
LOGIC DESIGN TSSTING.

This thesis is presented to the Kingston

Polytechnic and the Council for National

. Academic Awards for the degree of Doctor

of Philosophy

by

A. A. Kaposi, Dipl.Ing.

January 1971.

KP 0220957 8

111111111111 11 11111111 111111111 III 111 1 11111

IMAGING SERVICES NORTH
Boston Spa, Wetherby
West Yorkshire, LS23 7BQ

www.bl.uk

CONTAINS

PULLOUT

IMAGING SERVICES NORTH
Boston Spa, Wetherby

West Yorkshire, LS23 7BQ

www.bl,uk

PAGE NUMBERS CLOSE TO

THE EDGE OF THE PAGE.

SOME ARE CUT OFF

A BST RAC T

This thesis concerns the testing of the design of 10gio

networks.

It is shown that oonventional test methods,suoh as hard­

ware testing and computer simulation, fail to satiefy the test

requirements of modern logio networks.

A new method is devised, oonsisting of a series of oomputer

based modular tests, whioh permit the comprehensive verifioation of

designs.

The feasibility of the new method has been demonstrated on

a prototype system.

The work is based on a systems engineering approaoh whioh

permits viewing the problems of logio design as partioular oases of

the more general problems of designing large interaotive engineering

systems. The systems approach also permits the extension of the

methods desoribed in this thesis to other areas of engineering.

As part of the thesis, a framework of systems engineering

concepts is constructed.

ACKNOWlliDG:b:MBNTS

(r'he work described in this thesis was carried out under

the supervision of Mr. G. bayo of the Kings ton Polytechnic and of

Dr. M.J. Lanigan of the Plessey Company Limited.

The author wishes to acknowle dge the contributions of the

staff of Plessey Radar Limited, who originated the project and have

kept in touch throughout its development; of the staff of the

Computer Unit of Kingston Polytechnic for valuable advice and assist­

ance in programming , and to Mr. D. H. Holmes for devising and

implementing the prototype syst em .

Grateful thanks are due to Dr. Lanigan for continued

support, guidance and encouragement; to Mr. Mayo for ready help and

valuable discussions; to Mr. R.R. Ne ss and the Directorate of Kingston

Polytechnic for providing every facility in the interest of the project.

The course of this work was considerably influenced by the

advice of Mr . J.F. Kaposi who scrutinised each stage of its development

and by that of Mr . D. R~evski, who suggested the systems approach.

F'inally, and most of all, the author is grateful to members

of her family whose unfailing patience made the undertaking of such a

work possible .

C O NTBNTS

Al3STRACT.

ACKNOWLEDG~M~NTS.

CONTENTS.

CHAPTER 1. - Background.

CHAPTER 2. - Framework of systems concepts.

CHAPTER 3. - Conventional methods of testing logio design.

CHAPTER 4. - A modular method of testing logic design.

CHAP'rER 5. - Organisation of logio design test systems.

CHAPTER 6. - Further developments.

PRINCIPAL RBFERENCES.

CHAPTER 1

Baokground.

1.1

CHAPTER 1 BACKGROUND.

In the autumn of 1967 Plessey Radar Limited approaohed

the Kingston Polytechnic (then ' Kingston College of Technology) with

the problem of inadequate design reliabili·ty of their logic networks.

It was thought that the already inadequate design test methods would

fail completely when, as a consequence of advancing integrated circuit

technology, it will become possible to produce large interactive

digital networks as indivisible single components. Thus the manage­

ment of Plessey Radar Limited requested that the Polytechnic should

undertake the development of a method of logic design testing which

could satisfy both existing and projected demands.

By the definition of the problem a hardware model of the

newly designed network could not always be assumed to be available;

thus it was necessary to concentrate upon a computer-based method of

solution.

designs.

Design testing was seen as a means of generating correct

Thus it was thought necessary to construct a design test

method which, beyond providing means of comprehensive error detection
l

also facilitated the correction of these design errors .

Computer simulation was considered as a possible mode of

solution. At the time one simulator was generally known and

commercially available in this country (36); since then the method

has become conventional and has been implemented in some form by

numerous . industrial and research organisat ions (for a survey see (1)).

These now conventional logiC simUlators operate upon a computer model

of the network by applying a sequence of signal changes to the input

terminals and recording the signals appearing at the outputs. This

record - a waveform on some suitably designed time scale - contains

a part of the required error report in an implicit form. Some of the

design errors are not revealed by the test; those detected must be

recognised, sorted and classified by the designer upon examination of

the output waveforms.

In view of the size and complexity of modern logic networks,
the method is considered inadequate. To ensure reliabili ty, a very

long sequence of input changes must be originated by t he designer;

this places extravagant demands on the computer ' s t ime , while the very

high volume of output data gives an unreasonable task t o t he designer

as a data processor. It is shown in the course of this work that

conventional logic simulators appear to raise almost as many problems

as they solve. Thus it was thought necessary t o search for some

alternative method.

The work programme which was proposed f or this project in

1968 contained two ideas:

1) that simulators should be purpose-bui l t for

a type of network or for an aspect of performance .

2) that care must be taken to use comput ing facili­

ties efficiently.

This work was divisible into four distinct part s :

a) problem analysis.

b) formulation of the principles of solut i on.

c) development of techniques of solution.

d) design and implementation of a prototype

system,proving the feasibility of the

principles and techniques.

The work programme isolated the last i t em of thi s list,

whi ch was subsequently defined as an individual r esearch project (1)

and was carried out under the direct financial spon sorship of Plessey

Radar Limited. The implementation project ran concurrently with the

work described in this thesis and under the supervision of the author.

Detailed problem analysis revealed severe limitations of

simula tion, even in its unconventional form , as a means of analysis .

It was f ound necessary to have the freedom of choice between alter­

nat i ve modes of analysis. Thus the changed t i tle of this thesis does

not contain t he word "simulation".

The development of the project was considerably influenced

1.3

by a newly emerging interest of a group of people in the Polytechnic

in the principles of systems engineering. Common ground was found

to exist between projects of seemingly unrelated fields of specialisa­

tion and a broadening of outlook permitted useful interohange of ideas

between a group of researchers.

In order that logic networks may be placed against a

systems engineering background, a framework of consistent concepts

and definitions was needed. Since both systems engineering and

switching theory are relatively new and rapidly developing subjeots,

such a framework was not readily available but had to be constructed

by adopting existing material, modifying such material, or in many

cases, creating new concepts, definitions and terminology . This

permitted the viewing of the project against the background of present­

day technology and thus it opened the way for the extension of this

work to fields outside of logic network analysis. As a consequence,

several new research projects have been initiated for members of staff

and for post-graduate students (see Chapter 6).

Using the framework of systems engineering, it was possible

to propose a model of the design prooess. Viewing logic network

analysis as part of such a procedure, it was found unwise to computerise

this part of the process alon~. Instead, it seemed desirable to

devise methods of automating a larger section of the process, including

the assessment of the model performanoe. The combination of analY8i8

and performance assessment will be termed design testing or verifioation.

CHAPTER 2

THE FRAMEWORK OF SYSTEMS CONCEPl'S.

2.1 Introduction.

2.2 The concept of a system.

2.2.1

2.2.2

Behaviour, environment , specifications.

State.

2.3 System organisation.

2.3.1 - Resolution.

Structure.

2.4 Modelling.

2.4.1 Modelling the system.

2.4.2 Technique.

2.4.3 Classification.

2 .4.4 - Modelling the environment .

2.4.5 - Modelling the state space .

2.5 Systems analysis.

2.5.1 - Mode of analysis.

2.5.2 Input data.

2.5.3 Input - output mapping.

Resolution, modelling and solution.

2.6 Systems design.

2.1

2.1 INTRODUCTION.

A system will be described by a model and charaoterised

by its structure and parameters. In this chapter the methods of

characterising and analysing systems are discussed and , finally, a

model of the systems design process is presented.

2.2 THE CONCEPT OF A SYSTEM .

2.2.1 Behaviour, environment, specification .

A system will, in the first instance, be defined as an

assembly of objects united by some form of interaction or inter­

dependenc e . (Note that a more general definition (5) permits a

system to contain non - int l ractive, j :~ olated ob.iects or groups of

obj ects. Systems considered here, which contain no such ob.1ects,

are define d in ()) a~ reduced systems). Thus the conoept of a system

is that of an indivisible entity since all the part s interact and none

can be isolated without altering the behaviour of the system, the

system concept demands the examination of the overall interaction of

a group of objects rathe1than focussing attention upon the operation

of each of the constituent objects in turn.
.

Behaviour itself is defined as a unique mapping or trans-

formation of inputs (causes) into outputs (effects) and the syetem

will be r pgarded as the operator performing this transformation.

Irrespect i ve of size, appparance, structure or othp.r circumstance of

detail, t wo syetems will be regarded as equivalent if their behaviour

is identi (!al, that is, if they could be intercbanged without altering

the relat i onship between cause and effect.

The system is contained within a boundary. The Bet of

all variables outside the boundary which have an effect upon the system

form the ~ystem environment. The total set of admissible values of

the variables of the system environment forms the admissible domain

of the system.

2.2

The system environment consists of resources which must

be available for the operation of the system (sources of energy,

manpower, etc.), the physical conditions in which the system operates

(such as altitude, temperature, humidity; eto.), the operating signals

available to the system and, finally, the loads to which the system

provides a service. Henceforward it will be taken for granted that

adequate resources are provided at all times; it will also be

assumed that the system boundary is drawn in such a way that the load

outside this boundary should be constant.

The rest of the environment will have an effect upon the

behaviour of the system; all the environmental variables should be

considered as inputs of the system.

Let the system have a total of n input variables forming

a set un = ~ Ul , U2 , ••• Un ~ and consisting of a set Up of p

number of physical signals and a set u f of f number of operating sig-

nals or forcing functions. The admissible domain of input variables

encloses an n-dimensional input space which defines the admissible

environment un of the system. Given a system, ~here is then a set

of u of input variables U and a set ~ of outputs ~ and a
n

transformation F (mapping the inputs into the outputs.

Thus g = F (u) ;

u = (Ul , U2 , U)
n (n)

g (
gl' ~2' ~~ (. . . Equation 2.2.1

for a network of n inputs and m outputs. (see footnote)

FOOTNOTE. Equations, tables and figures will be numbered throughout

this thesis by assigning to the first digit the chapter number, to the

second digit the section number within the chapter and to the third

digit a serial number within the section.

This transformation will, in the first instance, define

the behaviour of the system.

The formal statement of the system behaviour, together

with the definition of the admissillle environment, will be a form of

system specification. The system specification will thus contain the

description of the domain of physical variables, and the domain of

operating signals. It will also contain the definition (stochastic

or deterministic) of the expected system transformation.

2. 2 .2 State.

When defining the system as the transformation g = F (~),

it was tacitly assumed that the system was created at t =-00 and that

the history of the system had been retained for all time t up to

the time of observation. If this assumption is not valid and the

inputs are only known after a given instant to, then the history of

the inputs previous to to will have some effect upon the system.

The accumulation of these effects over the interval -oo~ t ~ to is

called the initial state or the state of the system at t = to'

Thus the state is defined as a Bet of time functions s (t) such that

if the input set is known for all t ~ tOt then the knowledge of s (to)

is suffiCient to determine uniquely the output set l. (t) for all t ~ to.

With the aid of this definition, equation 2.2.1 can be

re-written in an equally general but more useful forma

g (t) = G (u (t), s (to)),

• x(S s
o (l' 2' ...

U = (u u
(l' 2' ... u) a

n) l

Equation 2.2.2

for a system of n inputs, m outputs and q states.

Although it is often advantageous to prepare abstract models

of systems such that S should be an empty set, physically realisable

systems always possess state. Thus, in general, the knowledge of the

state of the system is necessary at all time t~ to. The system

equation will consist of the output equation which specifies the

behaviour and the state equation which permits the computation of the

syst e~ s t at e a t a time t ~ to'

The ge ner a l form of the state equation (7) givee the state

at time t as

S (t
l

) s (t)
o) •••• ~quation 2.2.3

Eere u (to' t l) expresses the input segment over the time interval

(to' t l)·

A particular form of this equation will be presented in

Chapt er 4 as thp state equation of logical networks.

The conce pt of state permits the definition of two useful

propp.rties of a sys tem (6):

a) Controllability (see also Connectedness, Chapter 4)

The component Si (t) of the state s = ~Sj~' j = 1, 2, ••• ,

i, ..• k) i s controllable if there exists an input u (t), t:.. t to o
bring any prescribed initial value 0(of Si (to) to any other presoribed

fin al va lue ~ of s. (T) in a finite amount of time (T - t). r 1 0

If all components of the state B of the system are oontrol­

l able then the system is termed completely controllable.

b) Observability (see also definition of sequential networks

Chapter 4).

The component Si (t) of the state ~ : ~Sj~ is observable

if there i s some finite time T for which a knowledge of the reeponse

6 (t) over t ~ t ~ If is sufficient to determine the initial value
o '"

s. (t) when the state equations of the system are known. Thus an
1. 0

observable state can be determined by observations made on the output.

If all components of state S are observable then the system is

called completely observable.

2. 3 SYST :;~,: 0 GaNISATION.

2 . 3.1 Resolution .

ny definition, a system is a complex interaotive assembly

of identifiable ob.iects which themselves may be complex interaotive

as semblies. Thus, by re-defining the boundary, the objects of a

given system may be considered as systems themselves , as the given

system might become one of several objects of a l ar ger sys tem. The

organisation of a system will be considered as a hierarchical structure

of sub- systems .

When seeking understanding of a given syst em , i t i s frequently

necessary to resolve the system to constituent obj ect s . St arting from

level 1 , when the system P is observed as a whole , the observer may

choo se to define a number of distinct resolution l evels a s shown on
0-

the resolution graph ofAfictitious system (Fig. 2. 3.1), suggested by

Kl ir and Valach (5). Each node of this dir ected graph r~presents a

di ffe r ent system which features as one or more ob jects of the system

at a l ower level of resolution. The rela t ionships ar e simbolized by

the arrows ; for instance, the system PI may be con s tituted of sub­

sys t ems P2 and P3; the system P7 is the consti tuent of systems P4,

P5 and P6.

As an example, consider the system PI of Fig . 2.3.1 onoe

again. Assume that p6 needs no detailed examina t ion, i.e. the highest

level of r esolution will contain the SUb-system P6. PI may now be

constitut ed in a number of different ways :

of P6, P5 and P2.
of P6, P7 and P4.
of P6, P4 and P5, etc.

I n principle all resolution graphs are "cigar-shaped",

with arrows star ting from a single point of t he common constituent of

all sub-syst ems (the highest level) and termina ting on a single point

of the tota l s yst em (the lowest level). The peak of the resolution

graph i s s e l dom reached , because of' practica l r easons; the number of

SUb-sys t ems constituting the total system i ncrea ses as the level of

resolut i on i ncreases and it becomes impossible f or the designer to

consider the i nteract i on between the lar ge number of system objects

simultaneously.

Resolution graphs are not unique to a given system; since

SUb-system boundar ies may be drawn i n a vari ety of ways, resolution

graphs may also be prepar ed i n a cor responding varEty.

2.6

Consider now the example of Fig. 2.3.2 . rrhe selected

sys tem i s an amplifier, composed of active elements and coupling net-

works. The equiva l ent circuit model of active elements and the cir-

cui t elements of the coupling net 'vorks form further sub-systems.

The graph is not continued to higher levels, but it is evidently pos­

s ibla to pre pare complex modelA of each component, acoounting for

losses , noise, thermal effects, ete., until, ul ti.nately, the graph

would r each it s peak a t a level where sUb-systems represent material

particles.

It must be noted that this graph offers no insight to the

number of object s within the system at each level of resolution, nor

to the way in which the se objects are interconnected. Information

about structure must be pres p. nted separately for a given degree of

resolution in the form of a graph, table or equivalent.

2.3.2 s tructure.

Let the system be denoted by P and let P, at the selected

level of resolution, consist of q number of sub-systems (or system

objects). Let the totality of these objects be denoted by D, where

the set D i s defined as

D = f d
l

, d2 , • • ., dq 3
Now let the environment of the system be represented by a

"source ob.iect" which emits ph.vsical and operating signals.

source object be denoted by d •
o

Let the

Then the system and its environment will consist of a set

of ob.iects b where

The structure of the system is defined by the manner in

which the elements of the set D are interconnected. Let the symbol

r ij denote the information about the connection of the inputs of

object d. to the outputs of object d.. Then the eet
J 1

R =: ()
(r ij) for all i, j between land q

will define the system structure at the selected level of resolution.

The system will now be totally defined by the combination

of D and RI

p ::; (
(D, R

The structure of the system and its environment will be

defined by q where

~ ~ ~ r L} j ~ for all i, j between 0 and q.

Denoting the combination of the system and its envi r onment by 1t' , 'it'

will be totally defined by the combination of S and ~ I

(t' 0) , '
((I ,~)

Information about the system structur e may take such forms

as graphs, lists or matrices . For the purpose of this work it was

found convenip.nt to adopt the concept of a " structure ma trix" and

propose its definition as follows s-

Let the system comprise q objects and a source object.

Then the structure matrix W will be a square matrix consisting of

(q ... 1)2 number of elements . ~ach element Wij f or all i, j between

o and q, will be a matrix representing rij. If the ob",ject dJ has

"a" number of outputs and the ob,iect di has "b" number of inputs then

the matrix 'rVij will have "a " number of rows and"b" number of columns.

Elements of 'rVij will be binary numerals showing t~e presence or absence

of a connection between each of the outputs of dj and each of the

inputs of di e The matrix dkk represent s the feedback connections

between outputs and in puts of the kth ob ject of the system.

Fig. 2 . 3 . 3 shows in graphical form the structure of a

system and its envi Donment . As an example of the above definition

the structure matrix of the system will now be prepared.

The system comprises q : 2 objects and a source obj ect of

a single output and a dummy input. The structure matrix W has

(q ... 1)2 :. 9 element s as li sted belowl-

W :: (W - (0) W
02 () 0 0 :: 0 00 0,1 • (8 8 £
. w .: (1 o 0) W

l1
':) W

l2 = (010) 10
• , ,

WcO .: (o 1) W2l = (1 0) W22 '= (o 0) o 0 , , I

2.8
'rh(· dructurp matrix 'if serves no purpose of algebraic

mani pulut ion bavinr matrix elements of uneven size. ~ven so, it is

of con s iderable value since it organises the numerical description of

sYf;tem structure in an easily comprehensible form.

At the cost of some loss of information a more ooncise

version of the structure matrix may be obtained. The coarse structure

matrix W will contain a single numeral in the place of each matrix
c

UI •

"ij' this numeral will be 0 if all element s of Wij were 0; otherwise

it will be 1. The coarse s tructure matrix indicates the absence or

existenc e of a connection between objects i and j, without specifying

the terminals of inter-conn ection.

the example of Fig 2.3. 3 i s

The coarse structure matrix of

[o~ W = c

o
1
1 ~J

The first row of W is trivial because the source object,
c

by definition, has no inputs. Consequently the re duced coarse structure

matrix W will contain the same information .
r

w = r
1
1

For the example

Structure matrices will find wide application in the course

of this work.

2. 4 bOD~LLIN G.

In order to obtain a meaningful definition of the system P

it is now necessary to define means for the description of the system

obj ects contained in D. If the behaviour of each objeot in D could

be verbally , numerica lly, graphically or otherwise described, then

the behaviour of the total system could be found by combining this

description of object behaviour with information about structure.

Due to the diversity of the ways in which ~ may be described

it is use fu l to adopt the concept of a model. The model of a system

will be defined here as an abstraction of the system, constructed for

the purpose of giving insight to the system behaviour.

2.9

It is possible, and sometimes necessary, to construct

models of objects of the system at several different resolution leve l s .

Thus, a model may seek to represent the total system or one of its

constituent s.

Models of engineering systems are usually quantitative .

Such quantitative models will be characterised by an ordered set of

numerals called the parameters of the system.

It will be useful to extend the concept of a parameter to

non-numerical information about a modelled system. Thus a parameter

may denote the colour, shape or logical behaviour of an objeot of the

system.

Modelling of engineering systems will consist of

a) choosing a resolution level , thus defining

the boundary of each system object.

b) charaoterising the system struoture and

c) defining of obj ect parameters.

Modelling the system.

Modelling will be described as the procedure of obtaining

the model of the system for the purpose of observing the system

behaviour .

The model usually represents a simplified version of the

system, purposely built to facilitate the observation of a limited

set of its features. Thus the specification of a model would

consist of the specification of

a) the set of characteristics of the system whioh

are to be observed and

b) the accuracy with which these characteristics

are to be described.

The quality of the model will be defined here by an objective f unction,

taking account of the extent to which the model meets the specifica­

tions, the cost of building the model and the facility of it ' s use .

2.10

There is no improvement in quality associated with exceed­

ing the model specifications and since the simplest model is usually

easiest to use, this will represent the model of optimum quality.

However, the use of complex models is justified when they are flexible

and can be used for more than one purpose. Such multi-purpose models

share the cost of development between a number of applioations and

thus acquire higher quality rating, but, since such models depend for

their quality upon the need for all applications, they are very

sensitive to modifications of the analysis prooess.

It is usually easier to maintain the quality of models by

constructing a modelling sequence which relies upon a sequence of

modifications (usually refinements). In this case a model is purpose­

built for eaoh applioation, thus is optimally easy to use, but it is

built upon the foundation of another model, used earlier in the process,

thus the oost oonsists of a relatively small inorement. Prooess

modification affects the inorementa1 oost only. Sequential modelling

will find appl ication in the oourse of thi s work.

Teohnique .

The technique of modelling is shown schematically on

The modelling data is the basis upon whioh the hypothesis

is set up. When the model is constructed and tested the modelling

data is used again as the basis of assessment.

If serial modelling is used, as reoommended in seotion

2.4.1, the prooess is repeated several t;mes, taking into account an

increasing detail of modelling data. Thus a comprehensive model is

built by a series of approximations.

Claeiifioation.

Several criteria have been suggested for the classification

of models (5), (9), (10), (12). Without further comment some #rounds

for classifioation are listed here, taken mainly from Chestunt (11).

1) Language.

a)

b)

c)

Verbal models

Iconic models (maps, photographs, etc.)

Symbolio models (flow oharts, logio diagrams, etc.)

2.11

d) Analogue models

e) Physical models.

2) Method of solution

a) Analytic models

b) Numerical deterministic models

c) Numerical stochastic models.

3) Resemblance to reality

a) Isomorphic models

b) Homomorphic models

c) Abstract models.

Such formal classifications have been found helpful in

understanding the problems of modelling logical networks.

Modelling the environment.

It is possible to extend the concept of a model to the

environment itself. If a suitable model is found to represent, in

some abstract form, the source object do, then the objects of 8'
are all modelled and can be observed. This use of the concept of

a model is considered both advantageous and novel.

In this section the environment of a system will first be

examined, secondly, the problems of modelling the environment will

be discussed.

Let the source object do have n number of output terminals.

This means that the system P is operating in an n-dimensional input

space which is composed of operating signals and physical signals.

The boundary of this space is given in the speCification of the

admissible domain.

A verbal model of the source object is now proposed.
th

Let the signal at the i output terminal of the source object be

given by some quantity Ui (to) at the instant to. Then the totality

of Ul (to) for all i between I and n defines a point ~ in n-dimensional

space within the admissible domain. The behaviour of the source

object in the interval~ ~ tl - to will now be pictured as the para-

meters in n dimensions of the moving point ~. In the course of

2.12

normal operation point)/may travel on some path X where X is usually

a continuous line.

Let the purpose of an observer be now to obtain information

about the system behaviour. The observer may now follow the varia­

tions of the system output s as functions of the path of pOint)I.
This procedure leads to frustration because the point .~ may stop

moving for periods or may keep returning to routes already covered,

misang interesting areas altogether. It appears advantageous to

replace the real-world source object with another which ls under the

observer's control. If the substitution is sufficiently ingenious

then the observer may regulate the route X according to his own purpose.

Let the purpose of the observer be re-defined. information

is to be collected about the total range of system behaviour. With

the aid of the verbal model of the source object it is easy to see

that it is impossible to achieve this purpose: the point)V will

never touch all of the points of the space because the number of pOints

is an n-dimensional infinity.

Let the purpose of the observer be re-defined once morel

information is to be collected about the system behaviour in such a

way that it should become possible to predict the system behaviour

by the use of this information at any point within the admissible

domain.

This objective is reasonable.

objective of systems analysis .

It is defined here as the

To demonstrate one way of meeting this objective/let the

verbal model of the source object be changed. Instead of the

continuous n-dimensional space in which ~ may move, consider now the

same space in which a finite number of points N are strategically

placed. The movem~nt of >'will now be discontinuous, jumping from

point to point. The total space may be covered by N number of

changes in the position of the point)(This model of the source

object may be translated into numerical form: each of the N number

of points can be given by a set of n numerals. The behaviour of the

2.13

sourCR ob.iect m2.;Y no ;·: be given in forr:l of a table which has one column

for p;jving thf' inf1t."ln~p.fl of time whpn thp position of Y chanp-es, ann

n Inorp. column..3 d(!scribine eacb of the co-ordina tEl n or Y. 'l'he obsr>rver

will achieve his purpose by first coverinc all of the N pOints of the

space (inn then, if necessary, interpolatinc, between them to calculate

the behaviour at (in intermediate point. (see footnote).

The concept of an environmental model has found extensive

use in Ghaptero 3 and 4 of this thesis.

state.

Modelling the state space •

• '1S seen earlipr (section 2.2.2) systems in general possess

In the course of modellinc the objects within the Bet D, it

may have boen riecided to compile an analytic model of the system which

would al low the description of the state in term s of m number of state

variablRs. When the behaviour of the system is observed, the system

may be ;lnywhere in th.i.R m-dimpn s ional s t ate space and therefore> the

results can only be interpreten un-ambiguously if the initial state

of the system i s known .

Let the observer have a new anti ambitious purpose of

collecting infor:nCi tion abou ·t the sys tem behaviour in such a way that

estimate couln be In ade of the behaviour irrespective of the initial

state of the system. This means that tests must be conducted to

cover the total state space.

The t ask is impossible. At the outset, the moving point Y

may be anywhere in an m-dimensional infinite number of points.

~vidently it is necessary to qu~ntise this area in the same way as in

the case of the n-dimen sional input space, permitting now a finite M

number of points for the purposes of testing. Combining the

FOOTNO'rE: This procedure will be shown as valid only for systems

without state.

2.14

m-dimensional state space with its M points with the n-dimensional

input space with its N points, a total space of q ~ (n~ m)

dimensions may be perceived, consisting of both state variables and

input variable s, in which Q =N x M number of points are defined for

the moving point Y.

The ingenious observer may succeed in construoting a source

model in such a way that direct control is maintained over eaoh of the

n input parameters. The parameters of state space however are not

usually directly controllable. Referring to the definition of

controllability, it will be seen that systems which are not oompletely

controllable can never be induced to occupy certain areas of the state

space. Consequently no physical model of such a system will permit
systematio . . the/scanning of the total q-d1mens1onal sample spaoe.

One of the merits of the method of design verification

proposed in this work is that it permits the designer the direot control

of all variables of the sample space, as will be seen in ohapter 4.

2.5 SYSTEMS ANALYSIS.

Systems analysis will be defined as the process of obtaining

information about the behaviour of the system in order to satisfy the

objective set up in section 2.4.4. The purpose of analysis is to

serve design verification, as defined in section 2.6.1.

The analysis process will be termed oomprehensive if it

gives deterministic information about the system behaviour at any

point within the boundary of the admissible environment.

Fig. 2.5.1 shows a model of the systems analysis process.

The model attempts to be general and therefore contains some parts

which will be found irrelevant for certain modes of analysis. At

the same time the model aime for simplicity and does not show all of

the connections between parts of the model which may be required in

the course of a given analysis process.

2.5 . 1 Modes of analysis.

Depending upon the relationship of the real-world system

2.15

and its environment to the test system and its environment, the analysis

will be said to be conducted in one of several possible modes .

