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Abstract 

This work deals with the problems of performance evaluation and background 

modelling for the detection of moving objects in outdoor video surveillance 

datasets. Such datasets are typically affected by considerable background 

variations caused by global and partial illumination variations, gradual and 

sudden lighting condition changes, and non- tationary backgrounds. The 

large variation of backgrounds in typi al outdoor video sequences requires 

highly adaptable and robust models able to represent the background at any 

time instance with sufficient accuracy. Furthermore, in real life applications 

it is often required to detect possible contamination of the cene in real time 

or when new observations become available. 

A novel adaptive multi-modal algorithm for on-line backgrowld modelling 

is proposed. The prop os d algorithm applies the principles of the Gaussian 

Mixture Model , previously u ed to model the grey-level (or colour) variations 

of individual pix Is , to the modelling of illumination variations in image 

regions. The image ob crvations are repre ented in the eigen- pace. where 

the dimensionality of the data is significantly r due d using the m thod of 

the principal components analysis. The projections of image region in th 

reduced eigen-space are clustered using K-means into cluster (or mod ) of 

similar backgrounds and are modelled as multivariate Gaussian distributions. 

Such an approach allows the model to adapts to th changes in the data et 

in a timely manner. 



This work proposes modifications to a previously published method for 

incremental update of the uni-modal eigen-models. The modifications are 

twofold. First, the incremental update is performed on the individual modes 

of the multi-modal model and second the mechanism for adding new dimen­

sions is adapted to handle problems typical for outdoor video surveillance 

cenes with a wide range of illumination changes. 

Finally, a novel objective, comparative object-based methodology for 

performance evaluation of object detection is also developed. Th propo ed 

methodology is concerned with the evaluation of object detection in the con­

text of the end-user defined quality of performance in complex video surveil­

lance applications. 
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Chapter 1 

Introduction 

Computer vision applications are concerned with the machine understanding 

of the content of video scenes without human intervention. Typically, video 

scene understanding in a visual surveillance context involves a number of 

tasks such as: preproc ssing, foreground detection object recognition, cla -

ification, tracking and event detection. Specifically. the e application are 

often concerned with the detection of the moving objects in the observed 

scene, th interaction of these objects with each other and the background. 

These tasks generally rely on the efficient separation of the foreground from 

th background which is usually based on an accurate model of the back­

ground scen . This work addresses the problem of p rformance evaluation 

of foreground detection algorithm and the background modelling for vi ual 

surveillance application . 
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1.1 Performance evaluation of object 

detection algorithms 

The visual surveillance research fi Id has produced a great number of back­

ground modelling algorithms for a variety of applications. Some author 

proposed new approaches to the problem while other contributions ar u -

ful modifications to existing methods. Implementations of a number of the 

most popular techniques are now available as off-the-shelf algorithm com­

ponent , which can be easily integrated into algorithms where a background 

modelling step is required. However, despite such a large number of available 

methods, the choice of th most appropriate technique is not always straight 

forward. Different background modelling t chniques promote diff r nt fea­

tur s of a visual surveillance algorithm, which in turn ha an impact on the 

algorithm's final performance. Also, the same algorithm may not perform 

equally in different end-user application. Furthermore, in real-life applica­

tions a trade-off between desired performance metric i often inevitable. 

The final performance of the algorithm requires pecial con ideration when 

choosing a background modelling method. 

Despite considerable effort to develop appropriat methods for the evalu­

ation of background modelling, mo t evaluation techniques described in the 

literature do not addres the complexity and range of th issues which un­

derpin the d sign of a good evaluation methodology. Initial contribution 

largely focus d on the provision of suitable datasets and the accompanying 

ground truthing tools. More recently however, the enormous number of pa­

pers on evaluation metrics has exposed the considerable difficultie involved 
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in establishing an accepted method of ranking competing algorithms - partic­

ularly for end-users, technology integrators and governmental agencies. Most 

contributions have embraced pixel-based methods within a receiver-operating 

curve (ROC) framework. However, such pixel-oriented measures do not nec­

essarily characterise the impact of the motion detection stage on the sub­

sequent processing tasks e.g. object tracking. Moreover, the production of 

pixel-accurate ground truth (necessary for accurate results) is extraordinar­

ily time-consuming and difficult to manually produce. As a consequence. a 

large number of object-based metrics have been proposed. However, as it 

is not possible to apply the ROC methodology to object-based metrics, the 

comparison of algorithm becomes a subjective interpretation of vectors of 

different metrics. 

This work discusses the problems associated with and propo e a novel 

methodology for the performance evaluation of background modelling and 

motion detection for visual surveillance applications. It explores the prob­

lem associated with both optimising the operating point of motion dete tion 

algorithms and the objective performance comparison of comp ting algo­

rithms. In particular, an object-based approach is developed based on the F­

Measure - a single-valued ROC-like measure which enables a straight-forward 

mechanism for both optimi ing and comparing motion detection algorithm. 

Despite the advantages over pixel-based ROC approaches, a number of im­

portant issues as ociated with parameterising the evaluation algorithm ne d 

to be addressed. The approach is illustrated by a comparison of thre mo­

tion detection algorithms, including the well-known Stauffer and Grimson 

algorithm, based on results obtained on two datasets. 
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1.2 Background modelling for fixed cameras 

and grey-scale video 

This work considers fixed cameras and grey-scale urveillance video in which 

the background is largely static and features of interest are moving. To detect 

these moving objects it is n cessary to build a model of the tatic background. 

Modelling of video sequence backgrounds can be treated as a high dimen­

sional data space where behaviour of variables representing image pixels is 

observed in time and space. As a result, efficient background modelling is 

computationally costly and difficult to perform in real time applications. 

In surveillance applications outdoor video sequences are often affected 

by considerable background variations caused by global and partial illumi­

nation variations, gradual and sudden lighting condition changes, and non­

stationary backgrounds. The large variation of backgrounds in typical out­

door video sequences requires highly adaptable and robu t models able to 

represent the background at any time instance with ufficient accuracy. Fur­

thermore, in real life applications it is often required to detect possible con­

taminations of the scene in real tim or when new observations become avail­

able. Not surprisingly, despite considerable research effort. the problems of 

accurate and efficient background modelling and motion detection for vi ual 

surveillance applications have yet to be solved. This work discu ses the pos­

sibility of and proposes a method to reduce the complexity of the problem 

of background modelling by extracting a sufficient an10unt of information 

about the behaviour of the available dataset from as little amount of data 

as possible. The extracted amount of information should be sufficient to ac-
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curately model the variability in the dataset. Furthermore. a novel adaptive 

multi-modal modelling approach is proposed. 

The aim of the proposed background modelling method is the cla sifi­

cation of observed images as background-only or contaminated with fore­

ground. The problem is addressed by applying eigen-theory and principal 

component analysis (PCA) on a high-dimensional space of a typical video 

surveillance recording of an outdoor scene. The PCA is based on the notion 

that a high-dimensional data vector can be represented by a space of a small 

number of orthogonal eigen-vectors (or principal components) which form 

a low-dirnen ional subspace. As the background structure remains constant 

over time, and as lighting changes are typically correlated over the image, 

variations in the pixel variables usually inhabit small subspaces within this 

very high-dimensional space. The methods explored in this work deal with 

appropriate choices of the minimum amount of the original data and the 

lowest number of dimensions required to obtain re ults which remain within 

the limits of an acceptable quality loss. Furthermore, considering the nature 

of the outdoor scenes with changing weather conditions, it is expe ted that 

background ob ervation points in the reduced eigen-space would gather in 

clusters of backgrounds of similar lighting conditions. These clusters r p­

resent the modes of the background model. A multi-modal eigen-model is 

proposed for improved accuracy of the classification of image ob ervatiollS. 

Furthermore, both off-line and on-line modelling are consid red. An off­

line methodology refers to those background modelling techniques applied to 

datasets when all of the available data is known and fixed, and all pos ible 

variations of the scene background are already contained within the train-
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ing set. An on-line method refers to an adaptive technique which allows for 

merging the information about new observations with the xisting knowledge 

about the video sequence background. 

1.2.1 D evelopments to the off-line standard m ethod 

The peA and eigen-models have been previously used to model backgrounds 

in algorithms reported in the literature. However, the me hods for dimen­

sionality reduction of real-life datasets and the multi-modal nature of the 

outdoor video data have not been sufficiently explored. There are several 

contributions of the methodology presented in this work. First , in order to 

ensure the correlation of lighting changes and facilitate a more manageable 

processing, the original image frame is divided into smaller regions which are 

individually observed. S cond, an informal dimensionality reduction tech­

nique previously suggested in the literature is validated on an example of a 

real-life outdoor surveillance dataset. Third, a subsampling approach is dis­

cussed as a possibility for further reduction in the proces d amount of data. 

Fourth, the multi-modal background model is explored and proposed a an 

improved solution for foreground detection and the classification of image 

observations. 

1.2.2 Adaptive multi-modal background modelling 

An on-line adaptive method is developed in order to provide an accurate 

model of the background at any time and adapt to any changes in a timely 

manner. The proposed adaptive algorithm cvolv incrementally with each 
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new observation. At every time instance it adapts to the new background 

conditions using the knowledge of the newly acquired data and the accumu­

lated knowledge of the current model. The update strategy i inspired by two 

previously reported methods: the incremental method of Hall et al. applied 

to the eigen-space update [Hall et al., 1998]. and the improved Gau ian mix­

ture model (GMM) approach [KaewTraKulPong and Bowden, 2001]' applied 

to adaptive learning. 

The novelty of the method proposed in this work is as follows. First. the 

GMM method is generally used to model individual pixel variation by one 

dimensional Gaussian distributions. This principle is modified and applied 

to image regions rather than pixels, where image observations are modelled 

with a mixture of multi-dimensional Gaussian clusters in the eigen-space. 

Second, the incremental method of Hall et al. was previously used to up­

date the unimodal eigen model which is not suitable for modelling a wide 

range of varied background in outdoor surveillance scene . The incremental 

principle is modified and applied to a multi-modal model consisting of clus­

tered eigen-subspaces rather than a single unimodal eigen-space. Third, the 

method of Hall et al. for adding new dimensions to the updated eigen-space 

is not appropriate for modelling outdoor datasets where the successive ob­

servations may significantly vary. A more suitable method , which preserves 

low dimensionality is proposed. 
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1.3 Summary 

This thesis sets out a framework for a new methodology for objective and 

principled performance evaluation of motion detection algorithms, and pro­

poses a novel algorithm for the adaptive multi-modal eigen-modelling of im­

age backgrounds. The remainder of the work is organised as follows. Chap­

ter 2 offers a review of the published performance evaluation techniques and 

background modelling algorithms. In Chapter 3 a new objective comparative 

methodology for performance evaluation is presented. Its application is illus­

trated with a comparison of three motion detection algorithms. Chapter 4 

introduces the problem of modelling in high-dimensional space. The PCA 

by eigen-decomposition is described in detail and used to represent two real­

life datasets in the eigen-space of reduced dimensionality. Furthermore, the 

multi-modal approach is introduc d and compared with the unimodal ap­

proach wh n the classification of image observations is p rform doff-line. 

Chapter 5 explains the concept of the adaptive incremental multi-modal 

background modelling. The proposed algorithm is applied to an outdoor 

video surveillance sequenc . The results are discussed and compared with 

tho e of an unimodal on-line approach. Finally, Chapter 6 concludes the 

work offering a critical look at th prop os d algorithm with a di cussion on 

its advantages and disadvantages. 
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Chapter 2 

Review 

2 .1 Introduction 

In many computer vision applications it is essential to separate pixel regions 

of interest from the rest of the image. Typically, moving objects are seg­

mented from the background scene by subtracting the original image from 

the background model image and thresholding the difference. The image re­

gions where the pixel difference is above the threshold indicate the presence 

of foreground objects. The foreground pixels are further processed for object 

segmentation, localization and tracking. 

For an effective object detection it is necessary to provide an accurate 

model of the background. The background modelling te hniques must d al 

with several challenging issues. Most common challenges, wh n the fixed 

camera is used, are gradual and sudden ba kground illumination changes, in 

both indoor and outdoor scenes, and the non-stationary background, mo tly 

in the outdoor scenes. 
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There has been an abundance of various background modelling technique 

described in literature. However, the problem of accurate background mod­

elling is yet to be solved. The proposed techniques produce variable results 

depending on the end-application and the type of the dataset . Often the 

results depend on the optimization of various parameters for a particular 

application or dataset case. Furthermore, in many applications there i an 

obligatory trade-off between different aspects of good performance of the 

background modelling. 

The background modelling approaches reported in the computer vision 

literatur differ significantly. Some deal with different camera set-ups such 

as multiple cameras [Cai and Aggarwal, 1996; 1fittal and Davi , 2001] or 

moving cameras [Burt et al., 19 9; Everts et al., 2007] for object tracking 

applications. Other approaches treat colour images in different colour spaces 

[Orwell et al., 1999; Kumar et al., 2002] mainly for suppre sion of shadows of 

moving objects. The methods based on multiple camera setting and colour 

images improve performance for certain applications. However the cost of 

improvements is often a significant increase in complexity. 

2.1.1 Assumptions 

Visual surveillance techniques based on the fixed camera assume that th 

background i largely static and that the features of interest are characteri ed 

by motion. Therefore, an accurate modelling of the background is crucial for 

efficient detection of foreground moving objects. In surveillance applications 

the fixed cameras are often chosen over pan-tilt-zoom (PTZ) cameras because 
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of th low cost and low sy tern complexity. The PTZ camera system do 

offer additional functionality by allowing operators to control the view point. 

However , in most applications the low cost solution of a single fixed camera 

is largely sufficient. 

Section 2.2 looks at the background modelling techniques which handle 

fixed camera and the methodologies for their evaluation. 

2.2 Review of evaluation approaches 

A number of techniques have been proposed to evaluate performance of visual 

surveillance algorithm. Many of them deal with the evaluation of detection 

of moving object [Villegas and Salcedo, 1999; Correia and Pereira, 2000; 

Erdem and Sankur, 2000: Gao et al., 2000; Stefano et al., 2001' Cavallaro 

et al., 2002; Mariano et al., 2002' Gelasca tal., 2004; ascimento and 1ar­

ques 2004; Villegas and Marichal 2004; Aguilera et al., 2005; Hall et al., 

2005; Walk et al.) 2010], whereas others addres evaluation of the tracking of 

detected objects throughout the video sequence or both [Jaynes et al., 2002; 

Black et al. 2003; G oris tal., 2003' Erdem et al., 2004; Schlogl t al. 2004; 

Wu and Zheng, 2004; Thirde et al., 2005; Denman et al., 2009; ?]. Since suc­

ces ful tracking relie heavily on accurate object detection, the evaluation of 

object detection algorithms within a surveillance sy terns plays an important 

part in overall performance analysi of the whole y tern. 

The types of evaluation approaches reported in the literature are illus­

trated by the graph in Figure 2.1. (Di cussion on evaluation metrics is po t­

poned to S ction 3.3). 
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Evaluation approaches 

~ 
Subjective Objective 

~ 
Without With 

Ground Truth Ground Truth 

~ 
Pixel-based Object-based 

metrics metrics 

Figure 2.1: Evaluation approaches 

Most broadly, object d tection evaluation methods can be classified as 

subjective and objective methods. Subjective methods evaluate performance 

of detection relevant to human vi ual perception. Objective method u e 

automated tools to quantitatively describe the quality of performance. 

Gelasca et a1. aim to characterise segmentation errors from a perceptual 

point of view by subjective evaluation of segmentation degradation as a re-

suIt of spatial errors such as missing and/or added background and temporal 

instability perceived as flickering of segmented regions over time [Gelasca 

et a1. , 2004]. Villegas and Marichal propose a perceptive weighting of com­

puted objective quantitative measure parameters by looking at the visually 

desirable properties of a egmentation mask [Villegas and 1arichal, 2004: 

Villegas and Salcedo, 1999]. The weighting reflect the vi ual relevance of 

s gmentation errors. The main problem with subjective method is that 

the evaluation outcome relies on the subjective judgment of a group of hu-

man viewer. Furthermore, the representative sample of viewer needs to 

include a large number of individuals for valid statistical analysis which can 

be a costly task. The subjective evaluation methods may be uitabl for 
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applications such as film post production or augmented reality but not for 

surveillance applications such as tracking. 

Objective evaluation method make use of automatic tools for computa­

tion of quantitative measur s which allow objective comparison of different 

object detection algorithms. 

In the absence of Ground Truth (GT), a number of evaluation meth­

ods rely on the expected consistency of an object's appearance and motion 

throughout an image sequence. By doing so, they often fail to account for 

sudden changes in scene lighting motion direction or velocity of the moving 

objects. Erdem and Sankur propose metrics based on colour and motion 

consistency along the segmented object boundary throughout the sequence 

[Erdem and Sankur, 2000]. However , the assumption that pixels which lie in­

side the object boundary and tho e outside the boundary vary significantly 

in colour and motion features may not be true. For example, in outdoor 

scene with lighting variations this will cause failure to distinguish b tween 

the object and its shadow. Furthermore, the boundary of the obj ct may not 

be available due to occlusions. Wu and Zheng avoid this problem by looking 

at bounding boxes rather then an object's contour [Wu and Zheng, 2004]. 

They propose metrics based on appearance and trajectory con i tency, offer­

ing a method for self- valuation and initiating automatic re-initialisation of a 

tracking algorithm when the tracker 's performance falls below some threshold 

quality. 

Evaluation in the absence of GT may provide a tool for self-assessment 

and feedback of performance measurements in order to improve tracking 

quality of the algorithm of interest. On the other hand, evaluation ba ed 
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on GT [Mariano et al., 2002; Black et al.. 2003' Erdem et al., 2004; Jaynes 

et al., 2002; Schlogl et al., 2004] offers a framework for objective compar­

ison of the performance of alternate surveillance algorithms. Such evalua­

tion techniques compare the output of the automatic object detector with 

the GT obtained manually by drawing bounding boxes around objects, or 

marking-up the pixel boundary of objects, or labeling objects of interest in 

the original video sequence. Manual generation of GT is an extraordinarily 

time-consuming and tedious task and, thus, inevitably error prone even for 

motivated researchers. (See the work of List et al. for an interesting tudy 

on inter-observer variability in this context [List et al., 2005].) Black et al. 

proposed the u e of a semi-synthetic GT where previously segmented people 

or vehicles are inserted into real video sequences [Black et al., 2003]. Th 

significant properties of synthetic GT objects (size, hape, position, velocity. 

trajectory) are known precisely to eliminate effect of subjectivity and human 

error. 

Interpretation of evaluation results is obviously based on the type of GT 

used for comparison, and established standards for GT are emerging. There 

are several ambiguities involved in the process of GT generation. For ex­

ample, whether to account only for individual objects or also for groups of 

objects? Whether to look at the bounding boxes or exact shapes of object? 

When is an object considered fully occluded or semi-occluded? Is the GT 

biased if produced by one person only? And so on. Several GT generation 

tool are available: ViPER [Mariano et al., 2002]' ODViS [Jaynes et al., 2002]. 

A summary and a comparison of most repres ntative object detection 

evaluation methods is given in Figure 2.2. 
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Approach In terpreta ti on GroundTruth Evaluation metrics 

Erdem and Sankur 2000 objective no colour and motion consistency along 
the segmented object boundary 

Correia and Pereira, 2000 objective yes similarity measure (shape, statistical 
similarity and size) 

Mariano et aI., 2002 objective yes fragmentation and merging 

Jaynes et aI., 2002 objective yes similarity measure (relative position) 

Cavallaro et aI. , 2002 objective yes human perception of error in detection 
(temporal effects of surprise and fatigue) 

Black et aI., 2003 objective yes detection rate 

Gelasca et aI., 2004 subjective DO perception of spatial errors 
and temporal instability 

Villegas and Maricha l, 2004 subjective no perceptive weighting of visually 

desirable properties 

Wu et aI. , 2004 objective no appearance and trajectory consistency 

Schlogl et aI., 2004 objective yes pixel misclassification rate 

Hall et aI. , 2005 objective yes overlap threshold, similarity measure 
(rclative position, shape, statistical 
similarity and size) 

Nascimento and Marques, 2006 objective yes fragmentation and merging 
of detected objects 

Figure 2.2: Object detection evaluation methods - a comparison 
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2.2.1 The choice of the dataset for evaluation 

Standardisation of datasets has been championed by CAVIAR [Fisher] and 

PETS1 . Nationally funded initiatives have also produced datasets in luding 

the French ETIBEO project2 and the UK Horn Office iLIDB project3
. 

The choice of the dataset inevitably affects the results of the evaluation. 

The algorithm which performed best on one type of dataset may not be the 

best choice when a different type of dataset is used. The main characteristic 

of evaluation datasets are: the density of foreground objects in the scene, 

outdoor /indoor lighting setting the choice of the scenarios performed by the 

foreground objects, the time lapse between frames (full frame rate or longer), 

the length of the equence in real tim (few minutes, hours , days or longer). 

This work focused on the background modelling in outdoor surveillance 

sequences with a great range of lighting changes due to weather conditions. 

To fully understand the problems arising form such a dataset it was necessary 

to observe changes in the data over a long period of time. At the time of 

writing none of the existing outdoor datasets was uitable b ing either too 

short or lacking complex lighting variation . Therefore two new dataset were 

created, Kingston Carpark and Inrets datasets, as described in Sections 4.5.1 

and 4.5.2 resp ctivcly. The first dataset contains a variety of lighting changes 

and covers few minutes recorded at full frame rate. The second dataset was 

ultimately used because it covers a longer interval of two and a half months 

with a large range of lighting conditions from bright sun hine to heavy rain. 

lwww.cvg.cs.rdg.ac.uk/ lides/pets.html 
2www.silogic.fr/etiseo/ 
3http://scienceandresearch.homeoffice.gov.uk/ho db/new '-events/270405 
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2.2.2 Performance evaluation m etrics 

Evaluation methods reported in literature have proposed a great number of 

performance metrics. In this work the focus is on the metrics used to compare 

the results of motion detection with the ground truth. A brief overview of 

these metrics is presented below, while a more detailed description is given 

later in Section 3.3. 

Typically, the eT based methods use true positives (TP), false positives 

(FP), false negatives (F ), and true negatives (T ). These metrics are re­

ferred to as the common metrics. A number of other frequently used metrics 

are derived from this set of common metric , such as: true positive rate (or 

detection rate) t p, false positive rate fp , false alarm rate fa and specijicity 

sp. In general, the metrics may be pixel-based or object-based. In the case 

of pixel-based evaluation methods, these metrics are calculated on the pixel 

level, where the ROC technique i often used for the interpretation of the 

metrics. In the case of object-based evaluation, the true negative object can­

not be defined in a meaningful way. Thu, the ROC interpretation cannot 

be used. 

Some evaluation method have defined a number of less common, method­

specific m trics. An overlap threshold to determine association with the eT 

[Hall et al., 2005]. A similarity measure between detected and eT objects i 

al 0 used, such as relative position [Hall et al., 2005; Ja nes et al. 2002] or 

shape, statistical similarity and size [Correia and Pereira, 2000· Hall tal., 

2005]. Some authors used specifi metri to addre s th problem of the frag­

mentation and merging of foreground object [Mariano et al. 2002; asCl-

22 



mento and Marques, 2004, 2006]. Others have focu ed on the impact of the 

human perception error on the result of the evaluation proces [Cavallaro 

et al., 2002; Villegas and Marichal , 2004]. 

In Chapter 3, a novel, object-based, comparative methodology for an 

objective performance evaluation of motion detection algorithms is proposed. 

The proposed methodology uses the F-measure , a single-scalar technique 

which enables a straight forward comparison of object detection algorithm . 

2.3 Review of background modelling 

The detection of moving objects in a surveillance video typically relies on the 

efficient modelling of the background in the observed scene. In recent years, 

several surveys of background modelling and foreground detection techniques 

have been published. Some of them offer a simple overview of the most 

popular techniques [McIvor, 2000], whereas other propose a classification 

and an analysis of performance [Cheung and Kamath 2004; Piccardi. 2004' 

Benezeth et al., 2008; Mayo and Tapamo, 2009; Bouwmans, 2009]. The e 

surveys are reviewed in turn below. 

Cheung and Kamath focus on background modelling technique with very 

low initialization requirement and propose classification on non-recursive 

and recursive techniques [Cheung and Kamath, 2004]. Non-recursive tech­

niques are those that e timate the background u ing a temporal variation of 

each pixel within a sliding buffer of a number of most recent frames. The 

non-r cursive techniques are highly-adaptive but require a large memory to 
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store a large buffer required to deal with the slow-moving objects. Some 

of the most-commonly used techniques are in this non-recursive category, 

such as frame differencing, the median filter [Cutler and Davis, 1998; Lo and 

Velastin, 2001 ; Zhou and Aggarwal. 2001; Cucchiara et al., 2003], the lin-

ar predictive filter [Cutler and Davis, 1998], and the non-parametric model 

known as the kernel density estimation (KDE) [Elgammal et aL 2000]. 

Recursive techniques recursively update the model using each incoming 

frame. These techniques require less memory as they do not need the buffer. 

On the other hand, they are less adaptive then non-recursive techniques. 

Some of the most popular recursive methods are the approximated median 

filter [McFarlane and Schofield. 1995; Remagnino et al., 1997]' Kalman filt r 

[Karmann and Brandt, 1990; Wren et al.. 1997]' and the mixture of Gau sian 

[Friedman and Russell , 1997; Stauffer and Grimson, 1999; KaewTraKulPong 

and Bowden, 2001 ; Power and Schoonees 2002; Lee et al.. 2003]. 

In their survey, Cheung and Kamath evaluated the reviewed methods 

on a number of grey-level urban traffic vid 0 sequences of variable difficulty 

(very bright light , fog , snow, and busy traffic). The evaluation is expressed 

in terms of precision and recall of detected moving objects. In this te t the 

mixture of Gaussians algorithm, after the parameter tuning. performed best. 

In a similar manner , Piccardi provides a review of mo t commonly used 

methods and a comparison based on speed, memory requirements and accu­

racy [Piccardi, 2004] . This survey also includes methods that address spatial 

correlation uch as the co-occurrence of image variation [Seki et al., 2003] 

and eigen-backgrounds [Oliver et al., 2000]. Piccardi concluded that these 
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methods, compared to other commonly used per-pixel models, provide good 

accuracy although they require a relatively long training phase. 

More recently Benezeth et al. and Mayo and Tapamo published two inde­

pendent revi ws of background modelling algorithms [Benezeth et al., 200 ; 

Mayo and Tapamo, 2009]. Both de cribe in detail a number of commonly 

used algorithms and evaluate their performance on a number of colour video 

using as the evaluation metrics the preci ion-recall ROe curves. Benezeth 

et al. performed the evaluation on a data et of 29 real , semi-synthetic and 

synthetic video sequences representing three categories of data: the noise­

free , the multi-modal , and the noisy data [Benezeth et al., 2008]. The eval­

uated algorithms include the following methods: the median filter [Zhou 

and Aggarwal, 2001]' the single Gaussian method (I-G) [Wren et al.. 1997]' 

the mixture of Gaussians (GMM) [Stauffer and Grim on, 1999], the ker­

nel density estimation (KDE) [Elgammal et al. , 2000] and the so called 

MinM ax method [Haritaoglu et al., 2000]. The author concluded that the 

choice of the background modelling algorithm will inevitably be motivated 

by the dataset as no algorithm outperform the rest in all dataset categories. 

onetheless, the Gaussian based algorithms. notably I-G GMM and KDE, 

proved more reliable for noisy data and the data with background motion. 

Mayo and Tapamo compared the following techniques: the imple frame 

differencing, the temporal averaging [Heikkila and Silven, 1999] , the approx­

imated median algorithm also known as the ~ - !::.. method [McFarlane and 

Schofield, 1995; Manzanera and Richefeu, 2007], the mixture of Gaus ians 

[Stauffer and Grimson, 1999] and the kernel density estimation method [EI-
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gammal et al., 2000]. Their conclusions, similarly to other reviews, argue 

that a choice of the most suitable method will depend on the available com­

putational power, the dataset , and the end-user performance requirements. 

One of the most comprehensive surveys published classified background 

modelling techniques into the following categories: basic background mod­

elling, statistical backgrotmd modelling, fuzzy background modelling and back­

ground estimation [Bouwmans, 2009]. 

The basic background modelling techniques use basic mathematical mod­

els of the data such as the histogram [Zhang et al., 20081, the running average 

[Pai et al., 2004] or the approximated median filter [McFarlane and Schofield, 

1995]. Although simple to implement and with low computational cost, these 

techniques fail to successfully model more challenging backgrounds with noise 

and background motion. 

The statistical background modelling techniques are further divided into 

three subcateories: the Gaussian based methods [Wren et al., 1997; Stauffer 

and Grimson, 1999; Elgammal et al. 2000], those using the support vector 

machine (SVM) models [Lin et al. 2002]' and the subspace learning models 

using principal components analysis (peA) and its variants [Oliver et al., 

2000; Rymel et al. 2004]. 

The fuzzy background modelling uses the principles of type-2 fuzzy sets 

applied to Gaussian mixture model to handle the uncertainty in the underly­

ing distributions of the observations due to insufficient and noisy data [Zeng 

et al., 2008; Baf et al. , 2008]. It is argued that the fuzzy method provides 

a better approximation of the density functions provided that they contain 
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enough Gaussian mixture components. The background estimation models 

use filters such as Wiener filter [Toyama et al., 1999], Kalman filter [Koller 

et al., 1994]' and Chebytchev filter [Chang et al., 2004]. 

Bouwmans et al. have also dedicated a separate survey to the background 

modelling using a mixture of Gaussians [Bouwmans et al., 2008]. The au­

thors review more than 100 publications in this field. The algorithms are 

categorised according to the specific improvements they bring to the tech­

nique such as initialization of the model, the model maintenance and the 

update of related parameters, the choice of the number of the Gaussians in 

the mixture and so forth. 

