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ABSTRACT

Pulmonary embolism (PE) is an obstruction within the pulmonary arterial tree and in the
majority of cases arises from a thrombosis that has travelled to the lungs via the venous
system. Pulmonary embolism (PE) is a fatal condition which affects all age groups and is
the third most common cause of death in the US. Computed tomographic angiography
(CTA) imaging has recently emerged as an accurate method in the diagnosis of
pulmonary embolism. Each CTA scan contains hundreds of CT images, so the accuracy
and efficiency of interpreting such a large image data set is complicated due to various PE
look-alikes and human factors such as attention span and eye fatigue. Moreover, manual
reading and interpreting a large number of slices is time consuming and it is difficult to
find all the pulmonary embolisms (PE) in a data set. Consequently, it is highly desirable
to have a computer aided detection (CAD) system to assist radiologists in detecting and

characterizing emboli in an accurate, efficient and reproducible manner.

A computer aided detection (CAD) system for detection of pulmonary embolism is
proposed in CTA images. Our approach is performed in three stages: firstly the
pulmonary artery tree is extracted in the region of the lung and heart in order to reduce
the search area (PE occurs inside the pulmonary artery) and aims to reduce the false
detection rate. The pulmonary artery is separated from the surrounding organs by
analyzing the second derivative of the Hessian matrix and then a hybrid method based on

region growing and a new customized level set is used to extract the pulmonary artery
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(PA). In the level set implementation algorithm, a new stopping criterion is applied, a
consideration often neglected in many level set implementations. In the second stage,
pulmonary embolism candidates are detected inside the segmented pulmonary artery, by
an analysis of three dimensional features inside the segmented artery. PE detection in the
pulmonary artery is implemented using five detectors. Each detector responds to
different properties of PE. In the third stage, filtering is used to exclude false positive
detections associated with the partial volume effect on the artery boundary, flow void,
lymphoid tissue, noise and motion artifacts. Soft tissue between the bronchial wall and
the pulmonary artery is a common cause of false positive detection in CAD systems. A

new feature, based on location is used to reduce false positives caused by soft tissue.

The method was tested on 55 data scans (20 training data scans and 35 additional data
scans for evaluation containing a total of 195 emboli). The system provided a
segmentation of the PA up to the 6th division, which includes the sub-segmental level.
Resulting performance gave 94% detection sensitivity with an average 4.1 false positive
detections per scan. We demonstrated that the proposed CAD system can improve the
performance of a radiologist, detecting 19 (11%) extra PE which were not annotated by

the radiologist.
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1. INTRODUCTION

1.1. Pulmonary Embolism

A Pulmonary Embolism (PE) is a sudden blockage in a lung artery (pulmonary artery)
that happens when an embolus blocks blood flowing through an artery that feeds the
lungs [6]. Typically, a blood clot first forms in an arm or leg and then travels to the lung.
The mechanism of formation of blood clots in the vessels is identified as thrombosis
which can be formed by a decrease in the velocity of blood [7], [8]. An embolus is the
result of a breaking down of the thrombus which can travel and block the blood flow in
vessels. Pulmonary embolism is the result of an embolus traveling through the inferior
vena cava and the right heart and being trapped in the pulmonary arteries. There are
several factors which can make someone more likely to develop a blood clot that can
travel to the lung. Obesity, heart disease, travel (such as sitting in an airplanc or a long car
trip), pregnancy, cancer, etc, are the main causes of blood clots in lung. Some other
factors such as smoking, hormone therapy, oral contraceptives, family members with

thrombosis or embolism and cancer can be high risk factors for PEs [9]. The symptoms

can be:

e Chest pain

e Increased or irregular heart beat
e Dizziness

e Cough or coughing up blood

¢ Difficulty catching breath

e Rapid breathing
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1.2. Clinical Assessment and Test

Clinical assessment and clinical tests are the first and crucial step in the diagnosis of
pulmonary embolisms [10], [11]. These assessments use signs and symptoms to estimate
the probability of an embolism. The D-dimer test is a clinical test that measures the
levels of a specific protein associated with the breakdown products of a blood clot. In the
case of a normal test the probability of the existence of a pulmonary embolism is very
low, but having high levels of the clot-dissolving substance D-dimer in the blood may
increase the likelihood of blood clots. A disadvantage of this test is that the results of the
test can be positive for many reasons, including injury, pregnancy, surgery and infection
and hence it is not capable of specifically diagnosing an acute pulmonary embolism [12].
Ultrasound is the first imaging test in the diagnosis of blood clots and it is a fast and
painless method which applies sound waves to image vessels in the leg. Although this test
is fast, it is not very sensitive and it needs a person with high levels of expericnce to
diagnose a blood clot [134].

Another diagnostic test of blood clots is venography which is rarely used for diagnosis. It
creates X-ray images from veins and blood flow passing through them. Since veins are

transparent in X-rays a special dye is injected into the blood to make it opaque [135].

Lung Scan:

Ventilation-perfusion scan (V/Q scan), pulmonary angiography, MR and CT are among
the methods in the diagnosis of PE. The Ventilation-perfusion scan (V/Q scan) method
applies a radioactive material to highlight ventilation (airflow) and flowing blood
(perfusion) in the lung region. Inhaling a small amount of radioactive material and
injecting it into a vein in the arm and then taking pictures of movement of air and blood
flow, provide more accurate diagnosis of pulmonary embolisms.

Pulmonary angiography is a technique to see how blood flows through the vessels in the
lung using a special contrast material (dye) and X-rays. In this procedure, a catheter is
inserted inside the arteries; then dye is injected into the catheter and doctors can sce live
X-ray images which are taken from arteries. The dye helps doctors to diagnose a blockage
inside the arteries. Recently, this method has been replaced by spiral CT angiography due

to its cost and because it is invasive [13].
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Magnetic resonance (MR) is another imaging procedure which can be used to examine
pulmonary arteries in the lung and heart regions for detecting pulmonary embolisms [14].
In MRI, a powerful magnetic field, radio waves and a computer generate a detailed 3D
image volume, which may be used with or without contrast material. Unlike the
pulmonary angiography technique, MRI is a noninvasive imaging technique that
produces detailed images of blood vessels and blood flow without inserting a catheter
into the arteries. However, it is more expensive, has a lower spatial resolution than CT
images and it is not without difficulty with respect to other imaging systems such as CT
imaging [12].

X-ray computed tomography (CT), also known as computed axial tomography, is a
medical imaging technique which uses X-rays to take multiple images and a computer to
re-construct multidimensional views. CT gencrates a volume of data that can be
manipulated by image analysis and has become an important tool and the gold standard in
medical imaging to diagnose a large number of different diseases. CT has been identified
as a noninvasive procedure for evaluating patients with suspicion of a pulmonary
embolism over the last 15 years [17]. Compared with other techniques, this imaging
technique is a simple, accurate and fast imaging technique [15], [16].

Recently, a new kind of CT scan called a spiral (or heclical) CT scan is usced to obtain
cross-sectional pictures of the body. In this procedure, the X-ray machine rotates
continuously around the body and during the spiral path, it gencrates cross-sectional
pictures of the body. In comparing with a conventional CT scan, a spiral CT scan is faster
and has higher resolution and can detect a smaller abnormal item. Since 1996, studies for
evaluating spiral CT for the diagnosis of PE shows high sensitivities (53% to 92%) and
high specificities (78% to 100%) [18], [19].

Computerized Tomographic Angiography (CTA image) is a CT scan of blood vessels
which are injected by contrast material into the vascular system. CTA images have been
established as the first imaging test for the diagnosis of pulmonary embolisms. In
comparison with conventional pulmonary angiography, it has advantages such as low
risk, direct imaging of blood clots and higher accuracy. In CTA images, details of the
vascular anatomy can be rendered in three dimensions and the adjacent bony structures
can be visualized. Due to the contrast material, the blood vessels can be seen as bright

tubular structures (Figure. 1.2).
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Figure 1-2: Axial CTA images show vascular vessels as bright tubular structures

A CT pulmonary angiogram (CTPA) is a medical diagnostic test that uses CT to create an
image of the pulmonary arteries. Computed Tomographic Pulmonary Angiography has
recently emerged as an accurate and alternative diagnosis tool for PEs [20], [21]. They
can be used to perform accurately and quickly to portray vessels to the level of sixth-
order of pulmonary artery branching [118]. In spite of some concerns about low
sensitivity of CTPA, it is an attractive tool for clinicians because the results of CTPA are
clear (positive or negative) and can be used for identifying alternative non-thrombotic
causes of patients' symptoms in chest diseases [22]. Multi-row detector CTPA, which
takes less time in image acquisition, has been evaluated to have high sensitivity (100%)
and high specificity (89%) in the investigation of patients with suspected PEs in
comparison with conventional pulmonary angiography [23].

Each CTPA study contains hundreds of CT slices, so the accuracy and efficiency of
interpreting such a large image data set is complicated by various PE look-alikes and also
limited by human factors, such as attention span and eye fatigue. Moreover, manually
reading and interpreting a large number of slices is time consuming and it is difficult to
find all the pulmonary embolisms (PE) in a data sct [24]. Consequently, it is highly
desirable to have a computer aided detection (CAD) system to assist radiologists in

detecting and characterizing emboli in an accurate, efficient and reproducible manner.
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1.3. Computer Aided Detection (CAD)

Computer aided detection (CAD) is a main technique in medical imaging which helps
radiologists and clinicians to decrease observational oversights and false negative rates in
interpreting medical images. The concept of CAD is different from “Computer aided
diagnosis" which refers to software which analyzes diseases.

Several Computer Aided Detection (CAD) systems have been proposed to automatically
detect pulmonary embolisms, most of which are based on prior pulmonary vessel
segmentation and detection of the embolus and few system have been developed without
using pulmonary vessel segmentation. Those systems, which use the pulmonary vesscl as
a search area, may increase false positive detection rates. Since some cases of false
positives such as flow voids happen in veins, it is reasonable to limit the search area by
separating pulmonary arteries from veins to reduce false positive detection. In fact the
reduction of the search space contributes to both the efficiency of the detection process
and reduction of false positives.

Our contribution is to present a CAD system for the automatic detection of pulmonary
embolisms in CTA images which can help a radiologist to improve his/her job and
increase the radiologist’s certainty to detect PE. The capability of the proposed system is
based on segmentation of the pulmonary artery to reduce the scarch arca while aiming to
reduce the false positive detection rate. Since some false positives are identified in other
pulmonary vessels (such as veins), separation of the pulmonary artery from other vessels
is likely to reduce false positive detections. In fact the reduction of the search space
contributes to both the efficiency of the detection process and the reduction of false
positives.

In the proposed CAD system: 1) Images are collected. 2) A nonlincar diffusion filter is
used as a pre-processor on raw data. 3) The lung and heart region are extracted to reduce
the search region for extracting the pulmonary artery (PA). 4) Before extracting the
pulmonary artery a feature map based on eigenvalues of the Hessian matrix is created to
remove the connectivity between the pulmonary artery and other organs that have the
same intensity. 5) The pulmonary artery is extracted in two stages. In the first stage the
major pulmonary artery is extracted in the heart region using a new customized level set
method. In the level set method a new stopping criterion is used, a consideration which
has usually been neglected in level set implementations. In the second stage, the

peripheral arteries are separately segmented into left and right lung regions by a region-
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growing algorithm. 6) Pulmonary embolism (PE) candidates are selected using five
detectors that respond to different properties of the PE. 7) The three dimensional features
(connected components) inside the segmented artery are analyzed to identify PEs and

exclude false positives.

1.4. Outline of the Thesis

The organization of thesis is as follows. Chapter 2 gives some medical definitions and
background of PE disease and a literature review of previous research in pulmonary
embolism detection. Pulmonary artery segmentation is described in chapter 3. This
chapter first reviews existing research in pulmonary artery segmentation and then
describes a pre-processing algorithm based on non-linear diffusion filters, lung and heart
segmentation algorithms, feature map extraction and finally pulmonary artery
segmentation algorithms. Chapter 4 describes pulmonary embolism (PE) detection and
removal of false detections. Discussion and experimental results and evaluation of PA
segmentation and PE detection are presented in chapter 5 and finally conclusions are
made in chapter 6. The literature review for each major component of the proposcd CAD

system is discussed within the related chapter.




