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ABSTRACT

THE VIBRATION CHARACTERISTICS OF PACKAGES OF THICK,
PRETWISTED TURBINE BLADES

N. D, Cogger

A consideration of the working environment of turbine blade
assemblies demonstrates the necessity for preventing vibration induced
fatigue failures and this study seeks to establish an adaptable and
efficient method to enable the designer to predict the frequencies at
which such failures could arise,

Exact mathematical solutions to the problem are not, generally,
possible and thus recourse must be made to approximation techniques,
such as lumped parameter and finite element modelling. In this study,
a survey of such techniques shows that although a finite element model
may be more accurate than a lumped parameter solution for the two
dimensional analysis of untwisted blade packages the latter is more
amenable to the modifications required by the three dimensional analysis
of pretwisted blading. It is also demonstrated that the inclusion of
such factors as non-uniform blading, rotation of the bladed disc
assembly and improvements in the accuracy of the model do not generally
increase the complexity of the problem when such a technique is
employed,

The Myklestad lumped mass model for the analysis of beams has,
therefore, been adapted to turbine blade packages enabling tangential,
torsional, axial and longitudinal modes to be calculated.

Concomitant experimental analyses of 31mp11f1ed blade package
models have been undertaken using Laser holographic and interferometric
techniques to assess the accuracy of predicted vibration frequencies
and modal shapes, Good agreement is shown to exist and where
differences have occurred improvements in the model have shown to amend
the solution.

It is concluded that lumped parameter modelling is capable of
providing a flexible, perspicuous and economic tool for use in the
design of turbine blade packages, The simplicity of the basic model
allows the effect of modifications to be easily assessed. whilst the
accuracy is considered to remain within the limits imposed by
manufacturing tolerances.,
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1.1

THE THEORETICAL ANALYSIS OF TURBINE BLADES AND ASSEMBLIES

Introduction

The design engineer seeks to protect a component from in-
service failure due to stress, temperature, corrosion and any
other environmental effect by a combination of the methods of
isolation and selection. When isolation is not poséible the
component properties must be selected so that the effects of the
environment are most effectively resisted.

- To avoid some groups of fatigue failures components must
be designed such that certain frequencies of excitation will not
give rise to excessive amplitudes of vibration. Often, these
prohibited frequencies are known in advance of the initial
design, the nature of the environment being sufficiently
predictable, but in others the presence of an unsuspected source
of vibration is not revealed until a prototype fails. In both
instances it is important that the natural frequencies of
vibration of the component be known, primarily to avoid dangerous
excitations and secondly to aid the identification of the source
of the failure.

Unless it can be readily established that only the
fundamental frequency of a component is of significénce, the
analytical computation required for all but the simplest
components requires the use of a digital computer to solve the
relevant equations, In the study of the transverse vibrations
of beams (in which domain can be included a wide range of design
components) analytical solutions do exist, but only for the

uniform case and certain mathematically contrived cases, In all



probability the typicalvdesigner has a limited knowledge of
numerical methods of solution and only those engineers who
specialise in vibration analysis have an opportunity to
appreciate the many refinements of the basic methods,

The present work, therefore, seeks to establish a method
to predict the natural frgquencies of vibration of thick,
pretwisted beams, with varying cross-section (in which category
fall turbine blade packages). The work forms a natural extension
to that by Allen (1), both in the theoretical analysis and thé
development of experimental techniques, using Laser holography,
to a#sess the accuracy of the numerical solutions.

The importance of ;urbine disc vibration may be juaged not
only from the considerable amount of research undertaken in this
field, but also by consideration of the working environment of
the component. In addition to the torsional stresses of the
disc, imposed by the transmission of torque from the blades to
the shaft of the turbine,the blades themselves are subject to
rapid, pulsating forces generated by the working fluid issuing
from the stator, In general these forces may be considered as
hgving axial and tangential components, but an additional radial
‘component is provided by centrifugal forces, which can be
considerable in present day high speed turbo-machinery.
Temperature effects and imbalance of components can also add to

this hostile environment, although the latter may be minimised

by good manufacturing technique,

Since the failure of even a single blade can cause

additional damage and the whole machine to be rendered inoperative

it is of prime importance to prevent vibration induced fatigue



failure by careful design. Indeed, although improved materials
and prediction methods have made rare failurés due to static
overloading, the demand for greater reiiability with increased
loads has meant that vibration induced f#tigue failure remains
a severe problem (2),

Although it can be shown that attaching turbine blades
to a flexible disc can give rise to more complex vibration
characteristics than if the blade is considered as a single
cantilever (3) it is the blade which is most seriously affected
by the intermittent forces of the working fluid and any
vibration of the turbine assembly,

Consequently, this work aims to provide an adaptable,
efficient and perspicuous method for prediction of the vibration
characteristics of cantilevered turbine blades, including the
effect of joining the blade tips with a shroud., Although this
precludes a detailed study of the vibration of disc assemblies,

consideration of this aspect will be given in the following

discussion,



1.2 Approximation Techniques

1.2.1 1Introduction

The analysis of a dynamic structural problem is more
complex and time consuming than the static problem for
two main reasons. The loading and the response to this
loading vary with time and a succession of solutions
corresponding to all times of interest in the response
history néeds to be established. Also, a dynamic load on
a structure causes displacements associated with
accelerations,which in turn produce inertia forces
resisting these accelerations. It can easily be deduced
that the displacements which cause the inertia forces are
themselves affected by the magnitudes of these forces and
thus the motion can only be described in terms of
differential equations,

These differential equations of motion are generally
not amenable to exact solution, except in a few simple,
or mathematically contrived,cases. Additionally in most
structures, whether based on plates or beams the mass
and, therefore, the inertia forces are distributed
continuously, giving rise to a system with an infinite
number of degrees of freedom and thus an infinite number
of resonant frequencies.

It is therefore necessary to approximate the real
system to enable the required number of modes to be
extracted with a suitable degree of efficiency and
accuracy. dbviously this represents a compromise and

several methods have been developed to facilitate an



expedient solution,

In order to derive a prediction method to enable the
designer to establish the resonant frequencies of
packages of pretwisted turbine blades it has been necessary
to make an assessment of the approximation techniques
currently available and develop that considered most
suitable. Since thg method is intended for use at the
basic desién stage it is considered that flexibility and
ease of manipulation would be at leaét as important as
accuracy and the discussion of the approximation techniques
has been biased by this factor,

1.,2.2 Lumped Parameter Modelling

From the preceding discussion it has been seen that,
since a beam generally has a continuously distributed
mass an infinite number of degrees of freedom and hence
modal shapes is possible. In order to make the
problem more tractable,one solution is to reduce the
number of masses and therefore the inertia forces,by
concentrating them at a finite number of discrete points,
while the elastic properties of the structure are
retained by considering the masses to be joined by light,
uniform beams giving the correct flexural constant (EI).
The displacements and accelerations need then only be
defined at these points, Further restrictions may be
applied to constrain the directions of motion of the
structure, The number of degrees of freedom (and thus
the number éf natural frequencies) of the system is then

restricted to the product of the number of masses and the



directions in which they are permitted to move.

Having defined the model there still exist
alternative érithmeticaiAsolutions for solving the
problem, either using tabulation methods, matrix
relaxation or matrix iteration and reduction., The latter
two techniques involve setting up the necessary number
of simultaneous equations of motion, expressed as a
matrix eqﬁation,from which eigen-values and eigen-vectors
may be extracted. The former method, which is frequency
selective, requires that each element is analysed in
turn to satisfy dynamic and elastic conditions determined
by the assumed frequency. If the end conditions are not
satisfied for the type of beam further trial frequencies
are assumed, based on the results of previous estimates,
until the end conditions are satisfied, the frequency at
which this occurs being a natvral frequency of the system,
The tabulation method used in this study is that due to
Myklestad (4),itself based on the Holzer method for close-
coupled torsional systems (5).

Obviously the greater the number of masses the more
accurate becomes the approximation and several workers
have shown that for most cases the accuracy converges to
that of an exact solution at the rate of N-z, if the beam
has one or both ends free, or N-A if the ends are clamped
or pinned, where N is the number of masses, It can be
seen from this convergence rate that there is an economic

limit to the number of parameters beyond which the

improvement in accuracy is too small to justify the



increased calculation time,

Since the accuracy of this type of model is
dependent on the number qf masses rather than the actual
method of solution,ccntrary to the requifements of
economy,it would appear that an improvement in the type
of discrete element would be advantageous, ﬁeckie and
Lindberg (6) compared four models:-

i) éoncentrated masses connected by light uniform

beams of flexural constant EI (a "Myklestad"
model).

light, rigid beam elements, connected by springs

e
e
~r

representing the flexural constant, with mass
concentrated at the joints. |

iii) rigid beam elements with distributed mass,
connected by springs representing the flexural
constant,

iv) rigid beam elements with distributed mass,
supported at discrete points on a massless
continuous beam of flexural constant EI, Between
the supports the deflection of the mass varied
linearly.

In all cases a finite difference technique was used
to provide a solution from these models for free-free,
simply supported and clamped-clamped beams, It was
concluded that "no single model is entirely satisfactory
under all circumsfances and hence no positive recommendation
can be made'as to the best model to adopt".

The basic Myklestad model (i) was shown to give good



results for simply supported and clamped models, with
the error varying as N_A, but when applied to the free-
free beam the error increased to vary as N—z. The simple
finite difference model (ii) and the "refined" model (iv)
both gave poor results with the error varying as N_z.

It is difficult to extrapolate these results to
apply to the analysis of turbine blades, which can
generally-be assumed to be cantilevers (i.e. clamped-free
beams) since this case was not considered and also the
method which gaﬁe the better solution for the clamped
beam, (i), gave poor results for‘a.free beam, whilst the
reverse was true for model (iii).

Allen (1) considered further improvements to the
baéic concentrated mass model with particular reference
to the cantilever, By positioning the mass at the centre
of the beam element instead of at the junction it was
found that the error in the frequency parameter for the
first four modes was reduced by a factor of -0.5., Allen
then argued that since the mass concentrations at the
beginning, middle and end of a given step are (0.5, 0, 0.5)
for the Myklestad model and (0, 1, 0) for the central
mass model, giving an error ratio between the two of 2:-1 it
would be logical to assume that an improved accuracy would
be obtained by forming a mass distribution of (1/6, 4/6, 1/6).
These figures will be recognised as the multipliers used
for summation and integration by Simpson's rule. This

principle was then further extended by considering that,

although all three models represent the first moment of



mass correctl& the second moment is represented correctly
only by the so-called "Simpson-model".

Now, the pth moment, about an axis passing through
the point Z = 0, of a distributed mass is given by the

L
expression J. (/L) zpdz, while the equivalent for a

0
n

discrete mass is Z Am.éin)p. Thus,by a suitable
r=20

distribution of mass it was possible to obtain a 10-step

model in which the pth order moment of the discrete mass

was the same as the pth order moment of a uniformly

distributed mass, where 0 < p < 5.

The corresponding 10th order model required that
some of the masses be negative, which is obviously an
unaccéptable departure from the true state and therefore
an equivalent model was derived with eleven masses (one
at each end and one at each step junction,which satisfied
three conditions:

i) the total of the discrete masses equalled the

mass of the cantilever,

ii) the distribution was symmetrical,
iii) the first five solutions of the frequency

parameter were required to agree with those of
the exact theoretical solution.
It was shown that using ten step models only the
last gave acceptable values for the fifth mode = this
being predetermined - but on increasing the number of
steps to tﬁenty only the "Simpson model” gave consistently

better results than the Myklestad model. It was then



1.2.3

necessary to establish whether any of these improved
models were adequate for departures from the case of the
thin uniform rod. Allowances were made for shear
flexibility and rotary inertia, which becomg more

significant as the thickness/length ratio of the beam

.increases, by applying lumped inertia coincidentally with

each mass, for all but the "mid-point mass" model.

In general it was demonstrated that the basic Myklestad
model (of forty steps) and the "Simpson model" (of twenty
steps) gave higher accuracy than the other for a variety
of end conditions, In fact the Myklestad model tended

to be marginally more accurate than the "Simpson model
and while a greater number of steps are used the
simplicity of the basic lumped parameter model gives it an
added advantage,

It may be concludéd from this discussion that although
it is tempting to improve a lumped parameter model to
obtain greater accuracy with a smaller number of steps,
in fact greater flexibility and economy, with accuracy,is

gained by simply increasing the number of steps in a basic

model,
Distributed Parameter Modelling

An approximation which could, intuitively,appear to
be more accurate than the lumped parameter model, is that
in which each element is considered to be subject to a
distributed, rather than a discrete, load. Allen (1)
investigatéd two models of this type.,

In the first each element was assumed to be

- 10 -



subjected to a linearly varying distribution of
transverse load, suitably adjusted to produce elastic
and dynamic cbmpatability over the length of the
element, Although gcod results were obtained for the
thin beam, with errors proportional to N_4 considerably
higher errors were noted when allowance for thickness
was included, errors in this case being proportional to
N_2 for all end conditions.

The errors were shown to be reduced if, instead of
considering an element subject to a linearly varying
distributed load, a constant load was assumed to act in
conjunction with a distributed moment. However, although
errors were less, the convergence rate remained inversely
proportional to the square of the number of elements.

In both cases solution of the model was by tabulation
techniqueé in which each element was analysed to satisfy
dynamic and elastic conditions determined from an assumed
frequency. A consistent physical model does not exist
for the distributed parameter approximation and thus a
solution using a set of simultaneous equations is no longer
possible, i

1.2,4 Generalised Co-ordinates

For this approach the continuous distribution of mass
in a beam is again approximated to a series of discrete
masses (ml’ Mys ceey mn). It is then possible to form
a series of simultaneogs equations in terms of generalised
co-ordinateé given by the amplitudes of motion

(xl, Xys soes xn) of the respective masses, The elastic

-11 -



properties of the model may then be defined by a
symmetrical array of coefficients, [A], say,in whicﬁ
an element'Ars (equal tq Asr) is the displacement of
mass r due to a unit force applied at s, Since. the
inertia force at any point, p, due to a vibratory
motion of circular frequency w is given by wzmpxp the
resultant from the actions of all n inertia forces is
given by.the matrix expression
[a)[M]? (x)

where M 1is a diagonal matrix of order n representing

the masses (m)
and {X} is a column vector of the displacements (x).

Since each mass is given the displacement assumed
in computing the inertia forces the matrix equation

& [A)MHx) = (x) (1.1)
is valid,

It can be seen that there will be n solutions of
the equation (1.1), where the eigen-values of the
characteristic matrix [A][M] are the values of w2 and
{X} is the eigen-vector giving the modal shape.

.However,if the inertia per unit length is not
constant (as will be the case with tapered and pretwisted
beams) the characteristic matrix, [A][M], will no longer
be symmetrical., Obviously a solution is more efficient
and computer storage requirements reduced if matrices
are symmetrical., Additionally an evaluation technique,
such as Jaéobi's method, which is needed when close or

equal roots are to be evaluated,can only be used on

-12 -



symmetrical matrices,
It becomes necessary, therefore,to pre-multiply both

sides of equation (1.1) by [M]i to give

A al i) 3 = 072 [t

which may be simplified by writing -
-2
[T]ict = w™° {c} (1.2)

where [T ] = [M]*[A][M]i and is symmetric
and {C} = [M]i {x}

Each term in the eigen-vector {C} may be considered
as a generalised co-ordinate,

Allen developed an analogous group of generalised
co~ordinates which allowed the'equations (1.1)vand (1.2)
to be replaced by a similar matrix equation, but of
lower order than the discrete maSS'system; for a given
accuracy., This involved setting up a series of linearly
independent polynomials such that by a summation of scalar
multiples of the polynomizals any of the first five
natural frequency modes of vibratibn could be represented
with an acceptable error limit. By derivation from
eqﬁaiion (1.2) each polynomial was interpreted as the
product of the deflected form at any'position along the
beam and the square root of the mass per unit length,

It was shown that, for the case of the thin, uniform
beam, the use of the ten functions to describe the
deflected shape gave an accuracy comparable with a basic
discrete mass model of forty steps.

However the inclusion of both shear flexibility and

-13 -



rotary inertia to this solution, to cater for the thick
beam, doubled the size of the matrices, since it is
necessary to retain a set of co-ordinates to define the
rotation of a transverse cross-section separate from

the co-ordinates defining deflection, This is in contrast
with the Myklestad model where the inclusion of terms

to cater for thickness do not appreciably affect the size
of the problem,

It was shown that the number of generalised
co-ordinates required to maintain the accuracy obtained
with the thin beam increased from ten to nineteen resulting
in an increase in computer running time of between 3 and
34, To economise on computer usage it was shown to be
possible to reduce the order of the matrix by an
improvement in the set of polynomials, which more closely
represented the end conditions of the beam under
consideration. Although the use of thirteen generalised
co-ordinates (seven representing deflection and six
rotation) was shown to give acceptable errors in the case
of the cantilever, the error increased for the pinned
free beam,

Although this technique was shown to be applicable
to pretwisted cantilevers the variations in error
tended to be more random in comparison with the lumped
and distributed parameter solutions, this being
indicative of a loss of numerical consistency in the
resolution of the matrix rather than an inherent failure

in the method, It was also demonstrated that,

-14 =



irrespective of the closeness of coﬁputation of the
frequency parameter,the error in modal shape from the
generaliéed co-ordinate model differed appreciably
from that obtained by lﬁmped and distributed parameter
models,

1.2.5 Finite Element Analysis

The use of finite element techniques has become
widespread in recent years and provides a convenient
and reliable idealisation applicable to all types of
structures, from those which may be considered as
frameworks, consisting of, effectively, one-dimensional
members, through two~dimensional plate and shell
structures, to three-dimensional solids,

In essence the method consists of idealising the
continuous structure to a finite number of elements,
joined only at points referred to as nodes, where the
forces and displacements are assumed to occur, The
behaviour of each element may then be analysed using
conventional techniques, taking into account
equilibrium of forces, compatability of displacements
and the laws governing the material behaviour. The
individual contributions are added and the resulting
set of matrix equations solved for the displacements and
stresses,

It can easily be shown (7) that, assuming elastic
behaviour of the element, the nodal forces and

displacements of a statically loaded structure are related

by the equation
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[x]}{s} = (P} (1.3)
where [K] represents the stiffness of the structure
{8} the nodal displacements

and {P} the nodal loads.

| In vibrational problems the principal of d'Alembert
may be inVORed.tQ reduce the problem to a static one,
provided that forces equal to the negative product of
the masses and accelerations are introduced, in which

case equation (1.3) becomes

[k]te} = =([m ]+[mM] (8}+{r} (1.4)

where [MO] is a diagonal matrix of external masses
attached to the nodes
and [bi]is the overall mass matrix assembled from the
element mass m&trices.
However, the general equation (1,4) may be simplified if
there are no external forces ({P}) and the elements are
considered to have distributed mass only, giving
[k]{s} = -[u]{8} (1.5)
For vibration at a natural frequency with all points
moving in phase
) (6} = {5} sin ut
and thus {§} = - mz {60} sin wt
and by substitution equation (1.5) becomes

([K]- w? [u]is } =0 (1.6)

which will be recognised as a typical eigen-value
problem for which several methods of solution exist.
If [K] and [bi]are of order n there will be, in

general,n values of & which satisfy equation (1.6).
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Most standard eigen-value problems are presented for
solution in the form |

[B](x} = A {x)
where the matrix fH ]is symmetrical,

Now, it is convenient to write A = 1/w2 since most
iteration procedures yield the largest eigen-value A
and this definition will, therefore, provide, initially,
the lowest natural frequency. Equation (1,6) can, then,

be written in the form

[K]71[M]t6 } = x (6} (1.7)

However, [K]-I[M] will not, generally, be symmetrical
and it is necessary to rewrite [K ]in triangular form in

terms of a new matrix [L] having zero coefficients above

the diagonal, where
T
[k]=[z][]
Thus, if equation (1.,7) is multipled by [L]-l it can be
rewritten as

[L]—I[M]{Sf} = [L]™{s}

If the substitutions

2} = [1)" €6}

and [1] =[] [M][z]7!"

are made the problem can be expressed in the required
form, with [H | symmetrical, that is

(H]{z} =2 {2} (1.8)
Values of A may then be determined and the modes ({Z})
from which the actual modes {§ } are available. |

Although the basis of this method is shown to be
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1.2.6

straightforward ;ﬁe problem arises in defining a suitable
element which best méeis the often conflicting requirements
of a practical problem,
Conclusions

A survey of techniques enabling a continuous
structure to be approximated to a model with a finite
nunber of degrees of freedom, to allow a dynamic analysis
to be made, has been presented, It is admitted that the
survey is by no means exhaustive, but only those methods
which show potential suitability for application to turbine
blade package analysis have been discussed.