Five different modes of analysis are suggested and defined

by Blumste in (2) as reported by Deutsch (3). This classification was

found in-complete and the definitions somewhat ambiguous . Therefore,

with the aid of Gordon's definition of simulation (4) six modes of

analysis will be defined for the purpose of this work,

1) Real-world analysis - observation of the real­

world system in its natural environment. In

this case the real-world system is identical

to the test system and the real-world environment

acts as the test environment .

2) Operational exercise - observation of the real­

world system in a test environment which has

properties similar to the real-world enVironment.

3) Gaming - the test system is a hybrid, comprising

a selection of real-world SUb-systems and sub­

system models; the test environment ia similar

to the real-world environment .

4) Simulation - observation over time of a model of

a system in a simulated environment.

5) Analytical testing - solution of equations

which represent the test system and the test

environment in symbolio form.

6) Numerical testing - solution of num~erical

model of the test sy. tern without direct

reference to th~ timp domain.

Deut sch (3) remarks that the modes of analysis are numbered

so that higher-order modes re-!'re sent increasing distanoes from

reality. While thi s is undou},tedly true, ohoosing one of the higher

order mode s of analysis does not necessarily imply lOBS of information

about tho system behaviour. On the contrary, examples will be found

in the course of this work where hi h-order modes provide information

not avail able by lower order modes of analysis .

2.16

It will be observed that the definition of simu1ation used

here contains no reference to the tool s of analysis: simulation may

be performed on a physical model or on a computer model, sO long as

direct referenoe is maintained -to the time domain. The -time scale

may be identical to that of the real system/or trivial mapping of

inputs and outputs may be used.

2.5.2 Input data.

Let the purpose of the designer be to analyse a system

comprehensively. The question is now: how should the test data be

designed to make such analysis pos2ible.

The task is evidently impossible unless a quantised model

of the source obj ect is acceptable . Let i~ therefore be assumed that

such a model has been found and that it contains Q number of points.

The analysis will now need to investigate both the steady-state and

transient behaviour of the system.

If the system may be assumed oomp1etely oontrollable and

unoonditionally stable then it is theoretically possible to test the

steady-state response in each of the Q points. In addition, the

transient response needs to be reoorded by changing each of the Q

points under the influence of all the input variables.

Designing a test sequence which would allow all these tests

and which r~Yr~~l~ system or its physical model is a task of extreme

difficulty. Furthermore, the process would usually be found

extravagant in terms of testing time and cost. Therefore, compre­

hensive analysis, even in terms of quantised source models, is seldom

attempted. Instead, systems are either randomly tested (i.e. sub­

jected to a random sequence of environmental changes) or, more

frequently, tested in terms of a sequence of test data, which is

judged to be of particular significance or relevance. The latter

practioe is dangerous since it is open to the value judgement of the

designer whose work the analysis seeks to test (see also Chapter 3).
The test method proposed in the course of this work was

designed with particular reference to the problems of test data

generation.

2.17

Input - output mapping.

Fig. 2.5.2 shows two ways in whioh the behaviour of a

system may be observed. The direct method on the left corresponds

to the lowest mode of analysis. All higher order modes demand that

a model of the system under observation be available. In all these

cases the real-world s i b~als of input and output require suitable

interpretation or ma pping .

The mappin g of inputs and outputs may be a trivial isomorphic

transformation such as scaling, creating analogue signals in new

physical dimensions or representing a signal as data in a computer and

recovering the output by mappinG of t he printout. On the other han~,

mapping may involve a transformation which changes the mathematical

relationship between the systems attributes without affeoting the

system behaviour. One example is the change from time-domain to

frequency domain for the analysis of electrioal systems; the inverse

transformation re-constitutes the outputs in the time domain.

Another example, drawn from the context of logic network analysis, may

be the derivation of a truth table or DIRECTORY by a parallel processing

procedure (see chapter 4). In this case input Variations are mapped

into a designation number and the total input domain is covered by a

single analysis run through the network. The output is mapped into

a table . The result oan then be interpreted in terms of time-varying

input signals to which the response is available.

Resolution, modelling and solution.

All but the two ~west-order modes of analysis call for some

form of a system model. Before embarking upon a modelling procedure

it is necessary to define the level to whioh the system may be resolved .

This choice of resolution level determines the boundary around objeots

comprising the system .

In the course of analysis of a oomplex system it may be

necessary or opportune to re -define the boundary several times .

For i nstance, in the course of analysing a transistor amplifier, the

2.18

circuit may, at first, be considered as a d.o. network, stationary at

the operating point; then, in subsequent stages of analysis, the

model of each component may be resolved to higher levels, increasing

the information about the network.

It is also possible to envisage a process of analysis

involving the gradual reduction of resolution level. Taking the

example of logical networks, after detailed analysis of a non-linear

network designed to act as a set of logical gates, it will be found

advantageous to move to a lower level and consider the gate as the

smallest objeot in a larger network, then again, after analysis, the

large network may be regarded as the smallest objeot of the over-all

system which was the original concern of the analysis process.
I

The purpose of reducing the resolution level is to reduoe

the modelling data. The new homomorphio model contains less informa­

tion than the higher-level model, due to the faot that some simplifying

assumptions have been accepted which permit the omission of a oertain

amount of detail.

Solution may consist of applioation of test data and

observation of outputs, or application of test data and oomputation

of outputs, or again, solution of equations and substitution of test

data, In addition, some analysis procedures will be found to eolve

their models by observation and without any reference to test data.

Due to the problems of test data generation discussed earlier in this

chapter, these latter methods are particularly attraotive ' and have

been given attention in the course of this work.

2.6 SYSTEMS DESIGN.

A model of the design process will now be proposed and

discussed with reference to Fig. 2.6.1.

It will be assumed that some demand exists which must be

satisfied by creating a new engineering system. A statement must

be available which will specify the required behaviour and the admis­

sible environment of the new system. This statement is oal1ed the

2.19

tentative specification of the system.

The first task of the system designer will be termed

problem analysis, which consists of the examination of the feasibility

and completeness of the specifications. Specifications will be called

non-feasible if they contain contradiotary demahds and inoomplete if

they do not describe the environment or behaviour uniquely. In the

course of problem analysis the designer will initiate the amendment

of non-feasible specifications. He will also investigate whether

incompleteness is intentional or not. He will utilise the freedom

afforded by intentional incompleteness at a later stage of the design

process for the optimisation of some parameters not inoluded in the

specifications.

As an outcome of problem analysis the behaviour - and

environmental specifications are formalised and the next stage of the

design process may commence.

The designer's main function is to generate proposals for

the new design. This task is usually so complex that it is oarried

out in a sequence of stages of refinements which represent suocessive

approximations of the specification. Each stage of approximation

operates upon a restricted version of the specifications (termed the

partial speoifications) which the designer must individually seleot

for each stage.

Assuming now that suitable partial specifications are

available, a version of the design must be proposed which will fulfil

those specifications. At the present time the designer must rely

almost entirely upon intuitive or evolutionary methods of design

generation a formal synthesis procedures are only available in a very

limited field of engineering and they only operate under severely

restrioted environmental conditions. Logic design 1s better served

by synthesis techniques than other engineering fields, even so,

current practice must rely to a large extent upon the inventivene88

of the designer.

2.20

The proposal of the new design is a model of the system

under development. This model must now be analyeed and its behaviour

assessed against the partial specifications. The combination of

analysis and assessment will be termed verif,ioation or design testing.

The purpose of design verification is to provide conclueive

answers to questions which are implicit in the partial specifications.

A sample list of design verification questions is shown here:

1) Is the performance of the new design correot,

given normal environment and nominal component

values?

2) How sensitive is the performance to expeoted

changes in environment and oomponent values?

3) If subjected to unusual environmental conditions,

would the new design fai l catastrophically?

If verification detects design errors, these must be used

to stimulate design modification. Al ternatively, the error reports

may be interpreted as indications of unrealistic tentative specifioa­

tions. In the latter case the design prooess fails completely and

new tentative specifications must be set up or the project cancelled.

Assuming now an error report which does not lead to design

failure, the new design is gradually corre cted (correction loop,

Fig. 2.6.1) until verification succeeds . Now the next stage of

design refinement may be entered and new partial specifications are

requested by way of the refinement loop (Fig. 2.6.1).

The iterative design process is complete when all aspects

of the forma l specifications have been taken into account and verifi­

cation has been successful.

CHAPTER 3

CONVENTIONAL METHODS OF TESTING LOGIC

DESIGN.

3.1 Introduction.

3.1.1 - Objectives.

3.2 Hardware methods of design testing.

3.2.1 - Mode of analysis.

3.2.2 - Resolution level.

3.2.3 - Modelling.

3.2.4 - Inputs.

3.2.5 Solution and Assessment.

3.2.6 - Conclusions.

3.3 Design testing by computer simulation.

3.3.1

3.3.2

3.3.3

3.3.4

3.3.5

- Resolution.

- Mode 11 ing.

Inputs.

Input - output mapping.

Solution and Assessment.

3.4 Design testing by higher-order modes of
analysis.

3.1

3.1 It> 'l'RODUCTION.

This chapt er presents a survey of logic design verification

methods in current use and aims to show that these methods fail to

satisfy current demands of modern integrated circuit devices or complex

10£,:ical systems.

noted.

The shortcomings of conventional methods are carefully

The newly propose d method, described in Chapter 4, seeks to

eliminate or, at any rate, minimise the problems unoovered in the

course of this survey.

With reference to the available repertoire of modes of

analysis (section 2 .5.1), analysis techniques of current use will be

found to fall into the classe s of Operational Exercise, Gaming,

Simulation, Analytical Testing and Numerical Testing, with overwhelming

emphasis on Simulation.

3.1.1 Objective.

The purpose of logic network analysis is to serve the pro­

cess of design verification. In turn, the purpose of design verifi­

cation is to answer specific questions the designer raises about the

new design (see 2.6). Consequently, the operational objectives of

system s analysis Can be formul a ted as follows,

a) to collect information about the performance

of the new design,

b) to present this information in a form convenient

for performance assessment,

c) to operate fast, ch eaply and reliably.

The analysis techniques discussed in this chapter will be

evaluated against these objectives.

3.2 HARlJVlAR~ }'IE'l'HODS OF lJESIG~ Tl!; STING.

3. 2 .1 Mode of analysis .

The tr~ditional way of verifying the design of a logical

network is to build the total system of the proposed design in a form

resembling the real-world system and subject this to a simulated

environment. The data resulting from the analysis is then compared

3.2

with t he specification.

The technique in thj s form amounts to Operational Exercise

an~ is frequently applied to small logical networks.

In the case of more complex networks it is customary to

examine t he performance of su1-1etwurks before the system is finally

assembled. The phase of sUb-system testinG is perhaps best classified

as Gaming, becausP- the real -world model of the sUb-system under test

is usually surrounded by models simulating the effect of the rest of

the system.

If such systems are mass-produced , then the design verifica­

tion uses a model which may have no object in common with any system

on the pro~uction line. The mo~e of analysis is Simulation - the only

mode of an:11ysiB a ppropria t e to hard ware teRtin~ of complex nptworks.

3.2 . 2 Hesolution level.

At the time of discrete-component hardware technology,

desieners had almost unlimited freedom of choice of resolution levels

during analysis; it was possible to commence simulation by regarding

the 6ystpm as a whole; at the event of the first failure the design

engineer could gradually elevate the r esolution until the level of a

single~ectrical component was reached. The procedure gave a sense

of satisfaction to an engineer who couln correct the design error on

the spot; however , it was failing by all the analysis objectives/as

would any other procedure which allows the handling of too many indivi­

dual objects. The searoh for the location, appearartce, connections

and signal~ of several hundred error-prone individual components

could not be condoned. Thus, well before the advent of integrated

oircuit te r.hnolofY , networks of modular and hierarchical structure

were constructed, allowing no more than two different resolution levels

for each t eat anrl no more than a few dozen individual objects and

monitoring points.

Design testing of a hierarchical system proceeds in a

sequence of stages. First, the design of the smallest module(s)

is verified.
3.3

If these are constructed of discrete components then

it is possible to ascend to the level of single component.

When testing the design of a module at the next level of

hierarchy then it is necessary to be able to assume all small modules

as perfect (verified by the previous test) and indivisible. If this

assumption can not be made then, in order to locate and correct the

error, the resolution level must be increased, demolishing the boundary

of the previously tested module. The difficulty and confusion can

obviously be avoided by testing the small module reliably in the

first place, as demanded by objective c) • . This demand for reliability

becomes more pressing as the size of the system and the number of

hierarchical levels increase.

Modelling.

The analysis of logical networks by hardware simUlation

demands that a h~rdware model be construoted of the real-world system

which will be subjected to time-variant signals. The modelling

process itself appears to be a trivial exercise of oonstruoting a

physical model by use of components like those of the real-life system.

In practice however the problems associated with modelling prove far

from trivial, due to component tolerances and differences in physioal

layout, the correlation between the performance of the model and that

of the real-world system is in doubt. Thus the information oollected

during analysis fails to represent reliably the performanoe of the

real-world system, thus failing to satisfy the objectives of analysis.

Designers seek to remedy this situation in two ways.

1) by increasing the sample size, i.e. analysing

several models, built of randomly selected

components.

while improving reliability, the method

increases the volume of data, the cost and

time of analysis and raises the new problem

of statistical assessment of results.

2) by evaluating the expected extreme in component

values and selecting the oomponents of the model

sO as to represent the "worst case" in system

behaviour. The model thus permits the assign­

ment of a boundary to the expected system

behaviour.

If the estimate of "worst case" is correct then

the method satisfies all the objectives listed;

however, the resulting design is unnecessarily

expensive.

This second solution is obviously only available in caee

of use of discrete-component hardware. users of integrated circuit

hardware have very little information about the expected behaviour of

components and no information at all about the extremes of acceptable

performance. Even if this information should be available, the task

of selecting worst-case items of multiple-function integrated circuit

devices is formidable - worst-case assessment seems completely imprac­

tical.

A~tempts have been made to build worst-case discrete­

oomponent models of integrated circuit devices. These have been

proven unsuccessful due to the poor correlation between system and

model behaviour. Some designers tried to construct a sophisticated

discrete-component model/using time scaling to reconstruct the wave­

length of signals in integrated circuit devices. This method is

too complicated and the results are far too sensitive to scaling

factors to be reliable.

The mounting problems of modelling integrated circuit devices

must be viewed against the increasing demands for design verification.
,.~e

the tooling costs for a single component are the same as for,mass-

produced article and, due to the magnitude of this cost, design errors

can not be tolerated.

Hardware test methods offer no satisfactory solution to the

modelling problem of integrated circuit devices. • Reluctant designers

are forced to seek computer solutions to their problems.

Inputs.

When a hardware model is constructed/the designer subjects

this to simulation, observes the output and verifies the design. If

the system has n operating signals, m physical signals and q state

variables then the sam~le space has an (n + m ~ q) - dimensional

infinite number of points (see sections 2.4.4 and 2.4.5).

To attempt comprehensive analysis,it is necessary to devise

some suitable discrete model of this sample space. However, unless

the system is known to be completely controllable (see Chapter 2) it

is not possible to scan the total sample space in a finite amount of

time. In the case of completely controllable systems the problem

is theoretically accessible but practically unsupportable, since the

number of input changes necessary for comprehensive steady-state and

transient testinR is exoessive for all but the most trivial of systems .

In current practice the job·, of design verification is

oonducted at a few points of the sample space,under oonditions the de­

signer considers representative or critical. If the design fails

these tests then it is evidently in need of modification. If it

passes thp tests then it may still contain numerous errors and may

fail in service. Design errors in computers often oome to light years

after machines are installed, indicating that a compromise has been

selected between the conflicting objeotives for speedy, low-cost and

reliable analysis.

It is suggested herp that the problems arising from the

vastness of the number of points of the sample space are akin to those

arising from the vastness of the number of components oomprising a

complex system. The solution of the sample-space problem might be

sought along the same lines as that of hardware. it could be decided

that therp is a maximum number of points of sample space one can

efficiently handle; therefore models of inputs must be so constructed

as to fit within this number. Input signals may thus be "modularly"

modelled ~nd as the number of signaJs increases 80 the resolution

3.6

must reduce to keep down the number of pOints of the sample space.

According to this prinoiple, it will be reasonable to

consider the effects of physica l signa ls, riee-and-fall times and

signal level variations when testing a single logical gate, but un­

reasonable to resolve input signais to more than two voltage levels

when testing a complex gate assembly. In the latter case it would

be necessary to form a model of the objects of the assembly which

accounts for the effects of thA neglected signals.

Unfortunately for logic designers, the number of points

of sample space increases very fast with the number of input variables

and the reduction of detail of input signals can not keep paoe with

this increase. Thus the computer simulation methods discussed later

in this chapter merely manage to provide a temporary solution by

increasing the speed of simulation. Ultimately the failure of simu­

lation as a means of analysis must be faced.

3.2.5 Solution and assessment.

Let it now be assumed that a satisfactory set of test

conditions has been compiled and the model is subjected to these tests.

The result of the analysis is available in the form of a set of output

waveforms. These waveforms must now be observed or recorded and

assessed against some form of records of the performance specifica~ions.

The traditional instrument of recording, offering the

advantage of familiarity, is the oscillosoope. Against this must be

set numerous disadvantages, the number of channels is limited; thus,

to observe the correla tion of several waveforms, tests must be repeated,

or more than one oscilloscope used; signals must be repetitively

applied to permit observation; the standard signals can not be dis­

played - the real-world system does not exist - hence the oscillogram

must be compared with a waveform or table by eye, or else recorded aa

a waveform or table.

The instrument of assessment is the design engineer who

often represents the weakest link in the chain of the verification

prooess. Human error is mainly due to the repetitiveness of the

task of assessment and the ineffici ency of men to handle the large

volumes of data neoessary for reliable analysis.

3.2.6 Conclusions.

Hardware testing of the design of logioal systems is, at

best, limited to small systems; at worst it is an unqualified failure.

The method fails oompletely in terms of complex integrated circuit

devices which, due to their high initial manufaoturing oosts, demand

reliable design verification. As advanoes in teohnology permit the

inorease of the oomplexity of these devices and enhanoed their promin­

enoe amon g other fo r mA of hardware, the development of alternative

forms of design t esting become imperative. Thus, almost simultaneously,

several oomputer simulators have been developed by device manufacturers,

instrument manufaoturers and researoh institutions, seeking to provide

a solution to the problems unsolved by hardware testing.

3.3 DESIGN TESTING BY COMPUTER

SIMULATION.

The preparation of a comparative survey of logic simulators

does not fall within the scope of this work. Such a survey, examin­

ing the features, facilities, techniques and relative merits of

available simulators/will be presented in the thesis concerning the

development of a prototype system (1). Instead, this section will

attempt to assess the potential of logio simUlation as a tool of logic

design verifioation. In the oourse of disoussion referenoes will be

made to some of the logio simulators in ourrent use, illustrating

some of their features and facilities.

Resolution.

At the highest level of resolution, used by any of the

known logic simula~ors, stands the single logioal gate. It is thus

assumed that the system under test consists of objects which represent

Boolean operators and the simplest functional object to which the

system oan be divided operates as a simple logical connective. The

3.8

standard repertoire of gate funotions is AND, OR, NOT, with assooiated

delays (see Modelling). Some simulators extend the range of gate

functions to NAND and NOR .

A group of simulators, suoh as the APACE program 'LOCA',

the P1essey DA70 and the Siemens 'DICAP', demand that systems under

test be always resolved to such a high level; thus designers must

oode their networks by use of a fixed library of standard elements.

The advantage of systems using this fixed resolution level

lies in the simplioity of the programs. The disadvantages are

measurable in terms of ooding time and ooding errorl the designer

must repeatedly declare eaoh gate within eaoh standard hardware sub­

system, multiplying the coding time and oommitting a multiplicity of

errors. An additional disadvantage is, that the computer must

repeatedly analyse standard hardware SUb-systems within the system.

Thus it is suggested that simulators with fixed resolution level are

only suitable for the analysis of small systems.

A seoond group of programs to which the Norwegian program

"LOGIC" and the Elliott "LASS" belong1also fixes the resolution level

but permits an expandable library of standard objeots. When the

computer model of the network is oonstructed, each object is checked

against the current library list. Unreoognised , objects are report~d

as program errors. Standard groups of gate e1Aments can be entered

in the library as standard objects by giving them a unique name and

describing them by a sub-routine, (21), (22). The use of this method

is demonstrated in (21), where flipflops are "modelled" and their

funotional desoription is entered in the library as a standard "logic

rule ll
•

These faoilitie::; as provided in 'LOGIC', replace the whole

of a SUb-system by a SUb-routine. The sub-routine represents a

termina l model of the perfect sub-system; oonsequently care must be

exeroised in verifying the design of a SUb-system before replacing it

by the sub-routine . If reliable sub-system testing may be assumed

then thi s method satisfies thp. objectives . by reducing both the time

of coding and the time of computa t ion. The limi t a tion s of such sub-

r uutine mode l s of sUb- sys t e ms wi ll be di s cus sed in the section dealing

wi th ~I! o de ll ine .

The t hird group of pr o/3"l'ams to which t he Racal IfRb~DAr 22"

and t he Fai r. chil d "F_'i.IHSIM 11" bel on e , permi t a flexible choice of

resolut ion l evels . It is possible t o cons truct sUb-s yst ems of nested

modules and the sys t em unde r analysis may be composed of oombinations

of s ingl e gat e obje ct s or of complex nested sUb-syst ems .

cus tomary to impose a limi t t o t he depth of r e solution.

It is

'1'hi 8 me thod gives gr eat he l p a t the stage of modelling , but

it in no way ass i At e th ana lysin by the comput er ni nce , before analysis

commences , the modul a r s tructure i s u sually broken . down to constituent

ga t e e l ement s and th e ana lysis progre s se s from gate to gate.

3. 3. 2 Mode ll i nB.

Si mula tors differ great l y in the f or mat they use in specify-

ing thR obj ect s of t he sys t em und er te s t. However, substantially

they al l r ef er to fou~ ty pes of dat a / amounting to the model of an object.

1) obj ect ident i fication

2) s tructure - the conn ection of the ob ject to

other ob ject s of t he sys t em

3) function a l description.

4) timing description.

Ident i fica t i on.

Bach object i s uniquel y identified by a code. Information

about the object i s r eferenced by thi s code throughout s imulation.

Structure.

Connection between sys t em obj ects is specified in one of

three way s :

a) considering the object a s a reoipient of signals

b) con sidering the obj ect a s a sou'rce of signals.

c) s pe cifying all the connections to and from a

gi ven ob,ject. This method duplicates the

structure information, thus doubling the coding

3 .10

time . The redundancy is then used for

diagnosis of coding errors .

Function.

The functional description as s ims to the object one of

a Be t of rer.oenised parameters. Dependent upon thA resolution as

seen earlier, functions may be s implp logical connectives , combinations

of Airnplf! loe ica l connp.c t ives or functions outside of the range of

lo~ir. a l fU rlc tion R. The l a tter may ar ise by the use of sub-routine

models .

I t will be :lPPl'opriate to devote !'Iome attention to the

princi pl es upon which ~ub-routine mo~els are based .

Let a SUb-sy s t em to be mo~elled ~onsiRt of a se t of logical

r,a te s , Auch repre ~'l~' ntin .. ,: a si"Tllll lo t ical connective . Let this system

be suoj 8cted to ~.Il l1-(l imens ior u.l (~n" l.conme nt a n(1 let it bave m number

of state vari abl es . Then tb e termina l model of this syst em would

contain the r elationshi ps of

where

g (t) = G (u (t) ,

S (t) .: H (u (t),

·u ::t

$ =

(
(

(
(

U
n

S
m

)
) ,
)
)

and)
)
)

Equation 3.3.1

(see section 2 . 2 . 2).

It will now be suggested that sub-system models can be

constructed in on e of two ways :

a) by retaining the information contained in

Eq . 3 . 3. l ; in thi s case the model may be mapped

into u lOGica l npt work , containinc a set of

logical ~ates, ea ch represen ting a Rimple logical

connActive. This new network is equiva lent to

thp ori ~inal Rub-system by the defi nition of

equivalence ,i ven in Chapt er 2 .

b) by reducinc t he inforrn!:l.tion in Bq . 3.3.1,

3.11

restricting either the domain of the environ­

ment or the admis~ib1e time functions of inputs.

Using such restrictions Eq . 3.3.1 degenerates

to some new form

g* (t)

$* (t)
-= (u (t), S (to)))

(u (t), S (to)) ~ Eq. 3.3.2

The sub-routine may now express Eq. 3.3.2 in a

form which does not necessarily lend itself to

mapping into a logical network. gquation 3.3.2

and its sub-routine version will be termed

restricted mode models of the sub-system.

Hestricted mode models represent a homomorphic transforma­

tion between the systems described by Equations 3.3.1 and 3.3.2. If

the sUb-system should be subjected to environmental conditions out­

side of the range of Equation 3.3.2 then the sUb-routine model fails.

Such in-admissible conditions may easily arise if, for instance, the

objects surrounding the sUb-system contain some design error.
notwithstanding

It will be concluded that/the commendation given to sub-

routine models in the previous section, such models must be handled

with extreme care. Not only must the sub-routine be based upon

completely reliable analysis data (as contained in Eq. 3.3.1) but the

envi~onment must also be kept under constant observation to ensure

the validity of the model.

Timing.

The timine description of a system object seeks to define

the mapping of time functions performed by the object. While in

prac tice this mapping is extremely complicated due to the nonlinear

characteristics of switching circuits, these characteristics could

only be observed by resolving the syst~m to higher levels than a logi­

cal gate. Alternative ly, accepting the single gate as the object at

the hi ghest level, as suggested in section 3.3.1, one must acoept

3.12

relatively crude models of objects , such as , f or instance, a perfect

(delay-free) logical gate, followed by a lumped constant delay.

Some simulators offer facilities for more refined models.

The fundamental weakness of thbse models lies in the abdenoe of

reliable information upon which they are based. Device manufacturers

are unable to measure the characteristics of some of their devices,

or find it uneconomic to measure the characteristics of others. In

any case, these characteristics would vary so greatly with the choice

of hardware that a common se t of par ameters may not be easy to find.

Hence simulation programs must rely upon crude guesses of timing

information and the accuracy of the analys is will not be improved by

the use of sophisticated models whose parameters are based on further

crude guesses .

The most commonly used time model is, as mentioned, a pro­

pagation delay t , associated with each object output. Some simulators
p

permit the use of two time parameters t and t fF representing the pr p
time delay associated with rise and fall, respectively .

A more sophisticated time model adds a further threshold

delay tt which demands that the input sip;nal pulse should be ignored

.unless the duration of the pul sA exceeds tt'

It i s reported that an industrial resE'arch group is seeking

to develop a time mode] which would incorporate non-constant time

parame tprs . Dependent upon the amount of load supplied by an object

output , different values of tp and tt would now be ass igned to the same

system object . 'l'hls project suffers from the same lack of reliable

t irne data as h,H' b en mentioned before .

It fill' raoI" urnbi ti.ous pro,j et' l'eported (29) by members

of the IbM corporation . The work of this group conoerns the develop­

ment of a statio~icul delay mooel for a simple logical network. The

model correlates the vari ation of some physical signals and of load

with the time delay of gat es . Such is the complexity of this problem

that it was neceRsary to construct a purpose-bui l t computer system to

carry out data collection and processing., whil e oalculations were

performed on a n IBM 7044. In spite of the extravagant resources use o

by the project, the result s ha ve very limited practical application.

'l'he uncert ainty of time dat a emer ge s as a fundamental

shortcoming of simul a t ion as a practical mode of analysis of logical

networks . By the definition of simulation, verification of designs

i~ ba ~e d upon observing the system response in the time domain, but

thi s response i s computed on the basis of crude models whose parameters

are derived by wild guessing.

Input data .

Ji'ixin g the hi ghest r esoluti.on level at gat e level implies

th a t operating s ignals should be mode lled by discontinuous jumps

between two logical levels. The specifica tion of these operating

signuls con s i.sts of the li sting of those instances of time when a given

operatinB signal i s s cheduled to change. As an aid to coding of this

data, some simul ators permit the use of oscillators in addition to

switches . The oscilla tors provide periodically changing signals

whose ON and OFF time may be specified .

