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Abstract 
Automatic creation of animated crowd scenes involving multiple interacting characters 
is currently a field of extensive research. This is because automatic generation of 
animation finds immediate applications in film post-production and special effects, 
computer games or event simulation in crowded areas. 

The work presented here addresses the problem of inadequate application of Al 
techniques in current animation research. The thesis presents a survey of different 
industrial and academic approaches and a number of lacking features are identified. 
After extensive research in existing systems an agent-based system and an animation 
framework are chosen for extension and the cognitive architecture FreeWill is proposed. 
The architecture further extends its underlying principles and combines software agent 
solutions with typical animation elements. It also allows for easy integration with 
existing tools. 

Another important contribution of FreeWill is a proposal of an algorithm for automatic 
generation of high-level actions using reinforcement learning. The chosen learning 
technique lends itself well to the animation task, as reinforcement learning allows for 
easy definition of the learning task - only the ultimate goal of the learning agent must 
be defined. The process of defining and conducting the learning task is explained in 
detail. The learning module allows for further automation of the process of animation 
generation, shortens the task of creating crowd scenes and also reduces the production 
costs. Newly learnt actions can be applied to increase the quality of the generated 
sequences. 

The learning module can be used in both deterministic and non-deterministic 
environments. Experiments in both modes are presented, and conclusions are drawn. 
Two modes of control - inverse and forward kinematics are also compared and a 
number of experiments are demonstrated. Learning with inverse kinematics control was 
found to converge faster for the same task. 

A working prototype of the architecture is presented and the learnt motion is compared 
with human motion. The results of the comparison demonstrate that the learning scheme 
could be used to imitate human motion in crowd scenes. Finally a number of metrics are 
defined which allow for easy selection of most relevant actions from the learnt set, 
again helping to automate the process. 

The work concludes with pointing out further directions of research based on this work 
and suggests possible extensions and applications. 
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Glossary 

Glossary 

Agent - there is no agreement in the scientific community how to define the term. 

Researchers usually adopt definitions which are affected by the context of their work on 

agent systems. One of the most general formulations of the term was proposed by 

Russel and Norvig (1995) as "anything that can be viewed as perceiving its environment 

through sensors and acting upon that environment through effectors". This definition 

does not imply that agents should be autonomous as suggested by Wooldridge and 

Jennings (1995), and they characterise an autonomous agent as a piece of hardware or 

(more usually) software-based computer system that enjoys 4 properties: 

- autonomy: agents operate without the direct intervention of humans or other 

systems, and have some kind of control over their actions and internal state; 

- reactivity: agents perceive their environment and respond in a timely fashion to 

changes that occur in it; 

- pro-activeness: agents do not simply act in response to their environment, they are 

able to exhibit goal-directed behaviour by taking the initiative 

- social ability: agents interact with other agents via some kind of agent- 

communication language; 

A survey of agent definitions has been published by Franklin and Graesser (1996), who 

also proposed a more general definition of autonomous agents which we shall adopt in 

this thesis: "An autonomous agent is a system situated within and a part of an 

environment that senses that environment and acts on it, over time, in pursuit of its own 

agenda and so as to effect what it senses in the future. " 

According to this definition, the agents must be reactive (respond in a timely fashion to 

changes in the environment - sense and act), autonomous (exercise control over their 

actions), goal-oriented (pro-active), which means they can not simply act in response to 

the environment. Finally they must be represented as a continuously running process. 
In the context of this work the agents will be visually represented as autonomous 

characters and they will persist in a virtual landscape. Reynolds (1999) calls such 

agents virtual characters, they "represent a character in a story or game and have some 

ability to improvise their actions". He also defines a virtual agent denoting a real agent 

in a virtual world. Thus his autonomous characters are situated (embedded in a world 

containing other entities), embodied (having some kind of a physical representation), 

i 



Glossary 

reactive and virtual. 

Multi-agent system - is a system consisting of many independent agents, each of 

which can perceive and act autonomously. Additionally agents can affect each other and 

influence decisions made by others. 

Animation - fast projection of a sequence of images (called frames of the animation), 

which gradually change over time. Because the changes in two consecutive frames are 

too small for the human eye to notice in a given amount of time, an illusion of a 

continuous, smooth motion is created (after Francik, 1999). In computer animation the 

generation of images is performed by specialised software and the motion of objects 

between two frames is often calculated according to a set of mathematical formulas. 

Hodgins et al (1999) define animation as 

"Animation is the production of consecutive images, which, when 
displayed, convey a feeling of motion. Animated images are almost magical 
in their ability to capture our imagination. By telling a compelling story, 
astounding with special effects, or mesmerizing with abstract motion, 
animation can infuse a sequence of inert images with the illusion of motion 
and life. Creating this illusion, either by hand or with the assistance of 
computer software, is not easy. Each individual image, or frame, in the 
animated sequence must blend seamlessly with the other images to create 
smooth and continuous motion that flows through time. " 

Architecture - is a fixed structure that realises a certain system (after Newell, 1990). 

Articulated figure - it is a figure or character which consists of a number of objects 

called links which are connected by joints. Joints impose constraints on the way the two 

connected objects can move and rotate in relation to each other. 

Avatar - in the context of computer animation avatar is a graphical representation of a 

character or human user in virtual environments. In this work avatar will be used 

interchangeably with character, depicting a visible virtual creature together with its 

agent aspect, which supplies the Al capabilities. 

Collision detection and collision avoidance - collision detection is a process allowing 

to establish whether collision between objects in the scene is about to or has already 
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Glossary 

taken place. Collision avoidance is a set of techniques manipulating the motion or 
behaviour of objects and agents in the scene allowing them to prevent imminent 

collisions. The simplest form of collision avoidance would be stopping moving objects. 

Crowd scene - is a virtual scene with multiple participating virtual characters. 

Embedded agent - an agent which exists in some environment as opposed to an agent 

existing in isolation. 

Embodied agent - is an agent which has some form of manifestation (a body), agents 

which are not embodied would be called abstract. Virtual characters are often seen as 

embodied autonomous agents. 

Flocking and schooling - is a form of self-organising behaviour often exhibited by 

groups of animals (birds, fish, insects) whereby the members of the flock tend to exist in 

close proximity to other members of the group. Reynolds (1987) proposed the first 

computer model of flocking, where he proposed a number of simple rules constituting 

the flocking behaviour. 

Keyframed animation -a way of creating animation in which only the main frames of 

the sequence are defined and software interpolates between them to create continuous 

motion. 

Kinematics - the science of motion, where motion is treated without considering the 
forces which cause it. If motion of the end-effector is solved as a function of the joint 

angles we deal with Forward Kinematics (FK), if the pose of the end-effector is known 

and the motion is generated by calculating the joint angles we deal with Inverse 

Kinematics (IK), Figure 1. Current professional animation packages implement inverse 

kinematics algorithms allowing the artists to only define key poses of the animated 
figure (cf. Craig, 1986, Maestri, 1999, Johnson et al, 2000, Faloutsos et al, 2001, 

Francik and Fabian, 2002). 
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Glossary 

Figure 1 Position of the end effector can easily be calculated when all joint rotations are given (FK), the 
opposite task is the problem of IK 

Machine learning - is a research field concentrating on building computer systems that 

can adapt to the environment with experience. The main branches of ML include 

Supervised Learning where a supervisor trains the system by first supplying correct 

answers to a number of tasks, Reinforcement Learning also known as learning by trial 

and error, where some form of verification is given upon finishing the task and 

Unsupervised Learning. 

Self-awareness - in the context of this work self-awareness will be defined as ability of 

autonomous characters to perceive the surrounding environment and distinguish 

themselves from other characters and objects in the virtual scene. 

UML - Unified Modelling Language, a graphical modelling tool which supports the 

design of complex object-oriented systems. 
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Chapter 1: Introduction 

Chapter 1- Introduction 
Automatic creation of crowd scenes with many animated virtual characters is an 

ambitious challenge for the modern film postproduction industry. The current process, 

conducted by skilled animators and directors, is not only labour-intensive but also 

tedious and expensive. With the dynamic growth of computer-based techniques film 

creators and special effect designers are looking with increasing expectation towards the 

computer animation research community. 

Figure 2 presents shots from two popular film productions - "The Lord of the Rings" 

and "Gladiator". In these and similar other films it was necessary to create scenes with 

many human characters performing simple actions in the background. 

Even though the creation of those scenes has been extensively supported by modem 

computer equipment and sophisticated software packages, the most important part of 

the work still involved a substantial amount of human input. First of all in most cases 

the real human motion must either be captured and digitised or inputted manually using 

a technique called "keyframing" in which the animator defines all key poses of the 

animated objects. The first approach requires employing real actors and expensive 

hardware and software. Then the digitised motion must be labelled, edited and pasted 

into the digital scenes. In many cases the process of editing relies on frame-by-frame 

corrections and manual animation. Finally it is often necessary to reiterate the process, 

as the missing motion sequences cannot be generated by any other means. The 
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Figure 2 Shots from tilms where crowd scenes had been added digitally: left) Digital army (background 
riders) going into battle in The Return of the King from Comingsoon, 2(X)1j; right) background - 
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Chapter 1: Introduction 

keyframing-based approach on the other hand is extremely time-consuming and can 

only be performed by skilled artists. 

A much bigger progress might be made if such scenes could be created entirely by an 

intelligent system. For example, such a system would allow the animator to define a 

number of interacting characters and then supply a set of parameters and variables such 

as character goals, level of aggression or a list of desirable actions. The simulation 

would then be started, effortlessly generating the scene. Such an approach relying on 

moving the focus of animation to a higher level by changing the emphasis from 

animating to directing would significantly improve the capabilities of current animation 

systems. 

Tools capable of delivering the functionality described above must obviously consist of 

many components. Figure 3 presents the most important elements of a package for 

automatic generation of crowd scenes. 

AI tools and 
character control 

User Interface 
Rendering 
module 

Character 
dynamics 

Environment 
modelling and 

simulation ,.. Video editing 
and output 

Figure 3 Elements of a crowd simulation tool 

First of all, the scene itself must be modelled and simulated. This serves the purpose of 

providing a virtual environment for the artificial characters. Additionally, the characters, 

which populate the scene, must be represented in some graphical form; it would also be 

desirable to provide them with a set of physical constraints and some information on the 

dynamics of their motion. The most important part of a virtual character would be the 

delivery of navigation and behavioural modules, to allow the character to intelligently 
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Chapter 1: Introduction 

move in the environment. It would also be necessary to endow it with other cognitive 

capabilities, that is capabilities pertaining to the character's mental capacities, including 

its internal world model, ability to learn and make decisions as to what actions to take. 

That functionality could be referred to as the character's intelligence and would ideally 

deliver sufficient complexity to limit the character creation process. The animation 

could thus be defined as a process of declaring the character goals, which are then 

achieved automatically using techniques borrowed from the domain of Artificial 

Intelligence (AI). These are the issues, which this work is trying to address. 

The remaining components of the full system are a standard user interface and the 

rendering unit. The user interface allows the creator to work efficiently without the 

necessity to know the intricacies of the system's design. When the desired motion has 

been generated, a separate module must render the scene - that is create a sequence of 
images including the characters, scene objects, textured surfaces, lights, reflexes, 

shadows, weather artefacts such as rain and fog and other important elements. The last 

stage of the process is then the compositing and editing of the final video or film. 

It is clear that a system capable of delivering all the required functionality would be a 

complex one. There is nonetheless a range of professional software tools, usually called 

professional 3D animation packages, which can deliver most of the elements depicted in 

Figure 3. However, whereas they can provide sophisticated graphics capabilities and 

complex user interfaces, they fall short on tasks related to Artificial Intelligence. Virtual 

characters lack self-awareness and autonomy, the concept of learning is not present in 

any of the industrial systems, and even such simple tasks as collision detection may 

pose problems. 

This thesis addresses problems related to the building of the 'Al tools and character 

control' component as shown in Figure 3. We propose and implement an extendable 

cognitive architecture (Funge et al, 1999, Funge, 2000) designed to accommodate goals, 

actions, knowledge and beliefs, based on the latest developments in AI, in particular, the 

concept of autonomous agent (Jennings, 2001, Winikoff et al, 2001). This will, in turn, 

enhance the ability of animated characters to display autonomous intelligent behaviour. 

The following thesis is being formulated: 
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Chapter 1: Introduction 

Application of an intelligent architecture based on the existing techniques 
from Artificial Intelligence and using available professional 3D animation 
packages may significantly support automatic creation of animated 
sequences with many virtual characters. 

The goals of the PhD can be formulated as follows: 

9 Review of existing intelligent architectures, especially regarding systems for 

automatic crowd scene generation and supporting creation of autonomous characters 

" Proposal of an architecture capable of representing actions, goals, knowledge, plans, 

sensing and beliefs 

" Adaptation of the proposed architecture to existing tools, namely to allow co- 

operation with professional 3D animation packages (such as 3D Studio Max and 

Maya) and to provide automatic collision avoidance which is a feature lacking in 

most of the current solutions 

9 Construction of an underpinning strong software engineering framework, designed 

and documented in a modem modelling language to facilitate ease of 
implementation, extendibility and clarity of the proposal 

9A study on automatic acquisition of new character actions (such as raising objects) 

using machine learning techniques 

" Implementation of the prototype and presentation of results 

A more general aim of the work is a construction of a tool supporting the work of 

professionals thus allowing moving the focus of the work on crowd generation to a 

higher level by changing the emphasis from animating to directing by allowing them to 

parameterise the system behaviour. 

The work presented in this thesis has been divided in two stages. The first part includes 

proposal and implementation of a general cognitive architecture supporting automatic 

crowd scene generation. The system is then extended using one of the Reinforcement 

Learning techniques (Mitchell 1997, Sutton and Barto, 1998, Watkins, 1989, Watkins 

and Dayan 1992) thus allowing to address the concept of rapid animation prototyping 
(Dontcheva et al, 2003, Liu and Popovic, 2002, Bregler et al, 2002). This reduces the 

need of employing motion capture-based techniques (Gleicher, 2001, Vicon, 2001) for 

character animation. In order for the proposed architecture to be sufficiently flexible and 

general it must be designed following modem software engineering guidelines. This is 
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Chapter 1: Introduction 

why system design uses the Unified Modelling Language (UML) (Object Management 

Group, 2003, Booch et al, 1999), which is a cross-disciplinary modelling language and 

a good design tool for an object-oriented implementation of the system (Booch, 1994, 

Coleman et al, 1994). 

1.1 Methodology 

The methodology of the project is based on the iterative incremental development, as 

suggested by the Rational Unified Process - RUP (RUP, 2003), documented in the 

Unified Modelling Language (UML), which is a visual modelling tool supporting 

design and development of software systems. The architecture is gradually refined 

following standard design-implement-deploy cycles, progressively adding new features 

and testing new ideas. First, the basic problem of obstacle avoidance was selected, as 

this is a feature lacking in current animation packages. The next step is the action 

extension, which allows the characters to perform proactive actions (that is actions 

executed in order to achieve a high-level goal). The conceptual framework is also 

enriched building on the ideas from both the animation and intelligent agent fields. At 

this stage the additional actions are prepared manually in the form of script. The 

characters are able to generate motion sequences including both reactive and proactive 

actions. Having achieved this, the question whether actions could be added 

automatically is examined more closely. As a result, a learning algorithm for automatic 

acquisition of so-called high-level actions is proposed. This extension broadens the 

possible character's action repertoire thus making the created scenes interesting to 

professionals. The key technique here is Reinforcement Learning. Using this technique 

generation of motion using both forward and inverse kinematics control is investigated. 

1.2 Beneficiaries 

As mentioned earlier, automatic generation of character animation would find 

immediate applications in film post-production and special effects for films requiring 

creation of scenes with many interacting characters in the background. Examples might 
include digital extras in cities and shopping centres but also, and probably more 
importantly, digital battle scenes and combat sequences. Apart from simplifying the task 

of animation creators, film directors and post-production professionals, the proposed 

extensions can substantially increase the capability and appeal of computer games by 
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Chapter 1: Introduction 

allowing the animators to create more advanced scenes, improve quality of group 

representation, and allow for automatic crowd generation. Possible applications may 

also cover generation of believable scenes for city planning purposes, crowd generation 

for virtual reality and surveillance and various commercial presentations. Finally, 

simulations of the safe evacuation of crowded areas in the event of fire or other disasters 

could also be created with the presented tool. 

1.3 Structure of the Thesis 

The remainder of this work is divided as follows. 

Chapter 2 introduces the techniques currently used for creation of special effects 

involving human crowds. It starts with the presentation of three most advanced 

commercial animation packages and a custom-based system for character animation 

called Massive. This is followed by a brief discussion of the motion capture technique. 

The chapter concludes with a short characterisation of UML. 

Chapter 3 is an extensive survey of the field of automatic animation generation and 

cognitive architectures. The review comprises an insight into general cognitive 

architectures and a survey of animation-dedicated frameworks is presented including 

cognitive, physics-based and crowd systems. Some of the more interesting agent- 

oriented systems are also discussed in more detail. Finally the Reinforcement Learning 

technique is presented together with example applications. 

Chapter 4 starts with discussion of possible benefits from superseding object-oriented 

programming with the more recent concept of agent-orientation. The FreeWill prototype 

combining agent-oriented and animation-based concepts is then presented. This is 

followed by a detailed description of the architecture presented in UML. 

Chapter 5 complements the discussion of the architecture with a proposal of a learning 

module, which allows the avatars to acquire new actions through machine learning. 

Methods of motion control based on forward and inverse kinematics are also compared 

as well as two learning updates. Three metrics are proposed. 
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Chapter 1: Introduction 

Chapter 6 presents results obtained from the system, including generation of animation 

and application of the learning techniques and metrics. 

Chapter 7 concludes the work and presents possible future directions. 

The structure of the thesis is graphically illustrated in Table 1 

Table 1 Structure of the thesis 

Tools, Techniques 
and Notations 

Motion Professional 
Capture 3D Packages 

Research 
Frameworks UML 

Machine 
Learning 

The FreeWill 
Prototype 

Theoretical Agent-Oriented 
Founda- Software Engi- 

tions neering 

Event based 
Simulation 

Cycle 

I UMLModels 

Results 

ReviewofThe Existing 
Architectures and Techniques 

Modem Animation Robotic 
Tools Agents 

Phycics-based Animation 
Controllers Architectures 

Cognitive Agent-based 
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Chapter 2- Tools and Techniques 
Tools currently available on the market offer a set of features supporting automatic 

generation of motion for individual characters as well as crowds and flocks, thus trying 

to reduce the complexity of the task of animation generation (cf. Monzani et al, 2001). 

Examples of such tools may include the Character Studio plugin designed for 3D Studio 

Max or the Massive crowd simulation system described later. On the other hand there 

are already existing well-established techniques commonly employed by post- 

production studios. Those techniques rely mainly on motion capture systems and 

keyframed motion (Vicon, 2001, Kinetic Impulse, 2003). There is also a thriving branch 

of research dedicated to creation of intelligent creatures. This chapter overviews the 

current state of animation packages and industry standards. 

2.4 Current Approaches To Character Animation 

Professional 3D animation and modelling packages are currently used by production 

studios to create computer-generated special effects in film postproduction. This section 

presents capabilities and deficiencies of these packages, also including Massive, a 

custom built industrial system. In this review a special emphasis is placed on the ability 

of animation systems to create and animate intelligent characters, especially in the form 

of articulated bipeds, as all professional animation packages are able to animate swarms 

and flocks using particle systems (see Reynolds, 1987). 

2.4.1 3D Studio Max, Maya and Softimage 

Animation packages are tools used to create very complex and realistic images and 

animation sequences. They can be used to animate moving objects, fluids and are also 

often used to animate characters. One way of doing so is by manually creating virtual 

creatures modelled on top of a bone structure, dressing and skinning them and applying 

predefined meshes. The motion is then applied, which can be generated using one of the 

following techniques: motion capture and predefined motion, keyframed animation or 

particle systems. In the hands of an experienced user/animator these packages allow for 

creation of very impressive and indeed realistic scenes (see Figure 4). To extend the 

capabilities of the animation packages it is possible to create dedicated plug-ins which 

enhance functionality delivered by the package, for example it is possible to write 
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custom exporters, which output the created scenes in a format that can be utilised by 

game engines. 

Figure 4 Images generated in a modern animation package (the figure presents five different aspects of 
creating computer animation) 

The most popular and widely used animation packages are 3D Studio Max (Discreet, 

2003), Maya (Alias, 2003) and Softlmage (Softlmage, 2003). Their functionality may 

be divided into three distinct areas (Figure 5). The first subsystem is a so-called 

modeller. This module is responsible for maintaining the internal data structures 

supporting all types of objects, scenes and characters. It also allows for visual and 

possibly scripted creation and modification of these elements by the user and displays 

them on the screen as geometrical objects. The second component is the animation 

creator - here the user can for example define motion of objects, adjust timing, add 

keyframes and preview the animation. Finally, when the scene is ready, it is passed onto 

a rendering engine which, using information such as lighting conditions, texture and 

transparency of objects, reflectivity and also desired resolution, number of frames etc., 

creates the final animation which can then be saved on a video tape or film. To extend 

the capabilities of the animation packages some companies produce dedicated plug-ins 
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which add functionality to the package such as extra lighting effects, realistic modelling 

of liquids, enhanced physics or character support. 

GUI 

1 13 III 
ý° QO 

definition of objects, animation control, 
scenes, characters definition of keyframes. definition of 

timing, etc. rendering parameters 

Modeller 

3D AnimatioXcoord 
Creator ndividual frames 

Renderer 

Figure 5 Components making an animation package 

An example of the latter may be the "Character Studio" plug-in developed for 3DS 

Max. Character Studio extends the capabilities of the package by allowing for creation 

of bipeds (see Figure 6), equipped with most typical human joints. The package also 

implements a whole range of different control options (generation of human gait, run or 

jumps, bending the trajectory, freehand animation, etc. ). Scenes can be saved into a file 

and imported into more complex virtual scenes. It is possible to import motion capture 

files. 

Figure 6 Character Studio biped 
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The biggest gain from using the plug-in is that it incorporates a reliable forward/inverse 

kinematics engine integrated into the virtual characters. It is not perfect (e. g. It is 

possible to drag one leg onto another) but frees the animator from many simple yet 

tiresome corrections. The characters may also form `crowds', where characters (called 

delegates) will have a number of behaviours assigned to them, e. g. a `repulsive' or 

`follow' behaviour. The mechanism relies on a finite state machine underlying the 

character motion and allows for any type of objects to be assigned to the crowd 

controller. Like any other geometrical object, the hipeds can also he assigned meshes 

and textures. 

However the use of bipeds created by the Character Studio plug-in has its limitations. 

The main disadvantage is that the characters do not have built-in collision detection (see 

Figure 7). More importantly, they are not autonomous, although there is it limited 

possibility to create crowd scenes with some sort of predefined intelligent motion (e. g. 

the aforementioned repulsive or following modes of behaviour). Nonetheless most of 

the job is still left to the animator and director and any enhancements to the avatar 

behaviour repertoire must usually be very specific with limited scope for extendibility 

or generalisation. Any apparently `autonomous' behaviour must be hard-wired into the 

animation sequence. The characters do not have any self-awareness or scene recognition 

(identifying objects, avoiding collisions) and the artist has to make all the decisions and 

direct hoth main and secondary characters by adding all the necessary keyframes. 

