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Abstract

As video surveillance systems become more and more pervasive in our society,
it 15 evident that simply increasing the number of cameras does not guarantee
increased security, since each operator can only attend to a limited number of
monitors. To overcome this limit, automatic video surveillance systems (AVSS,
computer-based surveillance svstems that automate some of the most tedious
work of security operators) are being developed. One such task is tracking,
defined by the end users in this project as “keeping a selected passenger always

visible on a surveillance monitor”.

The purpose of this work was to develop a single-person, multi-camera tracker
that can be used in real time to follow a manually-sclected individual. The
operation of selecting an individual for tracking is called tagging, and therefore
this tvpe of tracker is known as a tag and track system. The developed system
is conceived to be deploved as part of a large surveillance network. consisting of

possibly hundreds of cameras. with possibly large blind regions between cameras.

The main contribution of this thesis is a probabilistic framework that can be
used to develop a multi-camera tracker by fusing heterogeneous information
coming from visual sensors and from prior knowledge about the relative posi-
tioning of cameras in the surveillance network. The developed tracker has been
demonstrated to work in real time on a standard PC independently of the num-
ber of cameras in the network. Quantitative performance evaluation is carried

out using realistic tracking scenarios.
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Chapter

Introduction

Video surveillance systems are becoming increasingly pervasive in our soci-
ety [40], with private and public companies making extensive use of them to
improve safety and security of their premises. However, simply increasing the
number of cameras does not guarantee wore effective surveillance, since a se-
curity operator can only attend to a limited number of monitors, and increasing
the number of operators is often too expensive, as opposed to cameras, which,
after an initial capital expenditure for installation, only require small mainten-
ance costs. At the same time, the increase in computational power available
on cheap hardware has made possible the development of affordable Automatic
Video Surveillance Systems (AVSS), computer systems that perform video ana-
lysis and automate some of the most tedious work of security operators, thus

improving operators’ efficiency.

Working closely with transportation and security operators, one of the needs
that constantly emerged was to have a system that helps operators keep specified
individuals in view on a monitor. It is often the case that an operator wants
to “keep an eye” on a person who looks suspicious or vulnerable, such as a
woman alone late at night, or a troublemaker already known to security officers.
Having this person always visible on a surveillance monitor would allow faster
intervention if a crime is committed, thus increasing the chances of stopping the

offender and;or promptly succouring the victim.

However, following a person on surveillance monitors is a difficult task that
requires the full attention of specialised personnel, and for economic reasons
1t is not possible to divert so many resources on this task in the absence of
immediate danger. Hence, the request for a software that is able to follow,

or track, an operator-selected person across different surveillance cameras, even
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when this person goes out of view for a short time, and in the presence of crowd.
The act of selecting a target (either manually or by an external system) is called
tagging, and therefore the system described in this thesis is called tag and track
(TnT). The expression tag and track is also used outside of the Computer Vision
community and may refer to any kind of user-initiated tracking (radar, RFID,
etc.) |29, 81, 80}.

To the authors’ best knowledge, there are no TnT systems ready for sale from
any surveillance software vendor, and the very topic of tracking people across
cameras is fairly recent in video surveillance, as shown by the literature review
in Chapter 2.

The development of a TnT system proved to be a challenging task. Functional
requirements include: robustness with respect to occlusions, moderate crowding
and poor video quality, and real-time operation. Occlusions include both dy-
namic occlusions (caused by interposition of other people between the camera
and the target) and static ones (caused by environment features - such as pillars
- or by non-overlapping camera fields of view). Some AVSSs, such as the one
described in this thesis, are meant to be deployed on an already established
surveillance network, and should therefore work with whatever video quality is
available on-site; this implies very different light conditions, colour responses,
frame rates and resolutions across different cameras. Real-time operation means
that the output of the tracker (i.e. the current position of the person being fol-
lowed) should be available to the operator after a fixed. short delay with respect
to the live video stream. In principle, the operator should have the impression
that the tracking is happening instantly: in practice, during informal conversa-
tions, security operators we spoke with reported that delays up to 5 seconds are
acceptable.

In order to tackle such a difficult problem. some form of modularisation had to be
devised from the very beginning. The author’s studies focused on a probabilistic
multi-camera tracking framework that permits integrating information from a
variable number of heterogeneous modules in real time. This information comes
from tracking modules, working on single, calibrated cameras, and from people
re-identification modules, working across cameras. A study on motion detection

and colour correction was also carried out, since these are useful pre-processing
stages in an AVSS.

Chapter 3 describes the probabilistic framework and the tracking and re-iden-
tification modules, as well as single and multiple camera calibration, that form
the main contribution of this work. This framework allows heterogeneous in-
formation about a target (e.g. appearance and position) and a surveillance site

(e.g. the camera topology) to be fused in order to enable multi-camera track-
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ing. The framework was designed to enable real-time tracking, which means
that the target’s new position has to be computed in a fixed amount of time
at each frame, regardless of crowdedness, number of cameras, and length of the
current track. This poses significant challenges and, as often a compromise must
be stricken between efficacy and computational complexity. In Chapter 4, two
novel algorithms for motion detection and colour calibration, respectively, are
described. The motion detection algorithm exploits periodicity of certain back-
ground elements (such as flashing lights or escalators) to improve segmentation
in those areas of the image. The colour calibration algorithm can compensate for
the different colour responses of different cameras and to illumination chianges
across different scenes; it is completely unsupervised, and it exploits the fact
that, in a surveillance scenario, the same foreground data (i.e. moving people)
is observed by a large number of cameras. Together, these algorithms form a
secondary contribution of this thesis. Chapter 5 presents practical implement-
ation issues and experimental results on real surveillance videos, describing all
metadata needed to run the tracker and the additional tools developed to collect
it. With the tracker set up, performance evaluation is carried out on a dataset
consisting of real surveillance video footage from over 20 cameras. This leads
naturally to Chapter 6, where a critical discussion of the tracking framework is

give, and some ideas for future developments are presented.

The multi-camera tracking framework exploits commonalities between the prob-
lem of tracking and other problems that are commonly studied in Computer
Vision, namely single-camera tracking and people re-identification. In fact, the
tracking method could be summarised as single-camera tracking in one video
stream, combined with people re-identification in streams from adjacent cam-
eras. How these two algorithms are combined is detailed in Section 3.4, and
the state of the art our solution is based upon is presented in sections 2.1.1
and 2.1.5.

This project was funded by the EUvia the CARETAKER. [102], a 30-month
research project within the Sixth Framework Programme (FP6) that was com-
pleted in September 2008. It aimed at studying, developing and assessing mul-
timedia knowledge-based content analysis, knowledge extraction components,
and metadata management sub-systems in the context of automated situation
awareness, diagnosis and decision support. More precisely, CARETAKER fo-
cused on the extraction of a structured knowledge from large multimedia collec-
tions, recorded over networks of cameras and microphones or acquired in real-
time, deployed in real sites. CARETAKER included 9 partners: 2 commercial

companies (Thales Communications France and Solid Information Technology



CHAPTER 1. INTRODUCTION 6

- now part of IBM), 5 research institutes (Multitel, INRIA! Sophia Antipolis,
Kingston University, Idiap, and Brno University of Technology), and 2 public
transportation companies (Agenzia per la Mobilitd del Comune di Roma and

GTT - Gruppo Torinese Trasporti).

! Institut National de Recherche en Informatique et Automatique.



Chapter

Literature Review

This chapter presents existing solutions to the problem of tracking (both in
general terms, and specifically for multi-camera visual tracking) and to ancillary
problems that are often encountered while tackling visual tracking, such as
camera calibration and motion detection. Solutions to the tracking problem are
presented from a historical perspective, starting with the original definition of
tracking, to arrive to the current task of visually tracking people across multiple
cameras. After that, in the second half of the chapter. the state of the art
on performance evaluation, pre-processing, camera calibration, and metadata
representation is presented. These topics were selected because they all emerged,

during this research project, as sub-problems of tracking.

2.1 A Historical Perspective

The Free Online dictionary defines fracking as the pursuit of a person or animal
by following tracks or marks that they have left behind [103]. With the invention
of the radar in the 1930s, and its strategic deploviment by the Roval Air Force
during World War 1II |75]. the semantics of “tracking” had to be extended to
include ships and airplanes. The tracks they would leave behind are radio waves
bouncing off their metallic hulls. Tracking. applied to radar signals, consists of
associating targets (radar detections with distance, bearing and size) to actual
flying or floating objects. If during WWII this process was entirely manual,
the ever increasing use and sophistication of radars, both military and civilian,
in subsequent years, has generated interest in algorithms capable of tracking

large number of objects using detection data from many and possibly diverse
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sensors [9] (not necessarily radars). In this new context, tracking can be defined
as the processing of measurements obtained from a target in order to maintain

an estimate of its current state, which typically consists of:

¢ kinematic components - position, speed, acceleration, ...

o feature components - appearance of the objects, as seen by the sensor

(reflected signal strength for a radar).

2.1.1 Tracking with an Imaging Device

Measurements are noise-corrupted observations related to the state of a tar-
get. For instance, radar measurements are based on round-trip time and return
strength of a radio signal. A radar produccs an array of “points”, or blips, each

corresponding to at least one target.

An imaging device such as a video camera can detect the intensity and col-
our of light emitted or reflected by objects placed in front of it. Thanks to
video cameras, security operators can track large objects (mostly humans and
vehicles) moving within an environment, by following the tracks left by photons
that bounce off the targets and hit the camera sensors. A camera sensor, how-
ever, consists of a grid of light-sensitive elements, each continuously providing
information about the colour and intensity of the light it is hit by. A camera
does not directly indicate the presence or the absence of a target, therefore its
presence must be detected indirectly using the information provided by the ima-
ging sensor, for example using one of the motion detection algorithms reviewed
in Section 2.4.1.

Target tracking can be divided up in three stages: detection, initialisation,
and track maintenance (precision tracking or continuation). A sensor can be
characterised by its detection probability pp and false alarm probability pra.
An ideal sensor has pp = 1 and pr4 = 0: in this case, a track can be initiated
as soon as there is a detection, and each detection measurement can be used to
estimate the target state. However, a realistic sensor has pp < 1 and ppag > 0,
and several techniques have been developed to discard inconsistent detections
and to work with missing ones |17, 8]. Additionally, some tracking scenarios,
such as tag-and-track, require manual initialisation, in which case it is a human
{or an external process) that indicates to the tracker which detection should be
tracked. Once a track is initialised, the video feed and the detection output can
be processed by an image-based tracker, explained in Section 2.2, which uses

certain features of the image, to estimate the position (on the image) of the

target in each new frame.
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2.1.2 Track Maintenance

The general goal of track maintenance is to increase the accuracy of meas-
urements obtained from the sensor, and to obtain estimates of variables not
measured by the sensor (i.e. estimating a target speed given several measure-
ments of its position). If the target has a linear motion model, and the sensor
measurcments arc affected by white Gaussian noise with known moments, the
Kalman Filter (KF) [112] is the optimal tracker, and it has been used success-
fully in many surveillance applications, including scenes with partial static and

dynamic occlusions [117].

If the motion model of the target is non-linear, the Extended Kalman Filter
(EKF) can be used where a continually updated linearisation around the previ-
ous state estimate is calculated |52]. This approach is a simple way of dealing
with non-linearities. but only produces a reasonable estimate if the linearisation
sufficiently approximates the non-lincar system, and if the initial cstimate is

sufficiently close to the true solution.

The Unscented Kalman Filter (UKF) is an alternative to the EKF. In the EKF,
the state distribution is approximated by a Gaussian random variable (GRV),
which is then propagated analytically through the first-order linearisation of
the non-linear system |111]. On the other hand, the UKF uses deterministic
sampling and propagates the samples through the system dynamics, the result
of which is approximated by a GRV. The UKF has the advantage that it is
accurate to the third order in a Taylor series expansion for any non-linearity, as

compared to a first order approximation using the EKF.

While the LKF, EKF and the UKF all assume that the process and measurement
errors of the system can be modelled by a Gaussian. the particle filter [6] (also
known as iCONDENSATION) approximates any probability distribution with
a large set of particles. These particles are propagated through time using
importance sampling. allowing any arbitrary process model to be used, thus

offering flexibility. The disadvantage is its computational complexity.

2.1.3 Data Association and Multi-Object Tracking

Due to the presence of multiple targets within the detection threshold, false
detections, and missed detections, there will not always be a trivial, one-to-one
mapping between measurements and targets. The process of deciding which
measurement to feed into which tracker is called data association. A compre-
hensive survey of data association techniques is outside the scope of this thesis.

However, some of the best known techniques are briefly presented here.
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One of the most basic forms of data association is the nearest neighbour asso-
ciation [9]. At each time step, this algorithm simply associates each observa-
tion with the nearest target, according to some domain-specific measurcment
of distance. Nearest neighbour, however, tends to perform poorly in cluttered

environments.

The multi-hypothesis tracker (MHT) can be used to assign a batch of meas-
urements to a set of tracks [51]. The MHT finds the best association by enu-
merating all possible associations and keeping the one that minimises some cost
function. In the probabilistic multi-hypothesis tracker (PMHT), data associ-
ation and state estimation are both performed in a single estimation process of

two sets of random variables: target states and target-measurement associations
[88].

Schikora et al. [90] propose an implementation of MHT based on optical flow
[93] (for tracking) and finite state statistics (for data association). Optical
flow can be computed with any of the may existing algorithms, such as |93].
Finite set statistics [66] is a Bayesian filtering technique that uses sets, instead
of vectors, to represent states and observations, which makes it particularly
effective for multi-object tracking. The algorithm is evaluated on a publicly

available dataset, but only qualitative performance results are reported.

Berclaz et al. [12] propose a new algorithm for data association, that can be
used with any detection algorithm to create an effective and eflicient multi-
object tracker. In order to find the optimal set of tracks for multiple objects, a
data association algorithms should enumerate all possible associations, which is
an NP-complete problem. A faster algorithm can find a solution in polynomial
time, by using heuristics or a probabilistic approach, but it may miss the actual
optimun. The authors propose to cast the problem into onue of constrained flow
optimisation, which can be solved in polynomial time vielding quasi real-time
performance on realistic datasets. The algorithm was evaluated on the PETS
dataset 82|, outperforming all trackers participating the PETS-2009 tracking
workshop.

2.1.4 'Tracking across Multiple Cameras

When there are multiple objects to be tracked across multiple cameras, it may be
desirable to split the computational load into a number of independent processes.
This can allow better scalability, fault tolerance, or both. There are three main
types of supporting architectures |78]: a centralised architecture where all the
information is processed at a central point, a distributed architecture where

some low level processing is performed at each node before communication with
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the central processing unit, and a decentralised architecture where there is no
centralised facility: each node performs its own processing and communicates
high-level metadata with the other nodes over the network on a peer-to-peer
basis. Regardless of the chosen architecture, the layout of the camera network
(i.e. the connections between cameras) must be known to the tracker: this is

discussed in Section 2.5.

Each architecture has its pros and cons. The centralised option has the obvious
disadvantages of a single point of failure and a possible communication bottle-
neck; moreover it is not scalable. A distributed architecture partiaily ameliorates
the problems of a centralised architecture. A decentralised architecture on the
other hand docs not suffer from the problems above; it is scalable and robust,
meaning that nodes can join or split from a network easily. However, from a
group decision-making point of view, the centralised architecture means that
decisions are made at one location, requiring less negotiation and bargaining.
The decentralised architecture, on the other hand, needs to employ multiple

rounds of bargaining to reach a globally optimal solution.

Another point to consider is the end-user application. For example, for visual
surveillance, where existing systems usually already have a central monitoring

facility, a decentralised architecture might not be necessary.

Regardless of the supporting architecture, data fusion (track and identity fusion)
can be performed across a network efficiently using the concept of decentralised
data fusion (DDF) [69]. In this scheme, only new information is passed around,
and each message can summarise information from many new measurements,
making communication efficient. DDF can be achieved using a Kalman filter

framework (or more precisely, the inverse of it, i.e. the information filter frame-
work).