In the following section (1.3) the general approach
of this secéion is replaced by a more detailed discussion
of the use of these techniques in order to arrive at the
most suitable approximation for the three dimensional

dynamic analysis of blade packages.
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1.3 The Application of Approximation Methods to the Dynamic

Analysis of Turbine Blades and Packages

1.3.1 Introduction

1.3.2

In the preceding section an outline of four
methods of approximating the continuous structure of
the beam to a structure with a finite number of
degrees of freedom was given, fhese methods will
now be discussed in detail in relation to their
application to the specific problem of the vibration
of turbine blades, with reference to the soiutions of
other workers in this field,

Method of Analysis

One'of the first analyses of the bending vibration
of beams for which there is no exact solution was that
due to Myklestad (4), based on Holzer's method for
finding natural modes of torsional vibration (5). Both
are based on the fact that, at a natural frequency and
with a finite vibration amplitude the shaking force
becomes zero. Whilst the technique is more
complex when considering flexural vibration, since the
number of degrees of freedom is increased from one to
at least two, the ﬁefhods are essentially similar and
suited to a tabulation solution, this being necessary
prior to the introduction of digital computers, Indeed,
two advantages claimed by Myklestad for his method were
that the technique was simple enough to be used by

inexperienced labour and that, since the results were

' plotted graphically,even closely grouped frequencies

would not be overlooked, The latter was considered to
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be an important aspect in the analysis of aircraft
wings with flexibly mounted engines, for which the
method was originally developed. It is perhaps-
surprising that Myklestad's analysis was restricted

to slender beams, since allowance for thickness is
easily included by an additional term representing
inertia in the equation relating moments and an
additional term representing shear flexibility in the
displacement equation. Prohl (8) extended this analysis
of single beams to include the effect of fitting a
shroud to the blade tips, earlier shown by Smith (9)
to introduce additional groups of natural frequencies
which cannot be predicted by consideration of only the
blades. Again, however, Prohl omitted to include an
allowance for blade thickness and retained Smith's
assumptions that the shroud would be adequately
represented by an additional mass at the blade tip and
that the blades were inextensional, But, Prohl did
include axial and torsional as well as flexural
vibration,

The adaptability of the Myklestad method was
appreciated by Prohl, who indicated that the blades
need not be uniform and that flexural and tqrsional
flexibility at the blade root could be included, A
digital computer was used for the calculations, in
place of the graphical mefhod of Myklestad,

The introduction of digital computers to perform

automatically a series of Myklestad tabulation routines
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precludes the use of graphicai metheds to aid the

selection of a suitable frequency to converge on a solution.
Mahalingam(lO)showed that the model could be easily
improved to give a fast convergence rate when using
computers, The selection of a new estimate of the

natural frequency was obtained by considering a small

change in either a lumped mass, or the elasticity of an
element, depending on the boundary conditions of the beam
being considered. The relevant parameter change was defined
as that required to give correct boundary conditions and
thus the frequency estimate becomes the natural frequency

of the modified system, The modified system is then
converted to the real system, with a corresponding change

in frequency, giving an improved second estimate of frequency,
Other workers have considerably improved on the basic
Myklestad model for the single non-uniform beam, including
Huang and Wu (11),Carnegie (12, 13) and Fu (14) who included
the effects of centrifugal forces due to rotation of the
disc assembly, pretwist and coupling effects caused by the
centre of torsional flexure and the centroid not being
coincident,

The validity, adaptability, accuracy and ease of
solution of the lumped parameter model is clearly
demonstrated in these references,

In his survey of approximation methods, which
included lumped and distributed parameter models and the
use of generalised co-ordinates to represent deflection,

Allen (1) demonstrated that while suitably accurate

- 21 -



frequency results could be obtained for a thick pretwisted
beam with all threce models, in some cases the latter
solution was less reliable at high frequencies due ‘to
inaccuracies in the solution of the matrix, Errors in
modal shapes were also higher for the general co—ofdinate
model., Little advantage was shown to be gained by the use
of a distributed parameter model rather than the simpler
lumped parameter model, It was shown that the major
difference between the tabulation and generalised co-ordinate
(matrix) solutions was in the computer storage and running
time required. Not only was the running time for the
general co-ordinate method double that for the Myklestad
model, but the storage requirement for floating point
variables was increased by a factor of approximately
seventcen, The approximations compared were a forty step
Myklestad model and a model with a deflected form defined
by thirteen orthogonal polynomials for each reference plane,
An additional advantageous feature of the lumped
parameter solution arises from the fact that the
evaluation of a trial frequency is independent of any other
computation carried out at a different frequency. Thus,
it is possible to perform a coarse search on a model of
reduced accuracy, after which frequency ranges of interest
can be searched with a discrete mass model of greater
accuracy than that used for less significant areas, Indeed,
areas of no importance need not be examined at all, This
approach may even be more economical than the technique
described by Mahalingam (ibid) to achieve improved

convergence,
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When considering an extension of the model to the
more complicated blade package the use of generalised
co~ordinates becomes excessively' unwieldy, especially
when axial, torsional and longitudinal motion are being
considered in addition to tangential motion and it may
be concluded that of the models discussed the lumped
parameter and finite element models only provide
suitable techniques for the analysis of a package,

Since, as has been discussed previously, the solution
to a finite element approximation is a standard eigen-
value problem the accuracy of the solution depends
primarily on the element used, provided the computer has

sufficient resolving power to enable the matrices to be

solved accurately. The definition of the element is,

therefore, of prime importance fo enable the problem to

be solved not only accurately, but also economically,
Several investigators have derived elements

considered suitable to define the vibration of a "Timoshenko

beam", that is, in which the effect of thickness has been

included, but it has been shown to be difficult to

incorporate all of the boundary conditions associated with

beams, It will be recalled that those for the cantilever
are zero displacement and bending slope at the built-in end
and zero bending moment and shear force at the free end.
Several formulations have been based on the element
due to McCalley (15, 16) in which énly two nodal degrees of

freedom are considered, displacement and bending slope,

from which consistent mass and stiffness matrices can be
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derived. While this fulfils the requirements of an encastré
beam the representation of boundary conditions at the free
end is not possible., Carnegie, Thomas and Dokumaci (17)
developed an element with two degrees of freedom (displacement
and bending slope) at each of four equispaced nodes, which
generally gives improved results for thicker beams than that
due to McCalley, since representation of shear deformation
and rotary-inertia is better. However, when considering a
slender beam, more accurate results are obtained from the
element of McCalley since that due to Carnegie et al tends
to "waste'" degrees of freedom which are put to better use to
improve the representation of bending in the simpler element,
Thomas and Abbas (18) developed a further element with
four nodal degrees of freedom (deflection, total slope,
bending slope and its first derivative) at each of two
nodes. It was claimed that this enabled all boundary
conditions to be satisfied at either end of a beam. However,
whilst this element is most conveniently used with
continuity of the four degrees of freedom across the element
boundaries, difficulties are introduced at changes of

section, or at the junctions of beams. It is also argued

by Thomas D, (19) that greater accuracy is obtained if these
constraints are not applied, since the finite element
solution finds the distribution of bending moment, shear
force and displacement over the whole structure which
corresponds to the state of minimum potential energy,
subject to the constraints imposed by the element

displacement functions and the geometrical boundary
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COndl.'-tionS. It is shown that, normally, bending moment and
shear force at a free end, say,.are, approximations to zero
of the same order of accuracy as ét any other points on

the structure, If, by using the element of Thomas and
Abbas, these conditions are artificially constrained to be
exactly zero, the accuracy at other points along the
structure tends to be worse, since the potential energy is
higher, which, in turn, increases the natural frequency.

For general purposes Thomas D, (19) concludes that
the simpler element of Carnegie, Thomas and Dokumaci is
better, because, with only two degrees of freedom per node
it is not necessary to consider the extra constraints which
need to be imposed on the total slope and the first
derivative of the bending slope at boundaries and across
elements., Additionally this element has a faster convergence
rate than that due to Thomas and Abbas,

It should be noted that the restriction on the number
of degrees of freedom per node precludes the use of all these
elements for the dynamic analysis of the pretwisted beam,

In a recent paper Thomas and Belek (20) extended the
use of finite element analysis to the free vibration of

blade packages. The packages investigated were idealised
using rectangular cross-section elements with three degrees
of freedom at each of two nodes, allowing flexural and
longitudinal movement, The motion was thus restricted to
the plane of the package. The system considered was

similar to that of Smith (9) in which the shroud cross-

sectional area was small and the blade motion described by
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the Bernoulli-Euler theéry, applicable to the slender
beam, The effect of blade thickness and finite shroud
width can be shown to have opposing effects on the -
frequency and thus the results are, fortunately, more
accurate than may be expected. As with most blade
package inveétigations the disc to which the blades
were considered to be attached was assumed to have
infinite radius and infinite rigidity, but it was claimed
that both disc flexibility and greater complexity of
the blade configuration could be taken into account,
The solution of this model was based on the theory

of stationary potential energy, in which the potential
energy (V) is given by

V=U-w2T (1.9)

where U is the time independent strain energy
T is the time independent kinetic energy

and w is the free vibration frequency
The strain and kinetic energies are related to the stiff-

ness and mass matrices by the nodal displacements, that

18
v=4 {6} [k] (6} (1.10)

T =} {6} [m](8) (1.11)

Substitution of these expressions in equation (1.9)
and invoking the condition of stationary potential energy

yields a standard eigen-value problem of the form

([k] - r[M]{s} =0
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Now, from the Bernoulli-Euler theory of flexural

vibration the energy of an element can be obtained from

U=§EII (a")zdz+5EAf (%-;i)zdz (1.12)

T =} pA[ @2 + %) 4z (1.13)
o

iy

where u is the longitudinal deformation
v is the transverse deformation
and z the element length

Thomas and Belek considered that the flexural and
longitudinal displacement states within an element could
then be approximated by a cubic and a linear polynomial
respectively, with respect to z., Substitution of these
polynomials into equations (1.12) and (1.13) enabled the
stiffness and mass matrices to be derived from equations

(1,10 and (1.11).

By careful numbering of the nodes when building the
blade packet from the elements, the stiffness and mass
matrices will be found to have a banded configuration.
Although the overall size of the matrices is obviously
of

function of the number of blades, elements and degrees

freedom, the bandwidth can be shown to be independent of

the number of blades, It is more efficient to utilise

this banded configuration for solution of the matrices,
rather than transforming them into symmetrical form and

Thomas and Belek used an algorithm developed by Gupta (21)
to extract the eigen-values and eigen-vectors for the
model. A comparison of results from a forty step

Myklestad tabulation solution for one of the packages
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investigated theoretically and experimentally by Thomas

and Belek is shown in Table 1. It can be seen that in all
cases the finite element solution is more accurate -than
the lumped parameter solution, although there is a sudden
increase in the error of the finite .element model for the
second batch modes. This would appear to indicate that’
the limit of this idealisation has been reached and that

a larger number of elements, or an improved element with an
allowance for thickness would be required to solve for
modes higher than the second with any confidence.

Whilst this model was.:shown to give suitably accurate
results for slender blades it is necessary to consider its
extension to deal with the vibration of tapered, pretwisted
blade packages.

Improvement of the element to one with six degrees of
freedom per node would allow calculation of torsional and
axial modes with a consequent doubling of the order and the
bandwidth of the mass and stiffness matrices, However, the
effects of shear flexibility and rotary inertia (necessary
when calculating the axial modes), pretwist and taper
would require a redefinition of the element itself with a
subsequent increase in the complexity of the displacement
functions, .

It was stated earlier that the Thomas and Belek model,
with a shroud of small cross-sectional area, could be
compared to that of Smith (9), in which the blade/shroud
junction is considerably simplified, A full width shroud,

which would cause an increase in the vibration frequency,

- 28 -



would require an improved model of the junction to cater
for the effect, further increasing the complexity of the
problem,

A comparison of the lumped parameter idealisation with
the finite element model shows the advantages of the former
in these respects., While the size of ;he problem is
doubled in both cases when extending the number of degrees
of freedom from three to six the definition of the lumped
parameter model itself remains the same. Taper is
‘adequately described by relevant, simple changes in the mass
and flexural constant of the beam elements and pretwist by
considering each element as being without pretwist, but
successive elemenks rotated bodily by an amount equal to
the total pretwist of the previous elemental length.

Since the number of elements in a finite element model is
necessarily much smaller this type of approximation is
obviously inadequate.

Whilst the reactions at the blade/shroud junction of
a lumped parameter model are still assumed to act as points
the forces are considered in conjunction with the moments
which make an allowance for the thickness of the blade and
shroud. In fact, by introducing a suitable factor the
"effective thickness" at the junction may be varied easily
to effect a suitable allowance for the efficiency of the
joint.

It is also pertinent to consider the effect of
increasing the accuracy of the models., An increase

in the number of elements in a finite element model of a

given number of blades will increase the bandwidth of the
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mass and stiffness matrices by at least the number of
nodal degrees of freedom, increasing the computer storage
requirement, while an improvement in the element itself will
involve an increase in the calculation effort required to
produce these matrices and may also involve an increase
in the order if the number of modes is greater.

Whilst a lumped paraﬁeter model will require a
larger numﬁer of (simple) elements to attain reasonable
accuracy it has been shown that an increase in the
number of masses is generally better than an improvement in
the type of parameter, This increase in the number of
masses only affectsAthe number of times the four equations
of»equiliﬁrium and compatability require to be solved and
does not increase the core storage requirement,since only
the final end conditions for each blade are stored. The
array, whose determinant is required to be zero for the
boundary conditions to be satisfied, can only be of the
order given by the product of the number of degrees of
freedom and the number of blades. Indeed, the storage
requirement for a lumped parameter model is minimal compared
with that needed by a finite element solution. °

In a comparison of finite element apd lumped parameter
solutions for vibration in beam systems Hensheli and
Warburton (22) compared the time taken to solve models of an
equal number of elements using an Atlas computer and Atlas
Autocode, a high level scientific language, It was shown

that the lumped parameter model (solved using a matrix

solution rather than tabulation) was three times as fast as,
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but less accurate than,the finite element method.

However, this comparison tends to emphasise the advantages
of using a tabulation solution to a Myklestad model:
rather than matrix methods. In all the Myklestad models
considered the number of masses was kept low, and of the
same order as the number of finite elements. It should be
remembered that such a coarse approximation with a simple
idealisatién cannot be compared directly with a finite
element splution using a model which is inherently more
accurate due to its greater complexity. However, when
using a matrix solution it is necessary to minimise the
number of lumped parameters to maintain an economic matrix
order, The number of eigen-values found is generaily the
same as the order of the matrix and thus a more accurate
Myklestad model, using the optimum number of steps (of the
order forty, say) will be uneconomic and solve for a

large number of unwanted frequencies. It has been indicated
previously that a tabulation solution is frequency
selective and that limited bandwidths covering important
frequencies can be solved economically with an accurate
model, with a large number of masses, independently of any
other frequency range, None of the other models
considered in this investigation is capable of solution
only in a particular area of interest, since the number of
eigen-values will always be directly related to the total
number of degrees of freedom of the model., Indeed, it is
generally true that only a limited number of modes is of

interest, as was demonstrated by Armstrong and Stevenson (23)
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who found that "By fairly rigorous endurance testing,
backed by strain gauging, it has been shown that more
than 90% of these (compressor blade) failures can be
attributed to vibration in the first or second flexural
mode, the first torsional mode and the first edgewise
mode".
Conclusions

Of the approximations of beam systems considered
in section 1.2 it has been shown that two are appropriate
to the solution of blade packages, a finite element model
and the tabulation solution of the lumped parameter model
of Myklestad, Whilst the latter solution tends to be
less accurate than the former it can be shown to be more
amenable to modification to cater for non-uniformity of
the blades and the complexity of the blade/shroud junction,
without an undue increase in the size of the problem or
the computer effort required to solve it. In addition the
Myklestad tabulation method is shown to be the only
idealisation capable of a frequency selective solution,
which can offer considerable improvements in the economy

of a model with a large number of elements,

- 32 -



1.4

The Vibration of Bladed Disc Assemblies

As was mentioned in the iﬁtroduction (1.1) Ewins has shown
that consideration of the complete turbine disc assembly can
introduce further natural frequencies of vibration in addition
to those predicted under the assumption that the disc on which
the blades are mounted is of infinite radius and stiffness., This
thesis has been supported by experimental evidence and theoretical
calculation (3).

Two basic methods may be applied to model the basic assembly,

a receptance coupling procedure, which enables the constituent
parts of the assembly to be combined, and the use of finite
elements,

The latter approach presupposes the form of the vibration
of the assembly and requires the solution of high order matrices.
The former analysis has, however, been developed by Ewins to provide
a general analysis for bladed disc vibration, which will cope with
assemblies of any number of non-identical blades without any
assumptions as to the modal shape. The basis of receptance
coupling is the application of dynamic equilibrium and compatability
at the junction between two connected components, Individual
analyses of the components provide the so-called receptance
functions which relate the forces and displacements at the junctions.
In general , since forces and displacements can exist in three
translational and three rotational directions, six equétions of
compatability and equilibrium will be required for each junction and
thus the receptance will be described by a sixth order matrix of
individua} functions. However, in particular cases a reduction in
the number of degrees of freedom is possible to derive a more

efficient analysis (24),
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In the analyses described in references (3) and (25) a
simple model consisting of a uniform disc fitted with uniform,
untwisted blades of constant cross-section, joined at their
tips by a uniform straight shroud was investigated. Whilst this
is sufficient to demonstrate the validity of the approach it is
considered that application to an assembly of pretwisted, tapered,
shrouded blades would considerably increase the complexity of the
problem, since the necessary expressions for receptance data for
this type of blading are not reédily-available.

. Disc induced vibration will affect mainly the axial rather
than the longitudinal, tangential and torsional modes and i; has
been shown that the axial vibration tends asymptotically to the
natural frequency of the cantilever blade as the number of nodal
diameters increases (3), In fact, while assemblies with small
blades show largely disc controlled axial modes there is shown to

be a trend to blade controlled modes as the blade size increases

relative to the dis;.

In the present study, whilst axial motion has been included
the emphasis is placed on the tangential vibration modes, in
which direction the disc can be considered infinitely stiff., The

blade dimensions are also such that the axial modes are considered

to be "blade-controlled".
It has been decided, therefore, that the assumption of an
infinitely stiff disc of infinite radius remains valid and the

effects of the disc will not be included in the approximate model.
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1.5 Concluding the Survey of Blade Package Approximation Techniques

In this chapter a survey has been undertaken of the
approximation techniques applicable to the analysis of continuous
structures with particular referenée to the analysis of thick,
pretwisted turbihe blade packages. Although the effects of a
flexible disc have been studied it has been concluded that, for
the purposes of the current analysis the relative blade/disc
dimensions will be such as to give "blade controlled" axial
vibration and thus the disc itself has been assumed to be of
.infinite stiffness and radius and only the motion of the blades and
shroud will be included.

Of the methods available to approximate the continuous
structure of the beam it has been concluded that only two are
applicable to the analysis of blade packages, these being the
simple model of Myklestad with a tabulation solution and the use
of finite elements.

