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Abstract

In this thesis we propose novel methods for accurato markorless :~D pose track-

ing. Training data are used to represent specific activities, using dimensionality

reduction methods. The proposed methods attempt to keep the computational

cost low, without sacrificing the accuracy of t.he final result. Also. we deal with

the problem of stylistic variation between the mot ions S('(,l1 in the t raining and

the testing dataset. Solutions to address both singl« aud mult iplo ac-tion s("('wlrios

are presented.

Specifically, appropriate tern poral non-linear dimcusionali ty rod uct ion

methods arc applied to learn compact manifolds that are suitable for fast explo-

ration. Such manifolds are efficiently searched by Cl deterministic gradient-based

method.

In order to deal with stylistic differences of human actions. we represent

human poses using multiple levels. Searching through multiple levels reduces t 11<'

effect of being trapped in Cl local optimal and therefore leads to higher arruracy.

An observation function controls the process to minimise the computational cost

of the method.

Finally, we propose a multi-activity pos(' tracking methods, which com-

bines action recognition with single-action pose tracking. To achieve reliable

xviii



xix

online action rccoguit.ion. the system is oquippod wit h short tuomorv.

All met hods are tested ill publicly availa 1>1<\ da tas<'ts. Rosul ts demon-

strate their high accuracy awl relative low «omputat.ioual cost , ill comparison to

state-of-the-art methods.
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Chapter 1

Introduction

1.1 Context and Overview

In recent years, technology has become human-centric by evolving ways by which

humans interact with electronic devices. Toueli-scroen interact.ion. ovr- tracking.

gesture recognition are examples that demonstrate tho central role of lnunans ill

modern technological applications.

A rapidly growing research area in computer vision is art iculat cd human

motion analysis, not only because of the methodological challenges that are im-

plied, but also because of its many applications. As described by Mooslund et al.

[64], there are three categories of applications: surveillance. control, and analysis

(Figure 1.1).

Surveillance applications aim to automatically uudcrstand lnuuan mo-

tions for monitoring and security reasons (Figure 1.Ie), such as rccognit ion of

unlawful activities, elderly people fall detection, etc, Control applications al-

low the user to interact with a device through physical gestures and movements,

e.g. in games or virtual reality (Figure i.n». Finally, analysis applications aim

1
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to specify characteristics of articulated motion, o.g. sports analysis applications

(Figure 1.1a).

Articulated human motion analysis consists of POS(' estimation, pose

tracking and action recognition methodologies. POS(' ost.imat ion (kals with {'s-

timating the skeletal position of a person for a single image. Pose tracking aims

to find the sequence of human poses in video footage. Pose' tracking normally

exploits the temporal coherence between consecutive frames, and, therefore. may

be more accurate than pose estimation. Finally, action rccoguit.ion aims at clas-

sifying the type of action of a human being,

Marker-based approaches have been used for pose tracking applicat ious.

Motion capture systems are used to provide the :3D position of a set of markers

using mechanical, electro-magnetic or optical features. The results are accurate.

but the invasive nature of technical equipment limits the applications to rout rolled

environments. Marker-based approaches have been used in tho movie' industry

(Figure 1.1a), where the pose is estimated and is used for featuring a virtual

person or subject. Also, marker-based techniques have been popular for analysing

human articulated motion in sports analysis applications.

Markerloss approaches do not require subjects to wear special equipment

for tracking. Human pose tracking methods that rely on markerlcss approaches

are generally desirable because of their non-invasive nature. which significantly

widens their potential application. Multi-camera systems arc able to mitigate

the complexity of markerless approaches and to deal with the inevitable limb

occlusions. In addition, depth sensors, such as Microsoft Kiuect , an' easy to

install and use while the captured depth information call be utilised efficient ly

for 3D pose estimation and tracking.

In this thesis we propose methods for accurate markerk-ss 3D pose' track-

ing, where human motion is recorded by multi-camera systems or by the Microsoft
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Kinect device. Training data is used to represent specific activities such as walk-

ing, jogging, punching and kicking, using non-linear dimensionality reduction

methods. The proposed methods attempt to keep the computational cost of pose

tracking low, without sacrificing the accuracy of the final result. Also, we deal

with the problem of stylistic variation between the motions seen in the training

and the testing dataset. Solutions to address both single and multiple action

scenarios are presented.

(a)

(b)

(c)

Figure 1.1: Motion analysis examples a) MoCap data for 3D
(www.awn.com) b) Microsoft Kinect u es in
(www.kinectwindows.org) c) Surveillance applications [12].

movies
medical
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1.2 Aim and Objectives

The aim of this thesis is to deal with the problem of markerless 3D human pose

tracking in single and multi-activity scenarios. We assume that the input to

our system is either synchronised video sequences captured by multiple cameras,

or synchronised sequences of RGB and depth images acquired by the Microsoft

Kinect device, as shown in Figure 1.2. In addition, some offline data is provided

for the training of the system. The output of pose tracking is a sequence of 3D

poses, one pose for each set of synchronised input frames.

!
_-.=.c j. _ ...

- .;1-.-

(..... , -:~. ··or

• I .,

Figure 1.2: Input data and output 3D pose for pose tracking method.

The high dimensionality and non-linear space of human postures make

the estimation of the optimal pose solution both difficult and computationally

expensive. In this work, both the accuracy and the computational complexity

will be considered in the evaluation of methodologies.

A specific aspect of the human pose space is the variety of human activi-

ties. While many markerless motion capture systems focus on a specific activity,



3D pose tracking in multi-activity scenarios is a rhallongiug problem. which is

investigated here.

Another aspect of tho complexity of th« lnunan pose space is attributed

to the stylistic differences of activities. as performed by various humau subjects.

Such stylistic variations may bp affected by anatomical. environmental. c-ultural

or other differences. Therefore. a specific requirement for the proposed mer hod-

ologies is the ability to track poses that may be stylistically different from any

training data.

1.3 Contributions of this Thesis

The main contributions of this thesis are as follows:

• A novel 3D human pose tracking method for a specific action (:\ [PLC):

Firstly. the Manifold Projection (MP) module searches ill low dimensional

space for the optimal pose. In order to move beyond the boundaries of the

training dataset and generate new poses, the Limb Correction (LC) modulo

is used to provide an improved pose estimate by refining individual limb

poses. The novelty of the l\IPLC method is that combines the aclvaut ages

of NIP and LC; therefore, highly accurate and precise results are derived

with low-computational cost .

• A novel hierarchical dimensionality reduction method (HTLE). and a tai-

lored hierarchical 3D human pose tracking method for et specifi« action

(H:\IS): The HTLE approach allows for modelling each level of a posture

hierarchy separately, thus representing unseen poses. Furthermore, H~IS

efficiently searches for optimal poses through the hierarchical structure of

HTLE.
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• A novel 3D human pose tracking method for multi-act ivitv scouarios (H'\IS-

'\IA): 1\1ultiple activities arc modelled by mulr iple hierarchies of manifolds.

generated by HTLE. For every frame of unseen video footage. H1\IS-'\IA

performs both pose tracking and action roroguition. Specifically. all online

action recognition method is used to [educe the problem to singlo-ar-t.iou

pose estimation. Then. the pose is estimated based OIl tho matched hierar-

chy of manifolds.

1.4 Structure of Thesis

In Chapter 2. an overview of previous work on human motion analysis. focusing

on research related to this thesis, is discussed. The pose estimation and tracking

category of human motion analysis relies on two main categories: discruniuat ivc

and generative approaches. The two categories arc discussed awl «omparod in

terms of applications, advantages and disadvant ages ill pose' tracking svstorns.

Finally, dimensionality reduction methods and their application ill human pose

tracking are presented.

In Chapter 3, background information that is important in the context

of this thesis is presented. First, a description and the internal parameters of the

devices that are used are discussed. Then, the datascts that an' used to validate

the contributions to the thesis are presented. After that, a 3D human body model

is introduced. Finally, the generation of an observation function from t IH' input

data is presented.

In Chapter 4, a novel 3D human pose tracking method, Manifold Projec-

tion - Limb Correction (MPLC), is presented. First, a low-dimensional manifold

is generated from a sequence of poses of a given training dataset. ThE' manifold

represents a specific action and is created using the TLE dimensionality roduc-
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tion method. Then, the MPLC method is applied in order to track a S('qW'Il(,(' of

poses of a human action. This action is the same type as tho training dataset.

The ;\IP method is applied in order to search in the low-dimensional span' for

the optimal pose. A deterministic optimisation met hod is used to avoid compu-

tationally expensive particle filtering methods. TIl<' result of the l\IP method is a

3D human pose that is constrained by tho training dataset. In order to evaluate

unseen poses beyond the training dataset. the LC method is applied. The Le

method first uses a criterion for detecting the body parts that haw failed dur-

ing the .\IP method. and then searches for those parts in the high dimensional

pose space. The MPLC method is compared with the particle filter mot hod in Cl

publicly available dataset.

In Chapter 5, a hierarchical 3D human pose tracking framework is pre-

sented. First. the hierarchical dimensionality reduction method, Hierarchical

Temporal Laplacian Eigenrnaps (HTLE), is introdurcd. HTLE 11S('S a training

dataset for a human action to generate a hierarchy of manifolds in low-dimensional

space. Moreover, the novel human pose tracking method, Hierarchical Manifold

Search (H1\IS). is applied to estimate efficiently the position of the corresponding

body parts. H.\IS searches into the hierarchy generated by HTLE. At every level

of the hierarchy, different sets of joint body parts are tested. Such a hierarchy

provides increasing independence between limbs, allowing higher flexibility awl

adaptability that result in improved accuracy. Finally. evaluation using pub-

lic datasets demonstrates our approach outperforms state-of-t he-art g('Iterativ('

methods in terms of accuracy and computational cost.

In Chapter 6, the methodology of H~IS is extended to cope with multi-

activity scenarios (HMS-~IA). The HMS-MA uses the H~IS method for searching

in different hierarchies of manifolds. Every hierarchy represents a single activity

generated by HTLE. The optimal pose for the first level of the hierarchy chara«-

terises the action type. Then the HMS method is applied for the rest of the levels



of the chosen hierarchy. Finally. the Hi\IS- i\IA met hod is evaluated usuu; two

types of public datasets derived by either multiple RGI3 cameras or tho Killed

device.

Finally, in Chapter 7, conclusions and futuro work are prosoutcd.



Chapter 2

Literature Review

2.1 Introduction

This chapter presents an overview of previous work on human motion analysis,

focusing 011 research related to the work presented in the following chapters. Mor«

analytic reviews of the literature can be found in a number of review papers, P.g.

[5. 63. 64. 75. 74, 112, 92].

Human motion analysis methods have been categorised in three main

classes: pose estimation. pose tracking and action recognition. Pose estimation

and pose tracking aim at estimating the skeletal position of a person (body pose)

for a single frame [39, 7, 108, 42, 65. 62] and a sequence of frames [1. 2. R7]

respectively. Action recognition aims at classifying the typo of action of a human

being. In the following sections, we focus OIl the literature review of t 11<' pose

estimation and tracking methodologies. In the last section Cl discussion about the

methods presented is given.

9
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2.2 Pose Estimation and Tracking

III this section t he pose estima tion and pose' t racking ca tc'goriC's of lnuuan lllO-

tion analysis are presented. Human pose ost ima t ion doals wit It t1)(' problem of

determining the 2D or 3D coordinates of human body parts from Cl single image.

Similarly. human pose tracking deals with tho problem of determining the loc<t-

tions of human body parts from a sequence of images (frames). Consequent lv,

pose estimation is often integrated within a pOS(' tracking framework. Pose track-

ing contributes towards a partial solution to the human motion analysis problem

by using past information to estimate the current }>os('in a more efficient way.

Tracking exploits the temporal coherence of video seqncnrcs to estimate pose

parameters over time. However, due to the complexity of human actions. t lu-

localisation of each body part separately is Cl c-hallenging t ask. A huma n pose

estimation method may be applied in Cl tracking scenario but without using the

temporal coherence. That is, however, firstly, computationally expensive brxauso

in every frame the pose estimation method has to search all the space for the

correct pose, and. secondly. there is a loss in accuracy as the information of

the previous frames is not being used, e.g. in corrupted framos or frames with

limb occlusions. Overall, pose tracking is faster and more accurate in tracking

problems but pose estimation can by used for initialisation.

There are two main classes of human pose estimation and tracking mot h-

ods [74]: discriminative (model-free) and generative (model-based) approaches.

Generative approaches use an a priori human body model to generate pose' hy-

potheses. From the input data an observation is produced. The' pose hypothesis

is compared with the observation using a likelihood or observation function. Dis-

criminative approaches do not use an a priori model, but use a mapping function

instead which directly compares the observation space to t 11<'pOS(' space.
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2.2.1 Discriminative Approaches

Discriminative or model-free approaches model and predict human poses directly

from observation. An explicit human body model is not required for these nu-t h-

ods. Instead. a mapping function from image' space to post' spac('. learnt from

selected training data. is givon. Discriminative approachos can he used for ini-

tialisation because they do not need a pre-defined human model. Therefore. t hov

have the ability to automatically reinitialize in Cl tracking application. Discrimina-

tive approaches can also deal with poses with less information, «.g; frames with

limb occlusions or missing parts. This make's thorn appropriate for monocular

applications. There are two main classes for discriminative estimation: learning-

based and example-based [74].

2.2.1.1 Example-Based

In example-based approaches [70, 81, 73] a large database of exemplars is used

that describe poses in image space and pose space. Applying an observation

function. the optimal matching image is used to give the associated pose'. TIl£'

image descriptors that can be used vary in the literature, usually image descriptors

based on edges [3, 70. 94] or silhouettes, [41, 30] or a histogram of oriented

gradients (HOG) [76,73]. Also, the number of cameras is an important parameter.

The accuracy of the pose estimation increases with the number of CHnH'raSthat

are used [37]. A drawback of example-based approaches is that, for the provision

of satisfactory accuracy and generalization properties. they require t 11(\ storage

and searching of large training datasets [GG].Previous works [8S] addrcssod this

problem using locality sensitive hashing (LSH) for faster retrieval of matching

exemplars.
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2.2.1.2 Learning-Based

In learning-based approaches [1. 4, 94] a continuous mapping is learned between

image space and pose space using training data. Agarwal et al. [1] uso hot h

regularized least squares and relevance vector machine (RV.\[) [WO] to 1-!;<'IH'rat<'

a mapping between histograms-of-shape-coutoxts awl POSt'. Rosales pt al. [82]

cluster the training data by generating several forward mapping functions from

image to body pose parameters and all inverse ina pping function using specialized

rnapping architect ure (Slvl A), a nonlinear learning model. Dimensionali ty rod uc-

tion methods are often used to learn the mapping between the image' spac(' awl

pose space. For example. Elgammal and Lee [31]. ill order to learn a non-linear

manifold from datasots, usc the local linear embedding (LLE) dimcnsionalitv re-

duction method. Grauman et al. [37] describe a distribution over hot.h multi-view

silhouettes and 3D joint locations with Cl mixture of probabilistic Principal Com-

ponent Analysis (PCA). The main problem that they address is tile gellPratioll of

the mapping between image and pose. and the ability to «ounoct the two spaces.

An advantage of learning-based approaches is that the training dataset is repre-

sented through the mapping; therefore, there is no Heed for storage and searching

of large training datasets, as in the example-based approaches. However. the ac-

curacy of discriminative approaches, either example-based or learning-based. rolv

on the similarity between the unseen poses and the training dataset [110]. For

this reason. the selected training dataset must be carefully selected to match the

testing scenario.

2.2.2 Generative Approaches

The generative or model-based approaches use a human body model to «om-

pare the input image observation with the pose hypothesis using all observation

function. The hody model is projected into the image observation and tho aim



is to maximise the observation function between the hypot hesis and t IH' obser-

vation. The model that can be used varies from :3D kinematic t rrx: [.'>7.10] to

individual limbs. like cylinders [29]. blobs [20, 19] or suporquadrirs [:34]. The

high-dimensional space of the parameters of the human body model makes the

problem quite complicated and computationally expensive. osprx-ially for POSt'

est imation. Therefore. generative approaches are used for tracking tasks where

pose is initialised for the first frame of the sequence. This gives the advanr ag('

of searching for small changes in every frame. On the other hand. generative

approaches seem more suitable than discriminative approaches for multi-r-amcrn

scenarios and produce more accurate tracking results. especially when the testing

dataset differs significantly from the training dataset [9, 1L H9]. TIH'[(' an' two

main approaches for model-based estimation. top-down awl bottom-up [74].

2.2.2.1 Bottom-up

In bottom-up approaches, individual body parts aro found and then brought

together into a human body. For every part all observation function is dofinod in

order to compare the image space with the model parts. Mori et al. [67] perform

image segmentation based on contour, shape and appearance CUI'S. The data set

that is used is a collection of sports news photographs of baseball players. varying

dramatically in pose and clothing. Features like colour. c-orners or ('dges arc used

to detect body parts. Similary, Ren et a1. [80] detect candidate body parts using

the assumption that parts of the human body can be characterized by a pair

of parallel line segments. Sigal et al. [91] propose a body model ill which tho

limbs have elastic connections. For every node a likelihood funrt.lon is defined.

The tracking method takes into account the constraints awl the observations to

estimate the distribution over the parameters. Bottom-up approaches have t ho

advantage that no initialisation is needed for pose tracking problems. A drawback

of bottom-up methods is that many false positives appears on an image, as there
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are many regions in an image with limb-like appearance.

