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Abstract 

As video surveillance systems become more and more pervasive in our society, 

it is evident that simply increasing the number of cameras does not guarantee 

inc.reased security, since each operator can only attend to a limited number of 

monitors. To overcome this limit, automatic video surveillance systems (AVSS, 

computer-based surveillance systems that automate some of the most tedious 

work of securit~· operators) are being developed. One such task is tracking, 

defined by the end lIsers ill this project as "kcepinp; a selected j>a.<;senp;er always 

visible on a surv('illance monitor". 

The pmposc of this work was to develop a single-person, multi-camera tracker 

t hat can he uSf'd in real time to follow a manually-selected individual. The 

openltion of selecting all individual for tracking is called tagging, and therefore 

t his type of trncker is known as a tag and tmc!.: system. The developed system 

is C'OIJ(;('in'd to 1)(' deplo~'('d as part of a larp;e surveillance network consisting of 

possihl~' llllJl(lre<is of cameras. wit h possibly large blind regions between cameras. 

The maill nmt ribut ion of this thesis is a probabilistic framework that can be 

lISl'd to develop a lllulti-CClllll'nl tracker by fusing heterogeneous information 

coming frolll yisual sensors cUld from prior knowledge about the relative posi­

tioning of (,(1II](,l'aS ill the smveillance network. The developed tracker has been 

dellJonstrated to work in real time on a standard PC independently of the num­

ber of CaJllf'l'<lS in the network. Quantitativp performance evaluation is carried 

out usinp; realistic tracking scenarios. 
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b::l 
Introduction 

Video surveillance systems are becoming increasingly pervasive in our soci­

ety [40], with private and public companies making extensive use of them to 

improve safety and security of their premises. However, simply increasing the 

munber of cameras does not guarantee more effective surveillance, siuce a se­

curity operator can only attend to a limited number of monitors, and increasing 

the number of operators is often too expensive, as opposed to cameras, which, 

after an initial capital expenditure for installation, only require small mainten­

ance costs. At the same time, the increase in computational power available 

on cheap hardware has made possible the development of affordable Automatic 

Vidco Surveillance Systems (AVSS), computer systems that perform video ana­

lysis and automate some of the most tedious work of security operators. thus 

improving operators' efficiency. 

\\lorking closely with transportation ami security operators, one of the needs 

that constantly emerged was to have a system that helps operators keep specified 

individuals in view on a monitor. It is often the case that an operator Wallts 

to "keep an eye" on a person who looks suspicious or vulnerable, such as a 

woman alone late at night, or a troublemaker already known to secnrity officers. 

Having this person always visible on a surveillance monitor would allow faster 

intervention if a crime is committed, thus increa."ing the chances of stopping the 

offender and/or promptly succouring the victim. 

However, following a person on surveillance monitors is a difficult task that 

requires the full attention of specialised personnel, and for economic reasons 

it is not possible to divert so many resources on this task in the absence of 

immediate danger. Hence, the request for a software that is able to follow, 

or track, an operator-selected person across different surveillance cameras, even 

3 



CHAPTER 1. INTRODUCTION 4 

when this person goes out of view for a short time, and in the presence of crowd. 

The act of selecting a target (either manually or by an external system) is called 

tagging, and therefore the system described in this thesis b called tag and track 

(TnT). The expression tag and track is also used outside of the Computer Vision 

community and may refer to any kind of user-initiated tracking (radar. RFID, 

etc.) [29,81, 80J. 

To the authors' best knowledge, there are no 'ThT systems ready for sale from 

any surveillance software vendor, and the very topic of tracking people across 

cameras is fairly recent in video surveillance, as shown by the literature review 

in Chapter 2. 

The development of a TnT system proved to be a challenging task. Functional 

requirements include: robustness with respect to occlusions, moderate crowding 

and poor video quality, and real-time operation. Occlusions include both dy­

namic occlusions (caused by interposition of other people between the camera 

and the target) and static ones (caused by environment features - such as pillars 

- or by non-overlapping camera fields of view). Some AVSSs, sllch as the one 

described in this thesis, are meant to be deployed on an already established 

surveillance network, and should therefore work with whatever video quality is 

available on-site; thi" implies very different light condition", colour respon"et>, 

frame rates and resolutions across different camE'ras. HE'al-timE' operation means 

that the output of the tracker (i.e. the current position of the person being fol­

lowed) should he available to the operator aft('r a fixed. short delay with r('spect 

to the live video stream. In principle, the operator should have t he impression 

that the tracking is happening instantl~·: in practicp, during informal conversa­

tions, security operators we spoke with reported that delays lip to [) seconds are 

acceptable. 

III order to tackk such a difficult prohh'IIL SOIllC [Orlll Ofllloclularisatioll had to he 

devised from the very beginning. The author·s studies focused on a prohahilistic 

multi-camera tracking [rame\vork that permits integrating infonnation from a 

variable number of heterogeneous modules in real time. This information comes 

from tracking modules, working on single, calibrated carllE~ras, and from people 

re-identification modules, working across cameras. A study on motion detection 

and colour correction was also carried out, since these are useful pre-processing 

stages in an AVSS. 

Chapter 3 describes the probabilistic framework and the tracking and re-iden­

tification Ul()duh~s, as wdl as sillgk allJ lllultipl(~ Ciillwra calibrat.ioll; that fiJI"l1l 

the main contribution of this work. This framework allows heterogeneous in­

formation about a target (e.g. appearance and position) and a surveillance site 

(e.g. the camera topology) to be fused in order to enable multi-camera track-
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ing. The framework was designed to enable real-time tracking, which means 

that the target's new position has to be computed in a fixed amount of time 

at each frame, regardless of crowdedness, number of cameras, and length of the 

current track. This poses significant challenges and, as often a compromise must 

be stricken between dficacy and compnt.ational complexity. III Chapter 4, two 

novel algorithms for motion detection and colour calibration, respectively, are 

described. The motion detection algorithm exploits periodicity of certain back­

ground elements (such as flashing lights or escalators) to improve segmentation 

in those area') of the image. The colour calibration algorithm can compensate for 

the different colour responses of different cameras and to illumination changes 

across different scenes; it is completely unsupervised, and it exploits the fact 

that, ill a surveillance scenario, the same foreground data (i.e. moving people) 

is observed by a large number of cameras. Together, these algorithms form a 

secondary contribution of this thesis. Chapter 5 presents practical implement­

ation issues and experimental results on real surveillance videos, describing all 

metadata needed to run the tracker and the additional tools developed to collect 

it. With the tracker set up, performance evaluation is carried out on a data<;et 

consisting of real surveillance video footage from over 20 cameras. This leads 

naturally to Chapter 6, where a critical discussion of the tracking framework is 

give, and some ideas for future developments are presented. 

The multi-camera tracking framework exploits commonalities between the prob­

lem of trackillg and other problems that are commonly studied in Computer 

Vision, namely single-camera tracking and people re-identification. In fact, the 

tracking method could be summarised as single-camera tracking in Olle video 

stream, cornbilled with people re-identification in streams from adjacent cam­

eras. How these two algorithms are combined is detailed in Section 3..1, and. 

the state of the art our solution is based upon is presented in sections 2.1.1 

and 2.1.5. 

This project was funded by the EUvia the CARETAKER 11021, a 30-lllonth 

research project within the Sixth Framework Programme (FP6) that was com­

pleted in September 2008. It aimed at studying, developing and assessing mul­

timedia knowledge-based content analysis, knowledge extraction components, 

and rnetadata management sub-systems in the context of automated situation 

awareness, diagnosis and decision support. :More precisely, CARETAKER fo­

cused 011 the extraction of a structured knowledge from large multimedia collec­

tions, recorded over networks of cameras and microphones or acquired in real­

time, deployed in real sites. CARETAKER included 9 partners: 2 commercial 

companies (Thales Communications France and Solid Information Technology 
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- now part of II3M), 5 research institutes (Multitel, INRIA 1 Sophia Antipolis, 

Kingston University, Idiap, and Brno University of Technology), and 2 public 

transportation companies (Agenzia per la Mobilita del Comune di Roma and 

OTT - Oruppo Torinese Trasporti). 

I Institut National de Recherche en Infonnatique et Automatique. 



~~--------------------~ 
Literature Review 

This chapter presents existing solutions to the problem of tracking (both in 

general tenns, and specifically for multi-canwra visua.l tracking) and t.o ancilla.ry 

problems that are often encountered while tackling visual tracking, such as 

camera calibration and motion detection. Solutions to the tracking problem are 

presented from a historical perspective, starting with the original definition of 

tracking, to arrive to the current task of visually tracking people across multiple 

cameras. After that, in the second half of the chapter. the state of the art 

on performance evaluation, pre-processing, camera calibration, and metadata 

representation is presented. These topics were selected because they all emerged, 

during this research project, as sub-problems of tracking. 

2.1 A Historical Perspective 

The Free Online dictionary definE'S tracking as the pllI'suit of a person or animal 

by following tracks or marks that they have left behind 11 0:31. \\'it h the iuvention 

of the radar in the 1930s, and its strategic deploymeut h~' the nO~'HI Air Force 

during World War II [751, the semalltics of "tracking" had to be eXtI'llded to 

include ships and airplanes. The tracks they would leave behind are radio waves 

bouncing off their metallic hulls. Tracking, applied to radar sigllals, consists of 

associatiug targets (radar detections with distance, bearing aud size) to actual 

flying or floating objects. If during WWIl this process was entirely manual, 

the ever increasing use and sophistication of radars, both military and civilian, 

in subsequent years, has generated interest in algorithms capable of tracking 

large uumber of objects using detection data from many and possibly diverse 

7 
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sensors 19J (not necessarily radars). In this new context, tracking can be defined 

as the processing of measurements obtained from a target in order to maintain 

an estimate of its current state, which typically consists of: 

• kinematic components - position, speed, acceleration, ... 

• feature components - appearance of the objects, as seen by the sensor 

(reflectecl signal strength for a radar). 

2.1.1 Tracking with an Imaging Device 

l\Iea.'mremellts are noise-corrupted observations related to the state of a tar­

get. For instance, radar measurements are based on round-trip time and return 

str(,llgth of 11 radio signal. A radar produces an array of "points", or blips, each 

corresponding to at least one target. 

An imaging device such as a video camera can detect the intensity and col­

our of light emitted or reflected by objects placed in front of it. Thanks to 

Yideo cameras, security operators can track large objects (mostly humans and 

vehicles) moving within an environment, by following the tracks left by photons 

that b()II!l(:(~ off t.he targets and hit thc ClUllcra scnsors. A camcra sensor, how­

ever, consists of a grid of light-sensitive elements, each continuously providing 

information about the colour and intensity of the light it is hit by. A camera 

<10(,:-; Ilot directly indicate the presence or the absence of a target, therefore its 

pres!'lIce must be detected indirectly using the information provided by the ima­

RiuR spnsor, for example using one of the motion detection algorithms reviewed 

in S('ctioll 2.1.1. 

T,HR!'t t nicking can be divided up in three stages: detection, initialisation, 

alld track nmiuteuauce (precision tracking or continllation). A sensor can be 

dwraderis('cl by its detection probability PD and false alarm probability PFA. 

All iclpal S(,IISor ha.'i PD = 1 aud PFA = 0: in this case, a trad<: can be initiated 

as soon ClS there is a detection, and each detection measurement can be used to 

estimate the target state. However, a realistic sensor has PD < 1 and PFA > 0, 

and several techniques have been developed to discard inconsistent detections 

alld to work with missinR ones 117, 8J. Additiollally, some tracking scenarios, 

such as tag-and-track, require manual initialisation, in which case it is a human 

(or an external process) that iudicates to the tracker which detection should be 

tracked. Once a track is initialised, the video feed and the detection output can 

be processed by an ima.ge-ba.sed tracker, explained in Section 2.2, which uses 

certain features of the image, to estimate the position (on the image) of the 

target in each new frame. 
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2.1.2 Track Maintenance 

The general goal of track maintenance is to increase the accuracy of meas­

urements obtained from the sensor, and to obtain estimates of variables not 

measured by the sensor (i.e. estimating a target speed given several measure­

ments of its position). If the target has a linear motion model, and the sensor 

measurements are affected hy white Gaussian noise with known moments, the 

Kalman Filter (KF) 11121 is the optimal tracker, and it has been used success­

fully in many surveillance applications, including scenes with partial static and 

dynamic occlusions 1117]. 

If the motion model of the target is non-linear, the Extended Kalman Filter 

(EKF) can be used where a continually updated linearisation around the previ­

ous state estimate is calculated 152]. This approach is a simple way of dealing 

with non-linearities. but only produces a reasonable estimate if the linearisation 

sufficiently approximates the non-linear system, and if the initial estimate is 

sufficiently dose to til(' true solution. 

The Unscented Kalman Filter (UKF) is an alternative to the EKF. In the EKF, 

the state distributiOlI is approximated by a Gaussian random variable (GRV), 

which is then propagated analytically through the first-order linearisation of 

the non-linear system 1111]. Oil the other hand, the UKF uses deterministic 

sampling and propagates the' samples through the system dynamics, the result 

of which is approximatpd b~' a GRV. The UKF has the advantage that it is 

accurate to the t hinl order in a Ta~·lor series expansion for any non-linearity, as 

compan>d to a lirst ordpr clpproxilllation using the EKF. 

\Vhile the LKF. EKF and the UKF all a;,;slllne that the process and measurement 

errors of t hl' s~·sh~m ("all be lllodPlbJ b~· a Gaussian, the particle filter 16] (also 

kllown as iCONDENSATIOl':) approximates any probability distribution with 

a large set of particles. These particles are propagated through time using 

importa!lce sampling. allowing an.\· arbitrary process model to be used, thus 

offering flexibility. The disadvantage is its compntational complexity. 

2.1.3 Data Association and Multi-Object Tracking 

Due to the presellce of multiple targets withiu the detection threshold, false 

detections, and missed detectiolls, there will !lot always be a trivial, one-to-one 

mapping between measurements and targets. The process of deciding which 

measurement to feed into which tracker is called data association. A compre­

hensive survey of data associatiou techniques is outside the scope of this thesis. 

However, some of the best known techniques are briefly presented here. 
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One of the most basic forms of data association is the nearest neighbour asso­

ciation [9]. At each time step, this algorithm simply associates each observa­

tion with the nean~st target, a(:(:ordillg to sOllie domain-specific nwasurellwnt 

of distance. Nearest neighbour, however, tends to perform poorly in cluttered 

environments. 

The multi-hypothesis tracker (MHT) can be used to assign a batch of meas­

urements to a set of tracks [51]. The MHT finds the best association by enu­

merating all possible associations and keeping the one that minimises some cost 

function. In the probabilistic multi-hypothesis tracker (Pl\IHT), data associ­

ation and state estimation are both performed in a single estimation process of 

two sets of random variables: target states and target-measurement associations 

[881· 

Schikora et ai. [90] propose an implementation of MHT hased 011 optical flow 

[93] (for tracking) and finite state statistics (for data association). Optical 

flow can he computed with any of the may existing algorithms, such as 193]. 

Finite set statistics [66J is a Bayesian filtering technique that uses St'ts, instead 

of vectors, to represent states and observations, \vhich makes it particularly 

effective for multi-object tracking. The algorithm is evaluated on a publicly 

available dataset, but only qualitative performance results are reported. 

llerclaz et ai. 112] propose a new algorithm for data association, that can be 

used with any detection algorithm to create an effective (Iud efficient multi­

object tracker. In order to find the optimal set of tracks for multiple objects, a 

data association algorithms should enumerate all possihle as~o('iations, which i~ 

an NP-complete probkm. A faster algorit.hm can find a soilltiou in polynomial 

time, by using heuristics or a probabilistic approach. hut it nJa~' miss the actual 

optimulll. Tlw Cluthors propos!' to cast t Iw probl(~lll into ow' of cOllstrailJ(~d fiow 

optimisatioll. which can be solved in pob'llOmial time yielding quasi real-time 

performance on realistic datasets. The algorithm was evalm1tpd 011 t Iw PETS 

dataset 182[' outperforming all trackers partirip<lting the PETS-20()!) tracking 

\vorkshop. 

2.1.4 '!racking across Multiple Cameras 

When there are multiple objects to be tracked across multiple cameras, it may be 

desirable to split the computational load into a number of independent processes. 

This can allow better scalability, fault tolerance, or both. There are three main 

types of supporting architectures 178]: a centralised architecture where all the 

information is processed at a central point, a distributed architecture where 

some low level processing is performed at each node before COlllIliunication with 
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the central processing unit, and a decentralised architecture where there is no 

centralised facility: each node performs its own processing and communicates 

high-level metadata with the other nodes over the network on a peer-to-peer 

basis. Regardless of the chosen architecture, the layout of the camera network 

(i.e. the connections between cameras) must be known to the tracker: this is 

discussed in Section 2.5. 

Each architecture has its pros and cons. The centralised option has the obvious 

disadvantages of a single point of failure and a possible communication bottle­

neck; moreover it is not scalable. A distributed architecture partially ameliorates 

the problems of a centralised architecture. A decentralised architecture on the 

other hand docs not suffer from the problems above; it is scalable and robust, 

meaning that nodes can join or split from a network easily. However, from a 

group decision-making point of view, the centralised architecture means that 

decisions are made at one location, requiring less negotiation and bargaining. 

The decentralised architecture, on the other hand, needs to employ multiple 

rounds of bargaining to reach a globally optimal solution. 

Another point to consider is the end-user application. For example, for visual 

surveillance, where existing systems usually already have a central monitoring 

facility, a decentralised architecture might not be necessary. 

Regardless of the supporting architecture, data fusion (track and identity fusion) 

can be perforllled across a network efficiently using tlw conccpt of decclltralised 

data fusion (DDF) [69J. In this scheme, only new information is passed around, 

and each message can summarise information from many new measurements, 

making communication efficient. DDF can be achieved usillg a Kalmall filter 

framework (or more precisely, the inverse of it, i.e. the information filt(~r frame­

work). 

2.1.5 Person re-identification 

In a video surveillance scenario, sometimes operators do not need to know a tar­

get's position at any instant in time, but they only need to determine whether a 

target (the query) has already been observed in a camera network. This problem 

is similar enough to multi-camera tracking that they can be cast into one an­

ot.]wr; in particular, llluiti-canwra. tracking is a. fmm of persoll rc-itkutification 

when the tracker attempts to reacquire a target that has gone out of view. 

I3ak et al. 17J propose two methods, one based on haar-like features 161]' and 

the other on dominant colour descriptors (an MPEG-7 descriptor presented in 

Section .3.7.2). In both cases, the video stream from one camera is processed by 
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a human detector, which provides foreground "human blobs" for the signature 

generation module (which is either haar-like or dominant colour-based). Each 

blob is also tracked using a single-camera tracker, so that signatures can be 

generated using several views of the same person. Experimental results on the 

CAVIAR 1211 dataset show a precision of 80% at equal error rate, while on the 

(more challenging) i-LIDS [441 dataset this figure is reduced to about 40%. 

Satta et al. [89J provide a theoretical framework for person re-identification 

that they call Multiple Component Matching (MCM). As in the previous paper, 

it aSSllllles that a human detection algorithm extracts foreground "blobs" and 

supplies them to the MCM re-identification module. Each blob is split between 

upper and lower body, and each half is further subdivided in a set of random 

patches. Every patch is described by its colour histogram in HSV space and its 

position along the y axis. In order to improve robustness to lighting changes, 

some patches are modified by adding or subtracting a fixed value to the HGB 

colour of each pixel in the patch, as this will simulate its appearance after a 

change in illumination. The modified patch is then added to the set, in place 

of the original one. The sets of patches can be generated by a single blob or, 

if a tracker is present, by multiple blobs corresponding to the same individual. 

These two sets of patches, called a template in the paper, can be compared for 

similarity, by providing two distance functions D (between templates) and d 

(between sets). D is the average of the distances between sets. To compute d, 

the I3hattachaaryya distance between each pair of patches is computed; then, 

d is computed as the Haussdorf distance between the two sets, defined as the 

maximum of the minimum distances between each element of one set and each 

element of the other [861. TODO performance evaluatioll. 

P('ople rc-irkntificatioll systems use only <1ppl'arallce to determille equality of 

two individuals, whereas multi-camera trackers. reviewed in the following sec­

tion. also use topological information about camera layout. Clearly, because it 

does not need topological information, a re-identification system is much easier 

to set up than a full-fledged track(~r, how(~v(T this als() llWHns that matching 

will be less reliable. For this reason, the outPlit of a re-identificatioll system 

is usually a set of candidate individuals, ranked by likelihood of matching the 

query individual. The user is left to decide whether a real match is within the 

provided set, or if a larger set should be provided. 

2.1.6 Appearance Description 

A large volume of literature connected to tracking or re-identification is devoted 

to methods for describing a target's appearance. An appearance descriptor can 
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be applied to a person's image (or sequence of images), and the output is a com­

pact representation, usually called description, observation or signature. Two 

descriptions can be compared for (dis)similarity, and this measure is connected 

to how likely it is that the two descriptions describe the same person. A more 

in-depth theoretical analysis on this topic is presented in Section 3.7; in this 

section, we shall give a brief overview on existing appearance descriptors. 

Truong et at. [CITE People He-identification by Means of a Camera Network 

Using a Graph-based Approach] developed a simple yet effective descriptor, 

\\Thieh Section 3.7.3 analyses in detail. Given the silhouette of a target, it is 

divided vertically in n parts, and for each part the average colour is computed. 

The resulting array of n RGB values can be used as a description of the tar­

get. Its simplicity notwithstanding, the descriptor performs remarkably well, 

correctly identifying almost 100% of the individuals in a realistic (but private) 

dataset. The experiments performed by the author of this thesis, with a custom 

implementation of this descriptor, also show that it outperforms many more 

complicated approaches [27]. 

Harndoun et at. [41] propose to generate descriptions using short sequences of 

framps where the target is visible, therefore requiring a single-camera tracker. 

In each frame, a Illunber of key-points are detected using a variant of SIFT 

features[63]. To Illeasure the similarity between two description, the sum of 

absolute d~/j'cn:T/cc,'; (SAD) is used. Even though it is not clear from the paper, 

pH'smnably the diff(')'cllcc is calculated for each pair of key-points from the two 

descriptions being compared, and all differences are added together. Evaluation 

is carried ont 011 t 1)(, pl1 hliely available CAVIAR dataset [21], yielding a precision 

of 80% at eql1al error rate. However, the fact that this descriptor requires 

a trach'r IIlakes it undesirable for a highly modular system such as the one 

described in this thesis. since it is desirable that appearance descriptors work 

independent I,\" of tracking in order to minimise coupling between modules. 

2.1. 7 Existing Tag-and-'frack Systems 

As it will hecollle cvidcnt, the existing literature on tracking across multiple 

non overlapped CHlllcras is scarce. For this reason, some of the papers included 

in t.his review are not strictly relevant, for example because they assume over­

lapping camera "iews. or because the presented algorithm is not real-time and 

can only be nsed in all off-line: "forensic" mode after all relevant video is made 

available. However. the large number of multi-camera tracking papers makes 

a comprehensive review unfeasible: therefore, the author of this thesis chose a 

subset that, it is hoped, is representative of the current state of the art. 
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mack and Ellis [14, 15] describe a multi-camera tracker. It deals only with 

overlapping cameras (as it uses an epipolar approach to reconstruct the 3d 

position of a target), and it is not realtime (observations are collected over a 

period of time, and associated into tracks in a subsequent stage). The problem 

of non-overlapping cameras is dealt with in a subsequent paper [16], but the 

method remains non-realtime. 

