to small translations [21 ]. This md hod llses oll ly ('lcIIH' llImv illlngc 

processing. is potentially fast compared to o ther appro(1C'ht's, alld is gC I \( ' 1'(\ II.\" sl l'i\ iglt 1-

forward to implement. The normalized cross-corrclatioll Oft('11 yit'lds good rt'sllils for 

comparing images 011 a globaliC'vcl. One SilllPiC' m e thod is to bllild ["('ill me hislog rnllis 

for each image. and choose the imagc with the his togram c1os('sl 10 I II(' illpul illlilge 's 

histogram. Histogram matching generally works well for IllHlchillg illl ilg<'S which a n ' 

very simila r to the input image and is gencrally illllllllJl(' to SlllH11 dlilll g('S wil hill t 11(' 

image. however it gellerall~' fails with rescalrd, rotated , or dis('olom ed ill lHges . II is

tograms are created b~' first deciding on the lllllll\)e]' o[ histog n1111 billS iliid t IH' II s(' t 

each hin to a fraction of the whole range. Ass llmillg two - hit g r< '.\'S(,H/(' illl<1 ges, i1 

bin for all t he possible greyscale \'alues (0 to 255) is ('l'ratt'd. For ('H('h pixel. g('1 the 

pixel valuc and increment the respective bin. \Vhe]] all pixels lin\'(' h('( ' 11 (' llt'('K('d. I hl' 

histograIll is llormalised thus creating a Probability dellsity fUllC( iOIl (PDF). Vmious 

histograms call he created for each image (e .g. one for Red COlli POll('ll\' il 1l0t h('1' ['or 

G 1'c('n and i1 nothcr for Bl ue). Generally, just comparing image' cololll's WOl! ' I he cllong!1 

and other feature'S (of which histograms can be ereHted) arc lIs('d . Otll('1' hi s tog ri1l11s 

could be created by couIlting corncrs in imagc arCHS () ht i1 i !led usi Il g 1l1e'1 hods dl'sni b('d 

llrxt. These could all br compared and the illlc1ge with the least (' ITOI' l)('(\\'('(' l! 111(' I\\'o 

compared images conlcl be considered as tlll' most simila r. 
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A.3 A Feature extraction and keypoint m at ching 

In com puter vision. and more spec ificall :v in object re('ogll i t iOIl , ltlauy ('clllliq It( 'S i\l'(' 

based on the detection of points of interests on objects or surfacC's. This is dOllc (hrollgh 

the extraction of features [6 ']. Tuytelaars and :\IikoIc1jcl,~'k [2.17] argll (' t Iwt tlte t( '1'l1l 

detector has been used to refer to the tool that ('xtracts ['('H (1II'(,S frolll tll(, illl ;II-',(', ('.g., n 

corner. blob or edge detector. However. this only llIakes S(,IlS(' if i( is (\ priori ('I('(\[' wll a t 

the corners. blobs or edges in the image are, so OIlC C'HI1 sl)('<-1k of "fHls(' <i( ' t( '(' t iOl1s" or 

"missed detect ions". If this is not the c<'I.'.;e. the (C'1'1ll '('xt rae( or' WOI tid prob;l!>I.\' 1)(' 

semanticall.\· more correct. However. the,v also cu guc th<lt tltc' t('l'lll 'dc'(cctor ' is widcl.\' 

used and is therefore probably wiser to kcep the S,ll11e t(,l'lllillolog,v t Ilrollgltoll( , LO(,<11 

features arc the standard representation for wiele baseliu(' 11l<1(cltil1g <1wl oi>ject re('ol-',

ni t ion [2!7]. Also. if one needs to track these points from <1 lllovil1 1-', (,HIII('r;l, possii>ly Oil 

a robot, typicall,\' for navigat ion, iocalisa t ion or lllelp btl i Icli ug. H rc I in hlc 1'( '<1 t 111'(' 11<1s t () 

b(' invariant to image location, scale and rot at ion . GiVC'1l <\ set of f( ';\lI\l'('S , IIIH(Cltill l-', is 

performed b.\' associa ting ke'\'frame pairs betwecu a COllple' 0[' [rHIIl<'S [Ii ]. TIt('f'c <11'(' tv\'O 

aspects concerning a feature: thE' detection of H k(',\'point, wllich ic\e'Il! ifi('s , \\1 ; \1'( '<1 of 

interest. and its dcscriptor. which characterizes its regioll . T ,\'pic;t!I ,\', tlt( ' d( '(ector i<!( ' I1 -

tines a region cOlltaining a st rong variation of intellsity such i\S <III cd~(' or n ('ortl('r, ,111<1 

its center is designed as a keypoint [6 :. The descrip tor COllsis(s of H IlllIl!idilll('llsioIlH I 

feature \'ector \\'hich ident ifies the given kcypoillt. TU,v(eIH(\J's Hlld \[ikoln.iC'z,vk [ ~ 1 7 ] 

document tll(' evolution of feature detection anel ('X<lIl1ill(, SOllIe of (II( ' 1I10S! widcly Ilscd 

detectors, with a qualitative evalua tion of their respect ivc st rellgt It s alld WCHkll('Sses. 

Figurc A. ,3: Good fcatures to trHck 

\\·11el1 it ('0111('S to robotics, recl l- time tracking is ('ss(,lltinl. so <I l>aJ<\II('(' IIceds (0 he' 

fonn d b('t\\'('('I1. extracting good featu res, descri billg (h C' 1l1 ill <Ill dlici(,l1( IlH11l1l(' r a ile! 

e\'cntuHll,\' track the fcaturrs in different illlages / \' ideo fnllIH's. Oil!' poss ihle' so lllt iou 

to qUCllltif.\·ing the similarity of two image'S is b,\' Ilsillg (\ corllcr / fC'<I ( 1\1'( ' <I (' « 'c( iOIl ,\\Id 

llla(ching aigo ri( hill, The 1l1l11'(' matched COJ'llers / fc(\tl1\'('s (h('\'(' (\\'c iJ<'I \\,(,(,11 s illlil(\\' 
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illlages the lllore probable is that the two images reflect the ScUlI(' scelle. Ddf('l"(,llt dc

tectors and descriptors have been used for mapping and localiza ! iOIl llsill l!; II IOIlOCli1nr or 

stereo vision such as the Harris corner detector [2~ U], Shi-Tonwsi [2;)()] , ll arris-Lilplr1c(, 

[2,51 ]. Scale innuiant feat ure transforms (SIFT) [2.12 , 2,): ~], Spe('d('<i-C p n ob1lst Fer1-

tures (Sl7RF) [25-1] or a cOlllbination of attention regions with Il ilrris comers [(iO]. 
Certain parts of an image have more information than othC'l's (pHrt inlim\.\' l'<ig('S Hlld 

corners). The idea behind ke,\'point matching is that of filldill l!; I l1('s(' poiliis Hlld h(' ilble 

to compare them between images. One starts by findin g good COrrH'l'S / l'eil llll'('S ill ('i1('1! 

image. One possi hIe wa,\' of doing this is by using II i-TO! ll as i ('orr 1('1' C\ (' «'('( or [2;)()]. Fig

ure A.3 shows the outcome for such detector. The greell dots r<'pr('s(' II I poilll reillll},( 'S 

(corners) which would be good for tracking betw('('n illlages. TII('se COf'll('l'S m(' 111('11 

used in a P.vramid Lucas-Kanade optical How to obtain! he lllill ('lied corllers I)('t \\'('('11 

the t'vvo images [2S;)]. The Lucas-I":anade method is a two-fralll(' dd\'('J'(' 1I1 inl 111('1 hod 

for optical flow estimat ion where the number of f('atures correctly Illillc\l<'d 1H'lw('('1I 

the two images is used as a simila rity ll1easure. The Shi-TolllilSi corllel' d<'l('ctor [2;)()] 

is based entirely on the Harris corner detector [2 I!)]. III I lie Ilmris COI'IH'r d( 'I('clor il 

score is calculated for each pixel using two eigenvclluC's. I I' (lie sC(}l'e is ilIJOV(' il ('('1'1 i1 ill 

threshold. the pixel is marked as a corner. Shi allel TOlllasi sngges«'d t Il ill IIH' 1'1111(,( iOIl 

to provide a score could be done away with and ollly (li(' <'ig(' ll vaitH's ('oll ld 1)(' lIsed 

d irrctly to check if t he pixel was <[ corner or not. IlllIs lllaki lI g I Ii is d('( ('(' lor p('rrOl'll1 I )('t 

ter. SIFT (Scale-invariant feature transform ) kevpoillts are nrgunbly (lie Illost IWIHllill' 

where SIFT descriptors arc used to compare local fca tmC's Hlld t I}('.v me on (' II Ils( 'd ror 

correspondcnce analysis and object recognition since they Cilll 1)(' Ilsed to IlIillcli illlilges 

under different scales. rotations. and lighting. SIFT and SURF(Sp<'<'<kd Up I~ ohllsl 

Features) combim' a detection and description lllethod . Til pari i(,llinr. SI FT f('ilt I\I'( 'S 

were developed for image feat me genera tion. and used ill i ti ed Iy i II object }'('COl!; ll i t iOIl 

applications . 1FT features combine a method to cxtrnct slilhl!' IOCil l iOllS ill illlHges 

and a descri ption t bat ella bles to identify those poillts [(i()]. C'olo\ll'ed SIFT (C'S WT) 

[2;,)6] can be considered as an extension to SIFT whi('h wns Illili Ill\' desigllt'd ror grn.\' 

illlages. CSIFT is more robust than its cOLinterpart with resp<'ct to colo\ll' Hlld p\to

tOlllrtriral \'ariations. SCRF was inspired by SIFT but S('\'('['(\1 tillH'S fast er . ./ IIHII et 

al. :257: described amI com pH red SIFT. PC A-SIFT and SlTRF usillg I~ - ~ ('ar('st :-';('igh

bour (K\,"\," ) to find matches and Random Sclluplc and C'OIlSCIlSIlS(HA:-';S I\ C' ) to rej('ct 

inconsistent m<1tchrs from inliers. Principle COmpOllC'ut ll <l h 'sis ( rCA ) is i1 ;-;t i1lldmd 

tedlllique fo r dimensionalit,\' reduction. The,\' confinllcd Ilwt SIFT is slow <I lld llot 

good at illumincltion changes. while it is invariallt to rotntioll . sca l<' Chilll g(';-; illld nl lille 

transformations. CRF is fast and has good performance as tl)(' S<1111(' HS SIFT. hilt it 

is not stable to rotatioll and illumination challges. Gil et al. also 11Iad(' i1 (,O lllj>i1I' il t i\'(' 

e\'aluatioll of int('[Pst point detcctors and local descriptors ill [(i I]. The\' cO ll;-;idered 

125 



APPElVDIX A. ADDITTO,VAL LITERATURE /\..1 . L Bi \HN INC: A/BC'H,I N I.SflfS 

the following interest point detectors, namely Harris Corner Dc«'ctor , II mris-La pl ,lC(" 

SGSA~. SIFT. S"cRF. ~ISER a nd E adir. For local dc'scriptors. I II('.V considc}"(' eI S I FT. 

GLOH. S"c"RF. Gray level patch. Orientat ion Histo~rallls alld Z(,rllik(' i\ IOIll('lltS. Th('y 

concluded that Sl"RF and GLOH are the bcst descriptors ;-mel oul lH'r[Ol"l1l S IFT. Il og

lllan [6 ] also arrived to the same conclusion that SUl1F is much fast('r t hall S I FT. 

~loreover. Ahmed et al. [1 9]. provide an optilllised illlpl('llH'llt,1t i011 of SUR F based 

recognition technique aimed to nUl on small embeelded rohot plnl[o n us willI lilllit( 'd 

processi ng resources. They claim a time red uctiOIl frolll 30 s(,collds to 7t10 III i \I is( '("Ollds . 

A.4 Learning mechanisms 

This section extends from ection 2.4 looki ng III lllOl"(' del.11 i I a I I lIe VH r lOl ls 1(';1 rll i Il l!, 

lllechanisms available . 

A .4 .1 Supervised learning 

Supervised Learning is a type of machine learnill~ ill which lab('lled t milling <lilt il IS 

available and where a lllodel of the data has to 1)(' creHU'd (1(';-ll"1led ). Th( ' nlgorit IIlll IS 

presented with an input set and all o utput set. Th(' aim is 10 filld il gC ll('mlis('d flllld iOll 

that approximates the relationsh ip between input a ne! oul put . Tllis I('mllcd 1l10(kl will 

then be used to predict outcomE'S from the tes t dat a and lH'nc(' classify t he test dnt <1. 

\Vhen the output is in the [orm of a class la bel. it is tCrlIwd ns c/osslji('ai/oll . 011 til(' 

otherhand. regression is when outcome is a real 1l11IllI)('r [ I(i]. 11eillfOl"('('IlH' 111 Icmllillg 

can a lso he llsed for supervised learning. In such sc(,nario. the s.vsf('1ll wOlild 1"('( '('iVl' 

a delayed signal in t he form of a reward or pUllishlllcn t from \\' h i("h the s,\'s l elll \\'( )\ rid 

try to infer a policy for future ruIlS [Ju]. The o bject i v(' 0(" re i IlfOrC(' IUCl1t I(,Mll i I1 g is I () 

learn how to act in a d~'namic enviroulllent from cxpcriellc(' h~' ""lxi III isi Il g SOIll!' pa.\'Orr 

fUllctions or minimizing some cost fuuct ions equivalcnt I.v. III r('il1foJ"('('IIl('llt 1(,()rlIill ~ . 

the state dynamics and reinforcemcnt fUllction arc a t least p<lrti n llv IIllkll()WII. TIll iS I h(' 

learning occurs iterati\"C~ly and is performed only th rough Irial-Cl lld-(' rror 111<'1 hods aud 

reinforcemcnt signals . based on the experi ence of intcl"Cwt iOllS bd W(,(,11 the Hgelll and 

its environment ):31]. Q-Icarning is a value learning v(,rsion of rei II for( '('IIH'1l1 I('mll i IIg 

that learns utilit~' values (Q value'S) of state and actioll pHil'S [ I : ~ I] . 

