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Abstract

A computerized image analysis technology suffers from imperfection, imprecision and
vagueness of the input data and its propagation to all individual components of the
technology including image enhancement, segmentation and object classification.
Furthermore, a computerized medical image analysis system (CMIAS) deals with
another source of ambiguity that is inherent in the image-based practice of medicine and
intuitive knowledge of experté. Therefore, a CMIAS such as computer aided detection
(CAD) technologies implicitly suffer from uncertainty and vagueness both from image
analysis techniques and medical diagnosis. Although several technology-oriented
studies have been reported for CAD, no attempt has been made to address, model and
overcome these types of uncertainty in the design of the CAD. However, uncertainty
issues directly affect the accuracy of the system. This study addresses the main sources
of the uncertainty in a CAD system. While uncertainty outcomes are latent in the input
of a classifier, the aim is to model them in the classification for a CAD application. For
this, this research takes advantages of type-2 fuzzy logic (T2FL). Integrating a T2FL
model for object classification in CAD architecture allows us to model uncertainty
issues. For this, an automatic approach models uncertainty in training dataset using
membership function of a type-2 fuzzy set. This approach was applied to the candidate
nodule classification problem in a lung CAD application. The ROC (receiver operating
characteristic) analysis of the classifier results (with an average accuracy 95% (area
under the ROC curve) for nodule classification) reveals that the T2FL is more capable
of capturing the uncertainty in the model and achieving better performance results
compared to type-1 fuzzy logic counterpart. Furthermore, the research introduces the
idea of uncertain rule-based pattern classification in environments which exhibit a lack
of expert knowledge and with an imperfect training datasct. An automatic approach for
rule extraction is presented which takes advantages of genetic algorithm for learning
rule set of an T2FL system from training samplcs. The proposcd approach was applicd
to the popular Wisconsin breast cancer diagnosis (WBCD) database. Analysis of the
performance results reveals that this approach is competitive with the best results of

other proposed fuzzy classification methods to date in terms of trade-off between
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accuracy and interpretability, with an average accuracy of 96.6 % for the breast cancer
diagnosis problem.

This study introduces the concept of uncertainty in a CAD application. This is a first
attempt toward modelling uncertainty issues in classification component for a CAD.
The main contribution is automatically modelling uncertainties using membership
functions and a rule set of a type-2 fuzzy logic. The performance evaluation on two
different CAD classification problems (1) nodule classification in a lung CAD and (2)
the WBCD diagnosis problem using Mammography CAD reveals the superiority of the
T2FLS classifier for managing high levels of uncertainty compared to the T1FLS
counterpért and providing classification that is more accurate. This approach is
significant from two major aspects (1) clinical view: by producing more accurate results
for diagnosis problems which can save more human lives, (2) technical view: modelling
uncertainties in the design of a classifier using automatically presented approach for
IT2FLS membership and rules generation. This is critical for multi-dimensional
classification problems with large number of inputs and lack of expert knowledge as is

the case for most of medical diagnosis problems.
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Chapter 1: Introduction

This chapter presents an introduction to medical image analysis technologies such as
computer aided detection (CAD) and the uncertainty issues associated with CAD
applications. It provides an overview of the major components of a CAD application,
particularly, the role and importance of a classification in this technology, and current
“challenges. It then follows by a brief explanation of common performance evaluation
method for classification. Lastly, it presents the research motivation, contribution to the

field and the structure of thesis.

1.1 Cbmputerized medical image analysis

Advances in computerized medical image analysis system (CMIAS) technologies
provide helpful tools for diagnosis and treatment process. Multidimensional digital
image processing techniques present hidden characteristics of the images which are
sometimes difficult to see with a naked eye. This is the reason that the application of
CMIAS have emerged in recent years. Nowadays, medical image analysis technologies
such as computer-aided detection (CAD), diagnosis (CADx) and measurement (CAM)
are playing a vital role as a second reader (a person who can read and analyse images)
in diagnostic radiology. Furthermore, intelligent systems embedded in a CAD for
extracting knowledge from imprecisc and noisy information of the processed images
can extremely improve image understanding and the analysis process.

Various techniques are employed in a computerized medical imaging system such as
image processing, computer vision, image understanding and analysis. Image
processing usually includes procedures in which both input and output are images
(Gonzalez, Woods and Eddins, 2004). However, in computer vision, the ultimate goal is

to emulate the human vision using learning and inference techniques based on visual
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input which is a branch of artificial intelligence. The image analysis (or understanding)
field is between image processing and computer vision and is the focus of this study.
Referring to the Gonzalez book (Gonzalez, Woods and Eddins, 2004), there is no clear
boundary between the continuum of the field of image processing toward computer
vision and image analysis. Gonzalez defines a paradigm which considers three levels of
process: low-level, mid-level and high-level. In low-level processes both input and
output are images. This process includes initial operations on the image for improving
the quality of the imagé, like noise reduction and contrast enhancement. Mid-level
processes involve tasks such as segmentation (partitioning an imagek iﬁto regions‘ or
objects) and classification (recognition) of individual objects. Mid-level‘process inputs
are images but their outputs are attributes extracted from those images (e.g. edges,
contours, and identity of individual objects). Lastly high-level process involves “making
sense” of an ensemble of recognized objects, as in image analysis, and, at the far end of
the continuum, performing the cognitive function normally associated with human
vision (Gonzalez, Woods and Eddins, 2004). The processes of medical image
procéssing and analysis are illustrated i;l Figure 1.1. According to Gonzalez definition
(Gonzalez, Woods and Eddins, 2004), classification involves recognition of the patterns
(classes) of objects in the image, analysis and diagnosis, normally based on the
observations (selected features for image representation). For example, features selected
from a segmented object in the lung area are classified and interpreted for diagnosis of
the lung cancer (nodule). In another reference (Sonka, Hlavac and Boyle, 1999),
recognition is considered as the end task in image processing and it is often used in
image understanding techniques. The focus of this study is on the classification for a
medical image analysis application such as CAD as a high-level process after
segmentation and detection of regions of interest (ROI).

One of the common characteristics of a CMIAS is its imperfection. The obtained results
suffer from imprecision and vagueness in all level of the processes such as image
enhancement, segmentation and classification technologies, uncertainties of
mathematical models for measuring complex features as well as imprecision in input
data and noisy images. In addition, medical image analysis applications deal with other
sources of uncertainties which are inherent in image-based practice of medicine and
intuitive knowledge of experts such as inter- and intra observer variability for making

decisions, ambiguity in the perception of the clinical vocabulary from different experts
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point of view, and the dynamic process of disease. Therefore, computerized medical
image analysis such as CAD technologies suffer inherently from uncertainty and

vagueness both from digital image analysis techniques and medical diagnosis.
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Figure 1.1: A representation of the input data, processes and output of a medical
image analysis system
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Probability and fuzzy methods have been widely applied for managing the problem of
uncertainty in various applications. Choosing a suitable method depends on the nature
of the problem and the available data and knowledge. Fuzzy logic has the capability for
reasoning according to imprecise and uncertain linguistic terms with un-sharp
boundaries. This is the case for most classification problems with vague, incomplete
and contradictory subjective knowledge of experts. On the other hand, a Bayesian
inference model provides reasoning based on precise knowledge of experts about the
probability of events in terms of numbers. When the knowledge about the prdbability of
events is Javailable, a Bayesian inference model can be applied. Otherwise, if the
knowledge is presented in terms of linguistic terms with overlapped boundaries then
fuzzy logic reasoning is beneficial. A fuzzy inference model is a reaSoning method
which performs computing with words to manage uncertainties in vague, imprecise
knowledge of experts in linguistic terms. The capability of a fuzzy logic model for
managing uncertainty issues in the subjective knowledge of experts has been widely
considered in medical diagnosis problems in the recent decade.

This study aims at modelling uncertainty issues in the design of classification for a
CMIAS such as a CAD application using fuzzy logic approaches. The next section
provides an overview of the role and importance of a CAD technology for medical

image analysis along with its common components.

1.2 Computer aided detection technology

Computer aided detection and diagnostic technologies and their application are
emerging in the last decade. CAD applications have concentrated on identification of
the regi'onr of interest (e.g., nodules in the lung) in the images, and analysis of the
characteristics of objects. CAD technologies take advantages of computer systems as
well as image processing and analysis techniques to overcome perceptual and
interpretive errors caused by radiologists in the process of image obscrvation and
interpretation. This fact is inevitable in the context of medical practice since experience
of image readers may vary and each observer (such as a radiologist) has a unique visual
search on an image. Furthcrmore, there are always inter and intra obscrver variability
for interpretation of an image. The main advantages of medical image analysis using a

computer system such as a CAD application are:
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“Consistencyj; i.e., they produce the same result in the same circumstances
Speed up very complex analyses
Avoid human errors, i.e., distraction and fatigue

Improve precision; i.e., using mathematical model

A

Perform parallel processes

Initially, CAD épplications have been developed to help radiologists to identify
objecfs in the ROI in an image. Advanced applications of the CAD are expected not
only to identify (detect) the candidate objects but also to classify (diagnose) their
malignancy risk. However, the majority of the CAD applications only provide the
detection process. On the other hand, advances in medical imaging modalities such as
X-ray computed tomography (CT) and magnetic resonance imaging (MRI) provide high
quality images (slices) per scan. A CT scan slice presents a two-dimensional (2D) X-ray
image orthogonal to a section of the body. Modern scanners represent volumetric three-
dimensional (3D) images to facilitate the process of image analysis and interpretation
through computer. Many technology-oriented studies have been reported for
identification and interpretation of the objects in the images and some of them have
been commercially developed for screening mammography (Baker et al., 2003) (Image
Checker M1000, version 2.5 and R2 Technology, Sunnyvale, CA), for lung screening
(Kakeda et al., 2004) (SecondLook, version 4.0, CADx Medical Systems) and for colon
screening (Yoshida and Dachman, 2004).

— Image Image Image Region Ofl Object

Input | Pre-processing | Image

Processed

Segmentation Intcrest | Detection

Output Object Feature Feature Candidate
— I i < .
Analysis | Classification %y, o Extraction Objects

Figurel.2: A typical components of a CAD system
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A CAD system can improve image quality through pre-processing, segmentation and
detection of the region of interest and candidate objects, recognize and classify the
candidate objects and analyse and interpret the system diagnosis. Various techniques are
combined to carry out all the above-mentioned processes such as thresholding,
clustering, classification and segmentation methods. Artificial intelligence techniques
with learning capability for a CAD application can help when dealing with the
processes which are efficiently performed by human but are difficult to do with a
computer. While CAD systems are application-oriented, a typical CAD application
consists of the following major components, as shown in Figure 1.2:

1. Image pre-processing: this component enhances the image by minimizing noise and
eliminating unwanted structures. The input to this process is acquired images from an
imaging device, which contain noise (e.g., caused by motion blur). The noise may
affect the region of interest in an image and consequently accuracy of the analysis.
Various techniques have been proposed for noise removal in an image such as
mathematical morphology (Peters, 1995) and the wavelet transform (Jansen, 2001).
The output of this step is a processed image.

2. Image segmentation: a segmentation algorithm is applied to extract important objects
or regions in an image. The segmentation process usually begins with a processed
image and completes when the region of interest for a specific problem is extracted
and isolated from the rest of the image. For example, when using CT images of the
thoracic area, in one application the region of interest can be nodules while in another
application it might be pulmonary embolism (PE). There are various techniques for
image segmentation such as edge detection, thresholding, and region growing
(Gonzalez, Woods and Eddins, 2004). The proposed approaches can be classified into
two main categories: (1) intensity based, and (2) model based approaches. The first
group uses the intensity of the pixels such as thresholding methods (Sezgin and
Sankur, 2004) and clustering methods (Pham, Xu and Prince, 2000). The sccond group
uses a model to extract the structure of the region of interest such as level set (Sethian,
2003).

3. Object detection: this stage detects all possible objects that have the potential to be
an object of interest (e.g., nodules in the lung) but further processing is required to
remove false positive objects. This step is expected to correctly detect all the

interesting objects, but it may also detect unwanted objects. For example, in a lung
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CAD application, object detection techniques are expected to extract all nodules inside
the lung area but may also detect unwanted objects such as vessels and bronchi. There
are various techniques for detection of the candidate objects in the region of interest
such as intensity thresholding.
4. Feature extraction: based on the knowledge available either from experts or from
developers, a set of features is extracted from candidate objects to identify and
differentiate objects of interest from other structures. These features are extracted for
each of the potential candidates found in the object detection stage. A feature describes
scalar properties of an object. An object is typically represented using a group of
descriptors called a feature vector (Sonka, Hlavac and Boyle, 1999). Numerical feature
vectors are often inputs to a pattern classification application. In machine learning,
training or testing datasets usually include a number of numerical vectors of the
features. For example, contrast and sphericity are two features of a nodule candidates
in a lung CT scan image and the feature vector X = (contract, sphericity) can be
used for classification of the objects to nodule and non-nodule classes. The features
are categorized in three major classes for region representation (Dhawan, 2011): 1)
statistical Pixel-Level features which provide quantitative information about the pixels
in segmented regions. This type of feature can be the contrast, edge gradient of the
boundary, mean, variance, and histogram of the gray level of the pixels within the
segmented region; 2) shape features provide information about the characteristic of
the shape of the boundary of the region. This type of feature can be circularity,
compactness or moments. Morphological methods can also be used for description of
the shape (Dougherfy and Lotufo, 2003); 3) texture features provide the local texture
information of the segmented region. Local texture information can be computed using
wavelets, second-order histogram statistics, co-occurrence matrices or spatio-
frequency analysis (Dhawan, 2011); and 4) relational Seatures which provide
relational and hierarchical information about the structure of regions associated with
an object or a group of objects. More details about feature extraction techniques are
explained in (Dhawan, 2011).

5. Object classification: classification of all objects into classes, according to the
feature charactefistics extracted from candidate objects (in Step 3). A class describes
common characteristics (fcaturés) which distinguish an object from other objects in

the pattern space (an image); Classification is a process which makes a decision about
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the class of a pattern (object). Artificial intelligence (Al) methods are common for
analysis of the intelligent behaviour of the systems, classification of the objects and
representation of the knowledge for image understanding and analysis (Sonka, Hlavac
and Boyle, 1999). In a CAD technology, an intelligent classifier is analogous to a
radiologists’ diagnostic model. Furthermore, it is needed to manage the subjective
knowledge of experts, and learn from new observations. Various techniques have been
proposed for classification of the objects in images, such as statistical classification,
neural networks (Wu, Jiang and Peng, 2009), rule-based classifier (Dhawan, 2011),
and fuzzy classifier and combination of these methods such as Neuro-fuzzy approach,
and fuzzy rule-based. The classifiers method can be either supervised or un-
supervised. Unsupervised methods classify objects based on similarity in the feature
space. K-means clustering and FCM (fuzzy c-mean clustering) clustering are examples
of un-supervised classifications. Supervised methods classify objects using a training
set of labelled feature vectors into the actual class. Probabilistic methods have been
employed to incorporate prior knowledge to improve the accuracy of the classifier.
Nearest neighbour, maximum likelihood and Bayes classifiers are widely applied for
object classification in medical image analysis applications as supervised classification

approaches (Dhawan, 2011).

Figurel.3: Sample of a nodule presented in a CT image slice and manually
annotated by a radiologist

An example of a CAD system is a lung CAD application for automatic detection of
lung pulmonary nodules presented in the CT scan images (see Figure 1.3). A typical
lung CAD consists of abovementioned components. After applying image pre-

processing and segmenting the lung region, the next step is to define candidate objects
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which could potentially be a nodule. It proceeds by extracting features such as
sphericity, contrast, and volume from candidate objects. A classifier can distinguish
between a nodule and non-nodule object according to their characteristics. CAD
applications usually provide analysis and interpretation of the output diagnosis. ROC
(Receiver Operating Characteristic) is a commonly applied technique for this purpose.
The next section explains the ROC analysis method and its application for measuring

classification performance in CAD applications.

1.3 ROC analysis for evaluation of the classification performance

The efficiency of a medical image analysis application is usually analyzed using ROC
analysis. An ROC ‘curve demonstrates the trade-off between system benefits and its cost
as the observer changes the decision threshold. The area under the ROC curve is a
measure of the performarice of the system as a single measure. The application of ROC
éurve analysis in machine learning is explained in (Spackman, 1989) to evaluate and
compare the cfﬁciehcy of algorithms. The result of an ROC curve analysis is usually
used to evaluate performance of classifiers and to select an appropriate classifier for
diagnostic problem in medical image analysis applications.

A classification system predicts the class label of an object. Each object has an actual
label (L) and a predicted label (L,). If the object is positive (abnormal) and is classified
as positive, it is called a true positive (TP), but if it is classified as negative (normal) it
is called a false negative (FN). If an object is negative and is classified as negative, it is
called true negative (TN), but if classified as positive, it is called false positive (FP) and
N and P are the number of negative and positive samples, respectively. As shown in
Figure 1.4, a two-dimensional confusion matrix can be constructed using the

classification results of a set of objects as follows (Fawcett, 2006):
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Actual label
P N
Predicted P True False
label Positive Positive
N False True
Negative Negative

Figurel.4: Confusion matrix

In a confusion matrix (Figure 1.4), the values along the major diagonal represent the
correct diagnosis and the number along the other diagonal represents the classifier error
or confusion. According to the numbers in the confusion matrix, following metrics can

be measured (Fawcett, 2006):

The true positive rate, which is also, called hit rate or recall is calculated as follows:

tp rat Positives correctly classified TP (1.1)
prate = Total positives TP .

The false positive rate, also called false alarm or error of classifier, is calculated as

follows:
Negatives incorrectly classified  FP
~ = — 1.2
fprate Total negatives N : 1.2)

The sensitivity of ROC curve is equal to tp rate and the specificity is defined as:

True negatives TN

lC » = . . = —_—
specificity False positives + True negatives N

=1-fp (1.3)

Positive predictive value or precision is defined as follows:

True positive TP
— e = (14)
False positives + True positives TP + FP
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The accuracy of the classifier is defined as (Fawcett, 2006):

True positive + True nagatives _ TP +TN
Positives + Negatives ~ P+N

(1.5)

accuracy =

The ROC curve (Figure'l.S) depicts the trade-off between the classifier's benefits (¢p
rates) and its cost (fp rates) (Fawcett, 2006). Each point of this curve shows the
(fp rate, tp rate) for a classifier decision based on the selected threshold. There are
several important points on an ROC spacé; the lower left point (0, 0) represents the
situation where no corréct decision is made by the classiﬁef, although this classifier
makes no false positive decision but also no true positive. The oppbsite point is (1, 1)
which makes only positive decisions but with high errors. The ideal classifier is (0, 1)
which has the maximum accuracy while its opposite point (1, 0) has the minimum
accuracy. |

The region near the top left represents the classification with higher tp and lower fp
rates. In an ROC graph, the area on the line y = x represents a classifier with 50%
accuracy which is a statistical random classifier with equal probability of true positive
and false positive, see Figure 1.5 (a). The area above y = x has better classification
accuracy thaﬁ the area under it. In Figure 1.5, the accuracy of the classifier with ROC

curve (c) is better than the classifier with ROC curve (b).

p—
N
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True Positive rate

(0, 0) False Positive rate x  (1,0)

Figurel.5: ROC curve coordinates
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ROC curve analysis has been frequently applied for performance evaluation in
medical diagnostic application with or without using a CAD application. However, it
has been frequently applied to machine learning applications for evaluating the cost of
classification. This study applies an ROC curve analysis for performance evaluation of
the classification applications. In machine learning applications, an ROC curve is
usually plotted after applying a classifier to a set of feature object vectors. The classifier
results are usually a class label with a degree of certainty of assigning the object to a
specific class. Some classifiers such as fuzzy rule-based systems provide a membership
degree to which an object belongs to a class with un-sharp boundary. In a Neural
network or Naive Bayes classifiers, a probability is assigned to the classifier decision
which represents the degree to which an object is a member of a class (Fawcett, 2006).
For each classification result, an ROC thresholding table can be constructed which
includes the object number, actual class label and the degree of certainty of classifying
an object as an actual class label. By sorting the table based on the degree of certainty in
descending order as shown in Table 1.1, different thresholds can be applied. The
threshold interval can vary from ~oo to 400, If the result of classifier is equal or above
the threshold, the classifier considers the object as positive otherwise it is negative.
Considering different degrees of certainty as thresholds provides different points with
different true positive and false positive rates on the ROC space. For illustration,
consider a classifier with 10 objects; 5 positive and 5 negative objects.

Table 1.1 demonstrates different selection of the threshold (t) values and the
corresponding true positive and false positive rates. Each threshold represents one point
on the ROC curve as shown in Figure 1.6. An ROC curve is a step plot. The smoothness

of the ROC curve increases by adding more samples to the graph.
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Table 1.1 Different thresholds for drawing an ROC curve
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Figure 1.6: An example of an ROC curve

Different points on an ROC curve are obtained by varying the threshold value and

measuring true positive and false positive rates. The area under the ROC curve has been

frequently employed as a performance measure for measuring and evaluating the cost of

classification in machine learning approaches (Bradley, 1997). One of the simplest ways

to measure the area under the ROC curve is to estimate trapezoidal integration, the

details of this method is explained in (Bradley, 1997).
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1.4 Aim and objectives

This study aims at presenting an approach for modelling uncertainties in classification
for a CAD application. For this purpose, following objectives are considered:

®= Model uncertainties associated with the input of classification using type-2
fuzzy membership functions. The accumulative effect on uncertainty sources in
the input datasets for a classification is represented and modelled using type-2
fuzzy sets.

» Model uncertainties in the process of rule extraction for uncertain rule-based
pattern classification problems which exhibit a lack of expert knowledge and
with an imperfect and imprecise training dataset.

» Evaluate the performance of the proposed approach by applying it to two
different medical classification problems: (1) nodule classification in a lung
CAD application, and (2) the anonymous Wisconsin breast cancer diagnosis

(WBCD) classification problem.

The aim is to show the superiority of the T2FLS (type-2 fuzzy logic system) classifier
for managing high levels of uncertainty compared to the TIFLS (type-1 fuzzy logic

system) counterpart.

1.5 Research motivation

Despite the progress achieved in developing various medical image analysis systems
such as CAD applications, one major issue of current systems is lack of discussion on
the impact of the uncertainty in such systems. However, uncertainty issues are major
hidden barriers to better performance of a pattern classification. Therefore, it is
important to model uncertainties in the design of a classifier. The research aims at
presenting a type-2 fuzzy approach to model uncertainty issucs in the design of a
classification for generally medical image analysis applications and particularly CAD
applications with the following propertics:

1. Interpretability: The classifier needs to be comprehensive to communicate with
the medical experts such as radiologists in the process of object detection and
diagnosis. A reasonable classification for medical image analysis is expected to

maintain the trade-off between accuracy and interpretability.
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2. Accuracy: This factor is one of the most important aspects of a classifier for
medical diagnosis. In such a system, the accuracy of the classification is as
important as its interpretability. While an accurate classifier can save lives, a
poor ciassiﬁer With high false positive rates can threaten human lives.

3. Learning: a classifier for medical image analysis is expected to learn from new
observations in the application domain. Each year, many new cases of
abnormality are diagnosed around the world. The classifier is needed to be
dynamic to learn from new samples. |

4. Generalization: design a classifier with the capability to be applied more widely
to pattern classification problems in uncertain environments; i.e., with imprecise,
vague, and imperfect training datasets, which exhibit a lack of expert knowledge

as it is the case for many classification problems.

1.6 Methodology of the research

The methodology of this research is depicted in Figure 1.7.As shown in this Figure, it
includes data collection for preparing the training dataset of candidate nodule features
which is the input of classification. This part is related to clinical aspects which was
performed in parallel to technical part. It also provides a rule set for differentiating
nodules from non-nodules identified by radiologist. Details of the features and lung
nodule dataset are provided in Chapter 5, Section 5.5. The technical part includes
literature review of current technologies and théirAchallcnges. Then it introduces the
methodology suggested in the study to address uncertainty issues. Then it follows by
presenting an approach to tackle uncertainties in membership function and rules of an
Interval type-2 fuzzy logic (IT2FL). The performance of the proposed approach is
investigated on two CAD classification problems: (candidaté nodule classification in a

lung CAD and WBCD problem)
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Figure 1.7: Methodology of the research

1.7 Research contribution

This research, for the first time, addresses the uncertainty sources for object
classification in CAD applications. It also attempts to tackle the unccrtainty problems
(explained in Section 1.1) in a classification component of a CAD system. For this,
type-2 fuzzy logic capabilitics are employed for managing high levels of uncertainties
such as inter- and intra observer variability, word perception, and uncertainty in
imprecise and inadequate input datasets. Type-2 fuzzy logic, an extension of ordinary
fuzzy logic was introduced for managing uncertainty issues which are not managed

using ordinary fuzzy sets. Integrating a type-2 fuzzy logic model for object
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classification in a CAD architecture allows us to represents and model accumulative
effect of these uncertainties. For this, an automatic approach models uncertainty in a
training dataset using membership function of type-2 fuzzy sets.

On the other hand, in most medical applications, extracting knowledge (rules) from
various experts and fusing their knowledge is difficult, sometimes impossible or
expensive to achieve. For this, the research introduces the idea of uncertain rule-based
pattern classification to extract rules automatically from imperfect and imprecise
training dataset to classify the patterns. This approach models uncertainties in

classification in the process of learning rules for a type-2 fuzzy logic.

1.8 Struéture of the dissertation

The thesis consists of two main parts which are explained as follows:

. Part I: this includes a discussion of uncertainty issues in a general CMIAS and
particular CAD applications in Chapter 2. A fuzzy logic (FL) rule-based model is
suggested as a solution to address the uncertainty issues. It is followed by an
overview of fuzzy logic approaches and advantages for tackling the problem of
uncertainty in rule-based classification. Particularly, type-1 FL, type-2 FL, and
interval type-2 FL (an extension of general type-2 FL) theories and concepts are
explained in Chapters 3 and 4. This study uses an interval type-2 FL (IT2FL) as a
practically applied type-2 FLS to overcome the uncertainty issues associated with

rule-based classifiers.

. Part II: The second part presents the approach proposed in this research for
modelling uncertainty issues. This includes:

1. An automatic approach for modclling uncertainty associated with the input
dataset through type-2 fuzzy membership functions. This method is applied and
integrated to the classiﬁ.cation component in a lung CAD application. Chapter 5
provides results of this application.

2. The idea of uncertain rule-based pattern classification for classification
problems with a lack of expert knowledge and imprecise and imperfect datasets.
This presents an approach for modelling uncertainties in the process of

extracting rules for a type-2 fuzzy logic classifier from imprecise and imperfect
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training datasets. The proposed methods for modelling uncertainty in
membership function and rules are applicable for the classification problems
with lack of expert knowledge and with an incomplete and imprecise training
dataset. In order to verify the generalization property of the proposed approach,
it has been applied to the popular Wisconsin breast cancer diagnosis (WBCD)
database. The features in this database are computed using image processing
techniques and are visually assessed by an expert. Furthermore, the noisy and
variation in this dataset in addition to uncertainty in image processing techniques
makes it a suitable choice for validation of the prbposed approach. This
approach and the results of applying that for the WBCD classification problem

are presented in Chapter 6.

Lastly, the dissertation is concluded in Chapter 7 with a discussion of the research

achievements and future investigations.
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Chapter 2: Uncertainty Challenges in Classification for
Medical Image Analysis Applications

This chapter aims at addressing different sources of uncertainty associated to CMIAS
such as CAD technology. Uncertainty issues are addressed and explained using
examples of actual cases in CAD applications or medical diagnosis. Furthermore, it
briefly provides an overview of the probability and fuzzy set theory capabilities for

managing uncertainty issues.

2.1 Introduction

Computerized image analysis suffers from imperfection, imprecision and vagueness
in the input data and its propagation to individual components of the technology
including image enhancement, segmentation and pattern recognition. Furthermore, a
computerized medical image analysis system (CMIAS) as a ‘human-centred’ problem,
deals with other sources of uncertainties that are inherent in image-based practice of
medicine, including uncertainties in: (1) the °‘medical science’ and incomplete
knowledge of human, (2) subjective knowledge of experts for diagnosis and clinical
applications, and (3) one expert or between experts’ for diagnosis about the same
clinical case in the same image. This is inevitable in clinical diagnosis because of an
experts’ experiences and previous knowledge, their obscrvations in laboratory
examinations and subjective information, and the patients’ history. Moreover, the expert
final decision is usually associated with a confidence level. Therefore, a CMIAS such as
computer aided detection (CAD) system suffers inherently from uncertainties and
imprecision both from digital image analysis techniques and medical diagnosis. The

main sources of uncertainty in a CAD technology can be summarized as follows:
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1. Imprecision in input data and noisy images (input data)

2. Uncertainty in all processes of image enhancement, segmentation, edge detection
and converting a 3D image to a 2D image.

