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Abstract

In this thesis we propose novel methods for accurate markerless 3D pose track-
ing. Training data are used to represent specific activities, using dimensionality
reduction methods. The proposed methods attempt to keep the computational
cost low, without sacrificing the accuracy of the final result. Also. we deal with
the problem of stylistic variation between the motions seen in the training and
the testing dataset. Solutions to address both single and multiple action scenarios

are presented.

Specifically, appropriate temporal non-lincar dimensionality reduction
methods are applied to learn compact manifolds that are suitable for fast explo-
ration. Such manifolds are efficiently searched by a deterministic gradient-based

method.

In order to deal with stylistic differences of human actions. we represent
human poses using multiple levels. Searching through multiple levels reduces the
effect of being trapped in a local optimal and therefore leads to higher accuracy.
An observation function controls the process to minimise the computational cost

of the method.

Finally, we propose a multi-activity pose tracking methods, which com-

bines action recognition with single-action pose tracking. To achieve reliable

XViii



Xix
online action recognition. the system is equipped with short memory.
All methods are tested in publicly available datasets. Results demon-

strate their high accuracy and relative low computational cost. in comparison to

state-of-the-art methods.
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Chapter 1

Introduction

1.1 Context and Overview

In recent years, technology has become human-centric by evolving ways by which
humans interact with electronic devices. Touch-screen interaction, eve-tracking,
gesture recognition are examples that demonstrate the central role of humans in

modern technological applications.

A rapidly growing research area in computer vision is articulated human
motion analysis, not only because of the methodological challenges that are im-
plied, but also because of its many applications. As described by Moeslund et al.
[64], there are three categories of applications: surveillance, control. and analysis

(Figure 1.1).

Surveillance applications aim to automatically understand human mo-
tions for monitoring and security reasons (Figure 1.1c¢), such as recognition of
unlawful activities, elderly people fall detection, etc. Control applications al-
low the user to interact with a device through physical gestures and movements,

e.g. in games or virtual reality (Figure 1.1b). Finally, analysis applications aim



to specify characteristics of articulated motion, c.g. sports analysis applications

(Figure 1.1a).

Articulated human motion analysis consists of pose estimation, pose
tracking and action recognition methodologies. Pose estimation deals with es-
timating the skeletal position of a person for a single image. Pose tracking aims
to find the sequence of human poses in video footage. Pose tracking normally
exploits the temporal coherence between consecutive frames. and, therefore, may
be more accurate than pose estimation. Finally, action recognition aims at clas-

sifying the type of action of a human being,

Marker-based approaches have been used for pose tracking applications.
Motion capture systems are used to provide the 3D position of a set of markers
using mechanical, electro-magnetic or optical features. The results are accurate.
but the invasive nature of technical equipment limits the applications to controlled
environments. Marker-based approaches have been used in the movie industry
(Figure 1.1a), where the pose is estimated and is used for featuring a virtual
person or subject. Also, marker-based techniques have been popular for analysing

human articulated motion in sports analysis applications.

Markerless approaches do not require subjects to wear special equipment
for tracking. Human pose tracking methods that rely on markerless approaches
are generally desirable because of their non-invasive nature. which significantly
widens their potential application. Multi-camera systems are able to mitigate
the complexity of markerless approaches and to deal with the inevitable limb
occlusions. In addition, depth sensors, such as Microsoft Kinect. are casy to
install and use while the captured depth information can be utilised efficiently

for 3D pose estimation and tracking.

In this thesis we propose methods for accurate markerless 3D pose track-

ing, where human motion is recorded by multi-camera systems or by the Microsoft



Kinect device. Training data is used to represent specific activities such as walk-
ing, jogging, punching and kicking, using non-linear dimensionality reduction
methods. The proposed methods attempt to keep the computational cost of pose
tracking low, without sacrificing the accuracy of the final result. Also, we deal
with the problem of stylistic variation between the motions seen in the training
and the testing dataset. Solutions to address both single and multiple action

scenarios are presented.

MK MONITOR A4
LIVERPOUOI TREE]
THICKETSOFFICE B

(c)
Figure 1.1: Motion analysis examples a) MoCap data for 3D movies
(www.awn.com) b)  Microsoft Kinect uses in  medical
(www.kinectwindows.org) c¢) Surveillance applications [12].



1.2 Aim and Objectives

The aim of this thesis is to deal with the problem of markerless 3D human pose
tracking in single and multi-activity scenarios. We assume that the input to
our system is either synchronised video sequences captured by multiple cameras,
or synchronised sequences of RGB and depth images acquired by the Microsoft
Kinect device, as shown in Figure 1.2. In addition, some offline data is provided
for the training of the system. The output of pose tracking is a sequence of 3D

poses, one pose for each set of synchronised input frames.

I Input Data | | 3Dpose |

Multiple-cameras

Microsoft Kinect

Figure 1.2: Input data and output 3D pose for pose tracking method.

The high dimensionality and non-linear space of human postures make
the estimation of the optimal pose solution both difficult and computationally
expensive. In this work, both the accuracy and the computational complexity

will be considered in the evaluation of methodologies.

A specific aspect of the human pose space is the variety of human activi-

ties. While many markerless motion capture systems focus on a specific activity,



3D pose tracking in multi-activity scenarios is a challenging problem. which is

investigated here.

Another aspect of the complexity of the human pose space is attributed
to the stylistic differences of activities. as performed by various human subjects.
Such stylistic variations may be affected by anatomical. environmental. cultural
or other differences. Therefore. a specific requirement for the proposed method-
ologies is the ability to track poses that may be stylistically different from any

training data.

1.3 Contributions of this Thesis

The main contributions of this thesis are as follows:

e A novel 3D human pose tracking method for a specific action (MPLC):
Firstly. the Manifold Projection (MP) module searches in low dimensional
space for the optimal pose. In order to move beyond the boundaries of the
training dataset and generate new poses. the Limb Correction (LC) module
is used to provide an improved pose estimate by refining individual limb
poses. The novelty of the MPLC method is that combines the advantages
of MP and LC; therefore, highly accurate and precise results are derived

with low-computational cost.

e A novel hierarchical dimensionality reduction method (HTLE). and a tai-
lored hierarchical 3D human pose tracking method for a specific action
(HMS): The HTLE approach allows for modelling each level of a posture
hierarchy separately, thus representing unseen poses. Furthermore, HMS

efficiently searches for optimal poses through the hierarchical structure of

HTLE.
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e A novel 3D human pose tracking method for multi-activity scenarios (HMS-
MA): Multiple activities are modelled by multiple hicrarchies of manifolds.
generated by HTLE. For every frame of unscen video footage. HMS-NA
performs both pose tracking and action recognition. Specificallv. an online
action recognition method is used to reduce the problem to single-action
pose estimation. Then. the pose is estimated based on the matched hierar-

chy of manifolds.

1.4 Structure of Thesis

In Chapter 2. an overview of previous work on human motion analysis. focusing
on research related to this thesis, is discussed. The pose estimation and tracking
category of human motion analysis relies on two main categories: discriminative
and generative approaches. The two categories are discussed and compared in
terms of applications, advantages and disadvantages in pose tracking systems.
Finally, dimensionality reduction methods and their application in human pose

tracking are presented.

In Chapter 3. background information that is important in the context
of this thesis is presented. First, a description and the internal parameters of the
devices that are used are discussed. Then, the datasets that are used to validate
the contributions to the thesis are presented. After that, a 3D human body model
is introduced. Finally. the generation of an observation function from the input

data is presented.

In Chapter 4, a novel 3D human pose tracking method, Manifold Projec-
tion - Limb Correction (MPLC), is presented. First, a low-dimensional manifold
is generated from a sequernce of poses of a given training dataset. The manifold

represents a specific action and is created using the TLE dimensionality reduc-



tion method. Then, the MPLC method is applied in order to track a sequence of
poses of a human action. This action is the same type as the training dataset.
The MP method is applied in order to search in the low-dimensional space for
the optimal pose. A deterministic optimisation method is used to avoid compu-
tationally expensive particle filtering methods. The result of the MP method is a
3D human pose that is constrained by the training dataset. In order to evaluate
unscen poses beyond the training dataset. the LC method is applied. The LC
method first uses a criterion for detecting the body parts that have failed dur-
ing the MP method, and then searches for those parts in the high dimensional
pose space. The MPLC method is compared with the particle filter method in a

publicly available dataset.

In Chapter 5, a hierarchical 3D human pose tracking framework is pre-
sented. First. the hierarchical dimensionality reduction method. Hierarchical
Temporal Laplacian Eigenmaps (HTLE), is introduced. HTLE uses a training
dataset for a human action to generate a hierarchy of manifolds in low-dimensional
space. Moreover, the novel human pose tracking method, Hierarchical Manifold
Search (HMIS). is applied to estimate efficiently the position of the corresponding
body parts. HMS searches into the hierarchy generated by HTLE. At every level
of the hierarchy, different sets of joint body parts are tested. Such a hicrarchy
provides increasing independence between limbs, allowing higher flexibility and
adaptability that result in improved accuracy. Finally. evaluation using pub-
lic datasets demonstrates our approach outperforms state-of-the-art generative

methods in terms of accuracy and computational cost.

In Chapter 6, the methodology of HMS is extended to cope with multi-
activity scenarios (HMS-MA). The HMS-MA uses the HMS method for searching
in different hierarchies of manifolds. Every hierarchy represents a single activity
generated by HTLE. The optimal pose for the first level of the hierarchy charac-

terises the action type. Then the HMS method is applied for the rest of the levels



of the chosen hierarchy. Finally. the HMS-MA method is evaluated using two
types of public datasets derived by either multiple RGB cameras or the Kineet

device.

Finally, in Chapter 7, conclusions and future work are presented.



Chapter 2

Literature Review

2.1 Introduction

This chapter presents an overview of previous work on human motion analysis,
focusing on research related to the work presented in the following chapters. More

analytic reviews of the literature can be found in a number of review papers. e.g.

[5. 63. 64. 75, 74. 112, 92].

Human motion analysis methods have been categorised in three main
classes: pose estimation. pose tracking and action recognition. Pose estimation
and pose tracking aim at estimating the skeletal position of a person (body pose)
for a single frame [39, 7, 108, 42, 65. 62] and a sequence of frames [1. 2. 87]
respectively. Action recognition aims at classifying the type of action of a human
being. In the following sections, we focus on the literature review of the pose
estimation and tracking methodologies. In the last section a discussion about the

methods presented is given.
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2.2 Pose Estimation and Tracking

In this section the pose estimation and pose tracking categories of Inman mo-
tion analysis are presented. Human pose estimation deals with the problem of
determining the 2D or 3D coordinates of human body parts from a single image.
Similarly. human pose tracking deals with the problem of determining the loca-
tions of human body parts from a sequence of images (frames). Consequently,
pose estimation is often integrated within a pose tracking framework. Pose track-
ing contributes towards a partial solution to the human motion analysis problem
by using past information to estimate the current pose in a more efficient way.
Tracking exploits the temporal coherence of video sequences to estimate pose
parameters over time. However, due to the complexity of human actions, the
localisation of each body part separately is a challenging task. A human pose
estimation method may be applied in a tracking scenario but without using the
temporal coherence. That is, however, firstly, computationally expensive because
in every frame the pose estimation method has to search all the space for the
correct pose, and. secondly. there is a loss in accuracy as the information of
the previous frames is not being used, e.g. in corrupted frames or frames with
limb occlusions. Overall, pose tracking is faster and more accurate in tracking

problems but pose estimation can by used for initialisation.

There are two main classes of human pose estimation and tracking meth-
ods [74]: discriminative (model-free) and generative (model-based) approaches.
Generative approaches use an a priori human body model to generate pose hy-
potheses. From the input data an observation is produced. The pose hypothesis
is compared with the observation using a likelihood or observation function. Dis-
criminative approaches do not use an a priori model, but use a mapping function

instead which directly compares the observation space to the pose space.
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2.2.1 Discriminative Approaches

Discriminative or model-free approaches model and predict human poses directly
from observation. An explicit human body model is not required for these meth-
ods. Instead. a mapping function from image space to pose space. learnt from
selected training data. is given. Discriminative approaches can be used for ini-
tialisation because they do not need a pre-defined human model. Therefore. they
have the ability to automatically reinitialize in a tracking application. Discrimina-
tive approaches can also deal with poses with less information, c.g. frames with
limb occlusions or missing parts. This makes them appropriate for monocular
applications. There are two main classes for discriminative estimation: learning-

based and example-based [74].

2.2.1.1 Example-Based

In example-based approaches [70, 81, 73] a large database of exemplars is used
that describe poses in image space and pose space. Applying an observation
function. the optimal matching image is used to give the associated pose. The
image descriptors that can be used vary in the literature, usually imnage descriptors
based on edges [3, 70. 94] or silhouettes, [41, 30] or a histogram of oriented
gradients (HOG) [76, 73]. Also, the number of cameras is an important parameter.
The accuracy of the pose estimation increases with the number of cameras that
are used [37]. A drawback of example-based approaches is that, for the provision
of satisfactory accuracy and generalization properties. they require the storage
and searching of large training datasets [66]. Previous works [85] addressed this
problem using locality sensitive hashing (LSH) for faster retrieval of matching

exemplars.




2.2.1.2 Learning-Based

In learning-based approaches [1. 4, 94] a continuous mapping is learned between
image space and pose space using training data. Agarwal et al. [1] use both
regularized least squares and relevance vector machine (RVM) [100] to generate
a mapping between histograms-of-shape-contexts and pose. Rosales et al. [82]
cluster the training data by generating several forward mapping functions from
image to body pose parameters and an inverse mapping function using specialized
mapping architecture (SMA), a nonlinear learning model. Dimensionality reduc-
tion methods are often used to learn the mapping between the image space and
pose space. For example. Elgammal and Lee [31]. in order to learn a non-linear
manifold from datasets, use the local linear embedding (LLE) dimensionality re-
duction method. Grauman et al. [37] describe a distribution over both multi-view
silhouettes and 3D joint locations with a mixture of probabilistic Principal Com-
ponent Analysis (PCA). The main problem that they address is the generation of
the mapping between image and pose, and the ability to connect the two spaces.
An advantage of learning-based approaches is that the training dataset is repre-
sented through the mapping; therefore, there is no need for storage and searching
of large training datasets, as in the example-based approaches. However, the ac-
curacy of discriminative approaches, either example-based or learning-based, rely
on the similarity between the unseen poses and the training dataset [110]. For
this reason. the selected training dataset must be carefully selected to match the

testing scenario.

2.2.2 Generative Approaches

The generative or model-based approaches use a human body model to com-
pare the input image observation with the pose hypothesis using an observation

function. The body model is projected into the image observation and the aim
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is to maximise the observation function between the hypothesis and the obser-
vation. The model that can be used varies from 3D kinematic tree [57. 10] to
individual limbs. like cylinders [29]. blobs [20, 19] or superquadrics [34]. The
high-dimensional space of the parameters of the human body model makes the
problem quite complicated and computationally expensive. especially for pose
estimation. Therefore, generative approaches are used for tracking tasks where
pose is initialised for the first frame of the sequence. This gives the advantage
of searching for small changes in every frame. On the other hand. generative
approaches seem more suitable than discriminative approaches for multi-camera
scenarios and produce more accurate tracking results. especially when the testing
dataset differs significantly from the training dataset [9, 11. 89]. There are two

main approaches for model-based estimation. top-down and bottom-up [74].

2.2.2.1 Bottom-up

In bottom-up approaches, individual body parts are found and then brought
together into a human body. For every part an observation function is defined in
order to compare the image space with the model parts. Mori ct al. [67] perform
image segmentation based on contour, shape and appearance cues. The data set
that is used is a collection of sports news photographs of bascball players, varying
dramatically in pose and clothing. Features like colour, corners or edges are used
to detect body parts. Similary, Ren et al. [80] detect candidate body parts using
the assumption that parts of the human body can be characterized by a pair
of parallel line segments. Sigal et al. [91] propose a body model in which the
limbs have elastic connections. For every node a likelihood function is defined.
The tracking method takes into account the constraints and the observations to
estimate the distribution over the parameters. Bottom-up approaches have the
advantage that no initialisation is needed for pose tracking problems. A drawback

of bottom-up methods is that many false positives appears on an image, as there



are many regions in an image with limb-like appearance.