2. MEDICAL DEFINITIONS AND
LITERATURE REVIEW

This chapter provides the medical background associated with different kinds of
pulmonary embolism, the causes of pulmonary embolisms, the pitfalls of detection and
the medical imaging systems. It then provides a dctailed description of previous research
on CAD systems for detecting pulmonary embolisms. In the final scction the proposed

CAD system will be introduced.

2.1. Medical Machinery
2.1.1. CT Scan

A CT (computed tomography) scan (also known as CAT - Computer Axial Tomography),
is a medical imaging procedure which applies a process of producing a two-dimensional
image of a slice through a 3-dimensional object (Figure 2-1). The medical device which
is used to generate CT scans utilizes X-rays and uses digital gecometry processing to
generate a 3D image of the inside of an object. The 2-dimensional X-ray images, which
are taken by rotating around a single axis, are combined to generate a three dimensional
(3D) image.
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field of the earth (about 10,000 -30,000 times stronger), are sent through the patient’s
body. From measurements of the magnetic strength of the returned signal, a picture of
the material densities can be created by the computer. In an MRI scanner the information
of an object is usually extracted by changing the timing of the radio-wave pulses and
objects surrounded by bones, usually give clearer pictures. This method of imaging

device is particularly useful for imaging the brain and spinal cord discases.

2.1.3. MRI Scanner Vs CT Scanner

MRI and CT scanners are the two most common medical imaging techniques to scan
patients for determining the severity of certain diseases. Their application is based on

parts of body that the radiologists or doctors need to see.

e CT scanners cannot show ligament or tendon discase; MRI scanners show more
detail of these diseases.

o MRI scanners show better pictures than CT scanners for looking at the spinal
cord.

¢ For visualizing lungs and organs in the chest cavity CT scans are better than MRI
scans.

e Organ tear, broken bones, organ injury and broken vertebrae are better and more
quickly seen on CT scans.

o CT scans are better for looking at cancer, bleeding in brain and inflammation of

the lungs.

2.2. Pulmonary Embolism in CT Images

In CT images a pulmonary embolism can be identified as a dark region inside the
segmented artery and clinical presentations are generally categorized into four different
classes based on expected severity of the pulmonary artery occlusion. Each class is

described in the section below.

11
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The sudden blocking of an artery of the lung (pulmonary embolism) is not the only cause
of blood clots. Other effects that can also lead to pulmonary embolism are:

Fat: During bone surgery a long bone is usually fractured and fat from within the marrow
of a broken bone escapes into the blood flow and forms an embolus.

Amniotic fluid which happens during a tumultuous childbirth and is forced into the
pelvic veins can be a potential factor to form an embolus.

Air bubbles: Air bubbles can result in the formation of emboli if a catheter in one of the
large central veins is mistakenly opened to air. During operations on veins and when a
person is being resuscitated an embolus may also be formed by air bubbles.

A foreign substance: Foreign material such as talc injected by drug users can form an

embolus and travel to the lungs.
Infected material: Infected material can also lead to the formation of emboli in the lung
region associated with intravenous drug use, certain heart valve infections, and

inflammation of a vein with blood clot formation and infection.

Cancer cells: Emboli might be created by the breakdown of a cancer ccll which is

released into the blood stream.

2.5. Lung and Heart Anatomy (Region of Interest for Searching PE)

The lung regions (left and right lungs) which reside between the abdomen and neck are
essential organs of respiration in humans, providing a very large surface area to enable
the exchange of oxygen and carbon dioxide between the body and the environment. The
lung region provides oxygen for the bloodstream via airways which comprise the nose,
the larynx, the pharynx, the trachea, the bronchi and the bronchioles. The heart region is
located between left and right lung in the middle of the chest, behind and slightly to the
left of the breastbone. The pulmonary artery (PA) carries the deoxygenated blood from
the heart ventricle to left and right lungs for oxygenation. The oxygenated blood travels
from lungs back to the heart via the pulmonary veins (PV) and then to rest of the body.
The cardiovascular system is comprised of the following components for blood

circulation:
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2.6. Protocol of DICOM

One of the initial steps in medical image processing is to read data from stored CT image
formats. CT images are stored in files with a DICOM format. DICOM, which stands for
digital imaging and communication in medicine, defines a procedure of communicating
and comparing different types of digital medical imaging devices or software. It is a
common standard format for storing image data captured by medical imaging devices
such as CT and MRL. It is also an extensive set of standards that support tasks such as
image printing and transmission. It is possible for equipment to communicate remotcly

through a network or a media by using the DICOM standard.

2.7. Literature Review and Previous Work

Over last three decades, computer aided detection (CAD) has been a primary tool for the
automatic detection of many diseases in medical imaging. Detection of abnormalitics in
the chest area across a large number of CTA images is a demanding job for doctors and
radiologists. Because of the highly challenging nature of this task in interpreting
pulmonary discase, a image analysis research has focused on developing methods to
detect pulmonary diseases. Pulmonary embolism (PE) is a common and a fatal pulmonary
disease in many countries and across all age groups, and several CAD systems have been
developed which automatically help the radiologists detect pulmonary embolism (PE).
The performance of a CAD system will depend strongly on the characteristics of a PE,
such as their size distribution, the diameter of the artery being blocked, whether patients
have other pulmonary diseases, and the quality of the CT scan which can be degraded by
motion artefacts and incomplete circulation of injected contrast material. This review will
summarise the studies that have been reported on the automatic detection of PE.

Automatic detection of PE is a more challenging task than for other pulmonary discases
because the pulmonary arterial system comprises an extensive network containing a wide
range of vessel diameters. Y. Masutani et al [25] proposed a fully automated method for
computerized detection of pulmonary embolism in CTA images based on volumetric

image analysis. They first extracted pulmonary vessels and then analyzed several three
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dimensional features inside the extracted vessels. The features that were analysed are
based on local contrast using mathematical morphology to derive measures of the degree
of curvi-linearity (based on second derivatives), vascular size and geometric features such
as volume and length. They tested their CAD system on 19 clinical data sets (11 positive
and 8 normal) and achieved 7.7 false positives per data set at 100% sensitivity, and 2.6
false positives at 85% sensitivity, when the PE volume was between 16 and 64 mm3.
They tested on only 11 data sets containing 21 PE samples, which is too small to cover
the variety of different PEs.

Zhou et al [26] developed a preliminary investigation of computer aided detection of
pulmonary embolisms in CTPA images. They extracted the vessels using an adaptive
three-dimensional (3D) voxel clustering method based on expectation-maximization
(EM) and detected true PE by applying a rule-based false-positive (FP) reduction method.
In this preliminary study, they considered 14 patients with positive PE. In the cascs
without lung disease, their method detected 92.0% of proximal emboli and 77.8% of sub-
segmental PE, with an average of 18.3 false positives per patient while, in the cases with
extensive lung disease, 66.7% and 40.0% of the PEs were detected with an average of
11.4 false positives per case.

In a second study, Zhou et al [27] collected more data sets for improving the detection
accuracy for PE and evaluating the performance of CAD systems by using 43 CTPA
images. They applied 3D multiscale filters to enhance vascular structures including the
vessel bifurcations and suppress non-vessel structures such as the lymphoid tissuc
surrounding the vessels and then they used a hierarchical EM estimation to segment the
vessels by collecting the high response voxels at each scale. They searched for suspicious
PE areas using a second adaptive multiscale EM estimation and using rule-based false
positive (FP) reduction method, the true PEs based on the features of PE and vessels were
identified. An experienced chest radiologist identified 435 PEs in artery branches (172
sub-segmental and 263 proximal to sub-segmental). These PE locations were identified as
the “gold standard” in their CAD system. They achieved 81% and 78% sensitivity
(proximal PEs) and 79% and 73% sensitivity (sub-segmental PEs) with 33 and 24 false
positive detections per case.

Das et al [28] developed a CAD system and evaluated it’s performance for automated

detection of peripheral pulmonary embolisms in 33 consecutive multi-detector row CT
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pulmonary angiography images. Their system identified a list of candidates and analyzed
them according to shape, density, size and texture. The system showed 88% (164/186)
sensitivity for the detection of segmental pulmonary embolisms and 78% (94/120) for the
detection of sub-segmental pulmonary embolisms with 4 false positive detections per
case. In a different study, Das et al [32] used 45 cases of which 29 cases had 213 PE in all

vessels. They achieved 82% sensitivity with 3 false positive detections per case.

Jeudy et al [29] developed a CAD system using 22 data sets containing 251 PE (188 in
segmental arteries and 63 in sub-segmental arteries) as a reference standard. Their system

achieved a sensitivity of 80% for the segmental and 76% for sub-secgmental with 1.8 false

positive detections per dataset.

Schoepf et al [30] evaluated a CAD system for automated detection of pulmonary
embolisms on multi-detector row CT studies of varying diagnostic quality in 23 patients
(13 female, mean age 52) with PE and of 13 patients (all female, mcan age 49 ) without
PE. Their system identified correctly all 23 patients with PE and showed 92% (119/130)
sensitivity for the detection of segmental pulmonary embolism and 90% (92/107) for sub-
segmental pulmonary embolisms with 4.8 falsc positive detections per case. Maizlin et al
[31] evaluated the same CAD system using large datasets (104 CTPA images) with 45 PE
as standard references in 15 of the patients. The system identified 18 central and
segmental PE and 8 sub-segmental in 8 patients, while it missed 14 proximal and S sub-
segmental PE in 7 patients. Their system showed low sensitivity (57.8%) with 0.93 false
positive detection rates per case.

Buhmann et al [33] developed a prototype computer-aided diagnosis (CAD) system. They
applied artificial intelligence techniques for the detection of pulmonary embolism (PE).
Forty multi-detector row computed tomography dataset which had good image quality
were marked for suspicion of PE by six general radiologists using commercially available
lung evaluation software. The 212 PE were identified as the “gold standard” by a
radiologist. Of these, 65 (31%) were centrally located (in pulmonary trances, lobar, main,
first order segmental arteries) and 147 (69%) were peripherally located (in the higher

order segmental and sub-segmental arteries). Their CAD showed 74% sensitivity of
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detection for central PE and 82% for peripheral PE with 3.85 false positive detections per
case.

H. Bouma et al [34] proposed a new system for automatic detection of pulmonary
embolisms in CT images. Their system consists of candidate dctection, feature
computation and classification. The candidate detection process focuses on inclusion of
PEs and the exclusion of false positives. The feature computation is based on shape,
intensity and size of PE and the shape and location of the pulmonary vascular tree. They
also used several classifiers to optimize the performance of their system. The system was
trained on 38 and evaluated on 19 other data sets. Their system showed 63% sensitivity
on evaluation data sets with 4.9 false positive detections per data set, which enabled the
radiologists to improve the number of PE dectections by 22%.

Most CAD systems are based on prior pulmonary vessecl segmentation and a few
approaches have been established without using pulmonary vesscl scgmentation to detect
the embolus. J Liang and J Bi [35] presented a fast effective toboggan-based approach for
automated PE detection in CTPA images without extraction of pulmonary vessels. They
achieved 80% sensitivity at 4 false positive detections per case.

The performance of all reviewed CAD systems depend on the characteristics of the
pulmonary embolism (PE) such as it’s size distribution, the diameter of the artery being
blocked and the percentage of blockage related to a patients’ conditions, such as whether
they have other pulmonary diseases or not, and the quality of CT images. Those systems
that used a large dataset, reported a high false positive rate and low secnsitivity of
detection. Since CAD systems for PE detection usually spend more time classifying the
large number of initially detected suspicious regions as the true positive (TP) and false
positive (FP) detections, but most of them gencrate a high rate of false positive
detections.

