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Abstract 

 

This paper presents a new method for the optimisation of the mirror element spacing 

arrangement and operating temperature of linear Fresnel reflectors (LFR). The specific 

objective is to maximise available power output (i.e. exergy) and operational hours whilst 

minimising cost. The method is described in detail and compared to an existing design 

method prominent in the literature. Results are given in terms of the exergy per total mirror 

area (W/m
2
) and cost per exergy (US $/W). The new method is applied principally to the 

optimisation of an LFR in Gujarat, India, for which cost data have been gathered.  It is 

recommended to use a spacing arrangement such that the onset of shadowing among mirror 

elements occurs at a transversal angle of 45°. This results in a cost per exergy of 2.3 $/W. 

Compared to the existing design approach, the exergy averaged over the year is increased by 

9% to 50 W/m
2
 and an additional 122 hours of operation per year are predicted. The ideal 

operating temperature at the surface of the absorber tubes is found to be 300°C. It is 

concluded that the new method is an improvement over existing techniques and a significant 

tool for any future design work on LFR systems. 

 

Keywords: 

Solar thermal collector, Linear Fresnel reflector (LFR), Linear Fresnel collector (LFC), 

Exergy, CSP.  
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Nomenclature 

 

Aa  Effective mirror aperture area (m
2
) 

Am  Total mirror area (m
2
) 

Acg  Surface area of receiver cover glazing (m
2
) 

Ap  Surface area of exposed receiver (m
2
) 

Ar  Area of receiver (m
2
) 

dn  Width of shade on mirror element (m) 

DNI  Direct-normal irradiance (W/m
2
) 

Ex,out  Exergy per total mirror area (W/m
2
) 

IAM  Incident angle modifier (-) 

L  Length of collector 

Pn  Pitch (m) 

Q  Net heat transfer to receiver (W) 

QIn*  Heat transferred in (W) 

QLoss  Heat loss (W) 

Qn  Distance of an n
th

 mirror element from receiver (m) 

Sn  Shift (m) 

Ta  Ambient temperature (K) 

Tr  Temperature of receiver (K) 

Tr,max  Stagnation temperature (maximum temperature of receiver) (K) 

Tr,opt  Optimum temperature of receiver (K) 

UL  Overall heat transfer coefficient (W/m
2
.K) 

W  Width of mirror element (m) 

 

Greek Symbols 

α  Absorption 

αs  Solar altitude 

β  Ray angle from mirror element to receiver 

γs  Solar azimuth angle from the south 

δ  Declination 

ηc  Collector efficiency 

ηCarnot  Carnot efficiency 

ηo  Optical efficiency 

ηShadow  Shadow efficiency 

θl  Angle in the longitudinal plane 

θn  Slope angle of an n
th

 mirror element 

θp  Profile angle of the sun 

θt  Angle in the transversal plane 

λ  Intercept factor 

ρ  Reflectance 

τ  Transmittance 

φ  Latitude 

ω  Solar hour angle 
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1 Introduction 
 

Among solar thermal collectors, the linear Fresnel reflector (LFR), also referred to as the 

linear Fresnel collector (LFC), is considered a promising technology due to its simple and 

inexpensive design. It captures, however, less energy that other collectors and this makes it 

important to seek improvements in performance and further reduction in costs [1-2]. First 

developed in 1961 by Giorgio Francia, the LFR has received renewed attention over the last 

few years [3]. One significant recent development has been Puerto Errado 1, the world’s first 

LFR commercial power plant, built in southern Spain. This 1.4 MW power plant commenced 

selling power to the Spanish grid in March 2009. Construction of Puerto Errado 2, a 30 MW 

power plant, has also begun in Murcia, Spain [4]. Industrial process heat applications are also 

a vast but relatively untouched area for concentrating solar power (CSP) technologies. Since 

2005 numerous LFR collectors have also been constructed for industrial applications and 

solar cooling in the European towns of Freiburg, Bergamo, Grombalia, and Sevilla [5] and in 

various locations across the USA [6]. A large pilot plant demonstrating a LFR was also 

erected at the Plataforma Solar de Almería (PSA) in Spain and tested until 2008 [7].  

 

The LFR typically uses flat mirror elements of equal width to focus the sun’s rays onto a 

linear central receiver supported by a tower (see Figure 1). A well designed receiver can 

increase the performance considerably. Several receiver designs exist, with configurations 

using simple pipes, plates, evacuated tubes and secondary concentrating devices [8]. 

Typically a horizontal type is favoured over a vertical or angled receiver [9-10]. One 

particular design often utilized is the trapezoidal cavity receiver which comprises partially 

insulated absorber pipes with a reflector plate and cover glazing forming a cavity for the 

collection of rays and minimisation of heat losses [11-12]. Due to its simplicity and low cost, 

the trapezoidal cavity receiver has been selected for this study. 
 