2.2.2.2 Top-down

In top-down approaches an a priori human body model is used. The model is
predefined based on the application and the scope of the task, and different body
parts may be used. The problem is to match the hypothesis of the human body to
the image observation. Because of the high dimensional space of the human body
model and the high number of degrees of freedom between body parts. the top-
down approaches are computationally expensive. For that reason, the problems
are limited in the human pose tracking tasks. so the previous pose can limit the
searching space for the next prediction. Searching in a local arca can give good

results. but it is still computationally expensive [35, 16].

To deal with this problem, gradient descent optimisation algorithins have
been used. For instance, Delamarre and Faugeras [26] use gradient descent and
physical forces between extracted silhouettes and the projected model. These
forces guide the minimization of the differences between the pose of the 3D model
and the pose of the real object in the video images. However, methods based on
gradient descent optimisation algorithms may fail to find the global optimum
solution. as they may converge to a local optimum. On the other side, methods
based on Kalman filtering (KF) [45, 36] and particle filtering [28. 43] use a dy-
namic model to predict the current pose, based on the motion history. In order
to avoid local optimum traps, multiple hypothesis tracking is adopted. In such
approaches, multiple pose hypotheses are evaluated and propagated. either by a
set of Kalman filters [21] or by particle filter (PF) [8]. Clam ct al. [21] represent
the modes of the state distribution as a mixture of a few Gaussian functions. The
particle filter method uses multiple random predictions (particles). obtained by

drawing samples of pose and location priors, then propagating them using the
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dynamic model. which is refined by comparing them with the local image data
using the likelihood. However, the high dimensionality of this space makes it

difficult to sample the solution space efficiently [89] and prevent divergence.

Deutsher et al. [29, 27] proposed an annealed particle filter (APE) that
improves the efficiency of the particle filter in order to scarch the high dimensional
human pose space. APF attempts to recover the single pose that maximises the
observation function. The algorithm emplovs a number of re-sampling stages
or layers each time. According to a comparative study, [89], APF outperforms
all other competitors and is considered state of the art. A drawback of particle
filters is that satisfactorily accurate solutions may only be reached by deploving
a large number of particles and, therefore, a large munber of evaluations of the
observation function are performed [89. 11], which increases the complexity and

computational cost of pose tracking.

2.2.3 Dimensionality Reduction

In order to deal with the high complexity of modeling articulate human motion.
dimensionality reduction methods have been used in cither discriminative or gen-
erative tracking pipelines. Dimensionality reduction is defined as the process
of reducing the number of dimensions of a set of data points in a high dimen-
sional space to a meaningful and compact representation of a reduced dimensional

space.

Linear dimensionality reduction techniques were applied for human pose
tracking. Ormoneit et al. [71] use Principal Component Analysis (PCA) and par-
ticle filter for tracking cyclic motion actions. Urtasun et al. [102] used PCA in
combination with a simple hill-climbing optimisation method to avoid computa-
tionally expensive multi-hypothesis probabilistic methods. Similarly, Sidenbladh

et al. [88] use PCA and local optimisation for human pose tacking. However. lin-
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ear dimensionality reduction techniques fail to model properly the non-lincarity

of human motions.

In order to deal with this problem. non-linear dimensionality reduction
techniques have been suggested for pose tracking problems. Non-linear dimen-
sionality reduction techniques are grouped into two categories: embedded-based

and mapping-based approaches.

Mapping-based approaches employ probabilistic nonlinear functions in
order to map the embedded space on the data space. In this category. methods
like Gaussian Process Latent Variable Model (GPLV M) [48. 40] and Scaled Gaus-
sian Process Latent Variable Model (SGPLVM)[38, 48] arc included. A drawback
of mapping-based approaches is the high computational cost of the learning pro-

cess. which limits their usage to small datasets [53].

Tian et al. [99] use GPLVM and particle filtering for 2D body pose
tracking. This method is able to track poses that are similar to the poses in
the training dataset. Therefore, the method may fail when the poses deviate
significantly from the training data. Urtasun et al. [104] use SGPLVMI to learn
prior models of human pose for pose tracking of two motions: golfing and walking.
The SGPLVM is used because the manifold can be learned from a much smaller
amount of training data than by using competing techniques such as LLE [31].
LE [93]. Darby et al. [25] use GPLVM and APF for the pose tracking of unknown

human motions to reduce the computational cost of the APF method.

Embedded-based or spectral approaches provide an estimate of the struc-
ture of the underlying manifold by means of approximating each data point ac-
cording to their local neighbours on the manifold. Embedded-based approaches
can learn the non-linear mapping from the pose space to low-dimensional space,
but they cannot be inverted. However, they can handle large and high dimen-

sional datasets with an acceptable computational cost. In this category. methods
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like Isometric Feature Mapping (Isomap) [98], Locally Lincar Embedding (LLE)

[83], Laplacian Eigenmaps (LE) [13] are included.

The inverse mapping from the embedding space to the tull pose space is
required for evaluation of the observation function of the full pose representation.
A possible solution of this is to first learn the embedding space and then do the
inverse mapping. Wang et al. [111] used Isometric Feature Mapping (Isomap) for
learning the embedding space and a method based on nearest neighbours to learn
a mapping of the full pose space. However, this mapping is generally discontin-
uous and therefore inappropriate for continuous optimisation. Elgammal et al.
[31] used LLE to learn activity manifolds from visual input data. and to learn
mapping functions between manifolds and both visual input space and 3D body
space using the Generalized Radial Basis Function (GRBF) {72]. Lewandowski
et al. [53] used an unsupervised Radial Basis Function network (RBFN) in order

to generate mapping functions between low and high dimensional spaces.

Sminchisescu and Jepson [93] used LE to learn the embedding and Co-
variance Scaled Sampling (CSS) [95] for tracking. Lu et al. [56] used the Laplacian
Eigenmaps Latent Variable Model (LELVM). an extension of LE. to produce a
probabilistic latent variable model and the Gaussian mixture sigma-point particle

filter (GMSPPF) [106] for pose tracking by using monocular video.

Since human motion may be described by time series, the temporal de-
pendencies between consecutive poses can assist human pose tracking. These
temporal constraints ensure that points that are close in time will be close in the
low-dimensional space. Spatio-temporal Isomap (ST-Isomap). [44] an extension
of Isomap, changes the original weights in the graph of local neighbours in or-
der to emphasize the similarity between temporally related points. Also, Back
Constraint GPLVM (BC-GPLVM) [49] uses temporal coherence constraints to

generate smooth mapping between spaces. Gaussian Process Dynamical Mod-
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els (GPDMI) [108] integrate time information using Gaussian Process priors to

represent dynamics in the low-dimensional space.

Urtasun et al. [103, 105, 104] use GPDMI for learning human poses and
motion priors for 3D people tracking. They formulate the method as a nonlincar
least-squares optimization problem. Hou et al. [40] use BC-GPLV M, which makes
particle propagation more efficient. However, most of these methods are person
dependent: that is. they are not able to efficiently track new people and their
corresponding style from the training set and, therefore, the applicability of the

method is reduced.

Alternatively, Temporal Laplacian Eigenmaps (TLE) [53] was specifically
designed to address the issue of modelling activities of different people by sup-
pressing their stylistic differences and producing a coherent manifold. As seen in
Figure 2.1, TLE is able to suppress stylistic variation and produce more compact
manifolds which may be considered almost 1D in most cases and, therefore. is
suitable for fast exploration. Moreover, the low-computational cost and the gen-
eralisation abilities make it appropriate for larger datasets. On the other hand.
Rincon et al. [58] proposed a similar method, the Generalised Laplacian Eigen-
maps (GLE). that explicitly represents stylistic variations using extra dimensions.
They control the balance between the temporal and repetition temporal neigh-
bours by introducing a weighting factor. Low values of it discard the stylistic
variations and high values discard temporal information. Since TLE is adopted

in this thesis, a further discussion is presented in section 4.2.1.

Hierarchical dimensionality reduction techniques have been proposed to
extend the pose space by decoupling the motion of individual body parts. which
allows them to deal with unseen activities. First, a hierarchy of the hunan
body model is defined and then a dimensionality reduction method is applied

at every level of the hierarchy. An example of hierarchical dimensionality re-
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(@

Figure 2.1: Low-dimensional space for walking action (2 subjects) using a)
[somap, b) BC-GPLVM, ¢) LE, d) ST-Isomap, e¢) GPDM and f) TLE
[54].

duction method is the Hierarchical Gaussian Process Latent Variable Model (H-

GPLVM) [50]. The H-GPLVM is an extension of GPLVM with a hierarchical

low-dimensional space representation.

H-GPLVM has been used to create a hierarchy of manifolds trained us-
ing different activities [77, 24]. Darby et al. [24] used H-GPLVM for training
two different activities and the APF method to search for poses that result from
combinations of these activities. Using this learnt hierarchical model for multi-
ple activities they can recover novel poses joining activities. An example of that
is given training data for a person walking and a person standing and waving;
they are able to detect a person who is walking whilst waving. The hierarchy is
able to detect the upper body for the first training action and the lower body
for the other one. The combination of those two actions can give novel poses
for the training datasets. Similarly, Raskin et al. [77] presented the Hierarchical
Annealing Particle Filter (H-APF) method, an extension of the Gaussian Process
Annealed Particle Filter (GPAPF) method. They use the H-GPLVM nonlinear
dimensionality reduction method to generate a hierarchy of manifolds in the low-
dimensional space, and the APF method to generate particles in the latent space.

In addition, H-GPLVM has been used in multi-activity scenarios, where the ac-
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tion of every frame is estimated before pose estimation. Specifically. the average
distance between the estimated pose points and the action manifold is calculated
using Frechet distance [6]. The model with the smallest distance was chosen to
represent the type of the action. The advantage of these hierarchical approaches
is that new poses can be generated where individual body part postures origi-
nally belonged to different activities. However, their main drawback is the high

computational cost. since APF is used to search through the whole hierarchy.

2.3 Discussion

In this thesis we deal with the problem of 3D human pose tracking. More specif-
ically. we use generative top-down approaches in order to achieve high accuracy.
As the top-down approaches are computationally expensive, we use non-linear
dimensionality reduction method in order to address the high complexity of ar-

ticulate pose space.

We explicitly select the temporal dimensionality reduction method TLE
[53] to take advantage of the temporal dependencies between consecutive poses
in the training dataset. TLE is also used because it is able to produce compact
manifolds that may be searched efficiently. However, the drawback of using low-
dimensional manifolds is that they are unable to model stylistic variations that
are not present in the training dataset, [73], therefore accuracy may be low when

pose tracking is applied to sequences of unseen subjects.

Hierarchical extensions of dimensionality reduction [77, 24] are able to
represent stylistic variations that have not been seen in the training dataset and.
therefore. improve the accuracy of pose tracking. In addition, at the end of the
pose search constrained by low-dimensionality manifolds, an extra scarch step

of refining the pose of individual limbs in the original high dimensional space is



adopted. Pose scarch through different spaces is driven by an observation function

to minimise the computational complexity of the proposed methods.

Although particle filters are popular in generative pose tracking pipelines
(29. 27. 77. 43. 28]. their computational cost is very high. as they generate a
large number of random hypotheses to estimate the optimal pose. Alternatively.
this thesis adopts the use of deterministic gradient-based optimisation techniques
to improve the efficiency of the proposed methods. Although such techniques
may be sensitive to initialisation and may be trapped in local optima. in our
approach searching is performed through different spaces, therefore the effect of

local optima is reduced.

Finally. multi-activity pose tracking is addressed by combining action
recognition and single-activity pose tracking. The characteristic of TLE of sup-
pressing stylistic variations has already been exploited in offline action recognition
applications [54, 52]. In this work, an online action recognition is based on TLE
along with a short memory of observation functions to assign an activity label to

each frame.



Chapter 3

Background

3.1 Introduction

In this chapter, background information that is important in the context of this
thesis is presented. First, a description and the internal parameters of the devices
that are used are presented. Two types of data acquisition systems are used for
our experiments: a system of synchronised multiple cameras and the Microsoft
Kinect device. Then the datasets that are used to validate the contributions to

the thesis are presented.

Since this thesis proposes generative 3D pose tracking approaches, a 3D
human body model is required. The human model that is employed is repre-
sented as an articulated kinematic tree model, which is appropriate for top-down
methodologies (Section 2.2.2.2). Pose hypotheses are generated based on the hu-
man model for every frame. An observation must be provided based on the input
data in order to evaluate pose hypotheses. In our framework, first, a background
subtraction method is used for removing the background pixels from the input

images in order to extract the human subject silhouettes. In the case of multiple-

22
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camera data, the silhouette images are used for the creation of the coloured visual
hull of the human subject. In the case of Kinect data, the observation is repre-
sented by the foreground colour image and depth map. Finally, an observation
function is used to compare the observation with the pose hypothesis. Within

the context of this thesis, we assume that the ground truth pose of the first frame

is known.
-m Pose
Observation Acquisition hypothesis

Ly

Training data Pose Tracking

Figure 3.1: Pipeline of pose tracking methods.

In Figure 3.1 we see the general pipeline that we use in this thesis for
the pose tracking problem. Dimensionality reduction is applied offline to train-
ing data to produce low-dimensional manifolds that represent the action(s) of a
given scenario. When applying the pose tracking process on unseen sequences,
an observation is constructed for every set of synchronised frames. 3D pose hy-
potheses, based on a 3D human model, are normally constrained by the learnt
manifolds and are evaluated by an observation function that quantifies the extent
to which they match the observation. Finally, the output of pose tracking is the

hypothesis that maximises the observation function.
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3.2 Data Acquisition

In this section we present the internal parameters of two types of devices. i.e. the
multiple cameras and the Microsoft Kinect device. A camera model provides us
with the geometric relationship between the image and the real world coordinates.
Those parameters are useful not only for understanding the input data. but also

for their utility in the next sections.

3.2.1 Multiple Cameras

Multiple cameras are used for the scenarios which are presented in this thesis.
Multiple cameras are required to provide multiple views of the human subject and
may resolve occlusions between different body parts that may appear on some
views. The cameras are normally located around the subject that performs an

action inside the captured space. i.e. the arca that all cameras can view.

We assume that K cameras are used for the capture of an action. As
described in [32. 101]. each camera k. k = 1,.... K is characterised by its intrin-
sic and extrinsic parameters. The intrinsic parameters depend on the internal

structure of the camera and are the following:

f* Focal length (2 x 1 vector)
ck Principal point (2 x 1 vector)
Ol Skew coefficient

The extrinsic parameters depend on the position and the orientation of the camera

with respect to a world coordinate system and are the following:

R* Rotation (3 x 3 matrix)



(\]
<t

T . Translation (3 x 1 vector)

In this work. we assume that these parameters are given for cach camera. There-
fore. we will not deal with their estimation (camera calibration). The above

parameters are used to calculate the following paramecters.

The intrinsic characteristics of a camera are represented by the camera

calibration matrix, defined as the 3 x 3 matrix A" :

AF = 0 f502) (@) |- (3.1)

Based on the calibration data (A¥, R*. T*). a 3 x 4 projection matrix P*

is produced

1000 R
RY Tk
Pt =AFRMT =40 1 0 0 . (3.2)
013 1
0010

The projection matrix describes the mapping of a camera from 3D points
in the world to 2D points in an image. As seen in [32], we express the relationship

between 2D pixel m* and 3D point M (Figure 3.2), as

M
m* = p*. =Tk (M) (3.3)
1
where
I*() : R* —» R? (3.4)

is the perspective projection function, C* is the centre of the camera, m* =
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u*. 0% 1]T is measured in the image coordinate system (. y ) and M = [ X Y. Z]!
is measured in the world coordinate system (X¢w, Yeu, Zex). A camera for which

P* or TI* is known, is said to be calibrated.

Figure 3.2: Camera model.

3.2.2 Microsoft Kinect Device

Microsoft Kinect [61] is a device that can provide synchronised sequences of colour
images and depth images. Although Kinect was designed for computer game
applications, it has also been used in other applications [84, 109. 59]. Kinect
contains an RGB sensor and a depth sensor (infrared camera), as seen in Figure
3.3. The RGB sensor is actually a camera, as described in the previous section.
The depth sensor provides a depth map image for every frame. Every pixel of
the depth map represents the distance from the corresponding 3D point to the
sensor. It produces satisfactory depth results when the subject is within 1 to 3
meters distance of the sensor [46]. Kinect has also integrated a state-of-the-art
pose estimation method [86] based on the acquired depth data, which provides

the position of joints of observed humans.



3D depth sensors

RGB camera

Figure 3.3: Microsoft Kinect devises: RGB camera and 3D depth sensors [61].