Traditional supen 'ised technique'S would gcnl'rall~' involve ('it h('r C('IH' rHI iyc Illd h

o ds or Discrilllinatiw llIcthods [10]. DiscrimillHtiV(' c1lgorithms .\'i('ld predict iOll s by 

returning the probabili(\' of the label given the data (P (L JD )) wher(,HS g<' Il<'nlt in' 

al~orit hllls ~i\"(' the distributioll of tIlL' d ata g ivell th(' la l)('1 ( P ([)J J~ )) tlil iS ]l()ssibl.\' 

conditionally s~' nthcsizillg ne\',' data or providing a m orl' p(}\\'Nhd rcpJ"('s(' 111 al i011 of I h(' 

data. SOlllC of the GenerHti \'e methods include ;\aive 8 .. 1\·('S c ];l ss ifi('l's. Arl i!icial :\('Ilral 
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networks and principal component analysis (P C A) followed b.v classi fi cH t iOIl. SO III C or 
the Discriminative methods include Supp ort vector machillcs Clud Lil l(\<H Disni lllillH llt 

Analysis . A combination of Generative a nd Discrimiua t ive nlgo rit II ill S C(\ ll Hlso he Ilsec\ 

as suggested in [25, ]. Bradski and K aehler [16] sugg('s t t ha t i r otl e lI as (\ ltoug ii t i II1 C 

to train the classifier. which however must run quick ly, t hen nt\IInd ne t ~'orks, ll o rIl tal 

Ba.ves classifiers and support vector machines Cl re n good cho icc. If IlIo n 'owr, 0 11(' 

requires high accuracy then the.'; s uggest th a t b oosti ng a nd ra lldo lll t r('('s ('o ltld 1)(' (\ 

bettcr option. On the ot her hand . if onc only requires all easy U'st for good ["ell t 1\I"C 

selection then decision trees or nearest ne igh bours m ig iit do the joh. 

There are certain problems however related to supe rvised 1('(l rIlin g. :--J IlIII ('t"O IIS 

amounts of good labelled data needs to be available ("o r pro per c lHssi fi e r t rel in illg. La

belling this data is boring. \1oreover at ti mes cxperts ill tlt e fi e ld tllight 1)(' }"('qtl ir('d 

for proper labelling. such as in lllcdical imaging . T lwse exp crts IIt ight Il o t 1)(' llvn i \;1 I> Ie. 

Also. the number of topic categories fo r (' lassi fi cat io n 111 ig ht 1lo t 1)(' rCH d i Iy n va i In h ie 

or might change. possibl.'" increa.'.;c. as mOlT' d ata is p rov ided . 111 st l('h H si t wlt iOIl 

ullsupervised learning needs to be used as will be dcscr ibed 1lext . 

A.4.2 Unsupervised learning 

Allot her kind of machine learning technique is llllSUpcrvist'd I ('ar II i II g <lIl d is ('0 111111 0 11 I\' 

used in clustering and ditllensionality red uction . III th is case 11 0 prior t rel illillg is giV<'ll 

and the algorithm itcratiwly learns to id(,llti fy simi lm it i('s ill ill put d ll t II ;\ Ild clnssil\' 

them accordingly. In this kind of learning technique' t he a Igor it h ill is prm' id ('c! o lll .\' 

with unlalwlled data. )'1oreo\'e1', no feedback is provided frolll the (' lIvirOlllt H' llt . T he 

aim of the algorithm is to find patterns in the input d <l t a wh ich ot IH' r'v\' is(' Ill ight 1)(' 

observed as ullst ructured noise. 

Based 011 ,yhether thc problem to solv(' is dassificn ti o ll . predi c t io n or d itll( ' llsiO lt <l l

ity reduction. and on the background know ledge of t il(' s pace s<lI 11 pled var io tls Il l(' t huds 

could 1)(' used. Some commolll~; llsed 111l ' u pervisecl learning (('l'h ll iqtles fo r dilll (, lls io ll nl

ity reduction include PCA :259]. pLSA [2GO] and l CA [2(; l j. Detlsit y ('S till w ti o ll (,H il 1)(' 

used for predictioll hy estimating 80111e u nderlyin g P DF. C lus t<' ring is it fUlld clllH' llt el l 

data anal.\·sis method. It is widely llsed for paU('rn recognit ion , fea t III"( ' ('x t }"(H' t iOIl . \'('('

tor quantization (\ "Q) . image segmentation. fUl1ctioll a pprox illl nti o ll n lld <l Ht i! Illilli ll l!,. 

Clustering met hods are gC'llcl";-:dl:v based on (' i t h(' r s t <1 t i~·;( iced Ill ode 1 id (\ llt ifi (';) t iO lt or 

compet itiw' learning. I\:-llleans clust(,ring and m ixhlf(\ Illodds ('(\ 11 \)e Ils('d t () c IHssiJ\· 

unlalwllcd real nllu('d data and k-lllodes clustC'l'ing [o r uil labe lk d cn t('goric<ll <\ il1;\ giv(,11 

that the 1lI1111ber of desired clusters is known c1 p r iori. Di ricldd P roc('ss :\[i x t II I"(' 0.1 ()( kls 

(DP\I\I) algorithm tries to ht the best clustering model O\'(' r t 11<' d nt n ('mt 1)(, 11:-\(' <1 for 

clustering \\·!tell the nUlllber of possible clusters is tlot knowll <I p r iori [l (il j. ]) 11 [ I (~j 
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provides a review 011 clustering method ' based 0 11 cO lllPetiti ve kH l"ll illg. As a lrl'ad y 

discussed in Section .t.2 . 0 \1 [177] is one of th e lIlOSt Sll ('ccssfttl Hllci wid e ly Iised 

clustering network however with a fixed top ology. GNG [ IKI] 0 11 tit (' o tit l' rit n lld , is <1 

network which grows over time with evolving t opology Cl llci witl l til l' n l> ilit.\' or [o rtu ill /1, 

separate clusters, 

W hereas most of the conventional classifiers a rc cksiglle<i to o pl' rcl t (' i tl 1> <1 telt Il lOde 

and do not change their structu re online, incrcm ent a l c1ass ifi ('rs work OIl a !ler-sll\ll ple 

basis and only require the feature of that sample pillS a s ma ll at ll OUllt or 11/1,/1, l'< 'gn t ed 

information. The Evolving fll zz~'-rule-based classi fie r s uggested 1>.\ ' J\ llg<' lov et nl. [ :W; ~ ] 

is another incremental classifier. This type of dassi ri e l' is l'spl'c in II ,V usdul ror t it l' r(,H I

ization of incremental onlinc and evolving SChClllCS, flirt he r di s(, ll ssed i Il ~('(' t i0 11 J\ . I. I. 

The authors state that such method has the illl po rt Htlt pro pert ,,," or h('i ll /1, 11 hl (' to stmt 

learning from scra tch . Evolving systems arc s~'st e lll s which eXI)(' ri e ll C(' a /1, rad Ilil l cit n Ilgl' 

and learn from experience. The abilit,v to evolve is H des in'd [('a t ti re ill robo t ics 1\ IHI IS 

of particular interest in the field of visual lllClllo ircs cUII Otl gs t o t II(' I"S. 

At times unsu pen'ised Learning might prov icle SO ll le tlllc'xl)('c t e<\ r('s l tl t s. (;(, II (' rn t ('d 

clusters might not adhere with real world cluste rin g. A lso, t 11 (' 1"(' me t ill H'S Wll (, ll it is 

hard to define if the clustering was doue correct ly or ll o t as Il l0St of tI l(' r('il l I,\'or Id 

problems are often subjective. 011e snch sit uat ioll is in segllH' llt a t iOll . \\" 11<'11 pr io r 

information on the data to be fed the learning llC'lwork is avni la ble, s(, llIi -S lIl H' I"\ 'ised 

l('arning can be usC'd. In this case SOllle data call bt' labelled to /1, ll i<\(' t 11<' lle twork. 

Also. some user suggestions giving feedback 0 11 t he progn'ss or t it (' Il (' t work C,I II Il(, 

incorporated. 

A.4.3 Semi-supervised learning 

As the uallle suggests. sellli-supervised learnillg is in b('( \\"(,(, 11 supervised illld IIIlSI Il )(' r

vised learning techniques, Semi-supervised leaming involve'S f ll ucI iO ll ('s t illlll t iO ll hnsed 

Oil both labelled and uulabelled data with the goal of red uci llg I It l' ,l ll lO lI ll t or s ll pe rvi

sion rcquired compared to supervised learning. T his a ppro<1clt is lll ol ivn ll'd 1)\· I b(' rnet 

that IH lwlled data is often costl~' to generate. whercH)-; llnl nlH.' ll ('d <I ,ll n is gelll' r;I II\' Ilo t . 

The challenge in such techlliquE's mostly l'evu lVC's Oil how to hil l1d lv Illix('d ill!>!lt d ;lt d 

in sllch a \\"a~' to perform clustering successfull,\' up to t he ('x l)('ctn t iUll of t Ill' lIse \". 

A.4 .4 Online learning 

As wi t h ot her It'Hnl ing cllgOl'i t hm lllet hods t b(' main pro bk tll t () so l V(' wi t Ii 0 111 i 11(' I('il l'll

ing is the task of lllaking decisions with limited ill ['O rl llil t ioll [ ~ (; I]. Oll li lle \('ar ll ing 

consists of an algorithm which is used to pn'd ict la l)('is ns close HS possi h ll' to t Ill' true 

la\)els for instance's recci\'ed scqucntiall,\' [:'W;>]. The gonl of the algorit lUll is to Illilli-
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mize some performance criteria. This modd procecds ill a sequen('e of I rials \-\,11<' 1"( ' I he 

algorithm starts by receiving an instance . The algorithlll would t hCIl predict I h(' InlH'1 

for that instance and which is then comp3red with tilc Intel' re('(' ivc<l I ruc 1;11>('1 of I he 

instance. For example. the instances could describe tIl(' cllrrcnl cOIldil iOlls of I IH' slo('k 

market. and an online algorithm predict!:) tOlllorrow\; valtl<' of n part iCltlal' sluck . For 

this prediction the algorithm may attempt to minimize SlIlll of 111(' sqll1tr<' disl ilIIC('S 

between the predicted and true value of c1 stock. AnotlH'1' popltlm p('rfOI'1I1HIIC(' nil<'

rion is to minimize the number of mistakes when dealing wil h clHssil icilt iOIl proIJIC'IIIS . 

Two popular on-line algorithms perceptron [2GS] a lld winllow [:W(i] ('all perf 01'111 well 

when a h.vperplane exists that spli ts the data in La Lwo t'H It'goril's. TII('sl''' Igori I 1IIIIs ('n II 

even be modified to do provably well cven if the hYP('l'plallc is Hllow('d I () illfrcqll('1l1 Iy 

change during tIl(' online learning trials [2G 1]. 

Online learning requests for continual label feed hack . T1H'rl' fore. for r\l1'y prol>l(,1I1 

that consists of predicting the future . an online learnillg nlgoritlllll .ilisl \I('( 'ds 10 W<lil 

for the label to become available. The key dcfining characteristic of olllill(' 1("lrtlillg 

is that soon after the prediction is made , t he true In bel of t hc i IIs1 illl( 'C is d isc()\'(' J'('d . 

This information can then be u::;ed to renue the' pl'('ciicl ion Itypol Itesis Ils('d h.Y III(' 

algorithm. Because online learning algorithms cOlltinllCdl.\' r('('('i\'( ' lahel f('('<lh;)('I\, lite 

algorithllls are able to adapt and learn in difficult situatiotls. :"IaIlY olllill(' illgorillllllS 

can give st rang guarantees a ll performance even whell I ltc' i IlSt aIlC('S a re tlot g('II('nli ed 

by a dist ribution. As long as a reasonably good classificr ('xists, III<' oIIlil\(' algoritlllll 

will Ie am to predict correct labels . 

A.5 Robot visual memory techniques 

This section look::; at several techniques fOllnd in lit('f'aturc' Ilscd to sl()I'(' \' isllal ex

periences. mainly fo r robot localisation and na viga t iOll . In [nl ]. [:2 fi 7] (\l \( I [~ ( iX] ;111 

olllnidirectional camera is used with the HdvHntage of H wide field or vi('\V . I hilS Illill

imising the llumber of images reqnired [2()7]. In [2(j7] a hicrarcllicHII()caliziltioll Illethod 

for omnidirectional imagcs based on the Fourier ::;ignntul'(' is propos('d . III [!l I] 111(' visllal 

melllOlT consists of a database of sortecl omnidi rcctiOlwl refercllc(' 1Ill ')g('S. i 11(' IIIC I i Il l?; 

some topological information as well as some metric illfortllHt iOll . III UJI . ~ 11 ] it is 

also claimed that thcir hierarchical mdhod reaches accllnlt (' IllCt ric lo('(dizal iOIl wit It 

a minimal reference data set. Another so lutioll. t'i:·qw('iall.v [or tIl(' (,(}S(' wl](,11 H stHIl

clarel perspectin' call1era i::; llsed. can be that of extracting SOIlIC' ["('(}t me's frolll tIll' 

images that reduce' the a11l0llnt of required Illcmory \-vhilc rct<lillillg ;lIl IlllHlllhigllolls 

description of the illlage. ResC'cll'ch ill [ 'u] integrates H11 ilWlg(' ret ri('vnl S\'S!<'1I1 wit h 

\Ionte-Carlo localization. The imclge retrieval proc('ss is has('d Oil ['('ntlll'('s tltnt i\l'e 

ill\"{lriHllt \\'i t h r('spl'ct to image trallslations. rot a t iOlls. and I i III i I ('d s('n 1(' . 0 t Iwr \('clt -
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niques highlighted in [207] include a method to extract a sd of Eigell iIlIHp,('S froll! 111(' 

set of reference images and to project the imagcs into EigC'll SP,\('C'S. ,lollc's "I al. ::) I] 
de 'Cribe the use of appearance based lllethods to (ksigll silllpl<, \'isllnl PIW'('SS('S for 

navigatioll and use cameras and odometr:v to S(,11S(, th('ir ('llviroIlIlH'IlI. Th<'.\· lIS{' z(,),o 

mean energy normalised cross correlation l')('twecll tll(' observ('c1 iluagt' alld I II(' \('Illplnl(' 

imagc. l-lrich and :'\ ourbakhsh [2-1 ] propose a system w hiclt is a hie I () ('<lIT\' 01 I I rohot 

localization both in indoor and outdoor ('ll\-ironlll('uts by llsillg ('olotll' \·isiolt. TIH',\' 

take a topological approach where lllaps arc ('epreseuled hy acij'H'('Il(·.\ ' grilphs . (\()dcs 

represent locations \vhile edges represent the adj aC('llC,\' )'('1<1 t iousll i ps 1)('1 W('('II lo(',d iOlls. 