 

 
 

Figure 1: Linear Fresnel reflector with mirror elements directing the sun’s rays onto a horizontal receiver. 

 

 

One particular difficulty with the LFR is shading and blocking caused by adjacent rows of 

mirrors. Increasing the spacing between mirror rows or the height of the receiver reduces 

these effects, but can increase cost because more land is required. Land usage may not be an 

important issue in some situations such as deserts and certain rural areas [13]. However, for 

solar process heat or solar thermal cooling applications roof installations may be used 

requiring compact footprint. The design of the width, shape, spacing, and number of mirror 

elements of the LFR has been studied by several authors and optimised for various 

applications [10-11, 14-15].  However, those authors chose the spacing arrangement of the 

mirror elements according to the method by Mathur et al. [16-17]. This method (henceforth 

referred to concisely as ‘Mathur’s method’) calculates the appropriate value of the shift (i.e. 

the horizontal gap between adjacent mirror elements) such that shading and blocking of 

Receiver 

Mirror elements 

 

Solar rays 

Tower 



5 
 

reflected rays are avoided at solar noon specifically, thus providing a technical (but not 

necessarily economic) design principle of the solar collector. Other authors have optimised 

the equidistant spacing of mirror elements for levelized electricity cost [18-19]. Studies using 

ray-tracing have also been used to optimise the optical performance of an LFR with 

equidistant spacing [20-21].  

 

A study of the exergy for an LFR provides a means of analysing the collector’s maximum 

available power, for given operating and ambient temperatures, without the need for a 

detailed specification of the plant to which the collector is coupled. Achievable performance 

can then be predicted for a collector with specified location, mirror field arrangement and 

tracking orientation. Exergetic analyses of solar collectors have already been carried out by 

several authors. For example, Singh et al. studied the exergetic efficiencies of a solar thermal 

power plant having parabolic trough collectors coupled to a Rankine cycle, to show that the 

maximum heat losses occurred at the concentrator-receiver assembly [22]. Tyagi et al. have 

studied the exergetic performance of a collector as a function of the mass flow rate, 

concentration ratio and hourly solar irradiation [23]. Gupta and Kaushik investigated different 

feed water heaters for a direct steam generation solar thermal power plant [24]. Indeed, the 

exergy concept has been widely adopted for thermodynamic assessment of power generation 

systems within various fields of the renewable energy sector, ranging from wind power to 

geothermal power systems, and extended to comparisons of non-renewable energy sources 

[13, 25-26]. 

 

The aim here is to present a method to optimise the mirror spacing arrangement of an LFR. 

The objective of the optimisation is to maximise exergy and operational hours and minimise 

cost. This will be achieved through analysis of the optics for different non-equidistant spacing 

arrangements over an annual period, not just at solar noon. By way of example, the method 

will be applied to the location of Gujarat, India. 

2 Method of optimisation 

 

The measure of cost to be minimised is the ratio of the capital cost per exergy. The cost 

estimate will be calculated from the sum of the main components, namely the collector’s 

frame, concentrator, receiver, and land costs. Running costs are neglected because these are 

considered equivalent among the design variations. Therefore the following expressions are 

used: 

 
𝐶𝑜𝑠𝑡

𝐸𝑥𝑒𝑟𝑔𝑦
=

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

[𝐷𝑁𝐼. 𝐴𝑚. 𝜂𝑜(𝜃 = 0). 𝐼𝐴𝑀) − 𝑄𝐿𝑜𝑠𝑠]𝜂𝐶𝑎𝑟𝑛𝑜𝑡
 (2.1) 

 

where 

 
𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟 𝑆𝑖𝑧𝑒 (𝐹𝑟𝑎𝑚𝑒 + 𝐿𝑎𝑛𝑑) + (𝐴𝑚. 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑜𝑟) + (𝐴𝑟 . 𝑅𝑒𝑐𝑒𝑖𝑒𝑣𝑒𝑟) (2.2) 

 

Exergy is calculated from the direct-normal solar radiation, DNI (W/m
2
) on the collector’s 

total mirror area, Am, and the heat loss from the receiver, QLoss. The calculation takes into 

account the terms η0(θ=0), IAM, and ηCarnot representing the optical efficiency for normal 

incidence rays to the horizontal, the incidence angle modifier (IAM), which accounts for the 

losses in the concentrator and receiver optics for varying ray incidence angles, and the Carnot 

efficiency respectively. Key to this investigation is the shadow efficiency, which is 
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incorporated into the IAM, and will depend upon the concentrator’s mirror element spacing 

arrangement. The Carnot efficiency is an idealisation underlying the exergy analysis and is 

calculated on the assumption that the receiver operates at a constant or continuously 

optimised surface temperature. Since our focus is on the design of the collector, the variation 

in temperature of the heat transfer fluid inside the absorber tubes and over the solar field is 

not considered. This would require detailed assumptions about the plant design (e.g. piping 

layout, choice of heat transfer fluid, and flow rate) that are beyond the scope of this study. 