2.1.5 Person re-identification

In a video surveillance scenario, sometimes operators do not need to know a tar-
get’s position at any instant in time, but they only need to determine whether a
target (the query) has already been observed in a camera network. This problem
Is similar enough to multi-camera tracking that they can be cast into one an-
other; in particular, multi-camera tracking is a form of person re-identification

when the tracker attempts to reacquire a target that has gone out of view.

Bak et al. |7] propose two methods, one based on haar-like features |[61], and
the other on dominant colour descriptors (an MPEG-7 descriptor presented in

Section .3.7.2). In both cases, the video stream from one camera is processed by
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a human detector, which provides foreground “human blobs” for the signature
generation module (which is either haar-like or dominant colour-based). Each
blob is also tracked using a single-camera tracker, so that signatures can be
generated using several views of the same person. Experimental results on the
CAVIAR |[21] dataset show a precision of 80% at equal error rate, while on the
(more challenging) i-LIDS [44] dataset this figure is reduced to about 40%.

Satta et al. [89] provide a theorctical framework for person re-identification
that they call Multiple Component Matching (MCM). As in the previous paper,
it assumes that a human detection algorithin extracts foreground “blobs” and
supplies them to the MCM re-identification module. Each blob is split between
upper and lower body, and each half is further subdivided in a set of random
patches. Every patch is described by its colour histogram in HSV space and its
position along the y axis. In order to improve robustness to lighting changes,
some patches are modified by adding or subtracting a fixed value to the RGB
colour of each pixel in the patch, as this will simulate its appearance after a
change in illumination. The modified patch is then added to the set, in place
of the original one. The sets of patches can be generated by a single blob or,
if a tracker is present, by multiple blobs corresponding to the same individual.
These two sets of patches, called a template in the paper, can be compared for
similarity, by providing two distance functions D (between templates) and d
(between sets). D is the average of the distances between sets. To compute d,
the Bhattachaaryya distance between each pair of patches is computed; then,
d is computed as the Haussdorf distance between the two sets, defined as the
maximum of the minimum distances between each element of one set and each
element of the other [86]. TODO performance evaluation.

People re-identification systems use only appearance to determine equality of
two individuals, whereas multi-camera trackers, reviewed in the following sec-
tion. also use topological information about camera layout. Clearly, because it
does not need topological information, a re-identification system is much easier
to set up than a full-ledged tracker, however this also means that matching
will be less reliable. For this reason, the output of a re-identification system
1s usually a set of candidate individuals, ranked by likelihood of matching the
query individual. The user is left to decide whether a real match is within the

provided set, or if a larger set should be provided.

2.1.6 Appearance Description

A large volume of literature connected to tracking or re-identification is devoted

to methods for describing a target’s appearance. An appearance descriptor can
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be applied to a person’s image (or sequence of images), and the output is a com-
pact representation, usually called description, observation or signature. Two
descriptions can be compared for (dis)similarity, and this measure is connected
to how likely it is that the two descriptions describe the same person. A more
in-depth theoretical analysis on this topic is presented in Section 3.7; in this

section, we shall give a brief overview on existing appearance descriptors.

Truong et al. |CITE Pcople Re-identification by Means of a Camera Network
Using a Graph-based Approach| developed a simple yet effective descriptor,
which Section 3.7.3 analyses in detail. Given the silhouette of a target, it is
divided vertically in n parts, and for each part the average colour is computed.
The resulting array of n RGB values can be used as a description of the tar-
get. Its shimplicity notwithstanding, the descriptor performs remarkably well,
correctly identifying almost 100% of the individuals in a realistic (but private)
dataset. The experiments performed by the author of this thesis, with a custom
implementation of this descriptor, also show that it outperforms many more

complicated approaches |27].

Hamdoun et al. |41} propose to generate descriptions using short sequences of
frames where the target is visible, therefore requiring a single-camera tracker.
In each frame, a number of key-points are detected using a variant of SIFT
featurcs[GB]. To measure the similarity between two description, the sum of
absolute differences (SAD) is used. Even though it is not clear from the paper,
presumably the difference is calculated for each pair of key-points from the two
descriptions being compared, and all differences are added together. Evaluation
15 carried out on the publicly available CAVIAR dataset [21], yielding a precision
of 80% at equal error rate. However, the fact that this descriptor requires
a tracker makes it undesirable for a highly modular system such as the one
described in this thesis. since it is desirable that appearance descriptors work

independently of tracking in order to minimise coupling between modules.

2.1.7 Existing Tag-and-Track Systems

As it will become evident, the existing literature on tracking across multiple
non overlapped cameras is scarce. For this reason, some of the papers included
in this review are not strictly relevant, for example because they assume over-
lapping camera views. or because the presented algorithm is not real-time and
can only be used in an off-line, “forensic” mode after all relevant video is made
available. However. the large number of multi-camera tracking papers makes
a comprehensive review unfeasible; therefore, the author of this thesis chose a

subset that, it is hoped, is represcntative of the current state of the art.
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Black and Ellis {14, 15] describe a multi-camera tracker. It deals only with
overlapping cameras (as it uses an epipolar approach to reconstruct the 3d
position of a target), and it is not realtime (observations are collected over a
period of time, and associated into tracks in a subsequent stage). The problem
of non-overlapping cameras is dealt with in a subsequent paper |16], but the

method remains non-realtime.

Mittal and Davis [72] developed Mo Tracker, a multi-camera tracker capable of
segmenting and tracking people in a cluttered scene. MyTracker uses a wide-
baseline stereo algorithm to segment individuals in a crowd, and therefore it is
not suitable for a large surveillance network, where camera views rarely over-
lap. Detection and tracking are based on an iterative algorithm, therefore the
method is not suitable for real-time tracking. It uses a colour descriptor of
each person based on subdividing the target image into a number of horizontal

stripes, similarly to what was done for this thesis (based on [106]).

Thirde et al. [104] present a multi-camera tracking component of a complete
surveillanice system that can recognise activities around a parked aircraft to
improve efficiency, safety and security of the servicing operation. The system
operates in real-time and can resolve merging, dynamic occlusion, fragmenta-
tion and complex object interaction in the congested area around an aircraft
during servicing. The system, however. was designed specifically for the partly
controlled scenario of aircraft servicing, and requires several cameras with over-
lapping ficlds of view, all calibrated with respect to the same ground plane, in
order to operate. The system is composed of a single-camera tracking module
(based on motion detection), and a multi-camera module that fuses information

coming from the single-camera trackers.

Madden and Piccardi [65] developed a framework for multi-camera tracking.
This framework can deal with non-overlapping cameras and long occlusions.
However, it relies mostly on appearance and it has an explicit “matching phase™
where tracks from all cameras arc associated: tracking is performed by single-
camera trackers in real-time, and there is no attempt to preserve identity across
cameras at this stage. After a number of tracks has been collected, target
appearances are used to find the globally optimal association between tracks;

the method is not, therefore, realtime.

Ning and Tan [79] present a novel approach for tracking a moving target in
a large, heterogeneous network of fixed and moving cameras. The system is
targeted at city-wide surveillance, where bus-mounted cameras could be used
to aid fixed surveillance cameras for tracking people over a vast area. A map
of the city is divided up into a large number of discrete cells, small enough to

contain no more than one target (the paper suggests square cells of 1 metre,
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as a compromise between too large a number of cells and too large cells). All
cameras, fixed and mobile, are geo-located and fully calibrated, so that their
pose and footprint is known with respect to the city map {buses need to be
equipped with a GPS receiver); calibration error has to be small compared to cell
size. All videos need to be time-stamped using a common clock signal, possibly
derived from the GPS. Any appearance-based descriptor can be used to match
two observations and generate a probability of them belonging to the same
individual. Even though the approach is theoretically sound, all performance

evaluation was done on simulated data.

Zhang et al. [120] of ObjectVideo present a multi-camera tracker and Intelli-
gent Video Surveillance (IVS) system. The work presented in their paper is
similar in scope to the on-line part of the CARETAKER system, although the
system design is less modular, and all stages of the pipeline (motion detection,
tracking, classification, and event detection) are predefined: tracking and clas-
sification produce metadata that is fed into a rule-based system in order to pro-
duce events. In ObjectVideo’s IVS, all video processing is performed by smart
cameras, which send the resulting metadata (and no video) to a “fusion sensor”,
where information fusion and tracking are carried out. In contrast, the CARE-
TAKER processing components (tracker and event detectors) are independent
modules, that can be used stand-alone or in conjunction with a rule-based sys-
tem for high-level analysis. Performing video analysis “on the edge”, i.e. next to
the video source, has many benefits. The most computationally intensive tasks
are distributed (and therefore parallelised) among the single camera sensors,
and communication bandwidth requirements are low due to the transmission of
the meta-data only. On the other hand, retro-fitting smart cameras on a large
legacy system can be extremely expensive, and it may be preferable to have
a centralised tracker that only analvses the subset of video streams it requires
at any given time. The biggest drawback of ObjectVideo’s system is that it
requires overlapped cameras. Two examples in the paper show their system
used for perimeter defence (with 48 cameras daisy-chained along a fence) and
laboratory monitoring (with a few wide-angle cameras mounted on the ceiling).
In neither case is the system expected to deal with long occlusions. Also, disam-
biguating a target after an occlusion is handled using only spatial information,

while the system could benefit by also using appearance information.

Snidaro et al. in [94] employ multiple video sensors to enhance tracking. They
also develop a quality function to assess the performance of each sensor for each
target, which is based on foreground blob connectivity and contrast between
foreground pixels and expected background colour. Target information from

each sensor, weighted by the quality function, is then fused by a central process.
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In their paper, information is fused coming from heterogeneous sensors, namely
colour and infra-red cameras. Experimental results show how fusing tracks
weighted by their quality gives better results than “blind” (unweighted) fusion.

However, this method is only applicable for overlapped sensors.

In [73], Monari et al. present a system for human tracking across multiple, non-
overlapped cameras. Monaro’s tracker is similar to the one presented in this
thesis, in that it combines spatial and appearance information about targets
and known camera topology to track people across possibly long occlusions,
e.g. on a lift. They do not, however, model the uncertainty of transition times
across cameras. The main difference between the tracker presented in this thesis,
and Monaro’s tracker, is in system design. Monaro’s tracker uses a distributed
architecture, with peripheral smart sensors performing segmentation and single-
camera tracking, and a remote multi-camera tracker that uses only high-level
information coming from the smart sensors. In their experimental setup, 5
personal computers were used to simulate 10 smart sensors, and another 5 PCs
were used to run several multi-camera trackers. By contrast, the centralised
approach used for this thesis needs only one PC to track across 20 cameras, at
the cost of higher bandwidth usage. The upside of a distributed design, however,
is that multiple trackers can be started at very little additional computational
cost, whereas with a centralised architecture a PC is required for each instance
of the multi-camera tracker. No quantitative results about the performance of

their tracker are provided.

Montcalm et al. [74] also developed a multi-camera tracker that works across
non-overlapping views. For intra-camera tracking, they use target location,
velocity, size, colour histogram and shape descriptor; all of these are recomputed
on cach frame, and compared with the previous frame to re-acquire the target.
Additionally, all colour histograms and shape descriptors generated from one
target in one camera are aggregated, in order to create a more robust descriptor
that is used for multi-camera tracking. For each pair of cameras, a feature
transfer function is learned (using ground truth) that can transform a feature
vector acquired in one camera, into the feature vector expected in the other
camera. However, experiments are shown using only one pair of cameras, and

1o quantitative results are given.

2.1.8 Conclusion

A review of the state of the art of multi-camera tracking was given, from a
historical perspective. The review started from the origins of the concept of

“tracking”. went through the difficultics of tracking with an imaging device, and
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eventually arrived to the current state of multi-camera tracking. The remainder
of this chapter will review state of the art techniques for the lower levels of a
multi-camera tracker pipeline. Firstly, a review of single-camera, image-based
tracking techniques is given in Section 2.2. Then, the main techniques used to
evaluate the performance of a tracker will be reviewed in Section 2.3. The sub-
sequent two sections present a review of low-level tasks that are often performed
prior to tracking, namely motion detection (Section 2.4) and camera calibration
(Section 2.5). The chapter concludes with a review of metadata representation

formats in Section 2.6.

2.2 Tracking With Object Model

Tracking with object model means that the tracker does not use a motion model
for the target, and therefore it must rely exclusively on the target’s appearance.
Essentially, this means that certain features extracted from the image are re-
acquired from frame to frame. The common types of features used include SIFT
[63] and the Mean Shift representation [23]. The latter forms the basis of the
CamShift Algorithm [47]. Block-based tracking (also known as block-matching),
where the features are essentially spatial templates, are also used [110, 2, 22, 49].

SIFT features are scale and rotation invariant, and provide robust matching
across affine distortion, change in illumination and change in 3D viewpoint.
In a tracking application, SIFT features provide reliable point correspondences

between sequential frames.

The Mean Shift algorithm [28] uses a histogram (colour or greyscale) to represent
the target. This representation has the advantage that it is scale invariant, and
can overcome partial occlusions. It is possible to initialise the tracker using
motion detection, however it is more common to allow user input for selecting
the target (or region) of interest to be tracked. When a new frame arrives, the
occurrence of the target histogram in the new frame is found using a gradient
search. The Bhattacharyya distance is used to evaluate the closeness of match.
However it is possible that this search becomes stuck at a local maximum,
causing the algorithm to stagnate. In this case, a new initialisation is required.
‘The CamShift algorithm extends the Mean Shift algorithm by allowing the
histogram to adapt to the changes temporally. An open-source implementation
of CamShift is available in the OpenCV library [47].

Block-matching is the process of defining a block (neighbourhood) of interest
in an image, and identifying its occurrence in a subsequent frame using a sys-

tematic search, minimising a given cost function. This process is often used in
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motion estimation in video encoding techniques such as MPEG-2 [25]. Although
only effective in low crowding, low occlusion situations, tracking using MPEG-2
motion vectors has the advantage of very low computational cost, since most
digital video is already encoded in MPEG format (or hardware encoders can be
used). A prototypical system was tracking all pedestrians in a scene at 15fps

using non-optimised code on an old Pentium 1GHz.

Another possible approach to tracking with object model is to use a Swarm Intel-
ligence metaphor [5], such as in Swarmtrack by Antén-Canalis et al. Swarmtrack
is based on a prey-predator scheme with a swarm of predator particles defined
to track a herd of prey pixels, following a pixel intensity the way a predator
would follow a prey scent track. The method includes the definition of pred-
ator particles’ behaviour as a set of rules in a boids fashion (a boid, as defined
by Reynolds [85], is an independent actor that belongs to a virtual swarm and
navigates according to its own perception of the dynamic environment [62]).
Object tracking behaviour emerges from the interaction of individual particles.
The algorithm is efficient enough to be used for real-time vision based tasks on
a general purpose computer. Unfortunately, they do not provide an implement-

ation of their algorithm.

In their 1994 seminal paper, Shi and Tomasi [93] derive a method to extract
optimal features for tracking. Each feature detected in one frame is searched
for in the following frame in a neighbourhood of the feature itself. This method
can be used to generate a discrete optical flow, but because it does not enforce
a spatial relationship between the features, it cannot be directly used to track
moving objects, as the single features will tend to be stuck onto background ele-
ments or other moving objects and spread throughout the image. The OpenCV

library |47] provides an open-source implementation of this method.

2.3 Performance Evaluation

Performance evaluation of tracking is important, for comparison and further de-
velopment of algorithms both in academia and in industry. Performance evalu-
ation is complicated by the fact that several flavours of tracking exist: single or
multiple targets, single or multiple cameras (with or without overlap). automatic
or manual initialisation, with or without operator interaction (such as restart
or disambiguation), etc. Some methods stem from performance evaluation of
motion detection |76, 58, 10, and are not particularly effective in evaluating
tracking algorithms. Other methods, like the cumulative matching character-

istic (CMC) curve [39)], are widely used in person re-identification scenarios, and
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can be used to evaluate a multi-camera tracker (in its ability to re-acquire an in-
dividual that has gone out of view), but do not evaluate the tracker’s precision
in locating the individual in the image. Most other methods are suitable for
multi-target, automatically initialised, with single [77] or multiple overlapping

[119] cameras.