2.2.2.2 Top-down

In top-down approaches an a priori human body model is used. The modol is

predefined based on the application and the S("OI)(' of the task, and different body

parts may be used. The problem is to match the hypothesis of the human bodv to

the image observation. Because of the high dimensional space of the human body

model and the high number of degrees of freedom between body parts, the top-

down approaches are computationally expensive. For that reason, the proble-ms

are limited in the human pose tracking tasks, so the previous pOS(' «an limit t hp

searching space for the next prediction. Searching in Cl local area call giv« good

results. but it is still computationally expensive [:35, 16].

To deal with this problem, gradient descent optimisation algori t Inns have

been used. For instance, Delamarre and Faugcras [2G] use gradient desc('nt and

physical forces between extracted silhouettes and the projected model. Those

forces guide the minimization of the differences between t he pose' of tho 3D model

and the pose of the real object in the video images. However. met hods based 011

gradient descent optimisation algorithms may fail to find the global optimum

solution, as they may converge to a local optimum, On the other side, methods

based on Kalman filtering (KF) [45, 36] and particle filtering [28, 43] usc' Cl dy-

namic model to predict the current pose, based on the motion history. In order

to avoid local optimum traps, multiple hypothesis tracking is adopted. In such

approaches, multiple pose hypotheses are evaluated and propagated. cit her by a

set of Kalman filters [21] or by particle filter (PF) [8]. Clam et al. [21] represent

the modes of the state distribution as a mixture of a few Gaussian functions. The

particle filter method uses multiple random predictions (particles). obtained by

drawing samples of pose and location priors, then propagating t hem using t he
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dynamic model. which is refined by comparing them with til!' local illla).!;('data

using the likelihood. However, the high dimensionality of this spac:o makes it

difficult to sample the solution space efficiently [89] and prevent divorgoucc.

Deutsher et al. [29, 27] proposed an annealed particle filter (APF) that

improves the efficiency of the particle filter in order to search tho high dimensional

human pose space. APF attempts to recover the single pose that maximises t he

observation function. The algorithm employs Cl number of re-sampling stag('s

or layers each time. According to a comparative study, [89], APF outperforms

all other competitors and is considered state of the art. A drawback of particle

filters is that satisfactorily accurate solutions may only 1)(' roached by deploying

a large number of particles and, therefore, a large number of evaluations of the

observation function arc performed [89. 11J, which inc-reases the complexity awl

computational cost of pose tracking.

2.2.3 Dimensionality Reduction

In order to deal with the high complexity of modeling articulate human motion.

dimensionality reduction methods have been used in either discriuiinative or gen-

erative tracking pipelines. Dimensionality reduction is defined as the process

of reducing the number of dimensions of a set of data points in Cl high dimen-

sional space to a meaningful and compact representation of a reduced dimensional

space.

Linear dimensionality reduction techniques weru applied for human pOS('

tracking. Ormoneit et al. [71]11se Principal Component Analysis (PCA) awl par-

ticle filter for tracking cyclic motion actions. Urtasun et al. [102] used PCA in

combination with a simple hill-climbing optimisation method to avoid comput.a-

tionally expensive multi-hypothesis probabilistic methods. Similarly, Sidenbladh

et al. [88] use PCA and local optimisation for human pose tacking. However. lin-
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ear dimensionality reduction techniques fail to model properly the' nou-Iiuearitv

of human motions.

In order to deal with this problem, non-linear dimonsiouality roduc-tion

techniques have been suggested for pose tracking problems. Nou-Iiuear dimcn-

sionality reduction techniques are grouped into two categoric's: embedded-based

and mapping-based approaches.

Mapping-based approaches employ probabilistic nonlinear Fuuc.t.ious ill

order to map the embedded space on the data space. In this category. methods

like Gaussian Process Latent Variable Model (GPLV~I) [48.40] and Scaled Gaus-

sian Process Latent Variable ~Iodd (SGPLV~I)[:l8. 48] arc iucludod. A drawback

of mapping-based approaches is the high computational cost of till' learning pro-

cess, which limits their usage to small datasets [5:3].

Tian et al. [99] USf' GPLV~I and particle filtering for 2D body pose

tracking. This method is able to track poses that an' similar to t IH' pose's in

the training dataset. Therefore, the method may fail when the poses deviate

significantly from the training data. Urtasun et al. [104] use SGPLV.\I to learn

prior models of human pose for pose tracking of two motions: golfing and walking.

The SGPLVM is used because the manifold can be learned from a much smaller

amount of training data than by using competing techuiqucs such as LLE [31].

LE [93]. Darby et al. [25] use GPLVM and APF for the POS(' tracking of unknown

human motions to reduce the computational cost of tho APF method.

Embedded-based or spectral approaches provide an ost.imato of t 11<' st rue-

ture of the underlying manifold by means of approximating each data point ac-

cording to their local neighbours on the manifold. Embedded-based approaches

can learn the non-linear mapping from the pose space to low-dimensional space.

but they cannot be inverted. However, they can handle large and high dimon-

sional datasets with an acceptable computational cost. In this category. met hods
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like Isometric Feature Mapping (Isomap) [98]. Locally Linear Enihcdding (LLE)

[83], Laplacian Eigenrnaps (LE) [13] are included.

The inverse mapping from the embedding spaco to tho full pose spa('(' is

required for evaluation of the observation function of the full pose represe-ntation.

A possible solution of this is to first learn the embedding space awl then do the

inverse mapping. Wang et al. [111] used Isometric Feature Mapping (Isoinap) for

learning the embedding space and a method based on nearest neighbours to learn

a mapping of the full pose space. However, this mapping is generally discont.iu-

uous and therefore inappropriate for continuous optimisation. Elganunal et al.

[31] used LLE to learn activity manifolds from visual input data. and to learn

mapping functions between manifolds and both visual input spac« awl :3D body

space using the Generalized Radial Basis Function (GRBF) [72]. Lewandowski

et al. [53] used an unsupervised Radial Basis Function network (R BF~) in order

to generate mapping functions between low and high dimensional spacos.

Sminchisescu and Jepson [93] used LE to learn the embedding and Co-

variance Scaled Sampling (CSS) [95] for tracking. Lu et al. [5G]uscd the Laplacian

Eigenmaps Latent Variable Model (LELVM). an extension of LE. to produce a

probabilistic latent variable model and the Gaussian mixture sigma-point particle

filter (G1ISPPF) [106] for pose tracking by using monocular video.

Since human Illation may be described by time series, tho temporal de-

pendencies between consecutive poses can assist human pose tracking. TIH'se

temporal constraints ensure that points that are close in time will 1)(' closo in t hp

low-dimensional space. Spatio-temporal Isomap (ST-Isomap). [44] an extension

of Isomap, changes the original weights in the graph of local neighbours in or-

der to emphasize the similarity between temporally related points. Also. Back

Constraint GPLVM (BC-GPLVM) [49] uses temporal coherence constraints to

generate smooth mapping between spaces. Gaussian Process Dynamical Mod-
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els (GPD~I) [108] integrate time information using Caussian Process priors to

represent dynamics in the low-dimensional space.

Urt.asuu et al. [103, 105, 104] use GPD~I for learning lnunan pose's and

motion priors for 3D people tracking. They formulate' t lie met hod as a nonlinear

least-squares optimization problem. Hou et al. [40] use I3C-GPLV:\f, which make's

particle propagation more efficient. However. most of t hest' mot hods are person

dependent: that is. they are not able to officiont.ly track new people and their

corresponding style from the training set and. thoreforo. the nppliea hili tv of til!'

method is reduced.

Alternatively, Temporal Laplacian Eigoumaps (TLE) [5:3] was sperificallv

designed to address the issue of modelling activities of different people by sup-

pressing their stylistic differences ami producing a coherent manifold. As se('n ill

Figure 2.1, TLE is able to suppress stylistic variation and product, more compact

manifolds which may be considered almost 1D ill most cases and, therefore. is

suitable for fast exploration. Moreover. the low-computational cost and the gen-

eralisation abilities make it appropriate for larger datasots. On the other hand.

Rincon et al. [58] proposed a similar method, the Generalised Laplacian Eigen-

maps (GLE), that explicitly represents stylistic variations using extra dimensions.

They control the balance between the temporal and repetition temporal neigh-

bours by introducing a weighting factor. Low values of it discard the stylistic

variations and high values discard temporal information. Since TLE is adopted

in this thesis, a further discussion is presented in section 4.2.1.

Hierarchical dimensionality reduction techniques haw boon proposed to

extend the pose space by decoupling the motion of individual body parts. which

allows them to deal with unseen activities. First, a hierarchy of the human

body model is defined and then a dimensionality reduction method is applied

at every level of the hierarchy. An example of hierarchical dimcnsioualitv 1'('-
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(a) (b) (c)

(d) (e) (t)

Figure 2.1: Low-dimensional space for walking action (2 subjects ) using a)
Isomap, b) BC-GPLVM, c) LE, d) ST-Isomap, e) GPDM and f) TLE
[54].

duct ion method is the Hierarchical Gaussian Process Latent Variable Model (H-

GPLVM) [50]. The H-GPLVM is an extension of GPLVM with a hierarchical

low-dimensional space representation.

H-GPLVM has been used to create a hierarchy of manifolds trained us-

ing different activities [77, 24]. Darby et al. [24] used H-GPLVM for training

two different activities and the APF method to search for poses that result from

combinations of these activities. Using this learnt hierarchical model for multi-

ple activities they can recover novel poses joining activities. An example of that

is given training data for a person walking and a person standing and waving;

they are able to detect a person who is walking whilst waving. The hierarchy is

able to detect the upper body for the first training action and the lower body

for the other one. The combination of those two actions can give novel poses

for the training datasets. Similarly, Raskin et al. [77] presented the Hierarchical

Annealing Particle Filter (H-APF) method, an extension of the Gaussian Process

Annealed Particle Filter (GPAPF) method. They use the H-GPLVM nonlinear

dimensionality reduction method to generate a hierarchy of manifolds in the low-

dimensional space, and the APF method to generate particles in the latent space.

In addition, H-GPLVM has been used in multi-activity scenarios, where the ac-
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tion of every frame is estimated before pose estimation. Specifically. t.1H' HV(,I"<:lg('

distance between the estimated pose points and tilt' action manifold is calculated

using Frechet distance [6]. The model with the smallest distance was chosen to

represent the type of the action. The advantage of these hierarchical approaches

is that Il('W poses can be generated where individual body part postures origi-

nally belonged to different activities. However. their main drawback is the high

computational cost. since APF is used to search through the whole hierarchy.

2.3 Discussion

In this thesis we deal with the problem of :3D human POSt' tracking. \Iore spocif-

ically, we use generative top-down approaches in order to achieve high accuracy.

As the top-down approaches are computationally expensive, we lise non-linear

dimensionality reduction method in order to address the high complexity of ar-

ticulate pose space.

\,ye explicitly select the temporal dimensionality reduction met hod TLE

[53] to take advantage of the temporal dependencies between consecutive poses

in the training dataset. TLE is also used because it is able to product, compact

manifolds that may be searched efficiently. However, the drawback of using low-

dimensional manifolds is that they are unable to model stylistic varia tious that

are not present in the training dataset, [73], therefore accuracy may he low when

pose tracking is applied to sequences of unseen subjects.

Hierarchical extensions of dimensionality reduction [77, 24] are ahle to

represent stylistic variations that have not been seen in the training dataset and.

therefore. improve the accuracy of pose tracking. In addition. at the cud of the

pose search constrained by low-dimensionality manifolds, an extra search step

of refining the pose of individual limbs in the original high dimensional spare is
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adopted. Pose sC11[(;hthrough different spaces is driven by an obsorvat ion function

to minimise the computational complexity of tho proposed methods.

Although particle filters are popular in generative pose tracking pipolinos

[29. 27. 77. 43. 28]. their computational cost is wry high. as they generate a

large number of random hypotheses to estimate the optimal pose'. Alternatively.

this thesis adopts the use of deterministic gradient -based opt imisat iou trx-hniqncs

to improve the efficiency of the proposed methods, Although such ttxhuiquos

may be sensitive to initialisation and may be trapped in local optima. ill our

approach searching is performed through different spaces, therefore t 11<'df<~ct of

local optima is reduced.

Finally. multi-activity pose tracking is addressed by «ombining art ion

recognition and single-activity pose tracking. The characteristic of TLE of sup-

pressing stylistic variations has already been exploited in offline action rrx-ognir ion

applications [54. 52]. In this work, an online action recognition is based 011 TLE

along wit h a short memory of observation functions to assign an activity label to

each frame.



Chapter 3

Background

3.1 Introduction

In this chapter, background information that is important in the context of this

thesis is presented. First, a description and the internal parameters of tho dovir-os

that are used are presented. Two types of data acquisition systems are used for

our experiments: a system of synchronised multiple cameras and the Microsoft

Kinect device. Then the datasets that are used to validate the contributions to

the thesis are presented.

Since this thesis proposes generative 3D pose tracking approaches, a ~~D

human body model is required. The human model that is employed is repre-

sented as an articulated kinematic tree model, which is appropriate for top-down

methodologies (Section 2.2.2.2). Pose hypotheses are generated based OIl the hu-

man model for every frame. An observation must be provided based on the input

data in order to evaluate pose hypotheses. In our framework, first, Cl background

subtraction method is used for removing the background pixels from the input

images in order to extract the human subject silhouettes. In the case of multiple-

22
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camera data, the silhouette images are used for the creation of the coloured visual

hull of the human subject. In the case of Kinect data, the observation is repre-

sented by the foreground colour image and depth map. Finally, an observation

function is used to compare the observation with the pose hypothesis. Within

the context of this thesis, we assume that the ground truth pose of the first frame

is known.

Sensor
Pre-

processinc

MOCAP
Sensor

Dimensio-
nality

Reduction

Pose Tracking

Observation Acquisition

Training data

Figure 3.l: Pipeline of pose tracking methods.

In Figure 3.1 we see the general pipeline that we use in this thesis for

the pose tracking problem. Dimensionality reduction is applied offline to train-

ing data to produce low-dimensional manifolds that represent the action(s) of a

given scenario. When applying the pose tracking process on unseen sequences,

an observation is constructed for every set of synchronised frames. 3D pose hy-

potheses, based on a 3D human model, are normally constrained by the learnt

manifolds and are evaluated by an ob ervation function that quantifies the extent

to which they match the observation. Finally, the output of pose tracking is the

hypothesis that maximises the observation function.
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3.2 Data Acquisition

In this section we present the internal parameters of two types of devices. i.o. t IH'

multiple cameras and the' Microsoft Kinect device. A camera model provides us

wit h the geometric relationship between the image and tho real world coordinates.

Those parameters are useful not only for understanding the input data. but also

for their utility in the next sections.

3.2.1 Multiple Cameras

Multiple cameras are used for the scenarios which are presented in this t.hosis.

Xlultiple cameras are required to provide multiple views of the lnunan subject aIHI

may resolve occlusions between different body parts that may appear OIl SOBle

views. The cameras are normally located around the subject that performs all

action inside the captured space. i.e. the area that all cameras can view.

We assume that K cameras are used for the capture of an action. As

described in [32. 101]. each camera k, k = 1, ... , ]\" is characterised by its intrin-

sic and extrinsic parameters. The intrinsic parameters depend on t 11<' internal

structure of the camera and are the following:

l" : Focal length (2 x 1 vector)

ck : Principal point (2 x 1 vector)

'l : Skew coefficient

The extrinsic parameters depend on the position and the orientation of the camera

with respect to a world coordinate system and are the following:

Rk : Rotation (3 x 3 matrix)
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Tk : Translation (3 x 1 vector)

In this work. we assume that these parameters an' given for (,Hchcamera. TIH'r<'-

fore. we will not deal with their estimation (c-amera calibration). The above

parameters arc used to calculate the following parameters.

The intrinsic characteristics of a camera are ropresentod by the c-aiuora

calibration matrix, defined as the 3 x ~3matrix AA- :

o

(:3.1 )o
o 1

Based Oil the calibration data (Ak, Rk, Tk). a:3 x 4 project.ion matrix pk

is produced

1 000

pk = Ak[RkITk] = Ak 0 1 0 0

o 0 1 0

(:3.2)

The projection matrix describes the mapping of et camera from 3D points

in the world to 2D points in an image. As seen in [32], we express the rclationshi P

between 2D pixel mk and 3D point AI (Figure 3.2), as

[All 1rnk = pk. (:3.:3)

where

(3.4)

IS the perspective projection function, Ck is the centre of the camera. m" =
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[Uk. Vk. l]T is measured in the image coordinate system (.1:,.k .lJ,.') and i\J = [X. Y. ZrJ'

is measured in the world coordinate system (XCk, Y('k, ZCk). A camera for which

pk or Ilk is known, is said to be calibrated.

Figure 3.2: Camera model.

3.2.2 Microsoft Kinect Device

Microsoft Kinect [61]is a device that can provide synchronised sequences of colour

images and depth images. Although Kinect was designed for computer game

applications. it has also been used in other applications [84, 109. 59]. Kinect

contains an RGB sensor and a depth sensor (infrared camera). as seen in Figure

3.3. The RGB sensor is actually a camera, as described in the previous section.

The depth sensor provides a depth map image for every frame. Every pixel of

the depth map represents the distance from the corresponding 3D point to tho

sensor. It produces satisfactory depth results when the subject is within 1 to :3

meters distance of the sensor [46]. Kinect has also integrated et stat{'-of-t he-art

pose estimation method [86] based 011 the acquired depth data. which provides

the position of joints of observed humans.
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Figure 3.3: Microsoft Kinect devises: RGB camera and 3D depth sensors [61J.