Their localisation method is based on nec1I'Cst-llcigh boll!' Ic-a I'll i Ilg ,1Ild op('nlt ('S ill 111(' 

histogram space. CUlllmins and :\ewman [209] state t lwt IllOSt loc,tlisat i011 nlld loop 

closure methods are bas('d on similarity mec1SUl'('S and iuwgc'-llla l Cltillg I ('ChlliqIH'S. III 

[2G9] however. the authors arc llOt interested ill the siJllilaril,\' b<'1 W('('II Oi>SC'I'\',1 1 iOIlS, 

but rather on the probabilit:v that the observations (,Olll(' from I ltc' Sil lll(' pl(\('(' , Th<'.\' 

adopt a bag-of-\vords representation ill a probabilistic frclltl('wo)'k. S(,(,llt'S m(' r<'p)'('

sen ted as a collection of attributes (words) dlOsell frOlll ns scI (vo('n Illllm,V), :-1I(,l1<1('S 

et al. ~05 ] present all approach where paths are Ieal'lll hy stori llg S<'<lII('I1('('S of illlH gC'S 

and image informc1tioll in a sparse distributed lllclllory (SDl\ I). COllll('('\ iOllS 1>('\ \\ '('(' 11 

paths are detected b~' exploring similarities in the illlnges, tlsing 111<' S,lIl\(' SI)~1. I hilS 

creating a topological representation of the paths. The robot is t 11(' 11 ,11>1( , 10 plilll pel I lIS 

and switch from one path to another at the cOluWelioll POi11ts , Kil ('t ,t! , [ 1 7 : ~ 1 d('lllOII

stratc a method to learn the distribution of visual features ill (Ill CI1\' irolllll('1l1 \' in iI 

self-organising map. The model ellcooes spat inlly-d ist ri btl ted colotll' It ist of,!; ra II IS of rc';\ I 

world visual scenes captured by a cameri1 lllov('d t !trough nil ('llvirOlllll(' III . TIl<' (,Dlu\ll' 

distribution is learned a.'i a histogram using (1 sd('-orgelllising lI1ap wit It IO('i11 iOIl (whc lI 

available) and colour data. Colour histogrcltllS are insellsitive' to SIlI,111 viC'\\' ('ItHIII.!,<'S. 

Once trained , the network may be qlleried to provide a predicled Itistop,nllll I Itnl (',III 

t hen be compared against the em rent true image h ist ogral1l 10 del c('1 c1IC1llg('S. I, i t 

et al. [17:3: stc1tC that the concept behind their reprcsclltcl1 iOll is t 11iI1 (1)(' spnl inl diltn 

structure should be \'icw-il1variant bnt still retain C'llough fic\elit ,V ('or cl1<lllgC' dc\t'cl iOll, 

T1H'ir model consists of first ncquiring illll'lgC and SPell iHl data (if (I\'nilablc), ('iIlc-tlled illg 

colour histograms from the images. and fi llall~' t rai ni llg H S(,If-orgn II isi li p, I H'I work OIl 

the histogram ami spatial data (if available), Further ill fol'llw I iOIl Oil ('olotll' hisiognull 

matching is provided in _ PpcJl(lix ectioll B.l , 

A.6 Robot information sharing 

This sectioll extends OWl' Section 2.5 ami looks <It robol (,OllllllllllicClI iOll, :\('1 \\'ork

ing. (,OllllllllllicatiolllUld collnboratiolllllethocis t'('quirelllellts for Sllcc('ssftll illfortltHt iOll 
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sharing. 

A.6.1 Rob ot communication 

Robots \\'ithin the em'ironment need to communica tC', coordillclte alld sllnl"(' diltn ilild 

information betwe('n themselves with systems cvolving into lPallls of roi>ots , TIl( ' Illilill 

motivation for COlllH.'cting robots together is for thcllI to COlllIllllllicnt(' ill onkr to 

achieve a COIllmon mission ill ei tllCr a distribut cd or pm<:1l1c1 11I<11111('r [ II ~] , H()('llll ('( 

a1. [12: suggest that communication may appear ill thrC'e difFer(,lIt [mIlls of illlel"<H'

tion namely by using (i) stigmergy (via the environlllcllt), (ii ) implicit COlll llllllli('atioll 

(via sensing) or (iii) cxplicit cOllllllunication (v ia COllllllllllic(\t iOIl ), I\s dis('ussed ill 

cct ion 2,1.2 , stigmergy is a mechanism of indirect COllllllllllicHtioll l)('tW('('11 i\~('lIts or 

actions by using the environment itself, COllllllunicatioll l)('tW(,(,11 robot s ('ilil 1)(' ('itlll'r 

implicit or explicit. Implicit cOllllllunication is H lllode of COlllllllllliCi\t iOll ill ",hi('11 til(' 

robots sense the action of other robots through the 1 .. 1tter's ndioll Oil III(' S,llll(' tm

get. A robot would knowingly 1lse its sensing capabilities 10 ohscr\,(' ni\(l 1)('rcciV(' t 11(' 

ac tions of its team mates, Explicit COlllll1Ulli(,HI iOIl, 011 tIl(' ot IH'r 1\;\1\(1, is ;\ !llod(' of 

cOllllllunication in which the robots share infortllHtioll wit h ench ot h('\' h,\' ('X('lIilll ).!, ill ).!, 

messages \'ia a wireless cOllllllunications lletwork [!):>], rllt ill ot Iwr words, illlpli('it 

cOllllllUnication occurs as a side effect of other act ions whereas cxpli('it (,Olllllllllli('nt i()11 

is a specific art designed solely to convcy informatioll to other rohots Oil t 11(, « ';lI 1l [ II ]. 

Robots are becoming more autonomous Hnd as a reslll t t b(, \'(, is tIl( ' opport 1111 it Y I'or 

such au tonolllOUS intelligent robots to collabora tc i 11 order to C'el I T~ ' Oil t 11101'( ' ('0111 P I('x 

tasks, As will be discussed in Section A,6,3 they llecd to dC(('l'Iuill(, whnl .iohs him' to 

hc d011e and who is best sui ted to perform thClll, clccordillp; to SOil\(' \vork o\).i( 'c t in's, 

As will be seen in Section 2,1.1. interaction with human oi>serwrs or ('onlrol!l'rs Illil,\' 

be also a factor to be integrated as seamks::,;ly 1'1S possibk [ II I], III t II( 'S(' ('<lS('S. wil'( 'I( 'ss 

C'ollllllllnica t ion pro\'ides t he low cost sol utions for tllobil<' robot llet works to ('O() lwra t (' 

cffkie ll t 1,\', \ Yircless cOllllllunication is vastly growing and lIme! Wil l'( ' is \)('('0111 i II ).!, I II 0 1'( ' 

1' cc't( l il~' available, \Yang et a1. [nO] suggest that ael-hoc net working is Ill(' I> ('s t opt iOll 

for mobile robots due to the fHCt that in Illost applicatiolls rohots nl'(' 1I1os1 lik{'I\' 

equipped with only lo\\' pO\\'l'r \vircless tram.;cei\'crs whose rnngc is too shmt to nllow 

direct cOllllllunication with the data collect ion point. bllt suHicicllt to nllow roi>ots to 

cOllllllunicate with do 'C neighbours, 

Til 1'1 single robot s~'stelll, 1ll0't if not a ll of tile '\'(';.[solling' is )'!'(' IH'rnll ,\' dOlI(' OIl 

the robot computer itself \\'h(,l1C\'C 1' possible. to allow for IllaXillllllll a lIt OIlOlll\' , Hohot 

nctworking was generall ~ ' used only for simple datH, COllll1ll1l1iC'nt iOll Slldl ilS sll('h HS 

informing the robot of new position coore!inat('s, Traciitiomdl:v. robot (,Olllllllllli('(11 iOll 

archite(,t mes has he-ell based OIl a client-servCl' Illod('] 1)('1 we('tl <l rohot " lid {\ s('rwr 
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respecti\'el~' inter-connected through an access point [11 t']. \1\ 'hCll il CO Il H'S to 1l 11 dl ip\(' 

robots in a :'IRS however. the story is differcut . Apart from cHcll robol workill!!; 

independently on its 8en8ing and movement processi ng, lll O t'( ' l!Ci\V\' d ill n Il lil1:hl Ill'cd 

to be shared between robots . agents and other cont rol s~'S t (' lllS ill ord(' r I () co ll ect i \ '(' Iv 

decide the best operation. either through a cent ralised S.ys tClll or d is t riblll ('d S.\'S\(' 1I 1. 

These agents need to communicate and share data alld ill fO rJl ]{1 I iO Il bet W(,(,11 I I )('Illst'l v('s 

wi th S\'stems evolving into teams of robots Sll pporl cd by wi rc]Pss il( 1-hoc I Icl wor ks 

[ll ]. In an ideal 8i tnation robots should only t ransfer d H t i:t which is I J('('('SSilJ'.\' I 11 liS 

reducing network traffic and also the litt le data S('l1t cont a ills ('110 11 11: 11 ill ro rtll nl iO Il to 

make decisions. Bandwidth i8 a precious resource espcc iHlly ir H robot 's task illvolvcs 

transmitting huge data. Efficiellcy becomes inCTcH ... <-; illgly illl port HllL wl)('11 scn lill !!, to 

a larger number of agents [270]. Sheng et al. [27 1] Hddrcss the prohl (' 1l 1 o/' li mY' to 

reduce the data exchange among multiple robots when the~' CHlT\' Ollt ('oOI){'rn t in' 

area exploration or coverage. -:\Iosteo and ~Iontallo [Ill] add n'ss tli (' t nsk nll o('il ti oll 

problem from a point of view of networked robo l ic tea1l1s, its ob.i(,(' t iw b('i ll l1: to () pt illliz(' 

the utilization of the resources available. This kind of )'('s('ar(' h ('(\I I h(' roulld 111I<I ('r 

t)everal labels like mobile ad-hoc networks (l\lANET) or lI (' t wor ked ro hot ic S\'s t (' illS 

(:'JRS). It mo..\' also be seen as a specialized Im:lllch of coopcrnt iv(' robot ics wi 1(')'(' t il(' 

cOlllmunication is explicit yia t he wireless llledi ll lll and w 11 (,]'(' it sll i\l"('s I W I 11 .\ ' (' 1(' 11 )('11 t s 

of research with the field of wireless sensor networks (\\'S:'\). :-' fA;,\ET is n ('o ll ('(' t io ll 

of lllobile nodes which form a temporary network using (H I-boc ro ut ill /-!,. TII(' Il(' t '.vork 

often has a dynamic and unpredictable topology. N HS is a IlCt wor k ('o ll sisl ill /-!, of 

mobile robots and static sensors which are conllected ov(,r a wireless lI et work. \\ ' S ~ is 

a mediulll to large lllesh of networks t~' pica lly using low-power Il odes [III ]. ;\ (' twor kil1g 

mechanisms are further covered in Section 1\.6.2. 

A true Illulti-agent problelllnecessitates restric t iolls 011 COllll ll ll llinll iO Il [WI ]. At il ll\' 

rMe. while full. unrestricted COl1lmllllicatioll can ort hogolln Jize t h(' I('n mill /-!, pro blcllI 

into a basic single-agcnt problem. such an app roach req uires \'(' r.v fns t (,O ll1l1l1 ll1 inll iOIl 

of large amoullts of information. Real-time applicatio tls instc;H1 pl,1('(' ('o llsi <l ('rn hk 

rcst riet ions on comlll unica tiOll. in terms of both Lhrollgh put Hlld I" t (, II C.\'. 

A.6.2 Networking 

As mentioned earlier. distributed applications such as sun'cill(\llc(' . nll( l mb" ll s('(\)'cII 

and rescue (CSAR ) operations. require solid networking protocols so ns to coord i

nate their activities with reliable C01lllllll1licatioll. uh i quit~, or COllllll lll li('n t iO Il he t W('(' II 

robots. s('nsors. monitorillg ('cntres and hllllHUl scc m ity g umds eqll ipp('d wi t Ii Slll nrt 

clC'vic('s is essential for proper coordillatioll ill such a pp1ical iOlls. :'I lor('()\'(' r. il l s ll c l1 s.\'s

trillS. a \\'orking net\\'ork infrastructurr is gC'llrrnll.\' llOt (wHilah](, or (,Hll ll ot he (lSSI IlI }('d 
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to be reliahle. 0 rohotti and o ther devices deployed should he ahle to CO nlllltlllicate 

through ad-hoc nehvorks [270]. 