2.4 Principal component analysis (peA) 

The PCA is arguably the most popular subspace learning technique. It is 

based on the notion that a high-dimensional data vector can be represented 

by a space of a small number of orthogonal vectors (or principal components) 

[Hotelling, 1933]. The orthogonal vectors are in most cases calculated using 

the eigen-decomposition or the singular value decomposition (SVD). The 

principal components preserve the underlying variability in the dataset. The 

low dimensional representation is less costly in terms of computational power 

and storage pace. Researchers in various fields hav successfully used PCA 

to solve high-dimensional problems, for example in the speech proce ing 

[DeGroat and Roberts, 1990], chemical engineering [Daszykowski et al., 2007] 

or industrial process monitoring [Li et al., 2000]. In the field of computer 

vision, PCA has been us d to model a variety of datasets uch as edge and line 
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Approach Adaptive Method Evaluation metrics 

Murakami and Kumar, 1982 yes PCA Images 

Cootes et aI. , 1992 no PCA Sbapes 

Cbaudhuri et aI., 1996 yes PCA Motion 

Chandrasekaran et aI. , 1997 yes PCA Images 

Moghaddam and Pentland, 1997 no PCA Faces 

Hall et al. , 1998 yes PCA Images 

Oliver et al., 2000 no PCA Backgrounds 

De la Torre and Black, 200 I no RPCA Faces 

Zeng et aI., 2002 no PCA Edges and lines 

Liu and Chen, 2002 yes PCA Sbot boundary detection 

Franco et aI. , 2002 yes PCA Faces, handwritten digits 

Artac et al. 2002 yes PCA Panoramic images 

Branson and Agarwa1, 2003 no SPCA Faces 

Li , 2004 yes RPCA Backgrounds, faces 

Vidal,2005 no GPCA Motion segmentation 

Zbang and Zhuang, 2007 yes RP CA Backgrounds 

Skocaj and Leonardis, 2008 yes RPCA Images 

Lv et aI., 2009 yes RPCA Backgrounds 

Figure 2.3: Examples of computer vision methods using peA 
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features [Zeng et al., 2002]' shapes [Cootes et al., 1992]' faces [Moghaddam 

and Pentland, 1997; De la Torr and Black, 2001]' motion [Chaudhuri et al. , 

1996], and backgrounds [Oliver et al., 2000; Rymel et al., 2004]. 

The PCA statistics is traditionally performed on a batch of data. How­

ever, in the real world image and particularly video applications, it is often 

required to process the data in real time. Therefore an adaptive method 

is needed. In theory, batch methods provide more accurate representation 

of data than adaptive methods due to the fact that all information about 

the data is available in advance. Nonetheless, batch methods [Oliver et al. , 

2000; De la Torre and Black 2001] have opened a range of possibilities for 

the modelling of image data such as the dimensionality reduction, and hence 

lower memory requirements, and an on-line learning where new observations 

are added to the model at every time instance. 

Adaptive PCA is an incremental method which computes a low dimen­

sional representation of the data by incorporating the new ob ervations when 

they become available in time. A number of incremental PCA algorithms 

have been proposed. Early incremental PCA methods included the adap­

tive update of the low-dimensional space representation, while the mean of 

the space remained fixed at the mean of the initial training dataset [ -1 u­

rakami and Kumar, 1982; Chaudhuri tal. , 1996; Chandrasekaran et al., 

1997]. These method as ume that the mean of the original image data is 

zero , which is obviously not always the ca e. Hall t al. pointed out that 

such an assumption causes errors in classification of input images and pro­

posed the first adaptive method with the incremental shifting of the mean 

[Hall et al., 1998]. Following Hall's findings a number of similar incremental 
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methods were proposed [Liu and Chen 2002; Franco tal., 2002; Artac et al., 

2002; Li 2004; Skocaj and Leonardis, 2008]. These algorithms produce the 

same updated space as Hall et al. and they are similar in terms of accuracy 

and speed. The main difference is in the way they incrementally update the 

covariance matrix. 

Besides the incremental update, another major improvement of the PCA 

methodology concerns robustness to outliers in the training data. The tradi­

tional PCA relies on the least mean squared error minimization. To reduce 

the susceptibility to outliers a number of weighting techniques were propo ed 

where the outlier pixels are identified and weighted by a weighting function 

before being incorporated into the model. The main problem with some of 

the robust PCA (RPCA) methods is that the weighting and the recalculat­

ing of the optimised model are performed in an iterative manner and are 

therefore computationally costly. Some examples of iterative algorithm are 

the self- organising algorithms [Xu and Yuille 1995] and th expectation 

maximization [De la Torre and Black, 2001; Skocaj and Leonardi 2008]. 

Li replaced the iterative optimization by a lookup table for pixel weights 

to improve the speed of the algorithm [Li, 2004]. Ba ed on the image re­

construction error, Zhang and Zhuang propose a method for weighting the 

motion regions [Zhang and Zhuang, 2007]. while Lv et a1. weight the frames 

with salient motion [Lv et a1. 2009], in order to reduce the influence of the e 

frames on the background model. 

Other non-adaptive variants of PCA include the following methods: Struc­

tured PCA (SPCA) [Branson and Agarwal, 2003], Generalized PCA (GPCA) [Vi­

dal et al., 2005], and Kernel PCA (KPCA) [Scholkopf et al., 199 ]. The SPCA 

30 



is a linear method which proposes clustering of imilar features. where the 

similarity is measured by the class-conditional chi-squared distance between 

the distributions of the features , and then applying the classic PCA on the 

feature clusters. The GPCA i another linear method which defines the 

subspaces of data points by minimising certain distanc function, repre ents 

subspaces with a set of polynomials estimated linearly from data, and derive 

a basis for each subspace by applying standard PCA to the set of derivatives 

of the polynomials. The KPCA is a non-linear extension of PCA based on 

embedding the data into a higher-dimensional space using a kernel matrix 

and then applying the standard PCA on the embedded data. 

Figure 2.3 summarises computer vision methods which use PCA mod­

elling in a range of computer vision applications. 

2.4.1 Other dimensionality reduction methods 

The main aims of dimensionality methods are to reduce the requirements for 

the storage space and to establish more meaningful and efficient representa­

tions for better understanding of high-dimensional data. 

Linear dimensionality reduction methods represent the data in a spac 

formed by new sets of dimensions derived as linear combinations of the 

original dimensions. Linear methods which use eigen decomposition are 

PCA [Hotelling, 1933] (also known as Karhunen-Love tran form) , Canon­

ical Correlation Analysis (CCA) [Hotelling, 1936], and Linear discriminant 

analysis (LDA) [Fisher, 1936]. The PCA aims to maximise varianc CCA 

maximises correlation, where LDA uses maximisation of the interclass vari-
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ance as criteria for the selection of a meaningful set of orthogonal axes span­

ning the new low-dimensional space. Non-negative Matrix Factorization 

(NMF) [Paatero and Tapper, 1994] and Independent Component Analysis 

(ICA) [Herault and Jutten 1986] use more complex criteria for selection of 

new dimensions. The MF defines a subspace that minimises reconstruction 

error for non-negative data, whereas the ICA finds a subspace where com­

ponents are independent with non-Gaussian distributions. Both NMF and 

ICA use non-trivial optimisation algorithm. Other linear methods include 

Singular Value Decomposition (SVD) [Golub and R insch, 1970] and Factor 

Analysis (FA) [Gor'such, 1983]. The SVD is related to eigenvalue decomposi­

tion' the main differences are that it does not require the mean subtraction 

and that it can be applied to an arbitrary matrix (eigen analysis applies only 

to certain classes of square matrices). The FA assumes that variables depend 

on some unknown common factors and estimates how much of the variability 

is due to these common factors. In fact, PCA is the most common form of 

FA which results in orthogonal uncorrelated factors. 

In many applications linear data transformation may represent a serious 

constraint. To overcome this problem non-linear methods were developed. 

One of the most popular techniques is the so called K emel trick which pro­

vides a way of finding non-linear subspaces with the techniques normally used 

for linear data transformation. For example, the Kernel PCA [Scholkopf 

et al., 1998] first maps the original data into ome new high-dimensional 

space using a non-linear function and then perform a linear PCA in the 

mapped space. This non-linear function is not computed explicitly but via 

kernels. However, finding an appropriate kernel for a given problem is not 

32 



a trivial task. Other common non-linear methods for dimensionality reduc­

tion are: Multidimensional Scaling (MDS) [Sammon, 1969; iemann, 19 0], 

FastMap [Faloutsos and Lin, 1995], I omap [Tenenbaum et al., 2000], and 

Locally Linear Emb dding (LLE) [Roweis 2000]. The MDS projects data 

onto a low-dimensional space in such a way that the pair-wise distances be­

tween all the points in the original dataset are preserved in the new projected 

space. The FastMap, a fast incremental method, i an example of a LDS 

technique. The Isomap method assumes that only the pair-wise distances be­

tween neighbouring points are known, utilises the Floyd-Warshall algorithm 

to estimate the the pair-wise distances between all of the other points, and 

uses MDS to compute the low-dimensional projection of points. The LLE 

describes the point by weights which represent a linear combination of the 

nearest neighbours of the point; an optimisation technique based on eigen de­

composition is used to compute the low-dimensional embedding of the point 

while preserving the linear combination of the nearest neighbours. 

There are several useful surveys of dimensionality reduction techniques [Jain 

et al. 2000' Fodor, 2002; van der Maaten et al., 200 ; Tsai , 2010]. 

2.4 .2 Discussion 

In spite of its linear nature, the peA is selected as a dimen ionality reduc­

tion method of choice in this work. It is a relatively simple method which 

provide a compact low-dimensional r presentation of the data. The outdoor 

surveillance sequences, which are the main subject of focus in this work, 

display a large variability due to lighting changes as the main cause of the 
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non-stationary background. The PCA brings forward these high variabil­

ity features and by discarding features with low variance provides a low­

dimensional model of the dataset. Furthermore, the original image can b 

reconstructed from its low-dimensional projection and the transformation 

matrix with minimal reconstruction error. This is a desirable feature since 

the detected foreground object are often extracted from the sequence by 

subtraction from the background model. 

The incremental PCA methods reported in the literature enable a real­

time adaptive modelling and a ignificant dimensionality reduction of high­

dimensional datasets. Thus, they may be used to model high-dimen ional 

video datasets using the eigen-model with a much maller number of dimen­

sions than the original image pixel space. However , these methods do not 

address the complexity and the range of problems related to the background 

modelling in real-life outdoor video surveillance applications. Typically, these 

datasets often contain a variety of background changes including gradual and 

sudden light changes due to weather conditions, background motion such 

as swaying trees, or stationary objects being left or disappearing from the 

scene. Considering the nature of the variability in an outdoor scene, it is 

expe ted that the background observation points in the reduced eigen-space 

would gather in clusters of background of similar lighting conditions. These 

clusters, also referred to as the background modes, can be individually mod­

elled providing an improved low-dimensional representation of the observed 

background. Based on thi notion of multi-modality and using the low­

dimensional adaptive eigen-model, this thesis proposes a novel method for 

modelling of background in outdoor surveillance scenes in Chapter 5. 
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Chapter 3 

Performance Evaluation of 

Object Detection Algorithms 

3.1 Overview 

The majority of visual surveillance algorithms rely on effective and accu­

rate motion detection. However most evaluation technique described in 

the literature do not address the complexity and range of the issues which 

underpin the design of a good evaluation methodology. This chapter ex­

plores the problems associated with both optimising the operating point of 

any motion detection algorithms and the objective performance compari­

son of competing algorithms. In particular, we develop an object-based ap­

proach based on the F-Measure - a single-valued ROC-like measure which 

enables a straight-forward mechanism for both optimising and compal'ing 

motion detection algorithms. Despite the advantages over pixel-based ROC 

approaches, a number of important issues associated with parameterising the 
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evaluation algorithm need to be addressed. The approach is illustrated by 

a comparison of three motion detection algorithms including the well-known 

Stauffer and Grimson algorithm, ba ed on results obtained on two datasets . 

3.2 Introd uction 

The development of vi ual surveillance algorithms has been followed by a 

large effort to develop appropriate evaluation methods. Initial contributions 

largely focused on the provision of suitable datasets and the accompanying 

ground truthing tools. More recently, however the enormous number of pa­

pers on evaluation metrics has exposed the considerable difficulties involved 

in establishing an ac epted method of ranking competing algorithms - par­

ticularly for end-users, technology integrators and governmental agencies. 

Most contributions have embraced pixel-based methods within a receiver­

operating curve (ROC) framework. However, uch pixel-oriented measure 

do not necessarily characterise the impact of the motion detection tage on 

the ubsequent processing tasks e.g. object tracking. loreover, it is ex­

traordinarily difficult to manually produce the pixel-accurate ground truth 

to ensure accurate results. As a conscqu nce, a larg number of object-based 

metrics have been propo ed. However, as it is not po ible to apply the ROC 

methodology to object-based metric , the comparison of algorithms become 

a ubjective interpretation of vector of different metric. 

What is required is a ROC-like methodology capable of generating a 

meaningful scalar measure of performance. In addition, the methodology 

should support the optimisation of algorithm parameters. Thi work pro-
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Output True Class 
Class Foreground Background 

Fore True Positives (TP) False Positives (FP) 
Back False Negatives (FN) True Negatives (TN) 

Table 3.1: Contingency table 

poses the use of the F-M asure [van Rijsbergen, 1979] as a means of gener-

ating this performance calar. However, it also becomes necessary to param-

eterise the evaluation algorithm itself! In Section 3.4 the ROC methodology 

is reviewed and the F-Measure is introduced. Section 3.5 presents our com-

parative methodology, illustrating its application with a comparison of a 

home-spun motion detection algorithm [Renno et al. 2006], recently pro­

posed "motion di tillation" algorithm [Surgue and Davies, 2006] , and the 

well-known Stauffer-Grimson algorithm [Stauffer and Grimson 1999]. 

The proposed methodology looks at the results of the object detection 

regardless of which technique was employed by competing algorithms (i.e. 

analysis of the grey-scale or colour version of the original dataset). 

3.3 Performance metrics 

3 .3.1 Common performance metrics 

Performance evaluation algorithms based on comparison with ground truth 

can be furth r cla ified according to the typ of metrics they propose. Typi­

cally ground-truth based metrics are computed from the true positives (TP), 

false positives (FP), false negatives (F ), and true negatives (T ), as repre­

sented in the contingency table Table 3.1. 
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For pixel-based metrics FP and FN refer to pixels misclassified as fore­

ground (FP) or background (FN) while TP and TN account for accurately 

classified pixels [Black et al., 2003; Erdem et al. 2004' Gao et al. 2000; 

Gelasca et al., 2004; Schlogl et al., 2004; Stefano et al., 2001; Villegas and 

Salcedo, 1999]. Usually, they are calculated for each frame and an overall 

evaluation metric is found as their average over the entire video sequence. For 

object-based metrics TP refers to the number of detected objects sufficiently 

overlapped by GT, FP to the number of detected objects not sufficiently 

overlapped by the GT, and FN to the number of GT objects not sufficiently 

covered by any automatically detected objects [Georis et al., 2003; Hall et al., 

2005; Nascimento and Marques, 2004]. (Note that this degree of ovelap is a 

parameter of the evaluation process.) Given the nature of the object-based 

approach, the true negative objects cannot be defined in a meaningful way. 

Some authors combine both types [Mariano et al. 2002]. Furthermore, a 

number of methods evaluate individual object by weighting misclassified 

pixels according to their impact on the quality of segmented object [Aguil­

era et al., 2005; Cavallaro et al., 2002; Correia and Pereira, 2000; Erdem and 

Sankur, 2000; Villegas and Marichal, 2004]- in essence, pixel-based methods. 

Typical metrics computed per-frame or per-sequence are true positive rate 

(or detection rate) tp, false positive rate fp false alarm rate fa and specificity 

Bp. They are defined as 

tp 
NTP 

fp 
N FP (3.1) - , -

NFP+NTN 
, 

N TP + N pN 

fa 
N FP NTN 

(3.2) -
NTP+NFP 

, sp 
NFP+NTN 
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where N TP , N FP NTN and NFN are the number ofpixels or objects identified 

as true positives, false positives true negatives and false negatives respec­

tively. 

3.3.2 Other performance metrics 

All pixel-based methods which evaluate individual object segmentation rely 

on existence of shape-based ground-truth mask gen rated by marking indi­

vidual pixels. a necessary costly process performed in order to avoid errors. 

In addition to the advantage of avoiding hand labelling individual foreground 

pixels in every frame, object-based methods only require ground-truth in the 

form of bounding-boxes [Georis et al., 2003; Hall et al. 2005: a cimento 

and Marques, 2004]. The object-level evaluation propo ed by Hall et al. 

plots detection rates and false alarm rates using various value of overlap 

threshold to determine association with the GT [Hall et al., 2005]. A they 

do not define true-negatives, false alarm rate is computed as alternative to 

false positive rate and the area under such curve i used as a measure of per­

formance. Other object-based metrics proposed in the literature are based 

on the similarity of detected and ground-truth objects i.e. relative po ition 

[Hall et al., 2005; Jayne et al. 2002] or hape, statistical imilarity and size 

[Correia and Pereira, 2000; Hall et al., 2005]. 

A major problem in motion detection i the fragmentation and merging of 

foreground objects. While these will impact on pixel-based metrics, a number 

of explicit metrics have been propo ed [Mariano et al., 2002: ascimento 

and Marques, 2004 2006]. Typically th se measure th average number of 
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detected regions overlapping each ground-truth obj ct and average number 

of ground-truth objects associated with multiple detected regions. 

Metrics may also be designed to take account of human perception of 

error wher false positives and false negatives hold different levels of sig­

nificance by introducing weighting functions for miselassified pixels on an 

object-by-object basis [Cavallaro et al., 2002; Villegas and Marichal 2004]. 

Villegas and Marichal [Villegas and Marichal, 2004] increase the influence of 

miselassified pixels further from the boundary of ground-truth objects. Cav­

allaro et al [Cavallaro et al.. 2002] account for temporal effects of surprise 

and fatigue effects where sudden changes in quality of segmentation amplify 

error perception. 

3.4 Methodology for interpretation of 

metrics 

The great majority of propo ed metrics are restricted to the pixel-Ievel di -

crepancy between the detected foreground and the ground-truth - namely 

false positive and false negative pixels. These metrics are useful to a es 

overall segmentation quality on a frame-by-franle basis but fail to provid 

an evaluation of individual object segmentation. Often these measures are 

normalised by image size or the amount of detected change in the mask [Cav­

allaro et al. , 2002], or object relevance [Correia and Pereira, 2000]. How ver, 

a more principled approach is based on Receiver Operating Curves (ROCs). 

Evolved to chara terise the behaviour of binary elas ifiers, ROC curves plot 
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true positive rate against false positive rate to facilitate the election of op­

timal classification parameters and compare alternative classification tech­

niques [Gao et al., 2000; Nascimento and Marque , 2004; Oberti et al. , 1999]. 

An ROC graph is an alternative pre entation to plotting metrics for each 

frame in the sequence which is often difficult to assess by a reader [Aguilera 

et al. 2005]. 

Unlike the pixel-level, at the object-level there is an absence of a distinct 

prior class of negatives in the original dataset which excludes the use of ROC 

curves as a method for interpretation of classifier's performance. In some ap­

plications (e.g. facial identification) competing algorithms are presented with 

images which contain known clients and imposters. This is essentially a clas­

sic binary-classification problem with two prior classes of objects. However, 

for object-based motion detection evaluation, there is no equivalent prior set 

of known imposters, i.e. false objects in the ground truth! Thus, a it is not 

possible to identify true negatives, the false positive rate cannot be computed. 

The problem of the absence of a negative class of objects can be avoided 

by using the alternative evaluation metric, namely the recall-preci ion curves 

[Cleverdon, 1972]. The inverse relationship between the recall and the pre­

cision was de ribed by Cleverdon. The interpretation of recall-preci ion 

curves and the methodology for the optimisation of the operating point was 

later developed by van Rijsbergen. This methodology is referred to a th 

Effectiveness Analysis, or F-measure, [van Rijsbergen, 1979]. Thi approach 

looks at the performance on object-level in precision-recall space and does 

not require calculation of true negatives, as described in Section 3.4.2. Both 

ROC and F-measure methods enable simple assessment of competing algo-
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rithm, selection of optimal operating point for an algorithm and the objective 

comparison of two or more algorithm . 

ROe curves have already been used for evaluation of motion detection 

algorithms [Gao et al. 2000; Nascimento and Marques, 2004' Oberti et aI., 

1999]. However, there are few problems in the implementation of these ap­

proache . First they are restricted (as noted earlier) to the pixel-level [Gao 

et al., 2000; Oberti et al. 1999]. Second they examine total values rather than 

rates e.g. false positive rate which requires the proportion of negatives incor­

rectly classified. Finally they do not always describe a principled method of 

selecting the optimal operating point [Nascimento and Marques, 2004]. The 

alternative F-measur methodology has mainly been used in the evaluation 

of information retrieval systems [van Rij bergen, 1979]. Although, Martin 

et al propo ed the use of F-measure for object boundary detection [ 1artin 

et al., 2004]' at the time of writing, we are not aware of any work using the 

F-measure method for the evaluation of object detection algorithms in vi ual 

surveillance. 

In this work we distinguish between optimisation on a pixel- and object­

level, and emphasise the need for the principl d election of the optimal 

operating point. At a pixel-level, we adopt traditional ROe optimisation 

employing scenario-specific mis lassification costs for a given end-user appli­

cation. At an object-level we propose the u e of F-l1lea ure optimisation 

in the precision-recall space, again using relative weighting of precision and 

recall for given end-user applications. The optimal operating point in both 

ca es is determined in a principled manner for two distinct end-application 

scenarios: Evidence Gathering and Ticket Fraud. 
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3.4.1 ROC-based analysis 

Receiver Operating Curves (ROC) are a useful method for interpreting per­

formance of a binary classifier [Provost and Fawc tt, 1997]. ROC curves 

graphically interpret the performance of the decision-making algorithm with 

regard to the decision parameter by plotting the true positive rate (t p ) against 

the false positive rate (Jp). Each point on the curve is generated for the range 

of decision parameter values - see Figure 3.1(a). In foreground detection, 

such decision parameters could be a threshold on the greylevel difference be­

tween incoming pixel and reference pixel, or a threshold on the size of any 

foreground object. When there is more than one classification parameter, a 

distribution of points representing all parameter value combinations is gen­

erated in the ROC space. The required ROC curv is the top-left boundary 

of the convex hull of thi distribution as shown in Figure 3.1(b). 

A miscla sification co t is associated with each point in ROC space. which 

depends on the intended application of object detection (e.g. tracking, count­

ing people, alarming, detecting a specific person etc) and the ratio of fore­

ground pixels (or objects) to background in the GT. The misclas ification 

cost G at the operating point (t;,f;) is given by 

(3.3) 

where PT is the prior probability of a foreground pixel (or object), and GFN 

and GFP are the co t of classifying a moving pixel (or object) as stationary 

and vic versa. Operating points with the same misclassification cost form 

an iso-performance line. Points on the graph lying above-left of the line have 
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Figure 3.1: Generating ROe curves 

a lower misclassification cost while points below-right of the line have larger 

costs. In general) the optimal operating point is chosen in the top left quad­

rant of the ROe space and is defined as the classification parameter value on 

the iso-performance line with the lowest misclassification cost [Provost and 

Fawcett, 1997]. The gradient). of this line is defined as 

). = (1 - Pr) G FP 

Pr GFN 
(3.4) 

Cost scenarios 

To explore the effect of the cost ratio we shall introduce two different sce-

narios: the Ticket Fraud scenario in whi h the cost of detaining an innocent 

member of the public G FP is defined as double the cost of failing to catch 

a ticket fraudster GFN
1 ; and the Evidence Gathering scenario in which the 

cost of video-ing an innocent passerby GFP is say, 10 time small r than 

the cost of failing to vid 0 a terrorist bomber GFN
2

. The relative cost ar 

1 Increasingly, the context of prevention of terori m i inverting the co t ratio 
2This must also capture the storag and search costs 
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arbitrary, and the relationship of these applications to motion detection is 

indirect. However, these different cost ratio scenarios ensure we are mindful 

of the ultimate application in the evaluation stage. (Obviou ly defining the 

social costs of violations of libertarian and public safety concepts is extremely 

fraught!) 

3.4 .2 Effectiveness analysis (or F-measure) 

While ROC analysis offers a solution for the selection of operating point 

and the definition of scenarios, the use of pixel-based metrics do not accu­

rately measure the generation of detected blobs (and capture their impact 

on the subsequent tracking and application processes). However , object­

based metrics , which are more informative, require more complex machinery 

to identify the correspondence between detected object and ground truth. 

Such machinery is accompanied by an inevitable array of evaluation param­

eters whose values can have a dramatic effect on the measured performance 

(see Section 3.5.4). In addition, object-based performance analysis does not 

provide true negative objects which are crucial to the ROC approach. What 

is needed is a ROC-like methodology, which avoids the u e of true negative 

and preserves the idea of different evaluation scenarios. We al 0 propose th 

F-measure as a tool for optimisation of evaluation param ters in object-ba ed 

evaluation of object detection algorithms. 

The F -measure, or effectivenes measure, characterises th performance 

of classification in precision-recall space [van Rijsbergen, 1979] , and i defined 
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as the weighted harmonic mean of the precision (P) and recall (R) metrics 

1 
F = 1 1 

a * p + (1 - a) * R 
(3.5) 

where 

p= NTP 
NTP+Npp 

(3.6) 

The parameter a is dependent on the end-user application, and controls 

the relative importance of P and R (in a similar manner to the cost ratio in 

Equation 3.4). The goal is to determine the optimal parameters by locating 

the maximum F-measure for a given 0:. 
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0.8 

Figure 3.2 presents a typical F-curve in precision-recall space generated 

for the range of possible values of an arbitrary parameter. The figure also 

shows a set of iso-effectiveness lines along which all points have the same 

value of F-measure. The shape of these lines is determined by the choice 
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of ex. The tangent point between the highest iso-effectiveness line and the 

F-curve is taken as the optimal operating point. 

Application scenarios 

In Section 3.4.1 , we introduced the concept of cost scenarios in ROC-space in 

order to valuate motion detection re ults in the context of specific end-user 

applications. However such an approach to the optimisation of algorithm 

parameters was restricted to the pixel-Ievel. In a similar fashion, the F­

measure approach can be used to optimise both algorithm and evaluation 

parameters on an object-level. The appropriate choice of the parameter ex 

depends on the end-user application; specifically the application scenario 

we identified in Section 3.4.1, i.e Evidence Gathering and Ticket Fraud. By 

maximising the F -measure for the chosen ex we select the optimal set of 

parameters for each application scenario. (The di cussion on the appropriate 

choice of ex for each of our scenarios is postponed to Section 3.5.4.) 

3.5 An object-based comparative 

methodology using the F-Measure 

Having introduced both the ROe and F-Measure frameworks we now present 

and illustrate our proposed object-based comparative methodology. vVe first 

start by making remarks on the structure of the valuation proce it elf 

in Section 3.5.1 - in particular the implications of the existence of param­

eters within the evaluation proces ' itself. While not part of the evaluation 
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methodology, th datasets used to illustrate the methodology is introduced 

in Section 3.5.2. The various step,- of the methodology itself are presented 

in Section 3.5.4. In summary these are 

• defining variations of the F -Measure metric for specific application sce-

nanos, 

• defining a method of associating detected objects with the ground truth 

objects 

• selecting the optimal values of the evaluation parameters, 

• optimising the parameters of each competing algorithm for each sce­

nario, and 

• computing the performance of each algorithm. 

3.5.1 Evaluation architecture 

Typical performance evaluation takes the output of some visual surveillance 

algorithm and compares it with the ground truth data - as illustrated in Fig­

ure 3.3. The performance of any urveillance algorithm will depend on the 

choice of a range of parameters. A detection algorithm typically has a num­

ber of internal parameters (algorithm param ters) which can be optimised 

for best performance. However, th evaluation proces at object-level al 0 

relies on a set of parameters which typically determine the degree of cor­

respondence between detected blobs and ground-truth object (evaluation 

parameters). As evaluation on a pixel-Ievel does not involve a d gree of 
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match" (correspondence between two pixels is established de facto), the ex­

istence of such evaluation parameters on the object-level is often overlooked. 

How would you select appropriate values for these? A naive approach 

would be to include these evaluation parameters within the ROC methodol­

ogy to select the optimal algorithm and evaluation parameter values. How-

ever, the result would be to evaluate each alternative surveillance algorithm 

with a different evaluation algorithm. Hardly an objective comparison! Fur-

thermore, the ROC methodology does not apply at object-level where true 

negatives are not available. We explore the issue of optimisation at various 

stages of a typical evaluation system. 

input ,-------------, segmentation 
results 

Algorithm 

I I I 
I I ... . .. I 

Algorithm Parameters 

r----------l 
, Ground Truth I ------- -----

Evaluation 
Method 

I I , 
I I' '' '' ' I 

Evaluation Parameters 

Figure 3.3: Typical performance evaluation system 

3.5.2 Dataset and ground truth 

metrics 

The evaluation was performed on two datasets: PETS-2001-cameral dataset 

and Kingston Carpark dataset. This choice was motivated by the r quire­

ment for a standard dataset but also by the need to evaluate competing 

algorithms on a dataset with a complex background. The PETS dataset is 

49 



well known, standard dataset from the PETS series accepted and often used 

by the research community. It represents a typical outdoor surveillance scene 

showing a street and a car park in front of an offic building with a number of 

foreground objects, people and vehicles, moving throughout the scene. How­

ever, this dataset does not contain much lighting variations. Therefore an­

other le s known but more challenging dataset is used, the Kingston Carpark 

dataset , which contain many interesting features relevant to the problem of 

background modelling and object d tection such a lighting change and 

background motion due to the weather conditions. (Example frames are 

hown in Figure 3.4.) 

The PETS-2001-camera1 data et consists of 2685 frames with 13 moving 

objects, people and vehicles, which appear individually and in groups and 

cross paths. The lighting is fairly stable with only minor background motion. 