Mittal and Davis [72] developed 1\12 Tracker. a multi-camera tracker capable of 

segmenting and tracking people in a cluttered scene. 1\12 Tracker uses a wide­

baseline stereo algorithm to segment individuals in a crowd, and therefore it is 

not suitable for a large surveillance network, where camera views rarely over­

lap. Detection and tracking are based on an iterative algorithm, therefore the 

method is not suitable for real-time tracking. It uses a colour descriptor of 

each person based on subdividing the target image into a number of horizontal 

stripes, similarly to what was done for this thesis (based on [106]). 

Thirde et al. [104] present a multi-camera tracking component of a complete 

surveillance system that can recognise activities around a parked aircraft to 

improve efficiency, safety and security of the servicing operation. The system 

operates in real-time and can resolve merging, dynamic occlusion, fragmenta­

tion and complex object interaction in the congested area around an aircraft 

during servicing. The system, however. was designed specifically for the partly 

controlled scenario of aircraft sen-icing. and requires several cameras with over­

lapping fields of view, all calibrated ,,-ith respect to the same ground plane, in 

order to operate. The system is compo:-;pd of a single-camera tracking module 

(based on motion detection), and n IIlulti-camera module that fuses information 

coming from the single-camera trackers. 

I'vladdell and Piccardi [G5] deYeloped a frHnH'work for lIlulti-camera tracking. 

This framework can deal with non-oyerlapping ('ameras and long occlusions, 

Howey"r, it rdies IIlostly 011 appearmJ('e and it has an explicit "matching phase" 

where tracks from all cameras arc associat('d: tra(,king i:-; performed by single­

camera tracker::; in real-time, and there is 110 attelllPt to pre::;erve identity across 

cameras at thi::; stage, After a IHuuber of track::; has been collected, target 

appeara.nces are llsed to find the globally optimal association between tracks; 

the method is not, therefore, realtime. 

Ning and Tan [79] present a novel approach for tra(,king a moving target in 

a large, heterogeneous network of fixed and moving cameras. The system is 

targeted at city-wide surveillance, where bu:-;-mounted cameras could be used 

to aid fixed surveillance cameras for tracking people over a vast area. A map 

of the city is divided up into a large number of discrete cells, small enough to 

contain no more than one target (the paper suggests square cells of 1 metre, 
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as a compromise between too large a number of cells and too large cells). All 

cameras, fixed and mobile, are geo-located and fully calibrated, so that their 

pose and footprint is known with respect to the city map (buses need to be 

equipped with a GPS receiver); calibration error has to be small compared to cell 

size. All videos need to be time-stamped using a common clock signal, possibly 

derived from the GPS. Any appearance-based descriptor can be used to match 

two observations and generate a probability of them belonging to the same 

individual. Even though the approach is theoretically sound, all performance 

evaluation was done on simulated data. 

Zhang et ai. 1120J of ObjectVideo present a multi-camera tracker and Intelli­

gent Video Surveillance (IVS) system. The work presented in their paper is 

similar in scope to the on-line part of the CARETAKER system, although the 

system design is less modular, and all stages of the pipeline (motion detection, 

tracking, classification, and event detection) are predefined: tracking and clas­

sification produce metadata that is fed into a rule-based system in order to pro­

duce events. In ObjectVideo's IVS, all video processing is performed by smart 

cameras, which send the resulting metadata (and no video) to a "fusion sensor", 

where information fusion and tracking are carried out. In contrast, the CARE­

TAKER processing components (tracker and event detectors) are independent 

modules, that can be used stand-alone or in conjunction with a rule-based sys­

tem for high-level analysis. Performing video analysis "on the edge"', i.e. next to 

the video source, has many henefits. The most computationally intensive tasks 

are distributed (and therefore parallelised) among the single camera sensors, 

and communication bandwidth requirements are low due to the transmission of 

the meta-data only. On the other hand, retro-fitting smart cameras on a large 

legacy system call be extrernel~' cxpcnsiye, and it may be preferable to have 

a centralised tracker that only analyses the subset of video streams it requires 

at any given time. The biggest drawback of Object Video's system is that it 

requires overlapped cameras. Two examples in the paper show their system 

used for perimeter defence (with 18 cameras daisy-dwined along a feJl(~e) and 

laboratory monitoring (with a few wide-angle cameras mounted 011 the ceiling). 

In neither case is the system exppcted to deal with long occlusions. Also, disam­

biguating a target after an occlusion is handled using only spatial information, 

while the system could benefit by also IIsing appccuance information. 

Snidaro et ai. in [941 employ multiple video sensors to enhance tracking. They 

also develop a quality function to a.ssess the performance of each sensor for each 

target, which is based on foreground blob collnectivity and contrast between 

foreground pixels and expected background colour. Target information from 

each sensor, weighted by the quality function, is then fused by a central process. 
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In their paper, information is fused corning from heterogeneous sensors, namely 

colour and infra-red cameras. Experimental results show how fusing tracks 

weighted uy their quality gives better results than "blind" (ullweightcd) fusion. 

However, this method is only applicable for overlapped sensors. 

In [73J, rVIonari et al. present a system for human tracking across multiple, non­

overlapped cameras. Monaro's tracker is similar to the one presented in this 

thesis, in that it combines spatial and appearance information about targets 

and known camera topology to track people across possibly long occlusions, 

e.g. on a lift. They do not, however, model the uncertainty of transition times 

across cameras. The main difference between the tracker presented in this thesis, 

and Monaro's tracker, is in system design. Monaro's tracker uses a distributed 

architecture, with peripheral smart sensors performing segmentation and single­

camera tracking, and a remote multi-camera tracker that uses only high-level 

information coming from the smart sensors. In their experimental setup, 5 

personal computers were used to simulate 10 smart sensors, and another 5 PCs 

were used to run several multi-camera trackers. I3y contrast, the centralised 

approach used for this thesis needs only one PC to track across 20 cameras, at 

the cost of higher bandwidth usage. The upside of a distributed design, however, 

is that multiple trackers can be started at very little additional computational 

cost, whereas with a centralised architecture a PC is required for each instance 

of the multi-camera tracker. No quantitative results about the performance of 

their tracker are provided. 

l\Iontcalm et at. [74J also developed a multi-camera tracker that works across 

non-overlapping views. For intra-camera tracking, they use target location, 

velocity, size. colour histogram and shape descriptor; all of these are recomputed 

on each frame, and compared with the previous frame to re-acquire the target. 

Additionally, all colour histograms and shape descriptors generated from one 

target in one camera are aggregated, in order to create a more robust descriptor 

that is used for multi-camera tracking. For each pair of cameras, a jeat'll1"£.: 

tmnsfer junction is learned (using ground truth) that can transform a feature 

vector acquired ill one camera, into the feature vector expected in the other 

camera. However, experiments are shown using only one pair of cameras, and 

no quantitative results are given. 

2.1.8 Conclusion 

A review of the state of the art of multi-camera tracking was given, from a 

historical perspective. The review started from the origins of the concept of 

"tracking". went through the difficulties of tracking with an imaging device, and 
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eventually arrived to the current state of multi-camera tracking. The remainder 

of this chapter will review state of the art techniques for the lower levels of a 

multi-camera tracker pipeline. Firstly, a review of single-camera, image-based 

tracking techniques is given in Section 2.2. Then, the main techniques used to 

evaluate the performance of a tracker will be reviewed in Section 2.3. The sub­

sequent two sections present a review of low-level tasks that are often performed 

prior to tracking, namely motion detection (Section 2.4) and camera calibration 

(Section 2.5). The chapter concludes with a review of metadata representation 

formats in Section 2.6. 

2.2 Tracking With Object Model 

Tracking with object model means that the tracker does not use a motion model 

for the target, and therefore it must rely exclusively on the target's appearance. 

Essentially, this means that certain features extracted from the image are re­

acquired from frame to frame. The common types of features used include SIFT 

[63] and the l'\lean Shift representation [23]. The latter forms the basis of the 

CamShift Algorithm [47]. Block-based tracking (also known as block-matching), 

where the features are essentially spatial templates, are also used [llO, 2, 22, 49J. 

SIFT features are scale and rotation invariant, and provide robust matching 

across affine distortion, change in illumination and change in 3D viewpoint. 

In a tracking application, SIFT features provide reliable point correspondences 

between sequential frames. 

The Mean Shift algorithm [28] uses a histogram (colour or greyscale) to represent 

the target. 'fhi::> representation has the advantage that it is scale invariant, and 

can overcome partial occlu::>ions. It is pos::>ible to initialise the tracker u::>ing 

motion detection, howeVf'r it is more common to allow user input for selecting 

the target (or regioll) of intere::>t to be tracked. When a llew frame arrive::>, the 

occurrence of the target histogram in the new frame is found using a gradient 

search. The Bhattacharyra distance is used to evaluate the closeness of match. 

However it is possible that this search becomes stuck at a local maximum, 

causing the algorithm to stagnate. In this case, a new initialisation is required. 

The CamShift algorithm extends the 11ean Shift algorithm by allowing the 

histogram to adapt to the changes temporally. An open-source implementation 

of Cam Shift is available in the OpenCV library [47J. 

Block-Illatchillg is the process of defining a block (neighbourhood) of interest 

in an image, and identifying its occurrence in a subsequent frame using a sys­

tematic search, minimising a given cost function. This process is often used in 
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motion estimation in video encoding techniques such as MPEG-2125J. Although 

only effective in low crowding, low occlusion situations, tracking using MPEG-2 

motion vectors has the advantage of very low computational cost, since most 

digital video is already encoded in MPEG format (or hardware encoders can be 

used). A prototypical system was tracking all pedestrians in a scene at 15fps 

using non-optimised code on an old Pentium IGHz. 

Another possible approach to tracking with object model is to use a Swann Intel­

ligence metaphor 15], such as in Swarmtrack by Ant6n-Canalis et al. Swarmtrack 

is based on a pn~y-predator sdwuw wit.h a swarm of predator particks defined 

to track a herd of prey pixels, following a pixel intensity the way a predator 

would follow a prey scent track. The method includes the definitiou of pred­

ator particles' behaviour as a set of rules in a boids fashion (a boid, as defined 

by Reynolds 185], is an independent actor that belongs to a virtual swarm and 

navigates according to its own perception of the dynamic environment 162]). 

Object tracking behaviour emerges from the interaction of individual particles. 

The algorithm is efficient enough to be used for real-time vision based tasks on 

a general purpose computer. Unfortunately, they do not provide an implement­

ation of their algorithm. 

In their 1994 seminal paper, Shi and Tomasi 193J derive a method to extract 

optimal features for tracking. Each feature detected in one frame is searched 

for in the following frame in a neighbourhood of the feature itself. This method 

can be used to generate a discrete optical flow, but because it dol'S not enforce 

a spatial relationship between the features, it cannot be directly used to track 

moving objects, as the single features will tend to be stuck onto bac:kgrouJI(\ ele­

ments or other moving objects and spread throughout the imagp. The OpenCV 

library 1471 provides an open-source implementation of this method. 

2.3 Performance Evaluation 

Performance evaluation of tracking is important for comparison and furt·her de­

velopment of algorithms both in academia and in industry. Performance evalu­

ation is complicated by the fact that several flavours of tracking exist: single or 

multiple targets, single or multiple cameras (with or without overlap). automatic 

or manual initialisation, with or without operator interaction (such as restart 

or disambiguation), etc. Some methods stern from perfonnance evaluation of 

motion detection 176, 58, 10], and are not particularly effective in eyaluating 

tracking algorithms. Other methods, like the cumulative matching chamctcr·­

istic (CMC) curve 139], are widely used in person re-identification sCt'narios, and 
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can be used to evaluate a multi-camera tracker (in its ability to re-acquire an in­

dividual that has gone out of view), but do not evaluate the tracker's precision 

in locating the individual in the image. Most other methods are suitable for 

multi-target, automatically initialised, with single [77] or multiple overlapping 

1119] cameras. 

Somc of thc most significant efforts towards the standardisation of datascts, 

metadata and evaluation metrics specific to tag and track (single person, manu­

ally initialised, multi-camera tracking), are the PETS [82], CLEAR 124], and 

TRECVid 1105] programmes. 

Following up these efforts, the UK Home Office started the i-LIDS programme, 

which includes over 30 hours of annotated, synchronised videos suitable for 

tag and track evaluation; to the author's knowledge, this is the largest dataset 

publicly available. Annotation is stored in XML, using a dialect of Viper, a 

metadata representation format discussed in Section 2.6.1. The programme 

includes a low-level network protocol for communication between the tracker and 

a "virtual" operation room. It does not include, however, a public performance 

evaluation metric. 

This shortcoming has been addressed by the American National Institute for 

Standards and Technologies (NIST), which issued a multi-camera, single person 

tracking challenge 11]. The challenge is based on a subset of the i-LIDS videos, 

annotated by .\"1ST (in a different dialect of Viper), and on a publicly defined 

set of evaluation metrics based on CLEAR [53]. These metrics, explained in 

detail ill the following section, will be used to evaluate the tracker developed in 

this tl}('sis. 

2.3.1 NIST Evaluation Metrics 

The performance evaluation metrics adopted by NIST for the AVSS tracking 

challcllge were originally developed to evaluate multi-target, auto-initialised 

trackers. This is reflected in the metrics hy including measurements of false 

positives (FP) and missed detections (false negatives, FN), and by the inclusion 

of an algorithm that computes the best mapping between ground truth objects 

G i and tracker output objects D i , that caters for false positives and missed de­

tections (i.e. when the numbers of ground truth objects Nc and tracked objects 

N D differ). The lIla pping can he computed on each frame, or on the whole se­

quence: in the following paragraphs, Nr~:;'Pp"d is the number of mapped objects 

in frame t, and Nmapped is the number of mapped objects in the sequence. All 

metrics presented in this section return a number between -:)() and 1, where 

1 means perfect tracking, 0 means that there are as many erroneous tracking 
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instances as there are correct ones, and a negative number means that erroneous 

tracking instances outnumber the correct ones. 

The performance evaluation is designed for multi-target tracking, but the chal­

lenge was for a single-person tracker. In order to use this pre-existing metrics, 

the single-person tracking problem was cast into a multi-target tracking prob­

lem, by collecting the tracks of many single-person trackers, and considering 

them as the output of one multi-target tracker. 

The collection of metrics described in the following subsections are explained 

in detail in [13/. It is to be noted that those authors seem to use accuracy and 

precision with a slightly different meaning from the usual. :'\ormally accuracy 

refers to how close a measurement is to its actual (true) value, and precision to 

the degree to which further measurements show the same or similar results [101/. 

In [13/, however, the authors take pr'ecision to mean how close the estimated 

position of the target is to the real one, and accuracy to mean how good the 

tracker is at preserving and individual's identity throughout the track. 

2.3.1.1 Sequence Frame Detection Accuracy 

The Sequence Frame Detection Accuracy (SFDA) is the average over all frames 

of the overlap ratio between ground truth objects and tracker output objects. 

The overlap ratio is defined as 

(2.1) 

where N(t) I is the number of ground truthed objects in fraIm' t with a (:or-
IT1lJP]Jf'( • 

responding tracker output object. Normalising Equation 2.1 over the number 

of objects we obtain the Frame Detection Accuracy (FDA): 

OV(~rlap Ratio 
FDA (t) = If) -.If) . 

Nc; +l'> D 

2 

(2.2) 

In order to measure the detection performance over the entire sequence, the 

FDA is computed for all frames, and normalised by the number of frames ,\There 

there is at least one object: 

(2.3) 
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To forgive minor localisation errors, the overlap ratio is thresholded at 20%: a 

tracker bounding box overlapping the ground truth by 20% or more is assigned 

a score of 100%. The threshold was determined empirically by having part of 

the data annotated by more than one human. 

2.3.1.2 Multiple Object Detection Accuracy 

The Multiple Object Detection Accuracy (MODA) of a frame t is computed as 

MODA (t) = 1 _ Cm (md + cf (Jpd 
(t) , 

Nc 
(2.4) 

where mt and fpt are respectively the number of missed detections and false 

positives at frame t, and Cm and cf are their weight functions (whose value 

depends on the relative importance of missed detections and false positives, 

but it was chosen to be 0.5 for the AVSS tracking challenge). If a measure 

of the accuracy over the entire sequence is required, the Normalised MODA 

(N-1\IODA) can be used. It is defined as 

(2.5) 

2.3.1.3 Multiple Object Detection Precision 

The Multiple Object Detection Precision (MODP) is similar to the FDA (Eq. 

2.2), but it normalises the overlap ratio (Equation 2.1) by the number of mapped 

objects in each frame: 

O ) 
Overlap _ Ratio 

1\1 DP (t = (t) . 

Nmapped 
(2.6) 

This gives the precision of detection in any given frame t. If N'~:;'Ppe" = 0, then 

the MODP is forced to zero. 

2.3.1.4 Multiple Object Tracking Accuracy and Precision 

The Multiple Object Tracking Accuracy (MOTA), and the Multiple Object 

Tracking Precision (MOTP), were developed in 2006 for the CLEAR tracking 

challenge [24], in order to offer a general framework for the evaluation of Ululti­

body trackers in all domains and for all modalities (visual, radar, acoustic, 

etc ... ) [1001. The two metrics are used to calculate the two basic types of errors 
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made by multi-object trackers: imprecision in the estimated object locations, 

and failure to keep a consistent identification of tracked objects (ID swaps). 

A detailed explanation of how MOTA and MOTP are calculated was made 

available on-line to all participants of the NIST multi-camera tracking challenge 

at AVSS 2008, but that page is no longer available. 

MUltiple Object '!racking Accuracy The Multiple Object Tracking Ac­

curacy (MOTA) is used to extract the accuracy of the tracker. It is defiued 

as 

MOTA = 1 _ L~'!lamc .. (mt + fpt + 10glO IDC) , 
""Nlrarnes N(t) 
L....t=1 G 

(2.7) 

where mt is the number of missed detections, fpt is the number of false positives, 

and IDC is the number of ID changes, calculated considering the difference 

between the mapping for frame t and the mapping for frame (t - 1). The authors 

have not explained why a logarithm is applied to the number of ID changes. 

Because MOTA is the measure of choice used by NIST for the multi-camera 

tracking challenge, it is also the main measure used in this thesis to evaluate 

the tracker in Chapter 5. Therefore, a detailed explanation of this metric will 

be given in Section 2.3.1.1. 

MUltiple Object '!racking Precision The Multiple Object Tracking Preci­

sion (l'dOTP) is ba8ed on the spatio-temporal overlap between the grouud truth 

tracks and the tracker output tracks. It uses the overlap ratio (Equation 2.1), 

and is defirlPd as 

""N"''''>l'rd Overlap Ratio 
MOTP = L..,=! -

""N I,.a,,>e.< N(t) 
L..!=] mapped 

(2.8) 

,vhere N"'(I]>ped is the global (optimal) mapping, and N,~~p]Jed is the loca.l map­

ping of frame t. 

2.4 Pre-Processing 

All the reviewed papers that present experiments on real video data perform 

some pre-processing of the same before feeding them to the tracking stage, the 

most typical of which is motion detection. Even though the tracking stage itself 

is conceptually independent from the pre-processing stage, the performance of 
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the system is infiuenced hy hoth. This work therefore had to review some of 

the most common techniques used to process the video data before the tracking 

stage. 

2.4.1 Motion Detection 

For advanced video surveillance systems, background subtraction is a useful tool 

that can allow the detection of moving objects in the scene. It requires a suf­

ficiently accurate model of the background to enable them to be distinguished 

from the foreground. One of the most common methods is the Gaussian Mix­

ture Model (GMM) 196, 97], which models each pixel as a mixture of Gaussians 

and uses an on-line approximation to update the model (see Figure 2.2b). This 

approach deals robustly with repetitive, irregular motions of background ob­

jects, sllch as swaying trees or waving Hags. For the special ca..'le of hackground 

exhibiting regular (i.e. periodic) variations, a novel algorithm is presented in 

Section 4.1. One drawback of the Gaussian Mixture Model is that slow-moving 

objects can be mistakenly incorporated into the background. There is one para­

meter, the learning constant, that allows to specify t.his t.rade-oft': high values 

will make the algorithm adapt quickly to background changes, at the cost of 

quickly incorporating slow-moving objects, whereas low values will make the 

algorithm more conservative, slower to adapt to background changes but also 

less likely to lose a slow-moving object. 

There is still a growing literature on better alternatives or improvements of 

Gl\IM for bad:ground estimatiun, e.g. the algorithms shown in Figure 2.2. 

Howf'ver, for t.he purpose of this thesis, we will assume that G:VI.\I is sufficiently 

good to provide appropriate foreground data to a tracker, 

2.4.2 Human Detection 

U sing motion det ectioJl for background, foreground separation assumes that 

nnything that "llIo\'cs" (i.e. allY variation in pixel colour over time) is an object 

of interest. and vice versa that pixels whose colour never changes are not relev­

ant for tracking. '''''hile this assllmption may hold in some surveillance scenarios 

(with people walking against a static background), most scenes will actually 

feature moving objects that are not of interest (e.g. scrolling advertisements), 

and non-moving people (e.g. queueing at a gate or a ticket machine). Human 

detection algorithms have been developed to overcome this problem. A human 

detection system takes as input an image, and returns as output the location 

and size of all humans appearing in that image. While, in principle, human 
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detection is superior to motion detection for people tracking, in practice the 

computational cost of these algorithms is still too high, by at least one order of 

magnitude, for real-time usage. 

Dalal and Triggs [33J compare several feature sets for human detection. Exper­

imentally, they show that histogmms of oriented gmdients (HOG) outperform 

all previously used feature sets. HOGs are computed by subdividing an image 

into a large numbed of small (typically 8 x 8 or 16 x 16) cells, computing the his­

togram of gradient orientation for each cell (separate by channel and weighted 

by gradient intensity). The set of HOGs over a detection window forms the 

descriptor that can be used for detection. A support vector machine (SVIVI) [31J 

is trained with positive and negative samples, and it is used to classify the HOGs 

inside a detection window as either human or non-human. The algorithm was 

evaluated against the publicly available INRIA dataset 1 , and performance is re­

ported to be between 84% and 89% true positives at 10-4 FPPW (false positives 

per detection window). The author of this thesis implemented in MATLAI3 a 

HOG detector based on this paper, but the best performance achieved was of 

several seconds per frame. 

Schwartz et al. [91J augment widely used edge-based detectors (such as the 

HOG-based detector reviewed above) to include colour and texture information. 

The descriptor so obtained has a very high dimensionality (in the order of 105 ), 

which makes it intractable for any standard machine learning algorithm such as 

SVIvI. To overcome this problem, a dimensionality reduction algorithm called 

partial least squares (PLS) [87J is applied to the descriptors, reducing the number 

of dimensions from over 100,000 to 20. Performance evaluation on the same 

INRIA dataset show a true positive rate of 94% at 10-5 FPP\V. Even though 

some thought is also given to computational costs, the reported speed is stilI 

too slow for real-time usage. 

2.4.3 Shadow Removal 

Shadows and reflections cause many false positives in foreground detection. 

