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Abstract

It is expected nowadays that robots are able to work in real-life environments,
possibly also sharing the same space with humans. These environments are generally
considered as being cluttered and hard to train for. The work presented in this thesis
focuses on developing an online and real-time biologically inspired model for teams of
robots to collectively learn and memorise their visual environment in a very concise and
compact manner, whilst sharing their experience to their peers (robots and possibly also
humans). This work forms part of a larger project to develop a multi-robot platform
capable of performing security patrol checks whilst also assisting people with physical
and cognitive impairments to be used in public places such as museums and airports.

The main contribution of this thesis is the development of a model which makes
robots capable of handling visual information, retain information that is relevant to
whatever task is at hand and eliminate superfluous information, trying to mimic human
performance. This leads towards the great milestone of having a fully autonomous
team of robots capable of collectively surveying, learning and sharing salient visual
information of the environment even without any prior information. Solutions to endow
a distributed team of robots with object detection and environment understanding
capabilities are also provided. The way in which humans process, interpret and store
visual information are studied and their visual processes are emulated by a team of
robots. In an ideal scenario, robots are deployed in a totally unknown environment
and incrementally learn and adapt to operate within that environment.

Each robot is an expert of its area however, they possess enough knowledge about
other areas to be able to guide users sufficiently till another more knowledgeable robot
takes over. Although not limited, it is assumed that, once deployed, each robot operates
in its own environment for most of its lifetime and the longer the robots remains in
the area the more refined their memory will become. Robots should to be able to
automatically recognize previously learnt features, such as faces and known objects,
whilst also learning other new information. Salient information extracted from the
incoming video streams can be used to select keyframes to be fed into a visual memory
thus allowing the robot to learn new interesting areas within its environment. The
cooperating robots are to successfully operate within their environment, automatically
gather visual information and store it in a compact yet meaningful representation. The
storage has to be dynamic, as visual information extracted by the robot team might
change. Due to the initial lack of knowledge, small sets of visual memory classes need
to evolve as the robots acquire visual information. Keeping memory size within limits
whilst at the same time maximising the information content is one of the main factors

to consider.
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“If we knew what it was we were doing, it would not be called research,

would it?”

Albert Einstein, US (German-born) physicist (1879 - 1955)

Chapter highlights:

A multi-robot platform capable to work in real-time and able to
visually learn and share memories between robots in a compact and
meaningful manner is developed. The main contributions are in the
fields of:

e environment monitoring,

o handling of visual information, and

e information sharing.

Introduction

One of the biggest challenges in mobile robotics is full autonomy. In an ideal scenario,
robots are deployed in a totally unknown environment and incrementally learn and
adapt to operate within that environment. Over the last two decades considerable
effort has been made in extending robot capabilities to be able to operate in human
and other highly unstructured environments. These environments range from indoor,
outdoor, underwater, air and even outer space. Moreover, the last decade has witnessed
a realistic effort to embed intelligent systems in unmanned platforms. This thesis
presents contributions towards the great milestone of having a fully autonomous team of
robots capable of collectively surveying, learning and sharing salient visual information

of the environment even without any prior information.

1.1 Aims and objectives

This research study aims to look at methods for the visual exploration and automatic
interpretation of an uncharted environment by a team of robots. Cooperating robots
are to successfully operate within their environment, automatically gather visual in-
formation and store it in a compact representation. The storage has to be dynamic,
as visual information extracted by the robot team might change. The way in which
humans process, interpret and store visual information will be studied and their visual
processes will be emulated with a team of robots. The human process will be abstracted

in an algorithm and employed on-board the robot platforms. The idea is to design a
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method using theories of visual understanding put forward by cognitive psychologists
to embed a visual reinforcement process similar to the one used by humans to attend
and recall relevant visual stimuli and ignore visual distracting elements of the scene.
Such systems are of great value in applications where robotic platforms are necessary
to solve a hard task without the help of humans. With the use of visual information,
the knowledge about the environment will be enhanced by putting an understanding
into what is within the environment. As an example, office blocks generally have the
same geometrical layout, however, contents may vary between floors. Instead of just
focusing on geometric map building, the idea is to also construct a graph of interesting
scenes which are topologically linked. Assuming limited resources on the robot, an
efficient way for the robot to learn the main scene differences and memorise them is
needed.

As will be further discussed in Section 1.2.1, the work presented in this thesis forms
part of a larger team project to develop a multi-robot platform capable of performing
security patrol checks whilst also assisting people with physical and cognitive impair-
ments to be used in public places such as museums and airports. The robots could be
operated in three modes depending on the specific application. These mainly consist

of assisted living, autonomous patrolling and human controlled operation.

e In the case of assisted living, the environment is somewhat structured by intro-
ducing identification tags, barcodes or RFIDs. Apart from being of use for robot
operation, humans can also be equipped with hand-held assistive devices to help
them read such labels and make use of the additional knowledge available in the

environment.

e In the case of autonomous patrolling, such as security and surveillance appli-
cations, the robots operate autonomously. In such a scenario, especially where
humans are present, the robots must be capable of self-navigation and reactive
obstacle avoidance, due to the dynamic nature introduced by people moving
around. Also, robots are able to automatically recognise and make sense of an

entirely unstructured environment.

e In the third case, considering urban search and rescue (USAR) or area explo-
rations as possible scenarios, humans such as security guards, can over-ride the
robot’s autonomous patrolling based on feedback coming from the robots. As
robots are learning their new environment, they extract knowledge and relay it
humans for further analysis. Humans could tele-operate the robot or instruct it
on its next move or destination for better utilisation of the available resources.
Moreover, in such a case, the environment may contain new features over time,

so the robot learnt memory needs to evolve to reflect the new changes.
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The work presented in this thesis aims to find a solution on how to amalgamate
these areas onto a multi-robot platform, as suggested in Section 1.3, leading to the
main contributions of environment monitoring, handling of visual information and
information sharing, further described in Section 1.4. A detailed study on unsupervised
learning techniques and feature extraction methods was carried out with the aim of
finding a solution to producing a real-time and computationally feasible implementation
for visual memories and saliency extraction. This research also relied on collaboration
from Robot Vision Team' (RoViT) at Kingston University who conducted pilot tests
using an eye tracker and provided data and preliminary results. Also, some state of the
art methods especially in pattern detection, map building and navigation techniques
were implemented and applied on the robots so as to provide a complete working
multi-robot platform.

