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Abstract 

Over the last two decades, computer vision researchers have been work­

ing to improve the accuracy and robustness of algorithms for the context 

analysis of videos capturing single or multiple moving targets. However, 

devising algorithms that can work in uncontrolled environments with vari­

able and unfavourable lighting conditions is still a major challenge. This 

thesis aims to develop robust methodologies to analyse scenes with multi­

ple moving targets captured by a stationary camera. 

First, a new particle swarm optimisation algorithm is proposed to in­

corporate social interaction among targets. A set of interactive swarms is 

employed to track multiple pedestrians in a crowd. The proposed method 

improves the standard particle swarm optimisation algorithm with a dy­

namic social model that enhances the interaction among swarms. In ad­

dition, constraints provided by temporal continuity and strength of person 

detections are incorporated in the tracking process. This allows the par­

ticle swarm optimisation algorithm to track multiple moving targets in a 

complex scene. 

Second, a novel method is proposed to detect global unusual events 

and accurately localise abnormal regions in the monitored scene. The idea 

is to exploit temporal coherence between video frames and use the man­

ifold learning algorithm, in particular Laplacian Eigenmaps, to discover 

different crowd activities from a video. The proposed method provides an 

advantage of visualising and identifying different crowd events in a low 

dimensional space and detect abnormality. Then, this method is further 

extended to detect localised abnormality where the behaviour of an indi-
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vidual deviates from the rest of the crowd. In this approach, the visual 

contexts of multiple local patches are studied to model the regular be­

haviour of a crowded scene. This local probabilistic model allows to detect 

abnormal behaviour in both local and global context and localise the re­

gions where abnormal behaviour occurs. 

The performance of the proposed algorithms is validated using standard 

data-sets and surveillance videos captured in uncontrolled environments. 
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'The most beautiful experience we 

can have is the mysterious. It 

is the fundamental emotion which 

stands at the cradle of true art and 

true sCience. " 

Albert Einstein 

Introduction 

In the last decade. a surveillance system has become an integral part of 

security and law enforcement in today's society. A vast number of surveil­

lance systems are being installed everywhere. ranging from residential ar­

eas to public spaces such as airports and shopping malls. As these surveil-

Figure 1.1: An illustration of a process of automated video context analysis. 

lance systems collect a huge amount of video data everyday. it is important 

to automate the process of video context analysis (Figure 1.1). Automating 

1 
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surveillance tasks such as intruder detection. people tracking. detection of 

abandoned luggage and abnormal behaviour is a desirable and interesting 

problem to solve. 

.. Computer vision researchers have worked to improve the accuracy and 

robustness of algorithms to automatically analyse the context of a video. 

However. there are still many unsolved problems in analysing video context 

for non-ideal conditions such as a cluttered and unknown environment, 

for surveillance of indoor and outdoor scenes. In addition. most research 

has focused on modelling and detecting anomalies of isolated or indepen­

dent individual behaviours. However. examining individual behaviour of a 

target in isolation is insufficient to describe potential abnormal behaviours 

involving multiple targets in a complex scene. 

On the other hand. with the increased deployment of surveillance sys­

tems in real-world applications and various scenarios ranging from home 

security to public safety. the demand for the video context analysis has 

changed. The interest has shifted from the understanding of actions per­

formed by individuals to the analysis of a complex behaviour involving 

multiple targets. For instance. surveillance systems deployed in public 

spaces. such as airports or shopping malls. monitor a scene involving over 

hundreds of people. Thus. more intelligent algoriUuns are required to de­

tect anomalous events involving multiple targets. 

The complexity of the problem and the challenges described above mo-. 
tivated me to devise advanced computer vision algorithms to analyse be­

haviours of multiple targets. Firstly. this thesis addresses the problem of 

tracking multiple targets in a complex scene. This problem arises in a vari­

ety of different contexts. For instance. at locations such as train stations. 

airports. shopping malls. security officials are interested to track some 

people in the crowd. to keep an eye on their activities .. Several computer 
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vision techniques have been developed to track individual targets. How­

ever. these techniques can not be directly applied in crowded scenes due 

to complex interactions among targets. Therefore. it is important to have a 

mechanism to handle social interactions among targets. while developing 

a method to track multiple targets in a complex scene. 

Next. novel methods are developed to analyse and detect abnormal 

events in a scene involving multiple targets. In a scene where multiple 

targets enter and leave at the same time. tracking multiple targets is very 

difficult. if not feasible. In addition. as the number of targets increases 

in the scene. interactions between targets are unaVOidable and the num­

ber of pixels belonging to a target decreases. Hence. an individual-based 

tracking approach becomes infeasible in this environment. A coarse level 

analysis of the scene where the group is considered as a single entity is a 

better solution for understanding a crowded scene. However. considering 

a group as a single entity may miss localised abnormality happening in a 

monitored scene. Therefore. it is important to develop different computer 

vision algorithms to address different challenges encountered in different 

scenarios. 

1.1 Aims and Objectives 

The goal of this thesis is. as shown in Figure 1.2. to devise computer vision 

algorithms capable of interpreting the context of videos involving multiple 

targets. SpeCifically. this work focusses on two-- particular tasks in the 

research of video context analysis. The first task is to develop techniques 

for tracking multiple moving targets. The second task is to detect and 

localise abnormal regions in crowded scenes. 
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(a) (b) 

Figure 1.2: The objectives of the work in this thesis: a) To track individual targets 
and b) to detect abnormal behaviour in a crowded scene. 

1.2 Challenges 

Addressing the objectives listed above is a difficult task, particularly in un­

controlled environments. Some challenges encountered are listed below: 

Frequent Interactions 

In a crowded scene, interactions among targets are unavoidable and the 

occlusion is often persistent. In addition, as the number of targets in­

creases in the scene, the number of pixels belonging to a target decreases 

and the appearance information becomes ambiguous. This makes the 

Figure 1.3: Some examples of multiple targets tracking in a crowded scene. Fre­
quent interaction among targets and occlusions increases the diffi­
culty of the tracking task. 
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tracking task more challenging and it is difficult to persistently track the 

targets throughout the scene. Figure 1.3 shows some example scenes 

studied in this thesis. 

Modelling Behaviours 

While the modelling of actions performed by a single target is yet to be 

fully solved, the explicit modelling of group/crowd behaviours faces even 

more challenges as there is a large quantity of possible behaviours. Un­

predictable interactions among individuals pose significant challenges for 

approaches based on detection and tracking of individual targets. Some 

activities analysed in this thesis are shown in Figure 1.4. 

Figure 1.4: Examples of different crowd behaviours studied in this thesis. 

Localising Abnormal Regions 

The next challenge is to detect and localise abnormal behaviours arisen 

due to an unexpected action of an individual in a crowd. When there is no 

scene layout, the motion of each target is random and each spatial location 

can support more than one behaviour. Hence, using global frame features, 

localised abnormal behaviours will be averaged among all the other actions 

taking place and hence be difficult to detect. Examples of global and local 

abnormal events are shown in Figure 1.5. 
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(a) (b) 

Figure 1.5: Examples of crowded scenes and abnormal events: (a) global abnor­
mal event: sudden movement of people in a crowd (b) local abnormal 
events: unexpected actions of an individual in a crowd. 

1.3 Nomenclature 

Many terms that are employed to describe phenomenon related to research 

problem in this thesis are defined loosely in the literature. To avoid confu­

sion' definitions and explanation of these terms are provided in this sec­

tion: 

• The term crowded/complex scene is used to refer to a scene that con­

tains more than ten people with frequent interactions. 

• The term abnormal behaviour is used to refer to a region of the scene 

or the whole scene where the behaviour of the crowd is different from 

its learnt patterns. 

• The term localised abnormal region is used to tefer to a region of the 

scene where the behaviour of an individual is different from the rest 

in the scene. 

• The term context refers to the contextual knowledge or motion infor­

mation in the monitored scene. 

• The term precision and MaTP-multiple object tracking precision are 
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used interchangeably. referring to a quantity that measures the av­

erage distance between the centroid positions of targets returned by 

the tracker and the centroid given in the ground-truth . 

• The term accuracy and tracking accuracy are used to refer to a metric 

for measuring the accuracy of a tracker with regard to False Negatives 

(undetected targets) and False Positives (detected boxes that do not 

overlay any ground truth area) and identity switches (the number of 

switches in the tracker output ID for a tracked target.). 

1.4 Contributions 

The major contributions of this thesis to the contextual analysis of videos 

are as follows: 

1. Contribution to Multi-target Tracking 

A new tracking method is developed to track multiple moving targets 

in a crowded scene. Specifically. this method is designed to work even 

when there are frequent interactions among targets and number of 

targets are unknown and vatying over time. The main contribution 

to the state of the arts is introducing an idea of multiple interactive 

swarms to the standard particle swarm optimisation (PSO) algorithm 

to track multiple pedestrians in a crowd. The contribution constitutes 

incorporating constraints provided by the social behaviour (motion 

information among pedestrians). temporal continuity of target tracks 

and the strength of person detection. 

This work has been published in the conference proceeding of IEEE 

visual surveillance workshop (ThidaVS09] and the applied soft com­

puting journal (ThidaASC12]. 
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2. Contribution to Abnormality Detection 

1\vo novel manifold learning-based algorithms are developed for the 

detection of anomalies in a crowded scene. The major contribution of 

the first approach is the application of manifold learning algorithms 

for abno~ality detection in a crowded scene. Specifically. this ap­

proach exploits temporal coherence between video frames and uses 

the manifold learning algorithm. in particular the Laplacian Eigen­

map. to discover different crowd activities from a video. This method 

provides a compact. yet informative representation for visualising and 

identifying different crowd events in a low dimensional space. 

The second approach contributes to the state of the arts by employ­

ing a manifold learning algorithm to detect and localise abnormal . 

regions in a crowded scene. This approach captures the spatial and 

temporal variations of local motions using a graph-based embedding 

method. This approach provides a tool not only to detect abnormal 

crowd activities but also to localise the regions which show abnormal 

behaviour. 

The results on abnormality detection were published in the confer­

ence proceedings (ThldaACCVl01. (ThldaACMl01 and a scientific jour­

nal [ThidaCVA12J. The algorithm for local abnormality detection is 

published in an IEEE journal (ThldaSMC12). 

1.5 Organisation of the Thesis 

Figure 1.6 illustrates an overview of the thesis. This chapter has intro­

duced the problem. the research questions and the contributions to the 

field. 

Chapter 2 reviews the state-of-the-art literature on automated' video 
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Figure 1.6: A graphical illustration of the thesis structure. 

analysis of a crowded scene. The literature review mainly focusses on 

specific techniques for tracking individuals in a crowd and understanding 

crowd behaviour. 

Chapter 3 presents a particle swarm optimisation framework for track­

ing individual targets in a crowded scene. This chapter discusses how the 

social interaction of targets can be integrated into a particle swarm optimi­

sation framework to track multiple targets with heavy social interactions 

and frequent occlusions. 

Chapter 4 presents a spatio-temporal manifold embedding framework 

to detect abnormality in a crowded scene. This chapter presents a way to 

discover an embedded space which captures dynamics and behaviours of 

the crowd and steps involved in detecting and localising abnormality in a 

crowded scene. 

Chapter 5 provides conclusions and suggests a number of research di­

rections to be pursued for future work. 



"A man who reviews the old so as 

to find out the new is qualifled to 

teach others. H 

Confucius 

2.1 Overview 

Literature Review 

Automated video content analysis has been an active research area in the 

field of computer vision in the last few years. This strong interest is driven 

by the increased demand for public safety at places such as airports, train 

stations, malls, and stadiums, etc. In such scenes, many algorithms which 

consider an individual in isolation (Le. individual object segmentation and 

tracking) often face difficult situations such as complex dynamics and 

severe occlusions in the scene. For this reason, in recent years, many 

computer vision algorithms are being explored to address the problems of 

analysing a video involving multiple targets. 

This chapter presents a review and systematic comparison of the state­

of-the-art methods in the domain of video context analysis. Particularly, 

this review focusses on specific techniques for tracking multiple targets 

and understanding crowd behaviour. 

10 
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2.2 Tracking Multiple Targets 

Tracking is one of the highly researched areas in the field of computer vi­

sion. The complexity of tracking algorithms depends on the context and 

environment in which the tracking is performed. In the context of crowd 

video analysis, the problem of tracking individuals within a crowd intro­

duces additional complexity due to the interactions and occlusions be­

tween people in the crowd. A number of tracking methods has been pro­

posed to overcome the challenges encountered in a crowded scene. In this 

section, some popular human tracking methods in the context of crowd 

video analysis are discussed. The reader is referred to the sUIVey by Yil­

maz et al. [15] for a comprehensive review of various trackers. 

A number of tracking methods [43,44,70,112,163, 173] have been pro­

posed in the past two decades. Most of the existing tracking methods can 

be seen as a dynamic optimisation process, which search the best match 

of the target deSCriptors in subsequent frames. Mean shift [43], which is 

one of the kernel-based tracking algorithms, has been proved an efficient 

tool to handle partial occlusions. It is an iterative process for searching 

local maxima of a similarity measure between the kernel density functions 

(for instance, colour histograms) of the target model and a candidate re­

gion. This method is prone to fail if tracked targets are moving fast or 

when occlusions exist. In [120], a covariance-based tracker is proposed to 

perform an exhaustive search of the model deSCriptor in the whole image. 

The advantage of the covariance-based tracker is its ability to combine spa­

tial and statistical properties of tracked targets. However, its exhaustive 

search has problems when heavy occlusion and clutter background occur. 

The particle filter [24,34, 70] has been widely used in object tracking, due 

to its ability to handle cluttered background. This method formulates the 
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object tracking as finding the maximum of the posterior distribution of the 

state space using a large number of weighted particles. 

2.2.1 Tracking Multiple Targets using particle Ffiter 

The particle filter-based tracking framework has been extended in a se­

ries of papers [12,39,57,80, 113] for tracking multiple targets. For ex­

ample, Okuma et al. [113] extend a particle framework by incorporating 

a cascaded Adaboost algorithm for the detection and tracking of multiple 

hockey players in a video. The Adaboost algorithm is used to generate 

detection hypotheses of hockey players. Once the detection hypotheses 

are available, each hockey player is modelled with an individual particle 

filter that forms a component of a mixture particle filter. Similarly, Ali 

and Dailey [12] combine an AdaBoost cascade classifier-based head de­

tection algorithm and the particle filtering method for tracking multiple 

persons in high density crowds. The performance is further improved by a 

confirmation-by-classification method to estimate confidence in a tracked 

traject01:y . 

Table 2.1: Summarisation of Particle filter-based tracking methods 

Works/Papers Additional Information or Method Multi-view / -target 
(91] Contour information No 
[121.139.156] SIFT. Harris-SIFT No 
[142] Histogram of Oriented Gradients (HOG) No 
(25] Mean Shift / Joint Probabilities No 
[67.166] None: Changes in the transition model No 
(110] None: Particles are fused among views Multi-view 
(145.171) Particle filter for blob tracking Multi-target 
(99) None: GCsa used to recover contours No 
[12.113) AdaBoost. Cascaded AdaBoost Multi-target 
[80) MRJ:l'h, MCMCc Multi-target 
[39] NN Data Association. Mean-shift Multi-target 

a Graph Cuts. 
·b Markov Random Field. 
C Markov Chain Monte Carlo. 



[13] 2.2. Tracking Multiple Targets 

Table 2.1 presents a list of particle filter-based methods for tracking 

multiple targets. Both single and multiple view methods are presented, as 

well as single and multiple target ones. Despite its success in some appli­

cations, the particle filter is less efficient in a high dimensional space as 

the number of particles required increases exponentially with the dimen­

sionality of the studied state space. 

2.2.2 Tracking Multiple Targets using Additional Cues 

In recent years, many research work has demonstrated that to employ 

high level cues for tracking multiple targets in a complex scene. These 

high level cues can be contextual information such as motion information, 

scene structure or the social interactions among the people in the crowd. 

An overview of tracking algorithms that incorporate different high level 

contextual information is illustrated in Figure 2.1. 

Crowded scenes I---~ tracker 

Pre-learnt motion patterns [14,22,85,125) 
Social behaviour and scene structure [19,55,80,95,159) 

Tracking in a crowd by incorporating 
social behaviour 

incorporating pre-learnt motion 
patterns [125] 

Figure 2.1: An overview of different tracking algorithms that incorporate high­
level contextual information. 
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2.2.2.1 Pre-learnt Motion Patterns 

Antonini et al. [22] use a discrete choice model (DeM) as motion priors to 

predict human motion patterns and then. fuse this model in a human 

tracker for improved performance. Similarly. Ali et al. [14] propose to 

exploit contextual (motion) information for tracking multiple people in a 

structured crowded scene. Assuming that all participants of the crowd are 

moving in one direction. Ali et al. learn the direction of motion as a prior 

information based on floor fields. The authors have demonstrated that a 

higher-level constraint greatly increases the performance of the tracker. 

However. floor fields can be learned only when the scene has one domi­

nant motion. As a result. the method proposed in [14] cannot be applied 

for crowded scenes where the motion of a crowd appears to be random 

with different participants moving in different directions over time. Some 

examples of unstructured crowded scenes include crowds at exhibitions. 

sporting events and railway stations. This shortCOming is addressed by 

Mikel et aL [125] where the authors employ a correlated topic model for 

modelling random motions in an unstructured crowded scene. Similarly. 

L. Kratz and K. Nishino [85] employ the normal motion pattern to predict 

tracking individuals in a crowd scene where the normal motion pattern is 

learnt based on local motion at fixed -size cells. 

2.2.2.2 Social Interactions 

Another interesting direction of tracking multiple targets is to integrate 

social interaction of targets in the tracking algorithm. This idea is moti­

vated by the behaviour of targets in a crowd. In crowded scenarios. the 

behaviour of each individual target is influenced by the proximity and be­

haviour of other targets in the crowd. Several methods [19.55.80.95.159] 
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have proposed to integrate the social interactions among targets in the 

tracking algorithms. This direction has shown promising performance to 

track multiple targets in crowded scenes. An early example which mod­

els the social interaction of targets is Markov Chain Monte Carlo-based 

(MCMC) particle filter [80]. Their method models social interactions of tar­

gets using Markov Random Field and adds motion prior in a joint particle 

filter. The traditional importance sampling step in the particle filter is re­

placed by a MCMC sampling step. French et al. [55] extended the method 

in [80] by adding social information to compute the velocity of particles. 

In [159], the authors formulated the tracking problem as a problem of 

minimising an energy function. The energy function is defined based on 

both the social information and physical constraint in the environment. 

Their preliminary results indicate that social information provides an im­

portant cue for tracking multiple targets in a complex scene. 

2.2.3 Multiple";camera Tracking 

Researchers have also explored the use of multiple cameras for tracking 

people under severe occlusion in a complex environment. Multiple camera 

tracking methods intend to expand the monitored area and provide com­

plete information about interesting persons by gathering evidences from 

different camera views. Lee et al. [89] propose a multiple people track­

ing method for wide-area monitoring. An automated calibration method . 
is introduced to find correspondences between distributed cameras. In 

their method, all camera views are calibrated to a global ground-plane 

view based on geometric constraints and tracking trajectories from each 

view. Another example in a similar context can be found in the papers 

by Khan and Shah [78,79]. A planar homographic occupancy constrciint 

that combines foreground likelihood information from different views is 
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proposed for detection and occlusion resolution. 

Another use of multiple cameras is to track people in an environment 

covered by multiple cameras with overlapping views. Mittal and Davis [23] 

use pairs of stereo cameras and combine evidences gathered from multiple 

cameras for tracking people in a cluttered scene. Foreground regions from 

different views are projected back into a 3D space so that the endpOints of 

the matched regions yield 3D pOints belonging to people. Dockastader and 

Tekalp [51] employ a Bayesian network for fusing 2D position information 

acquired from different views to estimate the 3D coordinate position of the 

interested person. Finally, a layer of Kalman filtering is used to update 

the position of people. A combination of static and pan-tilt-zoom (PTZ) 

cameras for multiple camera tracking is introduced in [135]. The static 

cameras are used to provide a global view of the interested persons when 

the PTZ cameras are used for face recognition of people. 

The brief overview of the research literature indicates that multiple cam­

era tracking methods provide an interesting mechanism to handle severe 

occlusion and to monitor large areas at public spaces. However, advan­

tages of the multiple cameras come together with additional issues such 

as camera calibration, matching information across the camera views, au­

tomated camera switching and data fusion. These challenges are still yet 

to be solved. On the other hand, integrating the social interaction among 

targets in the tracking algorithms has shown promising performance to 

track individual targets in a crowd. 



[17] 2.3. Analysis of Crowd Behaviour 

2.3 Analysis of Crowd Behaviour 

Automated video content analysis is highly desirable but an open ended 

issue with high complexity. Early research focusses on recognition or de-
.. 

tection of behaviour of a single target [58,69]. In these approaches, an 

activity is detected from an unseen sequence and classified as one of pre­

defined activities learnt during the training stage. Recently, the focus has 

been shifted from monitoring the behaviour of a single target to under­

standing the behaviour of multiple targets. Many research works, for in­

stance [161, 174], have been proposed to analyse the dynamics of a large 

group, for instance, learning motion pattern or pathways to detect abnor­

mal motion. 

There are two major approaches for learning motion pattern and de­

tecting abnormal behaviour: micro-obsexvation and macro-obsexvation. 

The micro-obsexvation approach analyses the crowd motions based on the 

details of individuals moving in the scene. This approach, in general, re­

quires a precise detection and tracking individuals in a crowd. On the 

other hand, the macro-obsexvation approach describes the crowd motion 

from a global aspect using an abstract representation of video frames. 

2.3.1 Abnormality Detection using Micro-Observation 

Micro-obsexvation approach depends on the analysis .of video trajectories 

of moving entities. This approach, in general, contains the following steps: 

1. detection of moving targets in the scene, 

2. tracking of detected targets and 

3. analysis of trajectories to detect dominant flows and to model typical 

motion patterns. 
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Researchers have used different detection and tracking algorithms dis­

cussed in aforementioned sections to generate reliable trajectories. Given 

a set of trajectories, dominant motion directions are detected by clustering 

these trajectories in space and time. Then, models of motion patterns are 

built to represent the semantic status of the scene and to detect hazardous 

or emergency events. A list of popular methods using micro-observation 

approach is given in Table 2.2. 

Paper/Work Object detection and Tracking Motion Pattern Extraction 
Iterative Clustering: trajec-
tories are clustered hierar-

Hu et al. (68) Wang Track foreground regions via chically and each motion 
et al. (155). background subtraction ap- pattern is represented with a 
Basharat et al. (27) proaches chain of Gaussian distribu-

tion. 

Track pedestrians using Support Vector Machine: 
Abnormal event is detected 

Piciarelli et al. (117) a combination of Kalman-
using a one-class support based and CamShift track-

ers. vector machine (SVM). 

Neural networks: A model 
Track pedestrians using an of the distribution of typical 

Johnson and Hogg (74) active shape model-based trajectories is learnt using 
tracker neural networks. 

Hidden Markov Model (HMM) 
and dynamic hierarchical-
clustering (DHC): Trajectories 

Track foreground regions via are modelled with a hidden 
Jiang et al. (73) background subtraction ap- Markov models and a dy-

proaches. namic hierarchical clustering 
method (DHC) is employed 
to extract abnormal trajecto-
ries. 

Table 2.2: A list of popular methods for micro-observation approach. 

Hu et al. [68] propose a technique in which statistical motion patterns of 

the scene are learned automatically for anomaly detection. Given a video, 

trajectories of moving objects are first extracted by clustering foreground 

pixels using a fast fuzzy k-means algorithm. Using spatial features, these 
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trajectories are initially clustered into various categories. Each of these 

clusters is then further grouped into sub-categories using temporal fea­

tures. The clustered trajectories are employed to model statistical motion 

patterns of the scene where each motion pattern is represented with a 

chain of Gaussian distributions. Based on learned motion patterns, sta­

tistical methods are used for abnormality detection and path predictions. 

Similarly, Wang et al. [155] propose a trajectory similarity measure to 

cluster trajectories so that each cluster represents a Significant activity in 

the scene. Trajectories are first clustered into vehicles and pedestrians, 

and then further grouped using spatial and velocity distributions. The 

statistical models for different paths of the scene are learned using prob­

ability distributions. Then, the semantic scene models are used for the 

detection of anomalous activity in the scene. Basharat et al. [27] propose 

to model the motion patterns of a scene with a Gaussian mixture model of 

speed and size features from trajectories. The learnt model is later used to 

detect abnormal events and improve object detection algorithm. 

Piciarelli et al. [117] employ a one-class support vector machine (SVM) 

method to cluster trajectories based on geometric features. Each trajec­

toty is represented by 2 - D coordinates and sub-sampled to obtain a fixed­

dimension feature vector. The presence of outlier in the data-set is detected 

by using a one-class SVM. The use of neural networks for modelling mo­

tion patterns from trajectories is proposed by Johnson and Hogg [74]. They 

use an active shape model-based tracker to obtain trajectories of pedestri­

ans. Trajectories are employed to model the distribution of typical motion 

patterns using neural networks. The learnt motion patterns are used for 

abnormal event detection and track prediction. ' Jiang et al. [73] propose 

to model trajectories using a hidden Markov models (HMM). These trajec­

tories are then grouped using a dynamic hierarchical clustering method 
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to extract unusual trajectories from normal ones. The use of HMM for 

modelling the common event behaviours can also be found in [124]. 

However, the performance of micro observation-based methods heav­

ily depends on the ability of tracking algorithms. As discussed in [15], 

the tracking itself is a complex problem and it is hard to obtain the re­

liable tracking results in a crowded scene. To address this limitation, 

researchers have proposed to use holistic properties of crowded scenes 

where long-term tracks of moving targets are not available or not reliable. 