Shadow removal techniques have been developed to limit this problem, even 

though deep shadows are wry difficult to remove. Some of the most commonly 

used algorithms are Hoprasert [45J (Figure 2.2d), Cucchiara [32J and double 

mixture model [71J (Figure 2.2c). All these methods exploit the property that 

cast shadows only change the intensity of a pixel, not its chromaticity, while a 

IThis dataset can be downloaded from http://lear.inrialpes.fr/data and used for re­
search purposes. 
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Figure 2.1 - Example of shadow detection and removal (taken from (4S]) . Upper left: 
background model; upper right: input fra me; lower left : output from background sub­
traction (foreground is blue, shadows are red, highlights are green and background pixel 
are kept in the original colour); lower right: foreground region after shadow removal is 
performed. 

real foreground object usually cha nges t he chromaticity of a pixel as well as its 

intensity. 

Detecting reflections is a much harder task, since t hey also modify pixels chro­

maticity. Several methods exist, such as [D2], but t hey are too computationally 

intensive to be used in real-time video analysis wit hout dedicated hardware. 

2.5 Camera Calibration 

Camera calibra tion is t he process of finding the parameters of the perspect ive 

projection that maps a point from the world reference frame to the image refer­

ence frame. T he projection can also be inverted to get a mapping from a point 

in the image reference fra me to a line in t he world reference frame. Camera 

calibration can improve single-camera t racking by providing hints on expected 

target size and speed as a function of t heir position on t he image. 

2.5 .1 Single Cameras 

A perspective projection has 11 or more parameters [:I I]: 6 are t he extrinsic 

parameters, describing a rigid t ransformation from the world to the camera 

reference frame; 5 a re t he int rinsic parameters, describing t he perspective pro­

jection from the 3D camera reference frame to t he 2D image reference frame. 

Figure 2.:3 shows a schematic representation of t he extrinsic parameters (the 

t ransformation from world to camera reference frame) and t he int rinsic para­

meters (the projection onto the image pla ne) . More parameters can be used to 
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(a) i nput fram e 

(b) Mixture of Gaussian (c) Double mixture model 

( d) fl orprasert (e ) Li and fl ttangs Ifill} 

Figure 2.2 - Motion detection algorithms. All the algorithms were run with the default 
parameters suggested in their respective papers. 
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Figure 2.3 - Camera calibration parameters. The green dash-dotted line ("extrinsic param­
eters') represents the position of the camera reference frame in the world reference frame. 
The blue dash-dotted line (intrinsic parameters) represents the position of the image plane 
in the camera reference frame. 

compensate for non-linear di tortions (i.e. radial distortion , not shown in the 

figure). 

Usually, video-surveillance systems do no require a ll these parameters. The 6 ex­

trinsic parameters do not need to be full y estimated for a single camera system, 

since in this case only the equation of t he ground plane in the camera refer­

ence frame is needed, thus leaving 3 parameters. Of the 5 intrinsic parameters , 

skew a nd aspect ratio can safely be assumed to be 0 and 1 respectively, leaving 

only t he position of the principal point and the focal length to be estimated . 

This leaves a total of 6 free parameters, which can be estimated with any of 

the manual methods presented in [:1 1], or using the (semi- )automated methods 

descri bed below. 

Camera Calibration from D etected Tracks 

Renno et al. f" I] developed an auto-calibration procedure to recover the image­

to-ground plane homography by accumulating tracks. A homography is a trans­

formation that maps points lying on a plane from one camera viewpoint to an­

other, or to and from t he ground pla ne. The parameters of this transformation 

are the optical centre (io, jo), the focal lengths (a{ , a£) , and the pitch angle 

(J. A 2D histogram H [i , p,], where i is the vert ical coordinate of the target in 

the image , and p, is the target height in pixels, is created from a la rge number 

of detected moving regions. This histogram shows that the two variables re­

late linearly to each other. Two key positions of a projected object are at the 
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horizon i h and at t he height o f t he op t ical centre i o. The horizon ill can be 

extrapolated as t he po~i t ioll where a ll targets are Opx high, while io has to be 

co\llpll t(~d frolll the optical How whik tl w Ci-Illwra is zoolllillg. T lw pitch allgle 

can t hen be computed as 

- 10 - f(· .) tan - Cl y lh - 1.0 . 

An estimate of a target's height in metres requires at least one target of known 

height to be used as a referencc. 

Came ra Calibration from H ead-to-Feet Homography 

In this method develop ed by Kra hns toever and Mendon<;a 155], people are mod­

elled as parallel segments of approximately t he same length , all perpend icular 

to the ground plane. Thcse j)aJ"(1Il el segments in tersect at a vanishing point. All 

lines connect ing t he upper poilJ ts of pa irs of segments and lower POillts of the 

same pair a re para lle l a nd in tersect at the horizon . The vanishing point a nd 

the hori zon dcfi ne the ca mera intrinsic parameters . However , there are so ma ny 

sources of lIoise (i.e . pcople do not have a ll t he same height) that a careful 

Bayesia n formulat ion of the problelll is required. This is the ollly calibrat ion 

method , among t he ones rcv ie\\·cd here. that can deal with non-zero roll a ngles . 

Camera Calibrat ion from Optical Flow 

Cam era cal ibrat ion fronl optiu ·l1 How was d('V(' loped by Vd astin et al. 11091. It 
ass unles ,·hat peoplc nlo\·C cIt silllilar SPl'C<i S indepcnd elJ t ly of t heir distancc frolll 

t hc camcra . and it es t inlMcs l hl' ("<1111 ('1"<1 i"oca llength f · hcight L frolll the ground 

pIa nc, and t i It a.ng le fJ. Let (.c. 'f). z) he t he ccull era refercncc frame (ccnt red ill 

the inlagc pla nc, \\· it h t he .>clxis poill t ill l!: Oll twcll·ds) , a nd (:r" . y". :::") ,·he world 

reference fn une, willi y" Iw inl!: l h l' ve rt iu d axis. All nloving obj ects in t he scelle 

a re exp ected to move pan-dlel to the (.r" . z") pla ne (the ground pla.ll e), t.h us 

hav ing Ilull ver t ica l spccd (I'!I" = 0). T he 'f) cOIn pUllent of an objecfs pos itioll 

(in the carncra rderell ct' fralll c) (",111 t hcrcfore be wri Hcn as a fUll Ct ioll of t he z 

componC11 t : 
z sin (j - L 

Y = (z - zo) ta 11 f) = e 
cos 

T hus, t he projectio ll y' 0 11 t hc image pla nc of the y componen t is givell by 

, f y l cose fL 
'f) = -- = --- - . 

I - z sin e (.f - z) sin e 
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The measured mot ion 011 t he image plane (v1-' . vy') represents t he proj ection 

of scene motion (vx" , vy" . v z") onto the camera reference frame (x . y z) prior· 

to being projected onto t he image pla ne. it can be shown that Vx = v,." a nd 

vy = vy" cos () + V z " sin B. 13v applying a perspect ive projec t ion of focal lengt h 

f to these equations we obtaill 

(v,.,. v",) = - .- - . . ( 
f v."" f (Vy" cos B + Vz " sin B) ) 

., .t - z f - z 

but since we ass umed tha t vy" = a t his cfju a tioll can he silllplificd as 

_ (I ver" Ivz." sin ()) ( v,,,', v9 ' ) - - .- - , . . . .t - z .t - z 

Assuming z » f (i.e. t he dista nce::; of a. person 's head and feet from the ca mera 

are roughly t he same), t he veloc ity of t ile object on t he im a.ge pla ne will be 

inversely proportiona l to t hc object depth (z-coordillate) . If opt ical fl ow is 

compu ted alld avcraged fo r a suffi cie ll t lv 10llg period of timc, then t he va lue of 

its horizontal component will be proportional to t il e Yirn g coordin ate at which it 

is computed . Th is proporholw li ty ca n be used to est ima te the image-to-ground 

plane homography. Howcver, t ile assunlptioll t ha t z » f is too constra ining 

for an indoor surveillance sccllH rio. esp ecia ll y in underground stations, where 

the height of thc ceiling severely lilni ts t he height a t which ca mera::; ca.n be 

p laced . Also , t he algor itlllll U::;I'S large qua ntit ies of noisy data to estilllate t he 

calibration , and while t·he 1l.ut llors recognise that a good ::;tocll as tic model is 

required , none is proposed. 

2.5.2 Camera N e tworks 

T he purpose- of Illul ti-ca nl en l ca libra t ion is t·o esta blish ;-1 geOi li etr ic or topo lo­

gica I relat ion between nil" h pic C,III ICnJ e; i II a sllrY('i 1I<1l1cc network. 

A topologica l relat·io ll i::; a n oriente d graph of connectiolls between C<!lIl cras . 

Nodes of t he gra ph H'pree;c llt c<! nl eras . a nd edges represellt ;-1 rd::1tiOIl of adja­

cellcy be tween ca ilieras. Tn t his cont ex t . t\\"o CilllIeras it a nd IJ are adjacent eit her 

if t heir views are overl apped. or if th('\, ilre not overlapped ilnd a ll illdividua l ca ll 

move from t he view of (/ to t he yiell" of IJ wit hou t hay illg to PHSS t hrough t he vicw 

of any other call1 eras (hilt t he fact t Irat t \yO cameras are adja cellt does IIOt pre­

clude the ex istell ce of a IOllge r, indirect path from a to IJ. see F ig ure 2.4 ). Of tell . 

the edges arc ex tended wi t.h average t ransi bOil t imes : tra llsit ion probabi I i ti cs , 

a nd t ransit ion regions (t he arc a of t he illl age where a tralls it ioll occurs). 
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Figure 2.4 - Different types of adjacencies in a camera network of a simplified surveillance 
scenario (corridors are in gray). Cameras a and b are adjacent and overlapped (overlapping 
area is marked with blue stripes); cameras band c are adjacent but not overlapped; 
cameras band d are not adjacent, because any passenger walking between these two 
cameras will have to pass by the field of view of a or c. Cameras a and d are adjacent, 
even though between the two of them there is a long occlusion. 
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A geometric relation is a mapping from each camera reference frame to one or 

more other camera reference frames, or to a common world reference frame. If 

two adjacent cameras are close enough, geometric calibration allows a tracker 

to predict a target's motion from the first to the second, and, if the views of 

the two cameras overlap, targets in the overlapping zone can be tracked more 

easily, as information coming from more than one sensor can be combined. 

Geometric Calibration 

Geometric relations can be inferred by collecting a large number of single-camera 

tracking sequences, and then searching for pairs of sequences that correspond 

up to an unknown homography. This is called a tracking correspondence model 

(TC1·1). 

Tlw first. flllly aut.omatic TCM for largc camcra networks with overlapping 

fields of view was introduced by 198). Given only a large set of video streams 

from a surveillance area, it can automatically build a model of the camera 

network. A tracking sequence Si is comprised of Ni tracking observations 

{si(fo) ..... si(fNJ}, indexed by the absolute times they occurred. Each ob­

servation includes a description of the object from a particular camera at a 

particular time: 

8i(t) = {:l:(t), y(t). d:r(t), dy(t). s(t), image(t), ... } . 

Any two tracking sequences that belong to the same object over the same interval 

of tillle arc in direct correspondence. The goal of correspondence modelling is 

to estimate the ideal correspondence matrix [*, each element of which is 

if Si and Sj correpond to the same object, 

otherwise. 

This is accomplished by finding the maxinl1lln likelihood correspondence assign­

ment givcu the obseITatious and the TC11. The probability that two sequences 

are equivalent given the observations and the TCM is 

and can he determiued by maximising the likelihood of 

pb:j = 1 151 , .•.• Sj, TCM) = II p(r;j = 1 lSi, Sj, TCMab),ij 

Si,Sj E S 
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This model can be used to track objects through the environment. Assuming 

that all objects move on a common ground-plane, the position of an object that 

is visible in two cameras a and b is related by a 3 x 3 homography Hab: 

where Po (t) = (x, y. 1) is the location of the object, in homogeneous coordinates, 

in camera a at time t, and Pb(t) is the interpolated position of the tracked 

object in camera b at the same time. The TCM of a pair of cameras includes 

the homography and a visual occlusion model Rub which is an estimate of the 

region of overlap between the cameras: 

To estimate the homography, pairs of co-occurring tracks are randomly sampled 

whose likelihood of belonging to the same object is given by 

where Pc is the probability of this particular pair being valid (given the number 

of other objects that were visible at the same time), PI. is the probability of a 

corresponding track lasting a particular time interval, and Pm is the probability 

of matchiug S; to Sj directly. For each pair of tracks, a homography is estim­

ated. and a score is computed based on the number of corresponding tracking 

sequences: t he one with the Illaximum score is chosen. 

In 1151. the Least l\Iedian of Squa.res (Ll\IS) method presented in [99] is used 

to deterllline the homograph~' t hat aligns the object centroids detected in each 

call1era vicw, The ('opfiicipnts of the homography can be computed with 4 

correspoudence points (see 1:30]): singular value decomposition (SVD) can be 

used to cOlllPute the Ll\lS, 

Topological Multi-Camera Calibration 

All Illethods reviewed here work by collecting a list of "object" entry and exit 

eveuts in the images (where the objects are typically pedestrians or vehicles, 

d('p(~ll(ling OIl tlw application), This list is Il~cd t.o find a. correla.tion bchvccIl 

the entry time of an object in a scene and the exit time of all other objects in 

all other scenes: if a correlation is found bet.ween a pair of objects, they are 

assumed to be the same, aud a topological link is assumed to exist between the 

two scenes. Such methods are capable of autonomously creating the topological 
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network of a surveillance system. Also, overlapping views can be thought of a 

special case of non-overlapping views, having negative transition times. 

In 170] the problem of topology is formalised in terms of the inference of a 

weighted directed graph which captures the connectivity relationships between 

the positions of the cameras. The notion of multiple agents moving asynchron­

ously through a camera network can be modelled as a Markov process. The 

network is described as a directed graph G = (V, E), where the vertices V = Vi 

represent the sensor locations, and the edges E = eij represent the connectivity 

between them. The motion of N agents in this graph can be modelled as trans­

itions across edges. Let 0 = {01, ... , ONa} be a set of events detected at times 

t = 1 ... No from the various sensors (vertices of the graph) , which indicate the 

likely presence of one of the N agents in that position at that time. Given the 

observations 0 and the number of agents N, the authors 170] propose a Monte 

Carlo Expectation Maximisation algorithm for estimating E. 

In 167] a similar method is proposed, with the addition of automatically learned 

set of entry and exit zones in each camera view. Connections are established 

between entry and exit zones of cameras, instead of between the cameras them­

selves. The method was used to accurately reconstruct the topology of a 6-

cameras network using 13 hours of video. 

2.5.3 Colour Calibration and Correction 

To track targets as they move through Cl network of cameras, appearance descriptors 

are used to model their appearallces. Descriptors call be compared to calculate a. 

probability that two targets represent the' same individual. For this comparison 

to he as effective as ]>ossiblr~, allY systematic diffen~llC<~ in descriptions ohtainecl 

from two cameras should be identified and rellloved. Such variations Ulay be 

caused by diffcrcllccs ill tlw Call1(~ra::: (difl'<T('llt hanhnm~ ami cOllfiguratioll), or 

by differences in the scene (different illumination). 

Colour correction methods can be divided in two elasses: supervised (manual) 

or ullsupervised (automatic). Supervised methods such fl,'; 146] require the user 

to select, from pairs of cameras, pixels or areas which are known to have the 

same colour. The advantage of supervised JIlethods is that they are generally 

more reliable and accurate (assumillg the user inputs correct data), but they 

are not practical when the number of cameras is large. 

Unsupervised methods, on the other hand, make some hypotheses about illu­

mination in the scene, and use them to autornaticall~' llormalise colours across 

canwras. Typical hypotlwsps illclll<i(! assllluiug that tIw av(~rage rd:kctauC(~ of 
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all scene elements is grey (the grey world hypothesis [19]) or that the bright­

est pixel of every image represents white. The advantage of an unsupervised 

method is that it can be applied to an arbitrarily large number of cameras; the 

main disadvantage is that if the hypothesis is not met, the method wiII fail to 

provide a good calibration and may actually make colours less consistent across 

cameras. 

2.6 Meta-data Representation 

The word ''metadata'' is a compound of the Greek ]lad (meta, meaning "besides", 

"over" and "above"), and Latin data (plural of datum, meaning "given"). Loosely, 

it can be defined as data about data. For example, the traditional card catalogue 

of a library is metadata of the library (where books are considered the actual 

data). In Computer Vision, algorithms work on video data, and metadata is 

anything that describes a video stream (for instance, it could be the time and 

date the video was captured, or a textual description of the weather, or the 

presence of an object of interest in a given location at a given time). 

Metadata can be used as additional input for a Computer Vision algorithm, or be 

produced as output hy it. For example, the "alert" status of an anomaly detector, 

or the target position for a tracker, are metadata produced by a detection or by 

a tracking algorithm. The initial position of a target is metadata provided as 

input to a tracker, in order to initialise the tracking process. Metadata is usually 

much more compact that the corresponding video (raw) data, and can be stored 

in files or databases. It can be compared against a ground truth (which is also 

a form of metadata) in order to get a performance measure of the algorithm 

generating it. 

By far the most common transport format for metadata is the Extensible M a7"A:­

up Language (XML) [113J. XI\lL is a general-purpose 8pecijicatiun for creating 

custom markup languages. It is classified as an extensible language because it 

allows its users to define their own elements. Its primary purpose is to help 

information systems share structured data, and it is used both to encode doc­

uments and to serialise data. It is designed to be relatively human-legible. By 

adding semantic constraints, application languages can be implemented in XML. 

There are two levels of correctness of an XML document: 

Well-formed A well-formed document conforms to all of XML syntax rules 

(e.g. if a start tag appears without a corresponding end tag, it is not 

well-formed). A document that is not well-formed is not considered to be 

XML and a conforming parser is not allowed to process it. 
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Valid A valid document additionally conforms to some semantic rules. These 

rules are either user-defined, or included as an XML schema. For ex­

ample, if a document contains au undefined element, then it is not valid; 

a validating parser is not allowed to process it. 

An XML schema is a description of a type of XML document, typically expressed 

in terms of constraints on the structure and content of documents of that type. 

An Xl'vIL schema provides a view of the document type at a relatively high 

level of abstraction. XML is an international, widely adopted, fee-free standard 

recommended by the World Wide Web Consortium (W3C). A large number of 

Xl\IL-related libraries, tools and documents is available on the Internet. 

Xl\IL subsets can be defined using the xsd schema specification, which is itself 

an XML file. Schemas allow programmers to declare the structure of an XML 

document, i.e. to formally specify which nodes (elements, attributes or text) are 

allowed in which part of the document, whether they are optional, mandatory 

or forbidden, and what values they can be assigned. 

Based 011 a human readable text format, supported by many high quality lib­

raries and tools, and backed by vast industrial support, it comes as no surprise 

that Xl\IL has heen adopted by many members of the Computer Vision com­

mllllit~· for rnetadata representation. The following sections review some of the 

Compnt('r Vision-specific schemas that have heen developed. 

2.6.1 Viper 

The Viper schema was designed for the ViperGT ground truthing tool [56] 

ill order to represent metadata for any Computer Vision task. The complete 

SdH'IllCl is split ill two files: olle describes the overall strnctnre of a Viper file, 

",hilp tlip otlipr one defines basic data-types (e.g. bounding boxes, polygons, 

etc.). TIll' schema is extensible, i.e. it is designed so that user-defined data­

typps call be added ill a backwards compatible manner. Tlie trade-off of this 

flexibility is an increased complexity in the usage of Viper files. A "quirk" of the 

Viper schema is that it is object-based rather than frame- or time-based. This 

Hwans t hat the XML cannot be output "live" as the algorithm runs, but it has 

to be stored in memory until the algorithm completes before it can be dumped 

to file. 

Its quirks notwithstanding, the Viper format was adopted by the UK Home 

Office and hy the American National Institute for Standards and Technologies 

(NIST) for the ground truthing of the i-LIDS multi-camera tracking dataset. 
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2.6.2 Serket 

Serket was specifically designed by the Serket ED Project Consortium to de­

scribe metadata for Computer Vision algorithms [4J. The Serket schema cannot 

be extended with user-defined data-types, thus sacrificing some flexibility to fa­

vour ease of use. Even though it cannot be extended, it seems to be complete 

enough for most video-surveillance metadata. It is frame-based, has support for 

multiple cameras, it defines bounding boxes for targets, regions in the image­

or ground-plane, events, etc. However, the author of this thesis was unable to 

locate on the Internet the actual schema definition, and no recent publication 

was found that uses Serket for metadata interchange. 

2.6.3 SMAF 

The Surveillance Media Application Format (SMAF) [3J is a proposed restriction 

to the MPEG-7 standard for video surveillance applications. MPEG-7 provides 

a general purpose framework for associating metadata to multimedia data [48J, 

and allows application-specific restrictions to be defined for specific domains. 

Any such restriction is referred to as a Multimedia Application Format (MAF). 

The restriction defined by SMAF covers a description of the surveillance system 

and of the activity in the scene. In addition to this set, appropriate descriptions 

for the relation between camera and scene are also considered. To improve 

interoperability between systems and between components of a system, two 

types of restrictions arc proposed. The first proposal is a restricted subset of the 

I\IPEG-7 elements that are applicable to the surveillance domain. The second 

proposal is to lise tlw MPEG-7 tools to illdmk dOlllaill-sp<'cific taxoIlOllli(~s to 

restrict the names of elements u!:>ed in the ::;emantic descriptions. 

At the time of writing, however, SI\IAF has not yet heel! officially adopted ill 

the MPEG !:>tandard. 

2.6.4 PETS 

In 2001, the second International Workshop on Performance Evaluation for 

Tracking and Surveillance (PETS) 182J designed a schema for the represent­

ation of tracking and high-level behaviour analysis. In contrast to Viper and 

SI\-IAF, the PETS schema focuses on tracking and behaviour analysis only, and 

is not designed to represent any possible type of surveillance metadata. This 

lack of exten::;ibility makes the format easier to use, but also limits its scope to 
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the two tasks it was designed for. To the best of the author's knowledge, the 

PETS format has not been used outside of the PETS workshop. 

2.6.5 Agent-Based 

This system was developed at the Multitel research centre in Mons, Belgium, 

to address the need for a generic, context-independent and adaptive system 

for storing and managing video analysis results [20J. The system is based on 

a schema-independent data warehouse backed by a multi-agent system. Each 

agent is either a communication agent, representing a data-flow between the 

processing algorithm and the data warehouse, or a data agent, representing 

the knowledge contained in the XML produced by a processing algorithm. A 

data agent can represent any XML document, and therefore the data warehouse 

is not linked to any specific schema (although a schema must be provided at 

system initialisation). 

Schema-independence makes this format suitable for any Computer Vision ap­

plication (and, indeed, it is not limited to Computer Vision at all), and at the 

same time keep it simple, since an ad-hoc schema can he specified for any applic­

ation. Graphical tools are provided for querying the data warehouse, collecting 

long-term statistics and discovering trends. The downside is that this format 

requires a server running 24/7 to host the data warehouse, which is a single 

point of failure and, depending on network load and the amount of metadata 

produced, Illay become a. bottleneck. The agent-based format is the metadata 

format adopted for the CARETAKER project, where running a server 24/7 was 

110t an issue, and where the amount of metadata produced by the processing 

algorithms proved to be Illanageable. 

