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ABSTRACT

This thesis concerns the testing of the design of logic

networks.

It is shown that conventional test methods, such as hard-
ware testing and computer simulation, fail to satisfy the test

requirements of modern logic networks.

A new method is devised, consisting of a series of computer
based modular tests, which permit the comprehensive verification of

designs.

The feasibility of the new method has been demonstrated on

a prototype system.

The work is based on a systems engineering approach which
permits viewing the problems of logic design as particular cases of
the more general problems of designing large interactive engineering
systems. The systems approach also permits the extension of the
methods described in this thesis to other areas of engineering.

As part of the thesis, a framework of systems engineering

concepts is constructed.
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CHAPTER 1 - BACKGROUND.,

In the autumn of 1967 Plessey Radar Limited approached
the Kingston Polytechnic (then 'Kingston College of Technology) with
the problem of inadequute design reliability of their logic networks.
It was thought that the already inadequate design test methods would
fail completely when, as a consequence of advancing integrated circuit
technology, it will become possible to produce large interactive
digital networks as indivisible single components. Thus the manage-
ment of Plessey Radar Limited requested that the Polytechnic should
undertake the development of a method of logic design testing which
could satisfy both existing and projected demands.

By the definition of the problem a hardware model of the
newly designed network could not always be assumed to be available;
thus it was necessary to concentrate upon a computer-based method of

solution.

Design testing was seen as a means of generating correct
designs. Thus it was thought necessary to construct a design test
method which,beyond providing means of comprehensive error detection‘

also facilitated the correction of these design errors.

Computer simulation was considered as a possible mode of
solution. At the time one simulator was generally known and
commercially available in this country (36); since then the method
has become conventional and has been implemented in some form by
numerous industrial and research organisations (for a survey see (1) ).
These now conventional logic simulators operate upon a computer model
of the network by applying a sequence of signal changes to the input
terminals and recording the signals appearing at the outputs. This
record - a waveform on some suitably designed time scale - contains
a part of the required error report in an implicit form. Some of the
design errors are not revealed by the test; those detected must be
recognised, sorted and classified by the designer upon examination of

the output waveforms.
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In view of the size and complexity of modern logic networks,
the method is considered inadequate. To ensure reliability, a very
long sequence of input changes must be originated by the designer;
this places extravagant demands on the computer's time, while the very
high volume of output data gives an unreasonable task to the designer
as a data processor. It is shown in the course of this work that
conventional logic simulators appear to raise almost as many problems
as they solve. Thus it was thought necessary to search for some

alternative method.

The work programme which was proposed for this project in
1968 contained two ideas:
1) that simulators should be purpose-built for
a type of network or for an aspect of performance.
2) that care must be taken to use computing facili-
ties efficiently.
This work was divisible into four distinct parts:
a) problem analysis.
b) formulation of the principles of solution.
c) development of techniques of solution.
d) design and implementation of a prototype
system, proving the feasibility of the
principles and techniques.
The work programme isolated the last item of this list,
which was subsequently defined as an individual research project (1)
and was carried out under the direct financial sponsorship of Plessey
Radar Limited. The implementation project ran concurrently with the
work described in this thesis and under the supervision of the author.

Detailed problem analysis revealed severe limitations of
simulation, even in its unconventional form, as a means of analysis.
It was found necessary to have the freedom of choice between alter—
native modes of analysis. Thus the changed title of this thesis does

not contain the word "simulation'.

The development of the project was considerably influenced
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by a newly emerging interest of a group of people in the Polytechnic
in the principles of systems engineering,. Common ground was found
to exist between projects of seemingly unrelated fields of specialisa-
tion and a broadening of outlook permitted useful interchange of ideas

between a group of researchers.

In order that logic networks may be placed against a
systems engineering background, a framework of consistent concepts
and definitions was needed. Since both systems engineering and
switching theory are relatively new and rapidly developing subjects,
such a framework was not readily available but had to be constructed
by adopting existing material, modifying such material, or in many
cases, creating new concepts, definitions and terminology. This
permitted the viewing of the project against the background of present-
day technology and thus it opened the way for the extension of this
work to fields outside of logic network analysis. As a consequence,
several new research projects have been initiated for members of staff

and for post-graduate students (see Chapter 6).

Using the framework of systems engineering, it was possible
to propose a model of the design process. Viewing logic network
analysis as part of such a procedure, it was found unwise to computerise
this part of the process alone. Instead, it seemed desirable to
devise methods of automating a larger section of the process, including
the assessment of the model performance. The combination of analysis

and performance assessment will be termed design testing or verification.



2.1

2.2

243

2.4

2.5

2.6

CHAPTER 2

THE FRAMEWORK OF SYSTEMS CONCEPTS.

Introduction.

The concept of a system.
2.2.1 - Behaviour, environment,
2.2.2 - State,

System organisation.

2.3.1 - Resolution.

2.3.2 =~ Structure.

Modelling.

2.4.1 =~ Modelling the system.
2.4.2 ~ Technique.

2.4.3 = Classification.

specifications.

2.4.4 =~ Modelling the environment.

2.4.5 - Modelling the state space.

Systems analysis.

2.5.1 = Mode of analysis.

2.5.2 = Input data.

2.5.3 = Input - output mapping.

2.5.4 - Resolution, modelling and solution.

Systems design.



2.1

2,1 - INTRODUCTION.

A system will be described by a model and characterised
by its structure and parameters. In this chapter the methods of
characterising and analysing systems are discussed and, finally, a

model of the systems design process is presented.

2.2 — THE CONCEPT OF A SYSTEM.

2.2.1 - Behaviour, environment, specification.

A system will, in the first instance, be defined as an
assembly of objects united by some form of interaction or inter-
dependence. (Note that n more general definition (5) permits a
system to contain non-inti ractive, isolated objects or groups of
objects. Systems considered here, which contain no such objects,
are defined in (5) as reduced systems). Thus the concept of a system
is that of an indivisible entity since all the parts interact and none

can be isolated without altering the behaviour of the systemj the
system concept demands the examination of the overall interaction of

a group of objects rathaa}han focussing attention upon the operation

of each of the constituent objects in turn.

Behaviour itself is defined as a uniqhe mapping or trans-
formation of inputs (causes) into outputs (effects) and the system
will be regarded as the operator performing this transformation.
Irrespective of size, apprarance, structure or other circumstance of
detail, two systems will be regarded as equivalent if their behaviour
is identical, that is, if they could be interchanged without altering

the relationship between cause and effect.

The system is contained within a boundary. The set of

all variables outside the boundary which have an effect upon the system

form the system environment. The total set of admigsible values of

the variables of the system environment forms the admissible domain

of the system.
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The system environment consists of resources which must
be available for the operation of the system (sources of energy,

manpower, etc.), the physical conditions in which the system operates

(such as altitude, temperature, humidity, etec.), the ogeraiing signals
available to the system and, finally, the loads to which the system
provides a service. Henceforward it will be taken for granted that
adequate resources are provided at all times; it will also be

assumed that the system boundary is drawn in such a way that the load

outside this boundary should be constant.

The rest of the environment will have an effect upon the
behaviour of the system; all the environmental variables should be

considered as inputs of the system.

Let the system have a total of n input variables forming
a set u = E Ul’ U2, s o e Un ; and consisting of a set up of p
number of physical signals and a set up of f number of operating sig-
nals or forcing functions. The admissible domain of input variables
encloses an n-dimensional input space which defines the admissible
environment u of the system. Given a system, there is then a set
of un of input variables U and a set & of outputs Z and a

transformation F ( ) mapping the inputs into the outputs.

Thus 2 = F (u) ;
w o= (U, Uy e U ) s
( )
- ;
& = ( %19 By o oo o By Equation 2.2.1

for a network of n inputs and m outputs. (Bea fOOtnOte)

FOOTNOTEs Equations, tables and figures will be numbered throughout
this thesis by assigning to the first digit the chapter number, to the
second digit the section number within the chapter and to the third
digit a serial number within the gsection.
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This transformation will, in the first instance, define

the behaviour of the system.

The formal statement of the system behaviour, together
with the definition of the admissible environment, will be a form of

system specification. The system specification will thus contain the

description of the domain of physical variables, and the domain of
operating signals. It will also contain the definition (stochastic

or deterministic) of the expected system transformation,

2.2.2 = State.

When defining the system as the transformation & = F (u),
it was tacitly assumed that the system was created at t =~9 and that
the history of the system had been retained for all time t up to
the time of observation, If this assumption is not valid and the
inputs are only known after a given instant t,, then the history of
the inputs previous to t, Wwill have some effect upon the system.

The accumulation of these effects over the interval -e0<t < t, is
called the initial state or the state of the system at t = t,.

Thus the state is defined as a set of time functions s (t) such that

if the input set is known for all t § tg, then the knowledge of s (t,)
is sufficient to determine uniquely the output set Z (t) for all tZt,.

With the aid of this definition, equation 2.2.1 can be

re~written in an equally general but more useful form:

2 (t) =6 (u(t)y s (t) )3 us= E Ul, U2, eiee Ung‘ &= 531, 32,..-3."33
g x E Sl’ SE’ veos Sq; Equation 2.2.2

for a system of n inputs, m outputs and q states.

Although it is often advantageous to prepare abstract models
of systems such that S should be an empty set, physically realisable
systems always possess state. Thus, in general, the knowledge of the
state of the system is necessary at all time t % toe The system
equation will consist of the output equation which specifies the

behaviour and the state equation which permits the computation of the
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svstem state at a time t 2 5.

The general form of the state equation (7) gives the state
at time t as

S | I i

(tl) H (u (to, ty Yy AN (to) ) +e.. Equation 2.2.3
liere u (to, tl) expresses the input segment over the time interval
(toi tl)‘

A particular form of this equation will be presented in

Chapter 4 as the state equation of logical networks.

The concept of state permits the definition of two useful
properties of a system (6):

a) Controllability (see also Connectedness, Chapter 4)

The component Si (t) of the state s = Sj 1 wOn Ll ni2% teiies
i, ...k) is controllable if there exists an input u (£), tis to to
bring any prescribed initial value &K of S, (to) to any other prescribed
final value P of 5 (T) in a finite amount of time (T - to).

If all components of the state s of the system are control-

lable then the system is termed completely controllable.

b) Observability (see also definition of sequential networks
Chapter 4).
The component Si (t) of the state g = 5833 is observable

if there is some finite time T for which a knowledge of the response
% (t) over to € t< T is sufficient to determine the initial value

8, (to) when the state equations of the system are known. Thus an
observable state can be determined by observations made on the output.
If all components of state & are observable then the system is

called completely observable.

2.3 - SYSTaiK OKGANISATION.

2.3.1 =~ Kesolution.

By definition, a system is a complex interactive assembly
of identifiable objects which themselves may be complex interactive

asgemblies. Thus, by re-defining the boundary, the objects of a
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given system may be considered as systems themselves, as the given
system might become one of several objects of a larger system. The
organisation of a system will be considered as a hierarchical structure

of sub-systems.

When seeking understanding of a given system, it is frequently
necessary to resolve the system to constituent objects. Starting from
level 1, when the system P is observed as a whole, the observer may

choose to define a number of distinect resolution levels as shown on

0
the resolution graph ofAfictitious system (Fig. 2.3.1), suggested by

Klir and Valach (5). Bach node of this directed graph represents a
different system which features as one or more objects of the system
at a lower level of resolution. The relationships are simboliged by
the arrows; for instance, the system Pl may be constituted of sub-
systems P2 and P3; the system PT is the constituent of systems P4,
P5 and P6.

As an example, consider the system Pl of Fig. 2.3.1 once
again. Assume that P6 needs no detailed examination, i.e. the highest
level of resolution will contain the sub-system P6. Pl may now be

consfiituted in a number of different ways:

of P6, P5 and P2,
of P6, PT and P4.
of P6, P4 and P5, etc.

In principle all resolution graphs are "cigar-shaped",
with arrows starting from a single point of the common constituent of
all sub-systems (the highest level) and terminating on a single point
of the total system (the lowest level). The peak of the resolution
graph is seldom reached, because of practical reasong; the number of
sub-systems constituting the total system increases as the level of
resolution increases and it becomes impossible for the designer to
consider the interaction between the large number of system objects

simultaneously.

Resolution graphs are not unique to a given system; since
sub-system boundaries may be drawn in a variety of ways, resolution

graphs may also be prepared in a corresponding varsty.
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Congider now the example of Fig. 2.3.2. The selected
system 1s an amplifier, composed of active elements and coupling net-
works. The equivalent circuit model of active elements and the cir-
cuit elements of the coupling netwvorks form further sub-systems.

The graph is not continued to higher levels, but it is evidently pos-
aible to prepare complex models of each component, accounting for
losses, noise, thermal effects, etc., until, ultimately, the graph
would reach its peak at a level where sub-systems represent material
particles.

It must be noted that this graph offers no insight to the
number of objects within the system at each level of resolution, nor
to the way in which these objects are interconnected. Information
about structure must be presented separately for a given degree of

resolution in the form of a graph, table or equivalent.

2.3.2 = Structure,.

Let the system be denoted by P and let P, at the selected
level of resolution, consist of q number of sub-systems (or system
objects). Let the totality of these objects be denoted by D, where
the set D is defined as

D =fd1,d2,...,dq3

Now let the environment of the system be represented by a

"source object" which emits physical and operating signals. Let the

gsource object be denoted by do.

Then the gystem and its environment will consist of a set

of objects & where
S = {do, diy o v ey dqs
The structure of the system is defined by the manner in

which the elements of the set D are interconnected, Let the symbol
I':Lj denote the information about the connection of the inputs of
object dj to the outputs of object di' Then the set

R = E rij 3 for all i, j between 1 and q

will define the system structure at the selected level of resolution.
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The system will now be totally defined by the combination
of D and R:
( )
P = D, B ¢
(7))
The structure of the system and its environment will be

defined by Q where
= ( p ) for all i, j between O and q.
(" vw3)

Denoting the combination of the system and its environment by * y W
will be totally defined by the combination of & and @3

( ).
A = (%.? )
Information about the system structure may take such forms
as graphs, lists or matrices. For the purpose of this work it was

found convenient to adopt the concept of a "structure matrix" and

propose its definition as followsi-

Let the system comprise q objects and a source object.
Then the structure matrix W will be a square matrix consisting of
(q + 1)2 number of elements. bach element wid for all i, j between
0 and q, will be a matrix representing Tige If the object dj has
"a" number of outputs and the object di has "b" number of inputs then
the matrix wij will have "a'" number of rows and"b" number of columns.
Elements of wij will be binary numerals showing the presence or absence
of a connection between each of the outputs of dd and each of the

inputs of di. The matrix d repregents the feedback connections

kk
between outputs and inputs of the kth object of the system.

Fig. 2.3.3 shows in graphical form the structure of a
system and its enviponment. As an example of the above definition

the structure matrix of the system will now be prepared.

The system comprises q = 2 objects and a source object of
a single output and a dummy input. The structure matrix W has
(q + 1)2 = 9 elements as listed belows:-

!opz(o) WO,I-(S) Wq2=(0)
Wy =(loo0) W, = (88¢%) ¥io = (W0 1tod)

' £ .

W

= 1o
20 (o01) W, = ( 3 0) Woo= (00)

» ’
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The wtructure matrix W serves no purpose of algebraic
manipulation having matrix elements of uneven size, bven so, it is
of considerahle value since it organises the numerical description of

aystem structure in an easily comprehensible form.

At the cost of some loss of information a more concise

version of the structure matrix may be obtained. The coarse structure

matrix Wc will contain & single numeral in the place of each matrix

W, .3
i 37
it will be 1. 'he coarse structure matrix indicates the absence or

this numeral will be 0 if all elements of wij were O3 otherwise

existence of a connection between objects i and j, without specifying
the terminals of inter-connection. The coarse structure matrix of

the example of Fig 2.3.3 is

(o] (o] o
W dul 1o Iewed
& 1. it Rkt

The first row of W, is trivial because the source object,

by definition, has no inputs. Consequently the reduced coarse structure

matrix Wr will contain the same information. For the example

e Dloal aird
s [1 1 :J

Structure matrices will find wide application in the course

of this work.

In order to obtain a meaningful definition of the system P
it is now necessary to define means for the description of the system
objects contained in D. If the behaviour of each object in D could
be verbally, numerically, graphically or otherwise described, then
the behaviour of the total system could be found by combining this

description of object behaviour with information about structure.

Due to the diversity of the ways in which U may be described
it ie useful to adopt the concept of a model. The model of a system

will be defined here as an abstraction of the system, constructed for

the purpose of giving insight to the system behaviour.
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It is poseible, and sometimes necessary, to construct
models of objects of the system at several different resolution levels.
Thus, a model may seek to represent the total system or one of its

constituents.

Models of engineering systems are usually quantitative.

Such quantitative models will be characterised by an ordered set of

numerals called the parameters of the system,

It will be useful to extend the concept of a parameter to
non-numerical information about a modelled system, Thus a parameter

may denote the colour, shape or logical behaviour of an object of the

system,
Modelling of engineering systems will consist of
a) choosing a resolution level, thus defining
the boundary of each system object.
b) characterising the system structure and
¢) defining of object parameters.
2.4.1 -~ Modelling the system.

Modelling will be described as the procedure of obtaining
the model of the system for the purpose of observing the system

behaviour.

The model usually represents a simplified version of the
system, purposely built to facilitate the observation of a limited

set of its features. Thus the specification of a model would

consist of the specification of
a) the set of characteristics of the system which
are to be observed and
b) the accuracy with which these characteristics
are to be described.
The quality of the model will be defined here by an objective function,
taking account of the extent to which the model meets the specifica-
tions, the cost of building the model and the facility of it's use.
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There is no improvement in quality associated with exceed-
ing the model specifications and since the simplest model is usually
easiest to use, this will represent the model of optimum quality.
However, the use of complex models is justified when they are flexible
and can be used for more than one purpose. Such multi-purpose models
share the cost of development between a number of applications and
thus acquire higher quality rating, but, since such models depend for
their quality upon the need for all applications, they are very

gensitive to modifications of the analysis process,

It is usually easier to maintain the quality of models by
constructing a modelling sequence which relies upon a sequence of
modifications (usually refinements). In this case a model is purpose-
built for each application, thus is optimally easy to use, but it is
built upon the foundation of another model, used earlier in the process,
thus the cost consists of a relatively small increment. Process
modification affects the incremental cost only. Sequential modelling
will find application in the course of this work.

2.4.2 - Technique.

The technique of modelling is shown schematically on
Fig.2.4.1. The modelling data is the basis upon which the hypothesis
is set up. When the model is constructed and tested the modelling

data is used again as the basis of assessment.

If serial modelling is used, as recommended in section
2.4.1, the process is repeated several times, taking into account an
increasing detail of modelling data. Thus a comprehensive model is

built by a series of approximations.

2L4’—3 - c:L&!ﬁlfiggtiOfI'
Several criteria have been suggested for the classification

of models (5), (9), (10), (12). Without further comment some grounds
for classification are listed here, taken mainly from Chestunt (11).
1) Language.

a) Verbal models

b) Iconic models (maps, photographs, etc.)
c) Symbolic models (flow charts, logic diagrams, etc.)
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d) Analogue models

e) Physical models.
2) Method of solution

a) Analytic models

b) Numerical deterministic models

¢) Numerical stochastic models.
3) Resemblance to reality

a) Isomorphic models

b) Homomorphic models

¢) Abstract models.

Such formal classifications have been found helpful in

understanding the problems of modelling logical networks.

2.4.4 - Modelling the environment.

It is possible to extend the concept of a model to the
environment itself. If a suitable model is found to represent, in
some abstract form, the source object dg, then the objects of é;
are all modelled and can be observed. This use of the concept of

a model is considered both advantageous and novel.

In this section the environment of a system will first be
examined; secondly, the problems of modelling the environment will

be discussed.

Let the source object dy have n number of output terminals.
This means that the system P is operating in an n-dimensional input
space which is composed of operating signals and physical signals.
The boundary of this space is given in the specification of the

admissible domain.

A verbal model of the source object is now proposed.
Let the signal at the ith output terminal of the source object be
given by some quantity Uj (tp) at the instant t,.  Then the totality
of Uy (to) for all i between 1 and n defines a point Y in n-dimensional
space within the admissible domain. The behaviour of the source
object in the interval * = t; - tp will now be pictured as the para-

meters in n dimensions of the moving point ». In the course of
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normal operation point > may travel on some path X where X is usually

a continuous line.

Let the purpose of an observer be now to obtain information
about the system behaviour, The observer may now follow the varia-
tions of the system outputs as functions of the path of point /.

This procedure leads to frustration because the point >’may stop
moving for periods or may keep returning to routes already covered,
miSging interesting areas altogether. It appears advantageous to
replace the real-world source object with another which is under the
observer's control. If the substitution is sufficiently ingenious

then the observer may regulate the route X according to his own purpose.

Let the purpose of the observer be re-defined: information
is to be collected about the total range of system behaviour. With
the aid of the verbal model of the source object it is easy to see
that it is impossible to achieve this purpose: the point Y will
never touch all of the points of the space because the number of points

is an n-dimensional infinity.

Let the purpose of the observer be re-defined once mores
information is to be collected about the system behaviour in such a
way that it should become possible to predict the system behaviour
by the use of this information at any point within the admissible

domain.

This objective is reasonable. It is defined here as the

objective of systems analysis.

To demonstrate one way of meeting this objective, let the
verbal model of the source object be changed. Instead of the
continuous n-dimensional space in which Y may move, consider now the
same space in which a finite number of points N are strategically
placed.  The movement of Y will now be discontinuous, jumping from
point to point. The total space may be covered by N number of
changes in the position of the point )( This model of the source
object may be translated into numerical form: each of the N number

of points can be given by a set of n numerals. The behaviour of the
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source object muy now be given in form of a table which has one column
for piving the inatances of time when the position of Y changes, and

n more columns describing each of the co-ordinates of Y, The observer
will achieve his purpose by first covering all of the N points of the
space znd then, if necessary, interpolating between them to calculate

the behaviour at an intermediate point, (see footnote).

The concept of an environmental model has found extensive

use in Chapters 3 and 4 of this thesis.

2.4.5 =~ lodelling the state space.

4s seen earlier (section 2.2.,2) systems in general possess
state. In the course of modelling the objects within the set D, it
may have been cecided to compile an analytic model of the system which
would allow the description of the state in terms of m number of state
variables. When the behaviour of the system is observed, the system
may be anywhere in this m=dimensional state space and therefore the
results can only be interpreted un-ambiguously if the initial state

of the system is known.

Let the observer have a new and ambitious purpose of
collecting information aboubt the system behaviour in such a way that
egtimate could be made of the behaviour irrespective of the initial
state of the system. Thie means that tests must be conducted to

cover the total state srpace.

The task is impossible, At the outset, the moving point Y
may be anywhere in an m-dimensional infinite number of points.
svidently it is necessary to quantise this area in the same way as in
the case of the n-dimensional input space, permitting now a finite M

number of points for the purposes of testing. Combining the

FOOTNOTZ : This procedure will be shown as valid only for systems

without state.
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m-dimensional state space with its M points with the n-dimensional
input space with its N points, a total space of q = (n+ m)
dimensions may be perceived, consisting of both state variables and
input variables, in which @ = N x M number of points are defined for

the moving point )’.