3.3 Datasets

In this thesis, we use three data sets to evaluate our contributions: a) the Image

& MOCAP Synchronized Dataset (IMS), b) the HumanEva (HE) dataset, and

c) the G3D dataset. The first two are used for comparing our methods with

the state-of-the-art methodologies that use the same datasets. We use the G3D

dataset to test our work in a multi-activity scenario. All datasets are captured

in indoor environment using fixed viewpoint on the captured devises and illumi-

nation conditions.

3.3.1 Image & MOCAP Synchronized Dataset

The Image & MOCAP Synchronized Dataset (IMS) [18] is a dataset depicting a

walking human. Synchronised data was derived by a motion capture (MoCap)

Vicon system [107J and four grey-scale, calibrated cameras. Each camera captured

530 frames of pixel resolution 640 x 480 at 60 Hz. (Figure 3.4). The Vicon

system captured the 3D positions of markers, which were then used to estimate

the ground truth positions of 15 joints in 3D.
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Figure 3.4: "Image & MOCAP Synchronized Dataset". First frame from 4 grey-
scale cameras.

3.3.2 HumanEva

HumanEva-I and HumanEva-II datasets [90] represent multiple subjects perform-

ing multiple activities (Figure 3.5 ).

HumanEva-I contains software synchronised data from 7 video calibrated

cameras (4 gray-scales and 3 colour) and Vicon motion capture (MoCap) system

[107] Gray-scale camera resolution is 644 x 488, while colour camera resolution

is 656 x 490, and both video systems captured at 60 Hz. HumanEva-I contains

4 subjects performing 6 common actions (e.g. walking, jogging, gesturing, etc.).

Similarly, the second dataset, HumanEva-II, contains synchronised data from 4

calibrated colour video cameras and a Vicon system. HumanEva-II contains 2

subjects performing a continuous sequence of actions (walking, jogging, balanc-

ing). This dataset provides 3D ground truth of the human posture, i.e. 3D

positions of 15 joints, for some sequences for training and validation purposes,

while ground truth for testing sequences is not publicly available. An online sys-

tem at the Human Eva website [17] provides results on the testing datasets. In
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this thesis, we use training and testing sequences for the walking and jogging

actions.

A standard metric proposed by Sigal [89] is applied for quantitative eval-

uation: for each of the joints of the skeleton representation the error is calculated

as the average absolute Euclidean distance between M markers of the estimated

pose X and M markers of the corresponding ground truth pose X, provided by

the motion capture system

(3.5)

where Xm E X, xm E X and .6. = {Jl' J2, ... ,JM }is a binary selection variable

per-market where s; = 1 if the proposed algorithm is able to recover marker m,

and 0 otherwise.

Figure 3.5: HumanEva-II dataset. First action(S2). First frame from 4 colour
cameras.
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3.3.3 G3D Dataset

The G3D dataset [15] was captured using the Microsoft Kinect device. The

dataset contains 10 subjects performing 20 gaming actions. Each subject performs

3 repetitions of each action. The camera captured images with pixel resolution

640 x 480 at 30 Hz. The actions are grouped into 5 scenarios e.g. boxing, golf,

tennis. In our experiments, we use the boxing scenario, which consists of five

actions, i.e. punch right, punch left, kick right, kick left and defend (see Figure

3.6). The dataset consists of sequences of three modalities: colour images, depth

images and 20-joint poses estimated by the state-of-the-art method [86]. As the

ground truth is not available for G3D dataset the latter is assumed as ground

truth for training and testing our work. Therefore, the results for this dataset

are compared to the Kinect results and not to the ground truth poses.
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Figure 3.6: G3D dataset example. Colour images and depth maps for five actions.

3.4 Human Pose Hypothesis

A 3D human model is used for generating hypothese of each pose and comparing

them with the observation from the input data. The human model that we use

is represented as a kinematic tree and it consists of L parts. We use a human

model with L = 10, i.e. 1 for torso, 4 for leg parts, 4 for arm parts and1 for head.

Each part must connect with the corresponding part and may move without being
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restricted by the angle. The angles of the human body are not constrained in

order to determine from the pose tracking method. In a more accurate description

of the model, other parts like feet, hands and an extra part for the torso could

be included. For the purposes of this work, two representations are used, i.e. the

volumetric one and the skeleton one (Figure 3.7).

Figure 3.7: Human model and corresponding skeleton representation.

We define the volumetric representation as a 3D articulated human model

M that consists of L cylindrical parts. The cylindrical definition of the model

allows us to compare pose estimates against the observation using simple math-

ematical models. This is to allow faster evaluation of the observation function

without losing the basic structure of the 3D human shape.

The human model M is defined as a set of three independent parame-

ters

(3.6)

where 9 E ]R6 describes the global rotation and translation of the body into the

3D Euclidean space, p E }RD the pose of the model that is expressed by joint

angles between body parts, and m E ]R2L represents the human volumetric model

expressed by the length and the radius of the cylinders of the L body parts. Joint

angles are represented by quaternions, as a consequence of which every body part



requires four parameters, i.e. D = 4 . L.

The Skeleton Representation is a model that is oxt racrcd from sp(\dtic

points of the Volumetric Representation. Every part of t 1)(' human body is I"(\P-

resented by a straight line that connects two points as S(\(\l1 ill Figure :3.7.

3.5 Observation

From the input data an observation is generated for every fr.uno. Since our

input may be acquired by multiple syncroniscd sensors, the term frame may also

mean a set of synchronised frames in this thesis. TIl(' observation includes the

information that will be used in the pose tracking methodologies. In this s('ct ion

we describe the observation that is generated by pre-processing the input dar a.

The type of observation depends on the input dataset, awl it is compurod wit h

the pose hypotheses. First, a background subtraction tcchniquc is applied to

the input data to locate the object of interest, i.e. the silhouette of t 11<'human

body. Then, in the case of multiple-cameras a coloured visual hull is g(\lH\rat(\d.

For Kinect data, the foreground colour image and depth map are extracted. For

every dataset the observation is first generated for every frame and t 111\11 is used

in pose tracking method.

3.5.1 Foreground Mask

A foreground mask or silhouette is a pixel-wise binary rcprcsontat ion of t ho area

of an object of interest. For Image & rvlOCAP Synchronized awl Humauliva

datasets, the standard background subtraction method suggested by Human Eva.

a static version of a mixture of Gaussians similar to [96], is used to ensure a fair

comparison with other methods, For the G3D dataset. the background subt rac-

tion process is simpler as the depth map explicitly gives the depth information



of every pixel. Pixels whose distance from Kinoct is larger than a threshold are

classified as background.

A foreground colour image may he obtained by applying the foreground

mask on the original colour image. Similarly, the foreground depth map is derived

by applying the foreground mask all the original depth map.

3.5.2 Visual Hull

The visual hull is a voxel-wise binary representation of the volume of t lie sub-

ject of interest. It may be reconstructed from multiple cameras by the Shape-

From-Silhouette (SFS) method, which estimates the shape of an objr-rt from its

silhouette images.

Every image is segmented into foreground and background areas. as dis-

cussed before. When the foreground area is projected into the :~D space. using

camera models a 3D geometric shape is defined that contains the target object.

The intersection of all silhouette geometric shapes is tho visual hull of the object .

As described in [55], there are two main categories of visual hull construction

methods. i.e. the voxel-based and the boundary-based methods.

The voxel-based methods result in a 3D V01UIlH'tricvisual hull composed

of voxels. If a voxel place is inside all silhouette cones, it will be preserved.

otherwise it will be cleared. These methods can reconstruct very complex objects,

but they cannot get smooth modeling results. Every voxel must pass two tests

to be classified as a member of the visual hull: the silhouette cone t('st and the

silhouette consistency test. The former test verifies whether Cl voxol belongs to

a silhouette cone. The latter checks if a voxel passes the former test for all the

views. Szeliski [97] used a tree data structure for these two tests. Kutnlakos and

Seitz [47] suggested an algorithm, called Space Carving, for computing the visual



hull.

In the boundary-based methods, the foreground cow's arc roproscutr-d as

boundary clements, such as surfaces and linos. The visual hull is rr-prosontod by

t he intersection of these elements. and the results could lw a group of surfaro

patches. line segments, or points. Matusik et al. [(iO]presented an algorit hill

for visual hulls for surface points seen from a target view, called image-based

visual hull (IBVH). Cheung et al.[22] reconstructed visual hulls as a set of lino

segments. which they call bounding edges. In this work, we adopt the Bounding

Edge [22] met hod to estimate the visual hull as it is more accurat c than voxol-

based methods [22].

3.5.2.1 Bounding Edge Method

Let us assume that there are K fixed cameras positioned around a human body

and let

{Sf, k = 1, "', K} (:3.7)

be the set of silhouette images of the human obtained from the K CClllH'rHSat

time i. as described in the section 3.5.1 (Figure 3.8).

The cameras are calibrated and therefore their perspective projcctiou

functions rrk (Eq. 3.3) and centres Ck of each camera k (Figure 3.2) are known.

Consequently, m = rrk(J\1) are the 2D image coordinates of Cl 3D point M in

the kth camera, and rrk(S) represents the projection of a volume S onto the

image plane of camera k. The Visual Hull Hi with respect to et set of consistent

silhouette images {Sf} is defined as the intersection of the K visual C01l('S.each

formed by projecting the silhouette image st into 3D spac« through tho camora

centre Ck at time i.

Let ui be a point OIl the boundary of the silhouette imago Sf. I3y' pro-



35

Figure 3.8: Silhouette images for 4 cameras (st), Visual Hull of the silhouette
and the centre of the cameras (C k) .

jecting u{ through the camera centre c-, we get a ray rl. A Bounding Edge EI
is defined to be part of r{, so that the projection of E{ onto the lth image plan

lies completely inside the silhouette S! for all l E {I, ... ,K}, therefore

Ef c r{ and III (Ef) c si Vl E {I, ... ,K}. (3.8)

The bounding edge can be computed by first projecting the ray ri onto

the K - 1 silhouette images SL l = 1, ... ,K; l # k, and then re-projecting the

segments which overlap with SJ back into 3D space. The bounding edge is the

intersection of the re-projected segments (Figure 3.9).

By sampling points on the boundaries of all the silhouette images {Sf; k =

1, ... ,K}, we can construct a list of L, Bounding Edges that represents the Visual

Hull Hi.

We can describe the visual hull Hi at frame i as

Hi = {(x,y,z): hi(x,y,z) = I} (3.9)
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Cl

Figure 3.9: Bounding Edge method [22].

where

(3.10)

is represented by the list of the Bounding Edges. Every element hi represents a

voxel in 3D space. The Visual Hull consists of all the voxel whose values are

1.

In Figure 3.10 we see the visual hull for several frames of the HumanEva-

II 82 dataset. The visual hull quality depends on the the quality of silhouettes and

the number of cameras. Below, we present some indicative results from extracted

silhouettes for 4 cameras of HumanEva-II 82 dataset.
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Figure 3.10: Visual hull for HumanEva-II dataset, for the action 82 and for 25
frames.

Using a different number of cameras, the visual hull is shown in Figure

3.11. Using a single camera, one can see the bounding edges from this view,

but 3D representation is far from the real 3D volume of the subject. Using two

cameras, limb representation may be inaccurate as some 3D volumes are unseen

by the cameras. For example, in Figure 3.11b, an erroneous right arm appears

in the visual hull. Finally, using three or more cameras, the quality of results is

clearly improved and the visual hull can satisfactorily represent the human body

for the purpose of this thesis.
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Figure 3.11: Visual Hull for HumanEva-II dataset, for the action S2 u ing 1,2,3
and 4 cameras.

3.5.2.2 Coloured Visual Hull

A Coloured visual hull results from the projection of colour information of the

images onto the surface of the 3D visual hull. In order to generate coloured

visual hull objects we use the Color d Surface Points (CSP) technique [23]. Each

bounding edge touches the object at at least one point. However, this point i not

known from the Bounding Edge method. For estimating this point we a ume

that any point on the visual hull should have the sam projected colour for all the

colour images. More specifically, for every point of a bounding edge we calculate

the projected colour from camera k. Then the colour mean and the variance of

that point are calculated according to the points which are visible by the camera.

Finally, the point of the bounding edge with the minimum variance is chosen
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(Figure 3.12).

Color image
of camera I

Touching point: minimum
projected color variance

Figure 3.12: Estimation of the Colored Surface Point by searching on the Bound-
ing Edge for the point with the minimum projected colour variance
[23].

In Figure 3.13, we see the colour visual hull and one of the corre ponding

images from the HumanEva-II 82 dataset. The colour visual hull is calculated by

projecting the colour information from 4 images of the same frame.

Figure 3.13: Colour Visual Hull and a corresponding frame for HumanEva-II 82
dataset.



3.5.3 Depth Map
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The depth map of a 3D object is an image every pixel of which represents the

distance of the corresponding 3D point from the sensor. The observation at

Kinect dataset consists of the silhouette image and the depth map for every

frame, as discussed in section 3.2.2. First, we apply a foreground mask method,

depth map as the observation, as seen in Figure 3.14.

as seen in section 3.5.1. We use the foreground colour image and the foreground

Inputs Observation

Figure 3.14: The observation generated by the Kinect input data, consisting of
two parts: foreground colour image and depth map images.

3.6 Observation Function

In order to compare a pose hypothesis with the observation, we define an ob-

servation function or likelihood function. The observation function varies with

the type of the dataset and the special needs of every situation. The specific

observation function that is used in every dataset is presented in chapters 4, 5

and 6.

For multiple-camera datasets, the observation function compare a 3D

human model (hypothesis) with a 3D coloured visual hull (observation). The

observation function is based on the volume and the colour of the two 3D objects.



First, the 3D overlap between the pose hypothesis awl observation is «ak-ulntcd.

Then. the colour information, when it is available. is projected Oil the visual hull.

The colour of every limb is compared with tho colour of t hp corrr-sponding limb

of the initial frame.

In the Kinect dataset, the observation function is again bas('d on :~D in-

forma tiou and t he colour. but expressed by the colour images and t he dept h ilia p.

First. the 2D overlap between the pose hypothesis and observation is «ak-ulat od.

Then. the colour information is matched with the colour of the initial frumo.

Finally. the depth map is compared with the generated depth hypothesis.

3.7 Discussion

In this chapter we present methods and data that are US('<1 in t hp pipoliuos pro-

posed in this thesis. First, the datasets that are used and tho differour devices

that are captured are first presented. Two types of devices are used in Oil!' r-xper-

iments. i.e. a multi-camera system and the Microsoft Killed dovir«. TII<'II t11('

base of pose hypotheses and the process to produce observations are discussed.

Poso hypotheses are generated by a 3D human model, which is defined 11<'[('.

The observation is generated by the input data. First, a background subtrnct ion

met hod is applied to the input images. Then the 3D information of the input

data is extracted from the 2D input images or from the depth map. Finally. ill

order to compare the pose hypothesis with the observation. an observation func-

tion is required. In the next chapters 4, 5, 6, specific observation funrtious an'

defined and evaluated as parts of the proposed pose tracking ruethodologios.



Chapter 4

Human Pose Tracking in Low-Dimensional Space

Enhanced by Limb Correction

4.1 Introduction

This chapter introduces Manifold Projection - Limb Corroct.iou (~IPLC). H :~D

human pose tracking method for a specific action. Specifically, Cl reliable mot hod

is required to estimate the pose, with low-computational cost, eveu whe-n t ho

execution of an action in the training dataset and the current S(,<[I1('IlC(\ differs

stylistically. We follow the general pipeline that was presented in scctiou :t 1.

where the pose tracking box in Figure 3.1 corresponds to the ~IPLC met hod. A

manifold to represent a specific action is learnt by using t.h« Temporal Laplacian

Eigenmaps (TLE) dimensionality reduction method.

~IPLC consists of two main modules: Firstly, the Manifold Project ion

(~IP) module searches in the low-dimensional space for the optimal POS(\. How-

ever. the result of the ~IP module is constrained by the training dataset. III

order to move beyond the boundaries of the training dataset and g<'lH'rat(' now

poses, the Limb Correction (LC) module provides all improved pose est.imat« by

42
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refining individual limb poses. The MPLC method combine the advantag of

MP and LC and, therefore, highly accurate and precise re ults ar derived with

low-computational cost. The validation of our method uses publi ly availabl

datasets, and demonstrates its accurate and computational ffi iency. Parts of

this work have been published in [68].

4.1.1 Overview

Figure 4.1: MPLC pipeline. Using the testing dataset we generate the observa-
tion. A low-dimensional manifold is generated using TLE from the
training dataset. The human model is used to generate the pos hy-
pothesis. MPLC method is applied. The output is the human pose
estimation for the current frame.

In this section the MPLC human pose tracking pip line is present d (Fig-

ure 4.1). MPLC, as a top-down generative method (se section 2.2.2), requires

a human model and an observation of the input. Since top-down generative ap-

pro aches are computationally expensive due to the high dimensionality of th hu-

man pose space, we use a dimensionality reduction method and a training dataset

in order to constrain high-dimensional poses in a low-dimensional manifold.



The training dataset consists of a sequence, or et snt of SI'<lII<'I1('('S of pose's

(typically :"IOCAP data) of a person performing a single act ion. Sim« arcurut o

tracking requires a temporally smooth and consistent data model, a constrainiru;

manifold is generated by Temporal Laplacian Eigenmaps (TLE) [54]. which aims

for the preservation of the temporal topology present in high dimensional Sj>'\('('S.