2.3.2 Abnormality Detection using Macro-Observation 

To learn the typical motion patterns in a crowded scene, macro observation­

based methods utilise holistic properties of the scene such as motions in 

local spatio-temporal cuboid or instantaneous motion. 

2.3.2.1 Optical Flow Feature 

Optical flow, which is a dense field of instantaneous velocities computed_ 

between two consecutive frames, is a commonly used feature. Given a 

video, the first step is to segment the input video into smaller video clips 

and to compute pixel-wise optical flow between consecutive frames of each 

clip using the techniques in [26,63,96]. The extracted flow vectors may 

contain noise and redundant information. In order to reduce the compu­

tational cost and remove noise, researchers utilise unsupervised (Andrade 

et al. [16,17] and Yang et al. [161]) or supervised (Hu and Shah [65,66]) 

dimensional reduction techniques. The next step is to find the represen­

tative motion patterns of the scene by merging flow vectors from all video 
.. 

frames. This can be in the form of sink seeking process, interaction force 

modelling and clustering. 
, 
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Sink Seeking Process 

In the sink seeking process. a grid of particles is overlaid on the first frame 

of the video clip and advected using a numerical scheme. The path taken 

bya particle to its final position is called a sink path and thus. the process 

of finding sinks (exits) and sink paths is called a sink seeking process. 

Hu and Shah [65. 66] carty out sink seeking process for each particle and 

thus generate one sink path per particle. These sinks and sink paths are 

later clustered to extract the dominant motion paths of the scene using an 

iterative clustering algorithm. On the other hand. Ali and Shah [13] gen­

erate a static floor field where each particle holds a value that represents 

the minimum distance to the nearest sink form its current location. The 

dominant motion paths learnt by the sink seeking process can be used to 

detect abnormality or improve the tracking algorithm [14]. 

Interaction Force Modelling 

The typical behaviour of a crowd can also be modelled using interaction 

forces of people in the scene. For example. Mehran et al. [104] employ the 

optical flow vectors to model pedestrian motion dynamics using a social 

force model. Social force models [60] have been used in many studies in 

computer graphic fields for creating animations of the crowd [32]. In this 

model, the motions of pedestrians are modelled with two forces: a personal 

desire force and an interaction force. The interaction f01"(:e is defined as an 

attractive and repulsive force between pedestrians. In [104]. an interaction 

force between pedestrians is estimated based on optical flow computed 

over a grid of particles. The normal pattern of this force is later used to 

model the dynamics of a crowded scene and detect abnormal behaviours 

in crowds. 
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Optical Flow Clustering 

Another approach is to cluster optical flow vectors in a low dimensional 

space. For instance, Andrade et al. [16, 17] models the principal compo­

nents of the optical flow vectors in each video clip using Hidden Markov 

Models. Then, video segments which have similar motion pattern are 

grouped together using the spectral clustering method. The resulting clus­

tered video segments are modelled using a chain of HMMs to represent the 

typical motion pattern of the scene. The emergency events in the moni­

tored scene are detected by finding deviations from the obtained model. 

2.3.2.2 Other Features 

In addition to optical flow information, other features such as spatial tem­

poral interest pOints [108] or spatio-temporal gradient [84, 100] are used 

to model the regular movement of a crowd. In [84], the coupled HMM is 

trained based on the distribution of spatio-temporal motions to detect lo­

calised abnormalities in densely crowded scenes. Mahadevan et al. [102] 

combine motion information and appearance features to represent the 10- -

cal properties of a scene. The normality of a scene is learned using a mix­

ture of dynamic textures. Then, temporal and spatial abnormalities are 

separately detected by finding deviations from the normal pattern. Their 

method has been proved to achieve the better performance than state-of­

the-art methods at high computational cost. To address this limitation, 

Reddy et al. [123] propose a simpler method using a set of similar features 
., 

including shape, size and texture extracted from foreground pixels. The 

computational cost is reduced by removing background noise and con­

sidering each feature type individUally. Compared to [102], the method 

proposed by Reddy et al. [123] achieves considerably better results. 
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2.3.3 Event Detection 

The current research on detection of pre-defined events in a scene is still 

limited. Most of the existing work focusses on a single target where the 

event of interest is defined in terms of individual targets [33.38.58.61.69. 

75.76.107.133.152.158.164] or a small group of targets [36.62.128-130]. 

2.3.3.1 Detecting Individuals or Multi-agents Events 

The launch of Text REtrieval Conference (TREC) video retrieval evaluation 

(TRECVid) [140] in 2008 motivated vision researchers to work on detec­

tion of video events in a crowded scene. The TRECVid provided a stan­

dard benchmark for detection of individuals or mUlti-agents events in an 

airport surveillance video. Some examples of events provided by [140] 

are individual events such as CellToEar: People-calling-cellphone. ObJect­

Put: People-dropping-something and Pointing: People-pointing-something 

or multi-agents events such as Opposing Flow:two group of people walk­

ing in opposite, People meeting: two or more people coming towards each 

other. Many algorithms 190.136.144.174] have been proposed to detect 

such events. Their algorithms differ from each other based on 1) the model 

they used to represent the events or the actions and 2) the classification 

techniques used to detect different events. For instance. Zhu et al. [174] 

use the spatio-temporal information of low-level features. e.g. image gra­

dient and optical flow fields for detection of individual events while Lee 

et al. [90] detect Meeting Event based on analysis of video trajectories. 

The aforementioned methods focus on the detection of individual or multi­

agents events in a crowded scene where the people involved in the event is 

limited to less than ten. 
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2.3.3.2 Detecting Crowd Events 

Recently, Performance Evaluation of Tracking and SUlVeillance (PETS) [9] 

launched a new data-set of crowd events performed by 40 people. These 

events involve walking, running. dispersion, grouping. etc. A number of 

papers have been published for detecting these crowd events using flow 

vectors [29,40] and histogram of oriented gradients [56]. However, the 

results reported in [29,40,56] indicate that the detection accuracy still 

needs an improvement. Research in this area is still in its infancy with 

respect to the understanding and recognising the actions of individuals 

or groups of people. In addition, the manual-based annotation of crowd 

events becomes challenging as the crowd density increases, due to the 

huge quality of possible events and context dependency. 

2.3.4 Graph-based and Manifold Learning Algorithms 

Graph-based methods [35,50] and manifold learning algorithms [118,147, 

149,150] have been used for the analysis of video sequences. In [50], Ding 

et al detect repetitive sequential activities using a temporal graph where 

vertices correspond to pre-defined primitive events. Brendel et al. [35] 

advance the prior work by representing a video of a group activity as a 

spatlotemporal graph where nodes correspond to multi~scale video seg­

ments. Graph matching is employed to recognise group activities such as 

hand-shaking, kicking, punching, and pushing, etc. However, this method 

focusses on the modelling of group activities where people involved in the 

event is limited to small groups with two or three people. 

On the other hands, Gaussian process related algorithms such as Gaus­

sian Process Latent Variable Model (GPLVM) [87] and graph spectral meth­

ods such as isometric feature mapping (ISO MAP) [146], Local Linear Em-



(25) 2.3. Analysis of Crowd Behaviour 

bedding (LLE) [126J and Laplacian Eigenmaps (LE) [28J have been em­

ployed to embed high dimensional video data in a low dimensional space. 

For instance. in [118], ISOMAP is used to represent a high-dimensional 

vicleo as a trajectory in the manifold space. Then. different tasks of video 

content analysis such as visualisation and video event segmentation are 

performed by analysing the embedded video data. However. these methods 

ignore the temporal coherence between frames. tho:ugh this cue provides 

a useful information about neighbouring structure in video data. 

In recent years. several manifold learning methods such as Gaussian 

Process Dynamical Models (GPDM) [153J. back-constrained GPLVM (BC­

GPLVM) [88J. sptio-temporal Isomap (ST-ISOMAP) [71J and temporal Lapla­

cian Eigenmap (TLE) [98.149] have been proposed for time series analysis 

where the temporal ordering of input sequences is considered in the mani­

fold structure. Wang et al [154] employ GPDM for modelling temporal data 

of human motion while Shaobo et al [64J use BC-GPLVM for learning a 

low dimensional space of human motion using training data. The prior 

dynamic model learnt using BC-GPLVM is later used for tracking and es­

timating human poses from images captured by multiple cameras in [64J. 

However. these methods mainly apply manifold learning algorithms for es­

timating human poses and tracking motions of a single target. 

In [149J. Laplacian Eigenmap with a temporal constraint is employed for 

detecting abnormal events from a long video sequence. The authors have 

proved that a video corresponds to a trajectory in an embedded space and 

different appearances on manifolds indicate different video events. The 

abnormal events can be detected using a simple classifier based on the 

training data in the embedded space. Similarly: [147J employs a spatial 

temporal Laplacian Eigenmap for analysing videos of crowded scenes. The 

pair-wise graph was constructed between video frames in the temporal 
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domain. The results demonstrated that the spatial-temporal Laplacian 

Eigenmap provides a compact low dimensional space for clustering dif­

ferent crowd events and detecting abnormal events. However, the use of 

global frame features limits the previous approach to detect localised ab­

normal activities. 

2.3.4.1 Local Spatio-Temporal Modelling 

Instead of embedding the global frame features, another approach is to 

consider the spatial and temporal variations of local motions. The lo­

cal motions can be obtained either by spatial division of image frame 

[81,83,84,100,102, 157, 161] or spatial grouping of optical flow vectors 

[131]. The first one is to divide an image space into cells of a specific size 

(e.g., 10 x 10 in [161]) or cuboids (e.g., 30 x 30 x 20 in [84]). Then, optical flow 

computed in each cell is quantised into different directions. For instance, 

Yang et al. [161], considered each quantised direction of a given location 

as a word and cluster these video words into different cluster using a dif­

fusion embedding method. Each node in the graph corresponds to a word 

and the clusters extracted in the embedded space represent the typical 

motion patterns of the scenes. Kim and Grauman [81] use a space-time 

Markov random field (MRF) graph to detect abnormal activities in video. 

Each node in the graph corresponds to a local region in the video frames 

where the local motion is modelled using a mixture of probabilistic prin­

ciple component analysis. Wu et al. [157] use Lagrangian framework to 

extract particle trajectories. These particle trajectories are later used for 

modelling of regular crowd motion. The deviations of new motion from the 

learnt model indicates abnormal event. 

The second one is to cluster optical flow vectors by spatial grouping as 

in [131]. Imran et al. [131] propose to cluster optical flow vectors in each 
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video clip into N Gaussian mixture components. Then, these Gaussian 

components are linked over time using a fully connected graph. The graph 

connected component analysis is performed to discover different motion 

patterns. However, their method still faces the problem of having to deter­

mine how many components should be in the mixture. 

2.4 Summary 

This chapter presents a review and comparative study of various topics in 

the area of video content analysis. The advantages and disadvantages of 

the state-of-the-art methods related to the work in this thesis have been 

discussed. 

Tracking individuals in a crowd has been addressed in recent years. A 

major advance is the introduction of high-level crowd motion pattern as a 

prior into a general framework [14, 125J. However, the problem of tracking 

still remains as a challenging problem in the area of computer vision. One 

major challenge for tracking in a crowded scene is inter-object occlusion 

due to the interactions of participants in a crowd. There remains a gap 

between the state-of-the-art and robust tracking of people in a crowded 

scene. 

During recent years there has been substantial progress towards un­

derstanding crowd behaviour and abnormality detectjon based on mod­

elling crowd motion pattern. However, these approaches capture general 

movement of a crowd but do not accurately detect details of individual 

movements. As a result, the current literature .in understanding crowd 

motion is not ready to capture the motion pattern of an unstructured 

crowd scene where the motion of the crowd appears to be random [125J. 
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Future research in this area requires localised modelling of crowd mo­

tion to capture different behaviours in the unstructured crowded scene. 

On the other hand. the understanding and modelling of crowd behaviour 

remains immature despite the considerable advances in human activity 

analysis. Progress in this area requires further advances in modelling or 

representation of a crowd event and recognition of these events in a natu­

ral environment. 



"Research Is to see what every-body 

else has seen, and to think what 

nobody else has thought." 

Albert Szent-Gyorgyi 

Tracking Multiple Targets 

using Particle Swarm Optimisation 

In this chapter, a population-based particle swarm optlm1sation (PSO) al­

gorithm is studied. In particular, a study is carried out on the use of the 

standard PSO algorithm and its variants for tracking targets in surveil­

lance videos. The proposed method extends the standard PSO algorithm 

to the problem of finding dynamic optima (pedestrians)where these optima 

interact frequently. 

3.1 Introduction 

Tracking multiple people and interpreting their behaviour is an important 

problem that arises in a variety of different contexts [15]. For instance, it 

is important to be able to track individuals in a crowd for public security 

(see Figure 3.1). Despite being a highly researched. area, there are still 

a number of challenges to be addressed: heavy occlusions arising from 

interaction among targets, erratic motion of the targets and lighting con­

dition of the scene. 

In this chapter, the problem of multi-target tracking is addressed using 
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Figure 3.1: Tracking multiple targets in a crowd [148]. 

the particle swarm optimisation framework. Recently, particle swarm op­

timisation (PSO) [77] has gained the attentions of many researchers and it 

has been proved to be effective in finding the optimum of a function in a 

search space. In contrast to the particle filter [70], where particles move 

independently, PSO allows particles to interact; each particle is a candi­

date solution and searches the optimum using both "social interaction" 

and "cognitive knowledge" [116,119]. This idea of PSO is inspired by be­

haviour models of bird flocking where each bird seeks a target (food) in 

the search space by sharing information with other birds of the swarm. 

This underlying concept resembles the social interaction of pedestrians in 

a crowd where the motion of each pedestrian is influenced by both the 

environmental structure and the movements of other people in the crowd. 

However, the standard PSO is generally used to find a .single optimum in 

a static search space. In contrast, the nature of tracking is dynamic where 

optima change over time. Thus, the standard PSO cannot be directly used 

to address the problem of tracking multiple targets. In this chapter, the 

problem of multi-target tracking is formulated as an optimisation problem 

of finding dynamic optima (pedestrians) where these optima interact fre-
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quently. The motion prediction and social interaction is incorporated in 

the PSO framework such that each swarm finds the best local optimum 

based on its best knowledge and exchanges information with others. The 

main contributions of the work presented in this chapter can be sum­

marised as follows: 

1. introducing an idea of multiple interactive swarms to the standard 

PSO to track multiple moving targets; 

2. incorporating higher level information such as social behaviour (mo­

tion information among pedestrians) in the process of finding optima 

in a high dimensional space; 

3. integrating constraints provided by temporal continuity of target tracks 

and the strength of person detections. 

The rest of the chapter is organised as follows. Section 3.2 describes 

the related work 011 multi-target tracking using PSO algorithm. The stan­

dard PSO algorithm is introduced in Section 3.3. Section 3.4 explains the 

proposed method in details. Experimental results are presented and dis­

cussed in Section 3.5. Specifically. the proposed method is evaluated for 

tracking fixed number of targets as well as a varying number of targets 

in a complex scene with severe occlusions and heavy interactions among 

targets. Finally. a summary is given in Section 3.6. 

3.2 Literature Review on particle Swarm Opti­

misation 

PSO was first introduced to the problem of target tracking by M. Kolsch 

and M. Turk [82]. Particles were represented by the positions of KLT 

(Kanade. Lucas. and Tomasi) feature pOints [137]. The movement of par-
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ticles were spatially confined based on the swarm behaviour using two 

thresholds: the first one to define the maximum distance between feature 

pOints and the other one to define the minimum distance between a par­

ticle and the swarm. A similar approach can be found in (21) where the 

object of interest is represented by N pixels. A swarm with N particles is 

initialised to track the target in an image space. The above approaches 

define a particle as a point and hence. their search space is limited to a 

two-dimensional space. A higher dimensional search space is considered 

in (169). where the target is represented by the centroid. the width and 

the height of its bounding box. Similarly. Zhang et al. [167) proposed a 

sequential PSO algorithm where temporal information is incorporated into 

the standard PSO. 

In [160). Yang et al. incorporated a PSO algorithm into unscented par­

ticle filter-based tracking to avoid an impoverishment problem which is a 

known problem in particle filter-based tracking [70). They have demon­

strated that incorporating PSO improves the performance of the parti­

cle filter-based tracking in terms of accuracy and robustness. Recently. 

other hybrid trackers that incorporate the PSO algorithm into particle fil­

ter [172). Kalman filter (122) and mean shift [92). have shown that swarm 

optimisation improves the performance of the tracker. 

Zhang et al. [168) proposed a species-based PSO where the global swarm 

is divided into many species to track multiple targets. These species track 

targets independently and interact only when the overlapping area be­

tween targets is greater than a particular threshold. Hence. their method 

requires occluded targets to be detected expliCitly and a selective appear­

ance updating scheme is used to handle occlusions. In addition. the num­

ber of targets is assumed to be fixed and known a priori. which is hard 

to achieve in real applications. This limits its applicability and may fail in 
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crowded situations with heavy interactions and frequent occlusions. 

This work tracks multiple targets using a set of interactive swarms. 

In contrast to [168] where each sub-swarm (called as species in [168]) 

tracks a target independently, the swarms in this method track targets 

interactively by sharing social information among targets. This method 

naturally handles the occlusion problem and improves tracking accuracy 

and precision. The details of the method are explained in Section 3.4. 

3.3 Standard particle Swarm. Optimisation 

Particle swarm optimisation (PSO) is a population-based optimisation tech­

nique in which a set of potential solutions, called particles, {Xi}f:,l itera­

tively find the optimum solution in a search space. Given ad-dimensional 

search space, each particle, represented as Xi = (Xl, X2,'" , Xd), evaluates 

its current position using a fitness function f(x). This fitness function 

measures the closeness of the current position of the particle to the op­

timum solution. Mathematically, the objective of PSO can be described 

as: 

Xopt = argminf(x) 
x 

(3.1) 

Figure 3.2 illustrates a simulation of the swarm optimisation process of 

finding a target in a 2D search space. In this simulation, the position of the 

target is fixed and the fitness function is defined as the Euclidean distance 

between the positions of particles and the position ?,f the target: f(x) = 
IIxtarget - x1l2

• Figure 3.2(a) shows the distribution of particles at the first 

iterationn = O. In the first iteration, the positions of particles are randomly 

initialised and each particle takes its current state as the individual best 

state and the state which has the smallest fitness value (nearest to the 
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Figure 3.2: Simulation of particle swarm optimisation in 2D search space. 
Figure(3.2 (aJ-IeftJ shows the distribution of particles at the first it­
eration n = O. The fitness values against the states of particles are 
plotted (right image). while the global best is marked with a small 
black 'x'. Figure (3 .2(b)) and (3.2(c)) show the iteration process of 
particles in subsequent iterations. 
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target in this simulation) is selected as the global best. The positions of the 

particles in the first iteration n = 0 and the corresponding fitness values 

of particles are plotted in Figure 3.2(a). The current positions of particles 

are marked with a small black 'x' while the global best is marked with a 

small black circle. The movements of particles in subsequent iterations 

are shown in Figure 3.2(b) and 3.2(c) respectively. 

In subsequent iterations, the movement of each particle depends on two 

important factors: x~ the best position that the ith candidate has found so 

far and x g the global best position found by the whole swarm (all parti­

cles). Based on these two factors, each candidate updates its velocity and 

position at the (n + 1 )th iteration as follows. 

(3.2) 

(3.3) 

where w is the inertia weight, the parameters <PI and <P2 are positive con­

stants, which balance the influence of the individual best and the global 

best position. The parameters, rl, r2 E [0,1] are uniformly distributed ran­

dom numbers and diversify the positions of particles. Over the last decade, 

many variants of the PSO algorithm have been proposed [105] and some 

algorithms have addressed dynamic optimisation problems [115,162]. In 

the work presented by Clerc and Kennedy [42], a parameter X' called a 

constraining factor, is introduced to avoid an unlimited growth of the par­

ticles' velocity. Equation ( 3.2) becomes: 

(3.4) 
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where X < 1 is defined as: 

2 
X = , where <P = (<PI + <P2) > 4.0 (3.5) 

112 - <P - .j<p2 - 4<p11 

This method has been frequently used due to its stability and conver­

gent ability in hig~-dimensional problems [86,105]. From equation (3.4). 

it can be observed that the movement of each particle depends on three 

components: inertial velocity. cognitive effect and social effect. The first 

component maintains the direction of the particle during the optimisation 

process while the second component allows each particle to move based 

on its own information. i.e .• its best known position xZ at the previous it­

eration. The third component represents the social effect. where a particle 

in the swarm moves towards the global best position XU defined by all the 

members of the swarm. 

The individual best. xZ and the global best. XU positions are updated at 

each iteration. based on the fitness values at the current position Xi. Each 

particle will update its current position as the best pOSition only if the cur­

rent position is closer to the target (the fitness value of the current position 

is smaller than the value evaluated at its previous position); otherwise its 

previous best position is kept. The global best is the position that has the 

lowest fitness value among all individual best positions. Mathematically. 

this can be formulated as follows: 

x~ {~ if f(xf) < f(xZ); 
t - ~,' otherwise. 

(3.6) 

XU - argmin f(x~) 
xl? • 

(3.7) 

where f(xr) is the fitness value at the position xr. This process is repeated 

until a convergence state. as described in the next section. is achieved. 
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3.3.1 Convergence Criteria 

In general. the convergence of a PSO algorithm is defined in terms of either 

the best positions of all individual particles. or the global best position 

found by the whole swarm. 

Definition 1: ~,n ~ x~,n+1 and xt -+ xg for all particles i E (1 : N). This 

definition implies that the convergence of the process is achieved when 

all particles ultimately stop at the global best position. The first condi­

tion checks if all particles reach a stable state. while the second condition 

identifies if x g is the best position of each individual particle. 

Definition 2: xg,n ~ x g,n+1 and f(xg) ~ O. This implies that the global 

best position that can be achieved by the optimisation process does not 

change any more and hence the convergence is achieved. The first condi­

tion is to check if the global best position reaches a stable state and the 

second condition is to identify if the global best position achieved so far is 

the nearest to the actual position of the target. 
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3.3.2 Pseudo-code 

The standard PSO algorithm can be summarised as follows: 

Algorithm 1: Pseudocode of a standard PSO for minimisation problem 
Randomly generate an initial swann :{Xi}f:l 
j jlnitialisation process 
foreach Particle i e 1 -+ N do 

I 
x~ =xf 
c~mpute the fitness value f(xt) 

end 
x9 = arg ma:lCxt f (x~) 
j jIteration process 
for n = 1 to maximwn number oj iterations do 

foreach Particle i E 1 -+ N do 
update veloc1ty using equation( 3.2) 
update pos1tion using equation( 3.3) 
if f(xf) < f(xt) then 
I xt=xf 

end 
compute the fitness value f(xt) 

end 
x9 = argma:lCxb f(xt) 

j 

if convergence criteria in Section 3.3.1 are met then 
I break; 

end 
end 
Output: the global best pos1tion: x9 

3.4 A Modified PSO with Interactive Swarms 

This section addresses the problem of tracking multiple interacting tar­

gets in a scene. The problem of multi-target tracking is formulated as an 

optimisation problem of finding dynamic optima (I.e., pedestrians) where 

these optima interact frequently. Then, the tracking problem is addressed 

using a modified particle swarm optimisation algorithm. In order to han­

dle the dynamic optimisation problem effectively, three major stages are 

introduced into the standard PSO framework: 1) a scheme for diversifying 
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particles and swarms to maintain diversity over time. 2) a novel optimi­

sation process that integrates the concepts of multiple swarms where the 

PSO updating equation is modified to incorporate temporal continuity in­

formation and social interaction among targets. and 3) a swarm initialisa­

tion and termination strategy to accommodate targets entering and leaving 

the scene. The notations adopted are listed in Table 3.1 before elaborating 

the detailed information of each major stage. 

Table 3.1: Notations adopted in this method. 

X k ( t) a swarm corresponds to target k at time t 
~ k(t) individual best for target k at time t xt (t) global best of the swarm for target k at time t 
x~ state of the target k given by the object detector 
K number of targets (number of swarms) 
N number of particles for each swarm 
i particle index 
n iteration index 
k target index 
t frame (time) index 

3.4.1 particle and Swarm Diversification 

Particle Diversity: In order to allow a swarm to track a dynamic opti­

mum (moving target). it is important to maintain particles diversity within 

the swarm over time. In this method. a swarm X k = {Xi,k}!l is initialised 

for every new target entering the scene. Each swarm has N particles where 

each member Xi,k = (xc, Yc, w, h) is a potential best state of the pedestrian 

represented by its centroid location. (xc, Yc) and the width. w and height. h 

of the bounding box. These particles are sampled from a Gaussian distri­

bution at the beginning of the PSO iteration at time t as follows: 

{Xi,k} '" N(xf:ed(t),~),i = {I: N} (3.8) 
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where the covariance :E is a diagonal matrix and its entries are given by 

vred(t). The predicted position xfed(t) of the target k at time t is given by: 

__ wed { 0 when the swarm is first created. 
Xk (t) = 
. x~(t - 1) + vred(t) otherwise. 

(3.9) 

where the predicted velocity for target k is estimated as: 

(3.10) 

where v1nd(t) refers to individual velocity of target k and yBOC(t) refers to 

social velocity of the group. Thus. the motion of a target is predicted based 

on its personal information y1nd(t) and the movement of other members of 

its social group y8OC(t). Here. the individual velocity for target k is estimated 

by: 

(3.11) 

where x~(t -1) and x~(i - 2) are states of the target k at time t -1 and t - 2 

respectively. Then. the social velocity is computed by sharing information 

among targets which have been moving generally in the same direction as 

follows: 
1 Kn 

yBOC(t) = - I: (x~(t - 1) - xJ(t - 2)) 
Kn j=1 . 