- - -

Figure 3.4: PETS-2001-camera1 data et 

Figure 3.5: Kingston-Carpark datas t 

The Kingston-Carpark datas t consists of 210 frames recording activ-

50 



ities in a car park at full frame-rate covering a period of five and a half 

minutes. (Example frames shown in Figure 3.5.) The CCTV camera has iris 

auto-correction and colour switched on. The video sequence includes a total 

of 24 moving objects, people and vehicles appearing at close. medium and 

far distances from the camera. There is a variety of both gradual and sud­

den lighting changes present in the cene due to English weather conditions 

(bright sunshine interrupted by fast moving clouds, reflections from windows 

of vehicles and buildings). There are both static and dynamic occlusions 

present in the scene with moving objects crossing paths and disappearing 

partly or totally behind static objects. In addition, a strong wind causes 

swaying tree and bushes to disturb the background. 

The ground truth for both datasets is generated manually (by one person) 

u ing an in-house semi-automatic tool for drawing bounding boxes for every 

target within each frame of the video sequence. Ground truth provide the 

temporal ID of the object, its bounding box enclosing pixels of interest, 

defines the type of the object whether person or vehicle, and defines the 

degree of occlusion with other objects i. e. unoccluded, semi-occluded or 

fully-occluded. 

3.5.3 Detection algorithms 

The proposed performance evaluation m thodology is applied to three dif­

ferent detection algorithms: the well known Gaussian mixture model, the 

UV-variation modelling, and the motion distillation algorithm. ote that 

the propo ed evaluation methodology is concerned with the re ults of the 
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object detection regardless of which technique was employed by competing 

algorithms (i.e. analysis of the grey-scale or colour version of the original 

dataset). 

The Gaussian mixture method models each pixel by a number of Gaus­

sian distributions and adapts the model with each new observation [Stauf­

fer and Grimson. 1999]. According to the persistence and the variance of 

each distribution it is determined which Gaussian distributions correspond 

to backgrounds. Pixels that do not fit any of the background distributions 

are marked as foreground until they are included into a newly formed distri­

bution. This is an adaptive per-pixel model. 

The UV-variation modelling exploits the observed correlations of U and 

V components in YUV colour space due to global lighting changes in the 

scen [Renno et al., 2006]. The proposed method models the pos ible UV 

variations using a measure of the global colour content of the frame. It is a 

unimodal per-pixel model for classification of pixels as foreground , shadow, 

highlight or background. 

The motion distillation method detects moving edges using spatio-temporal 

wavelet decomposition [Surgue and Davies. 2006]. Rather than modelling the 

background, this method d tects the foreground by the spatial coherence of 

its motion. 

The three methods were chosen for evaluation because of their very dif-

ferent approach in solving the problem of object detection. 
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3.5.4 Methodology 

This section outlines the main features of the proposed object-based com­

parative methodology using the F-measure. 

Associating ground truth objects to detected objects 

In pixel based evaluation the correspondence between the GT and the de­

te ted foreground pixels is straight forward. However, where object-based 

metrics are used gives rise to a correspondence problem. Establishing the 

correspondence between GT objects and detected objects which can be di -

placed spatially in the image, or indeed fragmented or merged. The latter 

is particularly problematic as the density of objects rises. Although the 

datasets used for the evaluation are of relatively low density, they do provide 

examples of these problems. 

Following a typi al approach, we use the degree of overlap between de­

tected objects and GT bounding boxes to establish this corre pondence. 

(This is similar to the few published object-based methods [Hall et al., 2005; 

Nascimento and Marques, 2004].) In general this can result in one-to-many 

and many-to-one relationships. Thus the number of true positives NTP and 

false negatives N FN could be larger than the number of ground truth objects 

N i.e. NTP + NFN 2': N, if the correspondence is not handled correctly. 

Therefore, the choice of th correspondence algorithm i crucial. 

In object-ba ed performance analysis the label of each object (TP. FP, 

and FN) is defined as follows. A TP is a detected foreground blob which 

overlaps a GT bounding box, where the area of overlap is greater than a 
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proportion Db of the blob area and greater than a proportion 0,9 of the GT 

box area. A FP is a detected foreground object which does not overlap a GT 

bounding box. Finally, a F is a GT bounding box not overlapped by any 

detected object. Note there are no definable true negatives for objects. 

Impact of evaluation parameters 

Since the association between ground truth and detected objects relies on 

these evaluation parameters, so we should expect the precision recall and 

hence F-Measure valu s to depend on the overlap values Db and 0,9' This 

dependency can be illustrated in Figures 3.6 and 3.7. A precision graph 

and recall graph are presented in each figure for the Stauffer and Grim­

son algorithm. Each plot records one of these metrics as a function of Db 

(the blob overlap threshold) for a fixed 0,9 (the ground truth overlap thresh­

old). Each graph contains three such plots for three different fixed values 

0,9 E {0.002, 0.05, 0.3}. Figures 3.6 and 3.7 represent two different sets of 

algorithm parameters - the operating points of each of the Ticket Fraud and 

Evidence Gathering application scenarios. In all cases, these metrics are 

highly sensitive to the overlap thresholds i. e. the evaluation parameters. 

Having demonstrated this dependency, the sele tion of the optimal values is 

d scribed later in this section. 

Parameterising the scenarios 

The approach of defining specific end-user applications is utilised here to 

select suitable parameter values for a (Equation 3.5). The weight a r flects 

the relative importance of precision and recall for a specific surveillance task. 
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We select values for QTP and QEG associated with the two Ticket Fraud and 

Evidence Gathering scenarios defined in Section 3.4.1. In the Ticket Fraud 

scenario it is essential to keep the number of false positives low due to the 

relatively high cost of misdassifying negatives as positives, which implies a 

requirement for high precision and consequently low recall. In the Evidence 

Gathering scenario, a high true positive rate is vital, which implies high 

recall. Therefore, Ticket Fraud scenario is characterised by relatively high 

QTP value whereas Evidence Gathering case requires a low QEC . 

Despite this relatively principled manner of con training suitable values 
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for Q' , the final choice of Q'TF = 0.8 and Q'EG = 0.03 i somewhat arbitrary. 

A Q' takes values between 0 and 1, the two values were chosen at either end 

of this range to demonstrate the approach. The end-user would d fine th 

exact values of Q' for their pecifi surveillance task. (Similarly, while the 

ROe methodology of Section 3.4.1 enjoy d an apparent rigour. the actual 

choice of the cost ratio wa also rather arbitrary.) onethel ss we propo e 

to use and promote these values as part of this standardised obj ct-ba ed 

optimisation and comparison methodology based on the F-Measure. 

Setting the evaluation parameters 

As illustrated in Figures 3.6 and 3.7, object-ba ed p rformance m trics are 

highly dependent on the choice of evaluation paramet rs and the end-u er 

application. To select the appropriate evaluation parameter we n d to per­

form the optimisation proc s over th pace of all algorithms, all combina­

tions of algorithm parameters, and all combination of evaluation parameter . 

Effectively we select the algorithm (and it optimum algorithm parameter ) 

and evaluation algorithm (a specific set of evaluation patameters) that giv 

the best results. This process i repeated for each application cenario i. e. 

in th ory, a different set of evaluation parameters may be el et d for the 

Ticket Fraud and Evidence Gathering scenario. 

Ideally, when ver a Hew algorithm i evaluated, the whole proc of opti-

mising the evaluation parameters over th whole space of all algorithms and 

parameter combinations should b performed. In reality, we can a ume that 

the obj ctiveness requirement i atisfied if the evaluation parameter selec­

tion is performed once for a f w well-known det ction algorithm. Once the 
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evaluation parameters are selected) we can proceed with the optimisation 

of each algorithm. Finally, we compare the performance of the optimised 

algorithms for a given application cenario (see Section 3.5.4). 

We illustrate this method of selecting the evaluation parameters by gen­

erating suitable values for our two area overlap threshold parameters rlg and 

rlb· As illustrated in Figure 3. we seek to locate those evaluation parameters 

generating the maximum F-measure for the chosen scenario i.e. a specific 0.. 

(The F-measure increases as we move toward top right corner in precision-

recall space). 

A point in the graph represents a specific instance of one of the motion de-

tection algorithms with a specific set of algorithm and evaluation parameter. 

Such a point is generated for every combination of algorithm) algorithm pa-

rameter and evaluation parameter. Also drawn are the two i o-effectiveness 

lines which in lude the point that resulted in the large t F-I\Iea ure for each 

scenario. The evaluation parameters associated with each of these ringed 

points define the optimal evaluation pro e s. For each scenario and each 

dataset the optimal values of rlg and rlb are listed below in Table 3.2. 

PETS-200 I-cameral Kingston-Carpark 
Application Scenario rlg rlb rlg rlb 
Evidence Gathering 0.002 0.005 0.002 0.005 
Ticket Fraud 0.002 0.005 0.002 0.005 

Table 3.2: Optimal evaluation parameters 

Interestingly th values obtained in thi example are the same for both 

datasets which may not always be the cas . 
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Optimising and comparing detection algorithms 

Having generated the optimal set of evaluation parameters, the performance 

of each algorithm may now be optimised for each scenario by recovering 

the values of each algorithm s parameters which maximi e the F- leasure. 

Figure 3.9 illustrates this optimisation process for each of our three detec­

tion algorithms: Stauffer-Grimson [Stauffer and Grimson, 1999]. Renno et 

al [Renno et al., 2006] and Motion Distillation [Surgue and Davies, 2006]. 

Figures 3.9(a), 3.9(b) and 3.9(c) were generated for the PETS-2001-camera1 

sequence, and 3.9( d) , 3.9( e) and 3.9(f) for the Kingston-C8J.'park sequence. 

Here each point represents a specific set of algorithm parameters. For each 

algorithm, the previously parameterised evaluation process identifies an opti­

mal combination (the circle in each figure) for each scenario. The e optimal 

algorithm parameters are summarised in Table 3.3, 3.4 and 3.5 for each 

algorithm3 and each dataset. 

Ideally detection algorithms would have enough robustness in different 

datasets requiring little change in their parameter ettings. However in prac­

tice that i not the case, algorithms display a sen itivity to a specific appli­

cation. Therefore the optimisation of the algorithm parameters is necess8J.'y 

for each dataset and each application scenario. 

Analysis of the evaluation results 

With the evaluation and optimal algorithm parameters determined the per­

formance of motion detection algorithms can be compared simply by com-

3Readers are referred to the relevant papers for a description of the algorithm. 
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PETS-200 I-cameral Kingston-Carpark 
Algorithm Evidence Ticket Evidence Ticket 
Parameter Gathering Fraud Gathering F\'aud 

a 0.008 0.014 0.02 0.014 

XRGB 10 12 26 26 
Tb 0.9 0.9 0.9 0.6 

Table 3.3: Optimal algorithm parameters: Stauffer and Grimson 

PETS-200l-cameral Kingston-Carpar k 
Algorithm Evidence Tick t Evidence Ticket 
Parameter Gathering Fraud Gathering Fraud 

mmu 0.0001 0.0001 0.0001 0.001 
mmv 0.0001 0.001 0.1 0.01 

Table 3.4: Optimal algorithm parameters: Renno et al 

PETS-200 I-cameral King ton-Carpark 
Algorithm Evidence Ticket Evidence Ticket 
Parameter Gathering Fraud Gathering Fraud 

Sobel threshold 20 20 10 30 
Image stack 11 9 7 5 

Table 3.5: Optimal algorithm parameters: Motion Distillation 
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paring the equivalent F-Mea ure metric in each of the application cenanos. 

Table 3.6 shows the F-measure values corresponding to the optimal oper­

ating points of Stauffer-Grimson [Stauffer and Grimson. 1999], Renno et al 

[Renno et al. 2006] and Motion Distillation [Surgue and Davies. 2006] al-

gorithms, for both the Evidence Gathering and Ticket Fraud scenario , and 

both PETS-2001-camera1 and Kingston-Carpark datasets. Results illustrate 

that for both scenarios and both data ets the Stauffer-Grimson algorithm 

outperforms the other two algorithms. The Motion Distillation algorithm 

comes very closely behind the Stauffer-Grimson, achieving only slightly lower 

F-measure values, while the Renno algorithm is in third place. It should be 

noted, however, that the ranking of the competing algorithms wa obtained 

when the parameter of each algorithm were optimised for each dataset in-

dividually. This may hide an underlined sensitivity to the data - a lack of 

robustness in which the algorithm performance degrades in different dataset . 

Further experimentation if required over a larger number of dataset to ex-

pose such weakness. 

PETS-200l-camera1 Kingston-Carpark 
Algorithm Evidence Ticket Evidence Ticket 

Gathering Fraud Gathering Fraud 

Stauffer and Grimson 0.875 0.940 0.934 0.755 
Renno et al 0.850 0.807 0.725 0.583 

Motion distillation 0.867 0.937 0.887 0.720 

Table 3.6: F-Measure comparison 

With the exception of the Renno method, the algorithms achieve a slightly 

higher F-measure for the Ticket Fraud scenario on the PETS-2001-camera1 
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dataset. On the Kingston-Carpark sequence the situation is reversed i. e. the 

F-measure is higher for the Evidence Gathering than for the Ticket Fraud 

scenario for all three algorithms. Given the higher importance of the precision 

over recall for the Ticket Fraud scenario (see Section 3.5.4), this observation 

reflects th fact that in equences with generally unchanging backgrounds, 

relatively few false positives are detected. More changeable background (i. e. 

in sequences with changing lighting conditions and moving background el­

ements such as trees) cau e an increase in the number of falsely detect d 

objects and consequently the loss of precision. This notion becomes inter­

e ting, not only as a way of evaluating of the algorithms, but also in the 

context of defining the level of difficulty of a video sequence in terms of mo­

tion detection. In other words, the relationship between achieved levels of 

the F-measure for the standardis d application scenarios can indicate the 

level of difficulty of a dataset. 

For this illustrative comparison, the Stauffer-Grimson algorithm per­

formed best in these situations. The ranking of the algorithms remains the 

same for both scenarios and both datasets. 

3.6 Conclusion 

The primary purpose of this chapter was to expo e the surpri ingly com­

plex issues that arise when designing a well-designed evaluation methodology 

for comparing motion detection algorithms. Many of these problem arise 

wh n focusing on object-based metrics. (Pixel-oriented measures do not ad­

equately capture the impact of the motion detection stage on the subsequent 

61 



processing tasks.) Two issues in particular require careful addressing. First , 

the inevitable existence of evaluation parameters and the need to select ap­

propriate valu s for these. Second, the absence of true negative makes it 

impossible to use the well-known ROC methodology. In addition to these 

issues, a comparative methodology is required - a methodology that allows 

the definition of standardised application scenarios which provide context to 

the comparison. 

From these considerations a new object-based comparative methodology 

based on the F-Measure has been developed. While it provides a single-valued 

ROC-like measure enabling both optimisation and comparison of motion de­

tection algorithms there are a number of configuration steps. In summary, 

these are defining the application scenarios; determining the appropriate ex 

weights for each scenario; defining a method of associating detected obj cts 

with the ground truth objects; electing th optimal values of the evalu­

ation parameters; optimising the parameters of each competing algorithm 

for each scenario; and finally computing and comparing th performance of 

each algorithm. The ignificance of evaluating motion detection within the 

wider context of a surveillance system has been discussed. How ver, some 

of the current weakne ses remain to be addressed: explicit methodology for 

choosing appropriate ex values; standardisation of application scenario ; com­

parison with more methods reported in the literature; and a bigger range of 

datasets. Further investigation is needed to explore whether this methodol­

ogy might be practical further down the evaluation pipe-lin , illu trated by 

the graph in Figure 3.10 i. e. measuring the impact of an early visual proce 

on the results of subsequent visual processes. 
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Chapter 4 

Background Modelling using 

PCA 

4.1 Introduction 

Video sequence backgrounds can be treated as a high-dimensional data space 

where the behaviour of the variability of the grey-levels of the image pixels 

is observed in time and space. As the background structure remains con­

stant over time, and as lighting changes are typically correlated over the 

image, variations in these pixel variables typically populate small subspaces 

within this very high-dimensional space. To illustrate the complexity of the 

problem, consider that only a few minutes of digital video at full frame rate 

is equivalent to a dataset of a few thousands of images each of a hundred 

thousand pixels. Not surprisingly, effici nt background modelling is compu­

tationally costly and difficult to perform in real time applications. F'urth r­

more, in surveillance applications outdoor video sequences are often affected 
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by considerable background variations caused by global and partial illumi­

nation variations, gradual and sudden lighting condition changes, and non­

stationary background. The highly variable nature of background variations 

in outdoor video sequences requires highly adaptable and robust models able 

to represent the background at any time instance with sufficient accuracy. 

This work discusses the possibility of and proposes a method to reduce the 

complexity of the problem of background modelling by extracting a sufficient 

amount of information about the behaviour of the available dataset from as 

little amount of data as possible. The solution is twofold. The first step is 

to reduce the dimensionality of the problem by projecting the original data 

from the image pixel space into some lower dimensional space. ext, it i 

possible to sub-sample the available dataset in an appropriate manner in 

order to reduce the amount of data for processing. The idea is to perform 

all the analysis and processing on a much smaller number of variables. Once 

the processing has been done the pro essed data can be projected back to 

recreate images in the full dimensionality of the original data space. To 

make the problem more tractable, the image is first partitioned into smaller 

subregions. The region size is selected in such a way that the objects moving 

through the region neither appear too large (therefore occluding the whol ­

region) nor too small. 

This chapter explores methods for efficiently choosing the minimum amount 

of the original data and the lowest number of dimen ions required to obtain 

results which remain within the limits of an acceptable quality loss. This 

problem is addressed by applying eigen-theory and principal components 

analysis (peA) on a video surveillance recording of a typical outdoor scene. 
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This chapter is concerned with th batch, or off-line, background mod­

elling. An off-line methodology refers to those background modelling tech­

niques applied to a prerecorded video sequence, when the amount of available 

data (duration of the sequence) is known and fixed, and all possible varia­

tions of the scene background are already contained within the sequence. 

An on-line method refers to an adaptive technique which allow for merging 

the information about new observations with the existing knowledge about 

the video sequence background. The on-line approach is con idered later in 

Chapter 5. 

4.2 Modelling in high dimensions 

4.2.1 Handling high- dimensional data spaces 

Eigen problem definition 

The eigen problem is concerned with transforming a regular (non-zero deter­

minant) matrix into a singular (zero determinant) one. 

Let I be an identity matrix, A a scalar and A a square regular matrix. 

Then matrix Z is a scalar matrix. 

(4.1) 

Let us also define a new matrix 

( 4.2) 
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with lA - .All as its determinant. Furthermore the characteristic equation 

of A is defined as 

(4.3) 

The solution .A of the charact ristic equation of the matrix A are called the 

eigenvalues of the matrix A . The regular matrix A can be transformed into 

a singular matrix A-.AI for some specific values of the scalar .A. 

Subtracting .AI from A is equivalent to subtracting scalar .A from the 

elements on the main diagonal of A . In order to force the determinant of 

the new matrix to zero, the trace of A , i.e. the urn of its diagonal elements, 

must be equal to the sum of thes specific values of .A. The number of 

different specific value of.A denoted as eigenvalues, is equal to the rank of 

the matrix A. The rank of a matrix is defined as the maximal number of 

linearly independent columns (or rows)l of that matrix. 

r 

trace(A) = L.Ai ( 4.4) 
i=l 

Furthermore if th re is a vector gi) of the same number of row as A , 

such that 

(4.5) 

then the gi is an eigenvector of the matrix A which correspond to the eig n­

value .Ai. Eigenvectors that correspond to different eigenvalue are linearly 

IThe column rank and the row rank are always equal. Also, the rank of a non-square 
mxn matrix is at most min( m, n). 
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independent. Equation 4.5 is often written as 

(4.6) 

Eigen analysis of a covariance matrix 

Let X be a p x n matrix of n observations of p variables Xi , i = 1, ... ,p , with 

observations arranged in columns and variables in rows. Then 

X = (4.7) 

where Xij is the lh observation of the variable Xi . 

The covariance matrix S of p variables is defined as 

2 
0"11 0"12 O"lp 

0"21 
2 

0"2p 
S = 

0"22 
(4.8) 

O"pl O"p2 
2 

O"pp 

where O"~ and O"ij are variances and covariances of variables X i, (i,j = 1, ... ,p 

and i#j). 

(4.9) 

( 4.10) 
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By definition, the covariance matrix ~ is regular, square and symmetric. 

Its eigcnvalu s denoted as Ak, wh re k = 1, ... , r (r-rank of the matrix) , 

are real and positive. From Equations 4.4 and 4.8 there follows an interest­

ing property t hat t he sum of variances of variables is equal to the sum of 

eigenvalues of the covariance matrix. 

p r 

LO";i = LAk (4.11) 
i=l k=l 

Principal Components Analysis (PCA) 

The PCA technique is used to analyse high-dimensional data spaces in order 

to identify those dimensions which capture most of the variability in the data. 

It is often used to reduce the complexity of datasets without significant loss of 

information about their behaviour. The derivation of principal component is 

explained in great detail in numerous publications. Here, the interpretation 

of LT.Jollife has been used, [Jolliffe 2002]. 

Definition 

Consider a matrix X of n ob ervation of p random variables and it covan-

ance matrix S. Also let {aI ' a 2 , ... ,ak, ... } be a set of vectors of p elements 

each. 

Look for a linear function afX with maximum varianc , Le. cho e vector 

Ql in such a way to maximize the variance of afX. Then look for another 

linear function aIX , which is uncorrelat d with Qfx and maximizes th 

variance of aIX , and so on. At the k th tep, the linear function a[X has a 

maximum variance subj et to be un correlated to {QfX, aIX , .. . , aLIX}. 
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Furthermore vectors ak should be chosen such that they have the unit length, 

. T -1 Le. QkQk - . 

It is then said that the new variables {a[X , aIX, ... ,QIX , ... } are the 

principal components (pes) of X. There can be a maximum of p of these 

linear functions, but it is hoped that m < < p of them will account for most 

of the variation of X. 

How do we find pes ? 

The pes are derived from two conditions: 

• unit vector length 

(4.12) 

• and maximization of variance 

( 4.13) 

where k = I , ... ,p . 

The pes are calculated by combining the two conditions and replacing 

the linear combination aIX by a new variable ~k' [Jolliffe 2002 , p.4l· Fur­

thermore using the form of the eigen decomposition as in Equation 4.6, it 

follows 

(4.14) 

(4.15) 

( 4.16) 
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( 4.17) 

It can be deduc d that for k = I , ... ,p the kth PC is equal to £k = o{X, 

where O'.k is an eigenvector of the covariance matrix ~ corresponding to its k th 

largest eigenvalue Ak· As O'.k is a unit vector. then Ak is equal to the variance 

of £k ' [Jolliffe, 2002, p.3]. 

In other words , given a p-dimensional space X with a known covariance 

matrix~, it is possible to define a new m-dimensional space, m< <p, the basis 

of which is formed by the m eigenvectors of ~, whi h correspond to the m 

large t of its eigenvalues. The eigenvalues of ~ represent variations along the 

basi vectors, i. e. variances of new variables £k called principal components. 

This new m-dimensional space will capture most of the variation of the 

original space X. 

4.2.2 peA representation of video data 

A grey-level image may be represented as a vector ~ = (Xl, ... , xp) where Xi 

represents the grey-level of the ith pixel in an image containing p pixels. Th 

static background image obtained by a fixed camera may be formulated as 

an appearance model [Oliver et al. , 2000] where any image instance may be 

represented as a linear "deformation" from an average background image .& 
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where the pxm matrix P represents a linear transformation matrix. By 

its definition P is a real orthogonal matrix whose column vectors form an 

orthonormal basis of the Euclidean space RP. It is a square matrix whose 

transpose equals its inverse. 

ppT = p Tp = I 
- -- - ( 4.21) 

Th transformation matrix P can be derived from principal component 

analysis of a large training set X of n image observations. In this ca e, the 

column vectors of P are the eigenvectors of the covariance matrix of X . Then, 

the vector b of length m is the proj ction of image ~ on the m-dimensional 

eigen-space, where m < < p is the number of most significant components of 

the training dataset. 

4.2.3 peA of high-dimensional multivariate Gaussian 

data 

This section describes some simple examples of PCA of high-dimensional mul-

tivariate datasets with Gaussian distribution of variables. It demonstrate 

the relationship between the variabili ty of the data and that of the PC . 

Those PCs corresponding to largest eigenvalues of the dataset covariance 

matrix capture most of the variability of th dataset. 

Three types of datasets are simulated. In the fir t dataset all variables 

follow Gaussian distribution with standard deviation CJ = 2. In the second 

dataset half of the variable have CJl = 1 and the other half are with CJ2 = 2. 

Finally, in the last dataset each third of the variables has a different standard 
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deviation 0"1 = 1, 0"2 = 2, and 0"3 = 0.5. In all cases the distribution m an 

is zero. All three datasets have the same number of variables p = 102 and 

same number of observation n = 106 . 

Figure 4.1 illustrates the behaviour of eigenvalues for three datasets. The 

flat line corresponds to the first dataset where all variables follow the same 

distribution. Th observations form a multivariate Gaussian cloud with equal 

spread along all directions. Therefore, in theory in the eigen-space all pes 

vary equally and the corresponding eigenvalues are of the same magnitude 

0"2 = 4. The slight slope in the graph is a result of the finite number of 

observations in the dataset and an accidental alignment of obs rvations in 

some directions; the more observations, the more densely populated Gaussian 

multivariate cloud and the closer to equal variation along its axes. In the 

second case, the eigenvalues take two magnitudes, O"f = 1 and O"~ = 4, 

reflecting the nature of the variability in the dataset. Similarly, in the third 

dataset , the observed eigenvalue magnitudes are O"f = 1, O"~ = 4, and O"j = 

0.25. 

4.2.4 Dataset size 

Thi section discusses the effect of the dataset siz to the behaviour of eigen­

values of its covariance matrix. Let a matrix X represent a dataset of n 

observations of p random variables. We consider a special case where the vari­

ables take values randomly drawn from a Gaussian distribution with mean 

f.1, and standard deviation 0". For the purpose of the experiment the num­

ber of variables is set to p = 102 , th number of observations takes value 
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Figure 4.1: Eigenvalue magnitude 

n = {I 03
, 104

, 105 , 106 }. The standard deviation is set to a = 2 and the mean 

to f..t = O. In Figure 4.2, we observe magnitudes of eigenvalues a the number 

of observations decreases. 

As all p variables have an identical standard deviation, all eigenvalue 

are expected to be of equal magnitude. However, for relatively small dataset 

sizes, compared to the number of variables, the slope of the eigenvalue mag­

nitude is steeper than for larger datasets. The rea on for this behaviour i ac­

cidental alignment of randomly generated data which i ob erved in datas ts 

with a small number of observation relative to the number of variable (ven 

though drawn randomly from a Gau sian distribution). This accidental reg­

ularity is r flected in the distribution of the eigenvalue magnitudes, wher 
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Figure 4.2: Eigenvalues depend on the dataset size 

the most significant eigenvalues correspond to modes of variation observed in 

the data. As th new observation are added and the dataset size grows, an 

alignment of the data becomes le s important. The eigen-model ha more 

available information about the data and learns that all variable vary ran­

domly following the same Gaussian distribution, i.e. there are no dominant 

modes of variation and eigenvalues become of more similar magnitude. For 

larger datasets the eigenvalue magnitude plot is flatter , thus maintaining the 

total sum of magnitudes constant. 
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The same type of graphs can be drawn for different dataset sizes when 

the tested ratios between the number of observations and the number of vari­

able are preserved. At the ratio of 103 , for a random multivariate Gaussian 

dataset with a fixed standard deviation of all variables, th eigenvalues are 

of approximately constant magnitude, dashed lin in Figure 4.2 . It can be 

concluded that in order to avoid the effects of accidental regularities and ob­

tain an accurate representation of random data, the number of observations 

needs to be at least 103 times larger than the number of variables in the 

dataset. However, this is difficult to achieve in real cases. 

For real video scenes in general , in order to adequately capture the vari­

ability of data in the eigen-space, the number of observation (frame) should 

be sufficiently large relative to the number of variables (pixels). Unfortu­

nately, the data et size is generally limited by the available storage and com­

putation cost. This problem is firstly addre sed by reducing the number of 

variables by dividing the original frame into maller regions of pixel . Sec­

ondly, the error introduced by the insufficient number of observations can be 

tolerated to a certain extent. Due to the nature of the outdoor sequences, the 

major variability in the background is largely caused by the global lighting 

changes due to weather conditions. This variability is expected to be cap­

tur d by the first few largest eigenvalues, where the rest of the eigenvalues are 

insignificantly small. As illustrated in the next section, the ratio between the 

few most significant eigenvalues and the rest may be in exccs of few orders of 

magnitude for a small region of 64 by 64 pixels. The effect caused by having 

a relatively small number of observations (see Figure 4.2) i not exp cted 

to have any significant effect to this already very large ratio. Therefore a 
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smaller number of observations could be accepted without compromising the 

accuracy of the eigen representation of the original data variability. Investi­

gations persuaded us that even using as little as twice as many ob ervations 

as the number of pixels produces acceptable representation. The error of re­

construction did not significantly increase when the number of observations 

was reduced. 

4.2.5 Eigenvalue magnitude 

The previous section illustrated the behaviour of eigenvalue magnitude III 

a special case of multivariate random Gaussian data with identical standard 

deviation of its variables. Generally, a real dataset is characterised with more 

diver e variability which will be reflected by the scale of the eigenvalue mag-

nitudes of its covariance matrix. Eigenvalues are characteristic of a dataset 

and their magnitudes reveal the underlying nature of th variability of the 

data. This section illustrates the expected scale and the behaviour of eigen-

value magnitudes for real video datasets. 

Let a matrix X represent a dataset of n observations of p random vari­

ables. that the largest eigenvalue, denoted as Al =Amax , is much larger than 

all the rest, so that Ak~O for k = 2, ... ) p. (This means that there is one 

dominant mode of variation in the dataset.) Then Equation 4.11 becomes 

p 

2.:.= O"~ = Amax ( 4.22) 
i=l 

The maximum magnitude of the dominant eigenvalue when all other eigen­

values are insignificantly small is determined by th number of variables and 
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Figure 4.3: Eigenvalues of a real video dataset 

their standard deviation. 

4000 

In other words, if matrix X represents a set of n image of p pixels each of 

which on average has the standard deviation of, for example five grey-levels, 

the magnitude of the largest eigenvalue will be of th order of 106 for images 

of size 64-by-64 pixels. 