The choice of the TLE method enables us to suppress stylistic variation and

generate more compact manifolds that are efficient for searching. as w« have S('('l1

ill Section 2.2.~3. An observation is generated from the' tosting dataset inputs.

as discussed ill section 4,2, The poses of the testing dataset represent a human

performing a single action, This action is the same as the OIH' that is performed in

the training dataset, Finally, a human model is used to generate pose' hypothoscs

that are evaluated by an observation function (see section 4.4),

:"IPLC, which is introduced in section 4,3, guides pose' estimation in two

stages. First, in the ~vIPstage, the search is constrained by Cl TLE low-diiuonsiounl

manifold, A deterministic optimisation method is used for its comput a t ional <'ffi-

ciency. in contrast to computationally expensive particle filtering approaches. The

result of the ~IP method is a 3D human pose estimate. However, since t.ho tesr iut;

and the training datasets are different, the results of the !\IP stage' depend 011 the'

similarity of the two datasets. The LC stage allows us to search beyond the train-

ing dataset constraints and to evaluate completely unseen poses. The Le modulo

firstly uses a criterion for detecting the body parts that have been erroneously

determined during the ~IP method, and then refines those poses. searching ill t.lu-

high-dimensional pose space, Le is able to generate poses that do not appear in

the training dataset, but remain close to them. This approach is advant.agoous

when searching for different styles of a specific action, The ~IPLC method out-

performs state-of-the-art methods for a given computational time when using a

publicly available dataset, as presented in section 4,5.



·is

4.2 Action Manifold Learning

4.2.1 Temporal Laplacian Eigenmaps (TLE)

In this section. the Temporal Laplacian Eigenrnaps (TLE) dimonsionality n'<1I1(,-

tion method is presented. In order to generate the low-dimensional iuauifokl a

training dataset P. consisting of a sequence or set of sequences of data points.

is used. Our notation in this work assumes only OlW sequence in the training

dataset. wit hout losing generality,

{
. . }' IJP = p',] = 1, ... ,n .p' E lR

corresponds to n frames representing an action, where pi is the pos(' of t he' model

at time j. TLE produces a manifold Q, which is an equivalent n-prt-sontut ion of

P in a low-dimensional space,

Q - {j . - 1 ,} j T!Jld- q,]- , ...,n,q E~ (4.:2)

where D, dEN. d «D and qjthe points of the manifold.

For each data point pJ two types of temporal neighbourhoods an' defined.

Adjacent temporal neighbours A: the 2m closest points in the sequent ial order

of input (Figure 4.2a)

Ai E {pi-m pi-I. pi pi+ I 1)i+1TI}, . . . , ~, , . . . , (4.:3)

and repetition temporal neighbours R: the s points similar to 1/, cxtrnctcd from

repetitions of time series fragment, defined by s adjacent temporal neighbours

(Figure 4.2b)

(4.4)
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where pi (C) returns the centre point of pi.

Figure 4.2: Repetition temporal a) and adjacent temporal b) neighbours (green
dots) of a given data point, pi, (red dots).

Using the standard LE formulation the weights Ware assigned to the

edges of each graph G E {A, R}

WC = {e-1IPi_pJI1
2

i,j connected
Z,] o otherwise

(4.5)

Then an extended cost function is introduced to combine information from the

graphs

(4.6)

(4.7)

where DC = diag {Df;_, D~, ... , D~n} is a diagonal matrix with D~ = L,jL=l wg,
and LC = DC - WC is the Laplacian matrix. The minimum of the objective

function can be found by the Lagrange function

The generalised eigenvalue problem is using to span the embedded space

Q by the eigenvectors given by the d smallest nonzero eigenvalues A.
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Unlike the standard Laplacian Eigenmaps dimcnsionali ty rod urt ion mot hod

(LE) that only preserves the manifold's local geometry [14]. tho temporal st rur-

ture of the data manifold is preserved thanks to the inclusion of tho graph R

between time series. Consequently, TLE is able to preserve implicitly t II<'local

and global temporal topology of the data. This implies that TLE maint ains rho

temporal continuity of time series during dimensionality roducr iou I>I'OC('SS and

suppress stylistic variations displayed by different sources of time sprit,s bv align-

ing them in the low dimensional space [54]. Experimental results also proof that

as seen in Figure 5.7.

Although the manifold lies in the low-dimensional space, the observation

function needs to be evaluated in the high-dimensional space. Consequent ly, a

mapping function is required to find correspondences betweou the two spaces.

Since spectral methods lack mapping functions to project data from OIH' spacp

to another. Radial Basis Function Network (RBFN). as snggestni hv [[):3].an'

trained to obtain these transformations 'P and !.p':

(4.10)

4.2.2 Application to Human Pose Modelling

We use Temporal Laplacian Eigenmaps (TLE) dimensionality reduct iou met hod

to represent sequences of human poses for a given action. TLE g('ll('rat('s a tempo-

ral representation of human postures, expressed as a single dimensional manifold.

where style has been suppressed. TLE has been selected for the following reasons.

Firstly, TLE explicitly preserves the temporal coherence of an act ivitv, which is

important for a tracking application. Secondly, TLE suppresses stylistic varia-

tion and is able to produce more compact manifolds (Figure 2.1). S<'aIThing ill

compact manifolds. such as those produced by TLE, is very efficient.



TLE is trained by a sequence of 3D poses of a training cIatas!'t J> for a

person performing a single action. A manifold Q hi created in tho low-dimensional

space' ]Rd as a result. Also, mapping functions 'P and 'P' hctwccu high and low-

dimensional spaces are generated, as described in section 4.2.1.

4.3 Pose Tracking Framework

In this section we present a two-level 3D pose tracking approach namely Xlani-

fold Projection-Limb Correction (l\IPLC). In the first part of this met hod (:\1P).

3D human poses are constrained on a low-dimensional activity manifold hv opt i-

rnizing a full-body observation function. In the second part (LC) individual limb

poses are refined by optimizing an observation function for each limb separately.

4.3.1 Manifold Projection

The first stage of :\IPLC is the Manifold Projection (nIP) method, which is (,on-

strained to search poses that are similar to the training dataset. First tho high-

dimensional human pose of the previous frame (assuming that the iui tial POS(' is

known) is projected on a point of the TLE low-dimensional space, Then, a de'-

terministic optimisation method is applied to estimate a pose on the manifold.

Let assume the observation Hi of a person performing a single action A.

derived as described in section 3.5, as input to the MP method. Also. Id assume

that the 3D pose of the previous frame v:' is known and the outputs of t ho

action manifold learning part (section 4.2.2) Q, 'P and 'P' for a training dataset

of a person doing the same action A are also given. The testing dataset IS Cl

sequence of frames where MP method is applied for every framo i.

Firstly, we estimate the global position and orientation r/ of t 11<'human
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model exploiting the pose of the previous frame pi-I. The ob crvation Hi i

compared with a human model hypothesis Mi = {gi, v:',m} by maximising an

observation function 81 (Mi, Hi), defined later in section 4.4, varying the gl bal

position gi. The values of the gi depend on the type and the speed of the action.

(4.11)

For the current frame i, the MP method consists of five steps (see Figure 4.3).

Figure 4.3: Flowchart of MP, LC and MPLC pipelines.

Stepl: In order to move from the high-dimensional pose into the low-dim nsional

space we project the 3D pose to the low-dimensional spac using the

mapping function provided by the action manifold learning process

i.e. the pose of the previous frame, pi-l is projected to the low-



Step2:

so
dimensional space JR.d using the mapping function 'fJ.

(1.12)

where qi-l is the projection point into tho low-ditucnsional SI>Cl('(' IRd.

This point is projected on the manifold, in order to soarch for tit!'

optimal pose, using Euclidean distance i.c. the closest point IT - I ill

the manifold Q to point «:'. is estimated.

At steps 3, 4 and 5 an optimization algorithm is applied to search for tho point

on the manifold that maximises the observation function.

Stcp3:

Step5:

Specifically, a sample of R points is selected from Cl ne-ighbourhood of

point if-Ion the manifold Q:

QH {T 1 R} r 11])<1= q, T = , ... , ' ,q Ell'\,. (4.1;~)

where the index T represents the temporal order of tho points Oil t IH'

manifold.Step-l: The selected points of the manifold an' projoc-t.od

back to the high-dimensional space using the mapping function pro-

vided by the action manifold learning process i.e. all points of qU

are back-projected to the high-dimensional space JR./) using mapping

function cp'. Let

pR = {pT, T = 1, ... , R}

be the set of candidate poses representations ill JR./). whore

(·:1.15)

For the selected 3D poses the observation function is calculated using
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the hypothesis of the 3D models ami the observation of t lu- input

images i.e. every pose of pR is compared with t ho ohsorvat iou of t lu-

input images Hi using the observation function .'il. The host POS(' I)'

is chosen by maximising the function SI (pH, Hi), i.o.

(-i.IG)

where tl is the output 3D pose of the ~IP method for t lu- frauu- i.

This point corresponds to a point of the manifold Q t hat is projertrxl

on a 3D human pose.

The xIP method can be visualised in the low-dimensional space. In Figure 4,4

we see the manifold that was created from the training dataset using TLE (high-

lighted in green), the ground truth data for the testing dataset that was projected

into the low-dimensional space for 60 frames (red points), and tho «orrosponding

tracking points (blue points) generated by the MP method in t.lu: low-dhueusionul

space ]R2, The positions of training and testing points differ \)()('alls(' thev origi-

nated from different subjects. The MP tracked points (blue) are OIl the manifold.

because the }'IP method searches within the manifold, The ~IPLC tracked points

are not usually on the manifold because the Le method moves the points out of

the manifold if this leads to better accuracy.

4.3.2 Limb Correction (LC)

Since the manifold representation is constrained by tho training data (section

4.2.1), there may be some discrepancy between the observed limbs and t he mani-

fold poses because of stylistic variations intrinsic to every subject. Therefore. t he

previous process needs to be refined to deal with this issue.

The second stage of MPLC applies Limb Correction (LC) for thost, limbs
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Figure 4.4: Low-dimensional space. Green: Manifold of the training data. Red:
Ground truth. Blue: Tracking with MP method.

with significant error. The input of the Le stage is the 3D pose pi from the

equation 4.16. When a limb has been estimated, its evidence is removed from

the observation. The evidence of the torso is removed in the beginning from the

observation Hi to allow faster evaluation of the observation function but al 0 to

avoid errors in the estimation of the limbs that are near the torso. W apply th

Le method for all limbs and head except the torso pi (j) j = 2, ... L.

steps, (Figure 4.5).

For the current frame i, the Le method for each limb j consists of five

The hypothesis of the limb pi (j) is compared to the observation using

the observation function. If the pi (j) derived through searching in P,

Stepl:

is not satisfactory according to the threshold T, i. .:

(4.17)

then we further search for the optimal solution in the high-dimensional

limb pose space and proceed to Step2. Otherwise, the curr nt limb e -

timate is considered to be sufficiently accurate and there is no further

search.
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Figure 4.5: Limb error detection and correction pipeline.

53

Step2: Then a deterministic optimisation method is appli d to detect the

optimal position of the limb. We search for th r' rotation angl

that optimises the observation function for the limb if (j). Sine - the

solution space may be represented by the surface of a phere, arching

is performed on that surface using a gradient descent method. A point

j7' (j) is selected using a gradient-based optimisation algorithm.

Step3: The observation function of the limb pose j7' (j) is estimated:

(4.18)

Step4: The estimated pose is fed back to Step 3 until the observation function

converges to a solution.

After maximising the function sri (j) (Eq. 4.19) in tep 3 and 4, th

final pose estimate pi (j) is the output of Le for limb j.

StepS:



pi (j) = arg m~x 81 (it' (j) , Hi) .
p

(.t.19 )

Before assessing the next limb, we remove the detected limb p' (j) from

the observation Hi, and update the observation. The LC method is applied for

all L -1limbs and the final output is the 3D pose pi. Thus, tho ost nnat cd human

(4.20)

where gi is the global position and m is a known matrix representing :3D human

model.

4.4 Observation Function

In this section the observation function that is used is presented. First WI' gPIH'rate

the observation from the input data and the human pose hypothesis. TIH'n we

define the observation function that is used to compare the observation and t 11('

pose hypothesis.

The ~lPLC method is evaluated for a testing set that comprises synrhro-

nised views of a human subject from multiple cameras as seen in Figure 4.Ga.

The observation H that we use is a 3D volumetric representation (visual hull) as

described in section 3.5.2.1(Figure 4.6b). The human pose hypothesis 1\/ (Figure

4.6c) that is used, defined in section 3.4.

In order to evaluate a model hypothesis M: with the observed visual hull

H we define an observation function 81. We compare the volumes of t hp visual

hull H and the human model M by using the relative overlap between them

(Figure 4.6d). This observation function 81 is defined by:

l!vfnHI
SI (M, H) = I AIl . (4.21)
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Figure 4.6: a) Images. b) computed Visual Hull. c) Human model. <1) fit t.ccl human
model to visual hull, e) extracted skeleton.

When the global position g and the size ni are fixed we can usc tho t.onn .';1 (p. H)

where p is the pose of the model M = {g, p, Tn} as described ill soct ion :3.-1.

An advantage of the proposed observation function is that it allows COIII-

parisons of individual body parts of the human model to tho visual hull as S('('ll

in Figure 4.7. Also, because of the 3D representation. individual boclv part s. lil«:

torso or arms, may be removed from the visual hull without aff('ctillg t 11<'obsorva-

tion of other body parts, making the search process BlOW efficient. This «out rnst s

with 2D image-based observation functions, such as the silhouette and (,dg(' like-

lihood and the bi-directional silhouette likelihood that are tested ill [H9] that do

image views.

not allow comparison of individual body parts because of potontial or-clusions ill

4.5 Evaluation

In this section, results of the MPLC human pose estimation 111<'1 hodologv an'

presented. We present the results of MPLC method and we compare it wit h all

equivalent, i.e. of similar computational cost, particle filter approach (PF) [1:3]

and other state-of-the-art methods [79, 77].
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(e)

Figure 4.6: a) Images, b) computed Visual Hull, c) Human model, d) fitted human
model to visual hull, e) extracted skeleton.

When the global position 9 and the size m are fixed we can use the term 81 (p, H)

where p is the pose of the model NI = {g, p, m} as described in se tion 3.4.

An advantage of the proposed observation function is that it allow com-

parisons of individual body parts of the human model to th visual hull as s n

in Figure 4.7. Also, because of the 3D representation, individual body part, like

torso or arms, may be removed from the visual hull with ut affe ting th ob erva-

tion of other body parts, making the search proc ss more efficient. Thi contra t

with 2D image-based observation functions, such as the silhouette and dg lik-

lihood and the bi-directional silhouette likelihood that are tested in [89] that do

not allow comparison of individual body parts because of potential ocelu ions in

image views.

4.5 Evaluation

In this section, results of the MPLC human pose estimation methodology ar

presented. We present the results of MPLC m thod and we compare it with an

equivalent, i.e. of similar computational cost, particle filter approach (PF) [43]

and other state-of-the-art methods [79, 77].
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Figure 4.7: Calculation of observation function 81 for individual body parts.

4.5.1 Datasets and Training

In order to compare MPLC method with other state-of-the-art methods we apply

MPLC in public available datasets. The Image & MOCAP Synchronized Data et

(IMS) [18] and HumanEva (HE) Dataset [90] have been used for the exp rim nts

in this chapter. Our training set contains 1121 fram s of the S3 walking sequ n e

in trial 3 from HumanEva 1. The IMS dataset (walking action), the HumanEvaI

81 and the HumanEvaII 82 and 84 (walking actions) are used for te ting. In order

to evaluate the pose tracking method (section 2.2), similar to [9, 89], wassum

that the ground truth pose of the first frame is known for all expcrim nts. In this

work, the standard background subtraction method suggested by HumanEva [96]

is used to ensure fair comparison with other methods.

4.5.2 Validation of Observation Function

In this section, we evaluate the observation function 81. In order to cal ulat

the 81 we generate the volumetric model from th skeleton mod 1, a n in

section 3.4. Figure 4.8a shows the inverse relationship between th av rag rror

per frame using MPLC configuration with threshold T = 100% (red line) and th

values of the observation function 81 for the ground truth pas s c for every frame
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Figure 4.8: (a) Error of MPLC and observation functions 81 (Gi, Hi) per frame.
(b) Observation functions 81 (Mi, Hi) for our r ults and for ground
truth 81 «»,Hi) per frame.

values of parameter R = {4, 7,10, ... ,24} in equation 4.13 and T from 20o/c to

100% in equation 4.17.

MPLC is compared to the PF-TLE method that is also applied on th

low-dimensionality space that was learnt by TLE. Performance with different

numbers of particles n = {10, 15, ... ,50} are conducted to ensure similar compu-

tational times with the IPLC method. For these experiments we us d an Intel

core 2 computer running Matlab implementations.

Figure 4.9 represents the average error for 100 frames for whi h th

ground truth is known, as a function of the average computational time for each

frame, for PF-TLE (blue line), MP (black line), and MPLC (red lin) method.

