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Abstract— This paper presents a framework for confidence 

based active learning for vehicle classification in an urban traf-

fic environment. Vehicles are automatically detected using an 

improved background subtraction algorithm using a Gaussian 

mixture model. A vehicle observation vector is constructed from 

measurement-based features and an intensity-based pyramid 

HOG. The output scores of a linear SVM classifier are accu-

rately calibrated to probabilities using an interpolated dynamic 

bin width histogram. The confidence value of each sample is 

measured by its probabilities. Thus, only a small number of low 

confidence samples need to be identified and annotated ac-

cording to their confidence. Compared to passive learning, the 

number of annotated samples needed for the training dataset 

can be reduced significantly, yielding a high accuracy classifier 

with low computational complexity and high efficiency. The 

detected vehicles are classified into four main categories: car, 

van, bus and motorcycle. Experimental results demonstrate the 

effectiveness and efficiency of our approach. The method is 

general enough so that it can be used in other classification 

problems and domains, e.g. pedestrian detection. 

I. INTRODUCTION 

Traffic monitoring is an important tool in the development of 

intelligent transport systems (ITS) involving the detection 

and categorisation of road vehicles. Such monitoring can 

support the assessment of a range of needs: traffic volume and 

speed estimation, flow and congestion control, incident de-

tection, usage type, queue lengths, illegal manoeuvres etc. 

Applying image processing technologies to vehicle detection 

and classification has been a hot focus of research in ITS over 

the last decade. Urban traffic flow analysis is a challenging 

problem under high vehicle densities which can result in 

frequent occlusion. Several problems have to be solved, 

ranging from low and middle level vision tasks, such as the 

detection and tracking of multiple moving objects in a scene, 

to high level analyses, like vehicle classification. Classifica-

tion of road user type is essential for some tasks, and benefi-

cial for others.  

Moreover, data collection and annotation is a crucial part 

of vehicle classification system development because it de-

termines the success of later stages. Data collection and an-

notation is surprisingly time consuming and costly. The 

widely used approach for data collection and annotation is 

called passive learning (PL), where samples are randomly and 

independently selected from the underlying distributions; 

human assessors then manually annotate these samples. 

Considering the time and cost associated with this process, it 

is often the case that there are insufficient training samples to 
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assure a certain level of performance after training. Active 

learning (AL) may be a suitable approach to minimize the 

effort of annotation [1]. In active learning, the learning pro-

cess repeatedly queries unlabeled samples to select the most 

informative samples to annotate and update its learned rules. 

Therefore, unnecessary and redundant annotation is avoided, 

greatly reducing the annotation cost and time. Active learning 

is also helpful in reducing computational complexity. Active 

learning has been shown to be more powerful than learning 

from random examples [2][3].  

This paper uses a improved confidence-based active 

learning (CBAL) to train an SVM to classify vehicles into 

four dominant categories: car, van (van, minivan, minibus 

and limousine), bus (single and double decked) and 

motorcycle (motorcycle and bicycle). The approach takes 

advantage of current well-developed classifiers’ probability 

preserving and ordering properties [4], calibrating the output 

scores to the class-conditional error. Thus, it can estimate the 

uncertainty level of each sample according to the output score 

of a classifier and select only the most informative samples 

for annotation whose output scores are in the uncertain range. 

From SVM theory we know that only support vectors play a 

role in SVM learning and the removal of non-support vectors 

does not change the training results. Support vectors should 

be located close to the boundary between the two classes. 

This means that if we train the classifier using only low 

confidence data, we will obtain similar training results. The 

approach is general enough to be used with other classifiers. 

The novelty of the paper includes: a) a robust automatic 

vehicle detection strategy; b) a CBAL that has been extended 

from binary classification to multiple classes classification 

(and originally applied to vehicle classification). The main 

contributions of the paper are: 1) high accuracy of calibrated 

probability obtained using smooth interpolated dynamic bin 

width, that can reflect the underlying probabilities; 2) 

effective selection of the most informative samples from an 

unlabeled training data set; 3) dramatic reduction in the 

number of training samples needing annotation; 4) an 

approach that minimizes complexity and training times. 