Real outdoor video surveillance datasets are expected to have veral sig­

nificant eigenvalues larger than all the rest by few orders of magnitude. These 

significant eigenvalues model the large range of lighting variations typical for 

such sequences. Experiments have illustrated that such a video sequence may 

display great differences in the eigenvalues magnitude the largest one being 

o 



typically greater than the following few by as much as an order of magnitude 

(see the example in Figure 4.33). Thi feature imposes major constraints on 

the dimensionality reduction when deciding on the number of principal com­

ponents to be retained to represent the dataset without significant loss in its 

variability. Figure 4.3 illustrates an example of a real dataset , described in 

Section 4.5.1. The graph shows very few significant eigenvalues the largest of 

which has the magnitude of the order of 106 . The eigenvalues were calculated 

for an image region of 64 by 64 pixels. 

4.2.6 Dimensionality reduction using peA 

High-dimensional problems are complex and computationally costly. How­

ever it is often po sible to discard some of the available data without signif­

icant loss in information. 

Provided that the variability in data is real and not a product of in uffi­

cient dataset size, principal components indicate the variability of the data. 

The error due to the insufficient amount of available data can be avoided by 

dividing the original image into smaller regions and analysing the ach region 

individually. Then, the higher the magnitude of the eigenvalue the larger the 

proportion of the total variability that is contained in the corresponding PC. 

Dimensionality reduction is based on r taining m number of PCs, which cor­

respond to the first m ordered eigenvalues, where m is significantly maller 

than total number of variable p , and under the condition that mo t of the 

variability in the data i still captured. 
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Cut-off rules 

A number of methods, intuitive rather than formal , which determine how 

mall m < < p can be, has been described in the literature [Jolliffe, 2002 , 

p.93j. These rules normally retain m dimensions where the sum of the vari­

ations of m most significant PCs is greater than some high proportion of the 

total variance of the data. In general, these rules retain many more PCs 

than required [Jolliffe, 2002, p.93j. The broken stick rule , on the other hand, 

defines the cut-off dimension considering the relative magnitude of successive 

ordered eigenvalues. 

The broken stick rule states that if a stick of unit length is broken ran­

domly in p segments than the length of the kth longest egment is expected 

to be lk ' as given in Equation 4.23. The rule compares variances with pro­

portions lk and decides that if the variance of the kih PC is larger than lk its 

contribution to the total variation is significant and the PC is retained. 

1 p 1 
lk = - L -:­

P j=k J 
( 4.23) 

Figure 4.4a show an example of distribution of segment lengths for the 

unit-length stick when the number of segments is 4096. Applied to eigenval­

ues of an image region of a real video dataset (described later in Section 4.5.2) 

with 4096 pixel variables (that is a 64x64 pixel image) the broken stick rule 

determines the cut-off at the 30th largest eigenvalue. In Figure 4.4b the 

dashed line represents eigenvalue magnitudes of the video data and the full 

line is the broken stick distribution; graphs are plotted on the logarithmic 

scale for better visibility. In other words, m = 30 PCs apture most of the 
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Figure 4.4: broken stick rule 

variability in this particular dataset according to the broken stick rule. It can 

be shown that this corresponds to approximately 95% of total data variance 

in this case. 

Table 4.1 sumarises the choice of a cut-off dimen ion using various rule 

for the same video dataset. 

rule 
average eigenvalue 
80o/c total variance 
90% total variance 
99% total variance 
broken stick rule 

cut-off dimension 
81 
5 
13 

313 
30 

Table 4.1: Cut-off number of dimension 

Unfortunately, these cut-off dimension rules are intuitive. The broken 

stick rule is often said to be the most adequate for real data. However, th re 

is no universal an wer. Which rule gives the most suitable cut-off point will 

depend on the nature of the dataset. Having in mind the aim of modelling 
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variations of a video sequence background, the following section explores an 

alternative approach to selecting how many dimensions are retained. 

Hyper-sphere of backgrounds 

Let us consider a video dataset of n frames and p pixels per frame. The eigen 

analysis transforms this dataset to a structure of n observation points in the 

p-dimensional eigen-space centered on the mean image. 

In real situations a video sequence will inevitably contain background 

frames contaminated by various types of noise (intrinsic camera noi e, camera 

movement, objects on the camera lens) or foreground object present in the 

scene. In this section we make an assumption that the distribution of the 

backgrounds in the eigen-space is wlimodal, i.e. represented by a single 

hyper-sphere. In this case the contaminated observations are expected to fall 

farther away from the centre of the eigen-space, whereas the true background 

images would be grouped in ome way closer to the centrE'. Of course, in 

many real cases the eigen-space is more likely to contain multiple modes 

where observations are grouped in a number of cluster ; this multi-modal 

approach is discussed later in Section 4.3. 

All uncontaminated purely background frames define a volume in the p­

dimensional eigen-space populated exclusively with background ob ervation 

points. Let us imagine that this volume is in effect a hyper-sphere in th 

normalised eigen-space, centered on the mean background image. This sphere 

will then contain all possible variations of the background and we refer to it as 

the hyper-sphere of backgrounds. Consequently, if an observation point falls 

inside the hyper-spher of backgrounds it corresponds to a true backgTound 
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image; otherwise, it is likely that the corresponding image contains data 

other than background. 

The limits of the hyper-sphere of true backgrounds may then be defined 

as, for example, having the radius three times the standard deviation of the 

available data, or containing a certain large percentage of total data points. 

These definitions are arbitrary and tests are needed to determine the most 

suitable. Therefore, as the dimensionality of the hyper-space increases, the 

distance, X, between the centre and a point in the hyper-sphere also increases 

according to Equation 4.24. 

i=m 

X2 
= L r;, ( 4.24) 

i=O 

where m = 1, ... ,p , and ri are projections of the radius on each of m-

dimensions of the hyper-space. Therefore, in spaces of reduced dimensional-

ity, as the number of retained principal dimensions, m < < p, increases the 

observation points are moving away from the centre of the hyper-sphere. 

The aim is to represent the video data in the reduced eigen-space in such 

a way that , for the small st possible space dimensionality m < < p, true 

background observation remain inside, and all other observations outside 

the hyp r-sphere of backgrounds. The problem of finding the appropriate m 

is now reduced to finding the threshold hyper-sphere radiu in m-dimensional 

space for which this condition is satisfied. The following experiment illu -

trates the increase of the distance of observation points form the m an when 

the number of retained dimensions increase. It hows how this effect can be 

used in classification of observations. 
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Assuming that the threshold radius of the hyper-sphere of backgrounds 

contains 95% of the available data2 we can determine the number of di-

mensions, m < < p, for which the hypher-sphere boundary separates the 

background from the non-background observations. At any of these true 

background observation points the distance to the mean is smaller than the 

threshold radius , whereas the distances of contaminated observation points 

are larger than the threshold radius. In other words. the true background 

points are inside the hyper-sphere, while the contaminated points are outside. 

In Figure 4.5, the blue line on the graph represents the threshold radius 

of the hyper-sphere of backgrounds which encompasses 95% of all available 

ob ervations of an image region of a real outdoor basckground sceene (re-

gion {7,7} in Figure 4.29 of the dataset described in detail in Section 4.5.2. 

Three types of classified test ob ervations are considered: a known back­

ground (black line) , a new unseen background (red line) and an observation 

contaminated with some foreground data (green line). The graphs show the 

increase of the Mahalanobis distance between each observation point and the 

mean background observation in the centre of the hyper-space. 

For relatively low space dimensionality, under about 20 in this case (see 

the inset image) the model, having a very limited knowledge about the 

dataset , incorrectly places the contaminated observation in ide the sphere 

with backgrounds (green line). As the number of dimensions increases the 

higher proportion of total variability of the dataset is captured. Therefor 

the more pes are retained, the eigen-model will better de cribe the data and 

2The radius of the hyper-sphere i calculated using the chi-squared di tribution with 
m degrees of freedom. 
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Figure 4.5: Threshold dimension 

better distinguish between the true and contaminated backgrounds. The 

contaminated observations are placed farther away from the hyper-sphere of 

backgrounds. The cut-off dimension, m < < p, needs to be large enough to 

place the contaminated observation outside the hyper-sphere of backgrounds. 

As it can be seen from the inset graph, the green line crosses the blue line at 

about 20 dimensions. 

The eigen-model was initially created from a limited amount of avail­

able, or already seen, true backgrounds. As the model includes more dimen­

sions and captures more information about the training dataset , it is better 
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Figure 4.6: Reconstruction error 

equipped to pick out new unseen data, even purely background. Eventually, 

for a certain higher number of dimensions rn, the true background obser-

vat ion unknown to the model is found beyond the radius of the threshold 

sphere (red line crosses the blue line at about 550 dimensions). However, the 

aim is to keep the unseen background observation inside the hyper-sphere of 

backgrounds. Hence, the cut-off dimension, rn, must not be too large. 

The known observation, a background from the training dataset remains 

inside the hyper -sphere of backgrounds for all dimensions (black line). 

Figure 4.6 illustrate how the choice of the cut-off dimension affects the 

ability of the model to reconstruct new data. The graphs represent e Tms, the 
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rms reconstruction error per pixel, calculated in grey-levels after a reduced 

m-dimensional model has been used to recreate observations form the eigen­

space back in the image space. The higher the m the more information 

captured by retained pes, the better the reconstruction and smaller the 

error. For m around the broken stick cut-off, in this case m = 34, the error 

of reconstructing th seen image settles at around 3 to 4 grey-levels per pixel, 

which is the level of the intrinsic noise of the video dataset. 

The error of modelling ~ is calculated as the difference between the orig-

inal image and its recreated version obtained from its eigen-space represen-

tation. 

( 4.25) 

!B e rms = V =-p- ( 4.26) 

To conclude the choice of the cut-off dimension is the one of a com-

promis. The cut-off dimension must be large enough to provide enough 

knowledge about the data and pick out foreground frames , but not too large 

so it can still recognise unseen background variations as true backgrounds. 

The example sugg sts that the broken stick rule provides an adequate choice 

of the number of dimensions of the reduced space model. 

4.2.7 Discussion 

High-dimensional spaces are complex to model and costly to analyse. By 

means of eigen analy is it is possible to define a smaller set of dimensions 

which will capture mo t of the variation of the original space. 

The number of observations in the dataset relative to the number of 
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retained dimensions affects the accuracy of the eigen-model. In order to avoid 

the effects of accidental regularities and obtain an accurate representation of 

random data, the number of observations needs to be at least 104 times larger 

than the number of variables in the dataset. This is very often difficult to 

achieve for real video scenes. The dataset size is generally limited by the 

available storage and computation cost, which may introduce errors in the 

representation of the data in the eigen-space. 

It is generally not obvious how many dimensions should be retained in 

the reduced eigen-space. The rules which determine the cut-off dimension 

are intuitive and there is no universal answer as to which rule gives the most 

suitable cut-off point. The broken stick rule is often said to be the most 

adequate for real data. 

The definition of the hyper-sphere of backgrounds, which separates true 

backgrounds from contaminated observation points in the eigen-space, offers 

an alternative approach to dimensionality reduction. As the dimensionality 

of the space increases the distances of the points from the mean also in­

crease. For a particular cut-off dimension all true backgrounds will remain 

inside the hype-sphere, while the contaminated points will be pushed beyond 

its limits. The experiment suggests that the broken stick rule provides an 

adequate choice of the cut-off dimension at which the hyper-sphere provides 

a good separation of contaminated observations. (However, the hyper-sphere 

can only be calculated on batch data. Therefore, the selection of the cut-off 

dimension by means of the hyper-sphere is not suitable for an online algo­

rithm.) 
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4.3 Modelling multi-modal background 

distributions 

Previously, it was assumed that a dataset of observations forms a single 

hyper-sphere when projected to the reduced dimensionality eigen-space (uni­

modal model). The number of dimensions of the reduced space was deter­

mined by the broken stick rule. The distance from the hyper-sphere centre 

provided the means for classification of a new observation as pure background 

or contaminated with foreground , where any observation point outside the 

fixed hyper-sphere radius is labeled as contaminated. However, in many 

real life cases contaminated observations may fall within the limits of the 

hyper-sphere and be wrongly labeled as background. This occurs when the 

contaminated portion of the image is relatively small compared to the image 

size, or the foreground pixels may be of similar grey-level as the background. 

Also, unseen global light variations may push a purely background observa­

tion point farther away beyond the hyper-sphere limits. Therefore, a more 

intelligent way of classification is needed. 

Given the nature of outdoor scenes, it is expected that background ob­

servation points in the reduced eigen-space would gather in clusters of back­

grounds of similar lighting conditions. It is possible to determine such clusters 

and perform the eigen-analysis on each cluster individually. The classifica­

tion of observations as background/foreground may then be determined by 

proximity to any of the clusters rather than the general mean. If a point falls 

within the subspace of one or more clusters it is classified as background; 

otherwise it is considered as foreground . 
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4.3.1 Algorithm 

The method for classification of test images as purely background or contam­

inated with foreground consists of the following steps: PCA, dimensionality 

reduction, clustering, PCA of each cluster, dimensionality reduction of each 

cluster and classification; as shown in Figure 4.7. 

Video 
datatset 

PeA 

Global 
eigell- ~pace 

Reduced global 
"igen-spllce 

Clustered reduced 
globa l clgcn-space 

Mulll-modal 
elgen-space 

Reduced 
multI-modal 
elgen-space 

Clustering 
PCAof 

each duster 

Figure 4.7: Classification algorithm 

Bac~ground 

ClassllicalJoll -... 
Foreground 

The training dataset is used to derive the unimodal global eigen-space, 

reduce the initial dimensionality of the data and to cluster the global eigen­

space into a set of multiple modes. (For the purpose of this off-line approach 

the size of the training dataset is selected as twice as many pixels in the 

observed image region. For more details on selecting the training dataset 

refer to Section 4.2.4.) 

A global eigen-space is derived from the training dataset and assumed to 

be unimodal. The reduced number of dimensions in this global eigen-space 

is determined by the broken stick rule. The multi-modal nature of the data 

is captured using the k-means method to cluster observations into subspaces 
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with similar background conditions. Small clusters, when the number of 

observations is smaller than a specified threshold, are merged with the nearest 

large cluster. The threshold is chosen as larger than the number of dim nsions 

(or some multiple of it) to avoid accidental alignment of observations in any 

of directions. Each cluster is now regarded as an independent sub et of 

observations and a further eigen analysi is performed on each individually. 

Now each local eigen-subspace, or mode, is represented with its mean and 

own set of eigenvalues and eigenvectors. At this point, dimen ionality of 

eigen-subspaces may be further reduced. A multi-modal eigen-space is so 

created. 

A test observation point is introduced into the clustered eigen-space and 

classified as a true background scene or contaminated with some for ground. 

The test point is projected into the locally normalised eigen-sub pace of each 

cluster in turn. If th test point rests within a local hyper- phere of one or 

more subspaces it is clas ified as background, otherwise it is likely to be 

contaminated by foreground. 

4.3.2 Classification by subspace clustering 

The following experiment illustrates the proces of subspace clustering on a 

set of artificially generated Gaussian data. 

Figure 4.8a shows all training observation points (blue) represented around 

the mean in the global eigen-space. Three clustered ubspaces (blu , cyan 

and green) are identifi d in this eigen-spac . as shown in Figure 4. b. The 

smallest cluster (cyan) b ing below some threshold size, is merged with the 
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nearest large cluster (blue). After the merger the updated eigen-space con­

tains two clustered subspaces (blue and green) , Figure 4.8c. 

(a) Training set (b) Clusters 

Figure 4.8: Subspaces 

(c) Adjusted cluster 

Figure 4.9 shows the principle of the unimodal classification approach. 

A et of test observation points (magenta) is introduced into the normalised 

global unclustered eigen-space, Figure 4.9a. The global hyper-sphere, de­

fined as the one which contains 95o/c of all training data, separates true 

backgrounds from contaminated observations. In this case. only one obser­

vation point is found outside the hyper-sph re and this test observation is 

classified as contaminated, Figure 4.9b. The unimodal approach results in 

one contamianted and eight background obs rvations. 

Figure 4.10 represents the multi-modal classification approach. As een 

in Figure 4.8c the ob ervations in global eigen-space form two clusters (blue 

and green) . A further eigen-analysis is performed on each cluster. For each 

cluster it is possible to define a local hyper-sph re which contains 95% of 

data in that particular cluster. Test observation points (magenta) are th n 

projected onto the each eigen-subspace in turn Figures 4.10a and 4.10b. 

Figure 4.10a shows the eigen-subspace reated by eigen-analysis of the 
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Figure 4.9: unimodal classification 

green cluster and its local hyper-sphere (black circle). This eigen-space ex­

ists independently from the blue cluster. Only te t points (magenta) are 

projected onto this space for the purpose of classification, while the blue 

cluster points are ignored at this instance. Similarly Figure 4.10b show 

only the test points projections onto the eigen-subspace of th blue clu ter. 

If a projected test observation point falls within any of the local hyper­

spheres it is classified as a pure background observation. Otherwi e it is 

classified as contaminated. In this case each eigen-subspace classifies on! 

one observation as background. As it is a different point that falls inside 

the green and blue subspaces, the multi-modal approach results in s v n 

contaminated and two background observations. 

The described experiment has illustrated the advantage of classification 

by sub pace clustering when a hyper-sphere is used to separate true back­

grounds from contaminated ob ervations. When contaminated proportion of 
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(a) First eigen-subspace (b) Second eigen-subspace 

Figure 4.10: Multi-modal classification 

an image is relatively small or similar to background grey-levels the contam-

inated test image is likely to fall inside the limits of the global hyper-sphere 

and consequently be wrongly classified as a true background. Clustering 

partitions the global eigen-space in subspaces which, when normali ed indi­

vidually, transform the global space into a set of local hyper-spheres of ob-

servations gathered by similar background conditions. This provides means 

of better separation between true backgrounds and contaminated points. In 

the experiment, the global hyper-sphere classified only one out of nine test 

points as contaminated compared to the subspaces method result of even 

out of nine contaminated test points. 
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Figure 4.11: Contaminated observations 

4.3.3 Contaminant s ize 

The following example confirms the advantages of background image classi­

fication using eigen-subspaces. 

A contaminant disc is introduced in a real life outdoor scene observation, 

oth rwise containing purely background pixels. The contaminant increases 

in size taking up from 1 % to 80% of the image, Figure 4.11. 

In Figure 4.12 the blue graph represents the distance of the observation 

point from the mean in the unimodal global eig n-space. The green graph 

is the distance of the same observation point from th nearest cluster in 

the multi-modal eigen-subspaces representation. In both approaches, as the 

contaminated area grows, the observation point in eigen-space moves away 
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from the mean. Once the contaminant reaches some critical size the point 

is pushed beyond the limits of the eigen hyper-sphere which separates the 

true backgrounds from contaminated image points. The radiu of the hyper­

sphere is calculated using the chi-squared distribution with m degree of 

freedom, where m is the cut-off number of dimensions determined by the bro­

ken stick rule applied to eigenvalues of the global unimodal eigen-space (blue 

line) or eigenvalues of the clustered subspaces in the multi-modal eigen-space 

(green-line). On both graphs, circles mark the contaminated proportion for 

which the observation is classified as background and crosses mark the obser­

vations classified as contaminated. It is observed that the unimodal approach 

tolerates the contaminant taking up the whole of 10% of the image before 

it is classified as contaminated, whereas with the multi-modal approach this 

critical size is only 0.5% of the image. 

It can also be noted that up to the contaminant size of about 20% to 25% 

of the image, the point distance form the nearest cluster mean steadily in­

creases. For larger contaminants we observe an unexpected effect of decreas­

ing distance. This is due to the nature of the image and the contaminant. 

In this example an artificial disc of a uniform colour equal to the average 

grey-level of the image was used. When this contaminant cover a larger 

proportion of the image the observation starts approaching the mean. How­

ever, this effect is of no particular intere t here as the contaminated point 

still remains beyond the limits of the hyper-sphere indicating the presence of 

the foreground object. In other words the classification will still be accurate. 

The experiment suggests that the multi-modal eigen-space approach al­

lows for accurate classification of contaminated observations even when the 
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Figure 4.12: Classification by distan e from the mean 

contaminant is very small relative to the image size. In other words, it is 

potentially capable of detecting the presence of very small foreground objects 

of less than 1 % of the image size. 

4.3.4 Classification accuracy 

The multi-modal lassification approach proposes clustering in already re­

duced space, Figure 4.7. Once the clusters are formed a further dim nsion­

ality reduction may be performed on each igen-subspace individually. The 

accuracy of the classification in multi-modal eigen-space is largely d pen­

dent on the dimensionality of the clustered igen-subspaces. The following 

experiment illustrates this dependency. 
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A real video dataset of an outdoor surveillance scene, described in Sec­

tion 4.5.2, is modelled by a multi-modal eigen-space. A smaller image region 

(64 by 64 pixels) wa observed. The global eigen-space was derived from a 

training dataset, where the size of the training dataset was chosen as twice 

as many pixels in the image region. Prior to clustering. the dimensionality 

of the global space is reduced using the broken stick rule. Clustered eigen­

subspaces are initially of the same dimensionality as the global eigen- pace. 

The number of dimensions in each eigen-subspace is further reduced using 

several dimensionality reduction rules namely the broken stick rule and some 

percentage of the total variation (95%, 9 %, 99% and 100%). A set of 70 

real life test images is introduced. The test et contains 40 purely back­

ground observations and 30 contaminated observations with contaminants of 

various sizes, shapes and grey-levels. The classification in the multi-modal 

eigen-space is performed on this dataset. 

Figure 4.13 summarises results of the classification using the multi-modal 

eigen-space. The variabl k in the first column denotes the number of clus­

ters and hence eigen-subspaces. The top table refers to the classification of 

the purely background test observations wh reas the bottom table refers 

to the classification of contaminated ob ervation . The number of correctly 

classified observations per degree of dimensionality of the eigen-subspaces is 

indicated in columns. Here, the dimensionality of eigen-subspaces is the num­

ber of principal components retained in each subspace, determined according 

to the broken stick rule or some percentage of the total variation captured by 

retained dimensions. The dimensionality redu tion rule is indicat d at the 

top of each column. 
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Figure 4.13: Classification results 
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It can be seen that the higher the dimensionality of subspaces the worse 

the classification accuracy of true backgrounds although the classification 

of contaminated observations improve. For example, in the case of k = 30 

eigen-subspaces, when all subspace dimensions are retained only 2 out of 40 

true backgrounds are correctly classified, compared with all 30 contaminated 

test observations being corre tly classified. On the other hand, when the 

subspace dimensionality is reduced using the broken stick rule, all 40 true 

background observations are correctly classified, compared to only 5 out of 

30 contaminated observations. The shaded areas in the Figure 4.13 are tho e 

with best classification results. 

The results suggest that the maximum subspace dimensionality (the col­

umn marked as 100%) improves the detection of contamination. At the same 

time the classification of true background images deteriorates because the 

high dimensional eigen-model captures small variations caused by the noise, 

which then become greatly exaggerated. Therefore the model is over-trained 

causing the test set of true backgrounds to seem very different than the train­

ing data. Consequently the true background observation points fall beyond 

the limits of the hypcr-sphere and are wrongly clas ified as contaminated. 

Therefore, the high dimensionality of clu tered eigen-subspaces maximises 

at the same time the true positive and the false alarm rates of classification. 

On the other hand, lower eigen-subspace dimensionality, i.e. obtained with 

broken stick rule, improves the classification of true backgrounds while the 

correct classification of contaminanted observations i greatly reduced. 

It can also be obs rved that for larger k, the finer partitioning of the space 

tends to produce better classification results for contaminated obs rvations. 
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In conclusion, the classification using high dimensional multi-modal clus­

tered eigen-space is suitable for applications in which maximum true positive 

rate is essential regardless the false alarm rate. For high subspace dimen­

sionality, equal to that of the global space, this method achieves 100% fore­

ground detection compared to the 80% of contaminated images detected in 

non-clustered unimodal eigen-space. On the other hand, low dimensional 

clustered eigen-space is suitable for applications where the high true nega­

tive rate is preferred. 

Comparison with the unimodal model 

If we were to use the unimodal case, where the dimensionality of the global 

eigen-space was reduced using the broken stick rule, the results would be 

the following - 38 correctly cla sified backgrounds and 24 correctly classified 

contaminated observations. While this may eem as a good compromise it 

is not the best solution in extreme cases when it is crucial to maximi e the 

classification results in terms of the numbers of true positive rate and the 

fal e al81'm rate. Furthermore the number of dimensions in such unimodal 

model is 34 which is much more than in clustered subspaces of the multi­

modal model, typically 4 to 7 dimensions. Let us assume that the number of 

dimensions of the unimodal model is now further reduced to, for example 5 

dimensions. In this case the cla sification result become very different: all of 

40 backgrounds are correctly classified but only 1 of 30 contaminated obser­

vations is detected (compared with 5 to 12 in clu tered spaces as hown in the 

bottom table in Figure 4.13). Therefore, the multi-modal model produce 

b tter detection of contaminated observations in low-dimensional spaces. 
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Admittedly, in the case of the off-line modelling, where the complexity 

and the processing time are not the major issues, the low-dimensionality is 

not crucial. However, the conclusions obtain d by experim nting with the 

off-line approach are intended to be used for the development of an online 

version of the multi-modal algorithm. In thi case the lower computational 

cost plays an important role and depends largely on the dimensionality of 

the model. The complexity of the algorithm is discussed in more detail in 

Section 5.2.6. 

4.3.5 Discuss ion 

In many real life cases observations may be wrongly labeled in the global 

eigen-space. When contaminated proportion of an image is relatively small 

or similar to background grey-levels the contaminated test image is likely to 

fall inside the limits of the global hyper-sphere and consequently be wrongly 

classified as a true background. The multi-modal eigen-space, cluster d in 

subspaces of observations of similar background conditions, provides a more 

accurate classification. 

The experiment suggests that the multi-modal eigen-space approach al­

lows for accurate classification of contaminated observations even when the 

contaminant is very small, less than lo/c of the image size. For compari on, 

the global unimodal model detects contaminants of the size larger than 10% 

of the image size. 

The dimensionality of the cluster d eigen-subspaces may further be re­

duced to simplify and speed up the processing. However th dimensionality 
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reduction affects the classification results. When all eigen- ubspace dimen­

sions are retained the detection of contamination is maximised, while at 

the same time classification of pure backgrounds is poor. Similarly, the low 

dimensionality of eigen-subspaces improves the clas ification of pure back­

grounds while that of contaminated observations deteriorates. Therefore, 

the trade-off between the true positive rate and the false alarm rate will 

determine the choice of the number of subspace dimensions. 

4.4 Subsampling 

Modelling of high-dimensional data is complex and slow to compute. Al­

though the slow computation may not be a problem in off-line olutions it 

will certainly be a constraint in an online approach. The results and conclu­

sions obtained for the off-line modelling are envisaged to be extended to an 

online approach. Therefore, a possible further reduction in dimensionality i 

discussed here. 

Although the dimensionality redu tion by mean of PCA could provide 

significant computational savings, further reduction may be achieved by 

reducing the amount of the proce sed data by subsampling a relatively small 

proportion of all the available data in each incoming frame to hypothesise 

the corresponding background. Sub ampling a proportion of pixel in each 

image observation is expected to result in a lower computational co t. 

There are many ways in which a number of pixel may be sub ampled 

from an image. In any case subsampling inevitably introduce los of infor­

mation about the original data. Thi i reflect d in the increa ed error of the 
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image reconstruction from its eigen-space repre entation, when ubsampling 

is performed at a lower subsampling rate. 

This section discusses limitations of subsampling and it effect on the 

classification of background observations in the eigen-space. 

4.4.1 peA of subsampled data 

Assume that a grey-level image is represented as a vector ~ = (Xl , ... Xp), 

where Xi represents the grey-level of the ith pixel in an image containing p 

pixels. A subset of s pixels, ~s = {Xi; i = I, s}, i subsampled form an image 

vector~. Using the Equation 4.20, the subset of pixels ~s can be represented 

as a linear deformation from an averag image as follows 

( 4.27) 

where p s, ~s and is are the subsampled versions of the linear transformation 

matrix P , image vector ~ and the average image~. The transformation 

matrix P is square and orthogonal. However) its ubsampled version is no 

longer so. Therefore its transpo e is not equal to its inverse and the pseudo­

inverse must be u ed instead as shown in Equation 4.27. Then, b S is the 

projection of the subsampled vector ~s onto the eigen-space defined by p s. 

The 1 ngth of b S is defined by the number of principal components rn < s < p. 

4.4.2 Subsampling background images 

One possibility is to randomly subsample pixels from the entire image. The 

resulting set of pixels is a subsampled r presentation of the image. If the 
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process of subsampling i repeated in th same manner, by randomly pick­

ing the same number of pixels, another repre ntation of the same image is 

obtained. Therefore every randomly ubsampl d t of pixel for a fixed 

ubsampling rate, re ult in a lightly differ nt image representation. When 

proc . s d in the eigen- pace these image repre entation will n ver produ 

ame re ults. In other word . random sub amp ling eau es certain unreliabil-

ity and the resulting calculations will be ubj ct to unde irable variation . 

Th extent of the variability depends on the sub amp ling rate: th fewer 

ub ampled data, th larger variability of alculation and the le reliabl 

re ult . 
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Figure 4.14: Limitation of ub ampling 

Th following exp riment illu trate the limitation of random ub am-
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pling. A purely background image is subsampled 100 times at a number of 

different subsampling rates. For each subsampling rate, the reconstruction 

error (defined as the RMS per pixel difference between the original back­

ground image and the reconstructed one) is calculated at every iteration and 

the average value is plotted on the graph. The subsampled image is projected 

in the unimodal eigen-space and cla sified as true background, when it falls 

inside the hyper-sphere of backgrounds, or contaminated otherwise. 

Figure 4.14 shows the error span bar plot of the average reconstruction 

error over 100 iterations, where a background image is subsampled at a de­

creasing sub ampling rate. Subsampling rate of 1 mean that every pixel is 

taken for processing, whereas 1/100 means that very 100th pixel is sub am­

pled. The average reconstruction error is plotted with the associated stan­

dard deviation bar. Also, at each subsampling rate, it is indicated whether 

the subsampled observation is classified as a true background - marked with 

a circle, or contaminated - marked with a cross. The subsampled observa­

tion is classified as contaminated if it is found outside the hyper-sphere of 

backgrounds during any of the iterations. The cross marks on the graph have 

numbers associated with them; that is the probability of the true background 

observation being classified as contaminated for that particular subsampling 

rate over all 100 iterations. 