As we can see MPLC is able to provide better results than MP and PF- TLE

methods in all cases. By fixing the proces ing time we can obtain a dire t om-
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parison between MPLC and PF -TLE. For instance, if the average computational

time of MPLC and PF- TLE methods is approximat ly 30sec per frame, th cor-

responding average error for PF-TLE is 44mm ( tandard deviation o = 12mm)

while MPLC's is 35mm (standard deviation o = 10mm). Th r ult ju tifi

the LC part of the proposed method as the MPLC outperform MP in all a

Also, PF- TLE has similar performance with MP, but reaches an accuracy limit

around 45mm because of the TLE-constrained poses. MPLC overcomes this limit

because LC is not constrained by TLE.

E50.s.
~45w

65

60

55

40

35

~5~---1~O----1~5----~~----~25~--~~~--~357----4O~--~45
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Figure 4.9: Comparison of average errors for 100 frames according to th aver-
age computational time for each frame for PF- TLE, MP and MPLC
methods.

In the following experiments we use R = 15 in equation 4.13 and T =

100% in equation 4.17, while 35 particles are used for PF-TLE. Figure 4.10 dis-

plays the average error for every frame, as a function of the frame numb r, for

the LC (green), MP (black), and MPLC (red) methods and for PF-TLE method

(blue). The average computational time for MPLC and PF -TLE is approximat ly

30sec per frame and for MP and LC are approximately 15sec per frame and 20sec

per frame respectively. Applying only LC, which is equivalent to arching the

high-dimensional pose space, results to 72mm averag error. Since LC i not

constrained by TLE, tracking result diverges from the ground truth, i.. the po e

tracking error increases steadily over time, as seen in Figure 4.10.
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On the other side, MP and PF -TLE avoid divergence issues because the

TLE constraint and have similar performance: 48mm and 45mm average rror

respectively. Although PF -TLE spends twice the computational tim a MP,

performance improvement is minimal, which justifies the usage of deterministic

gradient search instead of particle filter for searching in the low-dim -nsi nal spa' .

Even if more particles are used for PF -TLE, no further improvement is expected,

because of the difference the training dataset, represented by the TLE manifold

and the testing dataset.

Such a restriction is overcome with MPLC that results in an av rage

error of only 35mm. The inclusion of the LC module leads to a significantly ad-

vantage regarding the accuracy with a relative small computational load increase.

Therefore, MPLC combines the advantage of keeping pose estimates close to the

TLE-manifold thanks to MP with the advantage of searching beyond the training

dataset thanks to LC.

140 r,..-_-,---,
-Le
-MP

120 -MPLC
-PFTlE

100

°O~--170---207---~~--.~O---ooL---~~--~70--~80--~OO--~1oo
Frame number

Figure 4.10: Average error per frame for 100 frames processed by methods MPLC,
MP, LC and PF-TLE.

In Figure 4.11 we can see visual results of skeleton models gen rat d

by MPLC method (blue poses) and the corresponding ground truth po e (r d

poses).

For the last experiment we calculate the global position of the human
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Fr ame Iu Frame20 Frame30 Fr31ne40 Frrun e50

Frame90 Frrune 100

Figure 4.11: Skeleton models for Red: ground truth and for Blue: our method
(MPLC15)

I HEIIS2walk I HEIIS4walk I HErS1 walk I Compo I
GPAPF 86.6 89.0 86.3 500
H-APF 75.2 81.8 75.4 500
MP 74.0 96.2 72.0 10

MPLC 7l.4 75.6 68.8 60
Table 4.1: Average error in mm for GPAPF, H-APF, MP and MPLC method.

body at every frame as described in section 4.3.1. At Table 4.1 we compare our

method with the state-of-the-art methods GPAPF [79] and H-APF [77]. The

GPAPF uses APF for searching in a low-dimensional space generated by the

GPLVM dimensionality reduction method as described in section 2.2.2.2 and the

H-APF is a hierarchical extension of GPAPF as described in section 2.2.3. For

MPLC and MP results, we use R = 15 in equation 4.13 and T = 100% in quation

4.17, while 500 particles were used for the particle filter approaches. We can see

that in all cases MPLC outperforms GPAPF and H-APF, although it performs

only 12% of observation function evaluations.



4.6 Discussion

In this chapter we presented a novel human pose tracking nu-t ho<lology (,lIlil'd

MPLC. The :\IPLC method has two stages: l\lP and Le. III t h« ~IP stag('.

the observation pose is compared with the model hypot hosi« constrained bv <I

low-dimensional manifold to avoid divergence of pose trarkiug. TI}(' manifold is

trained hy the TLE dimensionality reduction method using et sequ{'w'(' of POSt'S

of the training dataset. The :\IP method searches for the best matc-h IH't\\'I'('n t lu:

observation and the training points using a deterministic optimisation nu-t hod.

instead of particle filter methods, to provide efficiently an initial pose ost iuiat c.

The Le stage deals with the problem of stylistic variations of human act ivitv hy

refining each limb individually. The LC method is able to search for t lu: optimal

position of the body parts that have been erroneously determined during t he ~IP

method.

This chapter demonstrates that the ~IPLC method provides hot 1<'1' <1('('11-

racy than particle filter approaches. Although particle filter met hods an' popular

techniques for human tracking, they are computationally ('XIH'IISi vr: 1)('('(\ llS(' of

the large number of particles that they require [89]. In our cxporiuu-nts. W(' ap-

plied PF in the low-dimensionality space, which was learnt by TLE. Alt hough

PF- TLE can achieve satisfactory accuracy, l\IPLC's accuracy is even IH'tt<'J' for

the same processing time. Also MPLC clearly outperforms part ide filter met h-

ods that were applied in GPLVM-generated manifolds, despite the p;elJ('ralisation

properties of GPLV~I.

The bottleneck of our implementation is the evaluation of the' obsorvut iou

function, which leads to high-computational times. Roal-tiiuc pcrforuiauco ilia."

be achievable if an optimised version of the observation funrt ion, progr.mnucd

in C/C++, is deployed in appropriate hardware. However, compared to ot lu-r

generative methods, ~IPLC has lower complexity, i.e. fewer evaluations P('I' frmnc



and lower overall computational cost. We can conclude that t 11<'«ombiuat ion of

.\IP and Le provides significant advantages ill terms of acx-urnrv. st abilit v and

computational cost.



Chapter 5

Human Pose Tracking by Hierarchical Manifold

Searching using Hierarchical Temporal Laplacian

Eigenmaps

5.1 Introduction

In this chapter we introduce Hierarchical Temporal Laplacian Eigcnmaps (lITLE).

a novel hierarchical dimensionality reduction method, and Hierarchical Mauifold

Search (HMS), a human pose tracking methodology. Both HTLE awl H~IS fit

in the general pipeline that was presented in section 3.1 (Figure :U), and. ill

particular, in the pose tracking and the dimensionality reduct.ion processes rr-

spectively.

The TLE dimensionality reduction method, which was used ill t lu: PH'-

vious chapter, represents only poses that appear in the training data. III order

to expand this space into its components, we introduce HTLE, a hierarchical di-

mensionality reduction method. The HTLE approach allows IlS to search ill ('aeh

level of a posture hierarchy separately, thus modeling IH'W, unseen POSt'S.
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Furthermore, HMS searches for optimal poses through t ho hioran-hical

structure of HTLE. H.MS-HTLE performs better than MPLC. as dis('lIss('d 1he-

oret.ically ill section 5.2.2 and confirmed by experimental results ill S('('1 ion :l.;l.;l.

Parts of this work have been published in [GH].

5.1.1 Overview

The framework that is presented ill this chapter operates (HI a two-ph.u«: ap-

proach: first. a sequence of poses from a training set an' IIS('<i ill order to )!;('II(,I'ill('

a hierarchy of low-dimensional manifolds using HTLE and, s('('olld. pos(' 1 r.ukiiu;

is performed in a hierarchical manner using H~lS. Tho pipelines of hot h plias('s

are presented in Figure 5.1. More specifically, the training dar aspt c-onsist s of

a sequence of poses (typically MOCAP data) describing the act ion of intr-u-st

which is given. Hierarchies of action manifolds are learned bv t lu: propo-r«! Hi-

erarchical Temporal Laplacian Eigenrnaps (HTLE) (Figure G.1a). as d('sniIH'd ill

section 5.2. We propose to use TLE [54] as the base of our hiorarchv, IH'('ilIIS('it

suppresses stylistic variation and, therefore, generates more ('Olllpad muuifolds ill

comparison to other methods (Isomap [98], BC-GPLV;-"! [49]. LE [1:~]. ST-IsOlllilP

[44], GPD~1 [108]), as discussed in section 2.2.:3.

The pose tracking process is constrained by the hiornrthv of art iou man-

ifolds (Figure 5.1b). which is presented in section 5.:t III every cvck-. all obsorva-

tion from the input data is estimated. The observation and the proviouslv learnt

action manifolds are fed to our novel search method, i.e. Hierarchical Xlnuifok]

Search (HMS) (section 5.3), which efficiently explores the POSt' spa('(' (ks<Tih('d

by HTLE. We minimise computational costs by using Cl determinist ir opt imi-

sat ion method. instead of searching the whole hierarchy using part iclo fi.1t ('rillg

approaches [24, 77]. The final output is a sequence of POSt'S.

An observation function is introduced to match tho observat ion 1'1'0111
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multiple colour cameras to pose hypotheses (section 5.4). Th performan f

the proposed framework is evaluated for a range of paramet rand mp r d

to state-of-the-art human tracking methods using publicly availabl dat

section 5.5.

Figure 5.1: (a) Training and (b) po e tracking pipclin

5.2 Action Manifold Learning

5.2.1 Hierarchical Temporal Laplacian Eigenmaps (HTLE)

In this section, we present the formation of Hierar hical Temporal Lapla ian

Eigenmaps (HTLE). TLE manifolds (Section 4.2.1) only repre nt po es n in

the training dataset, therefore TLE-constrained solutions may b bia d b eau

of stylistic variations between the training and t sting datasets. In order t d

with thi restriction we propose to expand th available po e pa u ing HTLE,
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a hierarchy extension of TLE. The advantages of such Cl struc-ture an' two-fold:

firstly, fast searching is facilitated by a set of compact. TLE manifolds, as w«

have already discussed in chapter 4: secondly, the hierarchy of manifolds models

unseen poses to address the problem of stylistic variations botwoeu t hr t raining

and the testing datasets. Xlore specifically, the hiornrchicnl sr ru«t 111'<' of lITLE

has been designed to allow searching each level of the hicrarchv ('xl<'IHlillg overall

pose search range. This is achieved by exploring each level s!'parat<,l~' and t lu-n

combining all of them, generating a new, unseen configuration.

HTLE uses a training dataset P to generate a hierarchy of manifolds in

low-dimensional spaces. Let Ph.l be the set of N poses of the' training dar asot

that corresponds to the l-th pose subspace at the hierarchical level II

where P~ / E lR.Dh,l is the pose of the model at the time i. As discussed ill S(,(·tion

4.2.1 TLE produces a manifold Qh,/ representing Ph.l ill a low-dimensional spa('('

lR.dh.f

Qh,l = {q~,l,i = 1, ... ,N},

At a given level h (Figure 5.2), mapping between tho high- aIHI low-

dimensional spaces [54] is performed by the functions:

(G.:~)

where

,(i) i '(i) .s:.ph,l Ph,/ = qh,/' :.ph,l qh,l = Ph.f·

We also define mapping functions (Figure 5.2) between tlu- hicrarrhirul



level points Ph -1.1 E Ph-l,l, Ph,!' E Ph,l'

These mapping functions permit evaluating hypotheses by project ion t ()

the high-dimensional space as well as propagating hypotheses through t lu- hior-

archy.

f/Jh,l~

PhI c;• ,,
f/Jh,l

O)h+l,l'!

f/Jh+l,l'

Ph+11,
~ «:• ,,

f/Jh+l,l'

Figure 5.2: Pose subspaces P and submanifolds Q connected by mapping funr-
tions 'P, 'P/and w.

5.2.2 Application to Human Pose Modelling

We define a hierarchy based on the division of the individual body parts as shown

in Figure 5.3 and Figure 5.7. At the first level, hi, the whole body is represented.

At the next level, ba, the variability of the previous level is expressed by two

subspaces containing either the upper or the lower body. The division process

is repeated for the next two levels, h3 and h4: firstly, four subspaces an' created

to model the four individual limbs, i.e. left and right arms and logs: sccoudlv.

each limb is divided into two segments, i.e. upper and lower arm awl kg. to

produce in total eight submanifolds. At the last level, he" each limb segllH'llt is

allowed to move in an unconstrained manner similar to section 4.;3.2. TIl(' levels
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h4 and h5 have the same leaf nodes but the searching space i different in each

of them. Nonetheless, we include it in the hierarchy for simpler repre entation of

the pose tracking method (section 5.3). By introducing different 1 v 1 with an

increasing level of specificity, we incrementally vary th ability of generating n w

pose hypotheses while maintaining a certain level of constraints.

The HMS method improves the results of the human po tra king prob-

lem when compared with the MPLC method. Generally, r ults depend on how

close the global optimal solution is to the initial pose, because gradient-ha d

optimisation may be trapped in a local optimal. Fortunately, in both IPLC

and HMS, this effect is reduced due to searching through multiple levels. Since

HMS searches through more levels than MPLC, improv d ac uracy i expected.

Therefore, when reaching the LC level, HMS provides a better initiali ation for

the LC process than does the MP method.

level

3

2

4

5

Figure 5.3: Five-level hierarchy of human model. Each level is represented hor-
izontally in the figure. Level number increases by one progressively
from top to bottom. Every level h is composed of pose sub pac l. U:
Upper, La: Lower, 1: left, r: right, A: Arm, L: Leg, u: unconstrain d

5.3 Pose Tracking Framework-HMS

In this section, we introduce the Hierarchical Manifold Search (HMS) me h d,

which is used to estimate the human pose through the hierar hy propo d in
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Figure 5.4: Flowchart of HMS at subspace (h, l) of the hierarchy. Transformation
in the high- and low-dimensional spaces are repres nted in orange-
framed and red-framed boxes, respectively.

section 5.2. Initially, we search the top level of the hierarchy, which repre ent

the full body pose. Then, we search the rest levels of the hierarchy, each of them

representing a different division of the human body. This procedure allows a to

take full advantage of the hierarchy of manifolds which mitigat discrepan i

between the testing and training dataset by permitting the e timation fun n

poses.

For every frame i, we optimise the observation function f ({gi, pi, m} , Hi)

in two steps. Firstly, we initialise the global position and orientation gi of the

human model with the previous frame pi-I. The new global position gi i es-

timated as described in section 4.3.1 and the corresponding body model is th

{gi, v:',m}. During this step the torso is removed from th obs rvation Hi to

allow faster evaluation of the observation function, and also to avoid rror in the

estimation of the limbs that are near the torso.

Secondly, the pose pi of the current frame i is estimated. Specifically, a

process is applied through the hierarchy, as illustrat d in Figur .4. W apply

the following algorithm to each TLE manifold l, for each TLE-constrained level

h.
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Initially. a new hypothesis Ph,l for framei is generated (Figure GA. SI).

If h = 1. the pose from the previous frame is projected to the POS(' subspnc«: fll.l .

i.e.

Pi _pi-I
1,1- (G.G)

otherwise if h > 1 the point from the pose subspace l', from tho previous hicrar-

chien I level h - 1 is projected to the child pose subspace Ph.l using t he Iunct ion

W,d (Eq.3.5) to restrict the part of the human model that is scan-heel:

(G.7)

Then. the model hypothesis is compared to the observation using t h« obsorvat ion

function (Figure 5.4. S2) (Eq.5.17).

If the match between the hypothesis and the observation is sufficient lv

large (Figure 5.4. S3a), i.e.

where T is linked to the required accuracy, searching the current snbsp.u:« (Ii. I)

is omitted. Therefore, the final estimation for this subspace is given as: ill,.J = PI,.J

and H~IS proceeds with the following manifolds (S 1).

Otherwise. the high-dimensional point p~ l is projected to 111('low-dimcnsiou,

space jRdh.1 to find a more accurate estimate (Figure 5.4, S3b):

qh,l = 'Ph,l (P~,l) . (G.D)

Then, the solution is constrained using the action manifold. Spccificallv,

Hl\IS considers the closest point q~,l to the point qtl in Q".l (Figure G.·J,S.!).

Afterwards. the local maximum is searched by optimising the obsorvar ion



function. A gradient descent optimisation algorithm is used ill order to find a local

maximum where putative solutions are evaluated in the high-dimousionul spac('

using t he observation function. More specifically, this is achieved hv following

the four following sub-steps (Figure 5.4, S5a-S5d).

A point q;;,1 E Qh,l is selected using a gradient-based optimised ion algo-

rithrn.

The point (jh.l is back-projected to the high-dimensional SP(\("(' ]Rn/,./ of

human poses. Let Ph.l he the point after the projection

r I (r)Ph,l = 'P h,1 qh,1 . (!".i.l0)

The observation function of the point Ph,1 is estimated:

fr,i f (r Hi)h,1 = Ph,I' . (0.11 )

The estimated pose is fed back to the algorithm (Figure G.4. S5a) unt il t hi'

observation function converges to a solution. Finally, the output of till' algorit lun

is the optimal point Ph.1 that maximises the observation function f~:; (Figure SA.

S6)

Ai {r fr,i}Ph.l = Ph,l: m,?-x h.1 . (;:).12)

At the last level h' of the hierarchy, Limb Correction may bo applied t ()

refine the solution in an unconstrained space as described in section 4.:J.2.

The output of this process is the P~/,I pose for every subspar« I of t hi'

level h' of the hierarchy.