Whilst it can be shown that the finite element approximatioﬁ
provides a better representation of a package of beams undergoing
free vibration,the application of this to a package of thick,
non-uniform beams, with inclusion of pretwist,cannot be undertaken
without a fundamental improvément in the elements. The addition
of a complex blade/shroud junction further increases the.
complexity of the model. The inclusion of all six degrees of
‘freedom and an increase in the nunber of elements to cope with the
cohplexities of the pretwisted blade package lead to a considerable
increase in the order of the mass and stiffness matrices,

Whilst large, modern computers will easily cope with high

order matrix operations the core storage and time requirements

- 35 -



will also be high. It is possible to partition large matrices
and solve only part of the problem at a time, storing the
partitioned matrices not currently being analysed on disc, but
while this reduces the core storage requirement (making it
suitable for smaller computers) the core to disc transfer also
becomes time consuming. 1In general it may be concluded that a
finite element solution can give good accuracy, but requires
considerably more computer time and core storage than the lumped
parameter solution. It should also be remembered that all the
eigen-values available from an approximation with a given number
of degrees of freedom require to be solved, whereés in many cases
only the low modes are reﬁuired.

Since the tabulation method due to Myklestad solves the
problem for a selected frequency independently of any other
frequencies-only those frequency ranges of interest need be
examined. It has been shown that the accuracy of the model is
indepcndent of the size of the determinant relating the end
conditions, whose solution is required to test whether a given
frequency is a natural frequency, this only being a function of
the number of blades (N) and the number of degrees of freedom,
giving a maximum order of (6 x N). This implies that an
improvement in the accuracy of the model by increasing the number
of masses does not involve a proportional increase in the time
taken to find a solution. The simplicity of the model allows a
variety of end conditions to be investigated, without a change in
the fundamental model.

When considering the applicatioﬁ of a method to provide

basic design criteria it is important that the method be flexible,
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to allow the effect of modifications to be assessed easily. It is
considered that in this respect the lumped parameter solution
offers considerable advantages over the finite element andlysis.
Although the former method is less accurate it is considered that
the accuracy remains within the limits imposed by manufactu%ing
tolerances.

It has been concluded, therefore, that taking into account
efficiency and adéptability as well as accuracy the lumped
parameter method due to Myklestad is best suited for extension to
cover the analysis of blade packages consisting of non-uniform,
pretwisted beams.

In the following chapters the Myklestad method is developed
from the basic model to that suitable for the analysis of complex
blade packages. A parallel experimental analysis, using Laser
techniques enables an assessment of the accuracy of the frequencies
and modal shapes to be made, considering tangential, torsional and

axial vibration.
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2,1

THE MYKLESTAD METHOD APPLIED TO THE VIBRATION OF THICK CANTILEVERS

Introduction

In the previous chapter it was shown that the lumped parameter
method for the prediction of turbine blade vibration characteristics
offered the advantages of adaptability and economy when compared
with other solutions to the problem., It is now proposed to show
in detail how the technique due to Myklestad may be developed from
the analysis of single beams to that of a package of pretwisted,
shrouded blades capable of movement in three mutually perpendicular

planes. The effects of taper and of centrifugal forces due to

‘rotation of the blade will also be considered.

In order to restrict the number of parameters it has been
found necessary to make certain assumptions, though it is considered

that these limitations affect only the detail and not the general

principles of the analysis.

In considering a beam with a high thickness/length ratio it
has been assumed that unstrained transverse sections through it
remain plane when subject to vibratory conditions, as defined by
Timoshenko (25). 1In addition the flexural and torsional neutral
axes for any cross section have been assumed to be concurrent and
the common neutral axis thus formed to be straight. Cross sections
have also been considered as rectangular to enable the relationship
between shear flexibility and flexural flexibility to be a constant.

Whilst it is common for the cross section of a turbine blade
to be unsymmetrical with respect to the principal axes of
inertia, giving rise to additional flexural-torsional coupling,
this effect will be negligible for tangential vibration and of only

minor significance for many of the axial and torsional modes of
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vibration, when considering blades of normal proportions. It is
considered, therefore, that, for the purposes of this
investigation, an adequate representation of turbine blading is
retained.

Although a practical turbine blade package would,'
obviously, have the blade longitudinal axes radiating from the
turbine axis those of the packages analysed in this investigation
have been assumed to be co-planar, parallel and equispaced and
any difference due the fan effect of the former has been assumed
insignificant.

Both blades and shrouds are considered to be of the same,
homogeneous material and the junctions between them to be
identical. Although it is not essential to the method, the
roots of the blades have been assumed to be fully encastre with
the exception of the analysis of the tapered beam when
ascertaining the effectiveness of the clamp used on the
experimental rig.

The fundamental principle has necessarily been accepted that
in a free vibration the motion can be considered as the sum of a
series of separate motions in any one of which all parts move with

the same frequency and pass through their mid positions

simultaneously.
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2.2 The Single Cantilever

©2.2.1 The Myklestad Model

The conventional lumped parameter model is shown
in Figure 1(a) from which it can be'seen that the beam
is subdivided into a numbef of parts, half of the mass of
any part being considered as concentrated at each end.
The remaining light portion of the beam is treated as
having a uniform flexural constant. It is obvious that
each junction has two associated concentrations of mass
and thus it is convenient to consider each step as
consisting of a mass of Am at the end 2z, but no mass at
the other end (z + Az). A typical element, with the
variables used to define its motion, is shown in
Figure 1(b).

If the thickness of the beam is significant then a
discrete inertia AJ is also required at position z, the

magnitude being given by the expression:

2
83 = tm (F 7))

Application of d'Alembert's Principle gives both an

. 2
inertia force (of magnitude -Am (g—g)) in the x direction
dt 2!
and an inertia couple (of magnitude =AJ ( ’;) in the x’

dt
direction. If the circular frequency of vibration isw

then the substitution x = X cos ot may be made and all the
terms shown in Figure 1(b) contain the factor cos ut.

The equations of equilibrium and compatability may now be
established and since cos wt is not normally zero it can

be extracted as a factor, leaving:
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2 (2.1)

F+AF =F +w An.X

M+ MM =M+ (F + AF) Az - mzAJx' (2.2)

X'+ aX'= X"+{(M + AM) Az - (F+AF) égi}/EI '(2.3)>
X+ AX = X + X'Az + {(M+AM) _A_zgf ~ (F+AF) A_;?.}/EI

- (F+AF) Az (K/GA) (2.4)

The final negative expressions in equations (2.2) and (2.4)
are, respectively, the rotary inertia and shear flexibility
terms introduced to cater for thickness.

The general equatioﬁs (2.1) to (2.4) may be further
developed to provide a mo;e efficient analysis of the
uniform beam. If the equations are rearranged and divided
by Az then, since in the limit Am/Az tends to m/L and
AJ/Az tends to (M/L)(T2/12), for the uniform case, the

following set of equations is obtained:

Ff = wz (m/L) xtotal (2.5)
M' = F - w® (m/L)(T2/12) X' et (2.6)
(X' np)' = M/EL (2.7)
X' X' - F(K/GA) (2.8)

=
total -7 rotat

Elimination of F,M and X' from these equations gives rise

to the characteristic equation:

2 2 2 mmz K T2
iv , mw® KEI .| T ve L mw” (1 - — "=="75)X = 0
EIX™" + —— (—-—GA + —12) X I L GA 12

(2.9)

Equation (2.9) may be more conveniently expressed in

terms of a non-dimensional frequency parameter, V, related
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to the actual frequency by the expression:

£f=2-Y (ﬁ%)* (2.10)

This results in the characteristic equation (2.9)

becoming:
. 4 2 4 4 2
.iv o vt KEI T \' v' KEI, ,T
x — gl —_— ey _ . - —— b o =
* a1 X 7 1 L4(GA) GPrx=0

(2.11)

Further simplification may be achieved by introducing
dimensionless parameters representing the bending and
shear flexibilities of the beam (%?’%) and the term
(T2/12), which for a rectangular cross-section is derived

directly from (I/A). Thus:

a= T2/12L2 = I/AL2
v = KE/G

resulting in equation (2.11) becoming:

' 4 4
x Vel svrnx - a-vivd) x=0 212
L L

It is because this equation is not generally
amenable to an exact éolution that the various numerical
techniques, such as those discussed in Chapter 1, have
been developed.

To return to the Myklestad solution to fhis problem
it can be seen from Figure 1 that it is convenient if,
when progreésing along the beam, transferring data to the

next element, the overall length (L) be traversed in a
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number of equal steps (N). Thus, each element is
considered to have a mass Am = m/N, half of which is
placed at the end of each element. It can be deduced that,
although the element shown in Figuré 1(b) is suitable
for contiguous, intermediate steps, the end steps must
differ from these. Thus, if the beam is treated as
having N identical steps an extra mass of m/2N occurs at
the root and half of the mass of the tip element has not
been included. The end s;eps, therefore need to be
suitably modified by a "dummy" mass of magnitude
(-m/2N) at the base and the mass of (m/2N) at the tip
(Figure 1(c)).

The equations (2.1) to (2.4) may now be simplified
to provide a suitable algorithm for automatic computing.

It is logical to replace the térm szm in equation
(2.1) by a function of the non-dimensional frequency

parameter (V), defined in equation (2.10) and the number

of steps (N), thus:

W= v/ (2.13)

Also, with particular reference to equation (2.4), it is
convenient to define the following variables
D= (L/N) X';. B= (L/N)2 M/EI;

s = (L/N)3 F/EI

Then, if the equations (2.1), (2.2) and (2.3) are
multiplied by (L/N)3/EI, (L/N)Z/EI and (L/N) respectively
and the new variables substituted the following equations

are obtained:
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S + AS = S + WX ‘ ' (2.14)
B+ AB =B+ (S+ AS) - WD aN> (2.15)
X3 AX=X+D+} (B+ AB) -1/3 (S + AS) .
2 (2.16)
- (S + AS) yoN
D+AD =D+ (B+AB) -} (S+ AS) - (2.17)

It may be noted that the order of thellast two
equations has been reversed to give an algorithm in which
the right hand sides contain the most recently calculated
values of the variables S, B, X and D, thus providing a
routine ideally suited to computation.

In fact equation (2.16) may be simplified further given
the assumptions that:

i) E = 8¢/3

ii) the bar is of rectangular cross section, for which

K = 1.2 in which case
'y =KE/G = 3.2 (Ref. 2.6)

Thus tbe correction for shear flexibility is 3.2 times
larger than that due to rotary inertia.

The equations (2.14) to (2.17) which form the basis
of the Myklestad method can be solved as folows.

Two linearly independent sets of initial values for
S, B, X and D at z = O are estimated, such that they are
consistent with the end conditions for the beam. In the
case of a cantilever, for example X and D must always
be zero, while it is qonvenient for 5 to be finite and Bo
zero for the first set and Bo_finite with S zero for the

second set, It must be remembered that the initial shear
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force term requires an adjustment to allow for the "dummy"
mass, as discussed pfeviously.
A frequency is then assumed, the value being based

~on any information which may 5e available to define a
range of interest. The equations (2.14) to (2.17) are then
solved repeatedly, progressing from element to element
along the beam, for the two sets of initial conditions.
The final values of S, B, X and D may then be tested to
establish whether a suitable combination of the two sets
of initial values resulted in the final values
satisfying the end conditions for the beam at z = L. 1In
the case of the cantilever SL and BL must obviously be
zero while XL and/or DL are finite. If this is so then the
assumed frequency can be accepted as a resonant
frequency. SL will, in fact, differ from its true final
value, again, due to the inclusion of the "extra" mass,

" Usually the end conditions are not satisfied and it
is then required to establish a measure of the error,
which may be compared with previous errofs to enable an
improved estimate of the frequency to be made. The choice
of a residual parameter to represent the error is of
prime importance, especially when using automatic computing
rather than plotting the results by hand, as envisaged
by Myklestad.

* 1f, therefore, the residual parameter is defined by
forming a linear combination of the two sets of final end
conditions, related by the coefficients a, and a,s say,

then considering the example of the cantilever a convenient
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2.2.2

expression for the residual is the matrix equation

For a resonant frequency R must be zero and the only

non-trivial solution satisfying this requirement is that:

det M1 Mé

R

=0 '

Thus it is required to test the value of the determinant

of the (suitable) end conditions after each trial frequency.
Having defined a suitable residual parameter it is now

necessary to develop a routine to interpret its value to

enable rapid convergency to a sensibly zero value, thus

establishing the resonant frequency.

Location of Roots

For the uniform, untwisted, single cantilever there
is generally good separation between the solutions in the
frequency parameter, V, for at least the first five
natural frequencies and, provided that successive trials
are made at intervals in V of not more than 1.0 the
presence of a root may be detected by a change in sign
of the residual, Successive linear interpolation, or, the
"rule of false position" will then reveal a sensibly zero
value for the residual and hence the frequency at which
this occurs., However,Awhile the location of roots is
béing discussed, it is pertinent to include extensions to

this basic technique, which ensure that all roots, including
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close pairs and double roots are found, with an
economical search interval. However, it is generally
true that these refinements are only necessary when
 pretwisted or packaged beams are being analysed.

A case in which the location of roots by a change:
in sign of the residual, R, is inadequate is exemplified
by Figure 2, where four successive values of the
frequency parameter all obtain positive values of R and
thus the possibility of a root, or roots, between trials
2 and 3 is not detected. However, if the slopes of
straight lines joining adjacent points are investigated
a turning point can be identified. If this turning point
is a minimum for a group of positive values of R, or a
méximum for a group of negative values of R, then the
presence of roots is implied.” If the approximation is
made that the curve of R against V is parabolic then the
turning point can be defined. If vibration in both
planes is being considered then a double root at the
turning point can be identified. When the roots are a
close pair a change in sign is detected and the two roots
can be found by iteration.

Once a root has been disclosed as lying between two
trial values then its actual position can be located in
two ways. As discussed previously, the curve between the
points can be approximated to a straight line to enable an
improved value for V to be established. Secondly, the
search interval between the two values can be subdivided

and a finer search initiated from the first point. Im
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2.2.3

general it can be shown that the former procedure requires
less trials than the latter, however there are some cases
where repeated subdivision becomes more economical.
Figure 3 illustrates a case where the rate of convergence
is increased by subdivision. A change in sign has been
detected between trials V1 and V2, but the presence of a
root close to, though outside the range, has given rise
to a low maximum value at the turning point. As is shown
by Figure 3 the rate of convergence using successive
iteration is slow, but if the interval is subdivided then
the turning point can be located by comparison of the slopes.
When the turning point and the root are not in the same
subdivision (Figure 4(a)) then linear interpolation can
again be used. If, however, they do occur in the same
subdivision (Figure 4(b)) then greater economy is achieved
by further subdivision and a repeat of the process.
Allen (1) demonstrated that this method satisfactorily
located all roots for the pretwisted beams considered in
his investigation.
The Tapered Cantilever

The model descriBed in section 2.2.1 may easily be
extended to allow for taper in one or both planes by
defining the mass and dimensions at each station as a
function of a suitable linear or exponential equationm.
Within the current investigation both linear and exponential
taper were considered, results for the latter being compared

with an exact analysis, while those from the former were

compared with experimental data.

In order to establish the accuracy of a lumped
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parameter model of the Myklestad type the special case
of the exponentially tapered cantilever.was considered
in some detail.

For the case.of undamped vibration it is easy to
show that the modal shape x = £(z) associated with a
natural frequency of w/2m is obtained from the

differential equation

2
117-(E1.J£%) - pw’x = 0 (2.18)
dz dz

If the mass per unit length (p) or the flexural
coefficient (EI) are functions of z then equation (2.18)
is not, generally, amenable to analytical solution.

However, various special cases exist, including the

solution in which:

EI (EI)oe and p o e

the suffix o indicating values at z = O,
Substitution of these values in equation (2.18), and

rearrangement gives:

v 2 )
4 errdx, . AL (2.19)
dz dz

where u4 = (é%)o wz

(Comparison with equation (2.10) shows that u4 = (%)4)
Expanding (2.19) and using the notation D = é%
D2 (e_pZsz) =D (e-pzD3x-pe_pzD2x)

- 79 Ay (2.20)
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Rewriting equation (2.20) two distinct solutions emerge

{@%pp) + 2 PTVZ2y o (2.21)

{(Dz-pD) - u28(p-q)z/2} x =0 (2.22)
If, in order to validate an arithmetic approximation, the
study is restricted ﬁo cantileveréd blades of constant
thickness, but of varying width, then considerable
simplification is obtained and it can be seen that :

Py
(EI) is a constant
and thus p = q = 2v, say.

Substituting these values in equations (2.21) and (2.22)

leads to

(2.23)

]
o

(D2 - 2vD + pz) X
(2.24)

"
o

(D2 - 2vD - uz) x
The form of x is then seen to be

x = e 2 (A cosh Bz’+ B sinh Bz + Pcos ez + Q sine z)

(2.25)
where 82 = p? + 2 (2.26)
2_ 2 (2.27)

€E = u =-wv
provided that p is less than 2y.

If z = O defines the clamp and z = 1 the free end, then

n
o

Xx =Dx =0 at 2z

n
-

(EI)D%x = D(EI D%x) = O at z

Then, conditions at the clamp readily produce the

requirements that:
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A+P=0 (2.28)
BB+ Qe =0 (2.29)
The tip conditions give the following equations, where

C = costcz ch = coshBz

s = sinez sh = sinhfz

{A(v2 + 82) + 2vBBlch + {B(v2 + 62).+ 2vgAlsh

4+ {P(v2 - ez) + 2veQle ; {Q(v2 - ez) - 2veP}s = 0 (2.30)

and

{Av(82 - vz) + BB(BZ - vz)}ch
+ {88(82 - v1) + Bu(s? - VD }sh
+ {-Pv(e2 + vz) - Qe(e2 + vz)}c

+ {Pe(e2 + v2) - Qv(e2 + vz)}s =0 (2.31)

Equation (2.31) may be abbreviated using equations (2.26)
and (2.27), that is, 82-v2 = €2 + vz = u2

and then dividing through by uz, hence:

{Av +BB}ch + {AB + Bv}sh
- {Pv+Qel}s + {Pe = Quls =0 (2.32)
Equations (2.28), (2.29), (2.30) and (2.32) are compatible
if, and only if, the determinant of the coefficients of

A, B, P, Q in the set is zero.
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det

That is,

1 0 1 0 =0
B 0 €
(vZeBch  @8viech  (vE-ed)e  (2ev)e+
#(28v)sh  +(v248Dsh —(2ev)s  (vE-ed)s
(v)ch+(B)sh (B)ch+(v)sh (-v)c+(e)s (-e)e-(v)s

Evaluation of this determinant may be simplified by
remembering that P = — A and Q¢ = - BR from equations (2.28)

and (2.29). Thus rows three and four can be féduced to

(v2+62)ch+(28v)sh (28v)ch+(v2+82)sh
- (vz—ez)c+(2€v)s - (ZBv)c-%(vz-ez)s
(v)ch+(B)sh (B)ch+(v)sh
+ (v)e=(e)s + (B)c+(Bv)s
€

which, when equal to zero provides the required solution.
It will be remembered that this solution of equations
(2.23) and (2.24) depended on p being less than 2u.
However when p and thus v, are large the correspondingly
low value of u would,. theoretically, lead to e values of
less than zero from equation (2.27). Hence the form of

equation (2.25) would change to:

x=evz(Acosth+Bsinth+Pcoshe'z+Qsinhe'z) (2.33)

where (E')2 = v2 - uz
AE the clamp (z = 0) x =Dx =0

so that equation (2.33) becomes:
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Xx=A+P=0 (2.34)

and:

Dx=evz(ABsinth+BBcosth+Pe'sinhe'z+Qe'coshe'z)

+ ve'Z?(AcoshBz+BsinhBz+Pcoshe 'z+Qsinhe'z) = O
or BR+Qe'+v(A+P) = O—
which, using equation (2.34) is reduced to
BR+Qe' = O (2.35)

At the tip (z = 1) the bending moment and shear force must

be zero hence:

(EI)D2x=D{(EI)D2x} =0
and thus

{A(v2+82) +2vEB}coshBz+ (B (v2+87) +2vBA} sinhez
+ {P(v2+e'2)+2ve'Q}coshe'z+{Q(v2+e'2)+2ve'P}sinhe'z =0
| (2.36)
and
{Av(v2+362)+36(3v2+3?)}coshsz+{As(332+32)+Bv(v2+332)}sinhsz
+{Pv(v2-H3e'2)+Qe'(3y2+e'2)}coshs'z

+{Pe'(3v2+e'2)+Qe'(v2+3e'2)}sinhe'z =0 (2.37)

Again, the equations (2.34) to (2.37) are compatible
only if the determinant of the coefficients of A, B, P and
Q in the set is zero. As with the preceding case the

fdur by four determinant can be simplified using the

relationships
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P = - A and Qe' = BB

to give the determinant

2vBsh62+(v2+62)ch8z 2v6ch82+(v2+82)sh62
-2ve'she'z-(v2+e'2)che'z —ZvBche'z-€i6v2+e'2)shs'z

8(3v2+a2)shez+v(v2+382) chpz - B(3v2+8%) chaz+v(v2+38%) shez
—e'(3v2+s'2)she'z-v(v2+3€'2)che'z -B(3v2+e'2)che'z-Eg(v2+3e'2)she'z

Thus, the problem is reduced to finding a value of
the frequency parameter u for which either of the
determinants, of order 2, above (the choice depending on
whether p is less than or greater than 2u) solve to give
a zero value. As with the Myklestad solution, ; value of
u is chosen and the determinant evaluated to give a
residual parameter R. A similar iteration routine to
that described in section 2.2,2 can then be used to
determine a suitable u value to give a zero residual, thus

locating a root.