(3.12) 

where Kn is the total number of neighbours of the target k. In this work. 

two targets are considered as neighbours if they are in close proximity and . 
have similar motion direction and speed for a time-overlap window of D.t 

frames. More precisely. given a pair of trajectories for target kl and k2 with 

D.t time-overlap window (in which both targets appear) (in this work. D.t = 
10). the similarity score is computed based on the absolute difference of 

their position. direction and speed. Tw'O targets are defined as neighbours 



[41] 3.4. A Modified PSO with Interactive Swarms 

when their similarity score is larger than a particular threshold. 

It should be highlighted that the motion of a target is predicted based on 

its personal information as well as the social knowledge among targets (I.e., 

pedestrians). In this way, the position and motion of an occluded target 

can be estimated from its social group and particles are distributed at the 

likely position in the next frame. As a result, this method can recover 

the target which has been occluded for a period of time. Figure (3.3(a)) 

shows how the motion of a target is predicted. Dotted lines indicate group 

membership. Target 1 is being occluded and its motion is estimated from 

other members of its social group. Figure (3.3(b)) shows the distribution 

of particles based on its predicted position and motion. The current states 

of targets are shown with big black circles, while the previous states of 

targets are shown with lighter black circles. Particles are marked by grey 

cross symbols. 

Swarm Diversity: When multiple targets are being tracked, there is 

a high probability that two targets occlude one another, especially in a 

crowded scene. This makes two different swarms competing for the same 

target or to cluster at the same location. To prevent this, the idea of swarm -

diversity is introduced for swarms that are close to each other. The dis­

tance between the global best states found by two different swarms are 

used to decide if two different swarms are competing for the same target 

or cluster at the same location. When two swarms compete for the same 

target, the search space of the swarm with the lower fitness value is grad­

ually expanded. As a result, the target can be recovered even after the 

target has been occluded for a period of time. 
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Figure 3.3: Effects of different components of the predicted velocity on initial­
ising particles. Figure(3.3(a) shows how the motion of a target is 
predicted. Dotted lines indicate group membership. Target 1 is being 
occluded and its motion is estimated from other members of its so­
cial group. Figure 3.3(b) shows the distribution of particles based on 
its predicted position and motion. The current states of targets are 
shown in black circles while the previous states of targets are shown 
in black squares. Particles are marked by black cross symbols. 

3.4.2 Swarm Optimisation 

In the standard PSO, each particle is a candidate solution and finds the 

optimum by updating its position based on three components: inertial ve­

locity, cognitive effect and social effect. In this work, a novel PSO updating 

rule is proposed such that each particle adjusts its speed and position in 

the search space based on its personal knowledge, a shared information 

among its own swarm members, and the social activity among swarms. In 

addition, the detection responses x~ are incorporated in the PSO frame­

work to drive particles to find the new state in the direction given by the 

pedestrian detector and hence boost the convergence rate. 

The proposed velocity and position updating equations for a particle at 
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time t are defined as follows: 

xn+1 _ x~ + v~+1 
i,k ~,k i,k (3.14) 

where vi,k and Xi,k are the velocity and the state of particle i of swarm (tar­

get) k at iteration n at time t. Here. the sub-script t is omitted for simplifi­

cation. The first component Vi,k is the motion prior-based inertial velocity 

that integrates both individual and social velocity among targets. In con­

trast to the traditional PSO [771. where the inertial velocity is initialised 

to zero in· the first iteration n = O. this method incorporates the motion 

prediction based on the individual and the social behaviour of targets as 

follows: 

{ 

0 when the swarm is first created (n = 0) 
vO (t) -

i,k - vred(t) otherwise. 
(3.15) 

where the predicted velocity for the target k is given by equation (3.10). 

The second component (~,k -Xi,k) corresponds to the cognitive effect where _ 

each particle moves to its best known position x~ k' The third component , 

(xt - xi) is the social effect. where the particle moves towards the global 

best position x~ defined by its own swarm. 

Compared to the standard PSO [771. this method introduces a new com­

ponent based on the detection response x~. This component constrains 

particles to find the new state in the direction given by a state-of-the-art 

detector. The details procedures of selecting the detection response will 

be explained in section 3.4.2.2. The parameters TIl T2 and T3 are random 

n'l:lmbers uniformly distributed in (0,1]. generated at every iteration. The 

parameter X < 1 confines the velocity of particles within a range and is 
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defined as: X = 2/112 - C - ../c2 - 4cII where C = Cl + (C2 + C3)' The parameters 

Cl, C2 and C3 are positive constants and balance the influence of cognitive, 

social and detection information respectively. In this method, the value of 

Cl is set to Cl = (C2 +C3) = 2.05 [105]. This allows each particle of the swarm 

to use the social knowledge and the detection information collectively but 

still retains its personal knowledge as independent knowledge. In addi­

tion,the parameter C3 E (0,2.05) is set using the normalised matching score 

between the detection xt and the best state of target k at previous frame 

t - 1 such that the influence of the detection information is high only when 

the selected detection is a good match to the target k. 

In the following, the process of selecting the individual best state (~,k)' 

the global best state (x~) and the detection response (xt) for the target k 

are presented. 

. 3.4.2.1 Identifying Individual and Global Best 

The individual best (~,k) and the global best (x~) states of particles are 

updated at evety iteration during the optimisation process by evaluating a 

fitness (cost) function. In this method, a fitness function is defined based 

on a localised colour histogram. Given the state of a particle i for target k 

at time t, the model for the appearance of target k defined by the bounding 

rectangle (xc - ~,Yc - ~,xc + ~,xc + ~) is described as follow: 1) the target 

region is first divided into M equal parts (here, M = 9). 2) each part is . 
then represented by a 16H x 48 x 4V histogram in the H8V colour space. 

Mathematically, the target model for a given state Xi is given as h(Xi) = 

{hm}~l where h is 16H x 48 x 4V histogram. Then, .the fitness function is 

defined as: 

(3.16) 
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where hm(xt) and hm(Xk) are the model and candidate histograms com­

puted at the local part m. M is the total number of parts and d(hm(xt) , hm(xk)) 

is the distance measure between two histograms. In this work. the quadratic 

(cross) distance measure [59] is employed to compute the distance between 

two histograms. The quadratic distance considers the cross-correlation 

between histogram bins based on the perceptual similarity of the colours 

represented by bins. The quadratic (cross) distance between histograms 

hI and h2 is given by 

(3.17) 

where Ahsv = [aij] is a similarity matrix and aij gives the similarity between 

two colours at bins i and j in the HSV colour space [141] and defined as: 

aij = 1- ~[(Vi - Vj)2 + (Si cos(hi) - Sj coS(hj))2 + (Si sin(hi) - Sj sin(hj))2J1/2 

(3.18) 

The next step is to find the individual best and global best state by 

evaluating the fitness function at different states. A particle updates its 

current state as the best position (individual best) if the histogram at the 

current state is more similar to the model (i.e.. the fitness value at the 

current state xf is lower than the value evaluated at the previous state 

xi-I). Otherwise. the previous best state will be kept. Mathematically. 

X~ = {Xf' if j(xf) < f(x~): 
t b 

Xi, otherwise. 
(3.19) 

Once all particles update their best individual states, the global best among 
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swarm members is identified as: 

x k
g = arg minf(x~k ) 

b ' 
X i, k 

(3.20) 

where i = (1, 2,· . . ,N) is a member of the swarm for target k. 

3.4.2.2 Identifying Detection Response 

As explained above, a new component C3 (X% - xf ) is introduced in equation 

(3.13) to incorporate a detection response (x~ ) in the swarm optimisation 

process. This term computes the distance between the particle xi and the 

associated detection x% and gUides the particles to search the optimum in 

the region given by an object detector. Unlike the individual best (xtk ) and 

the global best (x1) which are updated at every iteration, the state of the 

detection response (x~) is fixed during the iteration process. The parameter 

C3 tunes the influence of the detection response on the movement of parti­

cles. In this method, pedestrian detection for each frame is obtained based 

on the histograms of oriented gradients (HOG) [48]. Figure 3.4 shows the 

results of the HOG detector in the monitored scene. Please note that all 

detection results are not reliable; yielding false positives and missed de­

tections. 

Figure 3.4: Sample detection results given by the HOG detector (30). 
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Given {Xm}~~l detection results at time t by the HOG detector, the next 

step is to identify a detection response to guide the tracker to a partic­

ular target. In order to decide which detection should guide the current 

tracker, the matching score between detections and the current state of 

the tracked target k is computed based on the spatial proximity, size and 

the appearance similarity as follows: 

(3.21) 

where Xm E {Xm}~~l is a detection result given by the HOG-based detec­

tor [48]. Here, the respective matching score As is given by the overlap­

ping area between targets k and the detection m while the score A! = 

exp{-d(h(Xk),h(Xm))} is computed based on the distance between two his­

tograms. Finally, the score Ad is computed using the Euclidean distance 

between centroid locations of the tracked target k and the detection re­

sponse m. Next, the detection response, which is the best match to the 

current state of the tracked target, is identified by finding the maximum 

matching score: 

(3.22) 

where Kd is the number of detections given at time t. The matching score 

A(xk' Xm) between the selected detection and the tracked target k is nor­

malised and used as C3, a weighting parameter of detection component in 

equation (3.13). It can be seen that the matching score or the parameter 
., 

C3 will be large only if the selected detection and the current state of the 

tracked target are highly correlated. This ensures that the output from a 

detector is integrated in the swarm optimisation only if the selected detec­

tion is a good match of the tracked target. 



(48] 3.4. A Modified PSO with Interactive Swarms 

3.4.2.3 Convergence Criteria 

As discussed in section 3.3.1. the optimisation process of the standard 

PSO is terminated when all particles converge at the global best position 

or the swarm reaches a stable state. However. for tracking application. 

computation time is an important issue as the objective is to track tar­

gets in real or quasi-time. Hence. in this proposed algorithm. the second 

convergence criterion discussed in section 3.3.1 is modified to stop the op­

timisation process when a pre-defined fitness value is reached. In short. 

this method stops the iteration process when one of the following criteria 

is achieved: 

1. x~,n ~ ~,n+1 and xt-+ XU for all particles i E (1 : N) 

2. xg,n ~ xg,n+l and f(xg) < TH 

3. the pre-defined maximum number of iterations is reached. 

The parameter T H can be defined and updated online by studying the 

trend of the feature changes of the target k over time. In most experiments 

presented in this chapter. a good tracking result can be achieved after 5 or 

6 iterations. 

3.4.3 Swarm Initialisation and Termination 

This section describes the swarm initialisation and termination strategy. 

which accommodates targets entering and leaving the sce!le. 

3.4.3.1 Swarm Initialisation and Learning Target Model 

In this method. a new swarm is automatically initialised for each person 

subsequently detected for T frames. In order to reduce false positive de-· 

tections. a matching score is computed for each detected target over T . 
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frames using the equation (3.21). Then, only the associated detections 

with a matching score higher than the threshold are used to initialise a 

new swarm. The HSV colour histogram of target k h(Xk) at time t is then 

learnt using the steps discussed in section (3.4.2.1). The length of the ob­

servation window T can be determined based on the frame rate of the video 

and the prior knowledge of the monitoring scene, for instance, T should 

be set to a low value (1, 10) for a crowded scene where targets enter and 

leave the scene frequently. Here, the length of preservation window is set 

to T = 5 for the tested video sequences. 

3.4.3.2 Updating Target Model 

It is important to update the target model h(Xk) as the appearance of the 
.-

target model is expected to have slight variations over time. One solution 

is to update the target model at every- frame (or every- T frames) with a 

new model extracted from the current frame. However, this approach in­

troduces the 'drifting' problem where the target model steadily drifts away 

from the first model [103]. Another possible solution is to update the target 

model only when it is observed in isolation, without any occlusion occur­

ring [114, 168]. 

In this method, the online updating model is proposed to address the 

appearance variations of targets. Given the previous T appearances (his­

tograms) of the target k, {h(Xk)(tl), h(Xk)(t2)"'" h(Xk) (T)}, the minimum ap­

pearance change of the target k at time t can be computed as follows: 

(3.23) 

where 7" = tl, t2, ... , T is a time index for the previous frames and T is a tem­

poral window with a length of T = 20 frames. This value gives the smallest 
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appearance change of target k at time t from the previous observations. 

Then, the next step is to check if the appearance change of target 8(xk(t)) 

is significantly different from previous appearance changes 8(xk(r)). The 

target model should not be updated if there is a Significant appearance 
.. 

change in the current frame as this can indicate that the tracker is stuck 

with the wrong person or the scene condition has suddenly changed. How­

ever, if the change is small, the target model must be updated, to accom­

modate the slight appearance changes. 

In this method, the probability density function PDF of the appear­

ance changes of the target, over T previous frames, is estimated using the 

kernel-based density function as: 

1 T 

1(8) = T ~K(8 - 8r ) 

r=1 

(3.24) 

. where K(.) is a Gaussian kernel function centred at 8r for r = {I, 2,··· , T}. 

Then, the probability score for the appearance change of the target k at 

time t is computed as: 

T 

1 "" [ 8t - 8r 2] p(8t ) = T L..J exp - ( 20" ) 
r=1 

(3.25) 

where 0" is the standard variation of 8r over T frames. l ' The high probability 

score indicates the slight changes in the appearance target model and 

hence, the target model h(Xk(t)) is updated using an adaPtive filter as: 

(3.26) 

where a E [0,1] is the learning rate. In this work, the learning rate a is 

1 Here, in order to simplify the symbols, 8(xk(t)) is represented as 8t and 8(xk(r)) Is· 
represented as 8T • 
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defined based on the probability score of the appearance change (equa­

tion 3.25). 

a = {P(O(Xk(t))), P(O(Xk(t))) > th; 

1, othe~se. 
(3.27) 

where th is a threshold that enforces the requirement that the appearance 

change of the target does not diverge far from the first target model. 

8.4.8.8 Swarm Termination 

In a scenario where multiple targets enter and leave the monitored scene, 

it is important to terminate the tracking process when the swarm (tracker) 

loses its target for a number of subsequent frames. The probability score 

computed in equation (3.25) indicates the degree of the appearance change 

of the target at time t from previous frames. The small probability score 

states that the target has a Significant changes from the previous frames 

or the tracker has lost its target. Based on this observation, a swarm is 

terminated when the probability score is lower than a particular threshold 

value for T subsequent frames. 
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3.4.4 Algorithm Summary 

Algorithm 2: Pseudo-code of the proposed algorithm 
Input: New image frame at time t and existing trackers: {xk}f=l 
Output: target states at time t {xk(tnf=l 

Perform HOG detection:{xm}~~l and 
Compute similarity scores (3.21) 
for all targets do 

/ /Initialisation process 
if new target then 

I 
Randomly generate a new swarm {Xi}~l 
Increase total number of trackers K = K + 1 

end 
else 

Find associated detection result: x%,t (3.22) 
Predict target velocity at time t ( 3.10) 
Re-initialise the positions of particles ( 3.8) 

end 
foreach Particle i E 1 -+ N do 

I :~~~~~~ the fitness value !(Xtk) 
end 
x g = arg minx~ L !(xtk) 

',N 
/ /Iteration process 
for n = 1 to maximum nwnber of iterations do 

foreach Particle i E 1 -+ N do 
update velocity using equation (3.13) 
update position using equation (3.14) 
if !(xik) < !(x~ k) then 
I 

b' , 
"i,k = xf,k 

end 
compute the fitness value !(~,k) 

end 
x g = argminxb !(x~ k) 

i,k ' 

if convergence criteria are met then 
I break; 

end 
end 
Output: the global best position: Xk(t) = x~ 

end 
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3.5 Experiments 

This section presents experimental results in two different contexts. In 

Section 3.5.1. the performance of the proposed multi-swarm PSO is eval­

uated against the particle filter and the traditional PSO algorithm. The 

tracking accuracy and convergence rate of the proposed algorithm is com­

pared against the traditional PSO algorithm. Section 3.5.2 evaluates the 

task of tracking multiple targets using public surveillance data -sets of 

crowded scenes with different crowd densities. The proposed method is 

compared with other state-of-the-art methods in tracking domain. All ex­

periments are performed using Matlab on a platform with a dual-Core 

3GH z processor and 4GB RAM. 

3.5.1 Tracking Fixed and Known Number of Targets 

The first set of experiments focusses on tracking fixed number of targets 

where the number of targets are assumed to be fixed and known a pri­

ori. In this set of experiments. the detection algorithm is not incorporated. _ 

Hence. the results achieved in this set of experiments demonstrate the 

performance of the proposed multi-swarm algorithm which incorporates 

interaction among swarms. The objective is to evaluate the improvement 

that can be obtained in tracking accuracy using the proposed PSO algo­

rithm in the presence of inter-object occlusion. In this set of experiments. 

the targets are manually initialised in the first frame where the number 

of particles(N) and the temporal window T is fixed at N = 15 and T = 20 

respectively. The threshold for the learning rate a is set at th = 0.8. 
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3.5.1.1 CAVIAR data-set 

The goal of this experiment is to compare the performance of the pro­

posed multi-swarm PSO algorithm and species-based PSO algorithm [168] 

which is the only PSO-based method evaluated on tracking multiple tar­

gets. In order to draw a fair comparison, the same sequences (ThreePast­

Shop2cor.mpg and EnterExitCrossingPaths2cor.mpg from Context Aware 

Vision using Image-based Active Recognition (CAVIAR) [2]) that were tested 

in [168] are used in this experiment. The video sequences in this data­

set [2] are recorded at 25 frames per second where each video frame is a 

size of 384 x 288. 

their paper. 

using HSV colour space 
togram quadratic (cross) distance where the number of particles for each swarm 
(target) is fixed at N = 15. Left to right: Frame 204, 209 . 21,4 and 224. 

Figure 3.5: Qualitative comparisons of the proposed method with species (sub­
swarm) based PSO [168] on CAVIAR data-set. 

Figure 3.5 shows the qualitative results achieved by the proposed method 

and the species-based PSO where each target is tracked by a sub-swarm. 

It can be observed that [168] fails to recover the person 'B' after occlu­

sions at frame 211 (Figure 3.5(a)). The authors [168] tackled the prob­

lem by incorporating the selective part-based appearance updating model 
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which updates only the non-occluded parts of the targets. On the other 

hand, this method, by accounting for social interaction among pedestri­

ans, tracks and recovers targets after occlusion without a need to detect 

and update the model of non-occluded regions (Figure 3.5(b)). The target 

model is updated only when the appearance change of the target does not 

diverge far from the first target model as explained in equation (3.25-3.27). 

Figure 3.6: Qualitative Results of the proposed method on CAVIAR data-set [2] 
using the HSV colour space and histogram quadratic (cross) distance. 
The number of particles for each swarm is fixed at N = 15. 

Figure 3.6 shows another example of tracking multiple targets with 

heavy inter-occlusions. Three persons are successfully tracked even though 

inter-occlusions occur frequently in frames 450 - 534. It can be observed 
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that person 'A' is occluded by person 'B' in frame 453 - 460 and again oc­

cluded by person 'C' who wears the clothes with the similar colour in frame 

480 - 510. However, the results demonstrate that this method, using the 

proposed swarm diversity scheme and social interaction-based velocity, 

keeps correct identities throughout the video. 

3.8.1.2 Helicopter Sequence 

The purpose of this experiment is to validate the proposed approach in 

a tracking situation with a mobile camera. This method is tested on a 

Helicopter sequence captured by a mobile camera [8] and let the tracker 

follows a toy helicopter over 500 frames. Each image has a frame size of 

240 x 320 resolution and shows a remotely controlled toy helicopter with 

complex dynamics. In this experiment. the number of particles is fixed at 

N = 15 and the target is manually initialised in the first frame. 

I 
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Figure 3.7: Tracking results of the Helicopter sequence using the HSV colour 
space and the histogram quadratic (cross) distance. The tracking 
error 1s shown for every tenth frame and the error 1s relatively small 
except at frame 281 where the target 1s temporarily lost due to the 
occlusion by the controller. 

Figure 3.7 shows the tracking results for the helicopter sequence. The . 

tracking error for every frame is computed as the distance between the . 
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centroid of the target returned by the tracker and the centroid given by 

the ground truth [8]. The reported results of Figure 3.7 are the mean 

and standard deviations of 10 runs using the same parameters. It can 

be observed that the tracking error is relatively small except for frame 281 

where the the helicopter is completely occluded by the controller. The 

target is temporarily lost for frame 281 - 283, but it can be recovered in 

frame 284 using the initialisation scheme given in equation (3.15). Some 

Figure 3.S: Qualitative Results of the proposed method on the helicopter se­
quence [8) using the HSV colour space and the quadratic (cross) dis­
tance. The number of particles is fixed at N = 15. 

qualitatively results are shown in Figure 3.8. The first two rows show the 

tracking results under occlusion in frame 275 - 290 while the last row shows 

the results under illumination changes at frames 440 - 450. 
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3.5.2 Tracking Unknown and Varying number of Targets 

In this set of experiments, the proposed method is evaluated in the con­

text of tracking multiple targets assuming that there is no priori knowledge 

about the number of targets to be tracked. The objective is to assess the 

improvement that can be obtained in tracking accuracy. This method is 

evaluated using two public data-sets: PETS 2009 [9] and the oxford se­

quence [30]. The PETS video sequence (S2L1) is recorded from an elevated 

viewpoint at 7 frames per second and contain 795 frames with an image 

size of 768 x 576 pixels. The oxford sequence contains 7500 images with a 

resolution of 1920 x 1080. Though frame rates, resolutions and densities are 

different in these data-sets, the number of particles for each swarm (tar­

get) is fixed at N = 15 for both data-sets. The targets are initialised using 

. the detection output as discussed in Section 3.4.3 where the threshold for 

the learning rate a is fixed at th = 0.8 and the temporal window is set at 

T = 10. In all experiments, the quadratic (cross) distance is employed to 

measure the similarity of two histograms. 

Results are evaluated using the standard Classification of Events, Activ­

ities and Relationships (CLEAR) metrics [7]: multiple object tracking pre­

cision (MOTP) and multiple object tracking accuracy (MOTA). The MOTP 

measures the precision of the tracking algorithm on successful detections. 

Here, MOTP is computed based on the average distance between the cen­

troid positions of tracked targets and the ground truth as in [19]. Given . 
the same detection results, higher MOTP indicates the better precision of 

a tracking algorithm. The multiple object tracking accuracy (MOTA) mea­

sures the tracking accuracy based on false negatives, false positives and 

identity switches. Hence, this measure combines both the performance of 

detection and tracking algorithms. In addition, three metrics from [93]: . 

mostly tracked (MT), mostly lost (ML) . and partially tracked (PT) are also . 



[59) 3.5. Experiments 

used to further evaluate the results. A target is considered as a mostly 

. tracked target if it is being tracked for 80% of the time and mostly track 

(M11 measures the percentage of successfully tracked targets. Similarly. a 

target is considered lost if the target is tracked less than 20% of the time 

and mostly lost (ML) measures the percentage of lost targets. Lower values 

of M L and PT indicate a good performance of the tracking algorithm. 

3.5.2.1 PETS 2009 

The ground truth for this sequence is manually annotated by [19] while the 

detection output is generated by a state-of-the-art HOG detector. Table 3.2 

shows the number of mostly tracked (M11. the number of mostly lost (ML) 

and the number of partial tracked (PI'). as well as accuracy (MOTA) and 
.. 

precision (MOTP) for PETS 2009 data-set. The reported results of this 

method are the averages and standard deviations of 10 runs using the 

same parameters. For comparisons. the results obtained by the state-of­

the-art methods: k-shortest path optimisation-based tracker [31]. energy 

minimisation-based tracking algorithm [19]. the extended Kalman filter 

(EKF) [18] and the occlusion modelling (OM) based tracker [18] are also 

shown. 

Table 3.2: Quantitative comparisons of the proposed method with state-of-the­
art methods on PETS 2009 data-set: S2L1 View 1. The results for this 
method are the average of 10 runs using the same parameters. 

Methods MOTA MOTP MT(%) ML(%) PT(%} 
[31] 79.0% 59.0% - - -
[19] 81.4% 76.1% 82.60% O.OOA> 17.40% 
Occlusion Model [18] 88.3% 75.7% 86.96% 4.35% 8.70% 
EKF (18) 68.0% 76.5% 39.13% 4.35% 56.50% 
this method 83.92±4.78% 82.66±1.51% 82.600A> 0.0% 17.40% 

This method achieves about 80% of tracking precision which is nearly 
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5% higher than the best reported results. The slightly lower MOTA value 

(compared to the occlusion model [18]) can be explained by the frequent 

interactions of targets and the reliability of the resulting detections; Le. , 

some targets are detected due to persistent false positives occurred by 

background structures such as signboards and public phone boxes. Fig­

ure 3.9 shows some qualitative results on PETS data-set. The first row 

frame #35 frame #502 frame #625 frame #661 

(a) Results obtained by this method 

frame #35 frame #502 frame #625 frame #661 

(b) Results obtained by Occlusion Modelling [18) 

frame #35 frame #502 frame # 625 frame #661 

(c) Results obtained by [19) 

Figure 3.9: Qualitative Comparisons of the proposed method with state-of-the­
art methods on PETS data-set (S2Ll) . The results for this method is 
obtained using HSV colour space and the quadratic (cross) distance. 
The number of particles is fixed at N = 15. Results for state-of-the-art 
methods are extracted from their corresponding papers. 

shows the results obtained by this method while the second and third rows 

show the results from the occlusion modelling (OM) based tracker [18] and 
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the energy minimisation-based tracking algorithm [19]. Results for [18] 

and [19] are extracted from their corresponding papers. 

3.5.2.2 Oxford sequence 

The next experiment evaluates the performance on a town centre sequence 

[30] recorded at Oxford university. This sequence contains 7500 images 

with a resolution of 1920 x 1080. Both the ground truth and the detec­

tion outputs for the first 4501 image frames are manually annotated and 

generated by [30]. In this experiment, this method is compared with two 

state-of-the-art methods: the stable multi-target tracking [30] and the de­

tector confidence particle filter [34]. The same detection results are used 

to evaluate the tracking performance of different methods. 