The ingenious observer may succeed in constructing a source
model in such a way that direct control is maintained over each of the
n input parameters. The parameters of state space however are not
usually directly controllable, Referring to the definition of
controllability, it will be seen that systems which are not completely
controllable can never be induced to occupy certain areas of the state
space. Consequently no physical model of such a system will permit

th%?%%&ﬁ%i%ﬁ of the total g-dimensional sample space,

One of the merits of the method of design verification
proposed in this work is that it permits the designer the direct control

of all variables of the sample space, as will be seen in chapter 4.

2.5 = SYSTEMS ANALYSIS.

Systems analysis will be defined as the process of obtaining
information about the behaviour of the system in order to satisfy the
objective set up in section 2.4.4. The purpose of analysis is to

serve design verification, as defined in section 2,6.1.

The analysis process will be termed comprehensive if it

gives deterministic information about the system behaviour at any
point within the boundary of the admissible environment,

Fig. 2.5.1 shows a model of the systems analysis process.
The model attempts to be general and therefore contains some parts
which will be found irrelevant for certain modes of analysis. At
the same time the mpdel aims for simplicity and does not show all of
the connections between parts of the model which may be required in

the course of a given analysis process.

2.5.1 = Modes of analysis.

Depending upon the relationship of the real-world system
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and its environment to the test system and its environment, the analysis

will be said to be conducted in one of several possible modes.

Five different modes of analysis are suggested and defined
by Blumstein (2) as reported by Deutsch (3). This classification was
found in-complete and the definitions somewhat ambiguous. Therefore,
with the aid of Gordon's definition of simulation (4) six modes of
analysis will be defined for the purpose of this works:

1) Real-world analysis - observation of the real-

world system in its natural environment. In
this case the real-world system is identical

to the test system and the real-world environment
acts as the test environment.

2) Operational exercise - observation of the real-

world system in a test environment which has
properties similar to the real-world environment.
3) Gaming - the test system is a hybrid, comprising
a selection of real-world sub-systems and sub-
system models; the test environment is similar
to the real-world environment.
4) Simulation - observation over time of a model of
a system in a simulated environment,

5) 4nalytical testing - solution of equations
which represent the test system and the test
environment in symbolic form.

6) Numerical testing - solution of numferical

model of the test system without direct

reference to the time domain.

Deutsch (3) remarks that the modes of analysis are numbered
so that higher-order modes re-rresent increasing distances from
reality. While this is undoultedly true, choosing one of the higher
order modes of analysis does not necessarily imply loss of information
about the system behaviour. On the contrary, examples will be found
in the course of this work where high-order modes provide information

not available by lower order modes of analysis.
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It will be observed that the definition of simulation used
here contains no reference to the tools of analysis: simulation may
be performed on a physical model or on a computer model, so long as
direct reference is maintained.to the time domain. The time scale
may be identical to that of the real system,or trivial mapping of

inputs and outputs may be used.

2.5.2 =~ Input data.

Let the purpose of the designer be to analyse a system
comprehensively. The question is now: how should the test data be

designed to make such analysis possible,

The task is evidently impossible unless a quantised model
of the source object is acceptable. Let it therefore be assumed that
such a model has been found and that it contains Q number of points,
The analysis will now need to investigate both the steady-state and

transient behaviour of the system.

If the system may be assumed completely controllable and
unconditionally stable then it is theoretically possible to test the
steady-state response in each of the Q points. In addition, the
transient response needs to be recorded by changing each of the Q

points under the influence of all the input variables.

Designing a test sequence which would allow all these teafa
and which §E?¥%?lg system or its physical model is a task of extreme
difficulty. Furthermore, the process would usually be found
extravagant in terms of testing time and cost. Therefore, compre-
hensive analysis, even in terms of quantised source models, is seldom
attempted, Instead, systems are either randomly tested (i.e. sub-
jected to a random sequence of environmental changes) or, more
frequently, tested in terms of a sequence of test data, which is
judged to be of particular significance or relevance. The latter
practice is dangerous since it is open to the value judgement of the
designer whose work the analysis seeks to test (see also Chapter 3).

The test method proposed in the course of this work was
designed with particular reference to the problems of test data
generation,
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2.5.3 = Input - output mapping.

Fig., 2.5.2 shows two ways in which the behaviour of a
system may be observed. The direct method on the left corresponds
to the lowest mode of analysis. All higher order modes demand that
a model of the system under observation be available. In all these
cases the real-world signals of input and output require suitable

interpretation or mapping.

The mapping of inputs and outputs may be a triwial isomorphic
transformation such as scaling, creating analogue signals in new
physical dimensions or representing a signal as data in a computer and
recovering the output by mapping of the printout. On the other hand,
mapping may involve a transformation which changes the mathematical
relationship between the systems attributes without affecting the
system behaviour. One example is the change from time-domain to
frequency domain for the analysis of electrical systems; the inverse
transformation re-constitutes the outputs in the time domain.

Another example, drawn from the context of logic network analysis, may
be the derivation of a truth table or DIRECTORY by a parallel processing
procedure (see chapter 4). In this case input variations are mapped
into a designation number and the total input domain is covered by a
single analysis run through the network. The output is mapped into

a table. The result can then be interpreted in terms of time-varying

input signals to which the response is available.

2.5.4 - Resgolution, modelling and solution.

All but the two owest-order modes of analysis call for some
form of a system model. Before embarking upon a modelling procedure
it is necessary to define the level to which the system may be resolved.
This choice of resolution level determines the boundary around objects

comprising the system.

In the course of analysis of a complex system it may be

necessary or opportune to re -define the boundary several times.

For instance, in the course of analysing a transistor amplifier, the
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circuit may, at first, be considered as a d.c. network, stationary at
the operating point; then, in subsequent stages of analysis, the
model of each component may be resolved to higher levels, increasing

the information about the network.

It is also possible to envisage a process of analyeis
involving the gradual reduction of resolution level. Taking the
example of logical networks, after detailed analysis of a non-linear
network designed to act as a set of logical gates, it will be found
advantageous to move to a lower level and consider the gate as the
smallest object in a larger network; +then again, after analysis, the
large network may be regarded as the smallest object of the over-all

system which was the original concern of the analysis process.

The purpose of reducing the resolution level is to reduce
the modelling data. The new homomorphic model contains less informa-
tion than the higher-level model, due to the fact that some simplifying
assumptions have been accepted which permit the omission of a certain
amount of detail.

Solution may consist of application of test data and
observation of outputs, or application of test data and computation
of outputs, or again, solution of equationa_and substitution of test
data, In addition, some analysis procedures will be found to solve
their models by observation and without any reference to test data. |
Due to the problems of test data generation discussed earlier in this
chapter, these latter methods are particularly attractive and have

been given attention in the course of this work.

2.6 - SYSTEMS DESIGN.

A model of the design process will now be proposed and
discussed with reference to Fig. 2.6.1.

It will be assumed that some demand exists which must be
satisfied by creating a new engineering system. A statement must
be available which will specify the required behaviour and the admis-
sible environment of the new system, This statement is called the
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tentative specification of the system.

The first task of the system designer will be termed

problem analysis, which consists of the examination of the feasibility

and completeness of the specifications. Specifications will be called
non-feasible if they contain contradictary demands and incomplete if

they do not describe the environment or behaviour uniquely. In the
course of problem analysis the designer will initiate the amendment
of non-feasible specifications. He will also investigate whether
incompleteness is intentional or not. He will utilise the freedom
afforded by intentional incompleteness at a later stage of the design
process for the optimisation of some parameters not included in the

specifications.

As an outcome of problem analysis the behaviour - and
environmental specifications are formalised and the next stage of the

design process may commence.

The designer's main function is to generate proposals for
the new design. This task is usually so complex that it is carried
out in a sequence of stages of refinements which represent successive
approximations of the specification. Each stage of approximation
operates upon a restricted version of the specifications (termed the
partial specifications) which the designer must individually select_

for each stage.

Assuming now that suitable partial specifications are
available, a version of the design must be proposed which will fulfil
those specifications. At the present time the designer must raiy
almost entirely upon intuitive or evolutionary methods of design
generation: formal synthesis procedures are only available in a very
limited field of engineering and they only operate under severely
restricted environmental conditions. Logic design is better served
by synthesis techniques than other engineering fieldsjy even so,
current practice must rely to a large extent upon the inventiveness

of the designer.
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The proposal of the new design is a model of the system
under development, This model must now be analysed and its behaviour
assessed against the partial specifications. The combination of

analysis and assessment will be termed verification or design testing.

The purpose of design verification is to provide conclusive
answers to questions which are implicit in the partial specifications.
A sample list of design verification questions is shown here:

1) Is the performance of the new design correct, '

given normal environment and nominal component
values? \

2) How sensitive is the performance to expected

changes in environment and component values?

3) If subjected to unusual environmental conditions,

would the new design fail catastrophically?

If verification detects design errors, these must be used
to stimulate design modification. Alternatively, the error reports
may be interpreted as indications of unrealistic tentative specifica-
tions. In the latter case the design process fails completely and

new tentative specifications must be set up or the project cancelled.

Assuming now an error report which does not lead to design
failure, the new design is gradually corrected (correction loop,
Fig. 2.6.1) until verification succeeds. Now the next stage of
design refinement may be entered and new partial specifications are

requested by way of the refinement loop (Fig. 2.6.1).

The iterative design process is complete when all aspects
of the formal specifications have been taken into account and verifi-

cation has been successful.
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3.1
1.1 -  INTRODUCTIOLN.

This chapter presents a survey of logic design verification
methods in current use and aims to show that these methods fail to
satiafy current demands of modern integrated circuit devices or complex

logical systems.

The shortcomings of conventional methods are carefully
noted, The newly proposed method, described in Chapter 4, seeks to
eliminate or, at any rate, minimise the problems uncovered in the

course of this survey.

%ith reference to the available repertoire of modes of
analysis (section 2.5.1), analysis techniques of current use will be
found to fall into the classes of Operational Exercise, Gaming,
Simulation, Analytical Testing and Numerical Testing, with overwhelming

emphasis on Simulation.

3.1.1 - Objective,

The purpose of logic network analysis is to serve the pro-
ceas of design verifiication. In turn, the purpose of design verifi-
cation is to answer specific questions the designer raises about the
new design (see 2.6). Consequently, the operational objectives of
gystems anulysis can be formulated as follows:

a) to collect information about the performance

of the new design,

b) to present this information in a form convenient

for performance assessment,

¢) to operate fast, cheaply and reliably.

The analysis techniques discussed in this chapter will be
evaluated againet these objectives.

3.2 = HARDWARE KETHODS OF DESIGN TESTING.
3.2,1 - liode of analysis.

The traditional way of verifying the design of a logical
network is to build the total system of the proposed design in a form
resembling the real-world system and subject this to a simulated

environment. The data resulting from the analysis is then compared
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with the specification.

The technique in this form amounts to Operational Ixercise

and is frequently applied to small logical networks.

In the casec of more complex networks it is customary to
examine the perfurmance of sub-networks before the system is finally
assembled. The phase of sub-system testing is perhaps best classified
as Gaming, because the real-world model of the sub-system under test
is usually surrounded by models simulating the effect of the rest of

the system,

If such systems are mass-produced, then the design verifica-
tion uses a model which may have no object in common with any system
on the production line. The mode of analysis is Simulation -~ the only

mode of anialysis appropriasate to hardware testing of complex networka.

3,2.2 = MHesolution level.

At the time of discrete-component hardware technology,
designera had almost unlimited freedom of choice of resolution levels
during analysis; it was possible to commence simulation by regarding
the system as a whole; at the event of the first failure the design
engineer could gradually elevate the resolution until the level of a
single electrical component was reached. The procedure gave a sense
of satisfaction to an engineer who could correct the design error oﬂ
the spot; however, it was failing by all the analysis objectives, as
would any other procedure which allows the handling of too many indivi-
dual objects. The search for the location, appearaﬁce, connections
and signals of several hundred error-prone individual components
could not be econdoned. Thus, well before the advent of integrated
circuit technology, networks of modular and hierarchical structure
were constructed, allowing no more than two different resolution levels
for each test and no more than a few dozen individual objects and

monitoring points.

Design testing of a hierarchical system proceeds in a

sequence of stages, First, the design of the smallest module(a)
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is verified. If these are constructed of discrete components then

it is possible to ascend to the level of single component.

When testing the design of a module at the next level of
hierarchy then it is necessary to be able to assume all small modules
as perfect (verified by the previous test) and indivisible. If this
assumption can not be made then, in order to locate and correct the
error, the resolution level must be increased, demolishing the boundary
of the previously tested module. The difficulty and confusion can
obviously be avoided by testing the small module reliably in the
first place, as demanded by objective c¢). This demand for reliability
becomes more pressing as the size of the system and the number of

hierarchical levels increase.

3.2.3 -~ Modelling.

The analysis of logical networks by hardware simulation
demands that a hardware model be constructed of the real-world system
which will be subjected to time-variant signals. The modelling
process itself appears to be a trivial exercise of constructing a
physical model by use of components like those of the real-life system.
In practice however the problems associated with modelling prove far
from trivials due to component tolerances and differences in physical
layout, the correlation between the performance of the model and that
of the real-world system is in doubt. Thus the information collected
during analysis fails to represent reliably the performance of the

real-world system, thus failing to satisfy the objectives of analysis.

Designers seek to remedy this situation in two ways:
1) by increasing the sample size, i.e. analysing
several models, built of randomly selected
components.
While improving reliability, the method
increases the volume of data, the cost and

time of analysis and raises the new problem

of statistical assessment of results.
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2) by evaluating the expected extreme in component
values and selecting the components of the model
so as to represent the "worst case'" in system
behaviour. The model thus permits the assign-
ment of a boundary to the expected system
behaviour.

If the estimate of "worst case" is correct then
the method satisfies all the objectives listed;
however, the resulting design is unnecessarily

expensive.

This second solution is obviously only available in case
of use of discrete-component hardware: users of integrated circuit
hardware have very little information about the expected behaviour of
components and no information at all about the extremes of acceptable
performance, Even if this information should be available, the task
of selecting worst-case items of multiple~function integrated circuit
devices is formidable - worst-case assessment seems completely imprac-

tical.

Attempts have been made to build worst-case discrete-
component models of integrated circuit devices. These have been
proven unsuccessful due to the poor correlation between system and
model behaviour. Some designers tried to construct a sophiaticatgd
discrete-component model,using time scaling to reconstruct the wave-
length of signals in integrated circuit devices. This method is
too complicated and the results are far too sensitive to scaling

factors to be reliable.

The mounting problems of modelling integrated circuit devices
must be viewed against the increasing demands for design verification:
the tooling costs for a single component are the same as forTgagg_
produced article and, due to the magnitude of this cost, design errors

can not be tolerated.

Hardware test methods offer no satisfactory solution to the
modelling problem of integrated circuit devices. Reluctant designora

are forced to seek computer solutions to their problems.
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3.2.4 =~ 1Inputs.

When a hardware model is constructed, the designer subjects
this to simulation, observes the output and verifies the design. If
the system has n operating signals, m physical signals and q state
variables then the sample space has an ( n 4 m + q ) - dimensional
infinite number of points (see sections 2.4.4 and 2.4.5).

To attempt comprehensive analysis, it is necessary to devise
gome suitable discrete model of this sample space. However, unless
the system is known to be completely controllable (see Chapter 2) it
is not possible to scan the total sample space in a finite amount of
time. In the case of completely controllable systems the problem
is theoretically accessible but practically unsupportable, since the
number of input changes necessary for comprehensive steady-state and
transient testing is excessive for all but the most trivial of systems.

In current practice the job of design verification is
conducted at a few points of the sample space,under conditions the de-
signer considers representative or critical. If the design fails
these tests then it is evidently in need of modification. If it
passes the tests then it may still contain numerous errors and may
fail in service. Design errors in computers often come to light years
after machines are installed, indicating that a compromise has been
selected between the conflicting objectives for speedy, low-cost and

reliable znalysis.

It is suggested here that the problems arising from the
vastness of the number of points of the sample space are akin to those
arising from the vastness of the number of components comprising a
complex system, The solution of the sample-space problem might be
sought along the same lines as that of hardwares it could be decided
that there is a maximum number of points of sample space one can
efficiently handle; therefore models of inputs must be so constructed
as to fit within this number. Input signals may thus be "modularly"

modelled snd as the number of signals increases so the resolution
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must reduce to keep down the number of points of the sample space.

According to thims principle, it will be reasonable to
consider the effects of physical signals, rise-and-fall times and
signal level variations when testing a single logical gate, but un-
reasonable to resolve input signals to more than two voltage levels
when testing a complex gate assembly. In the latter case it would
be necessary to form a model of the objects of the assembly which

accounts for the effects of the neglected signals.

Unfortunately for logic designers, the number of points
of sample space increases very fast with the number of input variables
and the reduction of detail of input signals can not keep pace with
this increase. Thus the computer simulation methods discussed later
in this chapter merely manage to provide a temporary solution by
increasing the speed of simulation. Ultimately the failure of simu-

lation as a means of analysis must be faced.

3.2.5 - Solution and assessment.

Let it now be assumed that a satisfactory set of test
conditions has been compiled and the model is subjected to these tests.
The result of the analysis is available in the form of a set of output
waveforms. These waveforms must now be observed or recorded and

assessed against some form of records of the performance specifications.

The traditional instrument of recording, offering the
advantage of familiarity, is the oscilloscope. Against this must be
set numerous disadvantages: the number of channels is limited, thus,
to observe the correlation of several waveforms, tests must be repeated,
or more than one oscilloscope used; signals must be repetitively
applied to permit observations the standard signals can not be dis-
played - the real-world system does not exist - hence the oscillogram
must be compared with a waveform or table by eye, or else recorded as

a waveform or table.

The instrument of assessment is the design engineer who
often represents the weakest link in the chain of the verification



3.7

process. Human error is mainly due to the repetitiveness of the
task of assessment and the inefficiency of men to handle the large

volumes of data necessary for reliable analysis.

3,2.6 - Conclusions.

Hardware testing of the design of logical systems is, at
best, limited to small systems; at worst it is an unqualified failure.
The method fails completely in terms of complex integrated circuit
devices which, due to their high initial manufacturing costs, demand
reliable design verification. As advances in technology permit the
increase of the complexity of these devices and énhanced their promin-
ence among other forma of hardware, the development of alternative
forma of design testing become imperative. Thus, almost simultaneously,
several computer simulators have been developed by device manufacturers,
instrument manufacturers and research institutions, seeking to provide

a solution to the problems unsolved by hardware testing.

3.3 - DESIGN TESTING BY COMPUTER
SIMULATION.

The preparation of a comparative survey of logic simulators
does not fall within the scope of this work. Such a survey, examin-
ing +the features, facilities, techniques and relative merits of
available simulators,will be presented in the thesis concerning the
development of a prototype system (1). Instead, this section will
attempt to assess the potential of logic simulation as a tool of logic
design verification. In the course of discussion references will be
made to some of the logic simulators in current use, illustrating

gsome of their features and facilities.

3,3,1 -~ Resolution.

At the highest level of resolution, used by any of the
known logic simulators, stands the single logical gate. It is thus
assumed that the system under test consists of objects which represent
Boolean operators and the simplest functional object to which the

system can be divided operates as a simple logical connective. The
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standard repertoire of gate functions is AND, OR, NOT, with associated
delays (see Modelling). Some simulators extend the range of gate
functions to NAND and NOR.

A group of simulators, such as the APACE program 'LOCA',
the Plessey DATO and the Siemens 'DICAP', demand that systems under
test be always resolved to such a high level; thus designers must

code their networks by use of a fixed library of standard elements.

The advantage of systems using this fixed resolution level
lies in the simplicity of the programs. The disadvantages are
measurable in terms of coding time and coding error: the designer
must repeatedly declare each gate within each standard hardware sub-
system, multiplying the coding time and committing a multiplicity of
errors., An additional disadvantage is, that the computer must
repeatedly analyse standard hardware sub-systems within the system.
Thus it is suggested that simulators with fixed resolution level are

only suitable for the analysis of small systems.

A second group of programs to which the Norwegian program
"LOGIC" and the Elliott "LASS" belong,also fixes the resolution level
but permits an expandable library of standard objects. When the
computer model of the network is constructed, each object is checked
against the current library list. Unrecognised objects are reported
as program errors. Standard groups of gate elements can be entered
in the library as standard objects by giving them a unique name and
describing them by a sub-routine, (21), (22). The use of this method
is demonstrated in (21), where flipflops are "modelled" and their
functional description is entered in the library as a standard "logic

rule”.

These facilities as provided in 'LOGIC', replace the whole
of a sub-system by a sub-routine, The sub-routine represents a
terminal model of the perfect sub-system; consequently care must be
exercised in verifying the design of a sub-system before replacing it
by the sub-routine. If reliable sub-system testing may be assumed
then this method satisfies the objectives by reducing both the time
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of coding and the time ol computation. The limitations of such sub-
routine models of sub-systems will be discussed in the section dealing

with Modelling.

The third group of programs to which the Racal "REDATL 22"
and the Fairchild "F4IKSIM II" belong, permit a flexible choice of
resolution levels. It is possible to construct sub-systems of nested
modules and the system under analysis may be composed of combinations
of single gate objects or of complex nested sub-systems. It is

customary to impose a limit to the depth of resolution.

This method gives great help at the stage of modelling, but
it in no way assists the analysis by the computer since, before analysis
commences, the modular structure is usually broken.down to constituent

gate elements and the analysis progresses from gate to gate.

3.,3.2 = Modelling.

Simulators differ greatly in the format they use in specify-
ing the objects of the system under test. However, substantially
they all refer to four types of data,amounting to the model of an object:
1) object identification
2) structure - the connection of the object to
other objects of the system
3) functional description.

4) timing description.

Identification.

tach object is uniquely identified by a code. Information
about the object is referenced by this code throughout simulation.
Structure.
Connection between system objects is specified in one of
three ways:
a) considering the object as a recipient of signals
b) considering the object as a source of signals.
¢) specifying all the connections to and from a
given object. This method duplicates the
structure information, thus doubling the coding
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time. The redundancy is then uged for
diagnosis of coding errors.
Function.
The functional description assisns to the object one of
a set of recognised parameters. Dependent upon the resolution as
seen earlier, functions may be simple logical connectives, combinations
of simple logical connectives or functions outside of the range of
logical functions. The latter may arise by the use of sub-routine

models,

It will be uppropriate to devote some attention to the

principles upon which sub-routine models are based.

Let a sub-system to be modelled consist of a set of logical
cates, each repres-ntings a simple logical connective. Let this system
be subjected to un n-dimensionul eavironment and let it have m number
of state variables. Then the terminal model of this system would

contain the relationships of

2 (6) = o (u (4], 8 () )W RN
s(t) = H (u(t), s (t)) ; SRR O S
where u = E Ul, U2, ST Un ; ’
- < )
s = E 519 82, i il Sm )

(see section 2,2,2).