To keep CAD systems as an effective tool to help radiologists for detecting PE, it is
desirable to reduce false positive detection rates. Reducing the secarch area in the
detection process can reduce the false positive detection rate in CAD systems. In fact, the
reduction of search space contributed to both efficiency of the detection process and
reduction of false positives.

Previous systems have used all the pulmonary vessels (i.e. all the vessels in heart and

lung region). As a search area and as a consequence the false detection rate is high. Since
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pulmonary embolism occurs only within the pulmonary artery, the proposed CAD system
uses a small search area (pulmonary artery) as a search area aiming to reduce the rate of

false detection.

2.8. The Proposed CAD System

Fully automatic computer aided detection (CAD) of pulmonary embolism is developed
that aims to reduce the false positive detection rate by restricting the search area and
increasing the sensitivity of detection by analyzing different 3D features. The proposcd

CAD system consists of three main steps:

e Segmentation (Pulmonary Artery)
e Detection (Pulmonary Embolism Candidates)

e Removal (False Detection)

The search area for pulmonary embolism is the pulmonary artery wherein the blood clot
occurs, so in the first step the pulmonary artery is extracted (Chapter 3). Segmentation of
the pulmonary artery (PA) is the most challenging task of the project as it has
anatomically an elongated shape and is the same intensity with ncarby vessels, such as
the superior vena cava, the aorta and veins in the lung and hcart region. Considering the
difficulty of pulmonary artery extraction, an efficient algorithm for scgmenting the
pulmonary artery (PA) tree in three dimensional CTA images has been proposed.

In this algorithm, to reduce the search area the lung region (left and right) are first
segmented from the raw data and the heart region is extracted by selecting the region
between the lungs. A pre-processing algorithm based on the eigenvalues of the Hessian
matrix is used to remove the connectivity between the pulmonary artery and ncarby
pulmonary organs. Before extracting the pulmonary artery, the superior vena cava (SVC)
is extracted and removed from the heart region using an up-to-down region growing
algorithm to facilitate the segmentation of pulmonary artery. The pulmonary artery tree is
separately extracted in the heart and lung region. The major artery is first segmented by a
region growing method initialized by a seed point which is automatically selected within

the pulmonary artery trunk in the heart region, and then the segmentation result is refined
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using a new customized 3D level set algorithm. The level set algorithm applies the output
of region grower as the initial contour. The peripheral artery is segmented in left and right
lung regions using a distinct region growing algorithm after enhancement by a vessel
enhancing filter.

Pulmonary embolism (PE) can be identified as a dark region inside the segmented artery
in the contrast enhanced CT images. The second step of the proposed CAD system uses
five detectors based on intensity, geometric analysis, a morphological operator (top-hat
transform defined on page 86), analysis of the perpendicular plane of the vessel centerline
followed by ellipse fitting and a search for the disconnected part of the vessel to identify
voxels inside the segmented artery as PE candidates. These five detectors are designed to
respond to different properties of PE (Chapter 4).

In the third step, the PE candidates are filtered by extracting and analyzing different
features to distinguish true PE from look-alikes (i.e. removal of false detections).
Figure2-7 shows the flow chart for the major component of the proposed CAD system

and the box numbering refers to the related chapters describing the major components.
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3. PULMONARY ARTERY
(PA) SEGMENTATION

3.1. Introduction

Pulmonary artery tree segmentation is an essential requirement for some medical
applications, such as detection and visualization of pulmonary embolism (PL). Morcover,
segmentation of the pulmonary artery tree is a very complicated and challenging task as it
has multiple connections with other anatomical structures such as the pulmonary veins,
the superior vena cava and the aorta, which can interfere with the segmentation of
pulmonary artery boundaries. In this chapter the proposed algorithm for pulmonary artery
(PA) segmentation in CTA images is described.

In this algorithm, first, the raw data is smoothed using a non-linear diffusion filter. Next,
to reduce the search area, the lung regions are segmented and the heart region is extracted
by selecting the region between the lungs. A pre-processing algorithm based on the
eigenvalues of the Hessian matrix is used to remove connectivity between the pulmonary
artery and other nearby pulmonary organs. The pulmonary artery tree is extracted in two
steps. We first extract the major artery in the heart region using a region growing method
initialized by a seed point which is automatically selected within the pulmonary artery

trunk in the heart region and then refine the segmentation using a customized 3D level set
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algorithm, using the output of a region grower as the initial contour. A new stopping
criterion for the proposed level set algorithm is used an issue often neglected in many
level set implementations. In the second step, the peripheral artery is segmented in left
and right lung regions using a distinct region growing algorithm after enhancement by a
vessel enhancing filter.

The organization of this chapter is as follows. In section 3.2 vessel segmentation
approaches are reviewed and then the pulmonary artery segmentation algorithm will be

discussed (section 3.3).

3.2. Vessel segmentation

Vessel segmentation is a key component of automated detection of discase in medical
image processing. It is dependent on image modality, type of application and based on
whether the method of segmentation is automatic or scmi-automatic or it can be
performed manually. Manual segmentation is usually accurate but is impractical for large
datasets because it is tedious and time consuming. Automatic segmentation methods can
be useful for clinical applications if they have: 1) the ability to scgment like an expert; 2)
exhibit excellent performance for diverse datascts; and 3) have a rcasonable processing
speed. There are different models and approaches in vessel scgmentation and the main

approaches are:

e Pattern recognition techniques
e Knowledge-based approaches
e Neural Network-based techniques

o Model-based methods

3.2.1. Pattern Recognition Techniques

The pattern recognition method is categorised into a region growing approach,
mathematical morphology schemes, differential geometry-based approaches, a multi-
scale method and skeleton-based approaches. This method incorporates automatic

detection and classification of features or objects.

In the region growing method, an image is segmented by incrementally adding pixels to a

region starting from some seed points based on special criteria. The criteria can be
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similarity in pixel values or adjacency in terms of distance space [36]. Mathematical
morphology schemes are based on the shape or form of an object using structure
elements. Donizeli [37] used a hybrid method based on region growing and mathematical
morphology schemes to segment large vessels. The mathematical morphology “top-hat”
first was used to extract line-like structure and then by using a binary region growing
technique, they removed background noise artefacts. In differential geometry-based
approaches an image is treated as a hyper-surface and features are extracted by using the
curvature and crest line of surface. Multi-scale image segmentation is a process by which
an image will be segmented based on image resolution. In this method, large vessels are
extracted from a low resolution image and a very small blood vessel is segmented at a
high resolution level. In the skeleton-based method which is a known centreline detection
technique, first the centreline of blood vessel is extracted and then by connecting these
centrelines, blood vessel tree is created. Tozaki et al. [38] applied a centreline detection
method to extract blood vessel and bronchus in lung region from CT images. They first
segmented the image using a thresholding method and then scparated the bronchus from
the blood vessels based on anatomical characters and finally by using a 3D thinning

algorithm the vessel centrelines were extracted.

3.2.2. Knowledge-Based Approaches

In general, in a knowledge-based system, an intelligence decision with justification is
made using artificial intelligence tools based on posterior knowledge. In image
segmentation tasks especially in vessel extraction, a knowledge-based algorithm applies
the posterior knowledge to lead the segmentation process and to visualize the vesscl
structure. Several works have been developed to segment and analyse the vessel tree
using a knowledge-based algorithm. Smets et al [112] delineated the blood vessel using a
knowledge-based approach by encoding the general knowledge about blood vessels such
as knowing high intensity for centreline of vessel, high intensity region are surrounded by

parallel edges, etc. More related works can be found in [113], [114], [115].
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3.2.3. Neural Network-Based Techniques

The Neural network (NN) has been developed in a wide range of applications especially
in the medical image processing field. This method is applied as a classifier when the
system is trained with a group of medical images and the trained system scgments the
target image. The neural network method is a very attractive method as it is easy to learn
the system. That means that by choosing a good training sct, including all possible
features and objects, the system learns the boundary of classification in its feature space.

Several works have been performed in the image segmentation ficld by applying the
neural network method [116], [117].

3.2.4. Model-Based Methods

The main logical idea behind these methods is analyzing the image in a top-down
fashion. Since the structures of intcrest or organs have a repetitive form of gecometry, it is
possible to find a probabilistic model for explaining the variation of the shape of the
organ as constraints. In model based mecthods, these constraints are imposcd as prior
knowledge in the image segmentation process. These models are categorised in four
approaches: 1) template matching, 2) deformable modcl, 3) paramectric models, 4)
generalized cylinders.

In image processing, the template matching algorithm is a technique for extracting parts
of the image which match with a template image. This technique can be classified in two
main groups, arca-based matching (ABM) and feature-based matching (FBM). In feature-
based matching algorithm those features are extracted which appear in the template
pattern and are stored based on template information. While, in area-based matching
techniques, every possible pixel/voxel position in the image (search image) are compared
with the information of template data by least square or correlation methods.

The template matching algorithm is very capable in applications in which the search area
and the image patterns are previously known. For example it can be used to control the
quality of manufactured products [108] and in robotic science to navigate a robot [109].
In medical image processing, some works have been performed to extract the tubular

shapes such as blood vessels by using the template matching algorithm [110], [111].
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Deformable models (active contour models) describe curves or surfaces moving under
internal and external forces and have been widely applied in medical image segmentation.
These models are divided into two main categories: parametric deformable models, in
which the curves and surfaces are explicitly represented in parametric form, and
geometric deformable models in which a curve is implicitly represented as the zero level
set of a higher dimensional constant function. The level set and fast marching methods
are two main numerical approaches for evolving the curve (2D) and surface (3D) which
have been used in a wide range of applications such as computer animation, some tasks in
image processing fields such as optimal path planning [62], [63], shape representation
[64], [65], registration [66], [67] finding distance fields from one and more points in
computer vision [68] and segmentation [69]. In the proposed CAD system a gcometric
deformable model (level set algorithm) is used to segment the pulmonary artery, and a
fast marching algorithm to extract the skeleton of segmented pulmonary artery. In the

next sections these two models will be described in more detail.

3.2.4.1. Level Set Algorithm

Over the past decades, a large number of works on geometric deformable models in the
sense of level set implementations have been proposed in the image processing field
especially for image segmentation. Osher and Sethian [39] first introduced the level sct
method to capture the moving front. The main idea in level scts is to evolve a higher
dimensional function, for which it’s zero-level set shows the location of the propagating
contour. In comparison with other deformable models, the level set mcthod has more
advantages: it can handle merging or splitting of the evolving contour, and numerical
stability of the solution (the final result of evolution) is independent of initialization. In a
level set algorithm, the evolving contour is the zero level set of a higher dimension of a
constant function, which results in a complex computation. To remove this difficulty a
narrow band level set method was introduced by Sethian.

In the level set formulation, letting C (t) :

C(t) = (Xl(b(t,X) = 0} ’ X= (xlleI '"lxn) (1)
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be the zero level set of function ¢(t,X) , then the evolution equation of the level set

function ¢ can be written in the following partial differential equation:

d)t + Flvd)l = 0' ¢(xc 0) = ¢0(x) (2)

where F is called the speed function of level set equation [39] and plays the most
important role in the level set method which moves the contour in the normal direction
and depends on the image data (external energy) and the level set function ¢ (internal
energy). ¢o(X), is the initial level set function. The level set algorithm mcthod is

categorized in two main groups, edged-based and region based method.