As will be seen in Section 2.3 topological maps have the advantage of compactly
representing local variations, without keeping the raw visual information in memory.
The basic idea is to design a method capable of handling complex visual information
captured by one or more mobile cameras fitted on robot platforms forming part of a
team. These camera equipped robots are used for surveying, monitoring and searching
areas of interest whilst building a memory of the robot’s environment. Both short
and long term visual information, referred to as visual memories, are continuously
elaborated to provide both a topology of landmarks and also building a knowledge
base of objects or parts of the viewed scene and events deemed of interest. Visual
information is encoded into a limited set of representative images on-line and with
limited computational over-head. When there are several robots in an area, each doing
its intended task, the visual information can be shared. One possible scenario could
be that of having cleaning robots which are following a predefined route, and other
robots tele-operated by security guards used for patrolling. If these robots are capable
of creating visual memories, even though their intended applications are independent
of each other, their memory can be shared, thus augmenting each others knowledge of
other areas. A certain degree of redundancy is therefore expected which is considered
as advantageous. These robots could reinforce the visual memory for salient points in
the map whereas other low level features [5] will have memory decay. This would be

somewhat similar to how ants reinforce their paths when foraging [6].

1.1.1 Challenges

Autonomy and real-time operation are two of the main challenges which have to
be tackled to reach the intended aims. The team of robots has to navigate successfully

and coordinate with its team members to understand and represent the scanned scene

'http://sec.kingston.ac.uk/research/research-groups/rovit /
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as optimally as possible. Another challenge which has to be overcome is that of fast
deployment. A method which could be deployed within a relatively short time (hours)

would be desired.

1.2 Applications

The problem being studied could be related to several possible multi-robot applications
and the proposed methods could be applied in a large number of domains. The op-
erating environments could range from deep ocean sea to outer space. Some possible
applications could include cleaning up a work site, performing search and rescue or
extra-planetary exploration [7]. Also, the problem being tackled is not hardware spe-
cific and any kind of robot equipped with visual input can be used. Teams of robots are
expected to gather information autonomously and collectively learn their potentially
inhospitable environment in an autonomous and unsupervised fashion. Such as in the
case of search and rescue, the acquired information could be used by humans or other
robots alike when entering into the area and, depending on the situation, be warned
in advance of any dangerous areas to avoid or important landmarks to be reached.
Such robots could be scattered over large areas to explore alien environments which
are totally unknown to the human race and of which there is no prior information.
Unmanned areal vehicles(UAV) could be used to reach areas which would otherwise
be inaccessible from the ground, e.g. by unmanned ground vehicles (UGV). One such
example is that of robot forest monitoring and analysis, possibly in the case of con-
trolling forest fires. The most widespread approach for forest analysis is that of using
airborne laser-scanning data from a LiDAR and aerial photographs [8, 9, 10]. Another
closely related application is that of automatically learning to identify and classify trees
for deforestation and ecosystem study [11], wood production, three-dimensional (3D)
treetop positioning, height estimation, species recognition, crown width estimation and
stem diameter amongst others [12, 10, 13]. One method is by using colour and texture
features [14, 8] together with machine learning techniques [14, 15] for the prediction of
species-specific forest attributes.

Some more potential robotic application domains could include search and rescue
missions and exploration missions in hazardous environments. At present, search dogs
are the most useful tool to search for humans during search and rescue missions [16].
For such missions, a qualified dog needs at least 1.5 years for training and its effective
working time is three years. Moreover, the dog cannot work for over two hours and
continuous working time must not exceed 30 minutes [16]. At present search and rescue
robots still struggle to reach these figures mainly due to the power storage on the robot,
manoeuvrability and onboard sensors. This is however an active research area and it

is expected to see some reasonable advances in the near future.
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Another area of active research is in the field of ambient assisted living (AAL). At
present, the use of guide dogs to help visually impaired people to navigate around is
relatively common. For the same reasons mentioned above, and potentially additional
benefits, robots are slowly but surely being introduced to help the elderly and less-able
people. Some such robots include RIBA (Robot for Interactive Body Assistance)? and
smart wheelchairs [17, 18].

Surveillance of public managed spaces is yet another area which could benefit from
the study presented in this thesis. Such places where surveillance is of crucial impor-
tance and never enough would include airports, sporting venues and museums. In these
environments, people need to feel safe without the feeling of being observed. Robots
could be designed in such a way to allow people to interact with them. For humans
to accept surveillance robots, they must be approachable, similar to police or security
officers. There are several studies carried out on this, some of which will be discussed

in Section 2.1.1.

1.2.1 The application

The work described in this thesis forms part of a larger project to develop a multi-robot
platform capable of performing security patrol checks whilst also assisting people with
physical and cognitive impairments to be used in public places such as museums and
airports. When visiting such places, one would be aware that although the general
layout of the environment does not change, the crowd density, flow and furniture layout
change over time, with the expectation of clutter, complexity and unexpected events
to happen. Therefore there is the need for robots to automatically adapt and learn
their evolving environments with minimal human intervention.

Robots would generally require a previously built map of the area for efficient
navigation within the area. If however, were the map not available (blueprint), the
robots would need to be able to build a fairly accurate map of the environment using
simultaneous localisation and mapping (SLAM) techniques and make it available to
mobile security guards and other robots working in the same area. A method where
robots are deployed and create a map of their surroundings in a relatively short time is
suggested. Once this is done, the deployed robots can start performing their designated
task, be it guidance, surveillance or whichever task they are assigned to do. In the
meantime, using visual memories, robots can start learning the contents of the area
they are operating in and storing it in a compact yet meaningful manner. Also, the
acquired knowledge is shared between peer robots and also personnel who request
information from the robots in order to guide the robots to specific areas.

Part of this project, supported by the U.S. Department of Homeland Security

2http:/ /rtc.nagoya.riken.jp/RIBA /index-e.html



CHAPTER 1. INTRODUCTION 1.2. APPLICATIONS

(U.S.DHS)? consists in emulating an airport security area and baggage collection. As it
happens in border control, persons would enter the area, where a picture and other in-
formation will be gathered by the camera system operated by security personnel. These
data can be automatically transferred throughout the security network and available
to other security guards and robots for person identification. Security guards would
be equipped with tablets and would be able to access information about people and
robots in the area. A two-dimensional(2D) plan view of the security area is available
and the tracked persons and robots are marked. The guard can tap on specific persons
and their picture and other relevant information shows up. In an airport scenario, if
a person was marked as requiring special assistance when they purchased the ticket, a
robot goes to greet the person and guide them to the baggage collection point and then
to the exit. Security guards also have the capability of controlling the robot remotely
and send it to specific areas for further inspection just by tapping the desired position.
The robot can capture images, acquire more detailed information, or even use speech
to give instructions to persons within that area. In such a scenario the robot’s tasks

are to:
e guide users to their desired destination,

e interact with peer robots by sharing visual memories thus highlighting changes

within their environment,

e share memories (obtained from other robots) and provide the user with what to
expect at their destination, where another robot might be already there to take

a handover,

e perform routine security checks during remaining/idle time, possibly controlled
by security guards, who also have access to visual information and robot memory

images.