L 
Solutions to some of those problems are addressed by Maya, one of the most widely 

used animation packages. Maya offers many highly sophisticated features, including 

support for cloth motion, built-in collision avoidance and a physics engine. It also 

supports creation of animated characters by supplying both the forward and inverse 
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kinematics, animation of objects with joints, built-in constraints and extensive use of 

motion capture animation but it does not provide a predefined character creation toolkit 

similar to the Character Studio plugin. Therefore the collision detection feature is only 

available on the object level. Additionally Maya's characters are completely 
`unintelligent'. Despite this lack of functionality Maya remains a very powerful and 

popular platform and is more widely used in production studios (as opposed to 3DS 

Max, which is a common training platform). A crowd plugin for both Maya and 3D 

Studio Max is offered by Al. implant (Al. implant, 2003, Al. implant Animation White 

Paper, 2003). 

Another important professional animation package is SOFTIMAGEIXSI and its recent 

extension called SOFTIMAGEIBEHAVIOR. The BEHAVIOR package was created to 

allow for fast production of scenes with multiple interacting objects, such as human 

beings, birds, insects but also for example blood cells (Softimage, 2003). The system's 
logic relies on a finite state machine, which can be designed using a set of graphical 

editing, scripting and debugging tools and a library of pre-defined behaviours. Each 

BEHAVIOR character may possess a separate ̀ brain' and can respond and interact with 

the environment and other avatars. The character engine comprises real-time inverse 

kinematics, automatic obstacle avoidance based on event-responses, dynamic path 

planning as well as other features. It is also possible to intertwine kinematics-based 

character animation with motion-captured scenes and predefined motion and 

additionally to randomise character movements and timing. 

Despite the capabilities offered by modem packages animation is still a labour-intensive 

task. Using dedicated software, like that described above, animators can decrease this 

factor by specifying key frames and allowing the software to interpolate between the 
frames thus creating a continuous and fluent animation. The intelligent extensions 

support this process even further. Even so, generation of realistically looking sequences, 

especially when many characters are involved, demands a high number of corrections 

and manual assignments, making the process tedious and expensive, especially when 
keyframing is still required. Those problems become especially apparent in where it is 

necessary to generate scenes involving many interacting human figures. They can 

partially be overcome by approaches based on "motion capture" and duplication of the 
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characters. Although some of the packages also allow for more automatic scene 

generation (SOFTIMAGEIBEHAVIOR, the recent AI. Implant plugin and partially the 

Character Studio plugin) this comes at the cost of supplying a set of motion-captured 

animation sequences. It is also always necessary to manually create correct assignments 

and relations in the character's `brain'. Even then much of the work in such scenes must 

be conducted manually by skilled professionals and for a very specific figure's 

behaviour it can take days of repetitive work to fine-tune the sequences. Similar 

problems arise in such domains as computer games and simulations of safe evacuation 

of crowded areas, for example tube stations or skyscrapers, in the event of fire or other 

disasters. Some recent work and discussion on issues concerning extensions of Al for 

computer games to make the characters more intelligent can also be found in 

Woodcock, 2000, Pottinger and Laird, 2000, Kaminka et al, 2002, van Lent et al, 1999, 

Amant and Young, 2001. For example van Waveren and Rothkrantz (2002) present a 

multilayered architecture for Quake III bots, which use automated path and route 
finding algorithms and Spronck et al (2003) applied neural networks to improve the 

intelligence of computer controlled opponents in a strategy game. It is obvious however 

that further research into applications of Al to the domain of character animation is still 

required. 

2.4.2 Massive 

Unlike the systems described in the previous section, which form parts of professional 

3D animation packages, Massive (the Multiple Agent Simulation System In Virtual 

Environment) is a dedicated industrial module written specifically to support creation of 

combat scenes with tens of thousands of animated characters. The system was written to 

aid with creation of battle scenes in the Lord of the Rings trilogy. Thus the focus of the 

package is on creation of human-like figures animated using a range of different 

methods with primary character control using Artificial Intelligence. Massive equips 

each character, known as an `agent', with an artificial brain and allows it to act on its 

own. Each character can select from a set of possible motions, each motion lasts about a 

second (Koeppel, 2002). The decisions a character makes during the course of the battle 

are predetermined by the construction of its brain -a net of so called logic nodes whose 

number may vary from a hundred to a few thousand. The logic nodes allow the 

character to perceive, interpret and respond to signals coming from the environment and 
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also control the character's behavioural patterns - e. g. aggression or the fighting style. 

The collections of nodes are further divided into more specialised modules, such as 

those responsible for navigation, targeting, turning or adopting to the terrain (Lord of 

the Rings, 2003). The creation of agent brains is carried out in a specifically designed 

graphical user interface. The result is a multidimensional web of connections and 

dependencies between various nodes. Additionally Massive employs fuzzy logic for the 

decision-making process. This is meant to introduce some unpredictability into the 

simulation, since the mechanism behind the agents' brain is a responsive, event-driven 

simulation. The decision making process is performed once per frame of animation and 

the agents are aware of other characters. 

Although the characters are equipped with a relatively complex brain architecture the 

actual motion has been pre-processed using motion capture. However the agents' bodies 

do react to forces and collisions. A number of different movements and movement 

combinations have been captured and hard-wired into the characters' logic. 

Additionally some of the interactions between the agents were also modelled purely on 

the basis of motion captured sequences involving groups of actors. Thus, combining the 

captured motion and the logic delivered by the artificial brain, every character can 

exhibit a number of different activities - march, walk, jog, charge, run, flee, shoot, 

defend, die, demonstrate combat skills and perform a few other actions. The characters 

can also find, identify and engage enemies and exist in a number of emotional states. 

The agents in Massive come in two "breeds" - the more complex and clever Master 

Agents and more numerous simple agents. The difference is in the size of their brains 

(the number of nodes and their connectivity) and the number of different actions they 

can exhibit. An additional type of characters are so called `Heroes', whose fights only 

rely on choreographed motion sequences and not on the Massive logic. 

As demonstrated in the films, the system allowed for easy creation of battle scenes 
involving many human-like animated characters, which performed sophisticated 

actions, involving for example erecting siege ladders. However the main focus of the 

system was to assist the animators and directors in the creation of believable battle 

scenes, as opposed to the task of making a number of intelligent characters behave 

autonomously. An important and useful feature of Massive is a built-in collision 
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avoidance, but its creation was simplified to some extend by the predefined nature of 

the characters motions. Also the outcome of the battle was predefined and the system 

was only employed to create a realistically looking clash. The scenes were additionally 

broken into easily manageable smaller pieces and sometimes only specific agents were 

chosen for presentation from the simulated scenes to avoid discontinuities in motion and 

behaviour. Any changes in character's behaviour require direct intervention into the 

structure of its brain and it was even necessary to experiment with the placing of agents 

or to animate them directly to achieve the desired effect in terms of timing and layout. It 

is not possible within Massive, for example, to let the agents communicate in order to 

conduct a synchronised attack. Finally the system is a responsive one and the agents do 

not perform any action planning. In summary, despite obvious improvements with 

regard to the existing 3D animation packages, the creation of crowd scenes in Massive 

still requires a high degree of human intervention. 

2.5 Motion Capture - the Industry Standard 

Motion capture is a very popular technique widely used in the special effects industry. 

This approach usually involves attaching small reflexive sensors (although other 

methods are also used e. g. virtual gloves or other mechanical devices) to a human actor 

or dancer whose motion is then captured using dedicated cameras, digitised and 

converted into a motion capture file format (Figure 8, Figure 9). Such motion can later 

be edited, replicated and pasted into pre-created virtual scenes. Instead of animating 

each joint of the virtual figure, human motion is captured `as a whole' and applied to the 

scene, which gives a very realistic effect. However there are many incompatible motion 

capture formats, different types of equipment - some of them difficult to wear and 

restraining the actor's moves (gloves). The process is also complex and involves a 

substantial amount of post-processing. The number of different behavioural patterns is 

hence typically limited by time and budget. For example in "Gladiator" (see Figure 

2[right]) there were only a few different characters created for the Colosseum scene. In 

this technique the virtual characters are merely copies of real human actors and have no 

autonomy or awareness of the surrounding environment. The director or animator 

selects a suitable motion from a library of shots, applies necessary adjustments (cloths, 

shape of items held etc. ) and inserts it into the scene. Thus the generated animation 

remains very rigid in the sense that it cannot be shaped beyond the existing clips and if 
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some of the motions have not been captured they must be recorded before applying 

them to the scene. Cassell et al (2001) point out that capturing human motion is an 

expensive method and suggests it only be used for foreground characters but not for 

crowds of extras. Arikan and Forsyth (2002) summarise the drawbacks of motion 

capture as follows: 

1. Most motion capture systems are very expensive to use, because the 
process is time consuming for actors and technicians and motion data 

tends not to be re-used. 

2. It is very hard to obtain motions that do exactly what the animator 
wants. Satisfying complex timed constraints is difficult and may 
involve many motion capture iterations. Examples include being at a 
particular position at a particular time accurately or synchronizing 
movement to a background action that had been shot before. 

Despite these limitations motion capture is currently the most popular technique for the 

creation of artificial crowd scenes, and have been successfully used in such recent 

productions as "Titanic", "Gladiator", "The Mummy Returns", "Star Wars Episode 1- 

the Phantom Menace", "The Patriot", "Enemy at the Gates", "Pearl Harbor" (Vicon, 

2003). Apart from creation of crowd scenes motion capture is used to create virtual 

stunts and realistic foreground CG characters (e. g. "Lord of the Rings - Two Towers"), 

the technique is also used to generate synthetic cartoon characters ("Shrek", "Monsters 

Inc. "). 

Figure 8 Capturing human motion (image from Vicon, 2001) 
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Figure 9 Digitising human motion using motion capture (images from Kinetic Impulse, 2003) 

2.6 UML 

The concept of modelling has been widely used in many areas of engineering to help 

visualise concepts and thus promote good design, early risk assessment, resource 

allocation, efficiency or plan completeness (see Sommerville, 2001). Therefore 

application of code modelling in the domain of computer programming and system 

development is a very natural idea, helping software engineers to create good programs. 

Transparent structure helps tackle complexity, it also promotes code reuse - well- 

documented independent modules can be shared over many different applications. 

Unified Modelling Language (UML, Object Management Group, 2003) is a visual 

modelling tool supporting design and development of software systems, it is also a 

means of agreeing on the system requirements. Projects designed in UML can be 

analysed from many perspectives, such as use case analysis, individual objects, flow of 

control, module interaction, system decomposition, concurrency issues, system 

deployment and physical layout, and more. UML is sufficiently flexible to allow design 

of both software and non-software projects, and although it was initially designed to 

support development of object-oriented programs it supports many different 

programming languages including procedural languages and database query languages. 
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There are numerous tools available on the market, many of which can generate code 
directly from the system specification given in UML. UML diagrams often serve 
documentation purposes too, given their wide popularity among software engineers, 

programmers and system analysts. Therefore UML seems to be the right medium for 

designing and documenting good concepts, including candidate architectures for 

Artificial Intelligence. Indeed, this is how good software engineering concepts, so called 
design patterns (Gamma et al, 1995), are documented. Moreover, the researchers 
investigating AI architectures have come up with solutions expanding the core UML 

notation, making it even more suitable for documenting research in agent solutions. The 

extended notation is known as Agent UML (AUML, 2003). Agent UML was first 

proposed by Bauer and Odell and their collaborators (Odell et al, 2000a, Bauer et al, 
2001, Odell et al, 2000b, Odell et al, 2001). Similar concepts were also presented by 

Yim (Yim et al, 2000) and Bergenti and Poggi (Bergenti and Poggi, 2000). Since then 

the AUML standard has been consequently revised and updated (Bauer, 2001, Depke et 

al 2001, van Dyke Parunak and Odell, 2001, Wagner, 2002). The main disadvantage of 
AUML is currently the lack of tools supporting modelling in this language, which is the 

reason for rejecting AUML approach in this work. It should be expected however that 

as the technology matures, modelling tools catered for dedicated agent languages will 
become available. 

2.7 Summary 

This chapter has presented the most important animation techniques currently used by 

production studios. This includes creation of animation using motion capture and 
keyframing. A purpose-build crowd modelling system has also been described. The 

presented solutions offer limited character and crowd modelling support but further Al- 

based extensions are still desirable. Finally the UML language has been briefly 

introduced. The next chapter will now review the state of the art in the research 
techniques related to automatic generation of animated figures. 

22 



Chapter 3: Cognitive Architectures and Animation Techniques 

Chapter 3- Cognitive Architectures and Animation 
Techniques 

The previous chapter introduced the current techniques used in the industry. This 

chapter presents the main areas of scientific research supporting the creation of 

intelligent animation systems. 

There are two dominant approaches taken by researchers working with intelligent 

characters. The first one, which might be called `animation orientation' is represented 

by groups trying to build animation systems by first creating a small number of very 

sophisticated characters. The characters are usually equipped with a high degree of 

autonomy, they can learn and perform complex actions. An approach similar to that is 

the creation of characters with very complex motor skills using dynamic simulation. 

This category usually includes character animation, simulation of human motion, 

motion extraction and simulation, and group behaviour. The other approach concerns 

the generation of scenes with many characters following the current research in multi- 

agent systems. Although there have been few animation systems strictly following the 

agent principles (an example may be Flake et al, 2001), the techniques offered by agent- 

orientation have a great potential for modelling systems with many interacting 

characters. 

This chapter presents the current state-of-the art in research falling in both categories 

and in the area of cognitive architectures. A few other research fields are also discussed. 

These include Reinforcement Learning techniques, some example robot architectures 

and motion generation techniques. 

3.1 Cognitive Architectures 

In the last two centuries we have been observing a huge increase into studies on theories 

of human and animal learning and cognition (Newell, 1990). The current literature 

published in the English language lists over 50 recognised theories relevant to human 

learning and cognitive aspects of knowledge and skill acquisition, and this is without 

including neuropsychology, learning disabilities or teaching strategies (Kearsley, 2003). 

Despite this variety and richness most of them have a rather limited use in the current 
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cognitive modelling research. This is because most of them are only crude 

approximations trying to explain the way human brain functions at the low level and 

while they manage to explain some narrow aspect of the learning and cognitive 

processes they lack understanding of the neural function of different brain elements. 

This section presents four of the most prominent and widely recognised of these 

theories in the context of building artificial intelligent systems. While the first two do 

not currently have other than historical importance they laid a foundation for the fourth 

one - Soar, which may be considered as a potential candidate architecture for 

implementation of an intelligent tool controlling behaviour of animated characters. 

ACT* 

ACT* (Anderson, 1983) advocates existence of three types of memory structure: 

declarative, procedural and working memory (see Figure 10). Declarative memory is 

depicted as a semantic net associatively linking propositions, images and sequences. 

Procedural memory represents information as productions (statements consisting of 

conditions and actions existing in declarative memory). It is also known as long-term 

memory. Productions have some degree of activation and the most highly activated part 

is referred to as working memory. All knowledge begins as declarative data and gives 

rise to procedural information learnt through inferences from existing facts. This 

framework supports three important types of learning: generalisation (broadening the 

applicability of productions), discrimination (opposite to generalisation) and 

strengthening (some productions are applied more often). New productions are formed 

from existing ones. One of the strengths of ACT* is that it explains sophisticated human 

cognitive skills such as geometry proofs, programming and language learning 

(Anderson, 1983, Anderson 1990). It also accommodates the use of goals and plans. 

I DECLARATIVE PRODUCTION 
MEMORY 

Storage Match 

Retrieval UORKING Execution 
MEMORY 

I IL ENCUDINU PEKFUKNRNI: ES 

OUTSIDE 
WORLD 

Figure 10 The ACT model (from Kearsley, 2003) 
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The GOMS Model 

GOMS (Card et al, 1983) represents a theory of the cognitive skills necessary to 

perform human-computer tasks. It assumes there is a number of different types of 

memory (e. g., sensory store, working memory, long-term memory) for which there exist 

separate perceptual, motor, and cognitive processing. 

In the GOMS model, cognitive structure consists of four components: 

" set of goals 

" set of operators 

" set of methods for achieving the goals 

" set of selection rules for choosing among competing methods 

For a given task, it is possible to construct and use a particular model for prediction of 

the time required to complete the task. The model can also be used to identify and 

predict the effects of errors. The main application of the GOMS framework is to various 

computer tasks, it also serves as system design methodology for testing user interface 

designs (Kieras, 1988; Oray et al, 1993). 

Gagne's Conditions of Learning 

Gagne (Gagne, 1985) argues for the existence of several different types or levels of 

learning and that each type requires different types of instruction and different internal 

and external conditions. There are five main categories of learning: verbal information, 

intellectual skills, cognitive strategies, motor skills and attitudes. Therefore to learn 

cognitive strategies a learner must practise developing new solutions to problems, 

whereas when learning attitudes the learner must experience a credible role model or 

strong enough arguments. Learning tasks for intellectual skills can be organised in a 
hierarchy based on complexity: stimulus recognition, response generation, procedure 
following, use of terminology, discriminations, concept formation, rule application, 

problem solving. 

The hierarchy helps to identify prerequisites that should be completed to ease learning 

at each level. The theory names nine instructional events and corresponding cognitive 

processes (Gagne, 1985): 
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(1) gaining attention (reception) 

(2) informing learners of the objective (expectancy) 

(3) stimulating recall of prior learning (retrieval) 

(4) presenting the stimulus (selective perception) 

(5) providing learning guidance (semantic encoding) 

(6) eliciting performance (responding) 

(7) providing feedback (reinforcement) 

(8) assessing performance (retrieval) 

(9) enhancing retention and transfer (generalisation). 

Gagne's framework covers all aspects of learning but the focus of the theory is on 
intellectual skills. 

Soar 

Soar (Laird et al, 1987), developed by John Laird at the University of Michigan, Paul 

Rosenbloom at the Information Sciences Institute of the University of Southern 

California and Allen Newell at the Carnegie Mellon University, was meant to be "an 

architecture for general intelligence" (Newell, 1990). It was probably the first proposal 

to be both theoretically well justified and successfully implemented on a computer, 

allowing the creators to conduct `computer-supported' research into the theories of 

cognition. Soar emerged from research in AI over many years and contains elements 

typically found in production systems (Figure 11) - working memory (also called global 
database, short-term memory or fact list) which is the system's representation of the 

current state in its world, long-term memory (production rules, knowledge base) 

comprising condition/action rules taking the system from one state to another and a 

control structure deciding which production rule(s) fire next (Franklin, 1995). A 

schematic representation of the co-dependencies of the above mentioned subsystems is 

depicted in Figure 12 and the complete Soar system equipped with perceptual and motor 

systems is shown in Figure 13. 
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Production System 

working memory 
long-term memory 

(productions, control (global database, 
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Data Operations of Heuristic 
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Figure 11 Components of a production system 

Control Structure 

Long-term memory 
(production rules) 

Working memory 
(global database) 

Figure 12 Dependencies in a production system (after Franklin, 1995) 

Soar was built around the following well-defined principles as identified by Newell: 

f All tasks are represented in problem spaces, therefore all cognitive actions occur 

within a search space. In each problem space there are available operators which can 

be applied to the current state. To operate in a problem space the system must know 

how to implement the operators and how to guide the search - this knowledge is 

kept in the long-term memory. 

f Productions provide all long-term memory (search control, operators, declarative 

knowledge). Handling all Soar activities is done by this structure -a single 

production system. Newell argues that such uniformity of architecture is a good idea 

even though many Al researchers hold the view that declarative and procedural 

memory are different kinds of memories. Productions comprise sets of conditions 

which, if matched by elements in the working memory, fire actions entering new 

elements into the working memory. Therefore such a structure can well be described 

as a pattern matching system. Many productions may fire in a single cycle - there is 
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no conflict resolution strategy, which would choose only one, most suitable 

production. 

f Attribute/value representation is used for all objects. Conditions, actions and 

working-memory elements are object-attribute-value triples, those triples are used 
for all representations within Soar. 

fA preference-based procedure is used to make all decisions (accept/reject, 

better/indifferent/worse). Preferences are Soar's means of representing what actions 

should be taken. There are different types of preferences -a decision can be 

acceptable, rejected, indifferent, better, worse, best and worst. Only the preferences 

are considered by the decision procedure when it chooses the next step to take. A 

number of common-sense heuristics is applied when making the choice. 

f Goals direct all behaviour (subgoals are created automatically from impasses). 

Sometimes the decision procedure does not give any obvious decisions to be made. 
In such cases the system goes into an impasse and therefore creates a Subgoal to 

resolve it, therefore subgoals are only created when Soar does not know what to do 

next. There can be four kinds of impasses: a tie impasse - when all alternatives are 

acceptable, none are preferred, none can be rejected and they are not indifferent; no- 

change impasse - there are no choices at all; reject impasse - the only preference is 

one to reject a decision which has already been made; conflict impasse - when for 

example one operator is said to be better then some other operator and at the same 

time another preference says an opposite thing. 

f Chunking of all impasse resolutions occurs continuously. Chunking is Soar's 

method of learning, which occurs during problem solving. Chunks are new 

productions created when an impasse is being resolved. Chunks can be used as soon 

as they are created. Chunking makes Soar's problem solving clearly faster with 

practice and allows for inter-task knowledge exchange. 

28 



Chapter 3: Cognitive Architectures and Animation Techniques 

Long term memory 

Nroductans 

Working memory 

Perceptual Motor 
systems systems 

Senses Muscles External environment 

Figure 13 Soar's components (after Newell, 1990) 

In summary - it should be pointed out that Soar is a very sophisticated finite-state 

machine without deliberative planning facility. There is no automatic task acquisition - 
all tasks given to Soar must be hand-coded, Soar learns monotonically and so it can not 

recover from learning errors. 

Soar is a very popular and widely used tool allowing many researchers to investigate the 

working of human cognition, learn more about man-machine interaction and explore 

other Al-related fields. For instance NeuroSOAR was a connectionist attempt to 

implement Soar's production systems and decision procedure using neural networks 
(Cho et al, 1991). However due to uniformity of Soar's design all external knowledge 

must be first well understood and encoded into Soar production rules (cf. Wray 2002), 

which can be a tedious and demanding process. For example in the Soar-based real-time 

system directing computer simulated aircraft pilots (TicAir-Soar) created at the 

University of Michigan (Laird and Jones, 1998) there were approximately 5200 rules 
(and over 450 operators), many of them acquired after extensive consultations with 

experts in the field (military pilots). Such a rule-based knowledge must be complete and 

correct otherwise the system will not work properly. The process of acquiring it for 

serious applications will inevitably be expensive and require much iteration. For a 

system directing interacting characters this may mean that the developers would have to 

create hundreds of symbolic rules showing the Soar engine (or any similar one, cf. 
CLIPS, Giarratano and Riley, 1989 or JESS, Friedman-Hill 2003) how to handle many 
`obvious' things such as biomechanics, inverse kinematics, or world geometry. 
Additionally Soar does not offer any way of handling multi-agent interactions (or 
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interactions between different instances of the Soar engine) other than through the 

environment. While this is sufficient to build a successful system the developer would 

again have to resort to creation of numerous detailed production rules. Therefore it 

appears that Soar may not be the best tool to create the proposed multi-agent animation 

system. 

