
LOGIC DESIGN TSSTING. 

This thesis is presented to the Kingston 

Polytechnic and the Council for National 

. Academic Awards for the degree of Doctor 

of Philosophy 

by 

A. A. Kaposi, Dipl.Ing. 

January 1971. 

KP 0220957 8 

111111111111 11 11111111 111111111 III 111 1 11111 



IMAGING SERVICES NORTH 
Boston Spa, Wetherby 
West Yorkshire, LS23 7BQ 

www.bl.uk 

CONTAINS 

PULLOUT 



IMAGING SERVICES NORTH 
Boston Spa, Wetherby 

West Yorkshire, LS23 7BQ 

www.bl,uk 

PAGE NUMBERS CLOSE TO 

THE EDGE OF THE PAGE. 

SOME ARE CUT OFF 



A BST RAC T 

This thesis concerns the testing of the design of 10gio 

networks. 

It is shown that oonventional test methods,suoh as hard­

ware testing and computer simulation, fail to satiefy the test 

requirements of modern logio networks. 

A new method is devised, oonsisting of a series of oomputer 

based modular tests, whioh permit the comprehensive verifioation of 

designs. 

The feasibility of the new method has been demonstrated on 

a prototype system. 

The work is based on a systems engineering approaoh whioh 

permits viewing the problems of logio design as partioular oases of 

the more general problems of designing large interaotive engineering 

systems. The systems approach also permits the extension of the 

methods desoribed in this thesis to other areas of engineering. 

As part of the thesis, a framework of systems engineering 

concepts is constructed. 
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1.1 

CHAPTER 1 BACKGROUND. 

In the autumn of 1967 Plessey Radar Limited approaohed 

the Kingston Polytechnic (then ' Kingston College of Technology) with 

the problem of inadequate design reliabili·ty of their logic networks. 

It was thought that the already inadequate design test methods would 

fail completely when, as a consequence of advancing integrated circuit 

technology, it will become possible to produce large interactive 

digital networks as indivisible single components. Thus the manage­

ment of Plessey Radar Limited requested that the Polytechnic should 

undertake the development of a method of logic design testing which 

could satisfy both existing and projected demands. 

By the definition of the problem a hardware model of the 

newly designed network could not always be assumed to be available; 

thus it was necessary to concentrate upon a computer-based method of 

solution. 

designs. 

Design testing was seen as a means of generating correct 

Thus it was thought necessary to construct a design test 

method which, beyond providing means of comprehensive error detection
l 

also facilitated the correction of these design errors . 

Computer simulation was considered as a possible mode of 

solution. At the time one simulator was generally known and 

commercially available in this country (36); since then the method 

has become conventional and has been implemented in some form by 

numerous . industrial and research organisat ions (for a survey see (1) ). 

These now conventional logiC simUlators operate upon a computer model 

of the network by applying a sequence of signal changes to the input 

terminals and recording the signals appearing at the outputs. This 

record - a waveform on some suitably designed time scale - contains 

a part of the required error report in an implicit form. Some of the 

design errors are not revealed by the test; those detected must be 

recognised, sorted and classified by the designer upon examination of 

the output waveforms. 



In view of the size and complexity of modern logic networks, 
the method is considered inadequate. To ensure reliabili ty, a very 

long sequence of input changes must be originated by t he designer; 

this places extravagant demands on the computer ' s t ime , while the very 

high volume of output data gives an unreasonable task t o t he designer 

as a data processor. It is shown in the course of this work that 

conventional logic simulators appear to raise almost as many problems 

as they solve. Thus it was thought necessary t o search for some 

alternative method. 

The work programme which was proposed f or this project in 

1968 contained two ideas: 

1) that simulators should be purpose-bui l t for 

a type of network or for an aspect of performance . 

2) that care must be taken to use comput ing facili­

ties efficiently. 

This work was divisible into four distinct part s : 

a) problem analysis. 

b) formulation of the principles of solut i on. 

c) development of techniques of solution. 

d) design and implementation of a prototype 

system,proving the feasibility of the 

principles and techniques. 

The work programme isolated the last i t em of thi s list, 

whi ch was subsequently defined as an individual r esearch project (1 ) 

and was carried out under the direct financial spon sorship of Plessey 

Radar Limited. The implementation project ran concurrently with the 

work described in this thesis and under the supervision of the author. 

Detailed problem analysis revealed severe limitations of 

simula tion, even in its unconventional form , as a means of analysis . 

It was f ound necessary to have the freedom of choice between alter­

nat i ve modes of analysis. Thus the changed t i tle of this thesis does 

not contain t he word "simulation". 

The development of the project was considerably influenced 
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by a newly emerging interest of a group of people in the Polytechnic 

in the principles of systems engineering. Common ground was found 

to exist between projects of seemingly unrelated fields of specialisa­

tion and a broadening of outlook permitted useful interohange of ideas 

between a group of researchers. 

In order that logic networks may be placed against a 

systems engineering background, a framework of consistent concepts 

and definitions was needed. Since both systems engineering and 

switching theory are relatively new and rapidly developing subjeots, 

such a framework was not readily available but had to be constructed 

by adopting existing material, modifying such material, or in many 

cases, creating new concepts, definitions and terminology . This 

permitted the viewing of the project against the background of present­

day technology and thus it opened the way for the extension of this 

work to fields outside of logic network analysis. As a consequence, 

several new research projects have been initiated for members of staff 

and for post-graduate students (see Chapter 6). 

Using the framework of systems engineering, it was possible 

to propose a model of the design prooess. Viewing logic network 

analysis as part of such a procedure, it was found unwise to computerise 

this part of the process alon~. Instead, it seemed desirable to 

devise methods of automating a larger section of the process, including 

the assessment of the model performanoe. The combination of analY8i8 

and performance assessment will be termed design testing or verifioation. 
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THE FRAMEWORK OF SYSTEMS CONCEPl'S. 
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2.2 The concept of a system. 
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2.2.2 

Behaviour, environment , specifications. 

State. 

2.3 System organisation. 
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Structure. 

2.4 Modelling. 
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2.4.2 Technique. 
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2.4.5 - Modelling the state space . 

2.5 Systems analysis. 

2.5.1 - Mode of analysis. 

2.5.2 Input data. 

2.5.3 Input - output mapping. 

Resolution, modelling and solution. 

2.6 Systems design. 



2.1 

2.1 INTRODUCTION. 

A system will be described by a model and charaoterised 

by its structure and parameters. In this chapter the methods of 

characterising and analysing systems are discussed and , finally, a 

model of the systems design process is presented. 

2.2 THE CONCEPT OF A SYSTEM . 

2.2.1 Behaviour, environment, specification . 

A system will, in the first instance, be defined as an 

assembly of objects united by some form of interaction or inter­

dependenc e . (Note that a more general definition (5) permits a 

system to contain non - int l ractive, j :~ olated ob.iects or groups of 

obj ects. Systems considered here, which contain no such ob.1ects, 

are define d in ( ) ) a~ reduced systems). Thus the conoept of a system 

is that of an indivisible entity since all the part s interact and none 

can be isolated without altering the behaviour of the system, the 

system concept demands the examination of the overall interaction of 

a group of objects rathe1than focussing attention upon the operation 

of each of the constituent objects in turn. 
. 

Behaviour itself is defined as a unique mapping or trans-

formation of inputs (causes) into outputs (effects) and the syetem 

will be r pgarded as the operator performing this transformation. 

Irrespect i ve of size, appparance, structure or othp.r circumstance of 

detail, t wo syetems will be regarded as equivalent if their behaviour 

is identi (!al, that is, if they could be intercbanged without altering 

the relat i onship between cause and effect. 

The system is contained within a boundary. The Bet of 

all variables outside the boundary which have an effect upon the system 

form the ~ystem environment. The total set of admissible values of 

the variables of the system environment forms the admissible domain 

of the system. 
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The system environment consists of resources which must 

be available for the operation of the system (sources of energy, 

manpower, etc.), the physical conditions in which the system operates 

(such as altitude, temperature, humidity; eto.), the operating signals 

available to the system and, finally, the loads to which the system 

provides a service. Henceforward it will be taken for granted that 

adequate resources are provided at all times; it will also be 

assumed that the system boundary is drawn in such a way that the load 

outside this boundary should be constant. 

The rest of the environment will have an effect upon the 

behaviour of the system; all the environmental variables should be 

considered as inputs of the system. 

Let the system have a total of n input variables forming 

a set un = ~ Ul , U2 , ••• Un ~ and consisting of a set Up of p 

number of physical signals and a set u f of f number of operating sig-

nals or forcing functions. The admissible domain of input variables 

encloses an n-dimensional input space which defines the admissible 

environment un of the system. Given a system, ~here is then a set 

of u of input variables U and a set ~ of outputs ~ and a 
n 

transformation F ( mapping the inputs into the outputs. 

Thus g = F ( u ) ; 

u = ( Ul , U2 , U ) 
n ( n ) 

g ( 
gl' ~2' ~~ ( . . . Equation 2.2.1 

for a network of n inputs and m outputs. (see footnote) 

FOOTNOTE. Equations, tables and figures will be numbered throughout 

this thesis by assigning to the first digit the chapter number, to the 

second digit the section number within the chapter and to the third 

digit a serial number within the section. 



This transformation will, in the first instance, define 

the behaviour of the system. 

The formal statement of the system behaviour, together 

with the definition of the admissillle environment, will be a form of 

system specification. The system specification will thus contain the 

description of the domain of physical variables, and the domain of 

operating signals. It will also contain the definition (stochastic 

or deterministic) of the expected system transformation. 

2. 2 .2 State. 

When defining the system as the transformation g = F (~), 

it was tacitly assumed that the system was created at t =-00 and that 

the history of the system had been retained for all time t up to 

the time of observation. If this assumption is not valid and the 

inputs are only known after a given instant to, then the history of 

the inputs previous to to will have some effect upon the system. 

The accumulation of these effects over the interval -oo~ t ~ to is 

called the initial state or the state of the system at t = to' 

Thus the state is defined as a Bet of time functions s (t) such that 

if the input set is known for all t ~ tOt then the knowledge of s (to) 

is suffiCient to determine uniquely the output set l. (t) for all t ~ to. 

With the aid of this definition, equation 2.2.1 can be 

re-written in an equally general but more useful forma 

g (t) = G (u (t), s (to) ), 

• x(S s 
o ( l' 2' ... 

U = (u u 
( l' 2' ... u ) a 

n) l 

Equation 2.2.2 

for a system of n inputs, m outputs and q states. 

Although it is often advantageous to prepare abstract models 

of systems such that S should be an empty set, physically realisable 

systems always possess state. Thus, in general, the knowledge of the 

state of the system is necessary at all time t~ to. The system 

equation will consist of the output equation which specifies the 

behaviour and the state equation which permits the computation of the 



syst e~ s t at e a t a time t ~ to' 

The ge ner a l form of the state equation (7) givee the state 

at time t as 

S (t
l

) s (t ) 
o ) •••• ~quation 2.2.3 

Eere u (to' t l ) expresses the input segment over the time interval 

(to' t l )· 

A particular form of this equation will be presented in 

Chapt er 4 as thp state equation of logical networks. 

The conce pt of state permits the definition of two useful 

propp.rties of a sys tem (6): 

a) Controllability (see also Connectedness, Chapter 4) 

The component Si (t) of the state s = ~Sj~' j = 1, 2, ••• , 

i, ..• k ) i s controllable if there exists an input u (t), t:.. t to o 
bring any prescribed initial value 0( of Si (to) to any other presoribed 

fin al va lue ~ of s. (T) in a finite amount of time (T - t ). r 1 0 

If all components of the state B of the system are oontrol­

l able then the system is termed completely controllable. 

b) Observability (see also definition of sequential networks 

Chapter 4). 

The component Si ( t) of the state ~ : ~Sj~ is observable 

if there i s some finite time T for which a knowledge of the reeponse 

6 (t) over t ~ t ~ If is sufficient to determine the initial value 
o '" 

s. (t ) when the state equations of the system are known. Thus an 
1. 0 

observable state can be determined by observations made on the output. 

If all components of state S are observable then the system is 

called completely observable. 

2. 3 SYST :;~,: 0 GaNISATION. 

2 . 3.1 Resolution . 

ny definition, a system is a complex interaotive assembly 

of identifiable ob.iects which themselves may be complex interaotive 

as semblies. Thus, by re-defining the boundary, the objects of a 



given system may be considered as systems themselves , as the given 

system might become one of several objects of a l ar ger sys tem. The 

organisation of a system will be considered as a hierarchical structure 

of sub- systems . 

When seeking understanding of a given syst em , i t i s frequently 

necessary to resolve the system to constituent obj ect s . St arting from 

level 1 , when the system P is observed as a whole , the observer may 

choo se to define a number of distinct resolution l evels a s shown on 
0-

the resolution graph ofAfictitious system (Fig. 2. 3.1), suggested by 

Kl ir and Valach (5). Each node of this dir ected graph r~presents a 

di ffe r ent system which features as one or more ob jects of the system 

at a l ower level of resolution. The rela t ionships ar e simbolized by 

the arrows ; for instance, the system PI may be con s tituted of sub­

sys t ems P2 and P3; the system P7 is the consti tuent of systems P4, 

P5 and P6. 

As an example, consider the system PI of Fig . 2.3.1 onoe 

again. Assume that p6 needs no detailed examina t ion, i.e. the highest 

level of r esolution will contain the SUb-system P6. PI may now be 

constitut ed in a number of different ways : 

of P6, P5 and P2. 
of P6, P7 and P4. 
of P6, P4 and P5, etc. 

I n principle all resolution graphs are "cigar-shaped", 

with arrows star ting from a single point of t he common constituent of 

all sub-syst ems (the highest level) and termina ting on a single point 

of the tota l s yst em ( the lowest level ). The peak of the resolution 

graph i s s e l dom reached , because of' practica l r easons; the number of 

SUb-sys t ems constituting the total system i ncrea ses as the level of 

resolut i on i ncreases and it becomes impossible f or the designer to 

consider the i nteract i on between the lar ge number of system objects 

simultaneously. 

Resolution graphs are not unique to a given system; since 

SUb-system boundar ies may be drawn i n a vari ety of ways, resolution 

graphs may also be prepar ed i n a cor responding varEty. 
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Consider now the example of Fig. 2.3.2 . rrhe selected 

sys tem i s an amplifier, composed of active elements and coupling net-

works. The equiva l ent circuit model of active elements and the cir-

cui t elements of the coupling net 'vorks form further sub-systems. 

The graph is not continued to higher levels, but it is evidently pos­

s ibla to pre pare complex modelA of each component, acoounting for 

losses , noise, thermal effects, ete., until, ul ti.nately, the graph 

would r each it s peak a t a level where sUb-systems represent material 

particles. 

It must be noted that this graph offers no insight to the 

number of object s within the system at each level of resolution, nor 

to the way in which the se objects are interconnected. Information 

about structure must be pres p. nted separately for a given degree of 

resolution in the form of a graph, table or equivalent. 

2.3.2 s tructure. 

Let the system be denoted by P and let P, at the selected 

level of resolution, consist of q number of sub-systems (or system 

objects). Let the totality of these objects be denoted by D, where 

the set D i s defined as 

D = f d
l

, d2 , • • ., dq 3 
Now let the environment of the system be represented by a 

"source ob.iect" which emits ph.vsical and operating signals. 

source object be denoted by d • 
o 

Let the 

Then the system and its environment will consist of a set 

of ob.iects b where 

The structure of the system is defined by the manner in 

which the elements of the set D are interconnected. Let the symbol 

r ij denote the information about the connection of the inputs of 

object d. to the outputs of object d.. Then the eet 
J 1 

R =: ( ) 
( r ij ) for all i, j between land q 

will define the system structure at the selected level of resolution. 



The system will now be totally defined by the combination 

of D and RI 

p ::; ( 
( D, R 

The structure of the system and its environment will be 

defined by q where 

~ ~ ~ r L} j ~ for all i, j between 0 and q. 

Denoting the combination of the system and its envi r onment by 1t' , 'it' 

will be totally defined by the combination of S and ~ I 

( t' 0 ) , ' 
( (I ,~ ) 

Information about the system structur e may take such forms 

as graphs, lists or matrices . For the purpose of this work it was 

found convenip.nt to adopt the concept of a " structure ma trix" and 

propose its definition as follows s-

Let the system comprise q objects and a source object. 

Then the structure matrix W will be a square matrix consisting of 

(q ... 1)2 number of elements . ~ach element Wij f or all i, j between 

o and q, will be a matrix representing rij. If the ob",ject dJ has 

"a" number of outputs and the ob,iect di has "b" number of inputs then 

the matrix 'rVij will have "a " number of rows and"b" number of columns. 

Elements of 'rVij will be binary numerals showing t~e presence or absence 

of a connection between each of the outputs of dj and each of the 

inputs of di e The matrix dkk represent s the feedback connections 

between outputs and in puts of the kth ob ject of the system. 

Fig. 2 . 3 . 3 shows in graphical form the structure of a 

system and its envi Donment . As an example of the above definition 

the structure matrix of the system will now be prepared. 

The system comprises q : 2 objects and a source obj ect of 

a single output and a dummy input. The structure matrix W has 

(q ... 1)2 :. 9 element s as li sted belowl-

W :: ( W - ( 0 ) W
02 ( ) 0 0 :: 0 00 0,1 • (8 8 £ 
. w .: ( 1 o 0 ) W

l1 
': ) W

l2 = ( 010 ) 10 
• , , 

WcO .: ( o 1 ) W2l = ( 1 0) W22 '= ( o 0 ) o 0 , , I 
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'rh(· dructurp matrix 'if serves no purpose of algebraic 

mani pulut ion bavinr matrix elements of uneven size. ~ven so, it is 

of con s iderable value since it organises the numerical description of 

sYf;tem structure in an easily comprehensible form. 

At the cost of some loss of information a more ooncise 

version of the structure matrix may be obtained. The coarse structure 

matrix W will contain a single numeral in the place of each matrix 
c 

UI • 

"ij' this numeral will be 0 if all element s of Wij were 0; otherwise 

it will be 1. The coarse s tructure matrix indicates the absence or 

existenc e of a connection between objects i and j, without specifying 

the terminals of inter-conn ection. 

the example of Fig 2.3. 3 i s 

The coarse structure matrix of 

[o~ W = c 

o 
1 
1 ~J 

The first row of W is trivial because the source object, 
c 

by definition, has no inputs. Consequently the re duced coarse structure 

matrix W will contain the same information . 
r 

w = r 
1 
1 

For the example 

Structure matrices will find wide application in the course 

of this work. 

2. 4 bOD~LLIN G. 

In order to obtain a meaningful definition of the system P 

it is now necessary to define means for the description of the system 

obj ects contained in D. If the behaviour of each objeot in D could 

be verbally , numerica lly, graphically or otherwise described, then 

the behaviour of the total system could be found by combining this 

description of object behaviour with information about structure. 

Due to the diversity of the ways in which ~ may be described 

it is use fu l to adopt the concept of a model. The model of a system 

will be defined here as an abstraction of the system, constructed for 

the purpose of giving insight to the system behaviour. 
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It is possible, and sometimes necessary, to construct 

models of objects of the system at several different resolution leve l s . 

Thus, a model may seek to represent the total system or one of its 

constituent s. 

Models of engineering systems are usually quantitative . 

Such quantitative models will be characterised by an ordered set of 

numerals called the parameters of the system. 

It will be useful to extend the concept of a parameter to 

non-numerical information about a modelled system. Thus a parameter 

may denote the colour, shape or logical behaviour of an objeot of the 

system. 

Modelling of engineering systems will consist of 

a) choosing a resolution level , thus defining 

the boundary of each system object. 

b) charaoterising the system struoture and 

c) defining of obj ect parameters. 

Modelling the system. 

Modelling will be described as the procedure of obtaining 

the model of the system for the purpose of observing the system 

behaviour . 

The model usually represents a simplified version of the 

system, purposely built to facilitate the observation of a limited 

set of its features. Thus the specification of a model would 

consist of the specification of 

a) the set of characteristics of the system whioh 

are to be observed and 

b) the accuracy with which these characteristics 

are to be described. 

The quality of the model will be defined here by an objective f unction, 

taking account of the extent to which the model meets the specifica­

tions, the cost of building the model and the facility of it ' s use . 
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There is no improvement in quality associated with exceed­

ing the model specifications and since the simplest model is usually 

easiest to use, this will represent the model of optimum quality. 

However, the use of complex models is justified when they are flexible 

and can be used for more than one purpose. Such multi-purpose models 

share the cost of development between a number of applioations and 

thus acquire higher quality rating, but, since such models depend for 

their quality upon the need for all applications, they are very 

sensitive to modifications of the analysis prooess. 

It is usually easier to maintain the quality of models by 

constructing a modelling sequence which relies upon a sequence of 

modifications (usually refinements). In this case a model is purpose­

built for eaoh applioation, thus is optimally easy to use, but it is 

built upon the foundation of another model, used earlier in the process, 

thus the oost oonsists of a relatively small inorement. Prooess 

modification affects the inorementa1 oost only. Sequential modelling 

will find appl ication in the oourse of thi s work. 

Teohnique . 

The technique of modelling is shown schematically on 

The modelling data is the basis upon whioh the hypothesis 

is set up. When the model is constructed and tested the modelling 

data is used again as the basis of assessment. 

If serial modelling is used, as reoommended in seotion 

2.4.1, the prooess is repeated several t;mes, taking into account an 

increasing detail of modelling data. Thus a comprehensive model is 

built by a series of approximations. 

Claeiifioation. 

Several criteria have been suggested for the classification 

of models (5), (9), (10), (12). Without further comment some #rounds 

for classifioation are listed here, taken mainly from Chestunt (11). 

1) Language. 

a) 

b) 

c) 

Verbal models 

Iconic models (maps, photographs, etc.) 

Symbolio models (flow oharts, logio diagrams, etc.) 
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d) Analogue models 

e) Physical models. 

2) Method of solution 

a) Analytic models 

b) Numerical deterministic models 

c) Numerical stochastic models. 

3) Resemblance to reality 

a) Isomorphic models 

b) Homomorphic models 

c) Abstract models. 

Such formal classifications have been found helpful in 

understanding the problems of modelling logical networks. 

Modelling the environment. 

It is possible to extend the concept of a model to the 

environment itself. If a suitable model is found to represent, in 

some abstract form, the source object do, then the objects of 8' 
are all modelled and can be observed. This use of the concept of 

a model is considered both advantageous and novel. 

In this section the environment of a system will first be 

examined, secondly, the problems of modelling the environment will 

be discussed. 

Let the source object do have n number of output terminals. 

This means that the system P is operating in an n-dimensional input 

space which is composed of operating signals and physical signals. 

The boundary of this space is given in the speCification of the 

admissible domain. 

A verbal model of the source object is now proposed. 
th 

Let the signal at the i output terminal of the source object be 

given by some quantity Ui (to) at the instant to. Then the totality 

of Ul (to) for all i between I and n defines a point ~ in n-dimensional 

space within the admissible domain. The behaviour of the source 

object in the interval~ ~ tl - to will now be pictured as the para-

meters in n dimensions of the moving point ~. In the course of 
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normal operation point )/may travel on some path X where X is usually 

a continuous line. 

Let the purpose of an observer be now to obtain information 

about the system behaviour. The observer may now follow the varia­

tions of the system output s as functions of the path of pOint )I. 
This procedure leads to frustration because the point .~ may stop 

moving for periods or may keep returning to routes already covered, 

misang interesting areas altogether. It appears advantageous to 

replace the real-world source object with another which ls under the 

observer's control. If the substitution is sufficiently ingenious 

then the observer may regulate the route X according to his own purpose. 

Let the purpose of the observer be re-defined. information 

is to be collected about the total range of system behaviour. With 

the aid of the verbal model of the source object it is easy to see 

that it is impossible to achieve this purpose: the point )V will 

never touch all of the points of the space because the number of pOints 

is an n-dimensional infinity. 

Let the purpose of the observer be re-defined once morel 

information is to be collected about the system behaviour in such a 

way that it should become possible to predict the system behaviour 

by the use of this information at any point within the admissible 

domain. 

This objective is reasonable. 

objective of systems analysis . 

It is defined here as the 

To demonstrate one way of meeting this objective/let the 

verbal model of the source object be changed. Instead of the 

continuous n-dimensional space in which ~ may move, consider now the 

same space in which a finite number of points N are strategically 

placed. The movem~nt of >'will now be discontinuous, jumping from 

point to point. The total space may be covered by N number of 

changes in the position of the point)( This model of the source 

object may be translated into numerical form: each of the N number 

of points can be given by a set of n numerals. The behaviour of the 
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sourCR ob.iect m2.;Y no ;·: be given in forr:l of a table which has one column 

for p;jving thf' inf1t."ln~p.fl of time whpn thp position of Y chanp-es, ann 

n Inorp. column..3 d(!scribine eacb of the co-ordina tEl n or Y. 'l'he obsr>rver 

will achieve his purpose by first coverinc all of the N pOints of the 

space (inn then, if necessary, interpolatinc, between them to calculate 

the behaviour at (in intermediate point. ( see footnote). 

The concept of an environmental model has found extensive 

use in Ghaptero 3 and 4 of this thesis. 

state. 

Modelling the state space • 

• '1S seen earlipr (section 2.2.2 ) systems in general possess 

In the course of modellinc the objects within the Bet D, it 

may have boen riecided to compile an analytic model of the system which 

would al low the description of the state in term s of m number of state 

variablRs. When the behaviour of the system is observed, the system 

may be ;lnywhere in th.i.R m-dimpn s ional s t ate space and therefore> the 

results can only be interpreten un-ambiguously if the initial state 

of the system i s known . 

Let the observer have a new anti ambitious purpose of 

collecting infor:nCi tion abou ·t the sys tem behaviour in such a way that 

estimate couln be In ade of the behaviour irrespective of the initial 

state of the system. This means that tests must be conducted to 

cover the total state space. 

The t ask is impossible. At the outset, the moving point Y 

may be anywhere in an m-dimensional infinite number of points. 

~vidently it is necessary to qu~ntise this area in the same way as in 

the case of the n-dimen sional input space, permitting now a finite M 

number of points for the purposes of testing. Combining the 

FOOTNO'rE: This procedure will be shown as valid only for systems 

without state. 
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m-dimensional state space with its M points with the n-dimensional 

input space with its N points, a total space of q ~ (n~ m) 

dimensions may be perceived, consisting of both state variables and 

input variable s, in which Q =N x M number of points are defined for 

the moving point Y. 

The ingenious observer may succeed in construoting a source 

model in such a way that direct control is maintained over eaoh of the 

n input parameters. The parameters of state space however are not 

usually directly controllable. Referring to the definition of 

controllability, it will be seen that systems which are not oompletely 

controllable can never be induced to occupy certain areas of the state 

space. Consequently no physical model of such a system will permit 
systematio . . the/scanning of the total q-d1mens1onal sample spaoe. 

One of the merits of the method of design verification 

proposed in this work is that it permits the designer the direot control 

of all variables of the sample space, as will be seen in ohapter 4. 