As already- mentioned in Section A .6.1 rvIANETs can he' dcsc-ri h('d as a \"Ill Iy d is

tributed. autonomOllS and cooperat ive cOlllmunicatioll lwt works tha t C(\II 1)(' <'freet ivclv 

set up and operated without the need for pre-established iufrast rllet mes . [II Sll("\t a lI (' t 

work there is no centralised administrat ion or titandard Sll pport servin's [nO]. ~ I A:"J ET 

is a collect ion of mobile nodes which form a temporary lIetwork . Tile u('( work oft ell 

has a dynamic and unpredictable topology. \IA.~ETs me sdf-orl.!,allis('<i wireless 1110-

hile networks that consists of mobile entities that cau each nSSllllle tllc ml(' o\" il datil 

source. destination or router. In such ne tworks , data can he direct Iy t rHnSlllit ted frolll 

source to destination if both interconnected by an enabling techuology sllCh <IS Zi l.!, l)('(' 

(IEEE )02.15 .--1 ). Bluetooth (IEEE 02.15.1),v\-ifi (IEEE 02 .11 ). 

Several stuciies on cooperatiw distri bu ted ne tworki ng and COOP(,nI t i v(' \"lllIct iOllil 1-

ities have been carried out [272 . 273. 27 1. 275 , 27u]. Wi t kowski pt ill. [27.') ] providc 

a dynamic triangular robot ad-hoc infrastructure for lllUtt i- robot svst ('IllS ill d iSilS I ('J" 

scenarios. SugiY'ama et a1. [27(j] suggest an ad-hoc ('\11-1 i II IIdwork COIIIH'Ct i II g il \),IS(' 

station and rescue robots so as to explore distant spac('s ill disast('r i\rPHS. SIW\t sC('

narios require time-critical information to be routed ina 1Il1l1 t i- hop IllHIIIH'r tot II(' 

appropriate IP-based entities. Additionally, s llch lletwork ('ntiti('s Hr<' HlttOIlOlllOllS ill 

nature and have limited battery: capacities. Thus. tllc cost of sllch CO llllllllllicHI iOlls is 

often considered to be ill terms of the energy spent for overheads <ill(' to !"Ollt ill g [~" l . 

S0111e of the metrics to analy-se a good robot ne twork syst Clil i tiC Ill<i(' (' II('rgy COilS 11111 p

hon. conl1ecti\-ity·. throughput. accuracy. security, ro\)ustllcsS Hlld bnll<iwidt h (,[lici('lIn' 

[270]. 

A. 6 .3 R obot cooperation and coordination 

Robots are said to cooperatate when there is a situation ill which seV('nll robots Op('rHtc 

together to perform somE' global task that eithe r callnot 1)(' Hcitie\"c<l b.Y H sillgle rohol , 

or whose f'x('('ution can be improved by using more than OIl(' ro\)ot , thus ohtnillillg 

higher performanc('s ~97]. Cao ct a1. [93] define coopel'C1tivc bdwviollr HS H sllhclnss of 

collectin' !;eha\'iour that is characterized b.\- coop era tioll. The.\' s t ell (' t hHt l.!, i\"('11 SO Ill( ' 

task specified b.\· a designer. a lllultiple-robot s.,-s tclll dispIH.\·s Cl)()IH'rilt i\'(' I)('hil\' ioll r 

if. d 1IC' to SOllle ulld 'riying mechanism. the re is an i llCI"{'(lS(' in t lie t oLd II til i I.r o\" t 11(' 

systcm. 

Coopcratin' lllulti-agent s.,-stel1ls arc olles in which sc'w'ral Hg<'llts cl tl<' llIpl . t hrnll gh 

tllPir intcl"c1.ctioll. to jointly suiV(' tasks or to llH1..'Cilllis(' utilit .\'. \)11(' to til(' illil'nlcl iOllS 

a!llOllg the' c1.gellts. llndti-agellt complexity' call rise nlpidl.y wit h til(' 1l11111I)('r of ngl'lIts 

or their behayiournl sophistication [ .")]. Coopcrat ion bC't \\'('('n rohots prm'id('s t I I!"{ ' ( ' 
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potential advantages. namely efficiency, reliability ami robu~lm'~~, a lld s l)('('in iisnt iU Il 

[42]. B.Y' using multiple robots. sensors are more spati a lly dist r i btl l (' cI t hCIl if (\ si Il glc 

robot was used, thus providing the possibility of capt uring daJa a t it f,ls((' r 1'<)( ' wi t h I('ss 

uncertainty about the envi ronment. This a lso il1troclu('('s red lInd a Jl c.\' a lld I I I (' rd'or(' . 

the failure of any particular robot does not llecc~~arily ('o lllprOl lli s(' ti l(' OV!'ri1 11 Illi ss iOJl 

'uccess. Also. robots with different sensory or Illo l ion s kills lllHy l1 ave co lll ple ll l<' lltnr.v 

and specialized features that O\'etTOnw their ind ividual lil1lit a l iOlls nlld iIHT('ns(' t lIe 

system's total utility. 

Particularl~' challenging domains fo r mul ti-robot- dOll1a ills Hre those (;\sks t hil t nre 

inherentl.v cooperative. These tasks cannot be deco lllpo~ed int o illd (' IH' lld(, ltl s llbt as ks 

to be solved by a distributed robot team, T he uti lity of tbe ac t iOIl of OIl<' ro hot is 

dependent upon the current actions of the othn tealll llH' ll1l )(' rs.TIH' SI H'('('SS of t \t e 

team throughout its execution is measured by the cOIlli> illed act iOlls of t.\ H' roho t t ('il lll . 

rather than by indi\'idual robot actions [11]. CoopNat ion alllong 1II\(lWl\!'(' ro hot i(' 

agents is the weakest form of cooperation [97]. A fUll dmll(' 1l1 HI pm t of iI ~In s is th il t 

the robots should be aware of each other 's exist(' Il (,C. AwareJl ess nlo lH' how('v(' r do('s 

llot implicitly specif\, that the ro bots will colla bora te al1d coopera te. This illlpli('s t hil t. 

one of the first pre-requisites fo r effective colla bora tioll re li es 0 11 t 11 (' possi iJilit ,v ['or t Iw 

robots to comlllunicate properly with each other as deseri I)('d i 1\ Sed iOIl i\ , G, I . 

Intentional cooperation is cleal'l~' not a prcrequisi te fo r i\ ;-"1 ns to ('x hih it coor

dinated beha\'iour. as c\(>lllonstrated by m inimalis t or ('ll H' rge llt il pp ronciH's [!)( ]. III 

such s.vstems. individual ' coordinate their act ions th rough t iH'i r illt ('nlc t iOlls wit h ('ilch 

other and with the environment. but withou t ('xplicit ll ego li ntiolJ or il ll o('il l ion of l ilsks. 

\Yhen COlli pared with clllergent cooperation , which is a result of iI ('( ill g upon s(, lIis h ill 

terests. intentional cooperation is usually bet ter suit ed to t he k inds of reil l-wo rld t ilsks 

that humans might want robots to do. If the robots a rc d ('li l )('ntl (' I~ ' coll nhorn l ill g i\l HI 

cooperating \\'ith each other. then. the~' lllUSt s hare informntion 0 11 a C() Illll1 011 pro lo('ol 

[D7]. Intuitively it can also be expected that if need be , hUlllHns could d('l iber,l t('\\

also cooperate \vith these robots [9l In [97]. lou'hi e t a l. pr('s(, llt il ll HIl ;dys is of 

.\rRS b.v looking at their cooperative aspects. T hey propose (\ t;IXO Il OII IV o f ~ Ins il lld i\ 

characterization of reactive and social dcli lw rativc lH' iHWiours of t he ~ rns <IS iI wll o \(- . 

Good coordilH1tioll methodology should alwa'y~ cOllside r iu('or poril t ill g pHs l knowl

edge to accelerate initial decisions driven b~' all ('xperl s~'st(' 11 1 or ll flli ll(' 1(';\I'I I('d Pl'('

diction Illodels. be able to adapt knowledge based 011 n'H I-t i\lle h(' llCwio lll' <llld s \t oll ld 

not soit'I\' rely on the lise of communication and inlell igell t 1H' J'( '(' pl iOIl hIlt look il l 

alterllaliw tcchniques to complemcnt and replace' th('se kcllllOlogi('s [ II () ]. 

Coord i llat ion is <1 form of coopcration where t he ad iOllS PNf'or ll wei bv ('11(' 11 robot 

take' into (llTOllllt the actions ex('cuted b,Y' t hc ollwr robots ,,, it hi ll ti l(' Sc ll ll(' t(,lIllI 

res1lltillg ill H coherent and high performance opera I ion [!)7]. C'oord ill il l iOIl is 1I0 t i\ 

13·1 



APPESDIX A. ADDITTOSAL LITERATURE A.6. R0 /3 0T INPOHlII ;\T ION SI/l \/UNG 

prerogat ive' of the' cooperative \.IRS, in fact there cxist robotic s.ys tems ill which coor

dination bet,,"een the members is required , bu t the' ro bots havc diff(' rc11t goals \',: I!i cl! 

often are not related to each other. For example, the industri a l robots Oft ClI s l! "1r(' 

tools and coordination is needed to avoid interfe rences, Wllich t ah ' pl ()('(' wl \(' 11 ,1 s i II g le 

indivisible resource is requested by multiple robots [97]. SClltis d a l. [:27K] " ddrcss t 11(' 

problem of coordinating great numbers of vehicles ill la rge gl'ograpili cn l (\I('as IIlld l' r 

network connect ive constraints. A large cxplora tion t;.lsk was si 111 11 \;11 cd w hcrc it WHS 

delllonstratC'ci that the required constraints can bc cf[ect ivd y cllfo rcC'd whil (' opt ilil iz

ing the cxploration goals. entis et al. [27 ) suggest('c1 aciva 11 C'('d skills ill :\IHS by IISi ll f..', 

hierarchical potential fields. grouping together va riolls field ohj ec t ives t. o il( '('o illplish 

the performance requirements in responsc to high-level (,Oll1ll )(lI l( ls . T II(' ir fnlll l(' work 

calculates trajectories that compl:v with priority cOlls tmi11ts whilc opt ilili z ill f..', ti l(' d<,

sired task object i \"C'S in t heir null spaces. A moclel-based dYIlHIIl i(,s H pprwH'h \ViiS II S('d , 

prO\"iding a direct map from fie ld objectivcs to w hicle ;lCCCleri1t iOIIS. yi(' ldillg SillOo t h 

and accurate trajectory generation . 

Distinction has to be made when cOlllmands a rc iss ll ed to rohots workillg illdivid

ually at a microscopic level as opposed to a tcam of robots a t H 1I1 ;l<Tos('opi c Icvcl [!J:)). 

Distinction also needs to be made betwccn thc rolC's tha t a robot III\ls t IH' rforill ill ;l 

team and the targets on to which the rok s arc pcr fol'lll ('ci . 11 0 les HI'(' HSS()C i"1t eci with 

tasks and target ' are astiociatcd with the objcc ts to which th(' t ns ks H i'(' direct cd . Sill

gle target sccnarios tend to providc more scopc for illlplicit tO lllllllllliu lt iOIl Hlld IlIor( ' 

macroscopic control. \,"hereas multiple target sccnar ios tcud to providc ilIon ' S(,OI)( ' for 

explicit cOllllllunication and more microscopic control [!)f)] , III contrast , s ingl(' mit- scc

narios tend to prO\"ed more scope for im plicit COllllllUlli cH t iOll a nd 1I1O\"( ' IIl "H'I'OSco pic 

cont rol whereas Illult i pic role sccnarios tend to provide llIon ' scopc foJ' ex pi i(' i t (,O ll lllllJ

nic(ltioll and more microscopic control. 

A.6.4 Robot software development frameworks 

As the capabilit~" of robotic applicat ion increases. cxt e' lls iV(' inl'nls \ mel 1Ir(' support to

gether \,"j t h expanding dcvelopment of support for a ll \ O Il OIll ic COlli pI I t i Il g WOI del bc 

required :207:. ince the' original concept of robot C\c\'clo j)IllCll\ (' I\,"irOllllH' lIt s ( IlD Es) 

came about. their main ailll \\"<-LS that of providing robot a lld (,OII II)(J IH'lIt d l'V<' lop(' rs, 

coordination dCH'lopers. and svstell1 architec ts with prHc ti C'<l l so illt iOlls for ;1 cons is tellt 

<-mel simple interface for design. program ming, cl ebllgging Hncl coordill il t ion of robot s 

that can then be scaled up to consumer solu tions [27n, 20!)]. Such l'rHlllC\\'orks cOl\ld 

1)(' {llso tlscd for the exccution and maintcnance of robot it arc hi f('(' t lIres 11S pmt of HP

plication ckplO.\"lll('nt [207]. Frame\\'o rks should provid e' H Silllpk ,l lld ('1(';1 11 ('O IIlI )()IH'11I 

interface' to iIl\·oke' :;pccifk fUllctiollalit~". monitor tels k prog ress. ilIld II \>d 11 tc t 11(' gO;l ls 
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of running tasks [209] with the ultimatc developmcll t platform be ing I he 011(' which 

would allo\\' the general population to p rogram ro bots wi t h ('as(' [~7D] . :. \Ohil1 ll<'d ct 

a1. [20 ] highlighted sewral challenges which need to be OV(, ITOllH' hy ro hol c\ <'VC IOPllH'll t 

frameworks, namely: 

• simplifying the de\'elopment process, 

• support cOllllllunications and interoperabil i ty, 

• providing efficient utilization of availabk rcso ll rc'('S, 

• providing heterogeneity abstractions. 