It can be seen from the graph that the variability due to random sub am­

pling increases largely for subsa.mpling rates lower than 1/40. For example, 

when the full set of pixels is taken into account (subsampling rate 1 on the 

x-axis) the reconstruction error is about 4 grey-levels per pixel (which i in 

the expected rang of intrin ic camera noise at full frame rate). For a ub-
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sampled set of randomly selected 1% of all pixels subsampling rate of 1/100, 

the error increases to 14 grey-levels on average with a standard deviation of 8 

grey levels due to random subsampling. Therefore, the reconstruction error 

and its variability impose constraints on the choice of the subsampling rate. 

Assuming that the degradation of the reconstructed image above 50% 

relative to the one obtained from the full set of pixels, is not acceptable the 

subsampling rate should be limited to 1/40. In other word, in this example 

it is not acceptable to subsample less than 2.5% of available data. At this 

subsampling rate the error of reconstruction remains below 6 grey-levels per 

pixel through all random subsampling iterations. Furthermore. due to high 

variability at lower subsampling rates, it becomes uncertain whether the 

observation point in global eigen-space remains within the hyper-sphere. For 

example, at subsampling rate of 1/60 there is 3% probability of the point 

escaping the hyper-sphere of backgrounds, whereas at the rate of 1/90 it is 

equally probable that the point resides within or beyond the hyper-sphere 

boundaries. 

The experiment is r peated in the multi-modal eigen-space. In the un i­

modal eigen-space, as the subsampling rate decreases and the subsampled 

proportion becomes mall er , the image representation in the elgen- pace 

deteriorates and con equently moves farther from the region where true 

background observation are concentrated, beyond the hyper-sphere of back­

grounds. Similarly, in the multi-modal space the point moves away from 

clusters of backgrounds. The multi-modal eigen-space classification is even 

more sensitive to the changes in the observed image. Therefore, as the sub-

ampling rate decreases, the point will leave the true background region 
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Figure 4.15: Average distance 

ooner than in the case of the unimodal classification. 

In Figure 4.15, the blue line show the growing distanc of the sub ampled 

observation from the mean in the global eigen-space, whereas the green line 

represents the distan of the point from th nearest cluster in the multi­

modal space. As before, the subsampling is performed over 100 iterations, 

and at each subsampling rate the average distance is plotted. It can be seen 

that, in the multi-modal eigen-space, the purely background point or its 

subsampled representation, is wrongly classified as contaminated already at 

the subsampling rate 1/ 10, compared to 1/60 in the unimodal space. The 

clustered space is so sensitive to image distortions that the subsampled eigen­

representation of the image i no longer recognised as the true background. 
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Sub ampling provides means for great reductions in the processed amount 

of data. However, the subsampling rate is limited by high variations of result 

due to random subsampling and 10 'S in information due to di carding of the 

proportion of the original data. Considering this constraints, the acceptable 

subsampling rate for unimodal eigen-space classification is determined as no 

lower than 1/40. When classifying in multi-modal eigen-space, due to higher 

sensitivity to image changes, the acceptable subsampling rat is much higher , 

above 1/10 in this case. In other word it is possible to correctly classify a 

true background image using its subsampled representation in the unimodal 

eigen-space given that the subsampled proportion is not smaller than 2.5% 

of the entire image, compared to 10% in the multi-modal eigen-space. These 

values are obtained for a particular training dataset and algorithm settings 

(the number of clusters, the radius of the hyper-sphere of backgrounds) and 

will differ for different experiment setups. However, it is shown that it is 

possible to achive significant reduction in the processed amount of data whil 

preserving the accurate classification of true background observations. 

4.4.3 Subsampling contaminated images 

Contaminated images in general contain objects which normally do not be­

long to the background. The background is modelled in order to extract 

these objects from the rest of the image. 

To simplify and speed up the modelling process it i pos ible to use a 

subsampled proportion of the available data, as shown in Section 4.4.2. The 

background is repre ented by its subsampled version in the eigen- pace. From 
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thi r presentation and giv n the background model d rived from the training 

data, it is possible to hypothesize the background area occluded by contam­

inating objects. 

In order to obtain a reliable background r pre entation the ub ampled 

et of data should contain a much a pos ible information about the back­

ground. Therefore, it is de irable to ub ample pixels from purely background 

areas of the image and avoid the contaminated regions. On the other hand 

subsampling from the contaminated region i expected to cause imag dis-

tortion and push the ub ampled observation in the eigen-space beyond th 

hyper- phere of background indicating the pre ence of the contaminant. A 

m re controlled sub ampling method is expected to provide mean of ub­

sampling from desir d regions depending on the goal of processing. 

Subsampling from the entire image 

Thi ection discus es a number of subsampling technique. Random ub­

sampling from the entir image will inevitably include some contaminat d 

pix Is which results in distortion of the subsampled background represen­

tation. Figure 4.16 illustrate an example of random subsampling from a 

contaminated imag at ub ampling rates from 1/10 to 1/40. when the con­

taminant occlude about % of the image. 

. . 
. ' :,: ... '" .. : . ~:': .. : .. ' : . ':,: .':, . 

• ° 0 -

Figure 4.16: Sub amp ling from ntir image 
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For larger contaminants, the probability of subsampling from the contam­

inated region increases causing more significant distortions in the background 

representation. Figure 4.17 represents results of the unimodal eigen-space 

classification of a contaminated image randomly subsampled at the rate of 

1/10, when the size of the contaminant increases. The average distance from 

the mean, Figure 4.17 a, and the average reconstruction error, Figure 4.17b, 

are calculated over 100 iterations and plotted with their respective standard 

deviations. Both graphs increase with the increasing contaminant size. At 

the given subsampling rate , for contaminants larger than 8o/c of the image, the 

subsampled image representation is classified as contaminated as the point 

in unimodal eige-space is pushed outside the hyper-sphere of backgrounds. 

At the same time the reconstruction error per pixel, defined as the RMS 

difference between the true background without the contaminant and the re­

con tructed background obtained from the subsampled eigen-representation. 

increases above the expected intrin ic noise level. Similar effects can be ob­

served for different choices of the subsampling rate. The effect of increasing 

distance and higher reconstruction error are more significant for lower sub­

sampling rates. 

Figure 4.18 represents results of the multi-modal eigen-space clas ification 

of th same contaminated image randomly ubsampled at the rate of 1/10, 

when the size of the contaminant increases. It can be seen that in thi 

case the subsampled image representation is subject to a high information 

loss, uch that even the true background image with a 0% contamination is 

wrongly classified as contaminated. 

Furthermore, it can be observed that Figure 4.17a is very similar to th 
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Figure 4.17: Subsampled representation in unimodal space 
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Figure 4.18: Subsampled representation in multi-modal space 
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unimodal eigen-space elas ification plot in Figure 4.12. In other word the 

unimodal eigen-space ela sification result obtained from the subsampled por­

tion and that obtained using the entire image ar very close. The ame level 

of elas ification accuracy can be achieved by u ing only 10% of the availabl 

data. Thi suggest that, in the context of unimodal eigen- pace elas ifica­

tion, the information 10 due to subsampling at ubsampling rat up to 1/10 

i acceptable, alowing for significant reduction in the amount of pro essed 

data. 

Subsampling from sub regions 

It was hown that random ubsampling from th entire image at the sub-

ampling rate of 1/10 allow for detection of a contaminant of the ize of no 

le than 8% of th image. A more controlled way of subsampling from pr -

defined regions is xpected to provide accurate ela ification of even maller 

contaminant. Combincd with some knowledge of entry points in the c n 

and/ or expected contaminant sizes, this method can be an useful tool for 

quickly and reliably detccting presence of small contaminations from a rel­

atively little information about the scene. Figure 4.19 show an xample 

of subsampling from ubregion at the ubsampling rate of 1/10 when the 

contaminant occlude o/c of the image. 

Figure 4.19: Subsampling from ubregions 
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Figure 4.20a shows the result of the classification in the unimodal eigen­

space of the contaminated image obtained from 10% of the available pixel 

subsampled from four image ubregions. when the contaminant size increases. 

It can be seen that when subsampling from the top-left region, where the 

contaminant enters the sceene the ob ervation is cla sified as contaminanted 

for contaminants as small as 0.5% of the image (blue line). The classification 

obtained form other three subregions labels the image as true background 

as long as the contaminant is smaller than 20% and remains within limits of 

the top-left subregion. This suggests that by subsampling from predefined 

regions it is possible to largely improve the classification accuracy in the 

unimodal eigen-space even for the contaminants as small as 0.5% of the 

Image. 

~t=~~====~~~~~~~~~~ 
Top Left subregion 

50 

10 

classified as contaminated 
• claSSified as true background 

Bottom Le" subregion 
classified as oontamlnated 

• dasslfl8d as true background 
Top Right subregion 
claSSified as contaminated 

• classified as true background 
Bottom Right subregion 
cJassifted as oontaminated 

• classified as true background 

j 
I 

d I) 
fl '-1111,1 • 

I 
I 

! \ 
, 

o 0.5 1 2.5 5 8 10 20 30 44 ~ ~ 
contaminated proportion (%) 

(a) Distance 

=T.=~==~~~==~~~~~~~~ 
Top Left SUlxeglon 

180 

~ 80 
g 
"0 ~ 

~ 
~ 40 

20 

classified as contaminated 
• classlfted as true background 

Bottom Left SUbreglon 

classified as c:ontammated 
• claSSified as lnJe background 

Top Right SUbreglon 
claSSified as contammated 

• classifted as true baCkground 
Bottom Right subregion 
cfaSSlfied as contaminated 

• dassifred as true background 

f 

OU1U581O ~ 30 44 ~ ~ 
contammated proportIOn (%) 

(b) Reconstruction error 

Figure 4.20: Subsampling from subregions in unimodal space 

Figure 4.21 represents results of the multi-modal eigen-space classification 

of the same contaminated image when the size of th contaminant increases. 

The image is randomly subsampled from four subregion at the rate of 1/10. 
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In this case, the subsampled image representation is subject to a high in­

formation loss, such that even the three true background subregions with 

a 0% contamination are wrongly classified as contaminated (red, green and 

magenta lines). 
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Figure 4.21: Subsampling from subregions in multi-modal space 

4.4.4 Discussion 

After dimensionality reduction a further computational saving may be achieved 

by reducing the amount of the processed data by subsampling a relatively 

small proportion of all the available data. The random subsampling, however, 

has its limitations in terms of high variations of results and loss in information 

due to discarding of the proportion of the original data. This constraints im­

pose limits on the acceptable subsampling rate. In multi-modal eigen-space, 

due to higher sensitivity to imag changes, the acceptable subsampling rate 

is much higher than in the unimodal eigen-space. 

In the presence of a contaminant the ubsampled proportion of the data 
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will inevitably contain some corrupted samples. For larger contaminants, the 

probability of subsampling from the contaminated region increases causing 

more significant distortions in the background representation. In thi case, 

depending on th contaminant size it is possible to avoid contaminated ar­

eas by subsampling from predefined image subregions. This way of controlled 

ubsampling provides accurate unimodal eigen classification of image obser­

vations from a very small amount of subsampled data. Combined with some 

knowledge of entry points in the scene and/or expected contaminant ize. 

this method may quickly detect contaminations of the background from a 

relatively little information about the scene. However, this is not the case 

with the multi-modal eigen classification which is much more ensitive to 

image distortions than the unimodal model. Here, the sub ampled image 

repre entations are subject to an increased information 10 s and are there­

fore wrongly classified as contaminated even when there is no contamination 

in the scene. 

4.5 Experimental set up 

The aim of this work is to analyse and efficiently model the changes in the 

background of outdoor video sequences which usually contain an abundance 

of sudden and gradual light changes and non- tatic background. In order to 

account for as much of the background variation as possible it i ess ntial to 

perform the analysis on avid 0 dataset whi h includes a diversity of back­

ground features , such as weather conditions (sunshine, overcast, rain, wind), 

time of the day (daylight, dawn, dusk night) , length of the daytime, ea-
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sons, non-static background motion (swaying trees, bushes shadows). Fur­

thermore, the preferred dataset should cover a very long period of time and 

contain very little foreground motion. At the time of writing, in our opinion, 

none of the existing well known datasets fulfilled such requirements. There­

fore , two datasets have been produced which will be analysed and described 

in detail in this section. 

4.5.1 Kingston Carpark datasets 

Dataset description 

The Kingston-Carpark dataset is a video equence recording activities in a 

car park on a summer day. This is a short video consisting of 8350 frames 

taken at full frame-rate covering a period of five and a half minutes. Example 

frames are shown in Figure 4.22. The CCTV camera has iris auto-correction 

and colour switched on. The video sequence includes a total of 24 moving ob­

jects, people and vehicles appearing at close, medium and far distance from 

the camera. There is a variety of both gradual and sudden lighting changes 

present in the scene due to English weather conditions (bright sunshine in­

terrupted by fast moving clouds, refiections from windows of vehicles and 

buildings) , and changes in camera settings in respons to the light changes. 

In addition, a strong wind causes swaying trees and bushes to disturb the 

background. There are both static and dynamic occlusion pre ent in the 

scene with moving objects crossing paths and disappearing partially or to­

tally behind static objects. 
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Figure 4.22: Kingston Carpark dataset 
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I r gion I description I colour code I 
{l ,l } tree black 
{1 ,5} part white building, part tree blue 
{3,3} parked dark colour car green 
{3,6} part parked white van, part brick fence red 
{5 ,2} cobbled parking ground cyan 
{5,6} part silver car, part ground in shadow magenta 

{5 ID} tarmac ground yellow 
{7,9} cobbled parking ground violet 
{8,3} cobbled parking ground brown 

Table 4.2: Selected regions description 

Dataset analysis 

The original video sequence was recorded in colour. We perform all anal-

ysis on its grey-scale version. For the purpose of processing and analysis 

the original frames of size 557-by-72D pixels are divided into smaller regions. 

An example of 64-by-64 regions is shown in Figure 4.23a. The region size 

is selected in such a way that the objects moving through the region nei­

ther appear too large (therefore occluding the whole region) , nor too small. 

Admittedly, the choice of the region siz is rather arbitrary and is derived 

form the knowledge about the sequence, the perceived distance between the 

cam ra and the objects, and the expected size of the objects. 

To provide better understanding of the dataset we select and comment 

on few distinct regions chosen to cover a rang of video background content, 

uch as the type of the ground surface (tarmac, cobbles, gras ). the amount 

of saturated white colour surfaces, the presence of non-static background 

(swaying tre and bu hes). The selected regions are marked with rectangles 

of different colours, Figure 4.23b. and de crib d in Table 4.2. 
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Figure 4.23: Region 

122 



,",,,,,,",/IlIICIIII1011 

"'f 

1001 toD 

.L .......... ..dl •• bb ......... ~~ :.!II-\.._ -:!"'_ .......... MJd~~UI. __ ....... ~W.*'" ~MIIlI :L .. ~ ........ ~'*'b,JL. , , 
°0 TtJO 1110 .... 30 Hili lro.,:r.;cO 51! WO I~ 20J 

I 

J 
~~--~--~--~----~@--~--~--~~~--~~@~----~--==-~~~'----~ 

11 
"'I 

",. 

",I 
:t 

,. .~t 

'Or .~l 

J 
.-- ~ .. . '" .. 

·~f 
.001 

"': 

"'[ 
"'i 

::r 
.. , 

Figure 4.24: Histogram of grey-level pixel values for selected regions 

Figure 4.24 shows grey-level histograms of chosen regions calculated for 

a typical frame. The histograms reflect the diversity of cho en background 

regions; some are distributed over the whole grey-level range (black, blue, 

green, red and magenta) whereas others are more concentrated around mid­

range grey-levels (cyan, yellow, violet and brown). 
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Complexity of the background dataset 

To illustrate the complexity of the background dataset the following analysis 

look at some of its features , their nature and variability in time and space. 

In order to model the background of the scene, we select only frames in 

which there is no foreground motion while leaving out all other frames with 

foreground objects. As a result we obtain a purely background sequence, 

which is however discontinuous in time. There are 1500 frame consisting 

only of background images3 in our sequence. These frames will then form 

a training sequence for development of the background model. Due to thi 

time-discontinuous nature of the background sequence, some time-variable 

features of the dataset presented later in the text may appear to change 

abruptly at certain time instances4 . 

To demon trate the behaviour of these features due to global illumination 

changes of the scene, the sequence is divided into time windows which C'orre-

pond to following frame ranges: 1- 550,551- 750 and 750- 1450. divided by 

dotted lines on the graphs. 

Grey-level pixel values taken at consecutive time instances inevitably vary 

due to the intrinsic noise introduced by camera, the movement of the camera, 

and the illumination changes present in the scene. Figur 4.25 shows the time 

variation of the average RMS grey-Iev I difference between ucce sive frames 

for selected regions. How significant thi variation will be depend on the 

characteristics of the background. Region which indud background motion 

3frarne range selected from the original video sequence: 1050-1600, 3600-4000, 5300-
5600, 6600-6 00, 200- 250 

4frames 550, 950, 1250 and 1450 
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caused by swaying trees, such as regions {I , I} (black) and {1 ,5} (blue), 

exhibit more significant difference between successive time instances. Regions 

covering still backgrounds , tarmac and cobbled floor , such a regions {5 , 2} 

(cyan) and {8, 3} (brown), are subject mainly to the intrinsic camera noise. 

Regions which include more reflective surfaces, such as stationary vehicles in 

regions {3, 6} (red plot) and {5, 6} (magenta), display a similar low, noisy, 

and slightly less stable difference variability. The intrinsic noise level of the 

dataset, estimated as the RMS difference between the successive frames , is 

typically 3.2 grey-levels per pixel. This value is obtained for a region with 

no reflective surfaces nor non-stationary background such as region {8, 3}. 

Figures 4.26 and 4.27 show variations of the mean and the standard de­

viation of pixel grey-levels of selected regions as they vary from frame to 

frame over the whole background sequence. 

The time-variability of the mean value and the standard deviation of pixel 

grey-levels illustrate the effects of illumination changes in the scene. In the 

first and the third time window of the sequence, the global illumination of 

the scene is fairly stable. Significant variations of the mean pixel grey-level 

are visible only for the regions {I I} (black) and {1 ,5} (blue); these varia­

tions are caused by rratic movement of the swaying trees rather than global 

illumination changes. In same time intervals, the pixel grey-level standard 

deviation is stable for all regions but those with moving trees. This variation 

is caused by the fairly dark tree leaves which move and reveal parts of bright 

white buildings behind. It is this large difference in grey-levels between two 

background surfaces and the time-variable proportion of the image taken by 

each of them that causes th variation of the standard deviation. 
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Figure 4.25: Difference between successive frames for selected regions 

126 



..,.::ro(1 I~ .......cl!"j _. 
"" "" 

I 
.." 

"'I 
r 

,~. 

J-~~- I 

~I 
'~I 
so' 

~ ,L 
~-, .. ~~- , , .. , .. , .. , ... _. 

-~ 
....... 

"" ... , 

""' '" 

", 

" ..:., - .I " 0; , , , ' .. _ ... _. _. 
~I 
'": 1 

'~I 

'''I 
l' 

j I 

~I 

"I 
'; , .. , .. " , .. ,.., 

Figure 4.26: Mean pixel grey-level for sel cted regions 
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In the second time window the illumination varies due to changing weather 

condition, irregularly alternating clouds and sunshine. When the change oc­

curs, around the frame 600, the regions in the top half of the cene, {I , I} 

(black), {1 ,5} (blue), {3,3} (green) and {3,6} (red), are in the shade dur­

ing this time interval. Hence the corresponding grey-level means decrease. 

The regions of the bottom half of the image are illuminated by bright sun­

light which results in increasing mean grey-level values. During this time 

interval , regions {3 3} (green) {3,6} (red), and {5.6} (magenta) contain 

reflective surfaces such as glass and metal. V/hen the scene illumination 

changes rapidly between cloudy and sunny these reflections cause irregular 

peaks in the mean and standard deviation curve (for example in the interval 

around the time instance 650). 

This simple analysis demonstrates the complexity of the data representing 

an outdoor video sequence with unpredictable illumination changes and non­

stationary background. The behaviour of the data depends on a multitude of 

factors: th content of the scene - motionless or moving background, the type 

of background surfaces their colour and texture, the w ather conditions -

the speed and the magnitude of the light changes. Modelling such complex 

variability of the data combined with high dimensionality of the data space is 

very difficult. Statistical analysis of multivariate data, such as peA, should 

provide better understanding of complex dataset. 
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Figure 4.27: Standard deviation of pixel grey-levels for elected region 
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4.5.2 Inrets dataset 

Dataset description 

The Inrets dataset is a record of activities in a public courtyard in front 

of a small office building. It was generated over a period of two and a half 

months) days and nights ) during the late spring and early summer, at a frame 

rate of one frame per minute. The total size of the dataset is about 40000 

frames after discarding of a number of corrupted frames. Example frames 

are shown in Figure 4.28. The camera has the iris auto-correction and colour 

switched on. This dataset is a large collection of changing backgrounds in an 

outdoor scene. The weather conditions vary from bright sunshine, uniformly 

overcast to fast moving clouds and rain, causing a range of fast and gradual 

illumination variations in the scene. The cene lighting cycles through stages 

of day and night with transitions of dawn and dusk. Furthermore, there is 

a variety of non-static background changes, such as swaying trees parked 

vehi les, window blinds being pulled down and up changing state of the 

ground surfaces (dry and wet tarmac and concrete, grown and cut grass). A 

relatively small number of objects appear throughout the video. Given the 

very low frame rate these objects move fast remaining in the scene only for 

a frame or two. 

Dataset analysis 

The original vid 0 sequence was recorded in colour. We perform all analy is 

on its grey-scale version. For the purpose of proc ssing and analysis the 

original frame are divided into smaller regions of 64-by-64 pixels. To provide 
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Figure 4.28: Inrets dataset 
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2 3 4 5 6 7 8 9 10 11 12 

Figure 4.29: Grid of elected regions: Inrets datas t 

better understanding of the dataset we ele t and ob erve a few di tinct 

region chosen to cover a range of video background content) uch a the 

type of th ground surface (concrete, tarmac, gras ), the pre nce of non­

static background (swaying tree fully or partially covering th r gion). open 

ky horizon with fa t and slow passing cloud . and reflective gla surface . 

The selected regions are shown in Figure 4.29 and described in Tabl 4.3. 

Complexity of the background dataset 

To illustrate the compl xity of the background dataset the following analy i 

looks at ome of it f ature their natur and ariabilit in time and pace. 
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region description I colour code I 
{1 ,6} open sky black 
{2,4} swaying tip of a tree blue 
{3,10} thick leafy tree green 
{ 4,3} glass window red 
{6,1 } concrete ground close to the building cyan 
{6,5} concrete ground away from the building magenta 
{7,7} part concrete, part tarmac ground yellow 
{7,1l } part concrete, part tarmac ground violet 
{8,3} grass brown 

Table 4.3: Selected regions description 

In order to model the background of the scene we select only daylight 

frames when the street lights are switched off. Objects rarely appear in the 

sequence after which they either remain stationary in the scene or quickly 

disappear after a frame or two due to the low frame rate of recording. As a 

result of omitting the night time frames the obtained sequence is discontinu­

ous in time. The sequence covers about 20 days with a great variety of light 

changes. The time intervals corresponding to different days are marked by 

dotted lines in the following graphs. 

Figure 4.30 shows temporal variation of the grey-level RMS difference be-

tween pixels of successive frames for the selected regions over a time interval 

of 3000 frames taken at frame rate of one fram per minute. The variability 

observed for the region {1 , 6} (black), covers only the sky on the horizon, is 

mostly due to global light changes where the sunny and cloudy weather con­

ditions frequently alternate. The sequence is so rich with light changes that 

the average pixel difference between two sky images, recorded one minute 

apart, reaches up to 100 grey-levels. In the late evening and early morning, 

when the rest of the scene is fairly dark, the sky appears comparatively very 
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Figure 4.30: RMS difference between successive frames for selected regions 

bright and reaches th white saturation grey-level. Therefore, around the 

end and the beginning of the time intervals (days) marked by dotted lines, 

there is no difference between successive time instances for this region. The 

region {2) 4} (blue) displays very dynamic changes between succes ive time 

instances. Here) the tip of a tre shifts from one side of the r gion to another 

covering and uncovering the sky behind. It is this change in the proportion 

of the bright sky pixels and dark tree pixels in the region that creates uch 

a dramatic difference between succ ssive frames. The region {3, 1O} (green) 
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contains dense tree leaves of similar colours, hence the recordings of this area 

vary less from frame to frame. The next three graphs, red, cyan and magenta 

in Figure 4.30, display occasional high peaks which are due to changes other 

than weather conditions. In the region {4, 3} (red) they are due to reflections 

on the window glass and movements of the window blind that is pulled up 

or down from time to time, in regions {6, I} (cyan) and {6, 5} ( magenta) 

vehicles appear, remain stationary in the cene or disappear. In the case 

of the last three regions {7, 7} (yellow). {7, 1l} (violet) and {8, 3} (brown), 

the variability observed in the graphs is caused exclusively by global light 

changes. Here, it is also interesting to observe the difference between por­

tions of graphs which correspond to different time intervals (days) covered 

by the sequence. The first two days are overcast with not much sunshine 

getting through the dens cloud. The third day is with unny intervals, 

whereas the last day is very sunny. Peaks that appear in the graphs during 

this last day are caused by long shadows from the surrounding trees. which 

move constantly across the scene. 

The intrinsic noise of this dataset, estimated as the average RMS dif­

ference between successive frames , is 6.67 grey-levels per pixeL This value 

is obtained for a region with no reflective surface nor non-stationary back­

ground such as region {8 3}. The estimated intrinsic noise of the Inrets 

dataset is higher that that of the Kingston Carpark dataset. 

Figures 4.31 and 4.32 how time variations of the mean and standard 

deviation of pixel grey-levels for elected regions. The profil of variations 

depends on the type of the background covered by the elected region and 

the type of environmental conditions during the tim intervaL The region of 
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the sky reaches white level aturation at the beginning and the end of the day 

when it appears very bright compared to the rest of the scene: in these time 

intervals both mean and the standard deviation for this region are saturated 

and appear as flat lines on graphs. 

An interesting observation can be made regarding the last time interval 

which covers a very bright sunny day. At the beginning around the time 

instance 2420 , as the day grew brighter the mean grey-level in all regions 

(except the saturated region of the sky) started to increa e. Very shortly 

after, it started to drop rapidly. This firstly occurred in the leftmost parts 

of the scene in the region {6, I} (cyan), then progressively in the mid regions 

and finally, around the frame 2500 , in the far right region {7, 1l} (violet) 

and {8 3} (brown). This trend of decreasing mean continued until about 

time instance 2750. During this time interval, shortly after the day began a 

number of long dark shadows, caused by surrounding trees, created a tripy 

pattern of dark and light that was constantly moving over the scene. The 

shadows firstly covered the entire width of the scene and then gradually 

withdrew from left to right regions , finally disappearing at about the time 

instance 2770. As it was getting generally brighter in the scene the camera 

continuously adjusted the iris and the an10unt of light passing through, which 

caused the mean of the regions in the hadow to progressively decrease. 

This short analysis of basic tatistical characteristics of the dataset il­

lustrated the challenging nature of modelling outdoor video sequence with 

non-stationary backgrounds and significant changes in lighting levels due to 

weather conditions. It is very difficult to describe the behaviour of such 

data in a meaningful way if only the mean and th standard deviation are 
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Figure 4.31: Mean pixel grey-level for selected regions 

observed. A method, such as PCA, which provides means for unveiling the 

underlying variability in multivariate data, is expected to offer a more mean­

ingfully explanation of the behaviour of described datasets. 

4.6 Results 

This section describes the results of the eigen-analysis of the video data 

described in Section 4.5.2. The amount of variability in the data captured by 
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Figure 4.32: Standard deviation of pixel grey-level for selected regions 

the principal components is analysed. The results of different dimensionality 

reduction methods are discussed. Finally, the reduced dimen ionality eigen-

space representation i presented and discussed. 

4.6.1 Eigen-analysis of video datasets 

One way of modelling the variability of high dimensional datasets such as 

video data, is to perform eig n-analysi of the dataset and determine principal 

components which capture some significant proportion of the total variability 
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in the data. It is expected that a number of principal components, which 

is much smaller than the number of original variables, will be sufficient to 

explain behaviour of the data. In this section the eigen-analysis described in 

Section 4.2 is applied to a real vid 0 data et. 

Eigen-analysis of Inrets dataset 

Eigen-analysis is performed on selected regions of the Inrets dataset described 

in Section 4.5.2. For each region, the training set contains twice as many 

observations as there are pixels in the region. Two types of training sets are 

chosen, one containing daylight frames only and the other with both day and 

night frames. Both are parts of the large Inrets dataset , Se tion 4.5.2, and 

are of the same size. 

Figure 4.33 shows magnitudes of eigenvalues for selected regions for two 

sets of training data. The magnitude of an eigenvaluc reflects the amount of 

variability of the dataset captured by that eigenvalue. Therefore the shape 

of the eigenvalue plot depends on the nature of the data. Most significant 

eigenvalues or principal components (PCs), tho e of low orders, capture most 

of the variability in the dataset. Eigenvalues of low magnitude, those of high 

orders, are assumed to capture only the noi y variation in the dataset. 