3. Uncertainty in mathematical models for measuring the complex features of images
(such as degree of circularity)

4. Uncertainty in the final decision of an expert about a pattern (intra-uncertainty
(Mendel, 2007b), called intra-observer variability in the clinical context)

5. Uncertainty between experts for making a decision about a pattern (inter-
uncertainty (Mendel, 2007b), called inter-observer variability in the clinical
context)

~ 6. Uncertainty in the meaning of different linguistic terms used by experts (word
perception)

7. Dynamic aspect of disease progress and its influence on the diagnosis process

(non-stationary features)

.'Whilc‘a‘ there are several technology-oriented studies reported in developing CAD
appliqations such as mammography CAD (Leon et al., 2009), colon CAD (Halligan et
al., 2006; Hein et al., 2010) and lung CAD (Lee et al., 2001; Dehmeshki e? al., 2003;
Dehmeshki er al., 2007; Ye et‘al., 2009), no attempt has been made to address, model
and integrafe these types of uncertainty in the design of the components of a CAD
System, even though uncertainty issues directly affect the pérformance of the system
and the accuracy of the results. The rest of this chapter explains the uncertainty sources

associated with a CAD system with examples of real cases.

2.2 Uncertainty in input data and noisy images

One of the characteristics of information derived from an imaging device is its
imperfection because of the noise in the surrounding environments. Therefore, the
acquired image can be inconsistent, incomplete and blurred. Furthcrmore, the partial
volume effect (PVE) is a common problem that arises from image acquisition. The PVE
problem is related to resolution limitation of digital imaging devices, which méy lead to

inaccurate classification and measurement results. Image enhancement techniques such
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as smoothing are frequently applied to reduce the effect of the PVE and noise in the

image (as shown in Figure 2.1).

(b)

Figure 2.1: Examples of a nodule in lung CT scan; (a) Noisy image (b) Smoothed
image

On the other hand, the features of a detected object in an image (e.g., sphericity,
volume) are either measured manually by experts (e.g., radiologist) or automatically by
image processing and analysis application such as CAD. In both cases, measuring the

characteristics of objects with noisy and blurred borders and texture may lead to
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inaccurate or imprecise results. These measures are usually used in a training or testing
dataset for learning a classifier. Interpretation and analysis of the medical images using
these imprecise measurements affect the accuracy and precision of the classification

results.

2.3 Uncertainty in mathematical models for measuring the complex
features

This section explains the uncertainty in measuring complex features using
mathematical models by exemplifying. Consider the nodule classification problem in a
lung CAD application in which one of the features of the nodule candidate is the degree
of sphericity. In the study reported in (Dehmeshki er al., 2007; Ye et al., 2009), three
radiologists annotated nodules in the computed-tomography (CT) scans of the lung for
training purpose. Two mathematical models including shape index (shape information)
and intensity feature (local intensity distribution) were defined as indicators of the
sphericity of the nodule and the non-nodule objects in a training dataset. There is
variation between the results obtained by theses two mathematical models (as illustrated
in Figure 2.2). Moreover, cach mathematical model produces its own crror. By
considering more mathematical methods, more variations are observed in the
measurement results. Refer to the sphericity feature for nodule detection in the lung,
applying two different measurement methods result in two different degrees of
sphericity for the same object. This fact emphasizes the need for managing uncertainty

issues in mathematical models.

Object # Shape Index Intensity Distribution
| 0.7 0.78

2 0.6 0.63

Figure 2.2: Different mathematical model results for measuring sphericity

2.4 Inter- and intra- observer variability

In a CMIAS, knowledge is usually extracted from a group of experts (physicians or

radiologists). While there are variations between an expert’s decisions (inter- observer



2.4 Inter- and intra- observer variability 43

variability or within an expert decision (intra- observer variability), an expert system is
expected to manage these sources of uncertainty. A panel of experts is usually
considered to form a consensus about the class of an object in an image during blind or
un-blind sessions. It should be noted that the process of providing a group of qualified
experts and fusion between them is very expensive and time-consuming. A classifier for
a CAD system is expected to be aware of and to manage these sources of uncertainty.
The rest of this section discusses inter- and intra- observer variability examples in a
CMIAS.

The variation between radiologists in the identification of a nodule has been reported
in the lung image dataset consortium (LIDC) study in (van Ginneken et al., 2010). In
this study, four radiologists identified nodules in two blind and un-blind sessions. A
total of 174 nodules were identified at least by one of the four radiologists, 146 by at
least two, 121 by at least three and only 90 nodules were identified by all four
radiologists. The LIDC study indicates about 50% variation between the radiologists’
annotations. Figure 2.3 illustrates the agreed results between four radiologists in the

LIDC for nodule detection.

RIUR2UR3UR4=174

R1NR2=146

0

R1nR2NR3NR4=90

Figure 2.3: Illustration of variation between radiologists for nodule identification
in the LIDC study (van Ginneken et al., 2010); R; (i=1, ..., 4) represents one of four
radiologists
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In another study reported in (Dehmeshki et al., 2003), radiologists' performance were
compared with or without using computer assisted detection (CAD) software for
pulmonary nodule detection in CT scan images. The CAD system applied image
processing and classification techniques. Three radiologists agreed that 34 of the 42
scans were abnormal (in only one scan) and the remaining 8 scans were considered as
normal. In total, 207 nodules were identified at least by one of three radiologists, and
only 49 nodules were identified by all three radiologists. This study reported a very high
variability for nodule detection by the three radiologists as shown in Figure 2.4; 76% of
the nodules were undetected by at least one radiologist. The size of nodules missed by
the radiologists varied as follows: 0-5 mm (61 nodules), 5-10 mm (84 nodules), 10-20
mm (11nodules) and >20 mm (2 nodules). In comparison, the accuracy of the CAD
results were promising and consistent for detection of the nodules; 100% of pulmonary
nodules were identified by at least one radiologist. Furthermore, some potential nodules
were detected by the image classification techniques which were not identified by the
radiologists. This study clears the role of the CAD systems for analysis of the medical

images for tackling the inter-uncertainty issue.

RIUR2UR3UR4=207

R1NR2nNR3=49

R3

Figure 2.4: illustration of variation between radiologists for nodule identification
between three radiologists in (Dehmeshki ef al., 2003)
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In a study reported for assessment of the performance of ten radiologists without
computed topographic colonography CAD and with the CAD after two months, the CT
colonography images of 60 out of 107 patients with 142 polyps were investigated
(Halligan et al., 2006). Using CAD, 41 patients with polyps were identified and the
radiologists’ sensitivity per patient increased to 70% (an average of 12 more polyps)
and the interpretation times decreased significantly. This example shows that

colonography CAD can significantly decreases intra- observer variability.

2.5 Uncertainty in words perception from different experts point of
view

Expert knowl\edge is usually expressed using linguistic terms. The extracted
knowledge is based on a fusion between experts. Different experts with different levels
of expertise may have a different diagnosis for a common clinical case (John and Lake,
2001) (e.g., classify an object in an image). Moreover, the experts’ diagnosis is
associated with a confidence score for different linguistic terms. However, the
perception of linguistic words associated to confidence scores may vary from various
expert’s point of view. This is known as a word perception problem.
For illustration, in the study reported in (Roos et al., 2010), readers interpreted CT
images to identify all pulmonary nodules with diameter equal and greater than 3 mm.
The readers classify objects with confidence rating from 1 to 5 (1 for very unlikely to be
a nodule; 2 for unlikely to be a nodule; 3 for possibly a nodule; 4 for probably a nodule;
5 for definitely a nodule). However, each reader’s perception of the meaning of the
linguistic terms associated with the confidence rating may be different. Another study
reported in (John and Lake, 2001) and (Wills et al., 2003) models the clinical intuition
of nursing staff in terms of linguistic terms. In this work, a patient was categorized in
five groupé: stable, becoming stable, potentially unstable, and critically ill. Lower and
upper probable and possible values are assigned to each of five categories. The lower
and upper bounds for the critically ill category is depicted in Figure 2.5. These valucs
are elicited from a qualified nurse while it may change from one nurse to another. By
preparing a survey of lower and upper bound from the perspective of different nurses,
the mean and variance for each of the five categories are estimated. The nurses were

asked to define the possible starting and ending values for each category such as
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“critically ill". As shown in Figure 2.5, the defined starting interval from the point of
view of different nurses is [7.44 8.72] and the ending interval was defined as [9.72
10.44]. For example for at value equal to 9.26 instead of a function value, we have an

interval. This is showing an example of uncertainty in the meaning of the words.

l
D>

N
t

Membership value _,

744 8.72 98.260 8.72 1044
Possible values

Figure 2.5: A trapezoidal membership function for “critically ill” category (Wills
et al., 2003)

2.6 Uncertainty in non-stationary features

A non-stationary feature has statistical attribute (mean and variance parameters) that
changes by varying time or space (Zeng and Liu, 2007), and (Priestley, 1988). The
development of a disease is a dyﬁamic process over time and has a non-stationary
feature; it begins at an early stage and continues to an end stage. A patient passes the
symptom information to the expert using imprecise linguistic terms. A clinician makes
the preliminary diagnosis based on the vague knowledge. There is also the possibility of
confusion in an expert diagnosis because of similarities of the different symptoms of the
discases in the early stages (John and Innocent, 2005). In a model proposcd for
modelling uncertainty in clinical diagn-osis, (John and Innocent, 2005), the stage of the
disease is estimated using duration constraints of the discasc and rclated symptoms.
Figure 2.6 (Innocent and John, 2004) indicates the relation between support
(compatibility degree to which a diagnosis follows a related evidence) and the
symptoms in the first few days of appearance the disease of influenza and scarlet fever.
These symptoms represent what are expected for influenza diseas, i.e., fever, headache,

vertigo, back pain, muscle pains, collapse, cough, running eyes and running nose and
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sore throat. The slope of influenza disease is greater than scarlet fever, which indicates
faster growth of the influenza symptoms compared to the other disease symptoms, but
in the first two days, it is actually difficult to distinguish between these two diseases

according to their symptoms.

100 ' ' ' ' p Influenza
%0 O 2days
80 o 3days
70 ¢ 4days
60

SllppOl‘t % 50 s
01 | Scarlet fever
30 2 days
| 201 | - . 3 days
10 + & 4days

% 2 4 6 s 10 12

Syrmptom index

Figure 2.6: Confusion in symptoms duration of the influenza and scarlet fever
(Innocent and John, 2004)

2.7 Uncertainty in image processing techniques

One of the common characteristics of information derived from an imaging device is
its imperfection. The acquired image can be inconsistent, and incomplete, According to
the resolution of an imaging technology, a voxel (3D pixel) in an image may belong to
more than one class while object classification techniques may assign it to only one
class. Furthermore, the noise in an image affects the accuracy of the image processing
results. In the study reported in (Dehmeshki et al., 2008), for segmentation of the
pulmonary nodules in the CT images, according to the intensity, each pixel is assigned
to one of the three classes: foreground, background, or partial volume or a combination
of partial volume and the two other classes whilst the distribution of each class is
considered as Gaussian (sce Figure 2.7). The overlapped arcas in Figure 2.7 are

somewhere the uncertainty in edge detection takes place.
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Figure 2.7: Modeling of three classes for a lung phantom in (Dehmeshki ef al., 2008)

For segmentation of the pulmonary nodules in a CT image of lung in (Dehmeshki et
al., 2008), a region growing in combination with a fuzzy technique is employed. The
seed point is randomly selected in the nodule region. For a nodule attached to the blood
vessel, Figure 2.8 illustrates how the selected seed point affects on the region growing
result. A randomly selected seed point has leakage into the blood vessel (see Figure 2.8
(b). However another seed ponit selected by automatic region growing (red circle in
Figure 2.8 (c)) detects the nodule but there is uncertainties in the border of object where
it is attached to blood vessel. In most CAD applications, radiologists usually select seed
points. This fact makes the segmentation process more complicated because of human

errors (such as eyestrain).

(2) (b) (c)

Figure 2.8: The effect of a seed point placed on a nodule attached to blood vessel;
(a) Original image (b) A random seed is selected (shown with plus), (¢) An
optimum seed is selected (shown with a circle) (Dehmeshki ef al., 2008)
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In a CMIAS, a 3D object is constructed using 2D slices (Figure 2.9) and the relation
between different parts of objects in several slices. The accuracy of the object detection
result is affected by slice thickness; i.e. some part of the important information in small
objects, such as a nodule with less than 2mm diameter or a blood vessel may be

ignored. Moreover, this complicated task is usually associated with the PVE problem

_us
Slice z

I i Slice z+1

Figure 2.9: A candidate nodule in three adjacent slices (Gomathi and Thangaraj,
2010)

and missing slices.

Consequently, a major hidden barrier to better performance of a CAD application
results from imprecision and vaguencss associated with image analysis (sce Figure 1.1);
such as uncertainty in the gray level, texture, contours, edge detection, converting a 3D

image to a 2D image, and the relationship between two segments of an image.

2.8 Uncertainty in object classification
The objective of a classification system for a CMIAS such as a CAD system is to
assign the candidate objects in an image to their corresponding classes. One of the

common issucs in the design of a classificr for a CAD is the lack of consideration of the
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effect of uncertainty issues (discussed in Sections 2.1 to 2.7). A reliable classification is
expected to address and model vagueness and imprecision in the following ways:

1. Input of classifier: this means features extracted from processed objects in an
image, and mathematical modelling of them, and inter- and intra- uncertainties in
the training datasets

2. Design of the classifier: select an appropriate classification method to cope with
uncertainties for assigning an object to a class

3. Output decision: define the degree of certainty of the classifier output. Ignoring
uncertainty issues results in a poor performance and inaccurate results.

The main aim of this research is to manage the accumulative effect of uncertainty

issues in the design of a classification for a CAD application.

2.9 Probability theory and fuzzy set theory for modeling uncertainty

Probability represents the likelihood of the occurrence of an event. The Bayesian
inference model provides reasoning based on probability of events. For example, the
symptom of high fever in a patient maybe cause of flu, cold, malaria, Scarlet fever or
other diseases. A probability can be assigned to each of these possibilities given the
fever symptom. Using the Bayes’ theorem (Box and Tiao, 1992), the conditional
probability of a random patient has flu, P(A4), knowing the probability that a patient has

high fever P(B) is calculated using the following equation:

P(A and B)

5 E) 2.1)

P(A|B) =

where P(B) and P(Aand B) are known, and P(Aand B) = P(B|A) P(A). If the
knowledge about P(A and B) and P(B) are certainly either available or straight forward
to calculate, the probability theory can lead to a certain results, otherwise, fuzzy set
theory can help. An example of Such knowledge is “a patient suffering from flu shows
60% of all cases a high fever”. However, there are uncertainties in measuring
probability of a patient with 38.5°C (as a case of high fever) and the probability may
vary from different experts’ point of view. Fuzzy set theory takes advantage of

membership functions to define a degree to which an object belongs to a linguistic
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fuzzy set with un-sharp boundaries. Fuzzy logic provides an inference model for
reasoning with linguistic words which mimics human reasoning in vague environments.
For the above example, the high fever can be modeled using fuzzy sets of “Low”,
“Medium” and “High” fever. Then 38.5°C can belong to one or more than one fuzzy set

with different degree of memberships (Figure 2.10).

Membership

t
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i
37° 38° 39° 43°
Temperature
Figure 2.10: An example of temperature fuzzy set

One can conclude that a combination of fuzzy and probabilistic approaches can
bridge the gap between fuzzy and probabilistic methods for modelling uncertainties.
The fuzzy-probability hybrid approach takes advantages of both fuzzy and probability
techniques for modelling uncertainty (Ross, Booker and Parkinson, 2002). This research
takes advantages of fuzzy logic for modelling uncertainty sources in a CAD application.
It also utilizes probability techniques whenever they are required such as modelling

parameters of a membership function using a Gaussian distribution.

2.10 Summary

This chapter presented the uncertainty issues associated with a CMIAS such as CAD
application. This is the first time that the concept of uncertainty in a CAD application as
a medical image analysis tool is addressed and discussed in details. Different sources of
uncertainty were cxplained using examples of cither real medical image analysis or
CAD applications. Furthermore, it discussed probability and fuzzy set capabilities for
handling the problem of uncertainty in the systems. However, the focus of this study is
on fuzzy based approaches for modelling uncertainty but taking advantage of
probability methods whenever they are required, such as modelling the membership

function of fuzzy sets using Gaussian distribution properties. The next two chapters
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explain how fuzzy logic and its extension type-2 fuzzy logic are capable of capturing

and modelling uncertainties discussed in this chapter for classification.
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Chapter 3: Fuzzy Logic for Rule-based Pattern
Classification

This chapter presents the importance and role of fuzzy logic for handling the problem of
uncertainty in rule-based classification, The theory and concepts of ordinary fuzzy logic
as a rule-based system and its components are reviewed. The fuzzy inference model is
illustrated for handling the problem of uncertainty for the nodule classification in a lung
CAD application. It also discusses uncertainty issues which are not modelled using
ordinary fuzzy sets and introduces type-2 fuzzy set for managing the remaining

uncertainty issues.

3.1 Introduction

There are various approaches for pattern classification. The main taxonomy can be
defined as (Kandel and Friedman, 1999): distance function and clustering, statistical
and syntactic, neural networks (Bishop, 1995; Meyer-Bacse, 2004), and fuzzy rule-
based approaches. Furthermore, there are combinations of these approaches such as
fuzzy-neural networks (Meyer-Baese, 2004; Abe, 2001; Pal and Mitra, 1999), fuzzy
clustering (Kerre and Nachtegael, 2000). Among them, the fuzzy rule-based approach
provides the most comprehensive rule sct for user interaction. The capability of
handling uncertainty in classification in addition to high intefpretability of the fuzzy
rules has been the focus of this study for the problem of object classification in a
medical imaging application such as CAD.

Zadch introduced the theory of fuzzy sets in 1965 (Zadch, 1965). In a fuzzy logic, an

event can belong to more than one sample space with un-sharp boundaries. Main
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useful features of the fuzzy set for tackling uncertainty issues are as follows (Chi, Yan
and Pham, 1996):
1. Fuzzy logic models uncertainty sources of imprecise and vague data
2. Models uncertainty in classification problems with un-sharp boundaries between
classes
3. Fuzzy reasoning mimics an expert reasoning model based on subjective
knowledge and vague linguistic terms
4. Provides capabilities of handling uncertainty in linguistic term in fuzzy sets
5. In the circumstances of the vague and inadequate data where it is difficult to
define randomness of the data, fuzzy sets are applicable

6. Models mathematically ill-defined applications

The superior ability of fuzzy set theory for handling uncertainty sources is briefly

quoted by Zadeh (Zadeh, 2000) and cited in (Bezdek and Pal, 1992):

“The conventional approaches to the analysis of large-scale systems were ineffective in
dealing with systems that are complex and mathematically ill-defined, as are most of the
real-world systems in which human perception and intuitive judgments play important
roles”,

Bezdek and Pal (Bezdek and Pal, 1992) collected seminal published papers on the
theory and application of pattern recognition based on fuzzy sets in their book.
According to their work, the most popular applied fuzzy methods for pattern recognition
are: the use of the fuzzy membership function, fuzzy clustering, fuzzy entropy, fuzzy
decision tree, fuzzy measure and fuzzy integral, and fuzzy rule-based systems. Among
them, fuzzy rule-based classifiers are more analogous to the model of human reasoning
using imprecise and vague information (Ishibuchi and Nojima, 2008). Furthermore, a
fuzzy rule-based classifier is a practical classificr with high interpretability (Ishibuchi
and Nojima, 2008; Arakawa, Kerre and Nachtegael, 2000). The linguistic terms in a
fuzzy rule-based classifier provide the most comprchensive rule-based modcl for
environments with the need for user interaction such as medical applications. This is
one of the reason that the focus of this study is on fuzzy rule-based classification. In a
fuzzy rule-based classifier, rules show expert’s knowledge and are expressed using

linguistic terms, The general form of If-Then rules is: If <antecedent> Then
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<Consequent>, e.g. “If the object’s shape in the lung is round and the object is bright
then it is likely to be a nodule”.

Fuzzy logic as a rule-based classifier is approximately equal to computing with words
in which reasoning is performed using vague, and imprecise words instead of numbers
(Zadeh, 1994). The nature of computing with words has made fuzzy logic significantly
different in reasoning in comparison to other methods such as predicate logic, Bayes
theory, probability theory and neural network theory. There is some argument about the
tradeoffs between interpretability and accuracy in fuzzy rule-based systems (Casillas,
2003; Ishibuchi and Nojima, 2007). Hybrid learning techniques are frequently
incorporated into fuzzy rule-based system for improving accuracy. Examples of such a
systems are Neuro-fuzzy (Meyer-Baese, 2004; Abe, 2001; Pal and Mitra, 1999) and
genetic fuzzy (Herrera, 2008; Casillas et al., 2005) systems which take advantage of
neural network learning techniques and the global optimization properties of
evolutionary computing, respectively. This study takes advantage of learning methods
to improve the trade-off between accuracy and interpretability in the classification

through fuzzy logic.

3.2 Fuzzy logic

Fuzzy logic has been introduced to manage uncertainty in numerical information
(Zadeh, 1965). Fuzzy representation of the data structures using linguistic terms is a
very interpretable and a comprehensive way to model intuitive and vague knowledge of
the experts. Fuzzy set A in universe of discourse X can be defined as a set of ordered
pairs of element x in X and the grade of membership of x,u,(x), to fuzzy set A

(Zadeh, 1965), i.e.,
A = {(xna(0)x € X) @31)

where the two dimensional membership function g, (x) is a crisp value between 0 and 1
for all x € X. Linguistic terms are modelled using fuzzy scts. One of the paramctcrs in
the design of a fuizy logic is the number of fuzzy sets associated to a linguistic term.
For illustration purpose, the linguistic variable “sphericity” can bc represented with

three terms ("weak sphere”, "moderate sphere”, and "strong sphere"), see Figure 3.1,
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Figure 3.1: Membership function corresponding to linguistic terms

Fuzzy logic as a soft computing method mimics cognitive reasoning of the human
mind based on linguistic terms for performing tasks in a natural environments. Zadeh
(Zadeh, 1994) defined fuzzy logic as a logical system that helps formalizing
approximate reasoning. He also introduced it as a branch of fuzzy set theory which
includes concepts of linguistic variables, fuzzy if-then rules, fuzzy quantifier and
reasoning models. Zadeh clarified misleading arguments about a fuzzy logic. He stated
that FL as a precise logic of imprecision and approximate reasoning which is not fuzzy

in nature.

The main capabilities of fuzzy logic are described by Zadeh (Zadeh, 2008) as

“ ... Fuzzy logic may be viewed as an attempt at formalization/mechanization of two
remarkable human capabilities. First, the capability to converse, reason and make
rational decisions in an environment of imprecision, uncertainty, incompleteness of
information, conflicting information, partiality of truth and partiality of possibility — in
short, in an environment of imperfect information. And second, the capability to
perform a wide variety of physical and mental tasks without any measurements and any

computations.”
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Fuzzy logic (FL) defines the general architecture for designing a classifier with
linguistic terms (Figure 3.2). There are four major components in a fuzzy logic
architecture (Cazarez-Castro, Aguilar and Castillo, 2010). 1) fuzzifier, 2) inference
engine, 3) rules, and 4) defuzzifier. The rest of this section briefly describes the role of

each component in a FL.

P LR R R R LR L L L R R LR L L LR R

Crisp ! . . v C
—-———p—h Fuzzifier Defuzzifier rsp
Rules
Inputs Y Outputs

Inference

Fuzzy Input Sets engine Fuzzy Output Scts

---------------------------------------------------

Figure 3.2: Type-1 Fuzzy Logic (FL)

3.3 Fuzzifier

In the fuzzification process, a membership function is assigned to each input value x;
in universe of discourse X (all possible values for that variable). For an n-dimensional

input X = (x4, x5, ..,%,), this component assigns a membership function Hay (x) 10

each input value x;.

3.4 Different types of rules in a FL

In a fuzzy logic with n inputs x = (x4, X, ..., X,) and one output y € Y, a general

form of rule is,
Rule R, : If x, is A, and ...and x, is A;, theny is B;

where i=1,..,r is the number of rules, A‘,-I, ..,Ain arc antccedent fuzzy scts

associated to linguistic terms, y is an output variable and B is a conscquent fuzzy set.
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Various types of rules have been proposed in the literature. Mendel (Mendel, 2001)

has proposed six categories of rules as follows:

Incomplete rules: rules for which antecedent is a subset of the whole input sets. e.g.,

Rule R; : If x, is Ay and ...and x,, is A;, then y is B;

Compare to the general form of the rules, a subset of all antecedent fuzzy sets are

involved in this type of rule.

Mixed Rules: the rules with a mixture of “and” and “or “connectives.

Rule Rl ‘

If (xyis Ajy and ...and xp, is Ajm) O7 (Xm41 IS Ajm4y and ...and X, is Ay, then y is By

We can split mixed rules into several "and" rules.

Fuzzy statement: some rules without any antecedent are called a fuzzy statement e.g., “y

is high”. This type of rule is an extreme type of incomplete rule.

Comparative rule: some rule are in the following form, e.g. The brighter the x; the

greater the y. This form of rules can be converted to the standard for of If-then rules,

€.g.,

Rule R; : If x, is bright then y is big

where bright and big are fuzzy sets. .
Unless rules: rules sometimes are expressed using the “unless” phrasc, ¢.g.,
y is abnormal unless xy is Ay and ...and x, is Ay

This type of rule can be converted to standard form using logical operations, e.g.,

Ifnot (x4 is Ay and ..and x, is A;;,) then y is abnormal
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Quantifier rule: Some rules include “some” or “all” phrases. This form of rules is called
a quantifier rule and can be reformed to a standard form of rule. For rules with “some”
quantifier, union is applied to the antecedent or consequent and for rules with the “all”
quantifier intersection is applied to the antecedent or consequent which "all" applies.
Rules can be categorized based on their consequent type. There are three common types
of rules based on their consequent in a fuzzy rule-based system, as cited in (Mendel,
2001):

For a given x = (x;,x;,...,X,) in an n-dimensional pattern space, the ith fuzzy rule
(R;) can be one of the following types:

1. Mamdani rule type (Mamdani, 1977):

Rule R; : If x, is A;; and ...and x,, is A;, theny = B,

where A4, ..., A;, are antecedent fuzzy sets and B; is consequent fuzzy set associated to
linguistic terms, y is an output variable, and B, is a consequent fuzzy set. An example of

this type is “If x, is small and x, is small then y is large”

2. Takagi and Sugeno rule type with a linear function in its consequent (Takagi and

Sugeno, 1985):
Rule R, : If x, is Ajy and ...and x,, is Ay, then y = fi(x)

where Ay, ..., Aj, are antecedent fuzzy sets associated to linguistic terms, y is an output
variable, and f;(x) = by + bjyxy + +*+ byn X, and byis - a real number(j =
1,2,..,n). It is clear that because of the lincar function in conscquent part of rule, this

type of rule has less interpretability than previous type. An example of a fuzzy rule of

this type is “If x; is small and x; is small then y=0.2+0.5x;-0.3x,".

There is also a simplified version of Takagi-Surgeon fuzzy rules as follows:

Rule R, :If x,is Ay and ...and x, is A;n theny = b,
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where b; is a consequent real number. One can consider this simplified type as another
version of Mamdani’s rule type (Mamdani, 1977). Because of the difficulty in
interpretation of the consequent real number, this type of rule is not very interpretable.

An example of this type is If x; is small and x;is small then y=0.25

3. Ishibuchi rule type with a class label, C;, in the consequent part (Ishibuchi,
Nakashima and Murata, 1996) :

Rule R;: If x4 is Ajy and ...and x,, is A;, then Class C;

where A;4, ..., Ajn are antecedent fuzzy sets associated to linguistic terms. There is also
another extension of this type which assigns each rule a weight, W, or a soundness

degree which shows the degree of certainty of the rule (Chi, Yan and Pham, 1996):
Rule Ry : If x, is A;; and ...and x, is Ay, then Class C; with W,
An example of this rule type is: If x; is small and x; is small then Class 2 with 0.75.