3.2 Animation Architectures 

Most researchers who build intelligent characters do not attempt to mimic how the 

human brain works at the low level (by for example building complex neural 

structures). Instead new architectures are proposed, which may be informed by research 
into human or animal behaviour or can just be new proposals for creating virtual 

systems. The next sections give an overview of the most important systems designed to 

support creation of synthetic creatures. Special emphasis is placed on systems which 
include some form of Reinforcement Learning, that is unsupervised learning directed by 

trial and error. 

3.2.1 Cognition-based animation systems 

One of the dominant approaches taken by researchers trying to build intelligent 

characters is represented by research groups trying to build animation systems by 

creating a small number of relatively sophisticated characters, animated using kinematic 

techniques and/or predefined motion. The characters are usually equipped with a high 

degree of autonomy, can learn and perform complex actions. 

A good example here is C4, an architecture proposed by a research group working at the 

MIT Media Lab (Isla et al, 2001, Burke et a! 2000). C4 was designed to allow creation 

of autonomous and semi-autonomous creatures. The work is informed by the behaviour 

of living animals (in particular dogs). The main concept is based on a `brain' divided 

into numerous systems communicating through an internal blackboard (Craig, 1995). 

The modules making C4 are: sensory and perception system, action system, navigation 

and motor system (which in turn is also composed of different layers e. g. Look At 

Layer, Emotion Layer), short-term memory and the mental blackboard (see Figure 14). 

Thus the whole system is highly modular which is its main architectural principle. The 

difference between the perception and sensory systems is that the perception system is 
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responsible for assigning meanings to the events in the world. Working memory is a 

repository for persistent objects constituting the creature's view of the world. An 

important point is that the world model not only maintains a list of creatures and objects 

present in the simulation but also serves as an event blackboard for posting and 
distribution of world events. 

The World 

Sensory I 
system 

Perception 
system Working 

memory 
(sort term) 

Action 
system 

Navigation 
Black- 
board 

system 

Motor 

motion 
layers 

Figure 14 C4 components (after Isla et al, 2001) 

The working of the system is supported by a robust version of a sense-learn-act loop 

with strong emphasis on the learning. C4 allows the Al components of the animated 

characters to perform (among others) the following capabilities: 

f reactive behaviour 

f learning 

f planning 
It is also defined as being highly extensible. The building bricks of C4 are carefully 
designed data structures, different for different subsystems, which allow for 

representation of many kinds of information present within the system and which have 

also great impact on the learning abilities. Examples can be DataRecords holding the 

sensory/perceptual information, or PerceptMemory objects residing in the working 

memory. Thus each creature acts according to the contents of its own memory. 
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The results of applying the system to create a film-like demonstration are admittedly 

impressing. While some manual modifications to the presented videos might still have 

been necessary, the system does allow for natural representation of both 

`individualistic' characters (a dog) and semi-autonomous creatures such as a flock of 

sheep. It puts a strong emphasis on learning and defines a large hierarchy of stimuli 
from the environment (which is necessary in order to train the dog successfully). 
Different types of virtual creatures can also be represented. 

C4's emphasis on learning, especially in the form of training a home pet (a dog), makes 

the system biased towards solutions allowing to handle this type of interaction. This 

includes dedicated data structures and a hierarchy of purposefully defined objects. It is 

not obvious how this design would fit into simulation of a human crowd (the only 
demonstrated type of `crowd' was a flock of sheep) and whether the learning system is 

flexible enough to allow unsupervised learning of more advanced activities involving 

interaction with objects. This might include for example opening a door. Additionally 

the inter-character interaction is limited to flocking behaviour and issue of commands, 

the presented scenes do not contain more than one fully intelligent character. Therefore 

some serious changes to the system would probably be necessary in order to allow it to 

generate many intelligent human-like characters. 

An extension of C4, which includes much greater learning capabilities, is described in 

Blumberg et al (2002). The applied learning algorithm is a modification of the 

Reinforcement Learning technique. However the task of the learning engine is not to 

learn the necessary motor skills but rather is defined on a higher level, "with respect to a 

motivational goal of moving in a certain way" and happens in real-time during the 

interaction with the system. Thus the authors define their learning system as being more 

abstract than the traditional approaches and additionally aim to use learning as a means 

of increasing online interactive capabilities of their characters and not as a design tool. 

The whole system was built to mimic a dog training technique called the "clicker 

training". The system uses a so-called pose-graph to generate motion, the nodes of 

which are derived from source animation amended by an interpolation technique 

(Downie, 2000). Thus the animation is realistic and transitions can be generated in real- 
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time but the actions must be prepared by an animator and pre-programmed into the 

system. 

Another example of applying Reinforcement Learning (RL) to animation includes Yoon 

et al (2000), where RL techniques were used to create motivational and emotional states 
for a human character. This system incorporates such concepts as motivation driven 

learning (where the source of the reinforcement signal for learning was the creature's 

motivational module), organisational and concept learning but not motor learning. 

Similarly as before the learning occurs on a higher level and only affects the character's 
behaviour in an indirect way. 

Another interesting work presented by the MIT Synthetic Character Group includes a 

study of user interaction with high-level control over synthetic wolves, whose emotional 

state is maintained by a computer (Tomlinson et al 2002), or a behaviour-based reactive 

autonomous cinematography system (Tomlinson et al 2000). In the former the 
intelligence was put not into a virtual character but rather into a virtual camera and 
lights in order to enhance the emotional expressiveness of the animation. Kline and 
Blumberg (2000) proposed an enhancement to the believability of virtual characters by 

endowing them with expectations. A summary of the systems created by the group can 
be found in Downie et al (2002). Additionally Russel and Blumberg (1999) identify 

elements and features which must be exhibited by a good real-time synthetic character 

architecture and present an example implemented solution. This discussion is 

complemented by Kline and Blumberg (1999) with a methodology for designing virtual 

characters exhibiting such characteristics as intentional behaviour and attempts to 

satisfy their desires. 

The common feature of all systems created by the researchers from the MIT Synthetic 

Character Group is that the motor systems are always built upon animation material 

prepared by animators rather than creating character motion from scratch (Downie et al 
2002). 

33 



Chapter 3: Cognitive Architectures and Animation Techniques 

Funge's Cognitive Architecture 

Another example of a system dedicated to the creation of autonomous characters is John 

Funge's cognitive architecture (Funge, 1998, Funge, 1999, Funge et al, 1999, Funge 

2000). Funge's research interests concern building cognitive systems dedicated for 

animated characters. He strongly supports the idea of adding autonomy to computer- 

generated creatures and he defines an autonomous character as "a character that, during 

the course of a computer game or animation, can decide how to behave on its own. " 

(Funge, 1999). Funge argues that virtual characters should maintain a cognitive model 

that is an internal model of their world and additionally an explicit representation of 

some other knowledge about the character's world (Funge, 1998, Funge et al, 1999). 

Therefore he describes autonomous cognitive characters as characters having some 
domain knowledge - knowledge about the world's dynamics. At the same time he 

claims that generally the character should not be omniscient, which happens when the 

characters gain access to the `true' world model. Funge formalises his ideas using the 

Situation Calculus (Levesque et al, 1997). 

Funge emphasises that the cognitive layer is only one among many models underlying 

an animated character (Figure 11). He recognises that a developer trying to build a 

virtual scene will be faced with many problems apart from those of Artificial 

Intelligence. What he proposes in not only a cognitive architecture but also a whole 

process of building a virtual character. 

Unfortunately the character interaction component seems to be omitted in the model. 
Funge concentrates on building a single character without addressing the problem of 
how to exchange information or co-ordinate its behaviour with other creatures. Also the 

process of building the whole system, especially how to merge all different aspects of 

the cognitive engine, is not addressed in detail and the learning aspect in only 

mentioned without deeper consideration. Some extensions introducing the missing 

components could make this architecture even more suitable for design and 
implementation of intelligent characters inhabiting virtual worlds. 
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Figure 15 Pyramid depicting different models used to build a virtual character (after Funge, 1999) 

Genetic-based Approach 

Sims (Sims, 1994b) proposed a framework based on genetic algorithms which can 

create evolving creatures consisting of simple geometrical figures specialised to perform 

different activities, such as swimming or walking. The system could also simulate the 

laws of physics (friction, gravity, collisions) and make the evolving creatures compete 

for resources thus promoting further specialisation (Sims, 1994a). Another application 

of genetic algorithms to behaviour learning for animated characters was presented by 

Wan and Tang (2002) and also by Shim and Kim (2003) who presented a technique for 

evolving double-winged creatures, using genetic algorithms and neural networks. The 

flying creatures are able to fly in virtual landscapes without the need for complex 

modelling of flight dynamics. Gritz and Hahn (1997) applied genetic programming to 

construct simple controllers for character animation. One of the main problems with 

applying genetic techniques to generate animation is finding an appropriate fitness 

function, without making it too task-specific. 

3.2.2 Physics-based controllers 

An approach similar to the one described in the previous section is creation of (usually 

bipedal) characters with very complex motor skills using dynamic simulation. In this 

approach the emphasis is placed on the creation of one realistically modelled character 

simulated using the motion equations and physics-based controllers. Tu, Terzopoluos 

and Grzeszczuk (Tu and Terzopoulos, 1994, Grzeszczuk and Terzopoulos, 1995) 

present a system for animating dynamically simulated fish and snakes. However a 

similar approach applied to dynamic simulation of human figures requires that the 
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characters have many degrees of freedom thus making it computationally expensive. 

Despite that complication a lot of research is being conducted in this field. Hodgins et al 

(1995) propose controllers for three different athletic behaviours. Apart from dynamic 

simulation they also use state machines, techniques for reducing disturbances to the 

system introduced by idle limbs, and inverse kinematics. Van de Panne and others (van 

de Panne et al, 2000) propose a limit cycle algorithm for the animation of a walking 

biped and a dynamic motion planner for simplified characters (Acrobot, Luxo). Laszlo 

et al (1996) applied the limit control cycle technique to a 19 degree-of-freedom model 

of a human, similarly Anderson and Pandy (1999) investigated realistic simulation of 

human gait using a 23 degree-of-freedom model. 

There have been few attempts to build dynamic controllers, which could control more 

than one specific motion. Examples of these are the ones proposed by Pandy and 

Anderson (1999) who tried to create a controller applicable to both jumping and 

walking behaviours and also the work presented by Faloutsos and his colleagues 

(Faloutsos et al, 2001 a, Faloutsos et al, 2001b, Faloutsos, 2002), who combined several 

different controllers and additionally applied Support Vector Machines (see Christianini 

and Shawe-Taylor, 2000) to automatically learn preconditions of different dynamic 

actions as an off-line process. An alternative to physically-based simulation was 

proposed by Lee et al (2000) by implementing a system in which constraints imposed 

on motion of a character are calculated in a procedural way. Thus the calculations are 

faster and more stable and can easily be used in real-time applications. 

3.2.3 Flocking systems and crowd simulation 

A similar branch of research is automatic generation of animation sequences involving 

multiple computer characters, which is also concerned with the creation of intelligent 

characters but on a more massive scale. This is often referred to as crowd scenes. One of 

the first papers to be published in this area was Reynolds (1987) where an algorithm for 

simulating flocking behaviour was presented. Reynolds introduced the concept of 

"boids" (from bird-like, bird-oid), which is sometimes used to refer to agents, which are 

a part of a flock, herd, school or swarm and not necessarily birds. His ideas included 

separate vision systems for each simulated bird, collision avoidance and distributed 

behavioural modelling. The system was superior to the previously applied force fields 
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(Amkraut, 1987, after Reynolds, 1987) and particle systems (Reeves, 1983, after 

Reynolds, 1987). Furthermore Reynolds related his research to studies conducted by 

zoologists. More recently he extended his system by considering different types of 

behaviours which can be exhibited by flocking agents (Reynolds, 1999). 

Another example of a complex animation system is that proposed by Terzopoulos and 

his collaborators (Terzopoluos et al 1994, Terzopoluos et al 1996), who extended ideas 

proposed by Reynolds. They created a marine world inhabited by realistically looking 

and behaving animals (mainly fish) to explore synthetic vision and navigation systems 

and applied flocking algorithms to fish equipped with a vision system (Tu and 

Terzopoulos, 1994). They also employed machine learning to acquire complex motor 

skills for the simulated fish. The virtual characters are able to learn low-level motions 

and also high-level behaviours. In their approach the researchers use physics-based 

simulation and create a dynamic model of the fish with muscles and springs. Such an 

approach to motion control however makes the simulation computationally demanding 

and so Grzeszczuk (Grzeszczuk, 1998, Grzeszczuk et al, 1998) proposed an application 

of neural networks to emulate dynamics. They claim that using this approach physically 

realistic animation can be generated one or two orders of magnitude faster than when 

using numerical simulation (Grzeszczuk et al, 1998). Still the system can only be 

applied to characters with relatively small number of degrees of freedom. 

Anderson et al (2003) took further the ideas proposed by Reynolds and implemented a 

system generating flocking behaviours with constraints imposed by the user. The 

constraints can be defined for positions and timing for any number of characters, 
including the centre of mass for subsets of the flock and it is also possible to define 

desired shapes for the flock. The system calculates the motions in two steps - first an 
initial set of trajectories, which match the criteria is proposed, next the motion is 

improved (e. g. collision avoidance is added) while preserving the constraints. This two- 

state process introduces some problems however, as it may be difficult to quickly 
improve some trajectories (e. g. when many obstacles are present). The system is aimed 

at off-line production environments and can generate many candidate solutions. 

I--- MSRARY 
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Hodgins and collaborators worked on the modelling of motion of many agents with 

significant dynamics (Brogan and Hodgins 1997, Hodgins et al 1995) and also on 

adapting similar behavioural patterns to different creatures and environments (Hodgins 

and Pollard, 1997, Pollard and Hodgins, 1998). Metoyer and Hodgins (2000) presented 

a framework for rapid crowd motion prototyping, where simplified bipeds are playing 

American football. Additionally their agents can learn high level behaviours from real 

data using a memory-based learning algorithm. 

Another important field of research within the crowd-modelling framework is 

simulation of human behaviour in urban environments. An example is the Informed 

Environment framework (Ferenc et al, 1999a) based on hierarchical decomposition of 

the scene with additional shift of part of the intelligence from the characters to scene 

objects (smart objects, Kalimann, 2001). In another paper (Ferenc et al, 1999b) this 

concept is utilised to perform simulations with virtual characters. 

Tecchia et al (2001,2002a) proposed a system for simulating agent behaviour in urban 

environments, the results they presented included up to 20 thousand agents, although it 

is claimed that the system can simulate up to 50 thousand figures. They also proposed a 

four-layered structure for agent control, which included 2D-grid inter-agent and agent- 

environment collision detection, based on collision maps (two-dimensional maps of 

objects) with a possibility of adding an elevation model. The system has been extended 

by adding rendering of shadows (Tecchia et al, 2002b), in that case however the 

presented results do not comprise inter-agent collision avoidance (Loscos et al, 2001, 

Loscos et al, 2003). Still (2000) modelled crowd dynamics to simulate emergency 

evacuation from stadiums and railway stations. 

Two interesting recent architectures are ViCrowd (Raupp Musse and Thalmann, 2001) 

and ALOHA (O'Sullivan et a! 2002). Both architectures support simulation of human 

crowds in real time. ViCrowd attributes intelligence to groups of characters rather than 

individual agents. This is in part implied by the required real-time performance of the 

framework. The system allows for control of the animation using scripted behaviours, 

external interaction or reactive rules and events, including general, local and emotional 

events. Crowds, groups and individual characters are equipped with intentions, beliefs 
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and knowledge, however the most `intelligent' entities are the groups. Navigation is 

handled through precomputed paths, calculated for movements of each individual for 

the task of travelling between the current goal and the next one. A dedicated scripting 

language has also been created for control of the simulation. A short summary of the 

system is shown in Table 2. 

Table 2 Characteristics of the ViCrowd system (after Raupp Musse and Thalmann, 2001) 

Structure Crowd, groups and agent levels 
Participants Many 
Intelligence Limited 
Physics-based No 
Collision handling Collision avoidance 
Control Pre-defined behaviour, rules and guided 

control 

ALOHA puts greater emphasis on time efficiency of the simulation, thus optimising the 

geometry of the characters as well as motion and behaviours. The system can 

additionally be coupled to a voice generation module (Cassell et al, 2001). 

Monzani (Monzani et al, 2001) presents a crowd simulation system based on agents 

driven by the BDI architecture. The creation of an agent is split into parts, including 

low-level and high-level tasks. The low-level layer comprises what they call physical 

elements, that is a 3D graphical representation of the avatar, animation and sound 

generation. Agents are able to interact with objects and other characters and 

communicate verbally. The high-level aspect of the architecture spans beliefs, emotions, 

goals and predefined plans. The authors of the architecture strongly emphasise the need 
for separating the motion generation and behavioural aspects of the agent's design. 

During the simulation each agent is controlled by a separate thread and awareness of 

other agents and their actions are implemented by some form of shared memory. Certain 

aspects of the agent design are modelled in UML, however the presented design is very 

general and mainly comprises multiple layers of inheritance necessary to construct the 

agent (see also Monzani, 2002). Animation is handled using a layered architecture 

supporting actions, tasks and task stacks. The system creates a scenario-driven 

simulation with inter-avatar task synchronisation through smart objects (Kallmann, 

2001), which contain information about their functionality and guide the interaction. 
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Arafa et al (2002) describe two XML-based languages for scripting the animation of 

simulated characters, Character Mark-up Language for attribute definition and 

animation scripting and Avatar Mark-up Language meant to be used by human 

animators. Also recently Devillers and Donikian (2003) proposed a scenario language 

for controlling and directing semi-autonomous creatures. The language supports among 

other features character communication and scenario scheduling. 

Ulicny and Thalmann (2001) proposed a crowd simulation system in which agent 

behaviour can be both scripted and autonomous. Each agent consists of three elements: 

attributes, high-level behaviours (implemented using finite-state machines build on top 

of low-level actions) and rules governing the selections of the behaviours. Low-level 

actions include pre-recorded animation sequences and walking. Additionally events 

provide the agents with a way of interacting with the environment or other agents. 
Global path planning is also used. The authors implicitly distinguish between visual 

representation of the character and the logic (called an agent). The simulations are 

conducted in real-time and allow for user intervention. 

More recently Mac Namee and Cunningham (2003) proposed an architecture for 

creation of socially aware non player characters in computer games. Their work is 

influenced by the studies of personality models and they focus their attention on the 

modelling of emotion using neural networks. Their agents are also claimed to be 

proactive and persistent, meaning that they exist and act regardless of the course taken 

by the human player. 

3.3 Agent-based Systems and Methodologies 

This section presents examples of agent-oriented design techniques, which could 

potentially support the creation of multiple animated characters. First the BDI model 

and its descendant - the SAC concepts are discussed, this is followed by a presentation 

of two important agent-oriented design methodologies - Gaia and Tropos. 

3.3.1 The BDI model 
Together with the appearance of multi-agent systems into the main stream of Al 

research, many of the proposed frameworks are based on the notion of an intelligent 
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agent. An example is the BDI, Belief Desire Intention, architecture proposed by Rao 

and Georgeff in 1991 (Rao and Georgeff, 1991, Rao and Georgeff, 1993, Rao and 

Georgeff, 1995, Georgeff et al 1999). The BDI architecture has its foundations in 

philosophy but referenced to computer-based systems, and proposes a unified 

framework for the development of agents in situated planning systems, that is systems 

embedded in dynamic environments, which have to recognise and respond to occurring 

events. At the same time these systems must attempt to achieve their goals. Thus Rao 

and Georgeff conclude that situated systems must be both reactive and goal-oriented. 

The model relies on five important concepts: 

- beliefs, which in general represent the agent's knowledge base, 

- desires describe a set of states the agent wants to "effectuate"; generic desires do not 

have to be consistent 

- goals -a set of consistent desires (at a specific time), 

- intentions depict the current goal and the means to realise it, in other words this is 

the set of currently assumed plans, 

- plans, are predetermined action or goal sequences, which accomplish specific tasks. 

Rao and Georgeff also propose a theoretical formalism to support their findings. In 

general however, despite numerous applications of this architecture, it remains rather 

theoretical and complex in implementation (Winikoff, 2001). 

3.3.2 SAC 

Recent proposals by Winikoff (Winikoff et al, 2001, Harland and Winikoff, 2001) 

extend the BDI architecture to make it more accessible as a software engineering 
development framework (see Figure 16). Winikoff's objective is to propose "a 

simplified model which retains the power (and efficiency) of the BDI model but allows 

more people to develop intelligent agent systems" - hence the name SAC (Simplified 

Agent Concepts). Winikoff's concepts are much more `implementable' than the original 
BDI architecture and he puts more emphasis on goals, events and construction of plans. 
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Figure 16 Components of the SAC architecture (depicting two agents, after Winikoff, 2001) 

SAC agent's execution model can be described in 7 steps: 

f percepts are interpreted and give rise to events (which are internal agent's events 

and not events coming from the environment, examples can include appearance of a 

new object in vicinity but also a tick of an internal clock) 

f agent's beliefs are in turn updated 

f events can create reflexive actions and possibly new goals 

f goals are updated 

f plan is chosen (if necessary) 

f chosen plan is expanded 

f an action is chosen, scheduled and performed 

SAC agents have separate reactive and proactive execution cycles, with the reflexive 

actions triggered by events. Events in the context of this architecture are internal - they 

are defined as interpreted percepts of some significance to the agent and can also be 

generated inside the agent (for example by the agent's clock). Winikoff also allows the 

environment to be implemented as an agent, although it is not necessary. The developer 

is responsible for the identification of all agent's goals - "it is important for the 

developer to identify the top level goals of the agent as well as subsidiary goals which 

are used in achieving main goals. " Additionally the agent may be equipped with a plan 

library from which it can select appropriate plans when necessary. 
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The principles underlying the SAC model do not allow it to include specific needs of 

system developers and different agent types. Therefore extensions to this architecture 

will generally be necessary in more complex applications. 

3.3.3 Gaia 

Gaia (Wooldridge et al, 2000) is a methodology for agent-oriented analysis and design. 

Gaia is intended to be applied to large-scale real world applications, with coarse- 

grained, heterogeneous agents using substantial computational resources, static inter- 

agent relationships and services, and a small number of different agents. Apart from 

addressing the issues of designing the internal structure of an agent, Gaia also presents 

ways of dealing with the societal aspects of multi-agent systems design. Gaia is meant 

to be neutral with regard to specific target domains and agent architectures. Gaia divides 

the process of modelling a multi-agent system into three stages: requirement capture, 

analysis, and design, inputs and outputs from the last two stages are presented as models 

(Figure 17). 
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Figure 17 Gaia Models (after Wooldridge et al, 2001) 

Although the Gaia methodology seems very elegant, this comes at the cost of a lack of 
detail. Most of the models only capture more formally what every agent designer would 
have done if faced with a task of designing such a system. Additionally from the point 

of view of applying Gaia to design a breed of animated agents Gaia falls short in this 

task as it is aimed at designing heterogenous agents, which share common goals. 
Additionally Gaia does not explicitly address the problem of situatedness, even though 

it is one of the key agent concepts. 
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3.3.4 Tropos 

Tropos (Mylopoulos et al, 2001, Castro et al, 2001, Giunchiglia et al, 2001) is another 

popular software development methodology aimed at creating agent-oriented solutions. 