2.7 Conclusion 

This chapter reviewed the state of the art of tracking, starting from a histor­

ical perspective, with particular focus on visual tracking over multiple cameras. 

The section on existing tag-ami-track systems, sadly small, shows that there is 

plenty of space to research a real-time, single-target, multi-camera tracker, since 

no reviewed system fulfils these criteria ('specially with respect to the real-time 

constraint). The review also covered the state of the art of motion detection, 

colour correction, camera calibration, and metadata representation. These top­

ics were analysed since they often playa role in various stages of a TNT pipeline. 

In fact, the number of options available for each stage of the TNT pipeline sug­

gests to keep the tracker design modular, so that new algorithms and formats 
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can be easily added at a later stage of development if it becomes desirable. The 

next chapter presents the main contribution of this thesis, namely a probabilistic 

framework that allows the techniques reviewed in this chapter to be combined in 

order to produce a tag-and-track system for multiple non-overlapped cameras. 

1wo new pre-processing algorithms, one for motion detection, and one for colour 

calibration, are presented in Chapter 4. The effectiveness of the framework will 

be assessed in Chapter 5. 
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Tracking using Multiple Cameras 

This chapter pre8ents the multi-camera tracking framework, which i8 the main 

contribution of thi8 the8is. Starting with an overview of the problem and with 

some definitions that disambiguate the meaning of common terms: the chapter 

will then introduce the theoretical foundation of the prop08ed framework. Sub­

sequent sections will analyse in more detail how it is suggested that the frame­

work be modulari8ed, and will provide several proposed implementatio1l8 for 

each module. 

3.1 Overview 

vVithin the scope of this thesi8, a tracker· is defined as an a.lgorithm that ac:c<,pts 

as input a target i t -- 1 (observed at time t - 1) and a video frame captured at 

time t, and gives as output a target it (ob8erved at time t) reprc8enting the 

8ame individual. It can also he noted that a tracker may produce an output 

even if the target is completely occluded or out of view. In thi8 cru;e, the output 

i8 a prediction of the target's position. 

Although 1-1. multitude of approaches to tracking exist: this definition was chosen 

based on the end-user's requirement of a single-target, real-time tracker with 

minimal latency. Therefore, each frame is proce88ed a8 it become8 available: and 

an output i8 produced before the following frame arrives. It 8hould be noted that 

thi8 decision does not exclude the possibility of u8ing other, more sophisticated 

tracker8, for in8tance capable of handling multiple tracking hypothese8 and to 

provide a confidence estimate for each hypothe8is. The definition of tracker· 

given above was chosen becausp it is the simplest defiuition that can capture 

39 
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the user requirements. Moreover, because the goal of this thesis is to develop 

a multi-camera tracking framework, it should always be possible to incorporate 

e.g. a multi-hypotheses tracker, as long as it can be cast to a single-hypothesis 

tracker (by considering only the most likely hypothesis) and as long the real-time 

constraint is respected. 

In the case of single-camera tracking, there is only one input video and a target 

is completely defined hy a binary mask specifying what pixels in an image helong 

to it. A review of existing, single-camera trackers is available in Section 2.2. In 

the case of multi-camera tracking, there are multiple videos and a target needs to 

be associated with the one(s) in which it was observed. A multi-camera tracker 

may be implemented by combining several single-camera trackers and fusing 

their output. but that is not the only option. In particular, in this work, it was 

decided to have only one single-camera tracker running at a time, because of the 

following practical considerations. Firstly, overlapping cameras in the available 

data-sets are rare, and the overlapping area is small, therefore the possibilities 

of fusing outputs from more trackers would be rare as well; small to no camera 

overlap is common in video-surveillance scenarios, where the main concern is 

to maximise coverage of the area. Secondly, camera calibration is often good 

only in a limited area of a camera view, therefore even if there is some overlap 

between two cameras, this area may be poorly calibrated in one of them (e.g. 

because it is far away): it is better to use only information from only one 

(well calibrated) area thall including noisy data from another tracker. Thirdly, 

since processillg multiple video streams in real-time can be computatiollally 

cxp('llsiv(! (tl}(' hllal illlpl(,lll(,lltatiou call process about 6 streams at 5 FPS OIl a 

dual-Athloll 2.1GHz), it was decided to save CPU power by not running more 

t han one single-camera tracker at a time. 

\Vithin this \York. t he multi-camera tracking framework combines information 

from olle single-camera tracker, one or more descriptors, and prior information 

coming from the c:amcm network layout. Before proceeding any further, pre­

cis!' !I('hnit iom; of SOlll(' of tlw terms illtrodnced above (i.e. target, individual, 

descriptor, etc.) will be givell. 

3.2 Definitions 

The layout of a Iletwork of cameras is a weighted, directed graph where each 

Ilode corresponds to a camera, alld there is a link from node a to node b if either a 

and b have overlapping views, or they do not and an individual viewed in camera 

(), call transition to camera b without passing by any other camera. When two 
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Figure 3.1 - Targets and individuals. The map of the underground station in the back­
ground represents the real world, where several individuals are present (to avoid cluttering 
the image, only one individual i is shown, wearing a yellow top) . The real world is im­
aged by three cameras (inset left, centre and right). In each camera, there is a target 
i[ ,2,3 (highlighted with a read bounding box) corresponding to this individual, plus other 
targets corresponding to other individuals. Because all targets in correspond to the sa me 
individual, we can write i[ == i2 == i3 . 

nodes in the topology graph a re linked, we say t hat their corresponding cameras 

are adjacent (see Section 2.5 .2). T he weights on the edges are the minimum 

time required for t he transit ion (this t ime could be negative if the cameras have 

overl apping views) . 

T he graph is d irected because not a ll adjacencies a re symmetric. A typical case 

of an asymmetric adjacency a rises when two cameras a re placed at the two ends 

of an escalator. In t his case, people moving in t he direction of t he escala tor will 

complete t he t ransition in a shorter t ime t ha n people moving in t he opposite 

direction (indeed , thi s latter case will be extremely rare, but it is physically 

possible and t herefore must be accounted for by the topology). An adjacency 

may even be unidirectional: t his is t he case, for example, for cameras placed 

a long the platform in an underground station. Topologically, t hese cameras a re 

adjacent to similarly placed cameras on t he next station a long t he line, but 

a transit ion may only happen in the direction t ravelled by t he t rain . Fina lly, 

there is t he case of two cameras placed nearby, such that t he difference between 

average transit ion t imes in t he two directions is not statisti cally significant, in 

which case we say that t he adjacency is symmetric. Even t hough the latter case 

is the most common, it is considered here only as a specia l case. 

A target i is a region of an image corresponding to an individual i in t he scene. 

Two di fferent targets i and j may correspond to the same individual seen from 

different cameras or at different t imes (i n this case, we wri te i == j, meaning 

that t he two targets have t he same identity, see Figure 3. J), and two different 
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Figure 3.2 - The figure shows two targets and two appearance descriptors (in this instance, 
the targets represent the same individual, but this need not be the case) . Th e descriptors 
are applied to the targets to obtain observations. Observations produced by the same 
descriptor are comparable, in that a comparison fun ction (here represented with a circled 
"minus") can be applied to them. Th e result of this application is a real number (shown 
here are two arbitrary values) . N.B.: the difference in colours between observations is 
subtle, and may become unnoticeable in low-quality printing. 

individuals may appear as a single target, for example if they are very close to 

each other. Tagging is the action performed by the operator when they choose 

a target to track by selecting a rectangular region on a frame of a surveillance 

video. A tracking error happens when a tracker outputs a target j which does 

not correspond to the same individual as its input i. If a tracking error can be 

detected , the erroneous tracker can be reinitialised , either manually or automat­

ically, to track a different target. When this process is performed automatically, 

and the new target is in a different camera, we say that a handover is performed , 

since, from an end- user perspective, the target is handed over to another cam­

era. A handover may also take place when, even in the absence of tracking 

errors, another target jf is found t hat corresponds to t he tagged individual and 

that, according to some criteria , is more suita ble for tracking (these criteria are 

analysed in detail in Section :H ). 

A descrip tor D can be applied to a ta rget i to genera te an observation Di 

(see Figure :3.2). An observation is a compact representation of some features 

of the target (appearance, motion , position, etc.). If two observations Di and 

Dj a re generated by the same descriptor they are said to be of t he same type, 

and a comparison function c (Di' Dj ) can be applied to them. The result of 

this comparison is a quantity Dij that represents a simiiaTity between the two 

observations. In more rigorous terms, the comparison function c defines a semi­

metric on t he set of observations genera ted by t he same descriptor. For a 

function to define a semi-metric, the foll owing conditions must be satisfi ed [ ~) I]: 
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1. Positive definiteness, i. e. c (D i , Dj ) is non-negative, and it is zero if and 

only if two observations are identical: 

• C(Di,Dj) 20, 

• c(Di,Dj ) =0 {=} Di=Dj . 

For some descriptors, it is easy to provide a comparison function that also 

satisfies a third condition: 

3. Triangle inequality, also called subadditivity: given three descriptors D i , 

Dj and Dk, C(Di,Dk)::; c(Di,Dj) +c(Dj,Dk); 

thus making the descriptor space a metric space, where the intuitive notions 

about the concept of distance are valid. For example, the triangle inequality 

means that the distance "traversed" directly between Di and Dk is not larger 

thau the distance to traverse in going first from Di to Dj , and then from Dj to 

D k . However, because subadditivity will never be used in subsequent parts of 

this thesis, the comparison function c is only required to satisfy the conditions 

of a semi-metric. 

Note that when the distance between two observation is zero, it does not neces­

sarily mean that the two targets have exactly the same on-screen appearance, 

nor that the two observed targets represent the same individual. It just means 

that the descriptor generating the observations is unable to distinguish one tar­

get from the other: 

3.3 Theoretical Basis 

Tracking can be thought of as the process of estimating the probability that 

two targets, acquired at differeut instauts in time, correspolld to the same iIHIi­

vidual. Typically, the two targets may be acquired diachronica.lly at two con­

secutive frames of the same video stream, or isochrollically on a set of streams. 

Bayesian Renlrsive estimation is a general probabilistic approach for estimat­

ing an unknown probability density functi.on (pdf) recursively over time using 

incoming measurements and a mathematical process model, when the unknown 

pdf is the unobserved state x of a Markov process: 

(3.1) 
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In Equation 3.1, the equality holds because of the Markov assumption. Some 

measurements z of the Markov process are available, and the measurement at 

time t depends only upon the current state: 

(3.2) 

The following sections will explain how the Bayesian Recursive estimation model 

can be applied to a tracker in order to get an estimate of the probability that 

two targets correspond to the same individual (the Markov process state), given 

a set of observations (the measurements): 

(3.3) 

where Dij is the distance between the two observations Di and D j . In the con­

text of this work, measurements correspond to distances between observations 

of different targets. Observations are generated by descriptors, which can be di­

vided up in two sets: appearance and motion. Appearance descriptors encode a 

target's appearance in a compact way, and will be described in Section 3.7. Mo­

tiom; descriptors estimate the dynamic state of an individual (typically, position 

and velocit:v) and wiIl be described in Section 3.8. A corollary of this difference 

i:::; that motion descriptor:::; need to be continuously fed with their target position 

in order to update the modeL :::;0 that they can generate valid observations; on 

the other hand. appearance descriptors assume that an individual has constant 

appearance, and therefore do not need to be given any information other than 

the currcnt targef:::; pixels. The assllmption of constant appearance may not 

hold in all cas!'s. for ('xalllpl(' \\·lwn a persou clot.hes have radically difkrcut 

colonrs 011 t he front and back sides. Ho\Y('yer, for most real cases, the difference 

in appearance clue to the point of view i:::; small compared to the appearance 

of different people. The following section explains how appearance and mo­

tion de:::;criptors can he combined in order to maximise the probability that the 

current trelCked target corre:::;ponds to the same individual as the tagged target. 

3.4 Combining Cues 

Tagl-',inl-', idc'ntifies n reference target r at time to for which an appearance obser­

vation Ar is immecliatel~' generated, and starts a single-camera tracker to track 

,. so that a motion descriptor 1111' is available. The appearance observation AT 

will be used throughout the tracking process as a reference appearance, since r 

is selected by the operator and can therefore be safely assumed to be correct. 
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Figure 3.3 - Tracker workflow. A security operator initialises the tracker by tagging a 
target in a video stream (known as the current stream). A single-camera tracker is started 
to follow the target in this view. At the same time, targets in adjacent views are assessed 
for handover, by comparing their motion observations with the current target 's, and their 
appearance observations with the reference target 's (as detailed by equations 3.4, 3.5, 
and 3. 6) . 

In each subsequent frame, the single camera tracker will ident ify a new target 

i that (ideally) represents t he same individual as r. Also, in each sub. equent 

frame all targets other tha n i are taken into account as candidates for handover, 

i.e. for resetting the single camera tracker a nd assigning a new target to it (see 

Figure :3.:3). Let C = {j I j '1= i} be the set of candidate targets, i.e. a ll targets 

other t han i. At some point in t ime, the individual being tracked is likely to 

go out of view, or to be better visible in a different camera; in this case, the 

t racker should perform a ha ndover 0 as to get the best view of t he indi vidua l, 

and avoid losing it . If there exists a j such t hat it has the same ident ity as r 

and appears to be a better choice for tracking, a handover is performed and j 

becomes the new current target. 

A target j is considered a better choice t han t he current target i when a ll the 

following condi t ions are t rue: 
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1. j is close to i: 

(3.4) 

where Mij is the distance between the observations of the current target 

i and the candidate j generated by the motion descriptor AI, and TAt the 

threshold on motion matching, i.e. the minimum probability required to 

consider i and j the same person using motion only; 

2. j is more similar to r than i is: 

(3.5) 

where Ajr is the distance between the observations of the candidate j and 

the reference target r generated by the appearance descriptor A; 

3. the joint probability of j corresponding to the same individual as r (given 

their appearance) and as i (given their position) is high enough: 

(3.6) 

where T is a probabilistic threshold, i.e. the minimum joint probability 

required in order to consider j, i and 'r the same individual, according to 

both appearance and motion. 

If more targets are found that satisfv all conditions, the handover is performed 

using the one that maximises condition 3. Note that appearance observations 

are always compared with the refercnce observation, A,., since it is the only one 

known to be correct. Colour constancy techniques should be used to accommod­

ate for colour changes dut> to different lighting conditions in different camera 

views. Motion information CaJllIot be compared with a reference observation, 

since motion prediction cannot ~'ield meaningful results for an arbitrarily long 

time. I\'lotion descriptors haw it motion model that can be used to predict the 

state the reference target r (acquired at time t r ) will have in a future time t; 

(When target i is acquired). As the difference between tr and t; grows, the 

uncertainty associated with the model will grow as well. At some point, the 

uncertainty will become so large as to span the entire environment, therefore 

making the descriptor completel~' useless. In our experiments it became appar­

ent that, using a Kalman filter with liuear motion model, predictions become 

unreliable after just a few seconds, or approximately 10-20 time steps. This 

was due mostly to the unpredictability of people's motion, and only to a lesser 

extent to errors in the estimate of the state (which would become negligible 

after 5-10 time steps). 
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The fact that appearance observations are always compared to a reference, while 

motion observations are compared to the latest observation available, is also 

due to a fundamentally different theoretical basis behind descriptor generation. 

Motion descriptors assume a model (constant velocity) and a dynamic state 

f{)r the target (the Kalman filter state, comprising position and speed in the 

world reference frame); with each new measurement (i.e. the position in the 

world reference frame), the state is updated according to the model and the 

measurement, and a new descriptor is generated that reflect these changes. In 

the case of appearance descriptors, on the other hand, the model is assumed 

to be constant (no variation of a target's appearance over time), and therefore 

there is no need to keep an up-to-date appearance model. While this assumption 

makes tracking difficult in the ca.<;e of dra.<;tic changes of appearance, such as 

when a person removes their coat, it also means that the appearance descriptor 

is never contaminated with erroneous updates. This limitation is considered a 

minor issue by security operator, who, during informal conversations, conceded 

that it is a reasonahle tradeoff (offering hetter tracking in the common ca.<;e of 

constant appearance, and requiring manual intervention in the rare case of a 

drastic change). 

3.5 Obtaining Target Observations 

In the context of tracking in a wide surveillance area, there are three sources 

of information that contribute to an overall probability that any given target 

corresponds to the illdiyiciual the operator tagged. 

Firstly there is the coarse-scale telllporal information that allows observations 

from different stations or diIfereut areas of the same station (c.g. different floors) 

to be assessed. Under the proposed framework, this is considered to be the 

probability of correct association. given only the time-stamps of the two obser­

vations (ami the CHnwra network layout). This is written as p(i=jISij), where 

S is a descriptor that allows matching targets based only on their timestamp 

and camera location (a !lIore detailed explanation will be given in Section 3.8). 

Secondly, there is t lw fine-scale spatio-temporal information available about the 

observations from overlapping. adjacent or nearby cameras. This conditional 

probability is written as p (i =j/Alij ), where !vI is a motion descriptor as defined 

in the previous section. In any given case only one of AI or S will be available, 

depending on the relationship between the cameras: if the camera views are 

overlapping, adjacent or nearby, and they are on the same ground plane, then 

the motion descriptor AI call be used. If, OIl the other hand, cameras are in 
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different stations or in different areas of the same station, then only the spatio­

temporal descriptor S can be used. When 1\;/ can be used, it is preferred to S, 

because it is much more informative (as it encodes the target velocity and its 

position on the ground plane, whereas S only encodes information about the 

start and end cameras of the transition, and the transition time). Section 3.8 

will clarify where the two different descriptors are applicable. 

Thirdly, there is the appearance information from the colour descriptors A, and 

hence there is available a third conditional probability p(i=jIAij). In order 

to convert a descriptor-specific similarity measure Dij iuto a cross-descriptor 

probability, Bayes' theorem is used as explained in the following paragraphs. 

A large data set with N targets has to be ground-truthed so that the indi­

vidual corresponding to each target is known. A descriptor D is then applied 

to every target to generate a set of observations DT = {D i1 , Di2 , ... DiN}' All 

observations in DT are then compared pairwise to generate an N x N matrix of 

similarity measures, D TT , also called a similarity matrix. The similarity matrix 

is symmetric, since Dij = Dji , and has all zeroes on the leading diagonal, since 

Dii = O. Some of these distances are between observations of the same indi­

vidual, while others originate from different individuals. Using only the upper 

triangular part of DTT without the leading diagonal, the distances are collected 

in three normalised histograms: 

1. 1-lsame [DJ, distances between pairs of observations generated by the same 

individual. 

2. 1-ldiff [DJ, distances between pairs of observations generated by different 

individuab. 

3. 1-laggr [D], all distances. 

The histograms represent the relative frequencies of distimce values for the three 

cases. They are also probability density functions, corresponding to the prob­

ability of obtaining a certain distance from a comparison of two observations, 

provided that the two observations are 

• from the same individual, 

(3.7) 

• from different individuals, 

(3.8) 
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• from either the same or different individuals, 

(3.9) 

Applying Bayes' theorem to 3.7 and 3.9, we obtain 

(
'= 'ID) = p(Dijli ==j)p(i ==j) 

p 2-J 'J p(Dij) , (3.lO) 

where p (i == j) is the prior and is set to 0.5. Assigning equal probabilities to 

the "same" (i == j) and "different" (i =t j) cases ensures that whatever is chosen 

depends only on the distance D ij , and to on the prior (the following subsection 

gives the formal proof). Figure 3.4 shows a graphical representation of Bayes' 

theorem used to transform the histograms of the appearance descriptor (same, 

different and aggregate) into a probability that two targets represent the same 

individual. 

Equation 3.lO is the probability that two targets i and j represent the same 

individual according to descriptor D. It also permits to combine similarities ob­

tained from descriptors of different types by converting them into probabilities. 

Once these probability density functions are defined for a descriptor, the concept 

of entmpy can be used to quantify its efficacy, namely how better than random 

it is at distinguishing individuals. By combining three independent sources of 

information, target matching is much more reliable than by using appearance 

alone, as a native approach could suggest. If, for instance, the best candidate 

was chosen by selecting the most similar one to the reference target, the tracker 

wouldn't be a hIe to compensate to appearance changes (due to lighting or point­

of-view) that cause a different individual to he "more similar" to the reference 

target than t.he same individual. By also using motion and topological informa­

tion, such an error is less likely, as the erroneous target needs to be similar and 

close to the correct target for it to be mis-associated. 

3.5.1 Entropy 

III information theory, entropy is a measure of the uncertainty associated with 

it random vnriahle. By defillition, the entropy of a random variahle Y is 

H(Y) = - LP(y)logp(y). (3.11) 
YEY 

The base of the logarithm is irrelevant, as long as the same base is used through­

out. If base 2 is used, then the entropy is expressed in bits (as is the case for 
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Figure 3.4 - Application of Bayes' theorem to derive p(i=jIAij ) given the histograms 
of distances between observations generated by an appearance descriptor A (the example 
data shown was generated with the Colour Position descriptor) . 



CHAPTER 3. TRACKING USING MULTIPLE CAMERAS 51 

the remainder of this thesis). If P (y) = 0 for some y, the value of the summand 

o log 0 is taken to be 0, which is consistent with the limit limp-+o p log p = O. 

When used with descriptors, the random variable Y is {i 1= j, i == j}, that is, 

whether or not two descriptors represent the same individual prior to using an 

observation. For brevity, we shall use a pseudo-boolean notation, and write 

Y = {O, I} where 0 means "not the same" and 1 means "the same". Assuming 

equal probability for the two cases of the prior, p (0) = p (1) = 1/2. Since we are 

using base-2 logarithms, we can calculate a value for Equation 3.11: 

H (Y) - LP(y)log2P(Y) 
yEY 

- L 1/210g2 1/2 
yEY 

_1/210g2 1/2 - 1/210g2 1/2 

-IOg2 1/ 2 

log2 2 

1 

which is the entropy of a completely random choice between "same" and differ­

ent". Any descriptor is expected to be better than random at discriminating 

between the two cases, and therefore should have entropy smaller than 1. An 

ideal descriptor, that can always discriminate correctly between the two cases, 

would have an cntropy of 0. Note that the assumption that the "samc" and 

"different" casps have the sanl(' prior probability is not valid in many real-world 

scenarios. Indeed, in a busy undergroulld station, two observatiolls are much 

more likely to correspolld to different individuals than to the same one. However, 

the purpose of using cntropy is to determine how much a descriptor improves 

the chances of correct idelltification, and for this purpose the actual value of 

the prior probability is not important. If, in order to represent the actual prob­

ability of a match, the prior were biaspd towards the "different" case, then a 

dUllnllY descriptor that always classifies two targets as "differellt" would have a 

low entropy (possibly close to 0, dependillg on how hiased the prior is), and this 

is of course undesirable. 

Conditional entropy H (YIX) represents the remaining entropy (i.e. uncertainty) 

of a random variable Y given that the value of a second random variable X is 

known. To estimate H (YIX) the starting point is the two set of samples, same 

and diffe'rent, shown above. These can be used to generate estimates of the 

probability P (Dij Ii == j) and P (DiJ Ii 1= j), respectively, by taking the normal­

ised histograms 1-lsame [DJ and 1-ldiff [DJ. The choice of histogram number of bins 
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will affect the final estimate, a balance needs to be struck between the number 

of samples and the number of bins to avoid under-sampling or over-sampling. 