Physical signals (supply potentials, temperature) are con­

sidered as constant and, as mentioned in the previous section, their

effe·ct upon the time del ays associated with object outputs is neglected.

The sample space is thus restricted to dimensions given by

the operating signals and state variables. Even so, this space is

excessively large for a ll but trivial networks. The number of

necessary steady-state and transient test s will be assessed in chapter

4. It will be sufficient to mention a few problems arising at coding.

state .

The s imula tion commences by the speCification of an initial

In th~ absence of such specification simulators assume that

all state variables are to be set at, say, logi cal '0'. If this

condition is logically inconsistent (unstable) then a series of calcu­

lations commences while the simulator searches for a steady state of

the system. This may not always be found, or not found within the

3.14

time limit set by the designer. In suoh a case the simulator refuses

the network (as in the case of the RACAL program) or over-writes a

transient state by permitting the operating signal sequenoe to begin

(such as in case of the LOGIC program). Neither of these solutions

is partioularly attractive: one refuses to simulate the system

altogether while the other may give ambiguous results depending upon

a random choice between oscillatory states.

If the initial state selected by the designer or set up by

the program is not connected to some of the system states then no

finite time sequence of operating signals would result in a oomprehen­

sive analysis.

Oscillator-driven inputs imply a restrioted mode of analysis.

While it is possible to construct oscillator signals whioh permit the

system to be test ed for all of the 2n number of different input signal

combinations for n inputs, thi s number of tests subjects the system to

only a small fr ac tion of the total number of different transient oon­

ditions and will only ascertain the resl'onse in the oase of the seleoted

initial state. The solution i s Bought by seleoting sequenoes of

opera ting signal changes which are regarded by the designer as moat

probable to occur. For instance, it is often found that networks are

simulated under conditions when an output is scheduled to generate a

specific signal . If the network passes the test, then the designer

assume s th a t the desi ~~ is correct. This assumption is fallatious

because it is based on the same value judgement as was used by the

designer when proposing the design. The network may behave incorrectly

by generating outputs at untested oonditions.

An alternative method is to select input sequences entirely

at random. This way there 1s a probability of selecting conditions

which might have been overlooked at the design stage. Even so, it is

very difficult to a8si~ a significance level to a seleoted test sequenoe

and the reliability of the analysis is in doubt.

The problems discussed here are familiar from experience

with hardware testing and there is no evidence that the newly developed

3.15

techniqups of computer simulation offer a satisfactory solution.

Input - Output Mapping.

The process of computer simulation of logical networks

consists of spe oifying the changes of input signals in the time doma.in

and following the passage of signal changes through the network. The

procedure demands the choice of time quanta at the input and throughout

the operation of the network.

Synchronous simulation refers to a system in which time is

incremented by equal intervals and the model is processed at each

time increment. Inputs and out puts are shown on a linear time scale,

with a line of print assigned to each increment.
I

Asynchronous simulation is frequently termed "next event"

or "event-hy-event" s imulation, indicating that time is 1ncremented

by period~ measuring the distance between subsequent events, eitber

at the input or within the network.

The printout of event-by- vent Rimulators show input and

output waveforms on a non-linear time scale, with a line of print

assiened to each event,aeainst a par meter of time.

Asynchronous simulators offer flexibility; they lend them-

SAlve,; to the analyai R of Rynchronous or asynchronous networks.

of the known s imul a tor y are asynchronous .

Most

Synchronoll simulators arp obviously suited to synohronous

networks . When use d for the analysis of asynchronous networks the

time inCrp. l0ent mus t b . adjusted to the smallest comll'\on unit of all delay

elements and of all i nput pvents.

limited U B"! .

The method is considered to be of

NotablA exu'nples of Rynch onous simulators are the GEe and

Ple ssey sys tems.

olution and Assessment.

Solution consists of two phases. calculation of the logical

3.16

stRte of each monitoring point (system output or output of selected

objects) at each of a sequence of instances, anrl display of the logical

state of inputs and outputs at those instances.

Assessment presents problems familiar from the discussions

of hardware test methods. Standard signals need to be displayed in

a form comparable to the simulator outp~t. Such standards may not

be easily available. The instrument of assessment is, once again,

the designer who iA now faced with volumes of data unheard-of at the

time of hardware testing, as a direct consequence of the speed and

facility of producing data by computer simUlation.

The columns of logical 'l's and 'O~~ of the printout contain

inconclusive answers to the questions of verification in implicit form.

The increased volume of data makes the designer's task of assessment

and data processing more formidable than was the case with hardware

testing. This problem of assessment may be attributed to the fact

that communication between man and machine needs to be established at

the point where the volume of information is the greatest.

In terms of the design verification questionfof section 2.6,

the method will be seen to have limited use, allowing no answers to

any but the first question. This is a direct consequence of the

method of modelling system objects and of the constraints applied to

the environment.

It may be concluded that conventional methods of computer

simulation fail to provide the answer to the problems of design testing

of modern logic networks.

3.4 DESIGN TESTING BY HIGHER-ORDER
MODES OF ANALYSIS.

The litera ture contains a great variety of well-established

and some recently-proposed methods of analysing logical systems by use

of Boolean equations (analytical testing) or tables (perhaps best

classified as numerical testing). Such methods range from teste of

3.17

steady-state r esponse to diagnosis of ambiguous transient behaviour.

The basis of analysis is almost invariably a Boolean model and signals

are assumed as discontinuous jumps between one logical level and the

other, as in the case of oomputer simulation.

The review of these methods led to the following conclusionsl

1) it is possible to correlate the results of some

existing methods with some of the design veri­

fication questions designers may wish to ask.

2) it is humanly impossible to apply these methods

to all but the most trivial networks without the

use of computers

3) it is necessary to extend or modify some of the

acoepted methods as well as to propose some

completely new methods if answer is sought to

a reasonably comprehensive range of design

verification questions.

Subsequent chapters of this thesis will describe the way

in which these higher-order modes of analysis may be used in the

interest of logic design verification.

CHAPl'ER 4

A MODULAR l':,~THOD OF TESTING LOGIC DESIGN

4.1 Introduction.

4.1.1
4.1.2
4.1.3
4.1.4

4.1.5

4.1.6

Modular system of ' design verifioation.

The ohoioe of verifioation questions.

Input output.

Analysis and assessment.

Constraints.

Organisation.

4.2 Is the state of the system fully determined by the
state variables nominated?

Concepts and teohniques.

The test module A.

4.3 Which is the minimal set of state variables of the
system?

4.3.1 - Techniques.

4.3.2 The test module B.

4.4 Can the proposed design be oonverted to a homogeneous
struoture?

Teohniques.

Linked outputs.

The test module C.

4.5 Are any of the objects of the system misused or over­
loaded?

The test module D.

4. 6 Is the steady-state response of the combinational
network correct?

4.6.2

Techniques and oonoepts.

Inputs.
Analysis .
Specifioations and assessment.

The test module E.

4.7 Are outputs of the combinational network subject
to transient spikes?

Concepts and definitions.

Techniques, further concepts and
definitions.

The test module F.

Alternative techniques.
The test module G.

4.8 Is the steady-state response of the sequential
network correct?

Techniques.

The test module H.

Comment.

4.9 Which are the stable states of the system?

The test module J.

Comment.

4.10 - Are any of the gates of the sequential network liable
to generate static hazard epikes?

4.10.1

4.10.2

Teohniques.

The test module K.

4.11 Is the steady-state response of the sequential net­
work sensitive to variations of delay parameters of
of system objects?

4.11.1

4.11.2

4.11.3 -

4.11.4 -

4.11.5

4.11.6

4.11. 7

Concepts and techniques.

The test module L.

Comments.

Further techniques and ooncepts.

The test module K.

Trivial oases of essential hazards.

Transient performance of sequential net­
works and the VERIFIED DIRECTORY.

4.12 What is the simulated response of a network seleoted
at random from a given batch to a speoified input
change?

4.12.1

4.12.2

Techniques.

The test module N.

4.13 What is the VERIFIED DIRECTORY of the sequential
network?

The test module P.

4.14 Does the VERIFIED DIRECTORY represent the desired
performance?

4.14.1

4.14.2

4.14.3 -

Concepts.

Oscillations.

The test module Q.

4.15 Is the sequential network unconditionally stable?

Concepts.

The test module R.

4.16 Is the system liable to get looked in an undesirable
state or set of states?

4.16.1

4.16.2

Concepts.

The test module S.

4.11 What is the probability of deviation of performanoe
from the VERIFIED DIRECTORY?

The test module T.

Comment.

4.18 - Is the sequential network, speoified by the VERIFIED
DIRECTORY, liable to generate transient output spikes?

4.19 Summary.

4.1 I NTRODUCTION.

Chapter 3 shows the inadequaoy of oonvent ional design

verifioation teohni ques as applied t o l ogioal systems of modern size,

oonstruotion and complexity . This i nadequaoy can be attributed to

a number of causeSl-

1) The diffioulty of man-maohine oommunioation, this

problem arises at the speoifioation of the system, of the test data

and, espeoially, a t handling the data produoed by the analysis.

2) The exoessive size of the sample spaoe of systems with

modern dimensions.

3) The inoreasing demands of reliability of designs.

4) The reduction of detail and reliability of information

about individual logioal elements of the system.

5) The oonfliot between the oomplexity, reliability and

aoouraoy of delay models.

4.1.1. The modular system of design verifioation.

In view of these considerations it was deoided to break

with oonventional test methods of simulation. These methods relied

upon a prolonged general-purpose analysis prooess whose output data

was the basis of design verification. By oontrast, the new method

oonsists of a sequenoe of special-purpose verifioation prooedures,

eaoh answering a specifio question about the newly proposed design.

For this purpose a oompatible set of design verification modules 1s

oonstruoted. If the designer now produoes a list of questions about

his newly proposed system, he oan seleot the appropriate sub-set of

off-the-shelf modules whioh will provide the answers.

The modules must be 80 designed as to ease the man-maohine

oommunication problem. Thus they should operate on the minimum of

information and~ instead of produoing analysis data, must produoe

direot answers to the design verifioation questions. SUoh &nswers

may oondone the proposed design or list its errors in a format whioh

facilitates design correction.

Test data for the modules must, wherever possible, be

automatically generated. This overcomes the communication problem

and improves reliability because the automatic test data generators

scan the sample space systematically.

The quality of system model must b& scrupulously preserved.

Using the minimum of data for the desoription of the system ease8

communication, minimises the demands of computer storage and oomputing

time. In addition, detailed models demand the speoification of

delay parameters whose reliability is doubtful. Thus the design

verification procedure must restrict the use of delay models as far

as pOssible, in the interest of reliability.

The modular system appears to have the potential to over­

come most of the inadequacies of conventional testing. It offers

the additional features of flexibility and~se of development. The

system may continually be improved by addition of new modules, re­

design of existing ones or deletion of obsolste ones, without putting

it out of service. With the aid of a oarefully specified interface,

several programmers may be engaged on the development of the system

without the need to refer to each other's decisions on details.

The subject of this ohapter is to describe the des~gn of

the modules of such a design verification system.

4.1.2 The choice of verification questions.

The idea of such a design verification system is thought

to be novel. This means that no previous experience was available

upon which to build such a system.

The first diffioulty was enoountered when trying to antioi­

pate the questions designers may wish to ask. At the present time

designers do ~ot formalise their questions but deduoe some answers

from analysis. Formalised questions demand disoiplined thinking and

a measure of formal education in logic design, one or both appears

frequently to be lacking.

The questions proposed in this chapter become gradually

more sophisticated,matching the sophistication of the faoilities they

provide (not necessarily the teohniques they use; some of the most

comple~ questions are answered in e~oeedingly simple ways). This is

claimed as an advantage; simple modules will give designers useful

information as well as a gentle intraduotion to computer-aided design.

It is further oonsidered that the use by designers of some

sophistioated ooncepts (suoh as a VERIFIED DIRECTORY) are inevitable.

Logic systems have become so comple~ that they are not approaohable

by simple test methods (see chapter 3), the oonoepts used in this

work are not always si~ple, but are presented to

form which is thought to be easily aocessible.

field is available through the Prototype System

the designer in a

Experience in this

(ohapter 5) whioh has

been found easy to use by several teams of logio designers.

It is antiCipated that the proposed design verifioation

questions may need modifioation in the light of e~perienoe with the

system in service. Such modifioation is faoilitated by the modular

structure as mentioned before.

4.1.3 Input - Output.

It was possible to use some of the e~perienoe gained from

logic simulation in the choioe of input format. However, sinoe the

service provided by the method is new, the output format was designed

without baokground. The Prototype System gave some help here, but,

again, e~tensive use by designers on large and oomplex systems is

needed before the output format may be oonsidered finalised.

As mentioned earlier, the output data is, in almost all

oases, an error list. The input data oonsists of the following

itemsl-
a) Specification of new design.

b) Speoifioation of operating signals.

c) Specification of behaviour.

d) Test instructions.

These will now be discussed briefly.

of data:

a) Specification of new de8ign~

It was decided to describe a logical network by four items

i) structure

ii) function ; parameter of objeots

iii) load parameter of objects

iV) delay parameter of objects.

The choice of these items will be discussed and justified in the

course of this chapter.

b) Specification of operating signals.

In the interest of reliability it was deoided to cover

automatically the total sample spaoe of a given test whenever possible.

If this spaoe proved infinitely large,or too large to be oompletel,

covered,then instructions were required about the manner in whioh the

spaoe could be restricted. In only a few circumstances in the oourse

of this chapter was it found neoessary to compel the designer to

specify the wave-forms of input signals.

0) Specification of behaviour.,

It is considered that such speoifications initiate the

whole of the design process, hence they must always exist in some

form. It is understood that usually the specifications are not

formalised and are often unrealistic or unreasonable. Attention was

given to allow the presentation of specifications in a variety ot for­

mats. In some instances it was also suggested that the design

verification methods could be usefully employed in the analysis of

the specifications themselves.

d) The test instructions consist of nominating the

verification modules for a given test.

Analysis and Assessment.

Use was made of accepted and generally used oonoepts of

logic network.analysis. Such concepts include truth tables, state

and output tables, the definition of essential hazards, etc. These

concepts, in almost all cases, needed extension or modification

before they could be used as bases for test techniques.

Frequently it was found neoessary to design entirely new

concepts. Thus, inevitably, a jargon was oreated,which was based on

general systems usage. New terms were only introduced if they helped

to make discussions or definitions more concise or clear.

Constraints.

While care was taken to compose questions concerning a

variety of aspects of the design, it oan not be claimed that the list

of questions is comprehensive. Nor are the answers completely

satisfactory in every case, such is the complexity of the problems

that the validity of answers had to be made conditional upon some

simplifying assumptions. However, it is trusted that the teohniques

used for the generation of answers may be perfeoted along suoh linea

as indicated in the ohapter on FURTHER DEVELOPMENTS, allowing the

removal of some of the restriotions. Further, these teohniques, or

the experience gained by their development and use, would prove

valuable in finding answers to verifioation questions not listed in

this chapter.

In some cases it was found that a given question may be

answered in alternative ways and eaoh alternative oontained some

interest, in such cases the alternatives are described here.

Some of the questions were found convenient to be answered

in terms of answers to others; in such oases a test sequence is

obviously implied. Otherwise the sequenoe of conducting the teats is

not pre-determined.

4.1.6 Organisation.

This chapter will be organised by devoting a seotion to

each design verification question. Within a seotion relevant oon­

cepts and techniques will be disoussed and at least one test module

suggested.

system.

4.2 - IS THE STATE OF THE SYSTEM FULLY DETERMINED
BY THE STATE VARIABLES NOMINATED?

The question teats the designer's understanding of the

The assignment of state variables is, 1n some oases, a

trivial exercise, such as associating a state variable with eaoh

S - R flipflop. In other instances the struoture of the network is

complicated by feedbaok loops linking a large number of logioal gates

and in the course of evolutionary design the designer may be unaware

of the presence and consequences of a group of system states. In

such cases designers should check if they understand the system

correctly by nominating a comprehensive set of state variables which,

in their view, should be sufficient to describe the states of the

system. A test module should then cheok if the designer's estimate

was correct.

When developing the neoessary teohniques for answering

the question it was found sufficient to use structural information

about the system without reference either to test data or to models

of objeots of the system.

Concepts and teohniques.

A oombinational network will, for the moment, be defined

as a struoture containing no feedback loops at the seleoted level of

resolution. Conversely, a sequential network will oontain feedbaok

and the number of state variables in terms of whioh the network is

described depends upon the number of feedback loops (s • footnote) .

In order to describe a sequential network in terms of inputs and

state variables/each of the feedback loops must be broken onoe and a

state variable inserted. The place at which the loop 1s broken 1s

arbitrary, hence there is no unique way of desoribing a sequential

FOOTNOTEs These definitions are oonsistent with the oonoept of

observability (chapter 2); if a network oontaining feedbaok d09s

not display .a terminal behaviour customary for sequential networks

(such as the strange network of ref {30) " .) 1 t will be classed as

sequential on the basis of its struoture, although the sequential

behaviour is not observable . A sequential network with no observable

states may, under these definitions, be equivalent to a oombinational

(oontinued overleaf)

network in terms of state variables. All comprehensive descriptions

(i.e. ones which leave no feedback loop intact) are acceptable to the

test system but, as will be discussed later, those which describe

the network in terms of the minimum number of state variables are to

be preferred.

The technique of analysis suggested here accepts the

designer's choice of a set of state variables but rejects the design

if this set is not comprehensive. The error message generated by the

test warns the designer that he has failed to break all of the feed­

back loops. Should the designer be unwise and break any of the

loops in more places than one, the design is accepted by this verifi­

cation step as correct. If such a system is subjected to verification

by other test modules then the analysis would be performed correotly

but inefficiently, by describing the state space of the system in more

than the minimum number of dimensions. This ineffioienoy implies

an imperfection of the module to be described in this eeotion. An

alternative module, free of this imperfection, will be presented in

a subsequent section.

The test techniques are presented in terms of a simple

example shown on Fig.4.2.l. A unique identifier has been assigned

to each objeot of that network. Environmental signals are restrioted

to operating signals which are generated by souroe objects 10, 20 and

30. The structure matrix, as defined in Chapter 2, consists of

10 x 10 = 100 elements:

FOOTNOTE (Cont'd).

network. Following this argument to its conclusion the conoept of

a combinational network may be eliminated altogether by defining all

networks ae sequential but recognising that a network may not have

observable states at a given level of resolution. Increasing the

level of resolution may then reveal the existenoe of feedbaok loops.

For the purposes of this work the ooncept of a combina­

tional network will be retained under the above definition.

(W 10,10,
(, ,
(, ,

'IN (, ,
(, ,
(, ,
(, ,
(W 7,10,

W 10,20,

. . . .

VI 10,6,

Vl7 6 , ,

)
)
)
)
)
)

~
Assume now that the resolution level has been chosen at

the level of a single logical gate, representing a simple logical

connective. Selecting one of the gates of the network at random,

the matrix elements concerning the selected gate can be computed not­

ing that all gates have a single output and gate inputs are numbered

as shown on Fig. 4.2.1. Thus, oolleoting all the matrix elements

referring to gate 6, say:

WIO ,6 ~ (0) ; \V20,6 -= W30 ,6 eo W 6 - (0) ; ~ -4,

Wl ,6 = (0,0); W2,6 = W3,6 ~ W5,6 :. (0,0)) From ' 6 ,
)

W7,6 -::. (0,1))

W6,4:' (0,1,0) ; W6,30 ~ (0,0,1) J

The matrix is unwieldy and contains a great deal of redun­

dancy. Since '6' is known to have only three inputs, the group of

matrix elements marked "To '6' " oan only contain three positive

indications of connection. Thus, of the 30 bits of information des-

cribing connections "to '6' " only three can be relevant. Collecting

these in a single matrix of W6 ' and indicating the identif1e~ of

circuit objects connecting to the input of 6 as elements of W6 ,

4, 30).

If the network is constructed of simple gate elements

representing an elementary Boolean connective then the functional

significance of all inputs is the same and the gate output is not

al tered if inputs are interchanged. This ciroumstance allows the

spe cification of W6 be given in terms of 10, 4 and 30 listed in any

order, or, more conveniently, in terms of a connection matrix of a

single row ~d with a single-bit column assigned to each of the
objects of the network.

10 20 30 1 2 3 4 5 6 7
W6 = I I [1 0 1 0 0 I 01 1 0 0 I o I

In this simplified form the total struoture matrix will be a square

matrix of 100 binary elements as shown on Fig. 4.2.2. The oolumns

represent the signal sources and the rows the loads.

The struoture matrix has certain regular featuresl the

rows of source objects, by definition, contain only zero elements

and in accordance with logic design praotioe forbidding the feedbaok

from the output of a gate element to its own input, the diagonal ot

the matrix is zero. (see footnote)

The structure matrix may be reduoed, without loss of

information, to the form shown on Fig. 4.2.3.

The reduction of the structure matrix of chapter 2 to the

form of Fig. 4.2.2 is possible for two reasons.

1) all the inputs of a network object have been assumed

to be interchangeable, thus the identification of inputs became

unnecessary.

2) all network objects have been taoitly assu~ed to have

a single output, thus the identification of outputs became superfluous.

FOOTNOTE. If. this latter condition is not satisfied, the test

reports an error of an unspecified state variable. If such a feed­

back loop is intentional then the programmer must introduoe a dummy

element, as described later, in the loop.

back upon itself and the diagonal is zero.

Thus no element feeds

4.10

These assumptions are valid only as long as networks are

constructed of standard objects (AND, OR, NAND, NOR, STATE VARIABLE,

INPUT, OUTPUT). As Boon as a more sophisticated sub-network becomes

an object of a larger network, neither of the two assumptions can be

taken for granted. For instance, the simple sub-network of Fig. 4.2.4

has two outputs which must be uniquely identified. Should any of the

inputs be interchanged, the resulting functions would be altered

unacceptably.

The problem is eliminated if a sub-network is resolved at

a level high enough to permit the identifioation of each standard

object. In this case the network is termed to be a homogeneous

structure which can be analysed in terms of a matrix 8uoh as that of

Fig. 4.2.2.

In the forthcoming discussions of section 4.2.1 it will be

assumed that the designer presents the network for verifioation at the

resolution level of standard objects (sin'gle gates), or that the system

is presented at some lower level to a translator whioh generates a

homogeneous structure for the purpose of this analysis.

It will be noted from Fig. 4.2.1 that the network is

combinational, containing no feedback loops. Objeot outputs may be

computed without reference to state variables, and a sequence of

computation may be found which allows the determination of all element

outputs.

The matrix of Fig. 4.2.3 is divided to a "known" and an

"unknown" area by a vertical dotted line.

known area contain purely source variables.

The columns of the

Those rows of the matrix which contain 'lIs in the known

area only are "computable" and can be entered in a "processing list".

Their column can then be transferred to the "known" area and the next

computable variable sought. The process is continued until the

"unknown" area is depleted and the processing list is oomplete. It

is frequently possible to locate more than one computable variable

4.11

at anyone time, hence more than one valid prooessing list exists for

a given network. One of the valid processing lists for the network

of Fig. 4.2.1 will be 1, 2, 4, 6, 3, 5, 7.

The search fails to result in a complete prooessing list

if the network contains an unspeoified state variable. Demonstrating

this with respeot to a modified version of the network of Fig. 4.2.1,
let a feedback conneotion be added from the output of gate 7 to the

input of gate 4. The structure matrix of the new version of the

network is shown on Fig. 4.2.S.

The processing list will contain objects 1, 2, 3 and 5,
leaving objects 4, 6 and 7 locked in a loop, each depending upon one

of the others (Fig. 4.2.6).

If the designer is aware of the existenoe of the loop then

he must insert a dummy objeot at an arbitrarily seleoted point within

the loop when preparing the data for the oomputer analyeis of the

network. The dummy objeot has the funotion of a state variable.

For the purpose of the prooessing list a state variable has the nature

of a source object and falls in the "known" area of the struoture

matrix.

The sequential network and its dummy objeot generating

the state variable, are shown on Fig. 4.2.7. The struoture matrix

is increased by a column (Fig. 4.2.8) and the prooessing list may be,

for instance. 1, 2, 4, 6, 3, 5, 7, 71.

4.2.2. - The test module A • .

The model of design verifioation, as preeented in ohapter

2, demands that the proposed design be analysed with referenoe to

environmental conditions, and assessed against the behaviour epeci­

fioations.

In this oase the proposed design is offered to the teat

module in the form of a homogeneous struoture of multiple-input,

single-output objects . The format of this data may be a list of

declarations. Eaoh declaration is headed by an object identifier

and contains the list of those object identifiers to which the inputs

of the declared object are connected. Each declaration will there-

fore specify a row of the connection matrix and there will be as many

declarations as there are objects in the network. To permit the

identification of source objects/these must also be declared; their

identifiers will head an empty list since their inputs are connected

nowhere.

The proposed design of the network of Fig. 4.2.1 would be

offered for verification in the form shown on Table 4.2.1. Both the

order of the declarations and the order in which objeots are listed

within the declarations are arbitrary.

The test may commence without referenoe to environmental

conditions; the logical functions generated by the source objects

have no relevance to a teet based entirely upon structure. The

analysis consists of manipulations as desoribed in section 4.2.1.

The expected behaviour of the network under this test is

that a complete processing list is produced. Therefore, the behaviour

of a tested design is checked against the specification of a processing

list containing as many elements as objects of the set D (chapter 2).

It is not necessary to specify the desired behaviour separately; the

objects of the eet D may be counted at the time of the declaration ot
the new design. The outcome of the design verification test is a

binary decision. In case of the example the processing list contains

7 elements as does the set D. The designer was right in declaring no

state variable.

For further reference this test module is given the alpha­

betic character A. The inputs and outputs of the module are shown

in Table 4.2.2. The processing list is an optional output in whioh

the designer will have no direct interest.

for subsequent analysis modules.

It is however valuable

4.3 - WHICH IS 'rHE MINIMAL SET OF STATE VARIABLES OF THE SYSTEM?

This question is an a l ternative to that of 4.2. It may

arise simply because the designer finds the part of data preparation

which concerns the nomination of state var i able s tedious and inoon­

venient; the design of a network will often be spread over a number

of logic diagrams/and feedbaok loops linking large areas of network

will be diffioult to find. Module A does looate the designer's failure

to nominate a comprehensive set of state variables, but offers no help

in locating the unbroken feedbaok loop. Nor does Module A give any

indication if the designer errs the other way by overestimating the

number of state variables. As indicated before, the sample space

increases very rapidly with the number of st a t e variables and the

subsequent analysis becomes i nefficient ; of all the tests conducted

only a fraction will be independent and the rest will contain no

information.

The answer to question 4. 3 faoi l itat es the coding of net­

works and, at the same time, prepares the way for subsequent analysis.

4.3.1 - Teohniques.

It will now be assumed that the designer does not speoify

state variables but deecribes the oonneotion to the inputs of eaoh

objeot from which a homogeneous data struot ure is prepared. Linking

the output of an object to its own input is now permissible. It ie

further assumed, as in section 4 . 2, that t he designer presents the

network at the resolution level of single gates or that a translator

prepares a homogeneous structure previous to this ana lysia.

The reduoed struoture matrix is prepared in the usual way

and elements of the prooessing list identified unt il no further com-

putable variable oan be located. The rows of un- computed variables

and the columns of the "unknown" part of the r educed structure matrix

form a "residue matrix" which shows the ga.te s locked in,together with

the interconnections between theee gat es . This residue matrix is

alwaye equar e.

4.14

As an example, the residue matrix of the network of

Fig 4.2.1, with the output of gate 1 linked to the input of gate 4,
is shown in Fig. 4.3.1.

A method is now sought by which the feedback links of a

network may be identified automatically and in such a way that the

number of state variables assigned to the network should be the

minimum.

With reference to the residual structure matrix, two ques­

tions arise:-

1) Which is the smallest set of column variables to be

assumed/to allow the completion of the processing list?

2) How should the network be modified in such a way that

a state variable be associated with each column variable?

The second answer is easily found, the state variable

should be generated by a dummy element which is fed from the assumed

column variable and whioh feeds all the other gates associated with

that column variable.