Tropos spans the whole design cycle of the system, capturing early and late 

requirements, analysis and architectural and detailed design. This is in contrast to Gaia, 

which only models the two intermediate stages. Tropos also proposes extensions to 

UML diagrams, which accommodate extensions required by multi-agent systems. The 

framework is generally designed to support development of multiplatform, 

`componentised' software systems, such as e-business applications. Because of this 

however, the generic Tropos diagrams tend to contain large numbers of elements, which 

makes them complex and difficult to follow. The development procedure lacks more 

detailed transitions and consists mainly of a set of milestone models. 

Other similar methodologies include MaSE (Wood and DeLoach, 2001, Raphael and 

DeLoach, 2000), which uses UML diagrams as part of the process, CASSIOPEIA 

(Collinot et al, 1996) oriented towards the design of a robotic soccer team and 

Prometheus (Padgham and Winikoff 2002) evolved in an industrial environment. This 

list is not exhaustive, most of the agent-oriented design methodologies however are still 

too biased towards specific solutions and immature to be applied to a problem of 

generating intelligent animated agents. For a survey of such methodologies see Iglesias 

et al, 1999 and also Kinny et al, 1996, a good comparison of several of these 

methodologies can also be found in Dam and Winikoff, 2003. 

3.4 AuRA and Other Selected Robotics Architectures 

Some of the issues tackled by the research in robotics are closely related to problems 

encountered when trying to create intelligent animated characters. While much of the 

work into construction of autonomous robots stills tries to address mechanical aspects 

of robot creation and problems with imperfect sensing and actuating, there is a 

substantial amount of overlap in both of these fields. Thus some of the results of 

research into robotic systems are interesting when building an architecture suitable for 

animation of autonomous avatars. 
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One such example is AuRA (Autonomous Robot Architecture) proposed by Arkin 

(Arkin, 1992, Arkin et a!, 1993, Arkin 1998). The architecture consists of two parts: a 

reactive component built upon motor schema behaviours, which are analogous to 

animal behaviours, and a deliberative hierarchical planner. Each motor schema (see 

Figure 18) comprises a number of perceptual schemas, which fire when necessary 

stimuli are present in the perceived environment. Thus a particular motor schema 

contributes to the robot's behaviour when a set of conditions associated with it is 

supplied by the robot's surroundings. Examples of motor schemas may include move- 

ahead, move-to-goal avoid-static-obstacle, escape, follow-the-leader and other 

behaviours. Eventually all contributing motor schemas are translated into corresponding 

action vectors (comprising orientation and magnitude), normalised and added using 

vector summation and the result is passed to the motors controlling the robot. 
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Figure 18 AuRA Reactive Framework (after Arkin, 1998) 

The deliberative part of the AuRA architecture is a hierarchical planner consisting of a 

mission planner responsible for managing the high level goals, spatial sequencer 

constructing navigational paths from cartographic information stored in the long-term 

memory and plan sequencer which translates paths into motor behaviours. The planner 

communicates with the schema controller (middle part of Figure 18) and intervenes 

only when the reactive module fails to cope with the task. The architecture has also been 

equipped with two types of learning capabilities. The first one is online adjustment of 

schema gains and parameters controlling the schemas. These modifications control the 

strength with which each schema can contribute to the general behaviour of the system. 

45 



Chapter 3: Cognitive Architectures and Animation Techniques 

The second learning framework based on genetic algorithms allows building families of 

robots with varying fitness functions, thus optimising performance in regard to speed, 

safety or time constraints. 

The AuRA architecture demonstrates that even relatively simple framework based on 

several reactive behaviours can generate a realistically behaving intelligent system. 
Extra units such as a planner help resolve critical situations and manage goal-directed 

behaviour and the addition of learning capabilities allows the designer to easily adjust 

the working parameters of the system and also to impose more complex constraints on 

the overall performance of the system. 

Another useful approach to designing robotic systems was presented by Ishiguro and his 

colleagues (Ishiguro et al, 1999). Although the proposal is also a hybrid robotic 

architecture, they focus their attention on presenting a development process applicable 

to the design of robotic systems. Only then do they move onto creating a functioning 

robot. The approach is based on situated modules, that is condition-action pairs encoded 
in a procedural language. Kumar (Kumar, 1998) on the other hand explored the 

possibility of extending the BDI concepts in the context of robotic agents and proposed 

a much more theoretical framework for reasoning, acting and rule acquisition for 

reactive behaviours. 

3.5 Reinforcement Learning 

When performing fully automated acquisition of high-level animation actions it is 

desired that a user only define a goal for the learning task without intervening in the 

way the action is performed. Reinforcement Learning (RL) methods (Sutton and Barto, 

1998, Mitchell, 1997) fulfil these criteria. RL is a machine learning technique in which 

an agent learns by trial and error which action to perform by interacting with the 

environment. Models of the agent or environment are not required. At each discrete 

time step, the agent selects an action given the current state and executes the action, 

causing the environment to move to the next state. The agent receives a reward that 

reflects the value of the action taken. The objective of the agent is to maximise the sum 

of rewards received when starting from an initial state and ending in a goal state. One 

incarnation of RL is Q-learning (Watkins, 1989, Watkins and Dayan, 1992). The 
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objective in Q-learning is to generate Q-values (quality values) for each state-action 

pair. At each time step, the agent observes the state s, , and takes action a. The choice 

of actions in early stages is usually random (any action may be selected from the 

possible actions set) and becomes more informed as the agent learns more about the 

environment (agent favours actions which give higher rewards thus exploiting its 

knowledge). After executing an action the agent then receives a reward r dependent on 

the new state s, +, . 
The reward may be discounted into the future, that is rewards 

received n time steps into the future are worth less by a factor y" than rewards 

received in the present. Thus the cumulative discounted reward is given by 

R=r, +Yrt+, +Y2rt+2+... +"rt+n (1) 

where yE [0,1). The Q-value is updated at each step using the update equation (1) for a 

deterministic Markov Decision Process (MDP) as follows 

Q (s , at)(r+, +Ymax Q (St+1, a) (2) n 

A sequence of actions ending in a terminal state (known as an absorbing state) is called 

an epoch. Q-learning can be implemented using a look-up table to store the values of Q 

for a relatively small state space. Neural networks are also used for the Q-function 

approximation (Bertsekas and Tsitsiklis, 1996, Haykin and Saher, 1999). 

Reinforcement Learning has been applied to create successful board games 

implementations (Schraudolph et al, 1994, Thrun, 1995), with unmanageable state 

spaces. Backgammon is the most successful example (Tesauro, 1994). Reinforcement 

Learning has also been used in robotics to control one or more robotic arms (Davison 

and Bortoff 1994, Schaal and Atkeson, 1994), Sutton (1996) succesfully applied RL to 

various optimisation tasks including control of the Acrobot -a two-link robot actuated 

only at the second joint and Boone (1997) compared Q-learning with other control 

methods for the Acrobot task including the A* search. Recently Tedrake and Seung 

presented a Reinforcement Learning technique for expanding a controller for the planar 

one-legged hopping robot (Tedrake and Seung, 2002). Q-learning-based solutions have 

also been modified and adapted. Examples include ant systems (Gambardella and 
Dorigo, 1995, Monekosso and Remagnino, 2001, Monekosso et al, 2002) or reward 

shaping (Ng et al, 1999) a technique in which additional rewards are used to guide the 

learning. Recent applications of RL to character animation have been presented before. 

A survey of Reinforcement Learning techniques can be found in Kaelbling et al (1996), 
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an excellent tutorial on Reinforcement Learning techniques was published by Harmon 

and Harmon (1996) and Touzet (1999) describes techniques for combining Q-learning 

and neural networks in the context of robotics. 

3.6 Rapid Prototyping and Motion Capture-based Techniques 

Although not directly related to the creation of intelligent characters, motion capture- 
based techniques allow for creation of realistic animation without the need for 

keyframing or behaviour simulation through application of techniques which allow for 

generation of new motion from a database of clips. This can also serve as an interesting 

technique for visualisation of behaviours generated using intelligent techniques, in cases 

where low-level motion generation in impractical. Similarly rapid prototyping 

techniques offer an opportunity to quickly sketch an animation sequence without the 

need for simulated motion. Some of the motion learning techniques can also be included 

in this category. Therefore this section presents the most recent advances in both 

domains. 

Fang and Pollard (2003) proposed a system for fast generation of motions for characters 
having from 7 to 22 degrees of freedom using physical simulation. Another recent 

system for creating and editing of character animation was presented by Dontcheva et al 
(2003). The system is capable of rapid prototyping of expressive motion and can work 
in real time. It is based on a motion capture framework with immediate feedback 

displayed on a large screen. Similarly the system presented by Lee and his colleagues 
(Lee et al, 2002) allows the user to combine clips from a database of mocaped data by 

identifying possible transitions between motion segments. The system works in real- 

time and can additionally be controlled by sketching required motions or by acting them 
in front of a camera. The generated results are comparable to recorded human motion. 
Zordan and van Der Horst (2003) presented an new solution for mapping motion 

capture using optical motion capture systems to joint trajectories for a fixed limb-length 

skeleton based on virtual springs. This allowed them to generate smooth and uniform 

motion applied to virtual avatars. 

Neff and Fiume (2003) focused on improving existing animation to make it more 

aesthetically pleasing, they proposed three tools for varying timing and shape of motion 
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and Kovar and Gleicher (2003) proposed a novel technique for motion blending -a 
technique which allows to create new motions by combining multiple clips according to 

some criteria. 

Li with his colleagues (Li et al, 2002) described a system for synthesis of complex 

human motion (dancing) from motion captured data. The system learns so called motion 

textons (repetitive patterns in complex motion) and their distributions and can 

synthesise new motion. A similar concept was introduced by Liu and Popovic (2002). 

They presented a system for rapid prototyping of realistic (highly dynamic) character 

motion from a simple animation provided by an animator. The system learns an 

estimator for predicting transition poses from examples taken from a database of motion 

captured motions. Similarly Pullen and Bregler (2002) proposed a system generating 

motion from a motion capture library based on a small number of keyframes sketched 
by the animator. The concept is based on the observation that joint movements are often 

correlated and thus the missing data can be derived from real motion. 

Another real-time motion synthesis framework was created by Arikan and Forsyth 

(2002). The system allows to generate motion from mocap by pasting sequences. 
Although the system works in real time it requires precomputation of the clips (they 

quote 5 hours for a library of 60-80 short motions). Another interesting system is that 

presented by Bregler et al (2002), where they propose a `cartoon capture and 

retargeting' technique which allows to capture expressive motion from traditional 2D 

cartoons and apply it to 3D models and 2D drawings. 

All of the above systems allow for fast creation of realistically moving animated 

characters without the need for sophisticated Al-based techniques. However the task of 
directing the motion is still left to the animator and the systems cannot cope with 

animations with inter-character interaction, or where it is necessary to animate avatars 
in a complex environment. 

3.7 Summary 

This chapter presented main areas of research necessary to consult when building 

systems able to control intelligent characters. The most important part of the review 
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included animation frameworks and architectures, which can be divided into three 

categories. Some of the presented solutions focus on creating a small number of very 
intelligent characters (C4 and its extensions, Funge). Such architectures are usually 

geared towards embracing a user in a compelling interactive experience, such as 

training a pet or playing against a clever computer controlled opponent in games. This 

usually means that the underlying system is very complex and specialised and 

characters are difficult to duplicate. Second group of animation architectures includes 

physics-based systems, which are capable of generating characters with very complex 

motor skills. Such systems generate realistic motion using physical simulation, however 

currently the level of intelligent behaviour generated by such systems is low. 

Additionally physical simulation tends to be computationally demanding and controllers 

offering multiple behaviours are not as yet widely popular. Finally there is a number of 

crowd systems which allow to generate numerous scene participants, usually at a cost of 

partially sacrificing autonomy (predefined scenarios), motion realism and/or creation 

time (mocapped sequences, keyframed motion) or character intelligence (state 

machines, reactive behaviours). Other systems discussed in this chapter included 

cognitive systems trying to mimic the function of human brain, autonomous agents, 
Reinforcement Learning and rapid animation prototyping. All approaches presented in 

this chapter can contribute to creation of an architecture which can automatically 

generate complex character animation. Although many animation architectures present a 

great potential, they are usually too specific to generate multiple crowd participants able 

to interact with each other and the environment. The next chapter will now move on to 

propose an intelligent system building on some of the presented solutions and extending 

them. 
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Chapter 4- The FreeWill Prototype 

The previous chapters presented an overview of the current research in the field of 

digital character animation, intelligent architectures, agent-oriented design 

methodologies and also described existing industrial systems and 3D animation 

packages. The survey demonstrates that industrial solutions offer high-quality 

capabilities for the creation, texturing and rendering of virtual scenes, and also offer 

specialised procedures for incorporating digitised human motion into the animation 

sequences. This is an important factor contributing to improve the realism of the digital 

scenes. The drawback of the existing professional animation systems is that they rely on 

manual creation of animation, keyframing techniques or motion acquired from real 

actors. They fail to deliver tools for automatic prototyping and creation of scenes 

comprising high numbers of avatars. Any automation of the process employed to create 

animated crowd scenes is usually limited to the creation of kinematics-based motion 

and in some cases to the use of state machines to speed up the creation of different 

behavioural schemas. In such cases the assignment of states and related motion must 

always be conducted manually, characters are not self-aware, autonomy is very limited 

and even collision detection is not always present. 

In contrast to this, systems for character animation created by the research community 

offer a number of complex AI techniques suitable to improve the way character 

animation is made. This for example includes specialised architectures supporting 

automatic control of avatars performing simple reflexive and complex pre-planned 

actions. Learning and emotions are other important features. Hence the scientific 

frameworks are able to create highly autonomous, interactive characters, which can 

explore their environment, perform complex actions and even learn new ones (see 

Chapter 3). The characters are capable of maintaining their own representation of the 

world, they can interact with each other and the external user, have complex motor and 

navigation capabilities. In most cases however, research methods focus on building 

custom systems and their characters are animals or simplified human-like creatures, 

because such representation is easier to animate and render. Integration with existing 

tools is rarely provided and motion is usually pre-generated. Easy generation of crowd 

scenes with anthropomorphic beings is not always possible and again dedicated systems 
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must be written to create animation sequences with characters endowed with additional 

mental, emotional or motor skills. Additionally, very few authors of these systems take 

into consideration the fact that an architecture able to accommodate complex human- 

like look and behaviour will always be a challenging engineering task. Thus even 

though used research architectures are complex and achieve their goals, they are very 
hard to emulate and extend, and usually remain rather closed systems. Application of 

modern software engineering principles and design methodologies would certainly 
improve the readability, reuse and extendibility of such architectures and possibly offer 

a more modular design and easier implementation. 

It is therefore clear that extensions to the existing animation packages made by 

incorporating ideas from industrial animation systems, research proposals, and concepts 
from software engineering would allow to build a far more powerful animation 

architecture. The AI fields, which appear particularly useful for this purpose, are 
intelligent architectures, autonomous agents and machine learning, since they allow for 

enhancement of the automation level. On the other hand, software engineering concepts 

and good software design practises would certainly allow for creation of a system which 
is more robust, easy to implement, reuse and extend. Finally, if the proposed system 

allowed for creation and rendering of a virtual scene within a professional animation 

system, the high quality of the resulting animation and flat learning curve for existing 

users would be assured. To provide this, the process of creating the animation sequences 
involving animated characters might be conducted in an external module feeding the 
Artificial Intelligence and returning to the animation package a set of necessary motion 

commands for each avatar (Figure 19). Thus the proposed extensions could be 

incorporated into existing animation packages by adding an additional module on top of 
the existing components and allowing it to communicate with the animation engine. 
Figure 19 proposes the extensions, which could be made to the existing animation 

packages depicted in Figure 5 to address the need for intelligent behaviour. 
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Figure 19 Proposed extensions to the existing animation packages 

This chapter presents an intelligent architecture, FreeWill, which combines concepts 

from Artificial Intelligence with a strong software framework, that extends the 

capabilities of existing animation packages. FreeWill has been designed to automate the 

process of creating scenes involving many interacting human-like characters and 

incorporates goals, plans and actions thus allowing for collision-detection, self- 
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awareness, autonomy, and learning. The architecture, is built based on two of the 

systems presented in Chapter 3. These are the Funge's Cognitive Architecture (FCA) 

which addresses many problems closely related to creation of intelligent animated 

creatures and the agent-based SAC architecture (Simplified Agent Concepts) proposed 

to make agent notions more approachable to software developers. It will be shown that 

by merging and extending the ideas, which underlie these approaches, a more robust 

and flexible architecture can be created. Additionally the process is underpinned by a 

strong software engineering framework documented in UML upon which the 

implemented prototype has also been based. 

The chapter is divided into a number of sections. Section 4.1 presents the benefits from 

applications of the agent-oriented design approach. In Section 4.2 a detailed comparison 

of the FCA and SAC concepts is introduced, which gives a foundation for the main 

ideas underlying FreeWill. Then, in Section 4.3, a description of the main constructs of 

the architecture is provided, with main focus on the hybrid agent-animation structure of 

the system. These proposals are underpinned by a software architecture modelled and 

presented using UML. Finally all main subsystems of the framework are presented in 

detail. 

4.1 Benefits of Agent Technology 

Only about 10-15 years ago the dominant technique in software labs was still structural 

programming. In the late eighties and early nineties a new programming paradigm 

called object-orientation was born and quickly became very popular (although the 

technology was actually first developed in the early seventies by Xerox). A number of 

techniques and methodologies, such as Object Modelling Technique (Rumbaugh et al, 
1991), Responsibility Driven Design (Wirfs-Brock et al, 1990), Object-Oriented 

Software Engineering (Objectory - Jacobson et al 1992), Object-oriented Design 

(Booch, 1991), the Fusion Method (Coleman et al, 1994) were created, thus building 

strong foundations for the software engineering techniques and implementation of new, 

better programming languages. Object-orientation introduced or extended a number of 

very useful and interesting ideas such as inheritance, polymorphism, encapsulation, 

abstraction, easier code reusability or component-based architectures. It is currently the 

main technique for code design and implementation, and is supported by a number of 
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tools, methodologies, visual modelling applications and most importantly modem 

programming languages. Object-orientation (00) was a natural step towards enhancing 

a single programmer's creativity and the ability to control a growing amount of lines of 

code. 

However the object oriented programming did not fulfil all its promises. Jennings 

(Jennings, 2001) enumerates the following shortcomings of the 00 approach: 

f objects are passive in principle and can only be invoked by other objects (or actors); 

they have no initiative, this means that objects do not provide behaviour activation 

encapsulation - so once a method is called it does what it has been programmed to 

do 

f objects do not provide a sufficient level of abstraction for complex systems - the 

level of granularity is too high and the interactions between entities must be pre- 
defined in a detailed way 

f the 00 approach does not provide sufficient support for specification and 

management of dynamic organisational relationships (the only such 00 mechanism 
is inheritance hierarchy). 

Therefore with the fast growth of the processing power and the complexity of software, 

some software engineers tried to introduce a yet higher level of abstraction for 

developing complex system, a novel, more intelligent and versatile type of applications 

assisting the users in many every day routine tasks. The entities of that approach were 

called agents and the technology is known as agent orientation. The concept was coined 
by Shoham in the early nineties (so in fact his idea was parallel to the growth of 00). In 

his most widely known paper (Shoham, 1993), Shoham introduced agent-oriented 

programming (AOP). A more theoretical view on the problem was also presented by 

Rao and Georgeff (Rao, and Georgeff, 1992) and agent-orientation is currently one of 

the most rapidly growing fields of research in the domain of Artificial Intelligence and 

software engineering. Despite the fact that all early applications of AOP were 
implemented in object-oriented languages, the underlying concepts of this technique are 

very different. Agent orientation further removes coupling of software components, 
introduces action encapsulation (as opposed to data encapsulation in 00), presents 
interaction as an active process (interaction relationships are fixed in 00) and promotes 
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flexible behaviour of agents (by adding both reactive and proactive actions) (Jennings, 

2001). 

Jennings argues that an agent oriented approach (Shoham, 1993, Burmeister, 1996, 

Wooldridge, 1997, Wooldridge and Jennings, 1998, Nwana and Ndumu, 1998, 

Jennings, 1999, Jennings, 2000, Jennings 2001, Wooldridge and Ciancarini, 2001) is 

much more suitable for the development of systems which can handle the necessary 

complexity. The main advantages of AO according to Jennings include: 

f reduction of coupling of components - each agent can be a self-contained entity and 

will exchange messages with other agents only sporadically (when considered on 

the software level) 

f no need to manage control - the agents are active all the time, hence they can 

respond to signals from the environment as they arise 

f strong support for high-level interaction which additionally can be initiated by the 

agent 

f flexible behaviour - agents support both reactive (responding promptly to external 

events) and proactive (making decisions and deciding what to do to achieve the 

goal) behaviour. 

Winikoff (Winikof, 2001) also notes that the inherent property of an agent is having 

many goals and many ways of fulfilling them and that agents make their decisions 

according to the actual feedback from the environment. 

Agent orientation has been used successfully to deliver applications in different 

domains, such as traffic and transportation (Burmeister et al, 1997), real time tracking 

(Horling et al, 2001), or network resource configuration (Hayzelden and Bigham, 

1998), to name but a few. More examples can be found in Mondal and Jain, 2001, 

Jennings and Wooldridge, 1998, Burmeister et al, 1998, Burmeister et al, 1997, 

Georgeff and Rao, 1996. Some of the most prominent agent design methodologies have 

been presented earlier. 

However, despite there being a few implementations of agent languages and platforms 
(Rao, 1996, Mayfield et al, 1996, JACK, 2003, T-Tool, 2003, FIPA, 2003, AgentTalk - 
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Winikoff, 2003), there is still no widely recognised standard. Additionally new ones are 

constantly being contributed. Even assuming that one could create agent architectures 

still based on object languages, even an agent design methodology has not been agreed 

upon. Finally, apart from the lack of methodology, the agent community is still working 

on the design notation. Agent UML (AUML, 2003) seems to be the main candidate, but 

the definition of this modelling language is still far from completion. 

Given the complexity and intrinsic structure of the problem presented in this work 

(many autonomous avatars, complex external environment, interaction with other 

packages) it appears that the agent-oriented approach is an appropriate one for the 

development of the FreeWill project. However due to the lack of mature tools 

supporting such approach a mere application of the existing techniques might not be 

sufficient to conduct full design and implementation. Given the maturity of the object- 

oriented techniques, including programming languages and modelling tools an object- 

oriented approach has been chosen for the implementation and the agent concept has 

only been used to support the high-level design of the system. Hence FreeWill tries to 

merge useful concepts from the agent-oriented approach with a sound software 

engineering framework, exploiting ideas from both agent orientation (design principles, 

structure of the system) and object orientation (implementation). The next section 

presents the hybrid agent and animation concepts underlying the system's design. 

4.2 Comparison of the FCA and SAC Architectures 

In this section specific features of the FCA architecture proposed by Funge and the 

agent-based SAC concept are compared before discussing how a synthesis and 

extension of the two might be achieved. 