4. Fuzzy rules with a certainty degree for all classes in the consequent (Cordén, del
Jesus and Herrera, 1999). This type of rule shows a membership of pattern to different

classes in its consequent part:
Rule R; : If x, is Aj; and ...and x, is A;, then 1y, .. ,Tiy

where M is the number of classes and r;; shows the membership degree of the given

pattern x to class ;.

3.5 Fuzzy inference engine

An inference engine uses fuzzy logic to combine rules. Each rule in a fuzzy logic is a
relation between input sets and output fuzzy set. This relation maps input fuzzy sets

(A; X ... x A,) in the antecedent to output fuzzy sct B in the consequent as follows:
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R;: Ay X .. X Ay, = B =F, - B, 3.2)

The membership function of R; for input x = (x4, x5, ..., x,) is described as ug, (x,y) as

follows:

Ur, (%, ¥) = tp,o5, (6, Y) = Uay, x .x Ay -8B, (5 Y)
= Pai, x .x A (X) * g, (V)
? ”Au(xl) * % ﬂA;n(xn) * qu(y)

= [T;'-)'-l ﬂAu(xj)] * Up; (}') (3.3)

where multiple antecedents are connected using t-norm (T); * denotes t-norm operator.

For a given input vector I; = (xj1,Xj2, ..., Xja), the compositional rule of inference
determines the fuzzy set C = Ij(x) e R;(x,y), where odenotes the compositional

operator, Figure 3.3 illustrates the fuzzy inference process.

HE-B, (xo y)

I 1c(y)

Inference

v

Engine

Figure 3.3: Type-1 fuzzy inference engine

The Mamdani inference model is the most commonly used method for fuzzy logic
systems (Mendel, 2001). This inference model applies min as the rule implication

operator and max-min as the rule composition opcrator as,

uc(¥) = tp o, () = MaXjay [u:,,, (%) * bppoom (X, y)]

= MaXj=1.n [min(ﬂlx] (x)), g, (%, }’) )] (34

The output of the inference engine is a fuzzy set C as,
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= I, o R (3.5)

where r is number of rules.

3.6 Fuzzy set operations

Set operation on ordinary sets can be extended to fuzzy sets. The set operations on
fuzzy sets are computed using t-norm (triangular norm) or t-conorm (triangular co-
norm) operators. The t-norm is a binary operator (*) on [0 1] which satisfies the
following properties (Hajek, 1998):

1) Commutative,a *b = b xa

2) Associative, (a * b) *c = a* (b *¢c)

3) Monotonic, (a*b) < (c*d)ifa<candb<d

4) Boundary conditions, (0 *a) = 0,and(a* 1) =a

The t-conorm operator must satisfy the same conditions as t-norm except unit element,
i.e., (a*1) =a. The most common form of t-norm operation is product t-norm or
minimum t-norm. The common t-conorm operations are summation and maximum.

Intersection, union and complement of two fuzzy set A and B are defined as follows

(Zadeh, 1965):

Intersection:
" (A n B)(x) = min [A(x),B(x)] (3.6)
Union:
(A U B)(x) = max[A(x),B(x)] (3.7)
Complement.
A'(x) = 1 — A(x), and B'(x) = 1 — B(x) (3.8)

Figure 3.4 demonstrates examples of intersection, union and operation on two fuzzy sets

A and B.
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Figure 3.4: (a) Fuzzy sets A and B (b) Union (A U B) (c) Intersection A N B
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3.7 Example of fuzzy logic inference

For illustration of the inference engine process, consider a fuzzy logic for lung
nodule detection with two input fuzzy sets of sphericity and contrast. As shown in
Figure 3.5, there are three Mamdani fuzzy rules in the system.Each row shows a
linguistic rule and related fuzzy sets invoved in that. Each column is related to one of
the input features. For example, column one is related to fuzzy sets of sphericity feature
of candidate objects which is modelled using three linguistic terms (Weak, Moderate
and Strong). Last column is the output fuzzy set whcich can be modeled using three

linguistic fuzzy sets ("Probably not nodule", "Likely nodule", "very likely nodule").

A / y

1. If (Sphericity is Strong) and (Contrast is High) then (Object is VeryLikelyNodule)

D A A

2. If (Sphericity is Weak) and (Contrast is Mid) then (Object is LikelyNodule)

\ A

1 -500 200

3. If (Sphericity is Weak) and (Contrast is Low) then (Object is ProbablyNotNodule)

Figure 3.5: Rules and antecedent fuzzy sets

3.8 Defuzzification

In the defuzzification process, a crisp output is generated from the fuzzy set obtained
after rule composition. Various defuzzification methods are proposed based on
computational simplicity criterion such as: maximum, height, mean of maximum, centre
of sum, centre of sets, and centroid (Pham and Castellani, 2002). The centroid
defuzzifier has been widely used in fuzzy logic applications and has been utilized in this

study.
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In the centroid defuzzifier (Mendel, 2001), all output fuzzy sets resulting in fuzzy

implication are combined using union as follows,

T

C= C, (3.9)
1

=

where uc, () is the membership function of the ith rule. The centroid of the union of the

output fuzzy sets is as,

u (x) _ Zi\;l Yi .u'Ci (yl)
Centroid ?:1 !qu (yl)

(3.10)

In this equation, the fuzzy output C is discretized into N points. The centroid
defuzzification is a function of the sample input x, i.e., its value varies for different
input vectors.

Figure 3.6 illustrates the defuzzification process using the centroid method for the
nodule classification problem with three linguistic rules (in Figure 3.5). Each row in this
figure shows a fuzzy rule and membership function of the corresponding linguistic
fuzzy set in the antecedent part of the rule and each column shows a feature in the input

set.
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| Class = 0.629
=\
/ |
1 I
.-/ .......... —-c:’f:‘f_ med e I‘ P
)
A — __.__pll
2 E o e - - e . e e _T\___ e ) : -
A | ik 1
e i |
\ ‘ 1
3 U - - \ e Sk
k S A —— - -p v
P 2 Y

0 1 -500 200

4. Fuzzy

compjosition

5. Defuzzificatiof ] i
(Centroid) 0 Upion)

Figure 3.6: Inference engine in a type-1 fuzzy logic system
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3.9 Remaining uncertainty issues in an ordinary fuzzy logic

Despite the advantages of ordinary fuzzy sets for modelling uncertainty in comparison

to the conventional deterministic methods, some sources of uncertainty still remain

which require more consideration. This section explains these uncertainty issues and

introduces the method presented to manage them.

The main sources of uncertainty in a FLS are described by Mendel (Mendel,‘ 2001) as

follows:

1.

Uncertainty in the meaning of the words which are linguistic terms in the rules:
The concept of words means different things to different people may incorporate
some sources of uncertainty in a fuzzy logic system. This issue is related to
imprecise boundaries of fuzzy sets (Mendel, 2001). For illustration, radiologists
usually classify objects in lung CT images with a confidence rating from 1 to §
(1 for very unlikely to be a nodule; 2 for unlikely to be a nodule; 3 for possibly a
nodule; 4 for probably a nodule; 5 for definitely a nodule). However, each
radiologist's perception from the meaning of these linguistic terms may be
different.

Uncertainty in the consequent of the rule: The rules consequents are usually
defined by experts, by data mining techniques, or from data. Different experts,
either a person or a system) with different levels of expertise may make different
decisions. The histogram of the possibilities of the consequent of the rule from
various experts point of view can represent this type of uncertainty and the
conflict between them. For example, for the lung nodule classification problem,
different radiologists may have different diagnosis for the same candidate object
in the lung CT images related to their expertise and observations.

Uncertainty in the input measures of the system: The input of a FLS consists of
some measures which are the input vector of the features of an object. These
measures can be obtained cither from the result of the mathematical methods
associated with a computational error or mcasurcment instruments with a
specific level of precision and error. Moreover, measurements may be affected
by noise. These imprecise and imperfect measurements as inputs incorporate
uncertainties in a FL. For illustration of this problem, for lung nodule
classification, sphericity is a complex feature of a candidate object which can be

measured using different mathematical models such as shape index and dot
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enhancement (Ye et al., 2009). However, cach metric produces a different
number between 0 and 1.
Furthermore, a FL may have some parameters which are required to estimate and
tune. One of the common methods for doing this uses a training set and applies
learning and tuning techniques. The training set may include measured input-output
pairs or linguistic terms expressed by experts. Moreover, learning techniques for
tuning and estimating a FL and its parameters suffer from imprecise and imperfect

measurements associated with the abovementioned sources of uncertainty.

A type-2 fuzzy set (T2FS) has the potential to overcome uncertainty issues in
ordinary type-1 fuzzy sets (Mendel, 2001). Type-1 fuzzy set theory aims at capturing
uncertainty about words by assigning a membership function to words. Once the
membership function is defined all the uncertainties about the word disappear. On the
other hand, T2FS main contribution is to model uncertainties in the type-1 membership
function by blurring the boundaries of the membership function. This blurred arca
creates a bounded region which is called the footprint of uncertainty (FOU). However,
the membership function of a type-2 fuzzy set is precise but the FOU provides a degree

of freedom for managing the uncertainty, see Figure 3.7.

Membership Function

Figure 3.7: Footprint of uncertainty (FOU) in a type-2 fuzzy sct

Uncertainty in the consequent of the rules can be managed by modelling the histogram

of the possibilities of the consequent of the rule from various experts point of view
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through the FOU of a type-2 fuzzy set. Figure 3.8 illustrates how the FOU is

constructed where there are variations between experts’ decisions or measurement

results.
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Figure 3.8: Modeling uncertainty in a rule consequent

Uncertainty in the measurement techniques which are latent in the training set can be
managed using fuzzy sets. Both type-1 and type-2 fuzzy sets are able to capture
uncertainties in the measurements of the applied method. Although, applying different
methods (mathematical techniques) with different degrees of precision for the same
feature may result in different measures, the histogram of the possibilities of the

measurement results can be modelled using type-2 fuzzy membership functions.

3.10 Summary

This chapter presented the importance of fuzzy logic for handling the problem of
uncertainty in rule-based classification. The architecture of a FL. and its components
were explained using theory and concepts of ordinary fuzzy sets. The fuzzy reasoning
model was illustrated for handling the problem of uncertainty for the nodule
classification of a lung CAD application. Lastly, remaining uncertainty issues in a FL
were discussed and illustrated for the nodule classification problem using a FL. Type-2
fuzzy set potential for managing the remaining uncertainty issues in type-1 FL were
explained. The next chapter provides an overview of the type-2 fuzzy sct concepts,

theory and type-2 fuzzy logic components, and the reasoning model. It also represents
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how type-2 FLS handles the problem of uncertainty for nodule classification in a CAD

application.
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Chapter 4: Type-2 Fuzzy Logic for Uncertain Rule
based Classification

This chapter presents the potential of fype-2 fuzzy sets for handling uncertainty issues in
rule-based classification. It provides an overview of the theory and concepts of type-2
fuzzy sets and interval type-2 fuzzy set (its practical extension) which has been the
focus of this study. The architecture of type-2 fuzzy logic as a rule-based classifier and
its main components are reviewed. Type-2 fuzzy set operations and inference model are
illustrated for handling the problem of uncertainty for the nodule classification problem

in a lung CAD application.

4.1 Introduction

Type-2 fuzzy sets (T2FSs) were introduced for uncertain environments where it is
even difficult to define the membership grade in the interval [0, 1]. T2FSs (an extension
of the fuzzy set) ar'c known as fuzzy-fuzzy sets in which membership function is not a
real number in [0, 1] and is itself a fuzzy set (Mendel, 2001). T2FSs were first
introduced by Zadeh in 1975 (Zadeh, 1975) and extended by Karnik and Mendel in
1998 (Karnik and Mendel, 1998). However, T2FSs and ordinary fuzzy scts were
emerged at the same time, theory and concepts of it has been extended along with its
application in the last decade. The reason for the late application of T2FS is that without
extension and application of ordinary type-1 sets, their limitations and challenges and
the need for T2FSs would not be clear. Type-2 fuzzy sets have the capabilitics to tackle
uncertainty issues that are not addressed by ordinary type-1 fuzzy sets (explained in
Chapter 3, Section 3.9). Type-2 fuzzy sets are beneficial for classification when dealing
with systems with the following properties (Zeng and Liu, 2007, Mendel and John,
2002; Mendel, 2001):
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1. Mathematically ill-defined features: when the values of the features in the

classification vary using different mathematical models or over time

R

of experts who may have different perceptions about the meaning of the words

. Non-stationary features: statistical properties of the features in system vary by time

3. Uncertainty between experts: knowledge extracted from linguistic terms of a group

4. Uncertainty in linguistic terms: expert knowledge expressed using linguistic terms

which are not even easily measurable by the same expert

Mendel introduced uncertain rule-based fuzzy logic systems in 2001(Mendel, 2001).

Historical development of T2FL and its applications are demonstrated in (John and

Coupland, 2006) and depicted in Figure 4.1. Type-2 fuzzy sets have been applied for

handling the problem of uncertainty in medical applications since 1998, The next

section provides an overview of the application of type-2 fuzzy sets for managing the

uncertainties in medical applications as well as image analysis technologies.
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Applications
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Reducuon s Delined Representation
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Computational
Complexity
[ Medical Apphications ]
I Sienal Processing I

Figure 4.1: Pictorial view of extension of type-2 fuzzy scts theory and applications
according to (John and Coupland, 20006)
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4.2 An overview of advances of type-2 fuzzy sets in medical imaging
applications
The capability of type-2 fuzzy sets for modelling uncertainty has been concentrated in
medical diagnosis as well as control and signal processing applications in recent years.
The T2FSs application in medical diagnosis has been taking place at the same time of
the extension of its theory and it is an open research area (John and Coupland, 2006).
The applications of T2FSs in medical imaging applications can be summarized in three
main areas: (1) medical diagnosis, (2) image enhancement and segmentation, and (3)
pattern recognition, which are briefly reviewed as follows:
1) Advances in medical diagnosis: this is one of the main areas applied the general
type-2 fuzzy logic where precision in diagnosis is more important than computational
complexity. This includes application of type-2 fuzzy sets for modelling intuitive and
subjective knowledge of expert and managing inter- and intra- uncertainties in
imaging applications. Innocent et. al. applied T2FSs to describe the medical
perception of lung scan images in order to predict the pulmonary emboli (Innocent ef
al., 2001). John et al. (John, Innocent and Barnes, 2000) designed a type-2 fuzzy
logic for pre-processing of tibia radiographic images in a Neuro-fuzzy clustering
method. Ozen and Graibaldi designed a smart adaptive fuzzy expert system for
assessing the health of newborn baby using a type-2 fuzzy system for acid-base
balance in blood (Ozen and Garibaldi, 2003). Furthermore, they modelled the inter-
and intra- expert variability found in the decision making process using a type-2
fuzzy expert system (Garibaldi and Ozen, 2007). John and Lake (John and Lake,
2001) used type-2 fuzzy sets to model the clinical intuition of nursing staff in terms
of linguistic terms. John and Innocent (Innocent and John, 2004) proposed computer
aided fuzzy medical diagnosis for modelling uncertainty in medical diagnosis and
defining the relation between symptom strength and discasc using type-2 fuzzy rules
(John and Innocent, 2005; Innocent and John, 2004) . Lascio and Nappi applied type-
2 fuzzy sets for modelling differential of the medical diagnosis through' linguistic
terms related to compatibility of disease and symptoms (Di Lascio, Gisolfi and
Nappi, 2005). Recently, Lee et. al. proposed an ontology model based on interval
type-2 fuzzy sets for personal diabetic-diet recommendation(Lee, Wang and Hagras,

2010). They constructed an intelligent dict-recommendation agent based on type-2
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fuzzy sets, which is able to recommend a menu plan mechanism after diet validation

by experts.

2) Advances in imdge ’processing technologies: Castillo and Melin used T2FSs for
modelling uncertainty in edge detection (Castillo and Melin, 2008). Ensafi and
Tizhooshe introduced a type-2 fuzzy image contrast enhancement approach (Ensafi
and Tizhoosh, 2005). They shoWed that a type-Z fuzzy logic enhancement method
performs better than type-1 fuzzy | logic counterpart. Tizhoosh presented a
thresholding approach based on type-2 fuzzy sets and a measure of ultra-fuzziness to
quantify vagueness (Tizhoosh, 2005). He also proposed a global and a spatial type-2
fuzzy segmentation method (Tizhoosh, 2008).

3) Advances in pattern recognition: Zeng and Liu presented the state-of-the-art of type-
2 pattern recognition and its success in solving the problem of fuzziness (Zeng and
Liu, 2007). According to their work, T2FS framework accounts for randomness in
the primary membership function of the feature. It also tackles the fuzziness of the
primary membership function using the secondary membership function.
Furthermore, the robustness of T2FSs for handling uncertainties in feature space was
compared to statistical pattern recognition such as Bayesian methods (Zeng and Liu,
2007). Their results reveal that T2FLS outperforms Bayesian methods and type-1
fuzzy logic for a Chinese character recognition problem. Mitchell proposed a

~ similarity measure for measuring compatibility between\tv'/o T2FSs and applied it to
the problem of automatic detection of welded structures in radiographic images
(Mitchell, 2005). Choi and Rhee proposed three methods for automatically defining
an internal type-2 membership function from patterns (Choi and Chung-Hoon Rhee,
2009). Their méthods are based on heuristic, histograms, and interval type-2 fuzzy C-
mean methods. Hidalgo et al. applied an interval type-2 fuzzy infcrcncc enginc as an
aggregation method ih a modular neural network with application to biometric
patterns. They stated that type-2 fuzzy intcgration shows bc;tcr results than type-1
integration method (Hidalgo, Castillo and Melin, 2008).
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4.3 Type-2 fuzzy set concepts

This section presents a brief overview of theory and concepts of type-2 fuzzy set. The
membership function of a type-1 fuzzy set is a crisp number, whereas in a type-2 fuzzy
set (T2FS), the MF is a subset of a fuzzy sct and is itself fuzzy. The membership
function of a type-2 fuzzy set A (see Figure 4.2), is defined by the function pz(x, u),
where 0 < pz(x,u) < 1 and is called the secondary membership function of a type-2
fuzzy set, where x € X (universe of discourse), andu € /, € [0,1] (Mendel, 2001).

Fuzzy set A is defined as (Mendel, 2001):

A= {((xw, pitrw)|vxeXx, vue), €[0,1]} (4.1)

u

0

Ha

Figure 4.2: Membership function of a type-2 fuzzy set at x = x’

A type-2 fuzzy set A can also be defined using the union over all possible paired values

of x and u as (Mendel, 2001),
/1=f f Wi w)/Gou) e €[0.1] (4.2)
xeX Juef, <[0,1]

where [[ is the union.

At each point x = x', a 2D plane with axes w and i (x, u) is called the vertical axes of
ni(x,u). A secondary membership function is a vertical slice of pz(x,u) at x = x" and
Vu €/, as (Mendel, 2001),
wilx = x',u) = pi(x') = for(u)/u wej €01] (4.3)
UE /¢

where 0 < f(u) < 1.
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The domain of a secondary membership function is called the primary membership
function of x and J, in (4.1) is a primary membership function atx = x', (see Figure
4.2). For simplicity pz(x,u) can be written as pz(x) (Mendel, 2001). The membership

function of an n-dimensional variable x = (xy, x5, ..., x,;) is as follows (Mendel, 2001):
i () =i, () Mg, ()0 Mg, () (4.4)

Example 1: Figure 4.3 illustrates the three-dimensional membership function of a type-
2 fuzzy set. In this example, X = {1,2,3,4,5}, U = {0,0.25,0.5.0.75,1},and ], =
{0,0.25,0.75}. For instance, at (x,u) = (1,0), pi(x,u) = 0.5, the primary membership
functions are «=0, (.25, and 0.75 and the sccondary membership function at x = 1 is

0.5/0+ 0.1/0.25+0.25/0.75.

A (x,u)

0.5
)I/| 2 13 4 5x
2 . il Ll

sl 1 )

[~ [
A
]1 12 13 j-l jﬁ

Figure 4.3: Vertical slices view of a type-2 fuzzy set

4.3.1 Footprint of uncertainty

Uncertainty in the primary membership function of a type-2 fuzzy set, A includes a
bounded and blurred region which is called the Footprint of Uncertainty (FOU). It can
be written as the union of all primary memberships as follows (Mendel, 2001 ):

Fou (A) = U Je (4.5)

XEX
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An upper and a lower membership function bounds the FOU of a type-2 fuzzy set (see
Figure 4.2). The upper membership function is a type-1 membership function:

iz (x) = FOU(A) Vx €X (4.6)

and the lower membership function is also a type-1 membership function:

wix) = FoUu(A) Vxex (4.7)

A type-2 membership function is called using the type of its secondary membership
function which can be any type such as Gaussian, trapezoidal, triangular or interval. For
example, if the type of secondary membership function is Gaussian, it is called
Gaussian type-2 membership function.

When the secondary membership functions are interval sets, we have interval type-2
membership function (Figure 4.4). It means the uncertainty is uniform along its
primary membership function and is equal to unity (Mendel, 2001):

fi(w) =1 Vue J, €[01] (4.8)

An interval type-2 membership function can be represented by left and right points of
its domain interval [[, ] or by its centre and spread [¢ — s, ¢ + s] where ¢ = (I + r)/2
and s = (r — 1)/2 (Mendel, 2001). Interval type-2 fuzzy sets are practical type-2 fuzzy

sets and have been frequently used because of their low computational complexity and

high simplicity. In an interval type-2 fuzzy set J, = |u,; (x), iz (x) l forVxeX.

ilfi(r)”

Figure 4.4: Interval type-2 secondary membership function
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A type-2 fuzzy set can be considered as a collection of type-2 fuzzy sets which are
embedded in the FOU. For a continuous universe of discourse X and U, an embedded

type-2 set A, is defined as follows (Mendel, 2001):
A= | [m@lm  wel, sU=[1) (4.9)
xi€X

Fuzzy set A, is embedded in set A, and there are uncountable numbers of embedded
sets. In an interval T2FLS, an embedded interval type-2 fuzzy set (IT2FS) A, has N

elements uy, uy, ..., uy with secondary membership equal to 1 as,
A= [ n/elm  wel, cU=[o1] (4.10)
xi€X

An embedded IT2FS A, is also represented using an embedded type-1 fuzzy set 4, , as

follows: ,
A, =1/4, (4.11)

This study takes the advantages of interval type-2 fuzzy sets to tackle the problem of
uncertainty in the training datasets. An interval type-2 fuzzy set with a Gaussian
primary inembership function is used for generating membership functions and rules in
Chapter S and 6. The following examples show how uncertainty in the dataset is

modelled through Gaussian IT2FSs.

Example 1: Gaussian type-2 primafy membership function

Gaussian primary membership functions arc onc of the frequently applied membership
functions in the majority of applications. The maximum likelihood of the measurements
in an input dataset approximately follows a normal distribution. However, the normality
of an fnput (x) in a training datasect can be investigated using statistical methods. In this
study, the normality of the input features for candidate lung nodules training dataset and
Wisconsin breast cancer diagnostic datasets were investigated using Jarque-Bera test

(Jarque and Bera, 1987) and "jbest" function in Matlab. A Gaussian primary
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membership function with fixed standard deviation o and uncertain mean in [y, m, | is

given by (Mendel, 2001):

i AR
wi(x) = exp[ - l(“ ‘) l m € [my,m,] (4.12)

2 a

Each value of m results in a different Gaussian membership function. The union of all
possible values of m € [my, m,] constructs the footprint of uncertainty for a Gaussian
type-2 membership function. As depicted in Figure 4.5, the shaded arca shows the

footprint of uncertainty.
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Figure 4.5: Gaussian primary membership function with fixed standard deviation
and uncertain mean

A Gaussian primary membership function with fixed meanm and uncertain standard

deviation o € [ay, 03] is given by (Mendel, 2001):

1i(x) =exp l - %(x;m)?] 0 € |0y, 0,] (4.13)

In a Gaussian primary membership function with fixed standard deviation and uncertain

mean, the upper bound function is as follows:
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e
exp[—%(x-—;-n—z)] x<m
B0 =41 m <x<m, (4.14)
-1 2
exp[—%(xat’) ] x>m,

The dashed line in Figure 4.5 shows the upper bound membership function. The lower

bound is as follows (Mendel, 2001):

exp[— %(x_;"‘)zl x< (m +my)/2
Hax) = (4.15)
exp [ - i(x_—:i)zl x> (my+my)/2

The solid line in Figure 4.5 shows the lower bound membership function.

Example 2: In a Gaussian primary membership function with fixed mean (m) and
uncertain standard deviation (oy,0,), the upper and lower bounds membership

functions are as follows (Mendel, 2001):

;(x) = exp [ - %(x ; m)z] (4.16)
2

wix) = expl— %(x;m)zl (4.17)
1

where a; < g,. The dashed line in Figure 4.6 shows the upper bound membership
function whilst the solid line shows the lower bound membership function.
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Figure 4.6: Lower bound and upper bound of a Gaussian primary membership
function
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The next section briefly provides an overview of the set theory operations on type-2
fuzzy sets as well as interval type-2 fuzzy sets. It also provides examples of applying

the operations on type-2 fuzzy sets.

4.4 Set theoretic operations on type-2 fuzzy sets

Zadeh presented extension principle for computing set operations on type-2 fuzzy
sets in which intersection, union and complement of type-1 fuzzy sets are extended to
type-2 fuzzy sets (Zadeh, 1975). Set operations for type-1 fuzzy set are computed using
minimum, product, maximum, and negation on crisp numbers while in type-2 fuzzy
sets, they are computed on the membership functions which are type-1 fuzzy sets. The
operations from f(Xy,%3, .., %) to f(Ay1,Axz) .., Axn) are transferred as follows

(Mendel, 2001);

f(AXI'AXZ’ "-:Axn) =
[ b ) o e () / fG ) (4:28)
x1€X1 Xn€Xn ’
Representation theorems: An interval type-2 fuzzy set with discrete X and U can be

represented as the union of all of the embedded interval type-2 fuzzy sets as (Mendel,

2001),

nA
A=) 4, (4.19)
i=1
where
N
Aoy = Z[l/ui]]/xj uy €Jy, S U=1[0,1] (4.20)
=
and
N
Ny = HM, (4.21)
i=1

where M; is the level of discritization of u;; for all N points, ;.

The join [I%, Ay, of interval type-2 fuzzy sets Ay,Ay,, . Ay, With domains
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[l;, 1) [l 2], oo s [l 7] is an interval type-2 fuzzy set with domain [([y V [ V.. V

L), (nV r, V..Vr)] where V is a maximum (Mendel, 2001).

The meet [I}.q Ay, of interval type-2 fuzzy sets Ay,Ay,,..,Ay, Wwith domains
(1) [l 7], .., [l 7] is an interval type-2 fuzzy set with domain [(I{ A I3 A .. A

[,), (n A 1y A... ATy)] where A is the product t-norm or minimum (Mendel, 2001).