The first question is more difficult to answer. The method

proposed here leads to the definition of a set of parameters which

influence the choice of members of a minimal set of state variables.

The subject will be discussed in terms of specific examples

which have been designed or selected to demonstrate the problems in

question. All the examples will refer to networks whioh form reduoed

systems (see chapter 2).

The first observation is negative, the minimal eet oan

not be found by looking for the feedback loops of the struoture matrix

because, as the simple example of Fig. 4.3.1 showe, the matrix does

not permit .distinction between feedback and feed-forward variables.

Nor ie it generally possible to find the feedback loops by

identifying their origin with the outputs of the complete network.

Unless the network i s known to be a Moore machine (see for instance

(20)) state variables are not necessarily assooiated with the outputs

of the network.

It is proposed that the residue matrix should form the

basis of the computation of three relevant parameters which determine

the minimal set. The parameters, associated with column variables,

will be denoted by D, I and M, respeotively, and will be defined and

computed as follows:

D This parameter oounts the number of direotly inter-

dependent pairs of variables of which the variable in question is one.

Suoh pairs always oontain a state variable and the parameter D helps

to assume the ones with the largest number of direct inter-dependenoes.

The direotly inter-dependent pairs are oharaoterised by

symmetrioally placed tIt entries about the diagonal of the residue matrix.

One way of computing the D parameter of each variable is to form the

transpose of the residue matrix and to oount the tIt entries in eaoh

column which are oommon to the residue and the transpose.

I This parameter oounts how many variables depend upon

a given variable, not oounting those with which is is direotly inter­

dependent. Thus I is the sum of the numerals in the oolumn of the

residue matrix associated with a given variable,less its D parameter.

M This parameter measures how many variables would

become immediately computable by assuming only the variable in question.

To determine M,the sum of the numerals in eaoh row of the residue matrix

is oomputed and the row(s) with the smallest sum seleoted. The para­

meter M is the sum of the oolumn of numerals in the matrix oonstruoted

only of such minimally dependent rows.

The parameters of the variables of the residue matrix in

Fig. 4.3.2 will now be computed as an example. The rows and oolumns

are marked by alphabetic characters for convenience.

Compute D:

The transpose matrix, with the inter-dependent variables

ringed:

Compute I:

Compute M.

0 1 1 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

1 G) 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 CD 0

0 0 0 0 0 CD 0 1

0 0 0 0 1 0 0 0

The D - parameter of eaoh column variable therefore.

= 0

= 1

I = p 3
I -Q - IU = 0

IR = IT = Iw = IX = 1

I -S - 2

The sum of numerals in each row.

Lx = Lp = LR = lu

~ = Ls = LT = 2

{"" = 3 '-w

= 1

The minimally dependent rows.

P Q R S T

P 0 0 0 1 0

R 1 0 0 0 0

U 0 0 0 0 0

X 0 0 0 0 0

Henoe, MQ = ~ = MT =
Mp = MS = 1

MW - 2

U

0

0

0

0

MU

W X

0 0

0 0

1 0

1 0

= MX = 0,

Defining the sum of the three parameters as a figure of

merit, the minimal set of state variables may be sought by assuming

the variable with the highest figure of merit, reducing the residue

matrix if possible. If no variables are processable, the variable

with the next highest figure of merit is assumed, etc.

An alternative method assigns priorities to the three

parameters in the order of D, I and M. Considering D first, obviously

one variable of a direotly interdependent pair must always be assumed

before the processing list can be completed,and it is most advantageous

to assume the variable with the highest number of interdependenoes.

Based upon the residue matrix and its transpose, pairs of directly

interdependent variables are located and the variable in each pair

with the highest D parameter assumed. After this, the residue matrix

ie searched for computable variables as before.

In oase of equal D - parameters the ohoice of the assumed

variable depends upon the highest I parameter, or, in case of equal I,

the higheet M parameter of the two variables within a pair. If all

three parameters of the pair are equal, the selection is random.

Following this procedure in the caee of the example of

Fig. 4.).2}the directly interdependent pairs are Q - S and U - w.
Since the D - parameter of variables within pairs are the same, based

upon parameter I, of the first pair S is selected and of the second W.

The procedure is then as fo11owel-

1) remove the column of aseumed variables from

the residue matrix.

2) search for empty rows. Remove the columns

of variables to whioh empty rows correspond.

Add these variables to the processing list.

3) repeat this procedure until no further

reduction is possible.

I 4) prepare a new residue matrix by deleting the

rows to which no column corresponds. Then

prepare the parameters of the new residue

matrix and repeat the procedure of determining

the variables to be assumed.

5) kepeat the procedure of preparation of new

residue matrices until all variables beoome

computable.

6) The prooessing list can now be completed by

examining the partial list whioh was oom­

piled before the residue matrix was found,

against the list of assumed variables, and

adding those to the partial prooessing list

which are not yet inoluded. These variables

will desoribe the next state of the network

upon the assumption of its present state.

To distinguish between the two, the assumed

variables are given a suffix "s" marking them

as state variables.

The procedure is now demonstrated here, in terms ot the

previous examples-

The assigned (state) variables, ae seen, are Ss and Ws.

Removing columns Wand S trom the residue matrix,the empty rows are

P, U and X. Now removing columns P, U and X; rows Q, Rand T beoome

empty. Removing their columns,W and S are empty and the process

terminates. The Processing list is therefore; P, U, X, Q, R, T, W, S.

The network has thus been prooessed with the aid of 1!£ state variables.

Since there are two separate and direotly dependent variable pairs,

the set is minimal.

The value of the procedure will now be demonstrated by

showing that alternative choices of assumed variables result in the

same or higher number of e.tate variables.

Selecting the other two members of direotly inter-dependent

pairs, Q and U will be assumed. Removing their oolumns from the

residue matrix no rows become empty and the new residue matrix is

shown on Fig; 4.3.3.

It is now possible to make unfortunate assumptions,suoh 8S

variables X and T,which still do not result in a complete prooessing

list, rendering only W computable. The oomplete set oontains no

4.19
le ss than five stat e variables in s tead of the minimum of two.

An a lterna tive selection, based entirely on figure of

merit favours vari ables P, S and W equally. The unfortunate random

choice of P re sult s in a Bet of three state variables t beoause the

two directly interde pendent pa irs must subsequently yield two state

variables.

Th e method of selecting the minimal set upon the basis of

priorities i s not generally proven, but it has been found to suoceed

in all oases BO f ar .

4.3.2 The test module B.

As in case of Module A, t he proposed design takes the

form of a set of declarations where eaoh member of the set concerns

a different object and li s ts all those object identifiers to which the

inputs of the deolared obj e ct are connected .

No r eference is required to environmental conditions. The

module provides information about the system which can only be used

for design verification if the designer had a notion of the expected

number of state variables. 'l'he module output may oontain I

a) A li s t of assumed variables

b) The number of assumed variables

c) The deolaration of the network, containing

the state variables located by Module B.

?fuile the designer may use a) or b), it is considered that

c) is only necessary as the input to a subsequent analysis module.

The inputs and out puts of the module are shown on Table 4.3.1.

The processing li s t i s shown as an output option.

4.4 CAN 'rIm PROPCJSED DESIGN B.8 CONVERTED
INTO A HOMOGENEOUS STRUCTURE?

The question implies that the designer used a low resolu­

tion level when declaring hi s system. An automatic test ie now

required to ascertain if sufficient information is available to describe

th9'"

system gate by single gate.

functions:-

The test module is to perform two

a) notify the designer if the homogeneous structure

can not be compiled.

b) compile the structure if possible and make the

data available to other modules.

Techniques.

To answer question 4.4 it is now necessary to describe the

system in more detail than that required by modules A and BJ in

addition to information about the oonnections between system objeots,

the funotion performed by these objeots must also be specified. The

new information is termed the funotion parameter.

At the highest level of resolution used in this work system

objeots may have a funotion parameter seleoted from this list.

mD)
OR ~
NA~D

l

high-level funotion

NOR parameter list.

INPUT)
OUTPUT (optional))

)
STAT~ VARIABLE)

If any part of the proposed design is deolared by the

designer at a lower level of resolution,then it is the designer ' s

responsibility to assign to eaoh different type of system objeot an

individual funotion parameter. Such parameters are subjeot to the

syntactioal rules defined by the mode of programming implementation.

The designer may wish to oonstruot sub-systems for the

purpose of a single design verification. Alternatively, he may wish

to retain a sub-system, under its own funotion parameter, for further

referenoe . For instanoe, hardware modules used repeatedly would

conveniently be deolared under a funotion parameter. Thus the designer

would gradually acoumulate a funotion parameter list containing sub­

system parameters as well as the parameters of the low-level list.

The sub networks at a lower level of resolution are

gener a lly multiple-input, multiple-output devices. The example of

Fi g. 4.4.1 shows such Q s imple sub-network. Without its souroe and

output objeots the network consi s ts of three gates. In additiori to

the cus tomary structural information the gate declarations will now

contain function par ameters selected from the high-level list,

(42 AND 10 20) ...
(41 NOR 20

(43 OR 10 41 30)

Let these t hree gates be re~~e~d by the funotion parameter

TRIO and let TRIO be an object of another system called SUPER. When

attempting to compile the reduced struoture matrix of SUPER, TRIO will

be found a misfit for two reasons; it has more than one output and

ite inputs are not interchangeable. Consequently TRIO must be

deolared in suffioient detail to permit its use in the non-reduoed

structure matrix of SUPBR; INPUT and OUTPUT objeots assooiated with

TRIO mu s t be identified with serial numbers. The full declaration

of TRIO will therefore be as followss-

(10 INPUT 1)

(20 INPUT 2)

(30 INPUT 3)

(41 NOR 20)

(42 AND 10 20)

(43 OR 10 41 30)

(51 OUTPUT 1 42)

(52 OUTPUT 2 43)

The IN PUT and OUTPUT objects are auxiliary and should be

di scarded after TRIO is placed in SUPER, that is, when the homogeneous

structure of SUPER is compiled and a reduced struoture matrix is

available. The first reference of an OUTPUT object is a serial

number; the second is the indication of the object identifier connected

to the OU'rpUT.

Let the oonstruotion of the homogeneous structure of a

4.22

network be demonstrated on another example, taken from the internal

research report "The Kingston Logic Simulator ll compiled by D.R. Holmes

in 1969. The design of the network 'eIR 3' ie to be verified. The

network is shown on Fig 4.4.2 and its declaration is given in Table

4.4.1.

\fuen the declaration of ' eIR3' is received then the function

parameter of each object is ohecked against the list. If 'CIR2 ' is

not found on the list then an error message is produced, indioating

that the answer to question 4.4 is NO.

If 'CIR2 ' is found on the list then its declaration is

checked against that of 'eIR) ' to see if these are oompatible.

Let 'CIH2 ' be the network deolared in Table 4.4.2.

The referenoe to all objeots named 'CIR2' on Table 4.4.1

indioates that 'CIR2' has three inputs. The declaration of 'CIR2'

on Table 4.4.2 also shows three inputs, indicating compatibility of

inputs .

Table 4.4.1 demands two outputs of each of the four objects

whose function parameter is 'CIR2' . Table 4.4.2 shows that two out­

puts are in fact available, thus the outputs are compatible.

Thus 'CIR3 ' is an acceptable network in terms of 'CIR2'.

Now 'CIR2' itself mUst be examined.

The funotion parameters show the non-standard object 'CIRl'.

If this is found on the list then again a compatibility check is

neoessary.

Let the declaration of 'C IR1' be given on Table 4.4.3.

Comparison with Table 4.4.2 shows input and output compatibility.

Furthermore, 'CIRl' is composed entirely of standard objects. Thus

a homogeneous structure of 'CIR3' may be prepared - the answer to

question 4.4 is YES. This structure oontains 52 gate objects.

'CIRl' oontains 3,

'CIR2' contains 4 plus 3 x 'eIR3' J a total of 1),

'CIR3' oontains 4 x 'CIR2 ' ; a total of 4 x 13 : 52.

The homogeneous structure of 'eIR)' can now be made avail­

able by a sequence of substitutions. The data may be putput if the

designer wishes; more usefully this data may be available for further

analysis.

For the sake of completeness the networks of 'CIR2 ' and

'eIR1' are shown on figures 4.4.) and 4.4.4, respectively . The com­

plete network of 'eIR3 ' is a four-bit adder.

Linked outputs.

The introduction of function parameters permits designers

to handle a type of network which has thus far, by implication, been

inaccessible for verification modules. Networks whose objeot outputs

are directly connected can not be handled by structure matrices and

can therefore not be given meaningful object declarations.

As an example, consider the simple network of Fig. 4.4.5.

The declaration of objects 61 and 62 are straightforward.

The declaration of 63 is problematic. The version (63 OR 61 62)

implies an OR gate of two inputs and the logical connection

63 = 61 + 62.
However, the gate 6) has only one input and its output depends upon

some detail about the hardware of gates 61 and 62 which is not avail­

able to the designer at this level of resolution.

The problem may be approached in two ways:

1) by increasing the resolution level beyond the

level of a single gate. This would reveal the

mechanism used by the hardware to eliminate the

ambiguity between the conflicting signals of

gates 61 and 62.

2) by introducing some artificial device at the

selected level of resolution which would have

the same terminal performance as the junction

of the outputs.

The first of these approaches iB unattractive; increasing

the resolution level beyond that of a single gate renders the network

non-logical. The operation of suoh a network would have to be

examined with reference to nori-linear sUb-system models.

The second method is simple but oan not be automated; it

demands that the designer should insert a dummy gate at the junction

of the outputs and assigns to it one of two logioal funotions. If,

at the junotion, logical '1' has priority then the output of the du~my

gate is '11 due to any of the join/ed outputs being at III and the

dummy performs an OR function. If, at the junction, priority is

given to logioal '0' then the output of the junotion oan only be III

if all of the joined outputs are at 11', therefore the dummy should

be an AND gate. The designer must add the dummy at ooding and assign

to it the appropriate function by examining the priority.

This is the method recommended here.

To illustrate the method it will now be assumed that the

jOined outputs of Fig. 4.4.5 aot as a wired OR gate. Assigning the

identifier 164' to the dummy gate, the deolaration of the network i8

as followss-

(61 ~D 10 20)
(62 ~D 30 40)
(64 OR 61 62)
(63 OR 64)

The test module C.

The proposed design is presented onoe more as a series of

declarations containing structural and functional desoriptions.

No reference is needed to environmental data. The behaviour

speoifications are implied; aoceptable designs consist of oompatible

and recognised objects which lend themselves to translation into

homogeneous struotures.

The output is a YES - NO answer to the question 4.4. In

addition, the homogeneous struoture is to be made available.

With reference to the input requirements of modules A and

B it will be seen that the output of module C oontains all the necessary

data in the required form. Module C also generates data concerning

funotion parameters; this data is redundant so far as modules A and

B are concerned. Thus, if module C is to act as a translatoi for

A and B, function parameters are first to be omitted or just ignored.

The module inputs/outputs are shown on Table 4.4.4.

4.5 ARE ANY OF THE OBJECTS OF THE SYSTEM MISUSED
OR OVERLOADE D?

The question seeks to locate design errors due to two

reasons:-

1) the fan - in restrictions are violated.

2) the fan - out restrictions are violated.

It will be assumed that errors are systematio and not due

to faulty coding of otherwise correct networks. For the sake of

clarity of these discussions it will also be assumed that the proposed

design is presented in homogeneous form. This latter assumption may

be removed without altering the validity of the disoussion or of the

test.

The test module D.

The objects of the proposed system must now be described

in detail beyond that demanded by earlier tests. Each object must

carry three additional parameters, collectively termed "load parameters"s

a) Fan - in. This is an integral numeral indicating

the number of input terminals the object has.

The number of input references in the objeot

declaration will, in case of correct design, be

smaller or equal to Fan - in.

b) Load. This is a real numeral indicating, in

some seleoted unit, the maximum load demanded by

any of the inputs of the declared object.

c) Capaoity. This is a real numeral indicating

the ability of the declared object to supply load

to other objects, connected to its output.

Capacity is expressed as a num~eral referring

to the same unit as Load.

4.26

The techniques applied by the test module are trivial,

consisting of arithmetic operations and comparisons.

The output is diagnostic, specifying the erroneous object

and classifying the error as "FAN-IN" or "OVERLOAD".

4.5.l.

4.5.2

The inputs and outputs of the module are shown in Table

Comments.

In case of wired logic (linked outputs, section 4.4.2) due

care must be exercised when specifying the load parameters of the

dummy element. Current hardware practice implies a limit upon the

fan-in and upon the capacity of the dummy gate. These two parameters

are usually inter-related and speoified in terms of each other by the

manufacturer. The load represented by the dummy gate may be con­

sidered zero since the wired junotion oommands all of the output

current of the linked gatea .

Another remark is appropriate. The fan-out oapaoity of

several types of hardware in present use is a function of the distanoe

between connected objeots. Module D has no faoility for aooommodating

such and other non-oonstant load parameters. The extension of the

module would assign to eaoh object a sub-routine which oaloulates the

load parameters on the basis of a selected set of variables. In the

absence of reliable information about hardware, suoh a faoility oould

not be put to efficient use; thus, at the present time, module D is

thought best served by a set of constant load parameters.

4.6 IS THE S'rEADY-STATE RESPONSE OF THE COMBINATIONAL
NETWORK CORRECT?

The question implies that the design under verifioatio~

has been proven by an earlier module (A or B) to be combinational.

It also implies that the correot behaviour is described in some

specifications to which reference oan be made at the time of assessment.

Since the behaviour specifioations are normally given with referenoe

to environmental signals, analysis should also be conduoted with

referenoe to these signals.

Supposing now that structural and functional information

is available about the proposed system and its object, ~he question

is now whether this information is adequate as a basis for answering

question 4.6, or is some other detail such as time parameter of

objects, necessary.

4.6.1 Techniques and concepts.

In the literature . combinational networks are customarily

described as realisations of propositional functions. This descrip­

tion is, strictly speaking, only valid if the delay of all network

objects is zero. Obviously this is never true in practice. On the

other hand, when the steady-state response is required then it is

assumed that the inputs have been held constant since t • - ~and the

outputs are propos1tionally related to these at any finite value of t.

Consequently the object delays are irrelevant to the calculation of

the steady-state response.

Inputs.

It was discussed in chapter 2 that enVironmental signals

fall into two classes; physical and operating signals. If it can

be assumed that the admissible range of physical signals is controlled

in such a way that no gate fails to perform its prescribed Boolea~

function then the physical signals can only influence the length of

the time delay of system objects which in any case have no relavance

to the steady-state reeponse. Thus the analysis consists of finding

the mapping of operating signals u into outputs Z by a system which

has no states.

Let the design under verification be a network with ~

operating signals. The highest resolution level - that of a single

gate - implies an n - dimensional sample spaoe with a binary ohoioe

in each dimension.

The sample space in three dimensions (i.e. the sample space

of a three-input network) is shown in Fig. 4.6.1. Points oonneoted

by an edge of the cube are unit distance apart and are o~bit different

in their code (see , for instance, (18)).

4.28

The "designation numbers" devised by Ledley ~ map this

space into a binary matrix with a row assigned to each operating

(input) signal and a column to each point in the spaoe. The designa­

tion number for each of the three variables is shown in Eq. 4.6.1.
where dUi is to be read "the designation number of U~.

It will be noted that the adjacency between points repre­

senting unit-distance codes is lost; nor is it considered worthwhile

to transcribe the designation number equation to Gray-code form since

such a code preserves the adjacency in two dimensions only.

The concept of designation numbers has led to the automatic

scanning of the sample space. A designation number can conveniently

be handled by digital computers in one of two ways: in the form of

an array of words, each word representing a binary digit of the array,

or in the form of an array of bits within a computer word, each bit

representing a bit of the array. The latter solution is obviously

advantageous and holds the potential of increase in the efficiency of

computation by a factor equalling the number of bits in the computer

word. This bit-handling method is adopted here.

The length of the designation number array is an exponential

function of the number of operating signals and array lengths exceed

the word length for all but trivial networks. To acoommodate arraya

which contain more bits than the word-length W, "multi-words" are

formed of length of P.W bits, where P is the smallest positive integer

for which P.W . '>/ 2n.

Designation number arrays of operating signals have regular
i-I patterns; the input variable Ui has 2 number of 'O'-s followed

by the same Dumber of 'l'-s,with this sequence repeating to a length

of 2n bits, for a total of n inputs. If the network ia subsequently

extended to have an additional input, all the deSignation number arrays

must be increased to a compatible size of 2n~1 bits.

The automatic generation of inputs by the use of designation

number arrays 1s implemented by a program package ISOPACK (21) which

also provides manipulation and storage routines for the handling of

such arrays. ISOPACK assigns the lowest order array to the source

4.29

object carrying the lowest serial number; thus the source objeot 10

of Fig. 4.6.2 would be declared as

(10 INPUT 1)

and its designation number would be a 21- 1 bit sequenoe of 'O's

followed by the same number of 'l's (see Table 4.6.1).

will be declared as

(20 INPUT 2)

The next input

and its array would consiat of a 22-1 bit sequenoe of 'O's and 'l's,

etc.

Since many networks operate in an environment which is

restricted to specified areas of the sample space, it was found

advantageous to permit the automatic generation of all-zero and all­

onA designation numbers of inputs as well as the use of input

patterns designated by the designer. The input declarations

(10 INPUT 1 FIXED ~)
(20 INPUT 2 0001)

(30 INPUT 3)

will assign the patterns

d 10 = 0000

d 20 - 0001

d 30 0101

to source objeots 10, 20 and 30 respeotively. The length of the

patterns is fixed by the highest demandJ here the speoified pattern

of source object 20 sets the length to 4 bits, the other two demand

shorter lengths but conform to that of the highest demand.

Analysis.

Having found. a solution to the generation of input signals,

analysis may now commenoe. This would. merely consist of the computa-

tion of object outputs as Boolean funotions of objeot inputs. The

computation must be made in an order in which objeot inputs beoome

computable. It. is opportune to utilise the Processing List which was

generated as optional output of module A or B.

A simple example i8 shown on Fig. 4.6.2. The prooessing

sequenoe is not unique but m., be, say, (1, 2, 3, 4). The designation

4.30

number array of object outputs is shown, together with inputs, on

Table 4.6.1. The manipulation routines of ISOPACK permit the simulta­

neous (PARALLEL) calculation of up to W number of bits of each designa­

tion number array for a machine of W number of bits per word.

The analysis is thus very simple; a problem ie presented

by the size of arrays of networks with large number of inputs. Now

multi-words consist of several words (p is large) and while one word

of the multi-word is actively manipulated, (P-l) words of eaoh array

need storage. To overcome this problem a procedure is added which

estimates the storage demand of a given analysis. If this demand

proves excessive for the available storage capaoity then the length

of multi-words is halved; the procedure is repeated until the

estimated demand is met. This mode of analysis is termed SERIES­

PARALLEL, by contrast to the fully PARALLEL mode when all P words are

simultaneously accepted. In series-parallel mode som8 of the high-

order input arrays are not accommodated, hence only a fraction of

the sample space is covered by the analysis; thus several runs of

analysis are needed, one after the other (in series) to permit

comprehensive analysis. The method is described in detail in ref.(32).

The output of the analysis is the designation number array

of the system output or . outputs. The printout of these arrays , .

together with the input arrays serving as reference, is an option

designers may demand. This truth table needs assessment against

behaviour speCifications in orde{to give an answer to question 4.6.
Specifications and Assessment.

The behaviour specifications may be presented in several

forms of which three is considered here.-

a) a standard network is specified whose output

ie known to be correct.

b) the desired behaviour is given in the form of

Boolean equations.

c) Same is given in a truth table.

Since the analysie of the proposed design results in a

truth table, it is neoessary to bring the speoifications in the same

4.31

form. In the case of a), the standard network is analysed in the

same way as the network under test.

In the case of b~ symbolic manipulation routines are

neoessary to interpret the equations whioh may be given in a nested

form. When a homogeneous struoture of equations is found then inputs

are made to assume the array patterns as before and the outputs are

computed by the stack manipulation routines of ISOPACK.

Case c) is trivial.

The manipulation of the specifications, bringing them to

truth table form, i s the main part of Assessment, the process is oon­

cluded by a comparison between appropriate arrays, faoilitated onoe

again by ISOPACK.

4.6.2 - The test module E.

The proposed design is presented as a series of deolarations

oontaining information about structure and funotion parameters.

Auxiliary input is required in the form of the Prooessing

List (module A or B). This means that module E is not self-sutfioient

and can only be operated subsequently to A or B.

Environmentai data may be optionally given, desoribing the

restrictions of the sample space. In the absence of such data the

space is fully and automatically covered.

Behaviour data is to be presented in one of three standard

torme.

The output is either an implied YES or a sequenoe of

truth table entries indicating those input conditions whioh have led

to error.

The module inputs/outputs are shown on Table 4.6.2.

4.7 ARE OUTPUTS OF THE COMBINATIONAL NETWORK
S~BJECT TO TRANSIENT SPIKES?

Combinational networks of n inputs are, by definition,

operating in n-dimensional spaoe, having no state variables at the

selected level of resolution. If they should now be resolved to a

l evel higher than th clt of a s ingl e ga t e , the model of the network

would contain numerous reactive objects, indicating the presence of

several state variable s . The effect of these state variables is

observable under trun~ i ent conditions a t the level of single gates.

The transient behaviour of combinational ne tworks form s the subject of

thi s secti.on .

Concepts and definitions .

The combina tional network will be defined here to exist in

a stable state if the input s and out put s of each of its objects are

proposit1onally r e l a t ed . Such a state is therefore charaoterised by

valid Boolean r elationsh ips betwe en inputs and outputs of all objects

of the net work.

Let a network be composed of a finite number of ob.iects.

Let each object have a f init e but un-specified time delay associated

with it . Let the system now rest in a s t ab le state Y up to and at
o

a time t , to which a set of input s u and outputs 6 correspond. If
o 0 0

th e inputs now change at to to u , then the system will be in some

logica lly inconsist ent s tate for a finite but unspecified period ~

until a time \ = (to + 't') when a new stable state Y1 is reached

to which the logica lly cons istent inputs u1 and outputs gl belong.

In the period of "'t the network i s said to be in an unstable state Yt.

In fact , Y~ is not a s ingle state but an infinite state sequence as

dictated by the reactive objects of an inaccessible high resolution

level .

Let Dk be the kth object of t he syst em at the resolution

l evel of single gates . Let the state of the out puts of Dk be given

a t the stable states Yo and YI as Dko anrl Dkl respectively. It will

be observed that, since Dk is a gate, it may only have a single output ,

hence Dko and Dkl are characterised by a s ingle bit each. If Dko ~

Dkl then during the change of Uo to U t llk is said 10 be static;

otharwisA D is dynamic.
/\.

If it were possible to m' nufacture hardware with delay-free

gates then Yt would not exist . In this case if Dk would be static ,

4.33

its output would not change at all; if Dk would be dynamic, its output

would undergo a single change.

Due to finite-delay hardware, Dk transfers from Dko to Dk1

in the time interval of ~jpassing through a sequence of transient states.

Since the object is certain to reach the state of Dkt at the time t l ,

in the course of ~ it may either undergo no change of output and will

be said to be free of hazard or else undergo an even number of Changes

of output and will be said to be hazardous.

The above discussion uses acoepted terminology but gives,

it is thought, more meaningful definitions. It will be useful to

mention here that it is customary in the literature to distinguish be­

tween static and dynamic hazards, '1' and 'Q' hazards and single-and

multiple hazards as shown on Fig. 4.7.1. These distinotions have been

found unnecessary in the course of this work; the cause of single

static hazards has been found to be always the same and they can be

detected without reference to polarity.

Dynamic or multiple static hazards on the other hand are

the consequence of single static hazard spikes existing in the system,

deteoting and oorrecting the latter will eliminate the former, whioh

are therefore of no concern to the designer.

Techniques, further concepts and definitions.

It will be assumed throughout this seotion, as indeed

throughout this work, that systems under test operate in fundamental

mode (see, for instance, (18». This means that a change of operat­

ing signals is only permitted if the system has reached a steady state

in response to the previous change. The need for such an assumption

arises in the context of question 4.7 when examining the sample space

of operating signals. If fundamental mode can not be assumed then

it becomes necessary to include the state spaoe of transient response

in the dimensions of the sample space whose size is already embarras­

sing. The state space could not easily be described in the choeen

resolution level and the problematic sample space would obsoure rather

than illuminate the system behaviour.