As suggested in Chapter 3, the FCA architecture is strongly biased towards building an 
intelligent character. It addresses the low-level concepts of character creation including 

physical representation, motion and navigation as well as the cognitive features. The 

SAC framework is more concerned with creation of multiple autonomous agents and 

uses some concepts from the BDI approach. Both architectures stress the importance of 

goals, reactive and proactive behaviour, and the need for some representation of the 

character's knowledge (beliefs). They are also built based on the sense-think-act cycle - 
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a standard approach to building systems which have to communicate with the 

environment. But whereas in FCA the sensing process always updates the character's 

world model in SAC it first gives rise to internal events, which may in turn update the 

agent's beliefs. FCA is a dedicated animation architecture, SAC is a general-purpose 

model for designing and implementing situated agents. What follows from this is that 

only FCA includes animation concepts such as geometry or inverse kinematics. FCA 

also addresses the problem of learning in the form that it may be necessary for some 

characters to be able to learn new behaviour. Following the BDI's statement that agents 

should in general maintain a list of predefined plans SAC includes the concept of plan 

libraries. On the other hand FCA allows to pre-define behaviour (in the form of reactive 

behaviour rules or state machines) but for the goal-directed behaviour recommends 

doing searches in (perhaps pruned) situation trees. Similarly the interaction aspect of 

SAC remains in strong contrast with FCA which does not provide any explicit 

mechanism to allow interaction between the animated characters (a possibility of using 

a communication protocol is only mentioned). 

The table below provides a summary of these and other important features of both 

systems. 

Table 3 Comparison of the architectures 

Architecture name FCA SAC 
Design paradigm Character oriented Agent oriented 
Recognition for the animation 
aspect 

Yes No 

Representation of the 
character's knowledge 

Internal world model + 
domain knowledge 

Beliefs (a knowledge base) 

Autonomy Yes (based on action 
search, planning and 
reasoning) 

Yes (based on planning and 
reasoning) 

Learning Recognition for learning No explicit emphasis on 
learning 

Reactive and pro-active 
behaviour 

Yes Yes 

Interaction with other 
characters 

Implicit (perceived clues) Explicit 

Main implementation cycle Sense-think-act Sense-think-act 
Sensing/perceiving Updates the world model Gives rise to (internal) events 
Planning Search on atomic actions Plan libraries 
Ease of implementation Not obvious Easy to follow development 

model 
Goals Yes Yes 
Formalism Situation calculus Linear logic 
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4.3 The FreeWill Architecture 

The main goal of FreeWill is to propose an architecture suitable to create intelligent and 

realistic animation in the form of crowd scenes. Therefore it contains elements found in 

both animation-driven systems and distributed (multiagent) solutions. The system 

incorporates the concept of agents and plan libraries from the SAC model and it also 

addresses the need for representing the avatar by giving it a physical body, ability to 

move and to maintain an internal world model. Additionally, these concepts are 

extended by separating the agent from the environment and introducing external events 

as a means of providing a uniform way of interacting with other objects and agents. 

Each avatar participating in the animation consists of an intelligent agent implemented 

as a modified SAC agent together with a body layer, which is responsible for handling 

the visible part of the agent (see Figure 20). 
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Figure 20 The FreeWill framework 

The geometry, physics (kinematics) and behavioural layers are incorporated from the 

FCA architecture. Each avatar is ultimately modelled as a set of simple geometrical 

shapes controlled by the forward and inverse kinematics (implemented by the existing 

animation package and only visible after rendering). All characters follow simple 

patterns of behaviour, which allow them to be identified as anthropomorphic creatures. 
Additionally, in accordance with Funge's view, a substantial part of the character's 
knowledge is the internal world model, which is updated by sensing. On the other hand 

agent concepts allow to build a more specialised `mind' - the agents store plan libraries 
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instead of creating plans from scratch every time a new plan is needed, new plans are 

constructed only if there is no existing template, and characters must interact. The 

interaction includes actions executed by two different avatars and as such is fully 

modelled by reaction to events, which are created during the sensing process. This is 

similar to the way humans interact with each other (using hand-eye co-ordination). 

The agent components are presented in Figure 21. The agent consists of a knowledge 

base, a planning unit and a stack of actions currently scheduled for execution. The 

knowledge base maintains the internal world model and all the agent's goals (primary 

and secondary). Primary goals represent an agent's ultimate aim of the simulation and 

would normally be assigned to it by the animator. This may include end positions (get 

to the end of a sidewalk) or resulting states of the animation (kill your enemies). 
Secondary goals on the other hand are goals created by the agent during the course of 

the simulation. Example secondary goals would be `shake hands with a friend' or `look 

at a watch while waiting for a bus'. The planner handles the task of pre-processing the 

desired course of action and also manages the plan library -a list of high-level, complex 

actions, which the agent can perform. An example of such an action may be a 
handshake. In each processing cycle the plan is reviewed and if necessary the action 

stack may be updated, then the last action from the plan is chosen and executed. 
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Figure 21 The agent component of FreeWill 
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The main difference between the SAC model and FreeWill is that events to which the 

agents respond are not created inside the agent but are external - come from the 

scheduler. They are however submitted to the scheduler queue by the agent when it 

decides to update its knowledge base or when an action must be performed. External 

events allow for a greater uniformity of the architecture - both acting and sensing events 

can be modelled in this way and similarly scene objects can be handled following this 

scheme. It is also in line with the principle of easy implementation. Event-based 

systems with external events are popular and straightforward to implement. 

The scheduler serves as an event dispatcher and sequencer. All events are managed 

globally, scheduled and then distributed to appropriate avatars. This allows for greater 

flexibility (an avatar may or may not wish to `see' the results of its actions) and 

efficiency (simple data access collision resolving) and also provides a uniform way of 

both maintaining the avatar's awareness and communicating with other avatars and 

possibly world objects too. The FreeWill execution cycle proceeds as follows: 

1. A sensing action is executed by the avatar 

2. Agent's beliefs are updated 
3. Current plan is evaluated, if there is a need to perform a reflexive action the current 

action queue is cancelled and a new action gets submitted 

4. Goals are updated if necessary 

5. Plan is updated if necessary 
6. Last action is chosen and submitted to the scheduler, when the avatar is later asked 

to execute the action it also submits a new sensing action to be put in the event 

queue (Figure 21) 

Point 3 indicates that FreeWill agents have common reactive and proactive execution 

cycles unlike the SAC agents. The main features of the proposed architecture are 

gathered in Table 4: 
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Table 4 Attributes of the FreeWill architecture: 

Architecture FreeWill FCA SAC 
name 
Design paradigm Character oriented Character oriented Agent oriented 
Recognition for the Yes Yes No 
animation aspect 
Representation of Internal world model Internal world model Beliefs (a 
the character's + knowledge base + domain knowledge knowledge base) 
knowledge 
Autonomy Yes (based on action Yes (based on action Yes (based on 

search and planning) search, planning and planning and 
reasoning) reasoning) 

Learning Off-line learning of Recognition for No explicit 
new actions learning emphasis on 

learnin 
Reactive and pro- Yes Yes Yes 
active behaviour 
Interaction with Implicit (perceived Implicit (perceived Explicit 
other characters clues) clues) 
Main Sense-think-act with Sense-think-act Sense-think-act 
implementation external events 
cycle 
Sensing/perceiving Updates the world Updates the world Gives rise to 

model model (internal) events 
Planning Plan libraries + Search on atomic Plan libraries + 

construction of plans actions constr. of plans 
Ease of Easy to follow (UML Not obvious Easy to follow 
implementation documentation exists) development model 
Goals Yes Yes Yes 
Formalism None Situation calculus Linear logic 

4.4 The FreeWill Framework 

An animated sequence consists of characters (avatars) interacting within a graphically 
defined setting. As explained earlier, avatars are modelled as agents with a 

geometrically implemented body (all physical objects are represented as 3D geometrical 

shapes). The setting is a virtual environment, for instance a city street populated by 

avatars walking in either direction. The basic requirement is for the avatar to be able to 

walk towards a set destination (goal-oriented behaviour) while avoiding collisions. The 

primary goal must always be assigned to each avatar, if any additional goal is used, they 

must also be explicitly declared by the user. The activities which the avatars exhibit in 

order to fulfil their goals are called actions and can include simple movements such as 
joint rotation but also complex high-level sequences, for example a handshake. 

Characters performing actions which require explicit interaction between two avatars 
(handshake) shall be called participants or "friends". 
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Subject to fulfilling its goals, an avatar's behaviour is otherwise autonomous. 

Characters deliberate the manner in which the primary goal is fulfilled and the 

animation would look different if generated multiple times. The action is simulated by 

the FreeWill engine, and the result is passed onto the animation package. The 

interaction with the animation package can take the form of a script - Figure 22 

(fragment of the handshake script, more examples can be found in Appendix C) or 

stepfiles (in the case of 3D Studio Max, see Amiguet Vercher, 2000) or as direct 

communication via the COM interface. In the example script shown in Figure 22 two 

new keyframes for Avatar! are created - first two lines define the current position as the 

starting keyframe (time 0), next the time is advanced by 10 units and the avatar right 

arm is rotated by 30 degrees along the local z-axis. A new keyframe is then defined, 

time is advanced again and the right forearm is rotated by 80 degrees (bending the 

elbow). Again a keyframe is defined. After the scripts have been executed, the 

animation package renders each frame and produces a video of the simulated interaction 

of the avatars. A scene from one such video is shown in Figure 23 (characters avoiding 

each other on a sidewalk). 

biped. AddNewKey LarmContl 0 
biped. AddNewKey RarmContl 0 

sliderTime = 10 

rotate RForearml 30 [-1,0,0] 
biped. AddNewKey LarmConti 10 
biped. AddNewKey RarmContl 10 

sliderTime = 20 
rotate RForearmi 80 [0,0, -1] 
biped. AddNewKey LarmContl 20 
biped. AddNewKey RarmContl 20 

Figure 22 Sample script for generating avatar behaviour 

For the purpose of modelling the presented architecture, a number of classes and 

collaborations have been identified. 
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Figure 23 Av; itai Iluerictiun 
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The class structure underpinning FreeWill is depicted in Figure 24, which presents a 

UML model of the system. As shown in Figure 24 the principal elements of the system 

airc: 

" World comprising all physical objects, including avatars, participating in the scene. 

Details stored for each object include a complete description of shape, dimensions, 

colour, texture, current position etc, sufficient to render the object. 

" . ýýutur, which consists of a physical body together with a mind, instantiated as a 

separate object (on-board "brain") for each avatar, this structure corresponds with 

the Character component from Figure 20. The body provides the mind with all 

necessary sensing and actuator services, while the mind itself is responsible for 

perception (interpretation of information) and the issue of appropriate motion 

commands based on goal planning. As a subsystem, the mind engine is built of an 

action planner, a motion controller, and a knowledge base storing cg gals and acts, 

and the avatar's private world mode! (which represents the fragment of the virtual 

world currently seen and remembered by the avatar and is implemented as a subset 

of the world objects). The knowledge base is currently implemented as a collection 

of goal, fact and world objects, which in turn consist of methods and attributes. For 

goals this includes the type of goal and its parameters (e. g. end position) and facts 

are lists of items (e. g. avatar's friends). The world objects stored in the knowledge 

base can be used to access object information such as colour or position. Such 

structure could however be easily expanded to contain information in a form of 

logic clauses. This would facilitate the use of logical inference engines to make 

decisions concerning large numbers of goals and facts. 
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"A Scheduler based on discrete event simulation and a queue handler enabling the 

autonomous behaviour to unfold within the virtual world by passing control to 

appropriate world objects (including avatars) according to the event which is 

currently being processed. 

" There is also one external component used to generate the final animation - the 

animation package or more generally visualisation engine - this part of the system is 

responsible for displaying the world model and the interacting avatars. This can be 

for example performed by the package 3D Studio Max as described above. The 

system could also interface other products and other formats, e. g. those using 

motion capture files. The visualisation engine must also allow for rendering the 

scenes and for saving the final animation. 

PeriodicEventGen 

GiveControlToO Scheduler 
bject returns an 
Event 

0.. n 
Event 

World 

ýGiveControlToObjecto 
1 

Avatar EventY 
n Object 

0.. n 
Agent 

1.. n ActionPlanner 

11 

MotionControl 1 
1 

Bod Mind 
velocity 1 

. position 1 KnoMedgeBase 

1 

1.. 2 1.. n1 1.. n 
fsionCone 8oundingBox Actuator 1 O.. n 1.. n 

WorldModel Fact Goal 

Interfaces with 

Sensor 
Visualization AnimScriptFIl F Engine 

Freewill character 
Figure 24 UML model of the system 
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4.5 Controlling Avatar Behaviours 

One of the key elements of the knowledge base is the internal world model. Each time 

an avatar performs an action, the process is initiated by first updating the avatar's world 

model, which means a new sensing event must be inserted into the queue. Thus the 

avatar has a possibility to assess the results of its actions. The avatar senses the world 

via a vision cone, through which it gains awareness of immediate objects in its path (see 

Figure 25). The information obtained from the vision cone is then used to modify the 

avatar's plan and perform the next action. This happens when a sensing event is selected 

from the queue - the avatar then updates its world model and reconsiders the chosen 

course of action. Finally a new acting event is generated and next time the avatar is 

given control the last action from the queue is executed. 

411 
aä 

0! 9 

In general the avatars are able to perform two types of actions - simple, built-in actions 

such as walking and more complex actions including collision avoidance, handshakes or 

interaction with objects. The second group of actions is constructed in three ways. 

Firstly a prescripted action can be added to the avatar's plan library, an example of such 

action present in the implemented system is the handshake. The avatar can also 

synthesise a more complex action from the simple ones during the run-time - collision 

avoidance is one example. Finally new actions can be learnt offline, this technique will 

be described in the next chapter. With regard to interaction there also exist three 

categories. The system discriminates actions performed by a single avatar (waving, 
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looking around), avatar-object interactions (door opening) or avatar-avatar interactions 

(handshake, collision avoidance). Actions performed by exactly two avatars and 
involving explicit interaction (handshake) are the most complex ones. Figure 26 

illustrates all different types of actions present in the FreeWill system. 

single 

avatar-abject 
interaction 

avatar-avatar 
interaction 

reactive 

pre-scripted 

xI I 
synthesised II 

in 

learnt 

proactive 

Figure 26 Different types of actions supported by FreeWill 

The main simulation loop is located within the Scheduler class, which consecutively 

picks events from the event queue, the events are placed in the queue in the order they 

are submitted by the avatars (FIFO). Control is then passed to the appropriate world 

object to which the event refers (which will usually be an avatar) and necessary actions 

are taken. These can be: 

- an `act' action - such as move a hand or make step. The action is rolled out (the 

avatar's state variables are updated) and a new line is added to the script file. This 

action returns a new sensing event related to this avatar to be inserted in the event 

queue 

-a `sense' action - which means that the avatar should compare the perceived 
fragment of the world with its own internal model. Then the avatar has a chance to 

rethink its plan and possibly update goals and the planned set of future actions. This 

action returns a new acting event. 
The returned actions are inserted in the event queue and the time is advanced so that the 

next event can be selected. A PeriodicEventGenerator class has been introduced to 

generate cyclic sensing events for each avatar so that even a temporarily passive avatar 
has its internal world model updated. 

FreeWilI 
Action 
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Avatar behaviours are goal directed. The primary goal is provided by the user and 

represents the aim of the simulation for that avatar. An example might be `get to the end 

of the sidewalk'. However the fulfilment of this goal may be enacted with 

accomplishment of secondary goals which are set and assessed by the avatar. Examples 

are `avoid collisions' and `shake hands with friends'. Such goals are a part of the 

avatar's knowledge. When to give such goals priority can be inferred from the current 

world state. The knowledge base provides information about static world objects and 

other avatars (e. g. a list of friends). The avatar can be given two types of actions by the 

scheduler - if the action is an `acting' action then the motion (a step, arm rotation etc. ) 

is immediately executed. For sensing actions however the avatar needs to sense its 

environment and process this information. It may happen that as a result of the new 

state of the world the avatar has to modify its plan. In this case a new plan is generated. 

This algorithm is depicted below, an expanded version of it, including participating 

objects is attached in Appendix B. 

START 

ISenseCurrentWorldState 

GetCurrenMlorldM odel 

currentModel T 
out of date? ModifyCurrenModdModel 

F 

currentPlan 
needs 

>---L+eateNewPlan 

revising? 

F 

DecomposeLastActon 
PidkLastLowLeveLAcflon 

I ConvertActonToEvent 
SubmiToEventQueue 

STOP 

Figure 27 Algorithm controlling an avatar's behaviour 

The goal-planning algorithm constructs plans using the notion of an action as a generic 

planning unit. An action can be defined at various levels of specialisation - from very 
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general ones (e. g. `get to the end of the sidewalk') to fairly detailed activities ('do the 

handshake'). The most detailed actions (microactions) are said to be at level 0 (Figure 

28). Examples of such actions would include atomic joint rotations and actions which 

can not be further decomposed, for example predefined motions supplied by the 

animation package (mocapped actions, predefined animated sequences etc. ). Level 0 

actions correspond to action events in the event queue and also to script file entries. In 

general every action is implemented by an avatar's member function, which will 

perform the action and update the state of objects affected by it. These objects can be 

world objects or parts of the avatar's body. The planning unit (ActionPlanner) operates 

on actions from level N to 1- creating general plans and then refining them. The 

ActionPlanner maintains the chosen plan from which the last action is submitted to the 

MotionControl unit. It is then decomposed into a set of level 0 microactions (e. g. 
handshake consists of a set of arm and hand movements) which can be executed one by 

one. Any change in the plan may cause the list of microactions to be dropped and new 

ones to be generated. 

ActionPlanner 

F1 'PIanO pý3 
4ExploreSolutionso 
4GetMicroAction( 1 

Plan 

Al Engine 

MotionControl 
*#UpdateWModeIQ 
4RewsePlanQ 'Canoe ctiono **PickActiono O*Decompose poseo 

*#GetCurrActiono 

MicroActionO 
61 

1 *GetGoalsQ Microaction 
IeveE3 O.. n 'P, ModifyGoalQ 

O#GetObjectlnfoQ Action 
I OlUpdate World O $)Precnnditit 

1 

1 O.. n t.. n 
WorldModel Fact Goal 

O.. n 

Figure 28 Action hierarchy and other Al components 

1 
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The general planning collaboration is described in Figure 29. The collaboration is 

initiated by the Avatar attempting to update its world model (because some changes 

were detected in the perceived world state). The request is passed onto the Mind object 

which in turn updates the WorldModel stored in the character's KnowledgeBase. At this 

stage the Avatar submits another request to revise the current plan and the request is 

passed to the ActionPlanner object. If the ActionPlanner decides to update the current 

plan, it communicates with the KnowledgeBase to retrieve the goals and the current 

world model. Once a new sequence of high-level actions has been created the first 

action is then passed to the MotionControl object and decomposed into atomic actions. 

When the Avatar requests the next action the first action from the MotionControl queue 
is returned, it is next wrapped into the Event structure and submitted to the EventQueue 

(this is not shown in the diagram). 

The scheduler then selects the next action to be executed. If the action event is a sensing 

event the collaboration starts again for a different avatar, if an action event is pulled 
from the queue then the action is executed by the appropriate avatar (or object), 

meaning all the necessary properties of the participating world objects are updated. At 

the same time the actuators pass the information of that movement to the interface with 

the animation package so as to update the state of the world that will be displayed in the 

animation. For UML diagrams illustrating the full sensing and acting collaborations see 

Appendix D. 
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1: UpdateWModel() 

3: RevisePlan() 

2: Modiýrld( ) 
10: PickActiono 

Mind 4: Plan( 
11: GetMicroAction( 

5: GetGoals( ) 

8: GetO " nfo( ) ) 

KnowledgeBase 

7: GetOpjectAttnbs( ) 

6: Explore ions( ) 

ActionPlanner 
T19: 

Decompose() 

111 12: GetCurrAction() 

Figure 29 Objects participating in the planning collaboration 

4.6 The Interaction Algorithm 

For an autonomous animated character to be believable it must be able to perform 

actions involving at least two avatars. Such actions, to look natural, must be 

synchronised in time and aligned in space. The spatial aspect of the interaction is 

handled by defining the required distance between the avatars for each of the 

collaborative actions. The orientation of interacting characters must also be set and here 

they are assumed to be always facing each other. Another important aspect of such 

actions is the timing, since for such actions as a handshake even a small difference in 

timing will cause the sequence to look unrealistic. FreeWill does not use dummy objects 

to co-ordinate the collaborative actions (cf. Monzani, 2002), neither an explicit 

communication language as this is usually not the way humans synchronise their 

actions. The solution proposed is based on finite state machines (see Cremer et al, 
1995), which take the interaction through a number of stages and allow for spatial 

alignment (initial stages) and temporal synchronisation (late stages). Such an approach 

allows for easy substitution of actions in the plan library without the need to modify the 

synchronisation scheme, thus allowing for quick creation of different animations. The 

details of the synchronisation algorithm for actions involving two avatars, are presented 
in Figure 30, and the different stages of the interaction process are illustrated in Figure 

31. The algorithm distinguishes three separate states for the action duration - the close- 
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up, preparation and execution stages. During the first phase the avatars notice the other 

participant and start walking towards it (the time of noticing the other character does not 
have to be the same). For some actions this will only happen if the action has not 

previously been executed with the same participant (e. g. handshakes). However if the 

action can be executed the current goal will be replaced with a newly created 
intermediate goal and the avatar will pursue the new goal by approaching the other 

character. When the distance between the two characters decreases to some predefined 

value, one of the participants (because of the chosen event scheduling scheme this will 
initially happen to one of the characters) will stop walking and enter the preparation 

phase. The preparation phase involves initiating the action (e. g. raising a hand). Upon 

finishing the preparation phase the avatars execute the main part of the action (shake 

hands) and resume the primary goal. If necessary the knowledge base is also updated 

with a new fact stating that the two avatars have executed the action. A pseudocode 

version of this algorithm can be found in Appendix B. 
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Figure 30 The synchronisation algorithm (handshake) 

Although for action synchronisation it might be useful to implement a dedicated 

communication language, the only use of such a language would be in actions involving 

direct collaborative interaction between avatars (e. g. a group task including gathering a 

number of avatars in order to lift a heavy object). Therefore high-level communication 
is not currently included in the FreeWill interaction scheme. 
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Figure 31 Synchronisation of inter-avatar interaction 

4.7 Details of the Al Module 

A detailed view of the Al subsystem is presented in Figure 32. It consists of 3 general 

parts - the main class - Mind, the planning cluster and a knowledge base. Mind, apart 
from serving the purpose of a module's container, is also the subsystem's interface, 

through which other units request services and update information about the 

environment. The planning classes do both the actual planning and maintain a list of 

planned actions, which can be executed in turn. The knowledge base stores all other 
information. The figure also presents some of the most important methods and 

properties of the implemented prototype and detailed relationships between different 

objects. 
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Figure 32 The Al subsystem 

4.8 Communication with 3DS Max 

In the current implementation, the presented prototype communicates with the 

animation package 3DS Max using an off-line file-based communication mode 

(stepfiles+scripts). The generation of the animation is executed as an external process 

and an animation file is generated. The file is then imported into the animation engine 

for rendering. A similar mode of communication could be used to retrieve the scene 

information to be used to construct the virtual world. In the learning unit presented in 

Chapter 5 another type of communication is presented which allows for real-time 

control of the avatars and direct export of scene objects into the FreeWill system using 

3DS plugin capabilities. Avatar collision detection in the current implementation is 

based on detecting objects intersecting with the directional vector of the agent. 
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4.9 Summary of the Prototype 

This chapter presented the FreeWill prototype aimed at supporting creation of 3D 

animated autonomous characters. The system proposals have been presented as a 

theoretical cognitive architecture derived from two existing systems, comprising goals, 

actions, plans, sensing and addressing the need for a geometrical representation. The 

architecture was then modelled using a software engineering notation and a number of 

issues such a planning collaborations and action synchronisation have been considered. 