Fdge-Based Model

In the edge-based algorithm image gradient is considered as a constraint to stop the
evolving contours/ surfaces on the boundary of the desired objects. In these models a

general edge detector is defined by a positive and decreasing function g:

limyieg(x)=0, g(0)=1 (3)

For example it can be as:

1
14|76 (x,y.2)suqg(x,y.2)|?

g(|Vuy(x,y,2)] = @

where G * ug, a smoother version of u,, is the convolution of the image uy with the

Gaussian filter:
G(x,y,z) = %e-lxhy’n’ /40 )

In edge-based models, the evolving contour relies on image gradient, so in practice the
gradient of an image cannot be zero on the object boundary and it may cross the object
boundary where the edge is weak. The popular edge-based level set models are
introduced in [52], [70], [71], [72], [73].
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Region-based model

Region-based models use the intensity of the region of interest by creating certain region
descriptors as the main factor to move the interface. Unlike edge-based models, region-
based models do not use the image gradient and are capable of segmenting objects with
weak boundaries and the initial contours can be initialized anywhere in the image. The
most popular region-based models are proposed in [74-80]. The region based models
have often been inspired from the well-known region-based model proposed by Mumford
and Shah [81]. This model is used for an image segmentation task by smoothing the
image and setting a set of discontinuities points for representing the object boundaries.
Chan and Vese proposed a new model for active contours to detect objects in an image,
based on techniques of curve evolution, using the Mumford-Shah functional for
segmentation. Their model can detect objects whose boundaries are weak and not
necessarily defined by a gradient. The method is derived by minimization of an encrgy

based-segmentation. They introduced an energy functional F(c,,c,, C) defined by:

F(cy,¢3,C) = p. Length(C) + v.Area(inside(C)) + 2, [lug(x,y) — ¢11%dxdy +
22 flug(x,y) = ;> dxdy 6)

where 44 > 0, A, > 0,u = 0,v = 0 are constants and the first and second integral are
taken inside and outside the closed curve C, respectively. By minimizing the above
functional, they introduced the following region-bascd level set algorithm to segment an

object in an image.

3_‘: = 6e(9) (div 'l%%) —~v=21(uo—¢1)? = A, (o - Cz)z)
(p(O,x,y) = (Po(x,}’) )]

Where, c;,c, are the mean intensity inside and outside the evolution curve respectively
and @(x,y) is the initial contour. This model relies on intensity homogeneity. In fact the
intensity of regions to be segmented must be statistically homogeneous (roughly a
constant) in each region [82]. But intensity inhomogeneitics are an issue which often
happens in real world images and interfere with image segmentation. In order to

overcome these difficulties Li at el [82] proposed a new region-based active contour
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model that relies on intensity information in local regions at a controllable scale. In their
method, first a region scalable fitting energy is defined which is based on the contour and
two fitting functions. These two fitting functions locally approximate the image
intensities on the two sides of the contour. The region scalable fitting energy is then
incorporated into a variational level set formulation with a level set regularization term

defined as:

%‘f T @ et vode)diy (‘,:;_Z[) +u (Vz‘p —div (%)) ®

where, &, is Dirac delta function and e, and e, are two functions defined by:

ei(x) = [K,(y = 0)|1(x) = fi(y)|?dy (=12

0y = KoM (0(0))1(x))
fi(x) Ka(x)*(Mf(tp(x)))

= 1 -|x|?/20%
() = Gommae ®

Mi(p) =H(p)  M:i(p)=1=He(p)
H.(x)=1/2 (1 + %arctan(g))

To segment the pulmonary artery, we developed a new customized edge-based level sct

algorithm with a new stopping criterion which is described in more dctailed in section
3.3.2.5-7.

3.2.4.2. Fast marching Method

The fast marching method is identified as a propagating interfaces algorithm which was
proposed by Sethian in [83], [84]. If the front T is considered to propagate in one
direction (inward or outward), then it has a monotonically decreasing or increasing
propagation based on the sign of the speed function F. The position of the front is tracked

by computing the arrival time T(x,y, z) when it crosses the point A(x,y, z). The motion
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Sethian and Osher in [89] proposed the following discretizations of |VT'| which gives a

weak solution for the Eikonal equation.

Max(DET,0)° + Min(D}ET,0)" +

Max(D;2T,0)" + Min(DJT, 0)* +

ijk

Max (DT, 0)? + Min(Dj;T,0)* = -L- (14)
Fi

In order to find an easier but less accurate solution, the following upwind scheme was
applied to discrete |VT|. The upwind scheme refers to the direction of information

propagation and it is defined in [90], [91]).

Max(DET, ~DiET)" + Max(D LT, ~D;T)" + Max(DijiT, ~D{iT)’ =g (9)

Where, Djj;, and D,-jk are the backward and forward finite difference schemes given by:

Tifk= Tt-1 X Toje=Tij-1k ~zp _ Topk = Tifk-1
DT = » DT = 3y » DipT = 2
and

_ Tivrgke= Togk +y Togeak =Ttk Tl[k+1 Tijk
DJiT = e » Dy T = Ay , DT =

Where, Ax, Ay, Az are the grid spacing in x, y, z directions, respectively. By substituting
the above backward and forward finite difference scheme into equation (15) the following

discretization scheme is derived.
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T k=Ti- Tiik=T 2
Max( 1.5k la,/,k' 1,5,k l+1,],k‘0) +

Ax Ax
Tiyk=Tij-1k Tijk=Tij+1k )2 =1 16
Max( o 5 0) + o (16)
Tiie=Tirk-1 Tosk=T 2
Max ( i)k Azl./.k 1 11k Azl./,kﬂ ) 0)
By choosing:
T=Tix s Te=Min(Ti_y 1k, Tis1,j0)

Ty =Min(Tyjoyp, Tijsrn) » Tz = Min(Type-1,Tijket)

The equation (16) is simplified as follows:

Max (T;:‘,O)z + Max (T—;EZ,O)Z + Max 1;—:5,0)2 = F;/—n a7n

For solving the Elkonal equation scveral algorithms have been proposed such as the
iterative method which was proposed by Rouy in [90] and the single pass method or fast
marching update scheme which was proposed independently by Scthian [86], Tsitisklis
[92], and Helmsen [93].

The fast marching method for solving the Eikonal equation explicitly maintains a thin
zone (narrow band) of candidate points that separates the grid points of known solutions
from the unknown solutions. The main idea bchind the fast marching method is that it
establishes an order for selecting of grid points based on criteria and the arrival time
T(x,y,z) at any grid points depends on the smaller value of the neighbours. In fact, the
fast marching method is a front propagating algorithm in one direction from smaller

values for arrival time T'(x, y, z) to larger ones.

Fig 3.2 shows how the fast marching update scheme works in 2D discrete grid points.
The algorithm starts with an initial grid point where the value of arrival time T is known

and the value of F is considered to be known at every point. Four neighbours of the initial
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¢ Trial points (gray points in fig3.2) these points are around the alive points
and are known narrow band points. In the propagation process the narrow
band points are updated to alive points while the narrow band expands.

e Far away points (white points in fig3.2) are all the points that have not yet
been visited and these points convert to narrow band points during the
propagation.

The fast marching algorithm is described in more detail in Appendix B.
High Accuracy Fast Marching Method

In the previous section, for solving the Eikonal equation using the fast marching method,
the gradient VT was approximated by a first order finite difference scheme. In the high
accuracy fast marching method, to approximate the gradient VT the sccond order finite
difference scheme is used. The second order backward finite diffcrence schemes to

approximate the first derivatives are given by [91]:

3r - 4T +T
-xT —- i)k {~1.1k -2/ k
Dijk - 24x

~ymp _ 3Tk = 4Ty 1k + Tijak
Dy T = 28y

ar — 4T +T
—Z7 — {.fk 1.].k=-1 i) k=2
DU"T 2Az

and the second order forward finite difference scheme is given by:

DT = — STk~ 4Ttvaphe + Tivz fk
ik 2Ax

D+)’T = — 3T k=4T1je1k * Tije2k
ijk 28y

DT = — 3T k= 4T ke1 + Tijke2
Hk 28z

By substituting the above second order forward and backward finite difference scheme in

equation (15) the following equation is derived.
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2
3T 4T - + T2k 3Ty 1x-4T; k+ T &
Max( ik~ 4Ti-1,0k + Ti=2J. J. +1, s2px 0\ 4

2Ax ! 2Ax
Max (31‘,,,‘,‘ - 41‘,,;;;,;( +Tij-2k ' 3Tk - 41'(;;;,;‘ +Tyjeak ' 0)2 + 1= ;;7; (18)
Max (3Tl]k 4Tt;:z-1 +Ti k-2 37'uk 47'12;:;: +Tijk+2 ,0) 2
By choosing:
T=Tyx

Ty =Min(4Ti—1jx — Ti-25k »4Tis1 )k — Tisv2,jk)

T, = M in(4Tl,]-1,k = Tij-2x .4Tt,j+1,k - Tl,]+2,k)
T, = Min(4T; jg-1 = Tijk-2 +4Tjke1— Tijkez)

The equation (18) is simplified as follows:

Max (3T Tx 0) + Max (-S-ZA-;;.Z,O)2 + Max (3:;:' 0) —Fuk (19)

Based on the high accuracy fast marching method, the value of T must be greater than

Ty, Ty, T; so,the equation (19) can be simplificd as follows:

(o) + (52 + () - an

Multi-Stencil Fast Marching Method

The Multi-Stencil Fast Marching Method (MFMM), which was proposed in [100], is an
improved version of the fast marching algorithm which has very accurate results for
solving the Eikonal equation in Cartesian domains. This method calculates the solution at
each grid point by solving the Eikonal equation along several stencils. These stencils
which are centred at each grid point should cover all the neighbours of each grid point
and if they are not aligned with the natural coordinate system the Eikonal cquation must
be derived by using directional derivatives and is solved by applying a higher order finite
difference scheme. In 2-dimensional space all 8neighbours of each grid point are covered

by two stencils whereas in 3-dimensional space all 26neighbours are covered by six
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stencils. By computing the arrival time at each grid point by solving the Eikonal equation

along each stencil, the solution that satisfies the upwind condition is picked.

For example in 3D for all stencils to find the first order approximation of directional

derivatives the following equation is solved.

3_ Max (ﬁ{%};gl‘,o)2 =i Q1)
Where
T(X) =T« » Ti=Min(Ti_yjk,Tiarjk)
T, = Min(Tij1h, Tojerk) o Ts = Min(Tyjx-1,Tijk+1)

And X; is an alive (known) point at which the T is minimum.
Upwind Condition

By solving the quadratic equation, in the casc of two solutions the minimum one docs not
satisfy the equation (21), so is rejected. The other solution T'(X) must be checked with the
three adjacent neighbours Ty, T, and T;. If the value of T(X) is greater than the three
neighbours the solution is accepted. Otherwise, T(X) must be checked with the values of
two remaining adjacent points. If it is greater than the valucs of two points, then the

quadratic equation is solved based on their values and the maximum solution is selected.

Otherwise the solution would be:

Ix=xl

min(r,+ Fm) {=1,23 2)

Distance Field

A distance field in 3D or 2D is the smallest distance from each point to the given set of
objects. Each object can be a representation of data on a voxel grid or as an explicit

representation of a surface. The distances between the point and an object can be
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computed by using different metrics, such as the Euclidean or max-norm distance. A sign
can be assigned to the distance field (signed distance field), if the given objects are closed
or orientable. Distance fields are used in many applications such as computer graphics,

computer vision and medical imaging especially in extracting the skeleton of objects.

The fast marching method is one of most capable algorithms to compute the distance field
at Euclidean metric if the front evolves at a unit speed. By choosing F =1 in fast
marching algorithm, the arrival time at each point shows the Euclidean distance. This
distance field can be the minimum distance of each point to object boundary (DFB) or a
minimum distance to a known source point (DFS). In Figure3-3 the computed distance
field is visualized for different 2D shapes using the high accuracy fast marching mcthod.
The first column shows the distance field from the known source point (DFS) while the

second column shows the object boundary (DFB).
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3.3. Pulmonary artery (PA) segmentation algorithm

Pulmonary artery tree segmentation is an essential requirement for some medical
applications, such as detection and visualization of pulmonary embolisms (PEs).
Moreover, as discussed in the previous chapter, segmentation of the pulmonary artery tree
is complicated because it has multiple connections with other anatomical structures such
as the pulmonary veins which can interfere with the segmentation of pulmonary artery
boundaries. Many methods have been developed to perform the segmentation of an
elongated shape such a pulmonary artery. In [40-42] a tubular enhancement filter has
been employed using a combination of the eigenvalues of a lessian matrix followed by
thresholding. Zahlten used a wave propagation method which proceeds by rccursively
marching through 3D neighbours of a seed voxel using image intensity, also based on
thresholding. This algorithm creates a bifurcation graph by looking at the connectivity of
the wavefront [43]. The method reported by Scbbe et al [44] uses slice marching and fast
marching algorithms, which is sensitive to irregular vessel boundaries but is less
sensitive than wave-front based methods. In general, most previous attempts to secgment
the pulmonary artery can be categorized into region growing methods [123-125),
enhancing the vessels with Hessian matrix [126-128] and fuzzy conncctivity mecthods
[129].