2.5 SYSTEMS ANALYSIS. 

Systems analysis will be defined as the process of obtaining 

information about the behaviour of the system in order to satisfy the 

objective set up in section 2.4.4. The purpose of analysis is to 

serve design verification, as defined in section 2.6.1. 

The analysis process will be termed oomprehensive if it 

gives deterministic information about the system behaviour at any 

point within the boundary of the admissible environment. 

Fig. 2.5.1 shows a model of the systems analysis process. 

The model attempts to be general and therefore contains some parts 

which will be found irrelevant for certain modes of analysis. At 

the same time the model aime for simplicity and does not show all of 

the connections between parts of the model which may be required in 

the course of a given analysis process. 

2.5 . 1 Modes of analysis. 

Depending upon the relationship of the real-world system 
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and its environment to the test system and its environment, the analysis 

will be said to be conducted in one of several possible modes . 

Five different modes of analysis are suggested and defined 

by Blumste in (2) as reported by Deutsch (3). This classification was 

found in-complete and the definitions somewhat ambiguous . Therefore, 

with the aid of Gordon's definition of simulation (4) six modes of 

analysis will be defined for the purpose of this work, 

1) Real-world analysis - observation of the real­

world system in its natural environment. In 

this case the real-world system is identical 

to the test system and the real-world environment 

acts as the test environment . 

2) Operational exercise - observation of the real­

world system in a test environment which has 

properties similar to the real-world enVironment. 

3) Gaming - the test system is a hybrid, comprising 

a selection of real-world SUb-systems and sub­

system models; the test environment ia similar 

to the real-world environment . 

4) Simulation - observation over time of a model of 

a system in a simulated environment. 

5) Analytical testing - solution of equations 

which represent the test system and the test 

environment in symbolio form. 

6) Numerical testing - solution of num~erical 

model of the test sy. tern without direct 

reference to th~ timp domain. 

Deut sch ( 3) remarks that the modes of analysis are numbered 

so that higher-order modes re-!'re sent increasing distanoes from 

reality. While thi s is undou},tedly true, ohoosing one of the higher 

order mode s of analysis does not necessarily imply lOBS of information 

about tho system behaviour. On the contrary, examples will be found 

in the course of this work where hi h-order modes provide information 

not avail able by lower order modes of analysis . 



2.16 

It will be observed that the definition of simu1ation used 

here contains no reference to the tool s of analysis: simulation may 

be performed on a physical model or on a computer model, sO long as 

direct referenoe is maintained -to the time domain. The -time scale 

may be identical to that of the real system/or trivial mapping of 

inputs and outputs may be used. 

2.5.2 Input data. 

Let the purpose of the designer be to analyse a system 

comprehensively. The question is now: how should the test data be 

designed to make such analysis pos2ible. 

The task is evidently impossible unless a quantised model 

of the source obj ect is acceptable . Let i~ therefore be assumed that 

such a model has been found and that it contains Q number of points. 

The analysis will now need to investigate both the steady-state and 

transient behaviour of the system. 

If the system may be assumed oomp1etely oontrollable and 

unoonditionally stable then it is theoretically possible to test the 

steady-state response in each of the Q points. In addition, the 

transient response needs to be reoorded by changing each of the Q 

points under the influence of all the input variables. 

Designing a test sequence which would allow all these tests 

and which r~Yr~~l~ system or its physical model is a task of extreme 

difficulty. Furthermore, the process would usually be found 

extravagant in terms of testing time and cost. Therefore, compre­

hensive analysis, even in terms of quantised source models, is seldom 

attempted. Instead, systems are either randomly tested (i.e. sub­

jected to a random sequence of environmental changes) or, more 

frequently, tested in terms of a sequence of test data, which is 

judged to be of particular significance or relevance. The latter 

practioe is dangerous since it is open to the value judgement of the 

designer whose work the analysis seeks to test (see also Chapter 3). 
The test method proposed in the course of this work was 

designed with particular reference to the problems of test data 

generation. 
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Input - output mapping. 

Fig. 2.5.2 shows two ways in whioh the behaviour of a 

system may be observed. The direct method on the left corresponds 

to the lowest mode of analysis. All higher order modes demand that 

a model of the system under observation be available. In all these 

cases the real-world s i b~als of input and output require suitable 

interpretation or ma pping . 

The mappin g of inputs and outputs may be a trivial isomorphic 

transformation such as scaling, creating analogue signals in new 

physical dimensions or representing a signal as data in a computer and 

recovering the output by mappinG of t he printout. On the other han~, 

mapping may involve a transformation which changes the mathematical 

relationship between the systems attributes without affeoting the 

system behaviour. One example is the change from time-domain to 

frequency domain for the analysis of electrioal systems; the inverse 

transformation re-constitutes the outputs in the time domain. 

Another example, drawn from the context of logic network analysis, may 

be the derivation of a truth table or DIRECTORY by a parallel processing 

procedure ( see chapter 4). In this case input Variations are mapped 

into a designation number and the total input domain is covered by a 

single analysis run through the network. The output is mapped into 

a table . The result oan then be interpreted in terms of time-varying 

input signals to which the response is available. 

Resolution, modelling and solution. 

All but the two ~west-order modes of analysis call for some 

form of a system model. Before embarking upon a modelling procedure 

it is necessary to define the level to whioh the system may be resolved . 

This choice of resolution level determines the boundary around objeots 

comprising the system . 

In the course of analysis of a oomplex system it may be 

necessary or opportune to re -define the boundary several times . 

For i nstance, in the course of analysing a transistor amplifier, the 
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circuit may, at first, be considered as a d.o. network, stationary at 

the operating point; then, in subsequent stages of analysis, the 

model of each component may be resolved to higher levels, increasing 

the information about the network. 

It is also possible to envisage a process of analysis 

involving the gradual reduction of resolution level. Taking the 

example of logical networks, after detailed analysis of a non-linear 

network designed to act as a set of logical gates, it will be found 

advantageous to move to a lower level and consider the gate as the 

smallest objeot in a larger network, then again, after analysis, the 

large network may be regarded as the smallest objeot of the over-all 

system which was the original concern of the analysis process. 
I 

The purpose of reducing the resolution level is to reduoe 

the modelling data. The new homomorphio model contains less informa­

tion than the higher-level model, due to the faot that some simplifying 

assumptions have been accepted which permit the omission of a oertain 

amount of detail. 

Solution may consist of applioation of test data and 

observation of outputs, or application of test data and oomputation 

of outputs, or again, solution of equations and substitution of test 

data, In addition, some analysis procedures will be found to eolve 

their models by observation and without any reference to test data. 

Due to the problems of test data generation discussed earlier in this 

chapter, these latter methods are particularly attraotive ' and have 

been given attention in the course of this work. 

2.6 SYSTEMS DESIGN. 

A model of the design process will now be proposed and 

discussed with reference to Fig. 2.6.1. 

It will be assumed that some demand exists which must be 

satisfied by creating a new engineering system. A statement must 

be available which will specify the required behaviour and the admis­

sible environment of the new system. This statement is oal1ed the 
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tentative specification of the system. 

The first task of the system designer will be termed 

problem analysis, which consists of the examination of the feasibility 

and completeness of the specifications. Specifications will be called 

non-feasible if they contain contradiotary demahds and inoomplete if 

they do not describe the environment or behaviour uniquely. In the 

course of problem analysis the designer will initiate the amendment 

of non-feasible specifications. He will also investigate whether 

incompleteness is intentional or not. He will utilise the freedom 

afforded by intentional incompleteness at a later stage of the design 

process for the optimisation of some parameters not inoluded in the 

specifications. 

As an outcome of problem analysis the behaviour - and 

environmental specifications are formalised and the next stage of the 

design process may commence. 

The designer's main function is to generate proposals for 

the new design. This task is usually so complex that it is oarried 

out in a sequence of stages of refinements which represent suocessive 

approximations of the specification. Each stage of approximation 

operates upon a restricted version of the specifications (termed the 

partial speoifications) which the designer must individually seleot 

for each stage. 

Assuming now that suitable partial specifications are 

available, a version of the design must be proposed which will fulfil 

those specifications. At the present time the designer must rely 

almost entirely upon intuitive or evolutionary methods of design 

generation a formal synthesis procedures are only available in a very 

limited field of engineering and they only operate under severely 

restrioted environmental conditions. Logic design 1s better served 

by synthesis techniques than other engineering fields, even so, 

current practice must rely to a large extent upon the inventivene88 

of the designer. 
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The proposal of the new design is a model of the system 

under development. This model must now be analyeed and its behaviour 

assessed against the partial specifications. The combination of 

analysis and assessment will be termed verif,ioation or design testing. 

The purpose of design verification is to provide conclueive 

answers to questions which are implicit in the partial specifications. 

A sample list of design verification questions is shown here: 

1) Is the performance of the new design correot, 

given normal environment and nominal component 

values? 

2) How sensitive is the performance to expeoted 

changes in environment and oomponent values? 

3) If subjected to unusual environmental conditions, 

would the new design fai l catastrophically? 

If verification detects design errors, these must be used 

to stimulate design modification. Al ternatively, the error reports 

may be interpreted as indications of unrealistic tentative specifioa­

tions. In the latter case the design prooess fails completely and 

new tentative specifications must be set up or the project cancelled. 

Assuming now an error report which does not lead to design 

failure, the new design is gradually corre cted (correction loop, 

Fig. 2.6.1) until verification succeeds . Now the next stage of 

design refinement may be entered and new partial specifications are 

requested by way of the refinement loop (Fig. 2.6.1). 

The iterative design process is complete when all aspects 

of the forma l specifications have been taken into account and verifi­

cation has been successful. 
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3.1 It> 'l'RODUCTION. 

This chapt er presents a survey of logic design verification 

methods in current use and aims to show that these methods fail to 

satisfy current demands of modern integrated circuit devices or complex 

10£,:ical systems. 

noted. 

The shortcomings of conventional methods are carefully 

The newly propose d method, described in Chapter 4, seeks to 

eliminate or, at any rate, minimise the problems unoovered in the 

course of this survey. 

With reference to the available repertoire of modes of 

analysis (section 2 .5.1), analysis techniques of current use will be 

found to fall into the classe s of Operational Exercise, Gaming, 

Simulation, Analytical Testing and Numerical Testing, with overwhelming 

emphasis on Simulation. 

3.1.1 Objective. 

The purpose of logic network analysis is to serve the pro­

cess of design verification. In turn, the purpose of design verifi­

cation is to answer specific questions the designer raises about the 

new design (see 2.6). Consequently, the operational objectives of 

system s analysis Can be formul a ted as follows, 

a) to collect information about the performance 

of the new design, 

b) to present this information in a form convenient 

for performance assessment, 

c) to operate fast, ch eaply and reliably. 

The analysis techniques discussed in this chapter will be 

evaluated against these objectives. 

3.2 HARlJVlAR~ }'IE'l'HODS OF lJESIG~ Tl!; STING. 

3. 2 .1 Mode of analysis . 

The tr~ditional way of verifying the design of a logical 

network is to build the total system of the proposed design in a form 

resembling the real-world system and subject this to a simulated 

environment. The data resulting from the analysis is then compared 
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with t he specification. 

The technique in thj s form amounts to Operational Exercise 

an~ is frequently applied to small logical networks. 

In the case of more complex networks it is customary to 

examine t he performance of su1-1etwurks before the system is finally 

assembled. The phase of sUb-system testinG is perhaps best classified 

as Gaming, becausP- the real -world model of the sUb-system under test 

is usually surrounded by models simulating the effect of the rest of 

the system. 

If such systems are mass-produced , then the design verifica­

tion uses a model which may have no object in common with any system 

on the pro~uction line. The mo~e of analysis is Simulation - the only 

mode of an:11ysiB a ppropria t e to hard ware teRtin~ of complex nptworks. 

3.2 . 2 Hesolution level. 

At the time of discrete-component hardware technology, 

desieners had almost unlimited freedom of choice of resolution levels 

during analysis; it was possible to commence simulation by regarding 

the 6ystpm as a whole; at the event of the first failure the design 

engineer could gradually elevate the r esolution until the level of a 

single~ectrical component was reached. The procedure gave a sense 

of satisfaction to an engineer who couln correct the design error on 

the spot; however , it was failing by all the analysis objectives/as 

would any other procedure which allows the handling of too many indivi­

dual objects. The searoh for the location, appearartce, connections 

and signal~ of several hundred error-prone individual components 

could not be condoned. Thus, well before the advent of integrated 

oircuit te r.hnolofY , networks of modular and hierarchical structure 

were constructed, allowing no more than two different resolution levels 

for each t eat anrl no more than a few dozen individual objects and 

monitoring points. 

Design testing of a hierarchical system proceeds in a 

sequence of stages. First, the design of the smallest module(s) 
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If these are constructed of discrete components then 

it is possible to ascend to the level of single component. 

When testing the design of a module at the next level of 

hierarchy then it is necessary to be able to assume all small modules 

as perfect (verified by the previous test) and indivisible. If this 

assumption can not be made then, in order to locate and correct the 

error, the resolution level must be increased, demolishing the boundary 

of the previously tested module. The difficulty and confusion can 

obviously be avoided by testing the small module reliably in the 

first place, as demanded by objective c) • . This demand for reliability 

becomes more pressing as the size of the system and the number of 

hierarchical levels increase. 

Modelling. 

The analysis of logical networks by hardware simUlation 

demands that a h~rdware model be construoted of the real-world system 

which will be subjected to time-variant signals. The modelling 

process itself appears to be a trivial exercise of oonstruoting a 

physical model by use of components like those of the real-life system. 

In practice however the problems associated with modelling prove far 

from trivial, due to component tolerances and differences in physioal 

layout, the correlation between the performance of the model and that 

of the real-world system is in doubt. Thus the information oollected 

during analysis fails to represent reliably the performanoe of the 

real-world system, thus failing to satisfy the objectives of analysis. 

Designers seek to remedy this situation in two ways. 

1) by increasing the sample size, i.e. analysing 

several models, built of randomly selected 

components. 

while improving reliability, the method 

increases the volume of data, the cost and 

time of analysis and raises the new problem 

of statistical assessment of results. 



2) by evaluating the expected extreme in component 

values and selecting the oomponents of the model 

sO as to represent the "worst case" in system 

behaviour. The model thus permits the assign­

ment of a boundary to the expected system 

behaviour. 

If the estimate of "worst case" is correct then 

the method satisfies all the objectives listed; 

however, the resulting design is unnecessarily 

expensive. 

This second solution is obviously only available in caee 

of use of discrete-component hardware. users of integrated circuit 

hardware have very little information about the expected behaviour of 

components and no information at all about the extremes of acceptable 

performance. Even if this information should be available, the task 

of selecting worst-case items of multiple-function integrated circuit 

devices is formidable - worst-case assessment seems completely imprac­

tical. 

A~tempts have been made to build worst-case discrete­

oomponent models of integrated circuit devices. These have been 

proven unsuccessful due to the poor correlation between system and 

model behaviour. Some designers tried to construct a sophisticated 

discrete-component model/using time scaling to reconstruct the wave­

length of signals in integrated circuit devices. This method is 

too complicated and the results are far too sensitive to scaling 

factors to be reliable. 

The mounting problems of modelling integrated circuit devices 

must be viewed against the increasing demands for design verification. 
,.~e 

the tooling costs for a single component are the same as for,mass-

produced article and, due to the magnitude of this cost, design errors 

can not be tolerated. 

Hardware test methods offer no satisfactory solution to the 

modelling problem of integrated circuit devices. • Reluctant designers 

are forced to seek computer solutions to their problems. 
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When a hardware model is constructed/the designer subjects 

this to simulation, observes the output and verifies the design. If 

the system has n operating signals, m physical signals and q state 

variables then the sam~le space has an ( n + m ~ q ) - dimensional 

infinite number of points (see sections 2.4.4 and 2.4.5). 

To attempt comprehensive analysis,it is necessary to devise 

some suitable discrete model of this sample space. However, unless 

the system is known to be completely controllable (see Chapter 2 ) it 

is not possible to scan the total sample space in a finite amount of 

time. In the case of completely controllable systems the problem 

is theoretically accessible but practically unsupportable, since the 

number of input changes necessary for comprehensive steady-state and 

transient testinR is exoessive for all but the most trivial of systems . 

In current practice the job·, of design verification is 

oonducted at a few points of the sample space,under oonditions the de­

signer considers representative or critical. If the design fails 

these tests then it is evidently in need of modification. If it 

passes thp tests then it may still contain numerous errors and may 

fail in service. Design errors in computers often oome to light years 

after machines are installed, indicating that a compromise has been 

selected between the conflicting objeotives for speedy, low-cost and 

reliable analysis. 

It is suggested herp that the problems arising from the 

vastness of the number of points of the sample space are akin to those 

arising from the vastness of the number of components oomprising a 

complex system. The solution of the sample-space problem might be 

sought along the same lines as that of hardware. it could be decided 

that therp is a maximum number of points of sample space one can 

efficiently handle; therefore models of inputs must be so constructed 

as to fit within this number. Input signals may thus be "modularly" 

modelled ~nd as the number of signaJs increases 80 the resolution 
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must reduce to keep down the number of pOints of the sample space. 

According to this prinoiple, it will be reasonable to 

consider the effects of physica l signa ls, riee-and-fall times and 

signal level variations when testing a single logical gate, but un­

reasonable to resolve input signais to more than two voltage levels 

when testing a complex gate assembly. In the latter case it would 

be necessary to form a model of the objects of the assembly which 

accounts for the effects of thA neglected signals. 

Unfortunately for logic designers, the number of points 

of sample space increases very fast with the number of input variables 

and the reduction of detail of input signals can not keep paoe with 

this increase. Thus the computer simulation methods discussed later 

in this chapter merely manage to provide a temporary solution by 

increasing the speed of simulation. Ultimately the failure of simu­

lation as a means of analysis must be faced. 

3.2.5 Solution and assessment. 

Let it now be assumed that a satisfactory set of test 

conditions has been compiled and the model is subjected to these tests. 

The result of the analysis is available in the form of a set of output 

waveforms. These waveforms must now be observed or recorded and 

assessed against some form of records of the performance specifica~ions. 

The traditional instrument of recording, offering the 

advantage of familiarity, is the oscillosoope. Against this must be 

set numerous disadvantages, the number of channels is limited; thus, 

to observe the correla tion of several waveforms, tests must be repeated, 

or more than one oscilloscope used; signals must be repetitively 

applied to permit observation; the standard signals can not be dis­

played - the real-world system does not exist - hence the oscillogram 

must be compared with a waveform or table by eye, or else recorded aa 

a waveform or table. 

The instrument of assessment is the design engineer who 

often represents the weakest link in the chain of the verification 
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task of assessment and the ineffici ency of men to handle the large 

volumes of data neoessary for reliable analysis. 

3.2.6 Conclusions. 

Hardware testing of the design of logioal systems is, at 

best, limited to small systems; at worst it is an unqualified failure. 

The method fails oompletely in terms of complex integrated circuit 

devices which, due to their high initial manufaoturing oosts, demand 

reliable design verification. As advanoes in teohnology permit the 

inorease of the oomplexity of these devices and enhanoed their promin­

enoe amon g other fo r mA of hardware, the development of alternative 

forms of design t esting become imperative. Thus, almost simultaneously, 

several oomputer simulators have been developed by device manufacturers, 

instrument manufaoturers and researoh institutions, seeking to provide 

a solution to the problems unsolved by hardware testing. 

3.3 DESIGN TESTING BY COMPUTER 

SIMULATION. 

The preparation of a comparative survey of logic simulators 

does not fall within the scope of this work. Such a survey, examin­

ing the features, facilities, techniques and relative merits of 

available simulators/will be presented in the thesis concerning the 

development of a prototype system (1). Instead, this section will 

attempt to assess the potential of logio simUlation as a tool of logic 

design verifioation. In the oourse of disoussion referenoes will be 

made to some of the logio simulators in ourrent use, illustrating 

some of their features and facilities. 

Resolution. 

At the highest level of resolution, used by any of the 

known logic simula~ors, stands the single logioal gate. It is thus 

assumed that the system under test consists of objects which represent 

Boolean operators and the simplest functional object to which the 

system oan be divided operates as a simple logical connective. The 
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standard repertoire of gate funotions is AND, OR, NOT, with assooiated 

delays (see Modelling). Some simulators extend the range of gate 

functions to NAND and NOR . 

A group of simulators, suoh as the APACE program 'LOCA', 

the P1essey DA70 and the Siemens 'DICAP', demand that systems under 

test be always resolved to such a high level; thus designers must 

oode their networks by use of a fixed library of standard elements. 

The advantage of systems using this fixed resolution level 

lies in the simplioity of the programs. The disadvantages are 

measurable in terms of ooding time and ooding errorl the designer 

must repeatedly declare eaoh gate within eaoh standard hardware sub­

system, multiplying the coding time and oommitting a multiplicity of 

errors. An additional disadvantage is, that the computer must 

repeatedly analyse standard hardware SUb-systems within the system. 

Thus it is suggested that simulators with fixed resolution level are 

only suitable for the analysis of small systems. 

A seoond group of programs to which the Norwegian program 

"LOGIC" and the Elliott "LASS" belong1also fixes the resolution level 

but permits an expandable library of standard objeots. When the 

computer model of the network is oonstructed, each object is checked 

against the current library list. Unreoognised , objects are report~d 

as program errors. Standard groups of gate e1Aments can be entered 

in the library as standard objects by giving them a unique name and 

describing them by a sub-routine, (21 ), (22). The use of this method 

is demonstrated in (21), where flipflops are "modelled" and their 

funotional desoription is entered in the library as a standard "logic 

rule ll
• 

These faoilitie::; as provided in 'LOGIC', replace the whole 

of a SUb-system by a SUb-routine. The sub-routine represents a 

termina l model of the perfect sub-system; oonsequently care must be 

exeroised in verifying the design of a SUb-system before replacing it 

by the sub-routine . If reliable sub-system testing may be assumed 

then thi s method satisfies thp. objectives . by reducing both the time 



of coding and the time of computa t ion. The limi t a tion s of such sub-

r uutine mode l s of sUb- sys t e ms wi ll be di s cus sed in the section dealing 

wi th ~I! o de ll ine . 

The t hird group of pr o/3"l'ams to which t he Racal IfRb~DAr 22" 

and t he Fai r. chil d "F_'i.IHSIM 11" bel on e , permi t a flexible choice of 

resolut ion l evels . It is possible t o cons truct sUb-s yst ems of nested 

modules and the sys t em unde r analysis may be composed of oombinations 

of s ingl e gat e obje ct s or of complex nested sUb-syst ems . 

cus tomary to impose a limi t t o t he depth of r e solution. 

It is 

'1'hi 8 me thod gives gr eat he l p a t the stage of modelling , but 

it in no way ass i At e th ana lysin by the comput er ni nce , before analysis 

commences , the modul a r s tructure i s u sually broken . down to constituent 

ga t e e l ement s and th e ana lysis progre s se s from gate to gate. 

3. 3. 2 Mode ll i nB. 

Si mula tors differ great l y in the f or mat they use in specify-

ing thR obj ect s of t he sys t em und er te s t. However, substantially 

they al l r ef er to fou~ ty pes of dat a / amounting to the model of an object. 

1) obj ect ident i fication 

2 ) s tructure - the conn ection of the ob ject to 

other ob ject s of t he sys t em 

3) function a l description. 

4) timing description. 

Ident i fica t i on. 

Bach object i s uniquel y identified by a code. Information 

about the object i s r eferenced by thi s code throughout s imulation. 

Structure. 

Connection between sys t em obj ects is specified in one of 

three way s : 

a) considering the object a s a reoipient of signals 

b) con sidering the obj ect a s a sou'rce of signals. 

c) s pe cifying all the connections to and from a 

gi ven ob,ject. This method duplicates the 

structure information, thus doubling the coding 
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time . The redundancy is then used for 

diagnosis of coding errors . 

Function. 

The functional description as s ims to the object one of 

a Be t of rer.oenised parameters. Dependent upon thA resolution as 

seen earlier, functions may be s implp logical connectives , combinations 

of Airnplf! loe ica l connp.c t ives or functions outside of the range of 

lo~ir. a l fU rlc tion R. The l a tter may ar ise by the use of sub-routine 

models . 

I t will be :lPPl'opriate to devote !'Iome attention to the 

princi pl es upon which ~ub-routine mo~els are based . 

Let a SUb-sy s t em to be mo~elled ~onsiRt of a se t of logical 

r,a te s , Auch repre ~'l~' ntin .. ,: a si"Tllll lo t ical connective . Let this system 

be suoj 8cted to ~.Il l1-(l imens ior u.l (~n" l.conme nt a n(1 let it bave m number 

of state vari abl es . Then tb e termina l model of this syst em would 

contain the r elationshi ps of 

where 

g (t ) = G ( u ( t) , 

S ( t) .: H ( u (t), 

·u ::t 

$ = 

( 
( 

( 
( 

U 
n 

S 
m 

) 
) , 
) 
) 

and ) 
) 
) 

Equation 3.3.1 

( see section 2 . 2 . 2 ). 

It will now be suggested that sub-system models can be 

constructed in on e of two ways : 

a ) by retaining the information contained in 

Eq . 3 . 3. l ; in thi s case the model may be mapped 

into u lOGica l npt work , containinc a set of 

logical ~ates, ea ch represen ting a Rimple logical 

connActive. This new network is equiva lent to 

thp ori ~inal Rub-system by the defi nition of 

equivalence ,i ven in Chapt er 2 . 

b) by reducinc t he inforrn!:l.tion in Bq . 3.3.1, 
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restricting either the domain of the environ­

ment or the admis~ib1e time functions of inputs. 

Using such restrictions Eq . 3.3.1 degenerates 

to some new form 

g* (t) 

$* (t) 
-= (u (t), S (to) ) ) 

(u (t), S (to) ) ~ Eq. 3.3.2 

The sub-routine may now express Eq. 3.3.2 in a 

form which does not necessarily lend itself to 

mapping into a logical network. gquation 3.3.2 

and its sub-routine version will be termed 

restricted mode models of the sub-system. 

Hestricted mode models represent a homomorphic transforma­

tion between the systems described by Equations 3.3.1 and 3.3.2. If 

the sUb-system should be subjected to environmental conditions out­

side of the range of Equation 3.3.2 then the sUb-routine model fails. 

Such in-admissible conditions may easily arise if, for instance, the 

objects surrounding the sUb-system contain some design error. 
notwithstanding 

It will be concluded that/the commendation given to sub-

routine models in the previous section, such models must be handled 

with extreme care. Not only must the sub-routine be based upon 

completely reliable analysis data (as contained in Eq. 3.3.1) but the 

envi~onment must also be kept under constant observation to ensure 

the validity of the model. 

Timing. 

The timine description of a system object seeks to define 

the mapping of time functions performed by the object. While in 

prac tice this mapping is extremely complicated due to the nonlinear 

characteristics of switching circuits, these characteristics could 

only be observed by resolving the syst~m to higher levels than a logi­

cal gate. Alternative ly, accepting the single gate as the object at 

the hi ghest level, as suggested in section 3.3.1, one must acoept 
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relatively crude models of objects , such as , f or instance, a perfect 

(delay-free) logical gate, followed by a lumped constant delay. 