Table 3.3: Quantitative comparisons with state-of-the-art methods on the town 
centre sequence. The results for this method are the average of 10 
runs using the same parameters. 

Methods MOTA MOTP MT(%) ML(%) PI' (%) 
[30] 79.0% 59.0% - - -
[34] 81.4% 76.1% - - -
this method 82.52±0.16% 80.53±0.13% 76.96% 2.17% 20.87% 

Some qualitative results on the town centre sequence [30] are illus­

trated in Figure 3.10. It can be observed that this method can recover the 

targets and maintain the same ID after an occlusion (e.g., frame 2128 - 2169 

on third row). Table 3.3 lists the quantitative results of three different 

methods. It can be observed that this method achieves about 80% for both 

MOTA and MOTP and outperforms the state-of-the-art methods. 
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Figure 3.10: Qualitative Results of the proposed method on a town centre se­
quence from Oxford university obtained using HSV colour space 
and the quadratic (cross) distance. The number of particles is fixed 
at N = 15. 
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3.5.3 Performance Evaluation 

In this experiment, the performance of this method is evaluated against 

the number of particles (N) in a swarm. The evaluation is performed us­

ing the Helicopter sequence (section 3.5.1.2). The tracking error, the dis­

tance between the centroid of the target returned by the tracker and the 

centroid in the ground-truth, is computed for every frame in the video. 

The error is then averaged over 5 runs. Similarly, the computational 

time for each frame is recorded and the time is averaged for the entire 

video. This process is repeated for different number of particles, N E 

[10, 15, 20, 25,30, ··· , 55 ,60]. The results of this evaluation is shown in Fig­

ure 3.11. 

. 
j 
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Number of Partlel" (N) 

Figure 3.11: Root mean square error and run time against the number of parti­
cles on the Helicopter sequence. The average run time (in seconds) 
for Helicopter sequence is shown on the left axis while the average 
and standard deviation of tracking error (in pixels) is shown on the 
right axis. 

The means and standard deviations of the tracking errors (shown on 

the right axis of Figure 3.11) show that the number of.particles has only a 

small influence on the performance for this particular problem. The per­

formance varies only slightly against the number of particles. However, the 

run-times of the algorithm (shown on the left axis of Figure 3.11) increases 

as the number of particles increases. It can be observed that this method 
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takes about 0.08 seconds (about 12 frames per second) while acWeving a 

high tracking precision with an average error of 2.5 pixels for N = 15. 

Next, the effect of different distance measurement (equation 3.17) on 

the tracking performance is studied. Evaluations are made using four 

different distance measurements: normalised Euclidean distance, L1 dis­

tance, the quadratic cross distance [59] and Bhattacharyya distance [11]. 

Figure 3.12 shows the tracking accuracy (MOTA, MOTP and MT) on PETS 

~ 1r----,r----------.-----------.-----------r~~~ 
~ ~.~ ao.tl- • MOT!' 

x MT 

. 

Figure 3.12: Tracking results on PETS 2009S2Ll data set using different distance 
measurements. The averages and standard deviations of MOTA, 
MOTP and Mf of 10 runs are reported. The quadratic cross dis­
tance provides the highest MOTA value (83.93% with the standard 
deviation of 4.78) 

200982L1 sequence (section 3.5.2.1) using different measurements where 

the reported results are the average of 10 runs. It is observed that the 

quadratic cross distance provides the Wghest MOTA (83.93% with the stan­

dard deviation of 4.78) value for PETS 2009 data set where the other mea­

surements obtain about 76 - 80% of MOTA values (79.55%, 76.00% and 78.3% . 
for L1 distance, the quadratic cross distance and Bhattacharyya distance 

respectively). The MOTA values provided by the normalised Euclidean dis­

tance for 10 different runs are peaked around the average and the stan­

dard deviations is only about 1.45% where the standard deviations for other 

measurements are about 5%. The MOTP values is less sensitive to different 

distance measurements and all four measurements obtain about 82% with 
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the standard deviations of 1.5 - 2%. It can be concluded that this method 

achieves about BO% MOTA and MOTP values for four different distance 

measurements. 

Finally, the updating model of this method is evaluated using the CAVIAR 

sequence(section 3.5.1.1). In particular, the evaluation is done on tracking 

the target 'A' to assess the performance of this method under occlusion. 

Figure 3. 13(a) shows the probability score (equation 3.25) for tracking tar­

get 'A' where the length of the temporal window T is set at T = 10, T = 20 

and T = 50 respectively. The length of the temporal window T should 

be long enough to capture the appearance variation of the target model. 

However, a long temporal window may introduce noises for the probability 

density function (equation 3.24). For instance, the temporal window T = 50 

contains the frames 440 - 450 in which the target 'A' is partially occluded. 

As a result, the value of the probability scores is high even when the target 

'A' is occluded in frames 450 - 463. 

Figure 3.13(b) and 3. 13(c) show the tracking results of this method in 

which the probability density function (equation 3.24) is learnt using the 

temporal window of T = 10 and T = 20 respectively. The target model is 

updated only when the probability score is higher than th = O.B. As can be 

seen in Figure 3. 13(b) and 3. 13(c), the target 'A' is tracked successfully un­

der occlusions. However, the tracker fails to track the target 'A' when the 

probability density function (equation 3.24) is learnt using the temporal 

window T = 50. As discussed earlier, ,the probability function is no longer 

representative of the appearance of the target 'A' anq hence, the tracker 

fails to converge to the correct locations as shown in Figure 3. 13(d). 

Next, the performance is assessed against the selection of the thresh­

old th (equation 3.27). Figure 3. 13(e) shows the tracking results using the 

threshold value of th = 0.6 which is lower than the probability scores com-
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(a) Probability score for updating the target model. The hortzontal line shows the 
threshold value tho 

#475 and frame #575 

Figure 3.13: A qualitative comparison of update strategies using CAVIAR se­
quence. The first row shows the probability scores for updating 
the target 'A' using different lengths of temporal window, from left 
to right: T = 10, T = 20 and T = 50. The second, third and fourth 
rows show the tracking results using th = 0.8 and T = 10, T = 20 and 
T = 50 respectively. The last row shows the tracking results using 
th = 0.6 (in other words, the target model is updated at every frame) 
and T = 20. 
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puted for all frames (please refer to Figure 3.13(a)). Since the threshold 

value th is very small. the target model is updated at almost every frame. 

even during the occlusion at frames 440 - 455. As a result. the tracker fails 

to keep the correct identity of the target 'A' after the occlusion at frames 

475 - 575. 

3.6 Summary 

The work presented in this chapter addressed the problem of tracking 

a variable number of interacting targets in a complex scene. The stan­

dard PSO algorithm is extended by introducing an idea of multiple swarms 

where each swarm tracks an individual target. The proposed method in­

corporates a number of constraints into the PSO algorithm. Through parti­

cles and swarms diversification, motion prediction and interactions among 

targets are introduced. constraining swarm members to the most likely re­

gion in the search space. The output from a pedestrian detector are also 

incorporated into the velocity-updating equation of the PSO algorithm. 

Qualitative and quantitative results for the fixed number of targets are 

presented in section 3.5.1. Experimental results indicate that the pro­

posed multi-swarm PSO 

• is able to track multiple targets in a complex scene with severe occlu­

sion and heavy interactions among targets. 

• achieve a better tracking accuracy (above 80% for both MOTA and 

MOTP) and a faster convergence rate and 

• requires fewer particles to adequately track the target over time . 

. Section 3.5.2 presents results for a varying number of targets in a com­

plex scene. The quantitative comparisons given in Table 3.2 and 3.3 show 
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that the proposed tracker using a PSO algorithm outperforms the state­

of-the-art tracking algorithms. The proposed method is able to correctly 

detect entering and leaving targets and track targets over time, maintain­

ing a correct, unique identification. Given the same detection outputs, this 

method achieves a better tracking accuracy and the results indicate that 

the proposed PSO algorithm can successfully track multiple targets in a 

complex scene. 



"Everybody is a genlus. But 1f you 

judge a f1sh by its ability to cllmb a 

tree, it will live its whole life believ­

ing that it is stupid. " 

Albert Einstein 

Abnormality Detection 

in Crowded Scenes 

The previous chapter presented a particle swarm optimisation framework 

for tracking individual targets. This method has been proved to be useful 

for tracking a few individuals in a complex scene and analyse their be­

haviour. However, as the number of people in the scene increases, the 

problem of tracking individual targets becomes more challenging. As a re­

sult, tracking-based approaches are inadequate for analysing behaviours 

of a crowd. To address this limitation, in recent years, researchers have -

proposed to monitor the behaviour of a crowd without identifying the loca­

tions and actions of individuals participated in the crowd event. 

This chapter presents two novel methods for detecting and localising 

abnormal regions in a crowded scene. 

4.1 Introduction 

Abnormality detection refers to the detection of unusual behaviour of in-
.. 

dividuals, or a group in a crowded scene. For instance, an abnormal event 

can be a panic or a fight event in a crowd where most people in the scene 

69 
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suddenly change their behaviour. Several methods [17,104,147] have em­

ployed frame-based properties to detect the sudden motion of a crowd in 

the monitored scene. For instance, [17] uses the dense optical flow in the 

whole. frame to learn the regular movement of a crowd where [104] mod­

els the normal pattern of an interaction force between pedestrians based 

on optical flow and ·the particle advection method. The emergency events 

such as a sudden fall of a person in the crowd are successfully detected. 

However, an abnormal event can also arise due to an unexpected action of 

an individual in a crowd. For example, a running person in a crowd can 

indicate an abnormal event, if the rest of the crowd is moving at a walk­

ing pace. Hence, local motions of the crowd becomes an important cue to 

detect and localise individual behaviours that deviate from the rest of the 

crowd's dynamics. 

This chapter presents techniques developed for detecting and localising 

abnormal regions in a crowded scene. The proposed approaches aim not 

only to detect abnormal activities both in the local and global context but 

also for an accurate localisation of regions having abnormal or unknown 

behaviour. Section 4.2 presents the first approach that focusses on the 

use of manifold learning algorithm for global abnormality detection, where 

participants in the crowd behave collectively. The idea is to exploit tempo-

. ral coherence between video frames and use a manifold learning algorithm, 

for instance Laplacian Eigenmaps [28], to discover different crowd activi­

ties from a video. This method provides an advantage of visualising and 

identifying different crowd events in a low dimensional space and detect 

abnormality. Section 4.3 presents a novel approach for detecting and 10-

calising abnormal activities in crowded scenes. This approach emphasises 

on local abnormality detection where the behaviour of an individual devi­

ates from the rest of the crowd in a particular time instance. 
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4.2 Global Abnormality Detection 

This section describes a novel approach that analyses video events in 

crowded scenes. A manifold learning method 1 is proposed to achieve 

visualisation and modelling of video events in a low dimensional space. 

This low-dimensional representation preserves the spatio-temporal prop­

erty of a video as well as the characteristic of the video. Different tasks 

of video content analysis such as visualisation, video event segmentation 

and abnormality detection are achieved by analysing these video trajecto­

ries based on the Hausdorff distance similarity measure [3]. 

4.2.1 Frame-based Video Representation 

This method begins with an introduction of representing video frames us­

ing local motion information. Each frame of a video is represented using 

a histogram of the optical flow defined as follows. The optical flow vectors 

are first computed over a m by n cells between two successive frames using 

the method proposed in [37]. The distribution of optical flow in each cell -

is then represented using a weighted histogram of B bins, where weight 

in each bin corresponds to the magnitude of optical flow in one particular 

direction. Then, a representation of a frame is obtained by concatenating 

all histograms of cells into a long vector. Mathematically, it is defined as: 

:1:= [hk]' k={1,2,3, ... ,K} (4.1) 

where k is an index of each cell, K = m x n is total number of cells in each 

frame and hk is a weighted histogram of B bins (B = 4) for a cell k. 

IThe background theory of different manifold learning algorithms. such as Gaussian 
process latent Variable model (GPLVM). isometric feature mapping (ISOMAP). Local Unear 
Embedding (LLE)and Laplacian Eigenmaps (LE). are provided in Appendix A 

, 
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4.2.2 Spatio-Temporal Laplacian Eigenmaps 

The first step of Laplacian Eigerunaps is to compute a weighted neighbour­

hood graph. In this method. a weighted neighbourhood graph is computed 

based on spatio-temporal relations where the weight of the edge connect­

ing two video frames. i and j are computed as follows: 

(4.2) 

where Ws = exp( -ds/as) is the spatial weight computed based on the fea­

ture distance. The parameter. as E [0,1] a feature scale parameter that 

defines the influence of neighbour pOints and is defined empirically. The 

weight. Wt = exp( -dt/at) is computed based on temporal information be­

tween frames where dt E [0,1] is defined as a normalised time difference 

between frames. That is the value dt will be zero between two adjacent 

frames while dt will be one for two farthest frames. The temporal scale 

parameter. at E (0,1) decides the influence of the temporal neighbours2 • 

In this way. this method preserves spatial weights for all for all pairs of 

images in a video and provides additional weight for adjacent frames in 

temporal domain. 

The feature distance ds represents the dissimilarit¥' measure between 

two frames and it is defined as the weighted sum of distance measures 

between corresponding cells. Mathematically. it is defined as: 

K 

ds(Xi,Xj) = LC¥k x d(hLh{) (4.3) 
k=l 

where K is total number of cells in an image and C¥k is the weight for each 

2In the reported experiments, the parameter for spatial and temporal information U B 

and Ut are empirically selected as 0.5 and 0.2 respectively. 
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position. The parameter a depends on the prior knowledge of the scene. 

For example, a should be zero for the background position. Here, it is 

assumed that there is no prior information about the scene, and hence the 

value is fixed to 1 for all cells. The distance, d(ht, h{), can be any distance 

measure between two histograms of corresponding locations in frames, i 

and j. In this method, the distance measure between two histograms is 

computed as follows: 
i i 

d(hi hi) = 1 _ hk • hk 
kl k IIhillllh{1I 

(4.4) 

where hi refers to the vector of weighted histogram for cell k from frame i 

and h{ refers to the vector of corresponding location from frame j. When 

all edges are assigned with appropriate weights, the low-dimensional em­

bedding space of the video is computed by minimising the following cost 

function: 
M 

¢(Y) = LWiillYi - Yjll2 
ii 

(4.5) 

where M is total number of images in the training data -set. The mini­

mum of this cost function is given by the eigen-decomposition and the 

low dimensional representation of video frames is obtained by using the 

Laplacian Eigenmaps method. 

The embedding process maps each video frame into a low dimensional 

vector, Yi' The number of dimensions for the subspace is selected based 

on the relative difference between two adjacent eigen-values. The temporal 

order of video frames defines a path in the embedded space. .As a result, 

the above step transforms a video segment of T frames into a set of T 

pOints in the low-dimensional space, where each point corresponds to the 

successive frames of the original video. 
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4.2.3 Analysing Video Manifolds in Temporal Domain 

The proposed ST -LE discovers the internal structure of the video and pro­

duces a trajectory for each video sequence. Given a trajectory in the em­

bedded space. i.e. a set of sequential data pOints or image frames in a 

video. the next step"is to analyse these data pOints for different problems 

of video understanding. In addition. given that some video frames contain 

labelled information. the crowd events happening in the rest of the video 

can be identified. In order to incorporate the temporal smoothness. a tra­

jectory is considered for each data point as Si = {Yl,Y2,··· ,YT}. where T is 

the length of a temporal window and Yi is the low-dimensional representa­

tion of a video frame. That is. the information from temporally adjacent T 

frames is considered in determining the possible event of a new frame. As­

suming that there are Ke video events and each event can be represented 

by a single Gaussian. the event happening in a new video frame can be 

computed as: 

(4.6) 

where P(Snew/l1k."EkJ is the probability of the new video segment belonging 

to the crowd event ke where ke E (1, Ke) is the index of the interested crowd 

events and Ke is the total number of interested crowd ~vents. The parame-

- ters for crowd event. 11k. and "Ek •• are learnt using the labelled information 

in the embedded space. 

Similarly. video frames containing abnormal activities can be identified 

for a given video sequence. where abnormal events are rare and dissimilar 

from regular instances. This problem can be seen as a two-class clustering 

problem. where only one class (normal class) has labelled information. To 

address this problem. video trajectories corresponding to normal frames 

are modelled using a Gaussian mixture model where the number of Gaus-
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sian components C is determined using the Bayesian information criterion 

(BIC) (134). Then. the normality score for each new video segment Snew is 

computed as follows: 

(4.7) 

where /Jr,O'r and Wr are the mean. variance and weight of the r Gaus­

sian component learned using the labelled information. Based on a fixed 

threshold on the normality score. each segment is labelled as normal or 

abnormal. Here. the range of the threshold value is set to be in the [0: 1; 

0:9) to generate multiple sets of true positive and false positive rates and 

the best threshold can be selected where the minimum equal error rate is 

obtained. 

4.2.4 Experimental Results 

4.2.4.1 segmenting a Video Trajectory 

The first experiment evaluates the performance of this method for recog­

nition and identification of crowd events using video sequences from the 

PETS data set [9]. This data set consists of four video sequences (768 x 576. 

7 frames per second) with time stamps 14 -16. 14 - 27. 14 ~ 31 and 14 - 33. 

These video sequences contain one or more of the following crowd events: 

walking. running. evacuation (rapid' dispersion). local dispersion. crowd 

forming and splitting. The ground truth is generated by manually labelling 

each video sequence into different crowd events based on the definition 

. pr~vided in [56] (please refer to Table 4.1). In addition. one additional 

crowd event labelled as "local movement" is defined to represent a crowd 

with small movements. Then. one-third of labelled frames are randomly 
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selected for training and the rest are used for testing. 

Event Description Video Frames [start frame: end frame] 
crowd splitting split to 2 or more directions T:14-31[51-130] 
crowd fOrming merge of individuals T: 14-33[0-196] 
walking most moving at low speed T:14-16[0-36, 108-161], T: 14-31 [0-50] 
running most moving at high speed T:14-16[37-107, 162-223] 
local dispers10n localised rap1d movement T: 14-27[0: 184, 280:333] 
evacuation rapid dispers10n T: 14-33[340-377] 
local movement little or no movement T:14-33[197-339] T:14-27U85:279] 

Table 4.1: Ground Truth for the PETS data set [9]. 

Table 4.2 shows the confusion matrix for the recognition of crowd events. 

The reported results are averaged results over ten runs using randomly se­

lected training sets. It can be observed that this method achieves promis­

ing recognition accuracy rate. Figure 4.1 and 4.2 show some qualitative 

results on crowd events recognition. The probabilities of predefined events 

occurring in the frame are given while the event with the highest probabil­

ity is highlighted with a white bounding box. 

Event split orm walk run eva. OCQl alsp. ocQlmov 

~~ g.98 :t: 0.0006 ~.84±0.004 g.02:t:0.006 ~ ~ ~ ~.16 ±0.004 
walk 0.01 ± 0.0002 0 0.64 ± 0.02 0.35± 0.02 0 0 0 
run 0 0 0.12 ±0.038 0.88 ± 0.038 0 0 0 
eva. 0 0 0 0 0.99 ± 0.0005 0 0.01 ± 0.0005 
local dlsp 0 0 0 0 0 0.98 ± O.OOOT 0.02 ± O.OOOT 
local mov. 0 0.022 ± 0.0023 0 0 0.019 ± 0.00 0.023 ± 0.0001 0.94 ± 0.0015 

Table 4.2: Confusion matrix for crowd event recognition on four video sequences 
from PETS 2009 data-set rr 14 - 16, 14 - 27. 14....: 31 and 14 - 33). 

Table 4.3 compares recognition error rates obtained by the proposed 

method and the state-of-the-art methods. Please note that there are no re­

ported results for local movement event in [56) and (40). It can be seen that 

this method has a better recognition accuracy for events such as splitting. 

forming. evacuation and local dispersion while [56) and [40] have better 

performance for recognising crowd walking and running event. This can 

be explained by the nature of this method in learning feature similarity 



Figure 4.1: Some qualitative results for crowd event recognition on four video sequences from PETS 2009 data-set 
(1'14 - 16, 14 - 27, 14 - 31 and 14 - 33). 
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Figure 4.2: Some qualitative results for crowd event recognition on four video sequences from PETS 2009 data-set 
(T14 - 16. 14 - 27. 14 - 31 and 14 - 33). 
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Event [56] [40] proposed method proposed method 
(without temporal) (wt temporal cons.) 

split 0.21 0.33 0.17 ± 0.0023 0.02 ± 0.0006 
form 0.40 0.31 0.04 ± 0.0187 0.16 ± 0.0044 
walk 0.08 0.02 0.49 ± 0.0118 0.36 ± 0.0212 
run 0.08 0.03 0.00 ± 0.0036 0.12 ± 0.0381 
eva. 0.03 0.10 0.01 ± 0.0005 0.01 ± 0.0005 

local disp 0.23 0.15 0.02 ± 0.0001 0.02 ± 0.0007 
localmov. 0.42 ± 0.0035 0.06 ± 0.0015 

avg. 0.17 0.16 0.16 ± 0.0058 0.11 ± 0.0096 

Table 4.3: Comparison of the proposed method and the state-of-the-art methods 
on PETS 2009 data-set. 

automatically. In contrast to [56] and [40], where the walking and running 

events are classified based on a manual threshold, this method learns the 

feature similarity automatically by finding the different between two his­

tograms. It is observed that when the walking and running events happen 

continuously (adjacent in temporal domain) as in the provided data set, 

video frames in the transition period are prOjected closely in the manifold 

space and leads to misclassification. On average, this method provides the 

lowest error rate. 

Results obtained without using the temporal information are also re­

ported in Table 4.3 (please refer to the third column). It is observed that 

this method achieves comparable performance with the state-of-the-art 

methods without incorporating temporal information. A significant im­

provement on recognition accuracy is obtained when temporal information 

is incorporated. It can be observed that the temporal constraint, in gen­

eral, improves the classification accuracy but not for·· the running event. 

This is because in this particular data set, the transition period adds am­

biguity between these two events and drops recognition accuracy for the 

miming event. Please note that Caroline et al. [56] reported results ob­

tained using different types of classifiers and their best reported results 
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are selected for comparison. 
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Figure 4.3: Error rate vs. temporal window size for crowd event recognition using 
PETS 2009 data-set. 

Next, the influence of the size of the temporal window T on the perfor­

mance of the method is evaluated. Figure 4.3 shows the average recogni­

tion error rate for different window sizes. It can be observed that the lowest 

error range is achieved with a window size of T E [3,6] as shown in Figure 

4.3. In this experiment, the event recognition accuracy is computed for 

each individual frame in order to compare with the state-of-the-art meth­

ods which used frame-based approach. For instance, when a segment 

Si = {Yi-T/2, ... ,Yi,'" ,YHT/2} is recognised as a walking event, the middle 

frame Yi is considered as a walking event. As a result, a longer window size 

can cause ambiguity when finding the exact location of the event frame. 

This leads the recognition accuracy of the experimental results to decrease 

when a very long window size is considered. 



[81] 4.2. Global Abnormality Detection 

4.2.4.2 Abnormality Detection 

The second experiment validates the performance of this method on abnor­

mality detection in crowded scenes using the crowd activity data set from 

University of Minnesota [6]. This data set contains eleven video sequences 

recorded in three different indoor and outdoor scenes (2 sequences for 

the first scene, 6 sequences for the second scene and 3 sequences for 

the third scene). Figure 4.4 shows some sample frames of these different 

scenes. Each video sequence contains about 500 frames with a normal 

(a) Sample frames from scene 1 

(b) Sample frames from scene 2 

(c) Sample frames from scene 3 

Figure 4.4: Sample frames from three different scenes of UMN data-set. Each 
row shows sample frames from different scenes. 
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starting section and abnormal ending section where each frame has a size 

of 320 x 240 pJxels. 

This data set is first divided into the training set and the testing set. 

The training set contains one video sequence of the first scene, two se­

quences of the second scene and one sequence of the third scene. The 

normal behaviour for each scene is learnt separately. The testing set con­

tains one sequence of the first scene, four sequences of the second scene 

and two sequences of the third scene. The training set contains only the 

frames with normal activities while the testing set includes frames with 

both normal and abnormal activities . 
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(a) ROC cmve for scene 1 (b) ROC cmve for scene 2 (c) ROC cmve for scene 3 

Fiaure 4.6: ROC curves for abnonnal1ty detection for three different crowded 
scenes from UMN data-set. 

Figure 4.5 shows the ROC curves for three different scenes, while Figure 

4.6 shows the normal frames and abnormal frame of the corresponding 

video sequence. The green and red bars on the left corner of the frame 

indicate normality and abnormality respectively. A comparison of the area 

under the ROC curve between the proposed method and the state-of-the­

art methods is shown in Table 4.4. In this experiment, the range of the 

threshold value is set to be in the [0.1,0.9] range for computing ROC curve. 

It can be seen in Table 4.4 that the experimental results either match or 

exceed the performance of existing state-of-the-art approaches. 
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(a) Sample images for normal and abnormal frames from testing data-set (scene 
1). From left to right: frame index 35, frame index 140 and frame index 575. 

(b) Sample images for normal and abnormal frames from testing data-set (scene 
2). From left to right: frame index 190, frame index 240 and frame index 432. 

(c) Sample images for normal and abnormal frames from testing data-set (scene 3). 
From left to right: frame index 40, frame index 250 and frame index 501. 