3.3 Datasets

In this thesis, we use three data sets to evaluate our contributions: a) the Image
& MOCAP Synchronized Dataset (IMS), b) the HumanEva (HE) dataset, and
c) the G3D dataset. The first two are used for comparing our methods with
the state-of-the-art methodologies that use the same datasets. We use the G3D
dataset to test our work in a multi-activity scenario. All datasets are captured
in indoor environment using fixed viewpoint on the captured devises and illumi-

nation conditions.

3.3.1 Image & MOCAP Synchronized Dataset

The Image & MOCAP Synchronized Dataset (IMS) [18] is a dataset depicting a
walking human. Synchronised data was derived by a motion capture (MoCap)
Vicon system [107] and four grey-scale, calibrated cameras. Each camera captured
530 frames of pixel resolution 640 x 480 at 60 Hz. (Figure 3.4). The Vicon
system captured the 3D positions of markers, which were then used to estimate

the ground truth positions of 15 joints in 3D.



Camera 1 Camera 2

Camera 3 Camera 4

Figure 3.4: "Image & MOCAP Synchronized Dataset". First frame from 4 grey-
scale cameras.

3.3.2 HumanEva

HumanEva-I and HumanEva-II datasets [90] represent multiple subjects perform-

ing multiple activities (Figure 3.5 ).

HumanEva-I contains software synchronised data from 7 video calibrated
cameras (4 gray-scales and 3 colour) and Vicon motion capture (MoCap) system
[107] Gray-scale camera resolution is 644 x 488, while colour camera resolution
is 656 x 490, and both video systems captured at 60 Hz. HumanEva-I contains
4 subjects performing 6 common actions (e.g. walking, jogging, gesturing, etc.).
Similarly, the second dataset, HumanEva-II, contains synchronised data from 4
calibrated colour video cameras and a Vicon system. HumanEva-II contains 2
subjects performing a continuous sequence of actions (walking, jogging, balanc-
ing). This dataset provides 3D ground truth of the human posture, i.e. 3D
positions of 15 joints, for some sequences for training and validation purposes,
while ground truth for testing sequences is not publicly available. An online sys-

tem at the Human Eva website [17] provides results on the testing datasets. In
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this thesis, we use training and testing sequences for the walking and jogging

actions.

A standard metric proposed by Sigal [89] is applied for quantitative eval-
uation: for each of the joints of the skeleton representation the error is calculated
as the average absolute Euclidean distance between M markers of the estimated
pose X and M markers of the corresponding ground truth pose X, provided by

the motion capture system

M

D (\, \‘, A) oy Z ()m HJ.m = 'I.IHH (; -—))
where z,, € X, Z,, € X and A = {(51.(53 ..... (5_\,}is a binary selection variable
per-market where 9,, = 1 if the proposed algorithm is able to recover marker m,

and 0 otherwise.

Camera 3 Camera 4

Figure 3.5: HumanEva-II dataset. First action(S2). First frame from 4 colour
cameras.
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3.3.3 G3D Dataset

The G3D dataset [15] was captured using the Microsoft Kinect device. The
dataset contains 10 subjects performing 20 gaming actions. Each subject performs
3 repetitions of each action. The camera captured images with pixel resolution
640 x 480 at 30 Hz. The actions are grouped into 5 scenarios e.g. boxing, golf,
tennis. In our experiments, we use the boxing scenario, which consists of five
actions, i.e. punch right, punch left, kick right, kick left and defend (see Figure
3.6). The dataset consists of sequences of three modalities: colour images, depth
images and 20-joint poses estimated by the state-of-the-art method [86]. As the
ground truth is not available for G3D dataset the latter is assumed as ground
truth for training and testing our work. Therefore, the results for this dataset

are compared to the Kinect results and not to the ground truth poses.

punchright punch left kick right kick left defend

Figure 3.6: G3D dataset example. Colour images and depth maps for five actions.

3.4 Human Pose Hypothesis

A 3D human model is used for generating hypotheses of each pose and comparing
them with the observation from the input data. The human model that we use
is represented as a kinematic tree and it consists of L parts. We use a human
model with L = 10, i.e. 1 for torso, 4 for leg parts, 4 for arm parts and1 for head.

Each part must connect with the corresponding part and may move without being
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restricted by the angle. The angles of the human body are not constrained in
order to determine from the pose tracking method. In a more accurate description
of the model, other parts like feet, hands and an extra part for the torso could

be included. For the purposes of this work, two representations are used, i.e. the

volumetric one and the skeleton one (Figure 3.7).

Figure 3.7: Human model and corresponding skeleton representation.

We define the volumetric representation as a 3D articulated human model
M that consists of L cylindrical parts. The cylindrical definition of the model
allows us to compare pose estimates against the observation using simple math-
ematical models. This is to allow faster evaluation of the observation function

without losing the basic structure of the 3D human shape.

The human model M is defined as a set of three independent parame-

ters

M = {{g,p.m} g € R®,p € R®,m € R*} (3.6)

where g € R® describes the global rotation and translation of the body into the
3D Euclidean space, p € R? the pose of the model that is expressed by joint
angles between body parts, and m € R?” represents the human volumetric model
expressed by the length and the radius of the cylinders of the L body parts. Joint

angles are represented by quaternions, as a consequence of which every body part



requires four parameters. ie. D =4 - L.

The Skeleton Representation is a model that is extracted from specific
points of the Volumetric Representation. Every part of the human body is rep-

resented by a straight line that connects two points as seen in Figure 3.7.

3.5 Observation

From the input data an observation is gencrated for every frame. Since our
mput may be acquired by multiple syncronised sensors, the term frame may also
mean a set of synchronised frames in this thesis. The observation includes the
information that will be used in the pose tracking methodologies. In this section
we describe the observation that is generated by pre-processing the input data.
The type of observation depends on the input dataset, and it is compared with
the pose hypotheses. First, a background subtraction technique is applied to
the input data to locate the object of interest, i.c. the silhouette of the human
body. Then, in the case of multiple-cameras a coloured visual hull is generated.
For Kinect data, the foreground colour image and depth map are extracted. For
every dataset the observation is first generated for every frame and then is used

in pose tracking method.

3.5.1 Foreground Mask

A foreground mask or silhouette is a pixel-wise binary representation of the area
of an object of interest. For Image & MOCAP Synchronized and HumanEva
datasets, the standard background subtraction method suggested by HumanEva,
a static version of a mixture of Gaussians similar to [96], is used to ensure a fair
comparison with other methods. For the G3D dataset, the background subtrac-

tion process is simpler as the depth map explicitly gives the depth information
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of every pixel. Pixels whose distance from Kinect is larger than a threshold are

classified as background.

A foreground colour image may be obtained by applying the foreground
mask on the original colour image. Similarly, the foreground depth map is derived

by applying the foreground mask on the original depth map.

3.5.2 Visual Hull

The visual hull is a voxel-wise binary representation of the volume of the sub-
ject of interest. It may be reconstructed from multiple cameras by the Shape-
From-Silhouette (SF'S) method, which estimates the shape of an object from its

silhouette images.

Every image is segmented into foreground and background arcas. as dis-
cussed before. When the foreground area is projected into the 3D space. using
camera models a 3D geometric shape is defined that contains the target object.
The intersection of all silhouette geometric shapes is the visual hull of the object.
As described in [55], there are two main categories of visual hull construction

methods. i.e. the voxel-based and the boundary-based methods.

The voxel-based methods result in a 3D volumetric visual hull composed
of voxels. If a voxel place is inside all silhouette cones, it will be preserved.
otherwise it will be cleared. These methods can reconstruct very complex objects,
but they cannot get smooth modeling results. Every voxel must pass two tests
to be classified as a member of the visual hull: the silhouette cone test and the
silhouette consistency test. The former test verifies whether a voxel belongs to
a silhouette cone. The latter checks if a voxel passes the former test for all the
views. Szeliski [97] used a tree data structure for these two tests. Kutalakos and

Seitz [47] suggested an algorithm, called Space Carving, for computing the visual



hull.

In the boundary-based methods, the foreground cones are represented as
boundary clements, such as surfaces and lines. The visual hull is represented by
the intersection of these elements. and the results could be a group of surface
patches. line segments, or points. Matusik et al. [60] presented an algorithm
for visual hulls for surface points seen from a target view, called image-based
visual hull (IBVH). Cheung et al.[22] reconstructed visual hulls as a set of line
segments. which they call bounding edges. In this work, we adopt the Bounding
Edge [22] method to estimate the visual hull as it is more accurate than voxel-

based methods {22].

3.5.2.1 Bounding Edge Method

Let us assume that there are K fixed cameras positioned around a human body

and let

{$fk=1.. K} (3.7)

be the set of silhouette images of the human obtained from the K cameras at

time 7. as described in the section 3.5.1 (Figure 3.8).

The cameras are calibrated and thercfore their perspective projection
functions I1* (Eq. 3.3) and centres C* of each camera k (Figure 3.2) are known.
Consequently, m = IT*(M) are the 2D image coordinates of a 3D point Al in
the kth camera, and II*(S) represents the projection of a volume S onto the
image plane of camera k. The Visual Hull H* with respect to a set of consistent
silhouette images {S¥} is defined as the intersection of the K visual cones. cach
formed by projecting the silhouette image S¥ into 3D space through the camera

centre C* at time 1.

Let u! be a point on the boundary of the silhouette image S¥. By pro-
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Figure 3.8: Silhouette images for 4 cameras (

and the centre of the cameras (Cy
S e ; - . A P,
jecting u] through the camera centre C*, we get a ray r/. A Bounding Edge E;
is defined to be part of 7, so that the projection of E? onto the [** image plane

lies completely inside the silhouette S! for all [ € {1,.. ., K}, therefore

ElcrlandNE)c SiVie{,..., K}. (3.8)

The bounding edge can be computed by first projecting the ray r! onto
the K — 1 silhouette images S!, [ = 1,..., K:; | # k, and then re-projecting the
segments which overlap with S! back into 3D space. The bounding edge is the

intersection of the re-projected segments (Figure 3.9).

By sampling points on the boundaries of all the silhouette images {S¥; k =
1,..., K}, we can construct a list of L; Bounding Edges that represents the Visual

Hull H°.

We can describe the visual hull H* at frame 7 as

H ={z.1.2): hilz,y,2) =1} (3.9)
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Figure 3.9: Bounding Edge method [22].

where

h': N* — {0,1} (3.10)

is represented by the list of the Bounding Edges. Every element A’ represents a

voxel in 3D space. The Visual Hull consists of all the voxels whose values are

L.

In Figure 3.10 we see the visual hull for several frames of the HumanEva-
IT S2 dataset. The visual hull quality depends on the the quality of silhouettes and
the number of cameras. Below, we present some indicative results from extracted

silhouettes for 4 cameras of HumanEva-II S2 dataset.
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Figure 3.10: Visual hull for HumanEva-II dataset, for the action S2 and for 25
frames.

Using a different number of cameras, the visual hull is shown in Figure
3.11. Using a single camera, one can see the bounding edges from this view,
but 3D representation is far from the real 3D volume of the subject. Using two
cameras, limb representation may be inaccurate as some 30 volumes are unseen
by the cameras. For example, in Figure 3.11b, an erroneous right arm appears
in the visual hull. Finally, using three or more cameras, the quality of results is
clearly improved and the visual hull can satisfactorily represent the human body

for the purpose of this thesis.



(a) Single camera (b) Two cameras

(¢) Three cameras (d) Four cameras

Figure 3.11: Visual Hull for HumanEva-II dataset, for the action S2 using 1,2,3
and 4 cameras.

3.5.2.2 Coloured Visual Hull

A Coloured visual hull results from the projection of colour information of the
images onto the surface of the 3D visual hull. In order to generate coloured
visual hull objects we use the Colored Surface Points (CSP) technique [23]. Each
bounding edge touches the object at at least one point. However, this point is not
known from the Bounding Edge method. For estimating this point we assume
that any point on the visual hull should have the same projected colour for all the
colour images. More specifically, for every point of a bounding edge we calculate
the projected colour from camera k. Then the colour mean and the variance of
that point are calculated according to the points which are visible by the camera.

Finally, the point of the bounding edge with the minimum variance is chosen
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(Figure 3.12).
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Figure 3.12: Estimation of the Colored Surface Point by searching on the Bound-
ing Edge for the point with the minimum projected colour variance

[23].

In Figure 3.13, we see the colour visual hull and one of the corresponding

images from the HumanEva-II S2 dataset. The colour visual hull is calculated by

projecting the colour information from 4 images of the same frame.

Figure 3.13: Colour Visual Hull and a corresponding frame for HumanEva-II S2

dataset.
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3.5.3 Depth Map

The depth map of a 3D object is an image every pixel of which represents the
distance of the corresponding 3D point from the sensor. The observation at
Kinect dataset consists of the silhouette image and the depth map for every
frame, as discussed in section 3.2.2. First, we apply a foreground mask method,
as seen in section 3.5.1. We use the foreground colour image and the foreground

depth map as the observation, as seen in Figure 3.14.

Image

Depth map

Inputs Observation

Figure 3.14: The observation generated by the Kinect input data, consisting of
two parts: foreground colour image and depth map images.

3.6 Observation Function

In order to compare a pose hypothesis with the observation, we define an ob-
servation function or likelihood function. The observation function varies with
the type of the dataset and the special needs of every situation. The specific
observation function that is used in every dataset is presented in chapters 4, 5

and 6.

For multiple-camera datasets, the observation function compares a 3D
human model (hypothesis) with a 3D coloured visual hull (observation). The

observation function is based on the volume and the colour of the two 3D objects.
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First, the 3D overlap between the pose hypothesis and observation is calculated.
Then. the colour information, when it is available, is projected on the visual hull.
The colour of every limb is compared with the colour of the corresponding limb

of the initial frame.

In the Kinect dataset, the observation function is again based on 30D in-
formation and the colour, but expressed by the colour images and the depth map.
First. the 2D overlap between the pose hypothesis and observation is calculated.
Then, the colour information is matched with the colour of the initial frame.

Finally. the depth map is compared with the generated depth hypothesis.

3.7 Discussion

In this chapter we present methods and data that are used in the pipelines pro-
posed in this thesis. First, the datasets that are used and the different devices
that are captured are first presented. Two types of devices are used in our exper-
iments. i.e. a multi-camera system and the Microsoft Kinect device. Then the
base of pose hypotheses and the process to produce observations are discussed.
Pose hypotheses are generated by a 3D human model, which is defined here.
The observation is generated by the input data. First, a background subtraction
method is applied to the input images. Then the 3D information of the input
data is extracted from the 2D input images or from the depth map. Finallv. in
order to compare the pose hypothesis with the observation, an observation func-
tion is required. In the next chapters 4, 5, 6, specific observation functions are

defined and evaluated as parts of the proposed pose tracking methodologies.



Chapter 4

Human Pose Tracking in Low-Dimensional Space

Enhanced by Limb Correction

4.1 Introduction

This chapter introduces Manifold Projection - Limb Correction (MPLC). a 3D
human pose tracking method for a specific action. Specifically, a reliable method
is required to estimate the pose, with low-computational cost, even when the
execution of an action in the training dataset and the current sequence differs
stylistically. We follow the general pipeline that was presented in section 3.1,
where the pose tracking box in Figure 3.1 corresponds to the MPLC method. A
manifold to represent a specific action is learnt by using the Temporal Laplacian

Eigenmaps (TLE) dimensionality reduction method.

MPLC consists of two main modules: Firstly. the Manifold Projection
(MP) module searches in the low-dimensional space for the optimal pose. How-
ever. the result of the MP module is constrained by the training dataset. In
order to move beyond the boundaries of the training dataset and generate new

poses, the Limb Correction (LC) module provides an improved pose estimate by

42
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refining individual limb poses. The MPLC method combines the advantages of
MP and LC and, therefore, highly accurate and precise results are derived with
low-computational cost. The validation of our method uses publicly available
datasets, and demonstrates its accurate and computational efficiency. Parts of

this work have been published in [68].

4.1.1 Overview

Figure 4.1: MPLC pipeline. Using the testing dataset we generate the observa-
tion. A low-dimensional manifold is generated using TLE from the
training dataset. The human model is used to generate the pose hy-
pothesis. MPLC method is applied. The output is the human pose
estimation for the current frame.