Some simulators offer facilities for more refined models. 

The fundamental weakness of thbse models lies in the abdenoe of 

reliable information upon which they are based. Device manufacturers 

are unable to measure the characteristics of some of their devices, 

or find it uneconomic to measure the characteristics of others. In 

any case, these characteristics would vary so greatly with the choice 

of hardware that a common se t of par ameters may not be easy to find. 

Hence simulation programs must rely upon crude guesses of timing 

information and the accuracy of the analys is will not be improved by 

the use of sophisticated models whose parameters are based on further 

crude guesses . 

The most commonly used time model is, as mentioned, a pro­

pagation delay t , associated with each object output. Some simulators 
p 

permit the use of two time parameters t and t fF representing the pr p 
time delay associated with rise and fall, respectively . 

A more sophisticated time model adds a further threshold 

delay tt which demands that the input sip;nal pulse should be ignored 

.unless the duration of the pul sA exceeds tt' 

It i s reported that an industrial resE'arch group is seeking 

to develop a time mode] which would incorporate non-constant time 

parame tprs . Dependent upon the amount of load supplied by an object 

output , different values of tp and tt would now be ass igned to the same 

system object . 'l'hls project suffers from the same lack of reliable 

t irne data as h,H' b en mentioned before . 

It fill' raoI" urnbi ti.ous pro,j et' l'eported (29) by members 

of the IbM corporation . The work of this group conoerns the develop­

ment of a statio~icul delay mooel for a simple logical network. The 

model correlates the vari ation of some physical signals and of load 

with the time delay of gat es . Such is the complexity of this problem 

that it was neceRsary to construct a purpose-bui l t computer system to 



carry out data collection and processing., whil e oalculations were 

performed on a n IBM 7044. In spite of the extravagant resources use o 

by the project, the result s ha ve very limited practical application. 

'l'he uncert ainty of time dat a emer ge s as a fundamental 

shortcoming of simul a t ion as a practical mode of analysis of logical 

networks . By the definition of simulation, verification of designs 

i~ ba ~e d upon observing the system response in the time domain, but 

thi s response i s computed on the basis of crude models whose parameters 

are derived by wild guessing. 

Input data . 

Ji'ixin g the hi ghest r esoluti.on level at gat e level implies 

th a t operating s ignals should be mode lled by discontinuous jumps 

between two logical levels. The specifica tion of these operating 

signuls con s i.sts of the li sting of those instances of time when a given 

operatinB signal i s s cheduled to change. As an aid to coding of this 

data, some simul ators permit the use of oscillators in addition to 

switches . The oscilla tors provide periodically changing signals 

whose ON and OFF time may be specified . 

Physical signals (supply potentials, temperature) are con­

sidered as constant and, as mentioned in the previous section, their 

effe·ct upon the time del ays associated with object outputs is neglected. 

The sample space is thus restricted to dimensions given by 

the operating signals and state variables. Even so, this space is 

excessively large for a ll but trivial networks. The number of 

necessary steady-state and transient test s will be assessed in chapter 

4. It will be sufficient to mention a few problems arising at coding. 

state . 

The s imula tion commences by the speCification of an initial 

In th~ absence of such specification simulators assume that 

all state variables are to be set at, say, logi cal '0'. If this 

condition is logically inconsistent (unstable) then a series of calcu­

lations commences while the simulator searches for a steady state of 

the system. This may not always be found, or not found within the 
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time limit set by the designer. In suoh a case the simulator refuses 

the network (as in the case of the RACAL program) or over-writes a 

transient state by permitting the operating signal sequenoe to begin 

(such as in case of the LOGIC program). Neither of these solutions 

is partioularly attractive: one refuses to simulate the system 

altogether while the other may give ambiguous results depending upon 

a random choice between oscillatory states. 

If the initial state selected by the designer or set up by 

the program is not connected to some of the system states then no 

finite time sequence of operating signals would result in a oomprehen­

sive analysis. 

Oscillator-driven inputs imply a restrioted mode of analysis. 

While it is possible to construct oscillator signals whioh permit the 

system to be test ed for all of the 2n number of different input signal 

combinations for n inputs, thi s number of tests subjects the system to 

only a small fr ac tion of the total number of different transient oon­

ditions and will only ascertain the resl'onse in the oase of the seleoted 

initial state. The solution i s Bought by seleoting sequenoes of 

opera ting signal changes which are regarded by the designer as moat 

probable to occur. For instance, it is often found that networks are 

simulated under conditions when an output is scheduled to generate a 

specific signal . If the network passes the test, then the designer 

assume s th a t the desi ~~ is correct. This assumption is fallatious 

because it is based on the same value judgement as was used by the 

designer when proposing the design. The network may behave incorrectly 

by generating outputs at untested oonditions. 

An alternative method is to select input sequences entirely 

at random. This way there 1s a probability of selecting conditions 

which might have been overlooked at the design stage. Even so, it is 

very difficult to a8si~ a significance level to a seleoted test sequenoe 

and the reliability of the analysis is in doubt. 

The problems discussed here are familiar from experience 

with hardware testing and there is no evidence that the newly developed 



3.15 

techniqups of computer simulation offer a satisfactory solution. 

Input - Output Mapping. 

The process of computer simulation of logical networks 

consists of spe oifying the changes of input signals in the time doma.in 

and following the passage of signal changes through the network. The 

procedure demands the choice of time quanta at the input and throughout 

the operation of the network. 

Synchronous simulation refers to a system in which time is 

incremented by equal intervals and the model is processed at each 

time increment. Inputs and out puts are shown on a linear time scale, 

with a line of print assigned to each increment. 
I 

Asynchronous simulation is frequently termed "next event" 

or "event-hy-event" s imulation, indicating that time is 1ncremented 

by period~ measuring the distance between subsequent events, eitber 

at the input or within the network. 

The printout of event-by- vent Rimulators show input and 

output waveforms on a non-linear time scale, with a line of print 

assiened to each event,aeainst a par meter of time. 

Asynchronous simulators offer flexibility; they lend them-

SAlve,; to the analyai R of Rynchronous or asynchronous networks. 

of the known s imul a tor y are asynchronous . 

Most 

Synchronoll simulators arp obviously suited to synohronous 

networks . When use d for the analysis of asynchronous networks the 

time inCrp. l0ent mus t b . adjusted to the smallest comll'\on unit of all delay 

elements and of all i nput pvents. 

limited U B"! . 

The method is considered to be of 

NotablA exu'nples of Rynch onous simulators are the GEe and 

Ple ssey sys tems. 

olution and Assessment. 

Solution consists of two phases. calculation of the logical 
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stRte of each monitoring point ( system output or output of selected 

objects) at each of a sequence of instances, anrl display of the logical 

state of inputs and outputs at those instances. 

Assessment presents problems familiar from the discussions 

of hardware test methods. Standard signals need to be displayed in 

a form comparable to the simulator outp~t. Such standards may not 

be easily available. The instrument of assessment is, once again, 

the designer who iA now faced with volumes of data unheard-of at the 

time of hardware testing, as a direct consequence of the speed and 

facility of producing data by computer simUlation. 

The columns of logical 'l's and 'O~~ of the printout contain 

inconclusive answers to the questions of verification in implicit form. 

The increased volume of data makes the designer's task of assessment 

and data processing more formidable than was the case with hardware 

testing. This problem of assessment may be attributed to the fact 

that communication between man and machine needs to be established at 

the point where the volume of information is the greatest. 

In terms of the design verification questionfof section 2.6, 

the method will be seen to have limited use, allowing no answers to 

any but the first question. This is a direct consequence of the 

method of modelling system objects and of the constraints applied to 

the environment. 

It may be concluded that conventional methods of computer 

simulation fail to provide the answer to the problems of design testing 

of modern logic networks. 

3.4 DESIGN TESTING BY HIGHER-ORDER 
MODES OF ANALYSIS. 

The litera ture contains a great variety of well-established 

and some recently-proposed methods of analysing logical systems by use 

of Boolean equations (analytical testing) or tables (perhaps best 

classified as numerical testing). Such methods range from teste of 
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steady-state r esponse to diagnosis of ambiguous transient behaviour. 

The basis of analysis is almost invariably a Boolean model and signals 

are assumed as discontinuous jumps between one logical level and the 

other, as in the case of oomputer simulation. 

The review of these methods led to the following conclusionsl 

1) it is possible to correlate the results of some 

existing methods with some of the design veri­

fication questions designers may wish to ask. 

2) it is humanly impossible to apply these methods 

to all but the most trivial networks without the 

use of computers 

3) it is necessary to extend or modify some of the 

acoepted methods as well as to propose some 

completely new methods if answer is sought to 

a reasonably comprehensive range of design 

verification questions. 

Subsequent chapters of this thesis will describe the way 

in which these higher-order modes of analysis may be used in the 

interest of logic design verification. 
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4.1 I NTRODUCTION. 

Chapter 3 shows the inadequaoy of oonvent ional design 

verifioation teohni ques as applied t o l ogioal systems of modern size, 

oonstruotion and complexity . This i nadequaoy can be attributed to 

a number of causeSl-

1) The diffioulty of man-maohine oommunioation, this 

problem arises at the speoifioation of the system, of the test data 

and, espeoially, a t handling the data produoed by the analysis. 

2) The exoessive size of the sample spaoe of systems with 

modern dimensions. 

3) The inoreasing demands of reliability of designs. 

4) The reduction of detail and reliability of information 

about individual logioal elements of the system. 

5) The oonfliot between the oomplexity, reliability and 

aoouraoy of delay models. 

4.1.1. The modular system of design verifioation. 

In view of these considerations it was deoided to break 

with oonventional test methods of simulation. These methods relied 

upon a prolonged general-purpose analysis prooess whose output data 

was the basis of design verification. By oontrast, the new method 

oonsists of a sequenoe of special-purpose verifioation prooedures, 

eaoh answering a specifio question about the newly proposed design. 

For this purpose a oompatible set of design verification modules 1s 

oonstruoted. If the designer now produoes a list of questions about 

his newly proposed system, he oan seleot the appropriate sub-set of 

off-the-shelf modules whioh will provide the answers. 

The modules must be 80 designed as to ease the man-maohine 

oommunication problem. Thus they should operate on the minimum of 

information and~ instead of produoing analysis data, must produoe 

direot answers to the design verifioation questions. SUoh &nswers 

may oondone the proposed design or list its errors in a format whioh 



facilitates design correction. 

Test data for the modules must, wherever possible, be 

automatically generated. This overcomes the communication problem 

and improves reliability because the automatic test data generators 

scan the sample space systematically. 

The quality of system model must b& scrupulously preserved. 

Using the minimum of data for the desoription of the system ease8 

communication, minimises the demands of computer storage and oomputing 

time. In addition, detailed models demand the speoification of 

delay parameters whose reliability is doubtful. Thus the design 

verification procedure must restrict the use of delay models as far 

as pOssible, in the interest of reliability. 

The modular system appears to have the potential to over­

come most of the inadequacies of conventional testing. It offers 

the additional features of flexibility and~se of development. The 

system may continually be improved by addition of new modules, re­

design of existing ones or deletion of obsolste ones, without putting 

it out of service. With the aid of a oarefully specified interface, 

several programmers may be engaged on the development of the system 

without the need to refer to each other's decisions on details. 

The subject of this ohapter is to describe the des~gn of 

the modules of such a design verification system. 

4.1.2 The choice of verification questions. 

The idea of such a design verification system is thought 

to be novel. This means that no previous experience was available 

upon which to build such a system. 

The first diffioulty was enoountered when trying to antioi­

pate the questions designers may wish to ask. At the present time 

designers do ~ot formalise their questions but deduoe some answers 

from analysis. Formalised questions demand disoiplined thinking and 

a measure of formal education in logic design, one or both appears 

frequently to be lacking. 



The questions proposed in this chapter become gradually 

more sophisticated,matching the sophistication of the faoilities they 

provide (not necessarily the teohniques they use; some of the most 

comple~ questions are answered in e~oeedingly simple ways). This is 

claimed as an advantage; simple modules will give designers useful 

information as well as a gentle intraduotion to computer-aided design. 

It is further oonsidered that the use by designers of some 

sophistioated ooncepts (suoh as a VERIFIED DIRECTORY) are inevitable. 

Logic systems have become so comple~ that they are not approaohable 

by simple test methods (see chapter 3), the oonoepts used in this 

work are not always si~ple, but are presented to 

form which is thought to be easily aocessible. 

field is available through the Prototype System 

the designer in a 

Experience in this 

(ohapter 5) whioh has 

been found easy to use by several teams of logio designers. 

It is antiCipated that the proposed design verifioation 

questions may need modifioation in the light of e~perienoe with the 

system in service. Such modifioation is faoilitated by the modular 

structure as mentioned before. 

4.1.3 Input - Output. 

It was possible to use some of the e~perienoe gained from 

logic simulation in the choioe of input format. However, sinoe the 

service provided by the method is new, the output format was designed 

without baokground. The Prototype System gave some help here, but, 

again, e~tensive use by designers on large and oomplex systems is 

needed before the output format may be oonsidered finalised. 

As mentioned earlier, the output data is, in almost all 

oases, an error list. The input data oonsists of the following 

itemsl-
a) Specification of new design. 

b) Speoifioation of operating signals. 

c) Specification of behaviour. 

d) Test instructions. 

These will now be discussed briefly. 



of data: 

a) Specification of new de8ign~ 

It was decided to describe a logical network by four items 

i) structure 

ii) function ; parameter of objeots 

iii) load parameter of objects 

iV) delay parameter of objects. 

The choice of these items will be discussed and justified in the 

course of this chapter. 

b) Specification of operating signals. 

In the interest of reliability it was deoided to cover 

automatically the total sample spaoe of a given test whenever possible. 

If this spaoe proved infinitely large,or too large to be oompletel, 

covered,then instructions were required about the manner in whioh the 

spaoe could be restricted. In only a few circumstances in the oourse 

of this chapter was it found neoessary to compel the designer to 

specify the wave-forms of input signals. 

0) Specification of behaviour., 

It is considered that such speoifications initiate the 

whole of the design process, hence they must always exist in some 

form. It is understood that usually the specifications are not 

formalised and are often unrealistic or unreasonable. Attention was 

given to allow the presentation of specifications in a variety ot for­

mats. In some instances it was also suggested that the design 

verification methods could be usefully employed in the analysis of 

the specifications themselves. 

d) The test instructions consist of nominating the 

verification modules for a given test. 

Analysis and Assessment. 

Use was made of accepted and generally used oonoepts of 

logic network.analysis. Such concepts include truth tables, state 

and output tables, the definition of essential hazards, etc. These 

concepts, in almost all cases, needed extension or modification 

before they could be used as bases for test techniques. 



Frequently it was found neoessary to design entirely new 

concepts. Thus, inevitably, a jargon was oreated,which was based on 

general systems usage. New terms were only introduced if they helped 

to make discussions or definitions more concise or clear. 

Constraints. 

While care was taken to compose questions concerning a 

variety of aspects of the design, it oan not be claimed that the list 

of questions is comprehensive. Nor are the answers completely 

satisfactory in every case, such is the complexity of the problems 

that the validity of answers had to be made conditional upon some 

simplifying assumptions. However, it is trusted that the teohniques 

used for the generation of answers may be perfeoted along suoh linea 

as indicated in the ohapter on FURTHER DEVELOPMENTS, allowing the 

removal of some of the restriotions. Further, these teohniques, or 

the experience gained by their development and use, would prove 

valuable in finding answers to verifioation questions not listed in 

this chapter. 

In some cases it was found that a given question may be 

answered in alternative ways and eaoh alternative oontained some 

interest, in such cases the alternatives are described here. 

Some of the questions were found convenient to be answered 

in terms of answers to others; in such oases a test sequence is 

obviously implied. Otherwise the sequenoe of conducting the teats is 

not pre-determined. 

4.1.6 Organisation. 

This chapter will be organised by devoting a seotion to 

each design verification question. Within a seotion relevant oon­

cepts and techniques will be disoussed and at least one test module 

suggested. 

system. 

4.2 - IS THE STATE OF THE SYSTEM FULLY DETERMINED 
BY THE STATE VARIABLES NOMINATED? 

The question teats the designer's understanding of the 

The assignment of state variables is, 1n some oases, a 



trivial exercise, such as associating a state variable with eaoh 

S - R flipflop. In other instances the struoture of the network is 

complicated by feedbaok loops linking a large number of logioal gates 

and in the course of evolutionary design the designer may be unaware 

of the presence and consequences of a group of system states. In 

such cases designers should check if they understand the system 

correctly by nominating a comprehensive set of state variables which, 

in their view, should be sufficient to describe the states of the 

system. A test module should then cheok if the designer's estimate 

was correct. 

When developing the neoessary teohniques for answering 

the question it was found sufficient to use structural information 

about the system without reference either to test data or to models 

of objeots of the system. 

Concepts and teohniques. 

A oombinational network will, for the moment, be defined 

as a struoture containing no feedback loops at the seleoted level of 

resolution. Conversely, a sequential network will oontain feedbaok 

and the number of state variables in terms of whioh the network is 

described depends upon the number of feedback loops (s • footnote ) . 

In order to describe a sequential network in terms of inputs and 

state variables/each of the feedback loops must be broken onoe and a 

state variable inserted. The place at which the loop 1s broken 1s 

arbitrary, hence there is no unique way of desoribing a sequential 

FOOTNOTEs These definitions are oonsistent with the oonoept of 

observability (chapter 2); if a network oontaining feedbaok d09s 

not display .a terminal behaviour customary for sequential networks 

( such as the strange network of ref {30) " .) 1 t will be classed as 

sequential on the basis of its struoture, although the sequential 

behaviour is not observable . A sequential network with no observable 

states may, under these definitions, be equivalent to a oombinational 

(oontinued overleaf ) 



network in terms of state variables. All comprehensive descriptions 

(i.e. ones which leave no feedback loop intact) are acceptable to the 

test system but, as will be discussed later, those which describe 

the network in terms of the minimum number of state variables are to 

be preferred. 

The technique of analysis suggested here accepts the 

designer's choice of a set of state variables but rejects the design 

if this set is not comprehensive. The error message generated by the 

test warns the designer that he has failed to break all of the feed­

back loops. Should the designer be unwise and break any of the 

loops in more places than one, the design is accepted by this verifi­

cation step as correct. If such a system is subjected to verification 

by other test modules then the analysis would be performed correotly 

but inefficiently, by describing the state space of the system in more 

than the minimum number of dimensions. This ineffioienoy implies 

an imperfection of the module to be described in this eeotion. An 

alternative module, free of this imperfection, will be presented in 

a subsequent section. 

The test techniques are presented in terms of a simple 

example shown on Fig.4.2.l. A unique identifier has been assigned 

to each objeot of that network. Environmental signals are restrioted 

to operating signals which are generated by souroe objects 10, 20 and 

30. The structure matrix, as defined in Chapter 2, consists of 

10 x 10 = 100 elements: 

FOOTNOTE (Cont'd). 

network. Following this argument to its conclusion the conoept of 

a combinational network may be eliminated altogether by defining all 

networks ae sequential but recognising that a network may not have 

observable states at a given level of resolution. Increasing the 

level of resolution may then reveal the existenoe of feedbaok loops. 

For the purposes of this work the ooncept of a combina­

tional network will be retained under the above definition. 
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Assume now that the resolution level has been chosen at 

the level of a single logical gate, representing a simple logical 

connective. Selecting one of the gates of the network at random, 

the matrix elements concerning the selected gate can be computed not­

ing that all gates have a single output and gate inputs are numbered 

as shown on Fig. 4.2.1. Thus, oolleoting all the matrix elements 

referring to gate 6, say: 

WIO ,6 ~ (0) ; \V20,6 -= W30 ,6 eo W 6 - (0) ; ~ -4, 

Wl ,6 = (0,0); W2,6 = W3,6 ~ W5,6 :. (0,0) ) From ' 6 , 
) 

W7,6 -::. (0,1) ) 

W6,4:' (0,1,0) ; W6,30 ~ (0,0,1) J 

The matrix is unwieldy and contains a great deal of redun­

dancy. Since '6' is known to have only three inputs, the group of 

matrix elements marked "To '6' " oan only contain three positive 

indications of connection. Thus, of the 30 bits of information des-

cribing connections "to '6' " only three can be relevant. Collecting 

these in a single matrix of W6 ' and indicating the identif1e~ of 

circuit objects connecting to the input of 6 as elements of W6 , 

4, 30 ). 

If the network is constructed of simple gate elements 



representing an elementary Boolean connective then the functional 

significance of all inputs is the same and the gate output is not 

al tered if inputs are interchanged. This ciroumstance allows the 

spe cification of W6 be given in terms of 10, 4 and 30 listed in any 

order, or, more conveniently, in terms of a connection matrix of a 

single row ~d with a single-bit column assigned to each of the 
objects of the network. 

10 20 30 1 2 3 4 5 6 7 
W6 = I I [ 1 0 1 0 0 I 01 1 0 0 I o I 

In this simplified form the total struoture matrix will be a square 

matrix of 100 binary elements as shown on Fig. 4.2.2. The oolumns 

represent the signal sources and the rows the loads. 

The struoture matrix has certain regular featuresl the 

rows of source objects, by definition, contain only zero elements 

and in accordance with logic design praotioe forbidding the feedbaok 

from the output of a gate element to its own input, the diagonal ot 

the matrix is zero. (see footnote) 

The structure matrix may be reduoed, without loss of 

information, to the form shown on Fig. 4.2.3. 

The reduction of the structure matrix of chapter 2 to the 

form of Fig. 4.2.2 is possible for two reasons. 

1) all the inputs of a network object have been assumed 

to be interchangeable, thus the identification of inputs became 

unnecessary. 

2) all network objects have been taoitly assu~ed to have 

a single output, thus the identification of outputs became superfluous. 

FOOTNOTE. If. this latter condition is not satisfied, the test 

reports an error of an unspecified state variable. If such a feed­

back loop is intentional then the programmer must introduoe a dummy 

element, as described later, in the loop. 

back upon itself and the diagonal is zero. 

Thus no element feeds 
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These assumptions are valid only as long as networks are 

constructed of standard objects (AND, OR, NAND, NOR, STATE VARIABLE, 

INPUT, OUTPUT). As Boon as a more sophisticated sub-network becomes 

an object of a larger network, neither of the two assumptions can be 

taken for granted. For instance, the simple sub-network of Fig. 4.2.4 

has two outputs which must be uniquely identified. Should any of the 

inputs be interchanged, the resulting functions would be altered 

unacceptably. 

The problem is eliminated if a sub-network is resolved at 

a level high enough to permit the identifioation of each standard 

object. In this case the network is termed to be a homogeneous 

structure which can be analysed in terms of a matrix 8uoh as that of 

Fig. 4.2.2. 

In the forthcoming discussions of section 4.2.1 it will be 

assumed that the designer presents the network for verifioation at the 

resolution level of standard objects (sin'gle gates), or that the system 

is presented at some lower level to a translator whioh generates a 

homogeneous structure for the purpose of this analysis. 

It will be noted from Fig. 4.2.1 that the network is 

combinational, containing no feedback loops. Objeot outputs may be 

computed without reference to state variables, and a sequence of 

computation may be found which allows the determination of all element 

outputs. 

The matrix of Fig. 4.2.3 is divided to a "known" and an 

"unknown" area by a vertical dotted line. 

known area contain purely source variables. 

The columns of the 

Those rows of the matrix which contain 'lIs in the known 

area only are "computable" and can be entered in a "processing list". 

Their column can then be transferred to the "known" area and the next 

computable variable sought. The process is continued until the 

"unknown" area is depleted and the processing list is oomplete. It 

is frequently possible to locate more than one computable variable 
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at anyone time, hence more than one valid prooessing list exists for 

a given network. One of the valid processing lists for the network 

of Fig. 4.2.1 will be 1, 2, 4, 6, 3, 5, 7. 

The search fails to result in a complete prooessing list 

if the network contains an unspeoified state variable. Demonstrating 

this with respeot to a modified version of the network of Fig. 4.2.1, 
let a feedback conneotion be added from the output of gate 7 to the 

input of gate 4. The structure matrix of the new version of the 

network is shown on Fig. 4.2.S. 

The processing list will contain objects 1, 2, 3 and 5, 
leaving objects 4, 6 and 7 locked in a loop, each depending upon one 

of the others (Fig. 4.2.6). 

If the designer is aware of the existenoe of the loop then 

he must insert a dummy objeot at an arbitrarily seleoted point within 

the loop when preparing the data for the oomputer analyeis of the 

network. The dummy objeot has the funotion of a state variable. 

For the purpose of the prooessing list a state variable has the nature 

of a source object and falls in the "known" area of the struoture 

matrix. 

The sequential network and its dummy objeot generating 

the state variable, are shown on Fig. 4.2.7. The struoture matrix 

is increased by a column (Fig. 4.2.8) and the prooessing list may be, 

for instance. 1, 2, 4, 6, 3, 5, 7, 71. 

4.2.2. - The test module A • . 

The model of design verifioation, as preeented in ohapter 

2, demands that the proposed design be analysed with referenoe to 

environmental conditions, and assessed against the behaviour epeci­

fioations. 

In this oase the proposed design is offered to the teat 

module in the form of a homogeneous struoture of multiple-input, 

single-output objects . The format of this data may be a list of 

declarations. Eaoh declaration is headed by an object identifier 



and contains the list of those object identifiers to which the inputs 

of the declared object are connected. Each declaration will there-

fore specify a row of the connection matrix and there will be as many 

declarations as there are objects in the network. To permit the 

identification of source objects/these must also be declared; their 

identifiers will head an empty list since their inputs are connected 

nowhere. 

The proposed design of the network of Fig. 4.2.1 would be 

offered for verification in the form shown on Table 4.2.1. Both the 

order of the declarations and the order in which objeots are listed 

within the declarations are arbitrary. 

The test may commence without referenoe to environmental 

conditions; the logical functions generated by the source objects 

have no relevance to a teet based entirely upon structure. The 

analysis consists of manipulations as desoribed in section 4.2.1. 

The expected behaviour of the network under this test is 

that a complete processing list is produced. Therefore, the behaviour 

of a tested design is checked against the specification of a processing 

list containing as many elements as objects of the set D (chapter 2). 

It is not necessary to specify the desired behaviour separately; the 

objects of the eet D may be counted at the time of the declaration ot 
the new design. The outcome of the design verification test is a 

binary decision. In case of the example the processing list contains 

7 elements as does the set D. The designer was right in declaring no 

state variable. 

For further reference this test module is given the alpha­

betic character A. The inputs and outputs of the module are shown 

in Table 4.2.2. The processing list is an optional output in whioh 

the designer will have no direct interest. 

for subsequent analysis modules. 

It is however valuable 



4.3 - WHICH IS 'rHE MINIMAL SET OF STATE VARIABLES OF THE SYSTEM? 