It will now be suggested that sub-system models can be
constructed in one of two ways:

a) by retaining the information contained in
Bq. 3.3.13in this case the model may be mapped
into o logical network, containing a set of
logical gates, euch representing a simple logical
.connnctive. This new network is equivalent to
the original sub-system by the definition of
equivalence given in Chapter 2,

b) by reducing the information in Bq. 3.3.1,
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restricting either the domain of the environ-
ment or the admissible time functions of inputs.
Using such restrictions Eq. 3.3.1 degenerates

to some new form

2° (t) = 6 W@ :
& () = HY (u (t), s (%)) g Eq. 3.3.2

The sub-routine may now express Eq. 3,3.2 in a
form which does not necessarily lend itself to
mapping into a logical network. Bouation 3,3,2
and its sub-routine version will be termed

restricted mode models of the sub-system.

testricted mode models represent a homomorphic transforma-
tion between the systems described by Equations 3,3.1 and 3.3.2. If
the sub-system should be subjected to environmental conditions out-
side of the range of Equation 3.3.2 then the sub-routine model fails.,
Such in-admissible conditions may easily arise if, for instance, the

objects surrounding the sub-system contain some design error.
notwithstanding
It will be concluded that/the commendation given to sub-

routine models in the previous section, such models must be handled
with extreme care. Not only must the sub-routine be based upon
completely reliable analysis data (as contained in Eq. 3.3.1) but fhe
environment must also be kept under constant observation to ensure
the validity of the model.

Timing.

The timing description of a system object seeks to define
the mapping of time functions performed by the object. While in
practice this mapping is extremely complicated due to the nonlinear
characteristics of switching circuits, these characteristics could
only be observed by resolving the system to higher levels than a logi-
cal gate. Alternatively, accepting the single gate as the object at

the highest level, as suggested in section 3.3.1, one must accept
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relatively crude models of objects, such as, for instance, a perfect

(delay-free) logical gate, followed by a lumped constant delay.

Some simulators offer facilities for more refined models.
The fundamental weakness of these models lies in the absence of
reliable information upon which they are based. Device manufacturers
are unable to measure the characteristics of some of their devices,
or find it uneconomic to measure the characteristics of others. In
any case, these characteristics would vary so greatly with the choice
of hardware that a common set of parameters may not be easy to find.
Hence simulation programs must rely upon crude guesses of timing
information and the accuracy of the analysis will not be improved by
the use of sophisticated models whose parameters are based on further

crude guesses.

The most commonly used time model is, as mentioned, a pro-
pagation delay tp, asgsociated with each object output. Some simulators
permit the use of two time parameters tpr and pr, representing the

time delay associated with rise and fall, respectively.

A more sophisticated time model adds a further threshold
delay tt which demands that the input signal pulse should be ignored

unless the duration of the pulse exceeds tt'

It is reported that an industrial research group is seeking
to develop a time model which would incorporate non-constant time
parameters, Dependent upon the amount of load supplied by an object
output, different values of tp and tt would now be assigned to the same
system object. This project suffers from the same lack of reliable

time data as his been mentioned before.

4 Tar more ambitious project is reported (29) by members

of the IblM corporation . The work of this group concerns the develop=-
ment of a statistical delay model for a simple logical network. The
model correlates the variation of some physical signals and of load
with the time deluy of gates. Such is the complexity of this problem

that it was necessary to construct a purpose-=built computer system to
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carry out data collection and processing, while calculations were
performed on an IBM T7044. In spite of the extravagant resources used

by the project, the results have very limited practical application.

The uncertainty of time data emerges as a fundamental
shortcoming of simulation as a practical mode of analysis of logical
networks. By the definition of simulation, verification of designs
is based upon observing the system response in the time domain, but
this response ie computed on the basis of crude models whose parameters

are derived by wild guessing.

3.3.3 ~ Input data.

Fixing the highest resolution level at gate level implies
that operating signals should be modelled by discontinuous jumps
between two logical levels. The specification of these operating
sigmals consists of the listing of those instances of time when a given
operating signal is scheduled to change. As an aid to coding of this
data, some simulators permit the use of oscillators in addition to
switches. The oscillators provide periodically changing signals
whose ON and OFF time may be specified.

Physical signals (supply potentials, temperature) are con-
sidered as constant and, as mentioned in the previous section, their

effect upon the time delays associated with object outputs is neglected.

The sample space is thus restricted to dimensions given by
the operating signals and state variables. Even so, this space is
excessively large for all but trivial networks. The number of
necessary steady-state and transient tests will be assessed in chapter
4. It will be sufficient to mention a few problems arising at coding.

The simulation commences by the specification of an initial
state., In the absence of such specification simulators assume that
all state variables are to be set at, say, logical '0O'. If this
condition is logically inconsistent (unstable) then a series of calcu-
lations commences while the simulator searches for a steady state of

the system. This may not always be found, or not found within the
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time limit set by the designer. In such a case the simulator refuses
the network (as in the case of the RACAL program) or over-writes a
transient state by permitting the operating signal sequence to begin
(such as in case of the LOGIC program). Neither of these solutions
is particularly attractive: one refuses to simulate the system
altogether while the other may give ambiguous results depending upon

a random choice between oscillatory states.

If the initial state selected by the designer or set up by
the program is not connected to some of the system states then no
finite time sequence of operating signals would result in a comprehen-

sive analysis.

Oscillator-driven inputs imply a restricted mode of analysis.
While it is possible to construct oscillator signals which permit the
system to be tested for all of the 2™ number of different input signal
combinations for n inputs, this number of tests subjects the system to
only a small fraction of the total number of different transient con-
ditions and will only ascertain the response in the case of the selected
initial state. The solution is sought by selecting sequences of
operating signal changes which are regarded by the designer as most
probable to occur, For instance, it is often found that networks are
simulated under conditions when an output is scheduled to generate a
specific signal. If the network passes the test, then the designer
assumes that the desiyn is correct. This assumption is fallatious
because it is based on the same value judgement as was used by the

designer when proposing the design. The network may behave incorrectly

by generating outputs at untested conditions,

An alternative method is to select input sequences entirely
at random, This way there is a probability of selecting conditions
which might have been overlooked at the design stage. Even so, it is
very difficult to amssign a significance level to a selected test sequence
and the reliability of the analysis is in doubt.

The problems discussed here are familiar from experience

with hardware testing and there is no evidence that the newly developed
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techniques of computer simulation offer a satisfactory solution.

3.3.4 ~ Input - Output Mapping.

The process of computer simulation of logical networks
consists of specifying the changes of input signals in the time domain
and following the passage of sipnal changes through the network. The
procedure demands the choice of time quanta at the input and throughout

the operation of the network.

Synchronous simulation refers to a system in which time is

incremented by equal intervals and the model is processed at each
time increment. Inputs and outruts are shown on a linear time scale,

with a line of print assigned to each increment.

Asynchronous simulation is frequently termed '"next event"

or "event-by-event'" simulation, indicating that time is incremented
by periods measuring the distance between subsequent events, either

at the input or within the network.

The printout of event-by-event simulators show input and

output waveforms on a non-linear time scale, with a line of print

assigned to each event,against a parameter of time.

Asynchronous simulators offer flexibility; they lend them-
gelves to the analysis of synchronous or asynchronous networks., Most

of the known simulators are asynchronous.

Synchronous simulators are obviously suited to synchronous
networka. When used for the analysis of asynchronous networks the
time increment must be adjusted to the smallest common unit of all delay
elements a1d of all irput events, The method is considered to be of

limited use.

Notable exunples of synchronous simulators are the GEC and

Plessey systems,

2,1,5 — Solution and aAssessment.

Solution consists of two phases: calculation of the logical
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state of each monitoring point (system output or output of selected
objects) at each of a sequence of instances, and display of the logical

state of inputs and outputs at those instances.

Assessment presents problems familiar from the discussions
of hardware test methods. Standard signals need to be displayed in
a form comparable to the simulator output. Such standards may not
be easily available. The instrument of assessment is, once again,
the designer who is now faced with volumes of data unheard-of at the
time of hardware testing, as a direct consequence of the speed and

facility of producing data by computer simulation.

The columns of logical 'l's and 'O'sa of the printout contain
inconclusive answers to the questions of verification in implicit form.
The increased volume of data makes the designer's task of assessment
and data processing more formidable than was the case with hardware
testing. This problem of assessment may be attributed to the fact
that communication between man and machine needs to be established at

the point where the volume of information is the greatest.

In terms of the design verification questionsof section 2.6,
the method will be seen to have limited use, allowing no answers to
any but the first question. This is a direct consequence of the
method of modelling system objects and of the constraints appiied to

the environment.
It may be concluded that conventional methods of computer

simulation fail to provide the answer to the problems of design testing

of modern logic networks.

3.4 - DESIGN TESTING BY HIGHEK-ORDER
MODES OF ANALYSIS.

The literature contains a great variety of well-established
and some recently-proposed methods of analysing logical systems by use
of Boolean equations (analytical testing) or tables (perhaps best

classified as numerical testing). Such methods range from tests of
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steady-state response to diagnosis of ambiguous transient behaviour.

The basis of analysis is almost invariably a Boolean model and signals

are assumed as discontinuous jumps between one logical level and the

other, as in the case of computer simulation.

The review of these methods led to the following conclusions:

1)

2)

3)

it is possible to correlate the results of some
existing methods with some of the design veri-
fication questions designers may wish to ask.

it is humanly impossible to apply these methods
to all but the most trivial networks without the
use of computers

it is necessary to extend or modify some of the
accepted methods as well as to propose some
completely new methods if answer is sought to

a reasonably comprehensive range of design

verification questions.

Subsequent chapters of this thesis will describe the way

in which these higher-order modes of analysis may be used in the

interest of logic design verification.
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4.1 — INTRODUCTION.

Chapter 3 shows the inadequacy of conventional design
verification techniques as applied to logical systems of modern size,
congtruction and complexity. This inadequacy can be attributed to

a number of causesi-

1) The difficulty of man-machine communicationj this
problem arises at the specification of the system, of the teat data
and, especially, at handling the data produced by the analysis.

2) The excessive sise of the sample space of systems with
modern dimensions.

3) The increasing demands of reliability of designs.

4) The reduction of detail and reliability of information
about individual logical elements of the system.

5) The conflict between the complexity, reliability and

accuracy of delay models.

4.1.1. - The modular system of design verification.

In view of these considerations it was decided to break
with conventional test methods of simulation. These methods relied
upon a prolonged general-purpose analysis process whose output data
was the basis of design verification. By contrast, the new ﬁethod
consists of a sequence of special-purpose verification procedures,
each answering a specific question about the newly proposed design.
For this purpose a compatible set of design verification modules is
constructed. If the designer now produces a list of questions about
his newly proposed system, he can select the appropriate sub-set of
off-the-shelf modules which will provide the answers.

The modules must be so designed as to ease the man-machine
communication problem. Thus they should operate on the minimum of
information and, instead of producing analyeis data, must produce

direct answers to the design verification questions. Such answers

may condone the proposed design or list its errors in a format which
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facilitates design correction.

Test data for the modules must, wherever possible, be
automatically generated. This overcomes the communication problem
and improves reliability because the automatic test data generators

scan the sample space systematically.

The quality of system model must be scrupulously preserved.
Using the minimum of data for the description of the system eases
communication, minimises the demands of computer storage and computing
time. 1In addition, detailed models demand the specification of
'delay parameters whose reliability is doubtful, Thus the design
verification procedure must restrict the use of delay models as far
as possible, in the interest of reliability.

The modular system appears to have the potential to over-
come most of the inadequacies of conventional testing. It offers
the additional features of flexibility and ease of development. The
system may continually be improved by addition of new modules, re-
design of existing ones or deletion of obsolete ones, without putting
it out of service. With the aid of a carefully specified interface,
several programmers may be engaged on the development of the system
without the need to refer to each other's decisions on details.

The subject of this chapter is to describe the design of

the modules of such a design verification system.

4.1.2 -~ The choice of verification questions.

The idea of such a design verification system is thought
to be novel. This means that no previous experience was available

upon which to build such a system.

The first difficulty was encountered when trying to antioci-
pate the questions designers may wish to ask. At the present time
designers do not formalise their questions but deduce some answers
from analysis. Formalised questions demand disciplined thinking and
a measure of formal education in logic designj; one or both appears
frequently to be lacking.
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The questions proposed in this chapter become gradually
more sophisticated,matching the sophistication of the facilities they
provide (not necessarily the techniques they use; some of the most
complex questions are answered in exceedingly simple ways). This is
claimed as an advantage; simple modules will give designers useful
information as well as a gentle intrQduction to computer-aided design.

It is further considered that the use by designers of some
sophisticated concepts (such as a VERIFIED DIRECTORY) are inevitable.
Logic systems have become so complex that they are not approachable
by simple test methods (see chapter 3); the concepts used in this
work are not always simple, but are presented to the designer in a -
form which is thought to be easily accessible. Experience in this
field is available through the Prototype System (chapter 5) which has
been found easy to use by several teams of logic designers.

It is anticipated that the proposed design verification
questions may need modification in the light of experience with the
system in service. Such modification is facilitated by the modular

structure as mentioned before.

4.1.3 = Input - Output.

It was possible to use some of the experience gained from
logic simulation in the choice of input format. However, since the
service provided by the method is new, the output format was designed
without background. The Prototype System gave some help here, but,
again, extensive use by designers on large and complex systems is
needed before the output format may be considered finalised.

As mentioned earlier, the output data is, in almost all
cases, an error list. The input data consists of the following

items:-
a) Specification of new design.

b) Specification of operating signals.
¢) Specification of behaviour.
d) Test instructions.

These will now be discussed briefly.
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a) Specification of new design.

It was decided to desoribe a logical network by four items
of data:
i) structure
ii) function: parameter of objects
iii) 1load parameter of objects
iv) delay parameter of objects.
The choice of these items will be discussed and justified in the
courge of this chapter.

b) Specification of operating signals.

In the interest of reliability it was decided to cover
automatically the total sample space of a given test whenever possible.
If this space proved infinitely large, or too large to be completely
covered,then instructions were required about the manner in which the

space could be restricted. In only a few circumstances in the course
of this chapter was it found necessary to compel the designer to
specify the wave-~forms of input signals.

c) Specification of behaviour.

It is considered that such specifications initiate the

whole of the design process, hence they must always exist in some
form., It is understood that usually the specifications are not
formalised and are often unrealistic or unreasonable. Attention was
given to allow the presentation of specifications in a varietj of for-
mats. In some instances it was also suggested that the design
verification methods could be ugefully employed in the analysis of
the specifications themselves.

d) The test instructions consist of nominating the

verification modules for a given test.

4.1.4 ~ Analysis and Assessment.

Use was made of accepted and generally used concepts of
logic network .analysis. Such concepts include truth tables, state
and output tables, the definition of essential hazards, etc. These
concepis, in almost all cases, needed extension or modification

before they could be used as bases for test techniques.
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Frequently it was found necessary to design entirely new
concepts. Thus, inevitably, a jargon was created,which was based on
general systems usage. New terms were only introduced if they helped

to make discussions or definitione more concise or clear.

4.1.5 -~ Constraints.

While care was taken to compose questions concerning a
variety of aspects of the design, it can not be claimed that the list
of questions is comprehensive., Nor are the answers completely
satisfactory in every casej; such is the complexity of the problems
that the validity of answers had to be made conditional upon some
simplifying assumptions. However, it is trusted that the techniques
used for the generation of answers may be perfected along such lines
as indicated in the chapter on FURTHER DEVELOPMENTS, allowing the
removal of some of the restrictions. Further, these techniques, or
the experience gained by their development and use, would prove
valuable in finding answers to verification questions not listed in

this chapter.

In some cases it was found that a given question may be
answered in alternative ways and each alternative contained some

interest; in such cases the alternatives are described here.

Some of the questions were found convenient to be answered
in terms of answers to others; in such cases a test sequence is
obviously implied. Otherwise the sequence of conducting the tests is

not pre-determined.

4.1.6 - Organisation,

This chapter will be organised by devoting a section to
each design verification question. Within a section relevant con-
cepts and techniques will be discussed and at least one test module

suggested.

4.2 -~ IS THE STATE OF THE SYSTEM FULLY DETERMINED
BY THE STATE VARIABLES NOMINATED?

The question tests the designer's understanding of the

system. The assignment of state variables is, in some cases, a
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trivial exercise, such as associating a state variable with each
S -« R flipflop. In other instances the structure of the network is
complicated by feedback loops linking a large number of logical gates
and in the course of evolutionary design the designer may be unaware
of the presence and consequences of a group of system states. In
such cases designers should check if they understand the system
correctly by nominating a comprehensive set of state variables which,
in their view, should be sufficient to describe the states of the
system. A test module should then check if the designer's estimate
was correct.

When developing the necessary techniques for answering
the question it was found sufficient to use structural information
about the system without reference either to test data or to models

of objects of the system.

4.2.1 ~ Concepts and techniques.

A combinational network will, for the moment, be defined
as a structure containing no feedback loops at the selected level of
resolution. Conversely, a sequential network will contain feedback
and the number of state variables in terms of which the network is
described depends upon the number of feedback loops (see footnote).
In order to describe a sequential network in terms of inputs and
state variables,each of the feedback loops must be broken once and a
gtate variable inserted. The place at which the loop is broken is

arbitrary, hence there is no unique way of describing a sequential

FOOTNOTE: These definitions are consistent with the concept of
observability (chapter 2); if a network containing feedback does
not display .a terminal behaviour customary for sequential networks
(such as the strange network of ref (30) ,.) it will be classed as
sequential on the basis of its structure, although the sequential

behaviour is not observable. A sequential network with no observable
states may, under these definitions, be equivalent to a combinational
(continued overleaf)
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network in terms of state variables. All comprehensive descriptions
(i.e. ones which leave no feedback loop intact) are acceptable to the
test system but, as will be discussed later, those which describe

the network in terms of the minimum number of state variables are to

be preferred.

The technique of analysis suggested here accepts the
designer's choice of a set of state variables but rejects the design
if this set is not comprehensive. The error message generated by the
test warns the designer that he has failed to break all of the feed-
back loops. Should the designer be unwise and break any of the
loops in more places than one, the design is accepted by this verifi-
cation step as correct. If such a system is subjected to verification
by other test modules then the analysis would be performed correctly
but inefficiently by describing the state space of the system in more
than the minimum number of dimensions. This inefficiency implies
an imperfection of the module to be described in this section. An
alternative module, free of this imperfection, will be presented in
a subsequent section.

The test techniques are presented in terms of a simple
example shown on Fig.4.2.1. A unique identifier has been assigned
to each object of that network. Environmental signals are restricted
to operating signals which are generated by source objects 10, 20 and
30. The structure matrix, as defined in Chapter 2, consists of
10 x 10 = 100 elements:

FOOTNOTE (Cont'd)s

network. Following this argument to its conclusion the concept of

a combinational network may be eliminated altogether by defining all
networks as Qequential but recognising that a network may not have
observable states at a given level of resolution. Increasing the
level of resolution may then reveal the existence of feedback loops.

For the purposes of this work the concept of a combina-
tional network will be retained under the above definition.
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Assume now that the resolution level has been chosen at
the level of a single logical gate, representing a simple logical
connective. Selecting one of the gates of the network at random,
the matrix elements concerning the selected gate can be computed not-
ing that all gates have a single output and gate inputs are numbered
as shown on Fig. 4.2.1. Thus, collecting all the matrix elements

referring to gate 6, say:
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The matrix is unwieldy and contains a great deal of redun-
dancy. Since '6' is known to have only three inputs, the group of
matrix elements marked "To '6' " can only contain three positive
indications of connection. Thus, of the 30 bits of information des-
cribing connections "to '6' " only three can be relevant, Collecting
these in a single matrix of Wb , and indicating the identifié@ of
circuit objects connecting to the input of 6 as elements of Wsl

P N Rl i )

If the network is constructed of simple gate elements
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representing an elementary Boolean connective then the functional
significance of all inputs is the same and the gate output is not
altered if inputs are interchanged. This circumstance allows the
specification of W6 be given in terms of 10, 4 and 30 listed in any
order, or, more conveniently, in terms of a connection matrix of a
single row and with a single-bit column assigned to each of the

objects of the networks:
10 20 30 1 "2  TAlNdinbuRto el
w —

6 1 0 1| O} 0. 1.0 dNNONISONN0

In this simplified form the total structure matrix will be a square
matrix of 100 binary elements as shown on Fig. 4.2.2. The columns

represent the signal sources and the rows the loads.

The structure matrix has certain regular features: the
rows of source objects, by definition, contain only zero elements
and in accordance with logic design practice forbidding the feedback
from the output of a gate element to its own input, the diagonal of
the matrix is zero. (mee footnote)

The structure matrix may be reduced, without loss of
information, to the form shown on Fig. 4.2.3.

The reduction of the structure matrix of chapter 2 to the
form of Fig. 4.2.2 is possible for two reasonst

1) all the inputs of a network object have been assumed
to be interchangeable, thus the identification of inputs became
unnecessary.

2) all network objects have been tacitly assumed to have
a single output, thus the identification of outputs became superfluous,

FOOTNOTEs If this latter condition is not satisfied, the test
reports an error of an unspecified state variable. If such a feed-
back loop is intentional then the programmer must introduce a dummy

element, as described later, in the loop. Thus no element feeds

back upon itself and the diagonal is zero.



4.10

These assumptions are valid only as long as networks are
constructed of standard objects (AND, OR, NAND, NOR, STATE VARIABLE,
INPUT, OUTPUT). As soon as a more sophisticated sub-network becomes
an object of a larger network, neither of the two assumptions can be
taken for granted. For instance, the simple sub-network of Fig. 4.2.4
has two outputs which must be uniquely identified. Should any of the
inputs be interchanged, the resulting functions would be altered
unacceptably.

The problem is eliminated if a sub-network is resolved at
a level high enough to permit the identification of each standard
object. In this case the network is termed to be a homogeneous
structure which can be analysed in terms of a matrix such as that of

Fig. 4.2.2.

In the forthcoming discussions of section 4.2.1 it will be
assumed that the designer presents the network for verification at the
resolution level of standard objects (single gates), or that the system
is presented at some lower level to a translator which generates a

homogeneous structure for the purpose of this analysis.

It will be noted from Fig. 4.2.1 that the network is
combinational, containing no feedback loops. Object outputs may be
computed without reference to state variables, and a sequence of
computation may be found which allows the determination of all element

outputs.

The matrix of Fig. 4.2.3 is divided to a "known" and an
"unknown" area by a vertical dotted line. The columns of the

known area contain purely source variables,

Those rows of the matrix which contain 'l's in the known
area only are "computable" and can be entered in a "processing list".
Their column can then be transferred to the "known" area and the next
computable variable sought. The process is continued until the '
"unknown" area is depleted and the processing list is complete. It

is frequently possible to locate more than one computable variable
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at any one time, hence more than one valid processing list exists for
a given network. One of the valid processing lists for the network
of Fig: 4.2.1 will be 1, 2, 4,76, 355, T4

The search fails to result in a complete processing list
if the network contains an unspecified state variable. Demonstrating
this with respect to a modified version of the network of Fig. 4.2.1,
let a feedback connection be added from the output of gate 7 to the
input of gate 4. The structure matrix of the new version of the
network is shown on Fig. 4.2.5,

The processing list will contain objects 1, 2, 3 and 5,
leaving objects 4, 6 and 7 locked in a loop, each depending upon one
of the others (Fig. 4.2.6).

If the designer is aware of the existence of the loop then
he must insert a dummy object at an arbitrarily selected point within
the loop when preparing the data for the computer analysis of the
network, The dummy object has the function of a state variable.

For the purpose of the processing list a state variable has the nature
of a source object and falls in the "known" area of the structure

matrix.