~ Using Zadeh’s extension principle (Zadeh, 1975), the union, intersection and negation
of type-2 fuzzy sets A and B with the membership grades pz (x) and pg (x) for a
givenx, pz (x) = X fo(u;) and pg (x) = 3 g,(wj) are defined as follows (N. Karnik
and M. Mendel, 2001):

AUB & yuz,5(x) = pz(x) U pg (x)

= D" (A * g:(w))/ v ) (4.22)
LJ

For interval type-2 fuzzy sets A and B, union is defined as follows (Mendel, John and
Liu, 2006),
AUB=1/[j() vis @), T 00 V()] vxeX  (4.23)

The intersection of two type-2 fuzzy sets A and B is defined as follows (Mendel, John
and Liu, 2006) '
AnB o pznpx) = pz(x) N pg(x)

= D" () * g (W) i Awy) (4.24)
i

The intersection of two interval type-2 fuzzy sets A and B is:
ANB=1/[pa () Aps (D), B0 AT (D) ] YxeX  (4.25)
The complement of a type-2 fuzzy set 4 is given by:
el =m0 = i) /A -u) (4.26)

The complement of an interval type-2 fuzzy set A is as,
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A=1/{1- (), 1—pz(x) | vxeX (4.27)

where V represents the maximum t-conorm, A indicates product t-norm, and * is the t-
norm (minimum or product) and )’ indicates logical union. The operation Ll is join, M is
meet and ~ is negative (Mendel, John and Liu, 2006). For a continuum fuzzy set, the
operation is the same and the sum is replaced by an integral (Mendel, John and Liu,
2006). An example of the union and intersection of two type-2 fuzzy sets A and B is

shown in Figure 4.7
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Figure 4.7: Union and Intersection of type-2 fuzzy sets; (a) two type-2 fuzzy sets,
(b) union (¢) intersection

Example 1: To illustrate the details of set operations on interval type-2 fuzzy sels,
consider we are given two interval type-2 fuzzy scts with lower and upper bound values,

= {(1/0.1 + 1/0.3)/ 0.1 , (1/0.1 + 1/0.5)/ 0.2}, and B ={(1/0.1 + 1/0.3)/ 0.2, (1/0.5 +
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1/0.7)/ 0.4 , (1/0.1 + 1/0.4) / 0.6}. The lower and upper bound type-1 membership
functions are as follows:
ug (x) =(0.1/0.1)+(0.1/0.2)
- Rz(x) =(0.3/0.1) +(0.5/0.2)
pz (¥) = (0.1/02) +(0.5/0.4) + (0.1/0.6)
1z (x) =(0.3/0.2) +(0.7/0.4) + (0.4 / 0.6)

Example 2: Consider for an optional point x =0.2, the secondary membership
functions are pg (x) = (1/0.1 + 1/0.5), and pg (x) = (1/0.1 + 1/0.3). The intersection of
these two interval type-2 fuzzy sets using equation (4.24) is as follows:
Hing(x) = ng(x) N pg(x)
=[(1/0.1 + 1/0.5) N (1/0.1 + 1/0.3)]

_( 1A1 N 1A1 N 1A1 . 1/\1)
“\0.1A01 01A03 05A01 05A0.3

=1/0.1+1/0.1+1/0.1+1/0.3
=1/0.1+1/0.3

The intersection of these two interval type-2 fuzzy sets A and B using equation (4.25) is

as follows:
AnB = 1/[pa (x) Aug (x), Bz (x) Az (x) ]
=1/[0.1A0.1,05A0.3]=1/[0.1,0.3]

From the above result, pz, 5(x) = 1/0.1 + 1/0.3. The result of the general intersection
equation (4.24) and computing the intersection of IT2FSs using equation (4.25) are the
same and is the interval 1/ [0.1, 0.3]. This example illustrates how the computational

complexity decreases using IT2FS equations.

Example 3: For the same point x =0.2 and interval type-2 fuzzy sct in Examp‘lc 2, the
union of interval type-2 fuzzy sets A, and B from (4.23) is as follows:
AUB=1/[pa (@) Vs (), Tz () VA ()]
=1/[0.1v0.1,0.5v0.3] = 1/[0.1,0.5]
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The complement of interval type-2 fuzzy sets A using (4.27) is:
A=1/[1- @1- 16 ]
=1/[1-05, 1- 0.1] = 1/[0.5,0.9]
The next section gives an overview of the fuzzy reasoning and implications for type-2

fuzzy sets using fuzzy set operations explained in this section.

4.5 Type-2 fuzzy sets relation and implication

Rules in a type-2 FLS denote type-2 fuzzy relations between antecedent and
consequent fuziy sets. A rule can be represented as a fuzzy implication. The general
form of a rule in a T2FLS is considered as follows, which is a Mamdani’s rule type
(Mamdani, 1977) as, |

R, :If x; is A and ...and x,, is A, theny is G,
where 4;q, ..., A, are antecedent type-2 fuzzy sets and G is a consequent type-2 fuzzy
set, A;; € Aand G, € G, and A and G are type-2 fuzzy sets, and R; is the ith rule (i = ],
2, ..., M). By using Mamdani’s implication (Mendel, John and Liu, 2006), a type-2
fuzzy relation maps the input space X; X X, X ... X X, to the output space Y as follows:

Rilli.u XA'iz X e X lim - 6( (4.28)

Riigu XA'I'Z X .. XA'in"-’ 61 A'[ - 6( ' (4‘29)

The Cartesian product of n type-2 fuzzy sets, A;; X Aiz X . X App, is a type-2 fuzzy
set with the following fnembership function (Mendel, John and Liu, 2006):
Wiy i o g s Xn)
=, G P, () 1 g, () (4.30)

where N is the meect operation. A relation is presented using Cartesian product: thus,
rule R; is a relation between antecedent fuzzy sets A; X Aj; X .. X Aj, and the
consequent fuzzy set G; .The membership function of the rule Ry, ug (x,¥), is as

(Mendel, 2001; Mendel and John, 2002):
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KR, (X, Y) = WA w8, = Ml xAig %o x A= & (X0 Y)
= WAy xAjp %o x Ay () N e, ()
= Mg, (x) N opg, (x2) N pe, ()
= [Nfo1 ka, ()] 1 pe, ) (4.31)

where the meet operation, M, is either the minimum or product t-norms. For a given n-

dimensional input x’, the membership function pz_(x') is defined in (Mendel, 2001) as,
e () = pg, (') N g, () = [Ny g, (x)] (4.32)

The pj (x') is a type-1 fuzzy set which is called the firing set. The sup-star composition

(also called the max-min or max-product composition) of a fired type-2 fuzzy set Ay

and a type-2 relation R; (x,y) is as (Mendel, 2001),
KA, o Ry (¥) =Uxex [Mx(x) nR(x,y)] (4.33)

The sup-star composition is used in fuzzy inference engine (Figure 4.8). The
composition of fuzzy set A, and rule R; determines a fuzzy set B; = 4, o R; (Mendel,
2001; Mendel, John and Liu, 2006), in which
s, () = Ma,o0r, V) = supyex [z, (') * pg0e, ¥)] Y EY

= SUprex [Ma, (x'1) NN g, (x'5) * [z, (x0) Mo N opg,, ()] * pg, O)]

= SUPyex [l_[;;l Ka, (x’j) * [I—l:=1 Hiy (x])'] * g, 62)

n
= SUPxex [I—L=1 na, (%) * wa, (6] * we, @)

= Uex [Ny 1, (') * wa, ()] * 1, ) ~ (4.34)

l #Ai-'cl (x'y)

- Inference

A, N __ ﬂg‘(}’)

Engine

Figure 4.8: Fuzzy inference engine
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The type-2 fuzzy set B; is also called the fired rule output set (Mendel and Liu, 2007).
The next section explains a method for calculating centroid of the fired rule output type-

2 fuzzy set.

4.6 Centroid of a type-2 fuzzy set

The centroid of a type-1 fuzzy set A, C4, is a crisp number (explained in section 3.8)
which is computed as follows:

Z{LI x; 1a(xi)
Cp = ——— 4.35)
4 Zity #a(x) (
Using Zadeh’s extension principle (explained in section 4.4), the centroid of a type-2
fuzzy set A, Cg, is a type-1 fuzzy set which can be calculated using the centroid of all of
its embedded type-1 fuzzy sets as follows (Karnik and Mendel, 2001):

Nix 0
o S S X TR T L
61€Jx, ONEJxy ‘ ¢

i=1

This means in order to compute the centroid, the domain of a type-2 fuzzy set is
discretized into N points (x;, ..., Xy) and then the centroid is computed for all the
possible combinations of {8, ..., Oy}.To every possible combinations of {8, 65, ..., Oy},
a membership grade equal to t-norm membership grade of all selected 6, € J,, is
assigned. Each combination demonstrates a type-1 fuzzy set and its centroid is
calculated using equation (4.35) where p4(x;)= 6;. If two or more combinations of the
0;s give the same point on fhé centroid, the one with the greater membership degree is
kept. |

The next section expléins the architecture and main components of type-2 fuzzy logic

while it utilizes various operations on type-2 fuzzy set explained in Sections 4.3 to 4.6,

4.7 Type-2 fuzzy logic
The general architecture of a T2FL is illustrated in Figure 4.9. There are four main

components in a T2FLS (Mendel, 2001): 1) fuzzifier, 2) inference engine, 3) rules, and
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4) output producer which includes a type reducer and a defuzzifier. A FLS is called a
type-2 fuzzy logic (T2FLS) with at least one type-2 fuzzy set in the antecedent or
consequent of its rule structure. When all the antecedent and consequents of the rules
are interval type-2 fuzzy sets, the T2FLS is called interval type-2 fuzzy logic system
(IT2FLS) which is the focus of this study. The rest of this section explains the role of

these components in an IT2FLS.

------------------------------------------------------

o Output Producer  *+

/ N\ Cris

i Defuzzifier : P >

E Rules 1Outputs
Crisp f II " EF uzzy

'__——_'T"‘ 4 - T ;

Inputs | Fuzzifier Type ‘e ucer j E Outputs

5 . :

i » Inference engine ‘

\ Fuzzy Input Sets Fuzzy Output Sets J

Figure 4.9: Type-2 fuzzy logic architecture
4.7.1 Fuzzifier

The fuzzifier converts crisp inputs into a type-2 fuzzy set, i.e., mapping a crisp point

X = (xu. Xi2,0 e xim) into a type-2 fuzzy set A in the universe of discourse X.

4.7.2 Rules and inference engine

Rules represent experts® knowledge and are usually expressed using linguistic terms.
The general form of If-Then rules in the type-2 fuzzy Mamdani model is as follows
(Mendel, 2001): ‘ '

‘ Ri:IF xy is A,y and x,is A;; and ... x; is A, theny is G (4.37)

where i =1,..,M is the number of rules, x; = (x;,%z, .., Xn) is a given sample,
A Ay, Ay are antecedent type-2 fuzzy sets, y is an output variable, and G; is a

consequent type-2 fuzzy set.
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In a type-2 FLS, the inference engine combines rules and gives a mapping from type-

2 fuzzy input sets to type-2 fuzzy output sets. Multiple antecedents in the rules are

connected using the t-norm equations (4.30) and (4.32). The membership values in the

input sets are combined with those in the output sets using the sup-star composition,

explained in section 4.5 equations (4.33) and (4.34) (Mendel, 2007a). Multiple rules

may be combined using the t-conorm operation and the union of the firing rule output

sets (B;) using equation (4.34) as follows (Mendel, 2007a),

M

B=| |5 (4.38)
i=1

where pj =LIJ-M=1 ng,(y) for Vy €Y.

Example of an IT2FLS Implication: For illustration, consider an interval type-2 fuzzy
logic system with two features: (1) contrast ranging from -300 Hounsfield unit (HU) to
+300 HU and (2) sphericity ranging from 0 to 1. There are three rules in this IT2FL as

N \ V4

follows:

1. If (Sphericity is Strong) and (Contrast is High) then (Object is VeryLikelyNodule)

A LN N

2. If (Sphericity is Weak) and (Contrast is Mid) then (Object is LikelyNodule)

A AN | N

3. If (Sphericity is Weak) and (Contrast is Low) then (Object is ProbablyNotNodule)

Figure 4.10: Rules in an IT2FL and corresponding antecedent and consequent
type-2 fuzzy sets



4.7 Type-2 fuzzy logic 89

For a given two-dimensional input sample x = (0.252,—293), the type-2 fuzzy
inference first fuzzifies the inputs and defines their membership degrees at x; = 0.252
and x, = —293 to the sphericity and contrast fuzzy sets. Then it computes the fired sets
using minimum t-norm in equation (4.32). The sup-star composition combines fired
input sets with output sets using (4.33) and (4.34). The fired rule output sets are

combined using the union operation in equation (4.38).

1. Fuzzify inputs 2. And operator 3. Fuzzy

Sphericity = 0.252 Contrast = -293 (min) implication
NoduleClass = 0.386

=S

v
4. Fuzzy

1 Es
composition

(Union)

Figure 4.11: Inference engine of a type-2 fuzzy logic system

For a given inputx = (J’Cl, J'cz), Figure 4.11 and 4.12 illustrate how an IT2FLS

inference engine fires rule antecedent of the fuzzy sets and rule output set using

minimum t-norm operation.
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m Hz (%1)

0 1x1 Hia (*1) FOU of Fired rule
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Y min
min |—& > —=-
:Hj (fz) 3 £(X)
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Figuj?e 4.12: A ﬁ?ing interval of output of a rule of an IT2FLS for a given input
X = (jll i2)

The next section explains how to defuzzify the resulted output fuzzy set from the union

of all the fired output sets and produce the output of an IT2FL.

4.7.3 Output Producer

This block includes type reduction and defuzzification. A type reducer maps a type-2
fuzzy set to a type-1 fuzzy set and a defuzzifier defines the crisp output of a T2FLS.
There are various approaches for type reduction in an IT2FLS such as centroid, centre-
of-sums, height and modified height, centre of sets (Mendel, 2001), between them,
centroid type reducer is more commonly applied and is the method used in this study.

According to (N. Karnik and M. Mendel, 2001; Mendel, 2001), type-reduction is the
first task in the process which converts a type-2 fuzzy set obtained from the union of the
fired rule output sets, B, using equation (4.38), to a type-1 fuzzy set. It follows by
applying a defuzzification method on the obtained type-1 fuzzy set.

Using representation theorem (Mendel, 2001), the centroid (Cg) of a type-2 fuzzy set B
is the union of the centroid of all its embedded type-2 fuzzy sets. For an IT2FS with
secondary grade 1, the centroid is the union of all nz embedded type-1 fuzzy sets. These
n, centroids provide a set of crisp numbers with a minimum value ¢; and a maximum
value ¢, and to each centroid crisp number a secondary grade 1 is associated (Mendel,

John and Liu, 2006), i.c.,

Cs =1/{ci, . -5 ¢ (4.39)
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By doing a minimum operation on all ¢;, and a maximum operation on all ¢,, the

centroid (Cz) of interval type-2 fuzzy set B is as (Mendel, John and Liu, 2006),

Cs =1/lci.c] (4.40)

N v. 8.
¢, = min Liz1Y: i (4.41)

, N )
V9i€[gz(m). ﬁz(yc')] Zi:l 6

N '

=1 Yi @
¢y = max %#ié—i (4.42)
v 0iefua (). Falp] “i=1 Y

The ¢; and ¢, for an interval type-2 fuzzy sets can be computed as follows:

o = oo yilis ) + T s Yina O1)
: Z%:o fig () + Zﬁ:z,ﬂ ] o)

(4.43)

_ IRoyvilz ) + Zlra Yinz ()

= 4. 44
O TR S S PACY (4.44)

where L and R are different switch points which are iteratively defined by the KM
algorithm (Karnik and Mendel, 2001). The proof of (4.43) and (4.44) and the detail of
implementation of the algorithm are explaihed in (Mendel, John and Liu, 2006).
Computétional complexity in type reduction can be decreased using approaches which
bypass the type-reducer task (Méndcl, 2007a) and (Wu and Mendel, 2002). Karnik-
Mendel (KM) algorithm is widely used for computing the centroid of interval type-2
- fuzzy set (Karnik and Mendel, 2001). This general form of the centroid type-reduction
algorithm for a type-2 fuzzy set includes the following steps (Kamik and Mendel,
2001):

1. Compute the membership function of the union of fired output set of rules,

Hs ().
2. Discretize the domain of pg, y into N points ¥, ..., Yn.

3. Discretize each primary membership function, J,, into M; points for i =

1,2,...,N.
4. Enumerate all embedded type-1 fuzzy sets of the B, there is [1/e, M;.
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5. Compute the centroid of type-reduced set using the centroid of all the
enumerated embedded type-1 fuzzy sets. Assign a membership grade equal to t-
norm of the related secondary membership grades to each embedded type-1

fuzzy sets.

However, this algorithm has a high computational complexity but converges rapidly
(Mendel, John and Liu, 2006). The customized version of this algorithm for computing
the centroid type-reduced set for an interval type-2 fuzzy set using equations (4.43), and
(4.44) has considerably fewer computations by assigning secondary membership 1 to all
embedded enumerated systems and computing the centroid for the lower and upper
bound membership functions.

The output of the defuzzifier is a crisp number which is the centre of the type-reduced
set. Defuzzification follows type reduction defines the output by averaging ¢, and ¢, as

follows (Mendel, 200; Mendel, John and Liu, 20067a):

y() = 3 o) + 6@ (4.45)

Example of output producer: Consider for a given input x, the firing output
consequent set using product t-norm of the rules is an interval type-2 fuzzy set shown in
Figure 4.13. The membership grade consists of two primary membership functions (two
embedded type-2 fuzzy set) corresponding to the lower bound and upper bound
membership functions. The secondary 'grade for each embedded type-1 fuzzy set is
equal to 1. There are in total four (2 X 2) combinations of embedded type-2 fuzzy sets.
The centroid éan be calculated for each embedded type-1 fuzzy set to obtain a point in
the type-reduced set. For example considering one of the four possible combinations
with primary membership grades 0.4 and 0.2 and secondary grade 1, a corresponding
point in type-reduced set is computed as,

=(1 x1)/ 22022 1/1.73

which is a type-1 fuzzy set. The type-reduce set completes when all the points are

computed. Defuzzification follows type-reduction to obtain a crisp output.
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Figure 4.13: Fired consequent sets for three consequent of three rules

4.8 Summary

This chapter provided an overview of the theory and mathematical model of type-2
fuzzy sets. This included the main concepts which are applicable to model uncertainty
in the training dataset, the focus was on interval type-2 FLS. The main aim of this
chapter was to explore the necessary concepts and theory for designing an IT2FLS and
illustrate them through a simple classification example for medical diagnosis. The main
drawbacks of type-2 fuzzy set theory is its high computational complexity and the
effort needed for learning type-2 fuzzy set concepts and operations on the three
dimensional membership functions. However, interval T2FS ameliorates the problem by
providing fuzzy operations on type-1 lower and upper bound membership functions
which is the reason they have been used in this study for modelling uncertainty in the
classification.

The next chapter presents the proposed approach in this study for automatic generation
of IT2FMFs from imprecise and incomplete training dataset. The goal is to model

uncertainty in the design of an IT2FLS classifier for CAD applications.
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Chapter 5: An Approach for Modelling Uncertainty
through Gaussian IT2FMFs for Nodule Classification
in a Lung CAD Application

The goal of this chapter is to take advantage of type-2 fuzzy logic for managing high
levels of uncertainty in the subjebtive knowledge of experts or in numerical information
in the input of a classification for a lung CAD application. The uncertainties associated
with the input of the classifier are modelled using Gaussian interval type-2 fuzzy
membership functions (IT2FMFs) and their footprint of uncertainty (FOU). While one
of the main challenges in fhe design of a type-2 fuzzy logic system is how to estimate
the parameters of the FOU from imperfect and imprecise training datasets, this chapter
presents an automatic approach for learning Gaussian interval type-2 fuzzy membership
functions with application to multi-dimensional pattern classification problems. The
IT2FMFs and their FOUs are estimated according to the training dataset using a genetic
algorithm (GA). This apprbach is applied to nodule classiﬁcatioh component in a lung
CAD application. Furthermore, performance comparison (uSing a ten-fold cross-
validation technique) of interval type-2 fuzzy logic with type-1 fuzzy logic for nodule
classification in a lung CAD‘application is presented and the results are discussed in

details.

5.1 Introduction

A fuzzy logic system (FLS) is a rule-based classifier with the ability to model a
human’s subjective decision making model through its linguistic rules. Type-2 fuzzy
logic has capability to model uncertainty issues such as inter and intra observer

variability, word perception, and uncertainty in imprecise and inadequate input datasets
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which cannot be managed using ordinary fuzzy sets. The footprint of uncertainty (FOU)
in a T2FMF can model uncertainties in linguistic terms and numerical measurements in
input of a classification. A type-2 fuzzy logic system (T2FLS) deals with fuzzy
inference based on type-2 fuzzy sets. An interval T2FLS (IT2FLS) that is the practical
extension of a general T2FLS and simplifies the computational complexity using the
lower and upper bound membership functions, has been applied in this study.
Integrating a type-2 fuzzy logic model for object classification in CAD architecture
allows us to model the accumulative effect of uncertainty sources in the input of a
classifier.

An essential factor in design of a nodule classifier for a lung CAD application (as a
second reader) is interpretability. The classifier needs to be sufficient comprehensive to
interact with medical experts such as radiologists. Fuzzy modelling using linguistic
terms is the most comprehensive rule type with a high degree of interpretability between
the various rule types explained in Section 3.4 (Castro et al., 2007). A Mamdani rule
type in which the antecedent and consequent of rules are linguistic terms is used in this
study. On the other hand, interpretability and accuracy are two contradictory factors in
the design of a T2FLS (Casillas, 2003). Learning and tuning fuzzy logic system
parameters is one of the most frequently applied techniques for improving the accuracy
of a classifier and predicting future observations. However, compared to type-1 fuzzy
membership functions (T1FMFs), the three-dimensional membership functions (MFs)
of a T2FLS give more freedom to the design of a classifier but it has more parameters to
adjust, which makes the process of learning and tuning more complicated.

Several approaches have been reported for tuning and learning an IT2FLS in recent
years. Most of the proposed methods take advantage of hybrid techniques such as
incorporating neural networks or evolutionary approaches (Casillas, 2003) and (Casillas
et al, 2005). These learning and tuning IT2FMFs methods are reviewed in the
following two main categories:

1) Based on neural networks: a Neuro-fuzzy learning method was proposed to learn
the parameters of the fuzzy control system which utilizes back-propagation with
recursive least squares and square-root filter methods (Mendez et al., 2006). A
method for computing derivatives for T2FMF, which are required for back
propagation algorithms, was presented in (Mendel, 2004). A Gaussian interval

type-2 FLS in a type-2 fuzzy neural network (T2FNN) was demonstrated in (Lee



5.1 Introduction : 97

et al., 2003). This approach utilizes a genetic learning algorithm for optimizing
the type-2 FNN parameters. An interval type-2 fuzzy neural network consisting of
an IT2FLS in the antecedent part and a two-layer interval neural network in the
consequent part was proposed in (Wang, Cheng and Lee, 2004). In this optimal
dynamic training method based on GA, learning rates for an T2FNN was
suggested to maximize the error reduction during the back propagation process

(Wang, Cheng and Lee, 2004).

2) Based on evolutionary techniques: Wu presented a GA learning approach for
an IT2FLS that tunes all the parameters of the IT2FMFs without the help of an
existing TIFLS (Wu and Wan Tan, 2006). Wagner (Wagner and Hagras, 2007)
presented a GA tuning algorithm for evolving type-2 fuzzy logic controllers for
autonomous mobile robots. The idea of using a human evolutionary model for
optimization of an IT2FMF was discussed in (Sepulveda et al., 2007). An
evolutionary approach for the optimal design of the type-2 fuzzy membership
functions based on the level of uncertainty was presented in (Hidalgo, Melin and
Castillo, 2010). A Hierarchical genetic algorithm (HGA) was suggested to solve
the problem of defining the structure of a FLS in (Martinez, Castillo and Garcia,
2008). A fuzzy genetic architecture (FGA) for optimizing the MF parameters of a
type-2 Mamdani FLS was presented in (Cazarez-Castro, Aguilar and Castillo,
2010). A particle swarm (PS) optimization technique was applied for the design of
type-1 and type-2 Takagi;Sugeno (TKS) FLS for an autonomous mobile robot in
(Martinez-Marroquin, Castillo and Soria, 2009). Recently, an optimization
method for tuning MF parameters of a type-2 Takagi-Sugeno FLS was proposed
which applies ant colony (AC) and particle swarm techniques for optimization of
the MF parameters (Castillo et al., 2010). A Takagi—Sugeno interval type-2 fuzzy
logic controller for an autonomous mobile robot which utilizes GA for
optimization of the membership function generation was presented in (Martinez,
Castillo and Aguilar, 2009).

Most abovementioned approaches have been proposed for a TKS FLS with a
function in the consequent part of the rules which are not applicable for interaction with
system users (Wang, Cheng and Lee, 2004), (Wagner and Hagras, 2007), (Sepulveda et
al., 2007), (Martinez-Marroquin, Castillo and Soria, 2009) and (Martinez, Castillo and



5.2 Learning Gaussian interval type-2 fuzzy membership function 98

Aguilar, 2009). The TKS FLS with a function in consequent part of the rule is more
accurate than Mamdani FLS with linguistic term in consequent part but it suffers from
interpretability issues. In addition, these approaches initialize the IT2FMF parameters
using knowledge of experts. Moreover, they have been applied for a T2FLS with only a
few inputs. However, when dealing with a multi-dimensional IT2FLS with large
number of inputs, as it is the case in many classification problems, designing the initial
IT2FMF parameters and their FOUs for each input using several experts’ knowledge is
a complicated and expensive process. This fact justifies the need for an automatic
IT2FMF learning approach. This chapter presents an automatic approach for learning
IT2FMFs which aims at overcoming these issues. For evaluétion purpose, the approach
has been applied to candidate nodule classification in a lung CAD application.

The rest of this chapter is organized as follows: a learning method for modelling
uncertainty in input training dataset using an interval type-2 MF is described in Section
5.2. A genetic approach for parameter estimation of the FOU in an IT2FMFs is
presented in Section 5.3. Section 5.4 describes the nodule classification problem in a
lung CAD application. The results of applying the proposed interval type-2 MF tuning
and learning approach for managing uncertainty sources in the input of a nodule
classification for a lung CAD application are demonstrated and discussed in details in

Section 5.5; lastly, this chapter is concluded in Section 5.6.

5.2 Learning Gaussian interval type-2 fuzzy membership function

The approach proposed in this study for learning a Gaussian interval type-2 fuzzy
membership function (IT2FMF) and its footprint of uncertainty is based on the two
following methods: )

(1) Learning an IT2FMF based on an TIFLS

(2) Learning an IT2FMF based on the training dataset

The first method is applicable when there is enough expert knowledge for designing
T1FMFs. The advantage of this method is that because of the simplicity in the design of
the TIFMF, this method has lower complexity and is easicr to develop. Moreover, the
IT2FLS parameters can be more intelligently estimated based on the TIFLS parameters.

The second method is beneficial when there is difficulty in the design of the TIFLS
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because of the knowledge acquisition issues associated with extracting intuitive
information from different experts with different levels of experience. The fact is that in
most pattern recognition problems, we rarely have the luxury of access to several
experts with different levels of experience.

In this study, a Gaussian IT2FLS is proposed for modelling uncertainties in the input
of classifier using an approach for learning IT2FMF. The proposed IT2FLS learning

algorithm for the membership function is described in the following subsections.

5.2.1 Fuzzy partitioning of input sets for generating type-1 membership functions

If the first method (in Section 5.2) is chosen, then the TIFLS, including the
membership functions, are generated according to the intuitive expert knowledge.
Otherwise, a Gaussian interval type-2 fuzzy model is imposed regarding the training
dataset. For each of the features in the pattern classification, the training dataset is
clustered and fitted into several normal Gaussian functions equivalent to each of the
linguistic terms, such as low, middle, and high. For this reason, standard fuzzy

clustering methods can be applied (Chi, Yan and Pham, 1996).

5.2.2 Modeling the footprint of uncertainty |

One of the crucial tasks in learning the T2FMF is to model the FOU. For this reason,
Genetic algorithms have frequently been used for tuning the lower and upper bound
parameters of the FOU (Cazarez-Castro, Aguilar and Castillo, 2010; Wu and Wan Tan,
2006; Castillo et al., 2010). In these GA-based approaches, all the parameters of the
membership function are incorporated into the structure of the chromosome. This
method is straightforward, although there are some complexities in designing a multi-
dimensional classification system. For illustration, consider a multidimensional pattern
recognition problem with nine input features and three linguistic terms (low, middle,
and high). If each linguistic term is modelled with a Gaussian intcrval type-2 fuzzy
membership function with uncertain means (m;, m;) and standard deviations (sy, s,),
there are 4 parameters (ml,mzi S1,S3) in each membership function. The total number
of parameters of the membership function in the structure of the chromosome is 4*3*9=

108, as shown in Figure 5.1
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Figure 5.1: Typical structure of the chromosome for a feature

In such a system, approximation of the initial value of the parameters, (lower and
upper bound of the means and standard deviations), and grammatical correctness, (c.g.
m, must be less than m,), of the genes in the chromosome can be difficult. Moreover,
without these considerations, the tuned parameters may result in an inaccurate 1T2FLS
or one that is divergent to the optimum solution. This fact becomes clear by analyzing
the shape and tuned parameters of the IT2FMFs. To tackle these problems, the
following approach is proposed for modelling the FOU in a Gaussian IT2FMF.