 

For a range of different mirror element spacing arrangements, and operating temperatures, the 

above efficiencies and thus the corresponding exergies are calculated. The spacing 

arrangements are chosen such that the mirror elements are spaced for the onset of shadowing 

at a given height of the sun in the sky. This generally leads to non-equidistant spacing with 

the mirrors further from the tower more widely spaced. The sun’s height is represented by the 

transversal angle which is the angle between the projection of the sun’s rays onto a plane 

perpendicular to the tracking axis and the vertical.   

 

The method comprises four main steps, which are listed below and described more fully 

subsequently. 

 

1. Determination of solar irradiation characteristics for target location: Calculate 

typical characteristics of solar radiation for the target location based on a typical 

meteorological year (TMY). 

 

2. Determine mirror spacing designs and shadow efficiencies: Develop a number of 

mirror spacing arrangements each for the onset of shadowing at a given transversal 

angle. Find corresponding hourly shadow efficiencies, for each design. 

 

3. Performance of collector: Analyse heat loss from the receiver. For each spacing 

arrangement, calculate optical efficiency at normal incidence and hourly values of 

variables: DNI, IAM (which accounts for shadowing, blocking of reflected rays, 

incidence cosine for each mirror element, and effective mirror aperture area), heat 

transfer coefficient, receiver temperature, ambient temperature, Carnot efficiency and 

thus output exergy averaged over the year. The calculation is repeated for (a) different 

constant operating temperatures and (b) a continuously optimised operating 

temperature. 

 

4. Application: For each spacing arrangement determine cost per exergy using Eq.(2.1).  

Provide optimum design recommendations based on exergy, cost and operational 

hours. 

 

To study the sensitivity of the optimised design to input parameters in the case study, upper 

and lower limits are applied to the costs of the mirror elements, the land, and the receiver. 

Four cost scenarios are considered. (i) a minimum baseline cost, (ii) a high component cost, 

(iii) a high land cost, and (iv) a high component and land cost. 

 

2.1 Determination of solar irradiation characteristics for target location 
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Hourly direct-normal irradiance (DNI) values are calculated for a TMY in Gujarat using the 

meteorological database, Meteonorm [27]. The orientation considered in this study is a north-

south horizontal axis with east-west tracking. 

 

2.2 Determine LFR spacing designs and shadow efficiencies 

 

The slope angle and distance from the receiver for each mirror element are determined for a 

given transversal angle. The amount of shadowing that is produced on an hourly basis for 

each design can then be found. Results for the shadow efficiency for a series of different 

spacing arrangements, for a typical day of each month, are then produced as a final output. A 

number of standard calculations relating to the sun-earth geometry are omitted from this 

description as these are available from the literature [28-29]. 

2.2.1 Geometrical positioning of mirror elements 
 

The sun’s position, relative to the axis of rotation of the LFR elements, is determined from 

the solar profile angle [30]. 

 

The profile angle, θp, in the transversal plane can be found for a north-south tracking axis by, 

 

𝑡𝑎𝑛𝜃𝑝 =
𝑡𝑎𝑛𝛼𝑠

cos (90 − 𝛾𝑠)
 (2.3) 

 

The projected angle into the longitudinal plane is given by,  

 

𝑡𝑎𝑛𝜃𝑙 =
𝑡𝑎𝑛𝛼𝑠

cos 𝛾𝑠
 (2.4) 

 

Where, αs, is the solar altitude angle, and γs is the solar azimuth angle from the south. The 

transversal angle, θt, is then the angle to the vertical i.e. the complement of the profile angle. 

 

 
Figure 2: Sun’s position relative to an LFR, showing the path of a single ray from a mirror element to a receiver 

tower. 

Transversal angle, θt 
 

Profile angle, θp 
 

Sun 

Qn Distance from tower to centre of mirror, Qn 

Height of 

receiver, h 

βn 
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The slope angle, θn, for a mirror element located at a distance Qn, from the receiver, can be 

determined for any profile angle from Eq.(2.5) (see Figure 2). The following equations in this 

section enable hourly slope angles to be determined for the purpose of specifying the shift 

distance required for the onset of shadowing at a particular solar profile angle. 

 

𝜃𝑛 =
90 − 𝜃𝑝 − 𝛽𝑛

2
 (2.5) 

 

Where β, the angle subtended between the receiver tower and the projection onto the 

transversal plane of a ray reflected towards the receiver, is given by, 

 

𝑡𝑎𝑛𝛽𝑛 =
𝑄𝑛

𝐻
 (2.6) 

 

The first mirror (starting from the centre and working out) is placed such that the receiver 

does not cast a shadow upon it at midday. The following mirrors are pitched with varying 

amounts of shift, Sn, for a given profile angle (see Figure 3). 