The sequential network and its dummy object generating
the state variable, are shown on Fig. 4.2.7. The structure matrix
is increased by a column (Fig. 4.2.8) and the processing list may be,
for instances 1, 2, 4, 6, 3, 5, Ty T1.

4.2.,2. = The test module A.

The model of design verification, as presented in chapter
2, demands that the proposed design be analysed with reference to
environmental conditions, and assessed against the behaviour speci-

fications.

In this case the proposed design is offered to the test
module in the form of a homogeneous structure of multiple-input,
single-output objects. The format of this data may be a list of
declarations. Each declaration is headed by an object identifier
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and contains the list of those object identifiers to which the inputs
of the declared object are connected. Each declaration will there-
fore specify a row of the connection matrix and there will be as many
declarations as there are objects in the network. To permit the

identification of source objects, these must also be declared; their
identifiers will head an empty list since their inputs are connected

nowhere.,

The proposed design of the network of Fig. 4.2.1 would be
offered for verification in the form shown on Table 4.2.1. Both the
order of the declarations and the order in which objects are listed
within the declarations are arbitrary.

The test may commence without reference to environmental
conditions; the logical functions generated by the source objects
have no relevance to a test based entirely upon structure. The

analysis consists of manipulations as described in section 4.2.1.

The expected behaviour of the network under this test is
that a complete processing list is produced. Therefore, the behaviour
of a tested design is checked against the specification of a processing
list containing as many elements as objects of the set D (chapter 2).
It is not necessary to specify the desired behaviour separatelys; the
objects of the set D may be counted at the time of the daoliration of
the new design. The outcome of the design verification test is a
binary decision. In case of the example the processing list contains
7 elements as does the set D. The designer was right in declaring no

state variable.

For further reference this test module is given the alpha-
betic character A. The inputs and outputs of the module are shown
in Table 4.2.2. The processing list is an optional output in which
the designer will have no direct interest, It is however valuable

for subsequent analysis modules.
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4.3 — WHICH 15 THE MINIMAL SET OF STATE VARIABLES OF THE SYSTEM?

This question is an alternative to that of 4.2. It may
arise simply because the designer finds the part of data preparation
which concerns the nomination of state variables tedious and incon-
venient; the design of a network will often be spread over a number
of logic diagrams,and feedback loops linking large areas of network
will be difficult to find. Module A does locate the designer's failure
to nominate a comprehensive set of state variables,but offers no help
in locating the unbroken feedback loop. Nor does Module A give any
indication if the designer errs the other way by overestimating the
number of state variables. As indicated before, the sample space
increases very rapidly with the number of state variables and the
subsequent analysis becomes inefficient; of all the tests conducted
only a fraction will be independent and the rest will contain no

information.

The answer to question 4.3 facilitates the coding of net-

works and, at the same time, prepares the way for subsequent analysis.

4.3.1 - Techniques.

It will now be assumed that the designer does not specify
state variables but describes the connection to the inputs of each
object from which a homogeneous data structure is prepared. Linking
the output of an object to its own input is now permissible. It is
further assumed, as in section 4.2, that the designer presents the
network at the resolution level of single gates or that a translator

prepares a homogeneous structure previous to this analysis.

The reduced structure matrix ie prepared in the usual way
and elements of the processing list identified until no further com-
putable variable can be located. The rows of un-computed variables
and the columns of the "unknown" part of the reduced structure matrix
form a "residue matrix" which shows the gates locked in,together with

the interconnections between these gates. This residue matrix is

always square.
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As an example, the residue matrix of the network of
Fig 4.2.1, with the output of gate 7 linked to the input of gate 4,
is shown in Fig. 4.3.1l.

A method is now sought by which the feedback links of a
network may be identified automatically and in such a way that the
number of state variables assigned to the network should be the

minimum,

With reference to the residual structure matrix,two ques-—
tions arise:-

1) Which is the smallest set of column variables to be
assumed to allow the completion of the processing list?

2) How should the network be modified in such a way that

a state variable be associated with each column variable?

The second answer is easily found; the state variable
should be generated by a dummy element which is fed from the assumed
column variable and which feeds all the other gates associated with

that column variable.

The first question is more difficult to answer. The method

proposed here leads to the definition of a set of parameters which
influence the choice of members of a minimal set of state variables.

The subject will be discussed in terms of specific examples
which have been designed or selected to demonstrate the problems in
question, All the examples will refer to networks which form reduced

systems (see chapter 2).

The first observation is negative; the minimal set can
not be found by looking for the feedback loops of the structure matrix
because, as the simple example of Fig. 4.3.1 shows, the matrix does
not permit distinction between feedback and feed-forward variables.

Nor is it generally possible to find the feedback loops by
identifying their origin with the outputs of the complete network.
Unless the network is known to be a Moore machine (see for instance

(20) ) state variables are not necessarily associated with the outputa
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of the network.

It is proposed that the residue matrix should form the
basis of the computation of three relevant parameters which determine
the minimal set. The parameters, associated with column variables,
will be denoted by D, I and M, respectively, and will be defined and
computed as follows:

D - This parameter counts the number of directly inter-
dependent pairs of variables of which the variable in question is one.
Such pairs always contain a state variable and the parameter D helps
to assume the ones with the largest number of direct inter-dependences.

The directly inter-dependent pairs are characterised by
symmetrically placed 'l' entries about the diagonal of the residue matrix.
One way of computing the D parameter of each variable is to form the
transpose of the residue matrix and to count the 'l' entries in each
column which are common to the residue and the transpose.

I - This parameter counts how many variables depend upon
a given variable, not counting those with which is is directly inter-
dependent. Thus I is the sum of the numerals in the column of the
residue matrix associated with a given variable,less its D parameter.

M -~ This parameter measures how many variables would
become immediately computable by assuming only the variable in question,
To determine M, the sum of the numerals in each row of the residue matrix
is computed and the row(s) with the smallest sum selected. The para-
meter M is the sum of the column of numerals in the matrix constructed

only of such minimally dependent rows.

The parameters of the variables of the residue matrix in
Fig. 4.3.2 will now be computed as an example. The rows and columns
are marked by alphabetic characters for convenience.
Compute D:

The transpose matrix, with the inter-dependent variables

ringed:
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Defining the sum of the three parameters as a figure of
merit, the minimal set of state variables may be sought by assuming
the variable with the highest figure of merit, reducing the residue
matrix if possible. If no variables are processable, the variable
with the next highest figure of merit is assumed, etc.

An alternative method assigns priorities to the three
parameters in the order of D, I and M. Considering D first, obviously
one variable of a directly interdependent pair must always be assumed
before the processing list can be completed,and it is most advantageous
to assume the variable with the highest number of interdependences.
Based upon the residue matrix and its transpose, pairs of directly
interdependent variables are located and the variable in each pair
with the highest D parameter assumed. After thie, the residue matrix

is searched for computable variables as before.

In case of equal D - parameters the choice of the assumed
variable depends upon the highest I parameter, or, in case of equal I,
the highest M parameter of the two variables within a pair. If all
three parameters of the pair are equal, the selection is random.

Following this procedure in the case of the example of
Fig. 4.3.2,the directly interdependent pairs are Q - S and U - W,
Since the D - parameter of variables within pairs are the same, based
upon parameter I, of the first pair S is selected and of the second W.
The procedure is then as follows:-
1) remove the column of assumed variables from
the residue matrix.
2) search for empty rows. Remove the columns
of variables to which empty rows correspond.
Add these variables to the processing list.
3) repeat this procedure until no further
reduction is possible.
4)' prepare a new residue matrix by deleting the
rows to which no column corresponds. Then
prepare the parameters of the new residue
matrix and repeat the procedure of determining

the variables to be assumed.
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5) kepeat the procedure of preparation of new
residue matrices until all variables become
computable,

6) The processing list can now be completed by
examining the partial list which was com-
piled before the residue matrix was found,
against the list of assumed variables,and
adding those to the partial processing list
which are not yet included. These variables
will describe the next state of the network

upon the assumption of its present state.

To distinguish between the two, the assumed
variables are given a suffix "s" marking them
as state variables.

The procedure is now demonstrated here, in terms of the
previous example:-

The assigned (state) variables, as seen, are Ss and Ws.
Removing columns W and S from the residue matrix, the empty rows are
P, U and X. Now removing columns P, U and X rows Q, R and T become
empty. Removing their columns,W and S are empty and the process
terminates. The Processing list is therefore; P, U, X, Q, R, T, W, S,
The network has thus been processed with the aid of iwo state variables.
Since there are two separate and directly dependent variable pairs,
the set is minimal.

The value of the procedure will now be demonstrated by
showing that alternative choices of assumed variables result in the
same or higher number of state variables.

Selecting the other two members of directly inter-dependent
pairs, Q and U will be assumed. Removing their columns from the
residue matrix no rows become empty and the new residue matrix is
shown on Fig. 4.3.3.

It is now possible to make unfortunate assumptions, such as
variables X and T,which still do not result in a complete processing
list, rendering only W computable. The complete set contains no
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less than five state variables instead of the minimum of two.

An alternative selection, based entirely on figure of
merit favours variables P, S and W equally. The unfortunate random
choice of P results in a set of three state variables, because the
two directly interdependent pairs must subsequently yield two state

variables.

The method of selecting the minimal set upon the basis of
priorities is not generally proven, but it has been found to succeed

in all cases so far.

4.2,2 — The test module B,

As in case of Module 4, the proposed design takes the
form of a set of declarations where each member of the set concerns
a different object and lists all those object identifiers to which the

inputs of the declared object are connected.

Vo reference is required to environmental conditions.  The
module provides information about the system which can only be used
for design verification if the designer had a notion of the expected
number of state variables. The module output may contain:

a) A list of assumed variables

b) The number of assumed variables

¢) The declaration of the network, containing

the state variables located by Module E.

While the designer may use a) or b), it is considered that
¢) is only necessary as the input to a subsequent analysis module.

The inputs and outputs of the module are shown on Table 4.3.1.

The processing list is shown as an output option.

4.4 = CAN THi PROPOSED DESIGN Ex CONVERTED
INTO A HOMOGENEQUS STRUCTURE?

The question implies that the designer used a low resolu-
tion level when declaring his system. An automatic test is now

required to ascertain if sufficient information is available to describe
~7
the
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system gate by single gate. The teast module is to perform two
functionsi:-
a) notify the designer if the homogeneous structure
can not be compiled.
b) compile the structure if possible and make the

data available to other modules.

4.4.1 -~ Techniques.

To answer question 4.4 it is now necessary to describe the
system in more detail than that required by modules A and B; in
addition to information about the connections between system objects,
the function performed by these objects must also be specified. The

new information is termed the funotion parameter.

At the highest level of resolution used in this work system
objects may have a function parameter selected from this list:
AND )
o )
NAND high-level function
NOR E
INPUT )
OUTFUT (optional) ;
STATE VAKIABLE )

parameter list,

If any part of the proposed design is declared by the
designer at a lower level of resolution then it is the designer's
responsibility to assign to each different type of system object an
individual function parameter, Such parameters are subject to the
syntactical rules defined by the mode of programming implementation.

The designer may wish to construct sub-systems for the
purpose of a single design verification. Alternatively, he may wish
to retain a sub-system, under its own function parameter, for further
reference. For instance, hardware modules used repeatedly would
conveniently be declared under a function parameter. Thus the designer
would gradually accumulate a function parameter list containing sub-

system parameters as well as the parameters of the low-level list.
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The sub-networks at a lower level of resolution are
generally multiple-input, multiple-output devices. The example of
Fig. 4.4.1 shows such & simple sub-network. Without its source and
output objects the network consists of three gates. In addition to
the customary structural information the gate declarations will now
contain function parameters selected from the high-level list:

( 42 AND 10 20 )
(41 NOR 20 )
(43 OR 10 41 30 )

Let these three gates be referenced by the function parameter
TRIO and let TRIO be an object of another system called SUPER. When
attempting to compile the reduced structure matrix of SUPER, TRIO will
be found a misfit for two reasons; it has more than one output and
ite inputs are not interchangeable, Consequently TRIO must be
declared in sufficient detail to permit its use in the non-reduced
structure matrix of SUPER; INPUT and OUTPUT objects associated with
TRIO must be identified with serial numbers. The full declaration
of TRIO will therefore be as follows:-

( 10 INPUT 1)

( 20 INPUT 2. )

( 30 INPUT 3 )

( 41 NOR 20 )

( 42 AND 10:4.20" )

( 43 OR 10 Al 307
( 51 OuTPUT 1 42

( 52 OUTPUT 2 43 )

The INFUT and OUTPUT objects are auxiliary and should be
discarded after TRIO is placed in SUPER, that is, when the homogeneous
structure of SUPER is compiled and a reduced structure matrix is
available. The first reference of an OUTPUT object is a serial
number; the second is the indication of the object identifier connected
to the OUTPUT.

Let the construction of the homogeneous structure of a
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network be demonstrated on another example, taken from the internal
research report "The Kingston Logic Simulator" compiled by D.R. Holmes
in 1969. The design of the network 'CIR 3' is to be verified, The
network is shown on Fig 4.4.2 and its declaration is given in Table
4.4.1.

When the declaration of 'CIR3' is received then the function
parameter of each object is checked against the list. If 'CIR2' is
not found on the list then an error message is produced, indicating

that the answer to question 4.4 is NO.

If 'CIR2' is found on the list then its declaration is
checked against that of 'CIR3' to see if these are compatible.

Let 'CIR2' be the network declared in Table 4.4.2.

The reference to all objects nameg 'CIK2' on Table 4.4.1
indicates that 'CIR2' has three inputs. The declaration of 'CIR2'
on Table 4.4.2 also shows three inputs, indicating compatibility of
inputs.

Table 4.4.1 demands two outputs of each of the four objects
whose function parameter is 'CIR2'. Table 4.4.2 shows that two out-

puts are in fact available, thus the outputs are compatible.

Thus 'CIR3' is an acceptable network in terms of 'CIR2'.
Now 'CIR2' itself must be examined.

The function parameters show the non-standard object 'CIRl'.
If this is found on the list then again a compatibility check is

necessary.

Let the declaration of 'CIR1' be given on Table 4.4.3.
Comparison with Table 4.4.2 shows input and output compatibility.
Furthermore, 'CIR1' is composed entirely of standard objects. Thus
a homogeneous structure of 'CIR3' may be prepared - the answer to
question 4.4 ié YES. This structure contains 52 gate objectsi

'CIR1' contains 3,

'CIR2' contains 4 plus 3 x 'CIR3'; a total of 13,

'CIR3' contains 4 x 'CIR2'; a total of 4 x 13 = 52,
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The homogeneous structure of 'CIK3' can now be made avail-
able by a sequence of substitutions. The data may be output if the
designer wishes; more usefully this data may be aweilable for further

analysis.

For the sake of completeness the networks of 'CIR2' and
'CIR1' are shown on figures 4.4.3 and 4.4.4, respectively. The com-
plete network of 'CIK3' is a four-bit adder.
4.4.2 -~ Linked outputs.

The introduction of function parameters permits designers
to handle a type of network which has thus far, by implication, been
inaccessible for verification modules. Networks whose object outputs
are directly connected can not be handled by structure matrices and

can therefore not be given meaningful object declarations.
As an example, consider the simple network of Fig. 4.4.5.

The declaration of objects 61 and 62 are straightforward.
The declaration of 63 is problematic. The version (63 OR 61 62)
implies an OR gate of two inputs and the logical connection

63 = 61 + 62,
However, the gate 63 has only one input and its output depends upon

some detail about the hardware of gates 61 and 62 which is not avail-
able to the designer at this level of resolution.

The problem may be approached in two ways:

1) by increasing the resolution level beyond the
level of a single gate. This would reveal the
mechanism used by the hardware to eliminate the
ambiguity between the conflicting signals of
gates 61 and 62.

2) by introducing some artificial device at the
selected level of resolution which would have

" the same terminal performance as the junction

of the outputs.

The first of these approaches im unattractive; increasing
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the resolution level beyond that of a single gate renders the network
non-logical. The operation of such a network would have to be

examined with reference to non-linear sub-system models.

The second method is simple but can not be automated; it
demands that the designer should insert a dummy gate at the junction
of the outputs and assigns to it one of two logical functions. 15 6!
at the junction, logical 'l' has priority then the output of the dummy
gate is 'l' due to any of the joinﬂ;d outputs being at 'l' and the
dummy performs an OR function, If, at the junction, priority is
given to logical 'O' then the output of the junction can only be 'l'
if all of the joined outputs are at 'l', therefore the dummy should
be an AND gate. The designer must add the dummy at coding and assign
to it the appropriate function by examining the priority.

This is the method recommended here.

To illustrate the method it will now be assumed that the
joined outputs of Fig. 4.4.5 act as a wired OR gate. Assigning the
identifier '64' to the dummy gate, the declaration of the network is
as follows:-

( 61 AND 10 20 )

( 62 AND 30 40 )

(64 OR 61 62)

(63 OR 64 )

4.4.3 ~ The test module C.

The proposed design is presented once more as a series of

declarations containing structural and functional descriptions.

No reference is needed to environmental data. The behaviour
specifications are implied; acceptable designs consist of compatible
and recognised objects which lend themselves to translation into

homogeneous structures.

The output is a YES — NO answer to the question 4.4. In
addition, the homogeneous structure is to be made available.

With reference to the input requirements of modules A and

B it will be seen that the output of module C contains all the necessary



4.25

data in the required form. Module C also generates data concerning
function parameters; this data is redundant so far as modules A and
B are concerned. Thus, if module C is to act as a translator for

A and B, function parameters are first to be omitted or just ignored.

The module inputs/outputs are shown on Table 4.4.4.

4.5 - ARE ANY OF THE OBJECTS OF THE SYSTEM MISUSED
OR OVERLOADEI?

The question seeks to locate design errors due to two
reasons:-—

1) the fan - in restrictions are violated.

2) the fan - out restrictions are violated.

It will be assumed that errors are systematic and not due
to faulty coding of otherwise correct networks. For the sake of
clarity of these discussions it will also be assumed that the proposed
design is presented in homogeneous form. This latter assumption may
be removed without altering the validity of the discussion or of the
teat.

4.5.1 -~ The test module D.

The objects of the proposed system must now be described
in detail beyond that demanded by earlier tests. Each object must
carry three additional parameters, collectively termed "load parameters”:

a) Fan - in., This is an integral numeral indicating

the number of input terminals the object has.
The number of input references in the object
declaration will, in case of correct design, be
smaller or equal to Fan -~ in,

b) Load. This is a real numeral indicating, in

some selected unit, the maximum load demanded by
any of the inputs of the declared object.

¢) Capacity. This is a real numeral indicating

the ability of the declared object to supply load

to other objects, connected to its output.

Capacity is expressed as a numferal referring

to the same unit as Load.
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The techniques applied by the test module are trivial,

consisting of arithmetic operations and comparisons.

The output is diagnostic, specifying the erroneous object
and classifying the error as "FAN-IN" or "OVEKLOAD".

The inputs and outputs of the module are shown in Table
4-5.1.

4.5.2 - CommentS.

In case of wired logic (linked outputs, section 4.4.2) due
care must be exercised when specifying the load parameters of the
dummy element. Current hardware practice implies a limit upon the
fan-in and upon the capacity of the dummy gate. These two parameters
are usually inter-related and specified in terms of each other by the
manufacturer. The load represented by the dummy gate may be con-
sidered zero since the wired junction commands all of the output

current of the linked gates.

Another remark is appropriate. The fan-out capacity of
several types of hardware in present use is a function of the distance
between connected objects. Module D has no facility for accommodating
such and other non-constant load parameters. The extension of the
module would assign to each object a sub-routine which calculates the
load parameters on the basis of a selected set of variables. In the
absence of reliable information about hardware, such a facility could
not be put to efficient use; thus, at the present time, module D is
thought best served by a set of constant load parameters.

4.6 —~ 1S THE STSADY-STATE RESPONSE OF THE COMBINATIONAL
NETWORK CORRECT?

The question implies that the design under verification
has been proven by an earlier module (A or B) to be combinational.
It also implies that the correct behaviour is described in some
specifications to which reference can be made at the time of assessment.
Since the behaviour specifications are normally given with reference
to environmental signals, analysis should also be conducted with

reference to these signals.
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Supposing now that structural and functional information
is available about the proposed system and its object, the question
is now whether this information is adequate as a basis for answering
question 4.6, or is some other detail such as time parameter of

objects, necessary.

4.6.1 - Techniques and concepts.

In the literature combinational networks are customarily
described as realisations of propositional functions. This descrip-
tion is, strictly speaking, only valid if the delay of all network
objects is zero. Obviously this is never true in practice. On the
other hand, when the steady-state response is required then it is
assumed that the inputs have been held constant since t = - vs and the
outputs are propositionally related to these at any finite value of t.
Consequently the object delays are irrelevant to the calculation of

the steady-state response.

Inputs.
It was discussed in chapter 2 that environmental signals

fall into two classes; physical and operating signals. If it can

be assumed that the admissible range of physical signals is controlled
in such a way that no gate fails to perform its prescribed Boolean
function then the physical signals can only influence the length of
the time delay of system objects which in any case have no relevance
to the steady-state response. Thus the analysis consists of finding
the mapping of operating signals u into outputs Z by a system which

has no states.

Let the design under verification be a network with n
operating signals. The highest resolution level - that of a single
gate - implies an n - dimensional sample space with a binary choice

in each dimension.

The sample space in three dimensions (i.e. the sample space
of a three-input network) is shown in Fig. 4.6.1. Points connected

by an edge of the cube are unit distance apart and are oms-bit different

in their code (see, for instance, (I8) ).
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The "designation numbers" devised by Ledley %) map this
space into a binary matrix with a row assigned to each operating
(input) signal and a column to each point in the space. The designa-
tion number for each of the three variables is shown in Eq. 4.6.1.

where dU, is to be read "the designation number of U(.

-

It will be noted that the adjacency between points repre-
senting unit-distance codes is lost; nor is it considered worthwhile
to transcribe the designation number equation to Gray-code form since

such a code preserves the adjacency in two dimensions only.

The concept of designation numbers has led to the automatic
scanning of the sample space. A designation number can conveniently
be handled by digital computers in one of two ways: in the form of
an array of words, each word representing a binary digit of the array,
or in the form of an array of bits within a computer word, each bit
representing a bit of the array. The latter solution is obviously
advantageous and holds the potential of increase in the efficiency of
computation by a factor equalling the number of bits in the computer
word., This bit-handling method is adopted here.

The length of the designation number array is an exponential
function of the number of operating signals and array lengths exceed
the word length for all but trivial networks. To accommodate arrays
which contain more bits than the word-length W, "multi-words" are
formed of length of P.W bits, where P is the smallest positive integer
for which P.W %/ 29,

Designation number arrays of operating signals have regular
patterns; the input variable Ui has 21"1 number of '0'-s followed
by the same pumber of 'l'-s,with this sequence repeating to a length
of 2" bits, for a total of n inputs. If the network im subsequently
extended to have an additional input, all the designation number arrays

must be increased to a compatible size of 2n+1 bits.

The automatic generation of inputs by the use of designation
number arrays is implemented by a program package ISOPACK (27) which
also provides manipulation and storage routines for the handling of

such arrays. ISOPACK assigns the lowest order array to the source
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object carrying the lowest serial number; thus the source object 10
of Fig. 4.6.2 would be declared as
(.10 INPUTewdm)
and its designation number would be a pl-1
followed by the same number of 'l's (see Table 4.6.1). The next input

will be declared as

bit sequence of 'O's

( 20 INPUT 2)
and its array woulc consist of a 22-1 bit sequence of 'O's and 'l's,

etc.