• supporting integration \vith other svstems. 

• offering often-needed robot services, 

• prO\'iding automatic recourse discovery aw l config ll relt iO ll , il lld 

• supporting embedded components (md 10w- rC'sourcC'-deviccs. 

Biggs and ).IacDonald [279] re\'iewed various robot progranll lling fra llH'works, 111 <lki ll g i\ 

distinction between manual and automatic programm ill g frclJ ll ('works. 1\ 1 il llll il l frn 111 ('

works require the user/ programmer to create t he ro bot progl'illll (\ in'(' II ,\', hy IWlld , 

These can be either text-based or graphical. Au tom a l ie fn'II1 H'wo rks Oil I It t' ot hcr 

ham!. generate a robot program as a res ult of intcractioll beh,\'<'<' 11 ti l(' rohot il ll d 111(' 

human: there are a variety of methods including learni llg, progn lllltllillg h,\' d<'lll() ll s l ra

tion and instructive s~'stClllS, Due to the variety of met hods avni lab lc. Oll(, or ti l(' 11I ilill 

isslles during the plannillg stage, is that of decid ing wilich is (1 )(' hesl frmll (' \\'ork 10 

usc, h:rallH' r and chelltz '207] conclude that COll llllOll fca t tires .. viII he ill(T('HS ill p;l,v ('X

peeted ill all framc\\'orks, strengthened by the illt<'l'opern hil it,\' of ('('l' l nill II H'c ll a ll is lllS, 

The creation of a set of (possibl.\' de facto) stalld a rds. would b 'ld 10 ill I ill ('l'(,HS ill p.; 

nUlllber of predC'fineci components that can be expected ill all,v giv(,1l n DE [~()'i ] , To 

elate how('wr. although somc platform ' a re 1ll 0l'(' pr('['e l'n'(\ th Htl Otll ('l'S w ilhin lh c 

robotics ('ollll1lunit,\'. no de facto standard has ,v(,t be('1t 1'('C1d1('(\ [ 1~() l , S('v('ra l open 

source. freel .\' available RDEs for mobile robots exist, T('HIllBots. A nl !\ , 1)1;),\'(' r/ St;lg(" 

PHO, CAR)'IE:'\, :'lissiollLab. ADE. )' Ii1'O. )'IAR rE. O rcH, UPIl P \1 ohol \l id dl ('Will'('. 

ASEBA, The PEl l(e1'11e1. ORi\, . RSCA. The \ Iidd lewme of AWA RE, SCllsory \) il!;) 

Pro('('ssing )'Iiddl('ware. Distributed Humanoid Robots ~I id d l ewHl'(' il lld \ \T HD E ill'(' 

just SOllle of the RDEs <:lnd micldle\\'are that han' hCCll ('x l<'llsiw'I ,\' <\1\<lI ,\'s('<I (\11 <1 ('0 111 -

pared )()'i. ~tl..., : , ). lore reccnt dew'lopments saw the Ct'en.1 iO Il of nos (n () ho t O penll i IIp.; 

S,\'stPlll ) :~~ 1. :2~ :2 ' \\'hieh "'ill be dl'scribed in more delHil Il(,Xt. 
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ROS (Robot Operating System) 

ROS is a robot-specific middle-layer solution for distri b11 ted COllI pI I I i\ I ion cll1d II \( 'SS<l~(, 

passing. It allows eas:v integration of sensor drivers a nd d 1:) t (\ pn)("('ssi Il g COllI POII('III s 

including both off-the-shelf and in-house components . Each piece of itardwm(' or soft 

ware runs on its own node and publishes over a topic . These topics <lIT <lvilil"I>I(' for 

a ll the other nodes. \\'hen a parti cula r node wants to l"eHd date\ ("O lllillg frolll ;\ pm

ticular sellsor it will subscribe to the topic Oil which til(' scusor is p11hlisltill~ <1l1d III(' 

data together with its time-stamp a re availablc. This allows for lllllitiple sellsors alld 

multiple users to access the data without conflicts. The distriblll('d 11 ;\!Ul"(' of nos 
allows each independent componcnt to fUllction wi til SOlll(' degree of i Ild(' I)(,lldeIIC( ' a lid 

facilitates ext('nsibilit~· [2"2]. ROS provides the biggest <)( IVHIII·ng(' of itavill ~ S(' , ·(' ral 

developers able to share their developed softwarc eV('tl i r i tll pielll( ' III<'d Ol\ 01 it('!" rohol 

platforms. Due to the nature of HOS, if data is publisit('d correctly OIl ;1 topic . it s 

source is irrelevant. thus making the system very versatile and itig ltI\' s("(li;II>I(' . nos 
also gives the possibilit:v of hm'ing one ROS l11a,.'-;ter rUlllling Otl olle IllilCltill(' nlld ot itn 

machincs / robots connected to it as slaves over wird('ss SI II('rtl('I . S()llll iOlls for iti\\; ill ~ 

several ROS masters working in a distributed fashion (llId silming topics ow!" Et Il('rtH '1 

a re available. Although still in its infant stage HOS is becollling \ ' ('I".\" pOpltl<l1" (\lld til( ' 

number of u 'er5 is exponentially increasing [2R:3]. ROS is ill <) 1I1liQll(' posit iOIl ns n 

middleware as it enjoys high cOlllllluni ty partici pat ion. <) regllim f"('\('ns(' i Ilkrvn I. good 

simulation em'ironnlPnts a nd. the ca pa bilit.v to reach fWIIl the s11l;1I1('sl d('vi("('s lip to 

the high powered service robots [2 0]. 
However. ROS is still not perfect and sOllie probklllS witii tilt' lISl' of nos Wl' IT 

highlighted in ~ :2 0]. These arise mainly due to the fnd thaI nos requin's ('V('l".\ ' 

m3..'-)t('l" node to hold the complete na mespacc ill its llH'lllOl".\". Tog(' IIH'r witll Ill(' f"l( 

d es ign of the lllultimaster implementation, ('very ciuHlge to t ite IIHlll('SPHC(' s~ ' sl Clll IIlIISI 

be propagated through the whole syst em, to he availabl(' (0 l'v('r~' Ilodl'. Scitllci<i('1" [~~() ] 

suggests that a hierarchical system. where the master node's [Orlll H (IT(, st l"IIct I!r(' wit i("it 

only fOr\nU"(.ls the parts of the namespace might be man' appropriate. Allot l1<'r prol>l(,1l1 

of no is the \"erhosit~· and complexity of its X:l\IL-HPC protocol vvhi('1! 1<-1.\'s il it('i1\'~' 

burdell all nodes in wireless sensor networks. Howevcr , ('()nsid(,l"ill~ ;tIl t h(' pros "lid 

cons. ROS \\"as still ('onsidered as the best d evelopmenl (,1l\'irOllllH'llt for t itc rohots. 
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B.1 

Additional Algoritllllls 

Sce ne comparison by colour histogram 

matching 

As alread~' seen in ection A.2 various colour spaces exis t. III thi s St'(' t iOIl I.XV ;\l ld 

more specifically the l- and \' channels are used fo r basic S(,(, 11 (, ll lHkrst il ndill l-!, and to 

compare scenes based 011 their chroma levels . Im ages an' tll Cl tcllC'd h.v ('o lllj)Hrillg t lH' ir 

chrominallC'c levels. The"C and V compollents from the n CB va l\1('s of t 11 {' firs t illl <ll-!,(' 

arc obtained. This is follO\\"cd by creating a probabilit.\' cl ('w:;i t ~ · fll l1(" t iOI\ (PD F) of l ' 

\'s \ ' b~' a binnillg and normalisation process of valtH's witlt the O\1t CO IIH' bei ng sili liltir 

to Figure B.1. This is repeated for the second image . 

.------ --
0.03 "'--- .---_ 1. ,.,--- --. 

0 .02 ~/ 
0.01 ./ 

o 
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Figure B.1: "C vs V P DF 
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13.1. SCENE CO!l1 P.\/USOl\' In ' COLO / 'H 

H ISTO(; H :\ ,\ I ,\ (AT(,( IIN(; 

this method the similarity of two scenes based 0 11 colour call b e ddi Iled , T !tt, il Ion' 

similar the colour content is the smaller t he divergence' and tIm.; (he s lll (1 ll (' r (h (' V,III H'. 

:\[oreo\,cr. if Olle aSSllmE'S that the object of in teH's t is a lways ill (h (' ('(' 1111'(' or t IIC ' 

image a Gaussian wcighting based on Eqna tion (8.1 ) COllie! 1)(' inc llld('d ill Ih (' billll i ll ~ 

part. with the \'alue of the bin being increased by H value de pe l1de lll 0 11 how c los(' 

to the centre the pixel i ' . The further away th e' p ixel is fro 11 1 ti l(' c(, IlII'( ' 11 1(' lowe r 

its contribution will be. The Gaussian curve is gra phica lly de pic l<'<1 ill Fi ~l ll' (' I L~ . 

Figure B.1 shows a normalised PDF of an image. 

1 ( (.TO - ,1')2 + (,1)0 -uf) 
--2 exp - 'J 

2Ti~ 2~-
(13. I ) 

240 

Figure B.2 : Gaussia n urve 

During experimentation. various images of size' (320 x 240) we' l'e (,H pl 111'('<1 fro II I ;111 

SR\ '-l surveyorl robot. Figure B.3 and Figure B.-1 show the SH IIl pk s<'l s o r illl ng('s 

used for scene comparison. Image et 1 in F igure B.3 cOw'.;is l s o f Image's or (\ I (l,V pl il ll (, 

with bright colours. Images were taken at interva ls of Hpprox illl a l(' I,\' J()I' h,Y I I\(' llloh ile 

robot '. A similar 'et. this time \\'ithout the toy plane a lld j llst the bH('k~ro lll lC l S('(' IH' . 

as seen ill Figure B.-! is used. Figure B .5 and F igure B.6 s how t lt t, 0 111 (,() Il H' o/' I I\(' PI)Fs 

prodllced from :2 part icular images. The PDF s hown ill Figurt\ B.G (' ) was g(,lH' ra l ('d 

from image Fig \ll'e B.·) a) and the PDF showlI ill F ig ll l'(' 8 . .1 d ) W,lS ~(' IH ' I"lI (·d fro ll l 

image Figurc B .. S b). imilarl." for Figure B.6 , In Figur(' B.o I-wo ill Hlges fro lll ( It(' sa lll t' 

image set containillg the to." plane were used. A lt hough a ll thl' PI)Fs VH I',\ ' fo r ('Hcil 

image , as can be \'isllally noted. the differell c ill the POFs of Figlll'l' I3 ,J nppl'<1I'S to 

be morc than that ill Figure B,-l , This intuition is confirlll (,d whe ll IISillg I ht' 1\1I11I>n(' l\ 

Lei bIer Di w' rgcllce , For Figure B. 5 the diwrgell('(' is of J(U)-! w her('as ror F i~ lII' (, B.G 

is llluch smaller and amounts to 0, " 6. The Oll tCOtllC frolll t he Ill H (('It i II Fi~ \1 n ' lUi 

gi\'Cs Jllore confidence to the robot that the S(,(,11(, ill the Iv,,"o iU Hlg('s is l!l o n ' s iln il" r 

to the casp ill Figure 8,.-) . \\'hen cOl1lparillg any t\.'v"0 illJ(lg<'S ['ro ll I t 11(' S,l1!l (' S(' ( I h (' 

Eullback-Lei l>ler di\'('rg(,Il(,(, is smaller to Wbt'll cOlllpa riug ill1ag('s by ('l'OSs illg (1 1(' se ls. 

I http: \\· \\· \\·, ~\lr\'('~·or.("()1l1 SR\' jllfo.hrllli 

1:39 
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T he difference in chroma between t he images thus indica tes th a t 11\(' 1'(' is ;1 difr(' J'( '1l1 

coloured object in the scene. 

For experimcntation . a colourful toy pla nc was used as Ul(' o hj ('('j o f illl (' I'( 's l . 'I' ll(' 

reason for this is that such colours a re not normall~' fOl llld in lite n<1I I11' 11 1 (' II\' irollll l('ll l . 

thu ' making the diffe rence between the object and backg ro lllld 111 0 1'(' npP;1 I'( ' IIt. A lso. 

in an ideal situation. \vith lighting fixed and staLic backg ro lllld (w lli ('h W<1S 11 01 ill thi s 

case) . the change in the 1) vs V plot peaks wi ll be propo rt iOll a l to I h(' VOIIIIlJ( ' of' (';1(' 11 

colour within the image. From the resul ts shown \t c ['e lllld(' l' , (I l(' Olli<'OIIl( ' g iV('s it I!,()()d 

indication and gives a basic understallding of wila ( is IWPP<' llil lg \.\.' iliti ll 111 (' li (' ld o f 

view of the robot. 

B.2 
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Figure B.3: Test Images S('( 
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Entropy and mutual information 

• 1'" 

.- ;"r-~ ". ' ..... 

pI_IDS Ipg 

plone110 1P!l 

pla"" 115 IP!l 

Entrop~' is a statistical Illeasure of rancl Olllll ('SS th a t CH I I I)(' w;('d t() (' it ;tr;l(' j(' l' is(' I he 

texture or the illj)lIt image. As call be SCCII ill F igure 13.7 biggl's( (' ha ll ges (\\'(' o i>s(, l' v('d 

at edges lH't\\'een objects. This would therefol'e illl p l.\' tl w ( (' III ropy ('ou ld n lso 1)(' Il s('d 

as elll eclg(' detector. The entropy outcomes s howll in F ig ll]'( ' 13 .1 \\'('\'(' g(, I]( '\'n l ('<\ !J.\" 

llsing a 9 x 9 :,liding \,"indo\,' OW l' the fig1ll'c on the Idt lI atl d s ide . For ('n('11 \\"i I Id ()\\". 

the' (,llt I'Up.' · is (hell calculated calcula ted us ing 8.2 : 

[ .to 
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noplaneOO1.jpg noplaneOO2.jpg noplaneOO3.jpg noplaneQ0.4 jpg 

nopiane006 jpg noplaneOO7.jpg nopI8ne008.jpg nopleneOO9 jpg nopIRneOl0 IPO 
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~ •.. 
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Figure B.~: Test Images ScI :2 

( ILn 

where i ranges between the possible grcyscalc values [0, Nl .. V, is the 11 1l1n1)('r 0]" pix( 'ls 

with YaluL's i \yithin a window and .VT is the totc1l11111ll1wr of pixels wit liill t Ililt \\"iI Id()\\" . 