Finally, the pose of the model pi is estimated by concatenating t ill' body



parts estimated at the last level of the hierarchy

Thus. the estimated human model !vIi is

(!'i.U)

where gi is the global position and m is a known matrix (section :~.4) from til!'

initial frame.

H:\IS allows a data-driven efficient search of the hierarchy of manifolds.

compared to previous hierarchical approaches. [77,24]. The threshold T controls

this search. i.e. the lower the threshold, the less accuracy is needed, and t lu:

faster the search will be performed, as demonstrated in section !'i.S. Alt hough

our approach is based on gradient-descent optimisation, the hierarchy struct urv

minimises the problem of being trapped into a local optimum, by searching agaiIl

limb configurations at different levels, as shown in the results presented later.

5.4 Observation Function

In order to evaluate the HMS method we use a testing set comprises syuchronisod

views of a human from multiple colour cameras. First, a 3D volumetric roprr-

sent at ion (visual hull) of the observed human is generated to allow evaluation of

human model hypotheses as described in section 3.5.2.1. The colour from the

input images is also back-projected on the visual hull in order to discriminate

between body parts and improve accuracy as described in section :J.S.2.2. TIl('

final observation is the coloured visual hull H (Figure 5.5). TIH' human POSt'

hypothesis .H (Figure 4.6c) that is used, is defined in section 3.4.
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Figure 5.5: The pre-processing pipeline. From left to right: th inpu imag
the corresponding silhouettes, the visual hull and the vi ual hull wi h
colour.

The proposed observation function takes into account two featur f th

observation: volume and colour. Firstly, we compare the volumes of th vi ual

hull H and the human model M by using the relative overlap between th m.

This part of the observation function has already defined in section 4.4 (Si in Eq.

4.21).

The second part of the observation function exploit the olour infor-

mation of the visual hull. This is important since it complements th fir t part

of the observation function especially for poses where the limbs are los t

torso as the colour of the torso is normally differ nt than thi on th limb. t

the initial pose the colour of the limbs cj, j = 1, ... ,L is tim t d, u ing th

voxels of the initial visual hull u-, matched by the limb j. Then, thi

information is used for comparing the colour of the corresponding ar a of fram

i with the initial one. Specifically, cj, j = 1, ... ,L is estimated as the averag of

the hue values of all the matched voxels, assuming an HSV colour pa . Th

hue value of HSV colour space is used for comparing the colour without aff ting

the saturation and the brightness in every frame. The Figure 5.6 illu trate th

HSV colour space. Then, at the frame i the colour information of th vi ual hull

Hi of every voxel v, c~,V,j = 1, ... ,L, matched by the limb j, is compar doth

initial limb colour cj. A binary colour similarity variable, et, i introdu d to

emphasise significant colour differences and at the same tim suppr Hoi in
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Figure 5.6: The HSV colour space. Hue, Saturation and Valu ar illu Lra in
the figure.

the hue channel

(5.1 )

where a E [0, 1] is an appropriate threshold. Then the observation fun tion 2 1

defined by:
1 L "" Vj Ci,v

82 (NI, H) = - L L..,v=l j

L j=l Vj

where Vj is the total size in voxels of each area j and L is numb r f th b dy

(5.16)

parts.

The observation function of the model M and the colour d vi ual hull H

is given by the weighted mean

2

f(NI,H) = LWk8k(M,H)
k=l

(5.17)

where Wk is a weight that allows us to change the balance between ob ervation

functions, where I:%=1 Wk = 1.

The proposed observation function allows compari ons of individual b d

parts of the human model to the visual hull. Thi property i importan wh n

moving down through our hierarchy in section 5.2.
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5.5 Evaluation

5.5.1 Overview

In this section we analyse the parameters and depict the result s of t lu: I L\ 1S

method. Firstly, the publicly available datasets that an' used HrI' prosontod.

Then the training process is discussed. After that, the observation functiou is

evaluated. Then, the H.MS method is tested for different accuracy t hrcsholds and

different hierarchy levels. Those parameters are analysed ill order to calculat(' till'

trade-off between computational cost and accuracy. Finally, HMS is t('st('d using

a variety of datasets and compared with state-of-the-art human pos(' t ruckint;

methods.

5.5.2 Datasets and Training

In order to facilitate the comparison of HMS with other methods. WI' apply 1l~IS

to 4 standard walking sequences: HumanEva (HE) II-S2 (frames 1 to :~!)()). llEII-

S4 (frames 4 to 370). Image & MOCAP Synchronized Dataset (I~IS) (fruuu-s 1

to 150) and HEI-Slwalking (frames 1 to 590) [18, 89] and 2 jogging S('qlH'I}(,('S:

HEII-S2 (frames 391 to 710), HE-II 84 (frames 371 to 710). For all Sl'qlH'II("('S. wr:

used human actions captured by 4 cameras and calibration informat.iou for ('Hcll

of them. For the walking sequences the tracker is initialised by tho first pose' using

ground truth and for the jogging the tracker is initialised by the last estimated

pose of the corresponding walking sequence. Coloured Visual hulls are croanxl

using the calibration data and the silhouettes provided with the datasots.

A training dataset is used to generate the HTLE models as discussr-d ill

section 5.2. Walking and jogging RTLE models are estimated using 144:~skolot ou

poses from the REI-82 walking, trial-3 and 795 skeleton poses from tho HEI-S2
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jogging, trial-3 sequences respectively. The same training dataset is u d f r all

experiments for each action to demonstrate the generalisation prop rti f th

HMS method. In Figure 5.7 human poses that correspond to th training d a

set Ph,l E jRD and the corresponding manifolds in 2D, Qh,l E jR2 ar sh wn f r

different levels of the hierarchy h and pose subspace l.

t =0
Body

t =0 loO
Upper Body Lower Body

i'>.
Right Arm Right Leg

Lower Right Arm Lower Right Leg

Figure 5.7: Different levels of the hierarchy. Human poses and the orr p n ing
manifolds are represented in 2D for a walking a tivity.

5.5.3 Validation of Observation Function

In this section, we evaluate the observation function relative to the error of our

methodology results. Note that in these experiments, only colour of th end-

limbs (lower arms and lower legs) is used for the observation function 2 to tak

advantage of colour discrimination of hands/shoes. In all experim nt w u a

threshold a = 0.2 in equation 5.15 and Wi = W2 = 0.5 in equation 5.17.

The observation function Si is compared to the ob rvation fun ti n f =
(81+82)/2. In Figure 5.8 the error per frame using the observati n fun ti n J wi h

colour information (Eq. 5.17) i presented in blue (average error 63.1mm), nd
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without using colour information 81 (Eq. 4.21) in black (average rr r 70.2mm),

for HEll 82 dataset. We can see that colour information improv r ul in m

frames.

140

from the initial

-f-S,

120

E 100E-....gw 80

50 100 150 200 250 300 350 400

60

frame Frame number

Figure 5.8: Error per frame of HM8(l,2,3,4,5) using observation functi n f wi h
colour (blue) and observation function 1 without col ur (bla k), for
HEll 82 dataset.

5.5.4 HMS Configuration

In this section, we investigate different configuration f h HM m th d b

evaluating different sets of levels in the hierarchy and differ nt valu s of th

threshold T. We denote as HMS(h1, h2, h3 ... ) the HM meth d appli d f r

levels h1, h2, h3, ... as seen in Figure 5.3.

Figure 5.9 shows the average error and the computational tim p r fram

for 150 frames of the IM8 dataset for different HMS configuration. A hown

in Figure 5.9(a) by increasing the levels of the hierarchy, th timat d rror d -

creases for every threshold. Furthermore, by increasing th hr hold th IT r

decreases in all configurations. Likewise, as shown in Figur ompu-

tational cost (mean number of observations p r fram for all fr: m ) ri wi h

increasing levels of hierarchy. That is because of the incr a in h numb r [
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subspaces that are searched in every level, as seen in Figure G.:~. Fiuallv. COlII-

putat ional cost rises for increasing thresholds. Figure 5.9(<"). shows the' 1I)('ClII

number of observation evaluations per frame for different levels of t he hierarchy

and different thresholds in the HMS(I,2,3A,5) configuration. The llH'(\1I11111111)(,1'

of observations per frame for every level increases for rising t hrosholds. TI}('J"('-

fore, different configurations of HMS provide flexibility 011compromising !Jd\\'c'('11

computational cost and accuracy, demonstrating the value of t.lu- hicrnrchv.

In this experiment, after the 80% threshold, error and comput nt ional

cost are almost constant. That is because the maximum value of the ohsorvat ion

function is near to 80%, as shown in Figure 4.8a. For these' ('xI)('ri11H'11tsW(' used

an Intel corp 2 laptop with code written in Matlab, The computational costs varv

from 4scc to 55scc per frame.

Table 5.1 also shows the usage of different levels of the liicrarchv for dif-

ferent thresholds in the HMS(I,2,3,4,5) configuration. For small thresholds, t ho

contribution of the first level to the final solution is dominant and that kc'pps

the computational cost low. Higher accuracy is achieved by ilH'WHSinl!;t lu: ('011-

tribution of the lower levels of the hierarchy. The contribution of the last level

(unconstrained limb poses) is relatively high even for small thresholds, SilH'(' t lu-

subject (and therefore the style) in training and testing data an' significant lv

different.

5.5.5 Comparison with the State-of-the-Art

In order to compare the HMS method with state-of-the-art methodologies wr

apply HMS to the Walking action of HEII-S2 (frames 1 to :390) and HEI1-S·l

(frames 4 to 297), IMS (frames 1 to 150) and HEI-Slwalkingl (frames 1 to ;)!)())

and to the Jogging action ofHEII-S2 (frames 391 to 710) and HE-II 84 (frames :371

to 790). For every action we use the corresponding training dataset as discussed
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Figure 5.9: HMS performance for different thresholds and onfigur tion (diff r-
ent numbers of hierarchy levels). (a) Average error of diff -I' nt n-
figurations of HMS for 150 frames and differ nt threshold (0 - 100
and (b) average number of evaluations of the ob ervation fun tion
per frame for HMS method for increasing thresholds (0 - 100%). ( )
Mean number of observation evaluations per frame for diff r nt I v-
els of the hierarchy and different threshold in th HM (1,2, , 5)
configuration.

in section 5.5.2. For all sequences, 4 cameras are used and the ground truth for

the first frame initialises the tracker. Since ground truth is not known for th

full length of the sequences, the results of the HMS method were evaluated using

the online evaluation system of the Human Eva website [17]. Our m thod i

quantitatively evaluated against the MP (Manifold Projection) method, MPLC

(Manifold Projection Limb Correction) method presented in the previous hapt I'

4, APF [9] that demonstrates state-of-the-art performance ac ording to [ 9] and

applications of APF in low-dimensional spaces, i.e. GPAPF [79], H-APF [77].

In Table 5.2 we present the average absolute 3D rror [ 9], for P PF
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I Th 1<. II Levell I Level2 I Level3 I Level4 I Levelf I TillH'(sjf) I Error( 1I111l) I
--

10 100 0 0 8 8 8 H
20 100 0 0 17 16 14 .!:~

--

30 100 1 0 25 23 18 II
40 100 19 7 31 28 24 ·to
50 100 64 40 41 ~37 :32 ;~~

GO 100 92 77 58 G~3 ~~8 ;~·l ._-
70 100 100 92 79 73 42 ;~;)

r:-~ ---.-~ _ .._---

80 100 100 99 95 90 ··1"
:0 190 100 100 100 100 99 48 _l;~--~100 100 100 100 100 100 49

Table 5.1: Search (%) of the hierarchy in every lew I for H~[S(1.2.;tU») mot hod.

GPAPF 86.6 89.0 8G.~3 GOO
H-APF* 75.2 81.8 75.4 GOO

~IP 74.0 96.2 72.0 10

:\IPLC 71.4 75.G G8.8 no
H~IS 63.1 62.5 G5.0 1:30

I HEllS2waik I HEIIS4waik I HEIS1 walk I Comp. I

Table 5.2: Average error in mm for GPAPF, H-APF, l\IP, MPLC awl H~IS nu-t h-
ods (*the H-APF results are the average of whole S('qlH'W·(').

and MPLC. and the corresponding hierarchical methods, i.e. H-APF and lI~dS.

We also present the complexity (mean number of observations per fruuu-) for ('\'-

ery method. In this experiment, a threshold T = 100(/{'.(Eq.G.~) is sl'I for lI~[S

to achieve optimal results. These results demonstrate' t 11('value of iut roducinu

hierarchy in dimensionality reduction based approaches. as hicrurrhiral IIl1't hods

always perform better than the original ones, and improves coruput at ional dli-

ciency and accuracy compared with GPAFP and H-APF. Our decision to base'

our dimensionality reduction framework on TLE is confirmed by till' cotuparison

between TLE-based and GPLVM-based representations. Specifically. l\IP and

Hl\IS outperform in most of the cases, GPAPF and H-APF. rcspccr.ivolv,

In Figure 5.10 we show the average error per frame for HEll-S2 walkillg

and HEll-S4 walking datasets for MP (blue line) and Hl\lS( 1.2.:3..1,;'») (rod liuo ]

methods using threshold T = 100%. HMS(1,2.3,4,5) clearly improve's l\IP ill all

datasets (see Table 5.2). This demonstrates the value of using the' hivranhv.
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Figure 5.10: Results for (a) HEIl-S2, (b) HEIl-S4, (c) IMS and (d) HEI-
Slwalking1 sequence with MP (blue line), HMS(1,2,3,4,5) (r d lin )
and APF (black line) methods when it is available:

Figure 5.11 and Table 5.3 displays the average absolute 3D error for APF

and HMS using different particle numbers and thresholds respectively, and their

computational costs per frame as measured on the same machine using Matlab

implementations for both methodologies. Their level of complexity 'Comp.', i. .

the number of evaluations of their observation function, is also shown in Tabl

5.3. HMS using T = 100% generally outperforms APF both in t rms of rr r

and complexity. Moreover, the figure suggests that HMS is able to d liver imilar

accuracy to any APF configuration using only 5% - 25% of proce sing time. Th

low complexity of our method comes from the hierarchical searching strategy

that is driven by the observation function. Furthermore, the combination f

a hierarchical approach with a search that occurs beyond the training datas t

results in improved accuracy. In summary, HMS methodology achieves the b st

overall accuracy with the lowest computational complexity.

In Figure 5.12 we show the average error per frame for HE-II S2 walking

and jogging dataset using HMS(1,2,3,4,5) for lower body (red line), upper body

(blue line) and full body (black line). The training datas t that is u d i th
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APFlOOO 76 60 85 93 41 1000
APF500 83 63 109 154 46 500
APF250 88 70 133 180 49 250

HMS100% 63.1 62.5 80.9 102.4 37.6 128
HMS60% 65.1 64.1 82.5 104.2 41.7 104
HMS40% 69.5 65.2 86.1 106.8 46.3 78
HMS 20% 74.2 67.5 87.3 107.5 49.5 57

I HEIIS2walk I HEIIS4walk I HEIIS2jog I HEIIS4jog I 1MS I C mp.

Table 5.3: Average error in mm and complexity (number of evaluation) for dif-
ferent configurations of APF and HMS.
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E
E~ 120
~w ---100

80
-....___
~

600 50

-- APF HEIIS2w
-- HMS HEIIS2w
-- APF HEIIS4w
-- HMS HEIIS4w
-- APF HEIIS2j
-HMSHEIIS2J
-- APF HEIIS4j
-- HMS HEIIS4J

100 150 200 250
Time (sec)

Figure 5.11: Average error in mm and computational cost per frame in nd
for different configurations of APF and HMS.

walking action as described in section 5.5.2. The average error for th 1 w r

body is 63.7mm (57mm for walking and 70.4mm for jogging), for th upp r

body is 96.2mm (69.2mm for walking and 123.2mm for jogging) and for the full

body is 79.6mm (63.1mm for walking and 96.7mm for jogging). The error in

the walking sequence (frames 1 - 390) is lower than that of the jogging a tion

(frames 390 - 710), since training was based on walking data. More sp cifi ally,

error in the jogging action is higher mainly because of upper body error: in th

tested jogging activity, arm positions are significantly dissimilar to tho found

in the walking dataset, especially when arms are near to the tor o. Since th

latter configuration is periodical over the jogging action, a cyclic patt rn of rror

is observed in Figure 5.12. On the other hand, although a walking a tion was
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used for training, leg positions were estimated accurately for both walkin

jogging activities. These results suggest that our methodology is abl 0 ra k

different styles efficiently to the extend that these are not signifi antly di imil r

to the training set, so they can still be considered as a variation of th am giv n

activity.

200~==~====~-----.-----.--.--r----~----~
-lower body

200 -- upper body

E
.§. 150

g
w 100

50

o 100 200 300 400 500 600 700
Frame number

Figure 5.12: Average error per frame for HEII-S2 dataset with HMS(1,2 3 4 )
for lower body (red line) and upper body (blue line) and full b d
(black line).

In Figure 5.13 we show the average error per frame for HE-II 2 walkin

dataset, using the HMS(1,2,3,4,5) method with threshold 100rc for individual

limbs. As we can see in the graph, the should r has a lower rr r than th lb w

or the wrist, and in the lower body the knee has more a ur t r ul than h

ankle, as we would expect. Also, similarly, we observ that the leaf nod [ th

hierarchy for the lower body have better results than the leaf node in th upp r

body. That makes sense as hands are generally more challenging to tra k a

can be more easily confused with the torso, and they are less con train d b the

specific activities (walking, jogging).