Alternatively, a parametric estimate of the distribution can be generated from 

the samples; in the case of a multi-dimensional histogram, a parametric rep­

resentation also solves the problem of scarcity of samples due to the curse of 

dimensionality [114]. From these distributions, the prior distribution p (Dij) 

can be constructed, and then Bayes' theorem can be used to invert the expres­

sion into the required form, p(i=j/Dij ). The conditional entropy is calculated 

as the expected value oflogp(i=j/Dij ). 

3.6 Single Camera Tracking 

The definition of a single camera tracker, given at the beginning of this chapter, 

described it as an algorithm that accepts as input a target i t - 1 (observed at 

time t - 1) and a video frame captured at time t, and gives as output a target 

it (observed at time t) representing the same individual, where all observations 

come from the same video stream. 

To f1llfil this role, any of the single-camera trackers reviewed in Section 2.2 

can be used. These trackers require an explicit initialisation step, where they 

acquire the initial model of the object to be tracked. In the following frame, 

they search a neighbourhood of the initial location for a best-match to the 

initial model, report the new position, and possibly update the model. 'Within 

the multi-camera tracking framework, the first initialisation step is performed by 

the operator by tagging the reference target. Subsequently, if a better candidate 

is found and the multi-camera tracker needs to switch camera view, the bounding 

box of the candidate will be Ilsed to re-initialise the single-camera tracker. At 

each frame, the multi-camera tracker projects the position of the target in the 

image onto the ground plane, which is then Ilsed to generate a motion descriptor 

(see Section 3.8.1). 

A single-camera tracker is not expected to be robust to occlusions, since the 

multi-camera tracker may resolve them: however, a single-camera tracker could 

signal when it is no longer able to follow a target (for example because of an 

occlusion or because the target is out of view). This could be done by checking 

the foreground detection mask corresponding to the target area: if it is empty or 

underpopulated (e.g. the number offoreground pixels is lower than a threshold), 

the tracker can signal a "target lost" event. 
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3.7 Appearance Descriptors 

As their name implies, appearance descriptors represent a target's appearance. 

The following sections enumerate and explain the appearance descriptors de­

veloped as part of this project. Each explanation includes how observations 

are generated, what data they contain, and how they are matched. Where 

the descriptor was not developed by the author, proper credit is given. When 

referring to appearance descriptors, without specifying which one, they are rep­

resented with the letter A. 

3.7.1 Mean Colour Descriptor E 

One of the simplest ways of describing a target's appearance is by using its mean 

colour. Indeed, the Mean Colour descriptor E is easy to implement and it is 

computationally efficient, hoth to generate ohservations and to compare them. 

Given the set of pixels (p) representing a target i in an image using an arbitrary 

colour-space (for the sake of simplicity, RGB will be used in this example), the 

Mean Colour Descriptor is defined as the mean of the pixels colours: 

(3.12) 

where Iii is the number of pixels comprised by the target i. Because E j is a vector 

in the colour-space used by the image. the distance between two observations 

E j , Ej is simply IIEi - Ejll. Clearl~r, mallY variations of this descriptor can be 

defined using different colour spaces. 

3.7.2 MPEG-7 Descriptors 

At the other end of the complexity spectrum. there is a host of MPEG-7 Visual 

Descriptors [68J. The main goal of the l\lPEG-7 visual standard is to provide 

standardised description:) of images and videos. These descriptors can be used 

t.o COlllpan~, filter or browse lllUltillwdia c()nh~nt without the need f(JI' t<~xt-based 

queries. Although there are a number of colour, textures, shape and motion 

descriptors defilled ill the standard aimed at different user domains (multi­

media catalogues, media selection, media authoring, etc ... ), no descriptors were 

specifically designed for people re-identification in surveillance videos. Colour 

descriptors represent different aspects of the colour feature, including colour 

distribution, spatial colour layout and spatial colour structure. There are 6 

descriptors defined by the standard. two of which are relevant to tracking and 



CHAPTER 3. TRACKING USING !vIULTIPLE CAMERAS 54 

will be explained in the following section. The author wishes to thank James 

Annesley for providing the implementation of the Dominant Colour descriptor. 

3.7.2.1 Colour Spaces and Dominant Colour Descriptors 

The MPEG-7 standard specifies the following colour-spaces: RGB, YCbCr, 

HSV, HMl\:ID, LineaL and I\lonochrome. RGB is one of the more popular 

spaces, and it is defined as the unit cube in the Cartesian coordinate system. 

The Linear colour-space is a linear transformation from the RGB space. The 

YCbCr space, used extensively in MPEG-l/2/4, is actually a Linear space whose 

transformation matrix has been defined by the standard. The Monochrome 

space is the Y component of the YCbCr space. HSV and HMMD are nonlinear 

transformations from the RGB space that are more perceptually uniform. 

The standard also sp(~cifics colour-space components as continuous-value en­

tities, that need to be quantised for discrete representation. The Colour-Space 

Descriptor specifies the colour-space all image is encoded in, and how that space 

is quantised. 

The Dominant Colour Descriptor provioes a compact description of the repres­

entative colours in an image or image region. Its main target applications are 

similarity retrieval in imagp data hasps and browsing of image databases based 

on single or several colour val lies. The Dominant Colour Descriptor T of a target 

i is defined to lw 

T; = {(C/,.PI.-.l'k).S}. (h~= 1,2 .... ,N) 

where N is the numher of dominant colours. Each dominant colour value Ck 

is a vector in the corresponding colour-space (described by the Colour Space 

Descriptor), PI.- is the proportion of pixds in the target corresponding to colour 

ck, such that L~= 1 PI.- = 1. The optiOJlCl1 colour variance Vi describes the 

variation of the colour "allies of t he pixels in a cluster around the corresponding 

representative colour. The last component. .'I, is the spatial coherency, a number 

that represents the overall spatial homogeneity of the dominant colours in the 

image. The number of dominant colours N can vary from image to image, up 

to a maximum of 8 (as defined b~' the st andard). 

One comparison functioll betweell two Dominant Colour observations Ti = 
{(Ci,a,Pi.a,Vi.a),8;}, (a= I. .. N;), and 1) = {(Cj,b,Pj,b,Vj,b)}, (b= I. .. N)), 

is defined by tlw MPEG-7 ~talldard as 

N j JV) 'Vi N j 

C (Ti' T j ) = I.>;.o + L P],b- L L 20 (Ci,a, Cj,b) Pi,uPj,b . 
0=] b=] u=l b=l 
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In the above equation, IX (., .) is a similarity function between two colours: 

ICI - c21 ::; Td 

otherwise 
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where Td is the maximum distance for two colours to be considered similar and 

dmax = K,Td. This means that two dominant colours from one single observation 

are at least Td distance apart. The standard gives recommended values for Td 

and K, in the CIE-LUV colour-space. 

3.7.3 Colour Position Descriptor 

As it will be shown in Section 5.2.2, the best results were obtained with a Colour 

Position descriptor developed at INRETS I [106J. Colour Position descriptors P 

divide a target i into n equally spaced horizontal bands (typically 8). The mean 

colour of the pixels in each band and in each colour channel is computed, and 

the three components of each are used as a 3n-dimensional vector. For example, 

a Colour Position Descriptor using n bands and the RGB colour-space is defined 

as 

where TI is the llleau 011 the red challnel of the first band, 91 is the mean 011 the 

green channel in the first band, and so on. 

The distance between two Colour Position observations is the distance between 

these vectors: Pi.i = IIPi - Pjl!. 

In their paper, the authors also suggest two colour-spaces that improve the 

descriptor performance by removing most of the luminosity information: the 

normalised RGB space and the UV space. The former is a standard RGB space 

where all pixels have been normalised so that they have uuitary nOrIn. while 

the latter is simply a YUV space without the Y component (details 011 bot h the 

latter colour spaces can be found in any image processing book, e.g. [38]). 

3.8 Spatio-Temporal Descriptors 

Spatio-Temporal descriptors represent a target by its location in the surveillance 

network and by the time when it was observed. The two descriptors in this 

1 Institut National de RecheTche SUT les TmnspoTts et leuT SecuTite, the French National 
Institute for Research on Transport and its Safety. 
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category, Motion and Spatial, were developed to complement each other, as the 

observations they generate are effective for targets that are, respectively, close 

to each other (in space and time) or far apart. The exact conditions under 

which the two descriptors are more effective will be detailed in their respective 

sections. 

In a surveillance scenario, it would be useful to have all cameras calibrated with 

respect to the same world reference frame. However, if the camera network 

is very large (e.g. spanning an entire city, as in one of Caretaker's test-sites), 

ensuring that the reference frame is the same may require using GPS and geo­

graphical data (which is difficult to obtain) and would make calibration more 

difficult (since 3D information nlUst be considered for multi-level stations). It 

was therefore decided to group cameras according to the station and level they 

belonged to, and to calibrate each group independently from the others. We 

call coterie a group of cameras positioned on the same level (in the same sta­

tion) and calibrated according to the same ground plane. In every coterie, there 

are some special cameras that are connected to other coteries. All inter-coterie 

connections in the surveillance network are assumed to be known. Moreover, 

the average transition time of each connection is also assumed to be known. 

A problem with this design, however, is that it cannot model the presence of 

multiple ground planes in the same view, e.g. a stairway connecting two floors. 

A possible solution is proposed by Yin et al. [1l8J, but it is outside the scope 

of this thesis. 

3.8.1 Motion Descriptor M 

The Motion descriptor1lI represents the value and accuracy of a target's position 

and velocity: 
. T 

111; = [Xi, Xi, U X ;, , ux;] (3.13) 

where O"XiHnd O"x, an' covariance matrices. Spatio-temporal descriptors are par­

ticularly effective when comparing targets from the same camera, or from dif­

ferent cameras ill the same coterie. 

Using a Kalman filtcr to track the targets, their position and velocity are known 

at every fra Ille , along with an Illlcertaint.y ellipse. Other filt.ers may he IIsed 

as well, e.g. the particle filter, but their use was not investigated due to time 

constraints. Camlidat<~ targds frolll different cameras within the saIlW cotcri(~ as 

the current camera can be compared to the current target using the l'vlahalanobis 

distance. 

The Mahalanobis distance is a similarity measure between a known sample set 
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to an unknown one. In contrast to Euclidean distance, it takes into account the 

correlations of the data set and is scale-invariant, i.e. it does not depend on the 

scale of measurements. The Mahalanobis distance of two random vectors x and 

y extracted from the same probability distribution with covariance matrix (J is 

M (x,y) = V(x - y)T (J (x - y) 

When the Mahalanobis distance is applied to spatio-temporal observations, how­

ever, the two random vectors x and y do not come from the same distribution, 

siure they correspoud to the motion features of two different targets with dif­

ferent covariance matrices (Jx and (Jy. For example, the Mahalanobis distance 

between two spatio-temporal observations Si and Sj is 

(3.14) 

Iu this case, the Mahalanobis distance is not symmetric, because Xi and Xj 

are not sampled from the same distribution, and therefore they have different 

covariance matrices. Moreover, only the position of the target is used, because 

some targets are observed only on one frame, and therefore their velocity is un­

rldined. However. because symmetry is required to build the similarity matrix, 

the cumparison function for two spatio-temporal observations uses a symmetric 

variation of Equation 3.11: 

(3.15) 

which yields a value between 0 and 00. Indeed, the comparison function for 

spatiu-tempural observatiuns is not applicable if the involved targets were ob­

serwd in different cot('ries. If two targets i and j were observed in the same 

coterie, but at difft'rpnt tiIl1t's (t i and t j ), the comparison may still be applied, 

hut the time difference has to be catered for. This can be none by using the 

motion monel of the tilter to predict the future position of the target whose 

observation is the oldest. Assuming without loss of generality that ti > t j , let 

Ilt = I; - t j. The position Xj' of target j at time ti can be estimated by pre­

dicting the motion of target j. Assuming a simple linear model, the prediction 

IS 

and the filter e(}llations can be used to predict the uncertainty on position ami 

velocity. This nefines a new "virtual" observatioll: lvlj" that can be compared 

with S; using Equation 3.15. 
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3.8.2 Coarse-Scale Spatial Descriptor S 

The Spatial descriptor is a non-appearance descriptor suitable for comparing 

targets acquired at times or places far apart from each other. Indeed, if two tar­

gets are "close enough" in space and time, a Spatia-Temporal descriptor should 

be able to discriminate between the two, by using the motion model to extra­

polate the position of one of the targets. However, if two targets are too far 

apart in time, the predicted position of the oldest target will have too much 

uncertainty to be reliably used for a match. Moreover, if the two targets have 

heen acquired from cameras situated in different coteries, it is not possihle to 

use motion prediction (by definition of coterie). 

Spatial descriptors allow targets to be matched in the above scenarios without 

using appearance. Because the physical relation between coteries is assumed 

not to be known (apart from the cross-coterie connections and their average 

transition times), only timestamps (t) and camera names (id) may be used 

to estimate this probability: additional spatio-temporal information such as 

velocity and position (with respect to the ground plane) is not applicable. The 

definition of a spatial descriptor therefore is 

Si = {idi , t;} . (3.16) 

Givell tvm targets i,j and their corresponding spatial descriptors, Si, Sj, the 

distallce Sij between them is a function of the two targets' timestamps (ti,t j ), 

and the minimum time required for an individual to transit from one camera 

(id i ) to the other (idJ. It is computed as follows: 

1. Use a shortest-path algorithm to trallsverse the network layout graph and 

find a minimum path between id i and id j . 

2. Let tmill be the sum of all transition times of each edge of the path. 

if It; - tjl > tmin . 
. expressed III seconds. 

otherwise. 

Minimum transition times between pairs of topologically adjacent cameras have 

to be estimated from training data. The minimum transition time between 

two non-adjacent cameras a and b can be inferred from the topology by finding 

the shortest path between a and b, and summing the transition times of all 

connections along the path. vVhere It i - tj I us the transition time between the 

two cameras. This formula ensures that, if the actual transition time is less 

than the minimum transition time, the two targets are never identified as the 
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same individual. The distance is minimal if the actual transition time is the 

same as the minimum transition time, and increases linearly as the two times 

diverge. The choice of a linear relation, and the parameters of this relation, are 

not particularly important in this case, since the distance will be non-linearly 

mapped to a probability density function as explained in Section 3.5 . 

3.9 Conclusion 

In this chapter, a theoretical model for tracking across multiple non-overlapped 

cameras was described. This model, based on a probabilistic framework, allows 

a tracker to fuse information regarding a target's appearance, its position, and a 

prior model of the camera network, in order to estimate the target's whereabouts 

in real time. The next chapter, of a more practical nature, will describe the mo­

tion detection and colour correction algorithm that supply data to the modules 

described here (the appearance descriptor and the single camera tracker), and 

each analysed module is evaluated independently. In Chapter 5 the effective­

ness of the TNT system as a whole is evaluated, leading to the conclusions in 

Chapter 6. 



~Ll ____________________ ~ 
Pre-Processing 

This chapter presents one novel motion detection algorithm and one novel colour 

normalisation algorithm. Motion detection and colour normalisation are the 

very first stage of processing in the proposed tracking framework, as shown in 

Figure 4.1. Motion detection can be performed using any of the techniques 

reviewed in Section 2.4.1, but a novel method was also developed that exploits 

periodicity in the background to deterministically predict what colour a colour­

changing pixel is going to assume on subsequent frames [59J. 

Colour normalisation CHn be used to cOIJlP(~nsaJe for t.he difkn~nt colour re­

sponses of different cameras and to illumination changes across different scenes; 

colour normalisation techniques were reviewed in Section 2.5.3. However, since 

target appearance is only used to COIllpare appearance descriptions across cam­

eras, if the appearance descriptor used is robust to illuIllination changes and 

cameras colour responses arc not too dissimilar, then the colour normalisation 

stage can be skipped, leaving more computational resources available for the 

rest of the tracking system. 

4.1 Foreground Detection 

For advanced video surveillance systems, background subtraction tools (such as 

those reviewed in Section 2.4.1) can allow the detection of the moving objects 

in the scene. Background subtraction requires a sufficiently accurate model 

of the background to enable foreground objects to be distinguished from the 

background. This section considers the case in which the background is mov­

ing according to some repeating and predictable pattern. In data captured at 

60 
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Figure 4.1 - Overview of the tracking framework . From left to right: video streams are 
pre-processed to produce a foreground-data stream (see sections 2. 4.1 and 2. 4.2) and, 
optionally, colour-normalised video streams (see Section 2.5.3) . These streams are passed 
to the tracker, described in Chapter 3, that, after having been initialised with the initial 
"tag", produces metadata (position of the target) to be provided to operators in the control 
room . 

underground metro stations, three elements of the background were exhibi t ing 

this property: escalators, flashing warning lights (Figure 1.3a) and scrolling 

advertisements (Figure c1. :3c ). 

The work is motivated by a requirement to accurately and automatically model 

a background which includes elements that are periodically varying , with an 

unknown frequency (up to a n arbitrary limit) . This model can then be used 

to predict the appearance of these elements in future frames, and thereby to 

distinguish this changing background from foreground elements (such as moving 

people) , allowing foreground objects on the periodic background to be more 

accurately estimated . Therefore, a common metric to assess the efficacy of the 

background modelling technique is t he foreground detection performance that 

it ca n provide. 

The simplest type of natural background is that observed by a fixed camera 

with constant illumination. In this case, each pixel of the background image 

can be modelled with a Gaussian random variable. More complex variations in 

the background signal can be modelled with a Gaussian Mixture Model (GMM, 

[f)i' ]) . This can account both for abrupt signal changes caused by small camera 

motions and small movements in elements of the scene, e.g. windblown trees. 

This approach has also been used to combat step-changes in appearance, e.g. 

changes in illumination caused by moving clouds, street lights, headlights, and 

other sources of light and shadow. For the case of significant camera motion , 

this motion along with the background would need to be modelled. The GMM 

model is a lso applicable to periodically varying backgrounds: for each pixel, 

each component of the period is modelled by the most appropria te element in 



CHAPTER 4. PRE-PROCESSING 62 

the mixture. Indeed, the regular cycle through these components ensures that 

the relative priors for the mixture elements can be accurately estimated. (This 

is in contrast to less predictable variations such as alternation between cloudy 

and sun-lit illumination, a situation this algorithm is not design to cater for.) 

Alternatively, periodic variation in appearance can be considered as a special 

case of dynamic texture, and techniques for modelling this process have already 

been proposed. Soatto et ai. 1951 used a Kalman filter to model the evolution­

ary process of the dynamic texture, and determined the parameters using an 

iterative technique similar to Expectation-Maximisation (EM). This approach 

was adopted in 1121], and segmentation of foreground objects from a dynamic 

background was achieved. 

The experiments are performed on two data sources collected as part of the 

CARETAKER Project. One sequence shows a platform and escalator in a 

station that forms part of the Torino l\Ietro system. The periodic background 

elements are the escalator (with a period of approximately one second) and a 

flashing warning light (approximatdy two seconds). The other sequence shows 

the top of an escalator that is part of the Roma Metro system. It includes an 

advertising board that scrolls every ten seconds between four adverts, giving 

an overall period of about forty seconds. Foreground detection experiments on 

the Torino 1'I'1etro data set show a significant improvement over the technique of 

Gaussian Mixture l\lodels. 

4.1.1 System Overview 

The system operation is divided into training and update phases, as illustrated 

in Figure 4.2. In the training phm:w. the video sequence is used to generate a time 

series for each pixel. As explained in the following section, the corresponding 

set of Fonricr codfici!'llts pw\'id!'s the data to distinguish the periodic froIll 

the non-periodic elements. The Fourier analysis also gives an estimation of 

the number of states required in the Markov model. Neighbouring pixels of 

the same periodicity are grouped into regions and can be processed together 

in the subsequent steps of t hE' system. The next steps in the training phase 

are to initialise the values of the state::;, and calculate the matrix of transition 

probabilities. These prOCE'sses are described in Section 4.1.3. 

Once the training is complete, the system moves into the update phase. Here, a 

predicted state ba::;ed on the current state is compared to a posterior state based 

on a Bayes update using the current state and a measurement (from the video 

data). Depending OIl whether the two states agree, the next state is determined, 
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Figure 4.2 - System diagram of the foreground detection algorithm. 

and t he corresponding state values are used to provide a background for change 

detection. T he mean and standa rd deviation of the sta te are then updated . 

4.1.2 Detection of Periodic Scene Elements 

In this section, a method is described for detecting the pixels which exhibi t 

significant periodic characteri stics and estimating this period for each of them. 

T he effectiveness of t he method is t hen evaluated by comparing its output with 

a hand-labeled map of periodic elements , a nd resul ts a re shown in Section 1.1.1. 

T he analysis begins by creating the time series of the intensity value of each 

pixel over an appropriate length of t raining window in t ime domain. Colour 

information is not used, because as it is ex tremely unlikely that an object in the 

scene changes colour without changing intensity, processing a ll three channels 

would add to the computational cost without providing any additional value. 

T he duration of the training phase is dependent on the maximum length of t he 

period to be modelled , and was chosen to span a t least five complete periods 

of the background signal. It should be noted that the analysis is not limi ted to 

using pixel in tensity; other pixel features can also be used. Figure 4.3 shows the 

scenarios in the Torino and Roma stations respectively. A typical time series 

(of t he escalator region) is a lso shown in Figure LJ.:3a . All pixels in the sequences 

were included in t he generation of the time series (no spatia l subsampling) . For 

the Torino dataset t he temporal sampling frequency was 5 frames per second . 

For t he Roma dataset, however, t he temporal sampling frequency was much 

coarser at 4 fra mes every 10 seconds, since in this case t he true period is very 

long (40 seconds) a nd t he inclusion of every fra me would impose an excess­

ive computational demand (processing 200 frames at a resolution of 720 x 576 

requires over 1.7GB of RAM with the widely used FFTW1 library). 

Next t he Discrete Fourier Transform (DFT) I J "'l over each t ime series is com­

puted . The absolute (modulus) values are used to discriminate between peri-

1 An open-source subrout ine library for computing t he d iscrete Fourier t ra nsform , availa ble 
rrom http://www . f f tw.o r g/ 
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(a) (b) (c) 

Figure 4.3 - Datasets: (a) Th e escalator scene from Torino underground. (b) Time series 
of 12 pixels sampled from the escalator for 100 frames. (c) The scrolling advertisement 
scene from Rome Underground. The advertisement presents three different posters, A, 
B, and C. repeated as A-B-C-B. Each poster remains visible for approximately 10 seconds 
(including scrolling time), yielding a main period of about 40 seconds. 

odic and non-period ic background elements , and for the former , to estimate the 

main frequency of the periodic motion. Naturally, the periodic elements have a 

distinct peak at t heir fundamental frequency, and also at associated harmonics. 