II. VEHICLE DETECTION 

There are several key considerations when implementing a 

vehicle detection algorithm, and they vary depending on the 

specific task. For traffic flow statistics, it is essential to count 

each vehicle only once. To ensure that vehicles will only be 

counted as they appear in the detection zone, a virtual loop 

detector is applied. The virtual loop is comprised of three 

detect lines, StartLine (SL), MiddleLine (ML) and EndLine 

(EL). These line detectors are sensitive to miss-detection as a 

consequence of the ragged edge of a vehicle boundary. To 

minimize this effect the detectors have a finite width to ensure 
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a stable detection of the vehicle when it intersects the line (a 

width of 5 pixels was used in the experiments described lat-

er). The separation between detector lines depends on aver-

age traffic speed (higher speed, require a larger threshold), 

and was set to 30 pixels in our experiments. The traffic speed 

limitation is 30 miles per hour. The detector is configured to 

operate in both directions, to accommodate the two directions 

of traffic flow, and should be placed at a location where ve-

hicles are clearly visible with minimal occlusion, i.e. usually 

closest to the camera. A detector is allocated to each lane to 

handle the measurements for each traffic stream.  

  
(a)          (b) 

  
(c)          (d) 

Fig. 1. Vehicle detection: (a) background GMM and virtual loop detector; (b) 

current input image with detection lines. (c) background subtraction results: 

modeled background (black), foreground object (yellow), shadow (green) or 

reflection highlights (red); (d) foreground image created by extracting the 

pixels from the original frame using the final foreground object mask. 

An Automatic Vehicle Detection System (AutoVDS) is 

constructed from background subtraction using a Gaussian 

mixture model. Fig.1 illustrates the object detection proce-

dure. Shadow, road reflection and reflection highlights pixels 

are minimised, followed by a post-processing binary mor-

phological opening to remove noise and small area objects 

[5]. To ensure that vehicles are only counted once the detector 

considers a vehicle to be “present” only when both SL and 

ML are occupied and EL is unoccupied (for traffic moving 

towards the camera, i.e. lane 2 and 3). A vehicle is said to be 

“leaving” when ML and EL are occupied and SL unoccupied. 

A vehicle is counted only when it changes from the “present” 

state to the “leaving” state. This is reasonable in congested 

situations and even stationary traffic. In this way, the detector 

will not over-count in either case. If the proportion of pixels 

intersecting the detection line is above a threshold (30% of 

the lane width), the line is considered occupied, otherwise it is 

unoccupied. This threshold is chosen as a tradeoff between 

detecting small vehicles (such as bicycles and motorbikes) 

but being insensitive to small blobs associated with noise. It is 

only necessary to swap SL and EL to account for vehicles in 

the traffic stream moving away from the camera (e.g. lane 1 in 

Fig.1(a)). 

III. FEATURE EXTRACTION 

i) Measurement-based feature A set of 13 measure-

ment-based features (MBF) that are cheap to compute and 

store are used to build a vehicle feature database. The feature 

vector is comprised of measures of size and shape from the 

binary silhouette and encompassing bounding box (width, 

height, and area), circularity (dispersedness, equivdiameter), 

ellipticity (length of major and minor axis, eccentricity), and 

shape-filling measure (filled area, convex area, extent, solid-

ity) [6].  

ii) Intensity based feature To improve the accuracy of 

classification, we investigate a potentially effective feature 

based on a pyramid of histogram of gradient orientations 

(PHOG). PHOG was first proposed by Bosch et al. [7] and 

has been successfully applied to object recognition, human 

expression recognition and image classification [8]. As a 

spatial shape descriptor, it can represent the statistical in-

formation of global shape and local shape (in a sub-region), 

which is effective for object recognition. The local shape is 

captured by the distribution over edge orientations within a 

region, and the spatial layout by tiling the image into regions 

at multiple resolutions. The descriptor consists of a histogram 

of orientation gradients over each image sub-region at each 

resolution level of the bounding box detection. For vehicle 

classification, we set 3 levels and 9 orientation bins, evenly 

spaced over 0º - 360º, extract the PHOG features and nor-

malise them for each level. The number of levels and orien-

tations are the optimal numbers for our experiments. The 

dimension of the resulting vector is constructed by concate-

nating these into an 189944949   element vector. 

For local shape representation there are two kinds of PHOG 

available. One is the edge-based PHOG (EPHOG), which is 

represented by a histogram of edge orientations within an 

image region and its sub-region. The other is the intensi-

ty-based PHOG (IPHOG), which is represented by the dis-

tribution of local intensity gradients, without precise 

knowledge of the corresponding edge point. Extensive ex-

perimental results have previously shown [9] MBF+IPHOG 

to be the best feature combination for vehicle classification. 