Figure 4.6: Qualitative results for abnormality detection for three different 
crowded scenes from UMN data -set. Each row represents the re­
sults for a video sequence of different scenes. The green and red bars 
on the left corner of the frame indicate normality and abnormality 
respectively. 
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Method scene 1 scene 2 scene 3 average 
Cong et at (45) 99.5% 97.5% 96.4% 97.8% 
Shi et at (138) 93.6% 77.5% 96.6% 89.2% 

Social Force Model (104) - - - 96.0% 
Optical flow (104) - - - 84.0% 
Proposed method 98.5% 96.9% 98.3% 97.9±0.76% 

Table 4.4: Compartson of the area under the ROC curve between the proposed 
method and the state-of-the-art methods on UCM data-set. Please 
note that the results of other methods are extracted from their corre­
sponding papers. 

4.3 Local Abnormality Detection 

The approach presented in the previous section analyses videos of crowded 

scene using the spatio-temporal Laplacian Eigenmaps method. The pair­

wise graph was constructed between video frames in the temporal domain. 

This approach demonstrates that the use of the manifold learning method 

leads to a better performance for visualising and detecting temporal events 

in crowded scenes. However, the use of global frame features prevents the 

previous approach to detect localised abnormal activities. In this section, 

a new approach that captures the spatial and temporal variations of local 

motions of a crowded scene is presented. This approach is composed of 

two major stages: a training stage and a testing stage. During the training 

stage, Laplacian Eigenmap based approach is employed to extract different 

crowd activities from the video. Then, a model of regular crowd behaviour 

is learnt based on the magnitude and direction of local motion vectors 

extracted from different crowd activities. Next, the learnt model is used to 

detect and localise regions having abnormal or unknown behaviour in a 

. new testing video. 

In this approach, a video is represented as a fully connected graph 

G(V, E) where V is a set of local regions and E is a set of edges represent-
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.~l2J.~ ~ 
I Spatio-temporal graph I I Low dimensional space I I Probability map I I Abnormality detectionl 

Figure 4.7: A diagram illustrating the overall flow of the proposed method. 

ing the connectivity between these local regions. The weight of an edge 

between nodes (local regions) is computed using the similarity in feature, 

space and temporal domain between the nodes. This graph provides the 

global correlations of the local motions in the video and the spectral anal­

ysis on this graph yields the dominant eigenvectors as the coordinates of 

the embedding space. In the embedded space, the distribution of local 

motions is learnt to extract different crowd activities. Based on the rep­

resentatives of these activity patterns, the regular activity of a crowd is 

represented using a local probability model. The overview of the method is 

illustrated in Figure 4.7. 

4.3.1 Representation of Local Motion 

This approach represents a video as a set of local regions, by sUbdividing 

the video into non-overlapping cuboids of a fixed size (m x n x T). The 

optical flow vectors, computed in each patch (m x n), are then quantised 

into four different directions. The weight for each bin of the histogram is 

the magnitude of the optical flow in the corresponding direction. Hence, 

for each local region at time t, the motion information is represented as 

a histogram, ht = [h1h2h3h4
]. Next, histograms at each local region over a 

period of T frames are concatenated as Xi = {hi }:~~' The main motivating 
2 

factor for concatenating these motion vectors instead of averaging is to 

incorporate motion consistency over time. For instance, a local region with 
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a sudden motion change (even with a short duration) can be captured by 

this representation. 

4.3.2 Temporally Constrained Laplacian Eigenmaps 

This approach considers the relation of local regions based on their joint 

similarity in feature. space and temporal domain. Mathematically. the 

weight for an edge connecting two local regions is defined as: 

( .Iij) (") -u, -dY 
Wij = exp i " exp _s 

Ut x ~ Us 
(4.8) 

The first term in the above equation yields the feature similarity between 

local regions based on the visual context. The feature distance d, is defined 

as: 

(4.9) 

where ai,j is the cosine distance between Xi and Xj while d,(Xi,Xj) is the 

distance based on the histogram intersection. The idea is to consider both 

direction and magnitude of optical flow vectors in measuring distance be­

tween two feature vectors. The sigma values. o-f and u} are defined as 

local variances at ri and rj respectively. These local variances are com­

puted using 8i number of temporal neighbours which have feature dis­

tances d}(t, t + 8i ) ~ d}(t, t + 1). Here. d,(t, t + 8) is the distance between two 

feature vectors for the region i. at time t and t + 8 while d,(t, t + 1) is the 

feature distance between two adjacent temporal neighbours at time t and 

t + 1. 

The second term in equation (4.8) yields the spatial similarity where ds is 

the Euclidean distance between the centroid locations of two local regions. 

The sigma value Us is the spatial scaling factor that controls the amount 
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of spatial information while considering the manifold structure. Here (j s is 

empirically selected. Now, all edges are assigD.ed with appropriate weights, 

the next step is to find a low-dimensional embedding space by minimising 

the following cost function: 

M 

</>(Y) = LWijllYi _YjIl2, 
ij 

(4.10) 

where M is total number of local regions in the training set, Wij is given 

by equation (4.8) and Y is the low-dimensional embedding of the entire 

video. Each entry, Yi E Y is the low-dimensional representation of a local 

region. It turns out that the minimisation problem is equivalent to finding 

the optimum Y : 

Yopt = arg min(yT LY) subject to yTDY = 1 
y 

(4.11) 

where L = D - W is the Laplacian graph matrix. D is the diagonal weight 

matrix in which each entry is a total sum of each row of the weight matrix, 

W, and computed as d ii = L:j Wij' The solution is provided by the matrix 

of eigenvectors corresponding to the smallest ks non-zeros, eigenvalues of 

the generalised eigenvalue problem Ly = ADy. Similar to the approach 

discussed in Section 4.2, ks is automatically selected based .on the relative 

difference between two adjacent eigenvalues. 

4.3.3 Representation of Regular Motion Pattern 

The above process embeds local motion patterns into different spatial lo­

cations where similar patterns are usually close and different patterns are 

far apart. This allows us to cluster embedding pOints and discover dif­

ferent motion patterns in the mOnitored scene. Assuming that abnormal 
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instances are rare and dissimilar from regular instances, the cluster with 

small data points or outliers in the embedded space can be considered as 

abnormal instances. However, clustering results in the embedded space 

do not directly provide a way to detect abnormality in an unseen video. 

In this method, the regular behaviour of a crowd is modelled using the 

clustering results obtained in the embedded space. In other words, each 

local region of the monitored scene is represented by an expected motion 

information learnt during the training process. In order to find the reg­

ular motion patterns, the embedded data points are first clustered using 

the state-of-the-art clustering algorithms. Here the k-means algorithm is 

employed for clustering where the number of clusters is automatically de­

cided by the method in [165]. In addition, those clusters with the size 

smaller than a particular threshold3 are also removed. 

Next, clustering results are employed to represent regular motion pat­

terns. First, each group of local motion patterns is represented as a single 

Gaussian, N(/1-k, Uk) where the parameters /1-k and Uk are computed as fol­

lows: 

(4.12) 

and Nk is the total number of data pOints belonging to the kth group~ Then, 

the regular behaviour of a scene is modelled as a multiple single-Gaussian 

and the weight for each Gaussian is computed based on the co-occurrence 

of activities at a given location over time: 

nk O 

Wk ° = ,~ where t::o = {1 2 ... K} ,to "",,,' (;. " , 
LJe ne,i ° 

(4.13) 

ante threshold is defined as one-fifth of the average number of members of all clusters. 
4Please note that the variance is employed instead of covariance matrix. This is be­

cause the correlation among different motion directions is small for the given data-set 
employed in this experiment. However, the covariance matrix can be conSidered in gen­
eral. 
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and nk,i is the total number of times activity k occurs at region i while 

K is the total number of activity patterns. As a result. different local 

regions will have different weights for one particular activity. For example. 

1 
I 

f. 
0 • • 1 
1 

Figure 4.8: Example of localised weights for four different crowd behaviours ob­
served in the monitored scene (UCSD pedl data-set). The z- axis 
indicates the localised weights Wk,i while x - y axis represent the im­
age regions. Each local region i has different weights Wk (a-d) for four 
different crowd behaviours. 

Figure 4.8(a) shows computed weights for the first crowd behaviour (k = 1) 

observed in the scene. It can be seen that the weights are locally adapted 

WI ,i =1= WI,j for i =1= j. 
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4.3.4 Abnormality Detection 

Given an unseen sequence, the motion for local regions are first computed 

as discussed in Section 4.3.1. The normality score for each local region is 

then computed as: 

(4.14) 

where Wk,i , Jjk and Uk are weight (4.13), mean and variance of the kth 

behaviour pattern (4.12) learned during the training. 

The normality score for each video frame, called as the global score, is 

then computed as the average of all the local scores and it is defined as: 

(4.15) 

where N is the total number of regions while p{xfewlnormality) is computed 

using equation (4.14). Figure 4.9 shows the normality score computed for 

one test video sequence from the UCSD ped 1 data set. The corresponding 

ground truth bars (where the indices for abnormal frames are highlighted) 

shown at the bottom demonstrates that the current method detects the ab­

normal frames accurately. A video frame is considered as being abnormal 

if the global normality score for the video frame is smaller than a particu-

1ar threshold. Different thresholds are applied to generate multiple sets of 

true positive and false positive rates. The best threshold can be selected 

where the minimum equal error rate is obtained. 
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Figure 4.9: Global probability score for one sample video sequence from UCSD 
pedl data-set. At the bottom, the corresponding ground truth bars 
are shown where the highlighted regions (darker colour) denote the 
indices for abnormal frames. 

4.3.5 Abnormality Localisation 

Given that a video frame is identified as an abnormal frame by the above 

process, the anomaly regions can be identified by analysing the normality 

scores contributed by each local regions of an abnormal scene. Regions 

with low normality scores (as shown in Figure 4.10) are most likely to be 

abnormal. Hence, a local region is classified as abnormal if its normality 

score is smaller than the global score for the whole frame: 

x~ew = { abnormal, if p(xieWlnormality) < th 

normal, otherwise 
(4.16) 

where th is a threshold and p(x~ew) is computed using equation (4. 14}. 

Figure 4.10 shows the local normality score for one sample frame from the 

test video sequence (Figure 4.9) ofUCSD Ped1 data set. At the bottom, the 



[92) 4.3. Local Abnormality Detection 

corresponding ground truth bar is shown where the highlighted regions 

denote the indices for abnormal regions. 
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Figure 4.10: Local probability score for one sample frame of a test video sequence 
from UCSD ped1 data-set. At the bottom, the corresponding ground 
truth bars are shown where the highlighted regions (darker colour) 
denote the indices for abnormal regions. 

4.3.6 Experimental Results 

This experiment evaluates the performance of the proposed method on 

detecting and localising abnormal regions in the scene using the recently 

released UCSD data set [5]. This data set contains 98 video sequences from 

two different scenes (pedl and ped2): 70 sequences from first scene (pedl) 

and 28 sequences from the second scene (ped2). Each sequence contains 

about 200 frames where each frame is a size of 238 x 158 pixels for ped 1 and 

360 x 240 for ped2. The training set (34 sequences from pedl and 16 from 

ped2) is provided for learning normal activities of a crowd while the testing 
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set contains 48 sequences (36 sequences from pedl and 12 sequences from 

ped2) in which some of the frames have one or more abnormality activities 

present. 

The prescribed evaluation procedure by [5] is followed to compare the 

performance of the proposed method with the state-of-the-art methods. 

This procedure [5] involves two types of evaluations: (i) frame-level abnor­

mality detection, and (ti) within-frame anomaly localisation. For frame­

level abnormality detection, all test sequences are associated with ground­

truth at frame-level in the form of a binary flag, indicating the presence 

or absence of an abnormal event in each frame. For within-frame abnor­

mality localisation, some of the frames from a subset of test sequences 

(10 sequences in Pedl and 9 sequences in Ped2) have the marked anoma­

lous regions. If at least 40% of detected pixels (belonging to a detected 

anomaly) match the marked anomalous (ground-truth) pixels, it is consid­

ered that the anomaly has been localised correctly, othervvise it is treated 

as a "miss". 

In this experiment, the patch size (n x n) is fixed at 10 for pedl and ped2 

data set where the spatial factor as is set at 0.5 for pedl data set and 0.4 for 

ped2 data set. The effect of using different spatial effect as and the patch 

size (n x n) are studied in Section 4.3.6.4. 

4.3.6.1 AbnormaUty Detection 

Table 4.5 shows the comparisons of equal error rates (EER) for frame-level 

local abnormality detection obtained with the proposed method and the 

s~~e-of-the-art methods. A smaller EER indicates a better performance of 

the method. The presented results for other state-of-the-art methods were 

extract~d from the corresponding papers. 
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Figure 4.11: Results of frame level local abnormality detection using UCSD data 
set. (a) Frame level abnormality detection on ped 1 sequence (b) 
Frame level abnormality detection on ped2 sequence. 
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pedl ped2 avg 
SF [104] 31.0% 42.0% 37.0% 

MPPCA[81] 40.0% 30.00/0 35.0% 
SF-MPPCA [102] 32.0% 36.00/0 34.0% 
Adam et a1. [10] 38.0% 42.0% 40.0% 

MDT [102] 25.0% 25.0% 25.00/0 
Reddy et a1. [123] 22.5% 20.00/0 21.3% 
Ryan et a1. [127] 23.1% 13.3% 18.2% 
Cong et a1. [45] 19.0% - -

proposed method 22.0% 13.5% 17.8% 

Table 4.5: Equal Error Rate for Local Abnormality Detection on UCSD data set. 
Please note that [45] tested only on the Ped! sequence. 

It can be obselVed that this method outperforms or at least is compa­

rable with the state-of-the-art methods by just using the motion feature . 
.. 

Figure 4.11 presents the ROC CUlVes for local abnormality detection with 

frame-level ground truth. The lowest EER rate is obtained at th = 0.69 and 

th = 0.82 for pedl and ped2 data set respectively. As in (123). the false 

negative rate is reported instead of true positive rate. 

4.3.6.2 Abnormality Localisation 

Next. the performance of this method is compared with the state-of-the­

art methods for the localisation of abnormal regions. The comparisons 

of equal error rate for abnormality localisation is given in Table 4.6. The 

pixel-level ground truth is provided in (102) and the results are compared 

with the ground truth based on their prescribed proc~dures. Please note 

that the other state-of-the-art methods reported their abnormality localis­

ing results (equal error rate or detection rate) only for the ped1 sequence. 

Th~ ROC CUlVes for abnormality localisation are shown in Figure 4.12. 

Figure 4.13 shows some example frames for detecting local abnormal­

ity. The abnormality of the frame is indicated with a red bar on the left-
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Figure 4.12: Results of abnormality localisation using UCSD data set. (a) Pixel 
level abnormality localisation on pedl (b) Pixel level abnormality 
localisation on ped2. 
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' 100 t ( .. 
, 

Figure 4.13: Example frames from UCSD data-set for abnormality localisa­
tion. The corresponding regions that caused anomalies are high­
lighted using bounding boxes. More qualitative results are avail­
able at http: //youtu.be / b7JYOAH 63TQ and http: //youtu.be / 
mnt 6u h ZVFrk . 
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pedl ped2 avg 
SF (104] 79% - -

MPPCA(81] 82% - -
SF-MPPCA (102] 72% - -
Adam et aL (10] 76% - -

MDT (102] 55% - -
Reddy et aL (123] 32% - -
Cong et aL (45] 54% - -

proposed method 31% 22% 26.5% 

Table 4.6: Equal Error Rate for Abnormality Localisation on UCSD data set. 
Please note that other methods reported their abnormality localising 
results only for the pedl sequence. 

top comer of the image while the regions, which are the likely source of 

the abnormal dynamics, are highlighted using bounding rectangles. More 

qualitative results are available at http://youtu.be/b7JYOAH63TQ and 

http://youtu.be/mnt6uhZVFrk. It can be observed that this method ac­

curately localises abnormal regions without incurring high computational 

cost. 

4.S.6.S Computation Time 

One major concern of the Laplacian Eigenmap method is the computa­

tional cost of the pair-wise distance for each pair of local regions where 

the cost is commemorate with the number of data-point. In addition, the 

large size of pair-wise matrix is also a concern for the efficien.cy of the pro­

gram [72, 111]. In order to address these challenges, in this method, an 

incremental approach is employed for learning crowd activities. The model 

. for regular crowd activities is first learnt using a small training data-set 

(section 4.3.2 and 4.3.3). 

Given the rest of the training data, the probability score of new region 

deSCriptors belonging to the current model is computed as discussed in 
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Figure 4.14: Computation time for training images for UCSD pedl data set 

section 4.3.4. Then, the new region deSCriptors, which have a significant 

discrepancy from the learned model, are accumulated over time and new 

activities are learnt from these accumulated data. In this way, the regular 

behaviour of a given crowded scene can be trained efficiently. The train­

ing time for UCSD data-set (ped1) is given in Fig 4.14. As expected, the 

computational cost increases as the number of training images increases. 

However, the cost reaches a stable point after some time as re-training is 

required only for a sub-set of images. 

Figure 4.15 shows the average testing time on the UCSD data set (ped 1) 

with an image size of 238 x 158. It can be observed that this method takes 

less than 0.006 seconds (with the standard deviation of 0.2 millisecond) to 

test a new video frame while the dynamic texture model [102] took about 

25 seconds, the combined feature model [123] took about 0.08 seconds and 

Cong [45] took about 3.8 seconds respectively. The platform employed in 

this ex:r>eriment has a dual-Core 3GHz processor with 4GB RAM. 
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Figure 4. US: Average testing time and standard deviation for video sequences in 
UCSD ped! testing data set. 

4.8.6.4 Performance Evaluation 

This section describes additional experimental results conducted to fur­

ther analyse the performance of the proposed method. First, the perfor­

mance is evaluated with respect to spatial information 0'8 (equation 4.8) 

and the patch size n. 

patch size(n x n) Us =0.3 u. =0.4 u. =0.5 u. = 0.6 Us =0.7 Us -O.S u. -0.9 u, = 1.0 
SxS 20.81% 20.67% 20.92% 20.50% 20.75% 20.84% 21.11% 20.59% 

10 x 10 20.03% 18.52% 18.81% 14.18% 19.25% 19.69% 19.87% 19.82% , 
13 x 13 15.77% 19.14% 18.37% 14.61% 15.03% 19.51% 19.35% 19.32% 
16 x 16 19.91% 19.04% 19.33% 19.22% 19.41% 19.83% 19.49% 19.29% 

Table 4.7: Equal error rates for abnonnal detection on UCSD ped2 data set using 
different spatial effect u 8 and different patch size n. 

Table 4.7 lists equal error rates for abnormality detection on the UCSD 

ped2 data set using different 0'8 vales and patch size n. Please note tllat the 

value of O's is from 0 to 1 as the Euclidean distances between data-points 
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have already been normalised. It is observed that the equal error rates 

vary only slightly based on different patch sizes and 0"8 values. The best 

results are achieved at patch size (10 x 10) and the values of 0"8 between 0.4 

and 0.6. 

EER feature+space+tlme feature+space feature+tlme 
Abnormality Detection on UCSD Ped1 22.0% 22.0% 24.0% 
Abnormality Detection on UCSD Ped2 13.5% 22.9% 19.0% 

Local1zation on UCSD Ped1 31.0% 33.0% 35.0% 
Localization on UCSD Ped2 22.0% 34.8% 33.0% 

Table 4.8: Equal error rates for abnormal detection and localisation on UCSD 
data-set using different combination of three components in equation 
4.8. 

Next, the effect of spatial and temporal information on the detection 

performance is studied. Evaluations are made using different combina­

tions of three components in equation (4.8): (i) motion, space and time(default 

configuration), (11) motion and space (iii) motion and time. EER obtained 

by different configurations are shown in Table 4.8. It can be observed 

that the incorporation of spatial and temporal information improves the _ 

localisation of the actual regions that cause an anomaly. 

In addition, the impact of localised weights on the abnormality detec­

tion accuracy is further evaluated. As mentioned earlier, in this method, 

weights for different crowd behaviours are computed using co-occurrence 

of activities at a given location (equation 4.13). It is observed that the 

current approach using localised weights provides a high accuracy (low 

equal error rates) for both abnormality detection and "localisation of ab­

normal regions in the scene. To further demonstrate the strength of lo­

calised weights, this experiment computes the detection accuracy using 

the' weights given by the EM algorithm where the weight Wk represents 

the percentage of data pOints in the kth cluster. In contrast to the pro-
, 

posed configuration.:. the weight Wk is the same for all local regions, i.e. 
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Wk,i = WkJ for i =j:. j. Figure 4.16 shows ROC curves for local-abnormality 

detection and localisation using region-adapted weights (proposed config­

uration) and the non-adapted weights given by the EM algorithm. It is 

observed that the proposed adaptation scheme by equation (4.13) provides 

a better detection performance. 
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:Figure 4.16: Compartsons of the proposed method with the results using weights 
obtained by the EM algorithm. (a) ROC curves for frame-level local 
abnormality detection on UCSD ped! data-set (b) ROC curves for 
frame-level local abnormality detection on UCSD ped2 data-set (c) 
ROC curves for pixel-level abnormality localisation on UCSD ped! 
data-set (d) ROC curves for pixel-level abnormality localisation on 
UCSD ped2 data-set. 
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4.4 Summary 

In this chapter. two manifold learning-based methods have been presented 

for the detection of anomalies in a crowded scene. While the first ap­

proach focusses on detecting global abnormality. visualising and segment­

ing crowd events. the second one emphasises on detecting and localising 

abnormal regions in a crowded scene. 

The first approach introduces a manifold learning method to achieve vi­

sualisation and modelling of video events in a low dimensional space. The 

proposed manifold learning method preserves the spatial temporal prop­

erty as well as the characteristic of the video. It has been demonstrated 

that the low-dimensional representation of a video serVes as a compact. yet 

informative. representation for analysing the content of a crowded video. 

Different tasks of video content analysis such as visualisation. video event 

segmentation and abnormality detection are achieved by analysing these 

video trajectories in the embedded space. Qualitative and quantitative re­

sults show the promising performance of the proposed method. 

The second approach models the local motion of a crowded scene by em­

ploying temporal constrained Laplacian Eigenmaps. The pair-wise graph is 

constructed by considering the visual context of multiple local patches in 

both spatial and temporal domain. A local probabilistic model is proposed 

to represent the regular behaviour of a crowd. This local probabilistic 

model allows for the detection of abnormalities in both local and global 

context but also for an accurate localisation of abnormal regions. Exper­

imental results have shown that this approach successfully detects and 

localises abnormal regions in a crowded scene. 



'There is always a choice in .the 

way we do our work. even if there 

is no choice in the work itself. En­

thusiasm Makes A Difference!" 

Stephen Lundin 

Conclusion 

The work carried out in this thesis aimed to address three significant prob­

lems encountered in numerous computer vision applications. The prob­

lems are: (1) tracking multiple targets in a complex scene, (ii) detection and 

localisation of abnormal regions in crowded scenes. 

Chapter 2 provided a review and systematic comparison of the state of 

the art on crowd video analysis. The emphasise is on existing literature for 

tracking individuals in a crowd and understanding crowd behaviour. This 

review provides a reference point to computer vision researchers currently 

working on crowd analysis. The merits and weaknesses of various ap­

proaches for each topic are discussed and some possible future directions 

are recommended to improve the existing methods. 

Chapter 3 deSCribed a novel multi-target tracking method that em­

ployed a particle swarm optimisation algorithm. This method contributes 

to the state of the arts by: (1) introducing an idea of-multiple interactive 

swarms to the standard PSO to track multiple pedestrians in a crowd, (2) 

incorporating higher level information such as social behaviour (motion 

information among pedestrians) in the process of finding optima in a high 

dimensional space, (3) integrating constraints provided by temporal conti­

nuity of target tracks and the strength of person detection, and (4) initialis-

104 
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ing a separate swarm for each new person entering the scene. Experiments 

on videos from CAVIAR, PETS, OXFORD data sets, have indicated that the 

proposed method obtains considerably better performance (both qUalita­

tivelyand quantitatively) than the state-of-the-art methods. Specifically, 

on the PETS data set, this method achieves 86% of tracking precision which 

is nearly 10% higher than the best reported results. It is also shown that 

the proposed method is able to track targets with illumination changes 

and heavy occlusions in both indoor and outdoor environment. 

Chapter 4 described techniques for detecting and localising abnormal 

regions in a crowded scene. In particular, two new approaches have been 

developed for the detection of anomalies in a crowded scene. The first 

approach proposed a novel manifold learning method that preserves the 

spatial temporal property and the characteristic of the video. It has been 

. demonstrated that the low-dimensional representation of a video serves as 

a compact, yet informative, representation for analysing the content of a 

crowded video. Different tasks of video content analysis such as visualisa­

tion, video event segmentation and abnormality detection were performed 

by analysing these video trajectories in the embedded space. Next, this ap­

proach was further extended to accurately localise abnormal regions hav­

ing unknown behaviour. Experiments with the recently published UCSD 

data-sets have shown that the proposed method achieves comparable re­

sults with the state-of-the-art methods without sacrificing computational 

SimpliCity. 

5.1 Future Directions 

The methods developed in this work can be improved and extended along 

a number of directions. Some of these ideas are discussed in this section. 



The algorithm presented in Chapter 3 has demonstrated that incorpo­

rating social interactions among targets improves the tracking accuracy, 

especially in heavy occlusion. The performance of this algorithm can be 

further improved by incorporating more sophisticated behaviour models, 

by analysing the flow dynamics and the structure of the scene. In addi­

tion, future work is required to dynamically evaluate the performance of 

the tracking algorithm and to update the optimisation process based on 

the reliable scores provided by the evaluation process. 