Two plots in Figure 4.33a present eigenvalues for the training s t which 

contains only frames recorded during the daylight. The left graph pan over 

all eigen-components accounting for the variability along all directions of the 

eigen-space. The right graph shows the variance captured by the fifty most 

significant PCs. Similarly, the plots in Figure 4.33b pres nt eigenvalues for 
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Figure 4.33: Eigenvalues magnitude for selected regions (log) 
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N umber of most significant eigenvectors 
Dimensionality reduction methods 

Region Broken 95% of total 98% of total 99% of total average 
stick variability variability variability eigenvalue 

{16} 5 1 1 2 9 
{2,4} 45 76 214 366 122 

{3,l0} 46 197 648 10 1 133 
{4,3} 19 9 39 172 44 
{6,l } 30 22 55 112 67 
{65} 34 34 111 313 81 
{7,7} 35 34 115 409 79 

{7,11} 37 48 187 604 91 
{8,3} 37 158 583 1033 142 

Table 4.4: Cut-off dimension for day data 

N umber of most significant eigenvectors 
Dimensionality reduction methods 

Region Broken 95 o/c of total 98% of total 99o/c of total average 
stick variability variability variability eigenvalue 

{1 ,6} 2 1 1 1 2 
{2,4} 11 3 14 47 32 
{3,l0} 30 46 399 03 87 
{4,3} 10 3 15 102 27 
{6,l } 26 16 40 96 54 
{6,5} 12 4 19 76 33 
{7,7,} 14 5 16 44 33 
{7,l1 } 11 2 12 33 31 
{8,3} 23 17 78 267 56 

Table 4.5: Cut-off dimension for day and night data 
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the training set which covers both day and night frames. It can be observed 

that magnitudes of the few most significant eigenvalues obtained for the day 

and night data are in general higher than those obtained for the day dataset, 

after which they drop faster than those in the case of day data. Alternations 

between the day and the night time result in a pattern of global illumination 

change which dominates all other variations that may be ob erved in the day 

and night data. The dominant pattern of variation is captured by the very 

first few eigenvalues of the highest magnitudes. 

These few most ignificant pes capture most of the variability in the 

day and night data; for example, in the case of region {6,5} only four of 

the most significant pes contain 95o/c of the total variability in the day 

and night data compared to thirty four in the day data (see Table 4.4 and 

Table 4.5). At the same time, total variance contained in the day and night 

data is approximately three times that in the day and night data.In terms 

of standard deviation that is on average 36 grey-levels per pixel for the day 

and night data, compared to 21 for only day data. This is expected becau e 

the inclusion of night observations adds mor variability to pixel grey-level . 

4.6 .2 Dimensionality reduction 

Dimensionality redu tion i based on retaining m number of pes, which 

correspond to the first m order d eigenvalues, where m is significantly small r 

than total number of variables p, and under the condition that most of th 

variability in the data i still captured. In our xample, the number of 

variables p is equal to the number of observed pixel in a selected region· that 
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is 4096 variables in the 64-by-64 pix 1 region. This represents the number of 

PCs in the eigen-space. 

The higher the magnitude of the eigenvalue the larger is the proportion 

of the total variability that is contained in the corresponding PC. Table 4.4 

illustrates the proportion of total variability contained in PCs and summa­

rizes the results of dimensionality reduction for each selected region in day 

data. Equally, Table 4.5 corresponds to the day and night data. For each 

selected region the number of principal components is obtained by several 

dimensionality reduction methods and displayed in corresponding columns. 

The reduction methods used in this example are the broken stick rule. a pro­

portion of total variability and the average eigenvalue. These dimen ionality 

reduction methods were discussed in detail in Section 4.2.6. 

The results of dimensionality reduction confirm that due to the pres­

ence of a dominant global illumination change in the day and night data, 

fewer PCs are required to capture the same proportion of variability a in 

the day- only dataset . This is true for all dim n ionality reduction meth­

ods. Furthermore, it is suggested that the broken-stick rule provide 1110 t 

acceptable dimensionality reduction for both ets of video data. 

4.6.3 Eigen-space representation 

This s ction illustrates the data distribution in the eigen-space. The eigen­

r presentation reveals and models the underlying variability pattern in data 

that are otherwise ob cured or difficult to describe. 

Figures 4.34, 4.35 and 4.36 show a two dimensional eigen-representation 
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of selected regions where the two chosen eigen-space dimensions are the two 

most significant principal components (PCs). The first most significant PC 

is plotted along the x-axis; the second most ignificant PC along the y-axis. 

For each region there is a pair of graphs display d. The graph on the left 

side corresponds to the day only data, the one on the right to the day and 

night dataset. 

It is observed that regions {1 ,6} (black) and {2 ,4} (blue) are most affected 

by the alternation of day and night time. Tho e regions cover. entirely or 

partially, open sky pixels th grey-levels of which vary greatly from extremely 

bright during the day to extremely dark during the night. This is reflected 

by extended variability span of the first most significant PC on the x-axis of 

the right graph, Figures 4.34a and 4.34b. 

Region {3,lO} (green) covers dark thick tree leaves which are of similar 

grey-levels during the day and the night time. The variability of pixels in 

this region is not dominated by the day jnight light change. Hence there is 

not much differenc between the two graphs in Figure 4.34c. 

Region {4,3} (red) includes a window of an office building where a bright 

colour blind is regularly pulled up or down creating two states of the image 

region. The two states place the corresponding observations in on of two 

distinct clusters in the eigen-space, as shown in graphs in Figure 4.35a. The 

graph on the right hand side includes the night time ob ervations adding a 

new dominant PC to the eigen-space. 

Region region {6,1} (cyan) form a complex structure in the eigen-space 

due to transformations of the region caused by vehicle being parked and 

staying for periods of time or leaving the scene. Ob rvations in the eig n-
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Figure 4.34: Eigen-representation in two dimensional space (part 1) 
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space have a form of clusters, Figure 4.35b. which correspond to particular 

scene conditions. Addition of night time observations tretches the eigen­

space in a new direction and adds a new dominant PC. 

Variability in the last four regions , {6 ,5} (magenta), {7,7} (yellow), {7,1l} 

(violet) and {8,3} (brown), is mainly caused by global lighting changes. 

There are no reflective surfaces in those regions nor objects entering and 

remaining or leaving the scene. Observations of these image regions in the 

eigen-space form noisy clouds slightly stretched in the direction of global 

lighting variation. During the night time a treet lamp illuminates these 

areas. Therefore the day only graph and the day and night graph are very 

similar, as shown in Figures 4.35c, 4.36a, 4.36b, and 4.36c. Alternation 

between the day and the night time are not dominant contributor to the 

variability in these regions of the image. 

The experiment has demonstrated that mo t significant principal compo­

nents in the eigen- representation indeed model the dominant changes in the 

data, those that affect grey-levels of a majority of pixels in th scene. Such 

are variations caused by alternating patterns of global illumination in the 

scene. Major variations can also be caused by transformation of the scene 

setting due to relatively large objects appearing or leaving the scene repeat­

edly or remaining still for longer periods of time (for xample, the window 

blind going up and down or parked vehicles). 
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4.7 Conclusion 

This chapter looked at the possibility of modelling the background in video 

data using an off-line peA method. Although the computation cost may not 

be a problem in off-line solutions it will certainly be a constraint in an online 

approach. The results and conclusions obtain d for the off-line modelling 

are envisaged to be extended to an online approach. The details of the 

methodology were explained and the results illustrated with an exampl of a 

video surveillance dataset which included a variety of background changes. 

It was demonstrated that it is possible, by means of eigen analysis, to define 

a smaller set of dimensions which will capture most of the variation of the 

original high-dimensional dataset. In addition, the concepts of unimodal and 

multi-modal eigen-spaces were explored. However, several problems were 

noted. These are summarised below. 

4.7.1 Low-dimensional data representation 

The reliability of th low-dimen ional eigen representation of the data i m­

fiuenced by the number of observations in the dataset relative to th number 

of retained dimensions. The number of observation should b . if po ible, 

at least 104 time larger than the number of variables in the dataset. Oth­

erwi e, the accidental regularities in the random data may be modelled as 

significant. The desired accuracy is generally difficult to achieve for real video 

datasets. The dataset size is typically limit d by th available storage and 

computation costs. The limit d amount of data may introduce errors in the 

representation of the data in the cigen-space. 
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4.7.2 Selecting the number of pes 

The methods for selecting the number of pes were also investigated in Sec­

tion 4.2.6. It is generally not obvious a priori how many dimensions should 

be retained in the reduced eigen-space. The rules which determine the cut­

off dimension are intuitive and there is no universal answer as to which rule 

gives the most suitable number of retained dimensions. The broken tick 

rule i often said to be the most adequate for real data. However, a more 

principled alternative was explored using a training dataset which contained 

both background-only and contaminated images. 

An alternative dimensionality reduction approach defined a concept of 

the hyper-sphere of backgrounds in the eigen-space of the training data. The 

hyper-sphere of backgrounds is defined as a multi-dimensional volume con­

taining a high percentage (e.g. 95o/c) of all background-only training points 

in the eigen-space. New observations both unseen backgrounds and con­

taminated with foreground, are projected onto thi eigen-space. Ideally, the 

boundary of the hyper-sphere will eparate the background and the for -

ground observations. All background-only observations will be found insid 

the spher, while all the observations contaminated with foreground will be 

outsid the sphere. Thi can be achieved by choosing an appropriate di­

mensionality of the space. In general , a low dimensional model has a very 

limited information about the data, only the most ignifi ant change are 

modelled while smaller variation are ignored. Thus. all (or a great majority) 

of new point are placed closer to the centre inside the hyper-sphere. When 

new dimensions are added to the model, its ability to model finer variations 
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and distiguish between background and foreground increase. For a certain 

critical (or cut-off) number of dimensions the background and foreground 

observation points are well separated by the boundary of the hyper-sphere. 

Interestingly, this critical dimensionality corresponds to the one defined by 

the broken stick rule. 

However, the dimensionality reduction using the hyper-sphere of back­

grounds can only be performed for a training dataset where all observations 

are available. onetheless, this experiment has validated the broken stick 

rule as an appropriate choice for dimensionality reduction for modelling real 

outdoor video data. The hyper-sphere of backgrounds in the reduced eigen­

space can then be used for the classification of observations as background­

only (inside the hyper-sphere) or contaminated with foreground (outside the 

hyper-sphere) . 

4.7.3 Multi-modal modelling 

The hyper-sphere of backgrounds was defined in the unimodal eigen-space 

where the background observations are modelled as on multivariate Gau -

sian distribution. However, in many real life cases observation may be 

wrongly classified in this global eigen-space, as hown in Figure 4.9. 

When the contaminated proportion of an image is relatively small or sim­

ilar to background grey-levels, the contaminated test image is likely to fall 

insid the limits of the global hyper-sphere and consequently be wrongly clas­

sified as a true background. It was prov d that the multi-modal eigen-space 

dust red in subspaccs of observations of similar background condition, pro-
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vi des more accurate classification results. In this context, the problem of 

dimensionality redu tion for the clust r ubspaces was di cussed. It was 

shown that the full dimensionality of clusters maximizes the detection of 

contaminations, while at the same time cla sification of true backgrounds is 

poor. Therefore, the trade-off between the true positive rate and the false 

alarm rate is needed to determine the appropriate choice of the number of 

ubspace dimensions. 

4.7.4 Subsampling 

In an attempt to further reduce the amount of processed data, the possi­

bility and the limitations of subsampling a relatively small proportion of all 

the available data were also explored in Section 4.4. The lowest po sible 

required amount of data was discussed in the case of both the unimodal 

and the multi-modal eigen-model. It was shown that for the multi-modal 

method the lowest acceptable subsampling rate is generally higher than for 

the unimodal eigen- pace. If the amount of subsampled data is too low, the 

multi-modal method becomes too ensitive to imag changes, which cause 

wrong classification of background-only observation a contanlinated. 

However any random subsampling from an image may also include con­

taminated pixels. This may produce an inaccurate background model. There­

fore , a more selective approach to subsampling is n eded. For exampl , de­

pending on the contaminant size, it is possible to avoid sub amp ling from 

contaminated areas by subsampling from predefined image ubregions. This 

way of controlled subsampling would provide a more accurate clas ification of 
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image observations from a very small amount of subsampled data. Combined 

with som knowledge of the scen , such as entry and exit points, and/or ex­

pected contaminant sizes this method may quickly detect contaminations of 

the background from a relatively little information about the scene. 

4.7.5 Results and discussion 

The proposed method aims to model background changes in outdoor video 

sequ nces over long periods of time and to provide better understanding of 

the nature of its variability. For that purpo e two datasets were created. 

One dataset was recorded at full frame rate over a short period few minutes 

and the second at one frame per minute over a long period of two and a half 

months offering a valuable collection of long days with a variety of weather 

conditions. The video frames were divided into smaller regions to facilitate 

the analysis of the data. In Se tion 4.5, a set of representative regions was 

selected for both data ets. The complexity of the datasets was demonstrat d 

in terms of the difference between the successive frames the mean pixel grey­

level variations, and the standard deviation of pixel grey-level. Howev r , 

although simple to compute, the mean and the standard deviation do not 

provide a m aningful description of th behaviour of the data et. As an 

alternative, a more suitable approach using the modelling in the eigen-space 

was proposed. 

It was demonstrated that the eigen-analysis approach provides b tter un­

derstanding of the nature of background variations in video data ets. Exp r­

iments showed that the most significant principal component in th eigen-
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space indeed model the global lighting changes in the scene. The most sig­

nificant components have variances equal to the largest eigenvalues of the 

data covariance matrix. An example in Section 4.6.3 illustrated that only 

two most significant dimensions provide a good representation of the global 

lighting changes in the scene. 

This chapter addressed an issue of off-line modelling of video backgrounds 

when all the data are available for analysis. However , in real-life applications 

it is often required to analyse data in real-time, on-line rather than off­

line. Relying on principles drawn from the results of the multi-modal off-line 

approach, a new adaptive multi-modal background modelling algorithm is 

proposed in the next chapter. 
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Chapter 5 

Adaptive Multi-modal 

Background Modelling 

5.1 Introduction 

Real life outdoor video surveillance sequences often contain a variety of back­

ground changes including gradual and sudden light changes due to weather 

conditions, background motion such as swaying tree, or stationary object 

being left or disappearing from the scene. Efficient modelling must provide 

a reliable model of the background pixels at any time instance to enable 

th correct classification of image observations a either true background or 

contaminated by foreground pixels. Due to constant changes in background, 

this i a challenging task. 

In the previous chapter it has been demonstrat d by the example of an 

off-line batch algorithm that the multi-modal eigen-model approach provide 

a promising tool for foreground detection and ob ervation cla sification. The 
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presence of the objects smaller than 1% of the observed image region was 

correctly detected. This i a great improvement compared to the uni-modal 

eigen-model approa h, which only detected the presence of the objects larger 

than 10% of the image region. However, in real life applications it is often 

required to detect possible contaminations of the scene in real time. 

In real-time applications the challenge is to perform both the classifica­

tion and the update of the background model at each time instance. For 

this a different type of algorithm is proposed in this chapter; one that takes 

advantage of multi-modal eigen-modelling approach combined with an abil­

ity to develop and evolve in time in order to adapt to any changes in the 

background in a timely manner. 

The proposed adaptive algorithm evolves incrementally with ach new 

observation. At every time instance it adapts to the n w background condi­

tions u ing the knowledge of the newly acquired data and the accumulated 

knowledge of the current model. The update strategy is inspired by two pre­

viously reported methods: (a) the incremental eigen model update method 

[Hall et al., 1998] , and (b) the improved mixture model approach [Kaew­

TraKulPong and Bowden, 2001] applied to adaptive learning. 

The novelty of the method proposed in this work is threefold. First , the 

mixture model , describ d by KaewTraKulPong and Bowden refers to mod­

elling of individual pixel variations by one dimen ional Gaus ian distribution 

in the grey-scale or color image space. The nov lty of our approach is uch 

that this principle is applied to image regions rather than pixels wh re im­

age observations are mod lled with a mixture of multi-dimensional Gaussian 

156 



clusters in the eigen-space. Second, the incremental method of Hall et al. 

was developed for uni-modal eigen model which is not suitable for modelling 

a wide range of varied backgrounds in outdoor surveillance scene . Therefore, 

the incremental update principle is modified and applied to a multi-modal 

model consisting of clustered eigen-subspaces rather than a single uni-modal 

eigen-space. Third , the method of Hall et al. impo es a very rigorous rule 

as a condition for adding new dimen ions to the updated eige-space. How­

ever, uch rule is not appropriate for modelling outdoor datasets where the 

successive observations may significantly vary. This would cause adding a 

new dimension for each new image, which contradicts the principle of the 

proposed low-dimensional modelling. Therefore, a more suitable method for 

adding new dimensions is proposed. 

This chapter s ts out a framework for the adaptive multi-modal eigen­

modelling of image backgrounds and is organised as follows. Section 5.2 dis­

cusses the issues relevant to the on-line modelling, describes the principle of 

multi-modality and incremental adaptability. Section 5.3 describe the pro­

posed algorithm, detailing the mathematical and statistical principles, the 

algorithm steps and parameters. In particular, distinct stages of the algo­

rithm are explained: the model initialisation stage, observation classification 

tage and model update stage. The choice of algorithm parameters is also 

explained. Section 5.4 de cribe the result obtained by applying the pro­

posed algorithm to a real video surveillance datasct. It describe the data et 

and particular challenges it poses. The obtained results are discu ed and 

compared to those obtained by the non-adaptive off-line algorithm and the 
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uni-modal approach. Finally Section 5.5 concludes the chapter offering a 

critical look at the proposed adaptive multi-modal method with a discussion 

on its advantages and disadvantages. 

5.2 Adaptive multi-modal modelling of 

backgrounds 

5.2.1 Overview 

This section addresses particular issues related to the on-line modelling of 

the background in outdoor surveillance scenes. An efficient model is ex­

p cted to accurately represent the background at any time in order to enable 

an accurate classification of incoming observations as background-only or 

contaminated with foreground. The on-line modelling requires an adaptable 

model which evolv s in time taking into account the changing background 

conditions. 

The proposed algorithm performs modelling of background using clus­

tered eigen-subspaces of reduced dimensionality. Clusters of point in the 

eigen-space represent observations with similar background conditions. The 

model is initialised with a training set of the first Nt observations in the 

dataset. New observations are processed using th multi-modal model and 

classified eith r as a backgTound or contaminated with foreground pixels. 

ing the information about the new ob ervation and the accumulated knowl­

edge about th dataset ) the model adapts to the new background conditions 

incrementally. 
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Figure 5.1: Adaptive multi-modal algorithm for classification 

The initialisation phase creates an initial clustered model from the first 

NI available observations, which is used as a starting point in the model 

development. The model is initialised by applying an off-line peA to the 

training set of observations to obtain an eigen representation of the training 

data. Next , the dimensionality of the eigen-space is reduced. Thi reduced 

eigen-space is referred to as the global eigen-space. The training data pro­

jected into the global eigen space is then clustered into a set of clu ters, or 

modes, which gather observations with similar lighting onditions. A second 

PCA is performed on each clu ter and a new eigen-space for each clust r is 

obtained. The dimensionality of each cluster eigen-space is further reduced. 

These clustered eigen-spaces are referred to as the local eigen-spaces. The 

structure of the multi-modal model is described in Section 5.2.2. 

The algorithm for adaptive classification is illustrated by the diagram in 

Figure 5.1. After the initialisation stage new observations are acquired in 

real-time or when they become available. The new observation may contain 

either one of the previously observed background conditions, a new background 
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lighting condition or foreground objects. The model aims to classify the new 

observation as background or foreground . The classification is performed 

by mean of a te t designed to determin whether the new ob ervation may 

be mat hed with one of the existing modes of the multi-modal background 

model. The model is incrementally updated for each new observation. Every 

new observation brings new information about the background changes. The 

model incorporates this information in order to adapt to new background 

conditions. The update is based on the information about the new observa­

tion and the error of modelling introduced by the inaccurate outdated model. 

The evolving background conditions may require a more or le s significant 

model update depending on the nature and the extent of the observed back­

ground chang s. In some cases a simplified update of one local eigen-space 

is ufficient whereas in other cases a new dimension or indeed a new cluster 

(or mode) is required. 

Section 5.2.2 de cribe the multi-modal model structure. Section 5.2.3 

explains the principles of the incremental update of a uni-modal eig n model. 

Section 5.2.4 proposes a novel method for incremental update of a multi­

modal eigen model. Section 5.2.5 outlines the application of the propo ed 

update strategy. 

5.2.2 Multi-modal model structure 

The multi-modal idea is inspired by the mixture model approach of Kaew­

TraKulPong and Bowden where the variations of individual pixels in time 

are modelled by a mixture of one-dimensional Gaussian distribution . Here, 
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the mixture model approach is modified and applied to image regions rather 

than pixels. It is assumed that the vector of image region grey-levels can 

be represented by multi-dimensional Gaussian clusters in the eigen-space. A 

new image acquired at a time instance t is either modelled by the one of the 

existing clusters of the model or a new cluster is created using the informa­

tion about the new image observation. Using principles similar to those of 

the Gaussian mixture model (GMM) [KaewTraKulPong and Bowden, 2001]' 

the eigen multi-modal model evolves in time to accommodate new incoming 

observations. 

The multi-modal model is a set of clustered observation points in the 

global eigen-space, where each cluster is defined by its own local eigen-space. 

Clusters represent previously learned types of background conditions. The 

local eigen-spaces mod 1 the variability of the backgrounds in each cluster. 

The model con ists of K clusters, or modes, with the dimensionality ignifi­

cantly reduced compared to the original dataset of image ob ervations. 

The dimensionality of the original image space i p , which is the num­

ber of pixel variables in an image. Using PCA the dimen ionality can be 

significantly reduced to m < < p dimensions such that the most significant 

information about the data is preserved. 

The global eigen-space model Mg is defined a 

(5.1) 

where Pg is a p x m rotation matrix, A g is a vector of m eigenvalue !!:..g is 

m-dimensional mean, and m is the dimensionality of the global eigen- pace. 
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A local eigen-space model M~t) for the iLh cluster with mi :s: m dimensions 

at a time instance t is defined as 

(5.2) 

where pY) is a p x mi rotation matrix, A~t) is a vector of mi eigenvalues, 

M(t) is the mi-dimensional cluster mean, wY) is the weighting coefficient at 
- t 

time instance t , and m~t) is the dimensionality of the cluster at time t. The 

modes may be of the same dimensionality as the global-eigen space or fur-

ther reduced to mi :s: m numb r of dimensions. Furthermore, the modes 

may be all of the same or variable number of dimensions depending on the 

adopted dimensionality reduction approach. To support underlying aim of 

real-time implementation we reduce the dimensionality of the model as much 

as possible while the significant proportion of variability in the data is still 

preserved. The role of the weight w~t) is similar to that of the weights in the 

GMM method, i.e. it describes the portion of the data accounted for by the 

Gaussian. 

Finally the multi-modal model structure MU) of K mode at a time t is 

defined by the set of clustered local eigen-spaces M~t) where i = I , ... , K . 

M U) = {M Ct ) M (t) M Ct )} 
1) 2)"" K (5.3) 

For clarity of mathematical expressions the subscript (t) will be omitted 

in the t xt from now on. 
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5.2.3 Principles of incremental eigen-space update 

Hall et al. proposed a method for incremental update of the uni-modal eigen­

space. There are two aspects of this method [Hall et al.. 199 ]. First , at any 

time instance the model is estimated from the new observation and the model 

at the previous time instance. Second, the update method includes an ability 

to add new dimensions to the space. The incremental method of Hall et al. 

is outlined in this section. 

Let us consider a p-dimensional dataset with a covariance matrix ~ and 

its reduced dimensionality uni-modal eigen-space Mu defined as 

Mu = { p , A,~,m} (5.4) 

where P is a p x m rotation matrix, A is a vector of m eigenvalues, and 

!!:.. is m-dimensional mean of the eigen-space. At each time instance a new 

p-dimen ional ob ervation ~ is acquir d and projected onto the model Mu· 

The projection b of the vector 2f onto Mu is obtained as 

(5.5) 

(5.6) 

The error of modelling is represented by the residue vector h which is 

calculated as the difference between the new p-dimensional observation ~ and 

its recreated version obtained from the reduc d m-dimensional eigen- pace 
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[Hall et al. , 1998]. The residue vector is defined as 

(5.7) 

or by substituting Q 

(5. ) 

The model is updated each time using only the residue vector h and the 

knowledge of the current estimate of the covariance matrix, S . 
I 

The updated space rotation matrix P can be derived from the eigen 

decompo ition of the updated covariance matrix S'. 

(5.9) 

The new covariance matrix is defined as 

(5.10) 

where a is a weighting function and bb is the new projected observation. 

The new rotation matrix p ' is updated by inclusion of a new orthogonal 

unit vector. The new orthogonal vector of choice is th residue unit vector 
...... 
h, defined as follows 

(5.11) 
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Essentially, Equation 5.11 represents a test for adding new dimensions to 

the updated eig n-space. However, it can be seen that the a new dimension 

is added each time, except when the residue vector h i zero. In other words. 

a new dimension is created whenever a new observation does not lie exactly 

within the current eigen-subspace. In real-life applications, however , any 

new observation is unlikely to lie exactly within the subspace. Although 

possibly small, the residue h is unlikely to be zero. Thus, new dimensions 

are continually added. What is need is a method for detecting if this small 

non-zero residue h is significantly large to add a new dimension. We propose 

a olution to this problem in Section 5.2.4. 

The n w updated rotation matrix p i is calculated using the re idue vector 

as 

(5 .12) 

Substituting Equations 5.10 and 5.12 in 5.9 yields another eigen decom-

position 

DR = RA 
I 

(5.13) 

where 

"r 
and]: = h 6;;f. 

Matrix R is therefore found from the eigen decompo ition given by Equa-
I 

tion 5.13. Specifically, the set of updat d ubspace eigenvalues A is directly 

calculated as eigenvalues of D . Matrix R is then computed a a set of eigen-
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vectors of D and by substitution in Equation 5.12 the updated subspace 
I 

rotation matrix P is obtained. It is assumed that the updated space con-

tains on additional dimension. 

5.2.4 Incremental update of multi-modal model 

The incremental method of Hall et al. described in Section 5.2.3 ufi'ers from a 

number of limitations. In this section we propose appropriate modifications. 

There are two main limitations of the method of Hall et al.. First limita-

bon is that it was derived for the uni-modal eigen-space which is too general 

for the purpose of modelling real-life outdoor surveillance scenes. The uni-

modal model does not provide enough flexibility to accommodate a large 

range of background data. Second limitation is that the additional dimen-

sion is added each time when the new observation does not lie exactly within 

the current eigen-space, i.e. when the residue vector h i non-z ro. However, 

in real-life datasets, any new observation is unlikely to lie exactly within the 

subspace. Thus, where this non-zero h is small, which occur frequently, 

new dimensions are continually added. What is needed is a method for de-

tecting if h is ignificantly large to add a new dimension. Therefor, the 

approach of Hall et al. is not suitable for modelling of a variabl background 

with divers illumination changes often found in real-life outdoor surveil­

lance scenes. Thus, an adaptive multi-modal model is propo ed as a more 

appropriate solution. 

The proposed adaptive multi-modal approach sugge ts two modification 

for the incremental update. First, the principle of the in remental update of 
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Hall et al. is applied to the multi-modal eigen-model M. where the eigen-

subspaces of individual modes Mi are updated. Second, the requirement 

to add a new dimension for all non-zero h vectors, a suggested by Hall 

et al., is relaxed by inclusion of a preset threshold cl> on the magnitude of h , 

which provides a more robust model update. This is expected to reduce the 

number of times a new dimension is required. (The additional eigen-vector 

is orthogonal to the existing et of eigen-vectors and is determined by the 

direction to the new observation point. Once the new observation is added 

the eigen-vectors are recalculated as described in Section 5.2.3.) 

We introduce the notion of the exter-nal modelling error-, ~h which rep-

resents the component of the residue vector h in dimensions other than those 

of the mi-dimensional eigen-subspace M i . The external modelling error ~h 

is defined as 

~h = 

o 
o 

o 
h mi+1 

h m,+2 

h p 

(5.15) 

where h j is the /h component of the p-dimensional vector h. ( ote that 

components h j where j = 1, .. rn, are negligible.) 

The test for adding new dimensions, which was defined in Equation 5.11 , 

can now be modified. A new dimension is added to the cluster sub pa e M i 
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only when the magnitude II.0.hll exceeds the threshold <1>. 

if II.0.hll > <1> 

(5.16) 

else 

In other words, when the external error of modelling by the mi-dimensional 

cluster Mi is above the threshold <1>, the new orthogonal vector h is added 

to the updated eigen-subspace M~ and therefore its dimensionality is in-

cremented. On the other hand. when the error of modelling is below the 
~ 

threshold <1>, the new orthogonal vector h is reduced to Q and therefore a 

new dimension is not added to the updated space. 

The growing dimensionality mi of the cluster's subspace Mi is limited 

by a post-processing step of eliminating the smallest dimension . After each 

update, the eigenvalues of the cluster 's subspace are checked. All dimensions 

corresponding to eigenvalues smaller than the estimated noi e are eliminated 

straight away. However, the dimensionality of the subspace will inevitably 

grow as new observations are added to it. Thi problem can be solved in the 

following manner. It is possibl to define some critical number of dimensions 

beyond which the cluster s dimensionality mi hould not increase; for example 

a proportion of the global space dimensionality m. At this point, when mi. 

reaches this critical value, the broken tick rule may be applied to th array 

of the cluster's eigenvalues to reduce m i. 

The details of the update method, including how the thre hold <1> is cal­

culated, are described later on in Section 5.3.7. 
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5.2.5 Update strategy 

This section outlines the proposed update strategy. Th detailed description 

is given in Section 5.3.7. The nature of the new observation will influence 

th choice of the update strategy. Three cases can be identified according to 

the semantics of the new observation: 

• Case 1: The new observation represents a previously observed back­

ground. It can be matched to one of the clusters of the model and is 

referred to as the mode-matched observation. The matching cluster is 

called the mode-matched cluster. Its model is designated by M c and 

defined similarly to other modes as 

(5.17) 

In this case, one of two update sub-strategies is po sible, which is de­

termined by the magnitude of the external modelling error, lI~h ll, ob­

served in the global eigen- pace. The possible update sub-strategies 

are: 

i) The magnitude II ~hll is smaller than the threshold 4>. 

In this case, it is assumed that the new observation is v ry similar 

to other points in the matched cluster. Essentially it is assumed 

that the cluster has some noise contribution in all the dimensions 

not within the cluster's subspace. The cluster's mean and the 

covariance are updated only, without adding new dimen ion to 

the clu ter's local eigen-subspace. 
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ii) The magnitude II~hll is larger than the threshold q,. 