4.34

'rho ne"Xt a ~p.umption in tha t the behaviour should be

observed with reference to operating signals. This assumption may,

in fact, be abandoned by developing analysis techniques based upon the

observa tion of topology and function parameters (see FURTHER DEVBLOP­

~:EN 'lIS) •

'fhe sample space 0 f an n-input cor!lld.national network

contains 2n number of points . Ji.dding the dimension of "transient

space", it must now be considered ·that, for comprehensive testing,

the system must be analysed under transit from each point to each of

the others. The total numb er of transient tests is thus 2n .(2n - 1) _

too large in all cases of interest.

One way of restricting the sample space without prejudicing

reliability to a great extent, is to eliminate those tests which refer

to events of low probability. To find such events, attention was given

to the way in which the system is expeoted to operate in real life.

The logical decisions made by combinational networks are

used to oontrol some other system. If the time constant of the con-

trolled system is so small that it may react to output transients then

thp. designer may choose to use a clocking device which inhibits the

output until the transient is over - if suoh a clook is available.

Thus clocked (synchronous) systems usually cause no anxiety on acoount

of their transient behaviour.

If the system is unclocked (asynchronous) then the time of

the occurrenoe of events is stochastically determined, depending upon

the time delays of earlier parts of the system . In this case the

change of operating signals is also stochastic and the probability of

two signals changing simultaneously is zero. Thus the sample space

may, without much loss of reliability, be restricted to unit-distanoe

(single-input) changes. Due to a change in each of n input variables,

a transition may oocur from each of 2n points of the sample space;

the total number of tests needed for comprehensive testing under single-

input-change conditions is n x 2n. 'rhroughout this section tests

will be conducted under such conditions.

Let thn hoo l l-' un function Telutin r, thp input!-l V
k

of the sYRtem

obj ect Dk to the output, also denoted by l>k' be gi ven as

- Hk (Vk) ••••••• Eq . 4.7.1.

TIy the definition of the high-level function parameter list of section

4.4.1. the function li l is selected from the list 0 , AND, NOR, Ni D.
K.

Since inputs and outputs of all the gates of the system are conneoted

by such equations as i q . 4.7.1, n will be connected to the system
K

inputs u by a complex combination of hoolean connectives C
k

S

= Ck (u) •••••••• Eq. 4.7.2.
(

where u • (Ul ' U2 ' • U) for n inputs.
n)

and

The partial difference of Dk under U
j

will be denoted as

will be defined as tile function

II Dk

b. Uj

(U .)
.1

. . . . Eq. 4.7.3.

which is obtained by setting all the input variables of u to Boolean

constants of either ' 1 ' or ' 0 ' , with the exception of U
j

• Since the

remaining (n-1) input variables have 2n- l different combinations of

values, the partial difference of D, under U. is not unique, i.e.
t:. J

Eq uation 4.7 . 3. may have several forms. Should any of these forms

be reducible, by normal TIoolean algebraic manipulations, to one of

the forms of Sq. 4.7.4 or 4.7 . 5, then the object Dk will be said to

be hazardous under U j.

A Dk

A uj

A Dk

f1 uj

= U.
J

l.!)q. +

•.... . Bq. 4.7.5

If Bk was an OR or NAND function t hen the hazard will show in

the form of Equation 4 . 7.4 . If it was AND or NOh then the hazard

takes the form of Equation 4.7 .5.

These equat i ons (without the use of the concept of partial dif­

fer Ance) ~re the basi s of hazard detection as used by gissos and others

(see for instance, (19)) .

An example is shown in Fi g . 4.7.2 .

For this net work - D3 ~ Ulo U2 + U2 + U3 and the Boolean con­

nective of D3 is OR .

The partial difference of D3 under U2 will now be sought . This

will bave four potentially different versions as shown on Table 4.7.1.

The third row of the table indicates t he hazard .under U2 in the

form of Equa t ion 4.7. 4.

The test module F.

It is now possible to devise a test module which produces the

answer to question 4.7.

The inputs to the test module consist of s t r uctural and func­

tional information about the system 01jects in the same for mat as tha~

of module B. In addition , as in the case of E, t he proce s sing list

is required ; thus thi s module relies upon modul e A or B for s ome bf

its inputs .

Analysis cons ists of converting the gate dec l ar a t i ons , which

give equation 4.7.1 of each gate , into the form of eq uation 4.7.2 by

the use of symbolic manipulation routines . Next , each of the 2 n~

partial diff erences for each of the n variab l es (a tot a l of n x 2n- l

cal culations) are formed for eaoh of p number of obj ect s of the network ,

and manipulated by t he same r out ines as above until no further simpli­

fi cation is possible .

Assessment is conducted wi t h reference to the error equations

4.37

of 4.7.4 and 4.7.5. n-l
~ach of the p x n x 2 equations must now be

compared with the app~opriate error equation. Since the error equa-

tion3 are of standar d format, no behaviour specifications need be

given.

The output i s diagnostic , consisting of a list of hazardous

gates. Two options are possible : nominating the operating signal (s)

under which the faulty gates are hazardous, or else nominating the

particul ar combination(s) of constant operating signals which lead to

ha zard under the jth input.

Table 4.7.2. shows the inpu t s /out puts of module F .

4.7.4. Alternative technigues.

The mode of analysis used by Test F was, basioally, analytic

testing because it was built on symbolic manipulation . As an alter­

native, numerical testing may be used to detect hazards. The method

was suggested by gissoe (19) and is the foundation of the test module G.

The error equation s of 4.7.4 and 4.7.5 imply that under hazard

condition s two of the inputs undergo opposite polarity changes while

all other inputs ar e ineffective in eliminating the hazard pulse.

Thus the hazardous gate may be found by scanning all of the p number

of object s of the system under each of n single-variable transitions

and starting from each of 2n stable states, observing if any pair of .

object inputs are liab le to opposite-polarity change. Should such

a pair be found then the object is potentially hazardous. If there

are no input signals which would be effective in blanking out the

spike then the object is hazardous and should be reported to the

designer.

Examination of this procedure r eveals that comprehensive testing

is accomplished in n x 2n- l carefully selected tests because it is

sufficient to examine one of two poss ible polarities of change for

each input variable.

The procedure will now be demonstrated on the example of Fig.

10, 20 clnd) 0 ar e source object s ; gates 42 and 43 represent

AND fu nctions; 44 i s an OR gate and 41 i s an inverter (NOR).

(fh e s teady-s t at e r esponse of t he net work i s found by Module E.
I

It i s t ablulited on 'rabl e 4.1.)., wher e rows ar e numbered for reference.

n
St arting from ea ch of the 2 = 8 possible s teady-state conditions,

n = 3 s ingl e -variabl e changes ar e pos s i bl e , a s shown on Table 4.7.4.

It i s poss ible to ha lve thi s number of t e st s by permitting One

of the t wo pos sibl e pol arities of transitions . The choice of polarity

i s arbitrary. Electing her e to transf er from a lower to a higher

refer ence stat e , th p li Rt of nece ssary te s t s i s shown on Table 4.1.5.

Table 4.1.6 shows the output of each gate in response to these

input changes. Each column give s the logical sta te of the gate

output before and aft er the input transition. The head of each

column indicates the trans ition from one input condition to another.

Arrows are rever s ible , indicating that the polarity of the change

is immaterial.

The gates of interest are those of more than one input, since

these are t he only ones open to hazard. In thi s network there are

only three: 42, 43 and 44. The in ~ut s to these ga t e s are now

examine d , with the a id of Table 4.7.6, for opposite-polarity changes.

The only static hazard of the net work may arise a t the input of gate

44, at the transition of 6 ~ 7, a s ringed on Table 4.1.6. Gate 44

i s therefore entered in a provi s ional error list. A further test is

now re~uired to detect the presence of blanking signals which would

inhibit the hazard spike. These s i gnal s maintain a steady level

throu ghout the hazardou s trunaition such that the hazard spike does

not propagate. Such blanking s ignal s may be applied at the hazardou!o

gate or at some other ga te to which the hazard spike propagates.

Since scanning the whole of the network for possible blanking signals

is jud ged to raise exces s ive demands of computing time and spaoe, an

error is re ported in t erms of the signa l s of a given object, even if

the hazard is subsequently elminated by blanking signal.

4. 9

The technique of de tecting blanking signals at the i nput of

a potentially ha zardous gate is based upon the observation that 'OR'

and ' NOR ' gates demand a constant signal at logical '1' which would

keep t he gat e out put steady during the hazardous transition; 'AND'

and ' N~~ D ' gates need a constant signal at logical ' 0 ' for the same

reason. Since the output of the hazardous gate is, under steady-state

condi tions, static, the blanking signals are logically redundant.

The transient-error-free redundant version of the network of Fig. 4.7.3
is shown on Fig . 4.7.4. The blanking signal is generated on gate 45.

4.7· 5 The te s t module G.

The test is base d upon numerical methods .

Inputs consist of t he truth table generated by module E,

plu s the processing list.

Analysis compiles the n x 2n- l
single-variable transitions

for each of the p objects of the system.

Assessment consists of two parts . First opposite-polarity

in put pairs are located, resulting in the diagnosis of potentially

hazardous gates . Next, the r emaining inputs of Buch gates are searched

for effective bl anking signals . Assessment is thus based on general-

isations, requiring no behavi6ur specifications.

Outputs list hazardous gates with the same options as module F.

Table 4.7.7 shows inputs/outputs.

4.8 IS TH ~ STEADY-STATE RESPONSE OF THE SEQUENTIAL
NETWORK CORRECT?

It will be assumed that the proposed design i s a sequential

network under the definition given in 4.21- at the resolution level of

single gates the ne twork will contain feedback . It will be further

assumed that the network is declared in terms of an adequate set of

state variables (by the use of module A, module B or otherwise). In

order to make the question 4.8 meaningful, it must also be assumed that

the desired behaviour of the system i s known to the designer in terms

of the same set of state variables .

A technique is now sought to permit the assessment of the

4.40

response of the new oe s ign without reference to externally specified

operating signals or to time delays of system objects.

Technique.

Let the network have n inputs and m state variables. Then,

under steady-state conditions, the saml1le space has (n + m)dimensions

an ,l 2n+m b f 't unum er 0 po~n s.

The mapping of inputs and state variables into outputs and

the next value of state variables is given by the system equations of

Chapter 2, if the operators G and H are interpreted as Boolean operators

and the input can be considered consta.nt over the time segment (to' \).

= G (u (tl), s (to))

= H (u (t , t
l
), s (t))

o 0
Eq. 4.8.1.

It will now be decided to search for a numerical test method.

Analysis could then consist of compiling the system equations in a

table. A convenient format is proposed to be a DIRECTORY which

combines the information of state tables and output tables (for instance,

(18)).

The DIR SCTOhY consists of 2n+m number of rows and (n+2m-tq)

number of columns for a network with n inputs, m state variables and

q number of outputs.

the sample space.

Each row corresponds to a different point of

The operating signals and state variables at the time tare
o

the independent variables determining the parameters of a point of the

sample space . They tire assigned a column each in the DIRECTORY .

The input is regarded as constant over the time segment (to' t
1

) .

The outputs and the state variables at the next instance tl

are the dependent variable s which are to be compute d by the analysis

and assessed against the behaviour specifications .

aSAigned a ~olumn each in the DIRSCTOkY.

They too are

The DIRECTO~Y appears in the format of a truth table relat-

ing independent and dependent variables. In this interpretation the

4.41.

sequential network of n inputs, m sta t e variables and q outputs is

resolved into a comb i nationa l network of (n ~ m) inputs and (m + q)

out puts. Since t he techniques of modul e E cope adequately with such

net r orks, these t e chni~ues can be adopted for the sequential test

modul e H.

The transformation of a sequentia l network to an equivalent

combinationa l form is shown diagramatically on Fig. 4.8.1. The use

of thi s transformation in 'analysis is demonstrated on the simple net­

work of Fi g . 4.8.2.

The state and output equations for the model of Fig. 4.8.1

can now be written, with reference to Eq. 4.8.1, as

= J (u (t), a (t .)) o 0

or elae ,

• J (1 (t)) .
o

. Eq. 4.8.2 .

wh~re D and I denote dependent and independent variables, respectively

and J is a Boolean operator .

modul e B.

variable .

The DIRECTOHY is the tabul ar model of Eq. 4.8.2.
Here 40 is the state variable inserted by the designer or '

The output of 30 re pr e sents the "next state" of the state

The out put is t ake n from 10. Thus there are

(n ~ m) = (2 + 1) = 3 independent and

(m + q) = (1 ~ 1) = 2 dependent variables.

The proce ssing list may be , say, (10, 20, 30). The a11oca-

tion of order to desi gnation number arrays is, in principle, arbitrary,

in practice it hus been found convenient to assign low order input

arrays to state variables (see (24»). Table 4.8.1 shows the arraye

of the network of Fig. 4.8.2.

The truth table of Ta1l] p. 4.8.1 is re-arranged in the format

of 'rable 4.8.2. which will hence be referred to as the DIRECTORY.SP

and SN abbreviate "present" and "next" states.

serial number for reference.

Rows are given a

4.42

The behaviour specifications can thus be presented in one of three

forms: as a standard network, a set of state and output equations or

a s a DIH3CTORY.

The proposed design is once more presented as a series of

object declarations containing information about structure and function

parame t ers. In addi tion, the processing li s t compiled by module A or

B i s necessary.

r'~nvironmental data is optional and is used merely to des­

cribe r es triction of sample space.

Behaviour dat a. t akes one of three standard forms.

Output is an implied YES or a sequence of DIRECTORY entries

indicating those parameters of the sample space which have lead to

error. The total DIHECTOhY is available as an option.

Inputs/outputs are shovm on Table 4.8.3.

Comment.

The model of the system as shovm on Fig. 4.8.1. assigns

the nature of independent variabl~to all inputs and state va~iables

of the system. In fact state variables depend upon in?uts and their

logical value is not directly controllable. Interactions between

state variables are frequently functions of the delay of system objects

ann, dependent upon the relative value of these delays, the system

may reach one of a number of possible stable states. Thus, unlike

in combinational networks, transient conditions in sequential networks

may become staticised, causing permanent mal-function as a consequence

of adverse path delays . In terms of the analysis technique of module

H this means that the DIR3CTORY is a valid model of the network only

if one of two conditions are satisfied:

a) the network is not sensitive to changes of

relative delays in signal paths

b) the network processes the signal in the

order given in the Processing List.

4.43
It is tho purpose of a number of test modules to ascertain

if conditions a) or b) are satisfied; meanwhile, the output of module

H must be regarded as tentative; the resulting DIRECTORY 1s termed

PRIMITIVE. A definite answer to question 4.8 will only become avail­

able after a VERIPI BD DIRECTORY is compiled, with the aid of further

test modules and as the output of module P.

4.9 WHICH ARl!: TB}:; STABLE STATES OF THE SYSTEM?

The importance of the question is matched only by the sim­

plicity of obtaining the answer, using the DIRECTORY of module H. By

contrast it will be recalled from Chapter 3 that simulation programs

have no effective means of locating sati s factory stable conditions

from which to start the analysis and neither simulation nor lower-order

modes of analysis have any means of reaching some of the stable states

of incompletely connected systems.

The test module J.

Let the proposed design be described by its DIRECTORY after

the use of module H. This data r epresents the input of module J .

Analysis consists of comparing the present and next state

vectors within each of the rows of the DIRECTORY. Where these agree

the system

changed .

points of

is evidently static ann will stay so until the inputs are

The parameters (input and present state variables) of these

the sample space will define the stable states of the system,

hence these represent the answer to question 4.9.

Inputs and outputs are shown in Table 4.9.1.

Comment .

The stability analysis may be conducted on the basis of the

iRIMITIVE DIR~CT0RY because the stable conditions of a network are not

dependent upon the relative delays of signal paths. Indeed, the

stable states of a sequential network may be considered as the equiva­

lents of the stable states of a combinational network. Consequently

the STABLE entries of the PRIMITIVE DIRECTORY require no further

verification .

4.44
4.1 U - Ji.kl!l 1\1 Y 01<' :HLr,; Gldl~::; m' 'I'll.!!: ;)b;3Ul!.i~ 'I'lAL

~ ETWORl\ LI 1U:jL~ '1'0 Gb:.N .l<iR,{'l' r, t)'I'A'l'IC HA~ARD SPIKBS?

Having reduced sequential networks to equivalent combin~tional

f orm by breaking feedback loops and inserting state variables, it be­

comes possible to locate static hazard "errors by the use of the techniques

of module F or G. However, the te st cond i tions require some thought.

4.10.1 Teohnique.

It will be recalled (section 4.8) that, for the purpose of

compiling the DIR~CTUrt Y, state variables were regarded as independent

variables and the sequential network was effectively reduced to combina-

tional form. The model of this procedure is shown on Fig. 4.8.1.
Then again, it will be remembered that section 4.7 led to the

n-l conclusion that n x 2 tests were necessary for comprehensive analysis

of an n-input network. Thus, if the "independent variables" of section

4.8 are interpreted to be the "inputs" of seotion 4.7, (n ... m) x 2n ... m

number of tests are required to give a complete answer to question 4.10 .

Fortunately this very large number grossly over~estimates tbe

sample space due to the wrong interpretation of the nature of "indepen­

dent variables". The transient tests of section 4.7 were based on the

concept that the network oould always be transferred from one stable

state (Yo) to another (Yl) under the influence of a single input change ,

while other inputs are kept constant. This condition is in no way

valid for sequential networks' if such networks are stable in some

state Y , they can be moved from this state by changing anyone of the o
n input variables but, since the m present-state variables are not con-

nected to any directly accessible terminal (exoept in the conceptual

model), they are not liable to change independently of the n inputs.

Consequently, if the network has P number of stable states, it is only

liable to n x P number of transients.

Unfortunately this attractively modest number of tests does

not cover the sample space completely. If a network starts from the

stable state Y and undergoes a change of state due to some changing
o

input variable U
j

, the new state Y
l

may be stable or unstable. If T1
is stable (under the criterion of 4.9) then the transient test is com­

plete . If Y
l

is unstable , the DIRECTORY will indicate a number of

state variables which are scheduled to change . Hazards may arise

4.45

due to th~ change in the se, which nced diagnosis and subseq uent

correction. Still applying the principle of single-variable ohange,

static hazard tests should now be conducted by starting from each of

the (2 n + m _ p) number of unstable states and subjecting the network

to change in each one of the state variables indicated by the DIRECTORY.

The number of such changes in a well-designed network will be seen to

be one or not much more than one. However, in a general case the

number may be anything up to m.

The total number of tests will be computed as
2n+m_p

n x P ~ ~ ~ fii

i = 1

where n m~indicates the number of state variables which are scheduled

to change in the ith row of transient states.

An example will now be appropriate. Let a simple sequential

network be characterised by the DIR~CTORY of Table 4.10.1. There are

two inputs and two state variables, giving 2n~m = 22+2 = 16 rows of

DIRECTORY entries. A column has been added to the DIRECTORY for the

purpose of this discussion, indicating the STAB~ entries (i.e. those

for vrhich Present and Next state variables are identical) and ll. m for

each row, showing the number of state variables s cheduled to change.

The sample space of this example has X number of pOints, i.e. X number

of tests are necessary a s a basis of answering question
2n-.m _ P

X ~ n x P -. ~ A m
i

•

i = 1

4. 10, where .

= 2 x 6 + (1 + 1 + 2 + 1 + 1 ~ 1 ~ 1 ~ 1 ~ 2 ~ 1) = 24

Careful observation of Table 4.10 .1 will reveal some redun­

dancy in this mode of testing, indicating that some points of the

sample space are covered more than once. Take for instance the stable

states of rows 9 and 13 which differ only by the value of the input

variable Uf' One of the changes scheduled under X will transfer row 9

to row 13; another will transfer row 13 to row 9. It was possible to

4.46
reduce the number of tests of section 4.7 from n x 2n to n x 2n- l

due to just thi s ty pe of redundancy . It would also be possible to

eliminate the redundancy here, but this would involve searching for

stable states which differ only by one input variable. Since stable

states form only a fraction of the total number of system states, the

extra computation of the search may not be offset by the saving in

the number of tests; thus the method is not proposed here.

Another comment is called for when considering the impli-

cations of tests starting from a transient state . ~fuen such a state

is reached, as a result of an input change , it ""ill be considered as

virtually stable for the purposes of module K. The test will then

move the system from a virtually stable s tate under the influence of

each state variable in turn. The circumstances in practice are

different : the system is not subjected to partial changes as above

but to the simultaneous change in input and each scheduled state

variable. Such multiple changes cause erroneous operation which will

be detected under some other test. Meanwhile module K concentrates

on the detection of errors on the basis of an abstract concept: the

virtually stable s t ate .

4 . 10 . 2

Li st .

The test module K.

The test matches the numerical techniques of module G.

Input consists of the DIRECTORY of module H plus Processing

2n+m_ p

Analysis compiles n x P ... ~ A m't number
i=l

of single-variable transitions for each object of the network, regis­

tering hazardous gates .

Assessment needs no behaviour specifications.

Outputs list the hazardous gates with a single option of

the definition of the independent variab l e leading to hazard.

Inputs/outputs are shown in Table 4.10. 2 .

The module is not self-sufficient but relies for its inputs

on module A or B and module H.

1.11 1:) t'll l'; :i'l' I~ Jl Y-8' ('A'1' ,~ Jd'. ~)lUf.l :i l!. Or' THl!; S I~QUENTIAL

N" ;'l'\'/l)}(} :.:i lSH :Jl 'Ill VC; '1'0 V ! (IA 'l'I eN ~) OF Ul!:LAY PARAMETERS OF
SYSTEM OBJECTS?

In other words : is the behaviour liable to deviate from the

specifica tion as given in a DIRECTORY due to normal variations of

delay parameters, such as caused by manufacturing tolerances or ohanges

in physical signals of the environment? Is the PRIMITIVE DIRECTORY

ambigu ous?

The question i s of vital importance to the designer and, as

shown in Chapter 3, answers are not found by simUlation or lower-order

mode s of analysis .

The techniques used here are based on standard techniques

of swit ching theory with some suitable modifications whioh permit the

design of test modules.

concepts and definitions.

It was also necessary to introduce some new

4 .11.1

questions:

Conoepts and technigues.

The examination of question 4.11 leads to two further

1) to what extent would the behaviour specifications,

as given in a DIHBCTURY , reveal sensitivity to

delay parameters?

2) to what ex tent can question 4.11 be answered with­

out direct r eference to the delay parameters of

objects of a given network?

The second question will only be answered after the tech­

niques are established .

Tbe first of the se que stions i mplies that it may be possible

to predict de lay sensitivity before a new design is initiated . If

this is true , then the new design may be created with speoia1 attention

to object delays, ~hus avoiding or minimising design errors due to this

Oause.

example.

Let this question be considered with referenoe to a specifio

'l'he DIR 'CTORY of Table 4.10 . 1 may be the outcome of the

analysis of a network by module H. It may also be the t abular

specification of a new design to be created . What can such a terminal

modol reveal about sensitivity to delays of object s whi ch, at this the

lowest level of resolution, are not distinguishable?

The rows of the DIRECTORY will now be examined in turn. If

. the system is stable then it can not be affect ed by the delay or any

. other parameters of its objects. Thus rows 0, 6, 9, 10, 13 and 15

are exempt from further scrutiny.

Paying no attention for the moment to the way in which the

system reaches one of the unstable states, let these now be examined

in turn. Rows 1, 2, 4, 5, 7, 8, 11 and 14 schedul e a single state

variable change which will undoubtedly occur sooner or later, so long

as the input signals (U1 and U2)are constant . Le t this condition be

assumed just for the moment; then the only rows indicating multiple

changes in state variables are 3 and 12 . Still assuming that the

input variables are constant, one of three events may occur to the

network which is at one of these two states:

a) both state variables change together.

b) SI changes before S2.

c) S2 changes before SI .

The probability of a) in an asynchronous network is zero. ·

If the network is synchronous and is operating within the limits of

its response time, then the answer to question 4.11 is NO and none of

this discussion is relevant.

Without further information about the system and its object

delays, b) and c) appear equally probable and a condition arises which

is referred to in the literature as a SECONDARY RACE, indicating that

two or more secondary (state) variables are involved simultaneously

and the outcome is .in doubt.

With reference to the example of Table 4.10.1, if conditions

b) and c) lead to different stable states then the answer to question

4.11 is YES.

~ 0ntempla L i!lg 1'0 '1,1 3 fir st , thp. cu se of b) indicates that

the stat e variabl es change from 11 to 01. For constant inputs this

condition i s that of row 2 which f inally leads to the stabl e state of

row 0, where the state variables become 00, as was originally scheduled

in row 3. 'rhis condition will be termed NON-CRITICAL because of the

agreement of the originally s chedu l ed and finally reached stable state .

Row 3 and the case of c) indicates a change of state variables

from 11 to 10. For constant inputs this condition is met in row 1

which l eads to the stable state of row 0 - another non-critical trans-

ition. Thus row 3 shows no sensitivity to object delay variations.

Repeating the procedure for the other potentially sensitive

row of 12, the ori ginally scheduled change from state variables 00 to

11 prescribes the fin al stat e of row 15. Case b) however leads to

the stable state of 13 - thi s condition is CRITICAL. Case c) does

l ead , vi a row 14, to the desired stable state of row 15.

rl1he summary of these investigations is tha t if the network

ever reaches state 12 then it will be sensitive to delay variations

and will in fact mal-function if the delay associated w~th the state

variable SI is greater than tha t of S2, (condition c)).

To permit the development of the requisite t est techniques

the followin g definitions are proposed:

A secondary race exists in a network between two state

variables Si and Sj if there i s a stable state Yk and an input variable

U such that a single-variable change in U causes a change in both
c c

Si and Sj"

Let the l.JIRr.;'CTORY schedule that, in the above circumstance,

the network should r each the s table state Y. The secondary raoe in v
the network leads to a critical condition in t erms of object delays

if, by initiating a change in Si subsequent to the change 1n Sj' the

ne twork reaches a stable s tate Y ~ Y , for any i or j. w v

4.50

The secondary race leads to a non-critical condition in

terms of object del ays if, under the above circumstances, Y • Y •
• v

The secondary race leads to an oscillatory condition if,

under any circumstances of relative delay between the state variables

involved in the change, the network does not reach a stable state .

I t will be noted that a se condary race set up between two

state variables Si and Sj will often involve other state variables of

the network which re spond to a change in S. , S. or both. Such
~ J

variables may race between themselves or with either of the original

racin ff pair . Taking into consideration all possible distributions

of relative delay (i.e allowing no assumptions regarding the value of

del ays), starting from the initial stable state of Vk the network may

traverse upon a critical path CP, non-critical path NCP or oscillatory

path OSC, under the above definitions.

It will be worthwhile to discuss a single test in terms of

a much larger DIR1~CTORY than that of Table 4.10.1. An extraot from

such a DIRECTORY for a network of two inputs and five state variables,

is shown on Table 4.11.1. The network is stable in the state 100

and undergoes a single-variable change in U2 , which transfers the system

to stat e 36. A secondary race is set up between S3 and S5, leading to

a maze of paths as shown on Fig. 4.11.1.

diagram.

The diagnosis is s impl e , in spite of the complexity of the

If S3 changes before S5 does then the transition leads to

one of two NC paths . If S5 changes first then the network is liable

to mal-function.

condition.

The output must warn the designer about the latter

4.11. 2 The test module L.

The module concerns the diagnosis of se condary race condi­

tions (CP and OSC) which render a sequential network sensitive to

del ay parame ter changes .

Inputs for the module ar e provided by a DIR~CTORY.

Analysis commences by finding all of the P number of stable

states and initiating n different s ingle-variablo changes, starting

from each stable state. With the aid of the DIRECTORY multiple state­

variable changes are located and followed through, considering each

possible combination of rel ative delay among the state variables

concerned. The paths so traced are then assesBed against the ne~t

state variables of the multiple-change schedule. Output then will

be an implied NO or a description of the initial stable state, the

chanGing input variables and the state variables of the multiple

change which lead to error, toge ther with the critical relative delay.