The main missing element at this stage is automatic addition of actions into the system. 

This issue will be addressed in the next chapter. Results obtained by implementing the 

proposed system will be presented in Chapter 6. 

76 



Chapter 5: Automatic Action Acquisition 

Chapter 5- Automatic Action Acquisition 
The architecture presented in the previous chapter relies heavily on the number of 
different high-level actions, which the avatars can perform. So far the only way of 

adding new actions to the avatars' behaviour repertoire has been by manually scripting 

them. Ideally, however, an animation generation framework, apart from importing 

predefined actions in a form of a script or motion capture file should also allow for 

automatic generation of new actions, at least for the purpose of animation prototyping. 
This chapter presents a technique for automatic acquisition of new high-level actions 

using machine learning. 

5.1 The Deterministic Algorithm 

The initial proposal of the learning mechanism is based on the deterministic version of 

the Q-learning algorithm, with the update equation presented before: 

Q (sr, a, )F-r, 
+t +ymaxQ (s, 

+1, a) (3) 
a 

The simulation is conducted within a fully controllable, virtual world, hence both the 

rewards and the results of agent's actions are fully deterministic. This assumption 

allows building the learning module around this simpler version of the algorithm. As 

described in Chapter 2 the Q-learning algorithm requires that the state-action space and 

the goals of the agent be defined explicitly. Therefore the development of the learning 

module has been conducted in a few general steps: 

a) The goals of the learning process have been identified as any complex (high-level) 

actions consisting of a number of smaller hand and body movements. 
b) The agent has been assigned a number of simple actions, which include arm, 

forearm and hand motion along a number of orthogonal axes, and also walking and 

grabbing (this includes only the actual motion of the fingers). The selection of 

actions depends on the mode of control. Two modes of control have been proposed 
to acquire the motion - in the first one the agent is controlled using forward 

kinematics, in the second one inverse kinematics may be used. All simple actions 

used by the agent are grouped in Table 5 and graphically depicted in Colourplate 1. 

c) The state space has been defined. Each mode of control (forward and inverse 

kinematics) corresponds to a different state space, but in both cases the state space is 
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a discretisation of a continuous space defined as a number of degrees of freedom for 

the joints necessary to be used to participate in the task. For the forward kinematics 

mode of control the degrees of freedom of the arm are defined as rotations around 

spatial axes, with discretisation defined over the angles of rotation. Additionally 

each of the angles is limited to a specific range (larger however that the biologically 

feasible motion to enable detection of violation of the biomechanical constraints). In 

the inverse kinematics case the state-space discretisation is applied over the spatial 
location of the end effector (hand) of the agent. In both cases walking along one 
dimension gives an additional action, descretised to include several steps around the 

agent's starting position. The only represented states are those of the agent. The 

states of the external objects (door, teapot) can be represented as additional 

variables, thus reducing the state-space of the learning task and allowing for a more 

precise control and rendering of those objects. Additionally, because the actual 
definition of the state space depends on the type of problem, the state-space may be 

defined on a per-task basis. In some cases, for example, the definition of the learning 

task precludes the use of particular actions such as walking. This allows for the size 

of that space for a particular task to be defined as a subset of the full state space 

available to the agent. 

d) The action space has been defined. For each possible state space dimension there are 

always two possible actions, which allow moving the body part (arm, forearm, hand 

etc. ) along the specified dimension in the opposite directions. Examples here might 
be simple walking forward and backwards or hand movement along the vertical axis 

resulting in lowering or raising a hand. 

e) The exploration policy has been defined. This is presented in the section below. 

Table 5 Low-level actions used to train the avatar: 

Forward kinematics control Inverse kinematics control 
1. Rotate arm up/down by Da 1. Move palm by Ax 
2. Rotate arm forward/backward by Da 2. Move palm by Ay 
3. Rotate forearm by Da 3. Move palm by Az 
4. Rotate hand along Z axis by Aa 
5. Rotate shoulder along Z by Aa 
6. Perform the grabbing action 4. Perform the grabbing action 
7. Move forward/backward by Ax 5. Move forward/backward by Ax 
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5.1.1 The exploration policy 

According to the Q-learning algorithm the Q-values are initially set to random values 

and the agent starts exploring the environment. Upon reaching a goal the agent is then 

randomly placed in a new state and begins a new iteration. It is apparent that in those 

initial stages the exploration policy followed by the agent should not rely on the current 

Q-values. This is because the values are highly unreliable and many of the states have 

not been explored at all yet. Only after a number of iterations, when the agent increases 

its belief about the quality of the Q-values can the action selection policy be changed to 

one relying more on the current Q-values (this is called the exploitation phase). The 

exploration/exploitation strategy applied by the action learning module uses the 

Boltzmann distribution (see Michell 1997). For equal Q-values the action is chosen at 

random, otherwise actions with higher Q-values are preferred. The equation is given 
below: 

k 
P(a; I s) _ k Q(S, aj) (4) 

i 

where P(a; I s) is the probability of selecting action a, given that the agent is in state s, 

k>0 is a constant which determines how strongly the selection favours actions with high 

Q -values, 
Q (s, a) is the current approximation of the Q-function. For the action 

acquisition tasks presented in this thesis, k=2. Such representation of the 

exploration/exploitation policy in early stages assigns similar probabilities to state 

transitions not visited yet and changes bias as the agent learns more about the results of its 

actions. 

An additional problem when learning a motion sequence for an animated agent is that not 

all of the state space is interesting from the animation generation point of view. Although 

the Q-learning algorithm does not give preference to any part of the state-space, in 

animation tasks there is always a number a privileged states which are more important to 

the task definition. This includes mainly the starting state of the animation, since the task 

is run to generate a sequence from a rigidly defined starting pose. Therefore the 

exploration policy utilised by the learning module was additionally reinforced to proceed 

more frequently around the initial motion states. This has been implemented by finishing 
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each learning task with a number of iterations in which the agent is always placed in the 

same starting state. The number of these special iterations has been set to span about 5- 

10% of the total number of epochs, thus optimising the path through the state space for a 

particular problem. Additionally 0.5% of all actions selected by the agent are random, 

regardless of equation (4) (Sutton and Barto, 1998) and an upper limit was imposed on the 

length of the exploration phase - if the agent did not encounter an absorbing state after 

several hundred transitions the iteration was restarted. 

5.1.2 Positive and negative rewards 

Each learning task must include at least one state in which the agent receives a positive 

reward. This is the goal state and upon visiting it the agent finishes the current epoch 

and starts a new one. An example of reward state may be one in which the agent finds 

itself in a particular position, or when a state of another object changes (e. g. a teapot is 

lifted above a certain height). Such positive rewards are used by the learning algorithm 

and contribute to finding the optimal path through the state space. 

Additionally, it is also desirable that the agent avoids certain states while learning the 

optimal solution. An example might include a state in which the agent collides with an 

object from its surrounding environment or when the position of one of the agent's 

limbs exceeds the limits imposed by biological constraints (e. g. overstretching a joint). 

In such cases it is necessary to inform the agent that the constraints have been broken. 

While it is possible to limit the state space so that it does not include the wrong 

positional states (by limiting the angles by which an arm can be rotated thus directly 

imposing the biological constraints), such solution can not be applied to the problem of 

collision avoidance. Neither can it be adopted when the inverse kinematics is used, 
because the IK algorithm imposes its own constraints on rotational angles resulting 
from the underlying calculations. A technique unifying the problem of state space 
limitation has therefore been applied which uses negative rewards to label out undesired 

motions. Thus the algorithm remains fairly general, and the tagging of the state-space 
happens during the learning process without a need for additional knowledge about the 

environment prior to the simulation. Additionally the negative rewards are not 

propagated to the surrounding states but are only used to locate the undesired state 

transitions. 
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The collision detection approach presented in Chapter 4 is not sufficient to detect 

collisions between the agent and the small objects with which the agent must interact 

during the learning. Therefore a quick and efficient way of detecting collisions was 

necessary. The desired collision detection algorithm should avoid testing all the polygonal 
faces in both objects for overlap as this is a very expensive operation. More efficient 

solutions are based on spatial volumes (spheres) and bounding boxes but for these 

algorithms tightness of fit between an object and its bounding volume is crucial for the 

precision of the collision test. In a situation requiring the collision detection to be performed 

with a high level of precision this approach is insufficient or it requires strong spatial 

subdivision techniques applied in a hierarchical manner. Therefore the collision detection 

used by the learning module is based on the OBB (oriented bounding boxes) approach 
(Gottschalk, 1996). The OBB method allows for tight approximation of the surrounded 

object and it is not very computationally intensive. For details of the method and its 

implementation to character animation see system designed by Francik (2003). 

5.1.3 Integration with the FreeWill framework 

The presented learning module can at this stage be easily integrated with the main FreeWill 

framework. The most important part of the integration includes transition of the generated 

motion sequences, as the learning process is performed off-line, in isolation from the crowd 

simulation engine. However the scripts generated in the course of learning can be directly 

ported into the FreeWill's plan library. The next step is the modification of the planning 

module to take into account the newly added actions. This may for example include 

definition of pre- and postconditions for each new action. It may also be possible to utilise 

the newly learnt sequences with avatars with different body textures (if the bone structure is 

the same), to add variety to the motion (by adding a number of similar actions), or to 

replace bad hand-animated sequences. Parameterisation of the learnt sequences could also 
be attempted to allow reuse of new motion for characters with different body sizes. Figure 

33 illustrates integration of the learning module with the FreeWill system. 
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Figure 33 Integration of the learning module with FreeWill 

5.1.4 Communication with the animation package 

The learning extension presented here requires real time communication capabilities with 

the animation package. Therefore an extension of the communication mechanism described 

in the previous chapter was necessary. The learning module uses the Microsoft COM 

technology to invoke functions written in Max Script, which in turn control the behaviour of 

objects inside the animation package. In the same way the information about the objects is 

returned to the learning unit. Additionally the collision detection algorithm has been 

implemented as a plug-in integrated with the 3DS Max animation framework. 

The simulation proceeds in a number of iterations. When it is terminated the shortest 

sequences of actions fulfilling the goal of the learning task are saved into a file in a form of 

script. A typical learning cycle will generate up to several thousands different solutions, the 

final number depending on the length of the simulation and complexity of the task. The 

resulting scripts can then be verified in the animation package, imported to FreeWill and 

used to generate the final animation. The framework is depicted in Figure 34. 
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Figure 34 Communication with the animation package 

5.2 The Non-deterministic Algorithm 

Depending on the task, it is also possible to implement the action acquisition 

mechanism using the non-deterministic version of the Q-learning algorithm. This 

version of the algorithm generates more robust solutions with respect to uncertain action 

selection mechanisms and non-deterministic rewards. 

The non-deterministic update equation is: 

Q (s1, a, )=(1-an)Q (s,, a, )+a�[r, +, +ymaxQ(s±1, a)](5) 

where a� is defined as follows: a,, =1yE (0,1) 
1+ visits� (s, a) ' 

The variables s and a are respectively the state and action updated during n-th iteration 

and visits�(s, a) is the total number of times this state-action pair has been visited up to 

and including the n-th iteration (Mitchell, 1997). 

The definition of the state space and the action space remain the same. So do the 

exploration policy and the conditions under which the agent receives rewards. 
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The non-deterministic version of the learning has been applied to the inverse kinematics 

mode of control in a non-deterministic environement. Results obtained from both 

approaches have been summarised and compared in the next chapter. 

5.3 Evaluation Metrics 

The learning task defined in this chapter is in fact an optimisation problem formulated over 

the number of actions necessary to fulfil the goal. This means that apart from trying to find 

a set of transition states from the starting position to the goal state, the agent will also 

minimise the number of actions necessary to achieve its goal. Additionally, as mentioned 

before, during the process the agent may in fact find more than one sequence, all of which 

lead to the desired solution in a minimum number of steps. If the number of such solutions 

is small, they can all be reviewed manually according to some predefined criteria (the 

chosen criteria can be perceived realism of the sequence, a particular sequence of actions, 

way of approaching external objects including limb orientation in space, movement 

direction etc. ). However, in the case of more than several different solutions this approach is 

highly unfeasible. This section presents three metrics which try to select a small number of 

action sequences from the full set of generated solutions. One or more of these metrics 

would normally be used by the user to limit the number of final animation sequences which 

will be added to the plan library or directly inserted into the animated scene. 

5.3.1 Local distance metric 

The local distance metric (LDM) selects a pair of animation sequences and generates a 

distance value depicting the similarity of these sequences - the higher the distance 

value, the more dissimilar the two sequences are. The distance, which is commutative, 

is calculated on the basis of individual actions in the sequence, located on 

corresponding positions within the string. Each two such actions are compared and if 

they appear to be different, the total distance for the sequence is increased by one, 

otherwise it remains the same. The resulting set of distance values, for all permutations 

of the action sequence pairs in the input solution set, is then searched for the maximum 

and the resulting subset can be generated as pairs of sequences for which the distance is 

equal to the maximum. It is also possible to add other pairs with the distance value 

lower than the maximum within a given margin, thus allowing the user to influence the 

size of the presented subset. The formal definition of the metric is given below. 
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Let us consider two learnt sequences of the same length M, A and B, consisting of a 

number of low-level composite actions each: 

A= ala2a3a4 ... aM 

B=bbbb b (6) 
123 4* , *M 

The length of each sequence, that is their cardinality, is thus given as M= card(A) = 

card(B). A distance between two sequences A and B can now be defined - similar to the 

Hamming distance (Cover and Thomas, 1991) - as: 

M 
dAB = dBA = sign (a; 

-b; 
) I 

ýýý 

The local distance metric finds all pairs of sequences for which the distance is equal to the 

maximum distance found between any two sequences in a given set: 

dmax = max {CAB }' V, V'A#B (8) 
AES BES 

where S is a set of all sequences found for a given task. 

When applying the metric it is possible to release the constraint put on the maximum 

distance between the two sequences by setting it to a value lower than dmax, thus 

increasing the number of different pairs in the resulting set. 

Example 

A=00004444461181 
B=06000444414184 
C=06100444414187 
d, B=5 dAc=6 dBC=2, d, r, x=6 

5.3.2 Global distance metric 

The local distance metric from the previous section finds sequences, which substantially 

differ from each other, but it does not guarantee that the resulting set will be well sampled. 
This is because one sequence very different from all other ones will affect the maximum 
distance and cause this particular sequence to be paired with a number of other solutions 

which may nevertheless be mutually similar. The global distance metric (GDC) relies on 
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finding an average sequence, from which the distance of individual sequences can be 

assessed following the model defined by the local distance metric. The average sequence is 

created by finding, for each consecutive position in the sequence, an action which appears 

most frequently in this position, considering all the action sequences from the input set. The 

average sequence is thus defined as: 

Avg =1 arg max(h, (0, »,.. " ", arg max(hM (O; )) } (9) 

where the function h. (O; ) indicates the histogram of occurrences of actions on the j-th 

position in sequence O; . The average sequence is built by using the argmax - over all 

possible sequences (VO; ). Each argmax operator returns the action a in the set S of 

available actions, yielding the maximum number of occurrences in the histogram. If there 

are several maxima, then one of such actions is chosen at random. 

Example 

A=00004444461181 
B=06000444414184 
C=06100444414187 

0=06000444414181 
dAo=4 dBo=1 dco =2, dm=4 

5.3.3 Action similarity metric 

This metric is similar to the local distance metric in that it considers pairs of action 

sequences. The numbers of occurrences of each composite action within both sequences are 

counted and compared between the two sequences, the resulting differences in occurrences 

of each composite action are added up. The result is a scalar, which is higher if the 

sequences consist of a larger number of different composite actions. Thus the similarity 

metric for two action sequences A and B is defined as: 

L 
kAB = kBA = 

2: I gaj (A) - gad (B) I 
(10» 

i=1 
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where the function g,,, (S) indicates the a, bin of the histogram of occurrences over all 

actions in sequence S and L is the number of all different low-level actions used to train the 

agent. 

Example 

A=00004444461181 
B=06000444414184 

k, B= ý-41+13-21+10-01+10-0I+15-61+10-01+11 - 11+10-01+11 - 11=2 

5.4 Summary 

This chapter presented an adaptation of both Q-leaming updates to the task of automatic 

acquisition of actions for an animated bipedal avatar. The details of the state-action spaces 
for this problem have been presented as well as the exploration strategy employed. The 

integration with the main FreeWill engine has also been explained, and the modified real- 
time communication with the animation package has been illustrated. Finally, based on the 

conclusion that the algorithm may generate multiple optimisation solutions for the given 
tasks, a number of metrics have been proposed for selecting a subset of solutions. The 

reason for doing this is to further automate the process of adding new actions by presenting 
the human user with a small number of varied action sequences. 
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Chapter 6- Results and Evaluation 

The proposals presented in Chapters 4 and 5 have been implemented as a prototype version 

of the FreeWill architecture (Amiguet-Vercher et al, 2001, Szarowicz et al, 2001a, 2001b, 

2002,2003,2004,2005, Forte and Szarowicz, 2002, Szarowicz and Forte, 2003, Szarowicz 

and Remagnino, 2004, Szarowicz, 2004). Results obtained from this implementation are 

presented in this chapter. The chapter is divided in two parts. The first part presents results 

obtained from the FreeWill crowd system prototype (Sections 6.1,6.2) and includes a 

comparative study and evaluation against three other animation frameworks. The second 

part presents results generated by the learning module described in Chapter 5 and compares 

action acquisition for the two modes of control used - forward and inverse kinematics. 

6.1 Crowd Scenes 

The experiments run using the FreeWill framework involved a number of avatars 

participating in a crowd scene. The example settings are presented below. 

In the first setting the characters were placed on a sidewalk. Each avatar was given a 

primary goal of getting to the opposite end of the sidewalk, while at the same time avoiding 

collisions. Additionally a couple of avatars were defined as `friends', which resulted in a 

handshake being performed before completing the primary goal. Colourplate 2 presents the 

change of goal-directed behaviour exhibited by two avatars changing their current goals in 

order to shake hands with a friend. Before starting the simulation the avatars were placed at 

a considerable distance from each other, so that they could not see each other. They were 

also given primary goals ('get to the position (X, Y)', which in this case is the end of a 

sidewalk, Colourplate 2, shots 1-2), which they try to pursue immediately after the 

simulation is started. Hence they start walking in the opposite directions and as a result the 

distance between them decreases (Colourplate 2, shots 3-4), eventually they recognise each 

other as friends and decide to replace the main goal with an intermediate one ('shake hands 

with a friend'). Their plans are updated and they start the synchronisation sequence 

preparing for the handshake (shot 5). Next if there is no unexpected problems the 

handshake is rolled out (shots 6-8) and the avatars return to their original goal - they try to 

continue their journey to the desired location. However at this point they detect an avatar 

colliding with their chosen path so a reflexive action is submitted to the action queue 
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('avoid'), meaning all other actions are cancelled (shots 9-11). Eventually the avatars re- 

plan a new path to the goal and decide to pursue it (shot 12). 

The implemented system was able to successfully generate a scene with 20 avatars walking 

on a sidewalk, the avatars performed both reactive (collision avoidance) and proactive (the 

only implemented one was handshake) actions. Colourplate 3 presents a few shots from a 

completed animation, Colourplate 4 presents the same scene as seen by a single avatar. 

A different scene has also been generated. In this scene the avatars fight a medieval battle 

using shields and swords. This setup proved the generality of the architecture - apart from 

redefining the avatars' goals and adding a new action to the plan library ('attack and 

defend') no other changes were necessary in order to generate the scene. Colourplate 5 

presents a few shots from the second sequence. 

The evaluation criteria for the generated sequences were based on asserting lack of 

collisions in the scene, the fulfilment of avatar goals and on qualitative impression of 

believable motion. All characters achieved their goals, while managing to avoid collisions 

and perform additional actions. 
Table 6 summarises the two experiments, detailed evaluation of the system is presented in 

the following section. 

Table 6 Evaluation of the generated scenes 

Scene No. of 
avatars 

Additional actions 
performed 

Goals fulfilled Quality of generated 
motion 

Sidewalk 20 Yes Yes Good 
Castle 13 No (not defined) Yes Acceptable 

6.2 Qualitative Comparison of the FreeWill System 

FreeWill is an architecture designed to conduct simulation of multiple articulated human 

figures participating in crowd scenes. In this respect it is similar to a few other architectures 

presented in Chapters 2 and 3. In this section the main features of FreeWill are evaluated by 

comparing it to three most prominent crowd modelling systems, chosen as being 

representative to different approaches to the problem of crowd modelling. The first one is 

the ViCrowd framework which represents a recent animation generation tool proposed by 
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the research community, the second one is the industrial Massive crowd system constructed 

and successfully employed to simulate battle scenes in the "Lord of the Rings" trilogy. 

Finally, since the two systems do not exhibit any learning capabilities the C4 system is also 
included in the comparison. 

The FreeWill system, similarly to ViCrowd, is a research framework designed to simulate 

crowd scenes with many interacting avatars and is additionally aimed at being used as a 

plugin to existing professional animation packages. Although the maximum number of 

agents is smaller than in the Massive and ViCrowd systems this is imposed by the 

limitations of the animation package and can be negotiated by migrating to a better 3D 

engine. FreeWill comprises a cognitive architecture incorporating goals, knowledge (facts), 

beliefs (which are the sensed state of the world) and intentions (currently executed plan). 
FreeWill's actions include both synchronised inter-avatar actions based on finite state 

machines as well as object interaction and the primary simulation entity are individual 

agents. The reactive control is based on external events and motion control relies primarily 

on scripted high-level actions. The simulation task is fully parameterised, thus promoting 

modularity, and so for example an explicit scripting language can easily be added. 
FreeWill's main focus is on autonomous behaviour and as yet it does not allow for 

execution of scripted scenarios. The system includes a learning engine which allows for 

automatic learning of new motor actions based on simple definition of the task (only the 

goal needs to be provided), the agents do not possess any emotional states. Depending on 

the type of simulation FreeWill implements collision prediction and avoidance based on 

changing the velocity vector and also supplies full collision detection during the learning 

process. Finally the FreeWill architecture is underpinned with a software engineering 

model, documented in a modern graphical modelling language. This guarantees ease of 
implementation, expandability and system verification, promoting further growth of the 

architecture. 