In the Figures 5.14,5.15,5.16,5.17 and 5.18 w di play tra king r ult

of HMS(1,2,3,4,5) with threshold 100% for the datasets us d in the

IMS dataset only the first part of the observation function 1 is appli d b

imagery is grey-scale. APF and HMS(1,2,3,4,5) re ult in 41mm and 7. mm

average error respectively.
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SO 100

-Shoulder

1SO 200 2SO 300 350 400
F

Elbow - Wrist - Knee - Ankle

Figure 5.13: Error for selected individual joint locations. Averag rror p r frs 111

for HEII-S2 sequence and HMS(1,2,3,4,5) method f r diff r nt b 1
parts for 390 frames.

Figure 5.14: Results for HEII-S2 walking data et with HMS(1,2,3,4 5).
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Figure 5.15: Results for HEII-S2 jogging dataset with HMS(l,2,3,4,5).
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Figure 5.16: Results for HEII-S4 dataset with HMS(1,2,3,4,5) for four am ras.
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Figure 5.17: Results for 1M3 dataset with HM3(1,2,3,4,5).

Figure 5.18: Results for 1M3 dataset with HM3(1,2 3,4,5).

5.6 Discussion

This chapter presented a human pose tracking methodology relying n w no 1

techniques. Firstly, a hierarchical method based on dim n i nalit r du ti n f r

human pose tracking was proposed. TLE is us d as the ba i for ur hi rar 11



as it suppresses stylistic variation and generates more compact manifolds in ('0111-

parison to other methods such as ST-Isomap [44] and BC-GPLVM [49] (soct ion

2,2.3). HTLE, has been designed for human pose tracking as it takos into ,H'('Ollllt

the hierarchical representation of the human body. This allows tho drxoupling

from the structure of the training dataset, and the exploration of unseen POSe'S.

Secondly, we introduce a method, HMS, which dctorministkallv s('ardH's

through the hierarchy of low-dimensional manifolds and is driven by an ohsr-rva-

tion function. H;\IS allows searching in a constrained space at ovcrv level of t h«

hierarchy, so it requires a low number of evaluations of the observation fuuct ions

and, therefore, low-computational resources, In addition, by searching t hrough

the hierarchy we are able to consider a wide range of unseen poses. Therefore,

unlike conventional dimensionality reduction methods, which arc restrict ('<I tot he

set of poses present in a training set, our framework is capable of moving hevond

the training set and generating pose hypotheses that have never been seen hcforo.

Compared to ~IPLC, which can also search beyond the 'I'Lli-const.raiucd IlIHIl-

ifold, H;\'IS-HTLE demonstrates better performance, as explained thoorcticallv

and confirmed experimentally, In addition, instead of searching the whole hiorar-

chy, as performed in previous studies using particle filtering [24, 77], WI' minimise

computational costs by controlling this process using a deterministic opt imisat ion

method driven by the observation function which aims at fast convorgenr«.

Experimental results were presented on publicly available dat as!'! 5 and

comparisons to state-of-the-art methods were given. They demonstrate tho (\('('\1-

racy and efficiency of our approach compared to other state-of-the-art nu-t hods.

However, H~IS, as presented here, may only be applied in single-activity 5('('11111'-

ios, not in multi-activity scenarios.



Chapter 6

Human Pose Tracking for Multi-Activity Scenarios

6.1 Introduction

The pose tracking method that was presented in the previous chapter «nu onlv

be applied in single-action scenarios, In this chapter, we introduce Hir-rurrhirnl

Manifold Search - Multi Activity (HMS-MA), a novel 3D human pOSt' Inu-king

methodology for multi-activity scenarios, With reference to the gt'll<'ral pipr-lin«

(Figure 3,1) presented in section 3.1, the HMS-MA method corrospoud« 10 til!'

pose tracking process, while multiple hierarchies of manifolds an' ('sI imat "d bv

HTLE,

H:\IS-},IA properly extends the HTLE and Hl\IS tcchniquos Ihal woro

presented in chapter 5, so they can be applied in multi-activity scenarios. First

using HTLE we generate a hierarchy of manifolds for each act ion rd('\'HIII 10

a scenario. Then, we recognise the type of action for every frame usiru; III!'

HMS-MA method. Finally, the HMS-MA is applied to the whole hicrnrchv of

the recognised action to estimate the pose. The validation of our 111<'1 hod IIS('S

publicly available datasets captured by either a multi-camera system or i\ dept II

89
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camera (i.e. Microsoft Kinect), and demonstrates its accuracy and computational

efficiency.

6.1.1 Overview

In this section the pipeline of the Hierarchical Manifold Search - Multi Activity

(HMS-MA) pose tracking method is presented. HMS-MA relies on a training

phase, which generates a model for each action of interest, and an online phase

where 3D postures are recovered for each frame of a sequence representing an

individual performing a variety of actions. Hierarchies of manifolds for the actions

of a specific scenario are learnt using HTLE (Figure 6.1 (a)), as described in

section 5.2. Each hierarchy represents a single action in the low-dimensional

space, as described in section 5.2.2.

The HMS-MA method is applied to an unseen sequence of observations

for a person performing multiple actions on a given scenario (Figure 6.1 (b)). In

order to evaluate the observation at every frame, a 3D human body model is

used to generate pose hypotheses. First, online action classification is performed

based on the whole body manifold of the hierarchies. Then, the pose estimation is

refined by searching through the hierarchy of the recognised action. The outcome

of HMS-MA is an action classification label and a 3D pose estimate for each

frame.

HMS-MA allows searching in a constrained space at every level of the

hierarchy, so it requires a low number of evaluations of the observation functions

and, therefore, low-computational resources. In addition, by searching through

the hierarchy we are able to consider a wide range of unseen poses. Therefore,

unlike conventional dimensionality reduction methods that are restricted to the

set of poses present in a training set [104, 31, 56], our framework is capable of

moving beyond the training set and generating pose hypotheses that have never
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Action
Recognition

(a) (b)

Figure 6.1: (a) Actions manifold learning and (b) human p s racking pil lin "
for multi-activity scenario.

been seen before.

An interesting requirement of pose tracking in multi-acti it se narios is

how stylistic variations are addressed. Specifically, they must b 1.'0. in

action recognition [54, 52], but they must be expr s d in p

efficient pose tracking [58]. Therefore, we use only the fir t 1 v 1 f th hierar-

chy, where style has been suppressed for recognising the urr nt a ti 11 all 1all

levels to generate a variety of hypotheses for tracking th po f an ill li i lual

accurately.

6.2 Action Manifold Learning

In this section we discuss the generation of a set of hi r r hi f rnanif Ids f r

K different actions for use in a multi-activity c nario tra king. or thi pur-

pose, we exploit in a multi activity context the Hierarchic 1T mp ral apla ic II

Eigenmaps presented in section 5.2.

We define a hierarchy based on the divi ion of th individual b dy part

similarly to [77, 24]. At the first level, ti., the whol body i 1. l h

next level, h2' the variability of the previous level is xpr d b. tw ul pa ,
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containing either the upper or the lower body. The division process is repeated for

the next two levels, h3 and tu: firstly, four subspaces are created to model the four

individual limbs, i.e. left and right arms and legs; secondly, each limb is divided

into two segments, i.e. upper and lower arm and leg, to produce in total eight

submanifolds. Differently from previous work though, at the last level, h5, each

limb segment is allowed to move in an unconstrained manner. By introducing

different levels with an increasing level of specificity, we incrementally vary the

ability of generating new pose hypotheses while maintaining a certain level of

constraints.

We assume that the given training dataset consists of K sets of sequences

that correspond to K actions, each of them consisting of Nk poses in the high-

dimensional space IRDk. Let Ph,l,k be the concatenation of the sequences of the

k-th action in the training dataset, represented in the high-dimensional space

IRDh,l,k that corresponds to the l-th pose subspace at the hierarchical level h

(6.1)

where P~ IkE IRDh,[,k is the pose of the model at the time i. The HTLE method, ,

is applied to all Ph,[,k, for every level of the hierarchy h, subspace l and action k.

As described in section 5.2 the resulting manifold is:

Qh,l,k = {qtl,k' i = 1, ... , Nk} , (6.2)

. d
where qh,[,k E IR h,l,k and dh,l,k «Dh,l,k.

Radial Basis Function Networks (RBFN) [53] are used to define mapping

functions {<Ph,l,k, <p' h,l,k} between the high and low-dimensional spaces

(i) i '(i) i<Ph,l Ph,l = qh,l' <Ph,l qh,l = Ph,l· (6.3)
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We also define the mapping function between hierarchical levels

Wh,l',k (Ph-l,l,k) = Ph,l',k' (6.4)

The result of the action manifold learning process is a set of K hierarchies of

manifolds corresponding to the K action types. These mapping functions permit

evaluating hypotheses by projection to the high-dimensional space as well as

propagating hypotheses through the hierarchy.

6.3 Pose Tracking Framework - HMS-MA

In this section the Hierarchical Manifold Search - Multi Activity (HMS-MA)

method for 3D pose tracking in a multi-activity scenario is presented. This

method is an extension of HMS that was presented in section 5.3. For every

frame of the testing dataset the HMS-MAmethod recognises the type of action

that the person performs. Then the HMSmethod is applied using the hierarchy

of manifolds of the selected action. The result is the 3D pose of the current

frame.

6.3.1 Action Classification

In this section the first part of Hierarchical Manifold Search - Multi Activity

(HMS-MA) method for online action classification is presented. We assume a

set of K hierarchies of manifolds corresponding to the K types of actions has

been generated using HTLE, as described in section 6.2. The unseen sequence

represents a single subject performing a subset of the K actions. For every frame

i we firstly estimate the global position and orientation of the human model by

optimising the observation function applied on the previous pose, as described in

section 4.3.1. The action recognition method consists of three steps as seen in
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Apply
HMS(l)for
all actions:

Action
Label

Figure 6.2: HMS-MA action recognition pipeline for multi-activity scenario.

Figure 6.2:

Stepl: First, in order to recognise the type of action of frame i, we estimate

the 3D pose according to the model of each of the possible activities by

applying the HMS (chapter 5) model-based pose estimation algorithm

to the whole-body manifolds of all K hierarchies for pose pi-I. A 3D

pose pi (k) is estimated for all k = 1, ... , K. For every pose pi (k) a

corresponding observation function i' (k) is calculated (as defined in

section 6.4).

Step2: Then, in order to exploit the information of previous frames we cal-

culate the average value of the last ~ observation functions for each

action k:
i min(~,i) P+1-j (k)

Fdk) = L . .
j=I mm (~,~)

(6.5)

where ~ ~ 1 represents the memory of the system, i.e, the frames

that will be used. If ~= 1 we only use the current frame.

Step3: Finally, the action k:nax that maximises Ff (k) over the sliding window

of length ~ is chosen to represent the type of action in frame i

(6.6)
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Figure 6,3: Pose tracking pipeline for multi-activity scenario.

6.3.2 Pose Tracking

HMS-MA searches the rest of the levels of the hierarchy of manifolds that cor-

respond to the selected action k = k:nax where pi 1 = pi(k:nax) (Figure 6.3).,

Specifically, for every layer h (h > 1) and subspace l of the hierarchy first the

point from the pose subspace l', from the previous hierarchical level h - 1 is pro-

jected to the child pose subspace Ph,l,k using the function Wh,l,k to restrict the

part of the human model that is searched:

P~,l = Wh,l,k (PL1,l') . (6.7)

Then the high-dimensional point ph,l is projected to the low-dimen ion

space IRdh,l,k

i ( i )qh,l = lPh,l,k Ph,l . (6.8)

Then, the solution is constrained using the action manifold. Specifically,

HMS-MA considers the closest point qh,l to the point q~,l in Qh,l,k'

Afterwards, a gradient descent optimisation algorithm is used in order

to find a local maximum where putative solutions are evaluated in the high-

dimensional space using the observation function. The output of the algorithm
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is the optimal point P~,l that maximises the observation function f~::

Ai {r jr'i}Ph,l = Ph,l: m~x h,l . (6.9)

Finally, the pose of the model pi is estimated by concatenating the body

parts estimated at the last level of the hierarchy.

(6.10)

The estimated pose pi is used as input in the next frame. The HMS-MA

method is applied for every frame of the video sequence. The final results are the

action labels k:nax and the 3D poses pi for each frame i of the sequence.

The HMS-MAmethod is an extension of HMS-HTLEmethods to cover

multi-activity scenario problems. Therefore, the pose tracking results are not

expected to be an improvement upon the results presented in the previous chapter

where action labels were considered known. The advantage of this method is

that the proposed HMS and HTLE methods may be used in more complicated

scenarios containing multiple actions. Finally, HMS-MA requires some extra

computational resources to run HMS(l) for all activities and recognising the

action for each frame.

6.4 Observation Function

In this section we discuss the observation function that is used to compare the

observation and the pose hypothesis. We use two type of data for evaluation

the HMS-MAmethod i.e. multi-camera and Kinect datasets. For multi-camera

datasets we use the same observation function as described in section 5.4. For

the Kinect dataset, the foreground colour image and depth map for each frame
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are used to represent the sequence of observati n , a n in .. 3. The

human pose hypothesis, based on the 3D human body m d I M a 1 fin d in

section 3.4, is projected on two diff rent spa s to facilitat til

th I in c

image plane to enable compari on with th f r ground lour imag . ndl , i

is projected on depth map space to allow mpari on wi h h Ior zround d pth

map, as seen in figure 6.4, where every point of th pr j t cl m 1 1 r pr ' nts

the 3D Euclidean distance from th carr sp nding 3D point t Lh camera pl. 11'

(Xck,Yck) as seen in section 3.2.1.

Figure 6.4: The 3D pose hypothe is project d on th im g plan and th d p h
map space. In the latter proje tion, pseudo- olour i us d to l' pr sen
depth values.

In order to compare th ob rvation with th po e hyp th 1, n b-

servation function is required. The ob ervati n fun ion tha L u et for th

HumanEva data et is the me a th on that wa pr ntcd in' ti n ~.4. r

the G3D data et, the obs rvation fun tion i b d n th 1 ur imag and h
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depth map of each frame. The first part of the observation function is based on

the 2D area of the silhouettes. The two areas of observation H and the projection

of pose hypothesis are compared using function SI, as defined below. Although

the definition of SI is similar to the one in section 4.4, they differ as M and H

represent areas instead of volumes in equation 6.11.

IMnHI
sdM, H) = I M I . (6.ll)

The second part of the observation function is based on colour similarity,

similar to the one defined in section 5.4

1 L ~Vj Ci,v
(M H) = _ '"' L...v=1 j

S2, L L...J V.
j=1 J

(6.12)

where Vi is the total size in pixels of each area and CJ'v is the binary colour sim-

ilarity variable, which is introduced to emphasise significant differences between

pixel colours.

The third part of the observation function compares the depth informa-

tion between the observation and pose hypothesis M

(M H) = LVEM Imv - hvl
S3, I M I (6.13)

where m; E M and li; EH for every pixel v in the depth map.

Finally, the observation function is given by the weighted mean

3

f (M, H) = L WkSk(M, H)
k=1

(6.14)

where Wk is the weight that allows us to change the balance between observation

functions, where L~=1 Wk = 1.
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6.5 Evaluation

6.5.1 Overview

In this section we analyse the parameters and depict the results of the HMS-MA

method. Firstly, the publicly available datasets that are used and the training

process are presented. Then, the observation function for the G3D dataset is

evaluated. Finally, HMS-MA is tested using a variety of datasets and compared

with state-of-the-art multi-activity pose tracking methods.

6.5.2 Datasets and Training

We evaluate HMS-MA on two publicly available datasets. First, we use the mul-

tiple action sequences of the HumanEva (HE) II datasets which are presented in

section 3.3.2, i.e. HEII-S2 frames 1 to 710 (1-390 walking, 391-710 jogging), and

HEII-S4, frames 4 to 710 (4 - 370 walking, 371- 710 jogging). For all sequences

we used human actions captured by 4 cameras and calibration information for

each of them. The HEI-S2 walking, trial-3 and HEI-S2 jogging, trial-3 sequences

belonging to HumanEva I dataset are the datasets used for training the HTLE

models, as discussed in section 5.2. Second, we use the boxing scenario of the

G3D dataset which is presented in section 3.3.3 since it provides training data for

a wide range of actions (punch left, punch right, kick left, kick right, defence). In

between actions, subjects return to an "inaction" pose, i.e. standing still. Sub-

jects 1 - 5 are used for training, while the remaining subjects 6 - 10 for testing

our method. The range of frames of each action was extended by 20 frames in

order to include some inaction frames of training dataset. In all experiments, the

tracker is initialised with the first frame of the sequence using the ground truth

pose.
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The value of variable ~ is estimated by applying HMS-MA on the training

dataset for different values of ~ and selecting the optimal one: they correspond

to ~ = 10 and ~ = 2 for the HEn and the G3D datasets respectively. Such a dif-

ference of optimal ~ is justified as actions are shorter and change more fr quently

in G3D than in HumanEva.