Solutions for the first five modes of vibration of
exponentially taperedocantilevers were derived using the
above analysis and compared with equivalent solutions from
Myklestad routines with three degrees of approximation (ten,
twenty and forty steps). A series of taper ratios was
analysed with values for p within the range 0.0 to 8.0.

A comparisoﬁ of the values obtained from the exact and
approximate analyses is given in Tables 2 and 3 and the
graphs (Figures 5 and 6). The first graph (Figure 5)

is a plot of the frequency parameter (defined here as pL)
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against the taper, expressed as the expohent p, and
compares values obtained from the theoretical analysis
with the least accurate Myklestad model of ten steps,
for the first five modes., Figure 6 is a carﬁet

plof of the frequency parameter against error and taper
for the ten and forty.step solutioﬁs.

An interesting feature is highlighted by Figure 5
and is shown in the plot for the fifth mode. At high
values of the frequency parameter solution of the
determinant defining the residual (R) involves finding
the difference between two very large numbers. If the
discriminatory powers of the computer are insufficient
to describe these numbers with adequate accuracy then
round-off errors can give rise to spurious roots. To
demonstrate this, the exact analysis was performed on a
small computer (a Digital Equipment Corporation
PDP-8/E) in which 24 bits are used to represent a
floating point number and then on a larger machine (an
Elliot 4120), which represents a real number with 48 bits.
In the former case spurious solutions were found and are
shown by the symbol A .on the graph, while the latter
values denoted by the symbol e, give the correct solution.
Although this effect was only shown up by the exact
analysis it can also occur with the Myklestad method.
However, if it is apparent that the computer does not
adopt sufficient bits to describe a number for adequate
discrimination then the choice of initial conditions at the

root may be adjusted to improve the credibility of the

residual.
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It may be concluded from the above analysis that a
lumped parameter model‘can be considered adequate to
describe this type of dynamic system, provided that the
degree of approximation is suitable. It is obvious
that, if rapid changes in the beam dimensions are present
and/or high order modes are required then a more accurate
model with a 1arger.number of elements is necessary.

~In addition to the analysis of an exponentially
tapered cantilever the Myklestad method was also used to
derive the resonant frequencies and modal shapes of a
linearly tapered cantilever, with varying end conditions.
The data were compared with results obtained
experimentally using laser image-speckle interferometry,
as described in Chapter 3 and enabled the effectiveness of
the clamp in providing a fully encastre end condition
to be ascertained.

In the calculation it was assumed that the clamp and
beam combination acted as a single structure. The end
conditions at the base of the clamp were varied from those
applying to a built-in structure (initial slope and
deflection both zero) to those for a free~free beam
(initial shear force and bending moment zero). The latter
condition was included because the clamp was plgced on a

bonded rubber mat. In the extreme, rubber-in-shear could

provide effectively free conditions at the base, although
for this case it was considered improbable in practice.
If the clamp was effective similar results should be

obtained from all end conditions and these would agree with

- 56 =



the experimental values. Table 4 compares the results
of the two extreme end conditions defined above, with
those obtained ekperimentally, from which it may be
concluded that the clamp provided suitably encastré
conditions and also gave full vibration isolation of the
model from the opgical table.

2.2.3 The Pretwisted Beam

The'lumped parameter model discussed in section 2,2.1
lends itself easily to being extended to deal with the
effects of pretwist, If it is sufficient to consider
the beam as being approximated by a lumped mass model then,
by extension, it is also adequate to treat each element as
being itself without pretwist, while contiguous elements are
staggered. The discontinuity at the element junction is
then such that the angle of stagger is equal to the
pretwist of the previous elemental length. Thus the model
developed in section 2,2.1 can be maintained, the only
modification necessary being to calculate two new sets of
variables at the end of an element, aligned with the next
element. If the variables are defined as in Figure (7a)
and the relative angular positions of the major and minor
principal axes of adjacent elements are as in Figure (7b)

then it is easily seen that the matrix relationship

[ | = T cosAf sinAf

X X X %

! ! ! ' ~sinAB A6
X1 X2 X1 X2 sin cos
M M. M (2.38)

Mo 1 M

Fl FZ startofLFl F2 _end of
: “element element

r +1 r
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defines the state at the beginning of element (r + 1) from
that existing at the end of element r.
Now, it will be remembered that, when considering

/

the thick beam, an inertia term, of magnitude (I A) times
the element mass and coincident with it was necessarily
included. However, the angular displacement between the
principal axes of the element cross-sections at the
junctions of the pretwisted model does not allow thesé
inertias to be added directly, although the masses may be
combined as previously., Inertia moments affecting the
bending moments M1 and M2 may be satisfactorily included
by assuming that half the mass of each element is
concentrated at the beginning of each element with
coincident inertias of magnitude (m/ZN) (II/A) and
(m/ZN) (IZ/A). The equations 2.1 to 2.4 may then be used
to traverse the element for both planes of deflection
with an additional two operations to correct shear force
and bending moment so that the forces and moments arising
from the lumped mass and inertias at the end of the element
are included. '
Simplification of the equations 2.1 - 2.4 is achieved,
as before, by the use of the composite variables D, B, S,
W, o and y, but with the addition of a term H ='(12/I ) to

: 1
allow for the elastic and dynamic differences between the

reference planes,
For the transformation of equation 2.38 to be
applicable it is obviously important that the variables

(p, B, SH are compatible with (D, B, S)z. Thus it is
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assumed that all these variables and the frequency
parameter are defined in terms of the flexural coefficient
(EI)I’ then corregted as necessafy by the ratié of the
second moments of area (H).

The Myklestad equations for the pretwisted beam
may, therefore, bé expressed as below,.where the arrow
indicates that the new value of the variable to the left
is calculated from the expression to the right, using the
current values for the variables.
S1 - Sl + (W/2) X1
2 75,
M DM +S; (Wav?/2) D,

+

S (W/2) X2

2
M, > M, + 5, (WHaN“/2) D,

X, > X +D +M/2-57/3- (yon?) 8, (2.39)
X, - X, +D, + (M2/2 - 82/3)/H - (yaNz) s, (2.40)
D, >D, +M ~-5,/2 (2.41)
D, -> D, + (M, - s,/2)/n (2.42)
S; = S; + (W/2) X (2.43)
S, 28, + (W/2) x, (2.44)
M, DM - (Wen?/2) D (2.45)
M, > M, - amen?/2) D, (2.46)

It should be noted that, for the correct interpretcotion of
these equations, they must be evaluated in the order shown.
Since vibration in two planes is now being considered there
will be a totél of sixteen reactions at the blade tip,
calculated from four linearly independent inputs at the

base (two for each plane). The determinant of the tip
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2.2'4

coefficients is thus of order four and a pivotal
condensation technique, based on that dﬁé to Gauss, is
required for its solution. A full description of the
method used in this analysis appears in section 2.4.
Allowance for Centrifugal Forces on a Rotating Beam

Both in the preceding analysis of the single blade
and the following analysis of blade packages the effects
of rotation about an axis perpendicular to the
longitudinal axis of the blades have been ignored.
However it is clear that, since present day turbines
rotate at high speeds, the centrifugal forces, which are
a function of thé square of the anguiar velocity, cannot
be considered as negligible. . X

Basically, centrifugal forces cause an increase
in the blade stiffness and a consequent reduction in
movement and some workers, for example Huang and Wu (11),
Fu (14) and Carnegie (12) have included a correction to
account for this when estimating vibration frequencies.
It can be shown that Myklestad method is particularly
amenable to such a modification.

Figure 8 shows a typical Myklestad element with the
addition of an angular velocity of rotation of Q and“the
centrifugal forces Fc associated with it., It cau be
seen that the basic equations of compatability and

equilibrium are now of the form:

A 2 Az3
X+AX=X-X'A,‘z+{M—-§—-(F-FCX') =5} /81

- (F - FX') b2 (El%) ©(2.47)
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X'+ 8X' = X'+ (Mbz - (F - FX') A—;—} JEI

M+ AMM=M- FAz + FCAX - szJ X' + AX'")

~

F+AF =F +0% Am (X + A%)

2
Fc + AFE -Fc + Am Q7 (z + Az)

(2.48)

(2.49)

(2.50)

(2.51)

It will be seen that the model in Figure (8) and the

order of the equations (2.47) to (2.51) are different from

Figure 1 and the associated equations (2.1) to (2.4). This

reversal of the direction of the algorithm is necessary to

enable the moment of the centrifugal force to be calculated

from the difference in the displacement of the ends of the

element (Am). Although this affects the detail of the

method, the principle is retained and the application to

blade packages follows similar arguments to those given

earlier.

- 61 -~



2.3 Analysis of Packages of Thick, Pretwisted Cantilever Blades

2.3.1 Introduction

In Chapter 1 the contributions of several authors
on the analysis of blade packagés were discussed in detail.
Having shown that the lumped parameter approximéte model
originally due to Myklestad, but further developed Ey
other workers, haé certain advantages over the
alternative methods, it is now proposed to extend the
techniques developed in the preceding sections to cover
the vibration of a series of cantilever blades joined at
their tips by a shroud.

An early paper by Smith 9) applied the Myklestad
technique to packages consisting of parallel, equispaced
blades of uniform section vibrating only in the plane of
the package. The blades were considered to be joined
by inextensional bands, represented only by their
centre lines, the mass of each band being concentrated
at the blade tips. The former approximation obviously
requires all blades to have the same displacement at the
tips, while the latter restricted all motion of
significance to a direction normal to the unstrained
centre lines of the blades. The shrouds in this model
dé, however, introduce resistance to slope at the blade
tips, while the effect of neglecting junction thickness
(which tends to underestimate natural frequencies) and
shear flexibility and rotary inertia (shown by Allen to
cause overestimation of frequencies) are probably self-

cancelling,
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Prohl (8) extended Smith's model to include
pretwist of the blades,'but although torsional coupling
of the blades and axial flexibility of the bands were
included, shear flexibility, rotary inertia and an
allowance for thickness at the blade/shroud junctions
were, again, neglected.

Allen (1) also improved Smith's model, to include the
effects due to thickness of both blades and shrouds, but
restricted the analysis to blades vibrating in a single
plane. Thus, torsional coupling of the blades, axial
flexibility of the shrouds and pretwist were excluded.
However, deformation due to axial forces was included for
both blades and shrouds, thus permitting transverse
coupling between the deflections arising from all the
beams in the package. Additionally, since the pressure
fluctuations giving rise to blade vibrations are also
capable of exciting flexural vibration of the shroud (and,
therefore the possibility of shroud failure) longitudinal
vibration of the blade was also considered.

Shiga (27) modified the method due to Prohl and
considered an unstaggered model similar to that of Allen.
The principal axis of the blade cross section was
considered to be parallel and perpendicular to the
direction of rotation of the package and although
tangential and axial vibration were calculated, flexural-
flexural and flexural-torsional coupling and the effects
of pretwist were omitted.

The purpose of the current investigation is,

- 63 ~



2.3.2

therefore, to develqp the basic analysis of previous
workers to include the case where the blade principal axes
are at an angle to the direction of rotation of the
package. All blade/shroud coupling effects will also be
introduced.

The Effect of Connecting Single Blades with Shroud Bands

The common practice of joining turbine blade tips
with a shroud not only prevents leakage of the working
fluid around the blade tip, buf also provides increased
resistance to displacement caused by blade vibrations.
However, additional natural vibration frequencies, other
than those of a single cantilever blade, are now
permitted to occur due to coupling effects. Thus groups
of distinct, but interrelated modal shapes, within a
relatively narrow frequency band, are formed in addition
to the "detachea" frequencies of the separate blades.

The "detached" modes, consisting of the fundamental
frequency and its harmonics, have deflection curves for
each blade similar to that of the single blade with a
free tip and encastre root, although the slope at the
tip can be reduced by the presence of the shroud. All
blades in the package move in phase (that is, the motion
is symmetric) and with similar displacement amplitudes.
The shrouding is thus forced to move with the blades and
consequently this type of mode is sensitive to changes
in the shroud mass.

The grouped, or batch, modes, which occur at

frequencies considerably higher than their related detached
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modes, can be divided into two types, symmetric and
antisymmetric, although both exhibit deflection curves
resembling the fundamental (or appropriate harmonic) of

a beam simply supported at the tip and with an encastre
root, Symmetrical modes show slight movement of the
Shrou§ and can thgs be affected by changes in the shroud
mass, but to a much lesser extent than the detached

modes. Antisymmetric modes, where blades in corresponding
positions each side of the package centre line have
deflection curves with a 180° phase shift, do not entail
movement of the shroud and are thus least sensitive to changes
in the shroud mass. With both types of batch modes
considerable differences occur between the amplitudes of
deflection of individual blades in the packet, although

blades in corresponding positions about the centre line

have the same amplitudes.

Examples of detached and related batch modes for a

package vibrating in the tangential direction are shown

in Figure 9.

The number of modal shapes within these bands is

related to the number of blades (N) and also, according to

Thomas and Belek (20) to the ratios

ED)_ / (ED),
A, T (A,

and Ls/Lb

where (EI) is the flexural rigidity

p is the mass density
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A 1s the cross-sectional area

L is the length
and the suffices s and b refer to the shroud and blade
respectively.

Thomas and Belek show that there are at least

(N-1) batch frequgncies in addition to the detached
mode, but this can be increased if the flexural rigidity/
weight ratio is low and the length ratio is high. Allen
and others have shown that a total of N modal shapes can
occur as a group (one detached, plus (N-1) batch
frequencies), but these workeré do not assess the effect
of the above ratios. Shiga found that the introduction
of uncoupled torsional vibration gave rise to N flexural

vibrations and N torsional vibrations.

The large number of close frequencies which can occur
with blade packages if the number of blades is high can
give rise to multiple roots and subsequent ill-conditioning
of the calculation. Both Prohl (8) and Stuwing (28)
referred to the problem of ill-conditioned arrays due to
Allen (1) minimised

loss of accuracy in the computation.

the effect by solving for the s}mmetric and antisymmetric
modes independently and thus was able to reduce the apparent
number of blades from N to }(N + 1) or less. However, it
may be noted that this technique relies on the matrix of

the coefficients relating the blade tip and root reactionms
possessing either symmetrical or skew-symmetrical
p;operties. While this was true for the case of untwisted

blades moving in the tangential direction, considered by
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Allen, it cannot be held to be generally true when
considering pretwisted blades and vibration in all. three
planes. Thus, this improvement to the simple solution
has not been adopted in the current work.

In fact, the;central nominal values of frequencies
in the groups can be found accurately by solving for
packages with a reduced number of blades and it is shown
by Smithh(9) who compared packages of six and twenty
blades and Shiga (27) who analysed packages of from four
to seven blades that the bandwidth of the group remains
constant, so that the frequencies become closer with
increase in the number of blades., Allen, however,
concluded that the frequency bandwidth increased with the
number of blades and that the increase could not be
estimated reliably by extrapolation. In either case it
is probable that the variation in the frequencies of
similar packages, due to manufacturing tolerances, will
offset any errors due to analysing a package of blades with
the correct proportions but reduced in number, In
addition, since the method requires the solution of an
array of size (6xN by 6xN), when considering movement
in all three planes, a reduction in the number of blades
(N) considerably reduces the computation time and the
likelihood of the calculation becoming ill-conditioned.

For the purpose of this investigation the number of
b{ades considered has generally been reduced to three, the

minimum required to demonstrate the coupling effects
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. 2.3‘3

referrcd to above, although additional packages of five
and seven blades have been analysed theoretically to
assess tﬁe affect of this increase.

The Blade Package Model

Use of the Myklestad analysis for the solution of
a package of shrouded blades is a direct extension of the
technique for a single blade. Each blade, with its
related.shroud bands is treated separately and in turn,
the root reactions of all other blades in the package
being taken.as zero and thus the ends of the bands remote
from the blade under consideration are, effectively,
clamped.

A typical blade as described above, with the
variables defining the end conditions, is shown in Figure 10,
Two further assumptions follow from this diagram. It
can se seen that the reactions and movements are shown to
act at the points J, A, B, C and D. However; although
this is only strictly valid for thin beams, the degree of
approximation is reduced by the introduction of shear
flexibility and rotary inertia and despite the further

supposition that plane, transverse unstrained sections

" remain plane during the vibration it is considered that

an improvement on thin beam theory is obtained. Secondly,

in the analysis of pretwisted blades the shroud bands are

assumed to be rectangular in plan, whereas the true

shape is that of a lozenge. Although without justification,
this may be considered as an extension of the previous

assumption and considerably simplifies the shroud model,
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enabling the same basic Myklestad calculation to be

used for blades and shrouds, with only minor modifications
to allow for the dimensional differences. In fact, an
improvement could be made to the shroud model to allow
for the true shape, but it was felt that the additional
complications would not be justified.

It is obvious that the two end blades are not typical
of the example shown in the diagram, since one shroud band
is missing, but this affects only the detail and not the
principle of the method.

The variables as shown in Figure 10 are consistent
with the Myklestad analysis for the individual beams, but
are inconsistent when considering the package as a whole.
It is convenient, therefore, to define a local co-ordinate
system relating to the individual beams (Figure 10) and a
global co-ordinate system relating to the package as a
whole (Figure 1l1). The Myklestad method is applied to the
beams which comprise the package as described in detail
below.