For the robots to be able to perform as desired for the intended application, and reach
the aims and objectives in a fully autonomous manner, the robots must be capable of

performing the following tasks:

e To know their environment (Map)

e Interact with the user and environment (Obstacle avoidance / Human - Machine
interaction)

e Detect (Face / Pattern detection) and Identify its user (RFID / Tag identifica-

tion)

3U.S. Department of Homeland Security (U.S.DHS) Science and Technology Assistance Agreement
No. 2011-ST-108-000021 awarded by the U.S. Department of Homeland Security.
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Figure 1.3 shows the general overview of a multi-robot platform which would be able to
work within an unstructured environment whilst learning its surroundings. The plat-
form consists of a hardware architecture, operating system and software application
frameworks. Each robot platform is divided in two main blocks which, in turn, are
further divided into more specific ones. One block represents the sensors and actuators
and the other block represents the robot’s intelligent control. Information from the
environment is gathered by sensors. Actuators are what make the robots able to react
with the environment. Control is carried out on the robot’s processor. Each robot
would be able to scan the environment using its onboard sensors, such as a camera,
identify interesting features and coordinate and share the information with the other
team robots for combined learning. In the ideal scenario, robots should be able to
be fully functional when operating independently and also able to handle information
collectively when working within a multi-robot system (MRS). Items listed in the or-
ange blocks are the necessary building blocks for an automated robot vision system
capable of sensing, learning and reacting with the environment. Robots should be
able to retain information that is relevant to whatever task is at hand and eliminate
superfluous information. The red block reflects visual memories. Visual memory ca-
pability allows each robot to construct its own memory base of important features and
visual information detected in the area. Operating in a multi-robot scenario, necessi-
tates successful information handling and sharing between robots, represented by the
green block. Moreover, when working in a centralised rather than distributed fashion,
robots should be able to coordinate and accept commands coming from a higher level
multi-robot control system (represented by a blue block) for collaboration, memory
sharing and information fusion. Figure 1.3 will be further dissected into six sections

and analysed further in Chapter 2.

1.4 Main contributions

As already discussed in Section 1.1, the main aim is to monitor an environment by
collectively executing the most effective strategies for gathering the best quality in-
formation from it whilst overcoming the challenges highlighted in Section 1.1.1. Each
robot has to explore, navigate and scan the environment using its own sensors, whilst
sharing the visual and other relevant information with the other team robots over a
wireless network. Using the proposed platform, as suggested in Section 1.3, this work
focuses on advancing the state of the art in surveillance applications by enhancing
multi-robot team learning based on computer vision techniques so as to provide a
simple, real-time yet meaningful representation of the environment. Three main ar-
eas, namely environment monitoring, handling of visual information and information

sharing, were tackled. These are described next.
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1.4.1 Environment monitoring

Research in area monitoring involves various fields including exploration, identification,
target tracking and localisation. Traditionally area monitoring relied solely on static
sensory devices such as passive infra red (PIR) sensors and cameras (CCTV) and
generally connected to a centralised control system. Acquiring visual information from
moving cameras could be more beneficial. Apart from the standard fixed cameras,
mobile robots can be equipped with cameras and use them to feed incoming streams to
the central system but also use it to navigate or do other vision specific tasks. Moreover,
mobile cameras can cover blind spots and share resources with the possibility for robots
to acquire visual input from another robot’s camera. As presented in [19] and [20], a
practical solution for environment monitoring using robots equipped with cameras was
provided. Using a group of mobile robots equipped with cameras has several significant

advantages over a fixed surveillance camera system [20].

e The proposed solution can be used in environments that have previously not
been equipped with a camera-based monitoring system. The robot team can be
deployed quickly to obtain information about an unknown environment. Also
robots would interact with each other to give the best coverage of the area and
share the load [21]. The cameras installed on the robots, which can position
themselves within the environment at the best vantage points, are used in order
to best acquire the necessary information. This is in contrast with a static camera,

which can only perform observations from a fixed view point.

e The robots in the team have the power to collaborate on the monitoring task and

are able to pre-empt a potential threat.

e The robots could be equipped with additional, specialised sensors, which could
be delivered at the appropriate place in the environment to detect, for example,

the presence of high temperatures, such as in the case of a fire.

e The robot team can communicate with a human operator and receive commands
about the goals and potential changes in the mission, allowing for a dynamic,

adaptive solution.

Most video analytics is carried out on video streams acquired from stationary cameras.
This generally allows for background subtraction and is also relatively simple, fast and
effective. However, many cameras are not stationary eg. pan-tilt-zoom (PTZ) or even
cameras fitted on cars, busses, handheld, head mounted, UAVs and robots. One of the
biggest challenges with area monitoring using mobile devices is the fact that the area
itself is unstructured and generally also shared with humans. Surveillance applications

are generally required to operate in busy and crowded places such as commuter train

10
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stations, airports or shopping malls. Taking the next step of transferring the fixed
cameras onto mobile platforms has a great impact on the complexity of the problem,
especially considering the health and safety factors of having robots roaming around in
the same environment with humans. The robots would therefore need to be endowed
with map building, localisation, navigation and obstacle avoidance capabilities to op-
erate within such a complex environment. These processes are essential for robots to
be able to move freely, without bumping into team robots, people, surroundings or

getting stuck in dangerous places.

1.4.2 Handling of visual information

Once the robots are able to operate successfully within their environment, the focus
shifted on robot perception, with special emphasis on visual senses. A study on the
identification of salient areas and pattern recognition within the environment was car-
ried out together with an in-depth study on visual memory and a study on how visual
information can be optimally represented in a compact manner for visual recognition.
As presented in [22] and [23] the idea is to learn landmarks and build a topology for
efficient representation of visual information. Processes are required to store visual in-
formation about the environment surrounding a robot in a compact representations and
in re-usable format. A number of processes are involved with the extraction, fusion and
manipulation of visual information. The extracted information is then used to solve
either the recognition of a specific object, or the detailing of an area of space. Visual
information is extracted using image and video descriptors using classifiers that can
operate both online and in real-time. Available literature on human visual memory is
studied with the aim to extrapolate the main processes involved with the extraction of
image and video characteristics. Following the work suggested in [24] results obtained
from controlled experiments using human subjects were used to indicate on how visual
information can be extracted and interpreted. This is done by creating a bounded
quantity of images gathered in separate clusters. This allowed the algorithm to create
a flexible graph of nodes, each one holding a rich representation of a portion of space
deemed of interest. It was then possible to recall and extract useful information from

these images.

1.4.3 Information sharing

For better utilisation, the next step was that of getting the robots to successfully
operate, communicate and collaborate within a heterogeneous environment. This not
only allowed for the team of robots to manoeuvre within the same environment but
also to collectively extract, share and elaborate visual information as a team. As

presented in [25], the creation of a more holistic understanding of the environment was
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therefore possible. The data captured by the heterogeneous sensors are combined in
a decentralised manner to improve the results of monitoring targets when there is a
lack of scene coverage [24]. By integrating computer vision and robotics components
using algorithms for the distributed visual accrual and fusion of visual information,
it is shown that it is possible to monitor a large area using fewer sensors providing a

scalable solution commensurate to the dimension of the monitored environment [20].