IV. CONVERTING SVM SCORES INTO PROBABILITIES 

The output of a classifier should be a calibrated posterior 

probability to enable active learning. Standard SVMs do not 

provide such probabilities. The SVM output score is not a 

probability but a distance from the separating hyperplane. 

The sign of the score indicates if the example is classified as 

positive or negative. The magnitude of the score can be taken 

as a measure of confidence in the prediction, since examples 

far from the separating hyperplane are presumably more 

likely to be classified correctly. Thus, we need a way to 

transform SVM output scores to probabilities for CBAL. Platt 

[10] presented an algorithm to train an SVM, then train the 

parameters of an additional sigmoid function to map the SVM 

outputs into probabilities. 

Drish [11] has proposed a binning method for a 

probability estimation problem in one dimension. For the 

fixed-bin-width allocation method, this involves sorting the 

training examples according to their scores, and then dividing 

them into b equal sized bins, each having an upper and lower 

bound. Given a test example x, it is placed in a bin according 

to its score. The corresponding probability P(j=1|x) is the 



 

 

 

fraction of positive training examples that fall within the bin. 

A difficulty of the binning method is that the number of bins 

has to be chosen by cross-validation. A large bin width will 

produce a smooth histogram with too little detail; on the other 

hand, a very small bin width will result in a jagged histogram 

and a small number of samples in each bin will make too large 

a contribution. Ideally, the width of bins is chosen so that the 

estimated probability reflects the true underlying probability 

distributions without giving too much credence to the dataset 

at hand. Instead of equal bin widths, Li and Sethi [2] 

presented a method using an equal number of samples in each 

bin, called dynamic bin-width (DBW) allocation. This gives a 

smooth histogram where conditional probabilities are small 

and it will also give more detail where conditional 

probabilities are large. In other words, it adapts to the 

underlying probability distribution. 

In order to further improve the accuracy of converting 

SVM scores to probabilities using DBW, an smooth 

interpolated DBW histogram (SIDBW) is proposed in this 

paper. The experimental results demonstrate the high 

accuracy of the new algorithm. 

V. EXPERIMENTS 

The CBAL used here is based on the algorithm proposed 

by Li and Sethi [2]. The high accuracy SIDBW allocation 

strategy is used to convert SVM scores to probabilities. 

A. Covert SVM scores to probabilities 

Two algorithms used to calibrate probabilities from linear 

SVM scores are been compared here: the DBW histogram 

algorithm and the SIDBW histogram algorithm. Mean square 

error (MSE) is used to calculate the accuracy of the 

conversion methods. The squared error (SE) is defined as 

    
2

|| 
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xjpxjtSE       (1) 

where p(j|x) is the probability estimated by the method for 

example x and class j, and t(j|x) is the true probability of class 

j for x. For data sets where true labels are known and the 

probabilities are unknown, t(j|x) is defined to be 1 if the label 

of x is j and 0 otherwise. 

       
 

 

An experiment uses synthetic examples with a Gaussian 

distribution (GD) to compare the accuracy of the algorithms. 

2000 2D points are created with two Gaussian distributions, 

xN(-0.3, 0.3) and y N[-0.5, 0.5]. Fig.2 shows the data 

distribution. The solid red line is p(f|y=+1), while the dashed 

blue line is p(f|y=-1). A 10-fold cross validation strategy has 

been used to estimate the best parameters for a linear SVM 

classifier. The entire data have been used to train the SVM 

with the best parameters. The classification accuracy is 

97.80%. The SVM scores were converted to probabilities. 

Fig.3 shows the histograms of probability estimation from 

DBW and SIDBW. The cubic interpolation algorithm is used 

in the SIDBW implementation. The MSE of probability es-

timation using DBW and SIDBW from SVM scores of 

training are 0.0198 and 0.0036, respectively. Obviously, 

SIDBW improves the accuracy of probability estimation. 

B. CBAL with known probabilities 

Using the classifier’s output calibrated probabilities as a 

confidence measure, the query function is: 

otherwise
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where f(x) is the output probabilities from the classifier. The 

thresholds T1=0.2 and T2=0.95 are chosen for the experiment, 

with 109 low confidence samples (5.45% of training data). 

83.78% support vectors were included in the set of low 

confidence samples. Only the low confidence (the most 

informative) samples are used to train a classifier, and the 

classifier is then used to classify the entire training data. 

Comparison of accuracy, recall, precision, and F1 for passive 

learning and active leaning are presented in Table I. 