In section 2.2.1.it was shown that reactions and
movements at the tip of a beam could be calculated from a
set of linearly independent end conditions at the root
and the frequency parameter V. This is retained when
dealing with the blade packages, although the value of V
requires to be altered when dealing with "stiff" (y) blade
motion and the shroud since it is based on the "flexible"

(Ix) second moment of area of the blade. In addition
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furthgr calculatibns are required to establish the
longitudinal and torsional effects necessary for the
complete analysis. Thus, four linearly independent
conditions are needed for the Myklestad calculations
(two pairs for each plane), one being set to unity and
the other to zero in turn. With the longitudinal and
toréional calculations this enables the tip conditions

to be expressed by the four matrix transformations:

x] - [Al] M, (2.523
' X

* Fx root

My

'FXJ tip

[y ] = [Al] M, (2.53)

¥ ! Fy

MY root

[Py o

[ 2] .= [AZ]. [P] root (2.54)

| F) tip

- 9. - [AB] [TJ root (2.55)

| T) o

remembering that slopes and displacements at the built-in

root are zero.
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[Al] is a (4 x 2) array of the coefficients calculated
from the step by step integration for each value of the
relevant frequency term V and [Az] and [A3] are the
longitudinal and torsional coefficient arrays, which may

be developed as follows,

If the beam is non-uniform the tabulation method due
to Holzer (5), which was used as the basis of the
Myklestad technique, may be apblied to calculate the
coefficients. However, in the case of a beam with constant
cross section the simpler, exact solutions may be used.
a) Longitudinal Vibration

Consider an element of length dz at a distance z

from the blade root, undergoing a steady state

vibration at a circular frequency of w. If the
displacement and tensile force are defined as Z and

P respectively then the elemental inertia force

(-dP) is given by
m 2
(‘I-‘-) dzw 2

and the strain (ng by

: P
EA
dP _ m 2
Then, F i (f) w Z
d2P m 2 dZ
and thus —5 =" (f) w55
dz
d2P mmz
Therefore —5 *+ (EXE) P=0 (2.56)

dz
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b)

This is the characteristic equation, with a solution

of the form:

(2.57)

z . z
P = C1 cos A T+ C2 sin A i
2
_ mw L
where A * A
Since the blade root is encastre Z = 0 at z = 0O,
=0

from which C2

and by substitution C1 = Proot

The longitudinal reactions and movements at the tip

are thus given by the matrix equation

L sin A
z EA " A | Proot (2.58)

cos A

P [
tip

Torsional Vibration

In this case also a single exact calculation similar
in principle to that used for longitudinal vibration
may be used for the uniform beam.

Consider the angular displacement 6 of an element of
length dz at a distance z from the root of the blade,
undergoing a steady state vibration at a ciréular
frequency of w. Let the torque acting on the element
be T,

Then the elemental inertia moment (-dT) is given by

dT .2
and thus 3, = ~ Ippuw 6.
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where Ip = polar moment of inertia

p = density
%7 2 do
Therefore —5 = - Ip p w™ —
d 2 dz
z
de _ T
But &% =@

where J = torsional constant

G = modulus of rigidity

o, .
thus 3L 4 Aeey 27 =0 (2.59)
d22 GJ

The general solution of equation (2.59) is of the

form

- z . z
T = C1 cos ¥ Tt C2 sin ¥ T (2.§0)

I
where W = (—=— pp) L 2

By consideration of the boundary conditions:

C2 = O and C1 = Troot

Thus Ttip = Troot cos ¥

and 6! - Troot L . sin ¥
"¢ Peip GT ¥

which can be expressed in the form

ol = L . sin ¥ T ,
GJ Y root (2.61)

T cos Y
tip
St. Venant has shown that the torsional constant

for a rectangular section can be calculated

approximately from the equation of an ellipse, by
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replacing the given cross-section by an elliptic
cross-section having the same polar second

moment . of area and area as the actual section.

33 4 4
. T a’b A . A
That 1s, J = ——5— = —5— = 751p

a +b 477 Ip

2 w2p 4n2122 2
Thus v% = ( ) L * (- 7 ) L
? A

Now, the modulus of rigidity and Young's modulus are,

as previously assumed, related by the expression

8

E = 3 G

and the circular vibration frequency is related to
the dimensionless frequency parameter by

. EI
w2 - V4 2L
ApL

4 .
2 §E.__§l.ﬁﬂ_12_9 1.2 (2.62)

Therefore Y~ =~
E b Al

Remembering that, for a rectangular section

) . IE.A_'-I-Z-
12

equation (2.62) can be simplified to

_ /8 _TIp 2 ‘o .
y = eme =2y (2.63)

- 74 -



Having thus established all the reactions
and movements at a typical blade tip, referred to the
local blade axes the corresponding movements at
the shroud tips (A and C in Figure 10) are required.
Obviously, if the blade is staggered, eaéh of the
variables (with the exception of longitudinal and
torsional variables, which are independent of the
blade‘angle) needs to be resolved into the local
shroud co-ordinate system before transference. If
the zone JAC at a typical blade/shroud junction,
such as that shown in Figure 12, is considered as
being rigid then the combination of resolved
lateral and longitudinal movements will give rise
to corresponding movements of the shroud, as shown by
the fine outlines. Torsional motion of the blade
will not give rise to displacement of the shroud

provided that the angular displacement, 8, is small,

since the movement of the points A and C will be

functions of (1 - cosf) in the tangential direction
and (sinf) in the axial direction. From geometrical
considerations it.can be deduced that the shroud

movements are suitably represented by the matrix

equation:-
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ot Y Y

<
e

<
(o]

T T r 1
1 o =(1 0

¥ ° 2y (2.64)

T,
1 o0 15 o o X,
o o© 1 o o X!
0o o 1 o o ¥,
- T ]

0O © 0 1 -2 Y}
o o0 0 1 -(T%) :
o o 0 0 1
0o o 0 0 1

T
o -1 ( 2,5) 0 0
0 1 —(T%) 0 0

Substitution of these movements into equations
(2.52) to (2.55) with the coefficients of the upper
halves of the [A] arrays allows the resultant root
reactions for the shroud bands to be calculated.
Corresponding tip reactions, resulting from the tip
movements, are then available from the equations
(2.52) to (2.55) by solving for the lower halves
of the [A] arrays and the root reactions.

Consider, for example, equation (2.52), applied
to the shroud.

The array[ A1] x has been computgd for two
linearly independent inputs at the root, the first
having the shear force set equal to 1l and bending
moment zero, the second being the reverse. The array

may be considered as two sub arrays relating movements

and reactions, that is
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3
o
o WL

&
(7]

r
&

where the suffices S and B indicate the input
variable set to unity.

The known tip movements and array [AIJ are uéed
to establish the reéctions at the root due to these
displacements, a convenient method being the
sequence of calculations below.

By transposing and rearranging (2.52) the

equation

)yl [ e
Xp X'p

is obtained.
Multiplying both sides of (2.65) by [~ X'g
Xs
yields

1] - ! = 2.66
[x X ]tip X' [MX Fx]mOt 0 (2.66)
Xs |- X'y Xg7Xp X'g

' - -
If X'p Xg=Xp X'g = A

then. (2.66) becomes, on simplification

X'X,~-X.X'.=TF A
S ﬁg S xroot
Thus F = l.(x'x -XX'.) (2.67)
X A S S
root
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Multiplying (2.65) by [-X'B] and solving yields
X

.___1_ [T | ’
Mx A (XX B X XB) (2.68)
root
Having evaluated the root reactions F  and
Xroot
M, from equations (2.67) and (2.68) the tip

root
reactions are easily obtained using the sub array

[AIZ] in equation (2.52), thus,

Mx B [A12J My

vl F (2.69)

tip root
However, analysis of the equations (2.52) to

(2.55) will show that care must be exefcised when
automatic computation is being used for their
solution, If the trial value of the frequency
parameter corresponds to a transverse, clamped-
clamped natural vibration of the bands the array
[All] will be singular and equation (2.65) canunot
be formed. For finite values of the shroud root
reactions the tip movements must then also be
zero, whicg condition corresponds to the clamped-
clamped longitudinal natural vibration of the blade.
Although this combination is possible it is
considered to be inapplicable to this analysis of the
blade package and thus if [All] is found to be

singular the frequency value is recorded for separate

investigation and the analysis is repeated with V
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increased by an amount less than the normal
interval. A similar situation also occurs when
considering the longitudinal and torsional vibration
of the shroud. 1If, for example equation (2.58) is
taken in two stages, to calculate first the

shroud root reaction from the'tip movement, then the

corresponding tip reaction, the relationships

_ ,L -1
Proot (EA sin M) Ztip (2.70)
and Ptip = (cos M) Proot (2.71)

are obtained.

A clamped-clamped longitudinal natural frequency
for the band will give (sin A) = O in equation (2.70),
thus no solution will be available and the frequency
value is aéain recorded and the particular trial

abandoned.

It may be pertinent to record that no cases of
such coincident vibrations were, in fact, found to
occur in the current analysis.

However, in.a typical case, reactions at the
shroud ends A, B, C, and D, as shown in Figure 10
are obtained for a given value of the frequency
parameter and independent initial conditions at the
blade root. The reactions at A and C can now be
transferred such that resultant reactions (from the
blade and shroud bands) are consideréd to act at the

point J, Since the shroud and blades are considered
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to have finite thickness the forces at A and C
act as J in conjunction with additional moments.
It is convenient to consider the resultant

- reactions expressed in terms of the global (package)
co-ordinate axes, as defined in Figure 11; therefore
component reactions, calculated in the blade and
shroud local (Myklestad) axes are converted to the
global system prior to forming the resultants. A
comparison of Figures 10 and 11 enables this
relationship to be deduced.

I1f the pth blade is being considered (where
1<p<N) the resultant forces and moments in global

co-ordinates are given by:

FJVP = PJ+SXA+SXC (2.72)
FJHP = —ijcosa+SYJsina+PA-PC (2.73)
FJRP = —Sstina—SYJcosa-SYA-SYC (2.74)
MV, = T-B,,-By. . (2.75)
MJHP = Bchosa+BYJsinaTA—Tx+Tf{fYA+SYC) (2.76)
MJRP = Bstina+BYJcosa-BYA+BYd-7}(SXA-SXC)

(2.77)

T2
+ -T(PA-PC)
If the extreme left hand blade is being

considered (p=l) then there is no shroud'to the left

and the terms with suffix C are suppressed.
Similarly if the extreme right hand blade is being

considered (p=N) the terms with suffix A are

suppressed.,
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The reactions computed at the remote ends of
the shrouds (suffices B and D) are related to the
tips of the adjacent blades (Jp_1 and Jp+1). Thus,
the forces and moments calculated for the previous

blade and to be calculated for the next blade are

modified by the expressions:

IV ) = - Sy | (2.78)
R, = - By (2.79)
FIR ) = Syp ' (2.80)
WY BXB'SYB(Tz_l) (2.81)
WIH = - TS, (D) (2.82)
MR ) BYB—sm(-g—l) (2.83)
FIV .1 = = Sy (2.84)
FIH_, = ) (2.85)
FIR ) = Sy (2.86)
MVon = "o YD(Z) (2.87)
MIE ) = TD+SYD(- 2 (2.88)
WR ) = - By oD (2,89

Again, if p=1 equations (2.78) to (2.83) have
no meaning and are suppressed and if p=N equations

(2.84) to (2.89) are suppressed.
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To summarise, for each trial value of the
frequency parameter, V, coefficients relating 6N
resultant reactions at the bléde tips to the 6N
independent reactions at the blades are obtained.
For a free vibration of the blade package the tip
resultants must all be zero. As with the single
cantilever this is true only if the determinant of
coefficients which relates the reactions is zero,

In matrix form this relationship is expressed by the

equation:
- 'ﬂ - “
FIV, =[c] [® (2.90)
FJH, . lesina+SY1sina
FJR1 -lesina+SY1cosa
M.JV:_l T1
M’.JH1 BYlsina+Bxlcosa
MJR1 Bchosa-Bxlsina
FIVy [ Py
FJHy SXNcosa+SYNsina
FJRN *Sstina+SYNcosa
MJVN T1
MJIHy BYNsina+BXNcosa
MJRN BYNcosa-Bstina
J tip L d root
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Again, the requirement for a zero left hand side
to equation (2.90) and thus a natural frequency of

vibration of the package, is that det|C|= 0 and,

therefore, once the (6N x 6N) determinant is evaluated
a similar routine to that described in section 2.2.2 may

be used to search for a solution.
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2.4 Evaluation of the Determinant of Coefficients

It has been shown in previous sections that the Myklestad
method requires the terminal variables calculated from the
step-by-step integration along the beam to be zero for the
estimated frequency to coincide with a natural frequency of
vibration. In the simple case of the single beam vibrating
in one plane the terminal variables consist of a (2 x 2)
determinant of the reactions calculated from two linearly
independent input variables, the solution of which is straight-
forward. When the beam is considered to vibrate in two
planes, as with the introduction of pretwist, the determinant
size is increased to (4 x 4), whilsta package of N blades,
permitted to vibrate in all three planes requires the solution
of a (6N x 6N) array.

In order to evaluate the determinants from the latter two
cases, without undue loss of accuracy, the arrays need to be
reduced by a method of pivotal condensation. The technique used
in this study is similar to the standard reduction method due to
Gauss, but has been modified to prevent a zero element in the
leading diagonal causing a breakdown of the process.

The first column of the.array is scanned to locate the
non-zero element of greatest modulus, which is used as the "pivot"

for that column. Multiples of this row are then subtracted from

all other rows such that their elements in column one are
reduced to zero. The process is then repeated with column two
and so on, with the proviso that the pivotal element is not in a
row previously used as a pivot row, so that no row contains more

than one pivot. The result is a square array in which each
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column and row possesses only one non-zero element and which
can be readily evaluated to provide the residual parameter
required for the search routine. Should a non-zero pivot be
unavailable then the value of the determinant is zero, but each
column is still traversed to find the total number of columns
without pivots, since this is a measure of the number of
independent modes of vibration which can occur at that trial
frequency. If the modal shapes are required in addition to

the resonant frequency it is necessary to find the column(s)
which become null when premultiplied by the original array. For
this reason the original array must be stored and the pivotal
condensation performed on a duplicate. The appropriate columns
required for the modal shapes are then extracted by a routine

also based on pivotal condensation.
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2.5

Conclusion of the Theoretical Analysis

The lumped parameter method of Myklestad has been developed
from the anlaysis of single beams, vibrating in one plane; to
that of a package of thick, shrouded blades free to vibrate in
all three planes. The effects of taper and pretwist have also
been assessed. In the anglysis of blade packages flexural,
longitudinal and torsional vibration are permitted to occur, with
full allowance for coupling of modes. Although this results in
an increase in the size of the problem as a whole no increase in
the number of elements comprising the model itself is required
for a given accuracy.

It is proposed that an analysis of a blade package with a
limited number of blades will give adequate information to
enable both detached, symmetrical vibration frequencies and the
bandwidth of grouped modes to be established economically.
Should a more thorough investigation, with, perhaps an increase
in the number of.blades, be required in certain areas then the
accuracy of the model can be improved and a more detailed search
of this particular range of interest can be initiated.

Whilst it has been shown that a Myklestad solution is
amenable to the introduction of centrifugal effects due to
rotation of the blade package, these have not been included
in the current investigation because it was considered that the
experimental confirmation of this asﬁect would necessitate a
disproportionate demand on the available resources.

A comparison of the exact solution for exponentially

tapered beams has been compared with the results from lumped

parameter models to demonstrate the validity of the approximate
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method. In addition results from a Myklestad analysis of a
series of biade package models have been compared with data
obtained by experimentation and a detailed appraisal of this

is given in Chapter 4.
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3.1

EXPERIMENTAL CONFIRMATION OF ANALYTICAL TECHNIQUE

Introduction and Choice of Experimental Technique

There are several methods available for the experimental
analysis of Vibration,.varying in their sensitivity, ease
of application and interpretation of results. Broadly, such
methods may be divided into two groups, those using transducers
and those relying on optical effects,

The use of transducers, such as strain gauges, accelerometers,
or position sensing devices is generally simple in application
and interpretation of the data obtained. However, measurement
is restricted to discrete points-on the object and with the
former two techniques the transducer must be in contact with
the object, which may affect the vibration being measured.

Allen (1) minimised this'by the use of gramophone pick-ups,

which reduce the area of contact virtually to a point, yet retain
sufficient sensitivity and discriminatién to enable vibrations to
be measured over a wide frequency range. Even so, use of these
methods becomes restricted when considering complex objects or
motion in more than one plane, since it becomes difficult to
interpolate between the measuring stations. Allen used five

transducers in a group and investigated ten positions of this
group for each frequency under observation. This necessitated
repeating every test under control conditions.

Optical techniques overcome the latter problem and also have

the advantage of being non-contacting, but are still often

restricted in application.
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Ligtenberg (29) showed that Moiré fringes are formed when
the reflections of a diffraction grating in the polished surface
of an object are compared using a double-exppsed photograph of
the object when stationary and then when Qibrating. The
fringes are shown to thicken in the area of the antinode, but
the method is insensitive, difficult to interprét and is restricted
to polished, flat surfaces. Tolansky and Wood (30) devised an
accurate method in which the vibrating object,which again must
be a flat plate, is compared with an optical flat to form Fizeau
fringes, which show the surface nodes. Inclination of the
surfaces, combined with illumination with monochromatic light
gives rise to a series of sharp, parallel fringes, which broaden
in the antinodal region.

Photoelastic materials, either in the form of a coating ~
(which may affect the vibration being studied)or as the model
itself may also be used. These materials become doubly refracting
when strained, the effect being proportional to the magnitude of
the stréin. When polarized monochromatic light is passed through, or
reflected from,the material it is split into two orthogonally
polarized components, each being parallel to a principal stress
direction and with a propagation velocity proportional to the
stress magnitude. If the light is then viewed through a polarizer
crossed with the original polarizer such that only the horizontal
components of these rays are seen, then,when the components are in
phase,a dark fringe is formed for points on the object having
similar principal stress differences. Although this technique can

be used with complex shapes it is complicated both to use and
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interpret, is insensitive and requires the use of special
materialg. Similar disadvantages occur with Schlieren techniques.

The advent of éhe Laser (a powerful source of coherent’
light) in 1960, its application to Gabor's system of
holography (31), by Leith and Upatnieks (32) and the subsequent
use of holography to observe vibration modes by Powell and
Stetson (33) and Archbold and Ennos (34), inter alia, has enabled'
considerable advances to be made in the study of vibrating
systems., Laser holography offers several advantages over the
methods discussed above, in that it is non-contacting,
comparatively simple to use and interpret, is sensitive and
accurate and can give a complete picture of the complex vibrations
of an intricate opaque object. Although in some cases special
surface coatings can improve the technique they are not,
.generally, necessary. Measurements may be carried out in real
time or remotely by the use of photographs, or the time-averaged
technique of Powell and Stetson. Measurements may even be
carried out in adverse environments (35) by the use of pulse
lasers.

Another simple and sensitive method which utilises the high
power and coherence of the Laser is the Laser speckle
interferometry technique due to Mottier and Eliasson (36),

Stetson (37) et al. Although only the nodal pattern can be
observed (in a form similar in appearance to Chladni sand
patterns) the technique is valuable for assessment of modal shapes

in real time.

The advantages of Laser holography and speckle interferometry
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show them to be ideally suited for the confirmation of the
results derived from the theoretical analysis of blade packages

vibrating in three planes and the particular techniques adopted

will be discussed in further detail.

- 0] -



3.3 Principles of Laser Holography and Interometry Applied to
Vibration Analysis

3.3.1 Time Averaged Holography
It is well known that a photographic plate is

capable of recording only the intensity of the light

incident upon it and thus phase information (relating
to line of sight distance) is lost. Gabor (31)
demonstrated that if the plate was illuminated by two
beams of coherent light, one, the object beam, reflected
from the object, the otﬂer, the reference beam, directed
at the plate, then the two beams would interfere. The
fringe pattern recorded acts as a diffraction grating
that, when illuminated by one beam, will diffract it such
that a reconstruction of the other beam is formed. Hence,
on illumination of the photographic plate (or hologram)
with the reference beam a diffracted beam is formed which
is a replica of the original object beam and thus an
observer will see a fully three-dimensional image of the
object. This may be expressed mathematicaily as below:

In general the intensity I, of a light source is

given by the product of the amplitude, a, and its complex
conjugate a*, If we use the suffices r and o to represent
the reference and object beams then the intensity at the

hologram plate is given by :
= + X + a%
Ip (ar ao) (ar ao)
= * * * + %
3 8 * % % * 2 % % %r (3.1)

The first two terms of this expression are obviously the

intensities of the reference and object beams and the
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expression can be further simplified by writing

i¢r

a =ae = a_ (cos + i si
r r r ( ¢r i sin ¢r)
* -1idr . .
a_ = ae = a_ (cos - i sin
r . . ¢ ¢ ¢.)