This question is an a l ternative to that of 4.2. It may 

arise simply because the designer finds the part of data preparation 

which concerns the nomination of state var i able s tedious and inoon­

venient; the design of a network will often be spread over a number 

of logic diagrams/and feedbaok loops linking large areas of network 

will be diffioult to find. Module A does looate the designer's failure 

to nominate a comprehensive set of state variables, but offers no help 

in locating the unbroken feedbaok loop. Nor does Module A give any 

indication if the designer errs the other way by overestimating the 

number of state variables. As indicated before, the sample space 

increases very rapidly with the number of st a t e variables and the 

subsequent analysis becomes i nefficient ; of all the tests conducted 

only a fraction will be independent and the rest will contain no 

information. 

The answer to question 4. 3 faoi l itat es the coding of net­

works and, at the same time, prepares the way for subsequent analysis. 

4.3.1 - Teohniques. 

It will now be assumed that the designer does not speoify 

state variables but deecribes the oonneotion to the inputs of eaoh 

objeot from which a homogeneous data struot ure is prepared. Linking 

the output of an object to its own input is now permissible. It ie 

further assumed, as in section 4 . 2, that t he designer presents the 

network at the resolution level of single gates or that a translator 

prepares a homogeneous structure previous to this ana lysia. 

The reduoed struoture matrix is prepared in the usual way 

and elements of the prooessing list identified unt il no further com-

putable variable oan be located. The rows of un- computed variables 

and the columns of the "unknown" part of the r educed structure matrix 

form a "residue matrix" which shows the ga.te s locked in,together with 

the interconnections between theee gat es . This residue matrix is 

alwaye equar e. 
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As an example, the residue matrix of the network of 

Fig 4.2.1, with the output of gate 1 linked to the input of gate 4, 
is shown in Fig. 4.3.1. 

A method is now sought by which the feedback links of a 

network may be identified automatically and in such a way that the 

number of state variables assigned to the network should be the 

minimum. 

With reference to the residual structure matrix, two ques­

tions arise:-

1) Which is the smallest set of column variables to be 

assumed/to allow the completion of the processing list? 

2) How should the network be modified in such a way that 

a state variable be associated with each column variable? 

The second answer is easily found, the state variable 

should be generated by a dummy element which is fed from the assumed 

column variable and whioh feeds all the other gates associated with 

that column variable. 

The first question is more difficult to answer. The method 

proposed here leads to the definition of a set of parameters which 

influence the choice of members of a minimal set of state variables. 

The subject will be discussed in terms of specific examples 

which have been designed or selected to demonstrate the problems in 

question. All the examples will refer to networks whioh form reduoed 

systems (see chapter 2). 

The first observation is negative, the minimal eet oan 

not be found by looking for the feedback loops of the struoture matrix 

because, as the simple example of Fig. 4.3.1 showe, the matrix does 

not permit .distinction between feedback and feed-forward variables. 

Nor ie it generally possible to find the feedback loops by 

identifying their origin with the outputs of the complete network. 

Unless the network i s known to be a Moore machine (see for instance 

(20) ) state variables are not necessarily assooiated with the outputs 



of the network. 

It is proposed that the residue matrix should form the 

basis of the computation of three relevant parameters which determine 

the minimal set. The parameters, associated with column variables, 

will be denoted by D, I and M, respeotively, and will be defined and 

computed as follows: 

D This parameter oounts the number of direotly inter-

dependent pairs of variables of which the variable in question is one. 

Suoh pairs always oontain a state variable and the parameter D helps 

to assume the ones with the largest number of direct inter-dependenoes. 

The direotly inter-dependent pairs are oharaoterised by 

symmetrioally placed tIt entries about the diagonal of the residue matrix. 

One way of computing the D parameter of each variable is to form the 

transpose of the residue matrix and to oount the tIt entries in eaoh 

column which are oommon to the residue and the transpose. 

I This parameter oounts how many variables depend upon 

a given variable, not oounting those with which is is direotly inter­

dependent. Thus I is the sum of the numerals in the oolumn of the 

residue matrix associated with a given variable,less its D parameter. 

M This parameter measures how many variables would 

become immediately computable by assuming only the variable in question. 

To determine M,the sum of the numerals in eaoh row of the residue matrix 

is oomputed and the row(s) with the smallest sum seleoted. The para­

meter M is the sum of the oolumn of numerals in the matrix oonstruoted 

only of such minimally dependent rows. 

The parameters of the variables of the residue matrix in 

Fig. 4.3.2 will now be computed as an example. The rows and oolumns 

are marked by alphabetic characters for convenience. 

Compute D: 

The transpose matrix, with the inter-dependent variables 

ringed: 



Compute I: 

Compute M. 

0 1 1 0 0 0 1 0 

0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 

1 G) 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 CD 0 

0 0 0 0 0 CD 0 1 

0 0 0 0 1 0 0 0 

The D - parameter of eaoh column variable therefore. 

= 0 

= 1 

I = p 3 
I -Q - IU = 0 

IR = IT = Iw = IX = 1 

I -S - 2 

The sum of numerals in each row. 

Lx = Lp = LR = lu 

~ = Ls = LT = 2 

{"" = 3 '-w 

= 1 

The minimally dependent rows. 

P Q R S T 

P 0 0 0 1 0 

R 1 0 0 0 0 

U 0 0 0 0 0 

X 0 0 0 0 0 

Henoe, MQ = ~ = MT = 
Mp = MS = 1 

MW - 2 

U 

0 

0 

0 

0 

MU 

W X 

0 0 

0 0 

1 0 

1 0 

= MX = 0, 



Defining the sum of the three parameters as a figure of 

merit, the minimal set of state variables may be sought by assuming 

the variable with the highest figure of merit, reducing the residue 

matrix if possible. If no variables are processable, the variable 

with the next highest figure of merit is assumed, etc. 

An alternative method assigns priorities to the three 

parameters in the order of D, I and M. Considering D first, obviously 

one variable of a direotly interdependent pair must always be assumed 

before the processing list can be completed,and it is most advantageous 

to assume the variable with the highest number of interdependenoes. 

Based upon the residue matrix and its transpose, pairs of directly 

interdependent variables are located and the variable in each pair 

with the highest D parameter assumed. After this, the residue matrix 

ie searched for computable variables as before. 

In oase of equal D - parameters the ohoice of the assumed 

variable depends upon the highest I parameter, or, in case of equal I, 

the higheet M parameter of the two variables within a pair. If all 

three parameters of the pair are equal, the selection is random. 

Following this procedure in the caee of the example of 

Fig. 4.).2}the directly interdependent pairs are Q - S and U - w. 
Since the D - parameter of variables within pairs are the same, based 

upon parameter I, of the first pair S is selected and of the second W. 

The procedure is then as fo11owel-

1) remove the column of aseumed variables from 

the residue matrix. 

2) search for empty rows. Remove the columns 

of variables to whioh empty rows correspond. 

Add these variables to the processing list. 

3) repeat this procedure until no further 

reduction is possible. 

I 4) prepare a new residue matrix by deleting the 

rows to which no column corresponds. Then 

prepare the parameters of the new residue 

matrix and repeat the procedure of determining 

the variables to be assumed. 



5) kepeat the procedure of preparation of new 

residue matrices until all variables beoome 

computable. 

6) The prooessing list can now be completed by 

examining the partial list whioh was oom­

piled before the residue matrix was found, 

against the list of assumed variables, and 

adding those to the partial prooessing list 

which are not yet inoluded. These variables 

will desoribe the next state of the network 

upon the assumption of its present state. 

To distinguish between the two, the assumed 

variables are given a suffix "s" marking them 

as state variables. 

The procedure is now demonstrated here, in terms ot the 

previous examples-

The assigned (state) variables, ae seen, are Ss and Ws. 

Removing columns Wand S trom the residue matrix,the empty rows are 

P, U and X. Now removing columns P, U and X; rows Q, Rand T beoome 

empty. Removing their columns,W and S are empty and the process 

terminates. The Processing list is therefore; P, U, X, Q, R, T, W, S. 

The network has thus been prooessed with the aid of 1!£ state variables. 

Since there are two separate and direotly dependent variable pairs, 

the set is minimal. 

The value of the procedure will now be demonstrated by 

showing that alternative choices of assumed variables result in the 

same or higher number of e.tate variables. 

Selecting the other two members of direotly inter-dependent 

pairs, Q and U will be assumed. Removing their oolumns from the 

residue matrix no rows become empty and the new residue matrix is 

shown on Fig; 4.3.3. 

It is now possible to make unfortunate assumptions,suoh 8S 

variables X and T,which still do not result in a complete prooessing 

list, rendering only W computable. The oomplete set oontains no 
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le ss than five stat e variables in s tead of the minimum of two. 

An a lterna tive selection, based entirely on figure of 

merit favours vari ables P, S and W equally. The unfortunate random 

choice of P re sult s in a Bet of three state variables t beoause the 

two directly interde pendent pa irs must subsequently yield two state 

variables. 

Th e method of selecting the minimal set upon the basis of 

priorities i s not generally proven, but it has been found to suoceed 

in all oases BO f ar . 

4.3.2 The test module B. 

As in case of Module A, t he proposed design takes the 

form of a set of declarations where eaoh member of the set concerns 

a different object and li s ts all those object identifiers to which the 

inputs of the deolared obj e ct are connected . 

No r eference is required to environmental conditions. The 

module provides information about the system which can only be used 

for design verification if the designer had a notion of the expected 

number of state variables. 'l'he module output may oontain I 

a) A li s t of assumed variables 

b) The number of assumed variables 

c) The deolaration of the network, containing 

the state variables located by Module B. 

?fuile the designer may use a ) or b), it is considered that 

c) is only necessary as the input to a subsequent analysis module. 

The inputs and out puts of the module are shown on Table 4.3.1. 

The processing li s t i s shown as an output option. 

4.4 CAN 'rIm PROPCJSED DESIGN B.8 CONVERTED 
INTO A HOMOGENEOUS STRUCTURE? 

The question implies that the designer used a low resolu­

tion level when declaring hi s system. An automatic test ie now 

required to ascertain if sufficient information is available to describe 

th9'" 



system gate by single gate. 

functions:-

The test module is to perform two 

a) notify the designer if the homogeneous structure 

can not be compiled. 

b) compile the structure if possible and make the 

data available to other modules. 

Techniques. 

To answer question 4.4 it is now necessary to describe the 

system in more detail than that required by modules A and BJ in 

addition to information about the oonnections between system objeots, 

the funotion performed by these objeots must also be specified. The 

new information is termed the funotion parameter. 

At the highest level of resolution used in this work system 

objeots may have a funotion parameter seleoted from this list. 

mD ) 
OR ~ 
NA~D 

l 

high-level funotion 

NOR parameter list. 

INPUT ) 
OUTPUT (optional) ) 

) 
STAT~ VARIABLE ) 

If any part of the proposed design is deolared by the 

designer at a lower level of resolution,then it is the designer ' s 

responsibility to assign to eaoh different type of system objeot an 

individual funotion parameter. Such parameters are subjeot to the 

syntactioal rules defined by the mode of programming implementation. 

The designer may wish to oonstruot sub-systems for the 

purpose of a single design verification. Alternatively, he may wish 

to retain a sub-system, under its own funotion parameter, for further 

referenoe . For instanoe, hardware modules used repeatedly would 

conveniently be deolared under a funotion parameter. Thus the designer 

would gradually acoumulate a funotion parameter list containing sub­

system parameters as well as the parameters of the low-level list. 



The sub networks at a lower level of resolution are 

gener a lly multiple-input, multiple-output devices. The example of 

Fi g. 4.4.1 shows such Q s imple sub-network. Without its souroe and 

output objeots the network consi s ts of three gates. In additiori to 

the cus tomary structural information the gate declarations will now 

contain function par ameters selected from the high-level list, 

( 42 AND 10 20 ) ... 
( 41 NOR 20 

( 43 OR 10 41 30 ) 

Let these t hree gates be re~~e~d by the funotion parameter 

TRIO and let TRIO be an object of another system called SUPER. When 

attempting to compile the reduced struoture matrix of SUPER, TRIO will 

be found a misfit for two reasons; it has more than one output and 

ite inputs are not interchangeable. Consequently TRIO must be 

deolared in suffioient detail to permit its use in the non-reduoed 

structure matrix of SUPBR; INPUT and OUTPUT objeots assooiated with 

TRIO mu s t be identified with serial numbers. The full declaration 

of TRIO will therefore be as followss-

( 10 INPUT 1 ) 

( 20 INPUT 2 ) 

( 30 INPUT 3 ) 

( 41 NOR 20 ) 

( 42 AND 10 20 ) 

( 43 OR 10 41 30 ) 

( 51 OUTPUT 1 42 ) 

( 52 OUTPUT 2 43 ) 

The IN PUT and OUTPUT objects are auxiliary and should be 

di scarded after TRIO is placed in SUPER, that is, when the homogeneous 

structure of SUPER is compiled and a reduced struoture matrix is 

available. The first reference of an OUTPUT object is a serial 

number; the second is the indication of the object identifier connected 

to the OU'rpUT. 

Let the oonstruotion of the homogeneous structure of a 
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network be demonstrated on another example, taken from the internal 

research report "The Kingston Logic Simulator ll compiled by D.R. Holmes 

in 1969. The design of the network 'eIR 3' ie to be verified. The 

network is shown on Fig 4.4.2 and its declaration is given in Table 

4.4.1. 

\fuen the declaration of ' eIR3' is received then the function 

parameter of each object is ohecked against the list. If 'CIR2 ' is 

not found on the list then an error message is produced, indioating 

that the answer to question 4.4 is NO. 

If 'CIR2 ' is found on the list then its declaration is 

checked against that of 'eIR) ' to see if these are oompatible. 

Let 'CIH2 ' be the network deolared in Table 4.4.2. 

The referenoe to all objeots named 'CIR2' on Table 4.4.1 

indioates that 'CIR2' has three inputs. The declaration of 'CIR2' 

on Table 4.4.2 also shows three inputs, indicating compatibility of 

inputs . 

Table 4.4.1 demands two outputs of each of the four objects 

whose function parameter is 'CIR2' . Table 4.4.2 shows that two out­

puts are in fact available, thus the outputs are compatible. 

Thus 'CIR3 ' is an acceptable network in terms of 'CIR2'. 

Now 'CIR2' itself mUst be examined. 

The funotion parameters show the non-standard object 'CIRl'. 

If this is found on the list then again a compatibility check is 

neoessary. 

Let the declaration of 'C IR1' be given on Table 4.4.3. 

Comparison with Table 4.4.2 shows input and output compatibility. 

Furthermore, 'CIRl' is composed entirely of standard objects. Thus 

a homogeneous structure of 'CIR3' may be prepared - the answer to 

question 4.4 is YES. This structure oontains 52 gate objects. 

'CIRl' oontains 3, 

'CIR2' contains 4 plus 3 x 'eIR3' J a total of 1), 

'CIR3' oontains 4 x 'CIR2 ' ; a total of 4 x 13 : 52. 



The homogeneous structure of 'eIR)' can now be made avail­

able by a sequence of substitutions. The data may be putput if the 

designer wishes; more usefully this data may be available for further 

analysis. 

For the sake of completeness the networks of 'CIR2 ' and 

'eIR1' are shown on figures 4.4.) and 4.4.4, respectively . The com­

plete network of 'eIR3 ' is a four-bit adder. 

Linked outputs. 

The introduction of function parameters permits designers 

to handle a type of network which has thus far, by implication, been 

inaccessible for verification modules. Networks whose objeot outputs 

are directly connected can not be handled by structure matrices and 

can therefore not be given meaningful object declarations. 

As an example, consider the simple network of Fig. 4.4.5. 

The declaration of objects 61 and 62 are straightforward. 

The declaration of 63 is problematic. The version (63 OR 61 62) 

implies an OR gate of two inputs and the logical connection 

63 = 61 + 62. 
However, the gate 6) has only one input and its output depends upon 

some detail about the hardware of gates 61 and 62 which is not avail­

able to the designer at this level of resolution. 

The problem may be approached in two ways: 

1) by increasing the resolution level beyond the 

level of a single gate. This would reveal the 

mechanism used by the hardware to eliminate the 

ambiguity between the conflicting signals of 

gates 61 and 62. 

2) by introducing some artificial device at the 

selected level of resolution which would have 

the same terminal performance as the junction 

of the outputs. 

The first of these approaches iB unattractive; increasing 



the resolution level beyond that of a single gate renders the network 

non-logical. The operation of suoh a network would have to be 

examined with reference to nori-linear sUb-system models. 

The second method is simple but oan not be automated; it 

demands that the designer should insert a dummy gate at the junction 

of the outputs and assigns to it one of two logioal funotions. If, 

at the junotion, logical '1' has priority then the output of the du~my 

gate is '11 due to any of the join/ed outputs being at III and the 

dummy performs an OR function. If, at the junction, priority is 

given to logioal '0' then the output of the junotion oan only be III 

if all of the joined outputs are at 11', therefore the dummy should 

be an AND gate. The designer must add the dummy at ooding and assign 

to it the appropriate function by examining the priority. 

This is the method recommended here. 

To illustrate the method it will now be assumed that the 

jOined outputs of Fig. 4.4.5 aot as a wired OR gate. Assigning the 

identifier 164' to the dummy gate, the deolaration of the network i8 

as followss-

( 61 ~D 10 20 ) 
( 62 ~D 30 40 ) 
( 64 OR 61 62) 
( 63 OR 64 ) 

The test module C. 

The proposed design is presented onoe more as a series of 

declarations containing structural and functional desoriptions. 

No reference is needed to environmental data. The behaviour 

speoifications are implied; aoceptable designs consist of oompatible 

and recognised objects which lend themselves to translation into 

homogeneous struotures. 

The output is a YES - NO answer to the question 4.4. In 

addition, the homogeneous struoture is to be made available. 

With reference to the input requirements of modules A and 

B it will be seen that the output of module C oontains all the necessary 



data in the required form. Module C also generates data concerning 

funotion parameters; this data is redundant so far as modules A and 

B are concerned. Thus, if module C is to act as a translatoi for 

A and B, function parameters are first to be omitted or just ignored. 

The module inputs/outputs are shown on Table 4.4.4. 

4.5 ARE ANY OF THE OBJECTS OF THE SYSTEM MISUSED 
OR OVERLOADE D? 

The question seeks to locate design errors due to two 

reasons:-

1) the fan - in restrictions are violated. 

2 ) the fan - out restrictions are violated. 

It will be assumed that errors are systematio and not due 

to faulty coding of otherwise correct networks. For the sake of 

clarity of these discussions it will also be assumed that the proposed 

design is presented in homogeneous form. This latter assumption may 

be removed without altering the validity of the disoussion or of the 

test. 

The test module D. 

The objects of the proposed system must now be described 

in detail beyond that demanded by earlier tests. Each object must 

carry three additional parameters, collectively termed "load parameters"s 

a ) Fan - in. This is an integral numeral indicating 

the number of input terminals the object has. 

The number of input references in the objeot 

declaration will, in case of correct design, be 

smaller or equal to Fan - in. 

b) Load. This is a real numeral indicating, in 

some seleoted unit, the maximum load demanded by 

any of the inputs of the declared object. 

c) Capaoity. This is a real numeral indicating 

the ability of the declared object to supply load 

to other objects, connected to its output. 

Capacity is expressed as a num~eral referring 

to the same unit as Load. 
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The techniques applied by the test module are trivial, 

consisting of arithmetic operations and comparisons. 

The output is diagnostic, specifying the erroneous object 

and classifying the error as "FAN-IN" or "OVERLOAD". 

4.5.l. 

4.5.2 

The inputs and outputs of the module are shown in Table 

Comments. 

In case of wired logic (linked outputs, section 4.4.2) due 

care must be exercised when specifying the load parameters of the 

dummy element. Current hardware practice implies a limit upon the 

fan-in and upon the capacity of the dummy gate. These two parameters 

are usually inter-related and speoified in terms of each other by the 

manufacturer. The load represented by the dummy gate may be con­

sidered zero since the wired junotion oommands all of the output 

current of the linked gatea . 

Another remark is appropriate. The fan-out oapaoity of 

several types of hardware in present use is a function of the distanoe 

between connected objeots. Module D has no faoility for aooommodating 

such and other non-oonstant load parameters. The extension of the 

module would assign to eaoh object a sub-routine which oaloulates the 

load parameters on the basis of a selected set of variables. In the 

absence of reliable information about hardware, suoh a faoility oould 

not be put to efficient use; thus, at the present time, module D is 

thought best served by a set of constant load parameters. 

4.6 IS THE S'rEADY-STATE RESPONSE OF THE COMBINATIONAL 
NETWORK CORRECT? 

The question implies that the design under verifioatio~ 

has been proven by an earlier module (A or B) to be combinational. 

It also implies that the correot behaviour is described in some 

specifications to which reference oan be made at the time of assessment. 

Since the behaviour specifioations are normally given with referenoe 

to environmental signals, analysis should also be conduoted with 

referenoe to these signals. 



Supposing now that structural and functional information 

is available about the proposed system and its object, ~he question 

is now whether this information is adequate as a basis for answering 

question 4.6, or is some other detail such as time parameter of 

objects, necessary. 

4.6.1 Techniques and concepts. 

In the literature . combinational networks are customarily 

described as realisations of propositional functions. This descrip­

tion is, strictly speaking, only valid if the delay of all network 

objects is zero. Obviously this is never true in practice. On the 

other hand, when the steady-state response is required then it is 

assumed that the inputs have been held constant since t • - ~and the 

outputs are propos1tionally related to these at any finite value of t. 

Consequently the object delays are irrelevant to the calculation of 

the steady-state response. 

Inputs. 

It was discussed in chapter 2 that enVironmental signals 

fall into two classes; physical and operating signals. If it can 

be assumed that the admissible range of physical signals is controlled 

in such a way that no gate fails to perform its prescribed Boolea~ 

function then the physical signals can only influence the length of 

the time delay of system objects which in any case have no relavance 

to the steady-state reeponse. Thus the analysis consists of finding 

the mapping of operating signals u into outputs Z by a system which 

has no states. 

Let the design under verification be a network with ~ 

operating signals. The highest resolution level - that of a single 

gate - implies an n - dimensional sample spaoe with a binary ohoioe 

in each dimension. 

The sample space in three dimensions (i.e. the sample space 

of a three-input network) is shown in Fig. 4.6.1. Points oonneoted 

by an edge of the cube are unit distance apart and are o~bit different 

in their code ( see , for instance, (18) ). 
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The "designation numbers" devised by Ledley ~ map this 

space into a binary matrix with a row assigned to each operating 

(input) signal and a column to each point in the spaoe. The designa­

tion number for each of the three variables is shown in Eq. 4.6.1. 
where dUi is to be read "the designation number of U~. 

It will be noted that the adjacency between points repre­

senting unit-distance codes is lost; nor is it considered worthwhile 

to transcribe the designation number equation to Gray-code form since 

such a code preserves the adjacency in two dimensions only. 

The concept of designation numbers has led to the automatic 

scanning of the sample space. A designation number can conveniently 

be handled by digital computers in one of two ways: in the form of 

an array of words, each word representing a binary digit of the array, 

or in the form of an array of bits within a computer word, each bit 

representing a bit of the array. The latter solution is obviously 

advantageous and holds the potential of increase in the efficiency of 

computation by a factor equalling the number of bits in the computer 

word. This bit-handling method is adopted here. 

The length of the designation number array is an exponential 

function of the number of operating signals and array lengths exceed 

the word length for all but trivial networks. To acoommodate arraya 

which contain more bits than the word-length W, "multi-words" are 

formed of length of P.W bits, where P is the smallest positive integer 

for which P.W . '>/ 2n. 

Designation number arrays of operating signals have regular 
i-I patterns; the input variable Ui has 2 number of 'O'-s followed 

by the same Dumber of 'l'-s,with this sequence repeating to a length 

of 2n bits, for a total of n inputs. If the network ia subsequently 

extended to have an additional input, all the deSignation number arrays 

must be increased to a compatible size of 2n~1 bits. 

The automatic generation of inputs by the use of designation 

number arrays 1s implemented by a program package ISOPACK (21) which 

also provides manipulation and storage routines for the handling of 

such arrays. ISOPACK assigns the lowest order array to the source 
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object carrying the lowest serial number; thus the source objeot 10 

of Fig. 4.6.2 would be declared as 

(10 INPUT 1) 

and its designation number would be a 21- 1 bit sequenoe of 'O's 

followed by the same number of 'l's (see Table 4.6.1). 

will be declared as 

(20 INPUT 2) 

The next input 

and its array would consiat of a 22-1 bit sequenoe of 'O's and 'l's, 

etc. 

Since many networks operate in an environment which is 

restricted to specified areas of the sample space, it was found 

advantageous to permit the automatic generation of all-zero and all­

onA designation numbers of inputs as well as the use of input 

patterns designated by the designer. The input declarations 

( 10 INPUT 1 FIXED ~ ) 
( 20 INPUT 2 0001 ) 

( 30 INPUT 3 ) 

will assign the patterns 

d 10 = 0000 

d 20 - 0001 

d 30 0101 

to source objeots 10, 20 and 30 respeotively. The length of the 

patterns is fixed by the highest demandJ here the speoified pattern 

of source object 20 sets the length to 4 bits, the other two demand 

shorter lengths but conform to that of the highest demand. 

Analysis. 

Having found. a solution to the generation of input signals, 

analysis may now commenoe. This would. merely consist of the computa-

tion of object outputs as Boolean funotions of objeot inputs. The 

computation must be made in an order in which objeot inputs beoome 

computable. It. is opportune to utilise the Processing List which was 

generated as optional output of module A or B. 

A simple example i8 shown on Fig. 4.6.2. The prooessing 

sequenoe is not unique but m., be, say, (1, 2, 3, 4). The designation 
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number array of object outputs is shown, together with inputs, on 

Table 4.6.1. The manipulation routines of ISOPACK permit the simulta­

neous (PARALLEL) calculation of up to W number of bits of each designa­

tion number array for a machine of W number of bits per word. 

The analysis is thus very simple; a problem ie presented 

by the size of arrays of networks with large number of inputs. Now 

multi-words consist of several words (p is large) and while one word 

of the multi-word is actively manipulated, (P-l) words of eaoh array 

need storage. To overcome this problem a procedure is added which 

estimates the storage demand of a given analysis. If this demand 

proves excessive for the available storage capaoity then the length 

of multi-words is halved; the procedure is repeated until the 

estimated demand is met. This mode of analysis is termed SERIES­

PARALLEL, by contrast to the fully PARALLEL mode when all P words are 

simultaneously accepted. In series-parallel mode som8 of the high-

order input arrays are not accommodated, hence only a fraction of 

the sample space is covered by the analysis; thus several runs of 

analysis are needed, one after the other (in series) to permit 

comprehensive analysis. The method is described in detail in ref.(32). 

The output of the analysis is the designation number array 

of the system output or . outputs. The printout of these arrays , . 

together with the input arrays serving as reference, is an option 

designers may demand. This truth table needs assessment against 

behaviour speCifications in orde{to give an answer to question 4.6. 
Specifications and Assessment. 

The behaviour specifications may be presented in several 

forms of which three is considered here.-

a) a standard network is specified whose output 

ie known to be correct. 

b) the desired behaviour is given in the form of 

Boolean equations. 

c) Same is given in a truth table. 