1.5 Thesis outline

The rest of the document is structured as follows: Chapter 2 provides an extensive
review on the state of the art in multi-robot vision. Chapter 3 focuses on robot percep-
tion and how these techniques can be applied to make robots aware of their dynamic
environment. Chapter 4 discusses visual memories and describes the method of im-
plemented visual memories and how they can be utilised and extended over multiple
robots leading to Chapter 5 where the methods suggested in earlier chapters are com-
bined over a multi-robot scenario so as to have smart monitoring of complex public
scenes. Conclusions are finally drawn in Chapter 6. Appendices A, B, C, D and E

provide some additional material related to this study.
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“Though human genius in its various inventions with various instruments may
answer the same end, it will never find an invention more beautiful or more
simple or direct than nature, because in her inventions nothing is lacking and
nothing superfluous.”

Leonardo Da Vinci, Italian Renaissance polymath (1452 - 1519)

Chapter highlights:
This chapter looks at the state of the art in multi-robot vision,
focusing mainly on human-robot collaboration, robot mobility,

machine vision and machine learning techniques.

Literature Review

Research in robotics is moving at a relatively fast pace. Starting from single fixed
robots aimed at performing repetitive tasks within industry; these robots were succes-
sively transformed into mobile robots, not just confined into a specific location but also
allowed to roam around for better resource utilisation. Further advancements allowed
for groups of both homogeneous and heterogeneous robots to be created. This led to
robots working within a team for a common aim. Some of these robots are nowadays
also capable of interacting with humans [26]. One successful example where robots
are allowed to roam, work in a team and interact with humans is the Kiva warehouse
automation system!'2. It is therefore expected that, in the foreseeable future, collab-
oration with humans will become common practice and an everyday experience for
many. This necessitates communication between robots and humans carried out in a
human understandable manner. Three important aspects which need to be addressed

for a successful autonomous multi-robot and human interaction include:

e Operators must be able to quickly “grasp” the situation without being over-

whelmed by unnecessary information.

e Robots in the system must act as an autonomous coordinated team: no direct

human supervision should be required.

e Humans must be able to interact with robots in a natural way.

'http://www.kivasystems.com/solutions/
2http://www.youtube.com/watch?v=3UxZDJ1HiPE
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to flock, disperse, aggregate, forage, and follow trails [41]. Some of the advantages

include:

e Robustness: “the swarm robotic system should be able to continue to operate, al-
though at a lower performance, despite failures in the individuals, or disturbances

in the environment ”. The robustness of biological swarms can be attributed to:

— Redundancy: “any loss or malfunction of an individual can be compensated

by another one”.

— Decentralised control: destroying parts of the system will not stop the sys-

tem as a whole from functioning.

— Simplicity of the individuals: individuals are simpler, making them less

prone to failures.

— Multiplicity of sensing: “distributed sensing by large numbers of individuals

can increase the total signal-to-noise ratio of the system”.

e Flexibility: the system can generate solutions to different tasks. Ants for example,
can perform several tasks such as chain forming, foraging and sorting. “Swarm
robotic systems should also have the flexibility to offer solutions to the tasks at
hand by utilizing different coordination strategies in response to the changes in

the environment”.

e Scalability: the system can operate under a wide range of group sizes.

As will be further discussed in Section 2.5, the above advantages however might come
at the cost of lesser efficiency, increased cost and communication issues. Even though
the individual entity cost and complexity may be less, determining how to manage the
complete system may be more difficult and complex, because of the lack of centralized
control or of a centralized repository of global information. Moreover, increasing the
number of entities can lead to increased interference between entities, as they must act
without complete knowledge of the other entities’ intents [7].

Communication in nature can take various forms. The most common include the
use of sounds, movement and chemical interactions. Some more advanced species elab-
orated sounds to create semantics leading to a language. Same for body movements
by creating expressions commonly understood by the population. Some other species
release chemicals as trails and signals thus leading to indirect coordination between
peers. This is known as stigmergy. Stigmergy was first observed in social insects [42].
Ants, for example, exchange information by laying down pheromones on their way
back to the nest when they have found food, which other ants will eventually follow.

Subsequent similar actions by other ants will then reinforce the trail leading to the
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as one might expect even though they both refer to artificial vision. Computer vision
is the science of analysing and processing digital images whereas machine vision is
the application of computer vision to industrial tasks. Moreover, in machine vision
it is generally accepted that the environment is more structured when compared to
computer vision which tries to tackle problems in real world unstructured environments.
Embedding computer vision technology in mobile robot platforms (see Figure 2.3),
provides a more holistic view of a scene and augment the human visual experience
from a new, so far little explored perspective. When one has to work with vision as the
main sensorial input for the robot, various factors have to be considered. Sensing using
vision still has lots of unsolved problems. Generally so far, its use is still restricted
to a relatively structured and controlled environment. Ongoing research exists within
the computer vision community to successfully identify the same object within the
environment under varying illumination, perspective, motion, occlusion, orientation
and distortion, to mention some. When using vision on robot systems, special attention
has to be focused on ensuring that there will be no situation where the robot can get into
a blind spot and unable to ‘see’ its environment due to physical / kinematic restrictions.
This highly depends on the task required and the navigation plan intended for that
particular robot. One has to consider the limitations of the cameras being used and
when best to use one camera rather than another. The basic decision mainly revolves
around monocular cameras when just one standard camera is used, stereo cameras when
two fixed monocular cameras are used together and omnidirectional cameras, which
provide a 360° view of the environment. Moreover, it has to be borne in mind that
robot motion can be characterised by the constraints that restrict the motion, generally
caused by the mechanical construction of the robot itself. When measurements need to
be extracted from an image, it is important for the camera to be compensated for lens
distortions and calibrated by calculating the intrinsic and extrinsic camera parameters.
Intrinsic parameters refer to the focal length in pixels, the principal point and the skew
coefficient. The extrinsic parameters reflect the rotation and translation of the camera
of a point on the grid reference plane onto the camera reference frame. The most
common form of calibration is with the use of a calibration grid [46]. Recent studies
also look into self calibrating techniques [47]. The two main stages in digital image

processing for robots include [48]:

e preprocessing, which is a data preparation step for contrast enhancement, noise

reduction or filtering

e feature extraction, for retrieving non-redundant and significant information from
an image. This operation is targeted at achieving time efficiency at the cost of
data reduction followed by object detection, localization and recognition, which

determine the position, location and orientation of objects.
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region of no-texture, e.g. white wall or a grassy land seen from afar, trackers simply
fail. On the other hand, when there is repeating structure, e.g. bricks on a brick
wall, and when no global context is used for tracking, there is no method of finding
true matches. Therefore, the requirements of the problem are 2-fold: there should be
features and they should be distinct [52].