In this case, it is assumed that the new observation contains signif­

icant components in dimensions other than those of th matched 

mode. The mean and the covariance of the matched cluster are 

updated and a new dimension is added . 

• Case 2: The new observation represents a new unknown background. 

It can not be matched to any of the clusters of the model. In this 

case the multi-modal model is updated by adding a new mode with 

initially high variance and low weight , and with the mean in the new 

observation point. In keeping with the C1/fH approach one of the old 

cluster is chosen as the least relevant and removed . 

• Case 3: The new observation represent an image contaminated with 

foreground objects. Ideally, we don't want to use the contaminated 

observation to update the background model. However, the algorithm 

cannot tell at this stage whether this observation is a new unknown 

background (described in cas 2) or contaminated with foreground. 

Therefore the multi-modal model i updated by adding a new mode 

with initially high variance and low weight, and with the mean in th 

new observation point. A suming that a foreground object is moving 

in the scene, any newly created cluster will remain in the model only 

for a short time before being replaced, as the least relevant by a new 

cluster. Indeed, it might be a foreground object which remains in the 

scene and b comes a part of background. In this case, the new cluster 

becomes a new mode of the model. 
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In all cases, the notation M' will be used to identify the updated multi­

modal model. Similarly, M~ designate the updated model of the mode­

matched cluster. 

5.2.6 Complexity of the algorithm 

At every time instance when a new observation is acquired the model needs 

to adapt to reflect the new conditions. There are two main computational 

steps that need to be performed each time: finding the new covariance matrix 

and recalculating the new eigen-space from the new covariance matrix. 

If the batch method is performed at every time instanc that involves 

recalculation of the covariance matrix for all observations obtained in the 

past plus the new observation. Even if not all but only a certain number 

of past observations was considered, that would still involve k eping track 

of a large number of ob ervations (for details on th required dataset size 

refer to Section 4.2.4). The incremental method, on the other hand, allows 

for a relatively imple estimation of the new covariance matrix using only 

the information about the old covariance matrix and the new observation, 

Equation 5.14. 

At the core of any PCA algorithm is the eigen decomposition of the co­

variance matrix of the data. The complexity of the eigen decomposition is 

O(m3
) where m is the number of dim nsion . Therefore, in order to r duce 

the computational cost, it is e sential to k ep the number of dimen ions as 

low as possible. In the case of the adaptive multi-modal model the eigen 

decompo ition, Equation 5.13 i perform d when the mode-matched cluster 
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M c is updated. The complexity of the multi-modal algorithm is therefore 

reduced to O(m~) where me is the dimensionality of the mode-matched clus­

ter. (It will be shown later in Section 5.4.3 that me may be reduced to as 

few as 4 to 7 dimensions.) 

Section 4.3.4 illustrated the advantages of using the multi-modal model 

over the unimodal for detection of contaminated observations when the di­

mensionality of the data is greatly reduced (to only few dimensions). Having 

this advantage in mind an adaptive multi-modal algorithm is proposed. 

5.3 Adaptive multi-modal algorithm 

5.3 .1 Overview 

The proposed algorithm summarised in Figure 5.2, performs adaptive mod­

elling of backgrounds using clustered eigen-subspa es of reduced dimension­

ality. Points in the eigen-space are grouped into clusters with similar back­

ground conditions. The model is initiali d with a training set of ob erva­

tions. The training set consists of N t first observations in the dataset. On the 

basis of the position of the new ob ervation in the local eigen- ubspace and 

the modelling error, the classification and the model update are performed 

following the steps in Figure 5.2. 

5.3.2 Algorithm 

The flow chart in Figure 5.2 represent the structure of the propo ed algo­

rithm. The algorithm consists of a number steps. 
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Figure 5.2: Adaptive multi-modal algorithm 
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• Step 0: Initialise model 

The role of the initialisation step is to establish a suitable initial multi­

modal model structure. The initialisation tep involves several actions. 

i) A batch PCA is applied to the training data and the eigen-space 

is obtained. 

ii) The dimensionality of the global eigen-space is reduced. This 

eigen-space is referred to as the global eigen-space. 

iii) The points in the reduced global space are clustered into a set of K 

clusters. The clusters represent similar types of lighting conditions 

observed in the training data. 

iv) A second PCA is applied to each cluster and a new set of eigen­

spac s is produced. 

v) The dimensionality of the local eigen-subspaces is further reduced. 

These new eigen-spaces are referred to as the local eigen-subspaces. 

The outcome of the initialisation step is the model M of Equation 5.3 

composed of a set of reduced dimensionality eigen clu ter which cor­

respond to clusters of backgrounds. 

• Step 2: Acquire observation 

Once the model has been initialised new ob ervations are acquired and 

processed incrementally as they becom available. 

• St p 3: Project onto global eigen-space 

A newly acquired observation is projected onto the global cigen- pace. 
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• Step 4: Project onto local eigen-subspaces 

The new global eigen-space projection point is projected onto the local 

eigen-subspace of each clu ter in turn. 

• Step 5: New observation mode-matching test 

This step investigates whether the new ob ervation is recognised by 

the current model and can be modelled by one of the existing low­

dimensional cluster modes. This step is discussed in detail in Sec­

tion 5.3.5. 

• Step 6: Any other significant dimensions? 

This step investigates whether the new observation contains signifi­

cant components in dimensions other than the few dimensions of the 

matched cluster. The method is detailed in Section 5.3.6. 

• St p 7a-b: Foreground/background classification 

The classification is based on the error of modelling in the image space 

which is compared to a threshold estimated from the intrinsic noise of 

the data set. Th details of the classification step are giv n in Sec­

tion 5.3.6. 

• Step 8: Update the mode-matched cluster 

The update of the mode-matched cluster is perform d. The mean and 

the eigen-space of the cluster are updated without adding any new 

dimensions, as described in Section 5.3.7. 
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• Step 9: Update the mode-matched cluster and add a dimension 

The update of the matched clu ter is performed. The mean and the 

eigen-space of the cluster are updated and a new dimension is added 

to the space, as described in Section 5.3.7 . 

• Step 10: Update the multi-modal model 

A new cluster is created with the new observation as its mean, high 

variants and low weight , as explained in Section 5.3.8. The existing 

clu ters are ordered by the relevance and the last on is replaced by 

the new cluster. 

The following sections describe the details of the algorithm steps. 

5.3.3 Model Initialisation 

The model is initialised by a training s t of N t observations. A batch PCA 

is performed on the training set to obtain the global eigen-spac . The global 

eigen-space is a high-dimensional multivariate space with as many dimen­

sions as there are variables in the training dataset; that is p dimensions, 

where p is the number of pixels in a frame of the surveillance video dataset. 

The dim nsionality of the global eigen- pace may be reduced to m < < p 

dimensions, while the significant variability in the data is preserved, a dis­

cussed in Section 4.2.6. The dimensionality reduction method of choice i 

the broken stick rule, [Jolliffe, 2002, p.93]. 

The reduced m-dimensional global eigen-space is clu tered u ing K -mean 

method into K clusters. The clusters, or mode , are expected to mod I ob­

servations with similar illumination conditions of the scene. Another PCA 

176 



is performed on each mode in turn to compute its local eigen-space. Ini­

tially, the local eigen-spaces are of the same dimensionality as the global 

eigen-space. However, the dimensionality of each eigen-subspace may be in-

dividually further reduced to mi ~ m. The number of retained dimensions 

for each initial cluster mi is calculated individually by applying the broken 

stick rule of Jolliffe to the set of eigenvalues of each cluster. 

The initial multi-modal model tructure M(O) of K modes, Equation 5.3, 

is defined by the set of clustered local eigen-spaces as: 

M (O ) = {M(O) M(O) M(O)} 
l' 2, .. ·, K (5.18) 

where 

(5.19) 

and i = 1, ... , K. 

The initial model is a multi-modal reduced dimensionality eigen repre-

sentation of the training set. It provides a suitable structure for an adaptive 

modelling of multi-modal multi-variat high-dimensional data. 

Weighting coefficients 

The initial set of coefficients win) (i = 1, ... , K) is associated with th initial 

et of clusters. Weights capture the perceived relevance of clu ters. At the 

initialisation stage, the largest cluster is perceived as the most relevant. The 

initial coefficients are derived from the probability of a training observation 

point belonging to an initial cluster. In Equation (5.20), win) is the initial 

weight of the ith cluster, Ni is the number of points belonging to the ith 
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cluster and Nt is the size of the training dataset. All weights add up to 1. 

The weights will be updated at each new time instance. 

(5.20) 

5.3.4 Choosing the initialisation parameters 

An initial model is constructed from a training set composed of the first 

Nt image observations. A batch PCA is performed on the entire training 

dataset and the global-eigen space is obtained. The dimensionality of the 

global eigen-space is then reduced using the broken stick rule. The observa-

t ion points in the reduced space are the clustered in K using the K-means 

clustering technique. A second PCA is performed on each cluster individually 

to obtain a set of K local eigen-spaces. Finally, the dimensionality of each 

local eigen-space is further reduced using broken stick rule. As a result , the 

initial model is composed of a set of low-dimensional eigen-subspaces which 

model the modes of background variations in the training dataset. The choice 

of initialisation parameters is dependent on the nature of the data et. The 

choice of the training data, the number of modes K , and th dimensionality 

of modes are discussed in this section. 

Training data 

The approach for choosing the training data is illustrated by the example of 

the dataset described in Section 4.5.2. This dataset repr sents a continuou 

video recording of an outdoor scene with significant light variations due to 
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changing weather conditions. Furthermore, the data et is of a rather low 

frame rate of one frame per minute. It is assumed that the on-line adaptive 

multi-modal algorithm will be deployed to model this cene over a long period 

of time of many days. Therefore, considering the nature of the dataset cycling 

through days and the low frame rate of few hundred frames per day cycle. it 

is expected that one day of data will provide a sensible choice of the training 

dataset. The model may be inialised with the first N t frames of the sequence 

covering one day of data. 

Choosing the initial number of clusters 

The initial number of eigen-subspace clusters is estimated by a imple anal­

ysis of the training data, which was chosen to include a time interval of one 

day. The number of clusters should roughly corre pond to the number of dif­

ferent types of backgrounds appearing throughout a day of data. Too many 

clusters may cause unnecessary fragmentation of the data points, which may 

result in wrong classification of new backgrounds unable to fit in any of the 

mall clusters of known backgrounds. Too few clusters risk to result in wrong 

classification of images contaminated with small foreground object, which 

may go undetected in a large cluster of observations with similar background 

conditions. 

The estimation of the initial number of modes is illustrated by the exam­

ple of the dataset described in Section 4.5.2. A number of different day is 

analysed. Each day of data is clustered in 5, 10 15, 20 25 and 30 clusters. 

The number of observations assigned to each cluster is observed. The goal 

is to determine the number of clusters which is most likely to correspond to 
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the number of different typ s of backgrounds appearing throughout a day of 

data. The test is based on the assumption that clusters which contain fewer 

than 10% of the total number of observations result from over-fragmetation 

of the data. These points are more likely to belong to one of the larger clus­

ters. Therefore, cluster with more than 10% of total number of observations 

are considered as valid. The number of valid clusters for each day is shown 

in Table 5.1. 

K-Means Clustering 
Day Observations K=5 K=10 K=15 K=20 K=25 K=30 

1 918 5 5 2 1 0 0 
2 949 4 4 4 1 0 0 
3 911 3 5 4 3 3 1 
4 1175 3 5 5 3 2 0 
5 960 3 6 4 1 0 0 
6 970 4 4 4 4 0 0 
7 949 4 5 4 3 0 0 
8 951 5 6 5 2 3 0 
9 880 4 6 3 1 1 0 

average 962 3.5 5.1 4.3 2.2 1 0.1 

Table 5.1: umber of clusters per day 

The maximum average numb r of valid clu ters obtained in this example 

is 5, when K-means clustering with K = 10 is used. The goal is to aggregate 

rather than to fragment the data. When the space is fragmented into small 

clusters the mode-matching of the new background images is more lik ly to 

fail. As a result, new clusters may be unnecessarily created while the existing 

still relevant clusters are prematurely replaced. This may cause an increased 

risk of misclassification of background images. Therefore, K = 10 is adopted 

as a suitable number of initial clusters for this dataset. 
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Dimensionality of modes 

The modes of the training set represent clusters of observation points with 

similar lighting conditions. These form a set of subspaces in th global eigen­

space of the dataset. For each cluster a local eigen-model is computed. The 

data space now consists of multiple local eigen-subspaces modelling lighting 

conditions in the scene. These local eigen-subspaces will initially share the 

ame dimensionality as the global eigen-space. However, the number of di­

men ions in each local sub pace may be further reduced. The dimensionality 

reduction method of choice is the broken stick, as discussed in Section 4.2.6. 

5.3.5 Locating the most representative mode 

After the initialisation stage new observations are acquired when they become 

available. The goal of the algorithm is to classify the new image as a true 

background or contaminated with foreground. A new observation image may 

contain a background similar to one of the already observed background 

conditions mod lIed by the clusters,it may contain an unknown background, 

or it may contain a foreground object. The classification and the model 

update strategy depend on the nature of the new observation as presented 

in Section 5.2.4. 

The mode-matching test is designed to determine whether the new ob er­

vation belongs to any of the known background . Th known backgrounds 

are represented by the clusters of the current model and their local eigen­

subspaces. The test shows whether the new observation may be mode­

matched with any of the clusters. 
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Mode-matching 

A new observation vector ~ is acquired and the global mean l!:.g is subtracted 

from it. The new observation difference vector b~ is projected onto the 

reduced m-dimensional global eigen-space using the rotation matrix P g' 

(5.21) 

(5.22) 

The projection of the new ob ervation is tested against all exi ting clusters 

in turn in an attempt to find a matching cluster. The mode-matching test 

consists of the three following step : 

i) The point b g is subtracted from cluster's mean and project d onto the 

mi-dimensionallocal eigen- ubspace of the cluster, where mi ~ m. 

ii) The mode-matching is based on th Mahalanobis distance i between 

the new projection b i and the cluster M i . Th Mahalanobis di tance 

Xi is calculated as 

(5.25) 

where ~i is the covariance matrix of the ith cluster. 
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The candidate cluster M c is defined as the most probable match of all 

possibly matching clusters M i · The conditional probability that the 

observation b i belongs to the cluster M i is defined as 

(5. 26) 

Thus the most probable cluster M c is defined as 

c = arg max {p(Mi' b i)} (5.27) 
t 

The candidate cluster M c is defined by its p x me rotation matrix k ' 
the vector of me eigenvalues ~ the me-dimen ional mean vector f.-L , 

~ 

the weighting coefficient Wc, and the dimensionality me: 

(5.28) 

iii) Although the most probable, the candidate cluster M c may not actu­

ally be matched to the observation. The new observation's projection 

may in fact lie too far away from the candidate cluster, i. e. the condi­

tional probability is too small. 

(5.29) 

It is assumed that the space of the candidate cluster is limited by the 

boundary of th mc-dimensional hyper-sphere which contains a large 

proportion, let us say 95o/c, of the points belonging to the cluster. The 
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radius R of such a boundary is calculated as the inverse cumulative 

distribution function (cdf) of X2-distribution for a given probability of 

0.95 and me degrees of freedom , Equation refeq:R. 

The candidate cluster M c is matched to the new observation only if 

the new observation projection falls within the radius of the cluster's 

bounding hyper-sphere. In other words, the Mahalanobis distance be­

tween the candidate cluster and the new observation projection is no 

larger than the cluster 's bounding radius. 

(5.30) 

If the condition is satisfied the candidate cluster M c is a match. Oth­

erwise, a match is not found for the new observation. 

The mode-matching test is performed on all K clusters. If a mode-match 

exists this indicates that th projection of the new observation belongs to 

the mode-matched cluster within the reduced dimensionality subspace of 

only me dimensions. It hould be noted that outside this mc-dimensional 

local subspace the new obs rvation may contain significant compon nts in 

other dimensions of the global space. Therefore, the classification of the 

new observation is not straightforward and additional tests are needed. The 

classification strategy is described in the following Section 5.3.6. 
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5.3.6 Classification of observations 

The main aim of the adaptiv multi-modal model is to provide means to clas­

sify the new image observation as background or foreground. The previous 

mode-matching test provided some information about the new observation 

namely its position relative to the existing clusters within the reduced sub­

space of each. However, outside these low-dimensional subspac s the new 

observation may contain significant components in other dimensions of the 

global eigen-space. Therefore, additional tests are needed to complete the 

classification. The choice of the appropriate classification strategy depends 

on whether a mode-match ha been found for the new observation, or not. 

Classification of unmatched observations 

If a matching cluster cannot be found this mean that the new observation 

is not recognised by the existing model. In other words, the new image doe 

not contain any of the previously observed background conditions known to 

the model. The unmatch d ob ervation may either represent a n w type of 

background or an image contaminated with foreground objects. (This itu­

ation corresponds to the semantic cases 2 and 3 de cribed in Section 5.2.5.) 

In this case, the classification decision i based on the error of modelling 

calculated in the full dimensional image space. 

The error of modelling ~ in the image space i calculated as th difference 

between the original ob ervation bx in the image space and its recreated 

version obtained from its eigen- pace representation. 

(5.31) 
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!B e rms = V -p -- (5.32) 

The rms error, e rms, is calculated and compared to the threshold c deter-

mined by the noise level in the image space. If the rms error of modelling is 

lower than the threshold c the observation is classified as background. Oth-

erwise, the observation is classified as contaminated with foreground objects. 

Thus, if (3 i the classification label then 

{

background; 
(3= 

foreground 

e rms :S c 
(5.33) 

else 

Classification of mode-matched observations 

An ob ervation was mode-matched to a cluster if its projection falls within 

the 95%-boundary of the reduced mc-dimensional local eig n-sub pace of th 

matched cluster. In this low-dimensional subspace the observation belong to 

the cluster. However, in reality the same obs rvation may also occupy other 

dimensions of the global eigen-space. Viewed in the global space the same 

observation may be in effect far away from the boundaries of the matched 

cluster. The magnitude of the error between an observation and it projection 

within the low-dimensional cluster subspace reveals whether the observation 

contains additional significant components in other dimen ion . 

Let us represent this projection error by a m-dimensional residue vector 

h. The residue vector h is calculated as the difference between the new 

observation in the m-dimensional global eigen- pace b 9 and its recreated 
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version Q~ obtained from the matched cluster's low-dimensional sub pace of 

me dimensions, where me ::;: m. 

(5.34) 

(5.35) 

The residue vector h is of the same dimensionality m as the global eigen­

space. The component of h that corresponds to me significant dimensions 

of the matched cluster 's subspace is negligible. Thus the component of the 

residue vector in the dimensions other than cluster 's is repre ented by the 

external modelling error b.h, as defined in Equation 5.15. The magnitude 

116hll is tested against the preset threshold <P. Two outcomes of the te tare 

po sible: 

i) 116hll ::;: <P 

The external modelling error is below the threshold <P and is considered 

to be small. Therefore, the observation is classified as background 

f3 = background. (This situation corresponds to the semantic case 1 

described in Section 5.2.5 .) 

ii) 116hll > <P 

The external modelling rror exceeds the thre hold <P . At this stage, it 

is not obvious whether the observation is a new unknown background 

(semantic case 2) or contaminated with foreground (semantic case 3). 

Thus) an additional error test in the full dimensional image pace i 

needed to classify the observation. The error vector in the image pace 
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and the rms error are calculated u ing Equation 5.31 and 5.32. The 

classification deci ion is based on thresholding the rms error with a 

preset threshold c. Thus , the classification label (3 is 

{

background; 
(3= 

foreground ; 

e rms ~ c 
(5.36) 

el e 

The choice of the constant thresholds <P and cued in the classification 

process is explained in Section 5.3.9. As a result of the classification, the ob­

servation is classified and labelled as a true background or contaminated with 

foreground objects. The information obtained about the new observation is 

used to update the model. 

5.3.7 Model update 

This s ction details the update methodology of the multi-modal eigen model, 

which was introduced in Section 5.2.4. First, the m thodology for adding new 

dimensions to the updated subspaces is outlined. Then, the update of the 

mode-matched luster s mean and the eigen-subspace is explained. Finally, 

the update of the weighting coeffici nts of the modes is de cribed. 

Adding a new dimension to the subspace 

The novel approach to incremental update and adding new dimensions was 

described earlier in Section 5.2.4. Her it is applied to update of the mode­

matched cluster. 

The residue v ctor h represents the error of modelling within the low-
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dimensional eigen-subspace of the mode-matched cluster. It is calculated as 

the difference between the observation projection in the global eigen-space 

h 9 and its version recreated from the eigen-subspace of the mode-matched 

cluster Q'g , as defined in Equations 5.34 and 5.35. The residue vector h is 

of the same dimensionality m as the global eigen-space. The components 

of h that correspond to the few significant dimensions of the mode-matched 

subspace are negligible. The component of the residue vector in the dimen­

sions other than clusters is represented by (m - me) dimensional external 

modelling error vector 6h. 

The magnitude 116hll determines whether the eigen-subspace of the mode­

matched cluster requires a new dimension added during the update step. If 

Ilflhll is below a preset threshold <I> a new dimension is not required. If 116hll 

exceeds the threshold the dimensionality m~ of the updated eigen-subspace 

of the matched cluster increases to me + l. 

m~ = { me + 1; 

me 

-.. 
h = 

h 

Ilhll' 

o . - , 

116hll > <I> 
(5.37) 

else 

116hll > <I> 

(5.38) 

else 

The unit residue vector h, defined in Equation 5.38, is used as a new orthog­

onal vector added to the set of orthogonal vectors spanning the sub pace of 

the mode-matched cluster. It corresponds to the new dimension which is 

added to the space if required. When the external modelling error of the 
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mc-dimensional mode-matched cluster is below the threshold <1>, the new or-
-.. 

thogonal vector h is reduced to Q and therefore a new dimension is not add d 

to the updated space. 

Updating the mean of the mode-matched cluster 

Based on the new background observation only the mean of the mode-

matched cluster M c is updated. The means of unmatched clusters remain 

unchanged. The updated mean I!. ~ is calculated as 

(5.39) 

where ex is a weighting function , defined by Equation 5.58, which control 

the way the current model accommodates the new observation. 

Updating the local eigen-subspace of the mode-matched cluster 

The local eigen-subspace of the mode-matched cluster Mc is updated by 

incorporating the new ob ervation which was mode-matched to it. This 

section details the update steps 8 and 9, which were outlined in Section 5.3.2 

and shown in Figure 5.2. 

The updated subspace rotation matrix P ~ can be derived from the eig n 

decompo ition of the updated subspace covariance matrix S ~. 

(5.40) 
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The new covariance matrix is defined as 

(5.41) 

where g c is the old covariance of the matched cluster and 8b. 9 is the new 

observation difference vector in the global eigen-space. 

The new subspace rotation matrix P ~ is updated by inclusion of the 

residue unit vector h , defined in Equation 5.38, as follows 

(5.42) 

Substituting Equations 5.41 and 5.42 in 5.40 yields another eigcn decom-

position 

(5.43) 

where 

S c 0 b c b ~ ')' b. c 

D c=ex + (1- ex) (5.44) 

OT 0 1 b ~ 12 

~T 

and ')' = h 8b . 
- - -9 

The solution to the update problem is therefore found. The set of updated 

subspace eigenvalues A ~ is directly calculated as eigenvalues of D c' latrix 

R c i then computed as a set of eigenvectors of D c and by substitution in 

Equation 5.42 the updated subspace rotation matrix P ~ is obtained. 

It is assumed that th updated space contains one additional dimen ion. 
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If at a later stage the newly added eigenvalue is proved to be too small it 

can be discarded together with the corresponding eigenvector. All eigenval­

ue equal to zero are discarded traight away. Furthermore, when th error 

represented by vector ~h is small, as shown in Equation 5.38, the updated 

pace does not require new dimensions. In this case, the new orthogonal vec­

tor h, and therefore the vector J.., both become zero. By substituting J.. = Q 

in Equation 5.44 the initially added new dimension is eliminated. 

Weight ing coefficients update 

The weighting coefficients capture the perceived relevance of clusters. They 

are used to identify the least relevant cluster which will be replaced by a 

newly created cluster during the update process if needed. 

At each time in tance the weights of all existing clusters are updated. The 

update of th weight of a cluster depends on whether the cluster was matched 

to the new observation or not. The weight for a matched clu ter increases 

(qi = 1) while weights of all other currently existing clusters decrea e (qi = 0). 

The updated weight w~ of the ith cluster is calculated a 

(5.45) 

where i = I , ... , K. 

5.3.8 Creating new cluster 

PreViously, Section 5.3.7 described the methodology for updating the multi­

modal mod 1 with a mode-match d new observation. This section explains 
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how an unmatched new observation is used for the multi-modal model up­

date. This corresponds to the update step 10 outlined in Section 5.3.2 and 

shown in figure 5.2. 

A new mode is created to model a new unknown background. The mode 

represented by a new cluster - its mean, its eigen-subspace and its weight. 

The new cluster is initiali ed with the new unmatched observation point as 

its the mean, with a large initial variance and low initial weighting factor. 

The new mode M * is defined by its rotation matrix P *, set of eigenvalues 

A *, mean ~ *, the weighting coefficient w* and the dimensionality m * . 

M* = {p * A * * w* m*} = -,~, , (5.46) 

where the elements of the new mode structure are initialised as follows. 

New mode dimensionality 

Assuming that the initial model M(O), defined by Equation 5.18. provides a 

realistic notion of the data variability, the dimensionality of the new mode 

is estimated from the dimen ionality of the mode of the initial model. The 

dimensionality of the new mod 1 m* , is s t to the average dimensionality of 

the initial set of cluster M(O). 

(5.47) 

where m~O) is the dimensionality of the ith initial cluster. 

193 



New mode rotation matrix 

The rotation matrix P * is a p x m* matrix, with orthogonal vectors spanning 

the new mode space as its column vectors. The top m* x m* submatrix is 

an identity matrix. 

1 0 0 0 

0 1 0 0 

0 0 1 0 

P *= 
0 0 0 1 

0 0 0 0 

000 0 

New mode variance 

The variance of th new mode is set initially as high to ensure that following 

new observations with the sam type of background are captured by the new 

cluster. This allows the new cluster to persist for long enough to grow beyond 

the initial stage. Assuming that the initial model M (D) obtained during the 

training period provides a good representation of the variability of the data, 

the variance of the new mode is estimated from the variance of the clusters 

of the initial model. 

The initial total variance of the new mode V* is estimated from the total 

variance of the initial t of clusters M (D). It is calculated as a multiple, a. of 

the maximum total variance of the initial clusters, where this total variance 

194 



of the ith cluster is defined as 

(5.48) 

where .Aik is the kth ordered eigenvalue of the ith initial cluster and m}O) is its 

dimensionali ty. 

The initial variance of the new mode is then defined as 

where 

V* = a V (O) 
J 

j = arg max{~(O) } 
i 

(5.49) 

(5.50) 

and a is a multiplication factor (the choice of the value of a is explained later 

in Section 5.3.10). 

The new eigenvalues are derived using the broken stick function of m* 

segments, where the kth ordered eigenvalue .Ak of the new mode is given as 

where k = 1, ... , m*. 

1 m* 1 
.Ak = V*-~--:­

m*~J 
j=k 

(5.51) 

The covariance matrix of the new mode A * is a square diagonal m* x m* 

matrix with eigenvalues .Ak on its diagonal. 
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).1 0 0 

o 
A*= 

New mode mean 

The new mode mean in the global eigen-space is equal to the new observation 

point projection. 

It. * = b t::. -9 (5.52) 

New mode weight and age 

The new mode weight is set to a low value relative to the existing well estab­

lished modes. The low value is chosen as the smallest weighting coefficient 

in the initial set of clusters. 

where 

w* = weD) 
J 

j = argmin{w;D)} 

The age of the new cluster is initialised, t* = 1. 

Removing outdated cluster 

(5.53) 

(5.54) 

Whenever a new cluster M* is created it r places one of the existing clus­

ters. The replaced cluster is the least relevant of all existing clu ters at the 

time of creating the new cluster. The method for identification of the least 
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relevant cluster is inspired by the fitness value used to sort distributions in 

the Caussian mixture model [Stauffer and Crimson, 1999]. (In this method 

the number of clusters is fixed. It could be argued that by removing the old 

clusters some information about the history of the data is lost. However over 

a longer period of time especially when large variations of lighting changes 

are present in the scene the number of clusters may continue grow. In this 

large colection of clusters many of these will become redundant.) In the mix­

ture model the fitness value is calculated for each distribution as the ratio 

between the current distribution weight and variance. A imilar principle is 

applied to the multi-modal model, where the fitness value Pi of the ith mode 

is defined as the ratio of the cluster's weight and its largest eigenvalue: 

(5.55) 

Clusters are sorted by factor Pi and the cluster with the lowest sorting factor 

M j is replaced by the new cluster M* as follows 

where 

j = argmin{Pi} 
i 

(5.56) 

(5.57) 

as a result, the outdated background condition modes are replaced by new 

more relevant modes enabling the model to evolve in time. 
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5.3.9 D efinition of algorithm constants and variables 

This section describes a number of parameters, constant and variables, u ed 

in the proposed algorithm. These are: the weighting function Cl: the age of 

the cluster t i , the update constant T the probability of mode-matching qi, 

the threshold con tants <I> and c, and the variance multiplication constant a. 

• The update weighting function Cl: controls the way the model adapts 

to the changes in the data. It determines how fast the model learns 

about the new lighting conditions in the scene and accommodates these 

changes. The parameter Cl: is defined as 

1 
Cl: = -----::----

1 
1 + -. ----:---:­

mm(ti' T) 

(5.58) 

Initially, the value of Cl: is 1 1 which weights the new data relatively 
1 +-

t · 
highly, and declines as new observations are added. To prevent this 

1 
becoming infinitely small the weight is limited to 1 after T obs r-

1+ T 
vations. This follows the methodology used in [Stauffer and Crimson. 

1999]. 

• The variable t i i the age of the ith cluster calculated as the time pass d 

since the clu ter wa created to the present time. For the initial set of 

clusters each clust r is assigned the same age of ti = T + 1. 