Since many networks operate in an environment which is
restricted to specified areas of the sample space, it was found
advantageous to permit the automatic generation of all-zero and all-
one designation numbers of inputs as well as the use of input
patterns designated by the designer, The input declarations

( 10 INPUT 1 FIXED ¢ )
( 20 INPUT 2 0001 )
( 30 INPUT 3 )
will assign the patterns
d 10 = 0000
d 20 = 0001
d 30 = 0101
to source objects 10, 20 and 30 respectively. The length of the
patterns is fixed by the highest demands here the specified pattern
of source object 20 sets the length to 4 bits; the other two demand
shorter lengths but comform to that of the highest demand.

Analysis.

Having found a solution to the generation of input signals,
analysis may now commence. This would merely consist of the computa-
tion of object outputs as Boolean functions of object inputs. The
computation must be made in an order in which object inputs become
computable. It is opportune to utilise the Processing List which was

generated as optional output of module A or B.

A simple example ie shown on Fig. 4.6.2. The processing

sequence is not unique but mgy be, say, (1, 2, 3, 4). The designation
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number array of object outputs is shown, together with inputs, on
Table 4.6.1. The manipulation routines of ISOPACK permit the simulta-
neous (PARALLEL) calculation of up to W number of bits of each designa-

tion number array for a machine of W number of bits per word.

The analysis is thus very simple; a problem is presented
by the size of arrays of networks with large number of inputs. Now
multi-words consist of several words (P is large) and while one word
of the multi-word is actively manipulated, (P-1) words of each array
need storage. To overcome this problem a procedure is added which
estimates the storage demand of a given analysis. If this demand
proves excessive for the available storage capacity then the length
of multi-words is halved; the procedure is repeated until the
estimated demand is met. This mode of analysis is termed SERIES-
PARALLEL, by contrast to the fully PARALLEL mode when all P words are
simultaneously accepted. In series-parallel mode some of the high-
order input arrays are not accommodated, hence only a fraction of

the sample space is covered by the analysisj thus several runs of
analysis are needed, one after the other (in series) to permit
comprehensive analysis. The method is described in detail in ref.(32).

The output of the analysis is the designation number array
of the system output or outputs. The printout of these arrays, .
together with the input arrays serving as reference, is an option
designers may demand. Thies truth table needs agsessment against
behaviour specifications in ordaﬂ?o give an answer to question 4.6.

Specifications and Assessment.

The behaviour specifications may be presented in several
forms of which three is considered here:-
a) a standard network is specified whose output
is known to be correct.
b) the desired behaviour is given in the form of
Boolean equations,
¢) Same is given in a truth table.
Since the analysis of the proposed design results in a
truth table, it is necessary to bring the specifications in the same
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form. In the case of a),the standard network is analysed in the
same way as the network under test.

In the case of bh symbolic manipulation routines are
necessary to interpret the equations which may be given in a nested
form. When a homogeneous structure of equations is found then inputs
are made to assume the array patterns as before and the outputs are
computed by the stack manipulation routines of ISOPACK,

Case c¢) is trivial.

The manipulation of the specifications, bringing them to
truth table form, is the main part of Assessment; the process is con-
cluded by a comparison between appropriate arrays, facilitated once
again by ISOPACK.

4,6.2 ~ The test module E.

The proposed design is presented as a series of declarations

containing information about structure and function parameters.

Auxiliary input is required in the form of the Processing
List (module A or B). This means that module E is not self-sufficient

and can only be operated subsequently to A or B.

Environmental data may be optionally given, describing the
restrictions of the sample space. In the absence of such data the

space is fully and automatically covered.

Behaviour data is to be presented in one of three standard

forms.

The output is either an implied YES or a sequence of
truth table entries indicating those input conditions which have led

to error.

The module inputs/outputs are shown on Table 4.6.2.

4.7 - ARE OUTPUTS OF THE COMBINATIONAL NETWORK
SUBJECT TO TRANSIENT SPIKES?

Combinational networks of n inputs are, by definition,
operating in n-dimensional space, having no state variables at the

selected level of resolution. If they should now be resolved to a
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level higher than that of a single gute, the model of the network
would contain numerous reactive objects, indicating the presence of
several state variables. The effect of these state variables is
observable under transient conditions at the level of single gates.
The transient behaviour of combinational networks forms the subject of

this section.

4.7.1 -~ Concepts and definitions.

The combinational network will be defined here to exist in

a stable state if the inputs and outputs of each of its objects are

propositionally related. Such a state is therefore characterised by
valid Boolean relationships between inputs and outputs of all objects

of the network.

Let a network be composed of a finite number of objects.
Let each object have a1 {inite but un-specified time delay associated
with it, Let the system now rest in a stable state Yo up to and at
a time to’ to which a set of inputs u and outputs Zo correspond. If
the inputs now change at to to u, then the system will be in some
logically inconsistent state for a finite but unspecified period ¥
until a time t, = (to + T ) when a new stable state Yl is reached

1

to which the logically consistent inputs uy and outputs &, belong.

In the period of T the network is said to be in an unstaile gtate f1&
In fact, Y is not a single state but an infinite state sequence as
dictated by the reactive objects of an inaccessible high resolution
level.

Let Dk be the kth object of the system at the resolution

K be given
respectively. It will

level of single gates. Let the state of the outputs of D

at the stable states Yo and Yl as Dko and Dkl

be observed that, since Dk is a gate, it may only have a single output,

hence Dko and Dkl are characterised by a single bit each. If Dko =
Dkl then during the change of uo to uy Dk is said to be statics

otherwise D_is dynamic.
If it were possible to munufacture hardware with delay-free

gates then Y¥ would not exist. In this case if Dk would be static,
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its output would not change at all; if Dk would be dynamic, its output

would undergo a single change.

Due to finite-delay hardware, D, transfers from D, to D
k ko Iy

in the time interval of Y,passing through a sequence of transient states.
Since the object is certain to reach the state of Dkl at the time tl,
in the course of T it may either undergo no change of output and will

be said to be free of hazard or else undergo an even number of changes

of output and will be said to be hazardous.

The above discussion uses accepted terminology but gives,
it is thought, more meaningful definitions. It will be useful to
mention here that it is customary in the literature to distinguish be-
tween static and dynamic hazards, 'l' and 'O' hazards and single-and
multiple hazards as shown on Fig. 4.7.1. These distinctions have been
found unnecessary in the course of this work; the cause of single
static hazards has been found to be always the same and they can be
detected without reference to polarity.

Dynamic or multiple static hazards on the other hand are
the consequence of single static hazard spikes existing in the system;
detecting and correcting the latter will eliminate the former, which

are therefore of no concern to the designer.

4.7.2 - Techniques, further concepts and definitions.

It will be assumed throughout this section, as indeed
throughout this work, that systems under test operate in fundamental
mode (see, for instance, (18) ). This means that a change of operat-
ing signals is only permitted if the system has reached a steady state
in response to the previous change. The need for such an assumption
arises in the context of question 4.7 when examining the sample space
of operating signals. If fundamental mode can not be assumed then
it becomes neceaaar} to include the state space of transient response
in the dimensions of the sample space whose size is already embarras-—
sing. The state space could not easily be described in the chosen
resolution level and the problematic sample space would obscure rather
than illuminate the system behaviour.
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The next nssumption is that the behaviour should be
observed with reference to operating signals. This assumption may,
in fact, be abandoned by developing analysis techniques based upon the
observation of topology and function parameters (see FURTHER DEVELOP-
EENTS) .

The sample space of an n-input combhinational network
contains 2" number of points. Adding the dimension of "transient
space", it must now be considered that, for comprehensive testing,
the system must be analysed under transit from each point to each of
the others. The total number of transient tests is thus 2".(2" - 1) -

too large in all cases of interest.

One way of restricting the sample space without prejudicing
reliability to a great extent, is to eliminate those tests which refer
to events of low probability. To find such events, attention was given

to the way in which the system is expected to operate in real life.

The logical decisions made by combinational networks are
used to control some other system. If the time constant of the con-
trolled system is so small that it may react to output transients then
the designer may choose to use a clocking device which inhibits the
output until the transient is over - if such a clock is available.
Thus clocked (synchronous) systems usually cause no anxiety on account

of their transient behaviour.

If the system is unclocked (asynchronous) then the time of
the occurrence of events is stochastically determined, depending upon
the time delays of earlier parts of the system. In this case the
change of operating signals is also stochastic and the probability of
two signals changing simultaneously is zero. Thus the sample space
may, without much loss of reliability, be restricted to unit-distance
(single-input) changes. Due to a change in each of n input variables,
a transition may occur from each of pP points of the sample space;
the total number of tests needed for comprehensive testing under single-

input-change conditions is n x 27, Throughout this section tests

will be conducted under such conditions.
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Let the booleuan function relutiog the inputs V. of the system

k

object D to the output, also denoted by Dk' be given as

Dk - Bk (Vk ) e ® s+ 8 8 s ® Eq. 40701.

k

By the definition of the high-level function parameter list of section
4.4.1. the function b is selected from the list OK, AND, NOR, NAND,
Since inputs and outp;ts of all the gates of the system are connected
by such equations as s0. 4.7.1, Dk will be connected to the system

inputs u by a complex combination of Loolean connectives Ck H

]J:( = C* (u) I T R T EQ. 4-702.

where u = E Ul, U2, - 3 Un g for n inputs.
The partial difference of DP under Uj will be denoted as
A Dk and will be defined as the function .
U

A D

A k — i

- Ck (U_j) * o & 9 hlq- 4.7.30
U [
o

which is obtained by setting all the input variables of u to Boolean
constants of either 'l' or '0', with the exception of U,. Since the
remaining (n-1) input variables have gl different com‘ginationa of
values, the partial difference of Dk under Uj is not unique, i.e.
Equation 4.7.3. may have several forms. Should any of these forms
be reducible, by normal Boolean algebraic manipulations, to one of
the forms of 5q. 4.7.4 or 4.7.5, then the object D will be said to '

be hazardous under U

Je
D
A k = Uj 4 Tj-j o n 8 » BQ% 4.?04-
A s
D
A k o Uj'u,j o 4w owe e CARISD
U,
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If Bk was an OK or NAND function then the hazard will show in
the form of Equation 4.7.4. If it was AllD or NOK then the hazard

takes the form of Hquation 4.7.5.

These equations (without the use of the concept of partial dif-
ference) are the basis of hazard detection as used by Zissos and others

(see for instance, (19) ).
4n example is shown in Fig. 4.7.2.

For this network - D3 - Ul‘ U2 4+ U2 4 U3 and the Boolean con-

nective of D3 is OR.

The partial difference of D3 under U2 will now be sought. This

will have four potentially different versions as shown on Table 4,7.1.

The third row of the table indicates the hazard under U2 in the
form of Equation 4.7.4.

4.7.3 = The test module F.

It is now possible to devise a test module which produces the

answer to question 4.7.

The inputs to the test module consist of structural and func-
tional information about the system objects in the same format as that
of module E. In addition, as in the case of X, the processing list

is required; thus this module relies upon module A or B for some of

its inputs.

Analysis consists of converting the gate declarations, which
give equation 4.7.1 of each gate, into the form of equation 4.7.2 by

the use of symbolic manipulation routines. Next, each of the 2“"'1

partial differences for each of the n variables (a total of n x 2n-1
calculations) are formed for each of p number of objects of the network,
and manipulated by the same routines as above until no further simpli-

fication is possible.

Assessment is conducted with reference to the error equations
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of 4.7.4 and 4.7.5. sach of the p x n x 2n-1 equations must now be
compared with the appropriate error equation. Since the error equa-
tions are of standard format, no behaviour specifications need be

given.

The output is diagnostic, consisting of a list of hazardous
gates. Two optione are possible: nominating the operating signal(s)
under which the faulty gates are hazardous, or else nominating the
particular combination(s) of constant operating signals which lead to

hazard under the jth input.

Table 4.7.2. shows the inputs/outputs of module F,

4.7.4. Alternative technigues.

The mode of analysis used by Test F was, basically, analytic
testing because it was built on symbolic manipulation. As an alter-
native, numerical testing may be used to detect hazards. The method
was suggested by &issos (19) and is the foundation of the test module G,

The error equations of 4.7.4 and 4.7.5 imply that under hazard
conditions two of the inputs undergo opposite polarity changes while
all other inputs are ineffective in eliminating the hazard pulse.
Thus the hazardous gate may be found by scanning all of the p number
of objects of the system under each of n single-variable transitions
and starting from each of 2" gtable states, observing if any pair of
object inputs are liable to opposite-polarity change. Should such
a pair be found then the object is potentially hazardous. If there

are no input signals which would be effective in blanking out the

spike then the object is hazardous and should be reported to the
designer.

Sxamination of this procedure reveals that comprehensive testing
is accomplished in n x 2n-1 carefully selected tests because it is
sufficient to examine one of two possible polarities of change for
each input variable.

The procedure will now be demonstrated on the example of Fig.

4.7.3.
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10, 20 and 30 are source objects; gates 42 and 43 represent
AND functions; 44 is an OR gate and 41 is an inverter (NOR).

The steady-state response of the network is found by Module ¥,

It is tabluated on Table 4.7.3., where rows are numbered for reference.

Starting from each of the ot =8 possible steady-state conditions,

n = 13 single-variable changes are possible, as shown on Table 4.7.4.

It is possible to halve this number of tests by permitting one
of the two possible polarities of transitions. The choice of polarity
is arbitrary. Blecting here to transfer from a lower to a higher

reference state, the list of necessary tests is shown on Table 4.7.5.

Table 4.7.6 shows the output of each gate in response to these
input changes. Kach column gives the logical state of the gate
output before and after the input transition. The head of each
column indicates the transition from one input condition to another.
Arrows are reversible, indicating that the polarity of the change

is immaterial.

The gates of interest are those of more than one input, since
these are the only ones open to hazard. In this network there are
only three: 42, 43 and 44. The inputs to these gates are now )
examined, with the aid of Table 4.7.6, for opposite-polarity changes.
The only static hazard of the network may arise at the input of gate
44, at the transition of 6 3 7, as ringed on Table 4.7.6. Gate 44
is therefore entered in a provisional error list. A further test is
now required to detect the presence of blanking signals which would
inhibit the hazard spike. These signals maintain a steady level
throughout the hazardous trunsition such that the hazard spike does
not propagate. Such blanking signuals may be applied at the hazardous
gate or at some other gute to which the hazard spike propagates.
Since scanning the whole of the network for possible blanking signals
is judged to raise excessive demands of computing time and space, an
error is reported in terms of the signals of a given object, even if

the hazard is subsequently elminated by blanking signal.
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The technique of detecting blanking signals at the input of
a potentially hazardous gate is based upon the observation that 'OR'
and 'NOR' gates demand a constant signal at logical 'l' which would
keep the gate output steady during the hazardous transition; 'AND'
and 'NAND' gates need a constant signal at logical 'O' for the same
reason. Since the output of the hazardous gate is, under steady-state
conditions, static, the blanking signals are logically redundant.

The transient-error-free redundant version of the network of Fig. 4.7.3

is shown on Fig. 4.7.4. The blanking signal is generated on gate 45.

4.7.5 = The test module G.

The test is based upon numerical methods.

Inputs consist of the truth table generated by module E,
plus the processing list.

Analysis compiles the n x ph=1 single-variable transitions
for each of the p objects of the system.

Assessment consists of two parts. First opposite-polarity
input pairs are located, resulting in the diagnosis of potentially
hazardous gates. Next, the remaining inputs of such gates are searched
for effective blanking signals. Assegsment is thus based on general-
isations, requiring no behavidur specifications.

Qutputs list hazardous gates with the same options as module F.

Table 4.7.7 shows inputs/outputs.

4.8 - IS THs STEADY-STATX RESPONSE OF THE SEQUENTIAL
NETWORK CORRECT?

It will be assumed that the proposed design is a sequential
network under the definition given in 4.2:- at the resolution level of
single gates the network will contain feedback. It will be further
assumed that the network is declared in terms of an adequate set of
state variables (by the use of module A, module B or otherwise). In
order to make the question 4.8 meaningful, it must also be assumed that
the desired behaviour of the system is known to the designer in terms

of the same set of state variables.

A technique is now sought to permit the assessment of the
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response of the new design without reference to externally specified

operating signals or to time delays of system objects.

4.8.1 ~ Technique.

Let the network: have n inputs and m state variables. Then,
under steady-state conditions, the sample space has (n & m)dimensions

n4+m ;
and 2 + number of points.

The mapping of inputs and state variables into outputs and
the next value of state variables is given by the system equations of
Chapter 2, if the operators G and Il are interpreted as Boolean operators

and the input can be considered constant over the time segment (to,tl).

2 (tl)
S (tl)

G (u (tl), 8 (to) )
H (u (to! tl)’ S (to) ) Eq. 4.8.1.

It will now be decided to search for a numerical test method.
Analyeis could then consist of compiling the system equations in a
table. A convenient format is proposed to be a DIRECTORY which
combines the information of state tables and output tables (for instance,

(18) ).

The DIRSCTOXY consists of 2700

number of rows and (n+2m+q)
number of columns for a network with n inputs, m state variables and
q number of outputs. Bach row corresponds to a different point of

the sample space.

The operating signals and state variables at the time to are
the independent variables determining the parameters of a point of the

sample space. They ure assigned a column each in the DIRECTORY.
The input is regarded as constant over the time segment (%, tl).

The outputs and the state variables at the next instance tl

are the dependent variables which are to be computed by the analysis
and assessed against the behaviour specifications. They too are
assigned a column each in the DIRZICTORY.

The DIRHSCTORY appears in the format of a truth table relat-
ing independent and dependent variables. In this interpretation the
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sequential network of n inputs, m state variables and q outputs is
resolved into a combinational network of (n + m) inputs and (m 4+ q)
outputs. Since the techniques of module E cope adequately with such
netyvorks, these techniques can be adopted for the sequential test

module [,

The transformation of a sequential network to an equivalent
combinational form is shown diagramatically on Fig. 4.8.1. The use
of thie transformation in.analysis is demonstrated on the simple net-
work of Fig. 4.8.2.

The state and output equations for the model of Fig. 4.8.1

can now be written, with reference to ¥q. 4.8.1, as

2 (8))y 0 (8) = 3 (u (8), & (£))
or else,
D (tl) = J (I (to) ) TR PO S s

where D and 1 denote devendent and independent variables, respectively
and J is a Boolean operator.

The DIKECTORY is the tabular model of Zq. 4.8.2.

Here 40 is the state variable inserted by the designer or:
module B. The output of 30 represents the "next state" of the state
variable. The output is taken from 10. Thus there are

(n+m) = (241) =3 independent and
(m+q) = (1 +#1) =2 dependent variables.

The processing list may be, say, (10, 20, 30). The alloca-
tion of order to designation number arrays is, in principle, arbitrarys;
in practice it has been found convenient to assign low order input
arrays to state variables (see (24) ), Table 4.8.1 shows the arrays
of the network of fig. 4.8.2.

The truth table of Table 4.8.1 is re-arranged in the format
of Table 4.8.2. which will hence be referred to as the DIRECTORY.SP
and SN abbreviate '"present" and '"next" states. Rows are given a

serial number for reference.
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The behaviour specifications can thus be presented in one of three
forms: as a standard network, a set of state and output equations or
as a DIRSCTORY.

4,8.2 -~ The test mocule H.

The proposed design is once more presented as a series of
object declarations containing information about structure and function
parameters, In addition, the processing list compiled by module A or

B is necessary.

nvironmental data is optional and is used merely to des-

eribe restriction of sample space.
Behaviour datu tukes one of three standard forms.

Output is an implied YES or a sequence of DIRECTORY entries
indicating those parumeters of the sample space which have lead to

error. The total DIKECTOLY is available as an option.
Inputs/outputs are shown on Table 4.8.3,

4.8.3 -~ Comment.

The model of the system as shown on Fig. 4.8.1. assigns
the nature of independent variablesto all inputs and state variables
of the system. In faet state variables depend upon inputs and their
logical value is not directly controllable. Interactions between ‘
state variables are frequently functions of the delay of system objects
and, dependent upon the relative value of these delays, the system
may reach one of a number of possible stable states. Thus, unlike
in combinational networks, transient conditions in sequential networks
may become staticised, causing permanent mal-function as a consequence
of adverse path delays. In terms of the analysis technique of module
H this means that the DIRsCTORY is a valid model of the network only
if one of two conditions are satisfied:

a) the network is not sensitive to changes of

relative delays in signal paths
b) the network processes the signal in the

order given in the Processing List.
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It is the purpose of a number of test modules to ascertain
if conditions a) or b) are satisfied; meanwhile, the output of module
H must be regarded as tentative; the resulting DIRECTORY is termed
PRIMITIVE, A definite answer to question 4.8 will only become avail-
able after a VERIFI=D DIRECTORY is compiled, with the aid of further

test modules and as the output of module P.

4.9 = WHICH ARS THDZ STABLE STATES OF THE SYSTEM?

The importance of the question is matched only by the sim-
plieity of obtaining the answer, using the DIRECTORY of module H. By
contrast it will be recalled from Chapter 3 that simulation programs
have no effective means of locating satisfactory stable conditions
from which to start the analysis and neither simulation nor lower-order
modes of analysis have any means of reaching some of the stable states

of incompletely connected systems.

4.9.1 =~ The test module J.

Let the proposed design be described by its DIRECTORY after
the use of module I. This data represents the input of module J.

Analysis consists of comparing the present and next state
Yectors within each of the rows of the DIRECTORY. Where these agree
the system is evidently static and will stay so until the inputs are
changed. The parameters (input and present state variables) of these
points of the sample space will define the stable states of the system,

hence these represent the answer to question 4.9.
Inputs and outputs are shown in Table 4.9.1.

4.9.2 - Comment.

The stability analysis may be conducted on the basis of the
BRIMITIVE DIRECTOURY because the stable conditions of a network are not
dependent upon the relative delays of signal paths. Indeed, the
stable states of a sequential network may be considered as the equiva-
lents of the stable states of a combinational network. Consequently
the STABLE entries of the PRIMITIVE DIRECTORY require no further

verification,
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4.1U = ARl AnY OF ThHo Galss OF THE SEQUBNTLIAL
NETWORK LIasLi T0 GENmralTm STATIC HAZARD SPIKES?

Having reduced sequential networks to equivalent combinational
form by breaking feedback loops and inserting state variables, it be-
comes possible to locate static hazard ‘errors by the use of the techniques
of module F or G. However, the test conditions require some thought.
4.10.1 ~ Technique.

It will be recalled (section 4,8) that, for the purpose of

compiling the DIRsCTUHY, stute variables were regarded as independent
variables and the sequential network was effectively reduced to combina-
tional form. The model of this procedure is shown on Fig. 4.8.1.

Then again, it will be remembered that section 4.7 led to the

1 tests were necessary for comprehensive analysis

conclusion that n x 2"~
of an n-input network. Thus, if the "independent variables" of section
4.8 are interpreted to be the "inputs" of section 4.7, (n + m) x o+l

number of tests are required to give a complete answer to question 4.10.