Some of the most significant cfforts towards the standardisation of datascts,
metadata and evaluation metrics specific to tag and track (single person, manu-
ally initialised, multi-camera tracking), are the PETS [82], CLEAR [24], and
TRECVid [105] programmes.

Following up these efforts, the UK Home Office started the i-LIDS programme,
which includes over 30 hours of annotated, synchronised videos suitable for
tag and track evaluation; to the author’s knowledge, this is the largest dataset
publicly available. Annotation is stored in XML, using a dialect of Viper, a
metadata representation format discussed in Section 2.6.1. The programme
includes a low-level network protocol for communication between the tracker and
a “virtual” operation room. It does not include, however, a public performance

evaluation metric.

This shortcoming has been addressed by the American National Institute for
Standards and Technologies (NIST), which issued a multi-camera, single person
tracking challenge [1]. The challenge is based on a subset of the i-LIDS videos,
annotated by NIST (in a different dialect of Viper). and on a publicly defined
set of evaluation metrics based on CLEAR {53]. These metrics, explained in
detail in the following section, will be used to evaluate the tracker developed in

this thesis.

2.3.1 NIST Evaluation Metrics

The performance evaluation metrics adopted by NIST for the AVSS tracking
challenge were originally developed to evaluate multi-target, auto-initialised
trackers. This is reflected in the metrics by including measurements of false
positives (FP) and missed detections (false negatives, FN), and by the inclusion
of an algorithm that computes the best mapping between ground truth objects
G and tracker output objects D;, that caters for false positives and missed de-
tections (i.e. when the numbers of ground truth objects N¢g and tracked objects
Np differ). The mapping can be computed on each frame, or on the whole se-
quence: in the following paragraphs, Nf:iwe 4 is the number of mapped objects
in frame ¢, and Ninapped is the number of mapped objects in the sequence. All
metrics presented in this section return a number between —oo and 1, where

1 means perfect tracking, 0 means that there are as many erroneous tracking
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instances as there are correct ones, and a negative number means that erroneous

tracking instances outnumber the correct ones.

The performance evaluation is designed for multi-target tracking, but the chal-
lenge was for a single-person tracker. In order to use this pre-existing metrics,
the single-person tracking problem was cast into a multi-target tracking prob-
lem, by collecting the tracks of many single-person trackers, and considering

them as the output of one multi-target tracker.

The collection of metrics described in the following subsections are explained
in detail in [13]. It is to be noted that those authors seem to use accuracy and
precision with a slightly different meaning from the usual. Normally accuracy
refers to how close a measurement is to its actual (true) value, and precision to
the degree to which further measurements show the same or similar results [101].
In [13], however, the authors take precision to mean how close the estimated
position of the target is to the real one, and accuracy to mean how good the

tracker is at preserving and individual’s identity throughout the track.

2.3.1.1 Sequence Frame Detection Accuracy

The Sequence Frame Detection Accuracy (SFDA) is the average over all frames
of the overlap ratio between ground truth objects and tracker output objects.

The overlap ratio is defined as
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where N ; is the number of ground truthed objects in frame ¢ with a cor-
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responding tracker output object. Normalising Equation 2.1 over the number

of objects we obtain the Frame Detection Accuracy (FDA):
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In order to measure the detection performance over the entire sequence, the
FDA is computed for all frames, and normalised by the number of frames where

there is at least one object:
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To forgive minor localisation errors, the overlap ratio is thresholded at 20%: a
tracker bounding box overlapping the ground truth by 20% or more is assigned
a score of 100%. The threshold was determined empirically by having part of
the data annotated by more than one human.

2.3.1.2 Multiple Object Detection Accuracy

The Multiple Object Detection Accuracy (MODA) of a frame ¢ is computed as

em (mu) + ¢ (fpr)
NY

MODA (t) =1 - , (2.4)
where m,; and fp; are respectively the number of missed detections and false
positives at frame ¢, and c¢,, and ¢y are their weight functions (whose value
depends on the relative importance of missed detections and false positives,
but it was chosen to be 0.5 for the AVSS tracking challenge). If a measure

of the accuracy over the entire sequence is required, the Normalised MODA
(N-MODA) can be used. It is defined as
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2.3.1.3 Multiple Object Detection Precision

The Multiple Object Detection Precision (MODP) is similar to the FDA (Eq.
2.2), but it normalises the overlap ratio (Equation 2.1) by the number of mapped
objects in each frame:

_ Overlap_Ratio

MODP (1) = —— =" (2.6)
N

mapped
This gives the precision of detection in any given frame t. If N,(;(),, ppea = 0, then
the MODP is forced to zero.

2.3.1.4 Multiple Object Tracking Accuracy and Precision

The Multiple Object Tracking Accuracy (MOTA), and the Multiple Object
Tracking Precision (MOTP), were developed in 2006 for the CLEAR tracking
challenge |24}, in order to offer a general framework for the evaluation of multi-
body trackers in all domains and for all modalities (visual, radar, acoustic,

etc...) [100]. The two metrics are used to calculate the two basic types of errors
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made by multi-object trackers: imprecision in the estimated object locations,
and failure to keep a consistent identification of tracked objects (ID swaps).
A detailed explanation of how MOTA and MOTP are calculated was made
available on-line to all participants of the NIST multi-camera tracking challenge
at AVSS 2008, but that page is no longer available.

Multiple Object Tracking Accuracy The Multiple Object Tracking Ac-
curacy (MOTA) is used to extract the accuracy of the tracker. It is defined

as

MOTA — 1 3™ (me + fpe + log1o IDC)
- N rames
Sopemes N

where m; is the number of missed detections, fp; is the number of false positives,

, (2.7)

and IDC is the number of ID changes, calculated considering the difference
between the mapping for frame ¢ and the mapping for frame (¢ — 1). The authors

have not explained why a logarithm is applied to the number of ID changes.

Because MOTA is the measure of choice used by NIST for the multi-camera
tracking challenge, it is also the main measure used in this thesis to evaluate
the tracker in Chapter 5. Therefore, a detailed explanation of this metric will

be given in Section 2.3.1.4.

Multiple Object Tracking Precision The Multiple Object Tracking Preci-
sion (MOTP) is based on the spatio-temporal overlap between the ground truth
tracks and the tracker output tracks. It uses the overlap ratio (Equation 2.1),
and is defined as

Norapped

MOTP = 2 i Overlap_ Ratio

wannr‘s (t)
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(2.8)

where N,,appea 15 the global (optimal) mapping, and Nf,?ummd is the local map-

ping of frame ¢.

2.4 Pre-Processing

All the reviewed papers that present experiments on real video data perform
some pre-processing of the same before feeding them to the tracking stage, the
most typical of which is motion detection. Even though the tracking stage itself

is conceptually independent from the pre-processing stage, the performance of
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the system is influenced by both. This work thercfore had to review some of
the most common techniques used to process the video data before the tracking

stage.

2.4.1 Motion Detection

For advanced video surveillance systems, background subtraction is a useful tool
that can allow the detection of moving objects in the scene. It requires a suf-
ficiently accurate model of the background to enable them to be distinguished
from the foreground. One of the most common methods is the Gaussian Mix-
ture Model (GMM) [96, 97], which models each pixel as a mixture of Gaussians
and uses an on-line approximation to update the model (see Figure 2.2b). This
approach deals robustly with repetitive, irregular motions of background ob-
Jjeets, such as swaying trees or waving flags. For the special case of background
exhibiting regular (i.e. periodic) variations, a novel algorithm is presented in
Section 4.1. One drawback of the Gaussian Mixture Model is that slow-moving
objects can be mistakenly incorporated into the background. There is one para-
meter, the learning constant, that allows to speeify this trade-off: high values
will make the algorithm adapt quickly to background changes, at the cost of
quickly incorporating slow-moving objects, whereas low values will make the
algorithm more conservative, slower to adapt to background changes but also

less likely to lose a slow-moving object.

There is still a growing literature on better alternatives or improvements of
GMM for background estimation, e.g. the algorithms shown in Figure 2.2.
However, for the purpose of this thesis, we will assume that GMM is sufficiently

good to provide appropriate foreground data to a tracker.

2.4.2 Human Detection

Using motion detection for background/foreground separation assumes that
anything that “moves” (i.c. any variation in pixel colour over time) is an object
of interest, and vice versa that pixels whose colour never changes are not relev-
ant for tracking. While this assumption may hold in some surveillance scenarios
(with people walking against a static background), most scenes will actually
feature moving objects that are not of interest (e.g. scrolling advertisements),
and non-moving people {e.g. queueing at a gate or a ticket machine). Human
detection algorithms have been developed to overcome this problem. A human
detection system takes as input an image, and returns as output the location

and size of all humans appearing in that image. While, in principle, human
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detection is superior to motion detection for people tracking, in practice the
computational cost of these algorithms is still too high, by at least one order of

magnitude, for real-time usage.

Dalal and Triggs [33] compare several feature sets for human detection. Exper-
imentally, they show that histograms of oriented gradients (HOG) outperform
all previously used feature sets. HOGs are computed by subdividing an image
into a large numbed of small (typically 8 x 8 or 16 x 16) cells, computing the his-
togram of gradient orientation for each cell (separate by channel and weighted
by gradient intensity). The set of HOGs over a detection window forms the
descriptor that can be used for detection. A support vector machine (SVM) [31]
is trained with positive and negative samples, and it is used to classify the HOGs
inside a detection window as either human or non-human. The algorithm was
evaluated against the publicly available INRIA dataset!, and performance is re-
ported to be between 84% and 89% true positives at 1074 FPPW (false positives
per detection window). The author of this thesis implemented in MATLAB a
HOG detector based on this paper, but the best performance achieved was of

several seconds per frame.

Schwartz et al. [91] augment widely used edge-based detectors (such as the
HOG-based detector reviewed above) to include colour and texture information.
The descriptor so obtained has a very high dimensionality (in the order of 10°),
which makes it intractable for any standard machine learning algorithm such as
SVM. To overcome this problem, a dimensionality reduction algorithm called
partial least squares (PLS) [87] is applied to the descriptors, reducing the number
of dimensions from over 100,000 to 20. Performance evaluation on the same
INRIA dataset show a true positive rate of 94% at 107> FPPW. Even though
some thought is also given to computational costs, the reported speed is still

too slow for real-time usage.

2.4.3 Shadow Removal

Shadows and reflections cause many false positives in foreground detection.
Shadow removal techniques have been developed to limit this problem, even
though deep shadows are very difficult to remove. Some of the most commonty
used algorithms are Hoprasert [45] (Figure 2.2d), Cucchiara [32] and double
mixture model |71] (Figure 2.2c). All these methods exploit the property that

cast shadows only change the intensity of a pixel, not its chromaticity, while a

!This dataset can be downloaded from http://lear.inrialpes.fr/data and used for re-
search purposes.
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A geometric relation is a mapping from each camera reference frame to one or
more other camera reference frames, or to a common world reference frame. If
two adjacent cameras are close enough, geometric calibration allows a tracker
to predict a target’s motion from the first to the second, and, if the views of
the two cameras overlap, targets in the overlapping zone can be tracked more

easily, as information coming from more than one sensor can be combined.

Geometric Calibration

Geometric relations can be inferred by collecting a large number of single-camera
tracking sequences, and then searching for pairs of sequences that correspond
up to an unknown homography. This is called a tracking correspondence model

(TCM).

The first fully automatic TCM for large camera networks with overlapping
fields of view was introduced by [98]. Given only a large set of video streams
from a surveillance area, it can automatically build a model of the camera
network. A tracking sequence S; is comprised of N; tracking observations
{si(to)..... si(fn;)}, indexed by the absolute times they occurred. Each ob-
servation includes a description of the object from a particular camera at a

particular time:

si(t) = {=(t), y(t). do(t), dy(t). s(t), image(t), ...} .

Any two tracking sequences that belong to the same object over the same interval
of time are in direct correspondence. The goal of correspondence modelling is

to estimate the ideal correspondence matrix I'*, each element of which is

,* —
Yij =

1 if S; and S; correpond to the same object,
0 otherwise.

This is accomplished by finding the maximum likelihood correspondence assign-
ment given the observations and the TCM. The probability that two sequences

are equivalent given the observations and the TCM is
p(fy;j =11 8 S;, TCM)
and can be determined by maximising the likelihood of

p(v=1181....5, TcM) = [ »(=1155;, TCM.)" .
S,-,S,-eS
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This model can be used to track objects through the environment. Assuming
that all objects move on a common ground-plane, the position of an object that
is visible in two cameras a and b is related by a 3 x 3 homography H:

Hoappa(t) = po(t)

where p, (t) = (z, y. 1) is the location of the object, in homogeneous coordinates,
in camera a at time ¢, and p,(t) is the interpolated position of the tracked
object in camera b at the same time. The TCM of a pair of cameras includes
the homography and a visual occlusion model R, which is an estimate of the

region of overlap between the cameras:

rI‘Cl\/Ia,b = {Hab, Rab} -

To estimate the homography, pairs of co-occurring tracks are randomly sampled

whose likelihood of belonging to the same object is given by
Lij x PP P,

where P, is the probability of this particular pair being valid (given the number
of other objects that were visible at the same time), P, is the probability of a
corresponding track lasting a particular time interval, and P, is the probability
of matching S; to S; directly. For each pair of tracks, a homography is estim-
ated, and a score is computed based on the number of corresponding tracking

sequences: the one with the maximum score is chosen.

In |15]. the Least Median of Squares (LMS) method presented in [99] is used
to determine the homography that aligns the object centroids detected in each
camera view. The coefficients of the homography can be computed with 4
correspondence points {see |30]); singular value decomposition (SVD) can be

used to compute the LMS.

Topological Multi-Camera Calibration

Al methods reviewed here work by collecting a list of “object” cntry and exit
events in the images (where the objects are typically pedestrians or vehicles,
depending on the application). This list is used to find a correlation between
the entrv time of an object in a scene and the exit time of all other objects in
all other scenes: if a correlation is found between a pair of objects, they are
assumed to be the same, and a topological link is assumed to exist between the

two scenes. Such methods are capable of autonomously creating the topological
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network of a surveillance system. Also, overlapping views can be thought of a

special case of non-overlapping views, having negative transition times.

In [70] the problem of topology is formalised in terms of the inference of a
weighted directed graph which captures the connectivity relationships between
the positions of the cameras. The notion of multiple agents moving asynchron-
ously through a camera network can be modelled as a Markov process. The
network is described as a directed graph G = (V, E), where the vertices V = v;
represent the sensor locations, and the edges £ = e;; represent the connectivity
between them. The motion of N agents in this graph can be modelled as trans-
itions across edges. Let O = {o01,..., on, } be a set of events detected at times
t=1... No from the various sensors (vertices of the graph) , which indicate the
likely presence of one of the N agents in that position at that time. Given the
observations O and the number of agents N, the authors |70} propose a Monte

Carlo Expectation Maximisation algorithm for estimating E.

In [67] a similar method is proposed, with the addition of automatically learned
set of entry and exit zones in each camera view. Connections are established
between entry and exit zones of cameras, instead of between the cameras them-
selves. The method was used to accurately reconstruct the topology of a 6-

cameras network using 13 hours of video.

2.5.3 Colour Calibration and Correction

To track targets as they move through a network of cameras, appearance descriptors
are used to model their appearances. Descriptors can be compared to calculate a
probability that two targets represent the saunc individual. For this comparison
to be as effective as possible, any systematic difference in deseriptions obtained
from two cameras should be identified and removed. Such variations may be
caused by differences in the cameras (different hardware and configuration), or

by differences in the scene (different itlunination).

Colour correction methods can be divided in two classes: supervised (manual)
or unsupervised (automatic). Supervised methods such as [46] require the user
to select, from pairs of cameras, pixels or areas which are known to have the
same colour. The advantage of supervised methods is that they are generally
more reliable and accurate (assuming the user inputs correct data), but they

are not practical when the number of cameras is large.

Unsupervised methods, on the other hand, make some hypotheses about illu-
mination in the scene, and use them to automatically normalise colours across

cameras. Typical hypotheses include assmuing that the average reflectance of
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all scene elements is grey (the grey world hypothesis [19]) or that the bright-
est pixel of every image represents white. The advantage of an unsupervised
method is that it can be applied to an arbitrarily large number of cameras; the
main disadvantage is that if the hypothesis is not met, the method will fail to
provide a good calibration and may actually make colours less consistent across

cameras.