Since the analysie of the proposed design results in a 

truth table, it is neoessary to bring the speoifications in the same 
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form. In the case of a ), the standard network is analysed in the 

same way as the network under test. 

In the case of b~ symbolic manipulation routines are 

neoessary to interpret the equations whioh may be given in a nested 

form. When a homogeneous struoture of equations is found then inputs 

are made to assume the array patterns as before and the outputs are 

computed by the stack manipulation routines of ISOPACK. 

Case c) is trivial. 

The manipulation of the specifications, bringing them to 

truth table form, i s the main part of Assessment, the process is oon­

cluded by a comparison between appropriate arrays, faoilitated onoe 

again by ISOPACK. 

4.6.2 - The test module E. 

The proposed design is presented as a series of deolarations 

oontaining information about structure and funotion parameters. 

Auxiliary input is required in the form of the Prooessing 

List (module A or B). This means that module E is not self-sutfioient 

and can only be operated subsequently to A or B. 

Environmentai data may be optionally given, desoribing the 

restrictions of the sample space. In the absence of such data the 

space is fully and automatically covered. 

Behaviour data is to be presented in one of three standard 

torme. 

The output is either an implied YES or a sequenoe of 

truth table entries indicating those input conditions whioh have led 

to error. 

The module inputs/outputs are shown on Table 4.6.2. 

4.7 ARE OUTPUTS OF THE COMBINATIONAL NETWORK 
S~BJECT TO TRANSIENT SPIKES? 

Combinational networks of n inputs are, by definition, 

operating in n-dimensional spaoe, having no state variables at the 

selected level of resolution. If they should now be resolved to a 



l evel higher than th clt of a s ingl e ga t e , the model of the network 

would contain numerous reactive objects, indicating the presence of 

several state variable s . The effect of these state variables is 

observable under trun~ i ent conditions a t the level of single gates. 

The transient behaviour of combinational ne tworks form s the subject of 

thi s secti.on . 

Concepts and definitions . 

The combina tional network will be defined here to exist in 

a stable state if the input s and out put s of each of its objects are 

proposit1onally r e l a t ed . Such a state is therefore charaoterised by 

valid Boolean r elationsh ips betwe en inputs and outputs of all objects 

of the net work. 

Let a network be composed of a finite number of ob.iects. 

Let each object have a f init e but un-specified time delay associated 

with it . Let the system now rest in a s t ab le state Y up to and at 
o 

a time t , to which a set of input s u and outputs 6 correspond. If 
o 0 0 

th e inputs now change at to to u , then the system will be in some 

logica lly inconsist ent s tate for a finite but unspecified period ~ 

until a time \ = ( to + 't') when a new stable state Y1 is reached 

to which the logica lly cons istent inputs u1 and outputs gl belong. 

In the period of "'t the network i s said to be in an unstable state Yt. 

In fact , Y~ is not a s ingle state but an infinite state sequence as 

dictated by the reactive objects of an inaccessible high resolution 

level . 

Let Dk be the kth object of t he syst em at the resolution 

l evel of single gates . Let the state of the out puts of Dk be given 

a t the stable states Yo and YI as Dko anrl Dkl respectively. It will 

be observed that, since Dk is a gate, it may only have a single output , 

hence Dko and Dkl are characterised by a s ingle bit each. If Dko ~ 

Dkl then during the change of Uo to U t llk is said 10 be static; 

otharwisA D is dynamic. 
/\. 

If it were possible to m' nufacture hardware with delay-free 

gates then Yt would not exist . In this case if Dk would be static , 
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its output would not change at all; if Dk would be dynamic, its output 

would undergo a single change. 

Due to finite-delay hardware, Dk transfers from Dko to Dk1 

in the time interval of ~jpassing through a sequence of transient states. 

Since the object is certain to reach the state of Dkt at the time t l , 

in the course of ~ it may either undergo no change of output and will 

be said to be free of hazard or else undergo an even number of Changes 

of output and will be said to be hazardous. 

The above discussion uses acoepted terminology but gives, 

it is thought, more meaningful definitions. It will be useful to 

mention here that it is customary in the literature to distinguish be­

tween static and dynamic hazards, '1' and 'Q' hazards and single-and 

multiple hazards as shown on Fig. 4.7.1. These distinotions have been 

found unnecessary in the course of this work; the cause of single 

static hazards has been found to be always the same and they can be 

detected without reference to polarity. 

Dynamic or multiple static hazards on the other hand are 

the consequence of single static hazard spikes existing in the system, 

deteoting and oorrecting the latter will eliminate the former, whioh 

are therefore of no concern to the designer. 

Techniques, further concepts and definitions. 

It will be assumed throughout this seotion, as indeed 

throughout this work, that systems under test operate in fundamental 

mode (see, for instance, (18». This means that a change of operat­

ing signals is only permitted if the system has reached a steady state 

in response to the previous change. The need for such an assumption 

arises in the context of question 4.7 when examining the sample space 

of operating signals. If fundamental mode can not be assumed then 

it becomes necessary to include the state spaoe of transient response 

in the dimensions of the sample space whose size is already embarras­

sing. The state space could not easily be described in the choeen 

resolution level and the problematic sample space would obsoure rather 

than illuminate the system behaviour. 
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'rho ne"Xt a ~p.umption in tha t the behaviour should be 

observed with reference to operating signals. This assumption may, 

in fact, be abandoned by developing analysis techniques based upon the 

observa tion of topology and function parameters (see FURTHER DEVBLOP­

~:EN 'lIS) • 

'fhe sample space 0 f an n-input cor!lld.national network 

contains 2n number of points . Ji.dding the dimension of "transient 

space", it must now be considered ·that, for comprehensive testing, 

the system must be analysed under transit from each point to each of 

the others. The total numb er of transient tests is thus 2n .(2n - 1) _ 

too large in all cases of interest. 

One way of restricting the sample space without prejudicing 

reliability to a great extent, is to eliminate those tests which refer 

to events of low probability. To find such events, attention was given 

to the way in which the system is expeoted to operate in real life. 

The logical decisions made by combinational networks are 

used to oontrol some other system. If the time constant of the con-

trolled system is so small that it may react to output transients then 

thp. designer may choose to use a clocking device which inhibits the 

output until the transient is over - if suoh a clook is available. 

Thus clocked ( synchronous) systems usually cause no anxiety on acoount 

of their transient behaviour. 

If the system is unclocked (asynchronous) then the time of 

the occurrenoe of events is stochastically determined, depending upon 

the time delays of earlier parts of the system . In this case the 

change of operating signals is also stochastic and the probability of 

two signals changing simultaneously is zero. Thus the sample space 

may, without much loss of reliability, be restricted to unit-distanoe 

(single-input) changes. Due to a change in each of n input variables, 

a transition may oocur from each of 2n points of the sample space; 

the total number of tests needed for comprehensive testing under single-

input-change conditions is n x 2n. 'rhroughout this section tests 

will be conducted under such conditions. 



Let thn hoo l l-' un function Telutin r, thp input!-l V
k 

of the sYRtem 

obj ect Dk to the output, also denoted by l>k' be gi ven as 

- Hk (Vk ) ••••••• Eq . 4.7.1. 

TIy the definition of the high-level function parameter list of section 

4.4.1. the function li l is selected from the list 0 , AND, NOR, Ni D. 
K. 

Since inputs and outputs of all the gates of the system are conneoted 

by such equations as i q . 4.7.1, n will be connected to the system 
K 

inputs u by a complex combination of hoolean connectives C
k 

S 

= Ck (u) •••••••• Eq. 4.7.2. 
( 

where u • ( Ul ' U2 ' • U ) for n inputs. 
n ) 

and 

The partial difference of Dk under U
j 

will be denoted as 

will be defined as tile function 

II Dk 

b. Uj 

(U .) 
.1 

. . . . Eq. 4.7.3. 

which is obtained by setting all the input variables of u to Boolean 

constants of either ' 1 ' or ' 0 ' , with the exception of U
j

• Since the 

remaining (n-1) input variables have 2n- l different combinations of 

values, the partial difference of D, under U. is not unique, i.e. 
t:. J 

Eq uation 4.7 . 3. may have several forms. Should any of these forms 

be reducible, by normal TIoolean algebraic manipulations, to one of 

the forms of Sq. 4.7.4 or 4.7 . 5, then the object Dk will be said to 

be hazardous under U j. 

A Dk 

A uj 

A Dk 

f1 uj 

= U. 
J 

l.!)q. + 

•.... . Bq. 4.7.5 



If Bk was an OR or NAND function t hen the hazard will show in 

the form of Equation 4 . 7.4 . If it was AND or NOh then the hazard 

takes the form of Equation 4.7 .5. 

These equat i ons (without the use of the concept of partial dif­

fer Ance) ~re the basi s of hazard detection as used by gissos and others 

(see for instance, (19) ) . 

An example is shown in Fi g . 4.7.2 . 

For this net work - D3 ~ Ulo U2 + U2 + U3 and the Boolean con­

nective of D3 is OR . 

The partial difference of D3 under U2 will now be sought . This 

will bave four potentially different versions as shown on Table 4.7.1. 

The third row of the table indicates t he hazard .under U2 in the 

form of Equa t ion 4.7. 4. 

The test module F. 

It is now possible to devise a test module which produces the 

answer to question 4.7. 

The inputs to the test module consist of s t r uctural and func­

tional information about the system 01jects in the same for mat as tha~ 

of module B. In addition , as in the case of E, t he proce s sing list 

is required ; thus thi s module relies upon modul e A or B for s ome bf 

its inputs . 

Analysis cons ists of converting the gate dec l ar a t i ons , which 

give equation 4.7.1 of each gate , into the form of eq uation 4.7.2 by 

the use of symbolic manipulation routines . Next , each of the 2 n~ 

partial diff erences for each of the n variab l es (a tot a l of n x 2n- l 

cal culations ) are formed for eaoh of p number of obj ect s of the network , 

and manipulated by t he same r out ines as above until no further simpli­

fi cation is possible . 

Assessment is conducted wi t h reference to the error equations 
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of 4.7.4 and 4.7.5. n-l 
~ach of the p x n x 2 equations must now be 

compared with the app~opriate error equation. Since the error equa-

tion3 are of standar d format, no behaviour specifications need be 

given. 

The output i s diagnostic , consisting of a list of hazardous 

gates. Two options are possible : nominating the operating signal ( s) 

under which the faulty gates are hazardous, or else nominating the 

particul ar combination(s) of constant operating signals which lead to 

ha zard under the jth input. 

Table 4.7.2. shows the inpu t s /out puts of module F . 

4.7.4. Alternative technigues. 

The mode of analysis used by Test F was, basioally, analytic 

testing because it was built on symbolic manipulation . As an alter­

native, numerical testing may be used to detect hazards. The method 

was suggested by gissoe (19) and is the foundation of the test module G. 

The error equation s of 4.7.4 and 4.7.5 imply that under hazard 

condition s two of the inputs undergo opposite polarity changes while 

all other inputs ar e ineffective in eliminating the hazard pulse. 

Thus the hazardous gate may be found by scanning all of the p number 

of object s of the system under each of n single-variable transitions 

and starting from each of 2n stable states, observing if any pair of . 

object inputs are liab le to opposite-polarity change. Should such 

a pair be found then the object is potentially hazardous. If there 

are no input signals which would be effective in blanking out the 

spike then the object is hazardous and should be reported to the 

designer. 

Examination of this procedure r eveals that comprehensive testing 

is accomplished in n x 2n- l carefully selected tests because it is 

sufficient to examine one of two poss ible polarities of change for 

each input variable. 

The procedure will now be demonstrated on the example of Fig. 



10, 20 clnd ) 0 ar e source object s ; gates 42 and 43 represent 

AND fu nctions; 44 i s an OR gate and 41 i s an inverter (NOR). 

(fh e s teady-s t at e r esponse of t he net work i s found by Module E. 
I 

It i s t ablulited on 'rabl e 4.1.)., wher e rows ar e numbered for reference. 

n 
St arting from ea ch of the 2 = 8 possible s teady-state conditions, 

n = 3 s ingl e -variabl e changes ar e pos s i bl e , a s shown on Table 4.7.4. 

It i s poss ible to ha lve thi s number of t e st s by permitting One 

of the t wo pos sibl e pol arities of transitions . The choice of polarity 

i s arbitrary. Electing her e to transf er from a lower to a higher 

refer ence stat e , th p li Rt of nece ssary te s t s i s shown on Table 4.1.5. 

Table 4.1.6 shows the output of each gate in response to these 

input changes. Each column give s the logical sta te of the gate 

output before and aft er the input transition. The head of each 

column indicates the trans ition from one input condition to another. 

Arrows are rever s ible , indicating that the polarity of the change 

is immaterial. 

The gates of interest are those of more than one input, since 

these are t he only ones open to hazard. In thi s network there are 

only three: 42, 43 and 44. The in ~ut s to these ga t e s are now 

examine d , with the a id of Table 4.7.6, for opposite-polarity changes. 

The only static hazard of the net work may arise a t the input of gate 

44, at the transition of 6 ~ 7, a s ringed on Table 4.1.6. Gate 44 

i s therefore entered in a provi s ional error list. A further test is 

now re~uired to detect the presence of blanking signals which would 

inhibit the hazard spike. These s i gnal s maintain a steady level 

throu ghout the hazardou s trunaition such that the hazard spike does 

not propagate. Such blanking s ignal s may be applied at the hazardou!o 

gate or at some other ga te to which the hazard spike propagates. 

Since scanning the whole of the network for possible blanking signals 

is jud ged to raise exces s ive demands of computing time and spaoe, an 

error is re ported in t erms of the signa l s of a given object, even if 

the hazard is subsequently elminated by blanking signal. 
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The technique of de tecting blanking signals at the i nput of 

a potentially ha zardous gate is based upon the observation that 'OR' 

and ' NOR ' gates demand a constant signal at logical '1' which would 

keep t he gat e out put steady during the hazardous transition; 'AND' 

and ' N~~ D ' gates need a constant signal at logical ' 0 ' for the same 

reason. Since the output of the hazardous gate is, under steady-state 

condi tions, static, the blanking signals are logically redundant. 

The transient-error-free redundant version of the network of Fig. 4.7.3 
is shown on Fig . 4.7.4. The blanking signal is generated on gate 45. 

4.7· 5 The te s t module G. 

The test is base d upon numerical methods . 

Inputs consist of t he truth table generated by module E, 

plu s the processing list. 

Analysis compiles the n x 2n- l 
single-variable transitions 

for each of the p objects of the system. 

Assessment consists of two parts . First opposite-polarity 

in put pairs are located, resulting in the diagnosis of potentially 

hazardous gates . Next, the r emaining inputs of Buch gates are searched 

for effective bl anking signals . Assessment is thus based on general-

isations, requiring no behavi6ur specifications. 

Outputs list hazardous gates with the same options as module F. 

Table 4.7.7 shows inputs/outputs. 

4.8 IS TH ~ STEADY-STATE RESPONSE OF THE SEQUENTIAL 
NETWORK CORRECT? 

It will be assumed that the proposed design i s a sequential 

network under the definition given in 4.21- at the resolution level of 

single gates the ne twork will contain feedback . It will be further 

assumed that the network is declared in terms of an adequate set of 

state variables (by the use of module A, module B or otherwise). In 

order to make the question 4.8 meaningful, it must also be assumed that 

the desired behaviour of the system i s known to the designer in terms 

of the same set of state variables . 

A technique is now sought to permit the assessment of the 
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response of the new oe s ign without reference to externally specified 

operating signals or to time delays of system objects. 

Technique. 

Let the network have n inputs and m state variables. Then, 

under steady-state conditions, the saml1le space has (n + m)dimensions 

an ,l 2n+m b f 't unum er 0 po~n s. 

The mapping of inputs and state variables into outputs and 

the next value of state variables is given by the system equations of 

Chapter 2, if the operators G and H are interpreted as Boolean operators 

and the input can be considered consta.nt over the time segment (to' \). 

= G (u (tl ), s (to) ) 

= H (u (t , t
l
), s (t ) ) 

o 0 
Eq. 4.8.1. 

It will now be decided to search for a numerical test method. 

Analysis could then consist of compiling the system equations in a 

table. A convenient format is proposed to be a DIRECTORY which 

combines the information of state tables and output tables (for instance, 

(18) ). 

The DIR SCTOhY consists of 2n+m number of rows and (n+2m-tq) 

number of columns for a network with n inputs, m state variables and 

q number of outputs. 

the sample space. 

Each row corresponds to a different point of 

The operating signals and state variables at the time tare 
o 

the independent variables determining the parameters of a point of the 

sample space . They tire assigned a column each in the DIRECTORY . 

The input is regarded as constant over the time segment (to' t
1

) . 

The outputs and the state variables at the next instance tl 

are the dependent variable s which are to be compute d by the analysis 

and assessed against the behaviour specifications . 

aSAigned a ~olumn each in the DIRSCTOkY. 

They too are 

The DIRECTO~Y appears in the format of a truth table relat-

ing independent and dependent variables. In this interpretation the 
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sequential network of n inputs, m sta t e variables and q outputs is 

resolved into a comb i nationa l network of (n ~ m) inputs and (m + q) 

out puts. Since t he techniques of modul e E cope adequately with such 

net r orks, these t e chni~ues can be adopted for the sequential test 

modul e H. 

The transformation of a sequentia l network to an equivalent 

combinationa l form is shown diagramatically on Fig. 4.8.1. The use 

of thi s transformation in 'analysis is demonstrated on the simple net­

work of Fi g . 4.8.2. 

The state and output equations for the model of Fig. 4.8.1 

can now be written, with reference to Eq. 4.8.1, as 

= J (u (t ), a (t . ) ) o 0 

or elae , 

• J (1 (t ) ) . 
o 

. . . . . Eq. 4.8.2 . 

wh~re D and I denote dependent and independent variables, respectively 

and J is a Boolean operator . 

modul e B. 

variable . 

The DIRECTOHY is the tabul ar model of Eq. 4.8.2. 
Here 40 is the state variable inserted by the designer or ' 

The output of 30 re pr e sents the "next state" of the state 

The out put is t ake n from 10. Thus there are 

(n ~ m) = (2 + 1) = 3 independent and 

(m + q) = (1 ~ 1) = 2 dependent variables. 

The proce ssing list may be , say, (10, 20, 30). The a11oca-

tion of order to desi gnation number arrays is, in principle, arbitrary, 

in practice it hus been found convenient to assign low order input 

arrays to state variables (see (24»). Table 4.8.1 shows the arraye 

of the network of Fig. 4.8.2. 

The truth table of Ta1l] p. 4.8.1 is re-arranged in the format 

of 'rable 4.8.2. which will hence be referred to as the DIRECTORY.SP 

and SN abbreviate "present" and "next" states. 

serial number for reference. 

Rows are given a 
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The behaviour specifications can thus be presented in one of three 

forms: as a standard network, a set of state and output equations or 

a s a DIH3CTORY. 

The proposed design is once more presented as a series of 

object declarations containing information about structure and function 

parame t ers. In addi tion, the processing li s t compiled by module A or 

B i s necessary. 

r'~nvironmental data is optional and is used merely to des­

cribe r es triction of sample space. 

Behaviour dat a. t akes one of three standard forms. 

Output is an implied YES or a sequence of DIRECTORY entries 

indicating those parameters of the sample space which have lead to 

error. The total DIHECTOhY is available as an option. 

Inputs/outputs are shovm on Table 4.8.3. 

Comment. 

The model of the system as shovm on Fig. 4.8.1. assigns 

the nature of independent variabl~to all inputs and state va~iables 

of the system. In fact state variables depend upon in?uts and their 

logical value is not directly controllable. Interactions between 

state variables are frequently functions of the delay of system objects 

ann, dependent upon the relative value of these delays, the system 

may reach one of a number of possible stable states. Thus, unlike 

in combinational networks, transient conditions in sequential networks 

may become staticised, causing permanent mal-function as a consequence 

of adverse path delays . In terms of the analysis technique of module 

H this means that the DIR3CTORY is a valid model of the network only 

if one of two conditions are satisfied: 

a) the network is not sensitive to changes of 

relative delays in signal paths 

b) the network processes the signal in the 

order given in the Processing List. 
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It is tho purpose of a number of test modules to ascertain 

if conditions a) or b) are satisfied; meanwhile, the output of module 

H must be regarded as tentative; the resulting DIRECTORY 1s termed 

PRIMITIVE. A definite answer to question 4.8 will only become avail­

able after a VERIPI BD DIRECTORY is compiled, with the aid of further 

test modules and as the output of module P. 

4.9 WHICH ARl!: TB}:; STABLE STATES OF THE SYSTEM? 

The importance of the question is matched only by the sim­

plicity of obtaining the answer, using the DIRECTORY of module H. By 

contrast it will be recalled from Chapter 3 that simulation programs 

have no effective means of locating sati s factory stable conditions 

from which to start the analysis and neither simulation nor lower-order 

modes of analysis have any means of reaching some of the stable states 

of incompletely connected systems. 

The test module J. 

Let the proposed design be described by its DIRECTORY after 

the use of module H. This data r epresents the input of module J . 

Analysis consists of comparing the present and next state 

vectors within each of the rows of the DIRECTORY. Where these agree 

the system 

changed . 

points of 

is evidently static ann will stay so until the inputs are 

The parameters ( input and present state variables) of these 

the sample space will define the stable states of the system, 

hence these represent the answer to question 4.9. 

Inputs and outputs are shown in Table 4.9.1. 

Comment . 

The stability analysis may be conducted on the basis of the 

iRIMITIVE DIR~CT0RY because the stable conditions of a network are not 

dependent upon the relative delays of signal paths. Indeed, the 

stable states of a sequential network may be considered as the equiva­

lents of the stable states of a combinational network. Consequently 

the STABLE entries of the PRIMITIVE DIRECTORY require no further 

verification . 
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4.1 U - Ji.kl!l 1\1 Y 01<' :HLr,; Gldl~::; m' 'I'll.!!: ;)b;3Ul!.i~ 'I'lAL 

~ ETWORl\ LI 1U:jL~ '1'0 Gb:.N .l<iR,{'l' r, t)'I'A'l'IC HA~ARD SPIKBS? 

Having reduced sequential networks to equivalent combin~tional 

f orm by breaking feedback loops and inserting state variables, it be­

comes possible to locate static hazard "errors by the use of the techniques 

of module F or G. However, the te st cond i tions require some thought. 

4.10.1 Teohnique. 

It will be recalled (section 4.8) that, for the purpose of 

compiling the DIR~CTUrt Y, state variables were regarded as independent 

variables and the sequential network was effectively reduced to combina-

tional form. The model of this procedure is shown on Fig. 4.8.1. 
Then again, it will be remembered that section 4.7 led to the 

n-l conclusion that n x 2 tests were necessary for comprehensive analysis 

of an n-input network. Thus, if the "independent variables" of section 

4.8 are interpreted to be the "inputs" of seotion 4.7, (n ... m) x 2n ... m 

number of tests are required to give a complete answer to question 4.10 . 

Fortunately this very large number grossly over~estimates tbe 

sample space due to the wrong interpretation of the nature of "indepen­

dent variables". The transient tests of section 4.7 were based on the 

concept that the network oould always be transferred from one stable 

state (Yo ) to another (Yl ) under the influence of a single input change , 

while other inputs are kept constant. This condition is in no way 

valid for sequential networks' if such networks are stable in some 

state Y , they can be moved from this state by changing anyone of the o 
n input variables but, since the m present-state variables are not con-

nected to any directly accessible terminal (exoept in the conceptual 

model), they are not liable to change independently of the n inputs. 

Consequently, if the network has P number of stable states, it is only 

liable to n x P number of transients. 

Unfortunately this attractively modest number of tests does 

not cover the sample space completely. If a network starts from the 

stable state Y and undergoes a change of state due to some changing 
o 

input variable U
j

, the new state Y
l 

may be stable or unstable. If T1 
is stable (under the criterion of 4.9) then the transient test is com­

plete . If Y
l 

is unstable , the DIRECTORY will indicate a number of 

state variables which are scheduled to change . Hazards may arise 
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due to th~ change in the se, which nced diagnosis and subseq uent 

correction. Still applying the principle of single-variable ohange, 

static hazard tests should now be conducted by starting from each of 

the (2 n + m _ p) number of unstable states and subjecting the network 

to change in each one of the state variables indicated by the DIRECTORY. 

The number of such changes in a well-designed network will be seen to 

be one or not much more than one. However, in a general case the 

number may be anything up to m. 

The total number of tests will be computed as 
2n+m_p 

n x P ~ ~ ~ fii 

i = 1 

where n m~indicates the number of state variables which are scheduled 

to change in the ith row of transient states. 

An example will now be appropriate. Let a simple sequential 

network be characterised by the DIR~CTORY of Table 4.10.1. There are 

two inputs and two state variables, giving 2n~m = 22+2 = 16 rows of 

DIRECTORY entries. A column has been added to the DIRECTORY for the 

purpose of this discussion, indicating the STAB~ entries (i.e. those 

for vrhich Present and Next state variables are identical) and ll. m for 

each row, showing the number of state variables s cheduled to change. 

The sample space of this example has X number of pOints, i.e. X number 

of tests are necessary a s a basis of answering question 
2n-.m _ P 

X ~ n x P -. ~ A m
i 

• 

i = 1 

4. 10, where . 

= 2 x 6 + (1 + 1 + 2 + 1 + 1 ~ 1 ~ 1 ~ 1 ~ 2 ~ 1) = 24 

Careful observation of Table 4.10 .1 will reveal some redun­

dancy in this mode of testing, indicating that some points of the 

sample space are covered more than once. Take for instance the stable 

states of rows 9 and 13 which differ only by the value of the input 

variable Uf' One of the changes scheduled under X will transfer row 9 

to row 13; another will transfer row 13 to row 9. It was possible to 
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reduce the number of tests of section 4.7 from n x 2n to n x 2n- l 

due to just thi s ty pe of redundancy . It would also be possible to 

eliminate the redundancy here, but this would involve searching for 

stable states which differ only by one input variable. Since stable 

states form only a fraction of the total number of system states, the 

extra computation of the search may not be offset by the saving in 

the number of tests; thus the method is not proposed here. 

Another comment is called for when considering the impli-

cations of tests starting from a transient state . ~fuen such a state 

is reached, as a result of an input change , it ""ill be considered as 

virtually stable for the purposes of module K. The test will then 

move the system from a virtually stable s tate under the influence of 

each state variable in turn. The circumstances in practice are 

different : the system is not subjected to partial changes as above 

but to the simultaneous change in input and each scheduled state 

variable. Such multiple changes cause erroneous operation which will 

be detected under some other test. Meanwhile module K concentrates 

on the detection of errors on the basis of an abstract concept: the 

virtually stable s t ate . 

4 . 10 . 2 

Li st . 

The test module K. 

The test matches the numerical techniques of module G. 

Input consists of the DIRECTORY of module H plus Processing 

2n+m_ p 

Analysis compiles n x P ... ~ A m't number 
i=l 

of single-variable transitions for each object of the network, regis­

tering hazardous gates . 

Assessment needs no behaviour specifications. 

Outputs list the hazardous gates with a single option of 

the definition of the independent variab l e leading to hazard. 