Fortunately this very large number grossly over-estimates the
sample space due to the wrong interpretation of the nature of "indepen~
dent variables"., The transient tests of section 4.7 were based on the
concept that the network could always be transferred from one stable
state (YO) to another (Yl) under the influence of a single input change,
while other inputs are kept constant. This condition is in no way
valid for sequential networks: if such networks are stable in some
state Yo, they can be moved from this state by changing any one of the
n input variables but, since the m present-state variables are not con-
nected to any directly accessible terminal (except in the conceptual
model), they are not liable to change independently of the n inputs.
Consequently, if the network has P number of stable states, it is only

liable to n x P number of transients.

Unfortunately this attractively modest number of tests does
not cover the sample space completely. If a network starts from the
stable state Yo and undergoes a change of state due to some changing
input variable Uj’ the new state Yl may be stable or unstable. If Yl
is stable (under the criterion of 4,9) then the transient test is com-
plete., If Yl is unstable, the DIRECTORY will indicate a number of
atate variables which are scheduled to change. Hazarde may arise
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due to the change in these, which need diagnosis and subsequent
correction. Still applying the principle of single-variable change,
static hazard tests should now be conducted by starting from each of
the (2" * P) number of unstable states and subjecting the network
to change in each one of the state variables indicated by the DIRECTORY.
The number of such changes in a well-designed network will be seen to

be one or not much more than one. However, in a general case the

number may be anything up to m.

The total number of tests will be computed as
n+m

2 __ -P
nxP+ z A
i=1

where A m;indicates the number of state variables which are scheduled

to change in the ith row of transient states.

An example will now be appropriate. Let a simple sequential

network be characterised by the DIRECTORY of Table 4.10.,1. There are

n4m 242
two inputs and two state variables, giving 2 =2 >

DIRECTORY entries. A column has been added to the DIRECTORY for the

= 16 rows of

purpose of this discussion, indicating the STABLE entries (i.e. those
for which Present and Next state variables are identical) and A m for
each row, showing the number of state variables scheduled to change.
The sample space of this example has X number of points, i.e. X number
of tests are necessary as a basis ofgﬁﬂﬁwering question 4.10, where -
X=nxPa+ " A mi =
i=1
=2x6+ (1l +1+24+1+1+1+l+1ls241)=24

Careful observation of Table 4.10.1 will reveal some redun-
dancy in this mode of testing, indicating that some points of the
gample space are covered more than once. Take for instance the stable
states of rows 9 and 13 which differ only by the value of the input
variable Ui' One of the changes scheduled under X will transfer row 9
to row 133 another will transfer row 13 to row 9. It was possible to
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reduce the number of tests of section 4.7 from n x 2n ton x 2“‘1
due to just this type of redundancy. It would also be possible to
eliminate the redundancy here, but this would involve searching for
stable states which differ only by one input variable. Since stable
states form only a fraction of the total number of system states, the
extra computation of the search may not be offset by the saving in

the number of testsj; thus the method is not proposed here.

Another comment is called for when considering the impli-

cations of tests starting from a transient state. When such a state
is reached, as a result of an input change, it will be considered as

virtually stable for the purposes of module K. The test will then

move the system from a virtually stable state under the influence of
each state variable in turn. The circumstances in practice are
different: the system is not subjected to partial changes as above
but to the simultaneous change in input and each scheduled state
variable, Such multiple changes cause erroneous operation which will
be detected under some other test. lfeanwhile module K concentrates
on the detection of errors on the basis of an abstract concept: the

virtually stable state.

4.10.2 - The test module K.

The test matches the numerical techniques of module G.

Input coneists of the DIRECTORY of module H plus Processing

List. onam_ o
Analysis compiles n x P 4 Z A m; number
i=1

of single-variable transitions for each object of the network, regis-
tering hazardous gates.

Assessment needs no behaviour specifications.

OQutputs list the hazardous gates with a single option of
the definition of the independent variable leading to hazard.

Inputs/outpnts are shown in Table 4.10.2.

The module is not self-sufficient but relies for its inputs
on module A or B and module H,
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4.11 = 15 M SToavY=0TATs kksFONSE OF THE SEQUENTIAL
NuT'WORE SuNGLTIVE TO VARIATICONS OF DELAY PARAMETERS OF
SYSTLN OBJECTS?

In other words: is the behaviour liable to deviate from the
specification as given in a DIRSCTORY due to normal variations of
delay parameters, such as caused by manufacturing tolerances or changes
in physical signals of the environment? Is the PRIMITIVE DIRECTORY
ambiguous?

The question is of vital importance to the designer and, as
shown in Chapter 3, answers are not found by simulation or lower-order

modes of analysis.

The techniques used here are based on standard techniques
of switching theory with some suitable modifications which permit the
design of test modules. It was also necessary to introduce some new

concepts and definitions.

4,11.1 - Concepts and technigues.

The examination of question 4.11 leads to two further
questions:

1) to what extent would the behaviour specifications,

as given in a DIKBCTORY, reveal sensitivity to
delay parameters?

2) to what extent can question 4.11 be answered with-

out direct reference to the delay parameters of
objects of a given network?

The second question will only be answered after the tech-
niques are established.

The first of these questions implies that it may be possible
to predict delay sensitivity before a new design is initiated. If
this is true, then the new design may be created with special attention
to object delays, thus avoiding or minimising design errors due to this

cause.

Let this question be considered with reference to a specific

example. The DIKuCTURY of Table 4,10,1 may be the outcome of the
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analysis of a network by module . It may also be the tabular
specification of a new design to be created. What can such a terminal
model reveal about sensitivity to delays of objects which, at this the

lowest level of resolution, are not distinguishable?

The rows of the DIRKCTORY will now be examined in turn. LT
the system is stable then it can not be affected by the delay or any
" other parameters of its objects. Thus rows 0, 6, 9, 10, 13 and 15

are exempt from further scrutiny.

Paying no attention for the moment to the way in which the
system reaches one of the unstable states, let these now be examined
in turn. Rows 1, 2, 4, 5, 7, 8, 11 and 14 schedule a single state
variable change which will undoubtedly occur sooner or later, so long
as the input signals (Ul and Uz)are constant. Let this condition be
assumed just for the moment; then the only rows indicating multiple
changes in state variables are 3 and 12. 5till assuming that the
input variables are constant, one of three events may occur to the
network which is at one of these two states:

a) both state variables change together.

b) 51 changes before S2.

c) S2 changes before Sl.

The probability of a) in an asynchronous network is zero. -
If the network is synchronous and is operating within the limits of
its response time, then the answer to question 4.11 is NO and none of

this discussion is relevant.

Without further information about the system and its object
delays, b) and c¢) appear equally probable and a condition arises which
is referred to in the literature as a SECONDARY RACE, indicating that
two or more secondary (state) variables are involved simultaneously

and the outcome is.in doubt.

With reference to the example of Table 4.10.1, if conditions
b) and ¢) lead to different stable statees then the answer to question
4.11 is YES.
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ontemplating row 3 first, the case of b) indicates that
the state variables change from 11 to 01. For constant inputs this
condition is that of row 2 which finally leads to the stable state of
row O, where the state variables become 00, as was originally scheduled
in row 3. This condition will be termed NON-CRITICAL because of the
agreement of the originally scheduled and finally reached stable state.

Row 3 and the case of ¢) indicates a change of state variables
from 11 to 10. For congtant inputs this condition is met in row 1

which leads to the stable state of row O - another non-critical trans-

ition. Thus row 3 shows no sensitivity to object delay variations,

Repeating the procedure for the other potentially sensitive
row of 12, the originally scheduled change from state variables 00 to
11 prescribes the final state of row 15. Case b) however leads to
the stable state of 13 - this condition is CRITICAL, Case ¢) does

lead, via row 14, to the desired stable state of row 15,

The summary of these investigations is that if the network
ever reacheg state 12 then it will be sensitive to delay variations
and will in fact mul-function if the delay associated with the state
variable S1 is greater than that of S2, (condition ¢) ).

To permit the development of the requisite test techniques

the following definitions are proposed:
A secondary race exists in a network between two state

variables Si and Sj if there is a stable state Yk and an input variable

Uc such that a single-variable change in Uc causes a change in both
Si and Sj.

Let the DIKuCTORY schedule that, in the above circumstance,
the network should reach the stable state Yv. The secondary race in
the network leads to a critical condition in terms of object delays

if, by initiating a change in S, subsequent to the change in Sj, the

8
network reaches a stable state Y # Y , for any i or j.
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The secondary race leads to a non-critical condition in

terms of object delays if, under the above circumstances, I' =Y ,
v

The secondary race leads to an osgcillatory condition if,

under any circumstances of relative delay between the state variables

involved in the change, the network does not reach a stable state.

It will be noted that a secondary race set up between two

state variables Si and 3, will often involve other state variables of

the network which responi to a change in Si, Sj or both. Such
variables may race between themselves or with either of the original
racing pair. Taking into consideration all possible distributions
of relative delay (i.e allowing no assumptions regarding the value of

delays), starting from the initial stable state of V, the network may

k
traverse upon a critical path CP, non-critical path NCP or oscillatory

path O0S5C, under the above definitions.

It will be worthwhile to discuss a single test in terms of
a much larger DIRSCTORY than that of Table 4.10.1. An extract from
such a DIRECTORY for a network of two inputs and five state variables,
is shown on Table 4.11.1. The network is stable in the state 100
and undergoes a single-variable change in Uz, which transfers the system
to state 36. A secondary race is set up between S3 and S5, leading to
a mage of paths as shown on Fig. 4.11.1.

The diagnosis is simple, in spite of the complexity of the
diagram. If S3 changes before S5 does then the transition leads to
one of two NC paths, If S5 changes first then the network is liable
to mal-function. The output must warn the designer about the latter

condition.

4.11.2 = The test module L.

The module concerns the diagnosis of secondary race condi-
tions (CP and 0SC) which render a sequential network sensitive to

delay parameter changes.
Inputs for the module are provided by a DIRECTORY,

Analysis commences by finding all of the P number of stable
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states and initiating n different single-variable changes, starting
from each stable state. With the aid of the DIRECTCKY multiple state-
variable changes are located and followed through, considering each
possible combination of relative delay among the state variables
concerned. The paths so traced are then assessed against the next
state variables of the multiple-change schedule. Output then will
be an implied NO or a description of the initial stable state, the
changing input variables and the state variables of the multiple
change which lead to error, together with the critical relative delay.

For instance the example of Fig. 4.11.1 gives rise to the printout

u =11, S= 001005 wusz = 10) s: = 00001
]
CP if TS3 > TS5
(here 5,4 the time delay associated with si)

Inputs and outputs are tabulated on Table 4.11.2.

4.11.3 ~ Comments.

Module L operates upon information contained in the
DIRECTORY and requires no reference to object delay parameters. It
detects all race conditions between state variables and is therefore
a valuable and comprehensive test method. However, it uses a test
technique which implies that the network responds to the change in an
input variable before any state variable change is effective. This
condition does not always apply; thus an additional test module is
developed to deal with a type of delay sensitivity not diagnosed by

module L.

When used as a tool of design verification, module L
indicates to the designer how to arrange additional delays to favour
non-critical paths. However, the error reports of module L may raise
conflicting demands (Si to be delayed more than Sd to eliminate one
error but Sy more than S; to eliminate another). In such cases the
designer must re-consider the state assignment and modify the
DIRECTOKY itself. To avoid such waste of effort, the module L may
be used to formulate the design by assessing the DIRECTORY containing

the specifications or the proposed state assignment.
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If a network has been subjected to module L and is proven

to have no secondary races, that network will be said to have a
DIRECTORY verified under module L.

4.11.4 ~ Further techniques and concepts.

The following definitions are now proposeds:

An essential race exists in a network between an input

variable Ui and a state variable Sj if there exists a stable state Yy

such that a single-variable change in U, causes a change in S..

$ J

An eagsential hazard exists in a network which contains an

essential race between Uj and Sj if a change in Uj followed by a change
in 5§ results in a stable state Yy whereas a change in Sj followed by

a change in Uj results in a stable state Yy where Yy #’ Yw «

Alfhough it is not possible to move a network from a stable
state by changing a state variable, it is possible that the €fect of
an input variable change is so delayed that it reaches a part of the
network later than the effect of the secondary change. If the
terminal performance reveals sensitivity to such a condition, i.e, if
the network is liable to reach a different steady state dependent upon
the relative length of the delay of the input and secondary path, the

network is said to have an essential hazard.

The alternative definition of essential hazards is that of
Ungar (25) which does not permit easy appreciation of the cause of the
hazard but provides a basis on which such hazards may be diagnosed.
Ungar's definition is as follows:

an essential hazard exists in a network if there is

a total state Yy and an input variable Uj such that,

starting from the state of Yy, three consecutive

changes in U; bring the network to a state other than

the first input change.

Let essential hazards be demonstrated on the network whose

DIRECTOKRY was shown in Table 4.10.1. As an example, consider the
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case when the initial stable state Yk is that marked by reference

number 10, A single-variable change in Uj implies a change in Sj.

Ucing the definition proposed by Ungar, the first change in
U1 leads to stable state 15; the second change leads to stable state

9. The third change leads to state 13 ﬁ‘ state 153 thus, under

=1, S1=0, S2 =1 and U, as the changing

conditions of U, = 0, U 1

1 2
variable, the network contains an essential hazard.

Using the alternative definition proposed here and starting
from state 10, the change in U1 leads to 15 as before, Starting from
the same state and changing S1 first, the stable state of 9 is reached;
1 now leads to the stable state of 13 f 15: +the network

contains an essential hazard.

changing U

BEither of the two definitions may be accepted as a basis
for the design of test module M. i

Module M, as liodule L, may be used to verify a PRIMITIVE
DIRECTOKY; it can also be used to analyse the behaviour specifications

of a new design, allowing the detection of delay sensitivity.

4.11.5 =~ The test module ii.

Inputs consist of a DIRECTORY.

Analysis, based on Ungar's definition, is as follows. Let
the sequential network have P number of stable states and a number of
inputs. Selecting one of the stable states (Y;) as the initial con-
dition, the network is subjected to a single-variable change in U1

which leads to some stable state Y,. Changing U. again leads to Y

1 34

a third change in Ul leads to Y4.
Assessment coneists of comparing Y, and Y

then an error message is generated, specifying the initial condition Yl

and the variable Ul' which leads to the essential hazard. The test

is repeated for each of the P stuble states and, within them, for each

of the n inputs, amounting to a total of Pxn tests.
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Qutputs therefore consist of a list of error messages or
else a straight NU, indicating that the network is insensitive to delay

variations.
Inputs/outputs are shown on Table 4.11.3.

4.11.6 = Trivial cases of essential hazards.

Some of the essential hazards reported by module M ecan in
fact never cause mal-functioning of the network. Such cases will be
termed trivial essential hazards. an example will be shown here with
reference to an extract of the DIKECTOKRY of a network with 5 inputs

and 3 state variables. The network itself is shown on Fig. 4.11.2.

Let the network rest in the stable state 221; 1let the

single~variable change be in U Then, after transitions through

states 253 and 252 the stable gtate of 254 is reached. The second

3 transfers the network through 222 to state 223. The
third and final change in U3 leads through 255 and 251 to 249. Since
254 and 249 mark different states, an essential hazard is diagnosed.

The hazard involves Uy and the state variable S) (see table 4.11.4)

Applying the alternative algorithm and permitting the change

change in U

in Sl to precede the change in U3, the network transfers from state
221 through state 220 to stable state 223. Here again, since 254 and

223 are different, an essential hazard is diagnosed.

The question is now: how likely is it that mal-functioning
will occur in the circuit whose DIKECTORY is that of Table 4.1l1.4.
In other words, what is the probability that in case of the circuit
which gave rise to this DIRECTORY, the change in S; will reach a

eritical gate before the change in the input variable U3 does?

Close examination of the network of Fig, 4,11.2 will reveal
a race at gate 5 between a signal from gate 1 and another element

4000 (i.e. Uy and Sl)‘ Since the change in S, originates from gate 1

1
and encounters the delay ¥4 of gate 4 before is is applied to gate 5,

the signal change of gate 1 is bound to reach gate 5 ahead of this
change by the time interval = 4. Without requiring the delay model
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of any of the gates of the network it can be stated for certain that

the outcome of the race between U3 and Sl is not in doubt - the essen-

tial hazard is trivial.

Fig. 4.11.3 shows the critical gate 5 and the race paths.
The delay model used for the interpretation of this diagram and later
in this chapter associates the delay with the gate elements; no delay
is assigned to paths themselves. Thus the delay of path U3 is zeroj
the delay of path 51 ig that associated with gate element 4.

A general definition of trivial essential hazards is now
proposed as follows. Let Ui and S‘_j be engaged in an essential hazard
terminating at some system object D . Let Ti denote the set of delays
associated with objects along the path of Ui and 'I‘j the set of object
delays along the path of SJ. Then the essential hazard between Ui and
sj is trivial if T, & Tj. (In this case all the delays in the path

of Ui are also present in the path of S‘j which encounterg some additional

: \
delays; consequently U, always wins the race). P

The definition is based upon the assumption %hqt the network
is resolved to a homogeneous structure of single gataa;‘ only then
can the object Dk and the elements of sets Ti and Tj be%identified.
Module M operates at the lowest level of resolution where the network
is given by its terminal model of the DIKECTOKY; thus neither of the
two definitions proposed in section 4.11.4 would permit distinection’
between trivial and non-trivial essential hazards. The test methods
desoribed in FURTHER DEVSLOPMUNTS allow this problem to be tackled.
feanwhile, designers must exercise some judgement in their response
to the error messages of module M by ignoring trivial essential hazards.

4.11,7 - Transient performance of sequential networks and the VERIFIED
DIRECTORY .

Modules K, L and M all concern transient testing of sequential
" networks. At thie stage it will be useful to review these testis pay-

ing attention to concepts and not to techniques.

Combinational networks needed a aing}e transient test: under
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the assumption of single-variable change and fundamental mode of working

they needed to be tested only for static hazards, i.e. for signals ori-

ginating from a single input.

Sequential networks need to be tested under the same condi-
tionsj; however, the model of Fig. 4.8.1 implies that a single inpu%
change may originate the change in two or more independent variables -
these variables are not in fact independent of the inputs except for
the purposes of the model of Fig. 4.8.1 The problem is complex and,
to help to see it clearly and solve it systematically, it is divided
to three parts. The static hazard module K considers each independent
variable as an input and seeks to find single-input hazards. These,
when diagnosed, can be eliminated by redundant logic; hence such errors
are of no further consequence. Hazards involving more than one inde-
pendent variable are then further divided to secondary races (module L)
and essential hazards (module M) depending upon the number of state
variables involved. The total sequence of tests K, L and M covers all
transient conditions. This means that a network passing these three
tests with a clean bill of health is free of all transient hazards,
its operation is not dependent upon object delay variations and its
DIRKCTORY is VERIFIED. Networks with static hazard (module K) errors
will also be said to have a VERIFIED DIRECTORY so long as they have
been verified under both module L and module M because static hazard
errors can easily be corrected in every case. However, networks with
module L or module M error reports need further testing: +their DIRECTORY
has failed verification underhhe circumstances specified by the error
reports and, therefore, their DIKRECTORY still contains some ambiguity.
To disperse this, such networks must be resolved to a higher level,
the delay model of network objects must be consulted and an ultimate
decision made about their operation under the conditions specified by
the error reports.. Such detailed testing would then disperse the
uncertainty of the performance and would allow the generation of a
complete VERIFIED DIRECTORY.
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4.12 - WHAT IS5 TH! SIMULATED KuSPONSE OF A NETWORK,
SELECTED AT RANDOM FROM A GIVEN BATCH, TO A SPECIFIED
INPUT CHANGE?

The question may be raised under several circumstancesi
1) the designer wants to see the response of a
network to some specific input sequence,
2) the designer seeks an estimate of the speed
of operation of the network.
3) +the designer wishes to gain a definite answer
to question 4.8 and hence seeks to verify the
DIRECTORY.

4.12.1 - Techniques.

For the first time in the course of this cﬁapter a question
can only be answered by the use of delay parameters. A simple delay
model is proposed:s the system object Di’ at the resolution level of
a single gate, will have a delay parameter ¥j such that an excitation
at a time t which demands a change of output of D; will cause such a
change to occur at a time t 4 3. The value of T4 is to be computed
by the use of a pseudo-random number generator which assigns a value
to @4 from a specified distribution. The distribution is assumed as
normal, truncated at zero, for all objects; they can, however, carry

individual parameters of mean delay p and standard deviation & .

These two parameters must individually be declared for each object of
the system as real integer multiples of a selected and common unit of
time. The parameters may be declared when the network is first pre-
sented for verification. Alternatively, since verification procedures
may not always require the use of delay parameters, these parameters
may be declared in conjunction with the cull for the appropriate test

module.

The information regarding the network structure and function
parameters is obtained for the simulation module from the output of
module C. The structure data is re-shuffled to accommodate the "look

ahead" method of simulationj the object Dy carries a list of other
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object identifiers indicating those objects whose inputs are connected
to Dj. (Note that this is the opposite method to that used in module
C - this time the list represents a column rather than a row of the
structure matrix.) ‘Thus only those object outputs are computed which

are under the influence of a given signal change,

The simulator is asynchronous. A column is assigned to each
variable whose output is monitored (this can include any objeet of the
homogeneous structure). A Tow is assigned to each instant of time
when any of the monitored outputs change. Thus time progresses in
uneven intervals down the page. A column of printout specified the
timing of each row to a number of digits of accuracy appropriate to
real numbers. Bach monitored variable is assigned a unique alphabetic
character which is printed in each row for which that wvariable has a
value of logical 'l'. Otherwise the column is blank.,

Simulation commences at a time t < o0 when the network rests
in one of its stable states as detected by module J, At t = 0 an
input change is originated and the numeral in the time column advanéon
until either

a) the network reaches another stable state

b) the time parameter exceeds some pre-set limit of

T[ﬂ&]( .

In either case the simulation terminates. 18 another run of simulation
is required then the procedure is repeated: the initial stable state

ie specified, an input change is initiated at t = o and the response

computed as before.

A sample of printout is shown on table 4,12.1 which was
obtained when the network of Fig. 4.11.2 was simulated. The alphabetic
identifier and the delay ¥ of each network object is listed on Table

4.12.2. The simulation tests the response to a change in U3 and the

network rests initially in the total state of
ul =1, v2 =1, U3 = 0, U4 =1, us =1,
81 ®:l,., 52,0 S3 = 1.
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This transition has been reported as containing an essential hazard

(see the discussion in section 4.11).

On the printout the changing variable(s) appear ringed.
This is to allow the tracing of signal flow through the network.
There are two rows with more that one ringed entry; this is due to
the fact that the auxiliary object associated with a state variable
has no time delay, hence a simultaneous change occurs at the output of
objects 4 and 4000 and also at objects 6 and 6000,

4.12.2 -~ The test module N.

Inputs to the module are assembled from outputa_of module C,
module J (for sequential networks) and delay parameters of single-gate
objects.

Analysis is by asynchronous simulation.

Assessment does not take place: the output is directly gene-
rated by analysis and takes the form of a waveform-like printout on a

trivially transformed time-scale.

The summary of module inputs/outputs is shown on table 4.12.3.

4.13 =~ WHAT IS THx VERIFIED DIRECTORY OF THE
: SEQUENTIAL NETWORK?