 
 

Figure 3: Shift distance between two consecutive mirror elements based on the sun’s profile angle. 

 

 

For a mirror element of width W and pitch Pn from its inward neighbour, the shift can be 

calculated from the following two equations, 
 

𝑆𝑛 = 𝑃𝑛 −
𝑊

2
(𝑐𝑜𝑠𝜃𝑛 + 𝑐𝑜𝑠𝜃𝑛+1) (2.7) 

 

𝑆𝑛 =
𝑊[𝑠𝑖𝑛𝜃𝑛 + (𝑠𝑖𝑛𝜃𝑛+1 − 𝑠𝑖𝑛𝜃𝑛)]

𝑡𝑎𝑛(𝜃𝑝 − 0.27)
 (2.8) 

 

the simultaneous solution of which gives, 

 

𝑃𝑛 =
𝑊[𝑠𝑖𝑛𝜃𝑛 + (𝑠𝑖𝑛𝜃𝑛+1 − 𝑠𝑖𝑛𝜃𝑛)]

𝑡𝑎𝑛(𝜃𝑝 − 0.27)
+

𝑊

2
(𝑐𝑜𝑠𝜃𝑛 + 𝑐𝑜𝑠𝜃𝑛+1) (2.9) 

 

Because the distance, Qn, from a mirror element to the receiver tower changes for each newly 

selected value of shift, an iterative process is required to provide the final spacing for each 

Sun ray (+/- 0.27º) 

θn+1 θn 

Pitch, Pn 

Shift, Sn 

θp 

Width, W 
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mirror element. The effective area of aperture, Aa, of the mirror elements as encountered by 

approaching rays in the transversal plane can be calculated by, 
 

𝐴𝑎 = ∑ 𝑊𝑐𝑜𝑠(𝜃𝑡 − 𝜃𝑛)

𝑘

𝑛=1

 
(2.10) 

 

The incidence cosine for an n
th

 mirror element in the transversal plane is therefore given by 

Aan/W. 

 

2.2.2 Shadow on mirror elements 
 

Until the sun’s profile angle reaches that of the design profile angle and corresponding 

transversal angle used to specify the mirror spacing arrangement, a proportion of the mirror 

elements will be in the shade. For a spacing arrangement based upon a particular design 

transversal angle, the average shadowing on the collector system throughout the day can be 

calculated from the geometry shown in Figure 4. 
 

 

 

 

 

 

 

 

Figure 4: Shadow cast on a mirror element when the sun is lower than the design profile angle. 

 

Using trigonometry, the following equations can be determined, 

 

𝑏𝑛 =
𝑊

2
(𝑠𝑖𝑛𝜃𝑛 + 𝑠𝑖𝑛𝜃𝑛+1) (2.11) 

 

𝑐𝑛
2 = 𝑏𝑛

2 + 𝑆𝑛
2 (2.12) 

 

𝑎𝑛 = 90 − 𝑡𝑎𝑛−1(𝑆𝑛 𝑏𝑛⁄ ) − 𝜃𝑃 (2.13) 

 

𝑑𝑛 =
𝑐𝑛 sin 𝑎𝑛

𝑠𝑖𝑛(𝜃𝑝 + 𝜃𝑛+1)
 (2.14) 

 

Therefore the shadow efficiency throughout the day, for various spacing arrangements, each 

based on a different transversal angle, can be found from the amount of shade upon each 

mirror, dn, and the overall width of the mirror element, W. The average shadowing on an LFR 

can therefore be calculated for any time of day.  

 

𝜂𝑆ℎ𝑎𝑑𝑜𝑤𝑛
= 1 −

𝑑𝑛

𝑊
 (2.15) 

θp 
 

dn 

bn 

Sn 

cn 
 

an 

Approaching sun vector Length of shade on 

mirror element, dn 
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𝜂𝑆ℎ𝑎𝑑𝑜𝑤 =
∑ 𝜂𝑆ℎ𝑎𝑑𝑜𝑤𝑛

𝑛
 (2.16) 

 

2.2.3 Selection of spacing arrangements 
 

Examples of spacing arrangements used for the optimisation are illustrated in Figure 5. Each 

is labelled S15°, S30° etc according to the corresponding transversal angle for the onset of 

shadowing. The corresponding approximate solar times for shadow free operation are also 

indicated, though note that these times refer specifically to Gujarat in April and will be 

different for other locations and times of year. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Spacing arrangements set for the onset of shadowing at various transversal angles. Hours of no 

shadowing are given for the Gujarat area in April.  