2.6 Meta-data Representation

The word “metadata” is a compound of the Greek petd (meta, meaning “besides”,
“over” and “above”), and Latin data (plural of datum, meaning “given”). Loosely,
it can be defined as data about data. For example, the traditional card catalogue
of a library is metadata of the library (where books are considered the actual
data). In Computer Vision, algorithms work on video data, and metadata is
anything that describes a video stream (for instance, it could be the time and
date the video was captured, or a textual description of the weather, or the

presence of an object of interest in a given location at a given time).

Metadata can be used as additional input for a Computer Vision algorithm, or be
produced as output by it. For example, the “alert” status of an anomaly detector,
or the target position for a tracker, are metadata produced by a detection or by
a tracking algorithm. The initial position of a target is metadata provided as
input to a tracker, in order to initialise the tracking process. Metadata is usually
much more compact that the corresponding video (raw) data, and can be stored
in files or databases. It can be compared against a ground truth (which is also
a form of metadata) in order to get a performance measure of the algorithm

generating it.

By far the most common transport format for metadata is the Extensible M ark-
up Language (XML) [113]. XML is a general-purpose specification for creating
custom markup languages. It is classified as an extensible language because it
allows its users to define their own clements. Its primary purpose is to help
information systems share structured data, and it is used both to encode doc-
uments and to serialise data. It is designed to be relatively human-legible. By
adding semantic constraints, application languages can be implemented in XML.

There are two levels of correctness of an XML document:

Well-formed A well-formed document conforms to all of XML syntax rules
(e.g. if a start tag appears without a corresponding end tag, it is not
well-formed). A document that is not well-formed is not considered to be

XML and a conforming parser is not allowed to process it.
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Valid A valid document additionally conforms to some semantic rules. These
rules are either user-defined, or included as an XML schema. For ex-
ample, if a document contains an undefined clement, then it is not valid;

a validating parser is not allowed to process it.

An XML schema is a description of a type of XML document, typically expressed
in terms of constraints on the structure and content of documents of that type.
An XML schema provides a view of the document type at a relatively high
level of abstraction. XML is an international, widely adopted, fee-free standard
recommended by the World Wide Web Consortium (W3C). A large number of
XML-related libraries, tools and documents is available on the Internet.

XML subsets can be defined using the zsd schema specification, which is itself
an XML file. Schemas allow programmers to declare the structure of an XML
document, i.e. to formally specify which nodes (elements, attributes or text) are
allowed in which part of the document, whether they are optional, mandatory

or forbidden, and what values they can be assigned.

Based on a human readable text format, supported by many high quality lib-
raries and tools, and backed by vast industrial support, it comes as no surprise
that XML has been adopted by many members of the Computer Vision com-
munity for metadata representation. The following sections review some of the

Computer Vision-specific schemas that have been developed.

2.6.1 Viper

The Viper schema was designed for the ViperGT ground truthing tool [56]
in order to represent metadata for any Computer Vision task. The complete
schema is split in two files: one describes the overall structure of a Viper file,
while the other one defines basic data-types (e.g. bounding boxes, polygons,
cte.). The schema is extensible, i.e. it is designed so that user-defined data-
types can be added in a backwards compatible manner. The trade-off of this
flexibility is an increased complexity in the usage of Viper files. A “quirk” of the
Viper schema is that it is object-based rather than frame- or time-based. This
means that the XML cannot be output “live” as the algorithm runs, but it has
to be stored in memory until the algorithm completes before it can be dumped
to file.

Its quirks notwithstanding, the Viper format was adopted by the UK Home
Office and by the American National Institute for Standards and Technologies
(NIST) for the ground truthing of the i-LIDS multi-camera tracking dataset.
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2.6.2 Serket

Serket was specifically designed by the Serket EU Project Consortium to de-
scribe metadata for Computer Vision algorithms [4]. The Serket schema cannot
be extended with user-defined data-types, thus sacrificing some flexibility to fa-
vour ease of use. Even though it cannot be extended, it seems to be complete
enough for most video-surveillance metadata. It is frame-based, has support for
multiple cameras, it defines bounding boxes for targets, regions in the image-
or ground-plane, events, etc. However, the author of this thesis was unable to
locate on the Internet the actual schema definition, and no recent publication

was found that uses Serket for metadata interchange.

2.6.3 SMAF

The Surveillance Media Application Format (SMAF) [3] is a proposed restriction
to the MPEG-7 standard for video surveillance applications. MPEG-7 provides
a general purpose framework for associating metadata to multimedia data [48],
and allows application-specific restrictions to be defined for specific domains.

Any such restriction is referred to as a Multimedia Application Format (MAF).

The restriction defined by SMAF covers a description of the surveillance system
and of the activity in the scene. In addition to this set, appropriate descriptions
for the relation between camera and scene are also considered. To improve
interoperability between systems and between components of a system, two
types of restrictions are proposed. The first proposal is a restricted subset of the
MPEG-7 elements that are applicable to the surveillance domain. The second
proposal is to use the MPEG-7 tools to include domain-specific taxonomies to

restrict the names of elements used in the semantic descriptions.

At the time of writing, however, SMAF has not yet been officiallv adopted in
the MPEG standard.

2.6.4 PETS

In 2001, the second International Workshop on Performance Evaluation for
Tracking and Surveillance (PETS) [82] designed a schema for the represent-
ation of tracking and high-level behaviour analysis. In contrast to Viper and
SMAF, the PETS schema focuses on tracking and behaviour analysis only, and
is not designed to represent any possible type of surveillance metadata. This

lack of extensibility makes the format easier to use, but also limits its scope to
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the two tasks it was designed for. To the best of the author’s knowledge, the
PETS format has not been used outside of the PETS workshop.

2.6.5 Agent-Based

This system was developed at the Multitel research centre in Mons, Belgium,
to address the need for a generic, context-independent and adaptive system
for storing and managing video analysis results [20]. The system is based on
a schema-independent data warehouse backed by a multi-agent system. Each
agent is either a communication agent. representing a data-flow between the
processing algorithm and the data warehouse, or a data agent, representing
the knowledge contained in the XML produced by a processing algorithm. A
data agent can represent any XML document, and therefore the data warehouse
is not linked to any specific schema (although a schema must be provided at

system initialisation).

Schema-independence makes this format suitable for any Computer Vision ap-
plication (and, indeed, it is not limited to Computer Vision at all), and at the
same time keep it simple, since an ad-hoe schema can be specified for any applic-
ation. Graphical tools are provided for querying the data warehouse, collecting
long-term statistics and discovering trends. The downside is that this format
requires a server running 24/7 to host the data warehouse, which is a single
point of failure and, depending on network load and the amount of metadata
produced, may become a bottleneck. The agent-based format is the metadata
format adopted for the CARETAKER project, where running a server 24/7 was
uot an issue, and where the amount of metadata produced by the processing

algorithms proved to be manageable.

2.7 Conclusion

This chapter reviewed the state of the art of tracking, starting from a histor-
ical perspective, with particular focus on visual tracking over multiple cameras.
The section on existing tag-and-track systems, sadly small, shows that there is
plenty of space to research a real-time, single-target, multi-camera tracker, since
no reviewed system fulfils these criteria (especially with respect to the real-time
constraint). The review also covered the state of the art of motion detection,
colour correction, camera calibration, and metadata representation. These top-
ics were analysed since they often play a role in various stages of a TNT pipeline.
In fact, the number of options available for each stage of the TNT pipeline sug-

gests to keep the tracker design modular, so that new algorithms and formats
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can be easily added at a later stage of development if it becomes desirable. The
next chapter presents the main contribution of this thesis, namely a probabilistic
framework that allows the techniques reviewed in this chapter to be combined in
order to produce a tag-and-track system for multiple non-overlapped cameras.
Two new pre-processing algorithms, one for motion detection, and one for colour
calibration, are presented in Chapter 4. The effectiveness of the framework will

be assessed in Chapter 5.



Chapter

Tracking using Multiple Cameras

This chapter presents the multi-camera tracking framework, which is the main
contribution of this thesis. Starting with an overview of the problem and with
some definitions that disambiguate the meaning of common terms, the chapter
will then introduce the theoretical foundation of the proposed framework. Sub-
sequent sections will analyse in more detail how it is suggested that the frame-
work be modularised, and will provide several proposed implementations for

each module.

3.1 Overview

Within the scope of this thesis, a fracker is defined as an algorithin that accepts
as input a target ;.1 (observed at time t — 1) and a video frame captured at
time ¢, and gives as output a target 7, (observed at time t) representing the
same individual. Tt can also be noted that a tracker may produce an output
even if the target is completely occluded or out of view. In this case, the output

is a prediction of the target’s position.

Althongh a multitude of approaches to tracking exist, this definition was chosen
based on the end-user’s requirement of a single-target, real-time tracker with
minimal latency. Therefore, each frame is processed as it becomes available, and
an output is produced before the following frame arrives. It should be noted that
this decision does not exclude the possibility of using other, more sophisticated
trackers, for instance capable of handling multiple tracking hypotheses and to
provide a confidence estimate for each hypothesis. The definition of tracker

given above was chosen because it is the simplest definition that can capture

39
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the user requirements. Moreover, because the goal of this thesis is to develop
a multi-camera tracking framework, it should always be possible to incorporate
e.g. a multi-hiypotheses tracker, as long as it can be cast to a single-hypothesis
tracker (by considering only the most likely hypothesis) and as long the real-time

constraint is respected.

In the case of single-camera tracking, there is only one input video and a target
is completely defined by a binary mask specifying what pixels in an image belong
to it. A review of existing, single-camera trackers is available in Section 2.2. In
the case of multi-camera tracking, there are multiple videos and a target needs to
be associated with the one(s) in which it was observed. A multi-camera tracker
may be implemented by combining several single-camera trackers and fusing
their output, but that is not the only option. In particular, in this work, it was
decided to have only one single-camera tracker running at a time, because of the
following practical considerations. Firstly, overlapping cameras in the available
data-sets are rare, and the overlapping area is small, therefore the possibilities
of fusing outputs from more trackers would be rare as well; small to no camera
overlap is common in video-surveillance scenarios, where the main concern is
to maximise coverage of the area. Secondly, camera calibration is often good
only in a limited area of a camera view, therefore even if there is some overlap
between two cameras, this area may be poorly calibrated in one of them (e.g.
because it is far away): it is better to use only information from only one
(well calibrated) area than including noisy data from another tracker. Thirdly,
since processing multiple video streams in real-time can be computationally
expensive (the final implementation can process about 6 streams at 5 FPS on a
dual-Athlon 2.4GHz), it was decided to save CPU power by not running more

than one single-camera tracker at a time.

Within this work. the multi-camera tracking framework combines information
from one single-camera tracker, one or more descriptors, and prior information
coming from the camera network layout. Before proceeding any further, pre-
cise definitions of some of the terms introduced above (i.e. target, individual,

descriptor, etc.) will be given.

3.2 Definitions

The layout of a network of cameras is a weighted, directed graph where each
node corresponds to a camera, and there is a link from node a to node b if either a
and b have overlapping views, or they do not and an individual viewed in camera

a can transition to camera b without passing by any other camera. When two
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1. Positive dcfiniteness, i.e. ¢(D;, D;) is non-negative, and it is zero if and

only if two observations are identical:

d C(DiaDj)Zov
[ C(Di,Dj):O <~ D,':D]'.

2. Symmetry: ¢ (D;, D) = ¢(D;, D;).

For some descriptors, it is easy to provide a comparison function that also

satisfies a third condition:

3. Triangle inequality, also called subadditivity: given three descriptors D;,
Dj and Dy, ¢ (Di, Dk) <c (Di, Dj) + C(Dj, Dk);

thus making the descriptor space a metric space, where the intuitive notions
about the concept of distance are valid. For example, the triangle inequality
means that the distance “traversed” directly between D; and Dy is not larger
than the distance to traverse in going first from D; to Dy, and then from D; to
D;.. However, because subadditivity will never be used in subsequent parts of
this thesis, the comparison function ¢ is only required to satisfy the conditions

of a semi-metric.

Note that when the distance between two observation is zero, it does not neces-
sarily mean that the two targets have exactly the same on-screen appearance,
nor that the two observed targets represent the same individual. It just means
that the descriptor generating the observations is unable to distinguish one tar-

get from the other:
¢(Dy,D;)=044i=3.

3.3 Theoretical Basis

Tracking can be thought of as the process of estimating the probability that
two targets, acquired at different instants in time, correspond to the same indi-
vidual. Typically, the two targets may be acquired diachronically at two con-
secutive frames of the same video stream, or isochronically on a set. of streams.
Bayesian Recursive estimation is a general probabilistic approach for estimat-
ing an unknown probability density function (pdf) recursively over time using
incoming measurements and a mathematical process model, when the unknown

pdf is the unobserved state x of a Markov process:

p(xtlxt—lsxt—27-~~sx()) :P(thxt—l) - (3-1)
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In Equation 3.1, the equality holds because of the Markov assumption. Some
measurements z of the Markov process are available, and the measurement at

time ¢ depends only upon the current state:
p(ze)zi-1,Ti=2,..-,Zo) = p(2t|zt—1) . (3.2)

The following sections will explain how the Bayesian Recursive estimation model
can be applied to a tracker in order to get an estimate of the probability that
two targets correspond to the same individual (the Markov process state), given

a set of observations (the measurements):
. pli.m)
p (Z = JlDij ) ) (3.3)

where D;; is the distance between the two observations D; and D;. In the con-
text of this work, measurements correspond to distances between observations
of different targets. Observations are generated by descriptors, which can be di-
vided up in two scts: appearance and motion. Appearance descriptors encode a
target’s appearance in a compact way, and will be described in Section 3.7. Mo-
tions descriptors estimate the dynamic state of an individual (typically, position
and velocity) and will be described in Section 3.8. A corollary of this difference
is that motion descriptors need to be continuously fed with their target position
in order to update the model, so that they can generate valid observations; on
the other hand. appearance descriptors assume that an individual has constant
appearance, and therefore do not need to be given any information other than
the current target’s pixels. The assunption of constant appearance may not
hold in all eases. for example when a person clothes have radically different
colours on the front and back sides. However, for most real cases, the difference
in appearance due to the point of view is small compared to the appearance
of different people. The following section explains how appearance and mo-
tion descriptors can be combined in order to maximise the probability that the

current tracked target corresponds to the same individual as the tagged target.

3.4 Combining Cues

Tagging identifics a reference target r at time ¢ for which an appearance obser-
vation A, is immediately generated, and starts a single-camera tracker to track
r so that a motion descriptor Af, is available. The appearance observation A,
will be used throughout the tracking process as a reference appearance, since r

1s selected by the operator and can therefore be safely assumed to be correct.
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1. j is close to i:
p(i = ]I]\LJ) > Ty (34)

where M;; is the distance between the observations of the current target
1 and the candidate j generated by the motion descriptor M, and 75 the
threshold on motion matching, i.e. the minimum probability required to

consider ¢ and j the same person using motion only;

2. 7 is more similar to r than ¢ is:
p(i=rl4;r) > p(i=r|dir) (3.5)

where A;, is the distance between the observations of the candidate j and

the reference target r generated by the appearance descriptor A;

3. the joint probability of 7 corresponding to the same individual as r (given

their appearance) and as ¢ (given their position) is high enough:

p(i=rlA)p(G=ilMy) > 7 (3.6)

where 7 is a probabilistic threshold, i.e. the minimum joint probability
required in order to consider j, ¢ and r the same individual, according to

both appearance and motion.