Inputs/outputs are shown in Table 4.10. 2 . 

The module is not self-sufficient but relies for its inputs 

on module A or B and module H. 
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N" ;'l'\'/l)}(} :.:i lSH :Jl 'Ill VC; '1'0 V ! ( IA 'l'I eN ~) OF Ul!:LAY PARAMETERS OF 
SYSTEM OBJECTS? 

In other words : is the behaviour liable to deviate from the 

specifica tion as given in a DIRECTORY due to normal variations of 

delay parameters, such as caused by manufacturing tolerances or ohanges 

in physical signals of the environment? Is the PRIMITIVE DIRECTORY 

ambigu ous? 

The question i s of vital importance to the designer and, as 

shown in Chapter 3, answers are not found by simUlation or lower-order 

mode s of analysis . 

The techniques used here are based on standard techniques 

of swit ching theory with some suitable modifications whioh permit the 

design of test modules. 

concepts and definitions. 

It was also necessary to introduce some new 

4 .11.1 

questions: 

Conoepts and technigues. 

The examination of question 4.11 leads to two further 

1) to what extent would the behaviour specifications, 

as given in a DIHBCTURY , reveal sensitivity to 

delay parameters? 

2) to what ex tent can question 4.11 be answered with­

out direct r eference to the delay parameters of 

objects of a given network? 

The second question will only be answered after the tech­

niques are established . 

Tbe first of the se que stions i mplies that it may be possible 

to predict de lay sensitivity before a new design is initiated . If 

this is true , then the new design may be created with speoia1 attention 

to object delays, ~hus avoiding or minimising design errors due to this 

Oause. 

example. 

Let this question be considered with referenoe to a specifio 

'l'he DIR 'CTORY of Table 4.10 . 1 may be the outcome of the 



analysis of a network by module H. It may also be the t abular 

specification of a new design to be created . What can such a terminal 

modol reveal about sensitivity to delays of object s whi ch, at this the 

lowest level of resolution, are not distinguishable? 

The rows of the DIRECTORY will now be examined in turn. If 

. the system is stable then it can not be affect ed by the delay or any 

. other parameters of its objects. Thus rows 0, 6, 9, 10, 13 and 15 

are exempt from further scrutiny. 

Paying no attention for the moment to the way in which the 

system reaches one of the unstable states, let these now be examined 

in turn. Rows 1, 2, 4, 5, 7, 8, 11 and 14 schedul e a single state 

variable change which will undoubtedly occur sooner or later, so long 

as the input signals (U1 and U2 )are constant . Le t this condition be 

assumed just for the moment; then the only rows indicating multiple 

changes in state variables are 3 and 12 . Still assuming that the 

input variables are constant, one of three events may occur to the 

network which is at one of these two states: 

a) both state variables change together. 

b) SI changes before S2. 

c) S2 changes before SI . 

The probability of a) in an asynchronous network is zero. · 

If the network is synchronous and is operating within the limits of 

its response time, then the answer to question 4.11 is NO and none of 

this discussion is relevant. 

Without further information about the system and its object 

delays, b) and c) appear equally probable and a condition arises which 

is referred to in the literature as a SECONDARY RACE, indicating that 

two or more secondary ( state) variables are involved simultaneously 

and the outcome is .in doubt. 

With reference to the example of Table 4.10.1, if conditions 

b) and c) lead to different stable states then the answer to question 

4.11 is YES. 
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the stat e variabl es change from 11 to 01. For constant inputs this 

condition i s that of row 2 which f inally leads to the stabl e state of 

row 0, where the state variables become 00, as was originally scheduled 

in row 3. 'rhis condition will be termed NON-CRITICAL because of the 

agreement of the originally s chedu l ed and finally reached stable state . 

Row 3 and the case of c) indicates a change of state variables 

from 11 to 10. For constant inputs this condition is met in row 1 

which l eads to the stable state of row 0 - another non-critical trans-

ition. Thus row 3 shows no sensitivity to object delay variations. 

Repeating the procedure for the other potentially sensitive 

row of 12, the ori ginally scheduled change from state variables 00 to 

11 prescribes the fin al stat e of row 15. Case b) however leads to 

the stable state of 13 - thi s condition is CRITICAL. Case c) does 

l ead , vi a row 14, to the desired stable state of row 15. 

rl1he summary of these investigations is tha t if the network 

ever reaches state 12 then it will be sensitive to delay variations 

and will in fact mal-function if the delay associated w~th the state 

variable SI is greater than tha t of S2, (condition c) ). 

To permit the development of the requisite t est techniques 

the followin g definitions are proposed: 

A secondary race exists in a network between two state 

variables Si and Sj if there i s a stable state Yk and an input variable 

U such that a single-variable change in U causes a change in both 
c c 

Si and Sj" 

Let the l.JIRr.;'CTORY schedule that, in the above circumstance, 

the network should r each the s table state Y. The secondary raoe in v 
the network leads to a critical condition in t erms of object delays 

if, by initiating a change in Si subsequent to the change 1n Sj' the 

ne twork reaches a stable s tate Y ~ Y , for any i or j. w v 
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The secondary race leads to a non-critical condition in 

terms of object del ays if, under the above circumstances, Y • Y • 
• v 

The secondary race leads to an oscillatory condition if, 

under any circumstances of relative delay between the state variables 

involved in the change, the network does not reach a stable state . 

I t will be noted that a se condary race set up between two 

state variables Si and Sj will often involve other state variables of 

the network which re spond to a change in S. , S. or both. Such 
~ J 

variables may race between themselves or with either of the original 

racin ff pair . Taking into consideration all possible distributions 

of relative delay (i.e allowing no assumptions regarding the value of 

del ays), starting from the initial stable state of Vk the network may 

traverse upon a critical path CP, non-critical path NCP or oscillatory 

path OSC, under the above definitions. 

It will be worthwhile to discuss a single test in terms of 

a much larger DIR1~CTORY than that of Table 4.10.1. An extraot from 

such a DIRECTORY for a network of two inputs and five state variables, 

is shown on Table 4.11.1. The network is stable in the state 100 

and undergoes a single-variable change in U2 , which transfers the system 

to stat e 36. A secondary race is set up between S3 and S5, leading to 

a maze of paths as shown on Fig. 4.11.1. 

diagram. 

The diagnosis is s impl e , in spite of the complexity of the 

If S3 changes before S5 does then the transition leads to 

one of two NC paths . If S5 changes first then the network is liable 

to mal-function. 

condition. 

The output must warn the designer about the latter 

4.11. 2 The test module L. 

The module concerns the diagnosis of se condary race condi­

tions (CP and OSC) which render a sequential network sensitive to 

del ay parame ter changes . 

Inputs for the module ar e provided by a DIR~CTORY. 

Analysis commences by finding all of the P number of stable 



states and initiating n different s ingle-variablo changes, starting 

from each stable state. With the aid of the DIRECTORY multiple state­

variable changes are located and followed through, considering each 

possible combination of rel ative delay among the state variables 

concerned. The paths so traced are then assesBed against the ne~t 

state variables of the multiple-change schedule. Output then will 

be an implied NO or a description of the initial stable state, the 

chanGing input variables and the state variables of the multiple 

change which lead to error, toge ther with the critical relative delay. 

For instance the example of Fig. 4.11.1 gives rise to the printout 

u = 11, S -: 00100; 

CP if TS3 

SI =- 00001 

4.11.3 

(here TSil the time delay associated with Si) 

Inputs and outputs are tabulated on Table 4.11.2. 

Comments. 

Module L operates upon information contained in the 

DIRECTORY and requires no reference to object delay parameters. It 

detects all race conditions between state variables and ie therefore 

a valuable and comprehensive test method. However, it uses a test 

technique which implies that the network responds to the change 1n an 

input variable before any state variable change is effective. This 

condition does not always apply; thus an additional test module is 

developed to deal with a type of delay sensitivity not diagnosed by 

module L. 

When used as a tool of design verification, module L 

indicates to the designer how to arrange additional delays to favour 

non-critical paths. However, the error reports of module L may raise 

conflicting demands (Si to be delayed more than Sj to eliminate one 

error but Sj more than Si to eliminate another). In such cases the 

designer must re-consider the state assignment ,and modify the 

DIRECTOhY itself. To avoid such waste of effort, the module L may 

be used to formulate the design by assessing the DIRECTORY containing 

the specifications or the proposed state as s ignment. 



If a network has been subjected to module L and is proven 

to have no secondary races, that network will be said to have a 

DIRECTORY verifie d under module L. 

rurther techniques and concepts. 

The following definitions are now proposedl 

An essential race exists in a network between an input 

variable U. and a state variable S . if there exists a stable state Yk 
1 J 

such that a single-variable change in Ui causes a change in Sj. 

An essential hazard exists in a network which oontains an 

es'sential race between Ui and Sj if a change in Ui followed by a ohange 

in Sj results in a stable state Yv whereas a change in Sj followed by 

a change in Ui results in a stable state Yw where Yv t YWe 

Although it is not possible to move a network from a stable 

state by changing a state variable, it is possible that the ~feot of 

an input variable change is so delayed that it reaches a part of the 

network later than the effect of the secondary change . If the 

terminal performance reveals sensitivity to such a condition, i.e. if 

the network is liabl e to reach a different steady state dependent upon 

the relative length of the delay of the input and secondary path, the 

network is said to have an essential hazard. 

The alternative definition of essential hazards is that of 

Ungar (25) which does not permit easy appre ciation of the cauae of the 

hazard but provides a basis on which such hazards may be diagnosed. 

Ungar' s definition i s as follows: 

an essential hazard exists in a network if there is 

a total state Yk and an input variable Ui such that, 

starting from the state of Yk, three consecutive 

changes in Ui bring the network to a state other than 

the first input change. 

Let essential hazards be demonstrated on the network whose 

DIRECTORY was shown in Table 4.10.1. As an example, consider the 
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case when the initial stable state Yk is that marked by reference 

number 10. A single-variable change in U1 implies a change in SI. 

Using the definition proposed by Ungar, the first change in 

Ul leads to stable state 15; the second change leads to stable state 

9. The third change leads to state 13! s t ate 15; thus, under 

conditions of Ul ~ 0, U2 ~ 1, SI ~ 0, S2 = 1 and UI as the changing 

variable, the network contains an essential hazard. 

Using the alternative definition proposed here and starting 

from state 10, the change in Ul leads to 15 as before. Starting from 

the same state and changing SI first, the stable state of 9 is reached; 

changing U
l 

now leads to the stable state of 13 ~ 15: the network 

contains an essential hazard. 

Either of the two definitions may be accepted as a basis 

for the design of test module }.1 . 

Module M, as kiodule L, may be used to verify a PRIMITIVE 

DIRECTORY , it can also be used to analyse the behaviour specifications 

of a new design, allowing the detection of delay sensitivity. 

4.11. 5 The test module M. 

Inputs conGist of a DIRECTORY. 

Analysis, based on Ungar ' s definition , is as follows. Let 

the sequential network have P number of stable states and a number of 

inputs. Selecting one of the stable states (Yl ) as the initial con­

dition, the network is subjected to a single-variable change in Ul 
which leads to some stable state 12 , Changing Ul again leads to Y3' 
a third change in Ul leads to Y4. 

Assessment consists 01' comparing Y1 and Y
4

. 

then an error message is generated, speCifying the initial condition Y1 

and the variable U1 ' which leads to the essential hazard. The test 

is repeated for each of the P stable states and, within them, for eaoh 

of the n inputs, amounting to a total of Pxn t ests. 
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Outputs therefore consist of a list of error messages or 

else .a straight NO, indicating that the network is insensitive to delay 

variations. 

In puts/out put s are sh ~) wn on Tabl e 4.11.3 . 

4 .11. 6 Trivial cases of essential hazards. 

Somp of the e nsenti a l hazards reported by module M can in 

fact never cause mal-functioning of the network. Such cases will be 

termed trivial essential hazards. An example will be shown here with 

reference to an extract of the DIBECTORY of a network with 5 inputs 

and 3 state variables . The network itself is shown on Fig. 4.11.2. 

Let the network rest in the stable state 221; let the 

single-variable change be in U
3

• Then, after transitions through 

states 253 and 252 the stable state of 254 is reached. The second 

change in U
3 

transfers the network through 222 to state 223. The 

third and final change in U3 leads through 255 and 251 to 249. Since 

254 and 249 mark different states, an essential hazard is diagnosed . 

The hazard involves U3 and th e state variable SI (see table 4.11.4) 

Applying the al t ernative algorithm and permitting the change 

in SI to precede the change in U
3

' the network transfers from state 

221 through state 220 to stable state 223. Here again, since 254 and 

223 are different, an essential hazard is diagnosed. 

The question is now: how likely is it that mal-functioning 

will occur in the circuit whose lJIRBC'l'ORY is that of Table 4.11.4. 

In other words , what is the probability that in case of the circuit 

which gave rise to this DIRECTORY, the change in SI will reach a 

critical gate before the change in the input variable U3 does? 

Close examination of the network of Fig. 4.11.2 will reveal 

a race at gate 5 ~etween a signal from gate 1 ann another element 

Since the change in SI originates from gate 1 

and encounters the delay 1."4 of gate 4 before is is applied to gate 5, 

the signal change of gate 1 is bound to reach gate 5 ahead of this 

change by the time interval ~4. Without requiring the delay model 
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of any of the ga t es of the network it can be stated for certain that 

thp outcome of the race between U
3 

and SI is not in doubt - the .essen­

tial hazard is trivial. 

Fig. 4.11. 3 shows the critical gate 5 and the race paths. 

The delay model used for the interpretation of this diagram and later 

in this chapter associates the delay with the gate elements ; no delay 

is assigned to paths themselves. Thus the delay of path U
3 

is zero, 

the delay of path Sl is that associated with gate element 4. 

A general definition of trivial essential hazards is now 
\ 

proposed as follows. Let Ui and Sj be engaged in an essential hazard 

terminating at some system object Dk • Let Ti denote the set of delays 

associated with objects along the path of Ui and Tj the set of object 

delays along the path of S.. Then the essential hazard between U. and 
J ~ 

Sj is trivial if Ti ~ Tj • (In this case all the delays in the path 

of U. are also present in the path of Sj whioh encounter~ some additional 
~ . \ 

delays; consequently U
i 

always wins the race). \ \ 

The definition is based upon the assumption ~hat the network . 
is resolved to a homogeneous structure of single gates; \ only then 

can the object Dk and the elements of sets T i and T j be ;~,identi:fied. 
Module M operates at the lowest level of resolution where the network 

is given by its terminal model of the DI CTORY; thus neither of the 

two definitions proposed in section 4.11.4 would permit distinction ' 

between trivial and non-trivial essential hazards . The test methods 

desoribed in FURTHJ.<;R lJEV.cLOPMJ~NTS ·allow this problem to be tackled. 

Meanwhile, designers mus t exercise some judgement in their response 

to the error messages of module M by ignoring trivial essential hazards. 

erformance of se uential networks and the VERIFIED 

Modules K, L and M all concern transient testing of sequential 

networks. At this stage it will be useful to review these tests pay­

ing attention to concepts and not to techniques . 

Combinational networks needed a sin~e transient test: under 
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the assumption of single-variable change and fundamental mode of working 

they needed to be tested only for static hazards, i.e. for signals ori­

ginating from a single input. 

Sequential networks need to be tested under the same condi­

tionsJ however, the model of Fig. 4.8.1 implies that a single input 

change m~y originate the change in two or more independent variables 

these variables are not in fact independent of the inputs exoept for 

the purposes of the model of Fig. 4.8.1 The problem is complex and, 

to help to see it clearly and solve it systematically , it is divided 

to three parts. The static hazard module K considers each independent 

variable as an input and seeks to find single-input hazards. These, 

when diagnosed, can be e~nated by redundant logicJ hence such errors 

are of no further consequence. Hazards involving more than one inde­

pendent variable are then further divided to secondary raoes (module L) 

and essential hazards (module M) depending upon the number of state 

variables involved. The total sequence of tests K, L and M covers all 

transient conditions. This means that a network passing theee three 

tests with a clean bill of health is free of all transient hazards, 

its operation is not dependent upon object delay variations and its 

DIRECTORY is VERIFIED . Networks with static hazard (module K) errors 

will also be said to have a VERIFIED DIRECTORY so long as they hav~ 

been verified under both module L and module M because static hazard 

errors can easily be corrected i n every case. However, networks with 

module L or module M error reports need further testingl their DIRECTORY 

has failed verification unde~he circumstances specified by the error 

reports and, therefore, their DIRECTORY etill oontains some ambiguity. 

To disperse this, such networks must be resolved to a higher level, 

the delay model of network objects must be consulted and an ultimate 

decision made about their operation under the conditions speoified by 

the error reports. Such detailed testing would then disperse the 

uncertainty of the performance and would allow the generation of a 

complete VERIFIED DIRECTORY . 
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4.12 WHA'l' I~ TH t SIMULATl!:D RESPONSE OF A NETWORK) 
SELEC'l'ED AT RANDO~; FR01I'J A GIVb;N BATCH, TO A SPECIFIED 

INPUT CHA1-I GE? 
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'rhe question may be raised under several circumstancest 

1) the designer wants t o see t he r esponse of a 

network to some spe ci fic input sequenoe. 

2 ) t he des i gner seeks an estimat e of the speed 

of operation of the ne t work. 

3 ) the designer wishes t o gain a definite answer 

to question 4.8 and hence seeks to verify the 

DIRECTORY . 

Techniques . 

For the first time i n the course of thi s chapter a question 

can only be answered by t he u se of delay paramet er s . A simpile delay 

mo del is proposed l the sys t em obj ect D
i

, a t the resolution level of 

a sin~le gate, will have a delay parame t er 1ti such that an excitation 

a t a t i me t wh i ch demands a change of output of Di will cause such a 

change to ocour at a time t ... ~1' 'l'he value of ~i is to be oomputed 

by t he u se of a pseudo-random number generator which assigns a value 

to ~i from a specifi ed di str i bution. The distribution is assumed as 

normal, truncated at zero, for al l objeot s ; they can, however, oarry 

i ndividual parameters of mean de l ayt and standard deviation ~ • 

These two parameters must i ndividually be declared for each objeot of 

the sys t em as real integer multipl es of a s elected and common unit of 

time. The par ame t ers may be declared when the network is first pre-

sented for verification . Al t ernatively , s ince verification procedures 

may not always require t he use of de l ay par amet ers, these parameters 

may be de clared in con junction with the call for the appropriate test 

module . 

'.rhe i nf ormati on r egar ding the network atruoture and function 

parameters is obtained for the s imulation module from the output of 

module C. The struct ur e dat a is re-shuffled to accommodate the "look 

ahead" me thod of s imulation; the object ~ carries a list of other 



object identifiers indicating those objects whose inputs are connected 

to Di. (Note that this is the opposite metbod to t bat used in module 

C - this time the list represAnts a column rather than a row of the 

structure matrix.) ~hus only those object outputs are computed whiah 

are under the influence of a given signal change. 

The simulator is asynchronous. A column is assigned to each 

variable whose output is monitored (this can include any object of the 

homogeneous structure). A row is assigned to each instant of time 

when any of the monitored outputs change . Thus time progresses in 

uneven intervals down the page. A column of printout specified the 

timing of each row to a number of digits of accuracy appropriate to 

real numbers.· Each monitored variable is assigned a unique alphabetic 

character which is printed in each row for which that variable has a 

value of logical '1'. Otherwise the column is blank. 

Simulation commences at a time t ~ 0 when the network rests 

in one of its stable states as detected by module J. At t ~ 0 an 

input change is originated and thp. numeral in the time column advances 

until either 

a) the network reaches another stable state 

b) the time parameter exceeds some pre-set limit of 

Tmax . 

In either case the simulation terminates . If another run of simulation 

is required then the procedure is repeated : the initial stable state 

is specified, an input change is initiated at t : 0 and the response 

computed as before. 

A sample of printout is shown on table 4.12.1 which was 

obtained when the network of Fig. 4 . 11 . 2 was simulated. The alphabetio 

identifier and the delay ~ of each network object is listed on Table 

4.12.2. The simulation tests the response to a change in U
3 

and the 

network rests initially in the total state of 

Ul ~ 1, U2 ~ 1, U3 : 0, U4 = 1, U5 = 1, 

SI = 1, S2 = 0 S3 = 1. 
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This transition has been reported as containing an essential hazard 

(see the discussion in section 4.11). 

On the printout the changing variable(s) appear ringed. 

This is to allow the tracing of s ignal flow through the network. 

There are two rows with more that one ringed entry; this is due to 

the fact that the auxiliary object associated with a state variable 

has no time del ay , hence a simultaneous change occurs at the output of 

objects 4 and 4000 and also at objects 6 and 6000. 

4.12.2 The test module N. 

Inputs to the module are assembled from outputs of module e, 
module J (for sequential networks) and delay parameters of single-gate 

objects. 

Analysis is by asynchronous simulation . 

Assessment does not take place. the output is directly gene­

rated by analysis and takes the form of a waveform-like printout on a 

trivially transformed time-soale. 

The summary of module inputs/outputs is shown on table 4.12.3 .. 

4.13 VlHAT IS TIlE VERD'IED DIRECTORY OF THE 
SEQUENTIAL NETWORK? 

It was discussed in section 4.11 that the DIRECTORY of the 

network i s verified by definition if there are no error reports origin- . 

ating from module L and module M. In the presence of such error reports 

the VERIFIED DIRECTORY is defined by the response of a network of nom-

inal delays. Since the response of such a network is only in doubt 

for those conditions! specified by the above error reports, these are 

the conditions to be investigated by the use of the techniques of module 

N and for a parameter ofe: 0 for all gate objects. Monitoring 

points should include all dependent variables of the model of Big.4.8.l. 

The simulation run-must be terminated when any of the state variables 

change s. The output of module N must then be translated by the module 

P to a format of DIRBCTORY entry. These entries, added to the entries 

of' the PHIMITIV.t DIR~CTORY which were in no need of verification form 

the output of module P and also the VERIFIED DIRECTORY •. 
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4.13.1 The te s t module P. 

Inputs and outputs of the module are summari sed on Table 

Analys is i s by simulation, starting in t ur n from each condi­

tion speci f ied by the error report and terminating· at t he f i r s t 6econ-

dary change. 

output. 

The rest of the analysis then consi sts of compiling the 

Assessment is not applied: 

the output of t he module. 

the output of t he analysis is 

4.14 lJU~S THl'; VB}l I.l;' I~D DIKl!jCTOhY RJ!;PR ::':SENT THE 
DESIRED P~RFORMANCE. 

The question is worded advisedly: the answer will, in fact, 

give the information which was sought in section 4.8, but could not be 

satisfactorily provided by module H. 

Concepts. 

This perhaps the most important verification proce dure uses 

no new techniques but reli es upon a new definition of equi val ence 

between the DIR~~CTORY of the behaviour specifications (denoted <p ) and 

the VERIFIED DIRECTORY representing the actual performance (denoted~ ). 

Obviously q> = 4> if the two tables ar e , bi t f or bit within 

row for row, identical. However, this condition is not ne ce ssary~ 

the trans ient performance might easily have been broken down to single 
. +~& 

state-variable changes by module P, thus obscur "ing the f act thatlnet-

work performs as specified. As an example consider a two-row extract 

of the behaviour specifications ~ of a fictitious network (Table 

4.14.1). The state of ref. 0 is open to a secondary race ; after 

analysi"e the VERH'n':D DIRECTORY 4> is found to contain the rows shown 

on Table 4.14.2. 

Direct ~omparison, row for row, shows a discrepancy at the 
th o rowJ however, the network is seen t o reach the desired stable state 

of 3 after touching on state 2 and resolving t he sudden, double change 

of state variables to two distinguishable s t eps . The eqUival ence of 

~ and ~ would be easier to appreciate if the . DIRECTORI ES would not 



show the unnecessary detail of tran~ient behaviour (made certa~n by 

verification) but would indicate/in a REDUCED DIRECTORY , the stable 

state to which a given state connects (assuming , as a lways, fundamental 

mode of working, i.e . no change of inputs until the stable state is 

reached). With the aid of the new concept of a HEDUCED DIRECTORY 

equivalence between 'f and et> is simply defined as the equival ence 

between Cfr and ~r' row for row and bit for bit. Here 'r and ~r 
'stand for R3DUCED DIn~C~ORY of behaviour specification and VERIFIED 

DIRECTORY, respectively. 

Oscilla tions. 

The REDUCED DIh~CTOHY of 

Two of the states have no 

are locked in an oscillatory cycle. 

a simple network is shown on Table 

stable-state assignments : they 

Such cycles are detectable by 

noting that an n-input, m-state-variable network must reach its stable 

state in no more than 2m number of transitions . If this did not 

happen then the appropriate entries of the DIRECTORY are marked 

OSCILLATORY. 

The test module Q. 

Answer to 4.14 is now obtained on the basis of input data 

derived from module P and behaviour data as given in the form of a 

DIRECTORY <po 
Analysis now consists of tracing the entries of both 

DIRECTORIES until stable states are found . Thus a REDUCED DIRECTORY 

is compiled of both er and ~ • 
Assessment is a comparison of the two. 

Outputs now show the conditions in terms of inputs and state 

variables which lead to disagreement . The module does not report on 

oscillatory entry of the REDUCED DIRECTORY ~ as an error if the r 
behaviour specifications also prescribe oscillations . 

Optionally and as input to some subsequent modules the 

REDUCED DIRBCTORY of the sequential network is available . 

The test is summarised in Table 4 .14.4. 
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4.15 IS THL SE~U~NTIAL NETWORK UNCONDITIONALLY 
STABLE? 

Concepts. 

The question probes an important feature. The answer, as 

provided by module H, is based on the following definition' 

A sequential network will be termed unconditionally 

stable if its reduced DIRECTORY contains no 

OSCILLATORY entries. 

It will be recalled that the VERIFIED DIRECTORY was compiled 

on the basis of nominal object delays (the parameter a was eet to 

zero); the REDUCED DIRECTORY was obtained by processing the VERIFIED 

DIRBCTORY; thus unconditional stability refers to the network whose 

objects have nominal delay parameters. Since these delay parameters 

are , in practice, subject to statistical variations, a given network 

within a statistically related batch may prove oscillatory although 

the nominal-delay model representing the batch was found unoondition­

ally stable. 

This state of affairs is obviously very disturbing if the 

, designer needs reassurance that no oscillations are likely to ocour 

in any of the networks within the batoh. Such reassuranoe oan only 

be found by statistical assessment of the batoh behaviour. Suoh 

assessment is outside of the soope of module R but will be undertaken 

by a subsequent module (module T). 

The test module R. 

The module needs, as its only input, the reduoed DIRECTORY 

which is produced as an optional output of module Q. 

Analysis consists of sorting out the OSCillatory entries. 

Assessment is not required and output consists of listing 

the OSCillatory entries , together with the conditions which gave rise 

to them (see Table 4.15.1 .). 

4.16 IS THE SYSTEM LIAHLE TO GET LOCKED IN 
AN UNDESIRABLB STATE OR SET OF STATES? 

The usual concern is , that)upon turn-on)the system may get 
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into some s tate from which it can not be easily moved. Frequently 

the only way in which corre ct operation is induoed is to switoh the 

system on and off repeatedly until the desired conditions appear. 