 

2.3 Performance of collector 

 

The exergy, i.e. maximum available power output in W/m
2
 of the collector’s total mirror area, 

for an LFR at a certain hour of the day can be calculated.  

 

𝐸𝑥,𝑜𝑢𝑡 = 𝑄 (1 −
𝑇𝑎

𝑇𝑟
) (2.17) 

 

Where Q, the heat transfer at the receiver at a temperature Tr (representing the temperature at 

the surface of the absorber tubes), is given by, 

 
𝑄 = 𝑄𝑖𝑛

∗ − 𝑄𝐿𝑜𝑠𝑠 (2.18) 

 

Where, Qin* is the product of the direct solar irradiance, total mirror area, optical efficiency at 

normal incidence and the incidence angle modifier, which includes the effective mirror 

aperture area and changing optics for ray incidence angles in the transversal and longitudinal 

planes. 
 

S15° (11a.m – 1p.m) 

S30° (10a.m – 2p.m) 

S45° (9a.m – 3p.m) 

S75° (7a.m – 5p.m) 

S60° (8a.m – 4p.m) 
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𝑄𝑖𝑛
∗ = 𝐷𝑁𝐼. 𝐴𝑚𝜂0(𝜃 = 0). 𝐼𝐴𝑀 (2.19) 

 

A thermodynamic study performed on the LFR with a horizontal absorber trapezoidal cavity 

receiver configuration (see Figure 6), is used to determine an approximation of the heat loss 

QLoss. Note that the cover glazing width is chosen such that a diverging edge ray of the widest 

mirror element is accepted for a direct beam angle of zero. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Schematics of a trapezoidal cavity receiver. 

 

Singh et al. have shown that the overall heat transfer coefficient, UL, is a summation of the 

heat loss coefficients from the bottom of the receiver through convection and radiation, and 

the heat loss coefficient from the insulated sides for a trapezoidal receiver [31].  

 

For a receiver of given characteristics, the heat transfer coefficient can be plotted against the 

receiver temperature. The example plot of Figure 7 shows that the heat transfer coefficient 

increases significantly with temperature. The heat loss coefficient is used to determine the 

stagnation temperature, Tr,max, which occurs when all incoming solar radiation is lost as 

ambient heat, meaning no more heat transfer can take place at the receiver. 

 

𝑇𝑟,𝑚𝑎𝑥 = 𝑇𝑎 +
𝐷𝑁𝐼. 𝜂0(𝜃 = 0). 𝐼𝐴𝑀. 𝐴𝑚

𝑈𝐿𝐴𝑟
 (2.20) 

 

Optical efficiency is an essential parameter for the calculation of exergy and stagnation 

temperature in any solar collector. The optical efficiency of the system includes factors such 

as the reflectance, ρ, the transmittance of the cover, τ, the absorbance, α, and the intercept 

factor, λ. The absorbed solar radiation is also decreased if shading and blocking is caused 

from adjacent mirror elements. Estimations can be made for the optical efficiency on an 

hourly basis using an incident angle modifier (IAM). Asymmetric solar collectors with 

translational symmetry show a bi-axial dependency with respect to the direct beam incidence 

angle [30]. A bi-axial incident angle modifier  includes a transversal angle, θt, (for rays 

perpendicular to the rotation axis of the concentrator elements) and a longitudinal angle θl 

(for rays in a plane parallel to the rotation axis) [32]. The IAM is defined by the ratio of the 

collector output at a given incidence angle η0(θ) and the collector output at normal incidence 

η0(θ=0). 

 

Insulation Absorber 

pipe(s) 

Cover 

glazing 
Reflector plate 

Focused solar rays 

Cavity depth 
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𝐼𝐴𝑀(𝜃) =
𝜂0(𝜃)

𝜂0(𝜃 = 0)
 (2.21) 

 

The approach taken in this study is to project the solar incidence angle onto the transversal 

and longitudinal plane to calculate a total optical efficiency based on a product of the IAM(θt) 

and IAM(θl). For an LFR, depending on the spacing arrangement of the mirror elements, the 

effective mirror aperture area, individual mirror incidence cosines, blocking of reflected rays 

and shadowing show a large dependency on θt. In the longitudinal plane the major effects are 

the transmittance of a cover or glazing, the intercept factor, and the absorption and 

reflectance of the collector in respect to a changing θl.  Assuming the collector is of 

substantial length the end losses for rays with a shallow θl are neglected. 

 

Ray-tracing is commonly employed in the analysis of the optical efficiency for solar 

collectors and is used in this study. Due to the width of the solar disk, as observed from the 

collector, solar rays diverge with an angle of +/- 0.27°. Buie and Monger have studied 

circumsolar radiation and its effect on LFR optics [33]. The amount of circumsolar radiation 

varies considerably according to atmospheric conditions. For the sake of generality it is 

neglected from this analysis. Additional divergence from tracking inaccuracies and mirror 

shape surface errors are also not considered. The reflectivity of the mirrors is taken to be 

constant and the relationship between absorption and angle of incidence is as given by  

Tesfamichael and Wäckelgård for nickel pigmented aluminium oxide (Ni-Al2O3) [34].  