3D reconstruction can be performed to extract the robot location and scene struc-
ture. When two cameras (or a single moving camera) view a 3D scene from two distinct
positions, there are a number of geometric relations between the 3D points and their
projections onto the 2D images that lead to constraints between the image points.
These relations are derived based on the assumption that the cameras can be approx-
imated by the pinhole camera model and is known as epipolar geometry [53]. The
pinhole camera model is the most widely used camera model mainly due to its sim-
plicity but which none the less provides enough accuracy in calculations. The essential
matrix contains information about the translation and rotation that relate the two
cameras in physical space and the fundamental matrix contains the same information
as the essential matrix in addition to information about the intrinsic parameters of
both cameras. The fundamental matrix can be used to simplify the matching process
between the viewpoints and to get the camera parameters in active systems where opti-
cal and geometrical characteristics might change dynamically depending on the image
scene [54]. This subject has been comprehensively addressed in classic books by Hart-
ley and Zisserman [53], Faugeras and Long [55] and Ma et al. [56]. 3D reconstruction
algorithms are often designed to provide different tradeoffs between speed, accuracy,
and practicality. In addition, even the output of various algorithms can be quite dif-
ferent. Lu et al. [57] survey a number of 3D reconstruction algorithms that exploit
motion parallax. Fusiello [58] provide a review on 3D reconstruction techniques using a
single camera with unconstrained motion and unknown parameters, highlighting auto

calibration methods.

2.3 Robot mobility

One very important part in robot mobility is knowing where the robot stands within
a map. This is known as localisation and is the ability to get one’s position and
orientation, correctly within the map. Mapping is the capability of the robot to create
either a metric or topological map of its surroundings. Navigation is the capability to
trace a route from point A to point B. This requires the determination of one’s own
position and to be able to plan a path towards some goal location [59]. Path planning
can be therefore defined as devising the route for Navigation. This usually requires
the use of a representation of the environment (a map), and the ability to interpret

that representation. Topological maps are simplified maps where unnecessary details
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Data association is a fundamental part of the SLAM process, since wrong data
associations will produce incorrect maps. Loop closing and kidnapped / wakeup robot
problems must also be tackled for a successful SLAM implementation. The term ‘kid-
napped’ is used when the robot is lifted from its current (generally known) place in
the map and taken to another part of the map. ‘Wakeup’ is when the robot is first
started. In the case of kidnap the robot should be able to re-localise itself. In the
case of wakeup the robot needs to figure out where it is within the map. Loop closure
occurs during exploration and is when the robot revisits the same place [68]. The robot
should be able to recognise the place and amend the map if necessary.

Multi-robot SLAM

Ozkucur et al. [72] extended the map building onto a multi-robot platform where
robots can observe each other and non-unique landmarks using visual sensors and
merge maps by propagating uncertainty. Gil et al. [60] state that the SLAM problem
becomes harder when more robots participate in the construction of the map, since the
dimension of the state increases and indicate that multi-robot SLAM approaches can

be grouped in one of the two following solutions:

e Approaches in which each robot estimates its own individual map using its ob-
servations. At a later stage, a common map is formed by fusing the individual

maps of the robot team.

e Approaches where the estimation of all the trajectories and the map is made
jointly. A single map is computed simultaneously using the observations of all
the robots.

Visual SLAM

Mapping alone does not give information about the environment itself. This is espe-
cially so when maps are built on data provided by laser and sonar scanners combined
with odometry. Most of robotic mapping is performed using sensors that offer only a 2D
cross section of the environment around them, the most common being laser scanners.
With the introduction of digital cameras, this later evolved into Visual SLAM whereby
more knowledge about the environment could be obtained and included within the
map. In the past decade various attempts were carried out to create a SLAM system
just based on camera vision, some of which were very successful. Structure from motion
in computer vision and SLAM for mobile robots could be considered as two views of the
same problem. Most of the approaches to visual SLAM (VSLAM) are feature-based
where a set of significant points in the environment are used as landmarks [60]. When
the robot observes a visual landmark in the environment, it obtains a distance mea-

surement and computes a visual descriptor as will be further discussed in Section A.3.4.
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“Science is nothing but developed perception, interpreted intent, common sense
rounded out, and minutely articulated.”

George Santayana, Spanish Philosopher (1863 - 1952)

Chapter highlights:

This chapter discusses a method which makes robots aware of their
dynamic environment and identify both known objects and other yet
unknown salient objects by using a mix of top-down and bottom-up

approaches.

Robot Perception

Focusing mainly on robot vision, this chapter discusses methods on how robots are
made aware of their dynamic environment and solutions are provided for integrating
some methods related to areas of robotics, computer vision and machine learning. In
the coming sections, the integration of various methods described in Chapter 2 were
implemented and improved where necessary so as to achieve robots which are capable
of sensing and processing visual input. Some of the covered methods include the com-
parison of images, the detection of areas which are of interest within the environment
and also the capability for robots to identify specific objects. This chapter discusses
a method which allows robots to find and identify both known objects and other yet
unknown salient objects which might of interest. A mix of top-down and bottom-
up approaches is suggested. The same methods could be used to support persons in
an assisted living environment to identify objects and receive information about the
object. Part of the task was therefore to design tags containing patterns which are
both salient to humans and robots [22]. These tags, further described in Section 3.2.1,
consist of a set of five coloured circles on a black rectangular background. A study
was carried out to identify what people identify as salient within an image with the
aim to replicate that onto our robots using efficient methods capable of operating in
real-time. Section 3.1 looks at perception, visual attention and saliency and how these
can be applied to robots using a bottom-up approach. Section 3.2 focuses on top-down
and analysis on visual tag detection performance is carried out.
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CHAPTER 3. ROBOT PERCEPTION 3.3. SUMMARY

them with metadata about the object to which tag is attached. Results show that
tagged objects can be detected at over one metre using image resolution of 320 x 240
pixels and tags of size 57mm x 7T0mm even in poor lighting conditions as well as under
conditions of jitter. A combination of larger tags and higher resolution images would
increase the detection distance.

The next chapter describes how the robot capability is further enhanced by applying
an unsupervised machine learning mechanism allowing robots to extract previously
undetected salient information from an incoming robot video stream. This then feeds
into a visual memory which in turn can be used to provide robots with a more selective

searching capability.
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4.3. BUILDING VISUAL MEMORIES

CHAPTER 4. VISUAL MEMORIES OF VIDEO STREAMS

e A new node is inserted at a relatively fast rate (e.g. every other iteration). Thus
allowing for a large number of nodes to be used from early age and new nodes

are inserted soon after isolated nodes are removed.

e For the short term memory case (Described in Section 4.3.4), an extra step to
remove ‘old’ clusters whose nodes do not contribute to recent information was

included.