If the Gaussian T1FMFs are available, then their means and standard deviations can be
used; otherwise, a clustering method is used for partitioning the data into three clusters.
For each of the TIFMFs, the mean and the standard deviation (STD) are determined
from the clustering result. In order to construct the FOU of an IT2FS, the Gaussian
distribution properties have been taken into account. In a Gaussian distribution with
mean m and standard deviation s, 99.7% of the probability distribution is in the interval
[m —3s,m + 3s] (Zeng, Xie and Liu, 2008). For cach of the inputs, three linguistic
terms with a Gaussian distribution are considered (as shown in Figure 5.2.). Thercfore,
for each linguistic term the k,, is considered in interval [0.1, 1] and k, in interval [0.1,
[]. The lower and upper bound parameters of a Gaussian IT2FMF with mean m and

standard deviation s are considered as follows:
m=m+ ks, m=m-—kys, k,, € 0.1, 1] (5.1)

s Xk, .5=5/ky k, € 0.1, 1] (5.2)

2

where the k,,, and k, are parameters for tuning the FOU, m, and m arc the upper and
lower bound of the mean and 5 and s are the upper and lower bound of the standard
deviation of the IT2FMF. The minimum k,, is considered 0.1 because when the k,, is

equal to 0 then m = m = m which means there is no uncertainty in the system. The
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bigger k,, and k, parameters constructs the larger FOU of T2FMS which implies more
uncertainty in a T2FLS. These parameters model the FOU of a Gaussian IT2FMF with

uncertain mean and standard deviation (Hosseini ef al., 2012; Hosseini ef al., 2010b).

l‘lx o9

04 I&ﬂ o8 I'J‘-’ on ow 1
X
(b)
Figure 5.2: Type-2 fuzzy Gaussian membership function of a typical feature; (a) A

linguistic term, (b) Three linguistic terms

For illustration of this model, consider a Gaussian membership function with mecan
m =8 and STD as s= 2. In a Gaussian type-2 fuzzy membership function with
uncertain mean with the k,, = 0.9, the lower and upper bound membership function
parameters are as follows:

m=8-09%x2=62

m=8+ 09x2= 98

Figure 5.3 (a) to (c) illustrate the original Gaussian membership function and lower and
upper bound membership functions. The shaded arca between lower and upper bound

membership function represents the FOU (see Figure 5.3 (d)).
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Figure 5.3: An example of a Gaussian membership function with uncertain mean (a)
Original membership function with (m, s)=(8, 2); (b) Lower bound membership function
with m = 6.2; (c) Upper bound membership function with m = 9.8; (d) The shaded area
shows the FOU
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Now consider a Gaussian type-2 fuzzy membership function with mean m = 8 and
uncertain standard deviation s = 2 with the k,, = 0.5, the lower and upper bound

membership function parameters are as follows:

s=s Xk,=2 x05=1,
s=5/k; = 2/05= 4

Figure 5.4 illustrates the lower and upper bound membership functions (see Figure 5.4
(a) and (b)). The shaded area between lower and upper bound membership functions

represents the FOU as shown in Figure 5.4(c).
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Figure 5.4: An example of a Gaussian membership function with uncertain STD; (a)

Lower bound membership function with s = 1; (b) Upper bound membership function

with s = 4; (c) The shaded area shows the FOU
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5.3 A genetic algorithm for parameter estimation of the FOU

This section presents a genetic algorithm to estimate the parameters for modelling the
FOU of a Gaussian interval type-2 fuzzy set. The steps of the algorithm are described in
the following subsections and the flowchart of the GA for learning the membership
function of an IT2FLS (GA IT2FLS) is illustrated in Figure 5.5.

GA initialization
(kp, in[0.1, 1} and k,, in [0.1, 1])

L 4
Apply k-fold cross-validation j’_

v

™

-
Select a fold for testing and the rest
g for trainin
& J
Yy
Learn IT2FMF based on training A
L datasct )
v
( GA IT2FLS fitness evaluation on
testing dataset
L esting datase J
All k folds were

sclected?

[ Calculate the average fitness J
' v

[ Apply selection, cross-over, and J

mutation

GA terminated?

Yes
L Define the candidate solution J

Figure 5.5: Flowchart of the GA learning MFs method for an IT2FLS
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5.3.1 GA initialization

In this approach a real-valued genetic algorithm is used to represent genes in the
chromosome (Corcoran and Sen, 1994). A pair of (k,,, k,) can be used to model the
FOU for all the features if uncertainty is monotonic; otherwise, for each feature’s

linguistic terms, a pair of (k,,, k,) are considered, in the following chromosome

structure (Figure 5.6).

Feature, Feature, Feature,

kml * kvl kmz kvz e kmn* kyn

Figure 5.6: The structure of the chromoseme

The genetic algorithm initializes the chromosome randomly in the k,, interval [0.1, 1]
and the ky interval [0.1, 1]. Next, an IT2FLS is developed according to the selected
k. and k,, values by applying the learning membership function algorithm proposed in
Section 5.3, and the pre-defined set of rules (identified by experts or a lcarning
algorithm). The IT2FMFs are learned using the training dataset and the fitness function
is evaluated on the testing dataset. Training and testing datascts are chosen by a cross-
validation technique (Picard and Cook, 1984). In the genetic algorithm, chromosomes
use real-valued coding representing the k,, and k, parameters of the membership
function for each linguistic term of the corresponding fuzzy sets. Standard tournament
selection, Single point crossover, and uniform mutation operations are applied (Herrcra,
2008). The advantage of the Genetic IT2FMF leaming approach is that it has fewer
parameters to estimate and defines the initial values of the parameters more preciscly.

This makes the process of optimization mor¢ accuratc and casicr to implement.

5.3.2 Cross-validation

In order to have a consistent and unbiased view of the performance of a designed
IT2FLS classifier, k-fold cross-validation has been applied (Picard and Cook, 1984).

This method partitions the dataset into k equal size subsamples randomly. In each
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algorithm run, k — 1 folds are considered for training and one fold for testing.
Therefore, all the partitions will have a chance to be included in the training and testing
process. The k results from the partitions can then be averaged to produce the final
estimate. This study applies a ten-fold cross-validation technique (k = 10) as it is
common in classification applications. In each GA generation, a ten-fold cross-
validation is applied. Then, the average fitness of a ten-fold run is considered as the
fitness of that generation.

Leave-one-out is another form of cross-validation method which keeps one sample
each time for testing reason and the rest of samples for the training and repeats this
process until all samples are considered once for testing. Whilst leave-one-out cross-
validation (LOOCV) produces more accurate results by giving each sample the chance
to get used for validation, repeating the algorithm for the number of samples in the
dataset but it is expensive and has high computational complexity. Moreover,
employing LOOCV technique for several runs of the GA with a large number of
samples deteriorates computational complexity of the cross-validation technique, This is
the reason that this study applies a class labl

ten-fold cross-validation.

5.3.3 Fitness evaluation

The IT2FLS is evaluated on the test dataset. In the GA, the area under the ROC
curve (AUC) has been used to represent accuracy for the purpose of fitness evaluation,
The ROC curve, which depicts all the tradeoffs between the true-positive (tp) and false-
positive (fp) rates of the classifier is applied to estimate the cost of classification
(explained in Section 1.3). The genetic algorithm selects the best solution of k,, and k,

values for an IT2FLS with the maximum AUC,

5.3.4 Comparison of the GA IT2FMF learning approach with other GA-based
methods '

This section compares the structure of the chromosome for lcarning a Gaussian
IT2FMF with two major GA based techniques for learning and tuning an IT2FMF in a

Mamdani inference model. An n-input onc-output IT2FLS classifier with Gaussian
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IT2FMF with uncertain mean and standard deviation, with three linguistic terms (L) and
a number of rules (R) have been considered in all of the approaches.

The genetic algorithm for IT2FLS begins after generating type-1 fuzzy membership
functions based on a training dataset selected by a ten-fold cross-validation technique
(explained in Section 5.3.2) and defining the system rules by experts. The GA IT2FMF
learning method is described as follows:

1. The GA algorithm initializes the chromosome randomly, with k,, € [0.1, 1] and
ky € [0.1, 1] for each linguistic input and output type-2 fuzzy set. There are 3
linguistic terms (Low, Middle and High) for each input and output interval type-2
fuzzy set for a classifier with two class labels, For the given IT2FLS, the number
of genes in each chromosome is R X 3(L) X n(k,,) + R X 3(L) x n(k,) + R X
3(L) x 1(kp) + R x 3(L) X% 1(ky).

2. For each generation, the FOU of a Gaussian IT2FMF is estimated using equations
(5.1) and (5.2). _

3. The fitness of each chromosome is evaluated for IT2FLS using the area under the
ROC curve. ‘

4, This procedure (1-3) is repeated in each generation for each fold in the cross-
validation technique. _

5. The average fitness of the ten-fold cross-validation is considered as the fitness of
each chromosome in the current generation.

6. Standard tournament selection, single point crossover, and uniform mutation
operations are applied to the individuals in the current gencration with a mutation
and crossover probability (Herrera, 2008).

7. The GA terminates after reaching the maximum number of gencrations.

' The GA klearning of an interval type-2 fuzzy neural network (FNN) begins by
initializing a type-1 FNN system (Lee ef al., 2003). Then, a back-propagation algorithm
trains a type-1 FNN to obtain a set of Gausslian functions (mcan, variancc) and a
weighting vector and adds uncertainty to these parameters. The genes of cach
chromosome include the MF parameters and the weighting vectors. Each MF contains
two mean values (for upper MF and lower MF), two standard deviations (STD), and the

weighting vector (W). Therefore, for a given n-input one-output type-2 FNN with R
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rules and three linguistic terms (L), the number of genes for cach chromosome 1s

R x 2(mean) x 3(L) X n + R X 2(STD) X 3(L) X n + 2 X R(W) (Lee et al., 2003).

In comparison, the fuzzy GA learning methodology to evolve the MF parameters of
I2FLC starts by designing the structure of the FLS, including the input and output, the
rules, the type of MF, and the parameters of the MF (Cazarez-Castro, Aguilar and
Castillo, 2010). Then a chromosome is constructed using the parameters of the MF of
cach input-output variable. Therefore, for the given n-input one-output Gaussian
IT2FLS with R rules and three linguistic terms (L), the number of genes for cach
chromosome is R X 2(mean) X 3(L) Xxn+ R X 2(STD) x 3(L) Xn+ R X 3(L) X
2(mean) + R x 3(L) x 2(STD).

Table 5.1 Comparison of the chromosome structure in the GA I'T2FMF learning and

tuning methods

Number of genes in
No Method Initialization
Chromosome
1 GAIT2FLS (this work) Rx3xn + Rx3xn+ Rx3x2 Automatic
2 |IT2FNN (Lec eral., 2003) | Rx2x3xnt Rx2x3xnt Rx2 Subjective
3 | IT2FGA(Cazarez-Castro, Rx2x<3xn+ Rx2x3xn+ Rx3x2x2 | Subjective
Aguilar and Castillo, 2010)

Table 5.1 summarizes the comparison results of the structure of chromosome i these
three methods. For illustration, consider the lung nodule classification problem with 7
inputs (features) and one output (class) with three linguistic terms (low, middle and
high) and 14 rules, we have n = 7,R = 14,and L = 3. The chromosome structure of
the IT2FNN approach includes 14 X 2x3 X7+ 14X 2x3 X7+ 14X 2 = 1204
genes, the IT2FGA approach includes 14 X 2 X3 X7+ 14 X2Xx3 X7+ 14 X 3 X
2 X 2= 1344 genes whilst the proposed GAIT2FLS membership function learning
approach consists of 14 X3 X7 + 14 X3 X7+ 14 X 3 X 2 = 672 genes, about half
of the two other methods. Morcover, in the proposed method, the initial values of

are S an arc automatically defined using cquations (5.1) « 5.2), while
paramecters k,, and k, tomatically defined using cquations (5.1) and (5.2), while
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the two other approaches require expert subjective knowledge for initialization of the
parameters and their grammatical correctness. This can be expensive to acquire and in
some circumstances, such as the lung nodule classification problem, may be impossible

to achieve as it requires agreement between the experts.

5.4 Nodule classification problem for a lung CAD application

Lung cancer is the most common diagnosed cancer and general cause of cancer deaths
in males across the world in 2008 (Ferlay et al., 2011). It is also fourth most diagnosed
cancer among females with the second mortality rate (Ferlay et al., 2011). Age-
Standardized lung cancer rates (ASR) compared to other cancers by sex is illustrated in
Figure 5.7.In this figure, the worldwide incidence and mortality rates of different
diagnosed cancers in different aging range up to 60 years in 2008 is depicted according
to (Ferlay et al., 2011). As shown in this figure, lung cancer has the largest incidence

and mortality rate between men compared to the other cancer types.

World
ASR (W), all ages
Male Female
Lung
Breast
Colorectum
Stomach
Prostate
Liver
Cervix uteri
Oesophagus
Bladder
Non-Hodgkin lymphoma
Leukaemnia
Corpus uteri
Kidney
Pancreas
Lip, oral cavity
60

60

M Incidence
21.10.2011)
GLOBOCAN 2008 (IARC) ( W Mortalty

Figure 5.7: Worldwide age-standardized cancer rate for both male and female per

100,000, (Ferlay et al., 2011)
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Lung cancer is also the leading cause of cancer death in the United Kingdom (UK) in 2008
with the most mortality rate for both males and females. It is the most common diagnosed
cancer among males and second highest among females (after breast cancer) (Ferlay et al.,
2011) as shown in Figure 5.8. Detection of the lung cancer in early stages increases the
survival rate to 49% or more (Armato et al., 2002), cited in (White ef al., 2007). About 38,000
people are diagnosed with lung cancer each year in the UK whilst 33,000 people died as a
direct consequent. Smoking is the main cause of lung cancer, which leads to 90% of these

deaths (Oversight, 2011).
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Figure 5.8: The distribution of the incidence and mortality in the world compare to the
United Kingdom, (Ferlay et al., 2011)

According to (Gould et al., 2007), nodules potentially represent a type of lung cancer
which can be cured. (Austin et al., 1996) defined nodules in the lung as: "in pathology, a
nodule refers to a small approximately spherical circumscribed focuses of abnormal

tissue"; in radiology, it is defined as spherical opacity, at least moderately well
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marginated with a maximum diameter not greater than 3 cm". Patients with lung cancer
do not have any symptoms at the early stage; however all the non-calcified pulmonary
nodules are considered potentially malignant and need monitoring until proven stable
over a period of two years (MacMahon et al., 2005). Nodules that are stable for a period
of two years are characterized as benign nodules. CT Screening of the population with
high risk factors of lung cancer (e.g., age, smoking history) is an approach for the early
detection of the lung cancer. Although advances in the diagnosis and treatment can help
to save more lives, most patients are diagnosed when the cancer is in advanced stages
and difficult to treat. Diagnosis is usually performed after appearance of symptoms in
the patient. Patients usually realize it when they suffer from pain which is the last sign
of the lung cancer. It was cited in (da Silva et al., 2008) that only 13% of the diagnosed
patients with lung cancer are estimated to be alive after S years.

There are various techniques for diagnosis and control of the disease such as biopsy,
surgery, and observation of the lesion in CT scan images over different periods (Gould
et al., 2007). One of the current problems with diagnosis through CT imaging is the
number of slices per scan which are required to be observed by radiologists. Moreover,
the similarity of the characteristics (e.g., shape and intensity) of the objects inside the
lung CT scan slices such as blood vessels, nodules, and bronchi is another barrier for
diagnosis. It is often difficult to sample the nodules with less than 8 to 10 mm diameter
using biopsy needle. For treatment purpose, it is important to determine the number of
nodules and their characteristics such as size, morphology, and malignancy factors. One
of the ctirrent challenges in the medical diagnosis is to identify nodules less than | cm
in diameter and characteristics of such small nodules and verify their malignancy.

While most of the proposed and applied approaches are invasive, medical image
analysis techniques are a non-invasive approach for carly detection of the pulmonary

nodules through thoracic CT scan images and follow-up the diseasc progress.

5.4.1 Overview of the lung CAD system

The aim of a lung CAD system is to automatically detect pulmonary nodules presented
in computed tomography (CT) scans. Figure 5.9 depicts an example of nodule annotated
in a CT scan image of a patient. Although, the development of the CAD system is not
within the scope of this study, a summary of the lung CAD system is given in this
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section and the results of the IT2FLS classifier applied to the lung dataset are presented

in the next section. A more detailed description of the lung CAD system can be found in

(Dehmeshki et al., 2007; Dehmeshki et al., 20006).

Figure 5.9: Sample of a nodule presented in a CT image slice and manually

annotated by a radiologist

The lung CAD system consists of several major components which are common (o

many CAD systems (Ye et al., 2009; Keserci and Yoshida, 2002):

&)

Image pre-processing: this component is used to minimize image noise and
eliminate unwanted structures, see Figure 5.10 (b).

Lung segmentation: a segmentation algorithm is applied to isolate the lung
region from the image data and to identify large structures, see Figure 5.10 (¢).
Object detection: this stage detects all possible objects nside the lung; sce
Figure 5.10 (d). This step is expected to detected all potential nodules. However,
it might detect many non-nodule objects.

Feature extraction: based on the radiologists’ input, a sct of features have been
identified that differentiate nodules from other structures. These features are
extracted for cach of the potential nodules found in the objeet detection stage.
Object classification: classification of all objects detected in Step 3 into nodule
or non-nodule classes, according to the extracted feature characteristics

previously obtained in Step 4.
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(a) (b)

(c) (d)

Figure 5.10: Major components of a lung CAD system: (a) Original image and (b)
Pre-processing of the image to smooth the lung area; (¢) Lung segmentation,
applied to the smoothed image; (d) Object detection applied to the lung region

5.5 Experimental results and performance evaluation

To assess the strength of the proposed IT2FLS method, particularly in comparison to
the TIFLS, both methods were integrated into the object classification component of a
lung CAD system. The dataset of thoracic CT scans was provided by Lausanne
Hospital, Switzerland. The dataset contains 81 nodules positively identified by the
radiologists across the 40 patient scan datasets. Each scan consists of about 300 image

slices in DICOM (digital imaging and communication in medicine) format with slice
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thicknesses ranging from 0.5 mm to 2 mm and X-ray tube currents ranging from 80 to
300 mA. The nodule diameter varies from Smm to 20mm. To define the ground truth,
the nodules were visually identified and manually annotated in the CT images (shown in
Figure 5.9) by two radiologists and the results were considered as the gold standard.
The radiologist’s decision about each nodule candidate in the training dataset (Arg,) is a
deterministic number which defines whether an object is a nodule (1) or a non-nodule
(0). This result is compared to the IT2FLS output to estimate the accuracy of the
classifier. An in-house lung CAD application was used to detect candidate objects and
extract their characteristics (values of the features).

The IT2FLS was integratéd into the lung CAD application for classification of
candidate objects. In the lung nodule classification, a set of 14 rules were compiled
based on the criteria adopted by the radiologists for differentiating between nodules or
non-nodule samples. A total of 300 potential nodules were detected by the CAD system
over the 40 scan dataset. The actual number of nodules in this datasets was 81. For the
lung CAD, 7 features were extracted for each object. The features are described in Table
5.2. A ten-fold cross-validation technique was used for partitioning training and testing
datasets. The nodule classification rules are listed in Table 5.3. The membership
functions are considered as a Gaussian IT2FMF with fixed standard deviation and
uncertain mean. The IT2FLS classification method was implemented in Matlab using
the IT2FLS toolbox (Castro et al., 2007, CaStro, Castillo and Melin, 2007; Castro et al.,
2008). The details of the components of the software developed in this study for IT2FL
membership function generation are presented in Appendix A.l. The membership
function of the sphericity feature for low, middle and high type-2 fuzzy scts is shown in
Figuré 5.11(a). All the membership functions produced by the IT2FMF gencration
approach for seven features of the nodule candidates are presented in Figure 5.11(b).
The interval type-2 fuzzy inference system is illustrated in Figure 5.11(c). The rules (14
rules) in the fuzzy logic are demonstrated in Figure 5.11 (d), where cach row represents
a classifer rule, each column is related to one of the seven type-2 fuzzy sects of features,
and the last column is the output type-2 fuzzy set nodule possibility (NP). For a given
sample X, the output is defined by calculating the type-2 implication membership
function (explained in Chapter 4, Section 4.5) followed by applying centroid type-

reduction and defuzzification, (see Chapter 4, Section 4.6).
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Table 5.2 Lung nodule candidate features

No Feature Definition

1 | Volume The size of the nodule

The effective diameter of a nodule. It is defined as
2 | Diameter the diameter of a sphere with the same volume of

the candidate object.

The degree of being spherical. It is is defined as the
3 | Sphericity ratio between the object volume size and the minimum

enclosing sphere volume size.

_ The mean of the HU of the spherical part of the
4 | Mean HU- Spherical
nodule

5 | Elongation The degree of elongation of a nodule

6 | Mean HU-Elongated | The mean of the HU of the elongated part of a nodule

7 | Distance The distance of a nodule to the thoracic wall

Table 5.3 List of nodule classification rules

I If (Volume is High) and (Sphericity is High) then (NP* is High)
2. If (Volume is High) and (Distance is Mid) then (NP is High)

3. If (Volume is High) and (Diameter is High) then (NP is High)
4. 1f (Sphericity is High) and (Volume is Mid) then (NP is High)

5

. IF (Sphericity is High) and (Volume is High) and (Distance is High) then (NP is High)

6. If (Sphericity is High) and (Elongation is not Low) then (NP is High)

7. If Sphericity is High and McanHU_Spherical is High then (NP is High)

8. If (Elongation is not Low) then (NP is High)

9. If (Sphericity is not Low) then (NP is High)

10. If (Distance is High) and (Diameter is High) then (NP is Iligh}um
11, If (Elongation is High) and (Sphericity is High) and (Diameter is Mid) then (NP 1s
High)

12. If (Elongation is High) and (Diameter is not Mid) then (NP s High)

13. If (Distance is High) then (NP is High)

14. If (McanHU Elongated is not High) and (McanHU_Spherical is not Low) then (NP

is High)

*: Nodule Possibility
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Figure 5.11: Implemented IT2FLS for classification of candidate nodules in a lung

CAD (a) Interval type-2 fuzzy sphericity membership function (b) Interval type-2

fuzzy membership functions for 7 features of candidate lung nodules (¢) IT2 Fuzzy
inference system for candidate nodule classification (d) Rule set of the IT2FLS

The proposed IT2FLS approach has been implemented in two different ways: firstly
based on a TIFLS, and secondly based on the training data set. In the latter method, the
GA approach was applied for defining the solution. In the genetic optimization step, the
tournament selection method was used. The crossover rate 0.5 and the mutation rate 0.1
were selected, as commonly used in GA-based applications. The GA algorithm
terminated when the maximum number of generation (100) was reached.

In learning and tuning the IT2FMF algorithm, the ten-fold cross-validation was
applied. The optimization algorithm considers area under the ROC curve (AUC) as an
indicator of the classification accuracy. The ROC curve analysis for estimation of the
cost of classification is described in Chapter 1, Section 1.6. The mean AUC of a ten-
fold cross-validation is calculated.

According to the results obtained in Table 5.4, the optimum model for the lung nodule
classification problem is the IT2FLS based on the TIFLS for which the average
accuracy is 95% with a 99% confidence interval (CI) of [92-99]%. Also, in the proposed
method based on the training dataset using three linguistic terms (Low, Middle, High),

when a GA tuning approach for non-monotonic FOU parameters was applied, the
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average accuracy is 83%, with 99% CI [71-96]%. This outperforms the method using a
monotonic FOU with an average accuracy of 82%, with a 99% CI [71-96]%. All the
proposed methods outperform the TIFLS with an average accuracy of 65%, with a 99%
CI [52-771%. The confidence intervals which shows the reliability of estimation are
theoretically calculated from the mean and STD values in Table 5.5 using the method in
(Montgomery, Runger and Hubele, 2009). The level of confidence (99% in this study)
of the confidence interval indicates the probability that the confidence range meets the
true population parameter given a distribution of samples. Considering a Gaussian
distribution, 99.7% of the data distribution is in interval m + 3s, where m and s are
mean and standard deviation of the population. Therefore, the accuracy of the TIFLS
and IT2FLs, with the probability of 99% is in the confidence intervals reported in table

54.

Table 5.4 Analysis of the results of the TIFLS and the I'T2FLSs

Accuracy
Mean Ccl*
TIFLS f'iSl%l [SE%:-??"u]
IT2FLS (Based T1FLS) 95% [92%-99%]
IT2FLS (Monotonic FOU) 82% [66%-96%]
GA IT2FLS I
(non-Monotonic) 83% [71%-96%)

*CI (Confidence Interval) is the 99% confidence intervals

In order to compare the efficiency of the proposed method, a two-sample left tailed
t-test has been applied. By comparing the t-test results, we are able to determine if the
proposed IT2FLS classifiers are statistically significantly different from the TIFLS
classifier. We performed the t-test with the null hypothesis that the mean of the ith
method is greater than the mean of the jth method, against the alternative hypothesis
that the mean of the ith method is less than mean of the jth method. The null hypothesis

has been defined as,

Ho: p; > M

Hyipy, < [y
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where p; and p j are the means of the accuracy of the ten-fold cross-validation as

1 10
W = EZ AUC; (5.3)
k=1

Table 5.5 Two sample left-tailed t-test analysis of the results of the TIFLS and proposed
IT2FLSs for lung nodule dataset

Fold # T1FLS IT2FLS IT2FLS GA IT2FLS
based T1 Monotonic
FOU
1 0.5 0.92 0.75 0.752
2 0.67 0.89 0.62 0.66
3 0.68 0.98 [ I _
4 0.69 0.91 0.63 0.64
5 0.69 | 0.62 0.64
6 0.58 0.96 I |
7 0.68 0.97 0.81 0.8
8 0.46 0.94 0.85 0.86
9 | | | |
10 0.52 0.96 0.96 0.96
Mean 0.65 0.95 0.82 0.83
STD 0.15 0.04 0.16 0.15
Decision/p-value R R R
(TIFLS) 4.8574¢-005 0.0241 | 0.0071
Decision/p-value FR R FR
(GA IT2FLS) 0.9929 0.0166 0.6081 |
Decision/p-value FR FR FR
(IT2FLS based TIFLS) 1 09796 | 09834

FR: Fail to Reject null hypothesis, R: rejection of null hypothesis at @-0.05 significance level. The
number below each decision (FR/R) shows p-value which is the probability, under the null hypothesis, of

observing a value as extreme or more extreme of the test statistic.

The two sample left-tailed t-test results in Table 5.5 (the last three rows) reveals the
superiority of the proposed learning and tuning IT2FMF in comparison to the TIFLS
for nodule classification in the lung CAD application. The test failed to reject (FR) the

null hypothesis, H, (the mean of the IT2FLS is greater than the mean of the TI1FLS),
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with a high probability. Furthermore, we have applied the t-test for the following null

hypothesis:
Ho: Wyrpprs = Mpypyps > 30%

where p.. ., cand W, o are the means of the accuracy of ten-fold cross-validation

for the TIFLS and the IT2FLS based TIFLS, calculated using equation (5.3). The t-test
result failed to reject the null hypothesis with 95% confidence interval (at p-value=0.86)
which indicates that the IT2FLS performs 30% better than the TIFLS.

The graph in Figure 5.12 compares the overall ROC curves of the TIFLS classifier
and the proposed IT2FLS methods. The area under the ROC curve is considered for the
evaluation of the cost of classification. The ROC curve of each classifier is plotted by
setting a threshold value ranging from a minimum to maximum degree of membership
of the classified objects. The fuzzy logic classifier provides a membership degree to
which an object belongs to a class. Using different degrees of membership of the object
to a class fuzzy set as a threshold provides different points with different true positive
(tp) and false positive (fp) rates on the ROC curve. The IT2FLS based TIFLS curve is
superior in general. Although the two T2FLS designed based on the training datasets
begin to rise slowly, they have a similar trend throughout the maximum sensitivity,
Compared with the TIFLS curve, the IT2FLS methods have better ROC curves with a
larger area under the curve (the larger the area under the curve the better the
classification results). The nodule classifica\tion results of the TIFLS and the IT2FLS

are illustrated in the example thoracic CT scan images in Figure 5.13.
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Figure 5.12: The ROC curve of the TIFLS compared to the proposed I'T2FLSs
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Figure 5.13: Examples of the TIFLS and the I'T2FLS nodule classification:
detected nodules are circled in red (a) True Positive (TP) detected by the TIFLS
and the IT2FLS (nodules), (b) False Positive (FP) detected by the TIFLS and the
IT2FLS, (c) FP detected by the TIFLS but not the IT2FLS (d) TP detected by the

IT2FLS but not by the TIFLS
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5.6 Summary

This chapter ﬁresented an approach for learning and tuning a Gaussian interval type-2
membership function to manage the problem of uncertainty in the input of a classifier.
This method generates the FOU of a Gaussian IT2FMF based either on an uncertain
TIFLS or an imperfect training dataset. The GA algorithm searches to find an optimum
set of parameters of the IT2 membership functions. The FOU of the IT2FMF was
learned using the genetic algorithm, the new chromosome structure and initialization
technique. The FOU in an IT2FLS is modelled using the k,, and k,, parameters. In the
GA-based approach, the structure of the chromosome consists of FOU parameters for
each feature linguistic terms and has fewer genes (about half of the other GA based
methods) than other GA based methods. In the GA IT2FMF generation approach for
éstimating membership function parameters, chromosome structure includes the FOU
parameters (k,,s and k,s). This method initializes chromosome more precisely. This
property is significant for medical classification problems with large number of inputs
where it is difficult or expensive to initialize membership function parameters using
knowledge of experts.