The local abnormality detection techniques in Chapter 4 open differ­

ent research directions to explore. One direction is to divide the image 

space into cells of different sizes using a spatial pyramid approach. This 

should improve the accuracy for localising regions with different abnor­

mal behaviours. Another interesting direction is to extend the proposed 

techniques to the area of multi-camera visual context analysis. The local 

probability model of the monitored scene must be improved to combine the 

information captured by multiple cameras. 

c .. 
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Manifold Learning Algorithms 

A.I Gaussian Process Latent Variable Models 

Gaussian process latent variable models (GPLVM) [87] Is a probabilistic nonlinear ex­

tension of principal component analysis (peA) [143] which is a well established method 

for linear dimensional reduction. Given a high dimensional data X E !RNxD .the linear 

relationship between the latent (embedded) variables and the data points is: 

(A. 1) 

where Yn is a q- dimensional latent variable associated with the data point "n. W is a 

D x q matrix and the noise values 'TIn E !RD x 1 is an Independent sample from a sphertcal 

Gaussian distribution with zero mean and covariance ,8-11. 

In GPLVM. a sphertcal Gaussian distribution (with zero mean imd covariance I) is 

selected as a prtor distribution for W: 

D 

p(W) = rr~(wiIO,I) (A. 2) 
i=1 
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and then W Is margtnalised given a llkellhood: 

D 

p(XIY,,8) = IIp(x:,dIY,,8) 
d=1 
D 

= II N(X:,dIO, yyT + ,8-11) 
d=1 

~ ~ exp [ - -2
1 
tr(K-1 XXT)] 

(211") IKI 

(A 3) 

(A. 4) 

(A. 5) 

where X:,d represents the a,th column of X and K = yyT + ,8-11. Then. the objective 

function Is the log llkellhood given by the log of (A.5): 

DN D I I 1 1 T L = --In(211") - -In K - -tr(K- XX ) 
2 2 2 

(A. 6) 

By optlmtstng the log llkelihood with respect to the latent variables Y Is given by [101] 

as 
8L = K-1XXTK-1y _ DK-1y 
8Y 

and then the latent variables Y where the gradient Is zero is given by: 

DK-1y = K-1XXTK-1y 

K-1y = .!..K-1XXTK-1y 
D 

Y = .!..XXTK-1y 
D 

Computing the eigen-decomposltion results: 

(A 7) 

(A. B) 

(A. 9) 

(A 10) 

(A. 1 1) 

where Uq E iRNxq is a matrix whose columns are the first q eigenvectors of XXT • Lis 

a q x q diagonal matrix whose jth element Is given by lj = (Aj - ,8-1)-1/2'where Aj is the 

eigenvalue associated with the jth element of D-1 XXT and R is a q x q rotation matrix. 

A.2 Isometric Feature Mapping 

Isometric feature mapping (ISOMAP) [146] finds a low dimensional representation that 

preserves geometric features ofhtgh-dimenslonal observations. This method can be seen 
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as an extended version of multi-dimensional scaling (MDS) [46] which is a classIcal tech­

nique for embedding dis-similarity information into Euclidean space. This method can 

be generalised in two steps: 1) estimating the geodesic distances and 2) finding a low di­

mensional space where the Euclidean distances between data points in the space match 

the geodesic distances found in step 1. 

The first step constructs a neighbourhood graph G in which each data point Xi is 

connected with its k nearest neighbours in the given data set X E !RN x D. The shortest 

path between each pair of data points in the graph is then computed using Dijkstra's [49] 

or Floyd's [53] algorithm. Here, the shortest path can estimate the geodesic distance 

(distance on manifold) between these data points. Given the pairwise geodesic distances 

between all data points in the given data set X, the second step finds a low dimenSional 

representation of Yi of the data point Xi by minimising the following cost function: 

N N 

4>(Y) = L::~:)d(Xi,Xj) -IIYi - Yj112) . (A, 12) 
i=l j=l 

where N is the total number of data points in the data set, d(Xi' Xj) is the geodesic distance 

between high-dimensional data points Xi and Xj and IIYi - Yjll2 is the squared Euclidean 

distance between low dimensional data pOints Yi and Y j. The minimum of this cost 

function (A,12) is given by the eigen-decomposition of the product matrix XXT of the 

high dimenSional data [54]. 

A.3 Local Linear Embedding 

Local linear embedding (LLE) [132] is a technique that finds a low dimensional space 

of high dimensional data points by preserving local properties of the data. In contrast 

to Isomap, the preservation of local properties allows LLE to successfully embed non­

convex manifolds. In LLE, each data point is 'constructed as a linear combination of its 

neighbours and the reconstruction error is computed by the following cost function: 

N" 
e = IIXi - L:wijxjll2 

j=l 

(A, 13) 

where j E Nk(Xi) is a neighbour point of Xi and Nk is total number of neighbour pOints. 

In general, the nearest neighbours Nk are defined either by 1) finding the k closest points 
( 

or 2) selecting all POints_Xj E X such that d(xj,Xi) < e. The local linearity assumption 
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Implies that the reconstruction weights are Invariant to translation, rotation and scaling. 

Hence, the characterisation of local geometry In the original data space can be expected 

to be equally valid In a low dimenSional space. Thus, finding the low dimensional data Yi 

amountiJ to m1n1m1slng the cost function: 

N Nk 

4>(y) = E IIYi - E WijYj 112 (A. 14) 
i=1 j=1 

It is observed that the low dimenSional data point Yi can be translated without effect­

Ing the cost 4>(Y). This degree of freedom is removed by forcing the co-ordinates to be 

centred on the origin 'E~ Yi = O. By constraining the embedding vector to have a unit 

cOvariance(~ 'E~ YiyT = I) and imposing the sum-to-one constraint 'E j Wij = 1, the equa­

tion A. 14 can be reformulated as: 

4>(y) = E YiyT - :~::>i (L WijYj) - (L WijYj) LYi + L (L WijYj) 2 
i j j j 

= yTy _ yT(wy) _ (wy)Ty + (wy)T(WY) 

= ((I - W)Yf((1 - W)Y) 

= yT(1 _ W)T(I - W)Y 

= yTMY where M = (I - W)T (I - W) (A. 15) 

where 1 Is an Identity matrix and W is a reconstruction weight matrix where each entry 

Wij gives the contribution of the jth data point to the reconstruction of ith data point. 

Then, the low dimenSional representation Yi that m1n1m1ses the above cost function 4>(Y) 

(A. 15) are found by computing the eigenvectors corresponding to the smallest dB nonzero 

eigenvalues of the product (I - W)T(I - W) [126]. 

A.4 Laplacian Eigenmaps 

Laplacian Elgenmaps (LE) [28] is another manifold learning algorithm which computes a 

. low dimensional, neighbourhood preserving embedding of high dimensional data. S1m1lar 

to LLE, Laplacian Eigenmaps computes a low-dimensional data representation by min­

imising the cost (distances) between a data point and its k nearest neighbours. The cost 

function Is defined In a weighted manner, i.e., the distance between a data-point and Its 

first nearest neighbour contributes more to the cost function than the distance between 

the data-point and Its second nearest neighbour. LE algorithm can be generalised Into 
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three steps: constructing an adjacency graph. computing weights and mapping to a low 

dimensional space. In the first step. a neighbourhood graph G in which each point Xi is 

connected to its k nearest neighbours. As in LLE. a neighbour point can be defined either 

by k-nearest rule where Xi and Xj are connected if i is among k nearest neighbours of 

point j or f rule where Xi and Xj are connected if their distance is less than f. 

In the second step. each connected edge between i and j is weighted by Wij: 

{ 

exp( -l!d(Xi,XtlI!2 if i and J' are connected' q2 , , 
Wij = 

0, otherwise. 
(A 16) 

where d(Xi,Xj) is a distance between i and j and (j is a parameter for Gaussian function 

and defined manually. On the other hand. the weight can be defined simply such that 

Wij = 1 if i and j are connected and equals to zero otherwise. Next. the low dimensional 

representation Yi is computed by minimising the following cost function. 

N N 

¢(Y) = LLWijllYi _YjIl2, (A 17) 
i=1 j=1 

where Wij is computed with above equation (A.16) and Yi is the low-dimensional repre­

sentation of each data point Xi, The above equation can be expanded as: 

¢(Y) = LWij[IIYiIl2 + IIYjll2 - 2YiYj], (A. 18) 
ij 

= LWijilYill2 + L WijllYjl12 - 2 LWijYiYj, (A. 19) 
ij ij ij 

= LmiillYill2 + LmjjllYjll2 - 2 LWijYiYj, (A. 20) 
j ij 

= 2yTMY - 2yTwy, (A.2l) 

= 2yTLY, (A 22) 

where W is the weighted neighbourhood matrix and M is the diagonal weight matrix 

in which each entry is a total sum of each row of weight matrix. W. and computed as 

mii = E j Wij. The Laplacian graph L of the weighted neighbour graph W is computed by 

L = M - W. The objective function for both LE and LLE are similar and differ only in how 

the matrix L is computed. Hence. the low dimensional space can be searched by finding 
the optimum Y: 

Yopt = argmin(yTLY) subject to yTMY = 1, 
y 

III 

(A. 23) 



and this can be reduced to solving the generalised eigenvalue problem, 

Ly=AMy. 

for the smallest ks non-zero eigenvalue problems. 
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Group Motion Analysis for 

Video Content Clustering and 

Abnormality Detection 

Chapter 4 presented how to address the problem of abnormality detection and localisation 

in a crowded scene. Crowd dynamics are employed to model the regular motion patterns 

of a crowd in the mOnitored scene and abnormal events are detected by finding deviations 

from the learnt motion patterns. These methods can be extended for understanding group 

behaviOUrs in an enclosed scene. 

B.l Introduction 

The emphasis of this work is on group behaviour which lies at an intermediate level, 

"between individual and crowd, with a countable number of targets. Compared to be­

havi~ur analysis of a single target [58,69] or analysis of crowd dynamiCS [83, 85), the 

problem of group behaviour analysis Is less studied. In [130, 174), group activities are 

recognised by modelling the interactions among targets. However, most of these meth­

ods are l1m1ted to group activities With a fixed number of group members. Recently, more 
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researchers [41,47,94,109] have studied on modell1ng different group activities with vary­

ing number of targets. However, explicit modell1ng of group activities is hard to achieve 

when complex interactions occur. 

Methods that provide group activity analysis are useful for applications where many 

interacting targets need to be mOnitored over time. In particular, they have important 

implications for vision-based analysis of living organisms, which has countless applica­

tions in biology and mediCine. While more generally applicable, this work specifically 

focusses on analysing a group of living organisms such as fish in a confined area. Work 

presented here is part of a larger research project to mOnitor water security in Singa­

pore [52]. Compared to the sensor-based approaches 11,4], key advantages of monitoring 

water toxicity using living organisms are its rapid response and ability to perform con­

tinuous monitoring at critical locations. Hence, over the last decade, computer vision 

approaches [20,106,151] that provide understanding behaviour of living organisms have 

gained prominence in the water security and environment domain. The objective is to 

detect abnormal behaviour of fish and alert offiCials to take necessary actions in time. In 

addition, studying recorded video sequences can provide information to the public safety 

team to predict the trend of fish behaviour and to prepare actions for unusual events. 

However, this domain introduces many challenges that are quite different from the 

domains in which most multi-target behaviour analysis algorithms are evaluated. One 

important challenge is the unpredictable nature of targets in a confined area. As there 

is no scene layout, movements of the targets are random and confined in a small area. 

Therefore, optical flow-based methods presented in the previous chapter are not directly 

applicable for the given scenario. Frequent occurrence of occlUSions among targets and 

their similar appearance also make tracking of individuals and point of interest challeng­

ing tasks. 

This chapter presents a new technique to detect abnormality behaviour of a group 

of interacting targets. A macroscopic representation is employed where the whole group 

is considered as a single entity. The representation of group patterns is achieved by 

using a signed distance map, which combines both shape and motion information of 

multiple targets. By studying the variations of signed-distance-maps over time, a long 

video sequence is divided into short video clips. Then each video clip is represented 

by a set of representative key frames, extracted by a spectral clustering method. Given 

a library of video segments represented by a set of key frames, the next step projects 

video segments into a low dimensional space. This provides a compact and effective 

representation of a long video sequence and a way to automatically group video segments 
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into different video content and identify the video segments contained abnormal events. 

The remainder of this chapter is organised as follows. Section B.2 describes the steps 

involved in the activity representation of targets, followed by an explanation of the pro­

cess used to extract key video frames in Section B.3.1. The natural grouping of video 

segments is presented in Section B.3, which also explains how to detect video segments 

with abnormal group events. The effectiveness and robustness of the proposed method 

is demonstrated through various experiments in Section B.4. Specifically, the proposed 

method is evaluated to detect abnormal group events of multiple interacting targets in 

a confined area for the water security domain. Finally, a summary of this chapter is 

provided in Section B.5. 

B.2 Activity Representation 

This section presents the proposed activity representation of targets where shape and 

motion information of the whole group are combined to represent the whole group as a 

single entity. Given a video frame, the contours of foreground objects are first extracted 

by a background subtraction algorithm and represented using a signed distance map. 

B.2.1 Motion Segmentation 

Background subtraction has been widely used in motion segmentation where a fixed 

camera is used to observe dynamic scenes. In this method, the background modelling 

and foreground subtraction are performed using the approach presented in [97]. In the 

learning phase, a sequence of video frames I = {It(i,j)llt = 1,2"" ,T} is first collected in a 

scene with both moVing and stationary targets. Then, a background scene B is generated 

by remoVing foreground targets using a median filter as follows: 

T 

B(i,j) = arg m~~ l: IIIt(i,j) - Ip(i,j)1I 
Ip(t,,) t=l 

(B.I) 

where p = {I, 2, . " ,T} and It (i, j) is the colour vectorl of tth image at position (i, j). This 

generates a clean background scene where the foreground pixels corresponding to targets 

are removed. Then, the background scene B is further decomposed into C number of ho-

1 It is observed that red-green-blue (RGB) colour space is good enough for the scenarios 
given in this work. _ 
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video sequence Clean background Foreground targets 

.-.,.: ... 

new image frame Contour extraction 

Figure B.l: An example of motion segmentation and contour extraction. The clean background scene is first gener­
ated from a set of training images containing moving and stationary targets. The contours of foreground 
regions are then extracted by a threshold-based background subtraction algorithm and a connected 
component analysis. 



mogeneous colour regions by using a hierarchical k-means clustering. where each region 

is represented as a single Gaussian. Given a new video frame. the foreground targets are 

detected by computing the probability of a current pixel (i, j) belonging to the background 

colour model as: 

p(I(i,j)lIbackground) = mrx [exp { - ~(I(i,j) - J.tk)Ek"l(I(i,j) - J.tk)} 1 (B.2) 

where J.tk and Ek denotes the mean and covariance matrix of each Gaussian component 

k. The probability of a pixel at (i,j) to be recognised as a foreground pixel1s given as 

p(I(i,j) II foreground) = 1- p(I(i,j)lIbackground) (B.3) 

Then. pixels with higher likelihood of containing foreground targets are extracted by a 

simple threshold-based algorithm and the pixels in close regions are grouped using a 

connected component analysis. Figure B.1 shows the process of extracting foreground 

regions and the corresponding contours. G1ven a video of a group of fish in a water 

tank. the clean background scene is first generated from a sequence of training frames 

containing moving and stationary targets (equation B.1). Then. the foreground regions 

(fishes) and the corresponding contours are extracted by a threshold-based background 

subtraction algorithm and a connect component analysis (equation B.3). 

B.2.2 SUhouette Representation 

In the next step. foreground regions are represented using an implicit function by com­

puting a distance transform as given below: 

{ 

+d((i,j), C), (i,j) lies outs1de c; 
x( i, j) = 0, (i, j) Ues on the contour. c; 

-d((i,j), C), (i,j) lies inside C. . 

(B.4) 

where d( (i, j), C) 1s the Euclidean distance between pixel (i, j) and the nearest pixel on the 

contour Cas .shown in Figure B.2. 

11).1s yields signed distance maps for corresponding frames as shown in Figure B.3. 

Darker colour (dark blue) to brighter colour (red) represents values of x increasing from 

the negative to the positive. Compared to a binary map representation of targets. the 

resulting representation enhances positions. motion and shape information of the targets 
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Figure B.2: Motion segmentation and contour extraction. 

in the scene. The analysis of these signed distance maps. movements of blue-and-red 

patches and creation or destruction of blue patches. shows evolution of the foreground 

silhouettes. 

B.3 Unsupervised Abnormality Detection 

Given a sequence of video frames represented by signed distance maps. the next step is to 

extract a set of key video segments that represent informative contents of the source video 

and detect video segments that contain potentially dangerous events. In this method. a 

long video is first divided into short segments by studying the motion and appearance 

variation of targets in the scene. Then. each video segment is presented'by a set of key 

representative frames. To detect abnormal events. the video segments are projected into 

a low dimensional space. Then. spatially isolated embedded data points corresponding 

to abnormal events are detected using a local density-based clustering algorithm. Figure 

B.4 shows a diagrammatic illustration of key components of the proposed abnormality 

detection method. 
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Figure B.3: Representation of a video as a series of signed distance maps. Darker colour (blue) to brighter colour 
(red) represents values of x increasing from the negative to the positive. This representation implicitly 
incorporates information such as positions, movement directions and the compactness (or dispersion) 
of the group over time. 
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Figure B.4: A block diagram illustrating key components of the proposed abnor­
mality detection method. 
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B.S.l Video Segmentation 

The objective is to segment a long video sequence into a set of short video segments 

such that. ideally. each segment contains a single event. In general. a video sequence is 

divided into segments by applying a sliding time widow with a fixed scale. However. this 

method is inefficient and determ1n1ng the time scale is a non-trivial problem for many 

applications. Hence. in this method. an unsupervised video segmentation algorithm is 

developed to divide the video sequence by studying the motion and appearance variation 

of targets in the scene. 

The first step is to study shape variations of targets and find time instants when there 

are stgnificant changes in scenes. In order to check if there is a significant change at time 

t. the m1n1mum distance between the signed distance map at time t and that of previous 

frames are first computed as: 

(B.S) 

where Xt is the signed distance map representlng image t and d(Xt, Xt-.,.) for T = {I, 2" .. ,T} 

is the distance between two signed distance maps at time t and t - T and computed as: 

(B. 6) 

where i = 1 : N and j = 1 : M are the coordinates of pixels in an image size of M x N. 

Then. frame t can be considered as a change moment in time if o(Xt) is larger than a 

particular threshold. However. this approach suffers from over-segmentation in scenes 

where complex and changeable actions occur. In order to cope with the over-segmentation 

problem. statistical properties of scene changes over T frames are studied using a kernel­
based density estimation. 

Assuming that scene changes over T frames are given as {o.,. }~=1' the kernel density 
function is modelled as: 

T . 
1 

1(0) = T LK(o - 0.,.) 
.,.=1 

(B.7) 

where K(.) is a Gaussian kernel function centred at 0.,. for T = {I, 2, ... ,T}. Then. the 

probab1l1ty denSity function of Ot (the change in time t) is estimated as follows: 

T . 

p(Ot) = ~ Lexp[-(ot - 0.,.)/(2a2
)] 

.,.=1 
(B.8) 

( 

where a is the standard variation of 0.,. over T frames. If p( Ot) is less than a particular 
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threshold 2. the current frame t is defined as a change point. 

B.3.2 Key-Frame Extraction 

Given a short video segment. a spectral clustering method is employed to extract repre­

sentative key frames. The objective is to extract a small set of key frames that can provide 

the most of informative contents of the given video segment. This approach starts by con­

structing a weighted neighbourhood graph W for a given video segment Si = [Xl. X2, ••• Xn] 

where n is the total number of frames In the segment Si' Here. the weight of the edge 

connecting Xp and Xq. where p,q E [l,n] and P:F q is defined as: 

{ ~q} Wpq = exp --2-- . 
upuq 

(B.9) 

where dpq is the distance measure between two signed-distance maps. Xp and Xq and 

parameters Up and Uq are local variances computed at Xp and Xq respectively. To compute 

up. distance measures of Xp with respect to its 10 nearest neighbouring points are first 

computed and then Up is defined as the variance of these distance measures. The same 

step is appUed to compute U q• 

Once the neighbourhood graph is obtained. the next step finds an optimum low­

dimensional space Y such that Yopt = argminy(yTLY). subject to yTMY = 1. Equiva­

lently. this is to solve a generalised eIgenvalue problem of Ly = AMy. where L = M - W 

Is the Laplacian graph of W and M Is the diagonal weight matrJx. Each diagonal en­

try of M Is the sum of the corresponding row of W. The K-means clustering algorithm 

Is then performed on the extracted eigenvectors to group the video· frames Into K clus­

ters. The matrJx perturbation theory (170) is employed to decide the value of K. The 

theory states that the number of clusters depends on the stability of eigenvalues which 

is determined by the gap 6e between two consecutive eigenvalues. Based tm this theory. 

the number K is defined by finding the maximum gap 6e over a set of eigenvalues. i.e .• 

K = argm8.Xi I Ai - Ai-l I. where Ai and Ai-l are two consecutive eigenvalues. Hence. 

the segment Si can be represented by K key frames where each key frame is the median 

element of the corresponding cluster. Figure B.S shows some key frames extracted from 

a long video sequence recorded a group of fish In a water tank. This sequence contains 

1005 frames and the proposed approach generates 18 video segments where the number 

of key frames for each video segment Is different. 

~e threshold value Is selected empirically In the tested scenarios 
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(a) key frames corresponding to segment 1 

(b) key frames corresponding to segment 2 

(c) key frames corresponding to segment 24 

(d) key frames corresponding to segment 80 

(e) key frames corresponding to segment 114 

Figure B.5: Some example of key frames extracted from a long video sequence. 
The video is recorded a group of fish in a water tank and contains 
1005 frames and the proposed approach generates 18 video segments 
where each segment has different number of key frames. 
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B.3.3 Video Content Analysis 

The video segmentation and key frame extraction process provides a libraty of video seg­

ments S = {Si}f::1 where each video segment Si is represented by K number of key frames 

11,12, ... ,IK. The next step is to discover the natural grouping of video segments and iden­

tify video segments with abnormal events. However, conventional clustertng approaches 

such as k-means and Gaussian mixture models cannot be applied directly as each video 

segment is of different lengths. 

In order to perform effective clustering, high dimensional video segments are first 

projected into a low dimensional space using the Laplacian e1genmaps (LE). As discussed 

in Chapter 4 (please refer to Section 4.2), the first step of LE is to measure the affinity 

between different video segments. Since the video segments are of different lengths, in 

this method, a modified Hausdorff distance measure (3) is considered to compute the 

affinity matrix. Specifically, the distance between two video segments is given by: 

(B. 10) 

where Ii, i E [1, K1J and Ij , j E [1, K2J are key frames for video segments Sl and S2 respec­

tively. 

Given the N x N affinity matrix, LE finds a low dimensional representation of segments 

using the normalised Laplacian matrix. This provides a new representation of the long 

video sequence VB = {Vb V2,'" ,VN} where each segment v is represented by kB eigen­

vectors where k, is automatically selected based on the relative difference betWeen two 

adjacent eigenvalues. 

Figure B.6 shows the embedded video data in a 2-dimensional space and key frames 

for corresponding video segments of a long video sequence. For ease of visualisation 

and discussion, only the first 2 dimensions of embedded video data are presented. Each 

point in a low dimensional space given in (a) corresponds to a short video segments 

where each of them Is represented by different number of key frames. In (b-d) , key 

frames corresponding to pOints A. B and C are shown. It can be observed that points A 

and C are located nearer to each other in the low dimensional space as video segments 

corresponding to points A and C demonstrate closer similarity compared to the video 
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Figure B.6: The embedded video data in a low dimensional space and key frames 
for video segments corresponding to point A, B and C. 



segment at point B. This demonstrates that the LE embeds video segments with different 

events in a different spatia1locations in the embedded space. 

B.3.3.1 Video Content Clustering 

The distribution of the embedded data provides a way to understand the context of the 

video. For instance. the video shown in Figure B.6 contains the swimming behaviour of a 

group of fish over one hour. Typically. these fish swim in the lower part of the water tank 

but they swim to the surface at the end of the video due to lack of oxygen in the tank. The 

content of the video is well reflected in the embedded space where video segments with 

abnormal movements of fish are projected far away from the most of the video segments. 

In this method. the distribution of the embedded data is modelled using a Gaussian 

mixture model where the number of components C determines the number of behaviour 

classes in the video. 

However. it is rather subjective to decide the number of behaviour classes for a given 

video. In this method. the Gaussian fitting of embedded data is performed iteratively 

using C components where C E [2, N /5] is determined using the Bayesian information 

criterion (BIC) (134]. Given the embedded data of the video VB = {Vb V2,'" ,VN}. the BIC 

sCQre for a given Gaussian model with C components can be computed as: 

BIC(9) = -logp(VI9) + Ce log(N). (B. 11) 

where ke is the number of free parameters in the mixture model and N is total number 

of video segments. The likelihood of observing the video using C number of components 

is given by 

N C 

p(VI9) = t.;~Wr (27r)k'/!IE
r

ll/2 exp { - ~(Vn - JLr)Tr;;:-l(vn - JLr)} (B. 12) 

where JLr, Er and Wr are mean. co-variance matriX and weight of the r Gaussian compo­

nent and kB is the dimension of the video segment v in the embedded space. 

Figure B.7(a) shows the BIC scores for the mixture model using different number of 

components where the optimal number of clusters is the one that gives the minimum BIC 

score. In this study. the computation of the BIC scores is repeated 5 times and the max­

imum. minimum and average scores are provided in Figure B.7(a). Figure B.7(b) shows 

the video context in 2 clusters where the first cluster (group A) describes video segments 
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Figure B.7: A simple illustration for video content clustering by Gaussian mix­
ture model. (a) the BIC scores for different number of components. 
The minimum score gives the optimal number of components (b) the 
Gaussian fitting of the embedded data using 2 components. 
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with abnormal events while the second one (group B) presents segments corresponding 

to normal events. 