If more targets are found that satisfv all conditions, the handover is performed
using the one that maximises condition 3. Note that appearance observations
are always compared with the reference observation, A, since it is the only one
known to be correct. Colour constancy techniques should be used to accommod-
ate for colour changes due to different lighting conditions in different camera
views. Motion information cannot be compared with a reference observation,
since motion prediction cannot yield meaningful results for an arbitrarily long
time. Motion descriptors have a motion model that can be used to predict the
state the reference target r {acquired at time t,.) will have in a future time ¢;
(when target i is acquired). As the difference between t, and t; grows, the
uncertainty associated with the model will grow as well. At some point, the
uncertainty will become so large as to span the entire environment, therefore
making the descriptor completely useless. In our experiments it became appar-
ent that. using a Kalman filter with linear motion model, predictions become
unreliable after just a few seconds, or approximately 10-20 time steps. This
was due mostly to the unpredictability of people’s motion, and only to a lesser
extent to errors in the estimate of the state (which would become negligible

after 5-10 time steps).
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The fact that appearance observations are always compared to a reference, while
motion observations are compared to the latest observation available, is also
due to a fundamentally different theoretical basis behind descriptor generation.
Motion descriptors assume a model (constant velocity) and a dynamic state
for the target (the Kalman filter state, comprising position and speed in the
world reference frame); with each new measurement (i.e. the position in the
world reference frame), the state is updated according to the model and the
measurement, and a new descriptor is generated that reflect these changes. In
the case of appearance descriptors, on the other hand, the model is assumed
to be constant (no variation of a target’s appearance over time), and therefore
there is no need to keep an up-to-date appearance model. While this assumption
makes tracking difficult in the case of drastic changes of appearance, such as
when a person removes their coat, it also means that the appearance descriptor
is never contaminated with erroneous updates. This limitation is considered a
minor issue by security operator, who, during informal conversations, conceded
that it is a rcasonable tradeoff (offering better tracking in the common case of
constant appearance, and requiring manual intervention in the rare case of a

drastic change).

3.5 Obtaining Target Observations

In the context of tracking in a wide surveillance area, there are three sources
of information that contribute to an overall probability that any given target

corresponds to the individual the operator tagged.

Firstly there is the coarse-scale temporal information that allows observations
from different stations or different areas of the same station (e.g. different floors)
to be assessed. Under the proposed framework, this is considered to be the
probability of correct association. given only the time-stamps of the two obser-
vations (and the camera network layvout). This is written as p (1= j|S;;), where
S is a descriptor that allows matching targets based only on their tiimestamp

and camera location (a more detailed explanation will be given in Section 3.8).

Secondly, there is the fine-scale spatio-temporal information available about the
observations from overlapping. adjacent or nearby cameras. This conditional
probability is written as p (i = j|M;;), where M is a motion descriptor as defined
in the previous section. In any given case only one of M or § will be available,
depending on the relationship between the cameras: if the camera views are
overlapping, adjacent or nearby, and they are on the same ground plane, then

the motion descriptor M can be used. If, on the other hand, cameras are in
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different stations or in different arcas of the same station, then only the spatio-
temporal descriptor S can be used. When M can be used, it is preferred to S,
because it is much more informative {as it encodes the target velocity and its
position on the ground plane, whereas S only encodes information about the
start and end cameras of the transition, and the transition time). Section 3.8

will clarify where the two different descriptors are applicable.

Thirdly, there is the appearance information from the colour descriptors 4, and
hence there is available a third conditional probability p (i=j|A4;;). In order
to convert a descriptor-specific similarity measure D;; into a cross-descriptor

probability, Bayes’ theorem is used as explained in the following paragraphs.

A large data set with N targets has to be ground-truthed so that the indi-
vidual corresponding to each target is known. A descriptor D is then applied
to every target to generate a set of observations Dy = {D;,, D;,,...D;, }. All
observations in Dy are then compared pairwise to generate an N x N matrix of
similarity measures, Dpp, also called a similarity matrix. The similarity matrix
Is symmetric, since D;; = Dj;, and has all zeroes on the leading diagonal, since
D;; = 0. Some of these distances are between observations of the same indi-
vidual, while others originate from different individuals. Using only the upper
triangular part of Dy without the leading diagonal, the distances are collected

in three normalised histograms:

1. Hsame[D], distances between pairs of observations generated by the same

individual.

2. Haiss[D], distances between pairs of observations generated by different

individuals.

3. Hagg:[D], all distances.

The histograms represent the relative frequencies of distance values for the three
cases. They are also probability density functions, corresponding to the prob-
ability of obtaining a certain distance from a comparison of two observations,

provided that the two observations are
e from the same individual,
p(Dyjli = j) (3.7)
e from different individuals,

p(Dy;li # 7) (3.8)
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e from cither the same or different individuals,
p(Di;) . (3.9)

Applying Bayes’ theorem to 3.7 and 3.9, we obtain

p(i=j|Dy;) = p(Dij,ipE(]_.;zj‘,[)) — ’ (310)

where p (i = j) is the prior and is set to 0.5. Assigning equal probabilities to
the “same” (7 = j) and “different” (: # j) cases ensures that whatever is chosen
depends only on the distance D;;, and to on the prior (the following subsection
gives the formal proof). Figure 3.4 shows a graphical representation of Bayes’
theorem used to transform the histograms of the appearance descriptor (same,
different and aggregate) into a probability that two targets represent the same

individual.

Equation 3.10 is the probability that two targets ¢ and j represent the same
individual according to descriptor D. It also permits to combine similarities ob-
tained from descriptors of different types by converting them into probabilities.
Once these probability density functions are defined for a descriptor, the concept
of entropy can be used to quantify its efficacy, namely how better than random
it is at distinguishing individuals. By combining three independent sources of
information, target matching is much more reliable than by using appearance
alone, as a native approach could suggest. If, for instance, the best candidate
was chosen by sclecting the most similar one to the reference target, the tracker
wouldn’t be able to compensate to appearance changes (due to lighting or point-
of-view) that cause a different individual to be “more similar” to the reference
target than the same individual. By also using motion and topological informa-
tion, such an error is less likely, as the erroneous target needs to be similar and

close to the correct target for it to be mis-associated.

3.5.1 Entropy

In information theory, entropy is a measure of the uncertainty associated with

a random variable. By definition, the entropy of a random variable Y is

H(Y)=-> p(y)logp(y) - (3.11)
yeyY

The base of the logarithm is irrelevant, as long as the same base is used through-

out. If base 2 is used, then the entropy is expressed in bits (as is the case for
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the remainder of this thesis). If p (y) = 0 for some y, the value of the summand

0log0 is taken to be 0, which is consistent with the limit lim,_,oplogp = 0.

When used with descriptors, the random variable Y is {i # j,7 = j}, that is,
whether or not two descriptors represent the same individual prior to using an
observation. For brevity, we shall use a pseudo-boolean notation, and write
Y = {0,1} where 0 means “not the same” and 1 means “the same”. Assuming
equal probability for the two cases of the prior, p (0) = p (1) = /2. Since we are

using base-2 logarithms, we can calculate a value for Equation 3.11:

H(Y) = =) p(y)log,p(y)

yeY

- Z !/2log, 1/2

yeY
= —1/2log, 1/2 — 1/2log, 1/2
= —logy1/2
= log,2
= 1

which is the entropy of a completely random choice between “same” and differ-
ent”. Any descriptor is expected to be better than random at discriminating
between the two cases, and therefore should have entropy smaller than 1. An
ideal descriptor, that can always discriminate correctly between the two cases,
would have an entropy of 0. Note that the assumption that the “samc” and
“different” cases have the same prior probability is not valid in many real-world
scenarios. Indeed, in a busy underground station, two observations are much
more likely to correspond to different individuals than to the same one. However,
the purpose of using entropy is to determine how much a descriptor improves
the chances of correct identification, and for this purpose the actual value of
the prior probability is not important. If, in order to represent the actual prob-
ability of a match, the prior were biased towards the “different” case, then a
dunnny descriptor that always classifies two targets as “different” would have a
low entropy (possibly close to 0, depending on how biased the prior is), and this

is of course undesirable.

Conditional entropy H (Y]X) represents the remaining entropy (i.e. uncertainty)
of a random variable Y given that the value of a second random variable X is
known. To estimate H (Y| X) the starting point is the two set of samples, same
and different, shown above. These can be used to generate estimates of the
probability p (D;;|i = j) and p(D;j|i # j), respectively, by taking the normal-
ised histograms Hsame[D] and Hais¢[D]. The choice of histogram number of bins
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will affect the final estimate, a balance needs to be struck between the number
of samples and the number of bins to avoid under-sampling or over-sampling.
Alternatively, a parametric estimate of the distribution can be generated from
the samples; in the case of a multi-dimensional histogram, a parametric rep-
resentation also solves the problem of scarcity of samples due to the curse of
dimensionality [114]. From these distributions, the prior distribution p(D;;)
can be constructed, and then Bayes’ theorem can be used to invert the expres-
sion into the required form, p (i=4|D;;). The conditional entropy is calculated

as the expected value of logp (i =7|D;;).

3.6 Single Camera Tracking

The definition of a single camera tracker, given at the beginning of this chapter,
described it as an algorithm that accepts as input a target #;_; (observed at
time ¢ — 1) and a video frame captured at time ¢, and gives as output a target
iy (observed at time t) representing the same individual, where all observations

come from the same video stream.

To fulfil this role, any of the single-camera trackers reviewed in Scetion 2.2
can be used. These trackers require an explicit initialisation step, where they
acquire the initial model of the object to be tracked. In the following frame,
they search a neighbourhood of the initial location for a best-match to the
initial model, report the new position, and possibly update the model. Within
the multi-camera tracking framework, the first initialisation step is performed by
the operator by tagging the reference target. Subsequently, if a better candidate
is found and the multi-camera tracker needs to switch camera view, the bounding
box of the candidate will be used to re-initialise the single-camera tracker. At
each frame, the multi-camera tracker projects the position of the target in the
image onto the ground plane, which is then used to generate a motion descriptor
(see Section 3.8.1).

A single-camera tracker is not expected to be robust to occlusions, since the
multi-camera tracker may resolve them; however, a single-camera tracker could
signal when it is no longer able to follow a target (for example because of an
occlusion or because the target is out of view). This could be done by checking
the foreground detection mask corresponding to the target area: if it is empty or
underpopulated (e.g. the number of foreground pixels is lower than a threshold),

the tracker can signal a “target lost” event.
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3.7 Appearance Descriptors

As their name implies, appearance descriptors represent a target’s appearance.
The following sections enumerate and explain the appearance descriptors de-
veloped as part of this project. Each explanation includes how observations
are generated, what data they contain, and how they are matched. Where
the descriptor was not developed by the author, proper credit is given. When
referring to appearance descriptors, without specifying which one, they are rep-

resented with the letter A.

3.7.1 Mean Colour Descriptor £

One of the simplest ways of describing a target’s appearance is by using its mean
colour. Indeed, the Mean Colour descriptor E is easy to implement and it is
computationally cfficient, both to gencrate observations and to compare them.
Given the set of pixels (p) representing a target 7 in an image using an arbitrary
colour-space (for the sake of simplicity, RGB will be used in this example), the
Mean Colour Descriptor is defined as the mean of the pixels colours:

_ Zpéi [prfpg’pb]

b b

(3.12)
where [i] is the number of pixels comprised by the target i. Because E; is a vector
in the colour-space used by the image. the distance between two observations
E;, E; is simply ||E; — E;

defined using different colour spaces.

. Clearly, manyv variations of this descriptor can be

3.7.2 MPEG-7 Descriptors

At the other end of the complexity spectrum. there is a host of MPEG-7 Visual
Descriptors [68]. The main goal of the MPEG-7 visual standard is to provide
standardised descriptions of images and videos. These descriptors can be used
to compare, filter or browse multimedia coutent without the need for text-based
queries. Although there are a number of colour, textures, shape and motion
descriptors defined in the standard aimed at different user domains (multi-
media catalogues, media selection, media authoring, etc. .. ), no descriptors were
specifically designed for people re-identification in surveillance videos. Colour
descriptors represent different aspects of the colour feature, including colour
distribution, spatial colour layout and spatial colour structure. There are 6

descriptors defined by the standard. two of which are relevant to tracking and
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will be explained in the following section. The author wishes to thank James

Annesley for providing the implementation of the Dominant Colour descriptor.

3.7.2.1 Colour Spaces and Dominant Colour Descriptors

The MPEG-7 standard specifies the following colour-spaces: RGB, YCbCr,
HSV, HMMD, Linear, and Monochrome. RGB is one of the more popular
spaces, and it is defined as the unit cube in the Cartesian coordinate system.
The Linear colour-space is a linear transformation from the RGB space. The
YCbCr space, used extensively in MPEG-1/2/4, is actually a Linear space whose
transformation matrix has been defined by the standard. The Monochrome
space is the Y component of the YChCr space. HSV and HMMD are nonlinear

transformations from the RGD space that are more perceptually uniform.

The standard also specifics colour-space components as continuous-value cn-
tities, that need to be quantised for discrete representation. The Colour-Space
Descriptor specifies the colour-space an image is encoded in, and how that space

is quantised.

The Dominant Colour Descriptor provides a compact description of the repres-
entative colours in an image or image region. Its main target applications are
similarity retrieval in image databases and browsing of image databases based
on single or several colour values. The Dominant Colour Descriptor T of a target

t is defined to be
T; = {(cp.pp-vy) . s} (k=1,2....,N)

where N is the number of dominant colours. Each dominant colour value ¢y,
is a vector in the corresponding colour-space (described by the Colour Space
Descriptor), p. is the proportion of pixels in the target corresponding to colour
Ci, such that Z,{L] pr = 1. The optional colour variance v; describes the
variation of the colour values of the pixels in a cluster around the corresponding
representative colour. The last component, s, is the spatial coherency, a number
that represents the overall spatial homogeneity of the dominant colours in the
image. The number of dominant colours N can vary from image to image, up

to a maximum of 8 (as defined by the standard}.
One comparison function between two Dominant Colour observations T; =

{(CiasPiasVia):8i}, (a=1...Ny), and T = {{C;p,Pjb>v50)}, (b=1...N;),
is defined by the MPEG-7 standard as

N N;

Ni N;
(T Ty) =D Pat+ D 1y D D 20(Cias€b) PiaPin -

a=1 b=1 a=1 b=1
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In the above equation, « (-, -) is a similarity function between two colours:

c1—c
l—J—;—mfl ,cl—CQ|STd

af{cy,c2) =
0 otherwise

where 7, is the maximum distance for two colours to be considered similar and
dmax = K74. This means that two dominant colours from one single observation
are at least 74 distance apart. The standard gives recommended values for 74
and x in the CIE-LUYV colour-space.

3.7.3 Colour Position Descriptor

As it will be shown in Section 5.2.2, the best results were obtained with a Colour
Position descriptor developed at INRETS! [106]. Colour Position descriptors P
divide a target ¢ into n equally spaced horizontal bands (typically 8). The mean
colour of the pixels in each band and in each colour channel is computed, and
the three components of each are used as a 3n-dimensional vector. For example,
a Colour Position Descriptor using n bands and the RGB colour-space is defined
as

P, = [ri,91,b1,. .. ,rmgn,bn]T

?

where r; is the mean on the red channel of the first band, g is the mean on the

green channel in the first band, and so on.

The distance between two Colour Position observations is the distance between

these vectors: P; = ||P; — Pjl|.

In their paper, the authors also suggest two colour-spaces that improve the
descriptor performance by removing most of the luminosity information: the
normalised RGB space and the UV space. The former is a standard RGB space
where all pixels have been normalised so that they have unitary norm. while
the latter is simply a YUV space without the Y component (details on both the

latter colour spaces can be found in any image processing book, e.g. [38]).

3.8 Spatio-Temporal Descriptors

Spatio-Temporal descriptors represent a target by its location in the surveillance

network and by the time when it was observed. The two descriptors in this

1 Institut National de Recherche sur les Transports et leur Sécurité, the French National
Institute for Research on Transport and its Safety.
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category, Motion and Spatial, were developed to complement each other, as the
observations they generate are effective for targets that are, respectively, close
to each other (in space and time) or far apart. The exact conditions under
which the two descriptors are more effective will be detailed in their respective

sections.