4.3.2 Parameter tuning

Several parameters need to be set in GNG. Although the way the input video is de-
signed (e.g. the number of cuts and camera changes present) and the processing power
available on the robot influence the parameter selection, a general trend for such se-
lection can still be defined as will be described next. A good compromise between the
number of meaningful formed clusters (keyframes) and performance time was required.
The most crucial factors affecting the graph real-time performance are the maximum
number of allowed nodes, the insertion rate of new nodes, and the maximum age al-
lowed for edges between evolving nodes. The more nodes present in GNG, the more
processing intensive the algorithm becomes. For this application, the parameter and
maximum node number selection criteria consist of the ones resulting the largest num-
ber of meaningful non-repeated keyframes obtained in real-time on the robot. To select

! suggested in [195] was used. An initial experiment

the parameters a video sequence
showed that an edge age greater than 20 would result in one big cluster. On the other
hand, a too small number would remove nodes too quickly. For this video sequence,

the edge age was set to 4.

Maximum number of nodes
Newnodeevery | 14 o5 30 40 50 | 100 200 500
X input frames
2 3 3 5 6 7 |12 14 16
4 3 4 8 8 8|10 11 11
g 3 4 5 7 6 | 8 gm0 glm
16 4 7 8 9 9 [9BT BT ot
32 2 2(13) 2(13) 2(13) 2(13) 2(13) 2(13) 2(13)
Tprocessing |16 9y o5 97 28 | 45 51 51
time (sec.)

Table 4.4: Parameter selection (Numbers in brackets indicate the number of nodes
reached when the number of final nodes is less than maximum number of nodes al-
lowed.)

Table 4.4 was generated by keeping gain coefficients constant and a maximum edge age

lhttp://www.youtube.com/watch?v=mSkP43A-LQ4
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set to 4. The insertion of new frames was varied at powers of base 2 and run over GNG
with set maximum number of nodes ranging between 10 and 500. Gain coefficients for
the best and second best matching units were set to 0.3 and 0.003 respectively and
B was set to 0.005. To find out the best combination in relation to time, the video
images are made available in a sequential manner and the GNG algorithm processes
them as quickly as the robot processor allows. The robot processor used was an Intel®
Core™?2 Duo CPU T8100 @ 2.10GHz x 2, 3.9GB Memory running Ubuntu 12.04 32
bit. The numbers in brackets indicate the number of nodes populating the network by
the end of the video sequence. These are only displayed when this value is less than
the maximum number of allowed nodes. The video sequence is 30 seconds long, when
run at 30 frames per second. This means, that given the processor on the robot, the

best combination for real-time operation / useful cluster outcome would be:

e number of nodes: 50,
e new node every 16 input frames, and

e an edge age of 4.

Allowing more than 50 nodes, each consisting of 80 x 60 RGB values, would compromise
real-time operation. The GNG graph and keyframes generated using the above settings
are shown in Figure 4.10.

The nine generated visual memory keyframes were then compared to the 25 MPEG-
B-frames with the values provided in Table 4.5. It can be noted that most MPEG
keyframes match the visual memory keyframes with a very high score (= 0.0). The
worst match occurs on MPEG keyframe 15, being most similar to Cluster 7. In this
case, the best matching score obtained is that of 0.4616 which is much higher than the
ideal expected 0.0 value. Intuitively, one would rather match this keyframe to Cluster
0. Although from the values obtained, Cluster 7 appears to be the least performing,
one has to note that in the MPEG frames, no keyframe appears to visually match

Cluster 7.
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be inferred from its age and size when generating keyframes. A large cluster would
generally indicate that there are several nodes holding similar information and that the
cluster is relatively young. Each time a node is updated, its age is reset to 0. Therefore,
it is expected that reoccurring scenes will remain in the STM. On the other hand, less
frequently occurring scenes stored in STM nodes will stop being updated, however
their age will keep increasing. Since similar nodes will form their own cluster, the
overall cluster age would represent how ‘old’ the information within that cluster is. It
is argued that clusters with an average age above a certain threshold could be classified
as containing static data and therefore its contents can be transferred to LTM, leaving
space in the STM for new, more dynamic information storage. Figure 4.13 shows some
of the clusters obtained when feeding a movie trailer (Up in the air)3 to the visual
memory as suggested in Section 4.3: the subset of the generated clusters and the
keyframes obtained as their means. These keyframes further reduce the information
used to generate the LTM images. A video of the evolving GNG can be watched on

youtube?. Figure 4.13 merits some comments:

e Cluster_0: The cluster contains two virtually identical images and in this case

the keyframe has a very sharp image stored.

e Cluster_1: The two images in the nodes represent different scenes, however,
they are very similar. The keyframe in this case is somewhat blurred where the

actors appear however there is still a good understanding of the scene.

e Cluster_2: In this case, the cluster contains very sharp images of scenes of
the movie trailer however this provides us with a blurred keyframe. Still, some
information can be inferred from this. By time, links in the cluster will start
breaking up due to the age constraint on the edges.

e Cluster_3: is the youngest cluster with lots of similar nodes. this again provides

a sharp mean image.

e It can therefore be deduced that Cluster_0 and Cluster_1 are older than Cluster_2
and Cluster_3.

As shown in Algorithm 2 the temporal LTM works as follows. At every X number
of iterations the oldest cluster within the GNG is identified and its average image
taken. The cluster age is calculated by summing up and averaging the age of each
neuron within its cluster. This is compared to existing images within the LTM. If a
very similar image is found the same node within the LTM is updated and the last

node in LTM is linked to this most similar node. If not a new node will be created and

3http:/ /www.youtube.com/watch?v=e7k6FwXJhNk
4http://youtu.be/vISLIWQvISM
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Algorithm 2 Generating Temporal LTM
while (Stopping Criterion = false) do
if (current iteration is a multiple of X) then
- Identify oldest cluster within the STM
- Produce cluster average image (keyframe)
- Compare to existing images within the LTM
if (very similar image node found within the LTM = true) then
- most similar LTM node is updated
- Last LTM node is linked to this most similar node
else
- A new node is created
- Linked to the last node
end if
- Delete oldest cluster and all its nodes from STM
end if
end while

way to overcome this is by using features which are position invariant and video stabil-
isation techniques such as those suggested in [9]. This however might compromise the
real-time capability and also leads to a higher processing time due to more complex
computations on the incoming video stream.