The task is to discriminate between these peaks and the highest values produced 

by t he stochastic non-periodic signals. The detection of peaks is band-limited 

to a set range: from a bove, by the Nyquist limit (or else the shortest period to 

be detected) ; from below, by the sample period (or else the longest period to be 

detected). In general, the spectra of natural scenes (as opposed to synthesised 

images) follow a 1/ f distribution [ I:l] (this distribution also applies for natural 

scenes spectra in the spatial frequency domain) . The pre-normalised spectra for 

the Torino data are illustrated in Figure 4.4. In order to simplify subsequent 

calculations, we compensate for t he 1/ f distribution by normalising each spec­

trum multiplying each element by its corresponding frequency. The next step 

is to compute t he mean f-L of each norma lised spectrum . Periodic spectra will 

show a peak whose value is much higher than f-L , whi le non-periodic spectra wi ll 

resemble white noise. The two can therefore be discriminated by thresholding 

each spectrum with f{ f-L , where f{ is a constant , a nd checking whether any com­

ponent of the spectrum survives. If there is at least a surviving component , 

the spectrum is periodic and that component should be the main frequency 

(although, rarely, harmonics are detected instead of the main frequency) . The 

actual ra nge of periodicity that can be detected depends on avai lable memory 

(since processing a longer t ime series requires more RAM) and on the spacial 

and temporal resolu tion desired, since videos can be down-sampled spatially 

and/ or temporally to allow longer periods to be detected . 

The output of the thresholding procedure is a binary image where each pixel is 

classified either as periodic or non-periodic , and for periodic pixels, a frequency 

estimate is provided (corresponding to the first peak above the threshold). This 
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output was compared to a ground truth, generated by manually annotating the 

Torino and Roma videos. The ground truth consists of a binary image where 

pixels corresponding to the periodic elements (i.e. the escalator and the Hashing 

light) are white and all other non-periodic pixels are black. Even though small 

errors in ground-truthing may bias evaluation, and a thorough evaluation should 

have several humans annotate the same frames in order to estimate ground 

truthing errors, this bias was estimated to be too small (compared to actual 

segmentation performance) to justify the additional cost in human resources. 

Instead, priority was given to annotate as long a video segment as possible. 

The detector algorithm was run with varying threshold values, and the output 

was compared against the ground truth in order to generate a ROC (Receiver 

Operating Characteristic) curve. A ROC curve is a plot of True Positive Rate 

(TPR) against False Positive Rate (FPR) and these are defined as: 

TPR 

FPR = 

TP 

TP+FN 
FP 

FP+TN 
( 4.1) 

where TP, FP, TN, FN are the number of true positives, false positives, true 

negatives, and false negatives respectively 135]; more specifically, 

• true positives are periodic pixels correctly detected as periodic: 

• true negatives are non-periodic pixels correctly not detected as periodic: 

• false positives are non-periodic pixels erroneously detected as periodic: 

• false negatives are periodic pixels erroneously not detected as periodic. 

Lower values of J( make the algorithm more sensitive. and values between -1 and 

5 have been found to give the best results. All the results shown in the following 

pages were achieved using J( = 4.5 (suggesting, therefore, that the best value of 

k is scene-independent, since the two capture scenarios differed significantly in 

resolution, frame rate, and periodicity of the background). In a previous version 

of this framework, the threshold was fixed and therefore" it had to be changed 

for the algorithm to work with different time sampling intervals /26J. In the 

version discussed in /591, however, since the threshold changes with the mean Jl 

of the spectrum, the same parameter J( can be used regardless of the sampling 

interval (e.g. the Rome and Torino sequences were sampled at O.4Hz and 5.0Hz 

respectively). In Figure 4.5 the output of the detection process is illustrated 

alongside the hand-labelled periodic pixels. 
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Figure 4.4 - Normalised spectra of the pixels from the escalator scene (Figure 4.3b). 
For display purposes, the DC component has been removed and the amplitude has been 
normalised by the mean /1-, so that k could be plotted (since now all spectra have /1- = 
1). For a definition of true positives, etc .. . , see text after Equation 4.1. Frequency is 
expressed in Hz. Error rates are reported in Section 4.6. 
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Figure 4.5 - Comparison between the ground truth and the detection output of the periodic 
background detection algorithm applied to the escalator and scrolling advertisement scenes. 
subfigures (a) and (c) show the scene and, inset, the ground truth, the detection output, 
and the output after the application of a dilate/erosion operation (coloured pixels are 
periodic, and different colours indicate different frequencies). Sub figures (b) and (d) are 
the corresponding ROC curves. 

The output of t he a lgori thm serves as a mask to identify periodic background 

elements. The detected frequency of each element , measured in frames per 

peTiod (fpp) is used to choose t he number of sta tes used to model the periodic 

background , as explained in the foll owing section. 

4.1.3 Markov Model 

Once t he pixels of the image displaying periodicity have been detected , adj acent 

pixels having t he same periodicity a re grouped into regions (either manually or 

using a clustering algorithm such as k-means [(i I]) , and a Markov model for each 

region is constructed. T he number s of states in the model is first est imated 

according to t he DFT analysis, and it should be as close as possible to t he 

number of frames per period (F P P ) of t he background varia tion. However, 
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because the number F P P is not necessarily an integer, it is approximated by 

two "tentative" models, one with ceil (F P P) states, and one with floor (F P P) 

states, where ceil is the function that maps a number to the smallest following 

integer and floor the one that maps a number to the largest previous integer, 

and t he decision is finalised by assessing the performance of each model in the 

learning phase. For instance, in the Torino dataset, the detected frequency of 

the escalator pixels is 5.3 frames per period, hence both a 5-state and a 6-state 

model are tested. If more than 6 states were used, there would be redundancy 

in the model; if fewer than 5 states were used, the different phases in the period 

would not all be distinguishable (as a state may have to cover a number of 

frames). 

4.1.3.1 Learning Phase 

The learning of the transition probabilities of the Markov model is performed 

using the classic I3aum-Welch algorithm [11] available in MATLAI3. It is as­

sumed that the first N measurements correspond directly to the N states in the 

model. Subsequent measurements are assigned a state whose values are closest 

to the measurement in a Euclidean sense. Once the learning phase is completed 

(this was achieved in just over 100 frames of real data, i. e. about 20 seconds at 

5fps), the transition matrix can be used in the update phase. 

As mentioned, both a 5-state and a 6-state model have been tested, where the 

pixels on the escalator, detected as periodic, were used for the purpose of learn­

ing and validation. It was found that a 5-state model is more accurate, compared 

to a (i-state model. in predicting tIll' subsequent state correctly; consequently 

this has been used in the subsequent stages of the system. 

4.1.3.2 Update Phase 

Once the leaming phase is completed, the algorithm in run in the update phase, 

where the goa.! is to determine t he next state that the system will be in at each 

time step. There are two estimates that can be determined: a prediction that 

is based solely on the transition probabilities estimated in the learning phase, 

.~; and an a posteriori estimate that incorporates a mea.surement, s. These two 

quantities are related as follows: 

(
-;., ) _ p(ml~i)p('§i) 

p s., Tn - () pm 
(4.2) 

where i E I is the set of possible next states, s denotes the prior state, s denotes 

the posterior state, and In is the measurement. The measurement likelihood is 



CHAPTER 4. PRE-PROCESSING 69 

calculated as: 

~ 1 { 1 T -1 } 
P (mls;) = (21ft/21L:ll/2 exp -"2 (m - V S .) L: (m - V S .) (4.3) 

where V Si is the value of state i. 

The predicted a priori state s (estimated without taking the measurement into 

account) is compared with s, the state with the highest posterior probability 

given the measurement. If the predicted state and the posterior state agree 

(to within 1 state), then the posterior state is accepted as the next state s. 
Otherwise, the predicted state is accepted as the next state (since the mismatch 

of sand s is probably due to the presence of foreground pixels). 

The corresponding mean and standard deviation of the next state s can then 

be updated, using a similar scheme to that of Stauffer and Grimson's Gaussian 

mixture model [96]. An adaptive scheme is preferred over a static approach 

where the state values are not updated because the Markov model is only an 

approximation to the periodic process (in this case, a 5-state model for 5.3 

frames per period). Moreover, by calculating a standard deviation on the mean, 

a. decision t.hreshold for segmenting the foreground can be defincd as a s(:alar 

mUltiple of the standard deviation. The update equations are as follows: 

where 

(}2 
t 

(1 - p) /1-/-1 + pmt 

(1 - p) (}Z- I + P (m/ - /1-d T (mt - /1-t) 

( 4.4) 

(4.5) 

(4.6) 

Here, t denotes time, and II is the leaming rate of the algorithm. The conditional 

probability in Equation 4.6 is equivalent to the one in Equation 4.3 since the 

state can be represented by a mean and a standard deviation. 

The technique was applied to the real data collected at a Torino underground 

::;tation. Since the objective of this technique is to provide a reliable periodic 

background from \vhich foreground segmentation can be generated, results of 

foreground ma.sk generation are given in Section 4.1.4 to demonstratc the efficacy 

of this approach. 

It should be pointed out that the l\Iarkov model described here takes the struc­

ture of a Hidden Markov Model (Hl\Il\I), and it is possible to u::;e a series of 

measurements (instead of only the previous one) to estimate the current state. 

However, a preliminary evaluation phase showed that using a series of measure­

ment::; would increase the computational cost without improving the final result, 
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since the cnrrent state and the previous state are sufficient to determine where 

in the periodic cycle the system is. 

Since different camera views would capture different scene elements with dif­

ferent periodicities, training has to be performed for each camera view in a 

networked system. The time required for training is dependent on the length 

of the maximum period one wishes to detect, the computational complexity of 

FFTvV being 0 (n log2 n), and at least five or six periods being required for the 

periodically varying pixels to be detected. For the escalator here, the training 

process is fast (just over 100 frames, i.e. 20 seconds at 5fps); therefore if ele­

ments of similar periodicities are to be detected, the training can be achieved 

in a short time. Results are presented in Section 4.1.4. 

4.1.4 Results 

The real data used to test the foreground detecting method described in Sec­

tion 4.1 is the escalator sequence with people in the foreground (i.e. on the 

escalator), a sample frame of which is shown in Figure 4.6a. Only the area of 

interest has been displayed here for clarity - the section of the image with the 

platform has not been shown. 

This sequence has approximately 300 frames at 5fps and involves 9 people using 

the escalator; a rect angular area of 150 x 280 pixels centred on the escalator 

was ddlned and used for evaluation, providing a total of 12.6 megapixels (1.50 

x 280 x 300 frames) to test the algorithm on. The periodicity was determined 

using the periodic background detector described in Section 4.1.2, and the 5-

state l\Iarkm" model was constructed following the approach described above. 

Figure 4.Gb shows the foreground mask of the proposed approach for one frame. 

and Figure ,1.(ic shows the corresponding output of the GIVIIvI. It should be noted 

t hat only the escalator region defined by the mask generated by the periodic 

background detector is being processed. It can be seen that the proposed ap­

proach seems to produce fewer false positives and the output regions are more 

contiguous in this frame. For a quantitative comparison of the two algorithms, 

a ROC analysis is carried out and the results are presented below. 

Ultimately, the efficacy of the background modelling technique is assessed by the 

foreground detection performance that it can provide; therefore the segmenta­

tion output of the proposed method is compared against that of the Gaussian 

Mixture l\lodel (Gl\IM). The parameters for both methods have been varied 

over a wide range to obtain the best performance in each case (see Table 4.1). 

It is believed that the Gl\IM provides the best baseline for comparison because 

it has the ability to model multi-modal distributions, and is adaptive. In fact, 
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Algorithm Parameter Description 

l\larkov (} learning rate 

Chain 
k scalar determining the threshold for the 

detection of periodic pixels (see Figure 4.4) 
initVar initial variance of the state model 

Gl\lM Q learning rate 
numModels number of Gaussians 

initVar initial variance of Gaussians 

initWeight initial weight of new model 
numStdDev scalar determining the threshold between 

background and foreground pixels 

T proportion attributable to background 

Table 4.1 - Parameters of the Gaussian Mixture Model and Periodic Background segmen­
tation algorithms. 

the proposed method can be viewed as a GMM with a prior on the transition 

probabilities. Using these outputs, a ROC curve is generated, plotting the True 

Positive Rat(~ (TPR) agaiust the False Positive Rate (FPR) as defined in Equa­

tion 4.1 on page 65. 

The ground truth values have been generated by manually labelling the pixels 

as foreground or background. Foreground pixels here correspond to pixels where 

a person is present on the escalator. The resulting ROC curve of a pixel-based 

analysis is shown in Figure 4.6d. The blue square points correspond to the 

proposed algorit hili. ,,·hile the red triangular points are the outputs of the GMM. 

It call be seen that OWl' the pannIleter space, the proposed method performs 

better than the Gl\ll\l. For 80% TPR, the FPR is reduced relatively by 40%. 

At 20% FPR. t Iw nllllllwr of missed detections is reduced relatively by 47%. 

The implications of this improvement are not straightforward to assess. For 

detection and tracking of pedestrians, the increased reliability of foreground 

detection can be (~xp('dcd to lead to illlproved track reliability. The effect will be 

restricted to specific arpas of the scene such as escalators and advertising boards, 

which ill some sequences coyer over 20% of the image area. If these areas have 

a key role in the detection of important events, then the improvement will have 

a significant impact. Abo, there is a significant amount of manual intervention 

needed at the moment: clustering of periodic pixels, selection of a subsampling 

frequency, and selection of a maximum period to be detected. The fact that the 

algorithm needs re-training after major lighting changes is also a deterrent to 

wider adoptioll. 
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(a) (b) (c) (d) 

Figure 4.6 - Comparison of foreground detection accuracy of the Periodic Background 
Detector compared to the Gaussian Mixture Model, applied to a camera view from the 
Torino dataset, without noticeable lighting changes. (a) A sample data frame where the 
humans on the escalator are the foreground components that we wish to detect. Note 
that here only the escalator region is processed. (b) Foreground map using the proposed 
method. (c) Foreground map using GMM. (d) ROC curve of the pixel-wise. 

4.2 Colour Correction: Normalisation of Chro­

maticity and Intensity 

Systematic variations between cameras of t he input signals may be caused by 

differences in hardware, configuration, illumination and setting. The purpose 

of colour normalisation is to minimise colour differences between cameras due 

to different illumination and colour responses (as opposed to differences due to 

uneven illumination wilhin one camera view). In this section the input data is 

represented in the YCbCr colour-space, each channel having 8 bits i.e. a range 

of between 0 and 255. 

Several colour constancy techniques exist, such as [i":l] and 1·")0], that require a 

set of reference colours to be given as input. However, given the high number of 

cameras in a typical surveilla nce scenario (e.g. in the GTT test site there are 22 

cameras per station, and 12 stations), a completely unsupervised method has 

been preferred . The approach presented in this chapter and published in [27] 

is an adaptation of the "grey world" algori t hm [:W], employed in t he context of 

foreground data in common between cameras [:17] (but in our approach there 

i no requirement for camera overl ap). It assumes that the set of foreground 

data from each camera is a fair sample from an underlying distribution of object 

appearances which need to be rendered as invariant as possible with respect to 

which camera they are observed from . The assumption that a ll cameras observe, 

on average, the same set of foreground data is justified in a surveillance scenario, 

where passengers transiting by the station will be seen by several cameras. Over 

a long enough period of t ime, random variations due to different ly coloured 

passengers taking different routes should average out. 
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4.2.1 First-Order 

To normalise the data from two or more cameras, it is assumed that a training 

set of observations is available, drawn from the same distribution of passengers 

and poses. This training set is generated by running a foreground detection 

algorithm (such as the one presented in the first half of this chapter) on all cam­

eras, and retaining all foreground pixels. Writing each (Ye, Cbe, Cre) foreground 

pixel value from camera c as Pc (x, V), and the mean value of all foreground data 

from this camera as pc: the first-order corrected values are calculated as 

I 128 
Pc(x, y) = --::-Pe (x, y) 

Pc 
(4.7) 

This enforces a mean of 128 for each channel of the signal, i.e. mid-scale lumin­

ance and neutral chromaticity. 

4.2.2 Second Order 

It is also possible to consider the covariance, when equating the per-camera 

distributions of foreground colour data. If a particular value of colour signal 

Pc (x. y) from camera c is represented as a different value Pd (x, y) in camera d, 

then the general relationship between these spaces may be written as an affine 

transform 

(4.8) 

where Red and ted are respectively a generalised rotation and a translation 

between the input spaces of cameras c and d. If there is no mixing between the 

IUlllinallCl' aJl(I t\VO chromaticity channeIs, then only the diagonal elements of 

Red will he nonzero. I\Iore generally, there may be mixing between the colour 

challneb: corresponding to some small generalised rotation between the axes 

of the colour space for each camera. The normalisation process is intended 

to idclltify and correct for these differences between the signals from various 

camera~ that presents all input signab ill a common representation (the pseudo­

code for this operation can be seen in Algorithm 4.1). If the affine model is a 

valid representation of the differences between the colour response from any two 

cameras, Hlld there is sufficient structure to the covariance structure of the input 

statistics, t hen it is possible to estimate Red and ted from an unlabelled training 

set of foreground data. This is described in the following section. 
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Algorithm 4.1 Colour normalisation: takes a set of video streams as input, 
and normalises them using second order statistics on foreground pixels. 
Require: cameras: a set of video streams 

for all e in cameras do 
count ~ 0 
for all f in frames(e) do 

for all p in pixels(J) do 
if foreground(p) then 

sum[e] ~ sum[e] + p 
sumsqr[c] ~ sumsqr[e] + p2 
count[e] ~ eount[e] + 1 

end if 
end for 

end for 
mean[e] ~ sum[e] / count 
globalMean ~ globalMeall + mean[e] 

end for 
globalMean ~ globalMean / length( cameras) 
for all c in cameras do 

for all f in frames do 
f ~ f . global! mean[e] 

end for 
end for 

4.2.2.1 Required Covariance Properties 

If two multivariate random variables, X and Y. are related via a linear trans­

formation y = l\:yx, then it may be possible to estimate l\:y from the means 

11X,lly and covariances Sx. Sy, generated from n samples of both X and Y. 

Simulations can be used to demonstrate the accuracy of the estimate, by gener­

ating it set of random samples from X, transforming them into Y using values 

of T, and then mea.suring how closely the two sds of ,·ectors are aligned in some 

standard common co-ordinate system. 

It is lllore convenient to transfortll them both onto the same '·whitened" co­

ordinate system with zero mean ami unit diagonal covariance, as this will sim­

plify subsequent formulas. If Sx diagonalises into Ex Ax E:~, then the transform 

to the whitened "en,ion Wx of the vector x is 

,-1/2E,'1' ( ) 
Wx = 11X X X - I1x (4.9) 

If the equivalent process is also applied to the variable Y, to obtain a sample 

of whitened vectors Wy, then the accuracy of the estimate can be measured as 

the expected L2 distance between the whitened samples, i.e. E [Iwy - WXI2]. 

The accuracy of the estimate depends weakly on the number of samples nand 
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strongly on the relative magnitudes of the ellipsoid radii (i. e. eigenvalues) of the 

covariance structure associated with X. For the two-dimensional ellipse, the 

standard term used to describe these relative magnitudes is eccentricity, which 

varies between 0 (circle) and 1 (a line). In this work, an alternative term is used 

that is better suited to the investigation and is not limited to two dimensions: 

the ellipticality, E, is defined as the smallest ratio between successive eigenvalues, 

ordered by size, and can vary between 1 (a sphere) and 00 (an ellipsoid with at 

least one degenerate dimension). 

Experiments were conducted to measure the reconstruction accuracy, using sev­

eral test sets consisting of between 200 and 5,000 samples. Values of E from 

between 1 and 5 were used, creating covariance matrices with the follO\ving 

form: 

Figure 4.7a shows how the accuracy of the estimate of S is a function of f for four 

different sample set sizes, and for to = 1 ... 5. The graphs show that accuracy 

increases with increasing values of to, and that the increase in speed is higher 

with bigger sample-set sizes. Below values of E = 2.5, the alignment of the two 

sets of data failed completely and the accuracy was no better than random. 

Above values of to = 3.0, the alignment worked very well and the mean squared 

error between the two sets of whitened vectors rapidly approached zero. In the 

range 2.5 < to < 3.0, the alignment process required a large number of samples 

(around 5,000) to obtain an accurate estimate. In the next section, the values of 

( are estimated for the real video signals encountered in a surveillance systt'lil. 

4.2.3 Analysis of Input Signal Covariance 

The statistics of 29 surveillance video feeds from the Torino I\letro system were 

analysed. Approximately 10 minutes per camera were used: only foreground 

pixels (extracted using a GMM method) were included. If the eigenvalues of the 

covariance of t.hese data are sufficiently different, then the simulations suggest 

that the procedure outlined in the previous section may be applied to improve 

the alignment of these colour signals. 

As shown in Figure 4.7b, the values of f are all between 3 and 8 (we remind 

the reader that because of how to is derived, its value is defined up to a scale 

factor, and should only be compared to other f values obtained with the same 

scale factor - in this case, 1). This ensures that the cameras covariances can 
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Figure 4 .7 - Ellipticality estimates of a real surveillance dataset . 

be reconstructed with good accuracy. For the experimenta l validation of t hese 

colour correction methods, see Section 4.2.4. 

4.2.4 Results 

The experimellta.l validation of colour correction methods is carried out bv com­

paring the performance of appearance descrip tors applied to the same set of 

targets ; but lISillg differently colour corrected video streams. T he baseline is 

given by the or igillal , llon-colour corrected set of streams. T he perforlllance of 

the descriptors is meas1ll'ed usi ng their entmpy (see Sect ioll 3.5.1), 

Figure 1,8 shows the histograms of three appea.rance descriptors. wit h and 

without colollr correction . As evidenced by the fi gure , a descrip tor' s perfOrlll­

alice does not. always benefit from first-order colour correction. However, scconrl­

order colour correct ioll Iloticeablv im proves descriptors ability of discrilllinnti ng 

between individ uals, illcreasing the entropy from 13% to 16% for t he Colour 

Posit ion descriptor , ami from 6% to 12% for the Mean Colo\ll' rl cscript or. 

4.3 Conclusion 

T his chaptcr introduced two novel algorit hms for the pre-proccssing stages of 

t he TNT pipel ine: foreground detection and colour correct ion . For the fore­

ground detect ion stage, an a lgorithm wa.::; developed that can detect periodic 

variations in a scene background, and use t hem to better model the backgroulld 

by predict ing t he colour a pixel is going to assume in a subsequent frame. For 
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Figure 4.8 - Variation of descriptors performances as different colour correction tech­
niques are applied to the video streams. Each column corresponds to an appearance 
descriptor (Ieh: mean colour descriptor; centre: covariance descriptor; right: colour po­
sition descriptor) . Each row corresponds to a colour normalisation method (top row: no 
normalisation; middle row: first order normalisation; bottom row: second order norm­
alisation). Above each histogram, the entropy provided by that specific combination of 
appearance descriptor and colour normalisation is displayed (a higher entropy corresponds 
to a better performing descriptor, see Section 3. 5.1). The histograms were generated using 
over 100 observations of 12 individuals. 
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the colour normalisation stage, an unsupervised method was developed that 

can learn systematic variations in colour responses between cameras using the 

motion of pedestrians in the surveillance network. Each algorithm has been 

evaluated on real data, showing an improvement in performance over the state 

of the art. However, both proposed algorithms have a downside, in that they 

require an explicit "training" phase before they can be used. 

This is especially a problem for the motion detection algorithm, since most 

state-of-the-art algorithms (including the Gaussian Mixture Model used for the 

evaluation) do not require an separate training stage, and they can simply adapt 

to lighting and background changes as they run. It is for this reason that the 

period background detection algorithm has not been developed any further and 

has not been used for evaluation of the tracker. The next chapter presents the 

performance evaluation of the TNT system as a whole, using the GTT dataset. 