It was discussed in section 4.11 that the DIRECTORY of the
network is verified by definition if there are no error reports oriéin-
ating from module L and module M. In the presence of such error reports
the VERIFIED DIRECTORY is defined by the response of a network of nom-
inal delays. Since the response of such a network is only in doubt
for those conditions: specified by the above error reports, these are
the conditions to be invegtigated by the use of the techniques of module
N and for a parameter of 6 = O for all gate objects. Monitoring
points should include all dependent variables of the model of 313.4.8;1.
The simulation run must be terminated when any of the state variables
changes. The output of module N must then be translated by the module
P to a format of DIR:CTORY entry. These entries, added to the entries
of the PHINMITIVE DIR:SCTORY which were in no need of verification form

the output of module P and also the VERIFIED DIRECTORY.
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4.13.1 -~ The test module P.

Inputs and outputs of the module are summarised on Table

4.13.1.

inalysis is by simulation, starting in turn from each condi-
tion specified by the error report and terminating at the first secon-
dary change. The rest of the analysis then consists of compilihg the
output.

Assessment is not applied:  the output of the analysis is
the output of the module.

4.14 - DUES THi VEKIFISD DIksCTOKY REFRSSENT THE
DESIRED PEKFORMANCE,

The question is worded advisedlys the answer will, in fact,
give the information which was sought in section 4,8, but could not be
satisfactorily provided by module H,.

4.14.1 ~ Concepts.

This perhaps the most important verification procedure uses
no new techniques but relies upon a new definition of equivalence
between the DIRLCTORY of the behaviour specifications (denoted? ) and
the VERIFIED DIRECTORY representing the actual performance (denoted# ).

Obviously (P = ¢' if the two tables are, bit for bit within
row for row, identical. However, this condition is not necessary:
the transient performance might easily have been broken down to +ahi‘ngle
state-variable changes by module P, thus obscuring the fact thatinet-
work performs as specified. As an example consider a two-row extract
of the behaviour specifications @ of a fictitious network (Table
4.14.1). The state of ref. O is open to a secondary race; after
analysis the VERIFIXD DIRECTORY ¢ ie found to contain the rows shown
on Table 4.14.2,.

Direct comparison, row for row, shows a discrepancy at the
Oth rowj however, the network is seen to reach the desired stable state
of 3 after touching on state 2 and resolving the sudden, double change

of state variables to two distinguishable steps. The equivalence of

(Q and ¢ would be easier to appreciate if the. DIRECTORIES would not
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show the unnecessary detail of transient behaviour (made certain by
verification) but would indicate,in a REDUCED DIRECTORY, the stable
state to which a given state connects (assuming, as always, fundamental
mode of working, i.e. no change of inputs until the stable state is
reached). With the aid of the new concept of a REDUCED LUIRECTORY
equivalence between q> and (b is simply defined as the equivalence
between ¢ and q;r, row for row and bit for bit. Here ?r and ¢r
stand for REZDUCED DInwCTORY of behaviour specification and VERIFIED
DIRLCTORY, respectively.

4.14.2 ~ Oscillations.

The REDUCED DIhuCTORY of a simple network is shown on Table
4.14.3. Two of the states have no stable-state assignments: they
are locked in an oscillatory cycle. Such cycles are detectable by
noting that an n-input, m-state-variable network must reach its stable
state in no more than 2" number of transitions. If this did not
happen then the appropriate entries of the DIRECTORY are marked
OSCILLATORY,

4.14.3 =~ The test module Q.

Answer to 4.14 is now obtained on the basis of input data
derived from module P and behaviour data as given in the form of a
DIHECTORY(P.

Analysis now consists of tracing the entries of both
DIRECTORIES until stable states are found. Thus a REDUCED DIRECTORY
is compiled of both CF and ¢ .

Assessment is a comparison of the two.

OQutputs now show the conditions in terms of inputs and state
variables which lead to disagreement. The module does not report on
oscillatory entry of the REDUCED DIKECTORY ¢ , a8 an error if the

behaviour specifications also prescribe oscillations.

Optionally and as input to some subsequent modules the

REDUCED DIRLECTORY of the sequential network is available.

The test is summarised in Table 4.14.4.
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4.15 - IS THu SEQUUNTIAL NETWORK UNCONDITIONALLY
STABLE?

4.15.1 ~ Concepts.

The question probes an important feature. The answer, as
provided by module H, is based on the following definition:

A sequential network will be termed unconditionally

stable if its reduced DIRECTORY contains no

OSCILLATORY entries.

It will be recalled that the VERIFIED DIRECTORY was compiled
on the basis of nominal object delays (tha parameter § was set to
zero); the REDUCED UIRECTORY was obtained by processing the VERIFIED
DIRECTORYs +thus unconditional stability refers to the network whpse
objects have nominal delay parameters. Since these delay parameters
are, in practice, subject to statistical variations, a given network
within a statistically related batch may prove oscillatory although
the nominal-delay model representing the batch was found uncondition-

ally stable.

This state of affairs is obviously very disturbing if the
designer needs reassurance that no oscillations are likely to occur
in any of the networks within the bateh. Such reassurance can only
be found by statistical assessment of the batch behaviour. Such
assegsment is outside of the scope of module R but will be undertaken

by a subsequent module (module T).

4.15.2. -~ The test module K.

The module needs, as its only input, the reduced DIRECTORY
which is produced as an optional output of module Q.

Analysis consists of sorting out the oscillatory entries.

Assessment is not required and output consists of listing
the oscillatory entries, together with the conditions which gave rise
to them (see Table 4.15.1.).

4.16 - IS THE SYSTEM LIAELE TO GET LOCKED IN
AN UNDESIRABLE STATE OR SET OF STATES?

The usual concern is. that, upon turn—on,the system may get
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into some state from which it can not be easily moved. Frequently
the only way in which correct operation is induced is to switch the
system on and off repeatedly until the desired conditions appear.
Such circumstances are usually undesirable and often dangerous; thus
designers should wish to be reassured that their design is not liable
to this sort of behaviour. It will be recalled from chapter 3 that
conventional test methods can not give such reassurarce. While a
decisive answer to question 4.16 is not available, module S is con-

sidered to produce a partial answer,

4.16.1 -~ Concepts.

The problem will now be discussed with reference to the
(n 4+ m) dimensional sample space of a sequential network of n environ-
mental signals and m state variables. The operating conditions will
once more¢ be modelled by a moving point Q whose co-ordinates in n 4+ m
dimensions undergo discontinuous changes under the influence of binary

signals.,

Now let the n environmental signals be divided into n' physi-
cal signals and 2™ inputs. Physical signals contain such variables
as supply potentials which are taken for granted under conditions of
normal operétion. Thus, under such conditions, the designer has n"
degrees of freedom in choosing to move the point Q from one of the
stable states of the system, After this, the point is liable to
movement in m more dimensions of the state space, coming to rest fin-

ally in come new stable state.

This discussion wishes to lead to the realisation that,
while the sample space has (n' % n" % m) dimensions, the designer is
in direet control of only n" of these. Thus point Q is liable to be
stuck within some undesirable area of the space and the n" degrees of

freedom ure not enough to move it out of there.

Let the problem be over-simplified by a model of Fig. 4.16.1.
o The Venn

diagram of these two variables has four possible areass El' EE marks

Here n' = 2 and consists of two power supplies E1 and E
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the condition when the system is switched OFF, :E_l‘EQ means that B,

turns on before bl, bl.bz means that bl turns on before E2 and EI'E2
means the unlikely condition that El and E2 turn on at precisely the
same time. Thus the point @ will rest within one of these areas at

any instant in time.

If the system is switched OFF then point Q rests within
El.ﬁz. Expanding P'ig. 4.16.1 in (n" 4+ m) dimensions, the position of
Q within El'Eé is given by (n" 4 m) parameters.

Now let the system be turned ON. There are three distinct
paths possible for the point Q which will ultimately come to rest
within bl'h2’ El,uz
shifted out of the chosen area except by switching the system OFF and

or El‘ﬁé' The position of Q can now no longer be

then ON again in some other sequence. If it is now found that the
system performance (the response to changes in n" dimensions) is not

the same in the three areas then the designer is in difficulty.

Consider the same problem in (n" + m) dimensions only.
Upon turn-on the designer can control n" number of independent vari-
ables but must be able to tolerate the possible drift of point Q
in m dimensions. If there exists a group of stable states ri such
that no pattern of changes in n" input variables can move point Q out-
side of the states within vy then the designer may be in the type of
trouble described above,

%adek (7) defines a connected and a strongly connected

finite state system on the basis of system states. This definition
is presented here in somewhat modified form. Let n" inputs and m

state variables define a set of stable system states:

"
y = E 1% Toy - 4 e e g OF g where k € 2" * ™

Then the FSS is said to be connected with respect to Yi if every state

Yj in y is reachable from Yi with an input sequence of finite length.

The FSS is said to be strongly or completely connected if it is con-

nected with respect to every one of its states (in this case every
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state is reachable from every other state).

Connected and strongly connected FSS's will be seen as
particular cases of Controllable and Completely controllable aysteme,'

respectively (see Chapter 2).

The problem is seen in this way: if the system is not
completely connected then it is possible to envisage that, under the
influence of the n' physical signals, it reaches some set of states
which is not connected to the rest. Presumably such a system may
contain some redundant state variables and minimising these would
reduce the probability of the existence of un-connected states.
However, systems with non-binary number of required stable states will
always contain redundancy and it is often essential that the redundant

states do not form a set un-connected to the others.

Question 4.16 will be re-phrased: is the system completely

connected?

It is possible to design a test of connectedness on the
basis of the REDUCED DIRECTORY. One possible test is outlined here.
Since operating signal sequences may be designed in an infinite number
of different ways, it is not possible to gain a deterministic answer
in all cases of testing the connectedness; it is therefore necessary
to qualify the findings by specifying the number of operating signal
changes which were allowed. It is further necessary to utilise the
allowed quota of changes to best advantage. Thus, operating signal
changes must be chosen with care. Consideration will now be given

to the most advantageous set of operating signal changes.

It will be remembered that, throughout the analysis, net-
works are considered to operate under conditions of single-variable
change and in fundamental mode. Thus, unless the network is other-
wise specified, there are n" number of equiprobable single-variable
changes available to our network of n" operating signals, starting
from each one of k stable states. This set of changes in operating
signals will be called first-order changes; due to the symmetry of

the circumstances it would be unreasonable to select a second-order
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change before all of the first order changes have been exhausted.

Thus, if the designer specifies the maximum number of input changes

in the test sequence as X and X Z n" then each of the possible single-
variable changes will be applied. All the states of y reached by this

sequence of tests are listed as connected to the starting state Yi'

If, at any point during these tests, it is found that all
the rows of the directory appear on the LIST OF Yi CONNECTEDNESS then
the test is discontinued and an output is printed to say that the
NETWORK IS CONNLCTED WITH RESPECT TO yi. If, at the end of the test,
a group of rows of the REDUCED DIRECTORY are still not found to be
connected then a set of second-order changes may commence. The
..)j

number of jth order changes is (n and the total number of changes

necessary to exhaust the jth and all lower order changes is %J, where

X, = Z (n")£ for 4<€ L=<

=1
Bvidently the quota of X changes will be exhausted for relativély low
order of changes and an error message will now be output to indicate
the number of rows of the DIRECTORY which have been found un-connected
to Yi after X number of changes of operating signals. f

4.16,2 -~ The test module S.

This simple test requires three inputs: the REDUCED DIRECTORY,
the specification of the parameter X, giving the maximum number of
changes allowed, and the description of the starting state Yi'

Analysis is by manipulation of the DIRECTORY.

Assessment uses the DIRECTORY again, checking the total
number of stable states k against the number of different states on

the list of connectedness.

The output will give an answer of NO to question 4,16 if all
stable states and all oscillatory states are found to be connected.

Otherwise a list of states un-connected to Yi’ together with the

description of Yi is given,
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The inputs/outputs are showm on Table 4.16.1.

4.17 - WHAT IS5 TiHl PROBABILITY OF DEVIATION OF THE PERFORMANCE
FROK TH's VERIFLIED DIRECTORY?

The question demands the statistical assessment of the
behaviour of a bateh of networks whose structure and function para-—

meters are the same but whose delay parameters are statistically

related.

It will be recalled that certain entries of the VERIFIED
DIRECTORY are not in doubt: only those conditions listed by module

L and i are open to change due to delay variations, hence these will

be the only ones scrutinised by module T,

It will be assumed that any change in the circumstances of
the network under test (such as manufacturing tolerances, environmental
changes, etc.) results in random variation of the time delay associated
with the objects of the network. It will also be assumed that the
delay variations are adequately described by the delay parameters
i and!fi of each object Di at the resolution level of a single gate.

4.17.1 - The test module T,

The module uses the same analysis technique as module N3
a network is constructed whose delzy parameters are chosen by a
pseudo-random procedure and this network is then analysed under each
condition specified by module L and M. The procedure is repeated a
number of times given by a parameter X which, in this case, deter-
mines the batch size. The result of the analysis is assessed against
the VERIFIED DIR=CTOKY and a failure record produced. The simplest
form of the failure record is to give the number of failed tests

relative to the number of tests conducted.

The test thus uses inputs consisting of'the error reports
of module L ancd ¥, The test conditione are specified by the para-
meter X and the behaviour data is given by the VERIFIED DIRECTORY of
module F. The output is the numerical description of the failure

rate.
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The test is shown in the usual form on Table 4.17.1l.

4.17.2 — Comment.

The crude methods of test T could do with refinements the
failure record may be complemented by assessing the significance level
of the test; alternatively, the test may be replaced by a direct

method of calculating the expected percentage failure.

These areas of investigation have low priority on the list

of plans for further development. The reason for the lack of enthu-
giasm for these interesting projects is the lack of practical applica-
tion. Designers at the present time have no reliable information
about the expected delay of their network objects, and manufacturers
of hardware have no facility, nor indeed interest in developing faci-
lities, for the measurement of delay times of individual gates.
Thus neither the types of distribution nor their parameters are likely
to be available, thus no use could be made of the newly developed
techniques. It ie felt that the crudeness of the techniques of module
T are well suited to the crudeness of the data they use.

4.18 - 13 THY SEQUENTIAL NuTWORK, SPECIFIED BY

THE VERIFINLD DIRuLCTORY, LIABLE TO GENWRATE TRAN-
SIEKNT OUTPUT SPIKES?

It will be assumed that the sequential network has been
tested by module I and if static hazards have been detected then these
were subsequently corrected before subjecting the network to module U,
Thus if output spikes are present then these are systematically gene-
rated by the network. Such spikes may be due to a sequence of secon-
dary changes following a single input change while the network settles
into the final stable state (as given in the REDUCED DIRECTORY).
Consequently the outputs must be monitored throughout each such sequence
and if there is more than one change in any output then a dynamically
generated output spike is present, This is a design error which needs
logical correction if the load supplied by the system is sensitive to

such spikes. New techniques of analysis are not required since the
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test congists of observation of the VERIFIED DIRECTORY and the counting
of the number of changes of each output in response to a single change

of input.

4.18.1 ~ The test module U,

Inputs consist of the VERIFIWLD DIKKCTOKY.

Analysis requires n number of single-variable changes for
an n-input network, and this number of tests must be conducted starting
from each of the F stable states.

Assessment is by counting the output changes in response to
a single test.

Outputs will list the test conditions which led to multiple-
output change, together with the description of the faulty output

concerned.

Inputs/outputs are shown on Table 4.18.1.

4.19 - SUMMARY.

The nineteen modules described in this chapter are connected
by the same purpose: they were designed to answer questions of design
verification in a concise way. Their operational objectives are also
common: they use what is thought to be the minimum of information
consistent with generating the answer, they aim at comprehensive test-
ing and utilise techniques which are efficient in terms of computer
use. The modules differ in their mode of analysis: they use predom-
inantly numerical methods but some of the techniques may be best
described as analytic; others, such as those towards the end of the
chapter, are based on simulation. Table 4.19 has been constructed

to allow the assessment of the service provided by each of the modules.

Some of the modules succeed in giving what is thought to be
complete and satisfactory answers to the design verification question
they serve. Others produce incomplete, deficient or over-pedantic

answers., Care has been taken to point out such deficiencies, explain
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the reason for their existence and indicate some way in which the

module may be re-designed at some later time to minimise these defi-
ciences.

The modules are compatible and frequently rely upon each
other for test data, inputs or technique. It is evidently possible
(even desirable) to design a control program which automates the use
of a set of these modules. The design of such automatic test systems
is briefly discuassed in chapter 5. The design and implementation of
such a system is the subject of a research project (1) which has been

set out in conjunction with this work.
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ORGANISATION OF A MODULAR LOGIC DESIGN
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5.1
5.1 - INTRODUCTION.

The purpose of this chapter is to outline the manner in
which the modules of Chapter 4, or their variants, may be combined
to form a system of logic design verification. The design of such
a system would require careful consideration of the need and facilities
of the industrial organisation which undertakes the implementation.
While it is possible to give general outlines of systems design, a
particular system must suit the computer installation, the design
methods, the staff training facilities, etc., of the user concerned.

The work involved is outside the scope of this thesis.

In order to substantiate, indeed in many cases to develop,
the techniques described in Chapter 4, it was necessary to undertake
the development of a Prototype System. This development, as mentioned
earlier, is the subject of an allied research project (1). This
chapter will contain the outline of the aims of the Prototype System.
Reference (24) is a published report describing its organisation and

methods. The material of the report will form the basis of Mr., Holmes'
thesis.

Fig. 5.1 shows the block diagram of the design verification
process. The designer may be required to present some or all of the
types of data shown. The Proposed System consists of a selection of
the test modules of Chapter 4, complemented by some control mechanism

which allows them to be operated upon the receipt of relevant data.

The next section outlines two alternative types of design
verification systems. The Prototype System is akin to one of these
and will be compared with the Proposed System in the course of this

chapter.

5.2 = SYSTEM DESIGN ALTERNATIVES.

5¢2.1 — CONVERSATIONAL SYSTEM.

The type of system which would afford the greatest flexi-

bility and the shortest turn-around time may be conversational. The

time-shared processor would provide simultaneous service to several
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logic designers who would have a terminal in their own office, and

would thus enjoy immediate access to design verification facilities.

The time-shared system appears to be simple to organise.
The designer would be presented with a set of seemingly autonomous
modules of which to choose. Module manuals would give instructions
about the type and format of data required by the module. The service
would need a common backing file from which the designer may select

standard hardware sub-systems. Furthermore, individual files would

have to be provided for each designer.

At the level of the processor the modules are not autonomous;
gome are dependent on others for their data; several may use similar
analysis techniques. Thus the system would need organisation where
a call for a given module would activate not only the nominated module

but all necessary auxiliary modules as well.

The system must provide diagnostic facilities. These may
include syntactical checks of the network data, instructions and
behaviour specifications, as well as more sophisticated checks, such
as compatibility between network and specifications and demands of

storage capacity.

An important part of the verification system design is the
selection of standard verification modules. The 19 modules of
Chapter 4 make a formidable list; designers would prefer a smaller
selection perhaps. The restriction of the list by the omission of
duplicated or un-important facilities is obviously desirable. However,
restriction by combining several facilities would amount to reduction
of the resolution level of the system and may deprive the designer of
some important detail. It is considered that detail must be preserved
in a conversational system, otherwise less than full advantage will be
taken of expensive facilities. Thus, for such a system, a comprehen-
sive list of modules is recommended, omitting of the list of Table
4.19.1 only module F (or module G), module H (to be included as

auxiliary of several others) and module P'(this too is an auxiliary).
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5.2.2 =~ Batch processing system.

This alternative pre-supposes that the designer has no
immediate access to the computer, hence the verification process must
be conducted in a smaller number of larger steps than in the case of
conversational systems. Thus it is prudent to reduce the number of
test modules and anticipa%e that the designer may call several modules
of the list at a given run in an attempt to reduce the over-all turn-

around time.

For such a system a list of modules is proposed as shown

on Table 5,2.1.

When initiating a verification run,the designer must prepare
a universal data tape which includes the list of nominated modules and
all relevant data. This data therefore contains more detail than
any module may require. The system must provide facilities for sort-

ing the data for each nominated module.

If the list of nominated modules contains inter-dependent
modules then the sequence of operations must be automatically ordered
to ensure that auxiliary modules are operated before dependent ones.
Apart from this, the designer must be given the freedom to nominate
dependent modules without calling their auxiliaries, as in conversa-

tional systems.

5.3 = THE PROTOTYPE SYSTEM.

The Prototype System may be regarded as an example of the
type of system described in section 5.2.2. Since however, the system
was used as a test bed of ideas on verification and programming tech-
niques, its facilities are less comprehensive and frequently less

sophisticated than those of the modules of Chapter 4.

The purpose of the design of the Prototype System was four-
fold: ,
1) to help the development of design verifi-
cation techniques
2) to prove the feasibility of a modular
design verification system



3) to give experience in the design of such
a system
4) to provide an operative system for the

use of logic designers.

It was considered important to select a modest oomputer.'
installation as the basis for such a system: if the newly davelopéd
techniques were to gain widespread acceptance, expensive installations
could not be taken for granted. Thus the Prototype System was
designed for a machine with a small core store (16k) and three tape
handlers as the only backing storage.

For the purpose of generality the programs of the Proto-
type System have been written substantially in ALGOL, However, to
permit efficient use of the computing facilities, certain sections,
amounting to some 15% of the total, are written in machine code. An

example of such a machine code section is the use of the bit-handling

routines of ISOPACK.

To allow the evaluation of the facilities of the Proto-
type System, let all of the modules of Chapter 4 be combined to form
a "Proposed System". The Prototype System will now be evaluated

against this standard.

In the forthcoming discussions references to the repoft

of (24) will carry the prefix "a",

The terminology and notation of (24) will be seen to differ
somewhat from that of the rest of this work. Thus for instance,
"module" in this work has so far denoted a design verification proce-
dure, whereas the report uses this word to describe a sub-system of
the total system of programs. Furthermore, the word "Analysis" in
the title of the report is used to mean "design verification".

A reference to figure 4 2.1 will show the Prototype System
to consist of 10 program modules. Of these, INPUT and LIBRAN
perform ancillary duties while the rest are test modules in the usual

gsense of the word.
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Table 5.3.1 shows a comparison of facilities. It will
be seen that, while the Prototype System lacks certain facilities,

it provides others not found in the range of the Proposed System.

The facilities provided for combinational networks are
identical, with the only exception that module D has no equivalent in
the Prototype System.

Important differences occur in terms of sequential networks.
There are no facilities in the Prototype System to compile a VERIFISD
and a XESTRICTED DIRSCTORY, although ANALYS (section A43.9) and TIMED
(section 4.3.9) contain most of the ingredients. Several important
decisions are made upon information contained in the PRIMITIVE
DIRECTOLY but, since this is an ambiguous record of the network per-
formance, these decisions must be handled with caution. Thus, for
instance, the list of UNSTAELE entries of Fig. 45.3.3 do not neces-
sarily mean that the network oscillates since, due to conditions
detected by modules L and M, the VERIFIED DIRECTORY may significantly
differ from the PHIMITIVL. Similarly, the count of transitionary
cycles as reported by ANALYS (same section) carries information of
doubtful value.

another facility within ANALYS is CIRCUIT OPERATIONS
(section 43.6.2.5). This is an interesting feature, providing wave-
form-like outputs on an un-specified time scale. This too is based
on the PHIUITIVE LIRsCTORY and is subject to the same comment as above.