In a surveillance scenario, it would be useful to have all cameras calibrated with
respect to the same world reference frame. However, if the camera network
is very large (e.g. spanning an entire city, as in one of Caretaker’s test-sites),
ensuring that the reference frame is the same may require using GPS and geo-
graphical data (which is difficult to obtain) and would make calibration more
difficult (since 3D information must be considered for multi-level stations). It
was therefore decided to group cameras according to the station and level they
belonged to, and to calibrate each group independently from the others. We
call coterie a group of cameras positioned on the same level (in the same sta-
tion) and calibrated according to the same ground plane. In every coterie, there
are some special cameras that are connected to other coteries. All inter-coterie
connections in the surveillance network are assumed to be known. Moreover,
the average transition time of each connection is also assumed to be known.
A problem with this design, however, is that it cannot model the presence of
multiple ground plancs in the same view, c¢.g. a stairway connccting two floors.
A possible solution is proposed by Yin et al. [118], but it is outside the scope

of this thesis.

3.8.1 Motion Descriptor M

The Motion descriptorM represents the value and accuracy of a target’s position
and velocity:
, . T Y
1\/[1 = [xi7xitax,;7 U)ki] (313)

where oy, and oy, are covariance matrices. Spatio-temporal descriptors are par-
ticularly effective when comparing targets from the same camera, or from dif-

ferent cameras in the same coterie.

Using a Kalman filter to track the targets, their position and velocity are known
at cvery frame, along with an uncertainty cllipse. Other filters may he used
as well, e.g. the particle filter, but their use was not investigated due to time
constraints. Candidate targets from different cameras within the same coterie as
the current camera can be compared to the current target using the Mahalanobhis

distance.

The Mahalanobis distance is a similarity measure between a known sample set
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to an unknown one. In contrast to Euclidean distance, it takes into account the
correlations of the data set and is scale-invariant, i.e. it does not depend on the
scale of measurements. The Mahalanobis distance of two random vectors x and

y extracted from the same probability distribution with covariance matrix ¢ is

M(x,y) =/ (x - y) "o (x - y)

When the Mahalanobis distance is applied to spatio-temporal observations, how-
ever, the two random vectors x and y do not come from the same distribution,
since they correspoud to the motion features of two different targets with dif-
ferent covariance matrices o, and o,. For example, the Mahalanobis distance

between two spatio-temporal observations S; and S; is

M (Si,Sj) = \/(XZ - Xj)T Ox; (Xz‘ h Xj) . (314)

In this case, the Mahalanobis distance is not symmetric, because x; and X;
are not sampled from the same distribution, and therefore they have different
covariance matrices. Moreover, only the position of the target is used, because
some targets are observed only on one frame, and therefore their velocity is un-
defined. However, because symmetry is required to build the similarity matrix,
the comparison function for two spatio-temporal cbservations uses a symmetric

variation of Equation 3.14:

M (M;, M) + M (M;, M;)

. (3.15)

((A[, ]\[]) =

which vields a value between 0 and oc. Indeed, the comparison function for
spatio-temporal observations is not applicable if the involved targets were ob-
served in different coteries. If two targets ¢ and j were observed in the same
coterie, but at different times (¢; and ¢;), the comparison may still be applied,
but the time difference has to be catered for. This can be done by using the
motion model of the filter to predict the future position of the target whose
observation is the oldest. Assuming without loss of generality that ¢; > t;, let
At = t; — t;. The position x;: of target j at time #; can be estimated by pre-
dicting the motion of target j. Assuming a simple linear model, the prediction
is
Xy = X5 + XAt

and the filter equations can be used to predict the uncertainty on position and

velocity. This defines a new “virtual” observation, Mj., that can be compared

with S; using Equation 3.15.
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3.8.2 Coarse-Scale Spatial Descriptor S

The Spatial descriptor is a non-appearance descriptor suitable for comparing
targets acquired at times or places far apart from each other. Indeed, if two tar-
gets are “close enough” in space and time, a Spatio-Temporal descriptor should
be able to discriminate between the two, by using the motion model to extra-
polate the position of one of the targets. However, if two targets are too far
apart in time, the predicted position of the oldest target will have too much
uncertainty to be reliably used for a match. Moreover, if the two targets have
been acquired from cameras situated in different coteries, it is not possible to

use motion prediction (by definition of coterie).

Spatial descriptors allow targets to be matched in the above scenarios without
using appearance. Because the physical relation between coteries is assumed
not to be known (apart from the cross-coterie connections and their average
transition times), only timestamps (¢} and camera names (id) may be used
to estimate this probability: additional spatio-temporal information such as
velocity and position (with respect to the ground plane) is not applicable. The

definition of a spatial descriptor therefore is

S; = {idi, t,} . (3.16)

Given two targets 7,j and their corresponding spatial descriptors, S;, Sj, the
distance .S;; between them is a function of the two targets’ timestamps (¢;,t;),
and the minimum time required for an individual to transit from one camera

(id;) to the other (idj). It is computed as follows:

1. Use a shortest-path algorithm to transverse the network layout graph and

find a minimum path between id; and id;.
2. Let t,,;, be the sum of all transition times of each edge of the path.

. ) Ifl — f,j[ — tmin if ltf - fJI > tmin .
3. S = . expressed in seconds.

¢ otherwise.

Minimum transition times between pairs of topologically adjacent cameras have
to be estimated from training data. The minimum transition time between
two non-adjacent cameras a and b can be inferred from the topology by finding
the shortest path between a and b, and summing the transition times of all
connections along the path. Where |t; — ;| us the transition time between the
two cameras. This formula ensures that, if the actual transition time is less

than the minimum transition time, the two targets are never identified as the



CHAPTER 3. TRACKING USING MULTIPLE CAMERAS 59

same individual. The distance is minimal if the actual transition time is the
same as the minimum transition time, and increases linearly as the two times
diverge. The choice of a linear relation, and the parameters of this relation, are
not particularly important in this case, since the distance will be non-linearly

mapped to a probability density function as explained in Section 3.5 .

3.9 Conclusion

In this chapter, a theoretical model for tracking across multiple non-overlapped
cameras was described. This model, based on a probabilistic framework, allows
a tracker to fuse information regarding a target’s appearance, its position, and a
prior model of the camera network, in order to estimate the target’s whereabouts
in real time. The next chapter, of a more practical nature, will describe the mo-
tion detection and colour correction algorithm that supply data to the modules
described here (the appearance descriptor and the single camera tracker), and
each analysed module is evaluated independently. In Chapter 5 the cffective-
ness of the TNT system as a whole is evaluated, leading to the conclusions in
Chapter 6.



Chapter

Pre-Processing

This chapter presents one novel motion detection algorithm and one novel colour
normalisation algorithm. Motion detection and colour normalisation are the
very first stage of processing in the proposed tracking framework, as shown in
Figure 4.1. Motion detection can be performed using any of the techniques
reviewed in Section 2.4.1, but a novel method was also developed that exploits
periodicity in the background to deterministically predict what colour a colour-

changing pixel is going to assume on subsequent frames [59}.

Colour normalisation can be used to compensate for the different colour re-
sponses of different cameras and to illumination changes across different scenes;
colour normalisation techniques were reviewed in Section 2.5.3. However, since
target appearance is only used to compare appearance descriptions across cam-
eras, if the appearance descriptor used is robust to illumination changes and
cameras colour responses are not too dissimilar, then the colour normalisation
stage can be skipped, leaving more computational resources available for the

rest of the tracking system.

4.1 Foreground Detection

For advanced video surveillance systems, background subtraction tools (such as
those reviewed in Section 2.4.1) can allow the detection of the moving objects
in the scene. Background subtraction requires a sufficiently accurate model
of the background to enable foreground objects to be distinguished from the
background. This section considers the case in which the background is mov-

ing according to some repeating and predictable pattern. In data captured at

60
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the mixture. Indeed, the regular cycle through these components ensures that
the relative priors for the mixture elements can be accurately estimated. (This
is in contrast to less predictable variations such as alternation between cloudy

and sun-lit illumination, a situation this algorithm is not design to cater for.)

Alternatively, periodic variation in appearance can be considered as a special
case of dynamic texture, and techniques for modelling this process have already
been proposed. Soatto et al. [95] used a Kalman filter to model the evolution-
ary process of the dynamic texture, and determined the parameters using an
iterative technique similar to Expectation-Maximisation (EM). This approach
was adopted in [121], and segmentation of foreground objects from a dynamic

background was achieved.

The experiments are performed on two data sources collected as part of the
CARETAKER Project. One sequence shows a platform and escalator in a
station that forms part of the Torino Metro system. The periodic background
elements are the escalator (with a period of approximately one second) and a
flashing warning light (approximately two seconds). The other sequence shows
the top of an escalator that is part of the Roma Metro system. It includes an
advertising board that scrolls every ten seconds between four adverts, giving
an overall period of about forty seconds. Foreground detection experiments on
the Torino Metro data set show a significant iimprovement over the technique of

Gaussian Mixture Models.

4.1.1 System Overview

The system operation is divided into training and update phases, as illustrated
in Figure 4.2. In the training phase, the video sequence is used to generate a time
series for each pixel. As explained in the following section, the corresponding
set of Fourier cocfficients provides the data to distinguish the periodic from
the non-periodic elements. The Fourier analysis also gives an estimation of
the number of states required in the Markov model. Neighbouring pixels of
the same periodicity are grouped into regions and can be processed together
in the subsequent steps of the svstem. The next steps in the training phase
are to initialise the values of the states, and calculate the matrix of transition

probabilities. These processes are described in Section 4.1.3.

Once the training is complete, the system moves into the update phase. Here, a
predicted state based on the current state is compared to a posterior state based
on a Bayes update using the current state and a measurement (from the video

data). Depending on whether the two states agree, the next state is determined,
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output was compared to a ground truth, generated by manually annotating the
Torino and Roma videos. The ground truth consists of a binary image where
pixels corresponding to the periodic clements (i.e. the escalator and the Hashing
light) are white and all other non-periodic pixels are black. Even though small
errors in ground-truthing may bias evaluation, and a thorough evaluation should
have several humans annotate the same frames in order to estimate ground
truthing errors, this bias was estimated to be too small (compared to actual
segmentation performance) to justify the additional cost in human resources.

Instead, priority was given to annotate as long a video segment as possible.

The detector algorithm was run with varying threshold values, and the output
was compared against the ground truth in order to generate a ROC (Receiver
Operating Characteristic) curve. A ROC curve is a plot of True Positive Rate
(TPR) against False Positive Rate (FPR) and these are defined as:

TP
TPR = TP + FN
FP
FPR = pprin (4.1)

where TP, FP, TN, FN are the number of true positives, false positives, true

negatives, and false negatives respectively [35]; more specifically,

e frue positives are periodic pixels correctly detected as periodic:
® lrue negatives are non-periodic pixels correctly not detected as periodic:
e false positives are non-periodic pixels erroneously detected as periodic;

o false negatives are periodic pixels erroncously not detected as periodic.

Lower values of K make the algorithm more sensitive, and values between 4 and
5 have been found to give the best results. All the results shown in the following
pages were achieved using K = 4.5 (suggesting, therefore, that the best value of
k is scene-independent, since the two capture scenarios differed significantly in
resolution, frame rate, and periodicity of the background). In a previous version
of this framework, the threshold was fixed and therefore it had to be changed
for the algorithm to work with different time sampling intervals |26]. In the
version discussed in [59], however, since the threshold changes with the mean g
of the spectrum, the same parameter K can be used regardless of the sampling
interval (e.g. the Rome and Torino sequences were sampled at 0.4Hz and 5.0Hz
respectively). In Figure 4.5 the output of the detection process is illustrated

alongside the hand-labelled periodic pixels.
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because the number F'PP is not necessarily an integer, it is approximated by
two “tentative” models, one with ceil (F'PP) states, and one with floor (F PP)
states, where ceil is the function that maps a number to the smallest following
integer and floor the one that maps a number to the largest previous integer,
and the decision is finalised by assessing the performance of ecach model in the
learning phase. For instance, in the Torino dataset, the detected frequency of
the escalator pixels 1s 5.3 frames per period, hence both a 5-state and a 6-state
model are tested. If more than 6 states were used, there would be redundancy
in the model; if fewer than 5 states were used, the different phases in the period
would not all be distinguishable {(as a state may have to cover a number of

frames).

4.1.3.1 Learning Phase

The learning of the transition probabilities of the Markov model is performed
using the classic Banm-Welch algorithm {11] available in MATLAB. It is as-
sumed that the first N measurements correspond directly to the NV states in the
model. Subsequent measurements are assigned a state whose values are closest
to the measurement in a Euclidean sense. Once the learning phase is completed
(this was achieved in just over 100 frames of real data, i.e. about 20 seconds at

5fps), the transition matrix can be used in the update phase.

As mentioned, both a 5-state and a 6-state model have been tested, where the
pixels on the escalator, detected as periodic, were used for the purpose of learn-
ing and validation. It was found that a 5-state model is more accurate, compared
to a 6-state model. in predicting the subsequent state correctly; consequently

this hias been used in the subsequent stages of the system.

4.1.3.2 Update Phase

Once the learning phase is completed, the algorithm in run in the update phase,
where the goal is to determine the next state that the system will be in at each
time step. There are two estimates that can be determined: a prediction that
is based solely on the transition probabilities estimated in the learning phase,
5; and an a posteriori estimate that incorporates a measurement, §. These two

quantities are related as follows:

p(m|3:) p(3:)
p(m)

where i € T is the set of possible next states, 5§ denotes the prior state, § denotes

p{8;|lm) = (4.2)

the posterior state, and m is the measurement. The measurement likelihood is
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calculated as:
A 1 1 T 1
P (m]s,;) == W exp "5 (m — Usi) ¥ (m — Usl.) (4.3)

where v, is the value of state 4.

The predicted a priori state § (estimated without taking the measurement into
account) is compared with §, the state with the highest posterior probability
given the measurement. If the predicted state and the posterior state agree
(to within 1 state), then the posterior state is accepted as the next state 3.
Otherwise, the predicted state is accepted as the next state (since the mismatch

of § and § is probably due to the presence of foreground pixels).

The corresponding mean and standard deviation of the next state 3 can then
be updated, using a similar scheme to that of Stauffer and Grimson’s Gaussian
mixture model [96]. An adaptive scheme is preferred over a static approach
where the state values are not updated because the Markov model is only an
approximation to the periodic process (in this case, a 5-state model for 5.3
frames per period). Moreover, by calculating a standard deviation on the mean,
a decision threshold for segmenting the foreground can be defined as a scalar

multiple of the standard deviation. The update equations are as follows:

e = (L—p)pe_q +pry (4.4)
T
of = (1=p)og_i+p(me— ) (my— ) (4.5)
where
p = ap(mu, o). {(4.6)

Here, t denotes time, and o is the learning rate of the algorithm. The conditional
probability in Equation 4.6 is equivalent to the one in Equation 4.3 since the

state can be represented by a mean and a standard deviation.

The technique was applied to the real data collected at a Torino underground
station. Since the objective of this technique is to provide a reliable periodic
background from which foreground segmentation can be generated, results of
foreground mask generation are given in Section 4.1.4 to demonstrate the efficacy

of this approach.

It should be pointed out that the Markov model described here takes the struc-
ture of a Hidden Markov Model (HMM), and it is possible to use a series of
measurcments (instead of only the previous one) to estimate the current state.
However, a preliminary evaluation phase showed that using a series of measure-

ments would increase the computational cost without improving the final result,
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since the current state and the previous state are sufficient to determine where

in the periodic cycle the system is.

Since different camera views would capture different scene elements with dif-
ferent periodicities, training has to be performed for each camera view in a
networked system. The time required for training is dependent on the length
of the maximum period one wishes to detect, the computational complexity of
FFTW being O (nlog, n), and at least five or six periods being required for the
periodically varying pixels to be detected. For the escalator here, the training
process is fast (just over 100 frames, i.e. 20 seconds at 5fps); therefore if ele-
ments of similar periodicities are to be detected, the training can be achieved

in a short time. Results are presented in Section 4.1.4.

4.1.4 Results

The real data used to test the foreground detecting method described in Sec-
tion 4.1 is the escalator sequence with people in the foreground (i.e. on the
escalator), a sample frame of which is shown in Figure 4.6a. Only the area of
interest has been displayed here for clarity - the section of the image with the

platform has not been shown.