~:;--------------------~ 
Experiments and Results 

In this chapter, the experimental framework and the datasets used to test the 

tracker are presented (Section 5.1), followed by tracking results in Section 5.2. 

Since the main contribution of this thesis is a multi-camera, single-target tracker 

that can incorporate information from heterogeneous data sources, the evalu­

ation will focus on comparing the relative performance of the multi-camera 

tracker with all possible combinations of data sources. 

Before presenting the experimental results, an overview of the experimental 

pro(:(!ss is given hew. A data-fiow diagram of til<! proc:ess is shown ill Figure 5. L 

The diagram is divided in four sections: prior knowledge, video processing, 

format conversion, and evaluation. The Prior' Knowledge section covers the 

collection of all data and rnetadata that needs to be available before the tracker 

can be run, and is presenteel in detail in Section 5.1. 

Once all data has been collected, and all rnetadata is made available, it is 

possible to run the tracker, as shown in the Video Processing section of the 

diagram. In a real scena.rio, the tracker would require a human operator to select 

a reference target and start the tracking; however, for performance evaluatioll 

purposes, a set of ground truth tracks are needed. These can be created with 

a purpose-built application, KanAnnotate, created b? the CARETAKER group 

in Kingston University a.nd described in Section 5.1.4. Both KanAunotate and 

the tracker can be seen in the Video Processing layer of Figure 5.1 (the tracker 

is indicated as cvplay, since this is the name of the executable that runs it). 

The next step after tracking is format conversion, where metadata produced 

by the tracker and the annotation tool is converted to a format suitable for 

the evaluation tool. There are three reasons why a separate data conversion 

79 
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format is preferahle: firstly. for ease of implementation, the output format of 

the tracker was chosen to match as closely as possible (within the limits of 

the viper format) the internal data structures of the tracker itself. Secondly, an 

external conversion tool can be used both with the ground truth and the tracking 

results, which is lllon~ cost-effective thau writiug several output modules for the 

tracker and the annotation tool (in fact, while this would be possible for the 

tracker, the annotation tool is hard coded to use the viper format). Thirdly, a 

separate conversion step allows one to run the tracker once, and use the same 

data with multiple evaluation tools. The evaluation step, which is at the end of 

this data flow diagram, is explained in Section 5.1.5. 

5.1 Prior Knowledge and Data Acquisition 

Two datasets have been used for performance evaluation: the Torino dataset, 

collected for the CARETAKER project, and the ILIDS dataset, produced by 

the HOllle Office Scientific D(~vd()Plllcllt 13raJ1(:h (HOSD13). A third dataset, 

from Roma, was also collected during the CARETAKER project, but it has not 

been used for performance evaluation since is \vas found to have too poor video 

quality. Spt"cifically, all tht" videos were blurred and desaturated, and two of 

the cameras (out of 12) had prohlems with brightness adjustment, causing their 

videos to be almost completely white. 

During the 2009 Advanced Video and Signal-hased Surveillance (AVSS) con­

ference in Genova, Italy, the American National Institute for Standards and 

Technologies (NIST) organised a Illulti-camera tracking challenge, using the 

ILIDS dataset. The tracker presented iu this thesis was one of the only two 

participants. Both trackers performed poorl~·, yielding negative l\IOTA values 

(see Section 2.3.1 A). It became apparent to the wutest orgauisers, as well as to 

the other confereuce atte!l(lc!'s, that the ILIDS dataset is extremely challenging. 

The main difficulties. as it ",as noted at tilc' couference. were the high level of 

crowdedness and the 100v placement of cameras, \\"hich caused a high level of dy­

namic occlusions between the targets. 13ecallse of all these reasons, the ILIDS 

dataset was not used for performallce evaluatioll in this chapter. 

5.1.1 Video Sources 

A realistic use-case requires the tracker to work in real-time with video streaming 

live from the surveillance cameras. The standard protocol for video streaming 

is RTP (real-time transport protocol, see Nomenclature). 'Within the CARE-
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Figure 5.1 - Data-flow diagram of the multi-camera tracking system, including setup and 
evaluation. Square boxes represent processing, and "wavy" boxes represent data. 
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TAKER project, RTP reception functionalities were implemented using a library 

provided by Thales1 , a member of the CARETAKER consortium. 

Testing and debugging use-cases require the tracker to be run on stored data, 

so that experiments may be repeatable. Also, a possible use-case of off-line 

tracking (e.g. after an incident) requires the tracker to work on stored videos. 

The CARETAKER system uses a data base (DB) to store video, in order to 

facilitate random search within large archives of data (several2 days of videos 

from hundreds of cameras): DB access was therefore required, and was im­

plemented with the collaboration of Solid Information Technology (a database 

company, now acquired by IBM, that was a member of the CARETAKER con­

surtium). Finally, cunsidering that file access is a very common way of sturing 

and exchangin~. v!deo data, file access was also implemented. 

In order to keep the software modular and simple, all three video sources use 

the same interface, namely the OpenCV CvCapture pseudo-object. Standard 

oojects for file access arc already provided oy OpenCV, while custom Oll()S were 

implemented for RTP and DB access. 

An XML schema, called videodeck, was designed to describe the heterogeneous 

set of resources that represent a data capture session (including a live session 

as a special case). This schema allows authors to associate a camera (uniquely 

identified by a number) with one or more data sources. Each data source can 

be eit.her tile, databas(~, or liv(' stream. In the case of file and database SOUl'C!~s, 

the optional attributes start end and sync are also available. The start and end 

attributes can be used to specify which subset of the data source contains valid 

video data, in the CClse that corrupted video was recorded (possibly due to a 

network error or to a C<UllerCl Ilwlfunction); if they are not specified, the data 

source is assumed to coutaill ollly valid video. The sync attribute allows the 

media time of each source to be synchronised with a global timeline. If videos 

from all data sources are recorded at the same time, then the sync value is zero 

(the default). However, non-zero sync values are used extensively in the GTT 

dataset, since all files in each dataset start at a different time (approximately 

within 30 seconds of each other). A simple OCR program was developed by the 

author of this thesis to read the timestamp overlaid on the video and compute 

sync values. 

A Videodeck file does not coutain any information about the cameras them­

selves, such as calibration or adjacency: this is covered by the topology schema, 

presented in Section 5.1.3. An example of a Videodeck file is shown in Figure 5.2. 

Ihttp://wvw.thalesgroup.com 
2ltalian laws require ~urveillance data to be erased after 7 days, unless an event of interest 

has happened and permission to retain data ha.~ been granted by the police. 
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<7)(ml version= > encoding= UTF 8 standalone- 'no' 7> 
<ka:deck xmlns:ka= Ji< ac kinl on JIIC ,ananno a'e" > 

,.- Thb IS a modIfied verSlOn of solld,vIdeo.xml, synchronised to the frame --> 
<db· default password=" ' server= 282 . • 23' sync="O" username= ' /> 
<view camera= ~en JOO > 

<db sync=' 9 399999999994179 /> 
</View> 
<view camera= s~n· 301" /> 
<view camera= en-J02 /> 
<view camera- ,en 617 /> 
<view camera=" en-618" /> 
<view camera= sen 902' > 

<db sync- ' 4 69999'999996H3 /> 
</view> 
<view camera =" ,en 903" > 

<db sync=' - • • 19Q99S99999S'3S" /> 
</view> 
<view camera= "'>?n·g06" > 

<d b sync- 8 .9Q9Q5999Q9S735 /> 
</View> 
<view camera= C In g( 7 > 

<db sync= 5 ,,66663999993762 /> 
</view> 
<view camera= 'n 908' > 

<db sync= - >. 5' j 1999999064" /> 
</view> 
<view camera= ('n 909 "> 

Figure 5.2 - A Videodeck file . This file uses database sources; cameras may not have an 
associated data source to indicate that there is no video available. 

5.1.2 Calibration 

Even though many semi-automatic camera calibration methods exist in t he 

scientific li terature (see e.g. Section 2_5), it was decided that research should 

focus on tracking, and t herefore a traditional manual calibration method was 

adopted. A simple camera cali bration software named KalibroU (see F igure 5.3) 

was developed the Kingston University CARETAKER team that uses the Tsai 

coplanar method [JOT , 10K] to cali brate cameras. 

KalibroU can be used to cali brate a surveillance camera with respect to a map 

of the survei lled area, if an image of the map and a frame of the camera view 

are availa ble. The software a llows the user to click on corresponding points in 

the images and provides a grid to be used as a guideline. When at least five 

non-collinear, coplanar points are selected, a grid is displayed on both images 

to let the user judge the quali ty of the cali bration , and as the mouse hovers 

in one image, its corresponding position is displayed in the other one. If the 

user is not satisfi ed with the calibration, points can be added or moved about, 

until the cali bration is deemed satisfactory. When cali bration quali ty is visually 

good enough , the e t imated camera parameters can be saved as an XML file, 

that can be loaded by an external application. Even though the procedure is 

completely manual, a camera can be calibrated in 5-10 minutes , which made it 

possible to calibrate the 7 cameras used in the Rome test-site and the 54 used 

in Turin (note that because all stations in Torino underground are a like, only 
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Figure 5.3 - Three screenshots of Ka libroU running under Linux. 
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18 ca meras have actually been calibrated , and the calibration has been u ed for 

three different stations). 

5.1.3 Topology and Layout 

The Ka nannota te schema is used to represent the network layout as a graph, 

where each node represents a camera and each arc represents a connection 

between cameras, as described in Section 2.5 .2. The graphs representing the 

topologies for t he three test sites (Roma, Torino and the i-Lids dataset) were 

created by hand, with approximate times estimated by looking at the videos. 

Automatic graph-inference methods were discarded for the same reasons why 

camera self-calibration methods were discarded (see Section 5. l. 2, namely that 
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research should focus on tracking, not on topology calibration, as errors in to­

pology estimation must not be brought forward to the tracking stage). 

The above representation of the network layout has to be stored in a structured 

file for easy human and programmatic access. XML is the grammar we chose 

for the implementation. There exists an unofficial W3C syntax recommendation 

for serialising graphs into XML [57] that we used to design the Topology Schema 

shown in Figure 5.4. A Topology XML file consists of four sections: 

image whose elements are simply links to image files containing the map of a 

level of a station. 

camera , .... hose elements represent the cameras of the network, and link to a 

file containing the calibration data for that camera. 

coterie that is a collection of cameras sharing the same ground plane. Each 

coterie contains two or more cameras and a reference to the image element 

that contains the ground plane of that coterie; additional attributes of the 

coterie tag are used for display purposes. 

connection whose elements link pairs of cameras and specify the average transit 

time in seconds using the occluded for attribute. 

Figure 5.5 shm,'s the Torino layout file as an example. Both the schema design, 

and all layout fiks (for Homa, Torillo, I1nd the i-Lids datasets) were created by 

the author of this thesis for the tag-and-track project. 

5.1.4 Ground Truthing 

Because performance evaluation of tracking is based on comparing the tracker 

H'slllts with 11 manllall~' generated ground truth, annotations had to be made 

for the Torino dataset (whereas the i-Lids dataset is shipped with ground truth 

hIes). Grollnd-trllthing a large dl1taset snch as the Torino one is a task that 

can take a perSOll IIlany months to complete, as it requires navigating through 

half all hour of video over 200 cameras. looking for suitable targets in various 

crmvding conditions, and taggillg their locations. 

Therefore, a llew aunotation software, named KanAnnotate, was developed 

hy the Kingston University CARETAKER team3 specifically for this purpose. 

KanAnuotate lIses the topology file format defined above to construct a visual 

represeutation of the connections between cameras, that can be navigated using 

:11\!ost of the credit. and gratitude, though, go to Illy colleague Justin Cobb. 
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Figure 5.4 - A graphical depiction of the Topology XML Schema, representing the layout 
of a camera network. The term KanAn notate comes from the name of the first software 
tool that used it. 
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<7xmt verslon- "l. e" encodlng- "UTF-8" standalonea "no" 1> 
<ka : t opa logy xtIIlns: k" "," uk. ae. kings ton . di rc . kanannot a te" name- liTo r ino Ne twork Layout"> 

<came ,,,_defau t t 5 wld t h."104" helght . " 28S" '> 

<image f i le- "XVIll_Dlcembre_at r io_01 . png" id · " im9-01" name- "DOO Upper Level" 
otfset_x- "0.00" offset_y .. "0.ee" 
sea l e_x-" 1. eo" sea le_v . " 1 . ee" 
pi xe t s_pe r _lIIet re - "lS. 58" /> 

<lmage file- "RacconlQl_bancnlna_l . png" id-"lmg-02 " name."Plalform level (all stall.ons)" 
offsel_x- "0 .00" of f·set_v-"e. eo" 
sea l e_x-" 1. ee" sea te_y-" 1. 0e" 
pix!!: ls_pl!: r _met re- " 17 .4" /> 

< ! --000--> 
< ! -- ca llbrated cameras --> 
<callera ell libral ion-" Ace - Staz lOne-DOD. xml" i d- " sen-leOI" name-"Ent rance, Stat 10n Slde" /> 
<callera Cil librat ion- " Acc- Ce rnaia - DOD. xm t" id-"sen-l OOO " name-"Ent rance. \( ia Ce rnaia Side" /> 
<camera ca lib ration. liT icket - 1-000. xm t" id. "sen-1006" name-"T icket Machine I" I> 
<came ra Cil lib rat ion. "T icket - 2- 000. xm t" id. "sen-1007" name- liT icket Machine 2" /> 
<callera catibration- "Ascensore-atrl.o-l-DDD.xmt" id- "sen-l002" nalle- "Halt lift 1" /> 
<calllera catibration. "Ascensore-atr10-2-00D.xlIl" id .. Ysen-1803" nallle .. "Halt lift 2" 1> 
<came ra ca l i b rat ion_"To rne 1 t1-00D . xm t" id- " sen-1012" name- "Tu rns t ytes" /> 

< !-- Coteries --> 
<cote r ie id- " cot-dod-81" p tan. " img-01" name- "DDD Ha t t" leve 1. " O. B"> 

ids "sen-100l" /> 
<camera id. "sen-leOO" I> 
<, amera id-"sen- l006" /> 
<came ra i ds" sen- le07" I> 
<camera id."sen- l002" 1> 
<camera id- "sen- l0e3" /> 
<camera id- "sen-1012" 1> 
<came ra id- "sen-l00S" I> 
<came ra id- " sen-l0e9" I> 

</ coter ie> 

<connect ion f rom- " sen-le00" 
<connect ion from"' '' sen-lOe6" 
<connect i on f rom- " sen-IOel " 
<connection from- "sen-le07" 
<connection from- "sen-I006" 
<connection from. "sen- lOI2" 
<connection from. "sen- IOOl" 
<connec t ion f rom- " sen- I012" 
<connect ion f rom-" scn- l002" 
<connect ion f rom- " sen-100l" 
<connect ion f rom- " sen-IDOl" 
<connect ion from .. " sen-I006" 
<connec tion from .. "sen-lOll" 
<connect ion from. " sen- I002" 
<connect i on f rom- " sen- lOOl" 
«..onn,.r::t..iD ..LtI~ " ~1A " 

name. "DDD Platform I" level-"-l.e"> 

occ luded_ for- "O . 00" to." sen- I006" /> 
occ l uded_ t o r - " 0.00" to_" sen-lOBO" /> 
occ tuded fa r - " 0. 00" to ,, " sen-leOl" /> 
occluded-for - "0 . 00" to ... "sen-leel" I> 
occ luded - fa r - "0 . 00" to"' '' sen- IO I2" /> 
occ luded- fa r·" 0.00" to." sen- I006" I> 
occ l uded: f or- " 0.00" to." sen- IeI2" /> 
occ t uded_ fa r-" 0 . 00" to- " sen- lOO 7" /> 
occluded_ to r-"l. 00" to-" sen- I007" /> 
occluded_ to r - " 1 . 00" to"' '' sen-1002" I> 
occ luded_ to r_u 1.00" to .. .. sen-IOe 6" I> 
oec luded f 0 r- " 1. 00" to- " sen-100l" /> 
oec luded - fo r - " 4.00" to - " sen-180l" /> 
oec luded: for. "4. 00" to-" sen- IOlO" /> 
occtuded for- "4.00" to-"sen- lOll" l> 
tn"","s.ea.:..-,~"..L> _____________ , 
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Figure 5.5 - A topology XML file . This example shows part of the layout definition for 
the Torino dataset (the complete file would be too long to include). The top section 
defin es the list of coteries (with associated image files, see Section 5.1.3) and the list of 
cameras. The middle section associates cameras with coteries, and the bottom section 
defines connections between pairs of cameras. 
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the monse. It can also read videodeck files, that define the video sources, thns 

presenting the user with the same scenario (data sources and topology) that 

the tracker uses for tracking. The user can then use the mouse to select an 

individual and mark their positions in the videos. 

5.1.5 Evaluation Methodology 

Evaluation of the tracker performance was carried out using the MOTA metric, 

which was presented in Section 2.3.1.4 but is repeated here for easier reference: 

MOTA = 1 _ L~!{a","., (rnt + fpt + loglO IDC) 
",Njram,>., N(t) 
LA=] G 

(5.1) 

where rnt is the number of missed detections, fpt is the number of false positives, 

and IDC is t.he number of ID chauges. calculated cOllsideriug the diff(~rencc 

between the mapping for frame t and the mappiug for frame (t - 1). 

The other evaluation measures reviewed in Section 2.3 are available only for 

the results submitted to the AVSS multi-camera tracking challenge, since the 

publicly available evaluation tool only outputs l'vlOTA values. Possible values for 

the NIOTA range from -00 to 1. A l'vl0TA value of 1 represents perfect accuracy, 

i.e. all output bounding boxes overlap to the ground truth hounding boxes by 

more than a threshold, and there are no unmatched ground truth bounding 

boxes; a l'vIOTA value of 0 means that there are as many correct boundiug boxes 

as erroneous ones. Finally, values below zero mean that erroneous bounding 

boxes outnumber the correct ones. 

When implemeuting a l\10TA-based tool for evaluating the IIlulti-camera tracker 

(kscril)(~d in this t.Iwsis, the a.lgorit.lllll has lw('u slil!,htly silllpliIi('d with tlw ad­

ditional constraint of having a single-person tracker. In particular, tracking pre­

cision (lVIOTP) ceases to be meaningfuL and tl}('refore only l\IOTA was used for 

evaluation. Moreover, in the MOTA formula showu in Equatiou 2.7, log1o IDC 

is always () and can be ignored. 

The major difference, however, lies on how false positives are counted. The 

original formulation of the l\10TA assumes that ground truth is available for all 

frames where the target is visible in the video; therefore, if the tracker produces 

a boulldiug box for a frame where there is 110 ground truth defilled, it is counted 

as a false positive. Early in the development of this project, however, it became 

apparent that producing frame-by-frame annotatiolls of indi\'iduals \vould not 

have been feasible in the available t.ime, especially if we wanted a significant 

number of individuals annotated. To make the tasks manageable by the author 
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(a) Tracker output (b) Intersection (c) Ground truth. 

Figure 5.6 - Example frame of comparison between ground truth and tracker output to 
evaluate the MOTA. The intersection to union ratio is greater than 20%, and therefore 
this frame counts as a true positive. 

alone, ground t ruth has been collected only at selected frames (ground truthed 

frames) , typically t he entry, middle, and exit point of each individual in each 

camera. The first and last frames of the ground t ru th are used to define a 

temporal window where the target is considered visible; if the tracker produces 

bounding boxes outside of this window, they are counted as false positives, 

but inside this window the t racker is evaluated only in t hose frames where the 

ground truth i defined, a nd other bounding boxes are simply ignored. 

The last difference from the original formulation of the MOTA consisted of 

runni ng a linear interpolation algorithm to the tracker output . Interpolation 

is done on each camera independently; the algorithm looks for discontinuities 

(i.e. missing frames) in the output, and fi lls them in by linearly interpolating 

the available bounding boxes. This phase was added for t he following reason: 

if there are overlapped cameras, t he ground t ruth is typically available for a ll 

cameras in t he overlap a rea, but the tracker can only produce resul ts for one 

camera at a t ime (this design decision is explained in Section :3.3). On the 

other hand , if t here is a good view of the target in more than one camera , the 

tracker is likely to perform frequent hand-overs (see Section 3. 1); in this case, 

it may happen that the tracker does not provide a bounding box for a ground 

truthed frame, even though it provides bounding boxes for the frames before 

and after. In order not to penalise t he tracker for a fortuitous hit-or-miss of a 

ground t rut hed frame, the interpolation phase was added. 

Figure .5 .6 shows an example of comparing ground truth and tracking results to 

compute the MOTA for one video frame. 
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5.2 Tracking Performance 

The tracker was demonstrated live at the final review of the Caretaker project, 

showing tracking on both recorded and live video streams. However, the demon­

stration was not intended to provide a quantitative evaluation of the tracking 

algorithms. This section provides quantitative results for the Torino dataset, 

allowing to assess performance of each module of the TnT system and to de­

termine the best combination of modules. 

5.2.1 System Parameters 

The tracker performance was evaluated varying a number of parameters, shown 

in Table 5.1. 

5.2.2 Comparison of Components 

These experiments aim to compare t he performance of the three main modules 

of the multi-camera. tracker (foreground detectors, appearance descriptors and 

single-camera trackers). The experiments were performed by keeping one of the 

components fixed, while changing all the others, and running the multi-camera 

tracker on all of our 11 ground-trutlH'd individuals. Histograms of the resulting 

MOTAs are provided. 

Statistical significance tests art' perforJlled for each Illodule being evaluated, in 

order to find out which differences ill l\10TA are due to a better component, and 

which are just noise. For this. we aSSllIlle that the average l'vlOTA produced by 

an experiment is norlllall~r distrihutl'eJ wit h unknown variance (the Central LiUlit 

Theorem 1115J ensures that this asslIIllption is valid for large enough datasets). 

A two-tailed Student '8 t-te8t /lIGi is then applied to the collected data, compar­

ing the hypothesis ·'two COlllPOlH'llts have different performallces" against the 

null hypothesis that the ·two cOIllPonents have the same performance". \Ve re­

ject the null hypothesis if the ('(lllfidcnce is greater than 95%. For each module, 

we provide a summary table that cOlllpares each pair of components; cells where 

confidence is greater than 95l)( are highlighted with a green background (text is 

bold if confidence is greater than 999l). 

Individuals The first experiment was mn to compare the average MOTAs 

produced by different individuals. Although individuals are not a component of 

the multi-camera tracker, it is useful to provide a visual representation of how 
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Parameter Description Values or range 

Double mixture model 
(GMMHSV), Horprasert, 

Motion the algorithm used for Mixture of Gaussians as 
detection foreground provided by OpenCV 

segmentation (see (std-mog) 
Section 2.4.1 and 2.4.3) 

Dense optical flow 
(DenseFlowTracker) , 
template-based 
(DescriptorTracker) , 
Open CV camshift 

Iracker The algorithm used for (HueShift), Lukas-Kanade 
single-camera tracking (OpticFlowTracker) , 
(see Section 2.2) combination of 

template-based and dense 
optical flow 
(CombiningTracker) 

Appearance (See Section 3.7) MeanColor, ColorPositioll 
descriptor 

measurement Kalman filter [0 .. 00], typically [50 .. 5000J 
nOIse measurement noise 

process noise Kalman filter process 
[0 .. 00], typically 

noise 
[10- 3 .. 10-5 ] 

l\1illimuIIl Probability of a match [0 .. 1 J, typically [0.9 .. 0.95J 
p(i=jISij) given two 

spatio-temporal 
observations (minimum 
probability to accept 
identity) 

Table 5.1 - Tracker parameters. 
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SIDGl -black-running_man Siool -blaCk-lop-lady StOGT -blue-white- Ishirt_man 

MOTA (Bvg_t2 73%) MOTA (8'IQ_19. 12%) 

SIDGT -hyppie-Iop-lady 

.I I. 