In this section the MPLC human pose tracking pipeline is presented (Fig-
ure 4.1). MPLC, as a top-down generative method (see section 2.2.2), requires
a human model and an observation of the input. Since top-down generative ap-
proaches are computationally expensive due to the high dimensionality of the hu-
man pose space, we use a dimensionality reduction method and a training dataset

in order to constrain high-dimensional poses in a low-dimensional manifold.
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The training dataset consists of a sequence, or a set of sequences of poses
(typically MIOCAP data) of a person performing a single action. Since accurate
tracking requires a temporally smooth and consistent data model. a constraining
manifold is generated by Temporal Laplacian Eigenmaps (TLE) [54]. which aims
for the preservation of the temporal topology present in high dimensional spaces.
The choice of the TLE method enables us to suppress stylistic variation and
generate more compact manifolds that are efficient for searching. as we have seen
in Section 2.2.3. An observation is generated from the testing dataset inputs,
as discussed in section 4.2. The poses of the testing dataset represent a human
performing a single action. This action is the same as the one that is performed in
the training dataset. Finally, a human model is used to generate pose hypotheses

that are evaluated by an observation function (see section 4.4).

MPLC, which is introduced in section 4.3, guides posc estimation i two
stages. First, in the MP stage, the search is constrained by a TLE low-dimensional
manifold. A deterministic optimisation method is used for its computational effi-
ciency. in contrast to computationally expensive particle filtering approaches. The
result of the MP method is a 3D human pose estimate. However, since the testing
and the training datasets are different, the results of the MP stage depend on the
similarity of the two datasets. The LC stage allows us to search beyond the train-
ing dataset constraints and to evaluate completely unseen poses. The LC module
firstly uses a criterion for detecting the body parts that have been erroncously
determined during the MP method, and then refines those poses. searching in the
high-dimensional pose space. LC is able to generate poses that do not appear in
the training dataset, but remain close to them. This approach is advantageous
when searching for different styles of a specific action. The MPLC method out-
performs state-of-the-art methods for a given computational time when using a

publicly available dataset, as presented in section 4.5.
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4.2 Action Manifold Learning

4.2.1 Temporal Laplacian Eigenmaps (TLE)

In this section. the Temporal Laplacian Eigenmaps (TLE) dimensionality reduc-
tion method is presented. In order to generate the low-dimensional manifold a
training dataset P. consisting of a sequence or set of sequences of data points,
is used. Our notation in this work assumes only once sequence in the training

dataset, without losing generality.

P={p.j=1..n}.pPerR’ (4.1)

corresponds to n frames representing an action, where p/ is the pose of the model
at time j. TLE produces a manifold @, which is an equivalent representation of

P in a low-dimensional space,
Q= {qj,j =1, ...,’n} ¢ € R (4.2)

where D.d € N, d < D and ¢’the points of the manifold.

For each data point p’ two types of temporal neighbourhoods are defined.
Adjacent temporal neighbours A: the 2m closest points in the sequential order

of input (Figure 4.2a)
Ai i—m i—1 1 it nitm 4 ';)
esp PP T (d.t

and repetition temporal neighbours R: the s points similar to p'. extracted from
repetitions of time series fragment, defined by s adjacent temporal neighbours

(Figure 4.2b)

R e {p" (C).....p" (O)} (4.4)
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where p' (C) returns the centre point of p'.

I pl is '

’ p*s(C) P ’

Figure 4.2: Repetition temporal a) and adjacent temporal b) neighbours (green
dots) of a given data point, p‘, (red dots).

Using the standard LE formulation the weights W are assigned to the
edges of each graph G € {A, R}

i ill?
| i,j connected
0 otherwise

Then an extended cost function is introduced to combine information from the
graphs
arg mén Qr. (LA + LR) -Q (4.6)

subject to:QT - (DA + DR) =1 (4.7)

where DY = diag {Dﬁ, 2 Dgn} is a diagonal matrix with D = 7, WS,
and LY = DY — W¢ is the Laplacian matrix. The minimum of the objective

function can be found by the Lagrange function
AN =Q" (L +LF) Q- A (1-Q" (D*+ D) Q) (4.8)
(L4 +L®) Q= (D*+D")Q (4.9)

The generalised eigenvalue problem is using to span the embedded space

(2 by the eigenvectors given by the d smallest nonzero eigenvalues \.
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Unlike the standard Laplacian Eigenmaps dimensionality reduction method
(LE) that only preserves the manifold’s local geometry [14], the temporal struce-
ture of the data manifold is preserved thanks to the inclusion of the graph R
between time series. Consequently, TLE is able to preserve implicitly the local
and global temporal topology of the data. This implies that TLE maintains the
temporal continuity of time series during dimensionality reduction process and
suppress stylistic variations displayed by different sources of time series by align-
ing them in the low dimensional space [54]. Experimental results also proof that

as seen in Figure 5.7.

Although the manifold lies in the low-dimensional space, the observation
function needs to be evaluated in the high-dimensional space. Consequently. a
mapping function is required to find correspondences between the two spaces.
Since spectral methods lack mapping functions to project data from one space
to another. Radial Basis Function Network (RBFN), as suggested by [53]. are

trained to obtain these transformations ¢ and '

¢ : RP— Réand ¢ : R“>R”. (1.10)

4.2.2 Application to Human Pose Modelling

We use Temporal Laplacian Eigenmaps (TLE) dimensionality reduction method
to represent sequences of human poses for a given action. TLE generates a tempo-
ral representation of human postures, expressed as a single dimensional manifold.
where style has been suppressed. TLE has been selected for the following reasons.
Firstly, TLE explicitly preserves the temporal coherence of an activity, which is
important for a tracking application. Secondly, TLE suppresses stylistic varia-
tion and is able to produce more compact manifolds (Figure 2.1). Searching in

compact manifolds. such as those produced by TLE, is very efficient.
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TLE is trained by a sequence of 3D poses of a training dataset P for a
person performing a single action. A manifold Q is created in the low-dimensional
space R? as a result. Also, mapping functions ¢ and ¢’ between high and low-

dimensional spaces are generated, as described in section 4.2.1.

4.3 Pose Tracking Framework

In this section we present a two-level 3D pose tracking approach namely Mani-
fold Projection-Limb Correction (MPLC). In the first part of this method (MP).
3D human poses are constrained on a low-dimensional activity manifold by opti-
mizing a full-body observation function. In the second part (LC) individual limb

poses are refined by optimizing an observation function for cach limb separately.

4.3.1 Manifold Projection

The first stage of MPLC is the Manifold Projection (MP) method, which is con-
strained to search poses that are similar to the training dataset. First the high-
dimensional human pose of the previous frame (assuming that the initial pose is
known) is projected on a point of the TLE low-dimensional space. Then. a de-

terministic optimisation method is applied to estimate a pose on the manifold.

Let assume the obsecrvation H' of a person performing a single action A.
derived as described in section 3.5, as input to the MP method. Also. let assume

that the 3D pose of the previous frame pi~!

is known and the outputs of the
action manifold learning part (section 4.2.2) Q, ¢ and ¢’ for a training dataset
of a person doing the same action A are also given. The testing dataset is a

sequence of frames where MP method is applied for every frame /.

Firstly, we estimate the global position and orientation g' of the human
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model exploiting the pose of the previous frame p'~!. The observation H' is
compared with a human model hypothesis M* = {¢*, p'~',m} by maximising an
observation function s, (M*, H'), defined later in section 4.4, varying the global

position ¢g*. The values of the g' depend on the type and the speed of the action.
Al i i—1 i
' = argmax s - mp.H'). 4.11
§' = argmax s ({g',p"",m}, H') (4.11)

For the current frame 7, the MP method consists of five steps (see Figure 4.3).

Figure 4.3: Flowchart of MP, LC and MPLC pipelines.

Stepl: In order to move from the high-dimensional pose into the low-dimensional
space we project the 3D pose to the low-dimensional space using the

mapping function provided by the action manifold learning process

i.e. the pose of the previous frame, p'~! is projected to the low-
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dimensional space R? using the mapping function p.

@' =0 () (1.12)

i—1

where ¢i~! is the projection point into the low-dimensional space RY.

This point is projected on the manifold, in order to scarch for the

optimal pose, using Euclidean distance i.c. the closest point ¢' ' in

1—1

the manifold @ to point ¢, is estimated.

At steps 3, 4 and 5 an optimization algorithm is applied to scarch for the point

on the manifold that maximises the observation function.

Step3:

Step5:

Specifically, a sample of R points is selected from a neighbourhood of

1

point ¢! on the manifold Q:

Qf={¢",r=1,...,R} ., q"cR" (4.13)

where the index r represents the temporal order of the points on the
manifold.Step4: The selected points of the manifold are projected
back to the high-dimensional space using the mapping function pro-
vided by the action manifold learning process i.e. all points of Q¥
are back-projected to the high-dimensional space R” using mapping
function ¢’. Let

PR={prr=1....R} (1.14)

be the set of candidate poses representations in R”, where

Pr=¢ (). vr=1.. R (4.15)

For the selected 3D poses the observation function is calculated using
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the hypothesis of the 3D models and the observation of the input
images i.e. every pose of P! is compared with the observation of the
input images H' using the observation function s;. The bhest pose pf

is chosen by maximising the function s, (P”. H’). i.e.

p' = argmax s, (p’,Hi) Vp' e PR (4.16)
pr
where p' is the output 3D pose of the MP method for the frame /.

This point corresponds to a point of the manifold () that is projected

on a 3D human pose.

The MP method can be visualised in the low-dimensional space. In Figure 4.4
we see the manifold that was created from the training dataset using TLE (high-
lighted in green), the ground truth data for the testing dataset that was projected
into the low-dimensional space for 60 frames (red points), and the corresponding
tracking points (blue points) generated by the MP method in the low-dimensional
space R?. The positions of training and testing points differ because they origi-
nated from different subjects. The MP tracked points (blue) are on the manifold.
because the MP method searches within the manifold. The MPLC tracked points
are not usually on the manifold because the LC method moves the points out of

the manifold if this leads to better accuracy.

4.3.2 Limb Correction (LC)

Since the manifold representation is constrained by the training data (section
4.2.1). there may be some discrepancy between the observed limbs and the mani-
fold poses because of stylistic variations intrinsic to every subject. Thercefore, the

previous process needs to be refined to deal with this issue.

The second stage of MPLC applies Limb Correction (LC) for those limbs
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Figure 4.4: Low-dimensional space. Green: Manifold of the training data. Red:
Ground truth. Blue: Tracking with MP method.

with significant error. The input of the LC stage is the 3D pose p' from the
equation 4.16. When a limb has been estimated, its evidence is removed from
the observation. The evidence of the torso is removed in the beginning from the
observation H' to allow faster evaluation of the observation function but also to
avoid errors in the estimation of the limbs that are near the torso. We apply the

LC method for all limbs and head except the torso p' (j),j = 2,... L.

For the current frame 7, the LC method for each limb j consists of five

steps, (Figure 4.5).

Stepl: The hypothesis of the limb p' (j) is compared to the observation using
the observation function. If the p' (j) derived through searching in P,

is not satisfactory according to the threshold 7', i.e.:
81 (ﬁ' @), H')<T (4.17)

then we further search for the optimal solution in the high-dimensional
limb pose space and proceed to Step2. Otherwise, the current limb es-
timate is considered to be sufficiently accurate and there is no further

search.



Step2:

Step3:

Step4:

Step5:

Figure 4.5: Limb error detection and correction pipeline.

Then a deterministic optimisation method is applied to detect the
optimal position of the limb. We search for the ' rotation angle
that optimises the observation function for the limb p' (j). Since the
solution space may be represented by the surface of a sphere, searching
is performed on that surface using a gradient descent method. A point

P (j) is selected using a gradient-based optimisation algorithm.

The observation function of the limb pose p” (j) is estimated:

s (5) =1 (97 (4), H') (4.18)

The estimated pose is fed back to Step 3 until the observation function

converges to a solution.

After maximising the function s” () (Eq. 4.19) in steps 3 and 4, the
final pose estimate p‘ (5) is the output of LC for limb j.



p'(j) = argmax s, (57 (j) . H'). (4.19)
12

Before assessing the next limb, we remove the detected limb p' () from
the observation H', and update the observation. The LC method is applied for
all L —1 limbs and the final output is the 3D pose p'. Thus, the estimated human

model M is

M = {m,gi,pi} (4.20)

where ¢ is the global position and m is a known matrix representing 3D human

model.

4.4 Observation Function

In this section the observation function that is used is presented. First we generate
the observation from the input data and the human pose hypothesis. Then we
define the observation function that is used to compare the observation and the

pose hypothesis.

The MPLC method is evaluated for a testing set that comprises synchro-
nised views of a human subject from multiple cameras as seen in Figure 4.6a.
The observation H that we use is a 3D volumetric representation (visual hull) as
described in section 3.5.2.1(Figure 4.6b). The human pose hypothesis M (Figure

4.6¢c) that is used, defined in section 3.4.

In order to evaluate a model hypothesis M, with the observed visual hull
H we define an observation function s;. We compare the volumes of the visual
hull H and the human model M by using the relative overlap between them

(Figure 4.6d). This observation function s; is defined by:

MnH
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Figure 4.6: a) Iinages. b) computed Visual Hull, ¢) Human model. d) fitted human
model to visual hull, e) extracted skeleton.

When the global position ¢ and the size m are fixed we can use the term sy (p. )

where p is the pose of the model M = {g,p, m} as described in section 3.4.

An advantage of the proposed observation function is that it allows com-
parisons of individual body parts of the human model to the visual hull as scen
in Figure 4.7. Also, because of the 3D representation, individual body parts. like
torso or arms, may be removed from the visual hull without affecting the observa-
tion of other body parts, making the search process more efficient. This contrasts
with 2D image-based observation functions, such as the silhouette and edge like-
lihood and the bi-directional silhouette likelihood that are tested in [89] that do
not allow comparison of individual body parts because of potential occlusions in

image views.

4.5 Evaluation

In this section. results of the MPLC human pose estimation methodology are
presented. We present the results of MPLC method and we compare it with an
equivalent, i.e. of similar computational cost, particle filter approach (PF) [13]

and other state-of-the-art methods [79, 77].



(e)

Figure 4.6: a) Images, b) computed Visual Hull, ¢) Human model, d) fitted human
model to visual hull, e) extracted skeleton.

When the global position g and the size m are fixed we can use the term s, (p, H)

where p is the pose of the model M = {g,p,m} as described in section 3.4.

An advantage of the proposed observation function is that it allows com-
parisons of individual body parts of the human model to the visual hull as seen
in Figure 4.7. Also, because of the 3D representation, individual body parts, like
torso or arms, may be removed from the visual hull without affecting the observa-
tion of other body parts, making the search process more efficient. This contrasts
with 2D image-based observation functions, such as the silhouette and edge like-
lihood and the bi-directional silhouette likelihood that are tested in [89] that do
not allow comparison of individual body parts because of potential occlusions in

image views.

4.5 Evaluation

In this section, results of the MPLC human pose estimation methodology are
presented. We present the results of MPLC method and we compare it with an
equivalent, i.e. of similar computational cost, particle filter approach (PF) [43]

and other state-of-the-art methods [79, 77].



Figure 4.7: Calculation of observation function s; for individual body parts.

4.5.1 Datasets and Training

In order to compare MPLC method with other state-of-the-art methods we apply
MPLC in public available datasets. The Image & MOCAP Synchronized Dataset
(IMS) [18] and HumanEva (HE) Dataset [90] have been used for the experiments
in this chapter. Our training set contains 1121 frames of the S3 walking sequence
in trial 3 from HumanEva I. The IMS dataset (walking action), the HumanEval
S1 and the HumanEvall S2 and S4 (walking actions) are used for testing. In order
to evaluate the pose tracking method (section 2.2), similar to [9, 89|, we assume
that the ground truth pose of the first frame is known for all experiments. In this
work, the standard background subtraction method suggested by HumanEva [96]

is used to ensure fair comparison with other methods.

4.5.2 Validation of Observation Function

In this section, we evaluate the observation function s;. In order to calculate
the s; we generate the volumetric model from the skeleton model, as seen in
section 3.4. Figure 4.8a shows the inverse relationship between the average error
per frame using MPLC configuration with threshold 7" = 100% (red line) and the

values of the observation function s; for the ground truth poses G* for every frame
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Figure 4.8: (a) Error of MPLC and observation functions s; (G*, H') per frame.
(b) Observation functions s; (M*, H') for our results and for ground
truth s; (G*, H') per frame.

values of parameter R = {4,7,10,...,24} in equation 4.13 and 7 from 20% to

100% in equation 4.17.