As will be seen in Chapter 5, this work is also extended to a team of robots col-
laborating together and sharing visual memories focusing on the capability of robots
learning from each other with the final aim of having robots working together as a

team for environment monitoring and learning.
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CHAPTER 5. MULTI-ROBOT INFORMATION FUSION 5.3. SUMMARY

5.3 Summary

This chapter looked at how the multi-robot platform introduced in Chapter 1 was im-
plemented, looking at the best robot hardware architecture and software development
framework for the application. In the implementation, the same hardware could be
accessed by different nodes and processed information was made globally available.
This chapter looked at how various sensors spread over the environment can be used,
useful information is extracted, shared and fused for a better representation of the en-
vironment. Non overlapping sensors implies better sensor utilisation although leading
to less (if no) redundancy. Different kinds of information fusion were discussed with
particular interest on cooperative fusion and complementary fusion, where most of the
work was focused. Cooperative fusion was used within the area monitoring scenario, by
fusing information coming from various heterogeneous inputs. Complementary fusion

was used for team visual learning by sharing visual memories.
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“Any one whose disposition leads him to attach more weight to unexplained
difficulties than to the explanation of a certain number of facts will certainly
reject my theory.”

Charles Darwin, English Naturalist (1809 - 1882)

Chapter highlights:

This chapter summarises the achievements in overcoming three
main challenges, namely:

e autonomy,

e real-time operation, and

o fast deployment;

thus advancing the state of the art in real-time multi-robot
perception and environment understanding.

Conclusions

The work presented in this thesis covers a method for the visual exploration and auto-
matic interpretation of an uncharted environment by a team of robots, automatically
learning new and interesting scenes within the environment. Whilst robots operate au-
tomatically, they cooperate by gathering, sharing and storing visual information in a
compact and dynamic representation to reflect the visual input extracted from a chang-
ing environment. The state of the art in multi-robot vision was reviewed in Chapter 2
and various possible ways for robots to interpret incoming data from sensors or from
other robots through the network to collectively achieve the expected targets high-
lighted in Chapter 1 were studied. In part based on biological inspiration, Chapter 3
focused on robot perception and how these techniques can be applied to make robots
aware of their dynamic environment. Focusing mainly on robot vision, techniques to
locate salient regions in a scene and the capability of robots to identify specific objects
such as faces and tags were studied. The robots’ performance was then enhanced in
Chapter 4 by focusing on methods endowing robots with learning capabilities, allowing
them to learn keyframes in real-time from a sequential input video stream and store
them into a flexible topologically linked graphical representation network. Chapter 5
looked at the capability of robots sharing visual memories with other robots, possibly
residing in different areas within the building. Moreover, methods introduced in ear-
lier chapters are combined onto a complete platform so as to have robots capable of
sensing, processing and learning their environment allowing for object detection and

identification, SLAM, navigation and obstacle avoidance. Also, robots are capable
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CHAPTER 6. CONCLUSIONS 6.2. FUTURE WORK

6.2 Future work

Although good progress is being made, there are still numerous open problems which
need to be tackled for successful and efficient integration of robot security systems
in human environments. One of the challenges addressed in this thesis is to provide
a flexible graphical representation of the robot’s environment. When it comes to vi-
sual memories, research can be further extended onto methods using better feature
extraction techniques thus providing a more faithful and descriptive representation the
environment. Such features could possibly include colour histograms and edges, to
mention some. Visual memories can even be extended to learn more specific objects.
This would require further research into efficient feature extractors and descriptors
which would allow the objects, not necessarily the same, but falling under the same
category, to be identified from various angles and orientations, automatically cropped
and fed into memory; this further leading into researching methods for automatic se-
mantic descriptions of the memorised objects.

Optimisation of saliency algorithms is another open problem which can be tack-
led to allow for real-time operation. These algorithms are still computationally more
intensive compared to their well trained pattern detector counterpart. Having more
computationally efficient saliency detectors would allow for a better top-down and
bottom-up combination; this again with the intention of embedding them onto robot
platforms to extract salient objects within the environment automatically be used as
an input feed the robot learning mechanism.

Apart from platform robustness, robots, especially those used in surveillance, have
to operate in complex environments where crowded situations may occur at random
times. Such environments are generally cluttered and hard to train for. This thesis
mainly looked at how robots can be made aware and react to their environment. The
capacity to successfully track people and luggage is also another open problem which
is being tackled. Taking again the airport baggage reclaim as an example, the shape,
size and pose of people carrying luggage varies considerably. Methods to automatically
detect the density and entropy of crowds need to be developed. These can then be used
to further enhance security and surveillance by being able to send personnel or even
automated robots to disperse or aggregate crowds accordingly using the appropriate
means. Most of the crowd analysis mechanisms are based on fixed cameras using
background subtraction for person tracking. These would fail in the case of using
mobile cameras such as the ones attached to a mobile robot. This is another unsolved

challenge in the area of robot visual intelligent monitoring.
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Additional Literature

A.1 Robot Types

As researchers, industrialists and engineers keep investing time, money and resources
towards robotics research, many varieties of robots have been created, making it pos-
sible for us humans to conquer even the most remote location on the earth, being sky
high, buried deep in the ground in mines, the deepest ocean abyss and even outer
space. Figure A.1 illustrates some of the most common types of robots. Robots could
have a general design such as a wheeled robot or a more complex humanoid robot,
to more tailor specific designs. Other designs also include flying and diving robots.
Multiple legged robots can also be found. These are generally capable of navigating
on uneven terrain such as that found in woods, parks. Tree climbing robots such as
Woody, Treebot and Rise [221] can also be found within in the research community.
Some of the most commonly used robot types used will be discussed hereunder.

A.1.1 UGYV - unmanned ground vehicles

Unmanned ground vehicles (UGVs) are vehicles that operate in contact with the ground
and without an onboard human presence. UGVs can be used for many applications
where it may be inconvenient, dangerous, or impossible to have a human operator
present. These can generally be classified as either holonomic or nonholonomic con-

straints. A holonomic kinematic constraint can be expressed as an explicit function of
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APPENDIX B. ADDITIONAL ALGORITHMS B.3. KULLBACK-LEIBLER DIVERGENCE

introduces an error, for practical purposes the results obtained were found to be good
enough and sufficient.

Since Kullback-Leibler is not symmetric, ie. Dk (X||Y) # Dk (Y]|X), both are
thus calculated and the output is the average of both. Therefore the output from the

matching algorithm would be as indicated in Equation (B.6).

Dir (X||Y) + Dg (Y| X)

5 (B.6)
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APPENDIX C. THE GNG ALGORITHM

(b)
(c)

(d)

(k)

Generate an input vector X.

Find the nearest node s; and second nearest node s, to x according to the

Euclidean distance, s;,s2 € N.
Increase the age of all the edges emanating from s, .

Update the winner node s; error by adding the squared euclidean distance be-
tween the input signal and its reference vector.

error,, + errors, + ||w,, — x||?

Adapt the reference vectors of the winner node s; and its topological neighbours

towards x by a learning step ¢,, and ¢,, respectively, of the distance.

W, — W +&5,(X—WwWy)

wn (_ Wn + En(x - Wn)

Vn € Neighbour(s), €s,,€n € [0,1]

If s; and s, are connected by an edge, then set its age to 0. If they are not

connected, then create an edge between them.