MOTA (8vg_ 33.330/. ) 

S IDGl -orange-Shirl- person 

MOTA (8vg_29.'61%) 

MoTA (8vg.14 .58%) 

SIDGT-Ofange-Ishirt- bigman 

MOTA (8vg_4.04%) 

MOT A (avg_44.76%) 

SIDGT -mr-yellow-bag 

I I 
, MorA (8'19_47:33%) 

SIOGT -pink-IShltl-lady 

I 
MOTA (8vQ_2S.18%) 
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II. 
MorA (lIvS.'O.' S6%) MoTA(a~.'6.41 "t.) 

Figure 5.7 - MOTA by individual. 
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much variation in performance is due by the individual being tracked , and how 

much by the system tracking it . 

As it can be seen from Figure 5.7, different individuals tend to produce quite 

different MOTAs; this is due to different level of crowded ness, different paths 

taken by the individuals, and other factors that make tracking specific indi­

viduals more or less difficult . For some individuals (i.e. "SIDGT-black-running­

man"), a ll t racker configurations produce similar results. For other individua ls, 

changing the t racker configuration has drastic effects on tracking performance. 

Motion Detectors In this experiment , the three motion detectors are com­

pared. For each motion detectors, MOTA values are generated by running 
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GMMHSV HOl"lxaserl Sid-mog 

-MOTA (a'o'9_ 24 51%) MOTA (avg_25.28%) 

Figure 5.8 - Comparison of motion detectors. 

the multi-camera tracker with all combinations of appearance descriptors and 

single-camera trackers. Results are shown in Figure 5.8. In the table below, and 

in subsequent tables in the remainder of this chapter, each cell corresponds to 

the confidence that two tracking modules have inherently different performance, 

rather than differing by cha nce. This confidence is expressed in percentage and 

is calculated using a Student's t-test, as explained in Section 5.2 .2. The two 

modules a cell refers to are below and to the left of the cell itself. 

GMMHSV 

This experiment indicates that the best motion detectors are the Gaussian Mix­

ture Model with HSV-based shadow removal (GMMHSV) and the Horprasert 

method , as there is no significant difference in the results produced by them. 

Both are significantly better than the Mixture of Gaussians method. 

Trackers In this experiment , the five si ngle-camera trackers are compared. 

For each single-camera tracker, MOTA values are generated by running the 

multi-camera tracker with a ll combinations of appearance descriptors and mo­

tion detectors. Results are shown in Figure .5.9. 

CombiningTracker 

DenseFlowTracker 

Descri ptorTracker 

HueShift 

OpticFlowTracker 

The Student's t-tests shown above seem to split single-camera trackers into two 

groups of distinct performances: on the lower end , the Combining Tracker and 

the Dense Flow Tracker, producing a MOTA of approximately 20%, and, on the 
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OenseFlowTracker DescriptorTracker 

ComblJllng llackef .new- tracker. [)eSCliptOf T rack9l' .new_1 

.I • 1- .-MOTA (8v9-24.44"4) 

HueShilt 

J. 
MOT A (avg_25.8O%) 

Figure 5.9 - Comparison of trackers. 

CololPosilion MeanCoior 

-MOTA (avg.23.32%) MOTA (8..;g_24.07%) 

Figure 5.10 - Comparison of appearance descriptors. 

upper end , t he Descriptor Tracker, t he Hue Shift and the Optic F low Tracker, 

all providing a MOTA of around 25%. Performance differences within these 

groups are not statistically significant. 

Appearance D escriptors In this experiment , t he two appearance descriptors 

are compared. For each appearance descriptor, MOTA values are generated by 

run ning the mul t i-camera t racker wit h a ll combinations of single-camera t rack­

ers a nd motion detectors. R.esul ts a re shown in F igure 5. LO. 

ColorPosition 

Alt hough t he MeanColour descriptor yields a slight ly higher MOTA, the differ­

ence between the two descriptors is not statistically significant . 

Best of Breed T he histogram in Figure 5.11 shows the results of running t he 

t racker on a ll 11 ind ividuals using t he best single-camera tracker, appearance 
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Horprasert, HueShift, MeanColor 

03 0 4 05 06 07 

MOTA (avg=2B.37%) 

Figure 5.11 - MOTA obtained running the multi-camera tracker with the best segmenta­
tion, appearance description and single-camera tracking modules. 

descriptor and motion detector, as determined by the experiments above. 

5.2.3 Direct Comparison Using a Best-of-Breed System 

In this section, the three main modules of the multi-camera tracker are evaluated 

again , but t his time experiments evaluating one module will not use a ll com­

binations of the other modules . Instead , based on the resul ts from the previous 

section, a "best" configuration is created using t he best-performing modules. 

Motion Detectors In this experiment , the three motion detector modules 

are compared by running the multi-camera t racker on a ll 11 ground-truthed in­

dividuals. The appearance descriptor and the single-camera tracker are Mean­

Color and HueShift respectively. Resul ts a re shown in Figure 5. 12. 

GMMHSV 

Again, the best-performing modules are GMMHSV and Horprasert, with no 

statistically significant difference in performance between the two. 

Trackers In this experiment , t he three single-camera tracker modules are 

compared by running t he multi-camera tracker on all 11 ground-t ruthed in­

dividuals . T he appearance descriptor and the motion detector are MeanColor 

and Horprasert respectively. Results are shown in Figure 5. 13. 
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GMMHSV HOfprasari Sid- mog 

I • 'I 1 
MOTA (av9.29. 95'Y~) (avg_28 .37%) MOTA (8'0'9_24.85%) 

Figure 5.12 - Comparison of motion detectors. 

DenseFlowTracker ,DescriptorTracker 

ConlboUI! lghackof ,1l9W_lfackQf .. DeSC~OfTrack9f .Ilew_l 

.• ~ I UI . 
, MoTA(avg.21 75%) MOTA (avg.22~OO%) MOTA (8vg_23 .'06%) 

HueShifl • OplicFlowTtacker 

'I I 
, MOTA (av9a28.37%) Men;' (avg_20.54%) 

Figure 5.13 - Comparison of trackers. 

I 6.00 I 22 .. '32 CombiningTracker 

DenseF lowTr 

Desc 

acker I 20.72 

ri ptorTracker 

63 .53 

73.32 

69.42 

HueShift 

31.06 

42.44 

52. 16 

84.66 

Opt icFlowTracker 
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While overall MOTA values have increased , and the highest one is st ill provided 

by HueShi ft , it can be noticed that now no single-camera t racker is significa nt ly 

better t han any other. 

Appearance D escriptors In this experi ment , t he two appearance descriptor 

modules are compared by running the multi-camera tracker on a ll 11 ground­

truthed individuals. T he single-camera tracker and the motion detector a re 

HueShift and Horprasert respect ively. Resul ts a re shown in F igure 5. 14. 

ColorPosit ion 
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CoIOfPosilion MeanCoiOf 

Figure 5.14 - Comparison of appearance descriptors. 

, , 

GMMHSV. HueShift. ColorPosition 

OJ O( 05 06 07 

MOTA (av9=23.64%) 
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Figure 5.15 - Best-of..breed multi-camera tracker using the modules that provide the 
highest MOTA as measured in Section 5.2.3. 

As wit h the previous experiment, t here is no significant difference in performance 

between t he two appearance descriptors. 

5.2.4 Best Configuration 

T he histogram in F igure 5. 15 shows t he resul ts of running t he t racker on a ll 11 in­

dividuals using t he components t hat have performed the best in the experiments 

of Section .5.2.:3. We note t hat t he MOTA provided by this configuration is no­

ticeably lower t han t he one shown in F igure 5.11 (23% versus 28%). T his resul t 

suggests t hat t he interactions between modules change t he performance of the 

mult i-camera t racker in unintuitive ways, and combining the supposedly best­

performing modules does not necessarily provide the best-performing tracker. 

While t his is unexpected resul ts t hat will be discussed in t he next chapter, from 

a practical point of view one can still fi nd t he tracker with t he best performance 

by comparing a ll possible combinations, as it was done in Section 5.2.2. 
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(a) Tracker initialisation. (b) The target enters a highly crowded area. 

Figure 5.16 - Tracking error: the target is lost in the crowd. 

(a) Tracker initialisation. 

rr.:;-;---r;'''~ I , :"~.(' ~. "" .. - '. ' ~ ' r~ , . 'i:M"",'. -I.' ~.., ... ... ,,··;1' r , 
. . , ., . , .. . 

' , . ...... ..... , '," I".' • •• -,~ , 1 ' . II •• 

(b) The target operates a ticket machine f or 
an extended period of time. 

Figure 5.17 - Segmentation error: a target remaining motionless for a long time is incor­
porated into the background, 

5.3 Discussion 

This chapter presented the results of performance evaluation on the multi­

camera tracker, as well as presenting the datasets used for evaluation and de­

velopment , and the additional tools used to set up the testing framework . The 

following paragraphs will provide examples of tracking errors , in order to high­

light the difficul t ies of the task and to provide some "visual feedback" to the 

MOTA fi gures presented above. These wi ll lead to the conclusion of this thesis 

in Chapter 6. 

In the first example (Figure 5. 16) , t he tracker is initialised to follow the gen­

tleman in a green t-shirt entering the turnstiles (5.16a). As a small crowd 

concentrates around that area, the target becomes almost completely occluded 

(only his right shoulder is vi sible in Figure 5,16b). T he tracker is una ble to 

identify the target with only such a small portion visible. 

The second example, shown in Figure 5.1 7, shows the tracker failing to track 

due to a segmentation error. In this example, the target spends a long time (ap­

proximately one minute) buying a ticket from the ticket machine (Figure 5.17b), 

and remaining almost completely motionless a ll the time. The motion detector , 

therefore, incorporates the target 's appearance into the background model (a 

well known fl aw of the GMM algorithm) , t hus making the target "disappear". 

In the third, and final, example (Figure 5,18), the tracker is initialised to follow a 
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(a) Tracker initialisation. (b) A new target is acquired, with clothes 
similar to the original target 's. 

(c) The I,racker re-identifies the inil,ial tar- (d) The I,racker settles on the wrong target . 
gel .. 

Figure 5.18 - Tracking error: two targets of similar colours cannot be distinguished. 

person wearing a blue t-shirt (the ref erence ta rget , highlighted in F igure 5. 18a). 

T he ta rget is isola ted and is wearing distinctively coloured clothes , thus creating 

an apparent ly simple t racking scenario. Please note the group of people standing 

on t he left of t he reference target . In Figure 5.1Sb, it becomes apparent that 

one of the persons who were standing on the left of the reference target is 

actua lly wearing clothes of t he same colour as the reference ta rget. Also, a 

minor segmentation error causes t his person to appear much taller and nearer. 

Given the similari ty and the proximi ty between the two targets , the tracker 

is unable to distinguish between them (Figure 5.1Sc). Eventually, the tracker 

sett les on t he wrong target (Figure 5. 1Sd). 

Wi t h t hese examples, some of t he many ways in which t racking can fa il were 

presented. It is clear t hat many improvements need to be made before real- t ime 

t racking on mul t iple, non-overlapping cameras becomes of any pract ical use. 

Suggested improvements , and t he conclusion of this thesis, wi ll be presented in 

t he next chapter. 
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Conclusions and Future Work 

This thesis addresses computer vision algorithms for multi-camera tracking of 

pedestrians. The aim is to improve safety and security in public places, espe­

cially uuderground stations, by providing a tool that allows security operators 

to easily "keep all e.w" 011 illdividuals deeIlled vulnerable or potentially danger­

ous. !vll1lti-camera tracking in a large CCTV network is currently a. difficult 

job, requiring the full attention of a specialised operator. The tracker presented 

in this thesis was developed as part of CARETAKER [102], an international 

EU-funded project to investiga.te the problem of content analysis and know­

ledge extraction on massive recordings. For ease of reading, a short summary 

of the work is provided in the next section. The following section will critically 

discllss t he work. and an outlook for further developments will be provided in 

Section 0.3. 

6.1 Summary of Work 

As sta.ted in the introduction, the main contribution of this thesis is a prob­

abilistic framework for the construction of a real-time tag-and-track (TNT) 

system. This fi·arnework allows heterogeneous information about a target and 

a surveillance site to be fused in order to enable tracking over multiple, non­

overlapping cameras. TNT systems allow a security operator to keep selected 

individuals always visible on a monitor as they move through a surveillance 

network consisting of any number (possibly hundreds) of fixed CCTV cameras 

with non-overlapping views. 

The problem was decomposed in a number of modules for detecting moving 

100 
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foreground, tracking individuals in single cameras, and comparing targets ap­

pearances, and for each module a state of the art survey was performed. Also, 

two novel methods were proposed for foreground detection and colour cor­

rection. The proposed foreground detection method exploits the presence of 

many periodically-changing background elements in indoor scenes (escalators, 

scrolling advertisements, flashing lights, ... ); it detects and models pixels exhib­

iting periodic changes in colour, and uses this information to predict the pixel 

colour in subsequent frames in order to improve on foreground detection; exper­

imental results show that the algorithm performs better than state-of-the-art 

Gaussian Mixture Model on scenes containing periodically changing pixels. 

For the problem of comparing target appearances, a novel colour correction 

method was proposed that can learn differences in camera colour responses up 

to second-order statistics; the algorithm is completely unsupervised, and can 

automatically detect whether it has gathered enough information for a reliable 

colour correction; experimental results show a noticeable increase in the separ­

ability of appearance descriptions when second-order colour correction is used. 

A probabilistic approach was chosen to integrate heterogeneous information 

coming from the differcnt modules. Single-camera tracking, appearance des­

criptors, and prior knowledge on the camera network all contribute information 

about the identity of targets. The framework can combine this information and 

find a target that is globally most likely to be the one intended by the operator. 

The solution is re-computed at each frame, using only the state of the system 

at the previous frame, thus avoiding the computational overhead of optimising 

a long track and allowing the multi-camera tracker to work in real-time. 

6.2 Discussion 

The work started from state-of-the-art, single-camera, real-time tracking al­

goritlulls. A COlllmon, high-level interface was extracted from existing algorithms, 

so that a. multi-camera framework could be developed independently from the 

chosen single-camera tracker. After extensive analysis of the state of the art 

of multi-camera trackers, it was found that none covered the user requirements 

of this project (real-time usage on a network of hundreds of non-overlapping 

cameras). 

As noted in the literature review (Section 2.1.4), there are several approaches to 

multi-camera tracker architectures: centralised, distributed, and decentralised. 

A centralised architecture was chosen because it allows to increase the number 

of cameras without requiring additional processing power. The downside of this 
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architecture is that it requires additional computational power if more targets 

need to be tracked simultaneously, and it was deemed the best compromise, 

allowing the development of a demonstration system that can track a pedestrian 

on a network of hundreds of cameras using a standard desktop PC. 

Geometric camera calibration can help tracking by constraining a target's size as 

a function of its position in the image, and vice versa. Cameras can be calibrated 

with respect to a virtual ground plane, defined in the camera reference frame, or 

with respect to a predefined ground plane which defines its own reference frame, 

such as the map of the station. The latter approach has several advantages, 

including the possibility of plotting the position of a target on the map of the 

station. The downsides of this approach are that detailed station maps are 

required, and no full-automatic calibration is possible. It seemed reasonable 

that good maps would have been readily available, but it became apparent that 

that was not always the case. Eventually, map acquisition, manual calibration 

of each camera, and redaction of the camera layout description file proved to be 

much more time-consuming than initially expected. At the end of the project, 

it became clear that, in a production system, manual camera calibration would 

not be a realistic option. 

Tracking across cameras is carried out by combining heterogeneous information 

from a number of sources (single-camera trackers, appearance descriptors, and 

prior knowledge on the camera network topology). A probabilistic approach is 

used to fuse these information sources using the model exposed in Chapter 3, 

which is the main contribution of this thesis. One disadvantage of this probab­

ilistic approach, however, is that not all information sources can directly output 

probability values: most appearance descriptors, for example, output a distance 

lIle'rl."urc in a dc~criptor-~Jlccific ~pace. In order to convert this distance' into a 

probability value, annotated training data is required. Collecting and annotat­

ing training data is a time consuming process, whm;e cost adds to the tracker 

setup cost. On the other hand, other information sources (such as the Kalman 

tilt,pr Illoddling a. target's dynamic stat(~) din~dly provid(~ a. probability vahw 

without need for training. It would be desirable if all sources had this property. 

Evaluation of the proposed algorithms is less exhaustive than we had originally 

envisioned, as it is often the case for surveillance applications. Longer video 

data for testing is desirable, but it comes with the costs of ground truthing 

and setup (camera calibration, layout generation, etc ... ). Because of these 

costs, eventually only two data sets were used for evaluation: the standard i­

LIDS data set (used for the NIST multi-camera tracking challenge), and the 

GTT data set that was collected as part of the CARETAKER project. The i­

LIDS data set proved extremely difficult, so much so that only two universities 
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participated the challenge, both with disappointing results. The GTT data set 

was collected in order to provide a simpler, but still realistic, tracking scenario 

for evaluation. Overall, a good attempt has been made to evaluate the tracker 

on realistic, comprehensive data, and the relatively small number of ground­

truthed individuals (only 11) is compensated by the length of their tracks, that 

include a complete trip in the underground network, spanning two stations and 

over a dozen cameras each. 

An interesting consideration is the comparison of performance between the 

tracker and a human operator. It is clear that an adequately trained oper­

ator, familiar with the surveillance area, can outperform the most advanced 

computer vision algorithms. Nevertheless, there is space for automatic tracking 

as a support role in addition to human operators. As explained in the intro­

duction, a multi-camera tracker can improve safety and security by allowing 

operators to follow potentially dangerous but low-priority targets, which are 

currently ignored, without requiring additional human resources. 

6.3 Future Work 

Thanks to the modular nature of the tracker presented in this thesis, there is 

si).!;lIitiumt :ipaC(~ fin· expansioll aud improvement by implement.ill).!; new modules 

to plug into the existing framework. The single-camera tracker and the ap­

pearance descriptors use the output of the segmentation module to track and 

describe targets resppctivcly. Because segmentation is based on background 

modelling, there is an implicit assumption that large foreground blobs corres­

pond to images of people. This assumption, unfortunately, is not valid in many 

cirnllnstances. for example when a target remains static for a long time or when 

there is a crowd. In the fonner case, the target will merge with the background, 

and will not be detected: in the latter case, a single foreground blob will corres­

pond to several targets, that cannot be separated from each other. This problem 

could he solwc\ by implementing the segmentation module with a person detec­

tion algorithm, \\"hose output is the position and size of each person appearing 

in the frame, eycn if they are static or partially overlapped. At the time this 

research project was hegUlI, however, no person detection algorithm was found 

that could work on CCTV footage in real-time with a sufficiently high accuracy. 

The Histogram of Oriented Gradients (HOG) method, however, described in 

Section 2.4.2, looks promising both in terms of detection accuracy and compu­

tational cost; the author of this thesis expects a real-time implementation of 

this algorithm to be available within a few years. 
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The modular nature of the framework also means that it is highly suitable for 

parallelisation, both on a single system (in order to exploit multi-core CPUs) 

and as a distributed system. The former case has already been partially im­

plemented in the prototype used for the experiments in Chapter 5. However, 

parallelisation is limited to motion detection, and the rest of the tracking pro­

cess happens sequentially. With more development time, it would be possible 

to separate each module of the tag-and-track framework (motion detection, col­

our correction, single-camera tracking, appearance description generation and 

comparison, etc ... ) into a separate thread, and exploit parallelism to improve 

performance on a multi-core or multi-CPU system. Given even more develop­

ment time, the modules could be separated and deployed on different systems 

that communicate over a network. Even though module communication over a 

network is much slower than within one system, a distributed tracker could op­

timise module placement by exploiting locality, for example by having motion 

detection modules directly connected to video sources. Such an arrangement 

could optimise network load and improve overall performances, especially if 

morc than one tracker is to be used simultaneously. 

The multi-camera tracker requires much information about the network of cam­

eras, namely geometric calibration of each camera and topological connections 

between cameras. This information is either provided manually, or learned from 

the scene. The choice for this project was to input the information manually, in 

order to focus on the specific problem of tracking; however, providing the com­

plete topology and calibration of even a subset of the CARETAKER test sites 

proyed to he extremely time-consuming. In the future, consideration should be 

given to automating this process, so that more or larger test sites can be added 

to the data set. 

In this thesis. only visual sensors were considered as data sources. However, 

there are man? more technologies that could provide additional information to 

help disnilllinat<' between targets. The most obvious, for example, would be 

radio-fre!J1Hmcy id!~ntificatioll (HFID) tags. REID readers could be installed 011 

gates at ewr~' access point in a station, and they could provide highly reliable 

identity information of a target, albeit only at a limited set of locations. 

III the ucar futmc, as the cost of high dcfinitioll (HD) call1eras and 3D sellsors 

diminishes, it seems likely that these technologies will be used for surveillance. 

vVhen this happens, it will be possible to integrate them in the existing frame­

work a~ additional sources of information. With HD cameras, for example, it 

should be possible to extract reliable appearance descriptors from targets' faces, 

effectively enabling face recognition algorithms to be used for tracking. 

3D sensors, such as time-of-flight (TOF) cameras, can be installed next to a 
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standard camera to provide depth information for each pixel. There are several 

ways in which this can improve tracking, for example by helping discriminate 

between partially overlapped targets that are far away along the camera axis, 

and by incorporating pixels depth into the background model for motion detec­

tion [42J. 

In addition to algorithmic and technological improvements, further work should 

be done on human-machine interaction (i.e. user interface). For this project, 

only a rudimentary graphical user interface (GUI) was developed, using OpenCV 

primitives and keyboard. This minimalist GUI allows the user to select the 

active camera, either by directly entering its ID, or by navigating the network 

layout. vVheu a target is visible ou the active camera, the user can "tag" it 

with a single mouse click (camera calibration is used to convert the click point 

into a bounding box of the appropriate size). If the data source supports it, 

video playback can be paused, resumed, and advanced frame by frame while 

tracking; additionally, the video can be rewound and fast-forwarded (but not 

during tracking). Deciding on a GUI design that is suitable for deployment in 

control rooms, however, will require close collaboration with security operators, 

in order to understand their specific needs. 

6.4 Publications 
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elements for visual surveillance in lET Computer Vision, lET Proceedings 

2(2) lET, June, pp. 88-98. DOl http://dx.doi.org/1O.1049;iet-cvi:20070070 

(2008). 

A. Colombo, V Leung, J. Orwell and S.A. Velastin - Chapter Consistent de­

tection and identification of individuals in a large camera network in 
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SPIE Edited by Carapezza, E. M., SPIE, September, Florence, Italy, (2007). 
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(2008). 
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for visual surveillance in IEEE Conference on Advanced Video and Signal 

Based Surveillance, Institute of Electrical and Electronics Engineers, 05 - 07 Sep 
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