Givcn two discrete random variable's X and ) ', 111(' (' lIlmp\' ddillilioll (',,11 1)(' ('X 

tended to compute the joint entrop:v H (X, ) .) and the ("o!lditiollili (,!llrop.\' 1/ (.\" 1) ' ) I)r 

H (YIX) [~2 ~ . For instance. the ent ropy H (XIY) is the (,Iltrop.v of,\" if) ' is l!, i\'('lI . TI\(, 

jOillt entropys chain rule theorem states 

H(X, } ') = H (X ) + H(1 l \ ) 

H(X. }') = H(1 ') + H (X I) ') 

H (X )H(XI) ') = Hp ') HP l \ ) 

which llleans that joint entrop.\' is the entrop.'; of OIl(' vHrinhk pillS I II(' (,() II<iil iOllili ('II 

trop." of the other. Gin'n that X cUld }' arc stC:1tisLicCllIv ill<i(,P(,II<i(,lIt rill ldolil \'il ri"II)( 's 

if p(I . .v) - p(.r)p(.II). tilt:' follo\ying inequalities CH II be prowd : 

1-11 
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Figure B.5: a) Image 1. b) Image2. c) U vs V PDF of II1Hlg(' I. <I ) l ' \·s \ ' jllW ()f 

Image 2 

H (X. ) ') ~ H(X) + H() ' ) 

H(X IY ) ~ H (X ) 

H()'IX) ~ HO ') 

Equalities occur when X and ) ' are illcicpendent ralldolll vminhl('s. 

:"Illtnal information measures the degrre to which kllowl('dg(' of ti l(' villll<' of (J II( ' \'mi 

able predicts the \'alue of another. If it is zero, tbCll the two vmia l>l< 's a 1'( ' illc\<' IH'II<I<'lIt 

and other\\'ise if \'ery large r209]. Put ill other words, llIut lInl illfmlliat iOIl is t 11 (' <l 111()\llIt 

that the llllcertaint~' ill Y (or X) is rcd1lccd whell X (or Y) is kll()WII [ I ~ l i\lId it (', lIl 1)(' 

clefined as: 

J(X:} ') 

J(.\:: } ') 

H (X )H (XP ') - HP ') JI() l Y ) 

H ('\: ) + HO')H (.'\. } ' ). 

( ILq 

( 13..1 ) 

Eqnatioll B.:3 sngges ts that lll1ltual informatioll IllH." \ )(' \' i('w('<I ;\S i\ 111( '<1S \l)'(' or t \\( , 

1-12 
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Figure B.6: a ) Illlage 1. b) Image2. c) 1J vs V PDF of 11l1 1lt-;e I . d ) l' vs \ ' PDF of 

Image 2 

statistical depeudence betweell tv,'o random vari able's . The dcfill it iOll s prm'id<'d !>\. H. 1 

states that mutual information is the info rmatioll of a vnri ll hk IllillllS it s illfOl'lllnt illli if 

the other is gi\'en. '\'ote t hat J(X : ) -) = J(1 ' ; X ) and J(X : } ') > D. wlier(' tlt e c<jll il lit\· 

occurs if X and }' are statistically indepeudent randolll vclri Hhl('s . Sill (,(, I ( S : S ) 

H (X )H (X IX ) = H (X ). ent rop~' is someti lllcs rd('I'I'(,c1 to ClS se lf-illfol'lllnt i011. Tli{' 

condi t ionalmutual iuformat ion of two random va ria bl('s X n Ild ) ' t-; i V( ' II 1l1l()t 11(' 1' r;llld()1l1 

variable Z is defined as J(X : } -IZ) = H (X IZ) H (X I} '. Z) wlii cli is (\ )2,<'IH'I'nli /.;1I illil o f 

Equation B.3 to conditional dis tributions [12]. 

B.3 K ull back-Leibler divergenc 

The I\: 1l11back-Leibler di \'ergellce is a fu ud amellt al ('("wt iOIl of illforll lll t iOIl t 111 '01' .\ ' t hil t 

quantifies the proximi t~' of two probabili ty dis(ri btl t iOIl S, wri t t<' 11 m; showli ill Eq 11 ;1-

tiOll (8 .5 ). 
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Figure B.7: E nt ropy Filt (' I' 

H (X , } ') + H (X ) 

where H (X . Y ) is called the cross entropy of X culC l ) ' , Hlld /1 (.'\ ) is Il l<' ( ' 1111'0 \>\ ' or 
X. The }\: ullback-Leibler di\'ergence is: 

• A I wa.\'s !lon negc.tt i \'(' 

• :; ot symmctric 

• () if d istr ibutions match exactly 

\\'hen \\'orking IIsing the I\:ullback-Leibler d ivergcllc!' p M I i('liln l' , 11 lellt iOl l hns 10 1)(' 

llw ci (' on PDF::; ha\'illg zero \'alnes in any of it.s bins sin('(' th is di\'(' l'g(' Il( '(' is hilS('d t) 1I 

logs <l nd a log of zero would lead to infitlit),. As ill <i ic<1tt'd ill [:2. I] t i l(' ( 'OIl\' ( ' 11t iU l l for 

Olog(Oj q) = O. Olog(Oj O) = 0 and plog( pjO) - . ill order to i\ \ 'oi d (, 1)(,() II Il I (' r i l l ).!, 

the I<'ltte r case.for bins with 0 value let \'alne be a VN)' s lll Hl1 11 11 111 1)(' 1' s lldl <I S I A I () j' 

otlH' lwisc this \HHIld kHCi t o an ill conclllsiV(' answer (d i\' idc 1)\' 0 ). ,\ It IIO II ).!, h I hi s 

1-1-1 



APPENDIX B. ADDITIONAL ALGORITHMS B.3. KULLBACK-LEIBLER DIVERGENCE 

introduces an error, for practical purposes the results obtained were found to be good 

enough and sufficient. 

Since Kullback-Leibler is not symmetric, ie. DKL (XIIY) =1= DKL (YIIX), both are 

thus calculated and the output is the average of both. Therefore the output from the 

matching algorithm would be as indicated in Equation (B.6). 

DKL (XIIY) + DKL (YIIX) 
2 

145 

(B.6) 



The GNG algoritlllll 

G\"G was origina ll:" introduced by Fritzke [1 ' 1]. as (1 11 llllsll j)ervis('d 1 ('il rIl ill ~ (('citll iql l(' 

where no prior training is needed . The system starts wi th two lill lwd Ilod('s : IJ( 'W Il()( l< 's 

are inse rt ed a t ('vcry fixed lllllllocr of inpnt ('.\'C les up \l llt il ti l(' II Ii1x illlll ll l 1l lllld )(' r or 

allowed nodes is reached . Connections betweell llodes are (\ Iso i IIS('rt ('d iI lid r( ' 11 10\'( 'd 

adapting the network topolog~" . \ loreover, nodes which a re di scO IIlll'ct('<I ii \"( ' r(' lllo\'('d 

thus allowing for new nodes to be inserted in (1 bette r pos it io ll wititill tll (, t o p () l o~ icil l 

map. This result s in c1 network ha\"ing a topologiccl l st rll ct m (' cOlllpos('d of :.; lI od('s ill 

Y clusters cOllnected b.\" edges closely refi e(' ting the to polopy of t itt' f( ',lt lire d is t rihllt iOIl . 

T he G\"G n('t \\"ork is specified as : 

• A set .Y of nodes (neurons). Each llode k E N has its <1ssoci<l(('d \"( ' f( ' \"( ' II("( ' ,'(T tm 

W k belonging to the input space (in this case grC'yscCl\(' iUlC1 gcs oht ;Iil ll'd rro ll l t 11<' 

vidco st rcclm), 

• :-\ set of edges (conncctions ) betwecn pairs of IlO <i ('S, T I\('s(' COIlIH'( 't iO ll s ; \1"( ' Ilot 

,,'eighted and its purpose is to definc the topologica l st r\l ct lilT, II ('d ~( ' iI )'!'('i ll ).!. 

scheme is used to rClllo\"C connections tha t are illV,did <Ill(' to t it (' il d il pt il t iO Il or 

the nodc cI uri ng t he learning process, 

Th(' G\"G nlgorirlllll opera tes as fo llows: 

(a) Start \\"itll t\yO nodes containing random valucs, ('01111('('1<'<1 wit II il Z ( ' ro ;\ ).!.(' I,d ).!.!' 

alld :-.('\ tiH'i r errors to zero, 

1..j6 



APPENDIX C. THE GNG ALGORITHM 

(b) Generate an input vector x. 

(c) Find the nearest node 81 and second nearest node 82 to x according to the 

Euclidean distance, 81, 82 EN. 

(d) Increase the age of all the edges emanating from 81. 

(e) Update the winner node 81 error by adding the squared euclidean distance be

tween the input signal and its reference vector. 

(f) Adapt the reference vectors of the winner node 81 and its topological neighbours 

towards x by a learning step cSI and Cn, respectively, of the distance. 

W SI f- W SI + cSI (x - W SI ) 

Wn f- Wn + Cn(x - w n ) 

Vn E Neighbour( 8), cSll Cn E [0,1] 

(i) If 81 and 82 are connected by an edge, then set its age to O. If they are not 

connected, then create an edge between them. 

(j) If there are any edges with an age larger than amax then remove them. If this 

results in isolated nodes (without emanating edges) remove them as well. 

(k) Every A iterations and if the total size of the network has not been reached then 

insert a new node as follows: 

• Find the node u with largest error. 

• Among neighbours of u, find the node v with largest error 

• Insert a new node r between u and v using 

Wu+Wv 
Wr f- ----

2 

• Create edges between u and r, and v and r. Remove edge between 'u and v. 

• Decrease the error variables of u and v, by Q u and Q v which are negative 

and set the error of node r. 

error u f- error u + Q u 

error v f- error v + Q v 

errorr f- -(Qu + Qv) 

147 



APPENDIX C. THE GNG ALGORITHM 

where 

( 
erroru ) 

au = -0.5 error u 
error u + error v 

av = -0.5 1 - errorv ( 
erroru ) 

error u + error v 

(l) Decrease all error variables of all nodes j E N by a factor /3. 

errorj t- errorj - /3 x errorj 

(m) If the stopping criterion is not met then repeat from step (b). 
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Robot Configuration 

D.I Hardware 

Several mobile platforms were used throughout the course of this study. The robot 

vision team (RoViT), part of the Digital Imaging Research Centre (DIRC) in the 

Faculty of Science, Engineering and Technology (SEC) owns several robotic platforms. 

Figure D.1 shows some of them, namely the Pioneerl (back left), Videre Erratic2 (back 

right), Rovio3 (middle) and Surveyor4 (front). Amongst these a humanoid robot is 

also available but which was not used for the course of this study. The Pioneer robot 

platform is the most rugged professional robot available within our fleet, capable of 

hosting multiple sensors and onboard computing. The Erratic robots are a cheaper 

version of the Pioneer designed by Videre but which are still good enough for testing / 

research purposes. The other small robots are very basic platforms, with very limited 

capabilities. for example, no effective sensing, single pinhole cameras and basic mobile 

functionality. During hardware selection it was concluded that the limited capabilities 

of such robots, prohibit experimentation with complex vision and machine learning 

algorithms. The inferior onboard camera also makes image processing difficult and 

error prone. As a result they are unsuitable for proper experimentation and they 

cannot be used to take part in public demonstration or competitions. 

1 http://www.mobilerobots.com/researchrobots /pioneerp3dx. aspx 
2http://www.videre.com (possibly discontinued) 
3http://www.wowwee.com/en/support/rovio/ 
4http://www.surveyor.com/SRV info.html 
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Figure D.l: The fleet 

D.1.1 Robot base 

~Iost of our experimenta tion was carried out usiug Lhe till' Errel1 i(' (E H J\) Illohil< ' rohot . 

This platform i ' a full-fratured. industrial mobile robot bas('. Tile lin Ill(' (,OIll('S frolll 111l ' 

La tin cnare: to wandel'. The ERA is compact and powerful phltforIll. ;lIlel ('ilpnhl<' of 

carr~'ing a full load of robotics equipment. including a ll intcgrHtecl PC', Ins('1' l'<lllgd illel('l'. 

and strreo cameras '.) .'): . Its specifications are shown ill Tablc l) . I . 