. . "
Similarly for a and a¥

Equation (3.1) thus becomes

Ip = Ir + Io + Zarao cos (¢o - ¢r) (3.2)

the final term éf this expression giving rise to the fringe
pattern, which is recorded on the photographic plate.

| To reconstruct the image the hologram is illuminated with the
reference beam and the transmitted intensity, which is the
product of the original intensity at the plate, Ip, and the

reference beam amplitude, a_, is given by the modified form of

(3.1):

al =al +al +aaa*+ aa*a
Tp r'r ro rro rro

=al +al +aaa*+1Ia (3.3)
r'r ro rro r o

It is the final term in equation (3.3), the reference beam
intensity, modulated by the gbject beam amplitude, which is
identical to the original wavefront and gives rise to the virtual
image at the object position. The term ararag gives rise to a
real, focussed conjugate image behind the hologram, when a
collimated reference beam is used to illuminate the plate,

Before forming the equations pertaining to an object in
motion it is relevant to consider the sequential recording, on a

single photographic plate, of an object which is'slightly
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displaced between exposures., If the same reference beam is used
for each exposure and the amplitudes of the object beams for the
two object positions are a1 and a_,» then equation (3.1) ‘becomes,

for each case

I . =1 +1_ +

%
pl r ol aolar a

+ a
ol r

*
1
T+ I + a * + g %
I, = I ol 02%r T 22%
%
The hologram superimposes thése two intensities to give a

total intensity of

Te=IntI,

= + * % *
2Ir I01 * I02_+ ar (aol + a02) + ar (aol + a02)

It can be seen by comparison with equation (3.3) that on
reconstruction with the reference beam (of amplitude ar) the

virtual image is given by the final term

a_a* (a

rr ol * aoZ) = Ir (aol * aoZ)

Now, since the intensity of a light source is given by the
products of its amplitudes (aa*), the intensity of the image is

given by

I, = (a01 + aoz)(ao* +a¥%) (3.4)

i 1 02

if the reference intensity, Ir’ onto which this is modulated, is

ignored.
Additionally, if the object displacement is small with

' respect to its distance from the hologram then,

Iaoll = Iaozl
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and thus

a, = a e
ol o

a.,= a e
02 o

Equétion (3.4) can now be simplified to;

Ii = 2 aq 2 {1 + cos (¢1 - ¢2)} (3.5)

The phase change (¢1 - ¢2) is a direct result of the object
displacement, d, which gives rise to a difference of 2d in the
path lengths of the light reflected from the object. Considering
the simple case where the hologram is illuminated and viewed
normally, with the object motion perpendicular to the surface, the
phase change and displacement are related by the expression:

L
(6, = ¢ = (D 2d (3.6)

where A = wavelength of the light

and thus it can be seen that whenever the phase changes by

(¢2 - ¢1) = 21 the image intensity, I, in equation (3.5), becomes
zero and a dark fringe is formed. In the same more general case,
where the angle of object illumination, measured from the
perpendicular to the object surface, is a and the angle of
observation, measured from the same perpendicular is B then the

equation (3.5), deriviﬁg the image intensity, is modified to give:

I, =2 a 2 {1 + cos (¢i - ¢2)(cos a+ cos B) }

and since (1 + cos x)/2 = c052 { x

2 2 |
Ii = 4 a cos” } (¢1 - ¢2)(cos a+ cos B)
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- It can be seen then that the reconstructed image from such a
double exposed hologram will display a series of fringes which
are a function of object displacement. This effect is

exploited in the study of‘statically deflected objecfs or the
stroboscopic illumination of vibrating objects, where the motion
is "frozen", usualiy once per cycle by "chopping" or pulsing

the Laser beam.

However, Powell and Stetson (33) have demonstrated that a
fringe pattern can be recorded from a vibrating object, using the
basic hologram recording apparatus, but without the complications
necessary to "freeze" the object stroboscopically. In the
preceding paragra?hs it has been shown that two images may be
superimposed on a single emulsion such that they appear to have
occurred simultaneously. For the case of an object which is
vibrating with simple harmonic motion the recorded image consists
of an irfinite number of "sub~images', each of which represents
a particular position of the object in its cycle and the intensity
of which is proportional to the time spent in that position.
Considering the position probability density function for simple
harmonic motion (Figure 13) it can readily be seen that the
object spends most of its time at,or near, the two extreme
amplitude positions and the intensity of these two images is
sufficient to suppress the others. The result is that a fringe
pattern, similar to that occurring with an object which has merely
. been displaced, is seen when the exposure is made over a large
number of cycles.

The following analysis gives the form of these "time-

averaged" fringes.
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Let the amplitude of the object beam be considered as a
function of the object position, p, and time, t, and expressed

as 3; (p,t), then if the object remains at a given position for

At/

a time (T 'T) of the exposure time the image amplitude is given

by

- - At
a; (py) =a_ (pyt)

For the complete exposure the total amplitude of the image

is, therefore

-
f 5, (p,t) at

)

=i -

3; (p) =

But, for small object displacements

';o (p,t) = I ao Iei¢(ppt)

Thus
T
- = l 1¢(P,t)
ai () l ao I T/o € dt

Reconstruction with the reference beam gives rise to a virtual

image of intensity

ITm=|a|?] {%]'T o) 4312 (.
[o]

¢(p,t) is the phase difference due to the object displacement,

which, for a sinusoidal motion illuminated and viewed normally,
can be expressed as

o(p,t) = 1 24 = &5 2d.sin i
where w is the circular frequency of vibration, It is convenient

to write .

27
¢(p) = (jr? 2d°
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(This expression will obviously be more complicated if the
angles of illumination and observation are not normal,)

Equation (3.7) can now be written
T
- 2,1 io i 2 :
T = |a ][] &P oinetay (3.8)

(o]

Now, it can be shown that

i¢(p)sinut by
e =Jo{¢(p)}+ ) J2 {¢(p)cos2nwt}
n=1 <P

+nZoJ2n+1{¢(p)Sin(2n+1)wt}

where the function Jn(x) is known as the Bessel function, defined,

for a non negative value of n, by the expression
1 +1

1. =135 7D "/..1 (cosxe) (1-t1) " ae

. But if the exposure time, T, is much greater than the periodic
time of the motion then T can be regarded as tending to infinity
and all the Bessel functions ﬁnder the integral will tend to zero
except for the zero order function. For this case equation (3.8)

is simplified to
T =|a,| %] 3,00@)* as1 > (3.9)

For illumination and viewing at angles of a and B as defined

previously the intensity given by equation (3.9) becomes:

- 2
I (p) = Iaol 2' Jo{¢(p)}(cosa+cos8) ' (3.10)
- It can be seen, theréfore, that the image is now of an

intensity which varies as the square of a zero-order Bessel function

(Figure 14) and whenever the vibration amplitude term, &, has
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3‘302

values corresponding to 2.4, 5.52, 8.634 etc. a dark fringe
will occur., When it takes the value zero, that is, at the
nodes, the fringes will be significantly brighter and thus
can be readily identified on reconstruction. However, it is
also obvious from Figure 14 that fringe brightness
decreases rapidly with amplitude.
Real Time Holography

The advantages of a technique by which a series of
object diéplacements or vibrational modes can be investigated
concomitantly are obvious. In holography this can be
achieved by recording a hologram of the object in its
original, or static condition. If, after processing, the
photographic plate is returned to its ofiginal position
and viewed, with the reference beam, while the object also
remains illuminated, the image and object are seen to be
superimposed. Any subsequent static or dynamic deformation
results in a series of fringes which are an interferometric
comparison of the object in its original state (represented
by the reconstructed image) and the object in its new state.
Thus, any number of deformations may be investigated from
the single recording, limited only by the stability of the
combined optical and mechanical system (since rigid
body motions of any element in the system will introduce
spurious fringe patterns unrelated to, but affecting, the
fringe pattern under iﬁvestigation).

Fringe patterns obtained in this way are referred to

as "real time" and the form of these real time fringes is

obtained from the following analysis:
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The instantaneous disturbance at the object can be
considered as the vector sum of the reconstructed image
wavefront (representing the object in its original 'state)
and the new wavefront being radiated by the deformed object;

This gives rise to an instantaneous intensity of:
'fr (p,t) = lao |—2 (2 + 20(Pt), ~1¢(p,0),

In this case the intensity is averaged over an integration
time defined by the speed of response of the human eye,

yielding, after manipulation

T (p) = 2 lao 2. 3_4(p)) (3.11)
or,
T (p) =2 laol 2 {1+ Jo¢(p)(cosa+cose)} (3.12)

where the illumination and viewing angles are a and B
respectively. A comparison of these equations with (3.9)
and (3.10) shows that, not only is there an additional

unity term, but the Bessel function is of the first power
not the second. These factors cause a substantial reduction
in fringe contrast and in the latter case also reduce the

number of fringes observed for a given vibration amplitude

to half that of a time averaged hologram.
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3.4 Phase Determination

In preceding paragraphs it was stated that time-averaged
holographic analysig does not usually retain information about
the relative phase of movement between various points on the
object. It has been shown; however, that such information may
be ascertained in real time by temporal modulation of the
reference beam (38,39). It can be seen from the equations
3.9, 3.10, 3.11 and 3.12, that the argument of the Bessel
function is a function of the magnitude of the object wave phase
change. If the reference beam is modulated at a frequency equal
to that of the object vibration, but of variable phase,  the
Bessel argument becomes a function of the object wave phase and
the required object phase relationships may be derived from the
resultant fringe pattern.

This effect is achieved in practice by causing one of the
reference beam mirrors to vibrate at the same frequency as the
object on an axis parallel with the beam path. At a certain
magnitude this modulation will cause the nodal fringe to move
from its true position. Alteration of the phase of the
reference mirror signal, at this magnitude,moves the apparent
node in one.direction~until the relative phase between the
object and reference waves is zero, at which point the node
movement stops and reverses. A comparison of the values of the
relative phases of the excitation signal at which this occurs
allows the relative phases between various points on the object
to be determined,

In the simple case, where only two object phases exist

(0° and 180°) regions of the same phase can be determined easily.
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A phase shift is added to the reference beam as described, which
causes movement of the nodes towards some antinodes, but away
from others. By denoting the areas to which the nodes have

moved as positive and those from which they have moved as negative
the object phases are verified. Rezl time observation of these
nodal movements is facilitated by the use of the Laser Image

Speckle Interferometer, as described in the following section,
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3.5 Laser Speckle Interferometry

The final technique of use in vibration analysis, is that
of Laser image-speckle interferometry. Although this is not
strictly a holographic method, since no hologram is recorded, it
does utilise the coherent iight from the Laser. The technique
exploits the fact that any surface illuminated by Laser light
exhibits a speckled appearance due to the mutual interference
of the elementary light waves reflected from it. The phases of
these waves are distributed rahdomly, with the result that the
interference pattern appears as a random distribution of bright and
dark spots which vary in size and shape. Since this speckle
pattern contains information about the incident wave front, the
position of the object relative to both the source and the
observer and the scattering properties of the object,a variation
in any of the parameters will give rise to a change in the

observed pattern which can be measured by comparison with the

original pattern.

Various techniques have been developed to exploit this
effect for vibration analysis particularly Mottier and Eliasson (36),
Archbold et al (40) and Hughes (41). The method due to Hughes
vrequires particular1y~sophisticated equipment, but is capable of
producing recordings of vibrating objects showing detailed, equal
contrast fringe patterns. Archbold et al have developed a system
which, although capable of showing only nodal positions in real
time, gives greater contrast than live-fringe holography, with
relatively simple apparatus. The basis of this method is that

if the object is made to vibrate at amplitudes of more than a few

wavelengths of the light the speckle pattern observed on a static
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object become blurred, except at nodal positions. Sensitivity
is increased by adding a reference beam, of similar intensity

to the speckle pattefn, at the viewing aperture. If the two
fields are coherent then interference will occur and
displacements of a quarter Qavelength will cause reversal of the
speckle pattern due to reversal of the relative phases of the

two fields. Slow, continuous ﬁotion of the object will cause the
pattern to twinkle, whilst rapid vibration will cause the speckle
pattern to blur out except at the nodes, where a high contrast
pattern will remain. The similarity with Chladni sand patterns
is obvious. The Laser Image Speckle Interferometer due to Stetson

(37) and based on the principles of Archbold et al (40) is shown

in Figures 15 and 16.
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3.6

Application of Laser Techniques to the Confirmation of the
Analytical Method

An outline of the basis of Laser holographic and
interferometric techniques releQant to the analysis of vibrations
has been given. There has been much development and many
methods, of varying degrges of sophistication, are now available.
A comparative survey was therefore made from which conclusions
on the type of rig required for this study could be reached.

As may be adjudged from the previous discussions (3.3)
stroboscopic holography offers certain advantages in the study
of Qibrating objects. High, equal contrast fringes are
obtainable and even in the case of live fringe techniqués fringes
of a clarity similar to those from a static deformation can be
obtained. However, this factor does méan that nodal and
antinodal positions are not obvious, though they can be deduced.
In addition the apparatus required is complicated. High power
output, suitable for illuminating large, vibrating objects, is
obtainable from "Q-switched" pulse Lasers (such as Ruby or
Neodymium-Glass) fitted with a Kerr or a Pockels cell, If the
oscillator driving the object is also used to provide a synchronous
pulse to this cell a high power, short duration pulse of light
is caused to.be emitted at a suitable moment in the vibration
cycle. Continuous wave Lasers may also have the beam "chopped"
or interrupted using a Pockels cell (Fryer (42) after. Von Winkle),
a drilled disc, or by passing it through a drilled spindle driven
by a small high speed turbine (Archbold and Ennos (43))., However,
it is essential to ensure that the chopping frequency remains
stable and equal to the object driving frequency, which requires

complex additional equipment. Also the use of a continuous wave
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Laser necessitates long exposure times, as only a fraction of
the light output is used to illuminate the object, which increases
the stability requirement for the system.

Since the available Laser, a continuous wave, Helium~-Neon
type, was of low power output (15 mW) it was considered that
the disadvantages of stroboscopic methods made it inappropriate
for the current investigation when compared with the simplicity
of the normal time averaged method. 1In addition, althoﬁgh
amplitude information is not easily obtained and generally phase
information is lost the extreme brightness of the nodes
expedites a qualitative analysis. It is, however, possible to
derive phase information in real-time, which offsets this
disadvantage of the '"frozen-fringe" technique.

Thus, since for the purposes of this investigation
confirmation of the theoretical analysis only was required it was
decided to develop a basic system from which satisfactory real-

time analyses and time-averaged recordings could be made,
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3.7 The Experimental Rig

All experimental work was carried out in the Holography

Laboratory, School of Mechanical, Aeronautical and Production

Engineering, Kingston Polytechnic.

3.7.1 Optical Equipment
The basis of the system was a Spectra Physics
Model 124A 15 mW Helium-Neon Laser mounted remotely
from the main equipment on a vibration isolated wall
fixture. All optical equipment and the model were

arranged on a vibration isolated cast iron surface table

measuring 6 ft x 3 ft. The initial layout is shown

diagrammatically in Figure (17), the final arrangement
in Figures (18) and (19).

For stability all optical components were mounted
on heavy bases supported on three pointed feét. Initially
the beam splitter (BS1) was of the variable type, the
glass substrate being coated in six discrete segments
capable of reflecting from 5% to 507 of the incident
beam. This énabled the optimum ratio of reference beam
intensity to object beam intensity to be determined for

the model. In general it may be stated that, for maximum
diffraction efficiency and thus optimum image brightness,
this ratio should be 1:1 at the film plane. Now, this

is obviously a function not only of the beam splitter, but
also related to the reflection charécteristics of the
object. However, particularly with low power Lasers, if

the reference beam intensity is reduced to that of the

object beam the exposure time is increased to a value
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outside the linear portion of the Amplitude Transmittance
- Exposure curve for the photographic emulsion, which
reduces the fidelity of the image. In practice ratios of
5:1 are not uncommon., To a certain extent the beam ratio
may also be controlled with the beam expanders. Although
the main function of these is to expand the Laser beam,
using a microscope objective focussed on a pinhole, from
an approximation to a point source to illuminate the
object and photographic plate it can be seen that its
magnification value and distance from the object or plate
determines the intensity. However, illuminating a larger
area than necessary in order to reduce the intensity wastes
light which would be better utilised in the other beam.

For the models used in this work tests showed that
approximately 957 of the original beam was required to
illuminate the object to give a suitable ratio at the
film plane. Problems were experienced in using the
variable beam splitter to give this ratio since, in spite
of an anti-reflection coating the reflection from the
back surface of the glass substrate interfered with the
front surface reflection,causing interference fringes
across the reference beaﬁ. The variable splitter was,
therefore, replaced with a plain glass wedge prism, of
angle 50, which gave rise to twin diverging reflected beams,
each approximately 4% of the incident beam., This factor
was exploited in the final layout by using one beam as the
hologram reéording reference beam, the other as the speckle

interferometer reference beam.

- 108 ~



»Recordings were made on Agfa Gevaert 10E75 film
and glass plates. This emulsion has a high resoluﬁion
capability (in excess of 2000 lines/mm) and is thus very
insensitive to light, having an equivalent ASA rating of
0.6, which does, however compare favourably with Kodak
649F emulsion which has a similar resolution but an
equivalent ASA réting of.0.03. For reasons of economy
and convenience 35mm film was used for most time-averaged
recordings. The film carrier was a modified Shackman
Oscilloscope Camera, shown in Figure (20). The
lens, lens hood and shutter were removed, which then
necessitated covering the front interior of the camera with
black paper to avoid stray light affecting adjacent film
during the exposure of é frame. A flap of black paper
fitted to the camera top cover ensured that the camera was
light tight except when the cover was lifted for exposure.
Glass plates were held in the "gallows" mount shown iﬁ
Figure (21). - The plate is inserted into a slot in the
arm and clamped in position between two perspex jaws using
three screws. ~This arrangement allows for in-situ
processing of the plate by immersion in the containers of
chemicals when recording‘for real time holography.

Exposures were made using the Synchro-Compur shutter
from the Shackman Camera, which was mounted on the wall
above the table. Exposure times were calculated using a
Gossen Lunasix CdS eXposufe meter. A reflected light

exposure value was recorded from the object and reference
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beams striking a white card placed at the film plane.
The exposure value and an empirically determined ASA value
of 10 allowed the exposure time to be read off against |
an arbitrarily chosen "f-number" of 1. Since the
object is not being imaged through a lens and aperture
the f-number, expressed as the ratio of focal length/aperture
diameter, is actually meaningless and the value was
adopted purely for convenience and the ASA rating determined
from this,

Although successful real time holograms were made the
low fringe contrast (see 3.3.2) made interpretation
difficult and permanent recording by photographing the image
impractical, Ultimately location and analysis in real-time
were carried out using the Laser Image-Speckle Interferometer
due to Stetson (37) and shown in Figures (15) and (16), which
bas the advantages of reducing the stability requirement
and not requiring a chemical processing stage. The
instrument is arranged as a telescope so that the
achromatic doublet objectives (L1 and L2) image the
entrance aperture, A, onto the pupil of the eye. The
aperture is adjustable by the observer to give a sﬁitable
compromise between speckle size and contrast and image
brightness against the reference field. The reference
field is introduced into the system by the prism, P, and
is imaged by lens L2, The second reflection from the
prism is stopped by the exit aperture. The cylindrical
lens C is to correct astigmatism introduced by the

presence of the prism and the polarizing filter, F, removes
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any light polarized in quédrature to the reference field,

It is particularly impoftant with this instrument that the
pafh lengths of the object and reference beams are.equal,

or differ by a multiple of twice the Laser cavity

length, ensuring that the temporal coherence between the

two fields is a maximum. In addition, as the object is
viewed through a very small aperture (typically lmm in
diameter) the reflected light observed from the object is

of very low intensity and in order that it is not
obliterated the reference beam must also be of low intensity.
In the arrangement shown (Figure 18) the second reflected
beam from the wedge prism (BS1) was directed on to another
beam splitter, BS2, which reflected approximately 207 through
a 20X beam expander onto the interferometer prism to give
object and reference fields of similar intensity.