None of the above architectures includes a formal agent communication language 

typical to other multi-agent systems. Similarly motion is not generated using physics- 
based simulation, but keyframing, kinematics and scripting are used instead. The table 
below summarises the most important features of each of these three architectures. 
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Chapter 6: Results and Evaluation 

In summary, FreeWill exhibits many features typically found in recent crowd simulation 

systems, such as limited autonomy, reactive events, or collision prediction. The main 

missing features compared to other similar frameworks is the lack of support for user- 
defined scenarios and emotions. However FreeWill extends the crowd simulation 
framework by adding action learning capabilities, thus removing the need for maintaining 

expensive libraries with motion captured or keyframed actions. Better collision avoidance, 

compared to existing systems, has also been added. An important aspect of the architecture 
is the existing UML documentation, as the design of other crowd simulation systems has 

not been documented in any formal way. Existing documentation allows to easily 
implement a similar system and also to immediately include a set of modules affirmed as 

necessary components of such an animation framework. Furthermore a well-defined design 

and development process can also be followed. A number of extensions could still be made 

to make FreeWill more reliable and flexible, these will be discussed in Chapter 7. 

6.3 The Learning Tasks 

Two learning tasks have been defined and executed using the learning module presented in 

the previous chapter. The first task required the avatar to learn how to open and pass 

through a locked door. In the second task the character had to lift a stationary object. Each 

task was conducted using both the forward and inverse kinematics control modes. Table 8 

illustrates all experiments, details are provided below. 

Table 8 The learning experiments 

Forward Kinematics Inverse Kinematics 

Door Opening Task Experiment 1.1 Experiment 1.3 
Ex eriment 1.2 

Teapot Task Experiment 2.1 Experiment 2.3 
Experiment 2.2 

The door opening task 

For this task the goal of the agent is to get through a locked door. The door would be 

unlocked upon touching the door handle (although this could easily be extended by adding 

a simple animation in which the agent actually rotates the handle, as demonstrated in the 

second experiment). The avatar would then have to push the door and pass through. The 

agent is rewarded whenever its position is behind the door. The simple actions available to 

the agent were selected from Table 5, for the FK these were actions 1,2,3,7 (Experiment 

93 



Chapter 6: Results and Evaluation 

1.1) and 1,2,3,4,5,7 (Experiment 1.2), da was set to 20 degrees, step size (Ax in action 7) 

was 35 cm, in all experiments y=0.95. Experiment 1.2 differed from Experiment 1.1 in 

that two additional degrees of freedom for the arm motion were added. Therefore the state 

space for the first experiment consisted of approximately 12000 states distributed across 4 

dimensions (2 degrees of freedom for the left arm, 1 for the left forearm and 1 for 

backward/forward walk, the sizes of these dimensions were 12,16,11 and 6 respectively). 

Eight simple actions were available to the agent at each time step. These were three 

rotations - two for the arm and one for the forearm - in two opposite directions and walk 

along one axis (2*3+2). The two additional degrees of freedom of the hand (hand and arm 

rotation around the z-axis, 13 different positions for each) added for the second experiment 

made the total number of states of over 2 million and 12 actions per state. In the first 

experiment the solution is usually found in only about 250 iterations, the second experiment 

requires at least 1500 iterations. The lengths of the shortest solutions in both experiments 

were 5 simple actions. 

The task of experiment 1.3 is the same as for the previous ones but the mode of control and 

the state and action spaces have been changed. The simple actions available to the agent are 

1,2,3 and 5 (Table 5, inverse kinematics column), Ax = 35 cm for walk (the size of a single 

step) and Ax = Ay = dz =5 cm for the motion of a hand, y=0.95. Thus a 3-dimensional 

cube of x, y, z positions around the initial position of the avatar's hand has been defined, the 

last dimension was walk along one axis. Therefore the agent could choose from 8 simple 

actions - hand motion along 3 spatial axes in two opposite directions for each axis plus 

walk (2*3+2). The total simulated state space was 1 296 000, however this initial number 

was highly redundant and could be reduced to 6720 (8 states for the x-direction, 14 for y 

and 10 for z, plus 6 positions for the walk). This reduction will be demonstrated in the 

second task (see below). Similarly as before the solution is usually found in a few hundred 

iterations. 

The teapot lifting task 

The goal here is to lift a teapot (z co-ordinate of the teapot position has to increase). 

Therefore the agent is rewarded whenever the end position of the teapot is higher than the 

start position. The simple actions available to the agent are again selected from Table 5, for 

the FK these are actions 1,2,3,4,6 (experiment 2.1 and 2.2). Unlike in the previous task, the 
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agent was assigned an additional action (action 6- grab an object) which improved the 

resulting animation and served as a means of representing the state of the teapot 

(grabbed/not grabbed). The learning parameters were set as follows: zlalpha was set to 20 

degrees in experiment 2.1 and to 10 degrees in 2.2 and y=0.95. The difference between 

experiments 2.1 and 2.2 is therefore not in the size of the state-space but in the sampling of 

it - the space axes are sampled more densely and thus the state space size of the second task 

is larger. The state-space in the first experiment consists of about 13000 states, and for the 

second one is about ten times bigger (121 000 states). The dimensionality of both tasks is 5 

-2 degrees of freedom for the left arm, 1 for the left forearm, 1 for hand rotation and 1 for 

the state of the teapot. The respective size of these dimensions are 7,12,11,7,2 for 

experiment 2.1 and 12,20,18,14,2 for experiment 2.2. Ten simple actions are available to 

the agent at each time step (2 for each state-space dimension, as described earlier). The 

minimum number of iterations for the first experiment is about 4 000 and 20 500 for the 

second one. Thus, despite the tenfold growth of the state-space, the minimum number of 
iterations increased by a factor of about 5. The lengths of the best solutions found are 9 and 
14 respectively (differences resulting from different definitions of the state space). 

Similarly an experiment with biped control using inverse kinematics control mode when 

attempting to lift the teapot has also been conducted (Experiment 2.3). The simple actions 

available to the agent in this case are actions 1,2,3 and 4 from Table 5 (inverse kinematics 

column), and Ax = dy = dz =8 cm for the motion of a hand, y=0.95. Therefore the state- 

space is 4-dimensional and the agent can choose from 8 simple actions - hand motion along 
3 spatial axes in two opposite directions for each axis plus the grabbing action. The total 

size of state space is only 2240 (8* 14* 10*2). The algorithm needs about 800 iterations to 

find a solution, and the best solution found was 10 actions long. 

For both tasks the number of states across each dimension was chosen to provide 

sufficient sensitivity but also to eliminate as many unnecessary states as possible. 
Therefore only reasonable angles for joint movements were selected, these were taken 

from human joint constraints: forearm can only rotate by about 180 degrees around the 

x-axis, arm 270 degrees around the x-axis (forward/backward) and 180 degrees around 

the y-axis (up/down). Two additional states were added for each joint to represent the 

illegal motions, so called forbidden states (e. g. for the forearm rotation -20 degrees and 
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200 degrees would be the forbidden states). For walking only the route through the door 

was represented as walking to the door could easily be achieved within the FreeWill 

system. Finally in all experiments the Q-table was represented as a lookup table and the 

values were initialised to 0 before the simulation. 

Results of all experiments are summarised in Table 9 and Table 10, the number of iterations 

required to find a stable optimum solution would normally be 1.5-2 times higher than these 

presented in Table 10. Example sequences (Experiment 2.3) are depicted in Colourplate 6. 

Table 9 Resulting action sequences for the teapot problem 

Example action 
sequence 

Length of the shortest 
sequence found 

Door task: 
FK control (1.1) 1 1666 5 
FK control (1.2) 14666 5 
IK control (1.3) 24666 5 
Teapot task: 
FK control (2.1) 340442187 9 
FKcontrol (2.2) 40000226 1 24 1 87 14 
IK control (2.3) 1124422060 10 

Table 10 Summary of the learning experiments (*simulated state space, **sufficient state space) 

FK IK 
State space Actions/ Min. no. State space Actions/ Min. no. 
(dimensio- state iterations to (dimensio- state iterations to 

nality) find a nality) find a solution 
solution 

12672 8 200 1 296 000* (4D) 
** ** Door (6720) 8 700 2 141 568 12 1500 (6D) 

12936 10 4000 
T p (5D) 2240 

ea ot 8 800 120 960 (4D) 
5D 10 20500 

Convergence and average reward graphs for the teapot simulation are depicted in Figure 

35-Figure 40. Figure 35, Figure 37 and Figure 39 present convergence graphs depicting 

the total Q-value (sum of Q-values from the entire Q-table) as a function of the number 

of epochs. The fastest and most distinct convergence can be observed for Experiment 

2.3 (IK control) and the slowest is for Experiment 2.2 (FK with larger state-space). 
Similarly Figure 36, Figure 38 and Figure 40 present a sum of rewards received by an 
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agent at the end of an epoch as a function of the number of epochs, calculated as a sum 

of all Q-values and rewards collected by the agent in the states visited between the start 

state and the absorbing state. In the first and last figure the curve is relatively flat for 

most of the simulation. This is because the agent reaches the predefined limit on the 

number of visited states without receiving a reward relatively often. In such a case the 

agent is placed in a new random state and his reward sum is set to zero. When the 

constraint is released (toward the end of the simulation) the longer spikes represent 

epochs in which the agent was stuck in local minima for a long period of time and 

managed to accumulate high rewards. When this constraint is not imposed at all (Figure 

38) the sum of rewards grows during the initial exploration phase and eventually 

stabilizes for the rest of the simulation. The resulting animation solution is identical to 

the previous case, only the way of exploring the state space proceeds in a different 

manner. Sequences of shots from resulting animations are presented in Colourplates 6- 

10. 
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Figure 35 Convergence graph for the FK teapot problem (Experiment 2.1) 
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Figure 36 Reward received by an agent (the peaks at the end are caused by removing the limit on 
maximum number of random actions, averaged over samples of 20 values), Experiment 2.1 
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Figure 37 Convergence graph for the FK teapot problem (Experiment 2.2) 
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Figure 38 Reward received by an agent (the limit on maximum number of visited states during the 
exploration phase was increased ten times in this experiment, compared to Experiment 2.1, so it almost 

did not affect the curve), averaged over samples of 20 values, Experiment 2.2 
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Figure 39 Convergence graph for the IK teapot problem (Experiment 2.3) 
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Figure 40 Reward received by an agent (the peak at the end is again caused by removing the limit on 
maximum number of steps per epoch in the exploration phase), averaged over samples of 20 values, 

Experiment 2.3 

6.4 Time Requirements of the Deterministic Algorithm 

This section compares the execution time of the algorithm on a computer with Pentium 

11 400 MHz processor and 384MB RAM running version 3.1 of the 3D Studio Max 

package and Character Studio version 3.0. The execution times presented here are 

intended only to allow for relative comparisons as the actual timing may be influenced 

by many factors such as processor speed and workload, communication speed between 

the COM interfaces, the quality of the random number generator (e. g. if the same, 

already performed action, is repeated a number of times) and also by the working speed 

of the animation package. Additionally it is difficult to assess the overheads introduced 

by the inter-application interfaces, plugin communication and execution and collision 

detection routines. Therefore the purpose of presenting them here is to allow the 

comparison between the Q-learning implementation and an exhaustive search 

performed in similar conditions on the same task state space. 

The times obtained differ considerably for each of the simulations presented above. For 

example, despite defining a relatively large state space for the door opening task, the 

actual part of the state space necessary to solve the problem is only a small fraction of it. 

Hence the algorithm produces the results very quickly (and in a small number of 
iterations) -3 minutes for Experiment 1.1,8 minutes for 1.2 and 9 minutes for 1.3. For 

comparison, it takes only 30 seconds (6 times faster) for experiment 1.1 to run on 1,5 

GHz processor with 0,5 GB RAM. The results of experiment 2 were as follows: over 
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5.5 hours for experiment 2.1,3-4 days for experiments 2.2 and 130 minutes for 2.3. The 

timing however strongly depends on the actual number of iterations performed and 

increases quickly as the agent explores the state space, finds a solution and then gets 

stuck in local minima. Times for all experiments are shown in Table 11. The table 

presents average numbers of iterations necessary to reach any correct solution for all 

three experiments. Similarly, numbers of iterations necessary to reach the best solution 
for a given task (as found at the end of simulation, after convergence had been reached), 

and times necessary to accomplish these given numbers of iterations using the 

experimental setup defined before are also presented. 

Table 11 Simulation times for the Q-learning implementation 

Experiment Avg. no Avg. no iterations Avg. time for Avg. time for 
iterations to to reach the best first solution the best 

reach a solution found solution 
solution 

FK (2.1) 3800 5000 5.5 hours 6 hours 
FK (2.2) 20500 45000 18 hours 4 days 
IK (2.3) 800 1500 80 minutes 130 minutes 

For comparison, assuming that the avatar control system performs 12 actions per second 
for the FK algorithm and about 9 for the IK task (which are the numbers of actions per 

second obtained during the learning task) the times necessary for exhaustive search of 

the state space would be as presented in Table 12. The length of the sequence was 

assumed to be shorter by two actions compared to the best solutions found by the Q- 

learning algorithm to allow for possible better solutions, this is 12 and 8 actions for FK 

and IK respectively (please refer to Table 9). Additionally the size of the action set 

available in each state was reduced by 2 for the forward kinematics case (only the more 

complex task was considered) to 8 actions and by 1 in the case of the inverse kinematics 

control, which means 7 actions were considered in each state. These reductions 

approximate the pruning of the search tree as a result of collisions and other forbidden 

A 
movements. The time estimates (t) were calculated according to this equation: 

NM 
Ns 
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where NA is the number of actions which the agent can choose from in each state, M is 

the assumed length of the optimum sequence and Ns is the number of actions per 

second which can be executed by the software when the agent is continuously 

performing the actions. 

Table 12 Simulation times of an exhaustive search 

Control 
method 

Actions per 
state 

Sequence length No. actions per 
second 

Time [seconds] 

FK 8 12 12 5.7 * 109 (_ 181 years) 
IK 7 8 9 6.4 * 105 (- 7.5 days) 

The results depicted in Table 12 show that an exhaustive search performed on the FK 

state space would require over 180 years to complete (assuming that the optimum 

sequence is shorter by two actions from the best Q-learning solution found). The result 
for the IK is only about 7.5 days, this is nevertheless still substantially longer then the 

results obtained using Q-learning. The difference for the estimated search times between 

the FK and IK modes is caused by the fact that the IK state space is noticeably smaller, 

however the FK results demonstrate that as the space size increases the search quickly 

becomes unfeasible, even when it is still possible to find a solution using the Q-learning 

method. 

6.5 Learning Using the Non-deterministic Algorithm 

This section presents results obtained when applying the non-deterministic update of the 

Q-learning algorithm to the task of action acquisition. The task implemented using this 

technique is the IK-controlled teapot problem. The state space is the same as in the 

deterministic implementation, and the length of the shortest solution is also 10 simple 

actions (Table 13). The convergence is reached faster - in approximately 800 

interactions as opposed to about 3000 in the deterministic case and the time necessary to 

reach the optimum solution is shorter as well - about 90 minutes on average (550 

iterations). The convergence is also more pronounced (Figure 41). This suggests that the 

non-deterministic version of the algorithm generates comparable results in a shorter 

amount of time. Figure 42 presents the stabilisation of the total sum of rewards with the 

number of epochs. 
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Table 13 Resulting action sequences for the teapot problem 

Teapot State Actions Example action Length of the shortest 
task: space per state sequence sequence found 
IK control 2240 8 2144122064 10 
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Figure 41 Convergence graph for the IK teapot non-deterministic problem 
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Figure 42 Reward received by an agent in the IK teapot non-deterministic problem 

6.6 Learning with Non-deterministic Action Selection 

An additional simulation with the non-deterministic update has also been executed, in 

which the outcome of the action selection was randomised in some percentage of cases. 

The action selected by the agent according to its Q-table was replaced with a random 
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action with some predefined probability. The results of that simulation for different 

levels of action randomisation are presented in Figure 43. 
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Figure 43 Convergence for randomised action selection updates 

As presented in Figure 43 the speed of convergence is decreased with the growth of the 

uncertainty of the action selection mechanism. However, convergence is still reached 

even for relatively high uncertainty levels. Although the results of this experiment do 

not have much significance in a fully predictable animated landscape, they suggest 

possible utilisation of the action acquisition scheme for robotic environments. 

6.7 Evaluation of the Learning Results 

The results presented in the previous sections indicate that the [K learning mode is 

faster and easier to implement. The convergence is reached in a smaller number of 

iterations, compared to the FK case, and is more pronounced (the curve is flatter). 

However the ultimate assessment can only be made upon analysing the resulting 

animations. Because of the relative simplicity of the door opening tasks, the results 

obtained for this task are not very different (see Colourplate ll for comparison with real 

data). However noticeable differences exist in the second learning task. In experiment 

2.1 (rarely sampled forward kinematics control) most of the results are of insufficient 

quality - the motions are too jerky and inaccurate. This has been improved substantially 
by increasing the sampling rate of the state space - results obtained from experiment 2.2 
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are of sufficient visual quality. Some artefacts still remain however - this mainly 

concerns unnecessary motions and especially a zigzag-like way of approaching the 

teapot which is present in some animations, but the result is resembling human motion 

with a sufficient detail as demonstrated in Colourplate 7 and 8. Indeed the way of 

executing the action achieved using the FK mode of control matches the way of 

executing the same action by a human actor without giving her additional guidelines 

prior to performing the task. 

Results yielded by Experiment 2.3 are also interesting. First of all the state space is 

substantially smaller than for the FK experiments and therefore the solutions are found 

in fewer iterations. The resulting motion looks realistic, despite the fact that the human 

actor did not initially perform the action in the way suggested by the IK solution. This 

does not mean humans cannot perform the lifting task in this way as demonstrated in 

Colourplate 9 and 10, and the reason for this way being less natural is only in the fact 

that the table was relatively high. Reducing the height of the table changes the way of 

performing the task by humans (the hand does not have to be moved around the table). 

Moreover, the generated motion still looks natural, and contains fewer unnecessary 

artefacts compared to the FK solution, because IK control implicitly rejects some of the 

unnecessary moves. The IK state space can be represented in a more compact way (only 

three values need to be stored regardless of the hand position). This however causes 

problems when more expressive motion or combination of different modes of control 

are required (for the door opening task it was necessary to combine IK hand control and 

walking), as the representation of the state space for such extensions is more uniform 

when using the FK approach. The main problem with FK approach is its extensibility - 
additional degrees of freedom very quickly expand the state space and substantially 
increase the number of iterations required to find a solution. Therefore tasks for which 

more than 6-7 degrees of freedom is necessary may have to be simulated using the more 

compact IK control. 

It also appears that the non-deterministic algorithm generates the solution faster than the 

deterministic one, maintaining the same quality of the results. Future implementations 

therefore should rely on this version of the Q-learning technique. 
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The number of iterations required to reach convergence differs from about 700 to about 

20 000 (and amounts to 100 000 only for the most complex problem), with about 100- 

130 state transitions on average per iteration. These are relatively small values, for 

example Laurent and Piat (2001) used 2 million steps for their enhanced Q-learning 

algorithm and Aljibury et al (2002) report 650 million Q-table updates during a 10-day 

simulation. The reason for this discrepancy is a rather small state space for the IK- 

controlled problems and also the modified exploration strategy in the final stages of the 

algorithm execution (bias towards one starting state). The result is comparable to other 

work for the most complex FK task (over 10 million updates). 

In summary the learning technique presented here generated satisfactory results when 

applied to a non-trivial task. Comparison of the generated motion to the motion of a 
human actor indicates that the sequence is sufficiently realistic to be applied in a crowd 

scene. Although the technique appears to be difficult to scale up, some extensions, 

especially using the IK control, will be possible to it, allowing to add a few additional 
degrees of freedom to simulate a task requiring the use of both hands or the head motion 
by the simulated biped. Additionally results obtained with a better hardware 

configuration suggest that a modern computer will improve the learning times by at 
least one order of magnitude. 

6.8 Metrics Applied to the Learnt Sets 

Based on two result sets generated by the learning algorithm the Local Distance Metric 

and the Global Distance Metric have been calculated. The first result set (Set 1) 

contained 651 sequences each consisting of 14 actions obtained from experiment 2.2, 

the second set contained 72 sequences (Set 2) with 11 actions each, generated by 

experiment 2.3. The reduced sets generated by the metrics are presented below. 

LDC applied to Set 1 generated 120 sequences with the maximum distance of 12 (all 

pairs have been included in Appendix E). 

LDC applied to Set 2 generated 72 pairs of sequences with the maximum distance of 8. 

An example of such a pair has been presented in Colourplate 6. 

GDC applied to Set 1 generated 40 sequences most distant from the averaged sequence, 

the maximum distance was 8. 
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GDC applied to Set 2 generated 4 sequences most distant from the averaged sequence, 

the maximum distance was 6. The four resulting sequences were: 

241 14 220460 (seq 25, Colourplate 12) 
24 14 12 20460 (seq 29, Colourplate 12) 
44 1 12220460(seg60) 
44121220460(seg65) 

Although these sequences are the most distant from the average, they are relatively 

similar (see Colourplate 12) and therefore an extension of this approach has been 

proposed. The resulting set proposed for addition to the plan library should include 

sequences for which the GDC generates the highest and the smallest values thus 

guaranteeing to include both most average and most different sequences. Rerun of the 

GDC algorithm with a distance of 0 resulted in further 4 sequences being proposed for 

the action library: 

1 14 44222060 (seq 8, Colourplate 13) 
41 14 4222060 (seq 41, Colourplate 13) 
41414222060(seg46) 
41441222060(seg51) 

This extension of the algorithm applied to Set 1 generated additional 10 sequences. 

The results indicate that for large sets of sequences the sets of sequence pairs generated 

by the LCD are still too large to be analysed individually. The GDC metric reduces the 

amount of resulting sequences, however the most distant solutions appear to be very 

similar. The proposed extension of generating both most distant and most average 

solutions and selecting a few examples from each set overcomes this problem. 

6.9 Other Applications of the Learning Technique 

A filled Q-table contains optimum transitions from any state to the goal state. Therefore 

the results of the learning tasks demonstrated in this chapter can be used to create 

animations from any starting position of the agent thus adding more than one specific 

action to the plan library at a time. It may even be possible to store the learnt Q-tables 

rather than single action sequences and use them whenever the agent needs to perform 

an action starting from a state present in the Q-table and ending in a goal state defined 
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for the specific learning task for which the Q-table was generated. For an example, see 

Colourplate 14. 

Similarly the Q-learning technique may be used to learn the same action for a different 

configuration of objects (for example the size of the table or teapot may be different) 

and encode this different configuration as a set of varying preconditions for the same 

action. Equally the size of the avatar itself can be changed and a new solution for a 

different character may be generated (see Pollard and Hodgins, 1998 for a different 

solution to this problem). 

Another benefit of using the learning technique for action acquisition is that the 

resulting sequence comes in a form of a script, which can then easily be manipulated 

and parameterised and also incorporated into other animation tools. This is in strong 

opposition to the keyframing and motion capture based approaches which, although 

easily portable and capable of delivering realistic motion, are nevertheless difficult to 

modify using automatic methods. This advantage is also utilised when calculating the 

metrics presented in the previous sections, as it is otherwise difficult to calculate metrics 
for motion sequences without underlying semantic representation. 