 

Determination of the optical efficiency now enables the stagnation temperature to be 

calculated. A linear approximation of the heat transfer coefficient (see Figure 7) can be used 

to derive an expression for Tr,max, by substitution from Eq.(2.20). Therefore a solution for 

Tr,max is obtained on an hourly basis. Furthermore, the optimum operating temperature of the 

receiver, Tr,opt, can be deduced [13]. 
 

𝑇𝑟,𝑜𝑝𝑡 = √𝑇𝑟,𝑚𝑎𝑥𝑇𝑎 (2.22) 

 

In reality constant temperature operation is more practical. If the stagnation temperature is 

below the target operational temperature it is assumed that any captured radiation is not 

utilized, as the irradiance level are not sufficient for the collector to operate. 

 

 

Figure 7: The heat loss coefficient increases with the trapezoidal cavity receiver temperature and may be 

approximated by a linear trend.  
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2.4 Application to case study 

 

The cost-exergy method is now applied to an LFR prototype, operating with different spacing 

arrangements and a north-south tracking axis, in the Gujarat area. To research costs, the 

authors constructed a prototype LFR in Vapi, Gujarat, thus enabling them to gather the 

relevant data. To account for likely variations, four cost scenarios are considered (see section 

2). Units of US dollars are used here, converted from Indian national rupees (INR) at 2011 

rates (see Table 1). 

 
Table 1: Initial upper and lower cost estimates of a prototype LFR and land costs for Gujarat. 

 

Horizontal 

Frame 

Lower 

Concentrator 

Upper 

Concentrator 

Lower Land Upper Land Lower 

Receiver 

Upper 

Receiver 

750 Rs./m
2
 2953 Rs./m

2
 10000 Rs./m

2
 720 Rs./m

2
 10000 Rs./m

2
 2000 Rs./m

2
 8000 Rs./m

2
 

16 $/m
2
 63 $/m

2
 214 $/m

2
 15 $/m

2
 214 $/m

2
 43 $/m

2
 171 $/m

2
 

 

 

The prototype LFR consisted of twenty eight 80 mm wide mirrors, and a 100 mm wide 

receiver fixed at a height of 2 metres. The receiver was formed from four 25 mm diameter 

copper tubes joined together, held in a 200 mm wide and 160 mm deep trapezoidal cavity. 

The design parameters of the different spacing arrangements for the collector are given in 

Table 2. 

 
Table 2: Sizing parameters of each spacing arrangement for the prototype LFR. 

 

Spacing 

arrangement 

Area of receiver per 

unit length (Ar/L) 

Area of mirror per 

unit length (Am/L) 

Total width of 

collector (m) 

Area of cover glazing per 

unit length (Acg/L) 

Mathur 0.1 2.24 2.69 0.32 

S15° 0.1 2.24 2.62 0.32 

S30° 0.1 2.24 2.90 0.34 

S45° 0.1 2.24 3.46 0.40 

S60° 0.1 2.24 4.75 0.52 

S75° 0.1 2.24 9.08 0.96 

 

 

To obtain the optical efficiency at normal incidence (θ=0) and the incident angle modifiers 

IAM(θt) and IAM(θl) for the collector, ray-tracing was performed using Optica, a software 

package developed within Mathematica
®

. The IAM(θt) and IAM(θl) for each spacing 

arrangement is  shown in Figure 8 and 9. Mathur’s method for determining the spacing 

arrangement of the mirror elements was also analysed to enable a comparison of the methods 

to be drawn. 
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Figure 8: IAM for changing angles in the transversal plane for each spacing arrangement. 
 

 
 
Figure 9: IAM for changing angles in the longitudinal plane for each spacing arrangement. 

 

The exergy outputs per total mirror area (given as an hourly average over a TMY) at different 

operating temperatures for each spacing arrangement are shown in Figure 10. Maximum 

exergy of 50 W/m
2
 is achieved with S52.5° (i.e. corresponding to a transversal angle of 52.5° 

for the onset of shadowing) and a constant operating temperature of 300°C; the baseline cost 

per exergy at this temperature is also plotted in Figure 10. A continuously optimised 

temperature gives only slightly higher exergy of 52 W/m
2
. As a spacing of S52.5° maximises 

exergy and is also close to the optimum for minimum cost it is therefore also analysed in 

addition to those specified in Figure 5. Figure 11 shows that for a constant operating 

temperature of 300°C the operational hours are maximised at S45° and that for lower 

operating temperatures the number of operational hours per year are comparatively 

insensitive to the choice of spacing arrangement. 
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Figure 10: Exergy averaged over the TMY vs. spacing arrangement as specified by the transversal angle used 

for the onset of shadowing (Figure 3.6), for different operating temperatures and for the ideal case of 

continuously optimised temperature. The baseline cost per exergy for 300 °C operation is plotted on a secondary 

axis.  