Base platform SIze .j() em (L) x 37 em (W) x 18 em (H) 

15 em diameter (driven) 

Whed. 
6.25 em diameter (caster) 
Polymer core. soft non-marklllg rubber 
tread 

Wheelb""c 33 em 

Dme type DIfferential. slIlgle rear Cllster 

MWffium speed 2.0 mlsec. 720 dog/sec 

Moton; 
OC reversible with gearhead 
72 W continuous !lOwer 

Encoder resolullon 500 cycles per motor revolution 

16 bit microcontrallcr 

Controller Integrated controller / motor driver 
Analog. digital. and servo Interfaces 

l2V. 7AH lead-ocid battenes (x3) 
Power 5A charger 

Weight 
~.5 Kg (base) 
12 Kg (base + 3 ballene<) 

Payload 20 Kg 

Table D.l: Erratic Robot Base SpccificntiollS 
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D.1.2 Laser canner 

A laser range finder i .. H dl'\'ice \yhich uses a laser beam to detertll i l1 e I he d is l n I H'(' I () 

an objec t. The most (,Ollllllon form of laser range find er OP(' l"1:1J('S 0 11 t II(' I ill 1( ' or II ight 

principle b~' send ing a la 'er pul e in a narrow beam towards the obj('c t <111<1 Ill('ilSllrillg 

the time taken by the pul 'e to be reflected off the targ t and returned to t IH' sender . 

Figures D .:? HIllI D.:3 sho,y an image of the actual 11:1.,,(,[ range fill<i ers Ilse(\ wil It (11 (' ir 

respec t i\"(' specifica rions ' 110\\"11 in Tables D.2 and D.3. 
Speclllcatlone 

Voltage 5.0 V ± 5"1. 

Current 0 .5 A (Rush currenl 0 .11 A) 

Detection Range 0.02 m 10 approximately 4 m 

laser wavelength 7115 nm, Class 1 

Scan angle 240' 

Scan time 100 mslscan (10.0 HZ) 

Resolution 1 mm 

Accuracy Distance 20 - 1000 mm: t ID mm 

Distance 1000 - 4000 mm: 11 % or measurement 

Angular Resolution 0 .36 ' 

Interfaoe USB 2.0 , RS232 

Weight 141 gm (5.0 Ol) 

F · 'e D -). Hokll.\·O La.ser 1 19UI . - . Table D .2: Hokll:Vo LIS('I' I Sp<'cs 

SpecIIIceIlaM 

Voltage 5.0 vt 5 "-

Current 0.5 A nominal (rush current 0.8 A) 

Detection Range 20 mm (0.79 In) to - 5.6 m (18.37 11): < 4 m (13 n) guaranteed 

Laser wavelength 785 nm. Class 1 

Scan angle 240 ' 

Scan Hme 100 msecJscan (10.0 Hz) 

Resolution lmm 

Accuracy Dlstanoa 20 mm - 1000 mm : 130 mm 

Dlstanoa 20 mm - 4000 mm : t 3 "- 01 measuremenl 

Angular resolulon 0.36 ' 

Interlace USB 2.0 

Weight 5.64 oz (160 g) 

F igure D.:3: Hllkll.m Laser '2 Table D. 3: Hokll ,\'() LIS(' r :2 Sp('('S 

D.1.3 Kinect ensor 

Kince t. Sh()\\'ll in fi i!, ure D.-l is a device illi t iall~' developed for th(' r-linoso\'t Xhox ;l(j() 

by PrilllP 'cllse and relt'ased in \'o\'ember 2010. It is composcd of ill1 HCI3 ('11 IIH 'rn . : ~I) 

dept h :--(,l1sors. <l mul t i-a rr c1~ ' microphone and a motorized til t. 

TIl<' main dWn1ctl' ri:--r ics of the Kinect include: 

• . \ !l n CB -'<'11 :--0 1' . T hi :-- is a regular camera tha t streallls \' ideo wit II X hit s ror ( ' \ ' ( ' 1'.\ ' 

('olor Chi-l1l11P1. i!,i \'ill i!, a 2-!-bit color depth . Its color filt('t' <l rr <1 ~ ' is H l3 il\'('!' filt (, !, 

lJlO, ail' aw l t lIe ('0101' resolution is 6-10 x -! 0 pixels with <l )llllx illl HI rl'illll< ' !'ill< ' o r 

:3() I-l!. 

'11l p' hl()L!;.rtlh .. iq .('(\/ll hid III 1:.?~ l'"ing-Thl'- I\ ill('('t -For- R oboti('- ~d allipl/l ilt i() 11 

\;') I 
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Microphone 
array 

LED Vision camera 

+---Motorized tilt 

KINEcr 
for Xi3CJ(~ 

Figure D...! : Kinect cnsar;) 

Microphone 
array 

• A depth scnsing system composed of an IR emi tter proj('ct illg s ll'lId \II'('d li ghl . 

\\"hich is capt ured b.,' t he C)'IOS image sensor. a ile! dC'co(kd 10 pro <i ll(,(' II \(' dep l ll 

illlage of the scenf' . It · range i - specified to hC' betw('('Ll 0.7 nll<i (j Il \(' l (, I'S. il ll h() llgh 

the best rcsults arc obtained from 1.2 to 3.5 meters. Us <l a in Oill pil l hilS 12 hi l 

dept h. The depth sen 'or resolutioll is 320 x 240 pixels wi ll i" ril l (' of :W l iz . 

• A field of \' ic\' of ,5 i o horizont al. _-130 verti cal, with a lil t nll l/-!,(' or n il . 

D.2 Software - ROS robot setup 

In this section, the robot setup within RO is presented . 

D.2.1 'fran form tree 

T he t ransform tree (tf) package within RO is a pa ckage wll ich Ids 11 1(' IIs(' r k('( ' I> 

t rack of llluitiple coordinatC' frames o\'er time. Th is packHge lll Hill1 "i llS Il l(' 1"( '1,11 iOIl 

ship l)('t\\'(,C'l1 cO(l rdinate frames in a tree struct ure buff'ereci ill I iIlH' . Cl lld 1(' ls Il l(' IIS( 'r 

t ransforlll points, \'('(' tors. etc. bC't\\'een any two coordi llntC' frH ll1('S a l ,lll,\' cI ('si l'eci I> ()i lll 

ill tillle. Figure D .,) sh()\\',' th transform tree for om rohot C'o l1fi gm al iO I1 . lillkillg Il l(' 

erratic hilSl' phltform. odollletr~' (,Hcoders , a KinE'ct and 1-1 In.'i(,\, 1' '' 11 )2;(' find (, r . 

D.2.2 ROS launch file 

La\l!lC'h till '~ art' ill OIll' or more X)'IL configura tio ll filcs (wi th llt l' .hll ll l(' it l'Xf<'IlSi()lI ) 

that , IH'cif\' thl' panmll'tl' rS to set aIld node::; to laullch, ilS we ll <IS II I(' 1I1 <1(' hill ('S Ih,l ! 

the\' ~h()ltld ht' nlll Oil. This spction cont ains the laullch ti lt'S r(,qlli red 10 (l1H' r,lIl' ()m 

]',)2 
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view Jrames Resul t 

Recorded at t,me: 13444 3664B BB6 

Broadcaster ' ferratlc base dnver 
Average rate: 19992 Hz 

cst recent transform; 0 .040 sec old 
8uffer length· 4 .852 sec 

lbase_footprlnt 

Broadcaster: /base footpnnt to link broadcac;tpr 
Average rate ' 10192 H; 

Most recent transform: -0 092 sec old 
Buffer length ' 4 .906 sec 

Broadcaster- lbase_ hnk_to_ k.nect_broadcaster 
Average rate: 10 191 Hz 

Broadcaster /base_link .to. Itlser brot.tdcd~ l e l 
Average rale 1019 1 Itl 

Most recent transform: -0094 sec old 
Buffer length 4 906 sec 

Most recent transform 0 094 0:.('( old 
Buffer length 4 906 sc< 

Broadcaster -klnect_base_ltnk: 
Aver09" rate 10196 Hz 

Most recent transform: -0 006 sec old 
Buffer length 4 806 sec 

Broadcaster: Iklnect base Ilnk l 
Average rate: 10~196 Hz 

Most recent transform: -0 020 sec old 
Buffer length : 4 806 sec 

~nldepth_~ 
I 

/opennl_rgb_frame 

8 roaocaszer ,nect_ba~_llnk2 

Average rate 10.196 Hz 
"'1ost recent transform. -0024 sec old 

8uff« length 4 806 sec 

Broadcaster ~ !klnect base Iink3 
Average rate. 10- 196 Hz 

Most recent transform' -0.030 sec old 
Buffer length: 4.806 sec 

~_oeP'h.OP' ca~ lopenn 1_ rgb _ opucal_ frame 

FiQ,l1rC D.5: Robot Transform 1h'(' 

dh J aser .J1aviga tion.laul1ch 

<launch> 
<include file="$(find opennLlaunch)/launch/openni . launch"/> 

<include file="$( f ind DHS_DEMO) / launch/ 

dhs_r obot_laser_configuration . launch"/> 

<include file="$(find DHS_DEMO)/ launch/dhs _move _base . launch"/> 

<node pkg=ITCPInterf ace" type= "tcpinterface" 

name=ITCPInterface" output ="s creen'l> 

</node> 

<param name="TCP _se r ver _port II type='1 int II value=19000" /> 

<param name=IUDP_ser ver_port" type="int" value=IO" / > 
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<node pkg=IIDHS_DEMOII type=IITCPActionServer. py ll 

name=IITCPActionServer" output="screen" /> 

</launch> 

dhs...robot-.laser _configuration.launch 

<launch> 

<node pkg=lItf" type="static_transform._publisher" 

name="base_linlc to_kinect_broadcaster" 

args="-0.115 0 0.226 0 0 0 base_link openni_camera 100" /> 

<node pkg="tf" type="static_transform._publisher" 

name="base_footprint_to_link_broadcaster" 

args="O 0 0 0 0 0 base_footprint base_link 100" /> 

<node pkg="tf" type="static_transform._publisher" 

name="base_link_to_laser_broadcaster" 

args="0.050 0 0.300 0 0 0 base_link laser 100" /> 

<node name="hokuyo" pkg="hokuyo_node ll type="hokuyo_node" 

respawn="false" output="screen"> 

<!-- Starts up faster, but timestamps will be inaccurate. --> 

<param name="calibrate_time" type="bool" value="false"/> 

<!-- Set the port to connect to here --> 

<param name="port" type="string" value=l/dev/ttyACMO"/> 

<param name="intensity" type="bool" value="false"/> 

</node> 

<node name="erratic_base_driver" pkg="erratic_player" 

type="erratic_player" output="screen" > 

<remap from="odom" to="odom"/> 

<remap from="battery_state" to="battery_state"/> 

<par am name="port_name" type="str" value=l/dev/ttyUSBO"/> 

<param name="enable_ir" type="bool" value="False"/> 

<param name="odometry_frame_id ll type="str" value=lIodom"/> 
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</node> 

</launch> 

dhsjIlove_base.launch 

<launch> 
<'-- Run the map server --> 

<node name="map_server" pkg="map_server" 
type="map_server" args="$(find DHS_DEMO)/maps/ 

KUHill/KUHill-2. yaml" /> 

<!--- Run AMeL --> 
<include file="$(find DHS_DEMO)/launch/amcl_diff.launch" /> 

<node pkg="move_base" type="move_base" 

respawn="false" name="move_base" output="screen"> 
<rosparam file="$(find DHS_DEMO)/info/costmap_common_params.yaml" 

command="load" ns="global_costmap" /> 

<rosparam file="$(find DHS_DEMO)/info/costmap_common_params.yaml" 

command="load" ns="local_costmap" /> 

<rosparam file="$(find DHS_DEMO)!info/local_costmap_params.yaml" 

command="load" /> 

<rosparam file="$(find DHS_DEMO)/info/global_costmap_params.yaml" 

command="load" /> 
<rosparam file="$(find DHS_DEMO)/info/base_local_planner_params.yaml ' 

command="load" /> 

</node> 

</launch> 

amcLdiff.launch 

<launch> 
<node pkg="amcl" type="amcl" name="amcl" output="screen"> 

<!-- Publish scans from best pose at a max of 10 Hz --> 

<param name="odom_model_type" value="diff"/> 

<param name="odom_alpha5" value="O.l"/> 

<param name="transform_tolerance" value="0.2" /> 

<param name="gui_publish_rate" value="10.0"/> 

<par am name="laser_max_beams" value="60"/> 

<param name="min_particles" value="1000"/> 
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<param name="max_particles" value="l0000"/> 

<param name="kld_err" value="0.05"/> 

<param name="kld_z" value=IO.99"/> 

<param name="odom_alphal" value=IO.2"/> 

<param name=lodom_alpha2" value="O.2"/> 

<!-- translation std dev. m --> 

<par am name=lodom_alpha3" value="O.8"/> 

<param name=lodom_alpha4" value="O.2"/> 

<param name="laser_z_hit" value="O.5"/> 

<param name="laser_z_short" value="O.05"/> 

<param name="laser_z_max" value="O.05"/> 

<param name="laser_z_rand" value=IO.5"/> 

<param name="laser_sigma_hit" value="0.2"/> 

<param name="laser_lambda_short" value=IO.l"/> 

<param name="laser_lambda_short" value=IO.l"/> 

<param name="laser_model_type" value="likelihood_field"/> 

<!-- <param name="laser_model_type" value="beam"/> --> 

<param name="laser_likelihood_max_dist" value="2.0"/> 

<param name="update_min_d" value=IO.2"/> 

<param name="update_min_a" value=IO.5"/> 

<param name="odom_frame_id" value="odom"/> 

<par am name="resample_interval" value="l"/> 

<param name="transform_tolerance" value="0.1"/> 

<param name="recovery_alpha_slow" value="0.01l/> 

<param name="recovery_alpha_fast" value="0.0"/> 

</node> 

</launch> 
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Po~tcn·) 

This appendix contains the various posters sC' t up during til(' PhD I"('s('i\ r('h p( 'rind . 