In addition to the location and identificati;n of
vibrational modes prior to recording the detailed pattern
by time averaged holography the speckle intérferometer
was used to in§estigate relative phases of the motion of
the model blades using the method of Neumann et al as
described in (5.4),where the reference beam is temporally
modulated by a vibrating mirror. For these tests the second
beam splitter was replaced with a small, 10mm diameter
mirror cemented to a ring piezo-electric excitation gauge,
constrained to vibrate axially and driven by the same

oscillator as the object.

3.8.2 Models

Initially, in order to assess such variables in the
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Opticai system as stability, beam ratios and exposure
times, a simple captilever model measuring 6 in x 1.5 in
x 0.5 in was used. Having resolved these parametefs
the model was subsequently machined to a tapered beam
to check the theoretical analysis of the cantilever
described in section 2.2.3,
The cantilever was subsequently replaced by the
series of blade package models denoted Al, A2, A3, Bl,
B2 and B3 and shown in Figures (22) and (23). The
blade dimensions were based on those used by Allen (1),
which had an effective thickness and radius of gyration
typical of current turbine blades, with allowance made
for camber. The models were scaled down tq_half size,
with the exception of the shroud thickness, initially
taken as 6.3mm (Al and Bl) and subsequently reduced to
4.,5mm (A2 and B2) and 2.5mm (A3 and B3) to assess the
effect of this parameter on the vibration characteristics.
To avoid fabrication problems and estimations of the
joint efficiency the basic models Al'and Bl were machined

from the solid in normalised mild steel, subsequent models
being'obtained‘by machining the shroud down to the
specified dimension. The clamping faces were ground to
match the clamp.,

Initial experiments with the cantilever had shown
that increased image brightness and fringe and speckle
contrast were obtained if the models were coated with a

retro-reflective material, which reflects most of the

light back in the incident beam direction instead of the
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scattering obtained with an untreated surface. The
models were, therefore, painted with "Codit" Reflective
ﬁaterial which consists of highly reflective glass.beads
suspénded in a diffuse, low reflectivity, white
pigment. The light reflected from the glass beads retains
its polarization, while the pigment reflection is highly
depolarized, and the difference in reflectivity of the
two materials enhances the speckle effect utilised in the
speckle interferometer. Tests before and after coating the
models showed this finish did not affect their response,
Tﬁe method of model excitation was chosen to
minimise any influence on the vibration characteristics
from the driving source. The small size, low mass and
wide dynamic and frequency ranges of piezo-electric
excitation gauges made them most suitable for this
investigation. Adverse effects due to adding an
excitation source such as an electro-mechanical shaker tend
to be minimised if the source is fitted at a node, but
piezo-electric gauges are most effective when positioned
at the point of maximum strain. Initial tests compared
the displacemenfs and modal shapes due to gauges placed at
the base of a blade (that is, at a node) and at the tip
(an antinode for the detached flexural modes), but no

differences were apparent. It should be noted, however, that

to obtain maximum strain a 25.4mm long gauge was used
which, being a third of the length of the blade, extended
well beyond the nodal and antinodal regions., For
subsequent tests the gauge was cemented centrally at the

base of the outer face of the left hand blade.
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In order to ascertain that the resonant frequency
excited by a given input frequency was equal to that
frequency and not a harmonic of it a piezo-electrig
strain gauge of the same size as the excitation gauge
was fitted to the inside face of the right hand blade.

A comparison of the input signal to the excitation

gauge and the output from the strain gauge on a twin beam
oscilloscope enabled not only the frequencies to be
compared but also the precise resonant frequency to be
verified when recording a time averaged hologram by
adjusting the frequency to given maximum output from the
strain gauge. This coincided with the point at which

the nodes observed in real time with the speckle
4interferometer decreased to a minimum width. Additionally,
a comparison of the phase of these two signals enabled

the relative phase of the vibration of the outer blades to
be verified. A similar strain gauge fitted in a
corresponding position on the centre blade enabled the
relative phases of adjacent blades also to be confirmed.

Early work showed that it was essential to locate the
models in a massive clamp which would damp out the object
vibration and prevent transmission to the optical
components. The clamp is shown in Figure 24 from which it
can be seen that it is fabricated from two normalised steel
billets ground together on the base and inside faces to
enable the models to be an accurate sliding fit. The
models and spacers were also ground flat and square

together for this reason. The fixed spacer and billets
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were drilled and bolted together with 1l in Whitworth stﬁds
and nuts, tightened sequentially. The clamp was

assembled on a surface table to ensure that the basé and
inside faces were mutually perpendicular. The models were
held in place by.the free spacer and clamped with the end
pléte, the four socket screws being tightened sequentially.
The effectiveness of this clamp in damping out the model
vibration was verified by comparing resonant frequencies of
a linearly tapered cantiléver mounted in the clamp with
values obtained from the analysis described in section
(2.2.3), in which it was assumed that the assembly acted as
a rigid body.

It was decided that observation of the shroud behaviour
in conjunction with that of the blades would assist the
analysis of modal shapes. Inclination of the clamp and
model towards the hologram plane at an angle of 25° enabled
the shroud surface to be completely visible. The clamp was
supported on the front lower edge and by a toolmaker's
jack placed centrally at the back. The assembly was placed
on a 1,6mm thick bonded rubber mat to prevent sliding
between the clamb and surface table.

The models were aligned initially such that the maximum
area of the three blade faces was visible. However, since
the fringe pattern recorded shows motion in a direction
perpendicular to the plane of the hologram only, movement
parallel to and perpendicular to the blade faces would be
difficult to establish. Further holograms were recorded

for the two 2.5mm shroud models (A3 and B3) with the blade
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o

3.7.3

3.7.4

faces parallel and subsequently perpendicular to the
hologram plane.
Instrumentation

The driving signal for the exéitation gauge was
supplied by a Ling Dynamic Systems TPO 25 25 watt power
oscillator via a 1:40 step-up transformer to obtain the
voltage required to achieve suitable vibration amplitudes.
The gauge input voltage and frequency were monitored
using an Advance Digital'Voltmeter and Timer Counter.
In addition a twin beam.oscilloscope was used to compare
the input excitation signal and the strain gauge outputs
to confirm frequency values and phases of vibration. When
originally establishing input signal levels to give a
suitable vibration amplitude the input signal trace was
also used to monitor the maximum level obtainable without
distortion, since clipping of the signal could give rise

~

to harmonics generating spurious resonances.

To assess the relative phases of the object motion
as described previously (3.4) a Feedback TWG 500 Variable
Phase Function Generator supplied two signals, of the
same frequency,‘but variable in phase, to two Ling Altec
TPO 20 Oscillator Amplifiers. The amplified signals were
then used to drive the model and mirror excitation gauges
via 1:40 transformers.

Sequence of Operations
To obtain a series of recordings of the resonant

frequencies and modal shapes for each model the following

sequence of operations was adopted.
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a) Recording
i) At the beginning of a series of tests a white
card was placed at the hqlogram plane and an
.exposure reading light from the object and
reference beams recorded to ascertain the exposure
time required.

ii) The model was observed through the speckle
interferometer and the excitation signal frequency
gradually increased.

iii) At an observed resonant frequency, where the
speckle pattern was visible only at the nodes the
right hand blade strain gauge output was compared
with the excitation signal to verify that the
frequencies were equal and that the strain gauge
output was at a maximum for a given excitation
signal level.

-iv) The camera was then moved into position, in front
of the interferometer and the time averaged hologram
of that frequency recorded.

In the initial tests a series of holograms was
recorded to establish the excitation signal level
required to give an adequate number of high
contrast fringes. If the signal is too low the
fringes are of high contrast but too broad and
too few in number to give sufficient information
about the modal shape. If the signal is too high,
then pronounced fading of the image brightness

occurs (as described in the analysis of section 3.3)
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b)

and the fringé contrast is reduced. In addition
the fringe spacing tends to be too close for
adequate interpretation. .
Having ascertained a voltage which gave a suitable
compromise between the two extremes described
above, this value was retained for subsequent
tests at the corresponding frequency for other
models.

v) Steps (ii) to (iv) were repeated for each model

to give the required number of modal shapes.

vi) The film was then processed using Agfa Gevaert

-G3P developer and G335 fixer.
Reconstruction

As discussed earlier (section 3.5) the reference
beam used in the recording of a hologram was of low

'

intensity, the power being of the order of 0.25mW

before expansion. This did not give a reconstructed

image of sufficient brightness to photograph easily
and a separate reconstruction layout was adopted usirg
a 2.5mW Helium-Neon Laser and (X10) expander arranged
in a similar geometry to that of the original reference
beam,

The holograms were held between two spring loaded
glass plates in a film strip carrier, which ensured
that the film remained flat. A 35mm single lens
reflex camera with a 55mm focal length lens was
positioned immediately behind the hologram and the

image photographed on Ilford FP4 monochrome film,
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c)

rated at 200ASA. E#posure times were determined
using an Asahi Pentax Spotmeter, which, since the
light sensitive cell has an acceptance angle of only
10, could be used to give exposure readings for
individual light fringes. Experience showed that
a good negative was obtained by exposing for a
fringe of average brightness, neglecting the
extremely bright fringes occurring at the nodes.

The negatives were than enlarged and printed
for subsequent analysis. Examples are shown in
Figures (25) to (39).
Phase Determination

In order to assist in the analysis of the
holograms recorded a further series of tests was made
in real time to derive the relative phases of the
blade movements. The simplified technique due to
Neumann et al described in section 3.3 was used in
conjunction with observation of the relative phase
of the output signals from the strain gauges on the
centre and right hand blades of the model, using the
twin beam 6scilloscope.

Since the grouped modes can be readily
identified by a comparison of the phases of motion
of () blades if N is even, or (J + 0.5) blades if the
number of blades (N) is odd, observation of the strain
gauge signals gave sufficient information. The method
using the vibrating mirror was found, in practice, to

be less easy, both in operation and interpretation and
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required additional instrumentation and thué the .
former method was used in preference. However, it
should be noted that where more complete phase

information is required reference beam modulation

becomes the preferred technique,
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3.8 Concluding the Experimental Analysis

It has been shown that the sensitivity and detail of
Laser holographic and interferometric techniques provide the
ideal tool for vibration analysis. The method is non contacting
and, therefore, does not affect the vibration being measured.
It does not require special models to be made and can yield
comblete information on modal shapes.

In this investigation these techniques have been used to
enable a comparison to be made between the natural
.frequencies and modal shapes of a series of blade packages,
derived experimentally and predicted by the lumped parameter
Myklestad routine developed in Chapter 2. It is considered that
conventional methods of vibration analysis using transducers would
have been inadequate to supply the information required for the
analysis of pretwisted blade packages, permitted to vibrate in
three planes.

A detailed comparison of the experimental results and

theoretical predictions is presented in the following chapter.

- 121 -



4.1

PRESENTATION OF RESULTS

Introduction

In Chapter 2 a method for the prediction of the natural
vibration frequencies of packages of pretwisted turbine blades
was established. In the following chapter experimental
techniques utilising Laser holography and interferometry were
discussed and proposed for the verification of the theoretical
solution.

In this chapter data from the theoretical and experimental
analyses are presented and the suitability of the Myklestad
approximation as a design tool is discussed.,

It should be noted that, because the experimental models
investigated were neither subject to variations of cross
section and pretwist, nor to centrifugal forces, these effects
have been excluded from the computer program developed from the
analysis given in Chapter 2. However, it has been shown in the
preceding analysis that such effects may be included, with a

negligible increase in complexity.
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4.2 Presentation of Results

In the first chapter, Armstrong and Stevenson were quoted
as having shown that, in general, the first and second flexural
modes and the first edgewise and torsional modes are the dominant
mechanisms causing vibration induced fatigue failure. It is
thus of limited, or academic, interest to calculate higher order
modes and consequently the data presented has been limited to
the first, second and third "detached" flexural modes, the first
and second sets of '"grouped" flexural modes, the first edgewise
mode and the first detached and grouped torsional modes.

A total of six package models has been considered both
experimentally and theoretically. Three of the models had 0°
pretwist, the remaining three had a constant pretwist of 300,

The three models in each set have been analysed to assess the
effect of variation of shroud thickness on the natural frequencies.
Drawings of the models are given in Figures 22 and 23.

Although the designer is primarily interested in frequencies
and the modal shapes are of less importance, the latter have
been included in this analysis to enable the modes to be
positively identified for the purpose of comparison between the
theoretical and experimental results.

Now, the modal shapes of pretwisted blade packages can
become complex and, although the displacement of any point on a
blade can be easily calculated once the frequency has been
established, such data are somewhat imperspicuous, particularly
when being compared with the displacement fringes obtained from
the holographic analysis., It was decided, therefore, that a

pictorial representation of the theoretical data would be more
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appropriate for comparative purposes, Whilst simﬁle line
drawings are adequate for representing the flexural and
edgewise modal shapes, the introduction of torsion or
pretwist and thus coupled bending-torsion modes, requires
an improved representation.

| A program was developed, therefore, to normalise the
displacement data and translate the information into single,
symbolic characters representative of the displacement moduli.
By maintaining a correlation bétween character density and
- magnitude of displacement it was possible to output, for example,
the displacement perpendicular to the blade force in the form
of a character pattern equivalent to the fringe pattern
derived from the holographic analysis. Examples of the
theoretical modal shapes, complementary to those obtained
experimentally are shown in Figures 25 to 39. The advantage
of this technique for correlating experimental and theoretical
results;particularly for the more complex shapes, is clearly
demonstrated in these éxamples.

Having identified corresponding theoretical and

experimental modal shapes it is possible to compare the

frequency values and these are tabulated in Tables 5 to 10.
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4.3 DI'SCUSSI‘OII of Theoretical and Experimental Results

In comparing the experimental and theoretical results
presented in Tables 5 to 10 it is necessary to distinguish
between errors due to the approximate nature of the analytical
model and those inherent in the experimental technique. Whilst
it is convenient to express the differenceslin the calculated
frequency values as a percentage of the experimental values,
since the complexity of the problem precludes an exact
mathematical solution it must be remembered that the latter are
not necessarily the true natural frequencies of the model
'defined for the analysis.

It has been shown by several workers and confirmed in the
analysis of exponentially tapered beams undertaken in the study,
that lumped parameter solutions convefge asymptotically to the
true solution with the error inversely proportional to the
second, or the fourth power of the number of masses depending
on the end conditions. The error also tends to increase with
mode number, It may be concluded, therefore, that, provided the
determinant of end-conditions is capable of accurate solution,
calculated values will tend to be overestimated in proportion
to the accuracy of the model and the mode number.

It can be seen from the tabulated values that, in general,
the errors are positive, notable exceptions being the results
obtained for the unstaggered model with a 6,3mm shroud (denoted
Al) and the third, detached, flexural modes on all models,
except the pretwisted model with a 2.5mm shroud (B3). It is
interesting also to note that the introduction of pretwist

tends to make more positive the errors evident with untwisted
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blades. It is difficult to attribute this to some cause in the

mathematical model and it is, therefore, necessary to question

whether the experimental models fulfil the basic requirements of

the mathematical model. In particular the mathematical solution

assumes that the blade package is fully encastré with no movement

at the base of the blades permitted. Although the design of the

clamp and package is such that this condition is adeéuatély met

in the direction of the H-axis (as defined in Figure (11)) the

same is not true for movement along the R-axis, since the clamping

force is exerted in the H-direction. Intuitive analysis will

show that the effect of this will be to increase the effective

lengths of the blades and thus reduce the expected resonant ,

frequencies. Further it may be deduced that this effect will be

a maximum for movement solely in the R-direction and a minimum

for movement only in the H-direction, whilst torsional motion and

" movement in both planes will have errors due to clamping lying

between these limits. Indeed, it may be further postulated that

the effect will be more noticeable in the detached.modes, where

all blades are moving in the same direction than in the symmetricai

batch modes where the motion of a blade in one direction is

counteracted by motion of the adjacent blade in the opposite direction,
It may be concluded, therefore, that the flexural modes of

the untwisted blade package models will exhibit a minimum

(probably zero) error due to the inefficiency of the clamp, whilst

the edge modes for these models will be subject to the maximum

clamping error. Thus the differences between experimental and

calculated values for the flexural modes of the untwisted models (Al,

A2 and A3) can be assumed to be due to the assumptions made in defining

the mathematical model alone, whereas all other models will
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exhibit differences due to a combination of the errors inherent
in the mathematical and the experimental models,

4.3.1 Errors Due to Mathematical Modelling of the Blade/Shroud
Junction :

It can be seen from Tables 5 to 10 that the errors
due to the appfoximate nature of the mathematical model
vgry with shroud thickness, being negative when the shroud/
blade thickness ratio is 1, but becoming more positive as
this ratio decreases. The values obtained from the
Myklestad solution of tﬁe model investigated by Thomas
and Belek, given in Table 1 also fit this trend. Since
the error is a function of shroud thickness it may be
deduced that the érror arises from the simplifications
made in modelling the blade/shroud junction. However, the
true deformation of the material at this junction is
extremely complex and it is considered that the assumption
that the junction acts as a rigid body, with the forces
and moments acting at and about the points A, B, C, D and
J, as shown in Figure (10), remains valid. It was shown
by Allen (1) and is further investigated in this study,
that the inclusion of "junction factors'", by which the
effective thickness of the shroud and blade at the junction
may be modified, can reduce the error due to this |

assumption. A series of junction factors was investigated

for each model in order to arrive at empirical values
suitable for reducing the error due to simplifying the
mathematical modelling of the junction to a minimum. The
effect of applying a junction factor varies not only with

the ratio of the shroud/blade thickness but also with the
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modal shape and the following points may be noted:

i) The first detached mode (the fundamental) is
less sensitive to changes in the effective
shroud thickness at the junction, but the

: frequeﬂby_decreases with decreasing effective
blade thickness at the junction.

ii) The first symmetric batch mode is sensitive mainly
to changes in the effective shroud thickness at
the junction, the frequency again decreasing
with reduction in shroud thickness. A reduction
in blade thickness, however, shows a slight
increase in frequency.

iii) The first anti-symmetric batch mode is sensitive
to both shroud and blade effective thickness;
decreases in either causing a reduction in the
resonant frequency.

iv) Higher modes become sensitive to changes in both
junction factors in accordance with the trends
described above.

These effects reflect the translational and/or

rotational movement of the shroud at a resonant frequency
and demonstrate that a single pair of junction factors. for

a given shroud/blade thickness ratio will be a compromise
|

for all modal shapes.

Table 11 lists the first six resonant frequencies for
the untwisted models derived from the use of those
empirically determined junction factors shown to reduce to

a minimum the differences between theoretical and experimental

values.
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4.3.2 Errors Due to Clamping

As has been discussed previously, whilst the
untwisted package models fulfil the basic requirements of
the mathematical model for the calculation of flexural
modes in the direction of the H-~axis, inefficient
clamping in the R-direction may lead to lower values than
predicted for the torsional and edge modes of these
models and all modes of the pretwiéted models.

The results obtained reinforce tﬁis argument, as
can be seen from Tables 7 and 10, in which the largest
difference between predicted and measured values occurs
at the first flexural mode in the R-direction. It is
difficult to assess quantitatively the effect of inefficient
clamping except insofar as it will reduce the expecte&
frequency values. A suitable model of a package with
fully encastré blade roots may be obtained by manufacturing
the model with a more massive base. However, although
this would allow a more thorough assessment of the accuracy
of the mathematical solution it may be considered somewhat
academic since blade packages of this type would be
unlikely in practice. Another approach would be to
incorporate an allowance in the mathematical solution to
enable the root conditions to be more accurately modelled.
This may be achieved either by increasing the
effective blade length, or by modifying the end-conditions
assumed to assist at the blade root. For the built-in root
the end-conditions are that the shear force and bending

moment take finite values, whilst rotation and displacement
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are zero. However, any suitable finite values for all
end-conditions can be used to attain an improved approximation
to the state existing at the blade root.