 

 

Figure 11: Operational hours per annum vs. spacing arrangement as specified by the transversal angle used for 

the onset of shadowing (Figure 3.6), for different operating temperatures and for the ideal case of continuously 

optimised temperature, Tr,opt. 

 

To show the sensitivity to cost assumptions, Table 3 presents for each spacing arrangement 
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S52.5° and Mathur for comparison. Table 4 shows yearly exergy and net heat transfer to the 

receiver.  

 
Table 3:  Cost-exergy results for the four cost sensitivity scenarios for the different spacing arrangements, 

operating with a north-south axis tracking orientation.  

 

Spacing 

arrangement 

Optical 

efficiency 

η(θ=0) 

Exergy per 

total mirror 

area 

(W/m
2
) 

Operational 

hours per 

annum 

 Sensitivity Analysis ($/W) 

Baseline 

cost 

High 

component 

cost 

High 

land 

cost 

 High 

component 

and land cost 

Mathur 83.6% 45.9 3437 2.2 5.6 7.4 10.8 

S15° 81.7% 45.0 3473 2.3 5.4 7.4 10.9 

S30° 83.1% 46.6 3407 2.3 5.2 7.8 11.1 

S45° 83.1% 50.1 3559 2.3 5.0 8.4 11.5 

S52.5° 82.3% 50.1 3559 2.4 5.0 9.4 12.5 

S60° 81.7% 48.3 3468 2.7 5.4 11.4 14.6 

S75° 66.1% 31.4 3528 6.1 9.3 31.7 36.7 

 

Table 4: Annual exergy produced and net heat transfer to receiver. 

 

Spacing 

arrangement 

Exergy per 

unit length 

Exergy per total 

mirror area 

Net heat transfer per 

unit length 

Net heat transfer per 

total mirror area 

kWh/m a kWh/m
2
a kWh/m a kWh/m

2
a 

Mathur 901 402 1916 855 

S15° 883 394 1878 838 

S30° 914 408 1945 868 

S45° 982 439 2090 933 

S52.5° 983 439 2088 932 

S60° 948 423 2017 900 

S75° 616 275 1313 586 

3 Discussion 

 

Based on the case study, the recommended spacing arrangement is that corresponding to an 

onset of shadowing at a transversal angle of 45°. Using this arrangement, the exergy, and 

number of operational hours per year are maximised, and the cost per exergy is kept at a 

minimum for all cost scenarios. In comparison to the method of Mathur et al., a 9% increase 

in exergy was achieved, resulting in an extra 122 hours of operation per annum at a receiver 

temperature of 300°C. This is consistent with operating fluid temperatures claimed for 

commercial LFRs  given that the temperature used in this study is the absorber tube surface 

temperature and therefore expected to be slightly higher than the fluid temperatures [4, 8]. 

For different operating temperatures the exergy output and operational hours varied, yet the 

optimum spacing arrangement remained constant. A constant receiver temperature of 300°C 

proved to be the most efficient operating temperature for the prototype LFR presented. If a 

coupled heat cycle could utilize a continuously changing optimum operating temperature the 

operational hours would be significantly increased by 13%; however, the exergy would not 

improve significantly compared to a constant operating temperature of 300°C. 
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The sensitivity analysis established that the cost is relatively insensitive to spacing 

arrangements specified by a traversal angle of up to 52.5° for a baseline cost scenario. The 

optimum spacing arrangement for a high component cost is always the one giving maximum 

exergy, because this maximises the output from potentially expensive materials. A maximum 

saving of 11% in the cost per exergy was obtained under this scenario. On the other hand, the 

narrower spacing arrangements use less land and are thus favoured when land costs are high. 

Therefore, it is recommended that for a ground installation with plentiful land and an 

application requiring high operating temperatures for long periods of time, such as for 

electricity generation, the spacing arrangement giving maximum exergy should be selected. 

For an application with restricted space or high land cost, such as a roof installation, a 

narrower spacing arrangement, as given by Mathur’s method, should be used. 

 

The cost-exergy approach has proven to be a more illuminating (albeit more complex) 

method compared to that of Mathur et al. when it comes to specifying the spacing 

arrangement of the mirror elements in an LFR system. The new method can in fact be used to 

provide alternative recommendations for different LFR designs to reduce land usage, increase 

performance or minimise cost according to the priorities at hand. A potential drawback of the 

approach is that it leads to bespoke design recommendations according to location. Moreover, 

the non-uniform spacing may make the support frame more complex to design and 

manufacture. The improved performance should justify to some extent these additional 

investments, even if the cost advantages alone are not sufficient. Whereas it is unlikely that 

the LFR would be redesigned for each individual location, the flexibility of modern 

manufacturing techniques and the growth in demand for solar collectors should partially 

overcome these drawbacks and justify a number of design variants each optimised for a 

climatic or economic region. 