MPLC is compared to the PF-TLE method that is also applied on the
low-dimensionality space that was learnt by TLE. Performance with different
numbers of particles n = {10, 15,...,50} are conducted to ensure similar compu-
tational times with the MPLC method. For these experiments we used an Intel

core 2 computer running Matlab implementations.

Figure 4.9 represents the average error for 100 frames for which the

ground truth is known, as a function of the average computational time for each

frame, for PF-TLE (blue line), MP (black line), and MPLC (red line) methods.
As we can see MPLC is able to provide better results than MP and PF-TLE

methods in all cases. By fixing the processing time we can obtain a direct com-



59

parison between MPLC and PF-TLE. For instance, if the average computational
time of MPLC and PF-TLE methods is approximately 30sec per frame, the cor-
responding average error for PF-TLE is 44mm (standard deviation o = 12mm)
while MPLC’s is 35mm (standard deviation ¢ = 10mm). The result justifies
the LC part of the proposed method as the MPLC outperform MP in all cases.
Also, PF-TLE has similar performance with MP, but reaches an accuracy limit
around 45mm because of the TLE-constrained poses. MPLC overcomes this limit

because LC is not constrained by TLE.

es_
—— PFTLE
—— MP
60~ —&— MPLC
“"
e
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Figure 4.9: Comparison of average errors for 100 frames according to the aver-
age computational time for each frame for PF-TLE, MP and MPLC
methods.

In the following experiments we use R = 15 in equation 4.13 and 7" =
100% in equation 4.17, while 35 particles are used for PF-TLE. Figure 4.10 dis-
plays the average error for every frame, as a function of the frame number, for
the LC (green), MP (black), and MPLC (red) methods and for PF-TLE method
(blue). The average computational time for MPLC and PF-TLE is approximately
30sec per frame and for MP and LC are approximately 15sec per frame and 20sec
per frame respectively. Applying only LC, which is equivalent to searching the
high-dimensional pose space, results to 72mm average error. Since LC is not
constrained by TLE, tracking result diverges from the ground truth, i.e. the pose

tracking error increases steadily over time, as seen in Figure 4.10.
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On the other side, MP and PF-TLE avoid divergence issues because the
TLE constraint and have similar performance: 48mm and 45mm average error
respectively. Although PF-TLE spends twice the computational time as MP,
performance improvement is minimal, which justifies the usage of deterministic
gradient search instead of particle filter for searching in the low-dimensional space.
Even if more particles are used for PF-TLE, no further improvement is expected,
because of the difference the training dataset, represented by the TLE manifold

and the testing dataset.

Such a restriction is overcome with MPLC that results in an average
error of only 35mm. The inclusion of the LC module leads to a significantly ad-
vantage regarding the accuracy with a relative small computational load increase.
Therefore, MPLC combines the advantage of keeping pose estimates close to the
TLE-manifold thanks to MP with the advantage of searching beyond the training

dataset thanks to LC.

140 -
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Figure 4.10: Average error per frame for 100 frames processed by methods MPLC,
MP, LC and PF-TLE.

In Figure 4.11 we can see visual results of skeleton models generated
by MPLC method (blue poses) and the corresponding ground truth poses (red

poses).

For the last experiment we calculate the global position of the human
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Figure 4.11: Skeleton models for Red: ground truth and for Blue: our method

(MPLC15)
[ I HEIIS2walk I HEIIS4walk I HEIS1walk ] Comp. \
GPAPF 86.6 89.0 86.3 500
H-APF 75.2 81.8 75.4 500
MP 74.0 96.2 72.0 10
MPLC 714 75.6 68.8 60
Table 4.1: Average error in mm for GPAPF, H-APF, MP and MPLC methods.

body at every frame as described in section 4.3.1. At Table 4.1 we compare our

method with the state-of-the-art methods GPAPF [79] and H-APF [77]. The

GPAPF uses APF for searching in a low-dimensional space generated by the

GPLVM dimensionality reduction method as described in section 2.2.2.2 and the

H-APF is a hierarchical extension of GPAPF as described in section 2.2.3. For

MPLC and MP results, we use R = 15 in equation 4.13 and 7" = 100% in equation

4.17, while 500 particles were used for the particle filter approaches. We can see

that in all cases MPLC outperforms GPAPF and H-APF, although it performs

only 12% of observation function evaluations.



4.6 Discussion

In this chapter we presented a novel human pose tracking methodology called
MPLC. The MPLC method has two stages: MP and LC. In the MP stage.
the observation pose is compared with the model hypothesis constrained by a
low-dimensional manifold to avoid divergence of pose tracking. The manifold is
trained by the TLE dimensionality reduction method using a sequence of poses
of the training dataset. The MP method searches for the best match between the
observation and the training points using a deterministic optimisation method.
instead of particle filter methods, to provide efficiently an initial pose estimate.
The LC stage deals with the problem of stylistic variations of human activity by
refining each limb individually. The LC method is able to search for the optimal
position of the body parts that have been erroncously determined during the NP

method.

This chapter demonstrates that the MPLC method provides better acceu-
racy than particle filter approaches. Although particle filter methods are popular
techniques for human tracking, they are computationally expensive becanse of
the large number of particles that they require [89]. In our experiments. we ap-
plied PF in the low-dimensionality space, which was learnt by TLE. Although
PF-TLE can achieve satisfactory accuracy, MPLC’s accuracy is even better for
the same processing time. Also MPLC clearly outperforms particle filter meth-
ods that were applied in GPLVM-generated manifolds, despite the generalisation

properties of GPLVM.

The bottleneck of our implementation is the evaluation of the observation
function, which leads to high-computational times. Real-time performance may
be achievable if an optimised version of the observation function. programmed
in C/C++, is deployed in appropriate hardware. However, compared to other

generative methods, MPLC has lower complexity, i.e. fewer evaluations per frame
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and lower overall computational cost. We can conclude that the combination of
MP and LC provides significant advantages in terins of accuracy. stability and

computational cost.



Chapter 5

Human Pose Tracking by Hierarchical Manifold
Searching using Hierarchical Temporal Laplacian

Eigenmaps

5.1 Introduction

In this chapter we introduce Hierarchical Temporal Laplacian Eigenmaps (HTLE).
a novel hierarchical dimensionality reduction method, and Hicrarchical Manifold
Search (HMS), a human pose tracking methodology. Both HTLE and HMS ft
in the general pipeline that was presented in section 3.1 (Figure 3.1). and. in
particular, in the pose tracking and the dimensionality reduction processes re-

spectively.

The TLE dimensionality reduction method, which was nsed in the pre-
vious chapter, represents only poses that appear in the training data. In order
to expand this space into its components, we introduce HTLE, a hierarchical di-
mensionality reduction method. The HTLE approach allows us to search in cach

level of a posture hierarchy separately, thus modeling new, unseen poses.

64



Furthermore, HMS searches for optimal poses through the hierarchical
structure of HTLE. HMS-HTLE performs better than MPLC. as discussed the-
oretically in section 5.2.2 and confirmed by experimental results in section 5.5.5,

Parts of this work have been published in [69).

5.1.1 Overview

The framework that is presented in this chapter operates on a two-phase ap-
proach: first, a sequence of poses from a training set arc used in order to generate
a hierarchy of low-dimensional manifolds using HTLE and. sccond. pose tracking
is performed in a hierarchical manner using HMS. The pipelines of both phases
are presented in Figure 5.1. More specifically, the training dataset consists of
a sequence of poses (typically MOCAP data) describing the action of interest
which is given. Hierarchies of action manifolds are learned by the proposed Hi-
erarchical Temporal Laplacian Eigenmaps (HTLE) (Figure 5.1a), as described in
section 5.2. We propose to use TLE [54] as the base of our hicrarchy. because it
suppresses stylistic variation and, therefore, gencrates more compact manifolds in
comparison to other methods (Isomap [98], BC-GPLVI [49]. LE [13]. ST-Isomap
[44], GPDM [108]). as discussed in section 2.2.3.

The pose tracking process is constrained by the hierarchy of action man-
ifolds (Figure 5.1b). which is presented in section 5.3. In every cvele. an observa-
tion from the input data is estimated. The observation and the previously learnt
action manifolds are fed to our novel search method, i.e. Hierarchical NManifold
Search (HMS) (section 5.3), which efficiently explores the pose space described
by HTLE. We minimise computational costs by using a deterministic optimi-
sation method. instead of searching the whole hicrarchy using particle filtering

approaches {24, 77]. The final output is a sequence of poses.

An observation function is introduced to match the observation from
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multiple colour cameras to pose hypotheses (section 5.4). The performance of
the proposed framework is evaluated for a range of parameters and compared

to state-of-the-art human tracking methods using publicly available datasets, in

section 5.5.

Figure 5.1: (a) Training and (b) pose tracking pipelines.

5.2 Action Manifold Learning

5.2.1 Hierarchical Temporal Laplacian Eigenmaps (HTLE)

In this section, we present the formation of Hierarchical Temporal Laplacian
Eigenmaps (HTLE). TLE manifolds (Section 4.2.1) only represent poses seen in
the training dataset, therefore TLE-constrained solutions may be biased because
of stylistic variations between the training and testing datasets. In order to deal

with this restriction we propose to expand the available pose space using HTLE,



67
a hierarchy extension of TLE. The advantages of such a structure are two-fold:
firstly, fast searching is facilitated by a set of compact TLE manifolds. as we
have already discussed in chapter 4; secondly. the hierarchy of manifolds models
unseen poses to address the problem of stylistic variations between the training
and the testing datasets. More specifically, the hierarchical structure of HTLE
has been designed to allow searching each level of the hicrarchy extending overall
pose search range. This is achieved by exploring each level separately and then

combining all of them. generating a new. unseen configuration.

HTLE uses a training dataset P to generate a hierarchy of manifolds in
low-dimensional spaces. Let P,; be the set of N poses of the training dataset

that corresponds to the [-th pose subspace at the hierarchical level i

P ={pisi=1....N}, (5.1)

where pj, , € RDPh s the pose of the model at the time /. As discussed in Section

4.2.1 TLE produces a manifold Q) representing Py, in a low-dimensional space

Rdh.l

Qni = {q;'l’,,i =1, N}

—_
<t
&V}

~—

where ¢}, € R and dyy < Dhy.

At a given level h (Figure 5.2), mapping between the high- and low-

dimensional spaces [54] is performed by the functions:
ong RO R of 2 RIS R (5.3)

where

oni (Phi) = G i (ahs) = Pho (5.1)

We also define mapping functions (Figure 5.2) between the hierarchical
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level points pr_11 € Ph-l,l,phyp € Phyll

wha : Pa_1g = Payp, where why (pa—11) = par

——
falia |
it

~—

These mapping functions permit evaluating hypotheses by projection to
the high-dimmensional space as well as propagating hypotheses through the hier-

archy.

D1
Ph,l ' Qh,l
Dh.i

a)h+ l,l'l

¢h+ 1/

—_—
Ph+l,l' « Qh+l,l’
(0h+l,l'

Figure 5.2: Pose subspaces P and submanifolds @ connected by mapping func-
tions p, ¢'and w.

5.2.2 Application to Human Pose Modelling

We define a hierarchy based on the division of the individual body parts as shown
in Figure 5.3 and Figure 5.7. At the first level, h;, the whole body is represented.
At the next level, hy, the variability of the previous level is expressed by two
subspaces containing either the upper or the lower body. The division process
is repeated for the next two levels, hs and hy: firstly, four subspaces are created
to model the four individual limbs, i.e. left and right arms and legs: secondly.
each limb is divided into two segments, i.e. upper and lower arm and leg. to
produce in total eight submanifolds. At the last level, hs, each limb segment is

allowed to move in an unconstrained manner similar to section 4.3.2. The levels
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hs and h; have the same leaf nodes but the searching space is different in each
of them. Nonetheless, we include it in the hierarchy for simpler representation of
the pose tracking method (section 5.3). By introducing different levels with an
increasing level of specificity, we incrementally vary the ability of generating new

pose hypotheses while maintaining a certain level of constraints.

The HMS method improves the results of the human pose tracking prob-
lem when compared with the MPLC method. Generally, results depend on how
close the global optimal solution is to the initial pose, because gradient-based
optimisation may be trapped in a local optimal. Fortunately, in both MPLC
and HMS, this effect is reduced due to searching through multiple levels. Since
HMS searches through more levels than MPLC, improved accuracy is expected.
Therefore, when reaching the LC level, HMS provides a better initialisation for

the LC process than does the MP method.

level
1 Body
-2 UBody LoBody
-3 1A rA IL rL
—4 UIA LolA UrA LorA UlL LolL UrL LorL
! v & : y y ¢ !
s uUIA || ulolA uUrA || ulorA uUIL || ulolL uUrlL || ulorL

Figure 5.3: Five-level hierarchy of human model. Each level is represented hor-
izontally in the figure. Level number increases by one progressively
from top to bottom. Every level h is composed of pose subspaces [. U:
Upper, Lo: Lower, I: left, r: right, A: Arm, L: Leg, u: unconstrained

5.3 Pose Tracking Framework-HMS

In this section, we introduce the Hierarchical Manifold Search (HMS) method,

which is used to estimate the human pose through the hierarchy proposed in
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Figure 5.4: Flowchart of HMS at subspace (h, ) of the hierarchy. Transformations
in the high- and low-dimensional spaces are represented in orange-
framed and red-framed boxes, respectively.

section 5.2. Initially, we search the top level of the hierarchy, which represents
the full body pose. Then, we search the rest levels of the hierarchy, each of them
representing a different division of the human body. This procedure allows as to
take full advantage of the hierarchy of manifolds which mitigates discrepancies
between the testing and training dataset by permitting the estimation of unseen

poses.

For every frame 7, we optimise the observation function f ({g',p',m}, H")
in two steps. Firstly, we initialise the global position and orientation g* of the
human model with the previous frame p'~'. The new global position §' is es-
timated as described in section 4.3.1 and the corresponding body model is the
{§",p"~",m}. During this step the torso is removed from the observation H* to
allow faster evaluation of the observation function, and also to avoid errors in the

estimation of the limbs that are near the torso.

Secondly, the pose p' of the current frame i is estimated. Specifically, a
process is applied through the hierarchy, as illustrated in Figure 5.4. We apply

the following algorithm to each TLE manifold [, for each TLE-constrained level
h.
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Initially. a new hypothesis p},, for frame 7 is gencrated (Figure 5.4, S1).
If h = 1. the pose from the previous frame is projected to the pose subspace P .

i.e.
piL1 :pi_l (5.6)

otherwise if h > 1 the point from the pose subspace !’, from the previous hierar-
chical level h — 1 is projected to the child pose subspace Py, using the function

whnt (Eq.5.5) to restrict the part of the human model that is searched:

Phi = Wn (I’Z—x,z/) (5.7)

Then. the model hypothesis is compared to the observation using the observation

function (Figure 5.4. S2) (Eq.5.17).

If the match between the hypothesis and the observation is sufficiently

large (Figure 5.4. S3a), i.e.
f (P HY) > T (5.%)

where T is linked to the required accuracy, searching the current subspace (h.1)
is omitted. Therefore. the final estimation for this subspace is given as: pj, , = pj,,

and HMS proceeds with the following manifolds (S1).

Otherwise. the high-dimensional point pi,z is projected to the low-dimension

space R to find a more accurate estimate (Figure 5.4, S3b):

Gha = oni (Phy) - (5.9)

Then, the solution is constrained using the action manifold. Specifically,

HMS considers the closest point g}, to the point g}, in Qu, (Figure 5.1, S4).

Afterwards. the local maximum is searched by optimising the observation
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function. A gradient descent optimisation algorithm is used in order to find a local
maximum where putative solutions are evaluated in the high-dimensional space
using the observation function. More specifically. this is achieved by following

the four following sub-steps (Figure 5.4, S5a-S5d).

A point q;; € Qn, is selected using a gradient-based optimisation algo-

rithm.

The point g}, is back-projected to the high-dimensional space RPnr of

human poses. Let pj; be the point after the projection

Phi=¢'ni (ahy) - (5.10)

The observation function of the point pj, is estimated:

The estimated pose is fed back to the algorithm (Figure 5.4. S5a) until the
observation function converges to a solution. Finally, the output of the algorithm
is the optimal point p} , that maximises the observation function f,f‘j (Figure 5.4,

S6)

Pha = {pﬁ,l : max ,ij} : (5.12)

At the last level A’ of the hierarchy, Limb Correction may be applied to

refine the solution in an unconstrained space as described in section 4.3.2.