Such circumstances are usually undesirable and often dangerous; thus 

designers should wish to be r eassured that their design is not liable 

to this sort of behaviour. It will be recalled from ohapter 3 that 

conventio~a.1 test methods can not give such reassurance. While a 

decisive answer to questi·on 4.16 is not available, module S is oon­

sidered to produce a partinl anewer. 

4.16.1 Concepts. 

The problem will now be disoussed with referenoe to the 

(n ~ m) dimensional sample space of a sequential network of n environ-

mental signals and m state variables . The operating conditions will 

once mOrt be mod elled by a movin g point Q whose co-ordinates in n + m 

dimensions undergo discontinuous changes under the influence of binary 

signals. 

Now let the n environmental signals be divided into n ' 'physi­

cal signals' andn- inputs. Physical signals contain such variables 

as supply potentials which are taken for granted under conditions of 

nO.rmal operation. Thus, under such conditions, the designer has n" 

degrees of freedom in choosing to ' move the point Q from one of thg 

stable states of the system. After this, the point is liable to 

movement in m more dimensions of the state spaoe, coming to rest fin­

ally in nome new stable state. 

This discus sion wishes to lead to the realisation that, 

while the sample space hus (n' -+ nil + m) dimensions, the designer is 

in direot control of only n" of these . Thus point Q is liable to be 

s tuck within some undesirable area of the space and the nil degrees of 

freedom ure not ehough to move it out of there. 

Let the ~roblem be over-simplified by a model of Fig. 4.16.1. 
J 

Herp n ' c 2 and consists of two power supplies El and E2 • The Venn 

diagram of these two variables has four possible areas s El' E2 marks 



the condition when the system is switched OFF, E
l

.E
2 

means that E2 

turns ~n before El' Bl .E2 means that El turns on before E2 and El .E2 
means the unlikely condition that El and E2 turn on at precisely the 

same time. Thus the point Q will rest within one of these areas at 

any instant in time. 

If the system is swi'tched OI<'F then point Q rests within 

El ' E2 • Expanding li'ig . 4.16.1 in (n" + m) dimensions, the position of 

Q within El , E2 is given by (n" + m) parameters. 

Now let the system be turned ON. There are three distinct 

paths possible for the point Q which will ultimately come to rest 

within El ,E2 , El. ~2 or Bl , E2• The position of Q can now no longer be 

shifted out of the chosen area except by switching the system OFF and 

then ON again in some other sequence. If it is now found that the 

system performance (the response to changes in nil dimensions) is not 

the same in the three areas then the designer is in difficulty. 

Consider the same problem in (n tt 
.... m) dimensione only . 

Upon turn-on the designer c'an control nil number of independent vari­

ables but must be able to tolerate the possible drift of point Q 

in m dimensions. If there exists a group of stable states 11 such 

that no pattern of changes in nil input variables can move point Q out­

side of the states within Yi then the designer may be in the type of 

trouble describe d above. 

gadek (7) defines a connected and a strongly connected 

finite state system on the basis of system states. This definition 

is presented here in somewhat modified form. Let nil inputs and m 

state variables define a set of stable system states: 

y = . . . . ) 
) 