This method was applied to classify candidate nodules detected by a lung CAD
application. The improvement achieved in nodule classification application is
considerably significant whilst lung cancer is the leading cause of cancer death with the
most mortality rate for both males and females. Integrating interval type-2 fuzzy logic
classifier into the lung CAD application enables us to model the uncertainties in input
training sets such as inter- and intra uncertainties, word perception, and numerical
measurements. These uncertainty sources are modelled using the FOU in an IT2FMF.
In order to have an unbiased view of the classifier performance with the minimum
dependency to the dataset, the training and testing datasets were randomly selected
using the ten-fold cross-validation technique. Then, the average performance of ten runs
was used to represent the final accuracy of the method.

The accuracy of each IT2FLS classifier is measured using the arca under ROC curve,
The maximum accuracy is achieved for the IT2FLS based on the uncertain TIFLS
defined by experts, with an average accuracy result of 95%. The thrce IT2FLS mcthods
described in this chapter all outperform the TI1FLS counterpart (with an average
accuracy of 65%). Analysis of the results reveals that the IT2FLS is more capable of

capturing the uncertainty sources in the model and achieving a better performance
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results. For the lung nodule classification, the IT2FLS performance is 30% better than
the TIFLS. In addition, in order to compare the efficiency of the proposed method
compared to each other, a two-sample left tailed t-test was conducted. According to the
t-test results, the proposed IT2FLS classifiers are statistically significantly different
from the TIFLS classifier. The t-test result failed to reject the null hypothesis with 95%
confidence interval (at‘ p-value=0.86) which indicates that the IT2FLS pérforms 30%
better than the TIFLS. |

The result of the proposed methods for automatic learning and tuning of the IT2FMFs
based on the training dataset is more promising for multidimensional classification
problems that lack expert knowledge. Furthermore, the result of the proposed methods
for automatic learning and tuning of the IT2FMFs based on the training datasct with an
average accuracy 82% is more promising for multidimensional problems that lack
expeft knowledge. These findings suggést that, IT2FLS is capable to provide more
efficient performance results compared to T1FLS for classification of candidate nodules

in a lung CAD application.
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Chapter 6: A Genetic Type-2 Fuzzy Approach for Rule
Extraction for Uncertain Pattern Classification
o | Problems

Fuzzy rule-based classification provides a rule set with more interpretability than the
other proposed methods. While most fuzzy classifiers need expert knowledge for
initializing the fuzzy set's membership functions, and the initial rule set, extracting this
knowledge from medical experts is a difficult, time consuming and expensive process.
Furthermore, a FLS for classification in medical applications is expected to model
uncertainty sources in the input training datasets as well as system rules. While, scveral
methods have been proposed for modelling unéertainty in the input of a classifier using
type-2 fuzzy membership functions, no attempt has been reported for extracting rules
for a type-2 fuzzy logic using an uncertain training dataset. In chapter 5, an approach
for modelling uncertainty in the input of the classifier using IT2FMFs was presented
where rules are available from experts. This chapter extends this work (Hosscini et al.,
2012) for circumstances where the knowledge about the rules is not available. For this
purpose, the idea of uncertain rule-based fuzzy pattern classification is introduced. An
automatic approach is presented which extracts rules from imprecise and imperfect
training dataset and learns them for future observations. This model takes advantage of
type-2 fuzzy sets for tackling the problem of uncertainty in classification. A genctic
algorithm with a punishment-reward scheme is applied for learning rules. For
evaluation purposes, the approach has been applicd to the anonymous Wisconsin brcast
cancer diagnostic (WBCD) dataset and the results are provided. The aim is to show that
modelling uncertainty in the rule set provides a classifier for the WBCD datasct which

competes with the best results of other classification methods for this dataset.
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6.1 Introduction

Type-2 fuzzy sets have the potential for managing uncertainties in linguistic terms in
vague environments (i.e., with subjectivé or imprecise and imperfect knowledge). A
type-2 fuzzy logic system (T2FLS) utilizes a three-dimensional type-2 fuzzy
membérship function (T2F MF) and the footprint of uncertainty (FOU) for managing the
problem of uncertainty in classification (see Section 4.3 Chapter 4). Uncertainty sources
in a linguistic fuzzy rule-based classifier can be modelled through two important
components: the rule set and the database. The rule set contains a collection of linguistic
rules (extracted from experts or defined by a learning algorithm) whilst the database
includes linguistic term sets in the rules and their associated MFs. The accuracy of a
fuzzy rule-based classifier is affected by these two major components.

Despite the fact that ihere are several methods for learning and tuning membership
functions in ak T2FLS rule-based classifier, to my present knowledge, no effort has been
made for automatically extracting rules for a medical imaging classification applications
taking account of uncertainty sources in noisy images and imperfect datasets. However,
imperfect and imprecise datasets (including features characterizing object of interest)
influence the rule extraction process as well as membership function generation.
Uncertainty issues are méjor hidden barriers to better performance of the pattern
classification. Moreover, most learning énd tuning MF approaches for an IT2FLS are
applied to rules with fuzzy sets (Mamdani rule), a linear function or a real number
(TKS rule types) in the consequent part of the rule (different type of rules are explained
in Chapter 3 Section 3.3). Whilst the rule type with a class label and a degree of
certainty of the classiﬁér decision (Ishibuchi and Nojima, 2008, léhibuchi, Nakashima
and Murata, 1996) is more applicable for complex pattern classification problems and
has higher interpretability than the other types of the rules and is the focus of this
chapter. ' ‘

The idea of uncertain rule-based fuzzy pattern classification and the rclated
mathématical model is introduced in this chapter. In such a system, antccedent of the
rules take advantage of type-2 fuzzy sets for iackling the problem of uncertainty and
consequent of the rules defines the class label with a degree of ccrtainty. A Genetic
algorithm (GA)‘ in combination with a punishment-reward scheme is applicd for
learning rules and the degree of certainty. The proposed approach improves the
Ishibuchi fuzzy rule-based pattern classification model (Ishibuchi and Nojima, 2008) for
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extracting rules from imprecise and imperfect datasets. The proposed model presents a
new rule structure for uncertain rule-based pattern classification using type-2 fuzzy set
theory and provides its mathematical framework. This type of rule has the capacity to
capture the uncertainties in the training dataset such as uncertainties in the mathematical
models applied for measuring the features (different methods with different error rates
may lead to different results) in the antecedent part of the rule. The main application of
the proposed rule learning algorithm is the capacity of automatically extracting rules for
multi-dimensional pattern classification problems with high degree of uncertainty in
numerical measurements and linguistic terms, such as medical diagnosis applications.
The rest of this chapter is organized as follows: The next three sections (6.2 to 6.4)
describe the proposed approach for automatically constructing two major components
of an IT2FLS while the aim is to model uncertainties: (1) interval type-2 fuzzy
membership function generation, and (2) interval type-2 fuzzy GA (IT2F GA) rule
learning approach for pattern classification applications. For evaluation purpose, the
proposed approach has been applied to the popular WBCD classification problem. The
breast cancer diagnosis problem using a mammography CAD application is explained in
Section 6.5. Then, an overview of current rule extraction methods proposed for the
WBCD classification problem is presented in Section 6.6. The result of the IT2F GA
rule learning method applied to the WBCD is demonstrated in Section 6.7 and this

chapter is concluded in Section 6.8.

6.2 Interval type-2 fnzzy membership function generation

Uncertainty sources in the input of a fuzzy classification can be managed through
type-2 fuzzy set membership functions and their FOU. The membership function of a
type-2 fuzzy set can be defined using knowledge of experts or through an expert system.
Several approaches have been presented for automatic learning and tuning of interval
type-2 fuzzy membership functions in (Hosseini ct al., 2010a; Mitchell, 2005; Hidalgo,
Castillo and Melin, 2008; Castro et al., 2007; Hosscini et al., 2012). In order to design
type-2 fuzzy sets, expert knowledge can be used for defining the number of linguistic
terms and parameters of the membership function for each input feature in the pattern
space. However, in circumstances where we cope with a lack of expert knowledge or

- expensive knowledge extraction processes, such as for most pattern classification for
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medical diagnosis applications, automatic learning and tuning methods are vital for
defining fuzzy membership function for linguistic terms using on a training dataset. For
illustration of the problem, assume a 2-dimensional pattern classification system,
X = (x1,x; ), with three fuzzy sets associated to three linguistic terms (low, middle and
high), the total number of possible combinations of fuzzy sets in the antecedent of the
rules is (3)% =9 (see Figure 6.1), and if considering “don’t care” as a fuzzy set, it is

(3 +1)%=16.

Middle

High

N\ SN\

Figure 6.1: Type-2 fuzzy partitioning of the pattern space

In this study an interval type-2 fuzzy set with a primary Gaussian membership
function (called an interval type-2 Gaussian membership function) is imposed. For cach
feature, the corresponding values in the training dataset is clustered using standard c-
mean clustering method (Chi, Yan and Pham, 1996) into three Gaussian functions
equivalent to the low, middle, and high linguistic terms. For modelling the footprint of
uncertainty, genetic algorithms have been frequently used to tune the lower and upper
bound parameters of a type-2 MF (Cazarez-Castro, Aguilar and Castillo, 2010; Wu and
Wan Tan, 2006; Martinez, Castillo and Garcia, 2008). However, the proposed GA
learning and tuning type-2 membership function approaches are applicable when a
fuzzy logic with initial values of the membership function parameters and a sct of rules
exists. These methods are not applicable for circumstances with no prior expert

knowledge or when the initial fuzzy membership functions and rule set are not
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available. The classification problem for the WBCD breast cancer diagnosis is an
instance of such a problem with only a training dataset available.

In order to generate the interval type-2 fuzzy MFs for the breast cancer features using
the model described in Chapter 5, Section 5.2.2, first it is needed to estimate the FOU
parameters, k,, and k,. For this, an uncertainty measure is calculated for each possible
pair of (k,,, k,) and interval type-2 fuzzy sets related to a linguistic term of an input
feature. Wu and Mendel suggested cardinality of an IT2FS as a measure of intra-
uncertainty between all embedded type-1 fuzzy sets (Wu and Mendel, 2007; Wu and
Mendel, 2009). De Luca and Termini (A. De Luca, S. Termini, 1972) defined
cardinality of a type-1 fuzzy set A as follows, cited in (Wu and Mendel, 2009):

P = [ ma)dx (61)

The normalized cardinality of a type-1 fuzzy set A is defined as follows:

LIRS
P = 22 D () 6.2)
i=1

where |X| = |xy — x,] is the length of universe of discourse where x; (I = 1..N) arc
chosen with equal space in the domain of x. Cardinality of interval type-1 fuzzy set is
used to calculate cardinality of an interval type-2 fuzzy set (Szmidt and Kacprzyk,
2001). The cardinality of an IT2FS A is the union of cardinality of all its embedded
type-1 fuzzy sets, A,, is defined as follows in (Wu and Mendel, 2009):

| P(4) = U p(A,) = [miny,,p(A,). maxya,p(4,)] (6.3)
VA,EFOU(A)
P(A) = [P(gz(x)). P@;(x))] (6.4)

The length of interval indicates uncertainty in an IT2FS while a larger interval

represents more uncertainty. The average cardinality of 4 is defined as follows:
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, P + p(E,(x)
Pavg(A)=pE”)2p"‘” | (6.5)

The average cardinality, P, (A), is calculated for each possible pair of ky, and k,, and
corresponding interval type-2 fuzzy sets of the input. The IT2FL with minimum average
cardinality of its MFs shows the minimum uncertainty in the system. For all possible
pairs of k,, and k,, a ten-fold cross-validation is applied which considers one fold for
testing and the rest for training and repeats this process until all folds are selected once
for validation. The average results of a ten-fold cross-validation run of the GA learning
rule method represents performance of each k,, and k, pairs in terms of average
cardinality and average error rate on training and testing datasets. The k,,, and k,, with
minimum overall classification error rate (on training and testing datasets) and
minimum average cardinality is selected for generating membership functions in the GA

rule learning algorithm.

6.3 Rule extraction for interval type-2 fuzzy pattern classification

In this section, an automatic rule learning approach for a type-2 fuzzy pattern
classification is presented. This approéch extracts rules from an uncertain and imperfect
training dataset. The approach proposed for learning linguistic rules from training data
extends the method presented in (Ishibuchi and Nojima, 2008; Ishibuchi, Nakashima
and Murata, 1996) and improves it for uncertain mlc-baSed pattern classification. The
Ishibuchi et. al. method is proposed for extracting rules from a training datasct using
type-1 fuzzy logic and the genetic algorithm. However, this study extends this method
and its mathematical model for uncertain pattern classification using type-2 fuzzy logic.
The footprint of uncertainty in type-2 fuzzy scts allows us to capturc more uncertaintics
in membership functions for classification of the patterns compéred to the type-1 fuzzy
equivalent. This is the case for mbst classification problems in medical applications
such as CAD applications. Moreover, in their method the fuzzy sets in the antccedent of
the rule is manually defined by a human expert while the proposed approach in this
study automatically generates fuzzy sets using the model explained for partitioning the

pattern space in Section 6.2 and without using the knowledge of experts.
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This study is the first attempt toward automatically generating type-2 fuzzy logic
including membership functions and rule set from imprecise and imperfect training
dataset. However, some attempts have been reported in recent years for linguistic
summarization of the database for natural language representation of the objects using
type-2 fuzzy sets but these methods need user intraction for defining the type-1 fuzzy
membership function and the FOU parameter estimation (Niewiadomski, 2008;
Niewiadomski, 2007, Niewiadomski and Bartyzel, 2006; Niewiadomski and
Szczepaniak, 2006; Niewiadomski, 2005). Recently a linguistic summarization method
using interval type-2 fuzzy sets and If-then rules has been proposed for weighted rule
extraction from a causal database (Wu, Mendel and Joo, 2010) using quality measures.
This method also needs expert knowledge for initializing fuzzy membership function
parameters. Furthermore, it requires knowledge of a group of experts to define the

interval of the FOU.

6.3.1 Rule generation for IT2FL

A rule generation procedure generates linguistic classification rules for the uncertain
rule-based fuzzy classification. The uncertainties in the rules are managed through type-
2 fuzzy sets in the antecedent part of the rules. The structure of a rule in a type-2 fuzzy

rule-based pattern classification for a given pattern Xp =(xXpyy o) Xpy) is as follows:
Rule R;: If x,q is Ay and ...and Xpy is Ay, then Class C; with GC;

where 4, w, Apy are interval type-2 fuzzy sets, i=1..M is the number of rules, C; is the
class label and the GC; is the grade of certainty of the rule. An example of such a rule is
"If Clump Thickness (CT) is Low and Marginal Adhesion (MA) is Low and Bare Nuclei
(BN) is Low and Normal Nucleoli (NN) is Low then object is benign”. In order to
improve interpretability of an IT2FL, a maximum of three linguistic terms is considered
during the rule generation method. The steps of the proposed method for the rule

selection from an imperfect training datasct arc explaincd as follows:

Step 1: Calculate the grade of compatibility of pattern X, to the jth linguistic

classification rule R; as (Mendel, 2001),
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Aj(%p) = Ap(xp1) 0 A (xp2) 0 0 Ay (3pm) (6.6)

where N is the type-2 fuzzy intersection (see Section 4.5 in Chapter 4) which can be

implemented by a meet operation (N. Karnik and M. Mendel, 2001).

The total grade of compatibility of the given patterns in training dataset in Class k to

the jth classification rule Rj, Beiassk)» is an interval type-2 fuzzy set firassk =

[_ﬁ_Class x Bciass k] which is calculated as follows:

Betass k = [EClass k Betass k] = Z #y(Xp) (6.7)
V Xp€ Class k

where u J is the firing strength of the given pattern X, for rule R; as,
/‘j(xp) = /‘Ah("m) ) «”J,z(xpz) Pt l‘x,"(xpn) (6.8)

In the approach proposed in this chaptef, Ha,, (xpl) is the MF of the input x; to the

interval type-2 fuzzy set 4;; and (°) is a product t-norm (N. Karnik and M. Mendel,
2001). | | '

Bclassk = Z ﬁ](xp)
V Xp€Class K

(xp1) * l_‘_‘z(xpz) Tl (xpn) (6.9)

= /-1_‘

VXpeClassk !

Bctassk = Z ﬁj(xp)
V XpeClass k

= Z Flh(xpl) ) ﬂl,,(xpz) RN F,‘In(xpn) (6.10)
v Xp€Class k ‘

where B4 i is calculated for each class (1...c) in the pattern space.
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The centroid type reduction followed by defuzzification in (Kamik, Mendel and

Liang, 1999) for an interval type-2 fuzzy set 8 is used to calculate Beiass k 25

Bctass k + Bciass k

Bclassk = ) (6:11)

For illustration, consider a given sample with input vector:
Xp = (Xp1 Xpze s %py) = (5,1,1,1,2,1,3,2,1)

The membership function valués of the input X,, to the linguistic type-2 fuzzy sets in the

antecedent part of the rule:

R;: "If x4 is Mid and xp; is Low and xp3 is Low and Xp4 is Low and xps is Low and
Xpe is Low and x5 is Low and Xpg is Low and Xpq is Low ", are computed using the
model presented in Chapter 5 Section 5.2.2 and the method explained in Section 6.2 for

the FOU parameter (k,, , k,) = (0.2,0.7), as follows:

P Ah(xm) = “ (xp1) 7 i, (xp1)] = [0.6481 0.9846],

1
ti, (x52) =[0.9775 1], 4, (%p3) =[0.9698 1}, i, (xp4) = [0.9297 0.9787),
#,(%ps) =[0.9706 1], #a, (%) =[0.9801 1]p; (xp7) = [0.0987 0.7409),

u A]a(x,,s):[o.sus 0.9603], u Ah(xpg)=[0.9666 1]

The grade of compétibility of X, to the rule R; using product t-norm is computed as

follows:
'uk/(xp) = ["_I.AJ(XP) Fj/(xp)]
= L-u-ﬁh(xm) ) 'l_‘.gz(xpz) Tt /_“I“(xpn)
i"z,, (xpl) ' F,z/,(xpz) Ce ﬁ‘l"(xpn)]
where,

ﬁl/ (XP) = /'l"‘h (xpl) * 'ﬁﬂz (po) t et &AI“ (xpn)
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= prod(0.6481 0.9775 0.9698 0.9297 0.9706 0.9801 0.0987 0.5146 0.9666)

= 0.0267
and,
By (Xp) = By, (p1) * Tz, (xp2) = e By, (%pn)
= prod (09846 1 109787 1 1 0.7409 0.9603 1)
= 0.6855

For example, the WBCD dataset with two classes "benign" and "malignant", (¢ = 2),

includes 444 benign samples and 239 malignant samples. The total grade of
compatibility, Fiass 1 = [Bctass 1 Betass 1] » of all benign samples (Class 1) to the rule
Rj: "If xpy is Mid and xp; is Low and Xxp3 is Low and xp4 is Low and xps is Low and

Xpe is Low and x,; is Low and X,g is Low and x,q is Low", is computed as follows:

Bctass1 * Boiass1 18.1640 + 89.5836
: ﬂClass 1 = 2 = 2 .

= 53.8738

where as Biass 1 = 18.1640, and friass1 = 89.5836 are the lower and upper bound of
the grade of compatibility for all benign samples, calculated using equations 6.9 and
6.10. The total grade of compatibility of all malignant samples (Class 2) to the rule Ry

is calculated in the same way as follows:

Bciassk + Beiassk  1.2654e — 033 + 1.2599e — 006
Bclass2 = 2 = 2

= 6.2993¢ — 007

where as Biq.s2 = 1.2654e — 033, and Bi552 = 1.2599¢ — 006 arc the lower and upper

bound of the grade of compatibility for all malignant samplcs, calculated using
equations 6.9 and 6.10. This example shows that the benign samples in the WBCD

dataset are more compatible to the rule R;.

Step2: The consequent C; of the rule R; is the class with maximum total grade of

compatibility (8. ) as (Mendel, 2001),
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Beass® = max { Bciass 1, Bclass2 s+ » Bctass ¢} (6.12)

If Beiassk is not unique, then two or more classes have the same fpqes% then
Bciass % is assigned to @, the empty class. A rule with the empty class in the consequent
part is called a dummy rule (Ishibuchi and Nojima, 2008). It is clear that the firing
strength of the interval type-2 fuzzy sets in the antecedent of the rules has influence on
defining the consequent of the rules.

For the above example for the WBCD classification, the consequent of the rule R; is

defined using,

Bciassk = max { Bciass 1/ Bciass 2}

= max {53.8738,6.2993e — 007} =53.8738

Thus, k = 1 is selected, which means consequent C; of the rule R, is class "benign".

Step3: The grade of certainty GC; of a dummy rule is assigned to 0. The grade of
certainty of a non-dummy rule is defined as follows (Ishibuchi, Nakashima and Murata,

1996; Ishibuchi and Yamamoto, 2005):

Bclass ) 2 ﬁ
G = o (6.13)
/ Zf=1 BClass l

b= (Z /famk)/ (c-1) (6.14)
#l

For the WBCD dataset example, the grade f certainty (GC; ) of the rule Ry is

calculated as follows:

c Cl = ﬁClas; 1= BClass 2
Z,=1 Bctass i

_ 53.8738 — (6.2993¢ —007) _ 53.8738 _
~ '53.8738 + (6.2993e — 007)  53.8738
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This example shows that the degree of certainty of the rule R; in classifying benign

objects is 1.

This section /presented the method for computing the consequent and the grade of
compatibility of a rule in an IT2FLS using training datasets. The steps of the algorithm
were explained with a simple example of the WBCD dataset. The next section considers
that a set of rule for an IT2F LS has already been generated from a training dataset using
the method explained in this Sectioh, and it describes fuzzy reasoning method for

classifying new patterns.

6.3.2 Fuzzy reasoning

A set of linguistic rules is selected using the rule generation method explained in the
previous section. The process of fuzzy reasoning is applied for classifying new patterns.

Consider we are given a subset S of all possible rule sets, a new pattern X, is classified
by the Classk in the consequent of the rule R; €S, (j = 1..M) which has the
maximum @ as,
& =[a; 7)=[max {n;(X,).6G} max (R, (X,).6G))
= [ max {"u"‘/; (xpl) . ﬁ/lz(xpz) o l-l-l/,. (xp,‘) . GGj)

max {fig (xp1) * Az, (%p2) * v Fzy (%pn) -GGl (6.15)

The centroid type reduction following defuzzification for an interval type-2 fuzzy sct

@ is used to calculate a;(X,) as follows,

aj + c't',
a;(X,) == 5 (6.16)

Thus, the pattern X, is classified by class label (k) in the consequent of the rule R;

with maximum a; (X, ) (Ishibuchi and Nojima, 2008) as,

(ciass k = max { (@;(X,)| Class = C; and Ry € S} 6.17)
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For classifying a new pattern X, the value of @; (Xp) is computed for each rule (R;)in
the rule set. The winner rule is the rule with maximum aj(X,,). If two or more rules
with different consequent classes take the maximum @cigesx, then we assign -1 to
@ciass x Which means the given pattern X, cannot be classified by rule sct S and is an
unclassified pattern (Ishibuchi and Nojima, 2008). The value of the @ciqssx Shows the
strength of each rule (R;) for assigning pattern X, to its consequent class (Class k). The
interval of [a; @] of the rule with maximum a;(X,) defines the lower and upper

bounds of the strength of the rule.

For illustration, consider we want to classify the given pattern

Xy = (1, Xp2, s Xpn) = (5,1,1,1,2,1,3,2,1) and there are two rules in an IT2FLS as

follows:

Ry: If xpy is Mid and x,,; is Low and X, is Low and xp4 is Low and xps is Low and
Xpe is Low and x,; is Low and x,g is Low and xpq is Low then it is benign withGC =1

and ,
Ry:1f xpy is High and x,,; is Low and xp3 is Low and xp4 is Low and xps is Low and xpe is

Low and x,; is Mid and x,g is Low and xpq s Low then it is benign with GC = 0,95

The pattern X, is classified by the Class k in the consequent of the rule R; (the winner

rule) which has the maximum & as follows:

@ =[ar @) =[{p:(X:).6C} (7, (Xp).6G)
= [{0.0267 x 1}  {0.6855 x 1}]
= [0.0272 0.6855)

2=l &) = [{p(Xp).GC} (B, (Xp).GC2))
= [{0% 095} {0.004 x 0.95}]
= [0 0.0038]

N

then,

0.0272 + 0.6855
a;(X,) = 5 = 0.3564
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0+ 0.0
ay(Xp) = —1-2—-02 = 0.0019

and agjqss = max { 0.3564,0.0019) = 0.3564. Thus, the strength of the rule R; is more
than the rule R, which means the winner rule for classifying the patten X, is rule R,.
The next section describes an interval type-2 fuzzy GA approach for rule extraction and

learning using an imprecise and imperfect training dataset.

6.4 An interval type-2 fuizy GA approach for uncertain linguistic rules
learning

The applied method for GA linguistic rule learning (explained in Section 6.3)
extracts type-2 fuzzy rules for an IT2FLS. The proposed method in this section is based
on the method presented by Ishibuchi et al, (Ishibuchi and Nojima, 2008) for extracting
rules for a type-1 fuzzy logic and extends and improves it and its mathematical model
for interval type-2 fuzzy logic. Furthermore, some changes have been made to the
chromosome structure, and fitness evaluation of the proposed GA algorithm, The GA
evolutionary algorithm follows the Michigan approach (Herrera, 2008, Pena-Reyes and
Sipper, 1999) in which each individual represents a rule and a population in each run of
the GA represents a candidate interval type-2 fuzzy logic. This evolutionary method has
less computational complexity compared to the Pittsburg approach (Herrera, 2008,
Pena-Reyes and Sipper, 1999) in which each individual in the population encodes a
type-2 fuzzy logic and several candidate fuzzy logics arc evaluated in cach generation,
The general steps of the type-2 fuzzy GA rule learning method are described in this

section and demonstrated in Figure 6.2,
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Figure 6.2: Genetic algorithm for learning IT2FL rules

Stepl: GA representation — Real-valued codes in a chromosome are used to model rules
in an IT2FLS. This structure is more applicable for pattern classification, casy to
implement, has no length limitation and has more precision than bit string
representation. It is also capable to model rules with a large number of antccedents
(input features) with less number of genes compared to a bit string coding
representation. The numerical structure of the chromosome for type-2 fuzzy rules
consists of n genes, each showing prcsencé or absence of a fuzzy linguistic term in a
rule. Each genome has a value between 0 and the number of fuzzy sets associated to
the linguistic terms of the feature. Figure 6.3 illustrates the chromosome structure, for
an IT2FL with nine i}nput features and three linguistic terms (low, middle and high).
Each gene can have any values between 0 to 3; 0 means no contribution of the feature

in the rule (don’t care) and 1 to 3 represent three linguistic terms, respectively, It
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should be noted that the chromosome only models the antecedent part of the rule and
the consequent part and grade of certainty of each rule is defined through the rule

extraction method explained in the section 6.3.

1 0 0 2 1 3 0 0 0

Figure 6.3: Chromosome structure with numerical coding

Step2. Initialization — In this structure, each rule is treated as an individual and a
population (N,,,) consists of a fixed number of rules. The solution is a sct of rules
(R1R; ... R,;) which has the maximum fitness value. Each population represents a
potential solution (rule set). To each genome related to a linguistic term, a random
number between 0 to maximum number of linguistic terms (L) is associated. Then, the
consequent and the grade of uncertainty of the rule are calculated using the method

described in Section 6.3.

Step3: Rule elimination - in this step, dummy rules (rules with the empty class in the
consequent part) are first eliminated from the list of rules. Then the rules which do not

classify any patterns (non-active rules) are removed from the rule set.