For instance the example of Fig. 4.11.1 gives rise to the printout

u = 11, S -: 00100;

CP if TS3

SI =- 00001

4.11.3

(here TSil the time delay associated with Si)

Inputs and outputs are tabulated on Table 4.11.2.

Comments.

Module L operates upon information contained in the

DIRECTORY and requires no reference to object delay parameters. It

detects all race conditions between state variables and ie therefore

a valuable and comprehensive test method. However, it uses a test

technique which implies that the network responds to the change 1n an

input variable before any state variable change is effective. This

condition does not always apply; thus an additional test module is

developed to deal with a type of delay sensitivity not diagnosed by

module L.

When used as a tool of design verification, module L

indicates to the designer how to arrange additional delays to favour

non-critical paths. However, the error reports of module L may raise

conflicting demands (Si to be delayed more than Sj to eliminate one

error but Sj more than Si to eliminate another). In such cases the

designer must re-consider the state assignment ,and modify the

DIRECTOhY itself. To avoid such waste of effort, the module L may

be used to formulate the design by assessing the DIRECTORY containing

the specifications or the proposed state as s ignment.

If a network has been subjected to module L and is proven

to have no secondary races, that network will be said to have a

DIRECTORY verifie d under module L.

rurther techniques and concepts.

The following definitions are now proposedl

An essential race exists in a network between an input

variable U. and a state variable S . if there exists a stable state Yk
1 J

such that a single-variable change in Ui causes a change in Sj.

An essential hazard exists in a network which oontains an

es'sential race between Ui and Sj if a change in Ui followed by a ohange

in Sj results in a stable state Yv whereas a change in Sj followed by

a change in Ui results in a stable state Yw where Yv t YWe

Although it is not possible to move a network from a stable

state by changing a state variable, it is possible that the ~feot of

an input variable change is so delayed that it reaches a part of the

network later than the effect of the secondary change . If the

terminal performance reveals sensitivity to such a condition, i.e. if

the network is liabl e to reach a different steady state dependent upon

the relative length of the delay of the input and secondary path, the

network is said to have an essential hazard.

The alternative definition of essential hazards is that of

Ungar (25) which does not permit easy appre ciation of the cauae of the

hazard but provides a basis on which such hazards may be diagnosed.

Ungar' s definition i s as follows:

an essential hazard exists in a network if there is

a total state Yk and an input variable Ui such that,

starting from the state of Yk, three consecutive

changes in Ui bring the network to a state other than

the first input change.

Let essential hazards be demonstrated on the network whose

DIRECTORY was shown in Table 4.10.1. As an example, consider the

4.53.

case when the initial stable state Yk is that marked by reference

number 10. A single-variable change in U1 implies a change in SI.

Using the definition proposed by Ungar, the first change in

Ul leads to stable state 15; the second change leads to stable state

9. The third change leads to state 13! s t ate 15; thus, under

conditions of Ul ~ 0, U2 ~ 1, SI ~ 0, S2 = 1 and UI as the changing

variable, the network contains an essential hazard.

Using the alternative definition proposed here and starting

from state 10, the change in Ul leads to 15 as before. Starting from

the same state and changing SI first, the stable state of 9 is reached;

changing U
l

now leads to the stable state of 13 ~ 15: the network

contains an essential hazard.

Either of the two definitions may be accepted as a basis

for the design of test module }.1 .

Module M, as kiodule L, may be used to verify a PRIMITIVE

DIRECTORY , it can also be used to analyse the behaviour specifications

of a new design, allowing the detection of delay sensitivity.

4.11. 5 The test module M.

Inputs conGist of a DIRECTORY.

Analysis, based on Ungar ' s definition , is as follows. Let

the sequential network have P number of stable states and a number of

inputs. Selecting one of the stable states (Yl) as the initial con­

dition, the network is subjected to a single-variable change in Ul
which leads to some stable state 12 , Changing Ul again leads to Y3'
a third change in Ul leads to Y4.

Assessment consists 01' comparing Y1 and Y
4

.

then an error message is generated, speCifying the initial condition Y1

and the variable U1 ' which leads to the essential hazard. The test

is repeated for each of the P stable states and, within them, for eaoh

of the n inputs, amounting to a total of Pxn t ests.

4.54

Outputs therefore consist of a list of error messages or

else .a straight NO, indicating that the network is insensitive to delay

variations.

In puts/out put s are sh ~) wn on Tabl e 4.11.3 .

4 .11. 6 Trivial cases of essential hazards.

Somp of the e nsenti a l hazards reported by module M can in

fact never cause mal-functioning of the network. Such cases will be

termed trivial essential hazards. An example will be shown here with

reference to an extract of the DIBECTORY of a network with 5 inputs

and 3 state variables . The network itself is shown on Fig. 4.11.2.

Let the network rest in the stable state 221; let the

single-variable change be in U
3

• Then, after transitions through

states 253 and 252 the stable state of 254 is reached. The second

change in U
3

transfers the network through 222 to state 223. The

third and final change in U3 leads through 255 and 251 to 249. Since

254 and 249 mark different states, an essential hazard is diagnosed .

The hazard involves U3 and th e state variable SI (see table 4.11.4)

Applying the al t ernative algorithm and permitting the change

in SI to precede the change in U
3

' the network transfers from state

221 through state 220 to stable state 223. Here again, since 254 and

223 are different, an essential hazard is diagnosed.

The question is now: how likely is it that mal-functioning

will occur in the circuit whose lJIRBC'l'ORY is that of Table 4.11.4.

In other words , what is the probability that in case of the circuit

which gave rise to this DIRECTORY, the change in SI will reach a

critical gate before the change in the input variable U3 does?

Close examination of the network of Fig. 4.11.2 will reveal

a race at gate 5 ~etween a signal from gate 1 ann another element

Since the change in SI originates from gate 1

and encounters the delay 1."4 of gate 4 before is is applied to gate 5,

the signal change of gate 1 is bound to reach gate 5 ahead of this

change by the time interval ~4. Without requiring the delay model

4.55
of any of the ga t es of the network it can be stated for certain that

thp outcome of the race between U
3

and SI is not in doubt - the .essen­

tial hazard is trivial.

Fig. 4.11. 3 shows the critical gate 5 and the race paths.

The delay model used for the interpretation of this diagram and later

in this chapter associates the delay with the gate elements ; no delay

is assigned to paths themselves. Thus the delay of path U
3

is zero,

the delay of path Sl is that associated with gate element 4.

A general definition of trivial essential hazards is now
\

proposed as follows. Let Ui and Sj be engaged in an essential hazard

terminating at some system object Dk • Let Ti denote the set of delays

associated with objects along the path of Ui and Tj the set of object

delays along the path of S.. Then the essential hazard between U. and
J ~

Sj is trivial if Ti ~ Tj • (In this case all the delays in the path

of U. are also present in the path of Sj whioh encounter~ some additional
~ . \

delays; consequently U
i

always wins the race). \ \

The definition is based upon the assumption ~hat the network .
is resolved to a homogeneous structure of single gates; \ only then

can the object Dk and the elements of sets T i and T j be ;~,identi:fied.
Module M operates at the lowest level of resolution where the network

is given by its terminal model of the DI CTORY; thus neither of the

two definitions proposed in section 4.11.4 would permit distinction '

between trivial and non-trivial essential hazards . The test methods

desoribed in FURTHJ.<;R lJEV.cLOPMJ~NTS ·allow this problem to be tackled.

Meanwhile, designers mus t exercise some judgement in their response

to the error messages of module M by ignoring trivial essential hazards.

erformance of se uential networks and the VERIFIED

Modules K, L and M all concern transient testing of sequential

networks. At this stage it will be useful to review these tests pay­

ing attention to concepts and not to techniques .

Combinational networks needed a sin~e transient test: under

4.56

the assumption of single-variable change and fundamental mode of working

they needed to be tested only for static hazards, i.e. for signals ori­

ginating from a single input.

Sequential networks need to be tested under the same condi­

tionsJ however, the model of Fig. 4.8.1 implies that a single input

change m~y originate the change in two or more independent variables

these variables are not in fact independent of the inputs exoept for

the purposes of the model of Fig. 4.8.1 The problem is complex and,

to help to see it clearly and solve it systematically , it is divided

to three parts. The static hazard module K considers each independent

variable as an input and seeks to find single-input hazards. These,

when diagnosed, can be e~nated by redundant logicJ hence such errors

are of no further consequence. Hazards involving more than one inde­

pendent variable are then further divided to secondary raoes (module L)

and essential hazards (module M) depending upon the number of state

variables involved. The total sequence of tests K, L and M covers all

transient conditions. This means that a network passing theee three

tests with a clean bill of health is free of all transient hazards,

its operation is not dependent upon object delay variations and its

DIRECTORY is VERIFIED . Networks with static hazard (module K) errors

will also be said to have a VERIFIED DIRECTORY so long as they hav~

been verified under both module L and module M because static hazard

errors can easily be corrected i n every case. However, networks with

module L or module M error reports need further testingl their DIRECTORY

has failed verification unde~he circumstances specified by the error

reports and, therefore, their DIRECTORY etill oontains some ambiguity.

To disperse this, such networks must be resolved to a higher level,

the delay model of network objects must be consulted and an ultimate

decision made about their operation under the conditions speoified by

the error reports. Such detailed testing would then disperse the

uncertainty of the performance and would allow the generation of a

complete VERIFIED DIRECTORY .

4 .12 . 1

4.12 WHA'l' I~ TH t SIMULATl!:D RESPONSE OF A NETWORK)
SELEC'l'ED AT RANDO~; FR01I'J A GIVb;N BATCH, TO A SPECIFIED

INPUT CHA1-I GE?

4.57

'rhe question may be raised under several circumstancest

1) the designer wants t o see t he r esponse of a

network to some spe ci fic input sequenoe.

2) t he des i gner seeks an estimat e of the speed

of operation of the ne t work.

3) the designer wishes t o gain a definite answer

to question 4.8 and hence seeks to verify the

DIRECTORY .

Techniques .

For the first time i n the course of thi s chapter a question

can only be answered by t he u se of delay paramet er s . A simpile delay

mo del is proposed l the sys t em obj ect D
i

, a t the resolution level of

a sin~le gate, will have a delay parame t er 1ti such that an excitation

a t a t i me t wh i ch demands a change of output of Di will cause such a

change to ocour at a time t ... ~1' 'l'he value of ~i is to be oomputed

by t he u se of a pseudo-random number generator which assigns a value

to ~i from a specifi ed di str i bution. The distribution is assumed as

normal, truncated at zero, for al l objeot s ; they can, however, oarry

i ndividual parameters of mean de l ayt and standard deviation ~ •

These two parameters must i ndividually be declared for each objeot of

the sys t em as real integer multipl es of a s elected and common unit of

time. The par ame t ers may be declared when the network is first pre-

sented for verification . Al t ernatively , s ince verification procedures

may not always require t he use of de l ay par amet ers, these parameters

may be de clared in con junction with the call for the appropriate test

module .

'.rhe i nf ormati on r egar ding the network atruoture and function

parameters is obtained for the s imulation module from the output of

module C. The struct ur e dat a is re-shuffled to accommodate the "look

ahead" me thod of s imulation; the object ~ carries a list of other

object identifiers indicating those objects whose inputs are connected

to Di. (Note that this is the opposite metbod to t bat used in module

C - this time the list represAnts a column rather than a row of the

structure matrix.) ~hus only those object outputs are computed whiah

are under the influence of a given signal change.

The simulator is asynchronous. A column is assigned to each

variable whose output is monitored (this can include any object of the

homogeneous structure). A row is assigned to each instant of time

when any of the monitored outputs change . Thus time progresses in

uneven intervals down the page. A column of printout specified the

timing of each row to a number of digits of accuracy appropriate to

real numbers.· Each monitored variable is assigned a unique alphabetic

character which is printed in each row for which that variable has a

value of logical '1'. Otherwise the column is blank.

Simulation commences at a time t ~ 0 when the network rests

in one of its stable states as detected by module J. At t ~ 0 an

input change is originated and thp. numeral in the time column advances

until either

a) the network reaches another stable state

b) the time parameter exceeds some pre-set limit of

Tmax .

In either case the simulation terminates . If another run of simulation

is required then the procedure is repeated : the initial stable state

is specified, an input change is initiated at t : 0 and the response

computed as before.

A sample of printout is shown on table 4.12.1 which was

obtained when the network of Fig. 4 . 11 . 2 was simulated. The alphabetio

identifier and the delay ~ of each network object is listed on Table

4.12.2. The simulation tests the response to a change in U
3

and the

network rests initially in the total state of

Ul ~ 1, U2 ~ 1, U3 : 0, U4 = 1, U5 = 1,

SI = 1, S2 = 0 S3 = 1.

4.59

This transition has been reported as containing an essential hazard

(see the discussion in section 4.11).

On the printout the changing variable(s) appear ringed.

This is to allow the tracing of s ignal flow through the network.

There are two rows with more that one ringed entry; this is due to

the fact that the auxiliary object associated with a state variable

has no time del ay , hence a simultaneous change occurs at the output of

objects 4 and 4000 and also at objects 6 and 6000.

4.12.2 The test module N.

Inputs to the module are assembled from outputs of module e,
module J (for sequential networks) and delay parameters of single-gate

objects.

Analysis is by asynchronous simulation .

Assessment does not take place. the output is directly gene­

rated by analysis and takes the form of a waveform-like printout on a

trivially transformed time-soale.

The summary of module inputs/outputs is shown on table 4.12.3 ..

4.13 VlHAT IS TIlE VERD'IED DIRECTORY OF THE
SEQUENTIAL NETWORK?

It was discussed in section 4.11 that the DIRECTORY of the

network i s verified by definition if there are no error reports origin- .

ating from module L and module M. In the presence of such error reports

the VERIFIED DIRECTORY is defined by the response of a network of nom-

inal delays. Since the response of such a network is only in doubt

for those conditions! specified by the above error reports, these are

the conditions to be investigated by the use of the techniques of module

N and for a parameter ofe: 0 for all gate objects. Monitoring

points should include all dependent variables of the model of Big.4.8.l.

The simulation run-must be terminated when any of the state variables

change s. The output of module N must then be translated by the module

P to a format of DIRBCTORY entry. These entries, added to the entries

of' the PHIMITIV.t DIR~CTORY which were in no need of verification form

the output of module P and also the VERIFIED DIRECTORY •.

4.60

4.13.1 The te s t module P.

Inputs and outputs of the module are summari sed on Table

Analys is i s by simulation, starting in t ur n from each condi­

tion speci f ied by the error report and terminating· at t he f i r s t 6econ-

dary change.

output.

The rest of the analysis then consi sts of compiling the

Assessment is not applied:

the output of t he module.

the output of t he analysis is

4.14 lJU~S THl'; VB}l I.l;' I~D DIKl!jCTOhY RJ!;PR ::':SENT THE
DESIRED P~RFORMANCE.

The question is worded advisedly: the answer will, in fact,

give the information which was sought in section 4.8, but could not be

satisfactorily provided by module H.

Concepts.

This perhaps the most important verification proce dure uses

no new techniques but reli es upon a new definition of equi val ence

between the DIR~~CTORY of the behaviour specifications (denoted <p) and

the VERIFIED DIRECTORY representing the actual performance (denoted~).

Obviously q> = 4> if the two tables ar e , bi t f or bit within

row for row, identical. However, this condition is not ne ce ssary~

the trans ient performance might easily have been broken down to single
. +~&

state-variable changes by module P, thus obscur "ing the f act thatlnet-

work performs as specified. As an example consider a two-row extract

of the behaviour specifications ~ of a fictitious network (Table

4.14.1). The state of ref. 0 is open to a secondary race ; after

analysi"e the VERH'n':D DIRECTORY 4> is found to contain the rows shown

on Table 4.14.2.

Direct ~omparison, row for row, shows a discrepancy at the
th o rowJ however, the network is seen t o reach the desired stable state

of 3 after touching on state 2 and resolving t he sudden, double change

of state variables to two distinguishable s t eps . The eqUival ence of

~ and ~ would be easier to appreciate if the . DIRECTORI ES would not

show the unnecessary detail of tran~ient behaviour (made certa~n by

verification) but would indicate/in a REDUCED DIRECTORY , the stable

state to which a given state connects (assuming , as a lways, fundamental

mode of working, i.e . no change of inputs until the stable state is

reached). With the aid of the new concept of a HEDUCED DIRECTORY

equivalence between 'f and et> is simply defined as the equival ence

between Cfr and ~r' row for row and bit for bit. Here 'r and ~r
'stand for R3DUCED DIn~C~ORY of behaviour specification and VERIFIED

DIRECTORY, respectively.

Oscilla tions.

The REDUCED DIh~CTOHY of

Two of the states have no

are locked in an oscillatory cycle.

a simple network is shown on Table

stable-state assignments : they

Such cycles are detectable by

noting that an n-input, m-state-variable network must reach its stable

state in no more than 2m number of transitions . If this did not

happen then the appropriate entries of the DIRECTORY are marked

OSCILLATORY.

The test module Q.

Answer to 4.14 is now obtained on the basis of input data

derived from module P and behaviour data as given in the form of a

DIRECTORY <po
Analysis now consists of tracing the entries of both

DIRECTORIES until stable states are found . Thus a REDUCED DIRECTORY

is compiled of both er and ~ •
Assessment is a comparison of the two.

Outputs now show the conditions in terms of inputs and state

variables which lead to disagreement . The module does not report on

oscillatory entry of the REDUCED DIRECTORY ~ as an error if the r
behaviour specifications also prescribe oscillations .

Optionally and as input to some subsequent modules the

REDUCED DIRBCTORY of the sequential network is available .

The test is summarised in Table 4 .14.4.

4.62

4.15 IS THL SE~U~NTIAL NETWORK UNCONDITIONALLY
STABLE?

Concepts.

The question probes an important feature. The answer, as

provided by module H, is based on the following definition'

A sequential network will be termed unconditionally

stable if its reduced DIRECTORY contains no

OSCILLATORY entries.

It will be recalled that the VERIFIED DIRECTORY was compiled

on the basis of nominal object delays (the parameter a was eet to

zero); the REDUCED DIRECTORY was obtained by processing the VERIFIED

DIRBCTORY; thus unconditional stability refers to the network whose

objects have nominal delay parameters. Since these delay parameters

are , in practice, subject to statistical variations, a given network

within a statistically related batch may prove oscillatory although

the nominal-delay model representing the batch was found unoondition­

ally stable.

This state of affairs is obviously very disturbing if the

, designer needs reassurance that no oscillations are likely to ocour

in any of the networks within the batoh. Such reassuranoe oan only

be found by statistical assessment of the batoh behaviour. Suoh

assessment is outside of the soope of module R but will be undertaken

by a subsequent module (module T).

The test module R.

The module needs, as its only input, the reduoed DIRECTORY

which is produced as an optional output of module Q.

Analysis consists of sorting out the OSCillatory entries.

Assessment is not required and output consists of listing

the OSCillatory entries , together with the conditions which gave rise

to them (see Table 4.15.1 .).

4.16 IS THE SYSTEM LIAHLE TO GET LOCKED IN
AN UNDESIRABLB STATE OR SET OF STATES?

The usual concern is , that)upon turn-on)the system may get

4.63

into some s tate from which it can not be easily moved. Frequently

the only way in which corre ct operation is induoed is to switoh the

system on and off repeatedly until the desired conditions appear.

Such circumstances are usually undesirable and often dangerous; thus

designers should wish to be r eassured that their design is not liable

to this sort of behaviour. It will be recalled from ohapter 3 that

conventio~a.1 test methods can not give such reassurance. While a

decisive answer to questi·on 4.16 is not available, module S is oon­

sidered to produce a partinl anewer.

4.16.1 Concepts.

The problem will now be disoussed with referenoe to the

(n ~ m) dimensional sample space of a sequential network of n environ-

mental signals and m state variables . The operating conditions will

once mOrt be mod elled by a movin g point Q whose co-ordinates in n + m

dimensions undergo discontinuous changes under the influence of binary

signals.

Now let the n environmental signals be divided into n ' 'physi­

cal signals' andn- inputs. Physical signals contain such variables

as supply potentials which are taken for granted under conditions of

nO.rmal operation. Thus, under such conditions, the designer has n"

degrees of freedom in choosing to ' move the point Q from one of thg

stable states of the system. After this, the point is liable to

movement in m more dimensions of the state spaoe, coming to rest fin­

ally in nome new stable state.

This discus sion wishes to lead to the realisation that,

while the sample space hus (n' -+ nil + m) dimensions, the designer is

in direot control of only n" of these . Thus point Q is liable to be

s tuck within some undesirable area of the space and the nil degrees of

freedom ure not ehough to move it out of there.

Let the ~roblem be over-simplified by a model of Fig. 4.16.1.
J

Herp n ' c 2 and consists of two power supplies El and E2 • The Venn

diagram of these two variables has four possible areas s El' E2 marks

the condition when the system is switched OFF, E
l

.E
2

means that E2

turns ~n before El' Bl .E2 means that El turns on before E2 and El .E2
means the unlikely condition that El and E2 turn on at precisely the

same time. Thus the point Q will rest within one of these areas at

any instant in time.

If the system is swi'tched OI<'F then point Q rests within

El ' E2 • Expanding li'ig . 4.16.1 in (n" + m) dimensions, the position of

Q within El , E2 is given by (n" + m) parameters.

Now let the system be turned ON. There are three distinct

paths possible for the point Q which will ultimately come to rest

within El ,E2 , El. ~2 or Bl , E2• The position of Q can now no longer be

shifted out of the chosen area except by switching the system OFF and

then ON again in some other sequence. If it is now found that the

system performance (the response to changes in nil dimensions) is not

the same in the three areas then the designer is in difficulty.

Consider the same problem in (n tt
.... m) dimensione only .

Upon turn-on the designer c'an control nil number of independent vari­

ables but must be able to tolerate the possible drift of point Q

in m dimensions. If there exists a group of stable states 11 such

that no pattern of changes in nil input variables can move point Q out­

side of the states within Yi then the designer may be in the type of

trouble describe d above.

gadek (7) defines a connected and a strongly connected

finite state system on the basis of system states. This definition

is presented here in somewhat modified form. Let nil inputs and m

state variables define a set of stable system states:

y =)
)