If there are any edges with an age larger than a,,,; then remove them. If this
results in isolated nodes (without emanating edges) remove them as well.

Every ) iterations and if the total size of the network has not been reached then
insert a new node as follows:

e Find the node u with largest error.

e Among neighbours of u, find the node v with largest error

e Insert a new node r between u and v using

wu +W'U

W, 2

Create edges between v and r, and v and r. Remove edge between u and v.

Decrease the error variables of u and v, by a, and «, which are negative

and set the error of node r.

ETTOTy 4 Error, + o,
erTor, < €error, + Q,

error, + —(a,+ a,)
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APPENDIX C. THE GNG ALGORITHM

where

error, + error,

a, = —0.5 (1 - oy ) error,

error
o, = —0.5 ( = ) error,

errory + error,

(1) Decrease all error variables of all nodes j € N by a factor 3.

errorj «— error; — 3 X error;

(m) If the stopping criterion is not met then repeat from step (b).
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Robot Configuration

D.1 Hardware

Several mobile platforms were used throughout the course of this study. The robot
vision team (RoViT), part of the Digital Imaging Research Centre (DIRC) in the
Faculty of Science, Engineering and Technology (SEC) owns several robotic platforms.
Figure D.1 shows some of them, namely the Pioneer! (back left), Videre Erratic? (back
right), Rovio® (middle) and Surveyor? (front). Amongst these a humanoid robot is
also available but which was not used for the course of this study. The Pioneer robot
platform is the most rugged professional robot available within our fleet, capable of
hosting multiple sensors and onboard computing. The Erratic robots are a cheaper
version of the Pioneer designed by Videre but which are still good enough for testing /
research purposes. The other small robots are very basic platforms, with very limited
capabilities, for example, no effective sensing, single pinhole cameras and basic mobile
functionality. During hardware selection it was concluded that the limited capabilities
of such robots, prohibit experimentation with complex vision and machine learning
algorithms. The inferior onboard camera also makes image processing difficult and
error prone. As a result they are unsuitable for proper experimentation and they
cannot be used to take part in public demonstration or competitions.

Lhttp://www.mobilerobots.com/ researchrobots/pioneerp3dx.aspx
2pttp:/ /www.videre.com (possibly discontinued)
3http://www.wowwee.com/en/support /rovio/
4http://www.surveyor.com/SRV info.html
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APPENDIX D. ROBOT CONFIGURATION D.2. SOFTWARE - ROS ROBOT SETUP

<node pkg="DHS_DEMO" type="TCPActionServer.py"

name="TCPActionServer" output="screen" />

</launch>

dhs_robot _laser_configuration.launch

<launch>
<node pkg="tf" type="static_transform_publisher"
name="base_link_to_kinect_broadcaster"
args="-0.115 0 0.226 0 O O base_link openni_camera 100" />

<node pkg="tf" type="static_transform_publisher"
name="base_footprint_to_link_broadcaster"
args="0 0 0 0 O O base_footprint base_link 100" />

<node pkg="tf" type="static_transform_publisher"
name="base_link_to_laser_broadcaster"
args="0.050 0 0.300 0 0 O base_link laser 100" />

<node name="hokuyo" pkg="hokuyo_node" type="hokuyo_node"

respawn="false" output="screen">

<!-- Starts up faster, but timestamps will be inaccurate. -->
<param name="calibrate_time" type="bool" value="false"/>

<!-- Set the port to connect to here -—>
<param name="port" type="string" value="/dev/ttyACMO"/>

<param name="intensity" type="bool" value="false"/>

</node>

<node name="erratic_base_driver" pkg="erratic_player"
type="erratic_player" output="screen" >
<remap from="odom" to="odom"/>
<remap from="battery_state" to="battery_state"/>
<param name="port_name" type="str" value="/dev/ttyUSBO"/>
<param name="enable_ir" type="bool" value="False"/>

<param name="odometry_frame_id" type="str" value="odom"/>
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</node>
</launch>

dhs_move_base.launch

<launch>
<!-- Run the map server —->
<node name="map_server" pkg="map_server"
type="map_server" args="$(find DHS_DEMO)/maps/
KUHill/KUHill-2.yaml"/>

<1-=-= Run AMCL -->
<include file="$(find DHS_DEMO)/launch/amcl_diff.launch" />

<node pkg="move_base" type="move_base"

respawn="false" name="move_base" output="screen">
<rosparam file="$(find DHS_DEMO)/info/costmap_common_params.yaml"
command="load" ns="global_costmap" />
<rosparam file="$(find DHS_DEMO)/info/costmap_common_params.yaml"
command="load" ns="local_costmap" />
<rosparam file="$(find DHS_DEMO)/info/local_costmap_params.yaml"
command="1load" />
<rosparam file="$(find DHS_DEMO)/info/global_costmap_params.yaml"
command="load" />
<rosparam file="$(find DHS_DEMO)/info/base_local_planner_params.yaml'
command="1load" />

</node>

</launch>

amcl_diff.Jaunch

<launch>
<node pkg="amcl" type="amcl" name="amcl" output="screen">

<!-- Publish scans from best pose at a max of 10 Hz -->
<param name="odom_model_type" value="diff"/>

<param name="odom_alpha5" value="0.1"/>

<param name="transform_tolerance" value="0.2" />

<param name="gui_publish_rate" value="10.0"/>

<param name="laser_max_beams" value="60"/>

<param name="min_particles" value="1000"/>
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<param name="max_particles" value="10000"/>
<param name="kld_err" value="0.05"/>
<param name="kld_z" value="0.99"/>
<param name="odom_alphal" value="0.2"/>
<param name="odom_alpha2" value="0.2"/>
<!-- translation std dev, m -->
<param name="odom_alpha3" value="0.8"/>
<param name="odom_alpha4" value="0.2"/>
<param name="laser_z_hit" value="0.5"/>
<param name="laser_z_short" value="0.05"/>
<param name="laser_z_max" value="0.05"/>
<param name="laser_z_rand" value="0.5"/>
<param name="laser_sigma_hit" value="0.2"/>
<param name="laser_lambda_short" value="0.1"/>
<param name="laser_lambda_short" value="0.1"/>
<param name="laser_model_type" value="likelihood_field"/>
<!-- <param name="laser_model_type" value="beam"/> -->
<param name="laser_likelihood_max_dist" value="2.0"/>
<param name="update_min_d" value="0.2"/>
<param name="update_min_a" value="0.5"/>
<param name="odom_frame_id" value="odom"/>
<param name="resample_interval" value="1"/>
<param name="transform_tolerance" value="0.1"/>
<param name="recovery_alpha_slow" value="0.0"/>
<param name="recovery_alpha_fast" value="0.0"/>
</node>
</launch>
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