TABLE I. THE COMPARISON RESULTS OF PL AND AL 

 accuracy recall precision F1 

PL 0.9780 0.9800 0.9761 0.9780 

AL 0.9785 0.9800 0.9771 0.9785 

C. CBAL with unknown probabilities 

The same synthetic dataset is use to evaluate the proposed 

CBAL, but we assume the dataset is unlabeled. 50 samples 

are randomly chosen as an initial training set to train the linear 

SVM classifier. The accuracy of the entire training data set is 

96.40%. Obviously, this is not as good as the accuracy from 

all the 2000 training samples (PL). After converting the SVM 

scores to probabilities, 43 low confidence (most informative) 

samples are selected from the remaining 1950 unlabeled 

samples. In the next round, 93 samples (the 50 initial samples 

plus the 43 newly selected samples) are used to form the 

training set. The accuracy increases to 98.25% compared to 

the passive learning accuracy of 97.80%. This means that 

only 93 samples are used to achieve the same (or better) 

training results as those from all 2000 samples. The propor-

tion of the training samples is only 4.65%. Fig.4 illustrates the 

processing of active learning for the synthetic dataset. From 

the plot it can be seen that the active learning algorithm can 

incrementally choose the informative samples and correct the 

training error from the previous incomplete training.  

Foreground blobs of vehicles obtained using AutoVDS 

are used to evaluate the active learning algorithm. For 

multi-class passive learning, the entire data set has been used 

to train the SVM system, taking 20.43 hours on a 2.39GHz 

Pentium laptop. The number of support vectors is 441. The 

ratio of the number of support vectors over the sample size is 

22.05%. This ratio reflects the classification complexity of 

the training data. The ACC is 97.51%. 

Fig. 2. The histogram for p(f|y= 1) 

for SVM on synthetic data. 

Fig. 3. Histograms of probabilities 

from DBW and SIDBW. 



 

 

 

 
Fig. 4. AL and PL processing for GD. PSP: positive samples; NSP: negative 

samples; LCS: selected low confidence samples; IPS: Initial random positive 

samples; INS: initial negative samples; SPV: support vectors from entire 

training dataset; BET: classification boundary from entire training dataset; 

BAL: final classification boundary of active learning. 

For multi-class active learning, firstly three binary clas-

sifiers (motorcycle vs car, car vs van and van vs bus) are 

trained separately to calibrate their SVM scores to probabili-

ties. For each classifier, 50 samples are randomly selected to 

form the initial training set. In each round of query, a maxi-

mum 25 additional most informative samples are selected 

from the unlabeled sample pool according to the probability 

(if more than 25 most informative samples are obtained from 

the query function (2), 25 samples are randomly selected 

from them), and added into the training set. Using these most 

informative samples, selection training is repeated until rea-

sonable classification accuracy is achieved, or for a maximum 

of 10 rounds. Then a multiple classifier is trained using the 

selected samples sequentially. In order to test the stability of 

AL for real data, the program was run 10 times. The variation 

of mean and std of ACC, and the corresponding average 

number of training samples of each round is illustrated in 

Fig.5. The figure shows that when the number of training 

samples increases, the mean of ACC increases and std of 

ACC decreases gradually, which means that the stability of 

AL increases accordingly. In round 10, 440 training samples 

(290 of the most informative samples plus 150 randomly 

selected initial samples) are selected to train the classifier. 

The classification model is used to classify the whole real 

dataset, and the mean of ACC is 97.57%. The confi-

dence-based active learning procedure is terminated since the 

ACC is higher than that for passive learning which is 97.51%. 

The mean training time is just 31 minutes, 40 times faster than 

passive learning. In addition, only 20.66% of the real data 

needs to be annotated for training the classifier.  

 
Fig. 5. Variation of classification accuracy. 

VI. CONCLUSIONS 

This paper has proposed a confidence-based active 

learning approach for vehicle classification in urban traffic. 

High accuracy probability estimation is obtained from linear 

SVM scores using the smooth interpolated dynamic 

bin-width histogram. Only low confidence samples are used 

to train the classifier. This can dramatically reduce the 

number of annotated samples required for training, as well as 

reducing the overall training time and classification com-

plexity. Experiments on synthetic and real data demonstrated 

the effectiveness of the approach. Compared with passive 

learning, active learning required only 4.65% of the training 

samples to achieve the comparable or improved classification 

accuracy for a synthetic dataset. For a multi-class classifica-

tion task with a real, high-dimensional observation dataset, 

only 20.66% annotated samples were used to achieve supe-

rior classification results, with a computational improvement 

of some 40 times faster than that of using the entire dataset to 

train the classifier. 
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