Finally the technique can be applied to other research domains such as robotics, 

provided the robot can already perform basic actions such as walking. 
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Chapter 7- Conclusions and Future Work 

The aim of this thesis was to create an architecture capable of automatic generation of 

crowd scenes with many interacting human-like characters. Research was conducted in 

two stages - first of all, a general architecture for crowd simulation was proposed and 

an initial prototype was built. Second stage was to enhance the action library by adding 

algorithms for fully automatic acquisition of actions. This chapter discusses the main 

achievements of the project, highlighting the strengths and weaknesses of the proposed 

solutions. 

7.1 Analysis of the Industrial and Research Systems 

As discussed in Chapter 2 some of those packages offer limited character and crowd 

extensions, but the main identified problems included lack of AI-based frameworks, 

collision detection and focus on animating rather than directing the crowd sequences. 
The Massive system, for example, partially overcomes some of the problems but it 

remains a specialised engine, which also heavily relies on a large database of motion 

captured clips, which are usually difficult to obtain and often must be recorded for 

specific tasks. 

Although many academic animation architectures present a great potential, they are 

usually too specific to generate multiple crowd participants able to interact with each 

other and the environment. Existing crowd systems, on the other hand, do not offer any 

action acquisition mechanisms, and often rely mainly on pre-recorded scenarios without 

sufficient scope for character autonomy. Physics-based systems at the moment do not 

offer any intelligent capabilities and are usually computationally very expensive. Agent 

systems address the problems of agent communication, social behaviour and knowledge 

representation but they are rather generic, without explicitly addressing the problem of 
implementing animated agents. Additionally none of the reviewed frameworks offered a 

way of integrating with existing professional tools, the design process has not been 

documented nor a uniform design and documentation notation selected. 
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The importance of a better crowd modelling tool has been pointed out in this work. 

Such an architecture should comply with the recent advances in software engineering 

and should also easily integrate with existing animation systems. 

7.2 Main Features of the Proposed Framework 

FreeWill extends both the SAC and FCA architectures, using some of their underlying 

concepts. It recognises the need for multilayered character structure (necessary to 

represent the creature's body), simple motion patterns, and cognitive capabilities. It also 

uses the agent-derived concepts of beliefs, goals and intentions and maintains plan 

libraries. FreeWill represents the view that events should be represented as entities 

external to the agent. This is based on the assumption that any process not comprising 

part of the agent should not be included in its design, including sensory events and 

action execution. Such an approach simplifies the design of the system, as the sense- 

think-act loop only relies on one type of event. FreeWill addresses the problem of 

collision detection, missing in many of the professional packages, collision detection is 

handled by each character separately. The motion layer of the FreeWill agents is 

managed by an external animation engine and relies on kinematics motion. Agents 

maintain a list of currently executed actions and goals, they can plan ahead and sense 

the environment. Full UML documentation of the system is provided and several 

different communication techniques with the animation package are proposed. However 

FreeWill does not address the problem of representing character emotions and scenario 

prototyping is not possible within the framework. Also action acquisition remains a 

problem, as all new actions have to be manually scripted. Therefore an important 

extension to the FreeWill architecture has been developed that allows for automatic 

acquisition of actions. The underlying algorithm relies on one of the machine learning 

techniques, namely Q-learning. 

The learning requires a discretisation of the state space and also an explicitly defined set 

of simple actions. At this stage the only required input is the goal of the learning task, 

and the action sequence fulfilling the goal is found automatically. Two control 

mechanisms can be used to learn the new action - the forward and inverse kinematics, 

and additionally both the deterministic and non-deterministic Q-learning algorithms are 

proposed for investigation. Such a definition of the learning task however generates 
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multiple solutions, posing a problem of how to select a few most suitable. In the case 

when only a small number of such solutions is found, these can be presented to the 

human user for selection or all of the solutions can directly be added to the action 

library. However in most cases the number of solutions found exceeds a hundred. To 

allow for automatic selection of learnt sequences a number of metrics is proposed. The 

aim is to select a small number of varying action sequences. 

7.3 Outcomes 

Upon implementing the FreeWill architecture, the observed results confirm that the 

current set of AI tools (such as planning, machine learning, finite state machines and 

agent-oriented approach) generates a crowd simulation framework which is 

significantly more versatile than existing state-of-the-art approaches, providing 

additional functionalities. The architecture generates believable animation sequences 
(Colourplates 2-5) and it is easy to redefine character actions and goals. The number of 

participating characters is limited only by the capabilities of the animation packages 

used, and the speed of the microprocessor. In many respects the architecture 

outperforms existing approaches by applying the learning mechanism, providing better 

collision detection and easy integration with existing tools. The learning results for the 

simulated tasks are comparable with real human motion (see Colourplates 7-11), can 

easily be parameterised and extended. The results indicate slight superiority of the non- 

deterministic Q-learning algorithm, and also show that the IK control method promises 

greater scope for extendibility. The IK-controlled, non-deterministic algorithm is also 

the fastest converging one. Although the learning system is far from real-time 

performance, the pre-processing must only be done once, and a sufficiently rich action 
library will allow for generation of scenes with avatars presenting extensive behaviour 

"repertoires". The metrics also fulfil their role (Colourplates 12,13), although the 

application of the global distance metric had to be modified as a result of the 

experiments conducted. The proposed set of actions should consist of both maximum 

and minimum distance actions. 
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7.4 Main Contribution of the Project 

This section again shortly summarises the main contribution of the thesis. 

State of the art 
This work presented an extensive overview of the field of character animation including 

industrial and research systems. The review included such domains as animation 

architectures, motion capture, crowd simulation and rapid animation prototyping. The 

suitability of different agent design methodologies to character creation has also been 

considered. It has been established that there is a potential for such applications to be 

made in automatic crowd modelling systems. Additionally Reinforcement Learning in 

the context of character animation has been discussed. 

A new architecture 
Based on the conclusions from the literature review a new hybrid animation architecture 

called FreeWill has been proposed. It combines the multiagent as well as the animation 

concepts. The architecture defines all main components of a crowd simulation 

architecture and a design framework documented in UML. The main distinguishing 

aspects of the architecture are uniform representation of actions and external events. 

Other important features are also goals, plan libraries and collision avoidance. The 

system allows modelling both inter-agent and agent-object actions. A prototype version 

of the proposed architecture has been implemented and evaluated. Three types of 

possible communication with professional animation packages have been identified and 

applied to the architecture. 

Action acquisition 
The proposed architecture has been extended to accommodate automatic action 

acquisition based on machine learning. The chosen algorithm was Q-learning and both 

the deterministic and the non-deterministic versions of the algorithm have been applied 

to the task of motor learning. The results are complex actions with quality comparable 

to real human motion. Two modes of control - forward kinematics and inverse 

kinematics were used in conjunction with the learning algorithm. This allowed for 

comparison of the two techniques along such dimensions as size of the state space, 
learning time and quality of the results. 
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Animation metrics 
A number of metrics have been proposed to select a representative sample of solutions 
from the results generated by the learning algorithms. 

7.5 General Assessment of the System 

The proposed architecture has been qualitatively compared with three other important 

architectures - two representative to academic research and another one applied by the 

industry to generate special effects in film postproduction. As a result the FreeWill 

architecture appears to offer a similar set of features regarding knowledge 

representation, behavioural modelling, reactive control, and autonomy. A number of 

properties have also been identified in which the new architecture outperforms the 

existing frameworks. This includes learning, collision avoidance algorithms applied and 

the software engineering approach. Also the learning algorithm generates realistic 

results in a relatively small number of iterations and allows for motion prototyping or 

even complete replacement of other expensive techniques for crowds where fine detail 

is not a crucial factor. The architecture integrates easily with existing professional 

packages what was one of its design principles. 

It is therefore believed that the problem of proposing a flexible character animation 

framework based on current advances in Artificial Intelligence has been solved. 

7.6 Possible Extensions 

A number of extensions can be made to the presented architecture. Some most obvious 

would involve implementing the features missing in the current prototype. This might 
include replacement of the current ad hoc planning routines with a complete planning 

algorithm based on one of the inference engines. A method of automatic import of 

predefined 3D scenes into the system and labelling the scene elements would also 

enhance the capabilities of the existing implementation. 

It would also be useful to expand the architecture by adding some features present in 

other systems, as identified in Chapter 6. Adding scenarios and other motion control 

approaches such as import of motion capture files or keyframed sequences should not 
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be too difficult, especially if the rendering is done in a professional animation system. 

An increase in the sampling of the IK state space may also be necessary. Although the 

assumed sampling generates good results, a better sensitivity would be necessary in task 

relying on finer object control. The state space itself should be extended to allow for 

more complex tasks. This might include defining additional degrees of freedom to 

accommodate other limbs (e. g. the right hand), spine and head. Current results suggest 

that 3-4 additional degrees of freedom in the IK experiments should be a feasible 

extension. A useful approach might be to start learning with a coarsely defined state 

space and gradually increase the sampling rate in the regions of the state space visited 

when generating the approximate solution. Some experiments involving the learning 

parameters y and a may also be attempted to identify values yielding highest 

convergence speed. Finally modelling of character emotions could be proposed, which 

would however require relatively large modifications of the architecture (for example 

the characters should be able to vary their motion to allow them to display emotions, 

some emotion representation scheme would also be necessary, events influencing 

character emotions must be identified). 

Future research might concentrate on further optimisation of the learning task 

(modification of the non-deterministic IK-based learning scheme seems to be a good 

starting candidate). It would also be interesting to explore other learning algorithms to 

find one which can learn the best action sequence in the shortest amount of time. Such 

an attempt has already been made (see Lach 2003) and the attempted technique was 

genetic programming (Koza, 1992). Also genetic algorithms could be used for this task. 

A comparison of two or more different learning approaches applied to the same task 

might then be attempted. A way of tackling the state explosion identified by the learning 

routines might also be to use neural networks (Haykin and Saher, 1999). 

Another application of the presented system would be an on-line learning crowd system. 
The starting point would be a FreeWill system with very few actions present in the plan 
library. In the course of the simulation the agents could apply the learning framework to 

tackle a particular problem, such as using a lift. This would allow for greater flexibility 

compared to other systems as the application of the learning scheme allows to adjust the 

same action to the needs of a specific agent (position, body orientation, size of the 
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avatar etc. ). Thus the characters would populate the action library with new actions 
learnt `on demand'. It is expected that a varied and interesting scene would be generated 

with this approach. It might also be possible to reapply the learning scheme to the newly 

created high-level actions, thus creating composite actions and effectively building a 
hierarchical reinforcement learning system. 
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Appendix B- FreeWill Algorithms 

Al. Algorithm controlling an avatar's behaviour (pseudocode, see Section 4.5) 
DoSensing() 
{ 

image = Body. Sense() 
{ 

return VisionCone. Getlmage() 
} 
Mind. UpdateWorldNodel(image) 
{ 

Knowledgesase. ModifyWorld(image) 
{ 

WorldModel. ModifyWorld(image) 
} 

} 
Mind. RevisePlan() 
{ 

ActionPlanner. Plan() 
{ 

KnowledgeBase. GetGoals() 
ExploreSolutions() 
KnowledgeBase. GetObjectInfo() 
{ 

WorldModel. GetObjectAttribs() 
} 
CreatePlanC) 
lastAction = SelectLastPlannedActionC) 
MotionControl. Decompose(lastAction) 

} 
action = Mind. PickAction() 
{ 

microAction = ActionPlanner. GetMicroACtionC) 
{ 

return MotionControl. GetCurrentAction() 
} 

return microAction 
} 
return ConvertActionToEvent(action) 

A2. The synchronisation algorithm (pseudocode, see Section 4.6) 

if (self. state == STATE_WALKING) 
{ 

if (friend = SeeFriend() && ! ShakenHandsYet(friend)) 
{ 

if (plan empty) 
{ 

aGoal = new Goal(friend. x, friend. y); 
knowledgeBase. SubstituteCurrentGoal(aGoal); 

if (GetDistToFriend() > 2*STEP_SIZE) 
{ 

add to plan (turn to goal) // goal == friend 
add to plan (make step) 

} 
else 
{ 

if (friend. State == STATE_PREPARING) 
(friend. State == STATE_WAITING)) 

{ 
if ((DistanceToFriend - STEP_LENGTH) > 

FRIEND_HANDSHAKE_DISTANCE) 
{ 

add to plan (turn to goal) // goal == friend 
add to plan (make step) 

} 
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else 
{ 

add to plan (turn to goal) II goal == friend 

stepSize = DistanceToFriend - 
FRIEND_HANDSHAKE_DISTANCE - STEP_LENGTH 

add to plan (make step, stepSize) 

add to plan (step in place) 
add to plan (raise hand) 
self. SetState(STATE_PREPARING); 

} 
} 
else 
{ 

add to plan (step in place) 
add to plan (raise hand) 
self. SetState(STATE_PREPARING); 

} 
} 

else 
execute last action from the plan 

} 

else 
{ 

plan other actions 
} 

} 
else if (self. state == STATE_PREPARING) 
{ 

if (self. ready()) 
self. SetState(STATE_WAITING); 
if (plan empty) 
add to plan (no action) II wait until finished 

} 
else if (self. state == STATE_WAITING) 

if (friend. ready()) 11 (friend. executing()) 
{ 

add to plan (shake hand) 
self. SetState(STATE_EXECUTING); 

} 
else II wait for the friend 
{ 

if (plan empty) 
add to plan (no action) 

} 
} 
else if (self. state == STATE_EXECUTING)If when shakehand executed - finish 
{ 

add to plan (lower hand) 
add to plan (step in place) 
add to plan (step in place) 

self. SetState(STATE_WALKING); 
knowledgeBase. ResumePrimaryGoal 
SetHasShakenHands(friend); 

} 
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Appendix C- Example 3DS Max Scripts 
B1. The handshake script 
The script generates a handshake action for two avatars 

--seting control params for the biped 
RarmCont3 = (biped. getNode currentBip 2). transform. controller 
LarmCont3 = (biped. getNode currentBip 1). transform. controller 
RArm3 = biped. getNode currentBip 2 link: 2 
LArm3 = biped. getNode currentBip 1 link: 2 
RForearm3 = biped. getNode currentBip 2 link: 3 
LForearm3 = biped. getNode currentBip 1 link: 3 
RHand3 = biped. getNode currentBip 2 link: 4 
LHand3 = biped. getNode currentBip 1 link: 4 

--animation sequence now interlaced 
animButtonState=on 

--bip01 then bip02 
biped. AddNewKey LarmCont3 sliderTime 
biped. AddNewKey RarmCont3 sliderTime 

sliderTime = sliderTime+20 

rotate RForearm3 30 [-1,0,0] 
biped. AddNewKey LarmCont3 sliderTime 
biped. AddNewKey RarmCont3 sliderTime 

sliderTime = sliderTime+20 

rotate RForearm3 80 [0,0, -1] 
biped. AddNewKey LarmCont3 sliderTime 
biped. AddNewKey RarmCont3 sliderTime 

sliderTime = sliderTime+22 
rotate RHand3 10 [0,0, -i] 
biped. AddNewKey LarmCont3 sliderTime 
biped. AddNewKey RarmCont3 sliderTime 

-- moving down both hands 
sliderTime = sliderTime+14 
rotate RForearm3 10 [0,0,1] 
biped. AddNewKey LarmCont3 sliderTime 
biped. AddNewKey RarmCont3 sliderTime 

-- compensating with the hand 

rotate RHand3 10 [0,1, -1] 
biped. AddNewKey LarmCont3 sliderTime 
biped. AddNewKey RarmCont3 sliderTime 

-- moving up both hands 
sliderTime = sliderTime+6 
rotate RForearm3 20 [0,0, -1] 
biped. AddNewKey LarmCont3 sliderTime 
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biped. AddNewKey RarmCont3 sliderTime 

-- compensating with the hand 
rotate RHand3 10 [0, -1,1] 
biped. AddNewKey LarmCont3 sliderTime 
biped. AddNewKey RarmCont3 sliderTime 

-- moving down both hands again (2) 
sliderTime = sliderTime+10 
rotate RForearm3 20 [0,0,1] 
biped. AddNewKey LarmCont3 sliderTime 
biped. AddNewKey RarmCont3 sliderTime 

-- compensating with the hand 
rotate RHand3 10 [0,1, -i] 
biped. AddNewKey LarmCont3 sliderTime 
biped. AddNewKey RarmCont3 sliderTime 

-- moving up both hands again (2) 
sliderTime = sliderTime+10 
rotate RForearm3 20 [0,0, -1] 
biped. AddNewKey LarmCont3 sliderTime 
biped. AddNewKey RarmCont3 sliderTime 

-- compensating with the hand 
rotate RHand3 10 [0, -1,1] 
biped. AddNewKey LarmCont3 sliderTime 
biped. AddNewKey RarmCont3 sliderTime 

sliderTime = sliderTime+28 
rotate RForearm3 100 [0,0,1] 
biped. AddNewKey LarmCont3 sliderTime 
biped. AddNewKey RarmCont3 sliderTime 

rotate RForearm3 30 [1,0,0] 
biped. AddNewKey LarmCont3 sliderTime 
biped. AddNewKey RarmCont3 sliderTime 

animButtonState=off 
--end of animation sequence 

B2. Example teapot lifting script 
This script was generated as a result of applying the learning algorithm to the task of 
lifting a teapot (Chapter 5) 

animationRange = interval 0 400 

CreateSceneC) 
CreateBiped () 

bipLClavicleCtrl = (biped. getNode bipObj 1). transform. controller 
teaCtrl = tea. controller 
tea2 = Teapot radius: 15 smooth: on segs: 4 body: on handle: on spout: off 
lid: on mapCoords: off pos: [15,35,108] isSelected: on 
tea2Ctr1 = tea2. transform. controller 

animate on 
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sliderTime =0 
addNewKey tea2Ctrl 0 
biped. AddNewKey bipLClavicleCtrl 0 

sliderTime = 20 

BipedMoveLHandTo 0.000000 8.000000 103.298172 
addNewKey tea2Ctrl 20 
biped. AddNewKey bipLClavicleCtrl 20 
sliderTime = 40 

BipedMoveLHandTo -8.000000 8.000000 103.298172 
addNewKey tea2Ctrl 40 
biped. AddNewKey bipLClavicleCtrl 40 
sliderTime = 60 

BipedMoveLHandTo -8.000000 8.000000 111.298172 
addNewKey tea2Ctrl 60 
biped. AddNewKey bipLClavicleCtrl 60 
sliderTime = 80 

BipedMoveLHandTo -16.000000 8.000000 111.298172 
addNewKey tea2Ctrl 80 
biped. AddNewKey bipLClavicleCtrl 80 
sliderTime = 100 

BipedMoveLHandTo -16.000000 8.000000 119.298172 
addNewKey tea2Ctrl 100 
biped. AddNewKey bipLClavicleCtrl 100 
sliderTime = 120 

BipedMoveLHandTo -16.000000 8.000000 127.298172 
addNewKey tea2Ctrl 120 
biped. AddNewKey bipLClavicleCtrl 120 
sliderTime = 140 

BipedMoveLHandTo -16.000000 16.000000 127.298172 
addNewKey tea2Ctrl 140 
biped. AddNewKey bipLClavicleCtrl 140 
sliderTime = 160 

BipedMoveLHandTo -16.000000 24.000000 127.298172 
addNewKey tea2Ctrl 160 
biped. AddNewKey bipLClavicleCtrl 160 
sliderTime = 180 

BipedMoveLHandTo -8.000000 24.000000 127.298172 
addNewKey tea2Ctrl 180 
biped. AddNewKey bipLClavicleCtrl 180 

GrabTeaPot() 

sliderTime = 200 

BipedMoveLHandTo -8.000000 24.000000 127.298172 

ReleaseTeaPotC) 

tea2. rotation = tea. rotation 
tea2. pos = tea. pos 
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addNewKey tea2Ctrl 200 
biped. AddNewKey bipLClavicleCtrl 200 

GrabTeaPot() 

sliderTime = 220 

BipedMoveLHandTo 0.000000 24.000000 127.298172 

ReleaseTeaPot() 

tea2. rotation = tea. rotation 
tea2. pos = tea. pos 
addNewKey tea2Ctrl 220 
biped. AddNewKey bipLClavicleCtrl 220 

delete tea 
delete boxHandle 
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Appendix D- Example UML Diagrams 
As described in Chapter 4 the FreeWill system has been designed and documented 
using UML. Some of the UML diagrams are presented below, see also Chapter 4. 
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Appendix E- Metrics Results 
Three metrics have been proposed as a way of limiting the number of different action 
sequences generated by the learning algorithm. Definitions of these metrics and 
discussion of results are presented in Chapters 5 and 6, this appendix presents pairs 
generated by the Local Distance Metric on a set of 651 sequences obtained for the FK 
teapot experiment and a set of 72 sequences obtained for the IK teapot experiment. The 
third part of this appendix presents the result of applying the Global Distance Metric to 
the first set of sequences (for discussion see Section 6.8). 

6,457 40,605 108,589 233,397 
6,458 41,450 108,590 233,543 
6,610 41,451 109,435 233,544 
6,611 41,603 109,437 237,400 
7,456 41,604 109,588 237,401 
7,458 45,454 109,590 237,547 
7,609 45,455 110,435 237,548 
7,611 45,607 110,436 238,399 
8,456 45,608 110,588 238,401 
8,457 46,453 110,589 238,546 
8,609 46,455 219,469 238,548 
8,610 46,606 219,470 239,399 
12,460 46,608 220,468 239,400 
12,461 47,453 220,470 239,546 
12,613 47,454 221,468 239,547 
12,614 47,606 221,469 306,469 
13,459 47,607 222,475 306,470 
13,461 102,433 222,476 307,468 
13,612 102,434 223,474 307,470 
13,614 102,586 223,476 308,468 
14,459 102,587 224,474 308,469 
14,460 103,432 224,475 309,475 
14,612 103,434 231,397 309,476 
14,613 103,585 231,398 310,474 
39,451 103,587 231,544 310,476 
39,452 104,432 231,545 311,474 
39,604 104,433 232,396 311,475 
39,605 104,585 232.398 no of pairs: 120 
40,450 104,586 232,543 
40,452 108,436 232,545 
40,603 108,437 233,396 

LDM applied to the FK set 

0,31 4,28 9,39 13,36 
0,32 4,54 9,40 13,62 
0,58 4,55 9,67 13,63 
0,59 4,67 9,68 15,25 
0,62 4,68 11.29 15,33 
0,63 6,25 11,37 15,60 
2,29 6,52 11,65 16,25 
2,56 6,65 12.29 16.33 
2,60 7,25 12,37 16,60 
3,29 7.52 12,65 17,58 
3,56 7,65 13,27 17,59 
3,60 9,31 13,28 17.67 
4,27 9,32 13,35 17,68 
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19,56 21,62 25,49 
19,65 21,63 25,50 
20,56 23,52 27,47 
20,65 23,60 28,47 
21,54 24,52 29,44 
21,55 24,60 29,45 

LDM applied to the IK set 

most 433 548 
different: 434 586 
(max ==8) 436 587 
220 437 589 
221 451 590 
223 452 604 
224 454 605 
307 455 607 
308 457 608 
310 458 610 
311 460 611 
397 461 613 
398 544 614 
400 545 no of seqs: 40 
401 547 

GDM applied to the FK set 

31,42 
32,42 
no of pairs: 72 

most similar: (disc==2) 
0 
21 
33 
60 
96 
147 
225 
318 
462 
621 
no of seqs: 10 
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