6.5.3 Validation of Observation Function

The observation function that is used for the HumanEva datasets was evaluated

in sections 5.5.3 and 4.5.2. Here we evaluate the observation function that was

presented in section 6.4. In Figure 6.5 we see the inverse relationship between

the average error per frame using HMS-MA configuration for G3D subject 7 (red

line) and the values of the observation function f for every frame i (in black)

using WI = W2 = W3 = Ij3. The correlation coefficient of the error and the

observation function is -0.38, which implies negative linear correlation, and this

is statistically significant because the p-value is sufficiently small (p = 2 . 1O-1l)

[33]. This confirms that maximising the proposed observation function 1 ads to

minimising the pose tracking error.

o
g-..
II>...
<
Cl...o·
:I-C::I
n..o·
:I

20 ~

150 200 300 350 400
Frame number

Figure 6.5: Error of HMS-MA and observation functions per frame.
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6.5.4 Action Classification Results

In this section we present action classification results produced by the HMS-MA

pose tracking method presented in section 6.3. In all experiments we use threshold

T = 100% in equation 5.8 and a = 0.2 in equation 5.15. All observation function

weights are set as equal, i.e. WI = W2 = 1/2 (equation 5.17) in multi-camera

experiments and WI = W2 = W3 = 1/3 in Kinect experiments (equation 6.14).

In Figure 6.6, the difference between the two functions, Fi (1) and Fi (2),

is estimated for every frame i, as described in section 6.3, for the HumanEvall

S2 (Figure 6.6a,b) and HumanEvall S4 (Figure 6.6c,d) datasets. The FU1)

corresponds to the walking action, and the Fi (2) to the jogging action. The

horizontal red line is the zero axis and represents our activity decision boundary,

while the vertical line at frame 390 for HElI-S2 and 370 for HElI-S4, depicts the

time of change of activity type, i.e. the last frame of the walking action. When a

curve is above zero, it means that walking is the recognised action; otherwise it

is jogging. Overall, the classification success rate for the walking and the jogging

actions for HEIl-S2 dataset are 92% and 98% respectively using { = 1 and 99%

and 100% using { = 10 and for HEII-S4 are 85% and 98% respectively using

{ = 1 and 90% and 100% using { = 10.

In Figure 6.7 we present results for HumanEvaII S2 data using HMS-

MA(1-5) method. We can see the classification success rate (red line) and the

corresponding error (blue line) for different values of variable f. The best results

are for ~ = 10 i.e. classification success rate 99.6% and average error 73.5mm.

Therefore, using a high value of {, (e.g. {= 10) improves the results

of the action classification Also comparing the Figures 6.6a and b and Figures

6.6c and d we can see that for higher value of the variable ~ = 10 the difference

between functions, Fto (1) and Fto (2) are represented by a smoother curve. Since

the actions are properly recognised for such high percentage of the sequence, pose
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where action labels w r known.

e timation res ults ar expected to be imilar to the ones derived in section 5.5.5,

~o '00 200 300 «Xl 500 eoo 700
Frwno_

(a) HEII- 2 ~ = 1

Frtme number

(c) HEII- 4 ~ = 1

Fmn.number

(b) HEII-S2 ~ = 10

~ 0 100 200 DJ «Xl 500 600 700 EO)

Framenumbef

(d) HEII-S4 ~ = 10

Figure 6.6: HMS-MA method for action classification. Difference of functions
FJ (1) and Fl (2) for a) HEll- 2 ~ = 1, b) HEll-S2 ~ = 10, c) HEll-S4
~= 1 and d) HEll-S4 ~ = 10.
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Figure 6.7: AC and error results using HMS-MA using different values of ~ for
HEIIS2.

In Figure 6. we pre ent results for G3D data subject 8 using HMS-

MA(1-5) method. We can see the cla ification success rate (red line) and the

corresponding error (blue line) for different values of variable f. The best results

ar for ~ = 2 i.e. 99.6o/c for classification success rate and 13.7mm for the error.
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I punch right I punch left I kick right I kick left I defend I
punch right 98.6 0 0 1 0.4
punch left, 1 96 0 0 3
kick right 0 0 100 0 0
kick left 0 0 0 100 0
defend 2.2 0 0 0 97.8
Table 6.1: Confu ion matrix for subjects 6 to 10 using ~ = 2.

The optimal ~ i maller than this on the previews results as in G3D data actions

are shorter and change more frequently than in the HumanEva dataset.

100 16

90 15
~

80 14 m
CIt ..,
CIt ..,
~ 0..,
g

13 3CIt 70
o ~-c

60 12
I==~;:ccessI

50
0 5 10 15 20 25

Figure 6. : AC and error result using HMS-MA using different values of ~ for
G3D data ubject .

Similarly. in Table 6.1 we see the confusion matrix, which presents the

classification results for each activity using the HMS-MA(1-5) method applied in

G3D dataset for subjects 6 to 10, using ~ = 2 in equation 6.5. Also, in Tables 6.2

and 6.3 we can see the action clas ification success rate of every subject for each

activity using ~ = 1 and ~ = 2, respectively. Using e = 2 the action classification

success rate is higher (9 .4%) than using ~ = 1 (94.2%), for all cases. Overall,

we can see that HMS-MA i able to detect the correct action with a total success

rate of 9 .4% in the G3D dataset.
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I punch right I punch left I kick right I kick left I defend I total I
sub6 92 47 88 100 100 85.4
sub7 79 100 100 100 90 93.8
sub8 86 100 100 100 96 96.4
sub9 100 100 100 100 100 100
sub10 100 82 100 100 97 95.8
total 91.4 85.8 97.6 100 96.6 94.2

Table 6.2: Percentage success of every subject for each activity using ~ = 1.

I punch right I punch left I kick right I kick left I defend I total I
sub6 100 80 100 100 100 96
sub7 93 100 100 100 100 98.6
sub8 100 100 100 100 100 100
sub9 100 100 100 100 100 100
sublO 100 100 100 100 93 98.6
total 98.6 96 100 100 98.6 98.6

Table 6.3: Percentage success of every subject for each activity usmg ~ = 2.

6.5.5 Pose Tracking Results

In this section we present pose tracking results produced by the HMS-MA. In

Figure 6.9, the results for HE-II 82 walking and jogging actions per frame are

shown using HMS-MA(1-5) and ~ = 1. The grey areas present the frames that

the action classification process failed. The pose tracking error in the grey areas

(103mm) is higher than the average error, as pose tracking depends highly on

action classification. The average error along the whole multi-activity scenario is

fairly constant (walking action: 70mm, jogging: 77mm). Overall, HM8-MA(1-5)

using the optimal memory value, i.e. ~ = 10 performs similarly to APF [89] and

H-APF [78] however the complexity of HMS-MA is significantly lower, as seen

in Table 6.4 and Figure 6.10. HMS-MA performs similarly to HMS, with the

additional advantage that action segmentation is automated.
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Figure 6.9: HMS-MA results for HEII-S2 walking and jogging action. h gr
areas present the frames that the acti n la ifi ati n pr ss re il 1.

APF 76 85 60 93 1000
H-APF* 75.2 75.2 81.8 81.8 500
HMS 63.1 80.9 62.5 102.4 130

HMS-MA 70 77 63 100 140
Table 6.4: Average error in mm and complexity (numb r of valuati n ) f r dif-

ferent configurations of APF and HMS (*the H-APF r ult h
average of whole sequence).
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Figure 6.10: Average error in mm and complexity (numb r of valua ins) f r
different configurations of APF and HMS.

Compared to HMS, HMS-MA requir s an xtra computati nal at f r

online action recognition, which is the cost of running HMS(l) for} - 1 Cl, tivi-

ties. In the walking-jogging scenario the overall computational c mpl xit (in an

number of observations p r frame) incr a es by only 8o/cp r fram . in mpari 11

with the HMS method (Section 5.5). Overall, th add d c mpl ixity j a lin ar
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function of the number of actions that are tested. HMS-MA pose tracking is not

expected to outperform HMS, because in the experiments of section 5.5 the ac-

tion label was considered known. Since recognition of the jogging action is highly

reliable (98%), it is not surprising that the performance of HMS-MA is similar to

HMS for the jogging part.

In the Figures 6.11 and 6.12 visual results for HEII-S2 using HMS-MA(l-

5) are presented using ~ = 2.

In Tables 6.5, 6.6 and Figure 6.13, pose tracking results using the HMS-

MA(1-5) method for every subject (6 to 10) and every action are summarised,

using ~ = 1 and ~ = 2 respectively. The total average difference from [86] for all

the subjects is 16mm for ~ = 1 and 12.6mm for e = 2. Similarly, to the previous

results, higher action classification success rate using e = 2 (section 6.5.4) leads

to more accurate pose tracking results.

To place our performance in context, we consider that in the evaluation

of [86],which produces the "ground truth" measurements, a "true positive joint"

is considered when the Euclidean distance of the estimated joint from the real

one is within 100mm. In addition, according to the analysis in [46], the depth

resolution and the standard deviation of depth error of Kinect is 25mm and 14mm

respectively, when the object is at 3m distance from the sensor, which is the case

for the subjects in the G3D dataset. Therefore, we can claim that the accuracy

of HMS-MA is comparable to [86], since the difference of performance is within

the statistical error of depth measurements.

In Figure 6.14 we see the error in mm for every frame, for subjects 6 to

10. The colour dashed lines specify the different action types, according to the

ground truth, while the colour dots on the horizontal axis represent the estimated

action for every frame.
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Figure 6.11: Results using HMS-MA(1-5) at HEII-S2 subject. Left and right part
of the estimated skeleton are shown in red and blue respectively.
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Figure 6.12: Re ults using HM -l\fA(1-5) at HEll 82 subject. Left and right part
of the e timated skeleton are shown in red and blue respectively.
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I punch right I punch left I kick right I kick left I defend I total I
sub6 29.7 43 71.2 42.6 27.7 22.9
sub7 19.5 14.3 19 16.6 22.1 14.5
sub8 24 18.4 22.6 22.8 15.6 14.8
sub9 16.5 15.1 25.8 21.4 10.8 13.2
sub10 14 18.6 32.2 28.4 31.4 12.6
total 20.5 21.5 35.3 26.1 21.9 16

Table 6.5: Average error results in mm per action using ~ = 1.

I punch right I punch left I kick right I kick left I defend I total I
sub6 22.8 19.9 20.6 15.5 24.4 14.6
sub7 18.3 14.8 21.7 15.8 20.1 13.7
sub8 18 17.3 17.5 14.1 16.5 13.1
sub9 16.5 15.1 25.8 21.4 10.8 13.2
sub10 11.3 14.5 26.1 27.2 11.2 8.6
total 17.3 16.3 22.3 18.8 16.6 12.6

Table 6.6: Average error results in mm per action using ~ = 2.

E
E
-- 20g
w 15
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5

punch right punch left kick right kick left defend Kinect resol,

Figure 6.13: Average difference from [86] for G3D dataset in mm per action.
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Figure 6.14: Results using HMS-MA(1-5) for subject 6-10 and ~ = 2. The colour
dashed lines specify the different action types, according to the
ground truth. The colour dots on the horizontal axis represent the
estimated action for every frame. The following colour code is used:
black-punch right, red-punch left, blue-kick right, magenda-kick left,
green-defend.
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In Figure 6.15 we see the error per frame for the HMS-MA method ap-

plied in G3D subject 9, using H~I -~IA(l) and HMS-MA(1-5). We can see that

the rror when we u e all the levels of the hierarchy is lower that when we use

only the first level. Therefore while H}'IS-MA(l) is used to recognise the action of

every frame, HM -~IA(1-5) i more accurate to e timate pose. A visual example

of thi i given in Figure 6.16. In the left image a pose is estimated using HMS-

MA(l) and in the right u ing H:\I -:\tlA(1-5). The HMS-MA(1-5) estimation is

more accurate than the one provided by HMS-MA(l), since HMS-MA(1-5) is able

to adapt to stylistic difference between samples in the training and the testing

dataset.

60
50 -- HMS-MA(1-5)

-- HMS-MA(1)

10

O~~--~----~----~----~----~----~----~---
150 200 250 300 350 400 450 500

Frame number

Figur 6.15: Result for G3D ubject 9 u ing HMS-MA(l) (red) and HMS-MA(l-
5) (blue) methods.

Figure 6.16: Depth map and the pose estimation using HMS-MA(l) (left image)
and HM -MA(1-5) (right image).

In the Figure 6.17 we ee visual results for G3D subject9 using HMS-
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MA(1-5).

Figure 6.17: Results using HMS-MA(1-5) at G3D dataset subject9.

6.6 Discussion

In this chapter we presented a novel human pose tracking methodology for multi-

activity scenarios called HMS-MA. The HTLE method is used to generate a set of

hierarchies of manifolds. Each hierarchy represents a single activity. The HMS-

MA method is applied to these hierarchies in two stages. First, the action of

every frame is recognised, and then the pose is estimated, based on the re ult

of the first step. The HMS-MA is applied in publicly available datasets, and

results demonstrate the ability of the method to deal with multi-activity scenario

problems in pose tracking and online action recognition.

TLE has been used before for action recognition [52], by comparing a
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whole sequence with the manifold in low-dimensional space, in an offline manner.

On the other hand, HMS-MA is able to produce frame-based action recognition

results and use them for online pose tracking problems.

The system is equipped with short memory to improve online action

recognition results. The size of the memory is represented by a single variable,

whose value depends on the frequency and the speed of actions.

The HMS-MA method extends the HMS-HTLE methods in order to deal

with multi-activity scenarios. The extra complexity of the action recognition step

that is required in HMS-MA is relatively low compared to the original complexity

of HMS-HTLE. In addition, the accuracy of HMS-MA is similar to state-of-the-art

methods [24, 77, 29, 27], but with significantly lower complexity.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis we have proposed novel generative 3D human pose tracking meth-

ods for single and multi-activity scenarios. The pose tracking problem is very

challenging because of the complexity and the high-dimensionality of the hu-

man posture. We proposed solutions that may achieve accurate results with

low-computational cost, compared to other generative methods.

In order to constrain the search of the optimal pose, we use dimension-

ality reduction methods in order to learn low-dimensional models from training

datasets. In particular, we selected TLE as the base dimensionality reduction

approach, as it is able to suppresses stylistic variation and produce compact

manifolds which may be considered almost ID in most cases and therefore are

suitable for fast exploration.

However, such results are constrained by the training dataset and may

not accurately match the potential style of the observed sequence. In order to

move beyond this constraint and generate poses that correspond to unseen sty lis-

114
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tic variations of actions, we represent human poses using multiple levels, e.g. two

levels in MPLC and five levels in HMS-HTLE. Searching through those structures

is driven by the observation function, so to minimise the computational cost of

the method.

In addition, we intentionally avoid using particle filtering because of its

high computational cost. Instead, fast deterministic gradient-based optimisation

methods are chosen. Generally in gradient-based optimisation, results depend

on how close the global optimal solution is to the initial pose, because searching

may be trapped to a local optimal. Our methods search through multiple levels

to reduce this effect and result to better accuracy.

Finally, we deal with multiple-action scenarios by combining pose track-

ing with online action recognition. Specifically, a short memory action recognition

method is used to assigned an action label on each frame. Such a memory mecha-

nism allows generating a smoother and more accurate representation of actions.

In Chapter 4, the MPLC pose tracking method was presented. Firstly, in

the MP stage, the observation pose is compared with the model hypothesis con-

strained by a TLE low-dimensional manifold to avoid divergence of pose tracking.

Secondly, the LC stage deals with the problem of stylistic variations of human

activity by refining each limb individually. The LC method is triggered to search

for the optimal position of only the body parts that have erroneously determined

during the MP method.

In Chapter 5, the HMS-HTLE pose tracking method was presented.

First, HTLE, a novel hierarchical dimensionality reduction method, was intro-

duced. HTLE generates a hierarchy of manifolds from a single action training

dataset, based on the hierarchy of human body. HMS searches efficiently through

the HTLE hierarchy, driven by the observation function. Since searching is mainly

performed in compact TLE manifolds, a low number of evaluations is sufficient



116

for each level. HMS-HTLE is able to combine sub-poses from different manifolds

to represent unseen poses. The result is a human pose in which the individual

body parts are generated independently, which may have not seen in the train-

ing dataset. The HMS-HTLE method improves the results of the human pose

tracking problem when compared with the MPLC method, as it searches through

more levels than MPLC.

The previous pose tracking methods may only be applied in single-action

scenarios. In Chapter 6, the multi-activity 3D pose tracking method HMS-MA,

was presented. The HTLE method is used to generate a set of hierarchies of man-

ifolds and each hierarchy represents a single activity from the training dataset.

When inferring unseen sequences, firstly the action of every frame is recognised.

A short memory mechanism is used to provide reliable online action recognition

results. Then, the hierarchy of manifolds that corresponds to the recognised ac-

tion of the specific frame is searched for estimating the pose, as in chapter 5.

HMS-MA is able to produce accurate pose tracking results in multi-activity sce-

narios without significantly increasing the computational cost, in comparison to

HMS-HTLE.

7.2 Future Work

A challenge in pose tracking problems is to minimize the computational cost

without affecting the accuracy of the method. The pose tracking methods which

were presented in this thesis have low complexity, compared to other generative

methods. However, the high-computational cost of calculating the observation

function, prevents their use in real-time applications. Therefore, one future di-

rection could be on optimising the algorithm of comparing the candidate pose to

the input observation and on implementing the algorithm on a real-time platform

(e.g. C/C++ using dedicated hardware).
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One of the issues that were not investigated in this thesis was the smooth-

ness of the sequence of estimated poses. Results from many pose tracking methods

suffer from jitter, which is undesirable for some applications (e.g. virtual replay),

as it causes a final outcome that looks unnatural. Therefore, future work could

investigate techniques, such as dynamic models and operators, to smooth the

sequence of estimated poses, which look natural.
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