It must also be notéd that, when considering blades
attached to a turbine disc the axial modes will be
influenced by the disc, as described in section 1.4, " The
assumption that the disc is infinitely stiff no longer
holds and the blade/disc assembly requires to be investigated

as a whole.
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4,4 The Effect of Shrouding Turbine Blades

It has been shown in preceding discussions that the fitting
of a shroud to a series of turbine blades has the effect of
introducing frequencies in addition to the vibration characteristics
of the individual blades.

In the mathematical solutions due to Prohl (8) and Smith (9),
in which the shrouds were represented only by their centrelineg,
with the mass concentrated at the blade tips, the full effect of
shrouding could not be egtablished. In such models it can be
seen that the effect of increasing shroud thickness (and thus
ﬁass) will merely cause the vibration frequencies to be reduced.
The detached modes, in which all the blades move in phase with
similar displacement amplitudes, will be most sensitive to this
change in mass, whilst the symmetrical batch modes, involving only
slight movement of the shroud will be less sensitive to the change.
The anti-symmetric batch modes, in which blades in corresponding
positions each side of the package centreline are 180° out of
phase, involve no longitudinal movement of the shroud and are,
therefore insensitive to changes in shroud mass.

The current study has demonstrated the inadequacy of this
representation and shown that the stiffness of the blade/shroud
combination can become the dominant mechanism in controlling
changes of frequency due to changes in shroud thickness,
particularly with the batch modes, where a change in mass alone
has a limited effect on frequency.

This is clearly shown, both experimentally and theoretically
by the results tabulated in Tables 5 to 10.

Referring to the experimental values for the untwisted
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models it can be seen that a reduction in shroud thickness from
6.3mm (equal to the blade thickness) to 4.5mm causes the
fundamental frequency to increase, impiyipg a "mass controlled"
mechanism, whilst the batch mode frequencies are reduced, implying
a "stiffness controlled" mechanism. The second and higher order
detached modes show a slight decrease in frequency, demonstrating
a tendency towards the stiffness controlled mechanism, but with
mass remaining an important factor.

A further decrease in shroud thickness, from 4.5mm to 2.5mm
causes the frequencies to be reduced in all cases, the extra
sfiffness induced by the addition of a shroud being of greater
importance than the mass when this is small.

These observations are generally supported by the theoretical
results although the errors assumed to be due to the simplification
of the blade/shroud junction give rise to some variations.

" If the junction factors described in section 4.2 are applied then
agreement is improved.

Similar trends to those described above are apparent for the
pretwisted models.

It is clear, therefore, that the additional stiffness
provided by the shroud is an important aspect in determining the
natural frequencies of blade packages, particularly when the

additional tip mass due to the shroud is low.
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4.5 The Effect of the Number of Blades Comprising the Package

The simplified models investigated in this study were
restricted to packages of three blades.. This was considered
sufficient to introduce coupling effects, whilst considerably
reducing the computation time required by a larger number of
blades. ' In section 2,3.2 Smith (9) and Shiga (27) were shown
to have concluded that, although an increase in the number of

blades gives rise to a concomitant increase in the number of

batch modes, the frequency bandwidth remains constant. Allen (1),

however, found that the bandwidth increased, but that an estimate

of this increase could not be predicted reliably by extrapolation.

In the current study packages of three, five and seven

unstaggered blades, joined by a 2.5mm shroud were analysed.

The results are summarised in the graph of Frequency versus Number

of Blades (Figure 40), which shows that a slight increase in the
detached mode frequencies may be expected. The lower frequency
limit of the first batch modes remains sensibly constant, while,
within the range considered, the upper limit shows an inerease
with the number of blades which appears to reach a maximum. A
trend for the bandwidth to remain constant for packages of more
than six blades is indicated.
However, the second batch modes show a rapid decrease in

the lower frequency limit, with no apparent tendency to become

constant, whilst the upper limit increases with number of blades,

though at a slower rate than the former.

These changes in frequency do not follow the same trends
as those observed by Allen, but give added emphasis to the

conclusion that changes in bandwidth due to an increase in the
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number of blades cannot be reliably predicted by extrapolation.
Although this factor may initially appear to offset the
considerable economical advantages of analysing a package with a
reduced number of blades, a frequency seiective method of
analysis enables areas of interest to be located economically with
a small number of blades., These areas may then be investigated
over a limited frequency range with a more representative model.,
It may be concluded, therefore, that the limitations
imposed by analysing packages comprising a small number of blades
can be offset by the use of a frequency selective method of the
Myklestad type,retaining the advantages of economy of computer

time and storage requirements,
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CONCLUDING THE ANALYSIS OF BLADE PACKAGES

In Chapter 1 several methods for the determination of the
resonant frequencies of beams were compared to assess their
suitability for the investigation of the.vibration characteristics
of packages of thick, pretwisted turbine blades. It has been the
intention of the study to provide a perspicuous and adaptable
method to enable the designer to predict the frequencies at which
vibration induced fatigue failure could arisé in such components.

Since exact mathematical solutions to this problem are not
generally possible recourse must be made to approximate
solutions. Of the methods investigated two appeared suitable for
extension from a two-dimensional analysis to the three dimensions
required by pretwisted blade packages; the finite element method
and a modified form of the lumped parameter model due to |
Myklestad. Because the emphasis in the study has been to develop
a design tool, preference was given to the method which was shown
to be capable of a frequency selective solution and more
amenable to modification to cater for non-uniformity of the blades
and the complexity of the blade/shroud junction without an undue
increase in the size of the problem or complexity of the model.

These factors led to the adoption of the modified lumped
parameter modei due to Myklestad, rather than the more accurate,
but less adaptable finite element technique.

The theoretical study was supported by an experimental
programme using Laser holographic and interferometric techniques
to confirm the validity of the numerical solutions.

It has been found that generally good agreement is obtainable

between the experimental and theoretical results for the modes
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most likely to give rise to vibration induced fatigue failure
of the blade packages and similar structures, Major differences
between the calculated and experimental results could be shown
to be improved by introducing factors to.improve the modelling
of the blade/shroud junction and also the end conditions existing
at the blade roots. Although for the purposes of this study
the theoretical analysis ;as restricted to non-rotating blades
of constant cross-section and pretwist it was shown in
Chapter 2 that the lumped parameter solution can be modified to
include these parameters without an undue increase in the
complexity of the problem.

It is, therefore, concluded that the lumped parameter
modelling of turbine blade packages and similar structures offers

a tractable and economical method for the prediction of resonant

vibration frequencies at the design stage.
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Finite Element Experimental Myklestad
Model (Ref.20)  “TI°F  Model (Ref.20)  “TI%T  yodel (40-Steps)
y/4 %
Hz Hz Hz
First detached mode 213.4 0.7 212 3.4 219.3
833.6 0.7 828 3.7 858.6
First batch modes 834.4 0.8 828 3.7 860.5
Second detached mode 1220.1 0.7 1212 2.3 1239.8
Second batch modes 2646 2.5 2581 4.1 2687.9
2667 2.5 2602 4.1 2709.8

Package details:-

Number of blades 3
Blade length 5.625 in
Shroud length 1.000 in

Blade cross section 1 x 0.187 in

Shroud cross section 0.14x0.093 in



Exact Myklestad

Flsxgral Solution Model (10-Steps) Er;or Taper
ode Hz Hz (p)
1 1.875 1.871 0.21
2 4,694 4.657 " 0.79
3 7.855 7.754 1.28 0.0
4 10.996 10.798 1.80
5 14.137 13.805 2.35
1 2.176 . 2,166 0.46
2 4.920 4,871 0.99
3 7.992 7.873 1.49 1.0
4 11.095 10.873 2.00
5 14,215 13.852 2.55
1 2,503 2,485 0.72
2 5.156 5.092 1.24
3 8,147 8.003 1.77 2.0
4 11.211 10.954 2,29
5 14.307 13.900 2.84
1 3.223 3.180 1.33
2 5.671 5.559 1.97
3 8.512 8.296 2.54 . 4.0
4 11.490 11.135 3.09 °
5 14,533 13.997 3.67
1 4,860 4.704 3.21
2 6.888 6.605 4.11
3 9.438 8.981 4,84 8.0
4 12,228 11,551 5.54
5 15,140 14,192 6.26

*Taper is defined as the power (p) describing the rate of change of
the flexural coefficient (EI) and the mass/unit length (p) with
length (x)

—x -
EI_ = (EI) e ;o =p e

TABLE 2 : Resonant Frequencies of an Exponentially Tapered Cantilever
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Exact Myklestad

Flﬁigzal Solution  Model (40-Steps) Er;°r Tifir*
Hz Hz p

1 1.875 1.875 . 0.00

2 4,694 4.692 0.04
3 7.855 7.848 0.09 0.0
4 10.996 10.983 0.12
5 14.137 14.116 0.15
1 2.176 - 2.175 0.05
2 4.920 4.916 0.08
3 7.992 7.984 0.10 1.0
4 11.095 11.081 0.13
5 14.215 14.192 0.16
1 2,503 2.501 0.08
2 5.156 5.152 0.08
3 8.147 8.138 0.11 2.0
4 11.211 11.195 0.14
5 14.307 14.282 0.17
1 3.223 3.220 0.09
2 5.671 5.663 0.14
3 8.512 8.498 0.16 . 4.0
4 11.490 11.468 0.19
5 14.533 14.499 0.23
1 4.860 4.850 0.21
2 6.888 6.869 0.28
3 9.438 9.409 0.31 8.0
4 12.228 12.184 0.36
5 15.140 15.081 0.39

*Taper is defined as the power (p) describing the rate of change of
the flexural coefficient (EI) and the mass/unit length (p) with

length (x)

-x -
EIx = (EI)o e P? PP, = e, © px

TABLE 3 : Resonant Frequencies of an Exponentially Tapered Cantilever
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Myklestad Model

Fl;:gzal ExPi;iKS?tal Without Clamp  With Clamp  With Clamp
Fixed-Free Fixed-Free Free ~Free
1 455 479.1 479.8 482.4
2 1968 2124.6 2140.5 2119.7
3 481 5249.,5 5231.3 5282.1
4 " 9055 9660. 4 96247 9691.7
5 14270 15055.6 - -

TABLE 4 : Resonant Frequencies of a Linearly Tapered Beam, with
Varying End-Conditions and Allowance for the Clamp
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Mode Type

FLEXURAL

Detached

Batch (symmetric)
Batch (antisymmetric)
Detached

Batch (symmetric)
Batch (antisymmetric)
Detached

EDGE

Detached

~ TORSIONAL

Detached
Batch (symmetric)
Batch (antisymmetric)

Pretwist

Experimental Myklestad
Model Model
kHz kHz
1.05 1.03
4,49 4.38
4,35 4.29
5,78 5.60
12.03 11.74
11.27 11.47
(15.15) 13.09
- 2,43
- 3025
- 8,72
! e 8.64
0°

Shroud Thié¢kness 6.3mm

Error

-1.3
-2.3
-1.6
=3.2
-2.4
-1.8
(-13.6)

TABLE 5 : Resonant Frequencies of Blade Package Model Al
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Mode Type

FLEXURAL

Detached

Batch (symmetric)
Batch (antisymmetric)
Detached

Batch (symmetric)
Batch (antisymmetric)
Detached

EDGE
Detached
TORSIONAL

Detached
Batch (symmetric)

Batch (antisymmetric)

Pretwist

. Experimental

Model
kHz

1.08
4.17
4,17

'5.78
11.56
11.18

(14.92)

o

.0

Shroud Thickness 4.5mm

Myklestad
Model
kHz

1.09
4,26
4.26
5.83
11.71
11.56
13.62

2,62

3.33
8.89
8.77

Error

+1.0
+2.2
+2.2
+0.8
+1.3
+3.4
(-8.7)

TABLE 6 : Resonant Frequencies of Blade Package Model A2
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Mode Type

FLEXURAL

Detached

Batch (symmetric)
Batch (antisymmetric)
Detached

Batch (symmetric)
Batch (antisymmetric)
Detached

EDGE
Detached
- TORSIONAL

Detached
Batch (symmetric)
Batch (antisymmetric)

Pretwist

Experimental
Model
kHz

1.05
3.77
3.84
5.51
11.21
11.07
12.93

2.26

3.07

8.70

OO

Shroud Thickness 2.5mm

Myklestad
Model

kHz

1.10
3.90
4.02
5.80
11.47
11.51
13.95

2.83

3.48
9 .O6
8.83

Error
%

+4,9
+3.4
+4.8
+5.4
+2.3
+4,0
+7.9

+25.4

+13.4

+1.5

TABLE 7 : Resonant Frequencies of Blade Package Model A3
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Mode Type

FLEXURAL

Detached

Batch (symmetric)
Batch (antisymmetric)
Detached

Batch (symmetric)
Batch (antisymmetric)
Detached

EDGE
Detached
TORSIONAL

Detached
Batch (symmetric)
Batch (antisymmetric)

Pretwist

Experimental
Model
kHz

0.97
4,35
4.54
5.43
11.67
10.70
(14.45)

30°

Shroud Thickness 6.3mm

Myklestad
Model
kHz

1.03
4,37
4,57
5.58
11.70
11.33
13,17

2.91

2.96
8.58
8.70

Error
Y4

+6.3
40,4
+0.8
+2.8
+0,2
+5.9
-8.8

TABLE 8 : Resonant Frequencies of Blade Package Model Bl
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Experimental  Myklestad

Model Type Model Model Error
kHz kHz %
FLEXURAL
Detached 1.03 1.09 +5.5
Batch (symmetric) 4.07 4,24 +4.3
Batch (antisymmetric) 4.38 4,55 : +3.8
Detached ) 5.50 5.79 +5,2
Batch (symmetric) 11,22 11.67 +4.,0
Batch (antisymmetric) 10.50 11.43 +8.8
Detached 14.33 13.70 ~4.5
EDGE
Detached - 2,69 -
TORSIONAL
Detached - 3.03 -
Batch (symmetric) - 8.87 ’ -
Batch (antisymmetric) - 8.69 -
Pretwist - 30°
Shroud Thickness 4.5mm
TABLE 9 : Resonant Frequencies of Blade Package Model B2
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Mode Type

FLEXURAL

Detached

Batch (symmetric)
Batch (antisymmetric)
Detached

Batch (symmetric)
Batch (antisymmetric)

Detached
EDGE
Detached
TORSIONAL

Detached
Batch (symmetric)

Batch (antisymmetric)

Pretwist

Experimental
Model
kHz

1.02
3.70
4.14
5.28
10.91
10.44
12.79

2.27

2.67
(9.54)
8.43

30°

Shroud Thickness 2.5mm

Myklestad
Model
kliz

1.08
3.91
4.38
5.72
11.47
11.40
14,00

2.50-

3.11
9 .01
8.68

Error
p 4

+7.0
+5.9
+5.9
+8.4
+5.1
+9.2
+9.5

+10.3

+16.4
-5-6
+2.9

TABLE 10 : Resonant Frequencies of Blade Package Model B3
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Experimental Myklestad

Junction Flexural Error
Model Model Model
Factors Méde Type  KHz Wlz b4
Al 2.0,1.5 Detached 1.05 1.04 -0.6
Batch (symm) 4.49 4.43 -1.2
Batch (antisymm) 4.36 4,42 +1,6
Detached 5.78 5.69 ~1.6
Batch (symm) 12.03 11,88 -1.2
Batch (antisymm) 11,27 11.71 +3.9
A2 0.75,0.5 Detached 1.08 1.09 +0.3
Batch (symm) 4,17 4,20 +0,6
Batch (antisymm) 4,17 4.16 -0.3
- Detached 5.78 5.77 -0.1
Batch (symm) 11.56 11.52 -0.3
Batch .(antisymm) 11.18 11.32 +1.3
A3 0.25,0.0 Detached 1.05 1.05 0.0
Batch (symm) 3.77 3.80 +0.6
Batch (antisymm) 3.84 3.81 -0.7
Detached 5.51° 5.51 0.0
Batch (symm) 11.21 11.22 0.1
Batch (antisymm) 11.07 11.15 0.7

TABLE 11 : Resonant Frequencies of Blade Package Models Al, A2 and A3
Incorporating Junction Correction Factors
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(a) Lumped parameter beam model due to Myklestad

Unstrained axis

z + Az

Xé cos wt
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-__~=~§' cos wt
Fﬁ,\\\M cos wt

F cos wt

Y

(b) Element of lumped parameter beam model

m
= oy

Strained axis

(X' + AX'") cos wt

(M + AM) cos wt

(F + AF) cos wt

V

X + Ax =
(X + AX)wt

—

m
+*Ion

a _----_----w----w a
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(¢) Lumped parameter beam model modified to include "dummy" masses

FIGURE 1 : Lumped Parameter Models
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FIGURE 2 : Detection of Roots
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a) Turning Point Between First Trial and Subdivision

v3 Vi N\

V5

=0

b) Turning Point Between Second Trial and Subdivision

FICURE 4 : Plot of Residual (R) vs. Frequency Parameter (V) Showing.
Improved Convergence to Root Using Subdivision of Search

Interval
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FIGURE 6 : Frequency Parameter (uL) vs. Error and Taper (p) for
Exponentially Tapered Cantilevers
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(a) Cross-sectional view along z-axis, defining variables

Element r +1 JY:]

Element r

Datum Axis (at z = 0)

(b) Axes, showing angular relationship between successive elements along
z-axis

FIGURE 7 : Pretwisted Element for Lumped Parameter Modelling
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FICURE 8 : Myklestad Element Showing Forces due to Rotation of the
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FIGURE 11 : Blade Package Axes
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(a) Movement in the VH plane a\

A', A R _
€ ©° -

-

(b) Movement in the RH plane

FIGURE 12 : Movement of Biade/Shroud Junction

- 166 -



Harmonic Motion
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FIGURE 13 : Position Probability Density Function for Simple
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FIGURE 14 : Zero Order (Bessel Funct:ion)2 Plot
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Object beam
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F Polarizing filter
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FICURE 15 : Laser Image-Speckle Interferometer
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FIGURE 16 : Laser Image-Speckle Interferometer
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FIGURE 16 . paser Image-Speckle Interferometer
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FICURE 17
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FIGURE 18 : Layout of Optical Table
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FIGURE 19 : Layout of Optical Table
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FIGURE 20 : Modified Oscilloscope Camera
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FIGURE 20 : Mpgified Oscilloscope Camera




FIGURE 21 ': Photographic Plateholder for In-Situ Development of
Real Time Holograms
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FIGURE 21 ° Photographic pPlateholder for In-Situ Developme
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82.6 (model Al)
80.8 (model A2)
78.8 (model A3)

Ny L
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F\\\\ N
6,35 6+

76.2

s

25.4

All dimensions in millimetres (tolerance * 0.02)

Material: normalised bright mild steel

FIGURE 22 : Blade Package Model
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" FICURE 23 : Pretwisted Blade Package Model
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FIGURE 24 : Clamp and Blade Package Model
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Clamp and Blade Package Model

FIGURE 24
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Courses of Study Undertaken in Connection

with the Research Programme



Courses of Study Undertaken in Connection with the Research Programme

During tﬁe period of this research programme a lecture course at
Salford University on the matrix analysis of vibration was undertaken
in 1974,

The cbnferences "The Engineering Uses of Coherent Optics' at
Strathc%ﬁke University (April 1975) and "Laser Holography" presented L/I
by the Royal Photographic Society at the Institut/J of Electrical "0“/\
Engineers in 1975 were also attended.

l‘In addition informal seminars were undertaken, cévering the use
of finite element methods for the analysis of vibration, at Kingston
Polytechnic, aﬂd aspects of the use of Laser holograbhy and

interferometry at the National Physical Laboratory, Teddington.
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