In all previous methods, seed points for segmentation algorithms were manually sclected.
Therefore, automatically finding seed points allows the algorithm to be included in fully
automatic pulmonary embolism detection systems. Morcover, in most previous proposed
methods, the segmentation algorithm sometimes fails by merging the pulmonary artery to

an adjacent organ: this is caused by acquisition resolution or noise and partial volume
effect.

In this contribution, an efficient algorithm for segmenting the Pulmonary Artery (PA) tree
in 3D pulmonary Computed Tomography Angiography (CTA) images is presented. The
pulmonary artery tree is extracted in two stages. We first extract the major artery in the
heart region using a region growing method initialized by a seed point which is
automatically selected within the pulmonary artery trunk. The segmentation result of the
major artery is refined using a customized 3D level set algorithm. The major artery is
extracted after the following steps:

1) Enhancing the image by a non-linear diffusion filter.
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2) Extracting lung and heart region as a search area for pulmonary artery
segmentation.
3) Removing the connectivity between the artery and other organs using a feature
map based on eigenvalues of the Hessian matrix.
4) Removing the superior vena cava
5) Segmenting the pulmonary artery using a customized level set method starting
from the initialized contour inside the pulmonary trunk.
In the second stage, the peripheral pulmonary arterial network is extracted from the lung
regions using a region growing algorithm, starting from sced points which are end points
of left and right artery and are automatically selected. The following scctions provide a

detailed description of all steps for extracting the pulmonary artery.

3.3.1. Diffusion Filter

In medical image segmentation, especially in analysing a fcature of an image, two
requirements are necessary, smoothing of homogeneous regions and preserving the edges
or location of boundaries. To achieving these two, a few works have been developed
based on convolution of an image by a Gaussian filter. Although the Gaussian filter is a
simple and effective tool to remove image noise, it also smoothcs the boundaries of
objects. P. Perona and J. Malik [45] proposed a non-linear diffusion model called
anisotropic diffusion model to smooth an image whilst prescrving the object boundaries.

Anisotropic diffusion is a process in image processing to decrease image noise without
removing parts of the image which are important for interpretation of images such as
edges and lines. In fact in image processing, the anisotropic diffusion filter is a powerful

tool to enhance and restore an image which is based on a PDE of heat transfer:
a_ . 2
5 = div(c(llvin® v (23)

where, c(IVI]])? is diffusion coefficient which is usually based on the image gradient to

control the diffusion rate in order to preserve the edge of image and it can be defined as:

i)y
VI =—ir  or  cqvI? = e (%) 24)
1+—;§—
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CHAPTER 3: Pulmonary Artery Segmentation

framework of the level set method introduced by Osher and Sethian [39]. The level set
framework of the model by adding a constant v which controls the speed of evolution and

adding the term Vg . Vu which attracts the curve to the boundary of objects is:

a , v
a—;‘ = |Vu|div (g(l) I_V%I') + vg(D|Vu| 3D
This equation is equivalent to:
%= g+ K)|Vul + Vu.Vg (32)
— dit (T
K= dw(lvul

That means that the level sets move according to:

C:=g(DW+ KN - (Vg. NN (33)

The advantage of this model is that the model uses fewer parameters. The paramecter v is
the only parameter which is used in the model and it is possible to choose v =0 (no
constant velocity), and the model still converges but in a slower motion. Since this model
evolves an initial curve according to the boundary attraction term towards one direction
(inwards or outwards), therefore, in order to achieve a proper result it needs a specific
initialization step. The initial curve should be completely interior or exterior to the real
object boundary. As described in the initial contour scction, the initial contour is
automatically selected inside the real object boundary (inside the pulmonary artery), so,
inspired by this model and using a new customized external energy, the following edge-

based level set algorithm is used to segment the pulmonary artery:

Vo
&, = VD] (div (Fext

; 3
|v¢|)+VFeXt) in[0,[ xR

®(x,y,2,0) = ®y(x,y,2) inR3 (34)

where @, is the initial level set function (in our application the result of initial major
artery segmentation described in section 3.3.6.1 is considered as the initial level set

function), v = 0 is constant and Fey, is an external energy function.
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We proposed a new external energy which is composed of two energy functions:

Fext = Fedge X Fintensity (35)

Fedge is based on edge strength which can be a positive and decreasing function that

depends on the gradient of the image ug .

1
Fedge (xy,2) = 14|VG(x,y,2)*uo(x,y,2)|2 (36)

or
Fedge(x, Y, Z) = e"IVl(x,y,z)I

where G * ug, a smoother version of ug, is the convolution of the image u, with the

Gaussian filter.

Fintensity is based on intensity values which prevent front propagation to the background

where the gradient of the boundary of object is weak.

exp(—1/2x (Z220=hymy  (y,y,2) < c1
Fintensity = § 1 cl < I(x,y,z) <c2 (37)
exp(—1/2 X ('(ﬂf’-‘ﬁ)m ) I(x,y,2) = c2

where c1 and c2 are defined as the minimum and maximum CT values of the pulmonary
artery (in our application ¢1=150 HU and ¢2=350 HU) and s, m are tuning parameters of

the function which are empirically set to 50 and 2 respectively.

Figure 3-24 shows the graph of external energy based on intensity function. This function

is based on prior intensity information of arterial tree.
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Figure 3-24 Function of intensity based on external energy (c1=150, ¢2=350, s=50 and m=2)

In the implementation of the level set algorithm, it is numerically crucial to keep
periodically the evolving level set function close to a signed distant function as the level
set function @ can develop a very sharp and flat shape during the evolution [52],[53]. A
re-initialization process has been used to keep the level set function as a signed distance
function in the level set implementation algorithm. A common re-initialization method is

to solve the following equation proposed by Sussman, Smereka, and Osher [54]

2 = S(po)(1 - Vo) (38)

Where, @, is a function that is to be re-initialized, and S(¢,) is the sign function given by
[54].

(o) = 2 (39

pi+e?

Given any initial data for ¢, and by solving the equation (38) to the steady state, the new
values for ¢ have the property that |Ve| = 1, since convergence occurs when the right-
hand side of (38) is zero. The sign function controls the flow of information: for negative
values, information flows one way, and for positive ¢ the information flows other way
[55].
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3.3.6.3. Level Set Stopping Criterion

Level set algorithms commonly choose an arbitrary stopping criterion for the evolution
process based on a fixed (and usually large) number of iterations, M. This can lead to
problems with stability and convergence of the evolving function. Firstly we may achieve
the desired segmentation before the iteration process ends, hence performing much
unnecessary computation and increasing the algorithm’s execution time. These
unnecessary iterations may also result in the evolving curve crossing the object boundary,
especially at weak boundaries. Secondly, the speed function, which forces the embedded
curve into a steady-state, is leaky, so it can produce unsatisfactory segmentation results
after much iteration [131]. As a consequence we should wish to choose a smaller value
for the stopping criterion. We propose a new stopping criterion which uses a measure of
the mean curve energy, which forces the curve toward the object boundaries, to halt the

evolution process at an optimum iteration

§Fds
e}

E= a5 (40)

Q

Q={(xy2)|-B<P(xyz) <B}

where ) is a narrow band of the evolving surface and B is the width of narrow band. We
first apply the method with relatively large iteration value (M) which is determined by
the individual application. During the process, the mean energy values of the N last

iterations are kept as a profile. The process terminates where the variation of this profile

falls to zero.

Figure 3-25a shows an example of the mean energy plotted against iteration number.
Figure 3-25b is the contour associated with the best iteration number to segment the
pulmonary artery trunk is Ny = 130. Using a large iteration number (M = 300) results in
the evolving curve growing beyond the boundary of the artery (Figure 3-25-c). '
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difference. The approximation of Eq.34 by a finite difference scheme can be simply

written as:
PR = O, + StH(DT,) 41

Where, H(®},) is the approximation of the right hand side of Eq.34 by the central

spatial difference scheme and &t is the time step. More details of the numerical

implementation of the proposed level set algorithm are given in Appendix B.
Stability and CFL condition

The value of the time step has been arbitrarily assigned in most level set implementations.
The larger the time step, the higher the speed of the curve or surface evolution. For small
values of the time step, the convergence is slow but the result is satisfactory, while large
values of the time step, give a speed-up of the evolution but lcad to poor results.

Therefore, there is a stability issue which depends on the selected time step.

By solving the proposed partial differential equation (level set equation) numecrically
using a finite difference scheme, some approximation errors are presented at each
iteration. These approximation errors keep accumulating over time and lead to instability
of the solution. This instability is a local issue and even for an accurate numcrical
solution, this instability may occur. The global stability issue states that the numerical
range of dependence must always contain the theoretical range of dependence of solution.
Otherwise, no matter how accurate the solution, the error will always be magnified at

each step and will lead to instability.

The application of the above principle to level sets leads to the Courant-Friedrichs-Lewy
(CFL) condition [55] as:

Frnax -6t < min(hy, hy, h,) (42)

Where, hy, hy and h; are the grid spacing in x, y and z direction respectively and F, 4y is
the maximum absolute evolving speed of all the points on grid. This means that the

evolving contour cannot cross more than one grid at each time step.
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3.4. Summary

In this chapter one of the major components of the proposed CAD system (PA
segmentation) has been demonstrated. To segment the pulmonary artery which is the
search area for pulmonary embolism (PE) a fully automatic algorithm has been developed

and the major components of PA segmentation algorithm are:
Lung and Heart Segmentation

The lung and heart region were extracted from the raw data to reduce the search area for
segmenting the pulmonary artery. A fully automatic technique has been proposed to
segment the lung region in CT images which is based on three main steps. In first step
lungs region is extracted using an optimized thresholding method from CT images and
then the left and right lungs are separated by identifying anterior and posterior junctions
and finally the boundary of the lungs region will be smoothed. The validation of the
proposed method is evaluated in chapter 5. The heart boundaries have been identified by

extracting and connecting four sharp points of the left and right lungs.
Feature Map Extraction

The main issue to segment the pulmonary artery tree is connectivity between the
pulmonary artery and the surrounding structure such as aorta, superior vena cava and
vein. A feature map was first constructed using the eigenvalue of the Hessian matrix to

remove the connectivity.
Pulmonary Artery Segmentation

The pulmonary artery tree has been separately extracted in the heart and lung regions.
The major artery was first segmented by a region growing method initialized by a seed
point which was automatically selected within the pulmonary artery trunk in the heart
region, and then the segmentation result was refined using a new customized 3D level set
algorithm. The level set algorithm applies the output of the region grower as the initial
contour. The peripheral artery was segmented in the left and right lung regions using a

region growing algorithm after enhancement by a vessel enhancing filter.
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4. PULMONARY EMBOLISM
DETECTION

4.1. Introduction

The first step to detect the pulmonary embolism is pulmonary artery segmentation which
reduces the search area in order to reduce false positive detections. The second step is
searching for a pulmonary embolism candidate inside the segmented artery and finally
removing false positive detections by analysing the features of candidates. Some works
based on feature extraction have been developed to detect true pulmonary embolisms and
remove false positive detections. Masutani et al. [25] used feature based on the intensity,
local contrast, volume and length of PEs to detect true PEs and removing false positive
detections. Zhou [26], [27] proposed a CAD system to detect PEs by applying features
based on intensity, edge strength, length and volume. Pichon [58] used features based on
the intensity and size. He highlighted potential PEs on a 3D representation of the vessels
by projecting the intensities inside the vessel and selecting first quartile of intensities

between the medial axis and the surface of vessel. H. Bouma et al [34] proposed a CAD
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an object is eroded layer by layer until just a skeleton of the object is left [98]. With
thinning algorithms, voxels or pixels are converted to background points while the
geometry and the topology of object are not changed. In this method, first the object is
segmented and then the skeleton of the mask (resulting from the segmentation process) is
extracted. Since the thinning algorithm is grid-based it produces voxel precision results.