Step4: Fitness evaluation - A fitness value is assigned to each linguistic classification

rule R; in the current generation as follows:

Fitness(R)) = (WNC,, * Nnep(Ry) - Wame * N,,,,.,,(R,)) (6.18)

where Nycp is the number of patterns correctly classificd by rule R;, Nyyp is the
number of misclassified patterns, and Wycp and Wypp are the weights of correctly
classified and misclassificd patterns, respectively,
Furthermore, during the process of classifying patterns in the training datasct by cach
rule, the initial grade of certainty (GC;) of cach rule is adjusted through a learning

technique which employs a reward or punishment scheme (Ishibuchi and Nojima,
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2008). For this, whenever a pattern is correctly classified then its grade of certainty is

increased as,
G = GC'* + Wrewara * (1 - 6CP'Y) (6.19)

where W,y arq is a positive learning weight. Otherwise, the grade of certainty of the

rule is decreased (Ishibuchi and Nojima, 2008):

GCIY = GCP' — Wounishment * GC' (6.:20)
where Wyynishment is the positive punishment weight.

Step4: Rule Selection - This step applies a selection strategy which keeps the fittest
chromosomes in the current population in the next generation. This selection method
considers that the fitness of the individuals is positive. This step first calculates a
probability of selection (P) for each rule in the current population by normalizing the
fitness value of each rule compared to minimum fitness value of the rules in the
current population, fi,;(S). Then it sorts the individuals based on their probability
and selects 50% of the rules with higher selection probability. The probability of rule j
in the gth generation is defined using a roulette wheel sclection with a lincar scale as
follows (Ishibuchi, Nakashima and Murata, 2001):

- f(Rl) - fmln(s)
P(Ry.g) = Zries{ F(R) = fmin(S)} (6:21)

fnin(S) =min{f(R) IR, €S} (6.22)

where f(R;) is the fitness of rule j, and frn (S) is the minimum fitness in the current

generation (g).

Step5: Crossover and mutation - crossover opcration sclects individuals in a population
with a probability, Perossover a8 parents and combines them to create a new offspring

(Michalewicz, 1996). For each pair of sclected individuals, a random number (r) in
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interval [0, 1] is generated. If 7 < P¢yossovers @ Single-point crossover is applied (See
Figure 6.4). All the bits before and after that point in parent string arc swapped. A
position point, p, is randomly selected while 1 < p < n, and n is the number of inputs

(Michalewicz, 1996).

Parent 1:

aq a, " ap..l ap ap+1 . an-y an
Parent 2:

b1 bz oy bp_l bp bp+l e bn-.! b"
Child 1:

a1 az XY} ap-l ap bp+1 s b"-1 bn
Child 2:

b1 bz (11} bp—l bp ap+1 .o a"-l an

Figure 6.4: An example of crossover operation on two individuals at crossover
point, p

The offspring are normally mutated after crossover combination, The mutation
operation selects a gene in a chromosome with a mutation probability, P, and changes
it to a new possible value (Michalewicz, 1996). The probability of mutation defines the
expected number of genes in a éhromosome undergoing mutation opcration, The
probability of the mutation, P, is inversely proportion of the length of the chromosome.
Mutation is usually applied for cach offspring in the current population and for cach
gene within them, It first gencrates a random number (r) in the range [0, 1] then
compares it with the probability of mutation. The gene is mutated if r < Py
(Michalewicz, 1996). The new value of the chosen gene (Shown with * in Figure 6.5) is
replaced with a new uniform random valuc between 0 to maximum number of linguistic

terms (L).



6.4 An interval type-2 fuzzy GA approach for uncertain linguistic rules learning 145

ap | @z v [ Gr-1 ) Qr [ Gryg | e [ Gpeg | Gp

Figure 6.5: An example of mutation operation on an individual at random
mutation point *

The mutation and crossover operation apply only to the antecedent part of a rule. Then
the consequent and the grade of certainty of rules are defined according to the rule
generation method in Section 6.3.

The crossover operation directly affects the convergence property of the GA while
mutation provides variation for the GA (Koza and Poli, 2005). High probability of
crossover and low probability of mutation can improve convergence of the GA.
Premature convergence is a common problem in the genetic algorithm which means the
algorithm is trapped into local optima rather than the global optima. Selection of the
optimum individual in each population does not assure the optimum solution for the
problem. However, large population of chromosomes can ameliorate this problem but
does not guarantee all variations. Thus, mutation is a useful technique to improve the
genetic diversity and avoid premature convergence to a local optimum solution (Koza
and Poli, 2005).

Step6: Rule Replacement - the generated rules in the previous step are replaced with
some of the rules in the current population. The replacement strategy is based on the
fitness value of the rules which means rules with lower fitness values are replaced by
new rules. -

Step7: Termination test- the GA algorithm stops whenever it gets to the maximum

number of generations.

6.4.1 The GA overﬁtting problem

One of the rnajor problems in most machine learnmg algorithms evolvmg GA is

overfitting. An algorithm overfits a dataset when it models the given samples very well
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but cannot predict non-observed samples. This problem occurs when the model overfits
the train set but it does not generalize well for the new samples in the test set. This
means, during the GA run the error on the training dataset is decreasing but it is
increasing on a non-observed testing dataset. However, complex rules with several
antecedents or large number of rules in a rule set improves the accuracy of classification
over the training set, but this technique may affect the generalization property of the
selected rule set which may cause the performance to deteriorate over the testing
dataset.

Overfitting can be avoided if the number of samples is much more than the number of
parameters in the GA. Another solution is to apply a reduce error pruning idea in a
decision tree classifier to remove the rules with low classification rates (Witten and
Frank, 2005). This approach splits the whole dataset into a training set (also called
growing) and a testing set (pruning) and monitors the classification error on both sets.
There are several techniques for splitting a dataset into training and testing sets. One of
the common technique is to consider two thirds of the dataset for training and the rest
for testing. The samples in each group are randomly selected. The reduced error pruning
method first extracts a complex rule set with a high accuracy on the training set then it
prunes the rule set to fit it for the testing dataset (Witten and Frank, 2005).

The proposed approach for learning rules in this study applies a post-pruning stage to
remove rules, which ameliorate the classification rate on the training dataset but
deteriorate the classification rate on the testing dataset. The next section describes the

importance of the breast cancer diagnosis problem.

6.5 Breast cancer diagnostic problem

Breast cancer i the most common type of the cancer among women in the UK (Cancer
Research UK, 2011). Each year about 45,000 female and 300 male are diagnosed with
breast cancer and 12,000 women and 90 men die. In 2008; é total of 48,034 new cases
were diagnosed (over 99% in women and less than 1% in men) (Cancer Research UK,
2011). The risk factor of breast cancer among women is 1 in 9 in 2008 and varies in
different ages (Cancer Research UK, 2011). As shown in Figure 6.6 (Ferlay et al.,
2011), women (under the age of 75) ére at high risk (incidence and mortality) of breast

cancer than younger women (under the age of 25). Breast cancers in the early stages are
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more likely curable. Mammographic screening (X-ray imaging of the breast) is a way to
find a lump in the breast and detect the cancer at the early stage. Detection of the lumps
in the early stage improves the survival rate. Radiologists observe mammogram images
to find abnormalities such as micro-classification (small deposits of calcium), masses
(space-occupying lesion in two projections of the breast, see Figure 6.7), and structural
disorders and characterization of them (shape or margin) (Sampat, Markey and Bovik,
2005). However, radiologist's diagnosis is associated with human errors. Biopsy is a
sure way to identify the breast cancer; it is an invasive method which is performed
through a tiny needle or surgery for taking sample tissue of the lump. Computer aided
mammography, as an invasive method, helps radiologists to detect abnormalities in the

breast images and improve diagnosis the breast cancer.
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Figure 6.6: Incidence and mortality age-specific breast cancer rate for women per
100,000 in the UK in 2008 (Ferlay e al., 2011)
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Figure 6.7: Two view projections of the breast through mammographic screening
from (Sampat, Markey and Bovik, 2005)

6.6 Review of the classification methods for the WBCD classification
problem

This section provides an overview of the previous rule extraction methods applied to the
Wisconsin breast cancer diagnostic (WBCD) dataset. This dataset is a popular dataset
for evaluation of the performance of classification. Various techniques have been
reported in the literature to classify the WBCD, including naive Bayesian, neural
networks, support vector machines, fuzzy approaches and a combination of learning and
data mining approaches with these methods, such as neuro-fuzzy, fuzzy decision tree
and genetic fuzzy approaches. A review of neural network classification methods can be
found in (Abbass, 2002; Fogel and Wasson, 1995). A survey of improved naive Bayes
methods for classification is presented in (Jiang et al., 2007). Fuzzy rule-based
classification provides comprehensive rules with linguistic terms which are a suitable
choice for interaction with medical experts. On the other hand, accuracy and
interpretability are two important contradictory goals in fuzzy rule-based classification,
Evolutionary learning techniques are one of the commonly applied methods for
improving the tradcoffs between accuracy and interpretability in fuzzy rule-based
classifiers. Several attempts have been reported to improve the trade-off using multi-
objective evolutionary algorithms (Ishibuchi and Nojima, 2007; Ishibuchi and
Yamamoto, 2003; Ishibuchi, Kaisho and Nojima, 2009; Alcala et al., 2009). The rest of
this section presents an overview of various rule extraction methods in the rule-based

classifiers applied to the WBCD while the main focus is on a fuzzy-based approach.
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6.6.1 Rule extraction methods based on deterministic approaches

‘Setiono introduced a rule extraction method from a pruned neural network for breast
cancer diagnosis in (Setiono, 1996). In this method network pruning is used to remove
the redundant connections and decrease the complexity of the network (Setiono, 1996).
Their rules achieved more than 95% accuracy on training and testing datasets. In
another work (Setiono, 2000), the samples with missing values were removed and
feature extraction was applied as a pre-processing method on the dataset to improve the
accuracy of the classifier. |

Taha and Ghosh presented an approach for extracting rules from a trained neural
network (Taha and Ghosh, 1996). In their method, the final decision is made with a
confidence measure. They introduced three methods for extracting the rules:

1. A binarized input-output rule extraction (BIO-RE) which extracts binary rules
from a neural network trained with binary inputs. If the inputs are not binary they
need to be binarized.

2. A partial rule extraction (Partial-RE) which searches for the incoming link to
activate a hidden or output node and calculates‘ a measure of belief. This method
has a lower computational cost and a lower number of premises per rule

3. A Full-RE generates intermediate rules by considering the effect of each of the
inputs on the kconsequent using linear progfamming and an input discretization
method.

The first method is not effective for a large number of inputs and binarizing input values
can degrade the network pérfomiance. The Partial-RE methods tackle these issues by
extracting certain rules with a small number of rule premises. This method needs all
inputs to be continuous and has the same range while there is no restriction on input
values in the Full-RE method. Furthermore, the first two rule extraction methods based
on the trained neural network may need a default rule (rules that cover input-output
samples and are not extracted by a neural network) to classify new samples and their
accurac‘y drops significantly without the default rule (Taha and Ghosh, 1996).

Recently, support vector machines (SVM) have been applied to the classification of
the WBCD (Akay, 2009). Akay presented a SVM technique combined with a feature
selection method (Akay, 2009). This method provides a maximum 98.51'% ROC
accuracy. An overview‘bf the SVM rule extractioﬁh methods are provided in (Martens et -

al., 2007). Martens et al. added comprehensibility to the SVM by extracting symbolic
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rules from the trained model in order to make it appropriate for medical diagnosis. This

method provides an accuracy of 96.6% (Martens et al., 2007).

6.6.2 Rule extraction methods based on fuzzy techniques

Comprehensibility is an essential factor in medical imaging applications where the
reader (such as a radiologist) requires interaction with the system for analysis of the
result and making the final diagnosis. Fuzzy rule based methods for classification of the
WBCD problem provide a rule set with more interpretability than the other proposed
methods. Furthermore, they are capable of capturing the uncertainties in the system and
provide a rule set which makes nondeterministic decisions that allows an object to
belong to different classes with different degrees of membership. For these reasons, the
focus of this study is on a fuzzy-based approach for classification of the WBCD
problem.

A fuzzy genetic approach was reported in (Pena-Reyes and Sipper, 1999) for the
classification of the tissue mass for the WBCD. However the output is more reliable
than deterministic methods because of adding a confidence measure to the classifier
decision (malignant or benign), but the classifier output is based on a threshold which is
manually defined by the user. Moreover, it utilizes prior knowledge of the previous
proposed rule sets to initialize the membership function parameters and rules of the
fuzzy system in the genetic algorithm (Pena-Reyes and Sipper, 1999).

An evolutionary approach for designing the fuzzy classifier from a training dataset
was presented by Chang and Lilly which uses parameters of a variable input spread
inference training (VISIT) algorithm (Chang and Lilly, 2004). Although their algorithm
employs GA for optimizing the fuzzy -system parameters, this method needs
initialization of the spread, alpha-cut values, and the degree of overlap between adjacent
membership functions by a fuzzy expert before starting the algorithm and the GA
optimization (Chang and Lilly, 2004). ,

Ishibuchi introduced an evolutionary multi-objective optimization (EMO) rule
selection approach for a fuzzy rule-based system (Ishibuchi and Yamamoto, 2003). The
algorithm considers three objectives in the fitness function: maximizing the number of
correctly classified patterns, minimizing the number of rules, and minimizing the length
of the rules. This algorithm ﬁrst cxtraéts a pre-specified number of candidate rules from

all possible candidate rules using a heuristic rule extraction method and data mining
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criterions for rule evaluation (SLAVE criterion) and then an evolutionary method finds
a rule set using a Genetic rule selection method. There are (L + 1)" possible
antecedents for a FLS with n inputs and L linguistic terms, considering "don't care"
condition. A rulé extraction algorithm removes unnecessary rules that do not classify
any pattern (Ishibuchi and Yamamoto, 2003).

Wang presented a self-adaptive Neuro-fuzzy inference system (SANIF) for a self-
organizing internal network structure and extracting the rules (Wang and Lee, 2002).
This approach was implemented with three types of rules: output fuzzy sets, an output
singleton and an output consisting of the linear combination of input variables. There
are two major stages in this algorithm (Wang and Lee, 2002):

1. A clustering algorithm to identify the internal structure in which the number of
fuzzy rules is close to the true number of clusters in the training data and each
cluster represents a fuzzy rule; a mapping-constrained agglomerative (MCA)
clustering algorithm was used for this problem

2. A recursive linear/nonlinear least-squares optimization algorithm to accelerate the
convergence of the learning algorithm and tune the weights using a similarity

measure.

However, this method initializes the fuzzy membership function parameters (mean and
variance) in the antecedent and consequent of rules using the MCA clustering algorithm
but needs expert knowledge for initializing the number of seed clusters and the number
of hidden layers in the neural network. This algorithm is sensitive to the initial number
of seed clusters which must be greater than the true number of clusters. However,
knowledge about the true number of clusters is not always available.

Abonyi et al. presented a decision tree-based (DT based) initialization of a fuzzy
classifier method in (Abonyi, Roubos and Szeifert, 2003). In their method, the GA is
used to tune the fuzzy system parameters and improve classification performance
(Abonyi, Roubos and Szeifert, 2003). However, this approach generates the most
interpretable rule set among reported methods with comparable accuracy but it
initializes the fuzzy classifier based on a crisp decision tree extracted from an expert’s
knowledge and pruning the initial tree which can be complex because of noise;

moreover it inherits the complexity of the decision tree model.
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Most of the presented fuzzy methods need expert knowledge for initializing the fuzzy
set's membership functions, initial rule set or making the final classification decision.
However, extracting this knowledge from a medical experts is challenging, time
consuming and ekpensive process. The automatic approach presented in this chapter for
generating fuzzy set membership functions and extracting rules overcomes these issues.
The next section presents the results of applying the proposed IT2F GA rule extracting
approach to the WBCD classification problem and a comparison of the results with

other fuzzy approaches.

6.7 Experimelntal results and performance evaluation

The GA IT2FL rule learning approach for modelling the uncertainties in membership
function and rules (explained in Section 6.4) is applicable for all uncertain classification
problems with an incomplete and imprecise datasets. This approach has been applied to
the popular Wisconsin breast cancer diagnosis (WBCD) database. The details of the
components of the software developed in this study for IT2FL rules and membership
function generation and implemented components are presented in Appendix A (Figures
A.1 and A.2). The features in this database are computed using image processing
techniques and are visually assessed by an expert. Furthermore, uncertainty in image
processing techniques in addition to the noisy and variations in this dataset makes it a
suitable choice for performance evaluation of the proposed approach.

The WBCD dataset was collected at the University of Wisconsin (Frank and Asuncion,
2010). The samples contain visual assessment of the nuclear features of fine needle
aspirates (FNAs) taken from patients breasts by Dr. Wolberg and are available online at
UCI (University of California at Irvine) machine learning depository (Frank and
Asuncion, 2010). This dataset contains 699 samples. The 16 examples with missing
features were removed, as has been done in previous studies (Abbass, 2002; Fogel and
Wasson, 1995; Jiang et al., 2007; Ishibuchi and Yamamoto, 2003; Setiono, 2000; Taha
and Ghosh, 1996; Akay, 2009; Chang and Lilly, 2004; Wang and Lee, 2002; Abonyi,
Roubos and Szeifert, 2003). There are nine integer features, each has an integer value
between 1 and 10, value 1 corresponding to a normal state and 10 to the most abnormal
state. The two output classes, indiéating either a benign or malignant sample, are
distributed as 444 benign (65%) and 239 malignant (35%). According to the (Wolberg
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and Mangasarian, 1990) features are described as the extent to which epithelial cell
aggregates is considers as clump thickness, marginal adhesion is the cohesion of the
peripheral cells of the epithelial cell aggregates, the single epithelial cell size considers
as the diameter 6f the population of the largest epithelial cells relative to erythocytes,
the proportion of single epithelial nuclei that were devoid of surrounding cytoplasm
considers as bare nuclei, blandness of nuclear chromatin, normal nucleoli, infrequent
mitoses, uniformity of epithelial cell size, and uniformity of cell shape as follows:

1. Clump Thickness (CT)

2. Uniformity of Cell Size (UC)

3. Uniformity of Cell Shape (UCS)

4. Marginal Adhesion (MA)"

5. Single Epithelial Cell Size (SEC)

6. Bare Nuclei (BN) |

7. Bland Chromatin (BC)

8. Normal Nucleoli (NN)

9. Mitoses (M)

All malignant samples were histologically confirmed whereas benign samples were
biopsied only at the patient's request. The rest of benign samples were confirmed by
clinical re-examination 3 and 12 months after the aspiration. Masses that grows
unsatisfactory or suspicious FNAs were surgically biopsied (Wolberg and Mangasarian,
1990).The rest of this section provides the results of applying the GA IT2FL rule
learning approach to the WBCD classification problem. It also presents a comparison of
performance of this approach with the best results of the other type-1 fuzzy methods for
this dataset.

o

6.7.1 Estimation of the FOU parameters

In order to estimate the footprint of uncertainty paraméters (ky, and k,,), the method
explained in Section 6.2 was employed.- The average cardinality, FPy,q (/i), was
calculated for each possible pair of k,, and k, and for corresponding interval type-2
fuzzy sets of the linguistic terms related to the 9 input features of the WBCD dataset .

using a ten-fold cross-validation run of the algorithm.
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Table 6.1 Estimation of the FOU parameters

Avera

No fem ky Cardinaflgiely El:‘g(;r Su

1 0.1 0.4 0.3693 0.1702 0.5395
2 0.1 0.5 0.1268 0.2611 0.3879
3 0.1 0.6 0.0423 0.1742 0.2165
4 0.1 0.7 0.0164 0.1838 0.2002
5 0.1 0.8 0.0070 0.1339 0.1410
6 0.1 0.9 0.0012 0.1745  0.1757
7 0.1 1 0.0012 0.2213 0.2225
8 0.2 0.4 0.3723 0.2955 0.6678
9 0.4 0.3 1.0000 0.2623 1.2623
10 0.2 0.5 0.1503 0.1414 0.2918
11 0.2 0.5 0.1398 0.1166 0.2563
12 0.2 0.6 0.0458 0.4203 0.4661
13 0.2 0.7 0.0082 0.1344  0.1426
14 0.3 0.5 0.1233 0.1654 0.2887
15 0.3 0.5 0.1116 0.1794 0.2910
16 0.3 0.6 0.0411 0.3036  0.3447
17 0.3 0.7 0.0076 0.1849 0.1926
18 0.3 0.9 0.0012 0.2074 0.2086
19 04 0.5 0.0857 0.2066 0.2923
20 04 0.6 0.0458 0.3273 0.3731
21 0.5 0.5 0.1122 0.2456 0.3577
22 0.5 0.7 0.0059 0.2327 0.2386
24 0.6 0.5 0.0464 0.2216 0.2679
25 0.6 0.7 0.0023 0.4250 04273
26 0.6 0.9 0.0018 04118 0.4136
28 0.8 0.4 0.2008 0.3849 0.5857
29 0.8 0.5 0.0675 0.1987 0.2662
30 0.8 0.7 0.0029 0.2909 0.2938
32 0.9 0.4 0.1985 0.1618  0.3603
33 0.9 0.6 0.0112 0.4532 0.4643
34 0.9 0.8 0.0018 0.4014  0.4031
35 0.9 1 0.0123 0.2127 0.2251
36 | 0.4 0.2208 0.3057 0.5265
37 1 0.6 0.0106 0.3408  0.3514
38 1 0.8 0.0023 0.7020  0.7044
39 1 | 0.0147 0.2022 0.2168

Selected k,, and k,, parameters for IT2FMF generation are bold.

The IT2FLSs with the minimum average cardinality (<0.009) and

minimum average error rate (<0.2), are heuristically selected for

the GA IT2FL rule learning algorithm.
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The k,, and k,, with the minimum average cardinality and minimum average error rates
on the training and testing sets is selected for the IT2F membership function generation
in the GA IT2FL rule learning algorithm.

Table 6.1 sutharizes a sample of results obtained in terms of average cardinality
and average error rate for different k,, and k,, values obtained for IT2FLS with three
linguistic terms and nine input features of the WBCD dataset while the average
cardinality and average error rate are all nbrmalized. The IT2FLSs with the minimum
average cardinality (<0.009) and minimum average error rate (<0.2), are heuristically
selected for the GA IT2FL rule learning algorithm. Table 6.1 shows a sample of results
close to the optimum results, after applying above criteria the best k,,, ranging [0.1, 0.3]
and the best k, ranging [0.7,0.9] represent the IT2FLS with minimum average
cardinality and overall classification rate (sum<0.2) for the WBCD dataset and have
been selected for the IT2FLS GA rule learning algorithm.

6.7.2 The GA IT2FL rule learning algorithm

The GA IT2FL rule learning approach was applied to automatically extract rules for
the WBCD dataset by searching the solution space in an optirnized way to find the
optimum rule set for an IT2FLS. Different reasonable values for the GA algorithm
parameters were examined using a ten-fold cross-validation run of the algorithm. The
average of a ten-fold cross validation results in terms of classification rate and area
under the ROC curve were considered.

Different mutation and crossover rates and weights were examined for the (k,, , k) =
(0.1, 0.8) in the following experiments and the results are presented. According to the
obtained results in Table 6.2, the mutation rate 0.1 and crossover rate of 1 provides
maximum performance with a classiﬁcétion rate 95.64% and AUC ROC equal to 98.2%
and were selected for the GA IT2FL rﬁle learning algorithm. In this study, the effect of
different fitness weights' on the classification rates was investigated and the results are
summarised in Table 6.3. Although the (Wycp, Wypmp) equals to (1, 0) produces a better
classification rate, but the fitness weights were considered (1, 5) in order to consider the
effect of inéorrect classification as well as correct cldssiﬁcation during the learning
process. The effect of ‘differerit punishment and reward weights on the classification

performance was investigated in Table 6.4. According to the obtained results, the

-
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(Wreward> Wpunishment) Values of (0.01, 0.1) provides a better classification rate

(95.64%) and AUC ROC (98.2%) compared to the other ratios. The obtained weight

results for the proposed approach on the WBCD dataset is in agreement with the

suggested learning weights in (Ishibuchi, Nakashima and Murata, 1996).

Table 6.2 Relation between different mutation and crossover rates and

classification performance

Mutation Probability 0.01 0.1 0.15 0.1 0.2 0.2
Crossover Probability 0.5 0.5 1 1 0.5 1
Classification rate (%)* 94.89 93,38 94.65 95.64 79.84 94.39
ROC (AUC) (%)* 97.8 97.68 97.7 98.2 97.29 98.11

* The number shows average result of a ten- fold cross-validation run of the algorithm

Table 6.3 Relation between different values of the classification weights and
classification performance

Wicps Wame) (L,0) 1,1) (L,2) (1,5) (1,10
Classification rate (%)* 96.54 89.02 9325 95.64 90.78
ROC (AUC) (%) * 98 97.61  97.33 98.2 98.72

* The number shows average result of a ten- fold cross-validation run of the algorithm

Table 6.4 Relation between different values of the learning weights and the
classification performance

Wrewaras Wpunishment ) | (0.01,0.1)  (0.1,0.1) (0.1,0.01) (0.1,0.5)
Classification rate (%) * 95.64 94.56 93.74 94.68
ROC (AUC) (%) * 98.2 97.41 98.10 08.30

* The number shows average result of a ten- fold cross-validation run of the algorithm

After several experiments, it was observed that the GA converged to the best fitness

after a maximum of 100 generations. Thus, the termination condition of the GA IT2FL

rule learning algorithm was considered 100 runs. The learning rule approach generates
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the best set of rules according to the fitness function. The summary of the selected
parameters of the GA learning algorithm are as follows:

Crossover rate = 1

Mutation rate = 0.1

Wyep = 1,and Wyyp = 5

Wrewara = 0.01,and Wyunishmene = 0.1

Maximum number of generation = 100

The GA IT2FL rule learning algorithm was performed for the selected (k,, k)
parameters in Section 6.7.1. In order to have a robust and unbiased view of the
performance of the classification, the classifier performance is measured at each run of
the ten-fold cross-validation using the following measures: area under the ROC curve,
overall classification rates, error on training dataset and error on testing dataset, and the

average result of a ten-fold is considered as performance measures.

For illustrating the type-2 GA rule learning approach, the rest of this section explains
four examples of extracted IT2FLS rules for the selected (k,,, k,,) parameters in detail.
Different IT2FLSs according to the selected (k,,, k,) parameters were investigated for
the WBCD dataset. For selected pairs of (k,,, k,), four eXperiménts have been
performed: (1) a ten-fold cross-validation run, (2) 50% training and 50% testing, (3)
75% training and 25% testing, and (4) 100% for training and 0% for testing. The
samples in the training and testing datasets were randomly selected. The post-
processing reduce error pruning method (explained in section 6.4.1) was also applied
after training to remove the rules with low classification rates (rules for which the

number of misclassifications is greater than the number of classifications).

The IT2FLS_1 generated rules have three linguistic terms (low, middlé and high).
The (k,, k) parameters were selected as (0.1, 0.8) using the method explained in 6.7.1.
The generated IT2F Gaussian MFs are shown in Figure 6.8. Four rules are generated for
IT2FLS_1; two rules for classifying malignant objects are as follows:

IfMA is High and BN is High then object is malignant with DC 0.92

IfBN is High and BCis High then object is malignant with DC 0.8

and two rules for classifying a benign object as follows:
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If UCS is Low and BN is Low then object is benign with DC .82
If CT is Mid and UCS is Low and BN is Low then object is benign with DC' 1

The classification accuracy of each rule is shown in Table 6.5 while 75% of the dataset
was considered for training and 25% for testing. The average rule length is 2.25 in the
antecedent part. The error on the testing dataset is 5.26% and the error on the training
dataset is 2.73%. This set of rules provides a classifier with an overall classification rate
96.63%. The average accuracy of this system is measured using area under the ROC
curve which is 98.04% with 95% CI [96.79 99.29] as shown in Figure 6.9.