The output of this process is the pj,; pose for every subspace [ of the

level b’ of the hierarchy.

Finally, the pose of the model p’ is estimated by concatenating the body
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parts estimated at the last level of the hierarchy

P = (B BB} (5.13)

Thus. the estimated human model M is
M = {Tn,gi.g)i} (h.14)

where ¢' is the global position and m is a known matrix (section 3.4) from the

initial frame.

H)MIS allows a data-driven efficient search of the hicrarchy of manifolds.
compared to previous hierarchical approaches, (77, 24]. The threshold T controls
this search. i.e. the lower the threshold, the less accuracy is needed. and the
faster the search will be performed, as demonstrated in section 5.5. Although
our approach is based on gradient-descent optimisation, the hierarchy structure
minimises the problem of being trapped into a local optimum, by searching again

limb configurations at different levels, as shown in the results presented later.

5.4 Observation Function

In order to evaluate the HMS method we use a testing set comprises synchronised
views of a human from multiple colour cameras. First, a 3D volumetric repre-
sentation (visual hull) of the observed human is generated to allow evaluation of
human model hypotheses as described in section 3.5.2.1. The colour from the
input images is also back-projected on the visual hull in order to discriminate
between body parts and improve accuracy as described in section 3.5.2.2. The
final observation is the coloured visual hull H (Figure 5.5). The human pose

hypothesis Al (Figure 4.6¢) that is used, is defined in section 3.4.



Input Images
Background Subtraction
Visual Hull
Visual Hull with colour

Figure 5.5: The pre-processing pipeline. From left to right: the input images,
the corresponding silhouettes, the visual hull and the visual hull with
colour.

The proposed observation function takes into account two features of the
observation: volume and colour. Firstly, we compare the volumes of the visual
hull H and the human model M by using the relative overlap between them.
This part of the observation function has already defined in section 4.4 (s, in Eq.

4.21).

The second part of the observation function exploits the colour infor-
mation of the visual hull. This is important since it complements the first part
of the observation function especially for poses where the limbs are close to the
torso as the colour of the torso is normally different than this on the limbs. At
the initial pose the colour of the limbs ('}.j = 1,..., L is estimated, using the
voxels of the initial visual hull H', matched by the limb j. Then, this colour
information is used for comparing the colour of the corresponding areas of frame
¢ with the initial one. Specifically, Jlj = 1,..., L is estimated as the average of
the hue values of all the matched voxels, assuming an HSV colour space. The
hue value of HSV colour space is used for comparing the colour without affecting
the saturation and the brightness in every frame. The Figure 5.6 illustrates the
HSV colour space. Then, at the frame ¢ the colour information of the visual hull
1,V

H* of every voxel v, ¢;°, j = 1,..., L, matched by the limb j, is compared to the

initial limb colour ¢}. A binary colour similarity variable, C}", is introduced to

emphasise significant colour differences and at the same time suppress noise in
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Hue

Figure 5.6: The HSV colour space. Hue, Saturation and Value are illustrated in
the figure.

the hue channel

1,v 1

bl 1, if|c; —cj}ga T
C‘]‘ = y (().1\))
0, if|c" — LH >a

where a € [0, 1] is an appropriate threshold. Then the observation function s; is

defined by:

1 L ZZ; C’i',l'
se (M, H) = EZ—“G—J—

j=1

(5.16)

where V; is the total size in voxels of each area j and L is number of the body

parts.

The observation function of the model M and the coloured visual hull H

is given by the weighted mean

2
f(M,H) = 3 wis(M, H) (5.17)
k=1

where wy, is a weight that allows us to change the balance between observation

functions, where 35_, wy = 1.

The proposed observation function allows comparisons of individual body
parts of the human model to the visual hull. This property is important when

moving down through our hierarchy in section 5.2.



76

5.5 Evaluation

5.5.1 Overview

In this section we analyse the parameters and depict the results of the HMS
method. Firstly, the publicly available datasets that are used are presented.
Then the training process is discussed. After that, the observation function is
evaluated. Then, the HMS method is tested for different accuracy thresholds and
different hierarchy levels. Those parameters are analysed in order to calculate the
trade-off between computational cost and accuracy. Finally, HMS is tested using
a variety of datasets and compared with state-of-the-art human pose tracking

methods.

5.5.2 Datasets and Training

In order to facilitate the comparison of HMS with other methods, we apply HMS
to 4 standard walking sequences: HumanEva (HE) I1-S2 (frames 1 to 390). HEII-
S4 (frames 4 to 370), Image & MOCAP Synchronized Dataset (IMS) (frames 1
to 150) and HEI-Slwalking (frames 1 to 590) [18, 89] and 2 jogging sequences:
HEII-S2 (frames 391 to 710), HE-II S4 (frames 371 to 710). For all sequences, we
used human actions captured by 4 cameras and calibration information for cach
of them. For the walking sequences the tracker is initialised by the first pose using
ground truth and for the jogging the tracker is initialised by the last estimated
pose of the corresponding walking sequence. Coloured Visual hulls are created

using the calibration data and the silhouettes provided with the datasets.

A training dataset is used to generate the HTLE models as discussed in
section 5.2. Walking and jogging HTLE models are estimated using 1443 skeleton

poses from the HEI-S2 walking, trial-3 and 795 skeleton poses from the HEI-S2
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jogging, trial-3 sequences respectively. The same training dataset is used for all
experiments for each action to demonstrate the generalisation properties of the
HMS method. In Figure 5.7 human poses that correspond to the training data
set P, € R? and the corresponding manifolds in 2D, Q,; € R? are shown for

different levels of the hierarchy h and pose subspace [.

T
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Figure 5.7: Different levels of the hierarchy. Human poses and the corresponding
manifolds are represented in 2D for a walking activity.

5.5.3 Validation of Observation Function

In this section, we evaluate the observation function relative to the error of our
methodology results. Note that in these experiments, only colour of the end-
limbs (lower arms and lower legs) is used for the observation function s, to take
advantage of colour discrimination of hands/shoes. In all experiments we use a

threshold a = 0.2 in equation 5.15 and w; = wy = 0.5 in equation 5.17.

The observation function s; is compared to the observation function f =
(s1+s2)/2. In Figure 5.8 the error per frame using the observation function f with

colour information (Eq. 5.17) is presented in blue (average error 63.1mm), and
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without using colour information s; (Eq. 4.21) in black (average error 70.2mm),

for HEII S2 dataset. We can see that colour information improves results in most

frames.
(section 3.4) from the initial
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Figure 5.8: Error per frame of HMS(1,2,3,4,5) using observation function f with
colour (blue) and observation function s; without colour (black), for
HEII S2 dataset.

5.5.4 HMS Configuration

In this section, we investigate different configurations of the HMS method by
evaluating different sets of levels in the hierarchy and different values of the
threshold T. We denote as HMS(hy,ha, hs...) the HMS method applied for

levels hy, hs, hs, ... as seen in Figure 5.3.

Figure 5.9 shows the average error and the computational time per frame
for 150 frames of the IMS dataset for different HMS configurations. As shown
in Figure 5.9(a) by increasing the levels of the hierarchy, the estimated error de-
creases for every threshold. Furthermore, by increasing the threshold the error
decreases in all configurations. Likewise, as shown in Figure 5.9(b), the compu-
tational cost (mean number of observations per frame for all frames) rises with

increasing levels of hierarchy. That is because of the increase in the number of
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subspaces that are searched in every level, as seen in Figure 5.3. Finally. com-
putational cost rises for increasing thresholds. Figure 5.9(¢). shows the mean
number of observation evaluations per frame for different levels of the hierarchy
and different thresholds in the HMS(1,2,3,4,5) configuration. The mean number
of observations per frame for every level increases for rising thresholds. There-
fore, different configurations of HMS provide flexibility on compromising between

computational cost and accuracy, demonstrating the value of the hierarchy.

In this experiment, after the 80% threshold, error and computational
cost are almost constant. That is because the maximum value of the observation
function is near to 80%, as shown in Figure 4.8a. For these experiments we used
an Intel core 2 laptop with code written in Matlab. The computational costs vary

from 4see to bbsec per frame.

Table 5.1 also shows the usage of different levels of the hierarchy for dif-
ferent thresholds in the HMS(1,2,3,4,5) configuration. For small thresholds. the
contribution of the first level to the final solution is dominant and that keeps
the computational cost low. Higher accuracy is achieved by increasing the con-
tribution of the lower levels of the hierarchy. The contribution of the last level
(unconstrained limb poses) is relatively high even for small thresholds. since the

subject (and therefore the style) in training and testing data are significantly

different.

5.5.5 Comparison with the State-of-the-Art

In order to compare the HMS method with state-of-the-art methodologies we
apply HMS to the Walking action of HEII-S2 (frames 1 to 390) and HEII-S4
(frames 4 to 297), IMS (frames 1 to 150) and HEI-Slwalkingl (frames 1 to 590)
and to the Jogging action of HEII-S2 (frames 391 to 710) and HE-I1 S4 (frames 371

to 790). For every action we use the corresponding training dataset as discussed
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Figure 5.9: HMS performance for different thresholds and configurations (differ-
ent numbers of hierarchy levels). (a) Average error of different con-
figurations of HMS for 150 frames and different thresholds (0 — 100
and (b) average number of evaluations of the observation function
per frame for HMS method for increasing thresholds (0 — 100%). (c)
Mean number of observation evaluations per frame for different lev-

els of the hierarchy and different thresholds in the HMS(1,2,3,4,5)

configuration.
in section 5.5.2. For all sequences, 4 cameras are used and the ground truth for
the first frame initialises the tracker. Since ground truth is not known for the
full length of the sequences, the results of the HMS method were evaluated using
the online evaluation system of the Human Eva website [17]. Our method is
quantitatively evaluated against the MP (Manifold Projection) method, MPLC
(Manifold Projection Limb Correction) method presented in the previous chapter
4, APF [9] that demonstrates state-of-the-art performance according to [89] and

applications of APF in low-dimensional spaces, i.e. GPAPF [79], H-APF [77].

In Table 5.2 we present the average absolute 3D error [89], for GPAPF
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[ Th.% [ Levell [ Level2 | Level3 [ Leveld | Level5 | Time(s/f)

Error(numn) ]

10 100 0 0 8 8 8 A 1
20 100 0 0 17 16 14 13
30 100 1 0 25 23 18 11
40 100 19 7 31 28 24 10
50 100 64 40 41 37 32 38
60 100 92 77 58 53 38 3
70 100 100 92 79 73 12 35
80 100 100 99 95 90 15 T3
90 100 100 100 100 99 48 33
100 100 100 100 100 100 19 33

Table 5.1: Search (%) of the hierarchy in every level for HMS(1.2.3..4.5) method.

[ | HEIIS2walk | HEIIS4walk l HEIS1walk ‘ Comp. ]

GPAPF 86.6 89.0 86.3 500
H-APF* 75.2 81.8 75.4 500
MP 74.0 96.2 72.0 10
MPLC 71.4 75.6 68.8 60
HMS 63.1 62.5 65.0 130

Table 5.2: Average error in mm for GPAPF, H-APF, MP, MPLC and I’TN[S meth-

ods (*the H-APF results are the average of whole sequence).

and MPLC. and the corresponding hierarchical methods. i.e. H-APF and HMIS.
We also present the complexity (mean number of observations per frame) for ev-
ery method. In this experiment, a threshold T = 100% (Eq.5.8) is set for HNS
to achicve optimal results. These results demonstrate the value of introducing,
hierarchy in dimensionality reduction based approaches. as hierarchical methods
always perform better than the original ones, and improves computational cffi-
ciency and accuracy compared with GPAFP and H-APF. Our decision to base
our dimensionality reduction framework on TLE is confirmed by the comparison
between TLE-based and GPLVM-based representations. Specifically. MP and

HMS outperform in most of the cases, GPAPF and H-APF. respectively.

In Figure 5.10 we show the average error per frame for HEII-S2 walking
and HEII-S4 walking datasets for MP (blue line) and HMS(1.2.3..4.5) (red line)
methods using threshold T = 100%. HMS(1,2.3,4,5) clearly improves MP in all

datasets (see Table 5.2). This demonstrates the value of using the hicrarchy.
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Figure 5.10: Results for (a) HEIL-S2, (b) HEII-S4, (¢) IMS and (d) HEI-
Slwalkingl sequence with MP (blue line), HMS(1,2,3,4,5) (red line)
and APF (black line) methods when it is available.

Figure 5.11 and Table 5.3 displays the average absolute 3D error for APF
and HMS using different particle numbers and thresholds respectively, and their
computational costs per frame as measured on the same machine using Matlab
implementations for both methodologies. Their level of complexity ‘Comp., i.e.
the number of evaluations of their observation function, is also shown in Table
5.3. HMS using 7" = 100% generally outperforms APF both in terms of error
and complexity. Moreover, the figure suggests that HMS is able to deliver similar
accuracy to any APF configuration using only 5% — 25% of processing time. The
low complexity of our method comes from the hierarchical searching strategy
that is driven by the observation function. Furthermore, the combination of
a hierarchical approach with a search that occurs beyond the training dataset
results in improved accuracy. In summary, HMS methodology achieves the best

overall accuracy with the lowest computational complexity.

In Figure 5.12 we show the average error per frame for HE-II S2 walking
and jogging dataset using HMS(1,2,3,4,5) for lower body (red line), upper body

(blue line) and full body (black line). The training dataset that is used is the
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r | HEIIS2walk ] HEIIS4walk | HEIIS2jog [ HEIIS4jog | IMS | Comp. |
APF1000 76 60 85 93 41 1000
APF500 83 63 109 154 46 500
APF250 88 70 133 180 49 250
HMS100% 63.1 62.5 80.9 102.4 376 | 128
HMS60% 65.1 64.1 82.5 104.2 41.7 | 104
HMS40% 69.5 65.2 86.1 106.8 46.3 78
HMS 20% 74.2 67.5 87.3 107.5 49.5 57

Table 5.3: Average error in mm and complexity (number of evaluations) for dif-
ferent configurations of APF and HMS.
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Figure 5.11: Average error in mm and computational cost per frame in seconds
for different configurations of APF and HMS.

walking action as described in section 5.5.2. The average error for the lower
body is 63.7mm (57mm for walking and 70.4mm for jogging), for the upper
body is 96.2mm (69.2mm for walking and 123.2mm for jogging) and for the full
body is 79.6mm (63.1mm for walking and 96.7mm for jogging). The error in
the walking sequence (frames 1 — 390) is lower than that of the jogging action
(frames 390 — 710), since training was based on walking data. More specifically,
error in the jogging action is higher mainly because of upper body error: in the
tested jogging activity, arm positions are significantly dissimilar to those found
in the walking dataset, especially when arms are near to the torso. Since the
latter configuration is periodical over the jogging action, a cyclic pattern of error

is observed in Figure 5.12. On the other hand, although a walking action was
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used for training, leg positions were estimated accurately for both walking and
jogging activities. These results suggest that our methodology is able to track
different styles efficiently to the extend that these are not significantly dissimilar

to the training set, so they can still be considered as a variation of the same given

activity.
250 i ssaiabiiietel T T T T
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Figure 5.12: Average error per frame for HEII-S2 dataset with HMS(1,2,3,4,5)

for lower body (red line) and upper body (blue line) and full body
(black line).

In Figure 5.13 we show the average error per frame for HE-IT S2 walking
dataset, using the HMS(1,2,3,4,5) method with threshold 100% for individual
limbs. As we can see in the graph, the shoulder has a lower error than the elbow
or the wrist, and in the lower body the knee has more accurate results than the
ankle, as we would expect. Also, similarly, we observe that the leaf nodes of the
hierarchy for the lower body have better results than the leaf nodes in the upper
body. That makes sense as hands are generally more challenging to track as they
can be more easily confused with the torso, and they are less constrained by the

specific activities (walking, jogging).

In the Figures 5.14, 5.15, 5.16,5.17 and 5.18 we display tracking results
of HMS(1,2,3,4,5) with threshold 100% for the datasets used in the study. For
IMS dataset only the first part of the observation function s; is applied because
imagery is grey-scale. APF and HMS(1,2,3,4,5) result in 41mm and 37.6mm

average error respectively.
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Figure 5.13: Error for selected individual joint locations. Average error per frame
for HEII-S2 sequence and HMS(1,2,3,4,5) method for different body
parts for 390 frames.
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Figure 5.14: Results for HEII-S2 walking dataset with HMS(1,2,3,4,5).
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Figure 5.15: Results for HEII-S2 jogging dataset with HMS(1,2,3,4,5).
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Figure 5.16: Results for HEII-S4 dataset with HMS(1,2,3,4,5) for four cameras.
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Figure 5.17: Results for IMS dataset with HMS(1,2,3,4,5).