To extract the skeleton of a segmented pulmonary artery, we used the method proposed in
[99] which is a sub-voxel precision method to extract the skeleton of an object using the
fast marching algorithm. Based on this method, in the first step, we segmented the
pulmonary artery using a level set algorithm in which the result of the level set algorithm
is a sub-voxel precision representation of the original data. The second step, to extract the
centreline of the pulmonary artery, we used the fast marching algorithm to calculate a
sub-voxel precision of the Euclidean distance field. In fact, in our algorithm the input data
is a sub-voxel precision distance field and the result of skeletonization process is a
smooth skeleton at sub-voxel precision. A voxel-precision algorithm cannot compute the
skeleton of an object that is less than a single voxel thick, but a sub-voxel precision
algorithm allows that to be computed. The sub-voxel precision skeleton is more accurate
for measurement of an object such as volume or finding vessel cross section and also is a

better starting point for virtual navigation [99].

4.2.4.2. Background

In the variation minimum-cost path problem, a curve:

C(t):[0,00) » R"
is found so that it minimizes the cumulative travel cost from a starting point M to another
point X in R™, If the cost H is a function just based on the location X in the given

domain, then the minimum cumulative cost at X is defined as follows:

T(X) = ming,,, [, H(C(t))dt (1)
Where, Cyy is the set of all curves which links point M to point X and T(X) is the
minimum cost for travelling from point M to point X. The curve at which the integral is
minimized is called the minimum path. In geometric optics it is shown that the solution of

the equation (11) satisfies the Eikonal equation:
IVTOIF(X) =1 )
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In the above equation, T(X) can be interpreted as the arrival time of a wave when it
crosses the point X with speed F(X) which can be identified as:

F(X) = — A3)

H(X)

If the cost function H gives a higher weight for medial points of an object than non-

medial points then it can be shown that the minimum path between two medial points

(voxels) is a curve skeleton.

4.2.4.3. Skeleton Extraction Algorithm

Figure 4-11 shows the diagram of the main steps of the sub-voxel precision skeleton
extraction algorithm. In this algorithm, a sub-voxel precision distance field is as the input
data to compute the point which has the largest distance from the boundary of the object
(the point with global maximum distance) and to find the speed function as an input for
the fast marching algorithm with a step size of unity. The fast marching algorithm is
applied to compute the geodesic distance inside the object starting from the global
maximum point of the distance field. We used the fast marching algorithm proposed in
[100] which is Multi-stencil Fast Marching Method (MSFM) to calculate the shortest
distance from a list of points to all other pixels in an image volume. This method gives
more accurate distances by using second order derivatives and cross neighbours. The
furthest point from the global maximum point of distance field is selected as a start point
of the branch. The remaining points of the branch are then calculated by applying the

following gradient descent back-tracking procedure on the fast marching time-crossing

map:

ac __ __vr

dt wr CO=F @

where, C(t) is the centreline of object and Py is the furthest geodesic distance point from
global maximum distance point to the object boundary. The gradient descent allows the
tracking of the branch to be performed only along the local gradient of the time crossing

 map toward the global maximum point from object boundary [99].

92









CHAPTER 4: Pulmonary Embolism Detection

images provide axial images. So in order to improve the detection rate of pulmonary
embolisms, the digital plane orthogonal to the major pulmonary artery is extracted and

then is analyzed.

Definition1: (Digital Straight Line)

A digital straight line is a subset of Z? described by the following equation:
L(a,b,y,p) = {(x,y) €Z?| y S ax+ by <y + p} -

where, all parameters are integers , y is the affine offset of the line, p is the arithmetic

thickness and (a, b) shows the direction of the digital line.

By letting p = max{|al, |b|}, an interesting subset of the digital line which is called a

naive digital line is extracted.
L(a,b,y) = {(x,y) € Z?| y < ax + by <y + max{lal,|b|}} (6)
One of the most important properties of a naive digital line is strict 8-connectivity [119].
Definition2: (Digital Plane)
A digital plane is a subset of Z3 described by the following equation:
P(a,b,c,y,p) ={(x,y,2) €Z3| y<ax+ by +cz <y +p} @)

where, all parameters are integers , y is the affine offset of the plane, (a, b, ¢) is the

normal direction of the plane and p is the arithmetic thickness which controls the
thickness of the plane [136].

o p < max{|al,|b|,|c|}: The plane has 6-holes.

o p =max{|al,|bl,|c|}: The plane is strictly 18-connected.
e p =|a]+|b| + |c| : The plane is strictly 6-connected.

o p > |a|+|b| + |c| : The plane is thick.

The naive digital planes which have a digital 18-connected counterpart and have no holes

for 6-connectivity defined by an equation of the form:
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4.3.3. False Positive Reduction Based on the Volume Size of Candidate

A PE candidate is a collection or a group of connected voxels in terms of 26-connectivity.
So the volume size of the candidate can be considered as a feature to reduce the false
positive detection rate. The small flow void and noise create the small dark region in the
search area which can be detected as a PE. Therefore, if the volume size of the PE
candidate is small enough then that candidate is presumed created by noise or small flow
void. Consequently, the volume size of the PE candidate can be used for reducing the
false positive detection rate. However, this feature cannot distinguish between a true PE

and a large false positive detection.

Another feature that uses the size of connected voxels is the effective length, which is the
summation of width, height and depth of the smallest box bounding the voxel group. This

feature is used to adjust the sensitivity of detection and eliminates further false positives.

4.3.4. False Positive Reduction Caused by Soft Tissue

The highest false positive rate reported in most developed CAD systems was attributed to
soft tissue, such as lymphoid tissue, which surrounds the pulmonary vessel in the lung
region. In the pulmonary artery segmentation process, removing the soft tissue is a
challenging task due to these regions having a CT value very close to that of a pulmonary
embolism. Moreover, in some cases because of other disease, abnormality develops in the
lymphoid tissues and hence more false positives can be detected. So it is desirable and
reasonable to consider a new feature to discriminate the false positives caused by soft

tissues outside the pulmonary artery and the real PE inside the artery, a consideration that

has been ignored in some proposed CAD systems.

Since soft tissue is anatomically located between the pulmonary artery and bronchial wall
in the lung region (Figure4-19), by tracking the airway system (trachea and bronchus
branch) the false positives caused by soft tissue can be reduced. The airway system is first
segmented and then with a mathematical morphology dilation operator a mask is created

to filter the image containing connected components (PE candidates).
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4.4. Summary

In this chapter two major components of the proposed CAD system (PE segmentation and
false positive removal) have been demonstrated. Five different detectors have been
developed to detect PE candidates inside the segmented pulmonary artery. These
detectors respond to different properties of PEs and are based on intensity, gcometrical
analysis, top-hat transform, detecting the disconnected part of the artery, and based on
perpendicular plane of the centreline extraction of segmented artery and ellipse fitting.
The first three detectors were implemented inside the segmented artery while the other

two detectors have been used to search for PEs outside the segmented artery.

Due to a variety of effects such as the partial volume effect on the vessel boundary, soft
tissue such as lymphoid tissue surrounding vessels, noisc and motion artefacts, the
proposed system produced many false detections. To improve the sensitivity of the

system, many features have been applied to reduce the false detection rate.

False detection, caused by the partial volume effect, has been reduced by removing the
voxels on the vessel wall with a morphological operator. The size of the PE candidate
was considered in order to remove false detection caused by noise. A new feature based
on location has been developed to remove false detections caused by soft tissuc. Soft
tissue is located between the pulmonary artery and the airway system, so by tracking and

segmenting the airway system this kind of false detection has been removed.

False detection caused by flow voids in veins is the most important cause for raising the
false detection rate in most previous CAD systems. So by separating the pulmonary artery
from the veins, the rate of false positive detection was considerably reduced. In fact,

reducing the search area was the first factor or feature to reduce the false detection rate.
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5. EXPRIMENTAL
RESULTS AND
DISCUSSION

In this chapter, the performance of the CAD system is evaluated and we demonstrate the
effectiveness of the proposed CAD system by performing it on CTA images. As
discussed in previous chapters the proposed CAD system consists of three major

components which are:

e Pulmonary artery segmentation.
¢ Pulmonary embolism candidate detection.

e Removal of false positives.

In the pulmonary artery segmentation stage, some pre-processing has first been
implemented such as lung and heart segmentation: to reduce the search area, feature map
filter extraction is used to remove the connectivity between the pulmonary artery and
other organs and applying the diffusion filter in order to smooth homogencous regions
and preserve the edges or locations of boundaries. Then the pulmonary artery was
extracted in two stages in the lung and heart region. In pulmonary artery segmentation, all
processes have been implemented automatically and all thresholds were selected

optimally. In this chapter all these processes and selections of parameters are validated.



CHAPTER 5: Experimental Results and Discussion

For pulmonary embolism candidate detection and removal of false positive detection
steps, five different PE detectors were applied to detect PE candidates and some features
have been used to remove false detections. These features are based on size, intensity,
location and analysis of the shape of the lumen. In this chapter, in the second section all
these features are analyzed and validated to show how the amount of information will be
contained for PE classification. The sensitivities and specificities of major features are
measured and the FROC (detailed on page 125) curve is plotted to evaluate the

performance of features and compare whole CAD systems.

This chapter is organized as follows. First we provide a detailed description of the CT
data used for validating the major component of the pulmonary artery scgmentation
algorithm, pulmonary embolism candidate detection and removal of false detection
processes and then the major component of the CAD system will be evaluated. The
validation of these processes has been carried out by a qualified radiologist from

Lausanne hospital.

5.1. CT Data for Validation

The PE CAD system has been validated on a clinical dataset of 55 CTA scans with an
average of 220 slices per scan (involving a total of 12100 CT slices). 20 CTA scans
(containing 97 emboli) data have been used as training datasets for parameter selection
and 35 more CTA scans containing 195 emboli have been used for testing. The scan data
collected from Lausanne University are sampled from the top of the aortic arc to the
diaphragm into on average 220 slices of 512 x 512 with a spatial resolution of 0.62 mm
and a slice thickness of 1.25 mm. Based on the CT image acquisition protocol the voltage
of the X-ray tube ranged from 120kV to 140kV and the mean current of the tube varied
from 241mA to 350mA.The number and location of PE’s were marked by a qualified
radiologist. The radiologist marked the centre of each PE resulting in a total of 176 PE,
68% of which were located in the peripheral arterial network (Segmental and Sub-
Segmental) and 32% in the main pulmonary artery (Main and Lobar). Figure 5-1 shows

more details of the occurrences of pulmonary embolism in all pulmonary artery types.
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Figure 5-3 shows the 16 different slices of manually segmented and annotated results and

the results of segmentation obtained by the CAD system for scan data.

As the only information available is boundaries outlined by an expert radiologist, the
results of lung segmentation algorithm (computer-based) can be evaluated against the
results of manually segmentation by radiologist using the method proposed in [130]. To
assess the accuracy of segmentation, first the minimum distance between the computer-
based border and manually computed border was calculated. For each pixel in the
computer-based segmentation result, the minimum distance to the border of manual

segmentation results was computed as:

di = min; {J (x =) - vk — " 2} )

where,(xﬁ, yﬁ) is the position of a pixel in the computer-based border and (x]M, y,M)
pixel position of manually detected borders [130]. Then statistics were derived in order to
find whether the computer-based segmentation results agree with manually-based
segmentation results. For each computer-based border the mean, RMS (Root Mean

Square) and the maximum distance to the boundary of the manually-based segmentation

result were calculated by the following formulas:

kd
dMean = gkf'k' (2)
Lg2
drms = g‘fi'k 3)
dmax = maxy di C))

where L is the number of boundary points of the computer-based border. The border pixel
accuracy assessed for 200 randomly selected slices and their mean, RMS and maximum
distance were calculated. Figure 5-4 shows the comparison between computer-based
segmentation results and manually defined results before and after smoothing, The results

show that the smoothing step improves the accuracy of segmentation.
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CHAPTER 5: Experimental Results and Discussion

As discussed in the literature review section (Chapter 3), most previous attempts to
segment the pulmonary artery can be categorized into region growing methods,
enhancing the vessels with Hessian matrix and fuzzy connectivity methods. In all
previous methods, the seed point for the segmentation algorithm was manually selected
while the proposed method automatically finds the seed points and allows the algorithm

to be included in a fully automatic pulmonary embolism detection system.