• E.1 - tag detection and identi fi ca tiOll 

• E.2 - robot setup and system overview 

• E.3 - Saliency and visual lllelllor~' 

• E.-l - Information fusion 
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APPESDIX E. PO T ERS 

Multi Robot Vision 
Author: Raphael Grech, R.Grechtlldngston.ac.uk 
SupervIsors: Dr Paolo Remagnino, Dr Dorothy Monekosso, Prof. Sergio Velastin 
Faculty of Computing, Information Systems and Mathematics, Kingston, London 

1. IntrocI&Ktion 
All the work Qrrled out durl .... thIS PhD course 
of studoes will invoive the development of 
iMtelhp nt a1sonthrns. for the autonOmous and 
lUI-lime unders .. ndl .... of on unknown scene, 
pnma,.ly bilsed on computer vtstOn to luide. 
explore and Interpret unknown SUffoundircs. 
With one and • team of robottc platforms. 

We will ta rget 'search and rescue ' missions as 
our baseline scenarIO In such a scenario where 
the area to be searched ~s relatIvely laree. 3 
roboU dearly de ntlfied bV a tal can be used to 
create a perime ter Within w l"uch other robots 
can operate. Once the area IS considered as 
thoroughlv searched and enouE" information Is 
acqUired a new search area Is created One 
possible taggIng and detection solutIon Is 

deSCri bed hereunder. 

AmOl"llst others, robots Within the confined area 

would be required to: 

Explore and Interpret an unknown 

environment 

• Operate in real-t ime 

Memorize Interesting objects In an efficient 
manner by creating a compact and reusable 

model of the scene and 

• SharI! knowledge'" wrtn peer robots & otner 

agents 

2. Visual Memories 
Robots With a visua l memory capability 
would scout hostile, unchartered terrain or 

d isaster struck areas and construct a memory 

base of important features and Visual 
information detected in the area. This 

information could then be used by humans or 
other robots alike · to enter the area and be 
warned in advance of any dangerous or 
Important landmark5 to avoid or reach 

respect ively. Furtner stili, these robots could 
re inforce tne visual memory for salient points 
In the map whereas other low features will 
have memory decay. Th iS would be 

somewhat SImilar to the way ants reinforce 

their paths while foraging [1J 

The follOWing factors need to be taken of 

Accuracy and Size of w hat is stored 

Information Content 

Computational Cost 

7 

. J. ~h~~" 
1'~ ' -IIl'!" ... _-_ •. ".". 

, 0', 

3, Real-nme 10 Til DetectIon (Current 
WOtkI 

5. Example Applications 

The proposed tal comprises of 5 coloured circles 
Within a b&eck blickaround; •• ch Circle an ta. on 
any of the 6 colours - red, IrHn, blue, mop",., 
cyan. Ind vellow. In our sc.".rk), the colour order 
Is Important ond .. petitions allowed. ThiJ 
provides for 7716 (6') permutotlonl which Is me .. 
thon enough for our Intended applications . 

Robot TIaInI: As Ireedy mentioned t ..... te._ 
CAn be uled to Identify peer robou I obieen 
within the environment . Thls com., partlcularty 
useful, oltho""" not limited, whon uslne on 
omnldl .. ctlonol come ... Knowl .... the SilO of tho 
t .. could II .. 0 load oSllmote of dls .. nce end 
ortentltlon from tal In In .ffletent mlnner 

F,.u~ 2-rl. detection . ) on curyed object, bJ .tfin ll'l & .kaw 

4, Application Overview 

Our Tag DetectIon system comprises of two main 
stages being Detection and Ident ificat ion. 

Detect ion is carried out using a Haar Classifie r 
Implemented In OpenCV [2J as suggested by 
Viola-Jones 131. This has the following main 
properties: 

Supervised Learnln8 

Object Detection based on Boosting 

• Works in greyscale 

• Very good at detecting rig id objects (which Is 
our case w ith tags) 

Able to work In real-time 

Once the tag shape IS detected and recognised 
successfully, colour segmentation Is carr ied out 
uSing t he Colour CentrOids Segmentat ion as 
suggested bv Zhang et al.]41 and the act ual 
Ident Ifica t ion recovered. 

Define 30 RGB colour in polar 20 thus 
allowing for an efficient way to segment colours. 
Red, Green and Blue colour values are placed at 

120 degrees to each other and the centroid Is 

found . The doser the centroid is to the centre, 
the less colour content It Will have and therefore 

just refiect the luminance . On the other hand, 

the more It is to the extremities, the more colour 
Information It contains. ThiS IS figuratively 

explaIned In Figure 1. 

Since we are sticking to the 6 colours shown 
In Figure lb) segmentat ion can be earned out 
fa irly easy and effect ively. Details on this system 

can be found in (4 ] 

Each Circle w ill ile 10 a small white box as 

seen In FIgure 2. The chosen colour Within each 

small box is the one w ith the highest denSity. 

Assisted UwI.: ."Ist people with phYSical or 
COlnltlve Impllrment to loc.t. and recoin Is. 
objects in a home environment . nd prOvld. 
Informltlon about the obJt'ct In this. ta't • • • fist 
alaorlthm capable to cater for Jittery mov.ments 
i5 necessary. Our proposrd system allows 'or such 
scenario as shown In FI&ure 5 

6. Application Results 

Various tests were carried out to ttl' tn 
practicability of our tasalna d~tectlon synem by· 

alVarylng distance ond orientation to chock tho 
actual detection ranae of the system. Th" 
Detection R to I. shown In Fllur. 3 

-,-

b) Testing with di fferent Colmer., and undl!r 
different lIR; ht condit ions to check for & ner.lity 
(Figure 4) 

c) Exposing the system to severe Ji tter (F igure S) 

7, Future Work 

The following step IS to develop a rea l time $Vstem fOI 

environment understanding from cnpt urt'-d Images and 
video Moreover, the tagging Sys l ('m could b~ 

Implemented In a real life application clS suggested 1M 

Sect ion S 

8. References 
Ijll A I.,,, , (" aly", .ncl' , \ .• 11 """v, ..... ,,,,,,,," 'I .... I! ... ~'"' .,It.. .. "", .. , ~ ....... " ... ~t>, 

rwy" .. "'CWQOd' .... h '''''f''''I1'''''I9~ .... j L -.1 I IOU I 

Ij<O Ikd~U ... IdA """'WI IN,""'1I{'I"'''{V '''''''IIIt''. 
V''',m _,~ ,,,, Clpl>MV •• tw .. 't "If .. ~,.,M •• '>a _II h' •• 1I ... .. , .", .1'1: •• 

Ij P 111(111 -'lid M 1rIfIp\ ~IIII , ••• , ... ,. utll"l' '""<'lIon 

Inlll(,...."..' .. 'I1" ... n Vrl/JP 1\4 .UN 
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We propose a study to develop an In telhgent multi-robot system, able to roam In an unknown enVironment, process 
visual Information and Incrementally construct a visual memory of salient pOints thus learning and getting an 
understanding of the enVlronment The multt--robot system should handle visual Information collec tively, retain 
relevant information and eliminate superfluous data 

2. Alms 
Create a topological map & filter out superfluous information. 

Use generated topological map for navigation and exploration. 

Given only a rough geometric position . features In scenes, although 
different can stili be hnked (Varying viewpoints) 

Use multiple robots to overcome shortcoming of landmarks I feature 
pOints not bemg detected from alilocatJons (Bhnd Spots) 

~-

The follOWing factors need to be taken .n consideration 

Computa"onal Cost ( Real·TIme) 

Compromise between accuracy and memory required 

3 System Overview 

-J. 

Each robot has Its own visual memory which IS fuUy functIonal when 
operaung Independently 

In a cooperauve multt-robot scenano. robots coordinate through a Higher 
Level Multi Robot Control System In order collectIvely bUIld the vIsual 

memory 

4. Methodology 
In our context 

Top~Oown approach the robot IS expected 10 look (0' spoofic high level 
features such as Faces and Tags 

Bottom-U p approach the robot IS expected to highlight regions of Interest 
within an environment such as areas of high con lrast 

T_ 
... 

Topological map IS crealed uSing a mix of the two approaches as follows 

Extract mterestlng features within Image I Video stream (E 9 Faces 

Tags. Edges. Colours) 

Create Saliency Map 

Extract position ( SLAM. DePth Map) 

Incrementally build the map 

5. Future Work 
Build a methodology for a multi· robot system to hundlo visual In form~1I10n 

collectively 

ProvIde a relatIon between Images of same oDJeC1 f scene taken from 
dIfferent viewpOints 

Au tonomy 

6 Contribution to Knowledge 
CombIne methods of com puter VISion , robotics and machine I arnlng 

Provide a novel methodology to Incrementally learn new and Interostlng 
objects wlthm the environment 

Automatically bUild a visual memory of a sceno 

Autonomous robots Will Jomtly focus on gewng an und r~landlng at the 
envIronment. 

Figure E.2: Poster Event 20 II 
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1. Introduction 
We propose a method to Incrementally build a visual memory lor a mobile robotic platform . Images captured during robol oxplorallon 01 an unchQrtorod 
environment are converted Into saliency maps and In tum compactly stored In a neural network Saliency IS a combmahon of task -onented soarch (Iop·down) And 
bottom· up visual Information based on colour gradIent and onenlatlon 01 the captured visual field 

2. Visual Memory Model 
We IrY to mlmtC human visual anentJon. 

• Saliency Images are extracted from environment Images are fed Inlo a 
Growng Neural Gas (GNG ). evolving InlO separale cluslers 

In our conte~ 
Top-Down approach the robot IS expectea to look for speclhc high level 
'aalUres such as Faces 
Bottom-Up approach. the robOt IS expected to highlight regions of Interest 
Within an environment such as areas 01 high colour contrast or sharp 
edges 

vtSUAl MEMORY MAP 

3 Detection of Saliency Map 

DETECTlON 
Of 

R£lE\IANT 
INFQR ...... OON 

ObtaIned by combining vanous Image operators 

I 

LEARNING 
ENV1ROMENT 

GHG 

Face 

i ,-----

4. Multi-scale Process 
The abOve process IS Implemented al four dIfferent resolutions 

IIi •• 
~ - 1 ~J 

5. Results 
Saliency maps genera led by our algorllhm are comp.lred with Ihose 
prOVided by an eye Iracker (3 sublOCIS) 

Original Eye Tracker Saliency Map 

6. Generated Visual Memory Topology 
• Sahency maps led Into learning notwork & nodos grouped III cluslor"l 

7. Conclusions 
Our Visual a ltenllQn algOrithm results closoly rosombles thoso of humans 

• Our system successfully croales and clus tors a dynamIc momory dtltnbHS 

8. Future Work 

Linking 01 semanliC map with geomelrlcal map oblalned Irom lI1e robol and 

Figure E.3: Video urvcilIH ll ('('EV('Il ( 20 II 
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&ec:unty operall)"S ae ,ncreaSinglY Interested In solutionS 
tI"Ial car" pr de ar a.1omatc understanding of po\enIJalJy 
crowoec ;>I..OIfC er'v rOl'1~ls lYe therefore r.eea to create 
a heterogeneous Intllligent muru-HnlOf system to 
'flC)(lIIQf i"JI'lQefs.tCflCl iI'lCl 'fItBfp!'et COTlpieX public 

9f"IVlronments 

-tum.., :,ecur'y 3L..yos eQUlPD6d w'm sensors and 
StT'ar.~ces 

I:.lea Ca'!"Ieras 

~ = -,;;;.. 
~;f,r 

• • L 

~8QUlre to e.x.tract autonvticalty and on demand 

"fc;rnlat Cl1 of Irlet'es: 

Top-down oogn a centra directive eg the 
oe!'1avOJr anaiYSlS of a SUSPOous person Of the 
MlalySiS of v <1BO 'elated to unapended luggage) 

Bottom-up oromptea D~ nfcrrnalJO'l 6Jluacted and 

.., .. ."zea from the eaf nodes of the system 

Challenges 

Wa!(7S f'T'IU~ tie abe to qUICkly 'grasp' !he 
~' .. aT or ,, !J'IOl;! :>8Ing cverwrelmed by unnecessary 

rb""'alq 

~oboI! n 'TIe svSlr muS! acl as an autonomous 
coordinated tum nc di'ed "Iuman superv.SI(J'l 
:>1'O.J1d De "aQu"e:J 

... :J ..... ans ..... I"os: oe aOte r ""erac! 'if Ih robots If! a 

natu~1 WI,! 

DevelOp models and soIultons for an intelligent 
integration of sensonal mformatlon Coming from 
different sources 

Develop effective human-robot intaraction methods 

m the parad'9m multi-human vs mulb·robot 

Robust and efficient COCI(onalJOO among robo(s 
VISIon sensors and human guards 

System Architecture 

~Mdleware a-chlteclure approach IOUIgley M 20091 
& [Va~a M And Vel .. "" S 20031 

Any acllve node (sensor or servICe) In the system 
may )OIn a S6rVICe that SUits .ts purpose 

All servIC8S are pubhshed on the enllre system 

Communication between acbve nodes IS peer to,peer 

Dstnbuted Approach Complete decouphng between 
ctctwe nodes and services 

System creates a pervasIVe layer where .nformatlOn 
IS .nregrated to automatically In terpret a complex 

scene 

::::. 

= 
= 

Basad on dlstnbuted Independent likelihood poe 
mecI1alllsm ISrudaro 10091 and local bell.fs concepts 

le""tan 10091 

Probability of the target' s localizatIon IS approximated 
uSIng a third moment of a GauSSIan AssumlllQ thai aU 
the da:a commg from K sensors are condlhonalty 
Independent given certain state X Wi th a set 01 
measurements Z. then the posterto!' dlstnbuflon of the 
state X IS oomposeo by the Independent Ilkolihood 
poe of the likelihood funct""" of each sensor 

Case Study 

Momtonng of baggage area 01 an . IIJlOrt 

Complex envlronmenl where crowdod 
situations may occur at random tlffieS 

Ship.. siz. and po,. of people canylllQ 
luggage vanes considerably 

Inrtlal results 

"""'.-
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