• The constant T i a time window of a fixed number of recent ob er­

vations. During the initial period (t ::; T) after creation of a clu t r 
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the algorithm gradually decreases the influ nce of incoming observa­

tions. The value of T is estimated empirically for the chosen dataset 

in Section 5.3.10. 

• The parameter qi is defined as the probability of mode-matching the 

new observations to the ith cluster. It can take values of 

qi = { 1 
0, 

matched cluster 
(5.59) 

else 

• The threshold con tant <P is calculated as the inverse cumulative di -

tribution function (cd!) of an X2-distribution for a given probability of 

0.95 with (m - me) degrees of freedom, i.e. 

<P = cdj-l (0.951 (m - me)) (5.60) 

• The threshold constant E is estimated as the intrinsic noi of th 

dataset. It is calculated as the average difference between succe lve 

images in the training dataset. 

• The multiplication constant a determin the ize of th initial variance 

of the newly created cluster, as shown in Equation 5.49. It i e timated 

empirically for the cho en dataset in Section 5.3.10. 

5.3.10 Choosing the algorithm parameters 

In thi ection, the valu of the updat con tant T and the new variance 

constant a are determin d for a dataset des ribed in ection 5.4.1. 
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Choosing the update constant T 

Parameter T is a time window of a fixed number of recent observations. It 

determines the relative influence of new ob ervations on the updating of the 

model. During the initial period ti ::; T (ti being the age of the cluster) 

after creation of a cluster the model update gives priority to the most recent 

data to enable the new cluster to develop quickly. After this initial period 

the history of T last observations has most influence over newly acquired 

observations. 

The parameter T controls the way new observations are incorporated into 

the model during the update stage. Weighting function a, Equation 5.5 , 

directly depends on the choice of T. Function a is associated with the current 

model , and (1 - a) with the new observation. Depending on the time when 

the update takes place, relative to T , the new observation will be given 

more or less weight compared to the accumulated knowledge about the data 

contained in the current model. 

Figure 5.3 illustrates the effect of the T parameter on the evolution of the 

model. A set of true background observations is analysed with a batch PCA 

and clustered into J( clusters in the eigen-space. Knowing the distribution 

of points in clusters the adaptive algorithm is applied to the same data for 

different values of T. The graph shows the percentage of points that were 

not mode-matched to any of the clusters for different values of parameter 

T when the adaptive cluster mode-matching was used. For mall T the 

model most strongly weights new observations over the history of the data. 

NeWly created cluster are often quickly discarded as the least relevant having 
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not had enough time to grow. As T increases the percentage of unassigned 

points drops. For T = 100 there is only 0.5o/c points left unmatched to any 

of the clusters. Further increase of T does not contribute significantly to the 

reduction of the number of unmatched points. 

At this point it may be assumed that the extrapolated graph, Figure 5.3, 

levels out or even continues to descend slowly. However the same experiment 

showed that for large T an increasing number of mode-matched tested images 

was actually assigned to wrong clusters. In other words, knowing in advance 

the distribution of points in clusters, the number of points not assigned to the 

expected cluster increased for values larger than T = 100. For large values 

of T the model will most strongly weight the history of the data causing 

a very slow evolution of the model. In this case the changes in the data 

are not taken into account appropriately. The new point are incorporated 

into the older well established clu ters instead of creating new clusters. This 

will eventually produce a very slow, inadaptable inert model with outdated 

clusters, unable to accommodate observed changes in the background data. 

Therefore, the value T = 100 is adopted. 

Choosing the new cluster variance constant a 

Assuming that the training dataset has provided a realistic notion of the data 

variability the initial variance of the new cluster is calculated as a multiple, 

a, of the maximum cluster variance obtained during he training period, as 

shown in Equation 5.51. 

Figure 5.4 illustrates how the accurac of clas ification of new obser­

vations depend on the choi e of the initial variance of the new cluster. 
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Figure 5.3: Choice of parameter T 

The vertical axis represents the false alarm rate where the false alarms are 

background-only images wrongly classified as contaminated with foreground. 

The horizontal axis represents the multiplication parameter a, which varies 

from 1 to 10. 

It can be seen that relatively low initial variance results in high false 

alarm rate. When a new cluster is initially too small in volume (in multi­

dimensional space), there is an increased risk that subsequent observations 

of similar background will not be captured by the new cluster. Instead 

they may be wrongly associated with some of other existing clusters or a 

matching cluster will not be found. If the initial variance of the new cluster 

IS set relatively high , it is more likely that the new cluster will capture more 

of the similar new observations. Further increase of the initial variance does 
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Figure 5.4: ew cluster initial variance 

not improve the performance of classification of background image. 

The effect of reduced false alarms for large a may be somewhat misleading 

when choosing the optimal value for a. The same experiment showed that, 

when the distribution of background point is known in advance the final 

distribution of the points in the adaptive clusters was not as expected for 

large a. In a number of cases the tested points were assigned to wrong clu -

ters. This occurred because very large clusters with growing initial variance 

captured more and more distant new observation. These large variances in­

cluded images of very diverse types which normally cannot be modelled with 

the same cluster. It may be concluded that the increa ing value of a cau e 

inaccurate clustering of background points. Therefore. the initial variance 

should be large enough to capture the image of the same type but not too 
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large to risk the accuracy of the model. The multiplication factor a = 5 was 

cho en to provide enough robustness for the newly created clu ters without 

deteriorating the accuracy of the model. 

The chosen initial cluster variance obtained for a = 5 does not , indeed, 

suppress all false alarms. This i because the mode-matching of the new 

observation point is performed in a low-dimensional eig n-subspace of the 

cluster of only few most significant dimensions. The false positives that 

persist are tho e images which contain significant sudden changes in the 

background. These background images are likely to contain significant com­

ponents in many other dimensions of the space other than those of the clu ter 

which may caus the model to fail. Such images will always be wrongly clas­

sified as contaminated regardless the increase in the initial cluster variance: 

some examples are shown in the bottom row of Figure 5.5a. 

5.4 Results 

In this section. the proposed adaptive multi-modal algorithm is evaluated on 

a real video surveillance dataset. The r mainder of the ection is organised as 

follows. The dataset is presented in Section 5.4.1. The capability of the algo­

rithm to detect the presence of the foreground of various sizes is tested and 

discussed in Section 5.4.2. Finally, the accuracy of the classification results 

are analysed and compared to those obtained by the uni-modal modelling 

approach in Section 5.4.3. 
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5.4.1 Dataset 

The adaptive multi-modal background modelling algorithm is evaluated on 

the dataset d scribed in detail in Section 4.5.2. It is a video surveillance 

record of activitie in a courtyard in front of an office building. It was 

recorded over a few weeks during the late spring and earl) summer with 

long lasting daytime, at a frame rate of one frame per minute. Only daytime 

frames are used in the experiment. 

The dataset i rich with lighting changes) alternating sunny, cloudy and 

rainy weather conditions) shadows from surrounding trees creating distinctive 

patterns and moving across the scene, and background motion from waying 

tree. The analysis is performed on the grey-scale images which are divided 

into smaller regions in order to provide a better under tanding of the varia­

tion in the dataset. The region in the position {6.5} in Figure 4.29 i taken 

as an example of a stationary background where the variability of the data 

is caused mainly by global lighting changes. 

Foreground objects) moving people and vehicles, are sparse and typically 

appear in a single frame due to the low frame rate of recording. Some exam­

ples of background and contaminated observation are hown in Figure 5.5. 

5.4.2 Detection of contaminated images 

This section explores the ability of the model to detect and classify contam­

inated observations. An artificial contaminant in the form of a di c i intro­

duced in the background scene. The contaminant increa es in ize obscuring 

between lo/c and 80o/c of the observed image region as hown in Figure 5.6. 
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(a) Backgrounds 

(b) Foregrounds 

Figure 5.5: Dataset 

206 



Figure 5.6: Contaminated observations 

After the initialisation stage the algorithm proces es 300 background ob­

servations incrementally adapting to the changing lighting conditions before 

a disc is inserted in the next new observation. The disc is of a uniform 

grey-scale equal to the average grey-level of the test image region. The same 

experiment is repeated for increasing disc size. A total of sixteen images with 

various contaminant size were processed and classified. 

The final score of classification is thirteen contaminated images correctly 

classified as foreground - true positives (TP) and three wrongly cla sified 

as background-only _ false negatives (FN). The ability of the algorithm to 

detect and correctly classify contaminated observations with different con­

tamination sizes is now observed and discussed. 

Figure 5.7 illustrates the final result of the classification. Each point on 

the graph corresponds to one of the classified contaminated observations; 
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Figure 5.7: Distance from cluster 

three false negatives (full circle) and thirteen true positives (circle-cross and 

cross). The increasing contaminant disc size, expressed as a percentage of 

the observed image region, is on the horizontal axis. The vertical axis is the 

distance between an observation and the mean of the candidate cluster M c, 

which was identified in the step 5 of the algorithm (see Figure 5.2). The 

solid line represents the distance between the observation projection and the 

candidate cluster M c. The dashed line represents the limiting radius (Equa­

tion 5.29) of the boundary of the candidate cluster's hyper-sphere' the radius 

depends on the number of dimensions of the cluster 's eigen-subspace. Points 

marked by solid circles correspond to images with contaminants smaller than 

5% of the image region; these contaminants remain undetected. These ob er­

vations were mode-matched to a candidate cluster in step 5 and then wrongly 
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classified as background-only in step 6 of the algorithm. Points marked by 

a circle with a cross inside correspond to observations which were mode-

matched to a candidate cluster in step 5, but nonetheless correctly classified 

as foreground in steps 6 and 7a. Finally, the points marked with a cross 

correspond to observations which were not mode-matched in step 5 and were 

correctly classified as foreground in step 7b. 

Figures 5.8a and 5.8b illustrate the outcome of the classification per­

formed in steps 6 and 7a. Here, the contaminants smaller than 30% of the 

image region are expected to be captured (larger contaminants are normally 

detected already in step 5 and classified in step 7b). It can be seen from 

graphs that there are ten such observations. These observations were initially, 

in step 5, mode-matched to a candidate cluster in its low mc-dimensional 

eigen-subspace. Seven of them (points marked with crosses) were then dis­

qualified in the step 6 due to significant components being detected in other 

dimensions of the global eigen-space. Three observations (points marked 

with solid circles) with contaminants smaller than 5% of the image region 

failed to be detected. 

Figure 5.8a shows the outcome of the step 6. The horizontal axis is 

the size of th contaminant. The vertical axis show the magnitude of the 

external modelling error ~h, in (m - me) dimensions outside the mode­

match d cluster. The dashed line represents the threshold <I>. whi h was 

defined in Equation 5.60. The points found below the threshold (solid circles) 

correspond to observation wrongly classified as background-only (FN). The 

points found above the threshold (crosses) correspond to points which are 

yet to be classified in step 7 a. 
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Figure 5. b shows the outcome of the tep 7a. The vertical axis repre­

sents th rms error of mod lling in the image pace, erms , which was defined 

in Equation 5.32. The da hed line corresponds to the noise threshold c de­

fined in Section 5.3.9. Points above the thre hold (crosse ) are cla ified a 

foreground in step 7a. It can be seen that in this ca e all contaminated ob er­

vation previously left unclassified in step 6, are now classified as foreground. 

The experiment confirms that all observation with contaminant of ize 

5% or more of the image region ar detected by the algorithm and correctly 

cia ified as contaminated. Hovever, it can be seen from the graphs that very 

large contaminants which occlude more than 0% of the image region may 

confuse th model. In this particular case, the artificial contaminant is of an 

uniform grey-level close to the average grey-level of the image region. The 

contaminated image was mode-matched to an exi ting cluster in tep 5 and 

later cla sified as foreground in steps 6 and 7a. In real life ituation. large 

objects are unlikely to be of a strictly uniform colour and are expected to be 

detected immediately in step 5 and classified as foreground in step 7b of the 

algorithm. 

It was d monstrated earlier in the case of the non-adaptive batch mod-, 

elling in Chapter 4, that the off-line multi-modal approach was capable of 

detecting very small contaminants, les then lo/c of the occluded image region. 

Figure 4.12. Compared to the contaminat size of 5%, the batch approach 

perform lightly better than the adaptive in detecting small contamina­

tions. This is because at any time the batch model ha more accumulated 

information about the dataset than the adaptive model. However. the batch 

approach is not suitable for onlin applications· th adaptive model is needed. 
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Figur 5.8: (a) External modelling error magnitude, (b) rms error in image 
pace 
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5.4.3 Classification accuracy 

The cla sification accuracy of the prop os d algorithm is demonstrated on 

2000 te t frames of which 19 are contaminated with foreground objects of 

various sizes and colours (some example are shown in Figure 5.5b). The 

dataset is rather sparse, therefore a relatively small number of contaminated 

frames is available. The results of the classification are summarised in Ta-

ble 5.2 wher T P i the number of true positives, FP the number of false 

positives. T N the number of true negatives, and F N the number of fal e 

negatives. The positives refer to image observations contaminated by fore-

ground. The negatives are ob ervations which contain background only. 

The global eigen-space i derived from the training set using a batch 

peA. The dimensionality of the eigen space is reduced to m < p using the 

broken stick rule. The number of dimensions i then doubled to provide ome 

robustness and ensures that retained dimensions contain enough variability 

of the original dataset. A number of m = 50 dimension is obtained. This 

already represents a great reduction in dimensionality compared to p = 4096 

dimensions in the original image space (i.e. the number of pixel in the 

observed image region). The m-dimensional eigen-space is clustered in K = 

10 clusters which model background conditions of a similar nature. Each 

cluster forms its own local eigen-subspace of further reduced dimensionality 

mi ~ m, where mi is typically 4 to 7 dimensions. Test observations are 

projected onto the multi-modal eigen-model and classified as backgTowld or 

contaminated with foreground objects. 

To test the performance of the multi-modal model the results of the clas-
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sification are compared with those obtained using the unimodal model. The 

results are summarised in Table 5.2. The unimodal model correctly detected 

all 19 contaminated images, while 28 background images were wrongly clas­

sified. The multi-modal model det cted 13 contaminants, while failing to 

correctly classify only 9 true backgrounds. The 6 undetected contaminated 

observations contain very small objects of less than 5% of the image region. 

unimodal multi-modal 

TP 19 13 

FP 28 9 

TN 1953 1972 

FN 0 6 

Table 5.2: Classification accuracy 

The results show that the unimodal approach perform better in the 

case of small contamination detection then the multi-modal model. This i 

caused by the greatly reduced dimensionality of cluster subspaces (only 4 

to 7 dimension in this example), where the loss of information about the 

data is significant. This caused reduced capacity of the multi-modal model 

to represent small variations in the data. At the same time. the multi-modal 

model achieved lower number of false alarms becau e of its improved ability 

to uppress the background noise. 
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5.5 Conclusion 

Due to the high dimensionality, modelling of backgrounds in outdoor scenes 

is generally time consuming and computationally co tly. Further difficulty 

is introduced by the nature of lighting changes in outdoor scenes due to 

weather conditions and background motion. By means of eigen analysis it is 

possible to define a smaller set of dimensions which will capture most of the 

variation of the original pace. Furthermore, the background model ne ds to 

constantly adapt to accommodate tho e changes in time. 

One way to achieve an accurate modelling of such scenes is to define 

a number of background modes which model background observations of 

imilar lighting conditions. The modes are defined as multivariate Gaussian 

clusters in a reduced dimensionality eigen-space. The clustered eigen-space 

is updated with every new observation in order to adapt to new background 

conditions. At any time instance, the model is estimated from the new 

observation and the model at the previous time instance. The model is 

updated using only the knowledge of the current covariance matrix and the 

residue vector occurring as an error introduced by the outdated model. 

The novelty of the proposed algorithm is threefold. First. the princi­

ple of the well known Gaussian mixture model is applied to image region 

rather than pixels, where image observations are modelled with a mixture of 

multi-dimensional Gaussian clusters in the eigen-space. Second, a previou 

unimodal incremental method [Hall et al., 1998] is adapted to a multi-modal 

model consisting of clustered eigen- ub paces. Third the method for adding 

new dimensions to eigen-subspace i modified in order to avoid unnece sary 
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increases of space dimensionality. In this way, the proposed approach aims 

to reduce the dimensionality of the model as much as possible while the 

significant proportion of variability in the data is still preserved. 

The proposed algorithm was used to classify a dataset of images with arti­

ficial foreground. It was demonstrated that the proposed algorithm is capable 

of detecting contaminants of size 5% or more of the observed image region. 

Smaller contaminants were not detected because the reduced model dimen-

sionality was too low to model very small changes in the data. It is possible to 

ufficiently increase the dimensionality to capture these small variations too. 

Furthermore, the adaptive multi-modal model wa tested on a real dataset 

with foreground objects of various types. The classification accuracy of the 

proposed multi-modal model was compared with the unimodal model. Al­

though the capacity of the multi-modal model to detect very small objects 

was somewhat reduced, the false alarm rate wa significantly improved. 

It can be concluded that the proposed adaptive multi-modal approach 

provided a suitable structure for modelling of multi-modal multi-variate high­

dimensional data. The low-dimensional model has an ability to successfully 

SUppress the system noise and reveal underlying variability in the data. The 

proposed algorithm is suitable for modelling of the changing background of 

outdoor surveillance scenes, especially in foreground detection applications 

where a low false alarm rate is required. 

Discussion and future improvements 

This section discusses performance of the proposed approach and suggests 

Possible improvements. The proposed adaptive multi-modal algorithm aimed 
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to detect the presence of foreground objects in an outdoor video urveillance 

sequence and classify the image observations as background-only or contam­

inated with foreground. 

The performance of th algorithm was presented in Table 5.2, which com­

pared th unimodal and the multi-modal on-line m thod . The number of 

foreground det ctions deteriorated in the case of the multi-modal model be­

cause the mod 1 failed to det ct very small foreground objects and those of 

a imilar grey-l vel as the background. Neverthele s the multi-modal algo­

rithm perform dwell. Th number of false alarms significantly improved du 

to model' ability to succes fully uppress background lighting change. 

The propo ed algorithm wa te ted on a dataset, which was selected be­

cause of its very challenging featur such as constant and ignificant light­

ing changes due to weath r condition. An additional difficulty was that the 

equen e was recorded with a low frame rate which contributed to great dif­

ference betw en the succes ive imag ob ervation . A number of per i tent 

fal e alarms re ulted from extrem variations in the background, notably ir­

regular moving patterns acro the scene caused by long hadows of swaying 

tree during very sunny days ( e the bottom row of th Figure 5.5a). The 

hadow were vi ible for long p riod of time from the mid-afternoon to the 

evening on most day , liding acro the cene in con tant motion. Yet, the 

model misclassified only 9 out of 19 1 processed background images. or le 

than 0.5%. Out of 19 pro e ed contaminated image, a total of 6 wa left 

undetected. Three of th III contained a small bird (the top right picture in 

Figure 5.5b). Th other thr e contained mall part of object of a gr y-level 

iml'l t h . ' 'ddl f tIle bottom row in ar 0 t background (the Plctur III the ml e 0 
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Figure 5.5b) , primarily objects entering or leaving the scene. Considering 

the challenging nature of the chosen dataset it can be concluded that the 

a.lgorithm performed successfully. 

The algorithm may benefit from improvements which will address the 

problems of the inaccurate classification. The problem of the moving shadoVi 

patterns may be tackled by Markov modelling of transitions between the 

clusters providing an additional information about the nature of the data. 

Furthermore, the misclassification is due mainly to the reduced dimension­

ality of the model. Therefore, a more principled method is required for the 

dimensionality reduction of the local eigen-subspaces of the individual modes. 

Such method should ensure that the dimensionality is low enough to elim­

inate the noise and the effect of illumination changes in clusters of similar 

background conditions. At the same time, the number of retained dimen ions 

must be sufficient to exclude foreground objects which are small or blend into 

the background. Furthermore the detection of parts of objects entering and 

leaving the scene may be improved by providing some knowledge about the 

scene. Also feedback from an object tracker may be used to refine the de­

tection process. Finally, for an objective evaluation. an additional validation 

of the algorithm is required based on a comparative performance evaluation 

methodology as proposed in Chapter 3, using well known dataset recognised 

by the research community. 
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Chapter 6 

Conclusions 

6.1 Summary 

This work focused on the performanc evaluation of motion detection al­

gorithms and the problem of background modelling for visual surveillanc 

applications. The aim of the thesis was twofold. First , it aimed to provide 

an objective and unambiguous tool for evaluation of foreground detection 

algorithms. Second, it aimed to provide a low-dimensional method for back­

ground modelling in challenging outdoor video surveillance scene. with an 

abundance of sudden and gradual lighting variations due to changing weather 

conditions. 

6 .1.1 Performance evaluation 

The thesis presented a novel approach to performance evaluation of motion 

detection taking into consideration the desired performance of the algorithm 

in the context of the end-user application. Previou works, outlined in Sec-
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tion 2.2, mostly focused on the evaluation at the pixel-Ievel which failed to 

address the impact of foreground detection on the performanc of object­

based applications such as object tracking. The pixel-based approaches had 

the advantage of using ROC technique for the interpretation of metrics. Un­

fortunately, ROC tool is not applicable to the object-based approach. In an 

attempt to overcome this problem, a number of previously reported object­

based techniques produced a maze of evaluation metrics exposed to subjective 

interpretations. 

In the light of the preceding research, this thesis proposed a novel objec­

tive object-based framework, which enabled a straight-forward mechani m 

for both optimising and comparing motion detection algorithms. 

6.1.2 Background modelling 

In addition to the performance evaluation this thesis propo ed a novel adap­

tive multi-modal algorithm for background modelling. The goal was to pro­

vide a tool for efficient and accurate classification of image ob ervations as 

background-only or contaminated with foreground. 

The proposed methodology exhibits three main features. First it exploit 

the advantages of modelling high-dimensional video data in low-dimen ional 

eigen-space using PCA. Second, it considers the nature of lighting changes 

characteristic for outdoor scenes, such as weather conditions and moving 

shadow patterns. As a result of this consideration, types of resembling light­

ing conditions are identified as mode of background observation and repre­

sented as multi-variate Gaussian distributions in the low-dimen ional eig n-
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space. Finally, an incremental adaptive update approach is adopted, which 

enables the multi-modal model to evolve and accommodate newly observed 

changes in the background. 

6.2 Discussion 

6.2.1 Performance evaluation 

It was demonstrated that a well-designed evaluation methodology for com­

paring motion detection algorithms reveals surprisingly complex issues. Two 

problems in particular were carefully addressed. First. the inevitable ex­

istence of evaluation parameters and the need to select appropriate values 

for these. Second, the absence of true negatives makes it impossible to use 

the well-known ROC methodology. In addition to these issues, an objec­

tive comparative methodology is required - a methodology that allows the 

definition of standardised application scenarios which provide context to the 

companson. 

From these considerations, a new object-based comparative methodol­

ogy based on the F-Measure has been developed. The proposed methodol­

ogy provides a single-valued ROC-lik measure enabling both optimisation 

and comparison of motion detection algorithms. It includes a number of 

configuration st ps. In summary, the e are defining the application scenar­

ios; determining the appropriate weighting parameters (Cl') for each cenario; 

defining a method of associating detected objects with the ground truth ob­

jects; selecting the optimal value of the evaluation parameters: optimising 
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the parameters of each competing algorithm for each scenario; and finally 

computing and comparing the performance of each algorithm. 

6.2.2 Background mode lling in low-dimensional space 

A novel adaptive multi-modal algorithm for background modelling and clas­

sification has been proposed. Several issues have been explored including 

dimensionality reduction, the possibility of subsampling of image observa­

tions, multi-modality of observed backgrounds, and incremental update of 

the model. 

It has been demonstrated that it is possible, by means of eigen analysis , 

to define a smaller set of dimensions which will capture most of the vari­

ation of the original high-dimensional dataset. Generally, it is not obvious 

how many retained dimen ions provide a sufficient dimensionality reduction 

while ensuring that the variability in the data is preserved. The rul s which 

determine the cut-off dimension are intuitive and there is no universal answer 

as to which rule gives the most suitable number of retained dimensions. The 

broken stick rule is often aid to be the most adequate for real data. To test 

this we explored the concept of the hyper-sphere of background which sepa­

rates background-only observations from contaminated observation points in 

the eigen-space. For a particular number of dimensions all background-only 

observations remain inside the hyper-sphere while the contaminated points 

are found beyond its boundaries. By comparison with the hyper-sphere test 

it was shown that the broken stick rule i an appropriate choice for dim en­

sionality reduction. The number of dimensions obtained by the broken -tick 
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correspond to the number of dimensions for which the hyper-sphere of back­

grounds provides a good separation of the background-only and contaminated 

observations. 

The possibility and limitations of subsampling a relatively small propor­

tion of all the available data have also been explored. It has been suggested 

that depending on the contaminant size, it is possible to avoid subsampling 

from contaminated areas by subsampling from predefined image subregion . 

This controlled subsampling would provide accurate unimodal eigen-space 

classification of image observations from a very small amount of subsampled 

data. However, it was shown that in the multi-modal eigen-space, due to 

higher sensitivity to image changes, there is an increa ed risk of misclassi­

fication of subsampled data. Therefore, with an additional information i.e. 

some knowledge of entry points in the scene and/or expected contaminant 

sizes, this method may quickly detect contaminations of the background from 

a relatively little information about the scene. 

6.2.3 Adaptive multi-modal background modelling 

As one of the main contribution of thi work, a novel adaptive multi-modal 

algorithm for background modelling and ob ervation classification was de­

veloped. There are several novel contributions of the propo ed algorithm. 

First, the principle of the well known Gau sian mixture model is applied 

to image regions rather than pixels, where image observations are modelled 

with a mixture of mult i-dimensional Gaussian clu ters in the eigen-space. 

Second, a known unimodal incremental method is adopted and applied to 
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a multi-modal model consisting of clustered eigen-subspaces. Finally, the 

method for adding new dimensions to eigen-subspaces is modified in order 

to avoid unnecessary continual increase of space dimensionality. In this way, 

the proposed approach aims to reduce the dimensionality of the model as 

much as possible while the significant proportion of variability in the data is 

still preserved. 

By means of suitable experimentation a set of optimal model update pa­

rameters has been determined. The optimised algorithm has been used to 

classify a sequence containing contaminants of variable sizes. It has been 

shown that the proposed algorithm is capable of detecting small contam­

inants of size less than 5% of the observed image region. In addition, the 

performance of the multi-modal on-line algorithm was te ted on a real dataset 

with foreground objects of various types, and the results have been compared 

with those of the unimodal model. It has been demonstrated that the multi­

modal approach showed an improvement; even though the detection was 

slightly reduced, the false alarm rate was significantly improved. The slight 

deterioration of the foreground detection and the remaining false alarms are 

mainly due to the very challenging dataset containing constant and ignif­

icant lighting changes due to weather conditions. The foreground object 

appear in the scene typically for a single frame because of the very low frame 

rate. Encouragingly, only very mall objects and those of a grey-level similar 

to the background failed to be detected. A number of remaining false alarms 

result from extreme variations in the background, notably irregular moving 

patterns across the scene caused by long shadows of swaying tr e during 

very sunny days. 
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The proposed adaptive multi-modal approach has proved appropriate for 

modelling of multi-modal multi-variate high-dimensional data. The low­

dimensional model has been able to efficiently suppress the system noise 

and reveal underlying variability in the data. It has succes fully detected 

the presence of foreground objects and classified the image observations in a 

very challenging outdoor video surveillance sequence. The proposed adaptive 

multi-modal algorithm is suitable for modelling of the background of outdoor 

surveillance scenes, especially in foreground detection applications where a 

low false alarm rate is required. 

6.3 Future work 

6.3.1 Performance evaluation 

The thesis discussed the significance of evaluating motion detection within 

the wider context of a surveillance system. However) some of the current 

weaknesses remain to be addressed: explicit methodology for choo ing ap­

propriate values for th weighting parameter a; standardisation of application 

scenarios; comparison with more methods reported in the literature; and a 

bigger range of datasets. Further investigation is needed to explore whether 

this methodology might be practical further down the evaluation pipe-lin 

i.e. measuring the impact of an early visual processing stage on the result 

of subsequent stages. 
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6.3.2 Background modelling 

It was demonstrated that the proposed adaptive multi-modal algorithm suc­

cessfully detected the presence of foreground objects and classified the image 

observations under the challenging conditions of an outdoor video sequence. 

However, in order to address the problems with the remaining inaccurate 

classifications, a number of possible modifications are suggested. 

Markov modelling of mode transitions 

Markov modelling of transitions between the clusters may help eliminate 

the problem of the moving shadow patterns and reduce the number of false 

alarms. It is expected that the image observations containing shadow pat­

terns will repeatedly follow the same transitions between clusters. The likely 

transitions between clusters can be learned over time. If unlikely transi­

tion is observed it is possible that the image observation contains foreground 

objects. 

Choosing the number of PCs 

The number of undetected foregrounds is a direct result of the loss of infor­

mation due to the reduced dimensionality of the model. Specifically, the very 

small objects or those of a grey-level similar to that of the background may re­

main undetected. Therefore, a method more principled than the broken-stick 

rule is required for the dimensionality reduction of the local eigen-subspaces 

of the individual modes. Such a method should ensure that the dimension­

ality is low enough to eliminate the noise and avoid false alarms while at the 
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same time provide a sufficient number of dimensions to detect foreground 

objects which are small or blend into the background. 

Alternative subsampling strategies 

The detection of partial objects entering and leaving the scene may be im­

proved by providing some knowledge about the scene topography. For exam­

ple, the entry and the exit points, or the likely paths of the moving objects. 

This information may be used for a more selective subsampling from regions 

that are likely to contain foreground objects. If such a set of subsampled 

pixels does not indicate the presence of foreground in the observed image it 

may be concluded that it is very likely t hat the scene contains only back­

ground pixels. In a similar manner, f edback from an object tracker may be 

used to refine the search area and support the detection process. 

Comparative evaluation of the algorithm 

The performance of the proposed adaptive multi-modal algorithm was tested 

by comparison with the results obtained by a non-adaptive algorithm. How­

ever, a more principled test is necessary. For an objective conclusion about 

the performance of the algorithm and recommendations for its application an 

additional validation is required. The validation of results hould be based 

on a comparative evaluation methodology, as proposed in Chapter 3, using 

well known data ets recognised by the research community. 
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