Moreover, in most previous proposed methods, the segmentation algorithm sometimes
fails as a consequence of merging the pulmonary artery with adjacent tissue caused by
acquisition resolution, partial volume effect and noise [133]. But the proposed algorithm
applies the feature map filter to remove the connectivity between the pulmonary artery
and any other tissues. So, taking into account all the above issues, the proposed algorithm

shows encouraging results by tackling all these issues.

5.3. Validation of Pulmonary Embolism Detection Algorithm

In this section we provide a validation and evaluation of major components which have
been applied to detect pulmonary embolism candidates and to reduce the false detection
rate. In this section by using the concept of sensitivity and specificity and also by plotting
the FROC curve, we evaluate the performance of each feature applicd to reduce the false

detection rate.
5.3.1. Sensitivity and Specificity Measurement

Sensitivity and specificity are two main measures for identifying those people who have
or do not have a specific disease in a screening test for a discase. The sensitivity is a
measure of the ability for identifying those who have the disease while the specificity is

an ability to correctly identify people who do not have a specific disease.

In other words, the sensitivity is defined as the probability that a person has the disease
when she/he does actually have it and the specificity is defined as the probability that a
person does not have the disease when she/he is disease free. If we display the test results

and the true status of the person who is being tested as the following table:
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Test Results(T)
pOSiti\'C(+) Negativc(_)
Disease(+) TP FN
True Status (S)
No Disease (-) FP TN

then, the sensitivity and specificity are defined as follows:

Sensitivity = P(T*| $*) = —— 0
Specificity = P(T™|S™) = T:fpp 3

where, FP (false positive) occurs when the result of test for a person is positive while the

person is free of disease and the rate of false positive is defined as:

FP

P(STITY) = FP+TN ©)

FN (false negative) occurs when the result of a test for a person is negative while the

person actually has the disease and the rate of false negative is defined as follows:

PEIT) =i (10)

5.3.2. ROC (FROC) Curve and AUC

A ROC (Receiver Operator Characteristic) curve is a graphical plot of true positive rate
(sensitivity) versus the false positive rate (1-specificity). A ROC curve starts from the

bottom-left to the top-right corner and each point of the graph shows a trade off between

false positives and false negatives.

The accuracy of a test is measured by computing the area under the ROC curve. The area

under the ROC curve (AUC) is a fraction of the unit square and it’s value always is
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between 0 and 1. A AUC of 1 shows a perfect result while an area of 0.5 indicates a

worthless result.

Since in all CAD systems, the set of true negatives (TN) are not well defined so the ROC
curve and AUC are not useful to compare whole CAD systems [122]. Since there are a
lot of points which can be considered as potential true negatives in 3D data sets, the CAD
system generates a large number of true negatives. Therefore, in the proposed CAD
system, instead of the ROC curve, the FROC (Free-response Receiver Operator
Characteristic) curve is used. In the FROC curve, the normalized specificity is replaced

by the non-normalized number of false positives per dataset.

In the proposed CAD system in order to avoid having just one threshold for the first three
PE detectors which are based on CT value, the FROC curve for each PE detector is
analyzed. Moreover, the FROC curve is applied to evaluate the performance of each
feature (which is applied to detect true PEs and remove false detections), and to compare

the performance of the proposed system with previously developed CAD systems.

5.3.3. Threshold Selection for PE detectors

As described in chapter four, five PE detectors were applied to detect PE candidates
within the pulmonary artery. The detectors based on CT values need an optimal threshold
to control the trade-off between increased the sensitivity of detection whilst minimizing
the number of false detections. The FROC curve of three detectors based on (1) CT
attenuation value, (2) eigenvalues of the Hessian matrix and (3) top-hat transform were
analyzed to find an optimized threshold. Figure5-16 shows the FROC curve of these three
PE detectors. Optimal thresholds were determined by analyzing the FROC curve for a
dataset of 20 positive samples of PE (training data). Costs and losses have been used to
find the optimal thresholds [34]. The dashed-dot lines represent the lines of equal cost.
The slope of dashed-dot lines were selected so that 15 false detections per dataset cost
10% of missed PEs. Based on these costs the best thresholds for the three detectors (CT
value, eigenvalues and top-hat transform) were fixed between -25 HU and 75 HU, greater
than 5, and between 150 HU and 250 HU, respectively. These thresholds were then used

for the remaining tests to evaluate the effectiveness of PE detection.
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Figure 5-16: (a)-(c) show FROC curves for the thresholds of three intensity-based PE detectors. (a) CT

value: The optimized threshold was selected between two thresholds -25 HU and 75 HU. (b) Eigenvalues:
The best threshold for PE detector based on eigenvalue was chosen greater than 5. (¢) top-hat: The

optimized threshold for PE detector based on top-hat transform was selected between two threshold values
150 and 250.

5.3.4. False Positive Reduction

The five PE detectors that respond to different properties of a pulmonary embolism
collected different regions. By choosing the union of these regions the sensitivity of
detection was improved. These regions were analyzed by connected-component analysis
and each group of connected voxels was considered as a PE candidate. However, the

numbers of false positives detected caused by the partial volume effect on the pulmonary
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artery wall, noise in large arteries, soft tissue and motion artefact were too large. Table 5-

2 shows the main causes of false detection in the 20 training data scans.

Table 5-2 shows the percentage of major causes of false detection in 20 training data

scans.
Cause of False Detection FP (%)

Soft Tissue ( Bronchial Wall) 37%
Partial Volume Effect 21¢%
Noise in Large Pulmonary Artery 19%
Motion Artifact 12¢%
Lung Disease 746
Uncertain 4%

Several features were computed for PE candidates’ to make distinctions between the real
PE and the look-likes. In most previous CAD systems false detections caused by flow
voids in veins are the most important cause for raising the false detection rate [34]. So by
separating the pulmonary artery from the veins, the rate of false positive detection was
considerably reduced. In fact, reducing the search area was the first factor or feature to
reduce the false detection rate.

A PE candidate is a collection of voxels, so the next feature that can be used for rejecting
the false detection is the size of PE candidates. The small dark region can be identified as
a PE everywhere due to noise. Therefore, the size of voxel groups was used to remove the
small voxel groups. Figure 5-17 shows the FROC curve based on the sizes (volumes) of
candidates. The figure shows that many false positive detections can be excluded (PE
candidates smaller than 42 voxels) without a considerable reduction in the number of
true positive detections. The figure shows the larger the threshold for volume size, the

lower the sensitivity and false detection rate.
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6. CONCLUSION

In this thesis a novel CAD system for detection of pulmonary embolisms in CTA images
has been developed. The proposed CAD system consists of pulmonary artery (PA)
segmentation, pulmonary embolism (PE) candidate detection and false positive reduction.
The pulmonary artery has been extracted as a search area for pulmonary embolisms.
Pulmonary artery segmentation is a challenging task due to the proximity of other organs,
its elongated shape and range of vessel diameters. Flow voids in veins are one of the
commonest causes for false positive detection of PEs, so separating the pulmonary artery

from the vein network resulted in a lower false positive detection rate.

An efficient algorithm for segmenting the Pulmonary Artery (PA) tree has been
developed in 3D pulmonary Computed Tomography Angiography (CTA) images. The
pulmonary artery tree was extracted in two steps. In the first step, the major artery
extracted in the heart region using a region growing method initialized by a seed point

which was automatically selected within the pulmonary artery trunk. The segmentation
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result of the major artery has been refined using a customized 3D level set algorithm. The

major artery was extracted by the following stages:

1) Enhancing the image by a non-linear diffusion filter.

2) Extracting lung and heart region as a search area for pulmonary artery
segmentation.

3) Removing the connectivity between the artery and other organs using a feature
map based on eigenvalues of the Hessian matrix.

4) Removing the superior vena cava.

5) Segmenting the pulmonary artery using a 3D customized level set method starting

from the initialized contour inside the pulmonary trunk.

In level set implementation, a new external energy was proposed which prevents front
propagation to the background where the gradient of the boundary of object is weak. A
new stopping criterion which uses a measure of the mean curve energy has been used to
force the curve toward the object boundaries and to halt the evolution process at an
optimum iteration, a consideration that has been ignored in many level set
implementations.

In the second step, the peripheral pulmonary arterial network was extracted from the lung
regions using a distinct region growing algorithm, starting from seed points which are end

points of the left and right arteries and are also automatically selected.

As the proposed method fully automates the extraction of PAs, it allows the CAD system
to be included in a fully automatic pulmonary embolism detection system. Unlike the
previous proposed methods (discussed in the literature review in chapter2) in which the
segmentation algorithm sometimes fails as a consequence of merging the pulmonary
artery to adjacent tissue, the proposed algorithm applies the feature map filter to remove

the connectivity between the pulmonary artery and other tissues.

Pulmonary embolism (PE) was identified as a dark region witﬁin the segmented artery. In
the second stage, five different detectors based on intensity, geometric analysis,
morphological operator (top-hat transform), analyzing the perpendicular plane to the

centerline of the vessel, followed by ellipse fitting and searching disconnected parts of the

M

Page 143




CHAPTER 6: Conclusion

vessel, were implemented to find voxels inside the segmented artery as PE candidates.

These five detectors respond to different properties of PE.

Soft tissue such as the lymphoid tissue surrounding vessels, partial volume effect, noise
and motion artefacts are the main causes of false positive detections. A post-processing
step was applied on the 3D features extracted from the detectors to reduce the number of

false positive detections.

Small dark regions (caused by noise) can be identified as PEs everywhere. Therefore, the
size of voxel groups was used as a feature to remove small voxel groups. The result of
using this feature on 20 training datasets showed that much false positive detection can be
excluded (PE candidates smaller than 42 voxels) without a significant reduction of the

number of true positive detections (91% sensitivity and 46 false positives per dataset).

To deal with the false positive detections caused by the partial volume effect, voxels on
the vessel wall were removed by a morphological operator. The thickness of the removal
wall depends on the radius of the pulmonary artery noting that the thickness of the major

artery is greater than in the peripheral artery.

A new feature based on location was proposed to remove false detection caused by soft
tissue. A lymph false positive (soft tissue) connects to the airway system and is
anatomically located outside the pulmonary artery and a true pulmonary embolism is
inside the pulmonary artery. A filter was created by segmenting the airway to remove
false detection caused by soft tissue. The result of applying just this filter on 20 training

dataset identified 17 false positives per case at 84% sensitivity of detection.

The system has been tested on 35 CTA scans with average of 176 PEs, 68% of which
were located in the peripheral arterial network (Segmental and Sub-Segmental) and 32%
in the main pulmonary artery (Main and Lobar). The results showed that the system
achieved 94% sensitivity at 4.1 false positives per case. Since the search area was
restricted to inside the pulmonary artery, the results of our CAD system performed well

in comparison to other CAD systems described in the literature.

The proposed CAD system is most helpful to detect PEs in the peripheral pulmonary

arteries (segmental and sub-segmental arteries). This kind of PE is easily missed by a

e
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radiologist and also indicates a risk for recurring of more significant emboli. The system
is also able to add 11% more to the PEs manually detected by the radiologist. The main
reason for the additional detected PE can be the size and location of the additional PE.
Since the proposed CAD system is more capable to detect PE in segmental and sub-

segmental artery, this kind of PE can be missed by the radiologist.