ALLEA
318 AR

framel0 | frame20 | frame30 | frame40 | frame50 | frame60 | frame70 | frame80 | frame90 |framel00

Figure 5.18: Results for IMS dataset with HMS(1,2,3,4,5).

5.6 Discussion

This chapter presented a human pose tracking methodology relying on two novel
techniques. Firstly, a hierarchical method based on dimensionality reduction for

human pose tracking was proposed. TLE is used as the basis for our hierarchy
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as it suppresses stylistic variation and generates more compact manifolds in com-
parison to other methods such as ST-Isomap [44] and BC-GPLVM [49] (scetion
2.2.3). HTLE. has been designed for human pose tracking as it takes into account
the hierarchical representation of the human body. This allows the decoupling

from the structure of the training dataset, and the exploration of unscen poses.

Secondly, we introduce a method, HMS, which deterministically scarches
through the hierarchy of low-dimensional manifolds and is driven by an observa-
tion function. HMS allows searching in a constrained space at every level of the
hierarchy, so it requires a low number of evaluations of the observation functions
and, therefore. low-computational resources. In addition, by scarching through
the hierarchy we are able to consider a wide range of unseen poses. Therefore,
unlike conventional dimensionality reduction methods, which are restricted to the
set of poses present in a training set, our framework is capable of moving bevond
the training set and generating pose hypotheses that have never been seen before.
Compared to MPLC, which can also search beyond the TLE-constrained man-
ifold, HMS-HTLE demonstrates better performance, as explained theoretically
and confirmed experimentally. In addition, instead of searching the whole hierar-
chy, as performed in previous studies using particle filtering [24, 77]. we minimise
computational costs by controlling this process using a deterministic optimisation

method driven by the observation function which aims at fast convergence.

Experimental results were presented on publicly available datasets and
comparisons to state-of-the-art methods were given. They demonstrate the accu-
racy and efficiency of our approach compared to other state-of-the-art methods.
However, HMS, as presented here, may only be applied in single-activity scenar-

10s, not in multi-activity scenarios.



Chapter 6

Human Pose Tracking for Multi-Activity Scenarios

6.1 Introduction

The pose tracking method that was presented in the previous chapter can only
be applied in single-action scenarios. In this chapter, we introduce Hicrarchical
Manifold Search - Multi Activity (HMS-MA), a novel 3D human pose tracking
methodology for multi-activity scenarios. With reference to the general pipeline
(Figure 3.1) presented in section 3.1, the HMS-MA method corresponds to the

pose tracking process, while multiple hierarchies of manifolds are estimated by

HTLE.

HMIS-MA properly extends the HTLE and HMS techniques that were
presented in chapter 5, so they can be applied in multi-activity scenarios. First.
using HTLE we generate a hierarchy of manifolds for each action relevant to
a scenario. Then, we recognise the type of action for every frame using the
HMS-MA method. Finally, the HMS-MA is applied to the whole hicrarchy of
the recognised action to estimate the pose. The validation of our method uses

publicly available datasets captured by either a multi-camera system or a depth

89
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camera (i.e. Microsoft Kinect), and demonstrates its accuracy and computational

efficiency.

6.1.1 Overview

In this section the pipeline of the Hierarchical Manifold Search - Multi Activity
(HMS-MA) pose tracking method is presented. HMS-MA relies on a training
phase, which generates a model for each action of interest, and an online phase
where 3D postures are recovered for each frame of a sequence representing an
individual performing a variety of actions. Hierarchies of manifolds for the actions
of a specific scenario are learnt using HTLE (Figure 6.1 (a)), as described in
section 5.2. Each hierarchy represents a single action in the low-dimensional

space, as described in section 5.2.2.

The HMS-MA method is applied to an unseen sequence of observations
for a person performing multiple actions on a given scenario (Figure 6.1 (b)). In
order to evaluate the observation at every frame, a 3D human body model is
used to generate pose hypotheses. First, online action classification is performed
based on the whole body manifold of the hierarchies. Then, the pose estimation is
refined by searching through the hierarchy of the recognised action. The outcome

of HMS-MA is an action classification label and a 3D pose estimate for each

frame.

HMS-MA allows searching in a constrained space at every level of the
hierarchy, so it requires a low number of evaluations of the observation functions
and, therefore, low-computational resources. In addition, by searching through
the hierarchy we are able to consider a wide range of unseen poses. Therefore,
unlike conventional dimensionality reduction methods that are restricted to the
set of poses present in a training set [104, 31, 56], our framework is capable of

moving beyond the training set and generating pose hypotheses that have never
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- — = e

Figure 6.1: (a) Actions manifold learning and (b) human pose tracking pipelines
for multi-activity scenario.

been seen before.

An interesting requirement of pose tracking in multi-activity scenarios is
how stylistic variations are addressed. Specifically, they must be suppressed in
action recognition [54, 52|, but they must be expressed in pose hypotheses for
efficient pose tracking [58]. Therefore, we use only the first level of the hierar-
chy, where style has been suppressed for recognising the current action, and all

levels to generate a variety of hypotheses for tracking the pose of an individual

accurately.

6.2 Action Manifold Learning

In this section we discuss the generation of a set of hierarchies of manifolds for
K different actions for use in a multi-activity scenario tracking. For this pur-
pose, we exploit in a multi activity context the Hierarchical Temporal Laplacian

Eigenmaps presented in section 5.2.

We define a hierarchy based on the division of the individual body parts,
similarly to [77, 24]. At the first level, h;, the whole body is represented. At the

next level, hy, the variability of the previous level is expressed by two subspaces
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containing either the upper or the lower body. The division process is repeated for
the next two levels, hs and hy: firstly, four subspaces are created to model the four
individual limbs, i.e. left and right arms and legs; secondly, each limb is divided
into two segments, i.e. upper and lower arm and leg, to produce in total eight
submanifolds. Differently from previous work though, at the last level, ks, each
limb segment is allowed to move in an unconstrained manner. By introducing
different levels with an increasing level of specificity, we incrementally vary the

ability of generating new pose hypotheses while maintaining a certain level of

constraints.

We assume that the given training dataset consists of K sets of sequences
that correspond to K actions, each of them consisting of N, poses in the high-
dimensional space ROk, Let Py, be the concatenation of the sequences of the
k-th action in the training dataset, represented in the high-dimensional space

RDhLk that corresponds to the I-th pose subspace at the hierarchical level h

Ph,l,k = {piz,l,k’i = 1, ...,Nk}, (61)

where Pi,t,k e RPrik is the pose of the model at the time i. The HTLE method
is applied to all P, for every level of the hierarchy h, subspace | and action k.

As described in section 5.2 the resulting manifold is:

Qnix = {q};,,,k,i =1,.., Nk}, (6.2)
where g}, € R%45 and dpyr < Dp .

Radial Basis Function Networks (RBFN) [53] are used to define mapping

functions {hk, ¢'n.k} between the high and low-dimensional spaces

Ph,l (Pz,z) = q;;,tv Ch (q:‘,z) = Pﬁ;,z- (6.3)
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We also define the mapping function between hierarchical levels

Whik (Ph—11k) = Dht' - (6.4)

The result of the action manifold learning process is a set of K hierarchies of
manifolds corresponding to the K action types. These mapping functions permit
evaluating hypotheses by projection to the high-dimensional space as well as

propagating hypotheses through the hierarchy.

6.3 Pose Tracking Framework - HMS-MA

In this section the Hierarchical Manifold Search - Multi Activity (HMS-MA)
method for 3D pose tracking in a multi-activity scenario is presented. This
method is an extension of HMS that was presented in section 5.3. For every
frame of the testing dataset the HMS-MA method recognises the type of action
that the person performs. Then the HMS method is applied using the hierarchy

of manifolds of the selected action. The result is the 3D pose of the current

frame.

6.3.1 Action Classification

In this section the first part of Hierarchical Manifold Search - Multi Activity
(HMS-MA) method for online action classification is presented. We assume a
set of K hierarchies of manifolds corresponding to the K types of actions has
been generated using HTLE, as described in section 6.2. The unseen sequence
represents a single subject performing a subset of the K actions. For every frame
¢ we firstly estimate the global position and orientation of the human model by
optimising the observation function applied on the previous pose, as described in

section 4.3.1. The action recognition method consists of three steps as seen in
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Figure 6.2: HMS-MA action recognition pipeline for multi-activity scenario.

Figure 6.2:

Stepl:

Step2:

Step3:

First, in order to recognise the type of action of frame i, we estimate
the 3D pose according to the model of each of the possible activities by
applying the HMS (chapter 5) model-based pose estimation algorithm
to the whole-body manifolds of all K hierarchies for pose p'~!. A 3D
pose p'(k) is estimated for all k = 1,..., K. For every pose p'(k) a
corresponding observation function f* (k) is calculated (as defined in

section 6.4).

Then, in order to exploit the information of previous frames we cal-
culate the average value of the last £ observation functions for each
action k:

. min(€) pit1—j
Rm=y L0

—_— 6.5
s min (1) 5
where £ > 1 represents the memory of the system, i.e. the frames

that will be used. If £ = 1 we only use the current frame.

Finally, the action k!

'nax that maximises F¢ (k) over the sliding window

of length £ is chosen to represent the type of action in frame ¢

k. = arg max (Fg (k)) : (6.6)



Figure 6.3: Pose tracking pipeline for multi-activity scenario.

6.3.2 Pose Tracking

HMS-MA searches the rest of the levels of the hierarchy of manifolds that cor-

where pi, = p'(k},.,) (Figure 6.3).

maxr

respond to the selected action k = ki, ..
Specifically, for every layer h (h > 1) and subspace [ of the hierarchy first the
point from the pose subspace !’, from the previous hierarchical level h —1 is pro-

jected to the child pose subspace Py using the function wpx to restrict the

part of the human model that is searched:

Pzﬁ,l = Whlk (Pz—u') . (6.7)

Then the high-dimensional point pflvl is projected to the low-dimension

space Rk

G = Pnik (Phs) (6.8)

Then, the solution is constrained using the action manifold. Specifically,

HMS-MA considers the closest point ¢}, ; to the point g ; in Qp k.

Afterwards, a gradient descent optimisation algorithm is used in order
to find a local maximum where putative solutions are evaluated in the high-

dimensional space using the observation function. The output of the algorithm
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is the optimal point ﬁ%,t that maximises the observation function f,::f

132,1 = {PZ,[ - max ;;} . (6.9)

Finally, the pose of the model p' is estimated by concatenating the body

parts estimated at the last level of the hierarchy.

' = {Bh s Bhrgs oo P} - (6.10)

The estimated pose p’ is used as input in the next frame. The HMS-MA
method is applied for every frame of the video sequence. The final results are the

action labels k¢ . and the 3D poses p* for each frame i of the sequence.

The HMS-MA method is an extension of HMS-HTLE methods to cover
multi-activity scenario problems. Therefore, the pose tracking results are not
expected to be an improvement upon the results presented in the previous chapter
where action labels were considered known. The advantage of this method is
that the proposed HMS and HTLE methods may be used in more complicated
scenarios containing multiple actions. Finallyy, HMS-MA requires some extra

computational resources to run HMS(1) for all activities and recognising the

action for each frame.

6.4 Observation Function

In this section we discuss the observation function that is used to compare the
observation and the pose hypothesis. We use two type of data for evaluation
the HMS-MA method i.e. multi-camera and Kinect datasets. For multi-camera
datasets we use the same observation function as described in section 5.4. For

the Kinect dataset, the foreground colour image and depth map for each frame
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are used to represent the sequence of observations, as seen in section 3.5.3. The
human pose hypothesis, based on the 3D human body model M as defined in
section 3.4, is projected on two different spaces to facilitate the comparison to
the observation: Firstly, the human pose hypothesis is projected onto the Kinect
image plane to enable comparison with the foreground colour image. Secondly, it
is projected on depth map space to allow comparison with the foreground depth
map, as seen in figure 6.4, where every point of the projected model represents
the 3D Euclidean distance from the corresponding 3D point to the camera plane

(z.x,yqx) as seen in section 3.2.1.

Figure 6.4: The 3D pose hypothesis projected on the image plane and the depth
map space. In the latter projection, pseudo-colour is used to represent
depth values.

In order to compare the observation with the pose hypothesis, an ob-
servation function is required. The observation function that is used for the
HumanEva dataset is the same as the one that was presented in section 5.4. For

the G3D dataset, the observation function is based on the colour image and the
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depth map of each frame. The first part of the observation function is based on
the 2D area of the silhouettes. The two areas of observation H and the projection
of pose hypothesis are compared using function s;, as defined below. Although
the definition of s, is similar to the one in section 4.4, they differ as M and H

represent areas instead of volumes in equation 6.11.

| MO H |

Sl(M,H)Z |M|

(6.11)

The second part of the observation function is based on colour similarity,
similar to the one defined in section 5.4
1 & z‘;/il C;’v

Sz(M,H)=-EZ ‘/J

i=1

(6.12)

where V; is the total size in pixels of each area and C’;’" is the binary colour sim-
ilarity variable, which is introduced to emphasise significant differences between

pixel colours.

The third part of the observation function compares the depth informa-

tion between the observation and pose hypothesis M

ZvGM Imv - hv|

s3(M,H) = M| (6.13)
where m, € M and h, € H for every pixel v in the depth map.
Finally, the observation function is given by the weighted mean
3
f(M,H) =Y wsk(M, H) (6.14)

k=1

where wy is the weight that allows us to change the balance between observation

functions, where >"3_, w;, = 1.
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6.5 Evaluation

6.5.1 Overview

In this section we analyse the parameters and depict the results of the HMS-MA
method. Firstly, the publicly available datasets that are used and the training
process are presented. Then, the observation function for the G3D dataset is
evaluated. Finally, HMS-MA is tested using a variety of datasets and compared

with state-of-the-art multi-activity pose tracking methods.

6.5.2 Datasets and Training

We evaluate HMS-MA on two publicly available datasets. First, we use the mul-
tiple action sequences of the HumanEva (HE) II datasets which are presented in
section 3.3.2, i.e. HEII-S2 frames 1 to 710 (1—390 walking, 391—710 jogging), and
HEII-S4, frames 4 to 710 (4 — 370 walking, 371 — 710 jogging). For all sequences
we used human actions captured by 4 cameras and calibration information for
each of them. The HEI-S2 walking, trial-3 and HEI-S2 jogging, trial-3 sequences
belonging to HumanEva I dataset are the datasets used for training the HTLE
models, as discussed in section 5.2. Second, we use the boxing scenario of the
G3D dataset which is presented in section 3.3.3 since it provides training data for
a wide range of actions (punch left, punch right, kick left, kick right, defence). In
between actions, subjects return to an “inaction” pose, i.e. standing still. Sub-
jects 1 — 5 are used for training, while the remaining subjects 6 — 10 for testing
our method. The range of frames of each action was extended by 20 frames in
order to include some inaction frames of training dataset. In all experiments, the

tracker is initialised with the first frame of the sequence using the ground truth

pose.
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The value of variable £ is estimated by applying HMS-MA on the training
dataset for different values of £ and selecting the optimal one: they correspond
to £ = 10 and £ = 2 for the HEII and the G3D datasets respectively. Such a dif-
ference of optimal £ is justified as actions are shorter and change more frequently

in G3D than in HumanEva.

6.5.3 Validation of Observation Function

The observation function that is used for the HumanEva datasets was evaluated
in sections 5.5.3 and 4.5.2. Here we evaluate the observation function that was
presented in section 6.4. In Figure 6.5 we see the inverse relationship between
the average error per frame using HMS-MA configuration for G3D subject 7 (red
line) and the values of the observation function f for every frame 4 (in black)
using w; = wy = wz = /3. The correlation coefficient of the error and the
observation function is —0.38, which implies negative linear correlation, and this
is statistically significant because the p-value is sufficiently small (p = 2-107'")
[33]. This confirms that maximising the proposed observation function leads to

minimising the pose tracking error.
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Figure 6.5: Error of HMS-MA and observation functions per frame.
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6.5.4 Action Classification Results

In this section we present action classification results produced by the HMS-MA
pose tracking method presented in section 6.3. In all experiments we use threshold
T = 100% in equation 5.8 and a = 0.2 in equation 5.15. All observation function
weights are set as equal, i.e. w; = wy = Y2 (equation 5.17) in multi-camera

experiments and w; = wy = w3 = 1/3 in Kinect experiments (equation 6.14).