B.3.3.2 Abnormality Detection 

Given the. labelled information for normal events. the likelihood of a new segment belong­

ing to the normal group can be computed as: 

c . 
p(vnewlnormal) = ~Wr (21r)k./!IE

r
ll/2 exp { - ~(Vnew - J.tr)TE;l(vnew - J.tr)} (B. 13) 

where J.tr, Er and Wr are mean vector. co-valiance matrix and weight of the r Gaussian 

component learned using the labelled information and ka is the dimension of the video 

segment v in the embedded space. Video segments which have a lower score than a 

threshold [0, 1] are conSidered as abnormal video segments. The threshold value should be 

set according to the detection and false alarm rate required by each particular application. 

2 8 8 10 12 14 18 18 

Figure B.8: The normality scores of video segments. The scores for video seg­
ments corresponding to point A, B and C are marked with ctrcles. 

Figure B.8 shows the normality scores for video segments shown in Figure B.6 and 

B.7(b). In this experiment. half of video segments with normal events (group B) are 

employed to model the normal behaviOur while the rest are used a~ testing segments. It 

can be observed that point B (abnormal segment) has a lower score compared to point C 

from the normal group. 
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B.4 Experimental Results 

This experiment aims to provide the understanding of the behaviour of living organisms 

in the water security and environment domain. The objective is to provide information to 

the public safety team to predict trends of fish behaviour and prepare actions for unusual 

events. It is observed that the behaviour of fish tends to change when they are exposed to 

contaminated water. Traditionally, human observers are assigned to monitor and report 

on any abnormal movements of fish. The objective of this experiment is to evaluate the 

performance of the proposed method on detecting the status of fish. 

B.4.1 Experimental Setup 

This experiment aims to analyse the behaviour of fish in a confined environment. Fig­

ure B.9 shows the experimental apparatus of the fish activity monitoring system. The 

Figure B.9: Experimental apparatus of the fish activity monitoring system. 

apparatus conSists of a water tank, two cameras and an automatic monitoring and quan­

tification system using computer vision techniques. Two cameras are installed to capture 

the fish from a front view and a top view. In this experiment, the video data from the front 

view is employed to study the behaviour of fish. 

Videos are recorded at a resolution of 288 x 384 pixels at 6 frames per second under four 

different scenarios. In the first scenario, a group of 20 fish are kept in clean water for 12 
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(a) sample images of fish group swimming in the tank with clean water 

(b) sample images offish group swimming in the tank with cyanide 

Figure B.IO: Some example images of fish in different water contaminations. (a) 
Sample images from the video of fish in clean water (b) sample im­
ages of fish group swimming in the tank with cyanide. 
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hours and their behaviour are collected. This sequence contains 294,603 images with the 

frame size of 288 x 384. In other three scenarios. fish are exposed to water contaminated 

with different types of chemicals: chloramine. aldicarb (a concentration of 1.5mg/L) and 

cyanide (a concentration of 150/1-g/ L). The duration of the video recording for the tank with 

chloramine is set to 3 hours (total of 63, 397 images) as. with chloramine in the tank. fish 

are bound to die after about 3 hours. The duration of the recording for the other tanks 

with contaminated water are set to 9 hours and 12 hours respectively (202,074 images for 

cyanide and 262,016 images for aldicarb). Figure B.10 illustrates some sample images 

from two video sequences. The first three rows show sample images from the video of fish 

in clean water while the rest shows sample images of fish group swimming in the tank 

with cyanide. 

B.4.2 Video Content Understanding 

This experiment presents the analysis of four video sequences of a group of fish in four 

different tanks with different contaminations. The first sequence of fish swimming in 

clean water is noted as "clean sequence" while the second. third and fourth sequences 

are referred as 'cyanide', 'chloramine' and 'aldicarb' sequences respectively. The aim of 

this experiment is to analyse whether fish from tanks with contaminants exhibit different 

behaviOur from the normal situation when they are kept in clean water. The unsupervised 

temporal segmentation approach deSCribed in Section a.3.1 divides the 'clean sequence' 

and the cyanide, chloramine and aldicarb sequences into 1795, 1812, 416 and 846 segments 
respectively. 

Figure B.11 shows the low dimensional representations of the clean and cyanide se­

quence in the same embedded space. For ease of visualisation and discussion, only the 

first 2 dimensions of the video are presented here. It can be observed that the presence of 

contamination has spiked the subjects and they have shown different group behaviours 

in response to the contamination. The distribution of embedded data indicates that the 

normal and contaminated scenarios are separable by observing the Gaussian mixture 

models. The Gaussian mixture model clusters ~deo contents into different groups where 

the number of clusters for each scenario are automatically dete~ed based on the BIC 

scores. In Figure B.11, the first four clusters mainly contain samples corresponding to the 

'clean sequence' While the last three clusters contain samples from cyanide sequences. 

Simib.u-Iy, the comparison of the behaviour of fish in clean water against the behaviour of 

fish in contaminated water with chloramine and aldicarb are also shown in Figure B.12(a) 
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Figure B.11: Unsupervised video content clustertng of clean and contaminated 
sequences (cyanide) where the number of clusters is automatically 
estimated as 7. The video segments corresponding to 'clean se­
quence' are marked with black colour while the video segments cor­
responding to segments from the video with contaminated water are 
marked with red colour. 

and B.12(b) respectively. It can be observed that the proposed approach provides a way 

to differentiate different fish behaviours in a reduced space. 

B.4.3 Abnormality Detection 

This experiment presents the performance of the proposed method on water toxicity de­

tection using the fish behaviour. Given the embedded data shown in Figure B.11 and 

B.12. the regular behaviour of fish for each scenario is modelled using 1000 segments 

which are randomly selected from the 'clean sequence'. Then. the r.est of the 'clean se­

quence' and the video segments from each 'contaminated' sequence are used as a testing 

set. This process is repeated for 20 trials where the training set is randomly selected in 

each trail. Figure B.13 shows the performance of the proposed method on ~ee different 

scenarios of FISH data set. The detection rate and false alarm rate are shown in the form 

of a receiver operating characteristic (ROC) curve by varying the abnormality detection 

threshold. It is important to minimise the false positive rate (FPR) while maximising the 

true positive rate (TPR). This is because the system should be able to detect water toxicity 

accurately. if possible. 100% as this leads to health issue. On the other hand. the system 

should minimise the FPR for economic reason as stopping the water plant for manual 
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Figure B.12: Unsupervised video content clustering of clean and contaminated 
sequences ((a) chloramine and (b) aldicarb) where the number of 
clusters is automatically estimated as 5. The video segments cor­
responding to 'clean sequence' are marked with black colour while 
the video segments corresponding to segments from the video with 
contaminated water are marked with red colour. 
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Figure B.13: ROC curves for the detection of abnormal group behaviours under 
different water contaminations. 

analysis is expensive. 

Table B.1: Abnormality detection rate and false alarm rate for fish data set 

accuracy(%) detection rate (%) false alarm rate (%) 
cyanide 92.62±O.OO70% 92.62±O.OO7% 7.38±O.OO72% 

chloramine 63.99± O.OO24% 75.99±O.OO35% 24.01±O.OO34% 
aldicarb 90.69±O.OO27% 90.65±O.OO26% 9.29±O.OO28% 

Table B.1 summaries the resulting statistics of the proposed method on detecting the 

behaviour of fish exposed to different contaminants. Here, 'cyanide', 'chloramine' and 

'aldicarb' refer to the condition where fish are exposed to the contaminated water with 

cyanide, chloramine and aldicarb respectively. Results show that this method provides a 

high accuracy rate for detecting the abnormal behaviour of fish exposed to 'cyanide' and 

'aldicarb'. The lower accuracy rate for detecting chloramine can be explained by the sim­

ilar behaviour exhibited by fish in clean water and contaminated water with chloramine 

as shown in F1gure B.12(a). 

B.5 Summary 

This chapter presented a new approach for detecting abnormal group events in a long 

video sequence. The shape and motion of all moving targets in the scene are combined to 
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capture the properties of a group as a whole. This provides an efficient representation of 

targets without the need to detect and track individual targets. An unsupervised temporal 

. segmentation divides a long video into short segments where each segment is represented 

by a different number of key frames. Then. the normal behaviour of the group is mod­

elled using GMM with automatic model selection based on Bayesian information criterion 

score. This provides a way to detect video segments with potentially dangerous abnormal 

activities. 

Experimental results have demonstrated that this method is capable to learn and 

recognise group behaviours of a school of flsh under normal as well as scenarios where 

they are exposed to chemical contamination. The low dimensional representation of video 

sequences provides an effective way to differentiate between different behaviours of flsh. 

Experiments have shown the potential of the proposed approach to be used as an early 

warning system for detecting contamination in drinking water. 

135 



Publications 

[ThidaVS09j M. Thida, P. Remagn1no, H.-L. Eng, A particle swarm optlm1sation ap­

proach for multi-objects tracking in crowded scene, in: proceedings of IEEE Inter­

national Workshop on Visual Surveillance, 2009, pp. 1209 - 1215. 

[ThidaMVA09j M. Thid, H,-L. Eng, and Bong Fong. Chew, "Automatic analysis of fishes 

behaviour and abnormality detection," in In proceedings of IAPR Conference on 

Machine Vision Applications, May 2009, pp. 278-282. 

[Thida2MVA09j Bong Fong. Chew, H.-L. Eng, and M. Thida, "Vision-based real-time 

monitoring on the behaviour of fish school," in In proceedings of IAPR Conference 

on Machine Vision Applications, May 2009, pp.90-94. 

[ThidaACCVIOj M. Thida, H.-L. Eng, D. N. Monekosso, and P. Remagn1no, "Learning 

video manifold for segmenting crowd events and abnormality detection," in Lecture 

Notes in Computer Science: Computer Vision, vol. 6492/2011. Springer-Verlag, 

November 2010, pp. 439-449. 

[ThidaACMIOj H. Lu, H.-L. Eng, M. Thida, and K. Platanlotis, "Visualisation and clus­

tering of crowd video content in MPCA subspace," in ACM Conference on Informa­

. tion and Knowledge Management, October 2010, pp. 1777-1780. 

[ThidaISSPRllj M. Thida and H.-L. Eng, "Learning group behaviOur: Detecting wa­

ter toxicity by biological monitoring," in International Summer School on Pattern 

Recognition, vol. Springer: Best Poster Award, 2011. 

[ThidaCVA12j M. Thida, H.-L. Eng, D. N. Monekosso, and P. Remagn1no, "Learning 

video manifolds for content analysis of crowded scenes," Information Processing 

Society of Japan (lPSJ) Transactions on Computer Vision and Applications, vol. 4, 

pp. 71-77, May 2012. 

[ThidaASC12j M. Thida, H.-L. Eng, D. N. Monekosso, and P. Remagn1no, A particle 

swarm optlm1sation algorithm with interactive swarms for tracking multiple targets, 

Applied Soft Computing, vol. 13, pp. 3106-3117, 2013. 

[ThidaSMC12j M. Thida, H.-L. Eng, and P. Remagn1no, Laplacian Eigenmap with Tem­

poral Constraints for Local Abnormality Detection In Crowded Scenes, in IEEE 

Transactions on Systems, Man, And Cybernetics Part B, vol. 99, pp. 1-10, Febru­

ary 2013. 

136 



[1) Blo-sensor: Water security and monitoring system. 

http://www.blomon.com/blosenso.html. 

Bibliography 

(2) CAVIAR data-set. http://homepages.tnf.ed.ac.uk/rbf/CAVIARDATAI/. 

[3] Hausdorff: Haudsdorff distance measure. http:/ / en.w1k1pedia.org/w1k1/Hausdorff­

distance. 

(4) Toxprotect 64 - the online instrument for drinking water protection. 

http://www.bbe-moldaenke.de/toxlc1ty/toxprotect64/. 

(5) UCSD anomaly detection dataset. http://www.svc1.ucsd.edu/projects/anomaly. 

[6) Unusual crowd activity dataset. http://mha.cs.umn.edu. 

[7) CLEAR evaluation. http://clear-evaluation.org/, 2007. 

[8) Particle filter colour tracker. 

http://www.mathworks.com/matlabcentral/fileexchange/ 17960, 2007. 

[9) PETS. http://www.cvg.rdg.ac.uk/PETS2oo9. 2009. 

[10] Amit Adam, Ehud Rivlin. nan Shimshonl, and David Reinitz. Robust Realtime Un­

usual Event Detection using Multiple Fixed-Location Monitors. IEEE Transactions 

on Pattern Analysis and Machine InteUigence, 30(3):555-560, March 2008. 

[11] F. J. Aherne, N. A Thacker, and P. Rockett. The bhattacharyya metric as an ab­

solute similarity measure for frequency coded data. Kybemetika, 34(4):363-368, 

1988. 

[12) Irshad Ali and Matthe. N. Dailey. Multiple Human Tracking in High-density 

Crowds. In Advanced Concepts in InteUigent Vision Systems, pages 540-549, 2009. 

[13] Saad Ali and Mubarak Shah. A Lagrangian Particle Dynamics Approach for Crowd 

Flow Segmentation and Stability Analysis. In Proceedings oj IEEE International 

Coriference on Computer Vision and Pattern Recognition, pages 1-6, 2007. 

[14) Saad Ali and Mubarak Shah. Floor Fields for Tracking in High Density Crowd 

Scenes. In Proceedings oj European Coriference on Computer Vision, pages 1-14. 
2008. 

137 



(15] Yilmaz Alper, Javed Omar, and Shah Mubarak. Object tracking: A Survey. ACM 

Computing Surveys, 38(4): 13-58, 2006. 

[16] Ernesto Andrade and Robert Fisher. Simulation of Crowd problems for Computer 

Vision. In Proceedings of 19th International Conference on Pattern Recognition, vol­

ume 3, pages 71-80, November 2005. 

(17] Ernesto Andrade, Robert Fisher, and Scott Blunsden. Modell1ng Crowd Scenes 

for Event Detection. In Proceedings of 19th International Coriference on Pattern 

Recognition, volume 1, pages 175-178, September 2006. 

(18) Anton Andrtyenko, Stefan Roth, and Konrad Schindler. An analytical formulation 

of global occlusion reasoning for multi-target tracking. In Proceedings of IEEE Inter­

national Workshop on Visual SurveUlance, pages 1839 - 1846, Barcelona, November 

2011. IEEE. 

(19] Anton Andriyenko and Konrad Schindler. Multi-target tracking by continuous en­

ergy minimization. In Proceedings oj IEEE International Coriference on Computer 

Vision and Pattern Recognition, pages 1265-1272, Colorado, June 2011. IEEE. 

[20] Stefan Antte1. Fishes used against terrorist attacks. 

http://news.softpedia.com/news/Fishes-Used-Against-Terrortst-Attacks-

36818.shtml. 

[21] Luis Anton-Canalis, Marto Hernandez-Tejera, and Elena Sanchez-Nielsen. 

SWARMTRACK: A particle swarm approach to visual tracking. In Proceedings oj 

the International Coriference on Computer Vision Theory and Applications, volume 2, 

pages 221-228, Portugal, February 2006. 

[22J Gianluca Antonini, Santiago Venegas Martinez, Michel Bierlalre, and Jean Ph1l1ppe 

Thiran. Behavioral Prtors for Detection and Tracking of Pedestrtans in Video Se­

quences. International Journal on Computer Vision, 69(2): 159-180, August 1998. 

[23] Mittal Anurag and Davis Larry S. M2Tracker: A Multi-View Approach to Segment­

ing and Tracking People in a Cluttered Scene. International Journal oj Computer 

Vision, 51(3):189-203, February 2003. 

[24J M. S. Arulampalam, N. Gordon S. Maskell, and T. Clapp. A tutortal on particle 

filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on 

Signal Processing, 50(2): 174-188, 2002. 

138 



(25] K. Bal. Particle filter tracking with Mean Shift and joint probability data associa­

tion. In Image Analysis and Signal Processing (IASP), 2010 International Conference 

on. pages 607-612. IEEE, 2010. 

(26] J.L. Barron, D. J. Fleet, and S.S. Beauchemin. Performance of Optical Flow Tech­

niques. International Journal of Computer Vision. 12(1):43-77, 1994. 

(27] Arslan Basharat, Alexei Gritai, and Mubarak Shah. Learning Object Motion Pat­

terns for Anomaly Detection and Improved Object Detection. In Proceedings of 

Computer Vision and Pattern Recognition. pages 1-8, Anchorage, June 2008. IEEE. 

[28] Mikhail Belkin and Partha Niyogl. Laplacian eigenmaps for dimensIonality reduc­

tion and data representation. Neural Computation. 15(6):1373-1396, June 2003. 

[29] Yassine Benabbas, Nacim Ihaddadene, and Chabane Djeraba. Global Analysis of 

Motion Vectors for Event Detection in Crowd Scenes. In Proceedings of Eleventh In­

ternational Workshop on Peiforma.nce Evaluation of Tracking and SurveUlance, pages 

109-116, USA, June 2009. IEEE. 

[30] Ben Benfold and Ian Reid. Stable multi-target tracking in .real-time sUIveillance 

video. In Proceedings oj IEEE International Coriference on Computer Vision and Pat­

tern Recognttion. pages 3457-3464, June 2011. 

[31] Jerome Berclaz, Fran~ois Fleuret, Engm Tiiretken, and Pascal Fua. Multiple ob­

ject tracking using K-shortest paths optimisation. IEEE Transactions on Pattern 

Analysis and Machine InteUigence, 33(9): 1806 - 1819, September 2011. 

[32] Michel Bierlaire, Gianluca Antonini, and Mats Weber. BehaviOural Dynamics for 

Pedestrians. Lecture Notes in Computer Science: Moving through nets: the physical 

and social dimensions ojtravel, pages 81-105, August 2003. 

[33] Moshe Blank, Lena Gorelick, Eli Shechtman, Michal Irani, and Ronen Basri. Ac­

tions as Space-Time Shapes. In The Tenth IEEE International Coriference on Com­

puter Vision. pages 1395-1402, 2005. 

[34] Michael D. Brettenstein, Fabtan Retchlin, Bastian Letbe, Esther Koller-Meter, and 

Luc Van Gool. Robust tracking-by-detecti~m using a detector confidence particle 

filter. In IEEE International Coriference on Computer Vision. p~es 1515-1522, Oc­
tober 2009. 

[35] William Brendel and Sinisa Todorovic. Learning spatiotemporal graphs of hu­

man activities. In Proceedings of IEEE International Coriference on Computer Vision. 

pages 778-785. IEEE, 2011. 

139 



(36) Franois Brmond. Monique Thonnat. and Marcos Zniga. Video-understanding 

Framework for Automatic Behavior Recognition. Behavior Research Methods. 

3(38):416-426.2006. 

[37] T. Brox. A. Bruhn. N. Papenberg. and J. Weickert. High accuracy optical flow 

estimation based on a theoxy for warping. In European Coriference on Computer 

Vision, volume 3024 of LNCS. pages 25-36. Prague. May 2004. Springer. 

(38) Hilaxy Buxton and Shaogang Gong. Visual Surveillance in a Dynamic andUuncer­

ta1n world. ArtijiciallnteUigen, 78(1-2):431-459. October 1995. 

[39] Ylzheng Cat. Nando de Freitas. and James J. Uttle. Robust Visual Tracking for 

Multiple Targets. In Proceedings oj Eighth European Coriference on Computer Vision, 

volume 3954. pages 107-118. 2006. 

(40) Antoni B. Chan. Mulloy Morrow. and Nuno Vasconcelos. Analysis of Crowded 

Scenes Using Holistic Properties. In Proceedings of Eleventh International Work­

shDp on Performance Evaluation ojTracking and SurvetUan.ce. pages 101-108. USA, 

June 2009. IEEE. 

[41] Zhongwet Cheng. Lei Qin. Qingming Huang. Shuqiang Jiang. and Qi Tian. Group 

activity recognition by gaussian processes estimation. In International Coriference 

on Pattern Recognition, pages 3228 - 3231. August 2010. 

(42) Maurice Clerc and James Kennedy. The particle swarm - explosion. stability. and 

convergence in a multidimensional complex space. IEEE Transactions on Evolution­

ary Computation, 6(1):58-73. Februruy 2002. 

[43] D. Comanic1u. V. Ramesh. and P. Meer. Real-time tracking of non-rigid objects 

using mean shift. In Proceedings IEEE Coriference on Computer Vision and Pattern 

Recognition, volume 2. pages 142-151. 2000. 

(44) D. Comaniciu. V. Ramesh. and P. Meer. Kernel-based object tracking. IEEE Trans­

actions on PattemAnalysis and Machine InteUigence. 25(5):564-577. 2003 .. 

[45] Yang Congo Junsong Yuan. and Ji Uu. Sparse reconstruction cost .for abnormal 

event detection. In Proceedings oj IEEE International Coriference on Computer Vision 

and Pattern Recognition, pages 3449 - 3456. June 2011. 

[46] Trevor F. Cox and Michael A. A. Cox. Multidimensional Scaling. Chapman and Hall. 

second edition. 2001. 

140 



[47] Xinyl Cui. Qingshan Ltu. Mingchen Gao. and Dimitris N. Metaxas. Abnormal de­

tection using interaction energy potentials. In Proceedings oj the Conjerence on 

Computer Vtsion and Pattern Recognition. pages 3161-3167. 2011. 

[48] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human de­

tection. In Proceedings oj IEEE International Coriference on Computer Vtsion and 

Pattern Recognition. pages 886-893. 2005. 

[49] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische 

Mathematik. 1:269-271. 1959. 

[50] Lei Ding. Quan fu Fan. Jen-Hao Hsiao. and Sharath Pankanti. Graph based event 

detection from realistic videos using weak feature correspondence. In Proceedings 

oj IEEE International Coriference on Acoustics Speech and Signal Processing. pages 

1262-1265. IEEE. 2010. 

[51] Shtloh L. Dockstader and A Murat Tekalp. Multiple Camera Tracking of Interacting 

and Occluded Human Motion. Proceedings q/the IEEE. 89(10):1441 -1455. 2001. 

[52] How-Lung Eng. Let the fishes tell you tfyour water is safe. Innovation Magazine: 

Environmental and Cl1mate Change. 9(1):46-47. 2010. 

[53] Robert W. Floyd. Algorithm 97: Shortest path. Communications oj the Assoctatejor 

Computing MachineryACM. 5(6):345-350. 1962. 

[54] Robert W. Floyd. On a connection between kernel PCA and metric multidimensional 

scaling. Machine Learning. 46(1-3):11-19. 2002. 

[55] AP. French. A Naeem. I.L. Dryden. and T.P. Pridmore. Using social effects to guide 

tracking in complex scenes. In Proceedings oj IEEE Coriference on Advanced Video 

and Signal Based Surveillance. pages 212-217. 2007. 

[56] Carolina Garate. Piotr Bilinski. and Francois Bremond. Crowd Event Recognition 

Using HOG Tracker. In Proceedings oj Eleventh International Workshop on Perfor­

mance Evaluation ojTracking and SuroeUlance. pages 1-6. IEEE. December 2009. 

[57] Andrew GUbert and Richard Bowden. Multi Person Tracking within Crowded 

Scenes. In Proceedings ojWorkshop on Human Motion. pages 166-179. 2007. 

[58] Lena Gorelick. Moshe Blank. Eli Shechtman. Michal Irani. and Ronen Basri. Ac­

tions as Space-TIme Shapes. IEEE Transactions on Pattern Analysts and Machine 

Intelligence. 29(12):2247-2253. December 2007. 

141 



(59] James Hafner. Harpreet S. Sawhney. Will Equitz. Myron Flicker. and Wayne 

Niblack. Efficient colour histogram indexing for quadratic form distance functions. 

IEEE Transactions on Pattern Analysis and Machine InteUigence. 17(7):729-736. 

July 1995. 

(60] Dirk Helbing and Pter Molnr. Social Force Model for Pedestrian Dynamics. Physical 

Review E. 51(5):4282-4286. May 1995. 

(61] Somboon Hongeng and Ramakant Nevati. Multi-agent Event Recognition. In Pr0-

ceedings oj Eighth IEEE International Conference on Computer Vision, volume 2. 

pages 84-91. Canada. July 2001. IEEE. 

(62) Anthony Hoogs. Steve Bush. Glen Brooksby. A G. Amitha Perera. Mark Dausch. 

and Nils Krahnstoever. Detecting Semantic Group Activities Using Relational Clus­

tering. In Proceedings ojIEEE Workshop on Motion and Video Computing. pages 1-8. 

Colorado. January 2008. 

(63) Berthold K. P. Horn and Brian G. Schunck. Determining Optical flow. Artljicial 

InteUigence. 17: 185-203. 1981. 

(64) Shaobo Hou. Aphrodite Galata. Fabrice Cai11ette. Neil Thacker. and Paul Bromi­

ley. Real-time body tracking using a gaussian process latent variable model. In 

Proceedings oj International Conference on Computer Vision, pages 1-8. 2007. 

165] Min Hu. Saad Ali. and Mubarak Shah. Detecting Global Motion Patterns in Com­

plex Videos. In Proceedings ojInternational Conference on Pattern Recognition, pages 

1-5. florida. 2008. IEEE. 

(66) Min Hu. Saad Ali. and Mubarak Shah. Learning Motion Patterns in Crowded 

Scenes Using Motion flow Fleld. In Proceedings oj International Conference on Pat­

tern Recognition, pages 1-5. flOrida. 2008. IEEE. 

(67] N. Hu. H. Bouma. and M. Worring. Tracking individuals in surveillance video of a 

high-density crowd. In Proceedings ojSPIE. volume 8399. page 839909.2012. 

(68) Weiming Hu. Xuejuan Xiao. Zhouyu Fu. Xie Dan. Tieniu Tan. and Maybank Steve. 

A System for Learning Statistical Motion Patterns. IEEE Transactions on Pattern 

Analysis and Machine InteUigence. 28(9): 1450-1464. September 2006. 