nil + m. where k ~ 2 

Then the FSS is said to be connected with respect to Y. if every state 
~~~~~~~~~~-~~~~1 

Y
j 

in y is reachable from Yi with an input sequence of finite length. 

The FSS i s said to be strongly or completely connected if it is oon­

nected with respect to everyone of its states (in this case every 



state is reaohable from every other state}. 

Connected and strongly conneoted FSS's will be seen as 

particular cases of Controllable and Completely controllable systems, 

respectively ( see Chapter 2). 

The probl em is seen in this way: if the system is not 

completely connected then it is possible to env~sage that, ,under the 

influence of th~ n' physical ~ignals, it reaches some set of states 

which is not connected to the rest. Presumably suoh a system may 

contain some re~undant state variables and minimising these would 

reduce the probability of the existence of un-conneoted states. 

However, systems ' with non-binary number of re~uired stable states will 

always contain redundancy and it i a often essential that the redundant 
, ' 

states do not form a set un-connected to the others. 

Question 4.16 will be re-phrased, is the system oompletely 

connected? 

It is possib le to design a test of connectedness on the 

basis of the REDUCED DIRECTORY. One possible test is outlined here . 

Since operating signal se~uences may be designed in an infinite number 

of different ways, it is not possible to gain a deterministic answer 

in a ll cases of testing the connectedness; it is therefore neoessary 

to ~ualify the findings by speoifying the number of 'operating signal 

ohanges whioh were allowed. It is further neoessary to utilise the 

allowed ~uota of changes to best advantage. Thus, operating signal 

changes must be chosen with oare. Consideration will now be given 

to the most advantageous set of operating signal changes. 

It will be remembered that, throughout the analysis, net­

works are considered to operate under conditione of single-variable 

change and in f~ndamental mode. Thus, unless the network is other­

wise specified, there are nil number of e~uiprobable single-variable 
, 

changes available to our network of nil operating signals, starting 

from each one of k stable states. This Bst of changes in operating 

signals will be called first-order changes; due to the symmetry of 

the oiroumstanoes it would be unreasonable to seleot a ssoond-order 



4.66 

change before all of the first order changes have been exhausted. 

Thus, if the designer specifies the maximum number of input changes 

in the test sequence as X and X ~ nil then each of the possible single~ 

variable changes will be applied. All the states of y reached by this 

sequence of tests are listed as connecte d to the starting state Yi • 

If, at any point during these tests, it is found that all 

the rows of the directory appear on the LIST OF Y. CONNECTEDNESS then 
1 

the t es t is discontinued and an output is printed to say that the 

NETWORK IS CONNECTED WITH RESPECT TO y. . If, at the end of the test4 
1 

a group of rows of the REDUCED DIRBCTORY are still not found to be 

connected then a set of second-order changes may commence. The 

number of jth order changes is (nll)j and the total number of changes 
th 

necessary to exhaust jhe j and all lower order changes is ~jt where 

X . -= L (n" ) f for 1 ~ e ~ j 
J { = 1 

Evidently the quota of X changes will be exhausted for relatively low 

order of changes and an error message will now be output to indicate 

the number of rows of the DIR£CTORY which have been found un-connected 

to Y. after X number of changes of operating signals. 
1 

4.16.2 The test module S. 

This simple test requires three inputs a the REDUCED DIRECTORY, 

the specification of the parameter X, giving the maximum number of 

changes allowed, and the description ·of the starting state Y1 • 

Analysis is by manipulation of the DIRECTORY. 

Assessment uses the DIRECTORY again, checking the total 

number of stable states k against the number of different states on 

the list of conn~otedness. 

The output will give an answer of NO to question 4.16 if all 

stable states and all oscillatory states are found to be connected. 

Otherwise a list of states un-connected to Y
i

, together w.ith the 

description of Y. is given. 
1 



'rhe inputs/outputs are shown on Table 4.16.1. 

4.17 WHAT 13 TiIG PHOllABILllY or' DEVIATIO:~ 01<"1 THE PERFORMANCE 
}<"'hot6 'I'l-! ! ~ VEHH'IED DIR.I!;CTORY? 

The question demands the statistical assessment of the 

behaviour of a batch of networks whose structure and functi~n para­

meters are the same but whose delay parameters are statistically 

related. 

It will be recalled that certain entries of the VERIFIED 

JJIhBCTORY are not in doubt: only those conditions listed by module 

L and M are open to change due to delay variations, hence these will 

be the only ones scrutinised by module T. 

It will be assumed that any change in the circumstances of 

the network under test ( SUCh as manufacturing tolerances, environmental 

changes, etc .) results in r andom variation of the time delay associated 

with the object s of the net work. It will also be assumed that the 

delay variations are adequately deAcribed by the delay parameters 

f'i and 6' i of each object Di at the resolution level of a single gate. 

4.17.1 The test module T. 

The module uses the same analysis technique as module N: 

a network is constructed whose del ay parameters are chosen by a 

pseudo-random procedure and thi R network is then analysed under eaoh 

condition specified by module Land M. The procedure ia repeated a 

number of times given by a parameter X which, in this caae, deter-

mines the batoh size. The result of the analysis is assessed against 

the VERIFIED DIRBCTORY and a failure record produced. The simplest 

form of the failure record is to give the number of failed tests 

relative to the number of tests conduoted. 

The test thus uses in pu ts consisting of the error reports 

of module L and ~ . 'rhe test cond i tions are specified by the para-

meter X and the behaviour data is given by the VERIFIED DIRECTORY of 

module P. The output is the numerical description of the failure 

rate. 
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The test is shown in the usual form on Table' 4.17.1. 

4.17.2 Comment . 

The crude me thods of test T could do with refinements the 

fa ilure record may be complemented by assessing the significance levei 

of the test; alternatively, the test may be replaced by a direct 

method of calcul ating the eApected percentage failure. 

These areas of investigation have low priority on the list 

of plans for further development. The reason for the lack of enthu-

siasm for these interesting projects is the laok of practical applica-

tion. Designers at the present time have no reliable information 

about the expected delay of their network objects, and manufacturers 

of hardware have no facility, nor indeed interest . in developing faoi­

lities, for the measurement of delay times of individual gates. 

Thus neither the types of distribution nor their parameters are likely 

to be available, ' thus no use could be made of the newly developed 

techniques. It is felt that the crudeness of the techniques of module 

T are well suited to the crudeness of the data they use. 

4.18 IS TH I!; SE~lJE.NTI.t\L Nl!li" NORK, SPECD'IED BY 
THE VERIFIl!;D DIR~CTOHY, LIA13Ll!; '1'0 GBNE;RATE TRAN­

SI~NT OUTPUT SPIKES? 

It will be assumed that the sequential network has been 

tested by module r: and if s t atic hazards have been detected then these 

were subsequently corrected before subjecting the network to module U. 

Thus if output spikes ar e present then these are systematically gene­

rated by the network. Such spikes may be due to a sequence of secon­

dary ohanges following a single input change while the network settles 

into the final stable state (as given in the REDUCED DIRECTORY). 

Consequently the outputs must be monitored throughout each such sequence 

and if there is more than one change in any output then a dynamically 

generated output spike is present. This is a design error whioh needs 

logical correction if the load supplied by the system is sensitive to 

such spikes. New techniques of analysis are not required since the 



test consi s t s of observat ion of the VERIFIED DIRECTORY and the counting 

of the number of chun ge s of each out put in re sponse to a s ingle change 

of input. 

4.18.1 The test module U. 

Inputs consist of the VERIFI~D DIR~CTOhY . 

Analysis requires n number of single-variable changes for 

an n-input network, and thi s number of test s must be conducted starting 

from each of the F s t able states . 

Assess~ent is by counting the output changes in response to 

a s ingle t est . 

Out put s wi ll list the t est conditions which led to multiple­

out put change , toge t he r with the descript i on of the faulty output 

concerned. 

Inputs/outputs ar e shown on Table 4.18.1. 

4.19 SUMMARY. 

The nineteen modules de soribed in this chapter are connected 

by the same purposes they were designed to answer questions of design 

verific ation in a concise way. lrheir operational objectives are. also 

common: they use what is thought to be the minimum of information 

consistent with ge nerating the answer , they aim at comprehensive test­

i ng and utili se techniques which are effioient in terms of computer 

use. The modules differ in their mode of analysis : they use predom­

inantly numerical methods but some of the techniques may be best 

described as analytic; others, such as those towards the end of the 

chapter, are based on simUlation. Tabl e 4.19 has been constructed 

to a llow the assessment of the service provided by each of the modules. 

Some of the modules succeed in giving what ie thought to be 

complete and satisfactory answers to the design verification question 

they serve. Others produce incomplete, deficient or over-pedantic 

answers . . Care has been taken to point out such defioienoies, explain 
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the reason for their existence and indicate some way in which the 

module may be re-designed at some later time to minimise these defi­

ciences . 

The modul e s ar e compatible and frequently rely upon each 

other for test dat a , inputs or technique. It is evidently possible 

(even desirable) to design a control program which automat es the use 

of a set of these modules. The de s i gn of such automatic test systems 

is briefly discussed in chapter 5. The design and implementation of 

such a system is the subject of a research project (1) whioh has been 

set out in conjunction with this work. 



CHAPTER 5. 

ORGANISATION OF A MODULAR LOGIC DESIGN 

TEST SYSTEM. 

5.1 Introduotion. 

5.2 System design alternatives. 

5.3 The Prototype System. 

5.4 Future plans. 



5.1 INTRODUCTION. 

The purpose of this chapter is to outline the manner in 

which the modules of Chapter 4, or their variants, may be combined 

to form a system of logic design verification. The design of suoh 

a system would require careful consideration of the need and faoilities 

of the industrial organisation which undertakes the implementation. 

While it is possible to give general outlines of systems design~ a 

partioular system must suit the computer installation, the design 

methods, the staff training facilities~ etc., of the user conoerned. 

The work involved is outside the scope of this thesis. 

In order to substantiate, indeed in many cases to develop, 

the techniques described in Chapter 4, it was necessary to undertake 

the development of a Prototype System. This development, as mentioned 

earlier, is the subject of an allied research project (1). This 

chapter will contain the outline of the aims of the Prototype System. 

Reference (24) is a published report desoribing its organisation and 

methods. The material of the report will form the basis of Mr. Hoimes' 

thesis. 

Fig. 5.1 shows the block diagram of the design verification 

process. The designer may be required to present some or all of the 

types of data shown. The Proposed System consists of a selection of 

the test modules of Chapter 4, complemented by some control meohanism 

which allows them to be operated upon the reoeipt of relevant data. 

The next seotion outlines two alternative types of design 

verification systems. The Prototype System is akin to one of these 

and will be compared with the Proposed System in the oourse of this 

chapter. 

5.2 SYSTEM DESIGN ALTERNATIVES. 

5.2.1 CONVEhSATIONAL SYSTEM. 

The type of system which would afford the greatest flexi­

bility and the shortest turn-around time may be conversational. The 

time-shared processor would provide simultaneous service to several 



logic designers who would have a terminal in their own ottioe, and 

would thuB enjoy immediate access to design verification facilities. 

The time-shared system appears to be simple to organise. 

The designer would be presented with a set of seemingly autonomouB 

modules of which to choose. Module manuals would give instructions 

about the type and format of data required by the module. The service 

would need a common backing file from which the designer may seleot 

standard hardware sub-systems. Furthermore, individual files would 

have to be provided for each designer. 

At the level of the processor the modules are not autonomousJ 

some are dependent on others for their data; several may use similar 

analYSis techniques. Thus the system would need organisation where 

a call for a given module would activate not only the nominated module 

but all necessary auxiliary modules as well. 

The system must provide diagnostic facilities. These may 

include syntactical checks of the network data, instructions and 

behaviour Apecifications, as well as more sophisticated checks, such 

as compatibility between network and specifications and demands of 

storage capacity. 

An important part of the verification system design is the 

selection of standard verification modules. The 19 modules of 

Chapter 4 make a formidable list; designers would prefer a smaller 

selection perhaps. The restriction of the list by the omission of 

duplicated or un-important facilities is obviously desirable. However, 

restriction by combining several facilities would amount to reduction 

of the resolution level of the system and may deprive the designer of 

some important detail. It is considered that detail must be preserved 

in a conversational system , otherwise less than full advantage will be 

taken of expensive facilities. Thus, for such a system, a comprehen­

sive list of modules is recommended, omitting of the list of Table 

4.19.1 only module F (or module G), module H (to be included ae 
I 

auxiliary of several others) and module P (this too is an auxiliary). 



5.2.2 Batch processing system. 

This alternative pre-supposes that the designer has no 

immediate access to the computer, hence the verification process must 

be conducted in a smaller number of larger steps than in the case of 

conversational systems. Thus it is prudent to reduce the number of 

test modules and anticipate that the designer may call several modules 

of the list at a given run in an attempt to reduce the over-all turn­

around time. 

For such a system a list of modules is proposed as shown 

on Table 5. 2 .1. 

When initiating a verification run/the designer must prepare 

a universal data tape which includes the list of nominated modules and 

all relevant data. This data therefore contains more detail than 

any module may require. The system must provide facilities for sort­

ing the data for each nominated module. 

If the list of nominated modules contains inter-dependent 

modules then the sequence of operations must be automatically ordered 

to ensure that auxiliary modules are operated before dependent ones. 

Apart from this, the designer must be given the freedom to nominate 

dependent modules without calling their auxiliaries, as in conversa­

tional systems. 

5.3 THE PROTOTYPE SYSTEM. 

The Prototype System may be regarded as an example of the 

type of system described in section 5.2.2. Since however, the system 

was used as a teat bed of ideas on verification and programming tech­

niques, its facilities are less comprehensive and frequently less 

sophisticated than those of the modules of Chapter 4. 

folds 

The purpose of the design of the Prototype System was four-

1) to help the development of design verifi­

cation techniques 

2) to prove the feasibility of a modular 

design verification system 



3) · to give experience in the design of suoh 

a system 

4) to provide an operative system for the 

use of logic designers. 

5.4 

It was considered important to ssleot a modest oomputer 

installation as the basis for such a system: if the newly developed 

techniques were to gain· widespread acoeptance, expensive installations . 

could not ·be taken for granted. Thus the Prototype System was 

designed for a maohine with a small core store (l6k) and three tape 

handlers as the only backing storage. 

For the purpose of generality, the programs of the Proto­

type System have . been written substantially in ALGOL. However, to 

permit effioient use of the computing faoilities, oertain seotions, 

amounting to some 15% of the total, are written in maohine oode. An 

example of such a machine code section is the use of the bit-handling 

r.outines of ISOPACK. 

To allow the evaluation of the facilities of the Proto­

type System, .let all of the modules of Chapter 4 be combined to form 

a "Propose~ System". The Prototype System will now be evaluated 

against this standard. 

In the forthcoming discussions references to the report 

of (24) will carry the prefix "A". 

The terminology and nota tion of (24) will be seen to differ 

somewhat from that of the rest of this work. Thus for instance, 

"module" in this work has so far denoted a design verification prooe­

dure, whereas the report uses thi s word to describe a sUb-system of 

the total system of programs. Furthermore, the word "Analysis" in 

the title of the report is used to mean "design verification". 

A reference to figure A 2.1 will show the Prototype System 

to consist of 10 program modules. Of these, INPUT and LIBRAN 

perform ancillary duties while the rest are test modules in the usual 

sense of the word. 



5 . ~ .1 'rhe t f'::1t modules of thA Prototype Sy s tem. 

Table 5. 3.1 shows a comparison of facilitie s . It will 

be see n tha t, while the Prototype ~Jy st em l a cks certain f acilities, 

it provides others not found in the range of the Proposed System. 

T~e facilities provided for oombinational networks are 

identical, with the only exception tha t module D has no equival p-n t i n 

the Prototype System . 

Important differences occur in terms of sequential networks. 

There are no facilities in the Prototype System to compile a VERIFI~D 

and a H:b:STRICTED DIH ,~CTORY , although ANALYS (section A3.9) and TIED 

( section A. 3.9) contain most of the ingredients . Several important 

decisions are made upon information contained in the PRI MITIVE 

DIR ~CTOI.Y but , s ince thi s is an ambiguous record of the network per­

form ance, the se decisions mu s t be handled with caution. Thus, for 

instance , the li s t of UNSTABLE entries of Fig. A5. 3. 3 do not neoes­

sarily mean that the network oscilla t es since , due to conditions 

dete cted by modul es L and M, t he VERIFI BD DIR~CTORY may significantly 

differ from the PRI~ITlVE . Similarly , the count of transitionary 

cycle s as reported by ANALYS ( same section) carries information of 

doubtful value. 

Another facility within ANilLYS is CIRCUI'f OPl!:RATIONS 

( section A3 . 6 . 2 .5). This is an interesting feature, providing wave­

form-like outputs on an un-specified time soale . This too is based 

on th e PHHlITIV£ DIR,t;CTORY and is subject to the s ame comment as above. 

SERIAL is not so much a separate test module but a mode of 

using 3EQU"t!:N and ANALYS for networks which would otherwise cause 

embarrassment due to the s ize of their logical (designation number) 

arrays. The ins talla tion for which the Prototype System was designen 

impo se s a limitation that, if the number of independent variables 

exoeeds Bome para~eter (15 in thi s case), then com prehensive testing 

is not att empted, but networks will be analysed by the nominated test 

modules only under the input conditions defined by the designer. 

The facility is not required in the Proposed System, sinoe 



such large networks can be automatically analysed under a "estricted 

set of condition~. I nstead of specifying the test data, designers 

need merely to define the admissible environment . The method is 

considered preferable to that of the Prototype System. 

It will be observed from Table 5.3.1 that the module ANALYS 

performs several functions . This does not result in reduced resolu­

tion because, in fact, A ALY ~ is divided to several small modules (aee 

section A3.6). Similarly, STATIC is entered on Table 5.3.1 twice; 

thiA is because thA same module is used in the Prototype System for 

the analysis of combina tional and sequential networks. 

The report nontains a Uaer's Guide ( sRction A5.l) ~s well 

as several worked examples within section A5. From there the output 

format may be observed to be at variance with the Proposed System in 

several details. 

Conclusions . 

The Prototy pe System succeeded in providing the basis for 

a more sophisticated ~ystem of desi gn verification; it has also esta­

blished un dergraduate work on logic ne twork analysis at Kingston 

Polytechnin. The sys tem has been used by logic designers in Industry 

whose response, after an initial period of aversion from anything new, 

has been favourable. 

5.4 FUTURE PLANS. 

It is considered that the research work contained in this 

thesis and in the allied project (1) is a basis upon which development 

of a design veri fication system could be founded. Support is now 

sought , ann has been promised , for such work to be carried out under 

a sponsored development contract. The nAW system is to be designed 

to allow the innlusion of the new facilities and the improvement of 

techniques outlined in Chapter 6 . 



CHAPTSR 6 

FUh'l' lll,:R DEVBLOPM8N TS 

6.1 .,utomCi tion of the iterative design of 

logic networks. 

6.2 1 .. lodelling of large logic networks. 

6 . 3 'l.'hA analY Ais of hybrid systAmfl. 

6. 4 . ~ ualit ative analysis of the transient 

behaviour of logic networks. 

6. 5 Autom~tion of production testing of 

logic syst oms. 



6.1 

6 FURTHER DEVBLOPM""t:tJTS. 

The implementation of the te s t methods described in this 

thesis i s now under consideration by a Government Department and by 

in dustri ~ l organisations. In addi tion, the experience gained by 

thi s work i s now applied in sev~ral new fields of research, Borne of 

them not connected to logic d~sign. 

It i s the purpose of this chapter to describe some of the 

new fi eld s of investi gation to which this project has led. 

6.1 AU'fO Jllt ATIO J OF THJ'; ITEHA'frVB DESIGN 
OF LOGIC NgTWORKS. 

Reference i s made to the model of the design process, 

shown on Fig. 2 . 6 .1. 

The correction loop of the figure will now be examined in 

more detail. 

When the partia l specifi cations are presented , the designer 

generates a proposal of a new de s i {;n which represents the best solu-

tion he is able to offer to the problem . When the verification 

process result s in an error report, the designer initiates corrections 

of the design and offers a new ver s ion for verification. 

dure is shown on Fi g . 6.1.1. 

The proce-

The methods described in chapters 4 and 5 of this thesis 

propose s to aut omate the verifica t ion process, but demands that the 

desi~er performs the tasks of generation of new design and error 

correction. 

It i s possible to envisage a fully automatic design system 

wh ere each of the task s i s performed by the computer. As a first 

step towards su~h a system, the error correction pro cess may be auto­

mated, leaving the designer with the job of generating the initial 

design. nesearch i s carried out a t the present time, under a 
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Government contract, to automate the error correction process. A 

m00ul a r error correction procedure is under development, with a cor­

rection modul e matching each ver ,ification mocule wi t~in Cl. design test 

sys tem. ~hp correction module interprets the error report produced 

by verification and modif i es t he netv.'ork in a sys t ematic way, thus 

eliminating th e error . 

The final s tage of automation would bring the generation 

of the rlesi gn proposal under the computer ' s control . 

now been planned . 

This step has 

The homogeneous structure of single- gate resolution 

(Chapter 4 ) becomes unt enable if the network under test is very large. 

The desi gns:r has no coding problems when handlinff such 1 r ge networks, 

be causp. th e f ac ility of nested structures permits him to oper a te at 

much lower levels of r esolution. The same facility must be extended 

to the comput er . 

The solution li es in automatine the proce ss of restricted-

mode moclelline; . A restricte d mode model is defined as a mode l of a 

ne twork whose behaviour is the same as that of the network itself if 

th e environment of thp model i s constrained to a par t of the admissible 

envi ronment of tho network . As a consequence of such constraints it 

is generally true that the restricte r. mode model conta ins less infor­

ma tion t han the comprehensive model of t he homogeneou s structure and 

thus i s more efficient to store . Since it also operates at a lower 

l evel of resolution, it offers addi t ional efficiency by reducing the 

time of computer mani pulation. 

It i s poss ibl e to design several different methods of 

r estr ict ed mode mode lling . One of these me thods is now pursued under 

a Government contract. 



6.3 TH~ ANALYSIS OF HYBRID SYSTEMS. 

For the purpose of thi s discu ssion a hybrid system is 

defined as one containing both analogue and digital sub-systems; more 

precisely, a hybrid system may be resolved to objects whose environ­

ment is modelled as a continuous space and other objects whose environ­

ment i s modelled as a number of discrete points. 

The analys is of hybrid systems presents particular problems 

due to the difficulty to interface objects of dissimilar type. A 

method of analysis is therefore sought which will simultaneously 

accommodate all of the objects of a hybrid system. 

A Government-sponsored post-graduate student is at the 

present time investigating this problem under the supervision of the 

author. 

6.4 qUALITATIVE A~ALYSIS OF THE TRANSIENT 
BEHAVIOUR OF LOGIC NETWORK. 

The term qualitative analysis is defined here as the inves­

tigation of the behaviour of a system without reference to input 

signals. 

It is thought possible to find the causes of faulty or 

ambiguous transient behaviour of logic networks on the basis of such 

qualitative analysis. It is further considered that it is possible 

to initiate the correction of some types of transient errors, entirely 

on the basis of qualitative observations. 

The method eliminates the shortcomings of the verification 

modules of Chapter 4: it permits the elimination of a statically 

hazardous gate from the error lis t of module F or G if an effective 

blankinR signal ·is found to be available at a subsequent part of the 

network; it permits the sorting of trivial and non-trivial essential 

hazards and allows the identification of the gates causing sensitivity 

to object delay variations • 

. lthough the improvement of design verification services 



is significant, the main advantage offered by the qualitative analysis 

method lies in its efficiency . The number of tests necessary for 

comprehensive analysis is a linear (instead of the usual exponential ) 

function of the number of inputs. Thus, by replacing some of the 

modules of Chapter 4 by others, based on qualitative analysis, it 

becomes possible to analyse very large networks comprehensively . 

Methods of qualitative analysis are now partially developed 

and a paper is under preparation describing the use of these methods 

for the analysis of combinational networks. 

AUTOlv;.rtTION OF PRODUCTION TESTING OF 
LOGIC SYSTEMS. 

The subject is of considerable topical interest. A 

selection of recent publications can be found in ref. (28 ) . 

The problem could briefly be outlined as follows: produot 

testing has become the critical step in the production process of 

both discrete-component and integrated circuit logic systems. It is 

thus imperative that product testing should be efficiently oonduoted . 

A product test method is efficient if it deteots and 

classifies faults in the hardware by applying a minimal test sequence. 

Since the minimal sequence will be different for each design, a gener­

alised method is sought for the automatic generation of such test 

sequences, base d on the description of the verified design . 

It is thought that the design test methods described in 

thi s thesis could form a suitable foundation for a production test 

method. Arranf,ements are being made at the Kingston Polytechnic for 

the appointment of a post-graduate research assistant who will work 

on this sub,ject. 
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1 ( 0 1 1 010 () () () () 0 0 ) 

2 ( 0 1 1 o 10 0 0 u 0 0 0 ) 

3 ( 0 0 0 u 1 1 0 () 0 0 0 ) 

4 ( 0 1 0 1 1 0 0 0 0 0 0 0 ) 

5 ( 1 0 0 o 1 0 0 1 0 0 0 0 ) 

6 ( 1 0 1 o 0 0 0 1 0 0 0 ) 

7 ( 0 0 0 o 1 0 0 0 0 1 1 0 ) 

71 ( 0 0 0 0 1 0 0 () U 0 0 1 ) 
I 

Ji'ig. 4. 2 .5. 

(10 ) 
(20) 

(30 ) 
( 1 20 30) 

( 2 20 30) 

( 3 1 2 ) 

( 4 20 ) 

( 5 3 10) 
( 6 10 4 30) 

( 7 5 6 ) 

Table 4.2.1. 
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lY10DULE A 

Specification Specification Specification 
of new of operating of behaviour Output 

design sienals 

YES/NO 
Option:-

Structure - - Processing 

List 

Table 4.2.2 

1: 6 7 

4 ( 0 0 1 ) 

6 ( 1 0 0 ) 

7 ( 0 1 0 ) 

Fig. 4.3.1. 

p Q H S T U w X 
p ( 0 0 0 1 0 0 0 0 ) 

Q ( 1 0 \) 1 0 0 0 0 ) 

R ( 1 0 0 0 0 0 0 0 ) 

S ( 0 1 1 0 0 0 0 0 ) 

T ( 0 0 0 1 0 0 0 1 ) 

U ( 0 0 0 0 0 0 1 0 ) 

W ( 1 0 0 0 1 1 0 0 ) 

X ( 0 0 0 u 0 0 1 0 ) 

Fig. 4.3.2. 
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P R S T W X 

P ( u 0 1 0 0 0 ) 

R ( 1 0 0 0 0 0 ) 

S ( 0 1 0 0 0 0 ) 

T ( 0 0 1 0 0 1 ) 

W ( 1 0 0 1 0 0 ) 

X ( 0 0 0 0 1 0 ) 

Fig. 4.3.3. 

MODULE B 

Specification Specification Specification 
of new of operating of behaviour Output 
design signals 

N~ · of state 
variables or 
List of objects 

Structure with which stat - - variables are 
e 

associated. 
Processing List 

Table 4.3.1. 



lit 

10 
42 51 

i/p 1 __ -+-__ 00 O/p 1 

52 
i/p 2 )---+----0 o/p 2 

i/p 3 
30 

Fig.4.4.1. 
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(CIR3 ) /tit1e/ 
(1 INPUT 1 ) 
(2 INPUT 2 ) 
(3 INPUT 3 ) 

(4 INPUT 4 ) 
(5 INPUT 5 ) 
(6 INPUT 6 ) 

(7 INPUT 7 ) 
(8 INPUT 8) 
(9 INPUT 9) 
(100 CIR2 1 2 3 ~ 
(200 CIR2 4 5 100/2) 
(300 CIR2 6 7 200/2) 
(400 CIR2 8 9 300/2) 
(10 OUTPUT 1 100/1) 
(11 OUTPUT 2 200/1 ) 
(12 OUTPUT 3 300/1 ) 
(13 OUTPUT 4 400/1 ) 
(14 OU~?t1T 5 400/2) 

Table 4.4.1. 



-- -

( UIR2 ) 16 
(1 INPU1' l) 
(2 I NPll'r 2 ) 

(3 INPUT 3 ) 
(10 NOH 1 ) 

(20 NOR 2 ) 
(30 NOR "3 ) 

(40 NOR IOU/I) 
(50 Non 300/1) 

(100 eIRl 1 2 10 20) 

(200 OIRl 30 40 100/1 3 ) 
000 eIRl 3 100/1 1 2 ) 

( 4 OUTPUT 1 2UO/1 ) 

(5 OU'l'PUT 2 5U) , 

Table 4.4.2. 

(1 INPUT 1) 

( 2 INPUT 2 ) 

(3 INPUT 3 ) 
( 4 INPUT 4 ) 
(10 AND 1 2 ) 

( 20 AND J 4 ) 

00 NO}( 10 20 ) 

(5 OTJ'fPUT 1 30) 

(fable 4.4.3. 



1 

2 

3 

5 

6 

7 

8 

9 

,----

0 
J 

d--

(~ -

1 
-0-Z--

3 

1 
, 2 
-----

3 

--

L~_ 
3 

1 

2 

3 

17 

CrR 2 
100/1 

100 1 o 

100/2 

~ 
eIR 2 200/1 

1 1 
200 

200/2 

erR 2 300/1 1 2 

300 

300/2 

erR 2 400/1 13 
400 

400/2 14 

I 



3 

2 

1 --_. 
2 

0 --.1 . 
20 4 

8-~-

eIR 1 

100 

---.---

-----

30 

-~-
40 1 

-8 2 

3 
-----

4 

1 

2 ela 1 
_ . 1 

3 300 

4 

-----

CIR 1 

200 

50 

--(0 

18 

5 
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1 

2 

5 

3 

'&---T - 50 



20 
Ivl ODTJlill U 

Specification Specification Specification Output 
of new of operating of behaviour 
design signals 

Structure -+ YES/NO 
function - - Homogeneous 
parameters data structure; 

same with 
function 

parameters 

MODULE D 

-
~pecification f, p e cif i cat ion 0pecification Output 
of new of operating of behaviour 
design signals 

Structure 1- NO/identification 

load - - of faulty object 
parameters and type of error 

Table 4.5.1. 



21 
,~ 

I 

Fig.4.6•1 • 

U1 

Fig.4.6•2• 
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dUI = 0 1 0 I 0 1 0 1 

dU2 Ra 0 0 1 1 0 0 1 1 

dU
3 = o 0 0 0 1 1 1 1 

dl = 0 0 0 1 0 0 0 1 

d2 = 1 1 0 0 1 1 0 0 

d3 = 0 0 0 0 1 1 0 0 

d4 = 0 o 0 1 1 1 o 1 

Table 4.6.1. 

MODULE E 

Specification Specification Specification Output 
of new of operating of behaviour 
design signals 

Structure + Optional; Standard YES/ list of 
function FIXED or network or faulty output 
parameters + tabulated Equations or bits. 
Processing inputs Truth table Optional: total 
List table 

Table 4.6.2. 
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.. SINGLE 

~~ a) t 
STATIC '1 ' HAZARD 

- - - ~ 

b) 1 

~--
MULTIPLE 

I STATIC '0' HAzABD 
1- - - - - - - - - - - - - - - - - - - .. t 

SINGLE 
DYNAMIC '1' HAZARD ~[l~I ______ __ _ c) 

I 

I MULTIPLE 
DYNAMIC '0' HAZARD 

Fig.4.7.1. 

01 D1 

U20 __ -/ 

D2 

U3 u-__ ___ 

U2 

U1 

U3 

Fig.4.7.3. 



~ D3 
Ul U3 I::. U2 

o 0 0.U2 + U~ t- O = 
o 1 
1 0 
1 1 

0.U2 + U~ + I --
1.U2 + U~ + 0 = 
1.U2 + U~ +- 1 = 

Table 4.7.1. 

MODULE F 

Specification Specification 
of new design of operating 

signals 

structure + 
function 
parameters + -
Processing 
List 

Table 4.7.2. 

Ref. 1 2 3 41 42 43 44 

0 000 1 0 0 0 
1 100 0 0 0 0 
2 010 1 0 0 0 
3 1 1 0 0 1 0 1 
4 001 1 0 1 1 
5 101 0 0 0 0 
6 011 1 0 1 1 
7 1 1 1 0 1 0 1 

. Table 4.7.3. 

0 ... ~ = tr2" 
o + r = 0 
U2 +~ 
U2 + l" = U2 

Specification 
of behaviour Output 

NO/list of 
hazardous gates; 

- Option:defini-
tion of i/p lead-
ing to hazard 



0 . + 1, 2; 4 
2S 

1 ~ 0, 3, 5 
2 .... . 3, 0, 6 
3 ~ 2, 1, 7 
4 ~ 5, 6, 0 
5 -t 4, 7, 1 
6 ~ 7, 4; 2 
7 -; 6, 5, 3 

Table 4.7.4 

0 ~ 1, 2, 4 
1 -+ -, 3, 5 
2 -+ 3, -, 6 
3 -+ -, - , 7· 
4 ~ 5, 6, -
5 ... -, {, -
6 -+ 7, -, - . 
7 ~ -, -, -

Table 4.7.5. 

G t a e 
NO. 0+1 0-+2 ·0"'4 lot3 1~5 . 2~3 . 2~6 · 3~7 4~5 4-+-6 5+7 6+7 
10 o 1 o 0 o 0 1 1 1 1 o 1 o 0 1 1 o 1 o 0 1 1 o 1 
20 o 0 o 1 o 0 o 1 o 0 1 1 1 1 1 1 o 0 o 1 o 1 1 1 
30 o 0 o 0 o 1 o 0 o 1 o 0 o 1 o 1 1 1 1 1 1 1 1 1 
41 1 0 1 1 1 1 o 0 o 0 1 0 1. 1 o 0 1. 0 1 1 o 0 

~ 42 o 0 o 0 o 0 o n. o 0 o 1 o 0 1 1 0 0 o 0 o 1 
43 o 0 o 0 o 1 o 0 o 0 o 0 o 1 o 0 1. 0 1 1 o 0 
4·4 o 0 000 1 o 1 o 0 o 1 o 1 1 1 1 0 1 1 o 1 

Table 4.7.6. 
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(AND) 

~OR) . (AND) 

(U1) -L6---- ~----_..__; 

(AND) 

~------~----~~---------' 

lI'ig.4.7.4. 
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MODULE G 

Specification Specification Specification 
of new design of operating of behaviour Output 

signals 
Output of No/list of 
module E + nazardous - -Processing ~~tes; List ption : 

~efinition 
pf i/p 
P.eading to 
Ihazard 

Table 4.1.1. 



INPUTS 

INDEPENDENT 
VARIABLES 

100 

200 

U1 

Un 

NETWORK 

SEQUENTIAL NETWORK 

..,., STATE VARIABLES 

---

MODEL 

COMBINATIONAL MODEL 
OF 

SEQUENTIAL NET VORK 

Figo4.8 .1 • 

40 

28 
Zt 

OOTPUTS 

ZQ 

- Zq DEPENDENT 
SN, V.A.RI.A.BLES . 

20 



d40 = 0 1 0 1 0 1 0 1 
d100 = 0 0 1 1 0 0 1 1 
d200 - 000 0 1 1 ·1 1 
did ~ 0 0 0 0 0 0 0 1 
d20 - 1 ' 1 1 1 1 1 1 0 
d)O = 1 1 1 1 0 0 0 1 

Table 4.8.1. 

Ref. Ul U2 ·BP1 SN1 ZI 

0 0 0 O ,~ 1 0 
I . 0 O. 1 1 0 

.2 1 0 0 1 0 
j 1 0 1 1 0 
4 0 1 0 0 0 
5 0 1 1 .0 0 
6 l ' . 1 0 0 ' 0 
7 1 1 -1 1 1 

Table 4.8.2. 

29 



MODULE H 

Specification Specification Specification 
of new design of operating of behaviour Output 

struoture + 
function 
parameters+ 
Processing 
List 

si nals 

Optional 
standard 
network or 
equations or 
DIRECTORY 

Table 4.8.3. 

MODULE J 

Specification Speoification Specificatio 
of new design of operating of behaviour 

si als 

DIRECTORY -

Table 4.9.1. 

eS/l1st of 
aulty lines 
f DIRECTORY 

(see Comment) 
Option: total 
DIRECTORY 

Output 

ist of input 
and state 
ariable para­
eters of 

stable total 
states 

30 



Pres. Next 
state state 

Inputs var's var's 

Ref. Ul U2 SI S2 SI S2 

0 0 0 0 0 0 0 STABLE 
1 0 0 1 0 0 0 D.. m = 1 
2 0 0 0 1 0 0 6. m = 1 
3 0 0 1 1 0 0 A m = 2 
4 1 0 0 0 0 1 ll.m=l 
5 1 0 1 0 0 0 ~ m = 1 
6 1 0 0 1 0 1 STABLE 
7 1 0 1 1 0 1 6.m=l 
8 0 1 0 0 0 1 6. m = 1 
9 0 1 1 0 1 0 STABLE 

10 0 1 0 1 0 1 STABLE 
11 0 1 1 1 1 0 6. m = 1 
12 1 1 0 0 1 1 6 m = 2 
13 1 1 1 0 1 0 STABLE 
14 1 1 0 1 1 1 Am=l 
15 1 1 , 1 1 1 1 STABLE 

Table 4.10.1. 

MODULE K 
ca 10n l Spec1 1ca lon Spec ca on 
design of operating of behaviour 

si na1s 

DIRECTORY + 
Processing 
List 

Table 4.10.2. 

Output 

o s 0 
ha.za.rdous 
gates; 
Option: 
definition 
of indepen­
dent vari­
ables lead­
ing to error 

31 



32 
Present state Next state 

Inputs variables variables 

Ref. Ul U2 Sl,S2,S3,S4,S5 Sl,S2,S3,S4,S5 

32 1 0 0 0 0 0 0 0 0 0 0 1 
35 1 0 1 1 0 0 0 1 1 0 1 1 
36 1 0 0 0 1 0 0 0 0 0 0 1 
38 1 0 0 1 1 0 0 1 1 0 0 1 
39 1 0 1 1 1 0 0 1 1 1 0 0 
48 1 0 0 0 0 0 1 0 1 0 1 1 
49 1 0 1 0 0 0 1 1 0 0 1 1 
50 1 0 0 1 0 0 1 0 1 0 0 1 
51 1 0 1 1 0 0 1 1 0 0 1 1 
52 1 0 0 0 1 0 1 0 1 1 0 0 
56 1 0 0 0 0 1 1 0 1 0 1 1 
57 1 0 1 0 0 1 1 1 0 0 1 1 
58 1 0 0 1 0 1 1 0 1 0 1 1 
59 1 0 1 1 0 1 1 1 0 0 1 1 
100 1 1 0 0 1 0 0 0 0 1 0 0 

Table 4.11.1 

MODULE L 

Specification Specification Specification 
of new design of operating of behaviour Output 

signals 

No/list of 
errors 

DIRECTORY - - showing 
stable state, 
i/p trans-
itions and 
adverse rela-
tive delays of 
racing state 
variables 

Table 4.11.2. 



r------~; 00100 - 00001 

I 
00600 - 00001 00161 _ 01100 

~ - 01011 

I 
O~OOI - 01011 00611 - 01011 

nibll - 0101101S11 - 01011 

~ N.C.P. ~ N.C.P. 

OSC. I 

, ~~~~~ -_ 01100 
11001 

l' 
OSC. ~9.LUU' 

rr'roo - 11100 

~ C.P. 

01~01 - OSC. 01000 - 11001 

I 
11000 - 11011 

I 
01~01 - 01011 

~ N.C.P. r I 
11010 - 11011 11001 - 10011 

~ - 10011 I I 1 
~ _ 10011 1P001 - 10011 11?11 - 10011 
~ 10011 - 10011 10011 - 10011 

C.P. 11bol11 C.P. ~ C.P. 

Fig. 4.11.1. 



MODULE M 

Specification Specification Specification 
of new design of operating of behaviour Output 

signals 

NO/list ·of err 
DIRECTORY - - showing stable 

ors 

state and inpu t 
transitions 

Table 4.11.3. 

100 200 300 400 500 ' 4000 6000 5000 ' 4 6 5 
Ref. U1 U2 U3 U4 U5 SP1 SP2 SP3 SN1 SN2 SN3 

221 1 1 0 1 1 1 0 1 1 0 1 
253 1 1 1 1 1 1 0 1 0 0 1 
252 1 1 1 1 1 0 0 1 0 1 1 
254 1 1 1 1 1 0 1 1 0 1 1 
222 1 1 0 1 1 0 1 1 1 1 1 
223 1 1 0 1 1 1 1 1 1 1 1 
255 1 1 1 1 1 1 1 1 1 1 0 
251 1 1 1 1 1 1 1 0 1 0 0 
249 1 1 1 1 1 1 0 0 1 0 0 
220 1 1 0 1 1 0 0 1 1 1 1 

Table 4.11.4. 



U 100 \ 1 ...... ~ 

U2 
200 

u3 - 300 

5 
83 i 

U4 
400 I • 1;000 

U5 

F ~~. 4 ' I\' 2. 

8 

, • I. . Qs 

/ 

1 •• 1 .Qc 

UJ 
~ 



- r 

" 

~-. 
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INITIAL CONDITIONS A B ~ D E ~ I ~ K L ~ N 0 ~ Q ~ s 

.00000000 
5.1206356 
14.874813 
24.909096 
29.905769 
34.728580 
39. '612494 
39.872056 

OBJECT 

A B @D E I 
ABCDE@I 
A B C D E H I 
A B C D E H I 
A B C D E H I 

, ABCDEHI 

K L N 0 
K L N 0 
OL N 0 

LOON 0 
L M NO 
L MO 

Q S 
Q S 

o S 
®S 
R S 
R S 
R S A B C D E H I@ 

A B C D E H I J 
L M 
L M CD R S 

Table 4.12.1. 

-.; ( 

o r;-r-O-, 
I) <l 0 

Numerical 
identifier 
(fig.4.11.2) 100 4 5 6 7 8 9 : ~ ~ i 

Alphabetic 
identifier 

Time delay 
in units 
of 1 nsec. 

Table 4.12.2. 

I 

l \ I 



MODULE N 
SpecJ.ficatJ.on SpecJ.fication 
of new design of operating 

signals 
Output of stable state; 
modules C, J; input change 
delay 
~arameters 

Table 4.12.3. 

MODULE P 
Specification Specification 
of new design of operating 

signals 
PRIMITIVE Output of 
DIRECTORY mqdule L,M 
output of 
module H,C; 
delay parameter 
of all objects 

Table 4.13.1. 

Ref. Ul U2 SP1 SP2 SN1 SN2 
000 0 0 1 1 
300 1 1 1 1 

Table 4.14.1. 

38 

Specification 
_ 0. --

of behaviour Output 

Printout of 
- waveform on 

nonlinear time 
, scale 

Speci!OlCa tion 
of behaviour Output 

- VERIFIED 
DIRECTORY 



Ref. U1 U2 SPl SP2 SNl SN2 

o 
2 
3 

Ref. 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

000 0 
000 1 
001 1 

o 1 
1 1 
1 1 

Table 4.14.2. 

(state vector of stable state) 
Ul U2 SPl SP2 SI S2 
0 0 0 0 0 0 
0 0 1 0 1 0 
0 0 0 1 0 1 
0 0 1 1 0 0 
1 0 0 0 1 0 
1 0 1 ' 0 1 0 
1 0 0 1 0 1 
1 0 1 1 0 1 
0 1 0 0 0 0 
0 1 1 0 1 1 
0 1 0 1 0 0 
0 1 1 1 1 1 
1 1 0 0 OSCILLATORY 
1 1 1 0 0 1 
1 1 0 1 0 1 
1 1 1 1 OSCILLATORY 

Table 4.14.3. 
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MODULE Q 

Specification Specification Specification 
of new design of operating of behaviour Output 

signals 

VERIFIED Yes/list of 
DIRECTORY - - conditions 
(output of leading to 
module P) error; 

Option: REDUCED 
DIRECTORY 

Table 4.14.4. 

MODULE R 

Specification Specification Specification 
of new design of operating of behaviour. Output 

signals 

REDUCED .Yes/list of 
DIRECTORY - - conditions 
(output of leading to 
module Q ) osoillations 

Table 4.15.1. 



---- --------------------

- - . --- .---.---------____ .....l 



Ift ODtJ1E S 

Specification Specification 
of new of opera ting 
des i gn signals 

REIJUCED s tarting 
DIRt CTOHY state Yi , 
(o/p of pa rameter X module Q) 

Table 4.16.1. 

MODULE T 

Spe cifica tion ·Specifica tion 
of new of operatine; 
design s ignals 

, 
Output of output of 
modulet 0, J; modules L, M; 
de lay 
parameters 

Table 4 .17.1. 

MODULE U 

Specification Specification of hew . of opera ting 
design signals 

Output of 
module D -

Table 4. 18. 1. 

~pecif i cation 

of behaviour 

-

Spe cification 
of behaviour · 

VERIFIED 
DIRECTORY 

Specification 
of behaviour 

-

Output 

NO/description 
of Yi and l ist 
of states not 
connected 

Output 

E'ailure 
record 

Output 

NO/list of test 
conditions 
leading to erro 
+ description 0 
faulty signals 

4-2 

r 
f 



f odu1e 
Name 

c 

D 

J 

f.: 

L 

s 

T 

u 

TABLE 4 . 19 . 1 

Design Verifi­
cation ~.uestion 

Specification 
of New Design 

specificationlspecification 
of Operating of behaviour 

s the sta~e of thelStructure. 
systeru fully deter­
ined by ~he 

variables 

is the m1n1- I Structure 
of state 

variables of the 
system? 

an the proposed 
esign be conver­
ed to a homoge­
eous structure? 

structure and 
function para­
meters . 

any objects of I Structure and 
e system mis-used load parameters . 

overloaded. 

s the steady-state 
sponse of the 

ombinational net­
ork co,rrect? 

outputs of the 
ombinational net­

subject to 
sient spikes? 

outputs of the 
inational net­
subject to 

ransient spikes? 

Structure and 
function para­
meters and out­
put of module A. 

structure and 
function para­
meters and out­
put of module A. 

Output of module 
it !:!.Dd output of 
module E. 

Optional. 

s the steady-statelstructure and \ Optional 
of the se- function para-
network meters and out­

put of module A. 

Which are the 
stable states of 
the system? 

re any of the 
gates of the sequ­
ntial network 
iable to generate 
tatic hazard 

Output of 
modul e H. 

Output of 
module A ann 
output of 
modu le H. 

s the ste ady-stateIOut ~ut of module 
esponse of the sy- H. 
te rn sensitive to 

tions of delay 
ters of 

stem objects? 
secondary races) 

s the steady-stateloutput of module 
esponse of the sy- H. 
tern sensitive to 

ations of deluy 
eter s of sys-

p.m objects? 
essenti al hazards) 

is the Simula-loutput of module I Stable state, 
ed response of a A. Output of input change . 

twork selected a t module J, 
- - . 

re present 
e desired per-

s the sequential 
etwork uncondition 
lly stable? 

s the system liabl 
get locked in an 

desirable state? 
set of states? 

Output of 
module L, out 

c - _n ___ --Iput of module 
M. 

Output of module 
~ . 

Output of 
module Q. 

St arting 
state, para­
meter to ter­
min3.te run . 

t is the proba- Output of mod- Output of 
ility of deviation ule A. Output module L, 

rformance f r om of module J Output of 
FlED DIRECTORY? el~v DRr~meter~ _ Module M. 

s the sequential 
etwork, specified 

the VERIFI :B:D 
JiECTO}{Y , liable 

o generate 
ient output 

pikes? 

Output of 
mocule P . 

• 

Standard net -
work or 
Equations or 
Table . 

Standard net-
work or 
Equations or 
Table. 

Table 

Output of 
module P . 

Outputs 

YeS/No. 
Options. 

Number of 
state vari­
ables, or 
list of ob­
jects with 
which state 
variables are 
associated. 
Option. 

Yes/No. 
Options. 

No/error 
list. 

Yes/list of 
errors. 
Option. 

No/error 
list. 
Options. 

No/error 
list. 
Options. 

Yes/list of 
errors. 
Options. 

List. 

NO/List of 
errors . 

NO/lis t of 
errors . 

NO/li s t of 
errors . 

Waveform . 

VERIFIED 
DIRECTORY. 

. error 
list. 
Option. 

Yes/list of 
OSCillatory 
conditions. 

No/starting 
state and 
liRt of un­
c~nected. 
state 
Failure 
record. 

NO/list of­
errors. 



odule name Facilities -
a Combination of facilities of A, B & C 

:-

b as D 
1-

C aa E ... 
d F or G 

~--
e as K 

--
f as L and M 

r ... 

g aa Q and U -
h as J and R 

, ... 

j aa S ... 
k ' aa N -
1 as T .. 

Table 5.2.1. 



~rest module Test lfiodule Comment 
of Proposed of Prototype 
System System 

A SORT 
E -
C MODEL 
D -
E COMBIN 
E' -
G STATIC 
H S1QllliN 
J ANALYS 
K STATIC a cilities are similar but not 

i dentical 

L ANALYS 

M ANALYS 

N TIMED 

P -
Q' -
R - Facility exists within ANALYS; 

based on primitive DIR1CTORY 
S -
T -
U - Facility exists within ANALYS; 

based on primitive DIRECTORY 
- ANALYS "CIRC'UIT OPERATIONS" based on 

~rimitive DIRECTORY 
- SE IAL Alternative mode for SEQUEN and 

ANA1YS 

'rable 5.3.1. 



r --------·------- -

PRCPOSED DESIGN 
(STRUGTURE ) 

(FUNCTION PARAMETERS) 
(LOAD P.ARAMETERS) 

(DELAY PARAMETERS) 

TEST 
INSTRUCTIONS 

(MODULE NAME) 
('rEST DATA) 

DATA 
IN 

PROPOSED SYSTEM 
OF DESIGN VERIFICATION 

DATA 
IN 

(MODULES) 
(CONl'ROL) 

SPECIFICATION 

OF 
BEHAVICXJR 

SPECIFICATION 

OF 
ENVIRONMENr 

---. - -- -- _._ -----"---------' 

4G 

• 
ERROR 
LISTS 

OOT 



~ 

--A. 

PAllnAL 
SPECIFI nON 

. 
MODIFICATIONS 

GENERATION 

OF NE'II DESIGN 

CORRECTION 

,---.-----: 
CORRECTION I 

I , 
I 

LOOP I 

I 
I 

L. _ ... _ - .. - j 

I-

PROPOSAL 
OF NEW DESIG-N 

I='~~ . b , \ ·i. 

ERROR REPORTS 

+ + 
VERIFICATION DESI-G 

COMP LETE 

~ 
~ 