This sequence has approximately 300 frames at 5fps and involves 9 people using
the escalator; a rectangular area of 150 x 280 pixels centred on the escalator
was defined and used for evaluation, providing a total of 12.6 megapixels (150
x 280 x 300 frames) to test the algorithm on. The periodicity was determined
using the periodic background detector described in Section 4.1.2, and the 5-
state Markov model was constructed following the approach described above.
Figure 4.6b shows the foreground mask of the proposed approach for one frame,
and Figure 4.6¢ shows the corresponding output of the GMM. It should be noted
that ouly the escalator region defined by the mask generated by the periodic
background detector is being processed. It can be seen that the proposed ap-
proach seems to produce fewer false positives and the output regions are more
contiguous in this frame. For a quantitative comparison of the two algorithms,

a ROC analysis is carried out and the results are presented below.

Ultimately, the efficacy of the background modelling technique is assessed by the
foreground detection performance that it can provide; therefore the segmenta-
tion output of the proposed method is compared against that of the Gaussian
Mixture Model (GMM). The parameters for both methods have been varied
over a wide range to obtain the best performance in each case (see Table 4.1).
It is believed that the GMM provides the best baseline for comparison because

it has the ability to model multi-modal distributions, and is adaptive. In fact,
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L Algorithm l Parameter rDescription —I
Markov o learning rate
Chain
k scalar determining the threshold for the
detection of periodic pixels (see Figure 4.4)
initVar initial variance of the state model
GMM a learning rate
numModels number of Gaussians
initVar initial variance of Gaussians
initWeight initial weight of new model
numStdDev | scalar determining the threshold between
background and foreground pixels
T proportion attributable to background

Table 4.1 — Parameters of the Gaussian Mixture Model and Periodic Background segmen-
tation algorithms.

the proposed method can be viewed as a GMM with a prior on the transition
probabilities. Using these outputs, a ROC curve is generated, plotting the True
Positive Rate (TPR) against the False Positive Rate (FPR) as defined in Equa-

tion 4.1 on page 65.

The ground truth values have been generated by manually labelling the pixels
as foreground or background. Foreground pixels here correspond to pixels where
a person is present on the escalator. The resulting ROC curve of a pixel-based
analysis is shown in Figure 4.6d. The blue square points correspond to the
proposed algorithm. while the red triangular points are the outputs of the GMM.
It can he seen that over the parameter space, the proposed method performs
better than the GNM. For 80% TPR, the FPR is reduced relatively by 40%.
At 20% FPR. the number of missed detections is reduced relatively by 47%.

The implications of this improvement are not straightforward to assess. For
detection and tracking of pedestrians, the increased reliability of foreground
detection can be expected to lead to improved track reliability. The cffeet will be
restricted to specific arcas of the scene such as escalators and advertising boards,
which in some sequences cover over 20% of the image area. If these areas have
a key role in the detection of important events, then the improvement will have
a significant impact. Also, there is a significant amount of manual intervention
necded at the moment: clustering of periodic pixels, selection of a subsampling
frequency, and selection of a maximum period to be detected. The fact that the
algorithm needs re-training after major lighting changes is also a deterrent to

wider adoption.
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4.2.1 First-Order

To normalise the data from two or more cameras, it is assumed that a training
set of observations is available, drawn from the same distribution of passengers
and poses. This training set is generated by running a foreground detection
algorithm (such as the one presented in the first half of this chapter) on all cam-
eras, and retaining all foreground pixels. Writing each (Y¢, Cb., Cr,.) foreground
pixel value from camera ¢ as p. (z,y), and the mean value of all foreground data
from this camera as p.. the first-order corrected values are calculated as
, _ 128
Pz, y) = 5

C

pe (z,y) 4.7

This enforces a mean of 128 for each channel of the signal, i.e. mid-scale lumin-

ance and neutral chromaticity.

4.2.2 Second Order

It is also possible to consider the covariance, when equating the per-camera
distributions of foreground colour data. If a particular value of colour signal
Pe(x.y) from camera ¢ is represented as a different value pg (2, y) in camera, d,
then the general relationship between these spaces may be written as an affine
transform

Pa = Reape + ted (4.8)

where R,y and t.y are respectively a generalised rotation and a translation
between the input spaces of cameras ¢ and d. If there is no mixing between the
luminance and two chromaticity channels, then only the diagonal elements of
R.q will be nonzero. More generally, there may be mixing between the colour
channels, corresponding to some small generalised rotation between the axes
of the colour space for each camera. The normalisation process is intended
to identifv and correct for these differences between the signals from various
cameras that presents all input signals in a common representation (the pseudo-
code for this operation can be seen in Algorithm 4.1). If the affine model is a
valid representation of the differences between the colour response from any two
cameras, and there is sufficient structure to the covariance structure of the input
statistics, then it is possible to estimate R¢y and t.q from an unlabelled training

set of foreground data. This is described in the following section.
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Algorithm 4.1 Colour normalisation: takes a set of video streams as input,
and normalises them using second order statistics on foreground pixels.
Require: cameras: a set of video streams
for all ¢ in cameras do
count < 0
for all f in frames(c) do
for all p in pixels(f) do
if foreground(p) then
sum|c] < sum|c] + p
sumsgqrlc] < sumsqr|c] + p*
count|c] < count|c] + 1
end if
end for
end for
mean|c] < sum|c] / count
globalMean <« globalMean + mean|c|
end for
globalMean < globalMean / length(cameras)
for all ¢ in cameras do
for all f in frames do
f < f - global / mean|c]|
end for
end for

4.2.2.1 Required Covariance Properties

If two multivariate random variables, X and Y. are related via a linear trans-
formation y = T'vyx, then it may be possible to estimate T'yy from the means
ix, ny and covariances Sx. Sy, generated from n samples of both X and Y.
Simulations can be used to demonstrate the accuracy of the estimate, by gener-
ating a set of random samples from X, transforming them into ¥ using values
of 7', and then measuring how closely the two sets of vectors are aligned in some
standard common co-ordinate system.

It is more convenient to transform them both onto the same “whitened” co-
ordinate system with zero mean and unit diagonal covariance, as this will sim-
plify subsequent formulas. If Sx diagonalises into ExA x E% . then the transform

to the whitened version wy of the vector x is
—1/2 3T
Wy = Axl/ b{/ (X - ‘U\’) (49)

If the equivalent process is also applied to the variable V', to obtain a sample
of whitened vectors wy ., then the accuracy of the estimate can be measured as

the expected L, distance between the whitened samples, i.e. F [IWY — wx|2].

The accuracy of the estimate depends weakly on the number of samples n and
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strongly on the relative magnitudes of the ellipsoid radii (i.e. eigenvalues) of the
covariance structure associated with X. For the two-dimensional ellipse, the
standard term used to describe these relative magnitudes is eccentricity, which
varies between 0 (circle) and 1 (a line). In this work, an alternative term is used
that is better suited to the investigation and is not limited to two dimensions:
the ellipticality, €, is defined as the smallest ratio between successive eigenvalues,
ordered by size, and can vary between 1 (a sphere) and oo (an ellipsoid with at

least one degenerate dimension).

Experiments were conducted to measure the reconstruction accuracy, using sev-
eral test sets consisting of between 200 and 5,000 samples. Values of ¢ from
between 1 and 5 were used, creating covariance matrices with the following

form:
2

€
S=10
0

o mn O
—= o O

Figure 4.7a shows how the accuracy of the estimate of S is a function of ¢ for four
different sample set sizes, and for € = 1...5. The graphs show that accuracy
increases with increasing values of ¢, and that the increase in speed is higher
with bigger sample-set sizes. Below values of ¢ = 2.5, the alignment of the two
sets of data failed completely and the accuracy was no better than random.
Above values of € = 3.0, the alignment worked very well and the mean squared
error between the two sets of whitened vectors rapidly approached zero. In the
range 2.5 < ¢ < 3.0, the alignment process required a large number of samples
(around 5,000) to obtain an accurate estimate. In the next section, the values of

¢ are estimated for the real video signals encountered in a surveillance system.

4.2.3 Analysis of Input Signal Covariance

The statistics of 29 surveillance video feeds from the Torino Metro system werc
analysed. Approximately 10 minutes per camera were used; only foreground
pixels (extracted using a GMM method) were included. If the eigenvalues of the
covariance of these data are sufficiently different, then the simulations suggest
that the procedure outlined in the previous section may be applied to improve

the alignment of these colour signals.

As shown in Figure 4.7b, the values of ¢ are all between 3 and 8 (we remind
the reader that because of how ¢ is derived, its value is defined up to a scale
factor, and should only be compared to other € values obtained with the same

scale factor - in this case, 1). This ensures that the cameras covariances can
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the colour normalisation stage, an unsupervised method was developed that
can learn systematic variations in colour responses between cameras using the
motion of pedestrians in the surveillance network. Each algorithm has been
evaluated on real data, showing an improvement in performance over the state
of the art. However, both proposed algorithms have a downside, in that they

require an explicit “training” phase before they can be used.

This is especially a problem for the motion detection algorithm, since most
state-of-the-art algorithms (including the Gaussian Mixture Model used for the
evaluation) do not require an separate training stage, and they can simply adapt
to lighting and background changes as they run. It is for this reason that the
period background detection algorithm has not been developed any further and
has not been used for evaluation of the tracker. The next chapter presents the

performance evaluation of the TNT system as a whole, using the GTT dataset.



Chapter

FExperiments and Results

In this chapter, the experimental framework and the datasets used to test the
tracker are presented (Section 5.1), followed by tracking results in Section 5.2.
Since the main contribution of this thesis is a multi-camera, single-target tracker
that can incorporate information from heterogeneous data sources, the evalu-
ation will focus on comparing the relative performance of the multi-camera

tracker with all possible combinations of data sources.

Before presenting the experimental results, an overview of the experimental
process is given here. A data-flow diagram of the process is shown in Figure 5.1,
The diagram is divided in four sections: prior knowledge, video processing,
format conversion, and evaluation. The Prior Knowledge section covers the
collection of all data and metadata that needs to be available before the tracker

can be run, and is presented in detail in Section 5.1.

Once all data has been collected. and all metadata is made available, it is
possible to run the tracker, as shown in the Video Processing section of the
diagram. In a real scenario, the tracker would require a human operator to select
a reference target and start the tracking; however, for performance evaluation
purposes, a set of ground truth tracks are needed. These can be created with
a purpose-built application, KanAnnotate, created by the CARETAKER group
in Kingston University and described in Section 5.1.4. Both KanAnnotate and
the tracker can be seen in the Video Processing layer of Figure 5.1 (the tracker

is indicated as cuplay, since this is the name of the executable that runs it).

The next step after tracking is format conversion, where metadata produced
by the tracker and the annotation tool is converted to a format suitable for

the evaluation tool. There are three reasons why a separate data conversion

79
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format is preferable: firstly. for case of implementation, the output format of
the tracker was chosen to match as closely as possible (within the limits of
the viper format) the internal data structures of the tracker itself. Secondly, an
external conversion tool can be used both with the ground truth and the tracking
results, which is more cost-effective than writing several output modules for the
tracker and the annotation tool (in fact, while this would be possible for the
tracker, the annotation tool is hardcoded to use the viper format). Thirdly, a
separate conversion step allows one to run the tracker once, and use the same
data with multiple evaluation tools. The evaluation step, which is at the end of

this data flow diagram, is explained in Section 5.1.5.

5.1 Prior Knowledge and Data Acquisition

Two datasets have been used for performance evaluation: the Torino dataset,
collected for the CARETAKER project, and the ILIDS dataset, produced by
the Home Office Scientific Development Branch (HOSDB). A third datasct,
from Roma, was also collected during the CARETAKER project, but it has not
been used for performance evaluation since is was found to have too poor video
quality. Specifically, all the videos were blurred and desaturated, and two of
the cameras (out of 12) had problems with brightness adjustment, causing their

videos to be almost completely white.

During the 2009 Advanced Video and Signal-based Surveillance (AVSS) con-
ference in Genova, Italv, the American National Institute for Standards and
Technologies (NIST) organised a multi-camera tracking challenge, using the
ILIDS dataset. The tracker presented in this thesis was one of the only two
participants. Both trackers performed poorly, vielding negative MOTA values
(see Section 2.3.1.4). It became apparent to the contest organisers, as well as to
the other conference attendees, that the ILIDS dataset is extremely challenging.
The main difficulties. as it was noted at the conference, were the high level of
crowdedness and the low placement of camneras, which caused a high level of dy-
namic occlusions between the targets. Because of all these reasons, the ILIDS

dataset was not used for performance evaluation in this chapter.

5.1.1 Video Sources

A realistic use-case requires the tracker to work in real-time with video streaming
live from the surveillance cameras. The standard protocol for video streaming

is RTP (real-time transport protocol, see Nomenclature). Within the CARE-
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Prior Knowledge
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tracker)
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Figure 5.1 — Data-flow diagram of the multi-camera tracking system, including setup and
evaluation. Square boxes represent processing, and “wavy” boxes represent data.
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TAKER project, RTP reception functionalities were implemented using a library
provided by Thales!, a member of the CARETAKER consortium.

Testing and debugging use-cases require the tracker to be run on stored data,
so that experiments may be repeatable. Also, a possible use-case of off-line
tracking (e.g. after an incident) requires the tracker to work on stored videos.
The CARETAKER system uses a data base (DB) to store video, in order to
facilitate random search within large archives of data (several? days of videos
from hundreds of cameras): DB access was therefore required, and was im-
plemented with the collaboration of Solid Information Technology (a database
company, now acquired by IBM, that was a member of the CARETAKER con-
sortium). Finally, considering that file access is a very common way of storing

and exchanging video data, file access was also implemented.

In order to I(éep the software modular and simple, all three video sources use
the same interface, namely the OpenCV CvCapture pseudo-object. Standard
objects for file access are alrcady provided by OpenCV, while custom ones were

implemented for RTP and DI access.

An XML schema, called videodeck, was designed to describe the heterogeneous
set of resources that represent a data capture session (including a live session
as a special case). This schema allows authors to associate a camera (uniquely
identified by a number) with one or more data sources. Each data source can
be cither file, databasc. or live stream. In the case of file and database sources,
the optional attributes start. end and sync are also available. The start and end
attributes can be used to specifv which subset of the data source contains valid
video data, in the case that corrupted video was recorded (possibly due to a
network crror or to a camera malfunction); if they are not specified, the data
source is assumed to contain only valid video. The sync attribute allows the
media time of each source to be synchronised with a global timeline. If videos
from all data sources are recorded at the same time, then the sync value is zero
(the default). However, non-zero sync values are used extensively in the GTT
dataset, since all files in each dataset start at a different time (approximately
within 30 seconds of each other). A simple OCR program was developed by the
author of this thesis to read the timestamp overlaid on the video and compute
sync values.

A Videodeck file does not contain any information about the cameras them-

selves, such as calibration or adjacency: this is covered by the topology schema,

presented in Section 5.1.3. An cxample of a Vidcodeck file is shown in Figure 5.2.

Ihttp://www.thalesgroup.com
2Italian laws require surveillance data to be erased after 7 days, unless an event of interest
has happened and permission to retain data has been granted by the police.
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research should focus on tracking, not on topology calibration, as errors in to-

pology estimation must not be brought forward to the tracking stage).

The above representation of the network layout has to be stored in a structured
file for easy human and programmatic access. XML is the grammar we chose
for the implementation. There exists an unofficial W3C syntax recommendation
for serialising graphs into XML [57] that we used to design the Topology Schema
shown in Figure 5.4. A Topology XML file consists of four sections:

image whose elements are simply links to image files containing the map of a

level of a station.

camera whose elements represent the cameras of the network, and link to a

file containing the calibration data for that camera.

coterie that is a collection of cameras sharing the same ground plane. Each
coterie contains two or more cameras and a reference to the image element
that contains the ground plane of that coterie; additional attributes of the

coterie tag are used for display purposes.

connection whose elements link pairs of cameras and specify the average transit

time in seconds using the occluded for attribute.

Figure 5.5 shows the Torino layout file as an example. Both the schema design,
and all lavout files (for Roma, Torino, and the i-Lids datasets) were created by

the author of this thesis for the tag-and-track project.