nil + m. where k ~ 2

Then the FSS is said to be connected with respect to Y. if every state
~~~~~~~~~~-~~~~1 

Y
j 

in y is reachable from Yi with an input sequence of finite length. 

The FSS i s said to be strongly or completely connected if it is oon­

nected with respect to everyone of its states (in this case every 



state is reaohable from every other state}. 

Connected and strongly conneoted FSS's will be seen as 

particular cases of Controllable and Completely controllable systems, 

respectively ( see Chapter 2). 

The probl em is seen in this way: if the system is not 

completely connected then it is possible to env~sage that, ,under the 

influence of th~ n' physical ~ignals, it reaches some set of states 

which is not connected to the rest. Presumably suoh a system may 

contain some re~undant state variables and minimising these would 

reduce the probability of the existence of un-conneoted states. 

However, systems ' with non-binary number of re~uired stable states will 

always contain redundancy and it i a often essential that the redundant 
, ' 

states do not form a set un-connected to the others. 

Question 4.16 will be re-phrased, is the system oompletely 

connected? 

It is possib le to design a test of connectedness on the 

basis of the REDUCED DIRECTORY. One possible test is outlined here . 

Since operating signal se~uences may be designed in an infinite number 

of different ways, it is not possible to gain a deterministic answer 

in a ll cases of testing the connectedness; it is therefore neoessary 

to ~ualify the findings by speoifying the number of 'operating signal 

ohanges whioh were allowed. It is further neoessary to utilise the 

allowed ~uota of changes to best advantage. Thus, operating signal 

changes must be chosen with oare. Consideration will now be given 

to the most advantageous set of operating signal changes. 

It will be remembered that, throughout the analysis, net­

works are considered to operate under conditione of single-variable 

change and in f~ndamental mode. Thus, unless the network is other­

wise specified, there are nil number of e~uiprobable single-variable 
, 

changes available to our network of nil operating signals, starting 

from each one of k stable states. This Bst of changes in operating 

signals will be called first-order changes; due to the symmetry of 

the oiroumstanoes it would be unreasonable to seleot a ssoond-order 



4.66 

change before all of the first order changes have been exhausted. 

Thus, if the designer specifies the maximum number of input changes 

in the test sequence as X and X ~ nil then each of the possible single~ 

variable changes will be applied. All the states of y reached by this 

sequence of tests are listed as connecte d to the starting state Yi • 

If, at any point during these tests, it is found that all 

the rows of the directory appear on the LIST OF Y. CONNECTEDNESS then 
1 

the t es t is discontinued and an output is printed to say that the 

NETWORK IS CONNECTED WITH RESPECT TO y. . If, at the end of the test4 
1 

a group of rows of the REDUCED DIRBCTORY are still not found to be 

connected then a set of second-order changes may commence. The 

number of jth order changes is (nll)j and the total number of changes 
th 

necessary to exhaust jhe j and all lower order changes is ~jt where 

X . -= L (n" ) f for 1 ~ e ~ j 
J { = 1 

Evidently the quota of X changes will be exhausted for relatively low 

order of changes and an error message will now be output to indicate 

the number of rows of the DIR£CTORY which have been found un-connected 

to Y. after X number of changes of operating signals. 
1 

4.16.2 The test module S. 

This simple test requires three inputs a the REDUCED DIRECTORY, 

the specification of the parameter X, giving the maximum number of 

changes allowed, and the description ·of the starting state Y1 • 

Analysis is by manipulation of the DIRECTORY. 

Assessment uses the DIRECTORY again, checking the total 

number of stable states k against the number of different states on 

the list of conn~otedness. 

The output will give an answer of NO to question 4.16 if all 

stable states and all oscillatory states are found to be connected. 

Otherwise a list of states un-connected to Y
i

, together w.ith the 

description of Y. is given. 
1 



'rhe inputs/outputs are shown on Table 4.16.1. 

4.17 WHAT 13 TiIG PHOllABILllY or' DEVIATIO:~ 01<"1 THE PERFORMANCE 
}<"'hot6 'I'l-! ! ~ VEHH'IED DIR.I!;CTORY? 

The question demands the statistical assessment of the 

behaviour of a batch of networks whose structure and functi~n para­

meters are the same but whose delay parameters are statistically 

related. 

It will be recalled that certain entries of the VERIFIED 

JJIhBCTORY are not in doubt: only those conditions listed by module 

L and M are open to change due to delay variations, hence these will 

be the only ones scrutinised by module T. 

It will be assumed that any change in the circumstances of 

the network under test ( SUCh as manufacturing tolerances, environmental 

changes, etc .) results in r andom variation of the time delay associated 

with the object s of the net work. It will also be assumed that the 

delay variations are adequately deAcribed by the delay parameters 

f'i and 6' i of each object Di at the resolution level of a single gate. 

4.17.1 The test module T. 

The module uses the same analysis technique as module N: 

a network is constructed whose del ay parameters are chosen by a 

pseudo-random procedure and thi R network is then analysed under eaoh 

condition specified by module Land M. The procedure ia repeated a 

number of times given by a parameter X which, in this caae, deter-

mines the batoh size. The result of the analysis is assessed against 

the VERIFIED DIRBCTORY and a failure record produced. The simplest 

form of the failure record is to give the number of failed tests 

relative to the number of tests conduoted. 

The test thus uses in pu ts consisting of the error reports 

of module L and ~ . 'rhe test cond i tions are specified by the para-

meter X and the behaviour data is given by the VERIFIED DIRECTORY of 

module P. The output is the numerical description of the failure 

rate. 



4.68 

The test is shown in the usual form on Table' 4.17.1. 

4.17.2 Comment . 

The crude me thods of test T could do with refinements the 

fa ilure record may be complemented by assessing the significance levei 

of the test; alternatively, the test may be replaced by a direct 

method of calcul ating the eApected percentage failure. 

These areas of investigation have low priority on the list 

of plans for further development. The reason for the lack of enthu-

siasm for these interesting projects is the laok of practical applica-

tion. Designers at the present time have no reliable information 

about the expected delay of their network objects, and manufacturers 

of hardware have no facility, nor indeed interest . in developing faoi­

lities, for the measurement of delay times of individual gates. 

Thus neither the types of distribution nor their parameters are likely 

to be available, ' thus no use could be made of the newly developed 

techniques. It is felt that the crudeness of the techniques of module 

T are well suited to the crudeness of the data they use. 

4.18 IS TH I!; SE~lJE.NTI.t\L Nl!li" NORK, SPECD'IED BY 
THE VERIFIl!;D DIR~CTOHY, LIA13Ll!; '1'0 GBNE;RATE TRAN­

SI~NT OUTPUT SPIKES? 

It will be assumed that the sequential network has been 

tested by module r: and if s t atic hazards have been detected then these 

were subsequently corrected before subjecting the network to module U. 

Thus if output spikes ar e present then these are systematically gene­

rated by the network. Such spikes may be due to a sequence of secon­

dary ohanges following a single input change while the network settles 

into the final stable state (as given in the REDUCED DIRECTORY). 

Consequently the outputs must be monitored throughout each such sequence 

and if there is more than one change in any output then a dynamically 

generated output spike is present. This is a design error whioh needs 

logical correction if the load supplied by the system is sensitive to 

such spikes. New techniques of analysis are not required since the 



test consi s t s of observat ion of the VERIFIED DIRECTORY and the counting 

of the number of chun ge s of each out put in re sponse to a s ingle change 

of input. 

4.18.1 The test module U. 

Inputs consist of the VERIFI~D DIR~CTOhY . 

Analysis requires n number of single-variable changes for 

an n-input network, and thi s number of test s must be conducted starting 

from each of the F s t able states . 

Assess~ent is by counting the output changes in response to 

a s ingle t est . 

Out put s wi ll list the t est conditions which led to multiple­

out put change , toge t he r with the descript i on of the faulty output 

concerned. 

Inputs/outputs ar e shown on Table 4.18.1. 

4.19 SUMMARY. 

The nineteen modules de soribed in this chapter are connected 

by the same purposes they were designed to answer questions of design 

verific ation in a concise way. lrheir operational objectives are. also 

common: they use what is thought to be the minimum of information 

consistent with ge nerating the answer , they aim at comprehensive test­

i ng and utili se techniques which are effioient in terms of computer 

use. The modules differ in their mode of analysis : they use predom­

inantly numerical methods but some of the techniques may be best 

described as analytic; others, such as those towards the end of the 

chapter, are based on simUlation. Tabl e 4.19 has been constructed 

to a llow the assessment of the service provided by each of the modules. 

Some of the modules succeed in giving what ie thought to be 

complete and satisfactory answers to the design verification question 

they serve. Others produce incomplete, deficient or over-pedantic 

answers . . Care has been taken to point out such defioienoies, explain 



4.70. 

the reason for their existence and indicate some way in which the 

module may be re-designed at some later time to minimise these defi­

ciences . 

The modul e s ar e compatible and frequently rely upon each 

other for test dat a , inputs or technique. It is evidently possible 

(even desirable) to design a control program which automat es the use 

of a set of these modules. The de s i gn of such automatic test systems 

is briefly discussed in chapter 5. The design and implementation of 

such a system is the subject of a research project (1) whioh has been 

set out in conjunction with this work. 



CHAPTER 5. 

ORGANISATION OF A MODULAR LOGIC DESIGN 

TEST SYSTEM. 

5.1 Introduotion. 

5.2 System design alternatives. 

5.3 The Prototype System. 

5.4 Future plans. 



5.1 INTRODUCTION. 

The purpose of this chapter is to outline the manner in 

which the modules of Chapter 4, or their variants, may be combined 

to form a system of logic design verification. The design of suoh 

a system would require careful consideration of the need and faoilities 

of the industrial organisation which undertakes the implementation. 

While it is possible to give general outlines of systems design~ a 

partioular system must suit the computer installation, the design 

methods, the staff training facilities~ etc., of the user conoerned. 

The work involved is outside the scope of this thesis. 

In order to substantiate, indeed in many cases to develop, 

the techniques described in Chapter 4, it was necessary to undertake 

the development of a Prototype System. This development, as mentioned 

earlier, is the subject of an allied research project (1). This 

chapter will contain the outline of the aims of the Prototype System. 

Reference (24) is a published report desoribing its organisation and 

methods. The material of the report will form the basis of Mr. Hoimes' 

thesis. 

Fig. 5.1 shows the block diagram of the design verification 

process. The designer may be required to present some or all of the 

types of data shown. The Proposed System consists of a selection of 

the test modules of Chapter 4, complemented by some control meohanism 

which allows them to be operated upon the reoeipt of relevant data. 

The next seotion outlines two alternative types of design 

verification systems. The Prototype System is akin to one of these 

and will be compared with the Proposed System in the oourse of this 

chapter. 

5.2 SYSTEM DESIGN ALTERNATIVES. 

5.2.1 CONVEhSATIONAL SYSTEM. 

The type of system which would afford the greatest flexi­

bility and the shortest turn-around time may be conversational. The 

time-shared processor would provide simultaneous service to several 



logic designers who would have a terminal in their own ottioe, and 

would thuB enjoy immediate access to design verification facilities. 

The time-shared system appears to be simple to organise. 

The designer would be presented with a set of seemingly autonomouB 

modules of which to choose. Module manuals would give instructions 

about the type and format of data required by the module. The service 

would need a common backing file from which the designer may seleot 

standard hardware sub-systems. Furthermore, individual files would 

have to be provided for each designer. 

At the level of the processor the modules are not autonomousJ 

some are dependent on others for their data; several may use similar 

analYSis techniques. Thus the system would need organisation where 

a call for a given module would activate not only the nominated module 

but all necessary auxiliary modules as well. 

The system must provide diagnostic facilities. These may 

include syntactical checks of the network data, instructions and 

behaviour Apecifications, as well as more sophisticated checks, such 

as compatibility between network and specifications and demands of 

storage capacity. 

An important part of the verification system design is the 

selection of standard verification modules. The 19 modules of 

Chapter 4 make a formidable list; designers would prefer a smaller 

selection perhaps. The restriction of the list by the omission of 

duplicated or un-important facilities is obviously desirable. However, 

restriction by combining several facilities would amount to reduction 

of the resolution level of the system and may deprive the designer of 

some important detail. It is considered that detail must be preserved 

in a conversational system , otherwise less than full advantage will be 

taken of expensive facilities. Thus, for such a system, a comprehen­

sive list of modules is recommended, omitting of the list of Table 

4.19.1 only module F (or module G), module H (to be included ae 
I 

auxiliary of several others) and module P (this too is an auxiliary). 



5.2.2 Batch processing system. 

This alternative pre-supposes that the designer has no 

immediate access to the computer, hence the verification process must 

be conducted in a smaller number of larger steps than in the case of 

conversational systems. Thus it is prudent to reduce the number of 

test modules and anticipate that the designer may call several modules 

of the list at a given run in an attempt to reduce the over-all turn­

around time. 

For such a system a list of modules is proposed as shown 

on Table 5. 2 .1. 

When initiating a verification run/the designer must prepare 

a universal data tape which includes the list of nominated modules and 

all relevant data. This data therefore contains more detail than 

any module may require. The system must provide facilities for sort­

ing the data for each nominated module. 

If the list of nominated modules contains inter-dependent 

modules then the sequence of operations must be automatically ordered 

to ensure that auxiliary modules are operated before dependent ones. 

Apart from this, the designer must be given the freedom to nominate 

dependent modules without calling their auxiliaries, as in conversa­

tional systems. 

5.3 THE PROTOTYPE SYSTEM. 

The Prototype System may be regarded as an example of the 

type of system described in section 5.2.2. Since however, the system 

was used as a teat bed of ideas on verification and programming tech­

niques, its facilities are less comprehensive and frequently less 

sophisticated than those of the modules of Chapter 4. 

folds 

The purpose of the design of the Prototype System was four-

1) to help the development of design verifi­

cation techniques 

2) to prove the feasibility of a modular 

design verification system 



3) · to give experience in the design of suoh 

a system 

4) to provide an operative system for the 

use of logic designers. 

5.4 

It was considered important to ssleot a modest oomputer 

installation as the basis for such a system: if the newly developed 

techniques were to gain· widespread acoeptance, expensive installations . 

could not ·be taken for granted. Thus the Prototype System was 

designed for a maohine with a small core store (l6k) and three tape 

handlers as the only backing storage. 

For the purpose of generality, the programs of the Proto­

type System have . been written substantially in ALGOL. However, to 

permit effioient use of the computing faoilities, oertain seotions, 

amounting to some 15% of the total, are written in maohine oode. An 

example of such a machine code section is the use of the bit-handling 

r.outines of ISOPACK. 

To allow the evaluation of the facilities of the Proto­

type System, .let all of the modules of Chapter 4 be combined to form 

a "Propose~ System". The Prototype System will now be evaluated 

against this standard. 

In the forthcoming discussions references to the report 

of (24) will carry the prefix "A". 

The terminology and nota tion of (24) will be seen to differ 

somewhat from that of the rest of this work. Thus for instance, 

"module" in this work has so far denoted a design verification prooe­

dure, whereas the report uses thi s word to describe a sUb-system of 

the total system of programs. Furthermore, the word "Analysis" in 

the title of the report is used to mean "design verification". 

A reference to figure A 2.1 will show the Prototype System 

to consist of 10 program modules. Of these, INPUT and LIBRAN 

perform ancillary duties while the rest are test modules in the usual 

sense of the word. 



5 . ~ .1 'rhe t f'::1t modules of thA Prototype Sy s tem. 

Table 5. 3.1 shows a comparison of facilitie s . It will 

be see n tha t, while the Prototype ~Jy st em l a cks certain f acilities, 

it provides others not found in the range of the Proposed System. 

T~e facilities provided for oombinational networks are 

identical, with the only exception tha t module D has no equival p-n t i n 

the Prototype System . 

Important differences occur in terms of sequential networks. 

There are no facilities in the Prototype System to compile a VERIFI~D 

and a H:b:STRICTED DIH ,~CTORY , although ANALYS (section A3.9) and TIED 

( section A. 3.9) contain most of the ingredients . Several important 

decisions are made upon information contained in the PRI MITIVE 

DIR ~CTOI.Y but , s ince thi s is an ambiguous record of the network per­

form ance, the se decisions mu s t be handled with caution. Thus, for 

instance , the li s t of UNSTABLE entries of Fig. A5. 3. 3 do not neoes­

sarily mean that the network oscilla t es since , due to conditions 

dete cted by modul es L and M, t he VERIFI BD DIR~CTORY may significantly 

differ from the PRI~ITlVE . Similarly , the count of transitionary 

cycle s as reported by ANALYS ( same section) carries information of 

doubtful value. 

Another facility within ANilLYS is CIRCUI'f OPl!:RATIONS 

( section A3 . 6 . 2 .5). This is an interesting feature, providing wave­

form-like outputs on an un-specified time soale . This too is based 

on th e PHHlITIV£ DIR,t;CTORY and is subject to the s ame comment as above. 

SERIAL is not so much a separate test module but a mode of 

using 3EQU"t!:N and ANALYS for networks which would otherwise cause 

embarrassment due to the s ize of their logical (designation number) 

arrays. The ins talla tion for which the Prototype System was designen 

impo se s a limitation that, if the number of independent variables 

exoeeds Bome para~eter (15 in thi s case), then com prehensive testing 

is not att empted, but networks will be analysed by the nominated test 

modules only under the input conditions defined by the designer. 

The facility is not required in the Proposed System, sinoe 



such large networks can be automatically analysed under a "estricted 

set of condition~. I nstead of specifying the test data, designers 

need merely to define the admissible environment . The method is 

considered preferable to that of the Prototype System. 

It will be observed from Table 5.3.1 that the module ANALYS 

performs several functions . This does not result in reduced resolu­

tion because, in fact, A ALY ~ is divided to several small modules (aee 

section A3.6). Similarly, STATIC is entered on Table 5.3.1 twice; 

thiA is because thA same module is used in the Prototype System for 

the analysis of combina tional and sequential networks. 

The report nontains a Uaer's Guide ( sRction A5.l) ~s well 

as several worked examples within section A5. From there the output 

format may be observed to be at variance with the Proposed System in 

several details. 

Conclusions . 

The Prototy pe System succeeded in providing the basis for 

a more sophisticated ~ystem of desi gn verification; it has also esta­

blished un dergraduate work on logic ne twork analysis at Kingston 

Polytechnin. The sys tem has been used by logic designers in Industry 

whose response, after an initial period of aversion from anything new, 

has been favourable. 

5.4 FUTURE PLANS. 

It is considered that the research work contained in this 

thesis and in the allied project (1) is a basis upon which development 

of a design veri fication system could be founded. Support is now 

sought , ann has been promised , for such work to be carried out under 

a sponsored development contract. The nAW system is to be designed 

to allow the innlusion of the new facilities and the improvement of 

techniques outlined in Chapter 6 . 



CHAPTSR 6 

FUh'l' lll,:R DEVBLOPM8N TS 

6.1 .,utomCi tion of the iterative design of 

logic networks. 

6.2 1 .. lodelling of large logic networks. 

6 . 3 'l.'hA analY Ais of hybrid systAmfl. 

6. 4 . ~ ualit ative analysis of the transient 

behaviour of logic networks. 

6. 5 Autom~tion of production testing of 

logic syst oms. 



6.1 

6 FURTHER DEVBLOPM""t:tJTS. 

The implementation of the te s t methods described in this 

thesis i s now under consideration by a Government Department and by 

in dustri ~ l organisations. In addi tion, the experience gained by 

thi s work i s now applied in sev~ral new fields of research, Borne of 

them not connected to logic d~sign. 

It i s the purpose of this chapter to describe some of the 

new fi eld s of investi gation to which this project has led. 

6.1 AU'fO Jllt ATIO J OF THJ'; ITEHA'frVB DESIGN 
OF LOGIC NgTWORKS. 

Reference i s made to the model of the design process, 

shown on Fig. 2 . 6 .1. 

The correction loop of the figure will now be examined in 

more detail. 

When the partia l specifi cations are presented , the designer 

generates a proposal of a new de s i {;n which represents the best solu-

tion he is able to offer to the problem . When the verification 

process result s in an error report, the designer initiates corrections 

of the design and offers a new ver s ion for verification. 

dure is shown on Fi g . 6.1.1. 

The proce-

The methods described in chapters 4 and 5 of this thesis 

propose s to aut omate the verifica t ion process, but demands that the 

desi~er performs the tasks of generation of new design and error 

correction. 

It i s possible to envisage a fully automatic design system 

wh ere each of the task s i s performed by the computer. As a first 

step towards su~h a system, the error correction pro cess may be auto­

mated, leaving the designer with the job of generating the initial 

design. nesearch i s carried out a t the present time, under a 



6.2 

Government contract, to automate the error correction process. A 

m00ul a r error correction procedure is under development, with a cor­

rection modul e matching each ver ,ification mocule wi t~in Cl. design test 

sys tem. ~hp correction module interprets the error report produced 

by verification and modif i es t he netv.'ork in a sys t ematic way, thus 

eliminating th e error . 

The final s tage of automation would bring the generation 

of the rlesi gn proposal under the computer ' s control . 

now been planned . 

This step has 

The homogeneous structure of single- gate resolution 

(Chapter 4 ) becomes unt enable if the network under test is very large. 

The desi gns:r has no coding problems when handlinff such 1 r ge networks, 

be causp. th e f ac ility of nested structures permits him to oper a te at 

much lower levels of r esolution. The same facility must be extended 

to the comput er . 

The solution li es in automatine the proce ss of restricted-

mode moclelline; . A restricte d mode model is defined as a mode l of a 

ne twork whose behaviour is the same as that of the network itself if 

th e environment of thp model i s constrained to a par t of the admissible 

envi ronment of tho network . As a consequence of such constraints it 

is generally true that the restricte r. mode model conta ins less infor­

ma tion t han the comprehensive model of t he homogeneou s structure and 

thus i s more efficient to store . Since it also operates at a lower 

l evel of resolution, it offers addi t ional efficiency by reducing the 

time of computer mani pulation. 

It i s poss ibl e to design several different methods of 

r estr ict ed mode mode lling . One of these me thods is now pursued under 

a Government contract. 



6.3 TH~ ANALYSIS OF HYBRID SYSTEMS. 

For the purpose of thi s discu ssion a hybrid system is 

defined as one containing both analogue and digital sub-systems; more 

precisely, a hybrid system may be resolved to objects whose environ­

ment is modelled as a continuous space and other objects whose environ­

ment i s modelled as a number of discrete points. 

The analys is of hybrid systems presents particular problems 

due to the difficulty to interface objects of dissimilar type. A 