(69) Yuxiao Hu. Liangliang Cao. Fengjun Lv. Shuicheng Yan. Yihong Gong. and 

Thomas S. Huang. Action Detection in Complex Scenes with Spatial and Tem­

poral Ambiguities. In Proceedings oj IEEE International Conference on Computer 

Vision, pages 128 - 135. Kyoto. October 2009. 

142 



[70] Michael Isard and Andrew Blake. CONDENSATION conditional density propagation 

for visual tracking. InternationalJoumal ojComputer Vision, 29(1):5-28. 1998. 

[71] Odest Chadwicke Jenkins and Maja Mataric. Spatio-temporallsomap: A time­

series extension to Isomap dimension reduction. Proceedings of International con­

ference on Machine learning. pages 441-448. 2004. 

(72] Peng Jia. Junsong Yin. Xinsheng Huang. and Dewen Hu. Incremental Laplacian 

Elgenmaps by Preserving Adjacent Information between Data Points. PattemRecog­

nitionLetters. 30(16):1457-1463. December 2009. 

[73] Fan Jiang. Ylng Wu. and Aggelos K. Katsaggelos. A dynamiC hierarchical clustering 

method for trajectory-based unusual video event detection. IEEE TrWlSactions on 

Image Processing. 18(4):907-913. 2009. 

[74] Neil Johnson and David Hogg. Learning the Distribution of Object Trajectories for 

Event Recognition. Image and Vision Computing. 14(8):583-592. August 1996. 

(75) Van Ke. Rahul Sukthankar. and Martial Hebert. Event Detection in Crowded 

Videos. In Proceedings oj IEEE International Coriference on Computer Vision, pages 

1-8. October 2007. 

(76] Van Ke. Rahul Sukthankar. and Martial Hebert. Spatio-temporal Shape and Flow 

Correlation for Action Recognition. In Proceedings of International Workshop on· 

Visual Suroet11a.nce. pages 1 - 8. June 2007. 

(77) James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings 

oj IEEE International Coriference on Neural Networks .• volume 4. pages 1942-1948. 

Australia. 1995. 

(78] Saad M. Khan and Mubarak Shah. A Multi-View Approach to Tracking People in 

Dense Crowded Scenes using a Planar Homography Constraint. In Proceedings of 

Workshop on Human Motion, pages 133-146. Graz. Austria. 2006. 

(79] Saad M. Khan and Mubarak Shah. Tracking Multiple Occluding People by Localiz­

ing on Multiple Scene Planes. IEEE Transactions on Pattern Analysis and Machine 

InteUigence. 31(3):505-519. March 2009. 

(80] Zia Khan. Tucker Balch. and Frank Dellaert. MCMC-Based Particle Filtering for 

Tracking a Variable Number of Interacting Targets. IEEE Transactions on Pattem 

Analysis and Machine InteUigence. 27(11):1805-1819. November 2005. 

143 



(81) Jaechul KIm and Kristen Grauman. Observe Locally, Infer Globally: A space-time 

mrf for detecting abnormal activities with incremental updates. In Proceedings oj 

IEEE International Coriference on Computer Vision and Pattern Recognition, pages 

2921-2928,2009. 

[82] Mathias Kolsch and Matthew Turk. Hand tracking with flocks of features. In Pro­

ceedings oj Computer Vision and Pattern Recognition., volume 2, page 1187, 2005. 

(83) Lows Kratz and Ko Nishino. Spatio-temporal Motion Pattern Modelling of Extremely 

Crowded Scenes. In 'J!1e 1 st International Workshop on Machine Learningjor Vision­

based Motion Analysis, France, October 2008. 

(84) Lows Kratz and Ko Nishino. Anomaly Detection in Extremely Crowded Scenes 

Using Spatio-temporal Motion Pattern Models. In Proceedings ojthe Coriference on 

Computer Vision and Pattern Recognition, pages 1446-1453. Florida, June 2009. 

(85) Lows Kratz and Ko Nishino. Tracking with Local Spatio-Temporal Motion Patterns 

in Extremely Crowded Scenes. In Proceedings oj the Coriference on Computer Vision 

andPafternRecognition, pages 693-700, San Francisco, 2010. 

[86] Bogdan Kwolek. Object tracking via multi-region covariance and particle swarm 

optimJzation. In Proceedings oj Stxth IEEE International Coriference on Advanced 

Video and Signal Based Suroeilla.nce, pages 418 - 423, September 2009. 

[87] Nell Lawrence. Probab1l1stic non-linear principal component analysts with gaus­

stan process latent variable models. Journal oj Machine Learning Research, 6( 1 0-

12):1783-1816.2005. 

[88] Nell Lawrence and Joaquin Qui nonero Candela. Local distance preservation in 

the gp-Ivm through back constraints. Proceedings of International conference on 
Machine learning. pages 513-520. 2006. 

[89J L. Lee, R Romano, and G. Stein. Monitoring Activities from Multiple Video Streams: 

Establishing a Common Coordinate Frame. IEEE Transactions on Pattern Analysis 

and Machine InteUigence, 28(8):758 -767, August 2000. 

[90J Sung Chun Lee, Chang Huang, and Ram Nevatia. Definition, detection, and evalu­

ation of meeting events in airport surveillance videos. In Proceedings of 1RECVID: 

1REC Video Retrieval Evaluation, University of Southern California, 2008. 

[91] J. U, X. Lu, L. Ding, and H. Lu. Moving Target Tracking via Particle Filter Based 

on Color and Contour Features. In Injormation Engineering and Computer Science 

aCIECS), 2010 2nd International Coriference on, pages 1-4. IEEE, 2010. 

144 



[92] Jin Li, Hong Yu, and Hong Liang. Efficient mean shift tracking via particle swann 

optimization for multi-articulated human body features. In Proceedings oj Interna­

tional Conjerence on Mechairontcs and Automation. pages 781 - 787, August 2008. 

[93] Yuan Li, Chang Huang, and Ram Nevatla. Learning to associate: Hybrldboosted 

multi-target tracker for crowded scene. In Proceedings ojIEEE International Corifer­

ence on Computer Vision and Pattern Recognition. pages 2953-2960, June 2009. 

[94] Weiyao Lin, Ming-Ting Sun, Radha Poovendran, and Zhengyou Zhang. Group event 

detection with a varying number of group members for video surveillance. IEEE 

Tr~actions on Circuits and Systemsjor Video Technology, 20(8):1057-1067, Au­

gust 2010. 

[95] Matthias Luber, Johannes a Stork, Gian Diego TIpaldi, and Kat 0 Arras. People 

tracking with human motion predictions from social forces. In 2010 IEEE Interna­

tional Coriference on Robotics and Automation. pages 464-469. IEEE, may 2010. 

[96] Bruce D. Lucas and Takeo Kanade. An Iterative Image Registration Technique with 

an Application to Stereo Vision. In Proceedings oj Image Understandtng Workslwp, 

pages 121-130, April 1981. 

[97] How lung Eng, Kar-Ann Toh, Alvin H. Kam., Junxian wang, and Wei-Yun Yau. An 

automatic drowning detection sUIVeillance system for challenging outdoor pool en- . 

vlronments. In Proceedings ojthe Coriference International Coriference on Computer 

Vision. volume 1, pages 532 - 539, 2003. 

[98] D. Makris M. LewandOWSki, J. Martinez-del-Rincon and J.-C. Nebel. Temporal 

extension of laplacian eigenmaps for unsupervised dimenSionality reduction oftlme 

series. In Proceedtngs ojlnternational Coriference on Pattern Recognition, pages 161-

164. Springer, 2010. 

(99) L. Ma, J. Liu, J. Wang, J. Cheng, and H. Lu. A improved silhouette tracking ap­

proach integrating particle filter with graph cuts. In Acoustics Speech and Sig­

nal Processing (ICASSP), 2010 IEEE International Coriference on. pages 1142-1145. 
IEEE,2010. 

[100] Yunqian Ma and Petter Cisar. Activity Representation in Crowd. In Proceedings oj 

the 2008 Joint IAPR International Workslwp on Struct:u.ra1, Syntactic, and Statistical 

Pattern Recognitton, pages 107 - 116, Florida, December 2008. Springer. 

[101] J~ R Magnus and Heinz Neudecker. Matrix Differential Calculus withApplicatiDns 

in Statistics and Econometrics. John Wiley and Sons, second edition, 1999. 

145 



(102] Vijay Mahadevan. Weixin U. Viral Bhalodia. and Nuno Vasconcelos. Anomaly De­

tection in Crowded Scenes. In Proceedings of IEEE Intematkmal Conference on 

Computer Vision and Pattern RecognttWn. pages 1975-1981. San Francisco. June 

2010. 

[103] lain Mattews. Takarhiro Ishikawa. and Simon Baker. The template update problem. 

IEEE Transactions on Pattern Analysis and Machine Intelligence. 26(6):810 - 815. 

June 2004. 

(104] Ram1n Mehran. Alexf:s Oyama. and Mubarak. Shah. Abnormal Crowd Behavior 

Detection using Social Force Model •. In Proceedings of the Coriference on Computer 

Vision and Pattern RecognttWn. pages 935-942. Florida. June 2009. IEEE. 

(lOS] Marco A. MontesdeOca. Thomas Sttzie. Mauro Bimttari. and Marco DorIgo. 

Frankensteins PSO: A composite particle swarm optimization algorithm. IEEE 

Transactions on Evolutionary Computation. 13(5): 1120-1132. October 2009. 

(106] Carlos Serra-Toroand RaUl MontoUu. V. Javier Traver. Isabel M. Hurtado-Melgar. 

Manuela Nil nez Redo. and Pablo Cascales. Assessing water quality by video moni­

toring fish swimming behavior. In Proceedings ofIntemational Coriference on Pattern 

Recognition. pages 428-431.2010. 

(107] Pradeep Natarajan and Ramakant Nevatia. Coupled Hidden Semi Markov Models 

. for Activity Recognition. In Proceedings of the IEEE Workshop on Motion and Video 

Computing. pages 10-10. February 2007. 

(108] Nandita M. Nayak. Ricky J.Sethi. Bi Song. and Am1t K. Roy-Chowdhury. Motion 

pattern analysis for modeling and recognition of complex human activities. In Vi­

sual Analysis of Hwnans: Looking at People. pages 289-310. Springer. 2011. 

(109] Blngbing Ni. Shu1cheng Van. and Ashraf Kassim. Recognising human group activi­

ties with localised causalities. In Proceedings of the Coriference on Computer Vision 

. and Pattern RecognttWn. pages 1470-1477.2009. 

(110) Z. Ni. S. Sunderrajan. A. Rahimi. and BS Manjunath. Distributed particle filter 

tracking with online multiple instance learning in a camera sensor -network. In 

Image Processing aCIP). 2010 17th IEEE International Coriference on. pages 37-40. 

IEEE. 2010. 

(Ill] Huazhong Ninga. Wei Xub. Yun Chib. Yihong Gongb. and ThoPlas S. Huang. In­

cremental Spectral Clustering by Efficiently updating the Eigen-system. Pattern 

Recognition. 43(16):113-127. 2010. 

146 



[112] K. Nummiaro. E. Koller-Meier. and L. Van Gool. An adaptive color-based particle 

filter. Image and Vision Computing. 21(1):99-110. 2003. 

[113] Kenji Okuma. Ali Taleghani. Nando De Freitas. James J. Uttle. and David G. Lowe. 

A Boosted Particle Filter: Multitarget Detection and Tracking. In Proceedings oj 

Eighth European Coriference on Computer Vision, pages 28-39. IEEE. 2004. 

[114] Vas1l1s Papadourakis and AntonIs Argyros. Multiple objects tracking in the 

presence of long-term occlusions. Computer Vision and Image Understanding. 

114(7):835-846. July 2010. 

[115] Daniel Parrott and Xiaodong U. Locating and tracking multiple dynamic optima 

by a particle swarm model using speciation. IEEE Transactions on Evolutionary 

Computation. 10(4):440 - 458. August 2006. 

[116] K. E. Parsopoulos and M. N. Vrahatis. Recent approaches to global optlm1zation 

problems through particle swarm optlm1zation. Natural Computing. 1:235-306. 

2002. 

[117] Claudio Piciarell1. Christian MlchelonI. and Gian Luca Foresti. TrajectoIY-based 

anomalous event detection. IEEE Transactions on Circuits and Systems jor Video 

Technology. 18(11):1544-1554. November 2008. 

[118] Robert Pless. Image spaces and video trajector1es: Using isomap to explore video . 

sequences. In Proceedings oj IEEE International Coriference on Computer Vision, 

volume 2. pages 1433-1440. IEEE. 2003. 

[119] Riccardo Polio Analysis of the publications on the applications of particle swarm 

optlmisation. Journal oj Artificial Evolution and Applications. 4: 1-10. JanuaJ:Y 2008. 

[120] F. Por1k11. O. Tuzel. and P. Meer. Covariance tracking using model update based on 

lie algebra. In IEEE Computer Society Coriference on Computer Vision and Pattern 

Recognition, volume 1. pages 728-735. June 2006. 

[121] Z. Qi. R. Ttng. F. Husheng. and Z. J1nl1n. Particle Filter Object Tracking Based on 

Harris-SIFT Feature Matching. Procedia Engineering. 29:924-929. 2012. 

[122] Nimmakayala Ramakoti. Art Vlnay. and Ravi Kumar Jatoth. -Particle swarm op­

timization aided Kalman Filter for object tracking. In Proceedings oj International 

Coriference on Advances in Computing. Control. and Telecommunication Technolo­

gies. pages 531- 533. December 2009. 

147 



[123] Vikas Reddy. Conrad Sanderson. and Brian Lovell. Improved anomaly detection 

in crowded scenes via cell-based analysis of foreground speed. size and texture. 

In .MLvMA Workslwp. IEEE Conference on Computer Vision and Pattern Recognition, 

pages 57-63. Colorado. June 2011. IEEE. 

[124] Paolo Remagntno and G. A. Jones. Classifying surveillance events from attributes 

and behaviour. In Proceedings oJBritishMachine Vision Conference. pages 685-694. 

2001. 

[125] Mikel Rodriguez. Saad Ali. and Takeo Kanade. Tracking in Unstructured Crowded 

Scenes. In Proceedings oj IEEE Intema.ttonal Conference on Computer Vision, pages 

1389-1396. Kyoto. 2009. 

[126] SamT. Rowels and Lawrence K. Saul. Nonlinear dimensional1ty reduction by locally 

linear embedding. Science. 290(5500):2323-2326. 2000. 

(127) David Ryan. Simon Denman. Clinton Fookes. and Sridha Sridharan. Textures of 

optical flow for real-time anomaly detection in crowds. In IEEE International Confer­

ence on Advanced Video and Signal-Based Surveillance. pages 230-235. September 

2011. 

[128] M. S. Ryoo and J. K. Aggarwal. Semantic Understanding of Continued and Recur­

sive Human Activities. In Proceedings oj 18th International Conference on Pattern 

. Recognition, pages 379-382. Hong Kong. August 2006. 

(129) M. S. Ryoo and J. K. Aggarwal. Recognition of High-level Group Activities Based on 

Activities of IndMdual Members. In Proceedings oj IEEE Workslwp on Motion and 

Video Computing. pages 1-8. Colorado. January 2008. 

[130] M. S. Ryoo and J. K. Aggarwal. Semantic Representation and Recognition of Con­

tinued and Recursive Human Activities. International Journal oj Computer Vision, 

82(1):1-24. Apr1l2009. 

(131) Imran Saleem1. Lance Hartung. and Mubarak Shah. Scene Understanding by Sta­

tistical Modeling of Motion Patterns. In Proceedings oJIEEE International Conference 

on Computer Vision and Pattern Recognition, pages 2069 - 2076. San Francisco. 

June 2010. 

(132) Lawrence K. Saul and SamT. Rowels. Think globally. fit locally: unsupervised 

learning of low dimenSional manifolds. The Journal oj Machine Learning Research., 

4:119-155.2003. 

148 



(133] Christian Schuldt. Ivan Laptev. and Barbara Caputo. Recognizing Human Actions: 

A Local SVM Approach. In Proceedings of 17th Interna.t:ional Coriference on Pattern 

Recognition, volume 3. pages 32-36. Cambridge. 2004. 

(134] Gideon Schwarz. Estimating the dimension of a model. Annals of Statistics. 

6(2):461-464. 1978. 

(135] S. Scott. T. Rawesak. and Irfan Essa. A System for Tracking and Recogn1z1ng 

Multiple People with Multiple Camera. Technical Report GIT-GVU-98-25. Georgia 

Institute of Technology. August 1998. 

(136] Md. Haidar Sharif and Chabane Djeraba. PedVed: Pseudo Euclidian Distances 

for Video Events Detection. In Proceedings of the Fifth Interna.t:ional Sympostwn on 

Advances in Visual Computing. pages 674-685. Berlin. Heidelberg. 2009. Springer­

Verlag. 

(137] Jianbo Shi and Carlo Tomasi. Good features to track. In Proceedings of Computer 

Vision and Pattern Recognition,. volume 2. pages 593-600. June 1994. 

[138] Yinghuan Shit Yang Gao. and Ruili Wang. Real-time abnormal event detection in 

complicated scenes. In International Coriference Pattern Recognition, pages 3653 -

3656. August 2010. 

(139] C. ShU-hong and H. Chun-hai. Particle Filter Tracking Algorithm Based on Multi­

Information Fusion. In In/ormation Engineering and CompUter Science. 2009. 

ICIECS 2009. International Coriference on, pages 1-4. IEEE. 2009. 

(140] Alan F. Smeaton.· Paul Over. and Wessel Kraaij. Evaluation campaigns and 

TRECVid. In Proceedings of the 8th ACM International Workshop on Multimedia 

Information Retrieval, pages 321 - 330. New York. 2006. ACM Press. 

(141] John R. Smith and Sbih-Fu Chang. Vlsualseek: a fully automated content-based 

image query system. In Proceedings of ACM international conference on Multimedia, 

pages 87-98. 1997. 

[142] Hiroki Sugano and Ryusuke Miyamoto. Parallel implementation of pedestrian 

tracking using multiple cues on GPGPU .. In 2009 IEEE 12th International Con­

ference on Computer Vision Workshops. ICCV Workshops. pages 900-906. IEEE. 
September 2009. 

(143] Jolliffe Ian T. Principal ComponentAnalysis. volume 489. Springer. second edition. 
2002. 

149 



(144] Masaki Takahashi, Mahito Fujii, Masahiro Shibata, and Shin'ichi Satoh. Ro­

bust Recognition of Specific Human Behaviors in Crowded Surveillance Video Se­

quences. EVRASIP Journal on Advances in Signal Processing, pages 1-14, March 

2010. 

(145] Sze Ung Tang, Zulaikha Kadim, Kim Meng Uang, and Mei Kuan Urn. Hybrid blob 

and particle filter tracking approach for robust object tracking. Proceda Computer 

Science, 1(1):2549-2557, 2010. 

(146] Joshua B. Tenenbaum, Yin de Silva, and John C. Langford. A global geometric 

framework for nonlinear dimensIonality reduction. Science, 290(5500):2319-2323, 

2000. 

(147] Myo Thida, How-Lung Eng, D. N. Monekosso, and Paolo Remagnino. Learn1ngvideo 

manifold for segmenting crowd events and abnormality detection. In Proceedings 

of Tenth As tan Conference on Computer Vision, pages 439-449. Springer, November 

2010. 

(148] Myo Thida, Paolo Remagnino, and How-Lung Eng. A particle swarm optimization 

approach for multi-objects tracking in crowded scene. In proceedings of IEEE Inter­

national Workshop on Visual SurveUlance, pages 1209 - 1215, September 2009. 

(149] Ioannis Tztakos, Andrea Cavallaro, and U-Qun Xu. Video event segmentation and 

. visualisation in non-linear subspace. Pattern Recogn1tlon Letter, 30(2):123-131, 

January 2009. 

(150] Ioannis Tztakos, Andrea Cavallaro, and U-Qun Xu. Event monitoring via local 

motion abnormality detection in non-linear subspace. Neurocomputing, 73(10-

12):1881-1891, June 2010. 

(151] William Hvan derSchalie, Tommy RShedd, PaulLKnechtges, and Mark WWldder. 

Using higher organisms in bIological early warning systems for real-time tOxicIty 

detection. Biosensors and Btoelectronics, 16(7-8):457-465,2001. 

(152] Christian Vogler and D1mitris Metaxas. A Framework for Recognizing the Simul­

taneous Aspects of American Sign Language. Computer Vision and Image Under­

standing, 81(3):358 - 384, March 2001. 

(153] Jack M. Wang, David J. fleet, and Aaron Hertzmann. Gaussian process dynami­

cal models. In Proceedings of Neural Iriformation Processing Systems, NIPS, pages 

1441-1448, 2005. 

150 



[154) Jack M. Wang. David J. Fleet. and Aaron Hertzmann. Gaussian process dynamical 

models for human motion. IEEE Transactions on Pattern Recognition and Machine 

InteUigence. pages 283-298. 2008. 

[155) Xiaogang Wang. Kinh Tieu. and Eric Grtmson. Learning Semantic Scene Models 

by Trajectory Analysis. In Proceedings oj European Coriference on Computer Vision, 

volume 3. pages 110-123. 2006. 

[156) Peiliang Wu. Lingfu Kong. Fengda Zhao. and Xianshan Li. Particle filter track­

ing based on color and SlIT features. In 2008 International Coriference on Audio, 

Language and Image Processing. pages 932-937. IEEE. July 2008. 

[157) Shandong Wu. Brian E. Moore. and Mubarak Shah. Chaotic invariants of la­

grangian particle trajectories for anomaly detection in crowded scenes. In Pr0-

ceedings oj the Coriference on Computer Vision and Pattern Recognition, pages 2054 

- 2060. San Francisco. June 2010. IEEE. 

[158) Dong Xu and Shih-Fu Chang. Video Event Recognition using Kernel Methods with 

Multilevel Temporal Alignment. IEEE Transactions on PattemAnalysis and Machine 

InteUigence. 30(1l}:1985-1997. May 2008. 

[159) Kota Yamaguchi. Alexander C. Berg. Luis E. Ortiz. and Tamara L. Berg. Who are 

you with and where are you going? In Proceedings oj IEEE International Conjerence . 

on Computer Vision and Pattern Recognition, pages 1345 - 1352. Colorado. June 

2011. IEEE. 

[160) Shuytng Yang. Qin Ma. and Wenjuan Huang. Particle swarm optimized unscented 

particle filter for target tracking. In Proceedings oj International Congress on Image 

and Signal Processing. pages 1 -5. October 2009. 

[161) Yang Yang. Jingen Liu. and Mubarak Shah. Video Scene Understanding using 

Multi-scale Analysis. In Proceedings oj IEEE International Coriference on Computer 

Vision, pages 1669 - 1676. 2009. 

[162) Gary G. Yen and Wen Fung Leong. Dynamic multiple swarms in multi-objective 

particle swarm optimization. IEEE Transactions on Systems. Man. and Cybernetics 

PartA: Systems andHwnans. 39(4}:890 - 911. July 2009. 

[163) A. Yilmaz. O. Javed. and M. Shah. Object tracking: A swvey. ACM computing 

surveys. 38(4}: 13. 2006. 

151 



(164] L1h1 Zelnik-Manor and Michal Irani. Statistical Analysis of Dynamic Actions. IEEE 

Transactions on Pattern Analysis and Machine InteUigence. 28(9):1530 - 1535. 

September 2006. 

(165] L1h1 Zelnik-Manor and Pietro Perona. Self-tuning Spectral Clustering. InAdvances 

in Neural Injormation Processing Systems. 17: 1601-1608. 2004. 

(166] T. Zhang. B. Ghanem. S. Liu. and N. Ahuja. Robust visual tracking via structured 

multi-task sparse learning. International Journal oj Computer Vision, pages 1-17. 

2012. 

(167] Xiaoqin Zhang. Wetming Hu. Steve Maybank. Xi Li. and M1ngliang Zhu. Sequential 

particle swarm optimization for visual tracking. In Proceedings ojIEEE International 

Coriference on Computer Vision and Pattern Recognition, pages 1 - 8. June 2008. 

(168] Xiaoqin Zhang. Weiming Hu. Wie Qu. and Steve Maybank. Multiple object tracking 

via species-based particle swarm optimization. IEEE Transactions on Circuits and 

Systemsjor Video Technology. 20(11):1590 - 1602. November 2010. 

(169) Yuhua Zhang and Yan Meng. Adaptive object tracking using particle swarm opti­

mization. In Proceedings oj IEEE International Symposium on Computational InteUi­

gence in Robotics and Automatton, pages 43 - 48. June 2007. 

(170] X1n Zheng and Xueyin Lin. Automatic determination of intrinSic cluster number 

family in spectral clustering using random walk on graph. In International Corifer­

ence on Image Processing. volume 5. pages 3471 - 3474. 2004. 

(17l] Q. Zhong. Z. Qingqing. and G. Tengfe1. Moving object tracking based on codebook 

and particle filter. Procedia Engineering. 29: 174-178. 2012. 

(172] Hao Zhou. Xuejie Zhang. Haiyan Li. and Jidong Li. Video object tracking based 

on swarm optimized particle filter. In Proceedings oj International Coriference on 

Industrial Mechatronics and Automatton, volume 2. pages 702-706. May 2010. 

(173] Huiyu Zhou. Yuan Yuan. and Chunmei Shi. Object tracking using SlIT features 

and mean shift. Computer Vision and Image Understanding. 113(3):345-352. March 

2009. 

(174] Guangyu Zhu. Ming Yang. Kat Yu. Wei Xu. and Ylhong Gong. Detecting Video 

Events Based on Action Recognition in Complex Scenes using Spatio-Temporal 

DeSCriptor. In Proceedings oj the seventeen ACM international coriference on Multi­

media, pages 165-174. Beijing. October 2009. 

152 