Figure 6.8: Membership function of IT2FLS_1, (k,, = 0.1, k, = 0. 8), for nine
features of the WBCD
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Table 6.5 Extracted rules of IT2ZFLS_1 for the WBCD dataset

Degree of
No. Antecedent Class NCP' NMP?
certainty
R1 [001001000] 0 0.82 350 4
R2 [000303000] 1 0.92 60
R3 [201001000] 0 1 77 2
R4 [000003300] 1 0.8 173 14

Sum = 660 23

*(0, 1, 2, and 3 are equivalent to "don't care", Low, Middle and High linguistic terms

' Number of correctly classified patterns, > Number of misclassified patterns
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Figure 6.9: ROC curve of the IT2ZFLS_1 for the WBCD dataset

For the generated rules for the IT2FLS_2, the (k,,, k,,) parameters were selected as
(0.1, 0.9). Figure 6.10 shows the IT2 Gaussian MFs generated for nine features of the
WBCD dataset. Four rules with an average rule length of 1.5 variables per rule were
extracted by the algorithm, shown in Table 6.6, three rules for classifying malignant
samples as follows:

If MA is High and BN is High then object is malignant with DC 0.96

If CT is High and BC is High then object is malignant with DC 0.9
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If BN is High then object is malignant with DC 0.65
and one rule for classifying benign objects as follows:

If UCS is Low then object is benign with DC 0.55

BC NN M

Figure 6.10: Membership function of the IT2FL_2, (k,, = 0.1,k, = 0.9), for nine
features of the WBCD dataset

This set of rules has a high interpretability including four rules and three linguistic
terms and provides a classifier with the overall classification rate (95.75%) with an error
rate on the training dataset of 3.71% and an error rate on the testing dataset of 5.85%.
The performance of this classifier (75% of the dataset for training and 25% for testing)
in terms of the AUC of the ROC is 97.45% with 95% CI [96.03 98.87] as shown in
Figure 6.11.
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Table 6.6 Extracted rules for IT2ZFLS_2 for the WBCD dataset

Degree of
No Antecedent Class NCP' NMP?
certainty
Rl [001000000]* 0 0.55 422
R2 [000303000] 0.96 57 0
R3 [000003000] 0.65 150 22
R4 [300000300] 09 25 0
Sum = 654 29

*0, 1, 2, and 3 are equivalent to "don't care", Low, Middle and High linguistic terms

' Number of correctly classified patterns, > Number of misclassified patterns
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Figure 6.11: ROC curve of the IT2FLS_2 for the WBCD dataset

The third system, IT2FLS_3, generates rules with three term sets. The (k,,, k,)

parameters were selected as (0.2, 0.7). The generated 1T2 Gaussian MFs of the

IT2FLS 3 are shown in Figure 6.12. Four rules are generated for the IT2FLS_3 (while

75% of the dataset was considered for training and 25% for testing); two rules for

classifying benign objects and two rules for classifying malignant objects as follows:
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If MA is Low and SEC is Low and BN is Low then object is benign with DC 0.58
If CT is Low and UC is Low then object is benign with DC 0.9

If CT is High then object is malignant with DC 0.6

If BN is High and BC is High then object is malignant with DC 0.92

The classification rates and the degree of certainty of each rule is shown in Table 6.7.

The average rule length is 2 in the antecedent part. This set of rules provides a classifier

with an overall classification rate of 96.93%, with an error on the training set of 2.93%

and an error on the testing set 3.51%. The average accuracy of this classifier is

measured using the area under the ROC curve which is 98.6 % with 95% [97.54 99.66]

as shown in Figure 6.13.

Table 6.7 Extracted rules of IT2ZFLS_3 for the WBCD dataset

Degree of ; )
No. Antecedent NCP' NMP
Certainty
R1 [000111000]* 0.58 247 8
R2 [300000000] 0.6 120 11
R3 [000003300] 0.92 110 |
R4 [110000000] 0.9 185 1
Sum = 662 21

*0, 1, 2, and 3 are equivalent to "don't care", Low, Middle and High linguistic terms

! Number of correctly classified patterns, 2 Number of misclassified patterns
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0 5 5 10
BC NN M

Figure 6.12: Membership function of IT2FLS 3, (k,, = 0.2,k, = 0.7), for nine
features of the WBCD dataset
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Figure 6.13: ROC curve of the IT2FLS_3 for the WBCD dataset
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The fourth system, IT2FLS_4, generates rules with three term sets. The (k,,, k)
parameters were selected (0.3, 0.7). The generated IT2 Gaussian MFs of IT2FLS_4 are
shown in Figure 6.14. Four rules are generated by IT2FLS_4 (75% of the dataset for
training and 25% for testing); three rules for classifying malignant objects and one rule
for classifying benign objects as follows:

If BN is High then object is malignant with DC 0.79

If NN is High and M is Mid then object is malignant with DC 0.71
If BN is High and M is Mid then object is malignant with DC 0.82
IfUC is Low and BN is Low then object is benign with DC 0.92

The classification accuracy of each rule is shown in Table 6.8. The average rule length
is 1.75 in the antecedent part. This set of rules provides a classifier with an overall
classification rate of 95.17% with an error rate on the training set of 3.91% and an error
rate on the testing set of 8.77%. The average accuracy of this classifier using area under
the ROC curve is 96.48 % with 95% [94.81 98.15] a shown in Figure 6.15.

Table 6.8 extracted rules of IT2ZFLS_4 for the WBCD dataset

Degree of .
No. Antecedent Class NCP NMP?
Certainty
Rl [010001000] 0 0.92 413 2
R2 [000003000] 1 0.79 136 12
R3 [000000032] 1 0.71 82 18
R4 [000003002) 1 0.82 19 1
Sum = 650 33

*Q, 1:2, and 3 are equivalent to "don't care", Low, Middle and High linguistic terms

! Number of correctly classified patterns, > Number of misclassified patterns
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Figure 6.14: Membership function of IT2FLS 4, (k, = 0.3,k, = 0.7), for nine
features of the WBCD
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Figure 6.15: ROC curve of the IT2FLS_4 for the WBCD dataset



6.7 Experimental results and performance evaluation

166

Table 6.9 summarizes the performance results of the obtained IT2FL rule sets of the

GA IT2FL rule learning approach using different k,, and k, parameters and different

dataset partitioning methods. As shown in this Table, in average analysis using ten-fold

cross-validation, all four IT2FLSs provide a rule set with an average area under the

ROC curve more than 98%. The IT2FLS_3 with an average rule length of 2.88 provides

a better classification rate for all partitioning systems; i.e., classification rate of 96.6%

and the area under the ROC curve 98.73% (average of a ten-fold cross-validation), a
classification rate of 96.93% and the AUC of 98.6% (75% training and 25% testing), a
classification rate of 97.66% and the ROC AUC 98.8% (50% training and 50% testing)
and classification rate of 97.07% and the AUC 98.49% (100% training and 0% testing).

On average, IT2FLS_3 provides a better classification rate compared to the other

IT2FLSs with a minimum average number of rules (2.88).

Table 6.9 Summary of the performance results of the IT2FLSs

IT2FLS_1 | IT2FLS_2 | IT2FLS_3 | IT2FLS 4
Average rule # 3.28 3.25 2.88 33
Average rule length 6.2 6.19 6.16 6.61
Average of a ten-fold Train 4.18 4,71 3.16 4.82
cross-galidation a0 Test 4.55 3.62 3.64 5.31
ROC (AUC) (%) 98.2 98.8 98.73 98.1
Classification rate (%) 95.64 05.83 96.6 94.93
Rule # 4 4 4 4
Average rule length 225 15 2 1.75
75% training set and Train 2.73 3.7 2.93 3.91
25% testinggsct EHoCre ) Tast|  5.26 5. 85 3.51 8.77
ROC (AUC) (%) 98.04 97.45 98.6 96.48
Classification rate (%) 96.63 95.75 96.93 95.17
Rule # 5 8 11 10
g e Average rule length 1.6 2.1 2.64 3.2
gg;: t‘;:l‘i‘:]‘ggsef"‘ And [ ate (%) | Train 2.9 4.1 2.64 3.81
Test 5.2 4.67 2.05 5.26
ROC (AUC) (%) 98 99 98.8 08
Classification rate (%) 95.95 95.62 97.66 95.47
Rule # 7 6 8 8
100% ' training: -set Average rule length : 2.28 1.67 2.5 2.37
i 0 Lt Error rate (%) | Train | 3.07 4.25 2.93 4.68
ROC (AUC) (%) 97.95 98.10 98.49 96.79
Classification rate (%) 96.93 95.75 97.07 95.31
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6.7.4 Performance comparison with the other fuzzy rule extraction methods

In this section, the performance of the IT2FLSs rule sets generated by the GA IT2FL

rule learning approach have been compared to rule sets generated using other fuzzy rule

extraction approaches (reviewed in Section 6.6) and the results are summarized in Table

6.10.

Table 6.10 Comparison of the performance of the fuzzy rule extraction methods

for the WBCD dataset

o | B g g
el = . _— A
- &% |g |38 g
3 E & (B |E ¢ 5
- & L g o i
> Q -
VISIT (Chang and Lilly,
4 2 3 96.5 By expert
2004)
Fuzzy-GA (Pena-Reyes and Using the knowledge of existing
. Y 2 2.8 5 97.8 . _ g'
Sipper, 1999) rule sets in the literature
EMO (Ishibuchi and )
<5| €2 | 22| 9647 Heuristically by expert
Yamamoto, 2003)
SANFIS (Wang and Lee, Automatically using the MCA
2 9 2 96.3 . _
2002) clustering algorithm
DT based FC (Abonyi, Binary decision tree extracted
3 1.5 2 96.5
Roubos and Szeifert, 2003) from expert knowledge
_ Automatically using the method
IT2FL_1 (this work) 3 225 | 4 ]96.63 o _
explained in Sections 6.2 to 6.4
Automatically using the method
IT2FL_2 (this work) 3 1.5 4 19575 o )
explained in Section s 6.2 to 6.4
Automatically using the method
IT2FL_3 (this work) 3 2 4 196.93 S _
explained in Sections 6.2 to 6.4
_ Automatically using the method
IT2FL_4 (this work) 3 1.75 | 4 |95.17

explained in Sections 6.2 to 6.4

IT2FLS 3 provides a better classification rate than the other fuzzy methods except the

Fuzzy-GA (Pena-Reyes and Sipper, 1999). One of the main advantages of the GA
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IT2FL rule learning approach is that it does not need a priori knowledge from experts or
other proposed fuzzy systems for initializing the fuzzy system rules and membership
functions. This approach automatically initializes the membership function parameters
and rule set of an IT2FLS using the training dataset and the method explained in
sections 6.2 to 6.4 of this chapter. Furthermore, it models uncertainty issues which
cannot be managed using ordinary type-1 -FLS. The main advantages of the proposed

GA IT2FL rule learning approach in this study compared to other proposed approaches

are as follows:

1. It models uncertainty in classification problems which lack expert knowledge and
have an imperfect training dataset. The uncertainties in the training dataset are
managed through the FOU of type-2 fuzzy sets in the antecedent part of the rules.

2. There is no need for expert knowledge and user interaction for initialization of the
fuzzy logic parameters such as membership function parameters. The proposed
type-2 fuzzy approach automatically generates membership functions and their
FOU from training dataset.

3. The IT2FLS rule set with linguistic rules has higher interpretability for user
interaction than the other non-fuzzy methods.

4. It defines the degree of certainty of extracted rules for the classifier decisions.

This approach maintains the trades-off between accuracy and interpretdbility by
providing a comprehensive linguistic rule set with an average rule number about 3

and classification rate more than 95% in average.

6.8 Summary

This chapter has introduced the idea of uncertain rule-based pattern classification in
vague environments with lack of expert knowledge. This approach has attempted to '
model uncertainty sources in the input of a classifier and the rule sets using an IT2FLS.
The approach extracts IT2FLS rules from a training dataset and learns them for
classification of future observations. The interval type-2 fuzzy GA evolutionary
approach for rule extraction takes advantages of:

1. Type-2 fuzzy sets for modelling uncertainty sources in the training dataset and rule

set

2. The genetic algorithm for searching in an optimized way in the solution space
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Te evaluate the performance of the proposed approach, it was applied to the
anonymous WBCD dataset, which is one of the frequently applied dataset for
performance anelysis of the classifications. Furthermore, the noise and variation in this
dataset, in addition to uncertainty sources in image processing techniques, makes it a
suitable choice. For generating membership function, the FOU parameters (k,, and k)
were selected using the cardinality measure. The IT2FLS with the minimum cardinality
and maximum classification rate was considered for rule generation. Four different
IT2FLS rule sets (IT2FLS_1 to 4) using different selected parameters (k,, and k,) were
investigated. Table 6.11 and 6.12 summarize the obtained rules for classifying
malignant and benign objects for the WBCD dataset. As shown in these two tables,
rules with higher (lower) degree of memberships are more involved for classifying
malignant (benign) objects. The performance of the generated IT2FLSs was assessed
using four different partitioning methods and was compared to the other fuzzy methods

for rule extraction.

Table 6.11 Rules generated for classifying benign objects

IT2FLS # No  Antecedent Class Degree of NCP NMP
certainty
i Rl _[001001000] O 0.82 350 4
1 R3 [201001000] 0 1T 2
2 RI [001000000] 0 0.55 422 7
3 RI  [000111000]  0© 0.58 247 8
3 R4 [110000000] 0 0.9 185 1
4 RI [010001000] O 092 a3 2

E 2 .

*0, 1, 2, and 3 are equivalent to "don't care", Low, Middle and High linguistic terms

! Number of correctly classified patterns, > Number of misclassified patterns
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Table 6.12 Rules generated for classifying malignant objects

IT2FLS_# No Antecedent Class Degree of NCP NMP
‘ certainty
1 R2 [000303000] 1 0.92 60 3
1 R4 [000003300] 1 0.8 173 14
2 R2 [000303000] 1 0.96 57 0
2 R3 [000003000] 1 0.65 150 22
2 R4 [300000300] 1 0.9 25 0
3 R2 [300000000] 1 0.6 120 11
3 R3 [000003300] 1 0.92 110 1
4 R2 [000003000] 1 0.79 136 12
4 R3 [000000032] 1 0.71 82 18
4 R4 [000003002] 1 0.82 19 1

*0, 1, 2, and 3 are equivalent to "don't care", Low, Middle and High linguistic terms

! Number of correctly classified patterns, > Number of misclassified patterns

The IT2FLS rule set competes with the best results of the other fuzzy approaches in
terms of classification rates, number of rules, and number of variable per rules
Furthermore, the GA IT2FLS rule learmng approach automatically initializes the
membership function and rule sets of the FLS compared to most fuzzy approaches
which need expert knowledge for the FLS initialization. The average accuracy of the
best classifier (ITZFLS 3) with an average rule length of 2.88, after applying a ten-fold
cross-validation was 96.6% with the area under the ROC curve 98.73%, which is
comparable with the best of the previous fuzzy methods.

This approach is the first attempt toward modelling uncertainty in imperfect training
dataset for pattern' classification using membership functions and rules of an IT2FLS.
The uncertainties are managed m membership functions (FOU) and rules of an IT2FLS.
The presented method has the capability to be applied more ‘widely to pattern
classification problems that exhibit a lack of expert knowledge and with an imprecise

and imperfect training dataset.
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Chapter 7: Conclusion and Future Works

7.1 Conclusion

The purpose of the current study was to model uncertainty issues associated with a
classification for the CAD applications. One of the main drawbacks of the current CAD
applications is lack of consideration of uncertainty issues in design of the system
components. Moreover, medical image analysis applications deal with the uncertainties
inherent in intuitive knowledge of experts, inter- and intra- observer variability and
ambiguity in the perception of the clinical words from the point of view of different
experts. Chapter 2 has addressed and explained the uncertainty challenges using
examples of real cases in CAD applications or medical diagnosis.

The study takes advantage of fuzzy logic as a rule-based classification method.
However, membership functions of a type-1 fuzzy logic are more capable for managing
uncertainty issues than deterministic methods, but they cannot manage all the
uncertainties in the system. Remaining sources of uncertainty in a TIFLS have been
explained in Chapter3. The study suggested that evolving a type-2 fuzzy logic for
classification in a CAD application enables the system to manage high level of
uncertainty. 'Fhe uncertainty sources and capabilities of fuzzy logic rule-based
classification and specifically type-2 fuzzy logic for managing the uncertainties have
been demonstrated in detail in Part I of this study (Chapters 2 to 4).

Type-2 fuzzy logic has been introduced as a solution for modelling uncertainty in
classification which cannot be modelled using a  TIFLS. General architecture of a
T2FLS, its components and fuzzy reasoning have been illustrated using a simplified
nodule candidate classification example for a luhg CAD sifstem in Chapter 4. It should

be noted that the main problem with type-2 fuzzy sets is the complexity of the type-2
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fuzzy set mathematics because of three dimensional membership functions (refer to
Section 4.3 Chapter 4) and difficulties in learning and understanding type-2 fuzzy logic
concepts and thgory compared‘ with type-1 fuzzy logic. However, recent advances in
simplifying type-2 fuzzy sets using interval type-2 fuziy sets (applied in this study)
significantly improves this problem and ameliorates the computational complexity of
general type-2 fuzzy sets. In addition, because a decade has passed since the appearance
and emergence of type-2 fuzzy set theory, the lack of software for the design and
implementation of the T2FLS and performing operations on type-2 fuzzy sets still has
an impact. Software developed in research groups only provides basic features of the
theory. A T2FLS toolbox with the capability of learning from samples and adjustable to
designer preferences would considerably speed up the design of the system.

The uncertainty issues associated with the input of a T2FLS classification (in the
training dataset) have been managed using the FOU of IT2FMFs in an IT2FLS. The
proposed IT2FLS approach for classification implicitly copes with accumulative effect
of uncertainty issues (explained in Chapter 2) in the input of classification in the
following ways:

* Uncertainty in image processing and analysis processes as well as uncertainty in
mathematical models for measuring complex features of images are inherent in
measurement of the features of the candidate objects in the input of classification.
Uncertainty in the non-stationary features are represented in the training dataset as
different input sets. Inter- and intra- uncertainty sources in the final decision of
clinicians as well as vagueness in perception of the words are latent in different
samples in the training dataset in the input of classifier.

* The accumulative effect of uncertainty sources in input dataset is managed in the
FOU of the IT2FMFs through the proposed approach for modelling a Gaussian
interval t;;e-2 fuzzy membership function. Membership functions of the IT2FLSs
are automatically designed using training dataset and the uncertainties associated
with them are represented in overlap between the boundaries of the type-2 fuzzy
membership functions as well as their FOUs. The FOU represents and models
uncertainty in the interval type-2 fuzzy sets in antecedent and consequent part of
the rules that are the union of several embedded TIFMFs. Furthermore, this method
tunes the FOU of the IT2FMFs according to the uncerfainties in the training dataset.

using the genetic algorithm with the proposed chromosome structure and the
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improved initialization technique, which has fewer genes than other proposed GA
methods and initializes the chromosome in a more efficient way.

» The ambiguity in the subjective knowledgé of experts for initialization of the fuzzy
logic pararﬁeters such as membership function parameters has been eliminated. The
Gaussian IT2FMF generation approach automatically initializes membership

function parameters and their FOU from training dataset.

On the other hand, comprehehsibility is an essential factor in classification for a CAD
application (as a second reader in the image analysis process). For this, the IT2FLS
classifier with linguistic terms (maximum three) in the antecedent and consequent part
of the rules has been developed which exhibits maximum interpretability between

different fuzzy rule types.

7.2 novelty

This research, for the first time, introduces the concept of uncertainty in CAD
application. It is also the first attempt toward modelling uncertainty issues in the design
of classification component for a CAD application. The novelty of research is mainly
represented by integrating a type-2 fuzzy logic for classification in a CAD application to
manage uncertainties in input of classification. ‘

Furthermore, the research introduces the idea of uncertain rule-based pattern
classification for classification problems in vague environment which exhibit a lack of
expert knowledge for initialization of the system parameters and rule set and only with
an incomplete and uncertain training dataset as is the case for most of classification
problems. | | - \

In addition, this is the first attempt at automatically generating membership function and
rules for én interval type-2 fuzzy logic. This is significant from theoretical aspect of
type-2 fuzzy logic and application of that fbr managing uncertainties in various

applications.
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7.3 Contribution

This study addresses and models accumulative effect of uncertainty sources in the
design of classification component of the CAD application. The study suggested that
ihtegfating an IT2FL for in classification component of a CAD enables us to manage
uncertainties latent in input of classifier. Uncertainty issues are modelled using FOU
and rules of an IT2FL classifier. It also automatically extracts rules and membership
functions for an IT2FLS from training datasets. These results are significant and
contributes to medical diagnosis applications such as CAD technologies in at least two
major aspects:

(1) Modelling uncertainties associated with the input of classification

(2) Extracting rules for classification problems with lack of expert knowledge and

imperfect training dataset

The rest of this section explains these two aspects.

7.3.1 Modeling uncertainty associated with the input of classification

The approach for learning and tuning a Gaussian IT2FMF manages the uncertainties
in the input of the classification (Chapter 5). The FOU of a Gaussian IT2FMF is
estimated based on either an exiSting T1FLS or an imperfect training dataset. In the GA-
based approach for learning the FOU of the IT2FMF, the structure of the chromosome
has fewer genes than other GA-based methods and chromosome initialization is more
precise. This property is significant for multi-dimensional classification problems with a
large number of inputs where it is difficult to initialize IT2FMF pérarneters using the
knowledge of experts. This method was applied to classify candidate nodules detected
by a lung CAD application. Integratingb the IT2FL classifier into the lung CAD
application enables us to model the accumulative effect of uncertainties in input training
sets such as inter- and intra uncertainties, word perception, and numerical measurements
implicitly. In order to have an unbiased view of the classifier performance the ten-fold
cross-validation technique was used. The maximum perfonnance of the proposed
classifier using the average perfonnanée of 10 runs of a ten-fold cross-validation is
obtained for the IT2FLS based on the un.certainy TIFLS defined by experts, with an
average accuracy result of 95%. In general, the three IT2FLS methods described in
Chapter 5, all outperfomi TIFLS counterpart (with an average accuracy of 65%).
Analysis of the results reveals that IT2FLS is more capable of capturing the uncertainty
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in the model and achieving a better performance. For the nodule classification in a lung
CAD application, the IT2FLS performance is 30% better than the TIFLS. Furthermore,
the result of the proposed methods for automatic learning and tuning of the IT2FMFs
based on the training dataset with an average accuracy 82%, is more promising for
multidimensional classification problems that lack expert knowledge. These findings
suggest that IT2FLS is capable of providing more efficient performance compared to

T1FLS for classification of candidate nodules in a lung CAD application.

7.3.2 Extracting rules for uncertain classification problems

This study has presented the idea of uncertain rule-based pattern classification for
classification problems with a lack of expert knowledge, or with time-consuming,
complicated, or an expensive knowledge acquisition processes, and with an imperfect
training dataset in Chapter 6. This approach is capable to model uncertainty associated
with the input of a classifier through membership functions and rules of an IT2FLS.
This is the first attempt toward automatically extracting rules and membership functions
for an IT2FLS from training samples. |

The FOU parameters (k,, and k,) of the IT2FLS with the minimum cardinality and
maximum classification rate were selected for rule generation. A genetic algorithm in
combination with a punishment-reward scheme has been applied for learning rules and
the degree of certainty. For this, whenever a rule classifies a pattern correctly the degree
of certainty of the rule was increased otherwise it was decreased. In order to evaluate
performance and investigate the generalization properties of the automatic generation of
an IT2FLSs approach, it was applied to the anonymous WBCD dataset, a frequently
used dataset for analysis of classification performance. The noise and variations in this
dataset, in addition to uncertainties in image processing techniques for measuring
features of an object, make it a suitable choice for this study. To evaluate the
performance of the GA IT2FL rule learning approach, four different generated rule sets
were assessed and compared to the rule set suggested by other fuzzy methods.

The rule set of the IT2FLS competes with the best results of the other fuzzy approaches
in terms of classification rates and number of rules. Furthermore, the GA IT2FL rule
learning approach automatically initializes the membership function and rule sets of the

IT2FLS, while most fuzzy approaches use expert knowledge for initialization of the
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membership functions. The average accuracy of the best IT2FLS classifier with an
average rule length 2.88, after applying a ten-fold cross-validation, was 96.6 % with the
area under the ROC curve 98.73%, which is comparable with the best rule set of the

previous fuzzy methods.

7.4 Benefits

Medical diagnosis is associated with human errors. For designing a rule-based IT2FLS
for classification, knowledge about the membership function parameters and rules are
required. Most previous methods based on IT2FLS assumed that this knowledge is
available and can be extracted from a group of experts. Although prior studies employed
the GA optimization properties for tuning IT2FMF parameters, but these methods
require expert knowledge for initialization of the membership function parameters and
their grammatical correctness in the chromosome structure. Moreover, the chromosome
structure in these methods consists of all the parameters of the IT2FMFs. However,
most medical diagnosis applications cope with a lack of expert knowledge, or high
variations in their diagnosis associated with inter and intra observer variability and
different perceptions about a clinical vocabulary using vague linguistic terms. These
facts complicate the process of knowledge acquisition frbm a group of experts,
especially when dealing with medical applications. Moreover, having access to a group
of medical expert and fusing their knowledge is a difficult, time-consuming, and
complicated process and sometimes impossible to achieve.

The approach presented in this study automatically designs membership functions and
rules of an IT2FLS classifier from an imperfect training dataset and learns them for the
prediction of new observations. The approach proposed for modelling uncertainties in
the FOU of an IT2FMFs and rule set of an IT2FLS and its implementation details have
been described in Part II (Chapters 5 and 6). The performance of the proposed approach
has been evaluated by applying it to the nodule classification problem in a lung CAD
application and to the anonymous breast cancer diagnosis classification problem using
the WBCD dataset. The approach presented in this research for modelling uncertainty in
classification component of a CAD application is significant from two major aspects:
(1) Clinical view: producing more accurate results for diagnosis problems can help to

save more human lives. Modelling uncertainties in classification for a CAD provides a
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powerful tool which improves the ambiguity of clinicians such as inter and intra
observer variability for making final decision. Furthermore, the designed linguistic
classifier using IT2FL has high interpretability, which can help radiologists as a second
reader in the process of image analysis and interpretation. Furthermore, the automatic
approach decreases the human errors in classification and provides a system with high
true positive and low false positive rates.

(2) Technical view: modelling uncertainties in the design of a classifier using the
automatic approach presented for IT2FLS membership and rules generation. This is
critical for multi-dimensional classification problems with large number of inputs and
lack of expert knowledge as is the case for most of medical diagnosis problems. This is
significant for multi-dimensional classification problems with large number of inputs

and lack of expert knowledge as is the case for most of medical diagnosis problems.

7.5 Future Works

Future investigations are suggested to improve the ability of the proposed approach
for learning membership functions and rules of an IT2FLS from an imprecise and
inadequate training dataset as follows: A v ,

= Design a multi-objective GA ‘approach for maximizing the accuracy and degree
of certainty and minimizing the number of rules and linguistic terms for an
IT2FLS. | |

= Apply an adaptive genetic algorithm to define the probabilify of mutation and

crossover automatically and based on the fitness of the population.

The GA selects the best candidate solutioh between various possible sets of solutions
in each generatlon The cross-over operation combmes the best candidates and the
mutation operation creates d1vers1ty in different generatlons to go through all possible
combinations. While the advantage of the GA evolutionary approach to search for the
global optimum in solution space has been consndered for optlmlzatlon problems using
T2FLSs, one of the drawbacks of GA- based methods is its dependency on the initial
population. More research i is needed to improve initialization of the GA IT2FL rule-

learning algorithm more intelligently. In addition, further irivestigations are suggested to
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employ other learning techniques like simulated annealing which promise to get to the
global optimum and compared the results to the GA-based method.

Future studies on the current topic needs to be undertaken to improve the degree of
certainty of the IT2FL classification rules by adjusting the FOU of the membership
functions and decreasing the amount of the uncertainty in the system. An ideal IT2FLS
classifier is a system which makes accurate decisions with the minimum uncertainty.
Different uncertainty measures might be useful to demonstrate and quantify the amount

of uncertainty in the system.

Apart from learning and certainty improvements, applying a feature extraction
technique is suggested to improve the overall IT2FLS interpretability and ameliorate the
computing complexity of the algorithm. Applying feature extraction techniques can
dramatically reduce the dimensionality of a classification system with a large number of
inputs. It is also recommended to apply the approach to the other pattern classification
problems with lack of expert knowledge and imperfect dataset to evaluate the general

performance of the approach and recognize other potential applications.

Future studies are suggested to model uncertainty sources in other components of the
CAD application such as segmentation (delineating the boundaries of the objects),
feature extraction (measuring complex feature of an object) taking advantages of type-2
fuzzy sets. Further studies are suggested to investig‘ate robustness of the presented
approach using different system variables such as datasets, unceftainty metrics and
different features.

Thé research described in this thesis presents an approach for modelling
uncertainties ,associated with classification. The uncertainties are modelled using
membership functions and a rule set of a type-2 fuzzy logic system. The performance of
the fuzzy classifier was evaluated on two different classification problems (nodule
classification in a lung CAD and the Wisconsin breast cancer diagnosis problem) and
the results demonstrate that the primary objectivés of this study.have been successfully
achieved. The results reveal the superiority of the T2FLS classifier for managing high

levels of uncertainty compared to the TIFLS counterpart. |
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Figure A.1: IT2FLS software architecture
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