method of analysis is therefore sought which will simultaneously 

accommodate all of the objects of a hybrid system. 

A Government-sponsored post-graduate student is at the 

present time investigating this problem under the supervision of the 

author. 

6.4 qUALITATIVE A~ALYSIS OF THE TRANSIENT 
BEHAVIOUR OF LOGIC NETWORK. 

The term qualitative analysis is defined here as the inves­

tigation of the behaviour of a system without reference to input 

signals. 

It is thought possible to find the causes of faulty or 

ambiguous transient behaviour of logic networks on the basis of such 

qualitative analysis. It is further considered that it is possible 

to initiate the correction of some types of transient errors, entirely 

on the basis of qualitative observations. 

The method eliminates the shortcomings of the verification 

modules of Chapter 4: it permits the elimination of a statically 

hazardous gate from the error lis t of module F or G if an effective 

blankinR signal ·is found to be available at a subsequent part of the 

network; it permits the sorting of trivial and non-trivial essential 

hazards and allows the identification of the gates causing sensitivity 

to object delay variations • 

. lthough the improvement of design verification services 



is significant, the main advantage offered by the qualitative analysis 

method lies in its efficiency . The number of tests necessary for 

comprehensive analysis is a linear (instead of the usual exponential ) 

function of the number of inputs. Thus, by replacing some of the 

modules of Chapter 4 by others, based on qualitative analysis, it 

becomes possible to analyse very large networks comprehensively . 

Methods of qualitative analysis are now partially developed 

and a paper is under preparation describing the use of these methods 

for the analysis of combinational networks. 

AUTOlv;.rtTION OF PRODUCTION TESTING OF 
LOGIC SYSTEMS. 

The subject is of considerable topical interest. A 

selection of recent publications can be found in ref. (28 ) . 

The problem could briefly be outlined as follows: produot 

testing has become the critical step in the production process of 

both discrete-component and integrated circuit logic systems. It is 

thus imperative that product testing should be efficiently oonduoted . 

A product test method is efficient if it deteots and 

classifies faults in the hardware by applying a minimal test sequence. 

Since the minimal sequence will be different for each design, a gener­

alised method is sought for the automatic generation of such test 

sequences, base d on the description of the verified design . 

It is thought that the design test methods described in 

thi s thesis could form a suitable foundation for a production test 

method. Arranf,ements are being made at the Kingston Polytechnic for 

the appointment of a post-graduate research assistant who will work 

on this sub,ject. 



PIt INCI PLE REFEREN CES. 

(1) D.H. Holmes: 

( 2 ) A. Blums t ein: 

(3) R. Deutsch: 

(4) G. Gordon: 

(5) J. Klir & M. Valach: 

(6 ) R.W. Newcomb: 

(7) L.A. gadeh ~. E. Polak: 

(8) A. Gill : 

(9) P. H. Rigby: 

(10) R.D. BuzZ'ell: 

(11) H. Chestnut: 

(12) T.H. Lee, G.E . Adams, 
W. M. Gaines: 

M.Phil. Thesis. 

(Under development) 

"The Choi ce of Analytioal Techniques 
in Cos t-effectiveness Analysis. 

Research Paper P-206, 
I nstitut e of Defense Analyses, 
Washington, D.C., October 1965. 

Syst em Analysis Techniques. 

Prentice Hall, 1969. 

Sys t em Simulation. 

Prentice Hall, 1969. 

Cybernetio Modelling. 

Iliff e, 1965. 

concepts of Linear Systems and Controls. 

Brooks/Cole Publishing Co., 1968. 

Systems Theory. 

McGraw Hill, 1969. 

Finite State Machines. 

McGraw Hill, 1962. 

Models in Business Analysis. 

Merrill, 1969. 

Mathematical Models and Marketing 
Management. 

Harvard University, 1964. 

Systems Engineering Tools. 

J. Wiley, 1965. 
Computer Process Control. 

J. Wiley, 1968. 

(13) I.G. Wi1son & M.E. Wilsons Information, Computers and System 
Design. 

(14) R.E. Kalman: 

J. Wiley, 1965. 
Canonical Struoture of Linear Dyna­
mical Systems. 

Proc. Natn . Acad . Sci ., U.S.A., 1962. 



(15) R.E. Ka lman, 
P.L. Falb, M. A. Arbib: 

(16) B. Porter: 

(17) 

(18) E.J. McCluskey: 

(19) D. gisBos, G. W. 
Copperwhi te: 

(20) D. Lewin I 

Topics in Mathematical System Theory. 

McGraw Hill, 1969. 

Synthesis of Dynamical Systems. 

N'e lson, 1969. 

Information Processing Machines. 

Research Inst. of Math . Maohines, 
Prague, 1968. 
Introduction to the Theory of Switch­
ing Circuits. 

McGraw Hill, 1965. 

Logical Design Manual. 

Pitman, 1968. 

Logical Design of Switching Circuits. 

Ne lson, 1968. 

(21) P.C. Gaston, S.P. O'Byrnes Logic Simulation. 

(22) D. Leevers: 

(23) J.S. Reynolds : 

(24) D. R. Holmes: 

(25) Ungar: 

~26) ~. Kohavi: 

(27) K.S. H. Halstead: 

(28 ) 

Plessey Research Report No. T.M.54, 
1968. 

Users Manual for the LASS Logic 
Simulator. 

Research Report 70/55/A. D560/00l04, 

Marconi-Elliott Computer Systems Ltd., 
May 1970. 

A Conversational Logic Simulator. 

CAD Conference, l.E.E., April 1969. 

PROLOG - Logic Network Analysis System. 

Kingston Polytechnic Research Report, 
June 1970. 

Hazards and Delays in Asynchronous 
Sequential Switching Circuits. 

IRE Trans. Circuit Theory, CTG, 1959. 

Switching and Finite Automator Theory. 

McGraw Hill, 1970. 

ISOPACK. 
KCT internal Research Report, March 1968. 

I.E. E. Conf. on Automatic Testing. 
University of Birmingham, April 1970. 



(29) D.D. Schurmann, K. Maling : 

(30) W.R . Kautz: 

(31) A.A. Kaposi: 

(32) ' A.A. Kaposi : 

(33) A.A. Kaposil 

(34) A.A. Kaposi, D.R. Holmes: 

(35) A.A. Kaposi, D.R. Holmes: 

(36) F. stevenson : 

(37) F. Stevenson: 

(38) R.F. Wells: 

(39) R.O. Hicks: 

(40) R. George: 

A Statistical Approach to the 
Computation of Delays in Logic 
Circuits. 

I.E. E. Trans-Computers, April 1969. 

The Necessity for Closed-Circuit 
Loops in Minimal Combinational 
Circuits. 

I. E. E.E. Trans. Computers, February 
1970. 

Logic Systems Analysis, 

'Symposium on CAD, Northern Poly­
technic, 1969. 

Logic Testing by Simulation. 

CAD Conference, I.E.E., April 1969. 

Notes on Computer-aided Design of 
Logical Ne tworks. 

CAD., Vol. 2, No. 1, Autumn 1969. 

Logic Network Analysis, 

CAD., Autumn 1970. 

Transient Analysis of Logic Networks. 

a.A.D., (Under publication) 

An Introduction to LOOIC, 

Extract from LOGIC Users' Manual, 
May 1968. 

Design and Simulation of Digital 
Networks. 

C.A.D. Conference, Sheffield Uni­
versity, April 1968. 

Users' Notes DA 70. 

(P1essey Company), 1969. 

Survey of Logic Simulation. 

B.T.R. Research Report No. 
97/69/42/TR, July 1969. 

Programs fo~ Logic Simulation, 

STL Report No. R.660/RGG/met, 
April 1970. 



BOOK OF TABLES ANt FIGURES 



(INDUCTORS ) 

(COOPLING 
NETWORK) 

/ 
/ 

(CAPACITORS) (RESISTORS) (CONTROLLED 

Pi 

. (AMPLIFIER) 

SOORC:ss) 

(ACTIVE 
ELEMENl'S) 

l 



'-

[ SCURCE 

~ t--~-=:-----~---­__ r_-~-I 
1 2 3 

0) 
2 

L ___ ___ _ _ .. _________ . ___ _ 



MODELLING DATA 
.,. . .. . . _----_.- -----_._----------, 

r --­

• 
MAKE 

HYFCYl'HESES 

.. _ .. ~.t·_ ... ______ _ 
MAKE 
MODEL 

TEST '-j 
M[~ ___ _ 

.-. _. __ .-.- .. _ - - ._-----

.. NO 

t
YES 



·- ....... 
SYSTEMS 

DATA 

SELECTIO:-J 02 . 'If--------., 
RES OLUTION LEVEL I 1 

! --------~ 

1--~~LEC'rrON OF 

-

L MODE Ol!' ANALYSIS MODELLING 
- - ... --- .. '. 

, 

r 
---------

SELECTION OF SOLUTION OF 
INPUT DATA MODEL 

.. 

- .--. -~ -- ----- - - ---.- -
SELECTION OF 

I NPUT-OJTPU1' DATA ~ ..... _- - .. . . 
MAPPING t .. ----._- . 

Fig.2.5.1 0 

--+­
BEHAVIWR 

DATA 



5 
u 

-1 
J 

.. 

, 

, ~. 1 

• " ~ 

INPUT 
MODELLED WPING 
SYSTEM 
p 

I . _1 t t 
MODELLING 
SYS'J.'B)( P. 

j 

• ... + 

00'l'PUT 
MAPPING 

-
.., 1 1 1. 1 

z ,Z 
I. 



"\ 
, 

/ 
TEm'ATIVE 

\ SPECIFICATIONS ) -- ... 
. , 
\ ;/ 

\ / 

__ t_ .. __ 

DESIGN FAIWRE 
----------------------_.- _ .. 

PARTIAL SPECIFICATIONS OF NEXT DESIGN STAGE ? ,- - -- _._----_.-

I ,----
-+- --, I 

-; I 

ERROR REPORTS 

REFINEMENT .- - - - - .. -. 
, CORRECTION 

LOOP t
· LOCi> i 

. I 

~ - • I! 

._-l _ _ _ _ r--~-.----~-- ~. 
, I! 

-- J l. I ~ A 1,_1 __ .1-__ 

I ~ r 

PROBLEM 

ANALYSIS 

L-___ . ________ _ 

SPECIFICATIONS ~ GENERATION 

__ =100 _J I i OF - DESIGN 

i VERIFICATION 
t----t~~---" 

L ____ . 

FORMAL 
SPEC~s. 

PARTIAL 
SPEC·S. 

t= ~~ , l. ' '- . I _ 

PROPOSAL 
OF NEW DESIGN 

DESIGN 

OMPLE'! 

~ 



~---~--~--------------~------~ 

~ ____ , __ ~_~~ _____ 1 ~ 

3 

~-~.,--------------------------~ 

1/p 1 0 ·· -- •. - ._.' -

1/p 2 0--+----+_--

1/p 3 0-+-----

I-----....... -c o/p 1 

~----I--o o/p 2 

-~ ... -- .-..... ---, , .. __ ......... _._._ .... .. 

7 



8 
lU 2U Ho;! l 2 ~ 4 5 Q 1 

10 (' 0 0 U 0 0 0 0 0 O. 0 ) 

20 ( 0 0 U 0 0 0 0 U 0 0 ) 

)0 ( 0 0 0 0 0 0 0 0 () 0 ) 

1 ( 0 1 1 0 0 0 0 0 0 0 ) 

2 ( Cl 1 1 0 0 0 U 0 0 0 ) 

) ( 0 0 0 1 1 0 0 0 0 0 ) 

4 ( 0 1 0 0 0 0 0 0 0 0 ) 

5 ( 1 0 0 0 0 1 0 0 0 0 ) 

6 ( 1 0 0 0 0 0 1 0 0 0 ) 

7 ( 0 0 0 0 0 0 0 1 1 0 ) 

]'ig. 4. ~. 2. 

JaQ ,Q 3Q I :1. 2 J ~ ~ 2 1 
1 ( 0 1 1 ,0 0 0 0 0 0 0 ) 

2 ( 0 1 1 10 0 0 0 0 0 0 ) 

3 ( 0 0 011 1 0 0 0 0 0 ) 

4 ( 0 1 0'0 0 0 0 0 0 0 ) I 
5 ( 1 0 0,0 0 1 0 0 0 0 ) 

6 ( 1 0 010 0 0 1 0 0 0 ) 
I 

7 ( 0 0 0,0 0 0 0 1 1 0 ) 

Fig. 4.2.3. 



9 

_10 20 30 1 
,..., 

J 4 5 6 7 c 
I 

1 ( 0 1 110 0 0 0 0 0 0 ) 
' ) .... ( 0 1 1 1 0 0 0 0 0 0 0 ) 

3 I) 0 Uil 1 0 0 v 0 0 ) 

4 0 1 o , 0 v ° 0 0 0 1 ) 

? 1. 0 u 1 0 J 1 0 U U J ) 

6 1 ° o 1 0 v 0 .L U V J ) 

7 u 0 U I 0 
I J U U 1 1 u ) 

F'ig . 4. 2 . ) . 

10 ?O ·~ u 1 ') ") 5 14 G 7 , 

1 ( 0 ) 0 0 
2 ( le 0 0 ) 

3 ( 0 0 Cl ) 

~ ( I ~) 0 1 ) 

5 ( /0 0 0 ) 

6 ( ) 0 0 ) 

7 lu 1. 0 ) 

I" i l~ • 4 • (~ • b . 



10 

(DUMMY OBJECT) 



11 

10 20 jO 71 1 2 3 4 5 6 7 
1 ( 0 1 1 010 () () () () 0 0 ) 

2 ( 0 1 1 o 10 0 0 u 0 0 0 ) 

3 ( 0 0 0 u 1 1 0 () 0 0 0 ) 

4 ( 0 1 0 1 1 0 0 0 0 0 0 0 ) 

5 ( 1 0 0 o 1 0 0 1 0 0 0 0 ) 

6 ( 1 0 1 o 0 0 0 1 0 0 0 ) 

7 ( 0 0 0 o 1 0 0 0 0 1 1 0 ) 

71 ( 0 0 0 0 1 0 0 () U 0 0 1 ) 
I 

Ji'ig. 4. 2 .5. 

(10 ) 
(20) 

(30 ) 
( 1 20 30) 

( 2 20 30) 

( 3 1 2 ) 

( 4 20 ) 

( 5 3 10) 
( 6 10 4 30) 

( 7 5 6 ) 

Table 4.2.1. 



12 
lY10DULE A 

Specification Specification Specification 
of new of operating of behaviour Output 

design sienals 

YES/NO 
Option:-

Structure - - Processing 

List 

Table 4.2.2 

1: 6 7 

4 ( 0 0 1 ) 

6 ( 1 0 0 ) 

7 ( 0 1 0 ) 

Fig. 4.3.1. 

p Q H S T U w X 
p ( 0 0 0 1 0 0 0 0 ) 

Q ( 1 0 \) 1 0 0 0 0 ) 

R ( 1 0 0 0 0 0 0 0 ) 

S ( 0 1 1 0 0 0 0 0 ) 

T ( 0 0 0 1 0 0 0 1 ) 

U ( 0 0 0 0 0 0 1 0 ) 

W ( 1 0 0 0 1 1 0 0 ) 

X ( 0 0 0 u 0 0 1 0 ) 

Fig. 4.3.2. 



13 

P R S T W X 

P ( u 0 1 0 0 0 ) 

R ( 1 0 0 0 0 0 ) 

S ( 0 1 0 0 0 0 ) 

T ( 0 0 1 0 0 1 ) 

W ( 1 0 0 1 0 0 ) 

X ( 0 0 0 0 1 0 ) 

Fig. 4.3.3. 

MODULE B 

Specification Specification Specification 
of new of operating of behaviour Output 
design signals 

N~ · of state 
variables or 
List of objects 

Structure with which stat - - variables are 
e 

associated. 
Processing List 

Table 4.3.1. 



lit 

10 
42 51 

i/p 1 __ -+-__ 00 O/p 1 

52 
i/p 2 )---+----0 o/p 2 

i/p 3 
30 

Fig.4.4.1. 



15 

(CIR3 ) /tit1e/ 
(1 INPUT 1 ) 
(2 INPUT 2 ) 
(3 INPUT 3 ) 

(4 INPUT 4 ) 
(5 INPUT 5 ) 
(6 INPUT 6 ) 

(7 INPUT 7 ) 
(8 INPUT 8) 
(9 INPUT 9) 
(100 CIR2 1 2 3 ~ 
(200 CIR2 4 5 100/2) 
(300 CIR2 6 7 200/2) 
(400 CIR2 8 9 300/2) 
(10 OUTPUT 1 100/1) 
(11 OUTPUT 2 200/1 ) 
(12 OUTPUT 3 300/1 ) 
(13 OUTPUT 4 400/1 ) 
(14 OU~?t1T 5 400/2) 

Table 4.4.1. 



-- -

( UIR2 ) 16 
(1 INPU1' l) 
(2 I NPll'r 2 ) 

(3 INPUT 3 ) 
(10 NOH 1 ) 

(20 NOR 2 ) 
(30 NOR "3 ) 

(40 NOR IOU/I) 
(50 Non 300/1) 

(100 eIRl 1 2 10 20) 

(200 OIRl 30 40 100/1 3 ) 
000 eIRl 3 100/1 1 2 ) 

( 4 OUTPUT 1 2UO/1 ) 

(5 OU'l'PUT 2 5U) , 

Table 4.4.2. 

(1 INPUT 1) 

( 2 INPUT 2 ) 

(3 INPUT 3 ) 
( 4 INPUT 4 ) 
(10 AND 1 2 ) 

( 20 AND J 4 ) 

00 NO}( 10 20 ) 

(5 OTJ'fPUT 1 30) 

(fable 4.4.3. 



1 

2 

3 

5 

6 

7 

8 

9 

,----

0 
J 

d--

(~ -

1 
-0-Z--

3 

1 
, 2 
-----

3 

--

L~_ 
3 

1 

2 

3 

17 

CrR 2 
100/1 

100 1 o 

100/2 

~ 
eIR 2 200/1 

1 1 
200 

200/2 

erR 2 300/1 1 2 

300 

300/2 

erR 2 400/1 13 
400 

400/2 14 

I 



3 

2 

1 --_. 
2 

0 --.1 . 
20 4 

8-~-

eIR 1 

100 

---.---

-----

30 

-~-
40 1 

-8 2 

3 
-----

4 

1 

2 ela 1 
_ . 1 

3 300 

4 

-----

CIR 1 

200 

50 

--(0 

18 

5 



13 

1 

2 

5 

3 

'&---T - 50 



20 
Ivl ODTJlill U 

Specification Specification Specification Output 
of new of operating of behaviour 
design signals 

Structure -+ YES/NO 
function - - Homogeneous 
parameters data structure; 

same with 
function 

parameters 

MODULE D 

-
~pecification f, p e cif i cat ion 0pecification Output 
of new of operating of behaviour 
design signals 

Structure 1- NO/identification 

load - - of faulty object 
parameters and type of error 

Table 4.5.1. 



21 
,~ 

I 

Fig.4.6•1 • 

U1 

Fig.4.6•2• 



22 

dUI = 0 1 0 I 0 1 0 1 

dU2 Ra 0 0 1 1 0 0 1 1 

dU
3 = o 0 0 0 1 1 1 1 

dl = 0 0 0 1 0 0 0 1 

d2 = 1 1 0 0 1 1 0 0 

d3 = 0 0 0 0 1 1 0 0 

d4 = 0 o 0 1 1 1 o 1 

Table 4.6.1. 

MODULE E 

Specification Specification Specification Output 
of new of operating of behaviour 
design signals 

Structure + Optional; Standard YES/ list of 
function FIXED or network or faulty output 
parameters + tabulated Equations or bits. 
Processing inputs Truth table Optional: total 
List table 

Table 4.6.2. 



23 

.. SINGLE 

~~ a) t 
STATIC '1 ' HAZARD 

- - - ~ 

b) 1 

~--
MULTIPLE 

I STATIC '0' HAzABD 
1- - - - - - - - - - - - - - - - - - - .. t 

SINGLE 
DYNAMIC '1' HAZARD ~[l~I ______ __ _ c) 

I 

I MULTIPLE 
DYNAMIC '0' HAZARD 

Fig.4.7.1. 

01 D1 

U20 __ -/ 

D2 

U3 u-__ ___ 

U2 

U1 

U3 

Fig.4.7.3. 



~ D3 
Ul U3 I::. U2 

o 0 0.U2 + U~ t- O = 
o 1 
1 0 
1 1 

0.U2 + U~ + I --
1.U2 + U~ + 0 = 
1.U2 + U~ +- 1 = 

Table 4.7.1. 

MODULE F 

Specification Specification 
of new design of operating 

signals 

structure + 
function 
parameters + -
Processing 
List 

Table 4.7.2. 

Ref. 1 2 3 41 42 43 44 

0 000 1 0 0 0 
1 100 0 0 0 0 
2 010 1 0 0 0 
3 1 1 0 0 1 0 1 
4 001 1 0 1 1 
5 101 0 0 0 0 
6 011 1 0 1 1 
7 1 1 1 0 1 0 1 

. Table 4.7.3. 

0 ... ~ = tr2" 
o + r = 0 
U2 +~ 
U2 + l" = U2 

Specification 
of behaviour Output 

NO/list of 
hazardous gates; 

- Option:defini-
tion of i/p lead-
ing to hazard 



0 . + 1, 2; 4 
2S 

1 ~ 0, 3, 5 
2 .... . 3, 0, 6 
3 ~ 2, 1, 7 
4 ~ 5, 6, 0 
5 -t 4, 7, 1 
6 ~ 7, 4; 2 
7 -; 6, 5, 3 

Table 4.7.4 

0 ~ 1, 2, 4 
1 -+ -, 3, 5 
2 -+ 3, -, 6 
3 -+ -, - , 7· 
4 ~ 5, 6, -
5 ... -, {, -
6 -+ 7, -, - . 
7 ~ -, -, -

Table 4.7.5. 

G t a e 
NO. 0+1 0-+2 ·0"'4 lot3 1~5 . 2~3 . 2~6 · 3~7 4~5 4-+-6 5+7 6+7 
10 o 1 o 0 o 0 1 1 1 1 o 1 o 0 1 1 o 1 o 0 1 1 o 1 
20 o 0 o 1 o 0 o 1 o 0 1 1 1 1 1 1 o 0 o 1 o 1 1 1 
30 o 0 o 0 o 1 o 0 o 1 o 0 o 1 o 1 1 1 1 1 1 1 1 1 
41 1 0 1 1 1 1 o 0 o 0 1 0 1. 1 o 0 1. 0 1 1 o 0 

~ 42 o 0 o 0 o 0 o n. o 0 o 1 o 0 1 1 0 0 o 0 o 1 
43 o 0 o 0 o 1 o 0 o 0 o 0 o 1 o 0 1. 0 1 1 o 0 
4·4 o 0 000 1 o 1 o 0 o 1 o 1 1 1 1 0 1 1 o 1 

Table 4.7.6. 



26 

(AND) 

~OR) . (AND) 

(U1) -L6---- ~----_..__; 

(AND) 

~------~----~~---------' 

lI'ig.4.7.4. 



27 
MODULE G 

Specification Specification Specification 
of new design of operating of behaviour Output 

signals 
Output of No/list of 
module E + nazardous - -Processing ~~tes; List ption : 

~efinition 
pf i/p 
P.eading to 
Ihazard 

Table 4.1.1. 



INPUTS 

INDEPENDENT 
VARIABLES 

100 

200 

U1 

Un 

NETWORK 

SEQUENTIAL NETWORK 

..,., STATE VARIABLES 

---

MODEL 

COMBINATIONAL MODEL 
OF 

SEQUENTIAL NET VORK 

Figo4.8 .1 • 

40 

28 
Zt 

OOTPUTS 

ZQ 

- Zq DEPENDENT 
SN, V.A.RI.A.BLES . 

20 



d40 = 0 1 0 1 0 1 0 1 
d100 = 0 0 1 1 0 0 1 1 
d200 - 000 0 1 1 ·1 1 
did ~ 0 0 0 0 0 0 0 1 
d20 - 1 ' 1 1 1 1 1 1 0 
d)O = 1 1 1 1 0 0 0 1 

Table 4.8.1. 

Ref. Ul U2 ·BP1 SN1 ZI 

0 0 0 O ,~ 1 0 
I . 0 O. 1 1 0 

.2 1 0 0 1 0 
j 1 0 1 1 0 
4 0 1 0 0 0 
5 0 1 1 .0 0 
6 l ' . 1 0 0 ' 0 
7 1 1 -1 1 1 

Table 4.8.2. 

29 



MODULE H 

Specification Specification Specification 
of new design of operating of behaviour Output 

struoture + 
function 
parameters+ 
Processing 
List 

si nals 

Optional 
standard 
network or 
equations or 
DIRECTORY 

Table 4.8.3. 

MODULE J 

Specification Speoification Specificatio 
of new design of operating of behaviour 

si als 

DIRECTORY -

Table 4.9.1. 

eS/l1st of 
aulty lines 
f DIRECTORY 

(see Comment) 
Option: total 
DIRECTORY 

Output 

ist of input 
and state 
ariable para­
eters of 

stable total 
states 

30 



Pres. Next 
state state 

Inputs var's var's 

Ref. Ul U2 SI S2 SI S2 

0 0 0 0 0 0 0 STABLE 
1 0 0 1 0 0 0 D.. m = 1 
2 0 0 0 1 0 0 6. m = 1 
3 0 0 1 1 0 0 A m = 2 
4 1 0 0 0 0 1 ll.m=l 
5 1 0 1 0 0 0 ~ m = 1 
6 1 0 0 1 0 1 STABLE 
7 1 0 1 1 0 1 6.m=l 
8 0 1 0 0 0 1 6. m = 1 
9 0 1 1 0 1 0 STABLE 

10 0 1 0 1 0 1 STABLE 
11 0 1 1 1 1 0 6. m = 1 
12 1 1 0 0 1 1 6 m = 2 
13 1 1 1 0 1 0 STABLE 
14 1 1 0 1 1 1 Am=l 
15 1 1 , 1 1 1 1 STABLE 

Table 4.10.1. 

MODULE K 
ca 10n l Spec1 1ca lon Spec ca on 
design of operating of behaviour 

si na1s 

DIRECTORY + 
Processing 
List 

Table 4.10.2. 

Output 

o s 0 
ha.za.rdous 
gates; 
Option: 
definition 
of indepen­
dent vari­
ables lead­
ing to error 

31 



32 
Present state Next state 

Inputs variables variables 

Ref. Ul U2 Sl,S2,S3,S4,S5 Sl,S2,S3,S4,S5 

32 1 0 0 0 0 0 0 0 0 0 0 1 
35 1 0 1 1 0 0 0 1 1 0 1 1 
36 1 0 0 0 1 0 0 0 0 0 0 1 
38 1 0 0 1 1 0 0 1 1 0 0 1 
39 1 0 1 1 1 0 0 1 1 1 0 0 
48 1 0 0 0 0 0 1 0 1 0 1 1 
49 1 0 1 0 0 0 1 1 0 0 1 1 
50 1 0 0 1 0 0 1 0 1 0 0 1 
51 1 0 1 1 0 0 1 1 0 0 1 1 
52 1 0 0 0 1 0 1 0 1 1 0 0 
56 1 0 0 0 0 1 1 0 1 0 1 1 
57 1 0 1 0 0 1 1 1 0 0 1 1 
58 1 0 0 1 0 1 1 0 1 0 1 1 
59 1 0 1 1 0 1 1 1 0 0 1 1 
100 1 1 0 0 1 0 0 0 0 1 0 0 

Table 4.11.1 

MODULE L 

Specification Specification Specification 
of new design of operating of behaviour Output 

signals 

No/list of 
errors 

DIRECTORY - - showing 
stable state, 
i/p trans-
itions and 
adverse rela-
tive delays of 
racing state 
variables 

Table 4.11.2. 



r------~; 00100 - 00001 

I 
00600 - 00001 00161 _ 01100 

~ - 01011 

I 
O~OOI - 01011 00611 - 01011 

nibll - 0101101S11 - 01011 

~ N.C.P. ~ N.C.P. 

OSC. I 

, ~~~~~ -_ 01100 
11001 

l' 
OSC. ~9.LUU' 

rr'roo - 11100 

~ C.P. 

01~01 - OSC. 01000 - 11001 

I 
11000 - 11011 

I 
01~01 - 01011 

~ N.C.P. r I 
11010 - 11011 11001 - 10011 

~ - 10011 I I 1 
~ _ 10011 1P001 - 10011 11?11 - 10011 
~ 10011 - 10011 10011 - 10011 

C.P. 11bol11 C.P. ~ C.P. 

Fig. 4.11.1. 



MODULE M 

Specification Specification Specification 
of new design of operating of behaviour Output 

signals 

NO/list ·of err 
DIRECTORY - - showing stable 

ors 

state and inpu t 
transitions 

Table 4.11.3. 

100 200 300 400 500 ' 4000 6000 5000 ' 4 6 5 
Ref. U1 U2 U3 U4 U5 SP1 SP2 SP3 SN1 SN2 SN3 

221 1 1 0 1 1 1 0 1 1 0 1 
253 1 1 1 1 1 1 0 1 0 0 1 
252 1 1 1 1 1 0 0 1 0 1 1 
254 1 1 1 1 1 0 1 1 0 1 1 
222 1 1 0 1 1 0 1 1 1 1 1 
223 1 1 0 1 1 1 1 1 1 1 1 
255 1 1 1 1 1 1 1 1 1 1 0 
251 1 1 1 1 1 1 1 0 1 0 0 
249 1 1 1 1 1 1 0 0 1 0 0 
220 1 1 0 1 1 0 0 1 1 1 1 

Table 4.11.4. 



U 100 \ 1 ...... ~ 

U2 
200 

u3 - 300 

5 
83 i 

U4 
400 I • 1;000 

U5 

F ~~. 4 ' I\' 2. 

8 

, • I. . Qs 

/ 

1 •• 1 .Qc 

UJ 
~ 



- r 

" 

~-. 

36 



INITIAL CONDITIONS A B ~ D E ~ I ~ K L ~ N 0 ~ Q ~ s 

.00000000 
5.1206356 
14.874813 
24.909096 
29.905769 
34.728580 
39. '612494 
39.872056 

OBJECT 

A B @D E I 
ABCDE@I 
A B C D E H I 
A B C D E H I 
A B C D E H I 

, ABCDEHI 

K L N 0 
K L N 0 
OL N 0 

LOON 0 
L M NO 
L MO 

Q S 
Q S 

o S 
®S 
R S 
R S 
R S A B C D E H I@ 

A B C D E H I J 
L M 
L M CD R S 

Table 4.12.1. 

-.; ( 

o r;-r-O-, 
I) <l 0 

Numerical 
identifier 
(fig.4.11.2) 100 4 5 6 7 8 9 : ~ ~ i 

Alphabetic 
identifier 

Time delay 
in units 
of 1 nsec. 

Table 4.12.2. 

I 

l \ I 



MODULE N 
SpecJ.ficatJ.on SpecJ.fication 
of new design of operating 

signals 
Output of stable state; 
modules C, J; input change 
delay 
~arameters 

Table 4.12.3. 

MODULE P 
Specification Specification 
of new design of operating 

signals 
PRIMITIVE Output of 
DIRECTORY mqdule L,M 
output of 
module H,C; 
delay parameter 
of all objects 

Table 4.13.1. 

Ref. Ul U2 SP1 SP2 SN1 SN2 
000 0 0 1 1 
300 1 1 1 1 

Table 4.14.1. 

38 

Specification 
_ 0. --

of behaviour Output 

Printout of 
- waveform on 

nonlinear time 
, scale 

Speci!OlCa tion 
of behaviour Output 

- VERIFIED 
DIRECTORY 



Ref. U1 U2 SPl SP2 SNl SN2 

o 
2 
3 

Ref. 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

000 0 
000 1 
001 1 

o 1 
1 1 
1 1 

Table 4.14.2. 

(state vector of stable state) 
Ul U2 SPl SP2 SI S2 
0 0 0 0 0 0 
0 0 1 0 1 0 
0 0 0 1 0 1 
0 0 1 1 0 0 
1 0 0 0 1 0 
1 0 1 ' 0 1 0 
1 0 0 1 0 1 
1 0 1 1 0 1 
0 1 0 0 0 0 
0 1 1 0 1 1 
0 1 0 1 0 0 
0 1 1 1 1 1 
1 1 0 0 OSCILLATORY 
1 1 1 0 0 1 
1 1 0 1 0 1 
1 1 1 1 OSCILLATORY 

Table 4.14.3. 



40 

MODULE Q 

Specification Specification Specification 
of new design of operating of behaviour Output 

signals 

VERIFIED Yes/list of 
DIRECTORY - - conditions 
(output of leading to 
module P) error; 

Option: REDUCED 
DIRECTORY 

Table 4.14.4. 

MODULE R 

Specification Specification Specification 
of new design of operating of behaviour. Output 

signals 

REDUCED .Yes/list of 
DIRECTORY - - conditions 
(output of leading to 
module Q ) osoillations 

Table 4.15.1. 



---- --------------------

- - . --- .---.---------____ .....l 



Ift ODtJ1E S 

Specification Specification 
of new of opera ting 
des i gn signals 

REIJUCED s tarting 
DIRt CTOHY state Yi , 
(o/p of pa rameter X module Q) 

Table 4.16.1. 

MODULE T 

Spe cifica tion ·Specifica tion 
of new of operatine; 
design s ignals 

, 
Output of output of 
modulet 0, J; modules L, M; 
de lay 
parameters 

Table 4 .17.1. 

MODULE U 

Specification Specification of hew . of opera ting 
design signals 

Output of 
module D -

Table 4. 18. 1. 

~pecif i cation 

of behaviour 

-

Spe cification 
of behaviour · 

VERIFIED 
DIRECTORY 

Specification 
of behaviour 

-

Output 

NO/description 
of Yi and l ist 
of states not 
connected 

Output 

E'ailure 
record 

Output 

NO/list of test 
conditions 
leading to erro 
+ description 0 
faulty signals 

4-2 

r 
f 



f odu1e 
Name 

c 

D 

J 

f.: 

L 

s 

T 

u 

TABLE 4 . 19 . 1 

Design Verifi­
cation ~.uestion 

Specification 
of New Design 

specificationlspecification 
of Operating of behaviour 

s the sta~e of thelStructure. 
systeru fully deter­
ined by ~he 

variables 

is the m1n1- I Structure 
of state 

variables of the 
system? 

an the proposed 
esign be conver­
ed to a homoge­
eous structure? 

structure and 
function para­
meters . 

any objects of I Structure and 
e system mis-used load parameters . 

overloaded. 

s the steady-state 
sponse of the 

ombinational net­
ork co,rrect? 

outputs of the 
ombinational net­

subject to 
sient spikes? 

outputs of the 
inational net­
subject to 

ransient spikes? 

Structure and 
function para­
meters and out­
put of module A. 

structure and 
function para­
meters and out­
put of module A. 

Output of module 
it !:!.Dd output of 
module E. 

Optional. 

s the steady-statelstructure and \ Optional 
of the se- function para-
network meters and out­

put of module A. 

Which are the 
stable states of 
the system? 

re any of the 
gates of the sequ­
ntial network 
iable to generate 
tatic hazard 

Output of 
modul e H. 

Output of 
module A ann 
output of 
modu le H. 

s the ste ady-stateIOut ~ut of module 
esponse of the sy- H. 
te rn sensitive to 

tions of delay 
ters of 

stem objects? 
secondary races) 

s the steady-stateloutput of module 
esponse of the sy- H. 
tern sensitive to 

ations of deluy 
eter s of sys-

p.m objects? 
essenti al hazards) 

is the Simula-loutput of module I Stable state, 
ed response of a A. Output of input change . 

twork selected a t module J, 
- - . 

re present 
e desired per-

s the sequential 
etwork uncondition 
lly stable? 

s the system liabl 
get locked in an 

desirable state? 
set of states? 

Output of 
module L, out 

c - _n ___ --Iput of module 
M. 

Output of module 
~ . 

Output of 
module Q. 

St arting 
state, para­
meter to ter­
min3.te run . 

t is the proba- Output of mod- Output of 
ility of deviation ule A. Output module L, 

rformance f r om of module J Output of 
FlED DIRECTORY? el~v DRr~meter~ _ Module M. 

s the sequential 
etwork, specified 

the VERIFI :B:D 
JiECTO}{Y , liable 

o generate 
ient output 

pikes? 

Output of 
mocule P . 

• 

Standard net -
work or 
Equations or 
Table . 

Standard net-
work or 
Equations or 
Table. 

Table 

Output of 
module P . 

Outputs 

YeS/No. 
Options. 

Number of 
state vari­
ables, or 
list of ob­
jects with 
which state 
variables are 
associated. 
Option. 

Yes/No. 
Options. 

No/error 
list. 

Yes/list of 
errors. 
Option. 

No/error 
list. 
Options. 

No/error 
list. 
Options. 

Yes/list of 
errors. 
Options. 

List. 

NO/List of 
errors . 

NO/lis t of 
errors . 

NO/li s t of 
errors . 

Waveform . 

VERIFIED 
DIRECTORY. 

. error 
list. 
Option. 

Yes/list of 
OSCillatory 
conditions. 

No/starting 
state and 
liRt of un­
c~nected. 
state 
Failure 
record. 

NO/list of­
errors. 



odule name Facilities -
a Combination of facilities of A, B & C 

:-

b as D 
1-

C aa E ... 
d F or G 

~--
e as K 

--
f as L and M 

r ... 

g aa Q and U -
h as J and R 

, ... 

j aa S ... 
k ' aa N -
1 as T .. 

Table 5.2.1. 



~rest module Test lfiodule Comment 
of Proposed of Prototype 
System System 

A SORT 
E -
C MODEL 
D -
E COMBIN 
E' -
G STATIC 
H S1QllliN 
J ANALYS 
K STATIC a cilities are similar but not 

i dentical 

L ANALYS 

M ANALYS 

N TIMED 

P -
Q' -
R - Facility exists within ANALYS; 

based on primitive DIR1CTORY 
S -
T -
U - Facility exists within ANALYS; 

based on primitive DIRECTORY 
- ANALYS "CIRC'UIT OPERATIONS" based on 

~rimitive DIRECTORY 
- SE IAL Alternative mode for SEQUEN and 

ANA1YS 

'rable 5.3.1. 



r --------·------- -

PRCPOSED DESIGN 
(STRUGTURE ) 

(FUNCTION PARAMETERS) 
(LOAD P.ARAMETERS) 

(DELAY PARAMETERS) 

TEST 
INSTRUCTIONS 

(MODULE NAME) 
('rEST DATA) 

DATA 
IN 

PROPOSED SYSTEM 
OF DESIGN VERIFICATION 

DATA 
IN 

(MODULES) 
(CONl'ROL) 

SPECIFICATION 

OF 
BEHAVICXJR 

SPECIFICATION 

OF 
ENVIRONMENr 

---. - -- -- _._ -----"---------' 

4G 

• 
ERROR 
LISTS 

OOT 



~ 

--A. 

PAllnAL 
SPECIFI nON 

. 
MODIFICATIONS 

GENERATION 

OF NE'II DESIGN 

CORRECTION 

,---.-----: 
CORRECTION I 

I , 
I 

LOOP I 

I 
I 

L. _ ... _ - .. - j 

I-

PROPOSAL 
OF NEW DESIG-N 

I='~~ . b , \ ·i. 

ERROR REPORTS 

+ + 
VERIFICATION DESI-G 

COMP LETE 

~ 
~ 