Our CAD system can remove false detections caused by partial volume, soft tissue, noise
and flow voids (by separating the vein from pulmonary artery). Most of the remaining
false positives (4.1 per CT scan) were caused by motion artefacts (Table 5-2). The
movement artefacts usually create blurred boundaries in CT images which have the same
intensity as a PE. False positives caused by the motion artefacts are an interesting field for
the next research to further reduce the number of false positives. Although, this kind of
false positive may be less important as a result of using newer CT scanners or improved
scanning protocols in future. Nevertheless, future research should be focused on the
recognition and rejection of this cause to further reduce the number of false positives or
improve the sensitivity. Moreover, we will carry on measuring and labelling the detected
PEs. For this purpose, the extracted pulmonary artery should be labelled according to the

reference model of pulmonary artery.
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APPENDIX A

Differential Geometry

In this project, in order to pre-process or post-process volume data sets some features
need to be calculated. For example for classifying the voxels based on their shape,
locations and texture several features of image must be extracted. The following is a brief
description of using differential geometry tools for extracting some features which will be

used for doing the project.
Gaussian Smoothing Filter

The Gaussian filter is a linear smoothing filter whose weights are chosen based on the

shape of the Gaussian function:

x2+y?

G(x,y) = Tlaze'?aT' 1)
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Figure 0-1 2D Gaussian function and distribution

The Gaussian smoothing filter is capable of removing the noise which is drawn from a

normal distribution.

First Order Derivatives Operator

An edge in an image is where there is a discontinuity in the intensity function or a very
steep intensity gradient. By taking the first order derivatives of intensity values and
finding the maximum values for the derivatives, the edges of image are marked. The
gradient of an image I which contains of first derivatives operators is defined as:

V=0 5a) @

The gradient at each voxel has the following properties:

e The gradient direction at each voxel is the direction of steepest ascent at that

voxel and the gradient magnitude:

=)+ () + () ®)

is the steepness of that ascent at that voxel. This feature can be used for

detecting of edges in an image.
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e The direction of gradient at each voxel is the normal to the level curve at that
voxel
e By using the gradient operator the first derivatives of an image at each voxel in

any direction can be calculated:

L,=7.VL “4)

Fig.ure(0-2 shows an ideal steep edge and the profile of its derivatives.

Intensity

Slice through image

Derivative
|

Figure 0-2 shows a steep edge and its derivative’s profile

Second Order Derivative Operators

In second order geometry, the matrix of second order derivatives or the Hessian matrix is
equivalent to the first order derivatives of the gradient operator. The information of
second order derivatives can be used for marking an edge and extracting local shape of a

gray scale image. The second order derivative operator of an image / or Hessian matrix

is defined as follows:
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i Y L |
9x2  9xdy dxdz
2 2 2
aa 1 _zz_:_ a4l )
ydx 3y dydz
a2 %1 a2l
d0z0x d3zdy 922

H(I) =

The eigenvalue and eigenvector of the Hessian matrix has a few geometric meanings:

e The direction of the greatest curvature (maximum curvature) can be identified by

the first eigenvector (the eigenveétor whose corresponding eigenvalue is largest

absolute value).

o The eigenvector whose corresponding eigenvalue is the smallest one in the

direction of the minimum curvature.

e The values of curvatures (maximum and minimum) are the corresponding of

eigenvalues.

The Laplacian operator of an image I at each voxel which is defined as follow:

2y 921, 2% 0%
Vi= S5+57t o (6)

measures the second spatial derivatives of an image and shows the rapid intensity

changes.
Mean and Gaussian Curvature

The mean curvature at point M of a surface S is the average of principal curvatures k,

and k,and the Gaussian curvature is the product of these two principal curvatures:
- Kyt K3
Kmean =

KGaussian = K1 K2 ™

where, K, is the minimum of all curvature k; of curve C; passing through at point M on

surface S, and k, is the maximum of them.
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If the surface S is represented by the implicit function ¢ :

S={(xy2)| ¢(x,y,2) =0}

then, the mean and Gaussian curvature of surface S at each point M(x,y,2) can be

calculated as follows:

_ Oxx (034 02) + 0y (0F + 0F) + 0. (0F + 03) — 20020y Oay + Oy 0 Pyz + 920, 0)

KMean - 2 2 ) 3/2
2((0x + @y + ‘Pz)
®)
‘P:2r(¢yy¢’zz"¢§'z)+¢’§r(‘l’xx¢zz‘%zrz)'*‘l’%(‘Pxx‘Pyy“P%y)
_ +2[‘Px‘Py(‘sz‘Pyz"ny(Pzz)"“Py(Pz(‘ny‘sz"Pyz‘Pxx)+‘Px‘Pz(‘ny‘Pyz"sz‘Pyy)]
KGaussian =

2
(02+02+¢2)

Based on the mean and Gaussian curvature of a surface, the region of surface can be

classified as follows:

o Ifthe Kcayssian > 0 and Kpeqn > 0 then the curvature in any direction
is positive and the surface region is a convex region.

o Ifthe Kggaygsian = 0 and Kpeqn < 0 then the curvature in any direction
is negative and the surface region is a concave region.

o If the Kcaussian < 0, then the curvature in some direction is positive

and others are negative (Hyperbolic patches).

Shape Classification Based on Eigenvalues

The eigenvalues of the Hessian matrix are used for locally describing of structure of an
image (Figure0-3). Frangi at el [56] applied the elements of the Hessian matrix to classify
the shape of a vessel by defining a multi-scale vesselness measure. They obtained the

vesselness measure on the basis of all eigenvalues of the Hessian matrix aiming to

develop a vessel enhancement filter.
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Figure 0-3: the second order ellipsoid which describes the local principal directions of curvatures

All three eigenvalues of the Hessian matrix have an important role to discriminate the

local orientation pattern. Table 0-1 is a brief description and properties of eigenvalues of

the Hessian matrix to detect the different structures [56].

Table 0-1 Shows the possible pattern in 3D based on eigenvalues of Hessian matrix Ay (the

eigenvalues are ordered as: |A;] < |A;| < |A3]) in different size (H for high, L for low, N for noisy

and +/- indicate the sign of eigenvalues.

A4 y P A3 The orientation of pattern
N N N Noisy, no preferred direction
L L H™ Plate-Like structure (bright)
L L H* Plate-Like structure (dark)
L H™ H~ Tubular structure (bright)
L H* H* | Tubular structure (dark)
H- H~ H~- Blob-like structure (bright)
H* H* H* Blob-like structure (dark)

Frangi proposed some ratios of eigenvalues to distinguish the shapes of different

structures. The following is a briefly description of some ratios:

Pag
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1). The following ratio is considered for deviating from a blob-like structure but cannot

distinguish a plate-like structure from a line-like structure.

(7m) ©

For the blob-like structure, the ratio is maximum value and is zero wheneverd; = 0, or A,

and A, tend to vanish.

2). The plate-like structures and the line-like structures are distinguished by the following

ratio:
22|
(i 10

The two proposed ratios are gray-level invariant and remain constant under re-scaling and

give just geometric information of the image.
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APPENDIX B

3D Level Set Algorithm

Vo
d, = |[VP| (div (Fext IV_CD-I) + vFext) in [0, 0[ x R3

®(x,y,z,0): The initial surface which is automatically sclected
inside the pulmonary artery
K: Mean curvature of evolving curve

Fext: An external energy function composed of two energy

functions.

Fext = Fedge X Fintensity

v : v>0isaconstant inside the curve to increase the propagation

speed.
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Input:

e 3D original data

¢ 3D initial contour (In this algorithm the initial contour is a 3D surface inside the
object which will be segmented).

e The number of iterations, which is an aggressive number but the algorithm

terminates where the variance of the mean energy profile falls to zero.

Output:

* The segmentation results (binary image).

Stepl: Load the row data (I)
Step2: Load the initial contour ( P )

Step3: Finding the signed distance transform of initial contour (signed distance respect to

boundary of initial surface).
Step4: Smooth the original image using Gaussian kernel.
Step5: Defining the edge detector in level set method
(Fedge = e~y Dl 1: Original Image)
Step6: (Level Set Iteration)
For Iteration = 1: number of level set iteration number
Step6_I:
Finding the narrow band of signed distance transform

idx = {(i,j,k)|-B < ®ifr < B)

(2B is width of narrow band)
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Step6_2:

Finding the curvature of ®'tration i idx (mean curvature)

- (¢yy+¢zz)¢)z( + (¢xx+¢zz)¢§, + (¢xx+¢yy)¢%-2 ¢x¢y¢xy—2 ¢x¢z¢x2 ‘2 ¢y¢z¢yz

Kmean = 3
(@2+02+03) /2
P -, . . .
d, =~ —l‘-L%-’—’& Vi#1,m ,[m,n k] = size(image)
X
D21k~ Po,k ,
by Po sk = P1jk i=1
q>m+1,j.l¢:‘d’m—1.j,k — | —
q)x = ¢m+1,],k - d)m,],k l=m
2hy
Pit1,jk=2Pj 1~ Pizs jk ;
D, = 1) hij 1/ Vi+lm
. P2 k=2Pi k= Po sk :
q)xx ~ h% l — 1
P41, k=2P1ik=Pm-11k —
d)xx ~ ™) il=m
b~ Pir1j+1k~Pr-1j+1.k =~ Prrr -1+ Pi-1,j-1.k
xy ~

4hyhy

Dipq k41— Pi-v, fl+1=Piv1,) k=11 Pi-1,f k-1
ahohy

b, =

(The first and the second derivative in y and z direction are the same and h,, h, and h,

are the step size in X, y and z direction)
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Step6_3:

Computing the value of the evolving coefficient Cepoping

Iter
= reery ( 4i Iter V¥ Iter
Covatoing = 1V0'%"|(div (Pl ) + wF ")

5t = min(hy,hy,hz)

Amax

(8t, is computed based on CFL condition for stability of level set algorithm and A, is

maximum of elements of Ceporving)

Step6_5:  Evolving the surface in idx
lter+l — plter 4 6tCevalving

Step6_6:

Reinitialize the @/ter+1

(Using Susmand method algorithm)

End For

Output = Plter+l > o
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Susmand Method Algorithm:
The following equations are used to reinitialize the level set function:

@+ S(po)(Vp|—1) =0
0(x,5,2,0) = ¢o(x,y,2)

@o: Initial level set function
S(¢o): Sign function
Discrete Algorithm:
For Iter=1,L
For i,j,k=1,dim dim=[m,n,p]=size(pq)

Solve:

ittt = It — AtSe(@o, k)G (OIE)

Given:
Po,ijk
Se(@oijx) = —=—
"ptz),l,j,k + €2
G(‘Pt'fiej.k

ymax((a*)?, (b-)?) + max((c*)? (d7)?) + max((e*)%,(f7)?) =1  @gu x>0

=9 vmax((a) (b*)?) + max((c7)% (d*)?) + max((e )% (fH)) ~1  @gux <0
0 otherwise

Where:

zt = max(z,0)
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z~ = min(z,0)

a, b : backward and forward space derivatives in x direction( two matrix)
¢, d : backward and forward space derivatives in y direction( two matrix)

e, f : backward and forward space derivatives in z direction( two matrix)
End For

End For




APPENDIX

Fast marching algorithm

-Initialization step

1. Alive points: Choose A as set points of all grid points (ig,j4,k4) which

represent the initial contour.

2. Narrow band: Select all grid points neighbours of A as set of narrow band

or trial points

3. Far away points: Choose all other points as set of far away points and set:

Ti,j,k = 00

For all far away points.

-Marching forward step

1.

Start the loop: Find the grid point (i,;in » fmin » Kmin) in narrow band where
the arrival time T has the smallest value.

Remove the grid point (i, , Jmin » Kmin) from narrow band points and add it
to alive points

Tag all points (imin = L jmin» Kmin)s (min + 1, jmin+ Kminds (imin s Jmin =
L kmin)s (imin »Jmin + L kmin)s (min » Jmin» Kmin — 1), (min »Jmin s Kmin +
1) which can be either in narrow band or in far away set points. If it is in far
away set points, remove it from far away set points and add it to the sct of
narrow band points.

Re-compute the value of T at all neighbours by using the Eikonal equation

(15) and find the largest possible solution for the quadratic equation (17).

. Return and do the loop.