SERIAL is not so much a separate test module but a mode of
using 3BQUSN and ANALYS for networks which would otherwise cause
embarrassment due to the size of their logical (designation number)
arrays. The installation for which the Prototype System was designed
imposes a limitation that, if the number of independent variables
exceeds some parameter (15 in this case), then comprehensive testing

is not attempted, but networks will be analysed by the nominated test
modules only under the input conditions defined by the designer.

The facility is not required in the Proposed System, since
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such large networks can be automatically analysed under a restricted
set of conditions. Instead of specifying the test data, designers
need merely to define the admissible environment. The method is

considered preferable to that of the Prototype System.

It will be observed from Table 5.3.1 +that the module ANALYS
performs several functions. This does not result in reduced resolu-
tion because, in fact, ANALYS is divided to several small modules (see
section A2.6). Similarly, STATIC is entered on Table 5.3.1 twicej
this is because the same module is used in the Prototype System for

the analysis of combinational and sequential networks.

The report contains a User's Guide (section A5.1) as well
as several worked examples within section A5. From there the output

format may be observed to be at variance with the Proposed System in

gseveral details.

5.3.2 = Conclusions.

The Prototype System succeeded in providing the basis for
a more sophisticated system of design verificationj it has also esta-
blished undergraduate work on logic network analysis at Kingston
Polytechnie. The system has been used by logic designers in Industry

whose response, after an initial period of aversion from anything new,

has been favourable.

5.4 - PFUTURE PLANS.

It is considered that the research work contained in this
thesis and in the allied project (1) is a basis upon which development
of a design verification system could be founded. Support is now
sought, and has been promised, for such work to be carried out under
a sponsored development contract. The new system is to be designed
to allow the inelusion of the new facilities and the improvement of

techniques outlined in Chapter 6.
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6 - TFUKTHER DEVELOPMENTS.

The implementation of the test methods described in this
thesis is now under consideration by a Government Department and by
industrial organisations. In addition, the experience gained by
thie work is now applied in several new fields of research, some of

them not connected to logic design.

It is the purpose of this chapter to describe some of the

new fields of investigation to which this project has led.

6.1 - AUTOMATION Ok Ti: ITWRATIVE DKSIGN
OF LOGIC NETWORKS.

Reference is made to the model of the design process,

shown on Fig. 2.6.1.

The correction loop of the figure will now be examined in

more detail.

When the partial specifications are presented, the designer
generates a proposal of a new desi/n which represents the best solu-
tion he is able to offer to the problem. When the verification
process results in an error report, the designer initiates corrections
of the design and offers a new version for verification. The proce-

dure is shown on Fig. 6.1.1.

The methods described in chapters 4 and 5 of this thesis
proposes to automate the verification process, but demands that the
desigmer performs the tasks of generation of new design and error

correction.

It is possible to envisauge a fully automatic design system
where each of the taske is performed by the computer. As a first
step towards such a system, the error correction process may be auto-
mated, leaving the designer with the job of generating the initial

design. Research is carried out at the present time, under a
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Government contract, to automate the error correction process. A
modular error correction procedure is under development, with a cor-
rection module matching each verification mocdule within a design test
system. The correction module interprets the error report produced
by verification and modifies the network in a systematic way, thus

eliminating the error.

The final stage of automation would bring the generation
of the design proposal under the computer's control. This step has

now been planned.

6.2 — NOOWLLING OF LANGE LOGIC NJSTWOHRKS.

The homogeneous structure of single-gate resolution
(Chapter 4) becomes untenzble if the network under test is very large.
The desipner has no coding problems when handling such large networks,
because the facility of nested structures permits him to operate at
much lower levels of resolution. The same facility must be extended

to the computer.

The solution lies in automating the process of restricted-
mode modelling. A restricted mode model is defined as a model of a
networl whose behaviour ig the same as that of the network itself if
the environment of the model is constrained to a part of the admissible
environment of the network, 4s a consequence of such constraints it
is generally true that the restricted mode model contains less infor-
mation than the comprehengive model of the homogeneous structure and
thus is more efficient to store. Since it also operates at a lower
level of resolution, it offers additional efficiency by reducing the

time of computer manipulation.

It is possible to design several different methods of
restricted mode modelling. One of these methods is now pursued under

a Covernment contract.
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6.3 - THE ANALYSIS OF HYBRID SYSTEMS.

For the purpose of this discussion a hybrid system is
defined as one containing both analogue and digital sub-systems; more
precisely, a hybrid system may be resolved to objects whose environ-
ment is modelled as a continuous space and other objects whose environ-

ment is modelled as a number of discrete points.

The analysis of hybrid systems presents particular problems
due to the difficulty to interface objects of dissimilar type. A
method of analysis is therefore sought which will simultaneously

accommodate all of the objects of a hybrid system.
A Government-sponsored post-graduate student is at the

present time investigating this problem under the supervision of the

author.

6.4 - GQUALITATIVE ANALYSIS OF THE TRANSIENT
BEHAVIOUR OF LOGIC NETWORK.

The term qualitative analysis is defined here as the inves-

tigation of the behaviour of a system without reference to input

signals.

It is thought possible to find the causes of faulty or
ambiguous transient behaviour of logic networks on the basis of such
qualitative analysis. It is further considered that it is possible
to initiate the correction of some types of transient errors, entirely

on the basis of qualitative observations.

The method eliminates the shortcomings of the verification
modules of Chapter 4: it permits the elimination of a statically
hazardous gate from the error list of module F or G if an effective
blanking signal is found to be available at a subsequent part of the
networks it permits the sorting of trivial and non-trivial essential
hazards and allowé the identification of the gates causing sensitivity

to object delay variations.

Although the improvement of design verification services
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is significant, the main advantage offered by the qualitative analysis
method lies in its efficiency. The number of tests necessary for
comprehensive analysis is a linear (instead of the usual exponential)
function of the number of inputs. Thus, by replacing some of the
modules of Chapter 4 by others, based on qualitative analysis, it

becomes possible to analyse very large networks comprehensively.

Methods of qualitative analyeis are now partially developed
and a paper is under preparation describing the use of these methods
for the analysis of combinational networks.

6.5 - AUTOLATION OF PRODUCTION TESTING OF
LOGIC SYSTEMS.

The subject is of considerable topical interest. A

selection of recent publications can be found in ref. (28).

The problem could briefly be outlined as follows: product
testing has become the critical step in the production process of
both discrete-component and integrated circuit logic systems. It is
thus imperative that product testing should be efficiently conducted.

A product test method is efficient if it detects and
classifies faults in the hardware by applying a minimal test sequence.
Since the minimal sequence will be different for each design, a gener-
alised method is sought for the automatic generation of such test
sequences, based on the description of the verified design.

It is thought that the design test methods described in
this thesis could form a suitable foundation for a production test
method. Arrangements are being made at the Kingston Polytechnic for
the appointment of a post-graduate research assistant who will work

on this subject.
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MODULE A
Specification|Specification|Specification
of new of operating |of behaviour |Output
design signals
YES/NO
Option:-
Structure - - Processing
List
Table 4.2.2
4 6. 7
4 O 0 1 )
6 1 O 0o )
7 0 1.0 )
Fig. 4.3.1.
P Q = 8§ T U W X
Pl .0 0 0 1 0 0 o © )
QL 0 & 1 0 © O O )
R( 1 0 0 00 00 0 )
s (0 1 1 0 0 0 0 0 )
rEYe9 01 0 ¢ o 1 )
U0 0 0 0 0 0 1 O )
Bels=1%0 ¢ © 1 1 @ @ )
X(~0.0 0 0 0 0 1 0 )

l"igo 4-3020



P R 8 T w X
P( v 01 0 0 0 )
B L o 06 0 @ @ )
S{ 0. L 06 0 © O )
oy 0.0 1 O O 1 )
w( 1 o o 1 0 0o )
X( 0o 0o 001 0 )
Pige 4. 3a3
Specification|Specification|Specification
of new of operating |of behaviour |Output
design signals
N2 of state
variables or
List of objects
i, ~ _ with which state

variables are
associated.
Processing List

Table 4.3.1.
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(CIR3) /title/

(L INPUT 1)

(2 INPUT 2)

(3 INPUT "3)

(4 INPUT 4)

(5 INPUT 5)

(6 INPUT 6)

(7 TINPUT 7)

(8 INPUT 8)

(9 INPUT 9)

(100 CIR2 1 2 3)

(200 CIR2 4 5 100/2)

(300 CIR2 6 7 200/2)

(400 CIR2 & 9 300/2)

(10 ouTPUT 1 100/1)

(11 ouTpPUT 2 200/1)

(12 ouTPUT 3 300/1)

(13 OUTPUT 4 400/1)

(14 ourpuT 5 400/2)
Table 4.4.1.
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MODULE ©
Specification| Specification|Specification |{Output
of new of operating |of behaviour
design signals
Structure + YES/NO
function - - Homogeneous
parameters data structure;
same with
function
parameters
Table 4.4.4.
MODULE D
Specification| Specification|upecification |Output
of new of operating |[of behaviour
design signals
Structure + NO/identification

load
parameters

of faulty object
and type of error

Table 4.5.1.
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dUl =01010101
d02 = 00110011
dU3=00001111
dl =00010001
d2 =11001100
d3 =00001100
d4 = 00011101

Table 4.6.1.

MODULE E
Specification|Specification|Specification|Output
of new of operating |of behaviour
design signals
Structure + Optional; Standard YES/ list of
function FIXED or network or faulty output
parameters + |tabulated Fquations or | bits.
Processing inputs Truth table Optional: total
List

table

Table 4.6.2.
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o

A D3
Ul U3 A
A ) O.U2 +T02+0 = 0+02 = T2
Uk 1 QU2 +T2+1 = 0+TI = 0
1L, o) 1.U02 + 02 + 0 = U2 + U2
i Ll 1.U2 + 02+ = v2+7T =102
Table 4.7.1.
MODULE F
Specification|Specification| Specification
of new design|of operating | of behaviour |Output
signals
structure + No/list of
function hazardous gates;
parameters + - - Option:defini-
Processing tion of i/p lead-
List ing to hazard
Table 4.7.2.
Ref.| 1 2 3 41 42 43 44
0 000 1 0 0 O
1 100 0 O O O
2 010 1 0 O O
3 ded~ 0 1L O 1
4 ;01 I 9 1 1
5 101 06 0 0 ©
6 11 I 0 1 1
T eIV O 1 9 1

Table 4.7.3.
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Table 407-5‘

~N e
OoO-H

AA~O0OH0OH
HOHOO0O0C0O

O HO~H
OCOHHOHMH

—AO0OHOOO0OO
OCO0OH~HOHAMH

AHAHOHOH
HHOOHOMH

O~ HO—H
CHOHOOO

AHOOHOH
OHOHOOO

F~OHOOO0OO
—~O0OO0000O0

—~~HOooHOH
HOoOOO0O0OO0OO

COHAHOCHAH
OO HOCOO

OHOHOOO
SO0 HOOO

021|022 |04 |193 |15 |23 226|337 | 455 |4+6 [5+T| 67

HOO0OO0OO0O0O0
OQO0OO0OHOOO

Gate
NO,

COOANM<
AN << <

Table 4.7.6.
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MODULE G
Specification| Specification| Specification
of new design|of operating | of behaviour | Output
signals
Output of o/list of
module E + - - azardous
Processing ates;
List ption :
ﬁefinition
£ i/p
Eeading to
azard

Table 4.

7.7

27
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HAHAOH
OHHOMO
HOHOHO
0OO0OHOHO
HAOOHH
OHOOHMH
AOOOAH
C0O0O0HMH

nnaeian

d1lo0
d200
410
d20
a3o

o
4
o

Table 4.8.1.

OCO0OO0O000OH

AAAHOO00O~

OrHOMHOHOMH

COO0OOHMHMHMH

COHHOOMHM

Ref.| Ul (U2|SP1|SN1|Z1

O NMYINDOI~

Table 4.8.2.



MODULE H
Specification| Specification|Specification
of new design|of operating |of behaviour | Output
signals
structure + standard Yes/list of
function Optional network or  [faulty lines
parameters+ equations or pof DIRECTORY
Processing DIRECTORY (see Comment)
List Option: total
DIRECTORY
Table 4.8.3.
MODULE J
Specification|Specification|Specification
of new design|of operating |of behaviour | Output
signals
List of input
DIRECTORY - - and state
' variable para-
meters of
stable total
states
Table 4.9.1.
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Pres. | Next

state | state

Inputs var's | var's

Ref.,, Ul U2 |S1 s2 |Sl s2
0 0 0 0O O O O | STABLE
X . 0 0 1 O 0 0Olam=1
2 | 0 0 0 1 0O 0 Aam=1
3 0 0 1 X O O Am= 2
4 1 0 0O O O 1|am=1
5 1 0 1 O O O0/lam=1
6 1 0 0 1 0O 1 | STABLE
7 1 0 1 1 0 1|am=1
8 0 1 0O O 0O 1|Am=1
9 0 1 1 O 1l O | STABLE
10 0 1 0 1 O 1 |STABLE
11 0 1 1 1 l 0Olam=1
12 &k 1 0O O 1 1 |Am=2
13 h § d 1 O 1l O | STABLE

14 1 1 0 1 l 1| Am-=
15 1 i & 3 1 1l 1 |STABLE
Table 4.10.1.
MODULE K

Specification Specification
of operating

of new design

signals

Specification
of behaviour

Output

DIRECTORY +
Processing
List

No/IIst of
hazardous
gates;
Option:
definition
of indepen-
dent vari-
ables lead-
ing to error

Tab

le 4.10.2.

31



Present state Next state
Inputs | variables variables
Ref, Ul U2 51,82,53,54,55 sl1,82,83,54,S5
32 1 0 !0 00 O0OO| 00 OO0 1
35 l1 O 1 1 0 O O 1 1 0 1 1
36 l 0 0 01 0 O 0O 0 0 0 1
38 1 O 0 1 1 0 O 1 1 © & 1%
39 1 O 1 1 I @ 9 1 1 1 0 0
48 1 O O 0 0 0 1 O 1 0 1 1
49 1 O 1 0 0 0 1 1 0 0 1 1
50 1 O 0 1 O © % 0O 1 0 0 1
51 1 0 1 1 0 0 1 1 0 0 1 1
52 1 0 O 0 1 0 1 0O 1 1 0 O
56 1 0 0O 0 0 1 1 0O 1 0 1 1
57 1 O 1 0 0 1 1 1 & 0 1 2
58 1. O o0 1 ¢ I 1 6 L @ & 3
59 1l O i 1 © L % 2 8 0 1 X
100 1 1 O 0 1 0 O O 0 1 0 O
" Table 4.11.1
MODULE L
Specification |Specification|Specification
of new design |of operating |of behaviour |Output
signals
No/list of
errors
DIRECTORY - showing
stable state,
i/p trans-
itions and
adverse rela-
tive delays of
racing state
variables

Table 4.11.2.
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MODULE M

Specification
of new design

Specification
of operating

Specification
of behaviour

Output

signals

No/list of errors

DIRECTORY - - showing stable
state and input
transitions

Table 4.11.3.
100 200 300 400 500 4000 6000 5000 4 6 5

Ref.] Ul U2 U3 U4 US| SP1 SP2 SP3|SNl1l SN2 SN3

221 1 1 0 1 1 1 0 1 1 0 l i

253 L 1 1 1 b 1 0 i 0 0 1

252 1 1 1 1 1 0 0 i 0 1 1

254 i i 1 3 i § 1 0 1 B 0 1 1

222 i 1 0 I i 1 0 p i 1 1 1 1

223 p i 1 0 1 1 1 d 1 1 1 L

255 b § 1 1 | 1] 1 1 1 1 1 0

251 1 1 ¥ 1 1 11 1 : 5 0 1 0 0

249 i 1 1 1 1 1 0 0 1 0 0

220 1 1 0 X 1 O 0 1 1 " § 1

Table 4.11.4.
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Table 4.12.1.
e
|

e et

2)‘ 100 | 200
A
i

.00000000
5.1206356
14.874813
24.909096
29.905769
34.728580
39.612494
39.872056
Numerical
identifier
(fig.4.11.
Alphabetic
identifier
Time delay
in units
of 1 nsec.

OBJECT

Table 4.12.2.
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38

Specification|Specification|Specification
of new design|of operating !of behaviour |Output
signals }
|
Output of stable state; | Printout of
modules C,J ; input change | - waveform on
delay | nonlinear time
parameters l scale
Table 4.12.3.
MODULE P
Specification|[Specification|Specification
of new design |of operating |of behaviour |Output
gignals
PRIMITIVE Output of
DIRECTORY module L,M - VERIFIED
output of DIRECTORY
module H,C;
delay parameter

of all objects

Table 4.13.1.

Ref.| Ul U2 SP1
0 {0 0 O
35 10 O 1

SP2 SN1 SN2
0 1 1
1 1 1

Table 4.14.1,




Ref.| Ul U2 SP1 SP2 SN1 SN2
0 0O 0 O 0 0 1
2 0O 0 O 1 1 1
3 0 0 1 5 1 1
Table 4.14.2.
(state vector of stable state)
Ref.| Ul U2|SP1l SP2| Sl s2
O [0 00 010 ©
1 0O O 1 O]l ©
2 0O O 0 1|0 1
3 0O O 2 1({0 O
4 1 @ 0 0|1 O
5 1 O l1 0|1 O
6 1 O 0 110 1
w1 0] 1 1|0 X
8 0O 1 0 0O(0 O
2 0o 1 1 011 1
10 (2 e 0 1710 €
11 0 1 : & i 1 U I 1
12 1 1 0 O | OSCILLATORY
13 U . 1 010 1
14 D B 0 1[0 X
15 1 1 1 1l | OSCILLATORY

Table 4.14.3.

39
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MODULE Q
Specification|Specification|Specification
of new design|of operating |of behaviour |OQutput
signals
VERIFIED Yes/list of
DIRECTORY - - conditions
(output of leading to
module P) error;
Option: REDUCED
DIRECTORY
T&ble 4-14‘.40
MODULE R
Specification|Specification|Specification
of new design|of operating |of behaviour |Output
signals

REDUCED

DIRECTORY
(output of
module Q )

Yes/list of
conditions
leading to
oscillations

Table 4.15.1.
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[FODULE o

k2

Specification| Specification|tpecification
of new of operating |of behaviour Qutput
design signals
REDUCED starting NO/description
DIR* CTORY state Y., - of Y, and list
(o/p of ; teh 3 f stat t:
module ) parameter X ol states no
connected
Table 4.16.1.
MODULE T
Specification| Specification|Specification
of new of operating |of behaviour Output
design signals
Output of output of VERIFIED Failure
modules C, J: | modules L,M; DIRECTORY record
delay
parameters
Table 4.17.1.
MODULE U
SpecifioationiSpecification specification| Output
of new of operating |of behaviour
design signals
Output of NO/list of test
module D = = conditions

leading to error
+ description of
faulty signals

Table 4.18.1.



TABLE 4.19.1

by the VERIFIED
DIKSCTORY, liable
to generate
transient output
pikes?

Module Design Verifi- Specification |Specification|Specification Ot
Name cation Guestion of lew Design |of Operating |of behaviour utputs
Sigmals

A Is the state of the|Structure. - - Yes/No.
system fully deter- Options.
mined by the state
variables nominatedy

B Which is the mini- |Structure - = Number of
mal set of state state vari-
variables of the ables, or
system? list of ob-

jects with
which state
variables are
associated,.
Option.

C Can the proposed Structure and - = Yes/No.
design be conver- |function para- Options.
ted to a homoge- meters.
neous structure?

D Are any objects of |Structure and - - No/error
the system mis-used|load parameters. list.
or overloaded.

E Is the steady-state|Structure and Optional. Standard net- |Yes/list of
Fesponse of the function para- work or errors,
combinational net- |meters and out- Equations or |Option.
work correct? put of module A. Table.

F Are outputs of the |Structure and - - No/error
combinational net- |function para- list.
work subject to meters and out- Options.
transient spikes? put of module A,

G ire outputs of the |Output of module - - No/error

, pombinational net- |A and output of 1list.

work subject to module E, Options.
transient spikes?

g o=

i E(H I[s the steady-state|Structure and Optional Standard net- Yes/list of

. pesponse of the se-|function para- work or errors.
huential network meters and out- Equations or Options.
¢orrect? put of module A. Table,

J Which are the Output of - - List.
stable states of module H,
the system?

kK are any of the Output of — - 3 /13
giates of the sequ~ |module 4 and J;D: )
ential network output of
liable to generate |module H.
static hazard
spikes?

L Is the steady-state|Output of module - s o/list of
response of the sy-|H. ETTOTS

stem sensitive to |
variations of delay '
parameters of
system objects?
(secondary races)

M Is the steady-state|Output of module - = No/list of
response of the sy-|H. errors.
stem sensitive to
ivariations of delay
parameters of sys-
tem objects?

(essential hazards)
N at is the simula-|Output of module|Stable state, - Waveform,
ed response of a |A. Output of |input change.
etwork selected at|{module J,
andom from a batchfdelay parameters

P fhat is the VERIFIED Output of Output of = VERIFIED
DIRECTORY of the module C, out- |module L, out. DIRECTORY.
pequential network?| put of module H|put of module

delay parameterw M,

Q Ppoes the VERIFIZED |Output of module - Table Yes/error
PIRECTORY represent|F. list.
the desired per- Option.
formarnce?

R s the sequential |Cutput of module - 3 Yes/list of
hetworx uncondition+ . oscillatory
Rlly stable? conditions.

S [s the system liable Uu?put of Starting o No/starting
to get locked in an| module Q. state, para- state and
indesirable state? meter to ter- list of un-
pr set of states? minate run. eonnected.

states.

T that is the proba- |Output of mod- |Output of Output of Failure
bility of deviation|ule 4. Output |module L, module P, record.
pf performance from| of module J, Output of
VERIFIED DIRECTORY?Helay parameters.|Module M.

U [s the sequential |Cutput of - - No/f;ggi;f“_
network, specified | mocdule F.

errors.




Module name

Facilities

—

Combination of facilities of A, B & C

@
Ly b as D

L= c as E

B d For G
L___ e as K

g5l f as L and M
i 8 as Q and U
3] h as J and R
e J as S

b 'S as N

ieg 1 ag T

Table 5.2.1.



Test module
of Proposed

Test module
of Prototype

Comment

L5

System System
A SORT
B -
C NODEL
D -
S CONMBIN
ESMTI: -
G STATIC
H SEQUEN
J ANALYS
K STATIC Facilities are similar but not
identical
L ANALYS
M ANALYS
N TINED
P =
Q -—
R - Facility exists within ANALYS;:
based on primitive DIKECTORY
S -
T =
U ~ Facility exists within ANALYS;
based on primitive DIRECTORY
- ANALYS "CIRCUIT OPERATIONS" based on
primitive DIRECTORY
- SERIAL Alternative mode for SEQUEN and

ANALYS

Table 5.3.1.
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(DELAY PARAMETERS) ouT
DATA
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TEST
INSTRUCTTONS | SPECIFICATION |  SPECIFICATION
(MODULE NAME) O L
(TEST DATA) BEHAVIOUR ENVIRONMENT

Fige5.1 .
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