5.1.4 Ground Truthing

Because performance evaluation of tracking is based on comparing the tracker
results with a manually generated ground truth, annotations had to be made
for the Torino dataset (whereas the i-Lids dataset is shipped with ground truth
files). Ground-truthing a large dataset such as the Torino one is a task that
can take a person many months to complete, as it requires navigating through
half an hour of video over 200 cameras. looking for suitable targets in various

crowding conditions, and tagging their locations.

Therefore, a new annotation software, named KanAnnotate, was developed
by the Kingston University CARETAKER. team?® specifically for this purposc.
KanAnnotate uses the topology file format defined above to construct a visual

representation of the connections between cameras, that can be navigated using

3Nlost of the credit and gratitude, though, go to my colleague Justin Cobb.
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Figure 5.4 — A graphical depiction of the Topology XML Schema, representing the layout
of a camera network. The term KanAnnotate comes from the name of the first software
tool that used it.
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the mouse. It can also rcad videodeck files, that define the video sources, thus
presenting the user with the same scenario (data sources and topology) that
the tracker uses for tracking. The user can then use the mouse to select an

individual and mark their positions in the videos.

5.1.5 Evaluation Methodology

Evaluation of the tracker performance was carried out using the MOTA metric,

which was presented in Section 2.3.1.4 but is repeated here for easier reference:

MOTA — 1 - 2ot=i™"" (m + fpi + logy, TDC)

Nirames N(t) : (5.1)

t=1 G
where m; is the number of missed detections, fp, is the number of false positives,
and IDC is the number of ID changes. calculated considering the difference

between the mapping for frame ¢ and the mapping for frame (¢ — 1).

The other evaluation measures reviewed in Section 2.3 are available only for
the results submitted to the AVSS multi-camera tracking challenge, since the
publicly available evaluation tool only outputs MOTA values. Possible values for
the MOTA range from —oo to 1. A MOTA value of 1 represents perfect accuracy,
i.e. all output bounding boxes overlap to the ground truth bounding boxes by
more than a threshold, and there are no unmatched ground truth bounding
boxes; a MOTA value of 0 means that there are as many correct bounding boxes
as erroneous ones. Finally, values below zero mean that erroneous bounding

boxes outnumber the correct ones.

When implementing a MOTA-based tool for evaluating the multi-camera tracker
desaribed in this thesis, the algorithm has been slightly sinplified with the ad-
ditional constraint of having a single-person tracker. In particular, tracking pre-
cision (MOTP) ceases to be meaningful, and therefore only MOTA was used for
evaluation. Moreover, in the MOTA formula shown in Equation 2.7, log,, IDC

is always 0 and can be ignored.

The major difference, however, lies on how false positives are counted. The
original formulation of the MOTA assumes that ground truth is available for all
frames where the target is visible in the video; therefore, if the tracker produces
a bounding box for a frame where there is no ground truth defined, it is counted
as a false positive. Early in the development of this project, however, it became
apparent that producing frame-by-frame annotations of individuals would not
have been feasible in the available time, especially if we wanted a significant

number of individuals annotated. To make the tasks manageable by the author
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5.2 Tracking Performance

The tracker was demonstrated live at the final review of the Caretaker project,
showing tracking on both recorded and live video streams. However, the demon-
stration was not intended to provide a quantitative evaluation of the tracking
algorithms. This section provides quantitative results for the Torino dataset,
allowing to assess performance of each module of the TnT system and to de-

termine the best combination of modules.

5.2.1 System Parameters

The tracker performance was evaluated varying a number of parameters, shown
in Table 5.1.

5.2.2 Comparison of Components

These experiments aim to compare the performance of the three main modules
of the multi-camera tracker (foreground detectors, appearance descriptors and
single-camera trackers). The experiments were performed by keeping one of the
components fixed, while changing all the others, and running the multi-camera
tracker on all of our 11 ground-truthed individuals. Histograms of the resulting
MOTAs are provided.

Statistical significance tests are performed for cach module being evaluated, in
order to find out which differences in NIOTA are due to a better component, and
which are just noise. For this. we assume that the average MOTA produced by
an experiment is normally distributed with unknown variance (the Central Limit

Theorem [115] ensures that this assumption is valid for large enough datasets).

A two-tailed Student’s t-test [116] is then applied to the collected data, compar-
ing the hypothesis “two components have different performances” against the
null hypothesis that the “two components have the same performance”. We re-
ject the null hypothesis if the confidence is greater than 95%. For each module,
we provide a summary table that compares each pair of components; cells where
confidence is greater than 95% are highlighted with a green background (text is

bold if confidence is greater than 99%).

Individuals The first experiment was run to compare the average MOTAs
produced by different individuals. Although individuals are not a component of

the multi-camera tracker, it is useful to provide a visual representation of how
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L Parameter

| Description

Values or range

Double mixture model
(GMMHSYV), Horprasert,

Motion the algorithm used for | Mixture of Gaussians as
detection foreground provided by OpenCV
segmentation (see (std-mog)
B Section 2.4.1 and 2.4.3)
Dense optical flow
(DenseFlowTracker),
template-based
(DescriptorTracker),
OpenCV camshift
Tracker The algorithm used for | (HueShift), Lukas-Kanade

single-camera tracking | (OpticFlowTracker),

(see Section 2.2) combination of
template-based and dense
optical flow
{CombiningTracker)

Appearance (See Section 3.7) MeanColor, ColorPosition
descriptor
measurement Kalman filter [0..0c], typically [50..5000]
noise measurement noise

process noise

Kalman filter process
noise

[0..00], typically
[10-3..1077]

Minimum
p (i=4]Siy)

Probability of a match
given two
spatio-temporal
observations (minimum
probability to accept
identity)

[0..1], typically [0.9..0.95]

Table 5.1 — Tracker parameters.



























Chapter

Conclusions and Future Work

This thesis addresses computer vision algorithms for multi-camera tracking of
pedestrians. The aim is to improve safety and security in public places, espe-
cially underground stations. by providing a tool that allows security operators
to easily “keep an eye” on individuals deemed vulnerable or potentially danger-
ous. Mnulti-camera tracking in a large CCTV network is currently a difficult
job, requiring the full attention of a specialised operator. The tracker presented
in this thesis was developed as part of CARETAKER ([102], an international
EU-funded project to investigate the problem of content analysis and know-
ledge extraction on massive recordings. For ease of reading, a short surnmary
of the work is provided in the next section. The following section will critically
discuss the work. and an outlook for further developments will be provided in

Section 6.3.

6.1 Summary of Work

As stated in the introduction, the main contribution of this thesis is a prob-
abilistic framework for the construction of a real-time tag-and-track (TNT)
system. This framework allows heterogeneous information about a target and
a surveillance site to be fused in order to enable tracking over multiple, non-
overlapping cameras. TNT systems allow a security operator to keep selected
individuals always visible on a monitor as they move through a surveillance
network consisting of any number {possibly hundreds) of fixed CCTV cameras

with non-overlapping views.

The problem was decomposed in a number of modules for detecting moving
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foreground, tracking individuals in single cameras, and comparing targets ap-
pearances, and for each module a state of the art survey was performed. Also,
two novel methods were proposed for foreground detection and colour cor-
rection. The proposed foreground detection method exploits the presence of
many periodically-changing background elements in indoor scenes (escalators,
scrolling advertisements, flashing lights, ... ); it detects and models pixels exhib-
iting periodic changes in colour, and uses this information to predict the pixel
colour in subsequent frames in order to improve on foreground detection; exper-
imental results show that the algorithm performs better than state-of-the-art

Gaussian Mixture Model on scenes containing periodically changing pixels.

For the problem of comparing target appearances, a novel colour correction
method was proposed that can learn differences in camera colour responses up
to second-order statistics; the algorithm is completely unsupervised, and can
automatically detect whether it has gathered enough information for a reliable
colour correction; experimental results show a noticeable increase in the separ-
ability of appearance descriptions when second-order colour correction is used.

A probabilistic approach was chosen to integrate heterogeneous information
coming from the different modules. Single-camera tracking, appearance des-
criptors, and prior knowledge on the camera network all contribute information
about the identity of targets. The framework can combine this information and
find a target that is globally most likely to be the one intended by the operator.
The solution is re-computed at each frame, using only the state of the system
at the previous frame, thus avoiding the computational overhead of optimising

a long track and allowing the multi-camera tracker to work in real-time.

6.2 Discussion

The work started from state-of-the-art, single-camera, real-time tracking al-
gorithms. A common, high-level interface was extracted from existing algorithms,
so that a multi-camera framework could be developed independently from the
chosen single-camera tracker. After extensive analysis of the state of the art
of multi-camera trackers, it was found that none covered the user requirements
of this project (real-time usage on a network of hundreds of non-overlapping

cameras).

As noted in the literature review (Section 2.1.4), there are several approaches to
multi-camera tracker architectures: centralised, distributed, and decentralised.
A centralised architecture was chosen because it allows to increase the number

of cameras without requiring additional processing power. The downside of this
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architecture is that it requires additional computational power if more targets
need to be tracked simultaneously, and it was deemed the best compromise,
allowing the development of a demonstration system that can track a pedestrian
on a network of hundreds of cameras using a standard desktop PC.

Geometric camera calibration can help tracking by constraining a target’s size as
a function of its position in the image, and vice versa. Cameras can be calibrated
with respect to a virtual ground plane, defined in the camera reference frame, or
with respect to a predefined ground plane which defines its own reference frame,
such as the map of the station. The latter approach has several advantages,
including the possibility of plotting the position of a target on the map of the
station. The downsides of this approach are that detailed station maps are
required, and no full-automatic calibration is possible. It seemed reasonable
that good maps would have been readily available, but it became apparent that
that was not always the case. Eventually, map acquisition, manual calibration
of each camera, and redaction of the camera layout description file proved to be
much more time-consuming than initially expected. At the end of the project,
it became clear that, in a production system, manual camera calibration would

not be a realistic option.

Tracking across cameras is carried out by combining heterogeneous information
from a number of sources (single-camera trackers, appearance descriptors, and
prior knowledge on the camera network topology). A probabilistic approach is
used to fuse these information sources using the model exposed in Chapter 3,
which is the main contribution of this thesis. One disadvantage of this probab-
ilistic approach, however, is that not all information sources can directly output
probability values: most appearance descriptors, for example, output a distance
measure in a descriptor-specific space. In order to convert this distance into a
probability value, annotated training data is required. Collecting and annotat-
ing training data is a time consuming process, whose cost adds to the tracker
setup cost. On the other hand, other information sources (such as the Kalman
filter modelling a target’s dynamic state) directly provide a probability value

without need for training. It would be desirable if all sources had this property.

Evaluation of the proposed algorithms is less exhaustive than we had originally
envisioned, as it is often the case for surveillance applications. Longer video
data for testing is desirable, but it comes with the costs of ground truthing
and setup (camera calibration, layout generation, etc...). Because of these
costs, eventually only two data sets were used for evaluation: the standard i-
LIDS data set (used for the NIST multi-camera tracking challenge), and the
GTT data set that was collected as part of the CARETAKER project. The i-

LIDS data set proved extremely difficult, so much so that only two universities
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participated the challenge, both with disappointing results. The GTT data set
was collected in order to provide a simpler, but still realistic, tracking scenario
for evaluation. Overall, a good attempt has been made to evaluate the tracker
on realistic, comprehensive data, and the relatively small number of ground-
truthed individuals (only 11) is compensated by the length of their tracks, that
include a complete trip in the underground network, spanning two stations and

over a dozen cameras each.

An interesting consideration is the comparison of performance between the
tracker and a human operator. It is clear that an adequately trained oper-
ator, familiar with the surveillance area, can outperform the most advanced
computer vision algorithms. Nevertheless, there is space for automatic tracking
as a support role in addition to human operators. As explained in the intro-
duction, a multi-camera tracker can improve safety and security by allowing
operators to follow potentially dangerous but low-priority targets, which are

currently ignored, without requiring additional human resources.

6.3 Future Work

Thanks to the modular nature of the tracker presented in this thesis, there is
significant space for expansion and improvement by implementing new modules
to plug into the cxisting framework. The single-camera tracker and the ap-
pearance descriptors use the output of the segmentation module to track and
describe targets respectively. Because segmentation is based on background
modelling, there is an implcit assumption that large foreground blobs corres-
pond to images of people. This assumption, unfortunately, is not valid in many
circumstances. for example when a target remains static for a long time or when
there is a crowd. In the former case, the target will merge with the background,
and will not be detected; in the latter case, a single foreground blob will corres-
pond to several targets, that cannot be separated from each other. This problem
could he solved by implementing the segmentation module with a person detec-
tion algorithm, whose output is the position and size of each person appearing
in the frame, even if they are static or partially overlapped. At the time this
research project was begun, however, no person detection algorithm was found
that could work on CCTV footage in real-time with a sufficiently high accuracy.
The Histogram of Oriented Gradients (HOG) method, however, described in
Section 2.4.2, looks promising both in terms of detection accuracy and compu-
tational cost; the author of this thesis expects a real-time implementation of

this algorithm to be available within a few years.
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The modular nature of the framework also means that it is highly suitable for
parallelisation, both on a single system (in order to exploit multi-core CPUs)
and as a distributed system. The former case has already been partially im-
plemented in the prototype used for the experiments in Chapter 5. However,
parallelisation is limited to motion detection, and the rest of the tracking pro-
cess happens sequentially. With more development time, it would be possible
to separate each module of the tag-and-track framework (motion detection, col-
our correction, single-camera tracking, appearance description generation and
comparison, etc...) into a separate thread, and exploit parallelism to improve
performance on a multi-core or multi-CPU system. Given even more develop-
ment time, the modules could be separated and deployed on different systems
that communicate over a network. Even though module communication over a
network is much slower than within one system, a distributed tracker could op-
timise module placement by exploiting locality, for example by having motion
detection modules directly connected to video sources. Such an arrangement
could optimise network load and improve overall performances, especially if

more than one tracker is to be used simultaneously.

The multi-camera tracker requires much information about the network of cam-
eras, namely geometric calibration of each camera and topological connections
between cameras. This information is either provided manually, or learned from
the scene. The choice for this project was to input the information manually, in
order to focus on the specific problem of tracking; however, providing the com-
plete topologyv and calibration of even a subset of the CARETAKER test sites
proved to he extremely time-consuming. In the future, consideration should be
given to automating this process, so that more or larger test sites can be added

to the data set.

In this thesis, only visual sensors were considered as data sources. However,
there are many more technologies that could provide additional information to
help discriminate between targets. The most obvious, for example, would be
radio-frequency identification (RFID) tags. RFID readers could be installed on
gates at every access point in a station, and they could provide highly reliable

identity information of a target, albeit only at a limited set of locations.

In the near future, as the cost of high definition (HD) camieras and 3D scnsors
diminishes, it seems likely that these technologies will be used for surveillance.
When this happens, it will be possible to integrate them in the existing frame-
work as additional sources of information. With HD cameras, for example, it
should be possible to extract reliable appearance descriptors from targets’ faces,

effectively enabling face recognition algorithms to be used for tracking.

3D sensors, such as time-of-flight (TOF) cameras, can be installed next to a
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standard camera to provide depth information for each pixel. There are several
ways in which this can improve tracking, for example by helping discriminate
between partially overlapped targets that are far away along the camera axis,
and by incorporating pixels depth into the background model for motion detec-
tion [42].

In addition to algorithmic and technological improvements, further work should
be done on human-machine interaction (i.e. user interface). For this project,
only a rudimentary graphical user interface (GUI) was developed, using OpenCV
primitives and keyboard. This minimalist GUI allows the user to select the
active camera, either by directly entering its ID, or by navigating the network
layout. When a target is visible on the active camcra, the user can “tag” it
with a single mouse click (camera calibration is used to convert the click point
into a bounding box of the appropriate size). If the data source supports it,
video playback can be paused, resumed, and advanced frame by frame while
tracking; additionally, the video can be rewound and fast-forwarded (but not
during tracking). Deciding on a GUI design that is suitable for deployment in
control rooms, however, will require close collaboration with security operators,

n order to understand their specific needs.

6.4 Publications
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