 

Avoidance of excessive mirror reflector spacing in an LFR has been shown to be important 

so that optical performance is not compromised and cost from additional array structure and 

land usage does not become excessive. More factors could be considered in future studies, 

such as ground preparation, additional steam line length, thermal losses and additional optical 

effects (e.g. circumsolar radiation, tracking errors, and mirror shape surface errors). These 

factors could affect the results for the costs and ideal operating temperature. The effects of 

thermal storage on the potential work output and operational hours could also be considered. 

The optimisation method outlined in this paper could even be extended to LFRs utilizing 

different concentrator-receiver assembly configurations. For example, curved mirror 

elements, which reduce the flux distribution on the absorber and allow wider mirror elements, 

could be analysed. So could evacuated tube type collectors, which would reduce the heat 

transfer coefficient, increasing the temperatures and hence exergy of the system. The higher 

cost of the evacuated tubes would tend to favour optimisation for performance as in the high 

component cost scenario considered above. A relatively new and exciting variant is the 

compact linear Fresnel reflector (CLFR), which should also be investigated by extension of 

the new method. 

 

A limitation of the exergy approach is that it assumes the idealised Carnot engine. It does not 

take into account losses in real engines or losses associated with extracting the heat from the 

receiver field using a working fluid. Depending upon the heat cycle coupled to the system, 

the operational hours at full load would be significantly less than the total operational hours 

stated in this paper. Nevertheless, the cost-exergy method enables us to arrive at general 

conclusions without reference to specific applications. For real arrangements the optimum 

design is likely to be similar even if the overall power output is lower. 
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4 Conclusion 
 

The cost exergy approach presented in this paper has successfully enabled the spacing 

arrangement in an LFR to be specified such that the exergy and operational hours are 

maximised over a typical meteorological year and costs are minimised. For the case study of 

the LFR situated in Gujarat, it is recommended to use a north-south tracking axis with a non-

equidistant spacing arrangement chosen for the onset of shadowing at a transversal angle of 

45°, operating at a constant receiver temperature of 300°C, representing the temperature at 

the surface of the absorber tubes. This resulted in an additional 122 operational hours per 

annum being achievable at a baseline cost per exergy of 2.3 $/W. However, the sensitivity 

analysis has shown that an increase in the land cost favours a narrower spacing arrangement. 

 

The new method for optimising mirror spacing arrangements can be applied to other 

locations and is expected to give similarly significant improvements in the value of the LFR 

for use in a variety of applications. 
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Figure and table legends 

 

Figure 1: Linear Fresnel reflector with mirror elements directing the sun’s rays onto a 

horizontal receiver. 

Figure 2: Sun’s position relative to an LFR, showing the path of a single ray from a mirror 

element to a receiver tower. 

Figure 3: Shift distance between two consecutive mirror elements based on sun’s profile 

angle 
Figure 4: Shadow cast on a mirror element when the sun is lower than the design profile 

angle. 

Figure 5: Spacing arrangements set for the onset of shadowing at various transversal angles. 

Hours of no shadowing are given for the Gujarat area in April.  

Figure 6: Schematics of a trapezoidal cavity receiver. 

Figure 7: The overall heat transfer coefficient increases with the trapezoidal cavity receiver 

temperature and may be approximated by a linear trend.  

Figure 8: IAM for changing angles in the transversal plane for each spacing arrangement. 

Figure 9: IAM for changing angles in the longitudinal plane for each spacing arrangement. 

Figure 10: Exergy averaged over the TMY vs. spacing arrangement as specified by the 

transversal angle used for the onset of shadowing (Figure 5), for different operating 

temperatures and for the ideal case of continuously optimised temperature, Tr. The baseline 

cost per exergy for 300°C operation is plotted on a secondary axis.  

Figure 11: Operational hours per annum vs. spacing arrangement as specified by the 

transversal angle used for the onset of shadowing (Figure 5), for different operating 

temperatures and for the ideal case of continuously optimised temperature, Tr. 

 

Table 1: Initial upper and lower cost estimates of a prototype LFR and land costs for Gujarat. 

Conversion rate to dollars used is also provided.  

Table 2: Sizing parameters of each spacing arrangement for the prototype LFR. 

Table 3:  Cost-exergy results for the four cost sensitivity scenarios for the different spacing 

arrangements, operating with a north-south axis tracking orientation.  

Table 4: Annual exergy produced and net heat transfer to receiver. 

 
 