In Figure 6.6, the difference between the two functions, F} (1) and F (2),
is estimated for every frame i, as described in section 6.3, for the HumanEvall
S2 (Figure 6.6a,b) and HumanEvall S4 (Figure 6.6c,d) datasets. The F{(1)
corresponds to the walking action, and the Fg (2) to the jogging action. The
horizontal red line is the zero axis and represents our activity decision boundary,
while the vertical line at frame 390 for HEII-S2 and 370 for HEII-S4, depicts the
time of change of activity type, i.e. the last frame of the walking action. When a
curve is above zero, it means that walking is the recognised action; otherwise it
is jogging. Overall, the classification success rate for the walking and the jogging
actions for HEII-S2 dataset are 92% and 98% respectively using £ = 1 and 99%
and 100% using £ = 10 and for HEII-S4 are 85% and 98% respectively using
€ = 1 and 90% and 100% using & = 10.

In Figure 6.7 we present results for HumanEvall S2 data using HMS-
MA(1-5) method. We can see the classification success rate (red line) and the
corresponding error (blue line) for different values of variable §. The best results

are for £ = 10 i.e. classification success rate 99.6% and average error 73.5mm.

Therefore, using a high value of &, (e.g. £ = 10) improves the results
of the action classification Also comparing the Figures 6.6a and b and Figures
6.6c and d we can see that for higher value of the variable £ = 10 the difference
between functions, Fi, (1) and F}, (2) are represented by a smoother curve. Since

the actions are properly recognised for such high percentage of the sequence, pose
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estimation results are expected to be similar to the ones derived in section 5.5.5,

where action labels were known.

80
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e
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Figure 6.6: HMS-MA method for action classification. Difference of functions
F{ (1) and Fg (2) for a) HEII-S2 £ = 1, b) HEII-S2 £ = 10, c) HEII-S4
¢ =1 and d) HEII-S4 £ = 10.

AC success (%)
& 9
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Figure 6.7: AC and error results using HMS-MA using different values of ¢ for
HEIIS2.

In Figure 6.8 we present results for G3D data subject 8 using HMS-
MA(1-5) method. We can see the classification success rate (red line) and the
corresponding error (blue line) for different values of variable . The best results

are for £ = 2 i.e. 99.6% for classification success rate and 13.7mm for the error.
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| | punch right [ punch left [ kick right [ kick left | defend |

punch right 98.6 0 0 1 0.4
punch left, 1 96 0 0 3
kick right 0 0 100 0 0
kick left 0 0 0 100 0

defend 2.2 0 0 0 97.8

Table 6.1: Confusion matrix for subjects 6 to 10 using £ = 2.

The optimal £ is smaller than this on the previews results as in G3D data actions

are shorter and change more frequently than in the HumanEva dataset.

AC success (%)

(ww) 10113

3

Figure 6.8: AC and error results using HMS-MA using different values of ¢ for
G3D data subject 8.

Similarly, in Table 6.1 we see the confusion matrix, which presents the
classification results for each activity using the HMS-MA(1-5) method applied in
G3D dataset for subjects 6 to 10, using £ = 2 in equation 6.5. Also, in Tables 6.2
and 6.3 we can see the action classification success rate of every subject for each
activity using £ = 1 and £ = 2, respectively. Using £ = 2 the action classification
success rate is higher (98.4%) than using £ = 1 (94.2%), for all cases. Overall,
we can see that HMS-MA is able to detect the correct action with a total success

rate of 98.4% in the G3D dataset.



| punch right | punch left | kick right

kick left | defend | total |

sub6 92 47 88 100 100 85.4
sub? 79 100 100 100 90 93.8
sub8 86 100 100 100 96 96.4
sub9 100 100 100 100 100 100
sub10 100 82 100 100 97 95.8
total 914 85.8 97.6 100 96.6 | 94.2
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Table 6.2: Percentage success of every subject for each activity using £ = 1.

| | punch right | punch left | kick right [ kick left | defend | total |
sub6 100 80 100 100 100 96
sub7 93 100 100 100 100 98.6
sub8 100 100 100 100 100 100
sub9 100 100 100 100 100 100
sub10 100 100 100 100 93 98.6
total 98.6 96 100 100 98.6 | 98.6

Table 6.3: Percentage success of every subject for each activity using £ = 2.

6.5.5 Pose Tracking Results

In this section we present pose tracking results produced by the HMS-MA. In

Figure 6.9, the results for HE-II S2 walking and jogging actions per frame are

shown using HMS-MA(1-5) and ¢ = 1. The grey areas present the frames that

the action classification process failed. The pose tracking error in the grey areas

(103mm) is higher than the average error , as pose tracking depends highly on

action classification. The average error along the whole multi-activity scenario is

fairly constant (walking action: 70mm, jogging: 77mm). Overall, HMS-MA(1-5)

using the optimal memory value, i.e. £ = 10 performs similarly to APF [89] and

H-APF [78] however the complexity of HMS-MA is significantly lower, as seen

in Table 6.4 and Figure 6.10. HMS-MA performs similarly to HMS, with the

additional advantage that action segmentation is automated.
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Figure 6.9: HMS-MA results for HEII-S2 walking and jogging actions. The grey
areas present the frames that the action classification process failed.

L | HEIIS2walk ] HEIIS2jog [ HEITS4walk | HEIIS4jog ] Comp. ]
APF 76 85 60 93 1000
H-APF* 75.2 75.2 81.8 81.8 500
HMS 63.1 80.9 62.5 102.4 130
HMS-MA 70 7 63 100 140

Table 6.4: Average error in mm and complexity (number of evaluations) for dif-
ferent configurations of APF and HMS (*the H-APF results are the
average of whole sequence).

120 . - i :
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¢ 80+ 4 800 o
£ E
~ 60f 600 B
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HEIIS2jog HEIIS4jog Comp

Figure 6.10: Average error in mm and complexity (number of evaluations) for
different configurations of APF and HMS.

Compared to HMS, HMS-MA requires an extra computational cost for
online action recognition, which is the cost of running HMS(1) for K — 1 activi-
ties. In the walking-jogging scenario the overall computational complexity (mean
number of observations per frame) increases by only 8% per frame in comparison

with the HMS method (Section 5.5). Overall, the added complexity is a linear
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function of the number of actions that are tested. HMS-MA pose tracking is not
expected to outperform HMS, because in the experiments of section 5.5 the ac-
tion label was considered known. Since recognition of the jogging action is highly

reliable (98%), it is not surprising that the performance of HMS-MA is similar to

HMS for the jogging part.

In the Figures 6.11 and 6.12 visual results for HEII-S2 using HMS-MA(1-

5) are presented using £ = 2.

In Tables 6.5, 6.6 and Figure 6.13, pose tracking results using the HMS-
MA(1-5) method for every subject (6 to 10) and every action are summarised,
using £ = 1 and £ = 2 respectively. The total average difference from [86] for all
the subjects is 16mm for £ = 1 and 12.6mm for £ = 2. Similarly, to the previous
results, higher action classification success rate using £ = 2 (section 6.5.4) leads

to more accurate pose tracking results.

To place our performance in context, we consider that in the evaluation
of [86], which produces the “ground truth” measurements, a “true positive joint”
is considered when the Euclidean distance of the estimated joint from the real
one is within 100mm. In addition, according to the analysis in [46], the depth
resolution and the standard deviation of depth error of Kinect is 25mm and 14mm
respectively, when the object is at 3m distance from the sensor, which is the case
for the subjects in the G3D dataset. Therefore, we can claim that the accuracy
of HMS-MA is comparable to [86], since the difference of performance is within

the statistical error of depth measurements.

In Figure 6.14 we see the error in mm for every frame, for subjects 6 to
10. The colour dashed lines specify the different action types, according to the

ground truth, while the colour dots on the horizontal axis represent the estimated

action for every frame.
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Figure 6.11: Results using HMS-MA(1-5) at HEII-S2 subject. Left and right part
of the estimated skeleton are shown in red and blue respectively.
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Figure 6.12: Results using HMS-MA(1-5) at HEII S2 subject. Left and right part
of the estimated skeleton are shown in red and blue respectively.



])1111(-11 right | punch left | kick right | kick left ’ defend ] total [
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sub6 29.7 43 71.2 42.6 277 1229 |
| sub7 19.5 14.3 19 16.6 221 | 14.5
| sub8 | 24 18.4 22.6 22.8 156 | 14.8
sub9 | 16.5 15.1 25.8 21.4 10.8 | 13.2
| sub10 14 18.6 32.2 28.4 323 1126 |
total 20.5 21.5 353 | 26.1 219 | 16
Table 6.5: Average error results in mm per action using & = 1.

O

| punch right | punch left | kick right { kick left ‘ defend i total ‘

sub6 | 228 [ 199 [ 206 15:5 244 [ 14.6
sub7 | 183 | 148 | 217 158 | 20.1 [137
sub8 | 18 T R R Y 14.1 16.5 | 13.1
[ sub9 | 165 151 | 258 21.4 10.8 | 13.2
sub10 11.3 145 | 26.1 372 11.2 | 86
| total [ 17.3 163" |7 223 18.8 16.6 | 12.6

Table 6.6: Average error results in mm per action using £ = 2.

Error (mm)

S N N w w H
W O O O O ©
T T . =3 T T

punch right

punch left

kick right

kick left

defend Kinect resol.

Figure 6.13: Average difference from [86] for G3D dataset in mm per action.
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Figure 6.14: Results using HMS

according to the

-

ground truth. The colour dots on the horizontal axis represent the

black-punch right, red-punch left, blue-kick right, magenda-kick left,

estimated action for every frame. The following colour code is used:
green-defend.
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In Figure 6.15 we see the error per frame for the HMS-MA method ap-
plied in G3D subject 9, using HMS-MA(1) and HMS-MA(1-5). We can see that
the error when we use all the levels of the hierarchy is lower that when we use
only the first level. Therefore while HMS-MA(1) is used to recognise the action of
every frame, HMS-MA(1-5) is more accurate to estimate pose. A visual example
of this is given in Figure 6.16. In the left image a pose is estimated using HMS-
MA(1) and in the right using HMS-MA(1-5). The HMS-MA(1-5) estimation is
more accurate than the one provided by HMS-MA (1), since HMS-MA(1-5) is able
to adapt to stylistic difference between samples in the training and the testing

datasets.

| ——HMS-MA(1-5)
——— HMS-MA(1)

Error (mm)

- 1 - 1 1 1
150 200 250 300 350 400 450 500
Frame number

Figure 6.15: Results for G3D subject 9 using HMS-MA(1) (red) and HMS-MA (1-
5) (blue) methods.

HMS-MA(1) HMS-MA(1-5)

Figure 6.16: Depth map and the pose estimation using HMS-MA(1) (left image)
and HMS-MA(1-5) (right image).

In the Figures 6.17 we see visual results for G3D subject9 using HMS-



MA(1-5).

Figure 6.17: Results using HMS-MA(1-5) at G3D dataset subject9.

6.6 Discussion

In this chapter we presented a novel human pose tracking methodology for multi-
activity scenarios called HMS-MA. The HTLE method is used to generate a set of
hierarchies of manifolds. Each hierarchy represents a single activity. The HMS-
MA method is applied to these hierarchies in two stages. First, the action of
every frame is recognised, and then the pose is estimated, based on the result
of the first step. The HMS-MA is applied in publicly available datasets, and
results demonstrate the ability of the method to deal with multi-activity scenario

problems in pose tracking and online action recognition.

TLE has been used before for action recognition [52], by comparing a
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whole sequence with the manifold in low-dimensional space, in an offline manner.
On the other hand, HMS-MA is able to produce frame-based action recognition

results and use them for online pose tracking problems.

The system is equipped with short memory to improve online action
recognition results. The size of the memory is represented by a single variable,

whose value depends on the frequency and the speed of actions.

The HMS-MA method extends the HMS-HTLE methods in order to deal
with multi-activity scenarios. The extra complexity of the action recognition step
that is required in HMS-MA is relatively low compared to the original complexity
of HMS-HTLE. In addition, the accuracy of HMS-MA is similar to state-of-the-art

methods [24, 77, 29, 27], but with significantly lower complexity.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis we have proposed novel generative 3D human pose tracking meth-
ods for single and multi-activity scenarios. The pose tracking problem is very
challenging because of the complexity and the high-dimensionality of the hu-
man posture. We proposed solutions that may achieve accurate results with

low-computational cost, compared to other generative methods.

In order to constrain the search of the optimal pose, we use dimension-
ality reduction methods in order to learn low-dimensional models from training
datasets. In particular, we selected TLE as the base dimensionality reduction
approach, as it is able to suppresses stylistic variation and produce compact

manifolds which may be considered almost 1D in most cases and therefore are

suitable for fast exploration.

However, such results are constrained by the training dataset and may
not accurately match the potential style of the observed sequence. In order to

move beyond this constraint and generate poses that correspond to unseen stylis-

114
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tic variations of actions, we represent human poses using multiple levels, e.g. two
levels in MPLC and five levels in HMS-HTLE. Searching through those structures

is driven by the observation function, so to minimise the computational cost of

the method.

In addition, we intentionally avoid using particle filtering because of its
high computational cost. Instead, fast deterministic gradient-based optimisation
methods are chosen. Generally in gradient-based optimisation, results depend
on how close the global optimal solution is to the initial pose, because searching
may be trapped to a local optimal. Our methods search through multiple levels

to reduce this effect and result to better accuracy.

Finally, we deal with multiple-action scenarios by combining pose track-
ing with online action recognition. Specifically, a short memory action recognition
method is used to assigned an action label on each frame. Such a memory mecha-

nism allows generating a smoother and more accurate representation of actions.

In Chapter 4, the MPLC pose tracking method was presented. Firstly, in
the MP stage, the observation pose is compared with the model hypothesis con-
strained by a TLE low-dimensional manifold to avoid divergence of pose tracking.
Secondly, the LC stage deals with the problem of stylistic variations of human
activity by refining each limb individually. The LC method is triggered to search

for the optimal position of only the body parts that have erroneously determined

during the MP method.

In Chapter 5, the HMS-HTLE pose tracking method was presented.
First, HTLE, a novel hierarchical dimensionality reduction method, was intro-
duced. HTLE generates a hierarchy of manifolds from a single action training
dataset, based on the hierarchy of human body. HMS searches efficiently through
the HTLE hierarchy, driven by the observation function. Since searching is mainly

performed in compact TLE manifolds, a low number of evaluations is sufficient



116

for each level. HMS-HTLE is able to combine sub-poses from different manifolds
to represent unseen poses. The result is a human pose in which the individual
body parts are generated independently, which may have not seen in the train-
ing dataset. The HMS-HTLE method improves the results of the human pose
tracking problem when compared with the MPLC method, as it searches through

more levels than MPLC.

The previous pose tracking methods may only be applied in single-action
scenarios. In Chapter 6, the multi-activity 3D pose tracking method HMS-MA,
was presented. The HTLE method is used to generate a set of hierarchies of man-
ifolds and each hierarchy represents a single activity from the training dataset.
When inferring unseen sequences, firstly the action of every frame is recognised.
A short memory mechanism is used to provide reliable online action recognition
results. Then, the hierarchy of manifolds that corresponds to the recognised ac-
tion of the specific frame is searched for estimating the pose, as in chapter 5.
HMS-MA is able to produce accurate pose tracking results in multi-activity sce-

narios without significantly increasing the computational cost, in comparison to

HMS-HTLE.

7.2 Future Work

A challenge in pose tracking problems is to minimize the computational cost
without affecting the accuracy of the method. The pose tracking methods which
were presented in this thesis have low complexity, compared to other generative
methods. However, the high-computational cost of calculating the observation
function, prevents their use in real-time applications. Therefore, one future di-
rection could be on optimising the algorithm of comparing the candidate pose to
the input observation and on implementing the algorithm on a real-time platform

(e.g. C/C++ using dedicated hardware).
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One of the issues that were not investigated in this thesis was the smooth-
ness of the sequence of estimated poses. Results from many pose tracking methods
suffer from jitter, which is undesirable for some applications (e.g. virtual replay),
as it causes a final outcome that looks unnatural. Therefore, future work could
investigate techniques, such as dynamic models and operators, to smooth the

sequence of estimated poses, which look natural.
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