
Artificial Intelligence for Animated
Autonomous Agents

Adam Szarowicz

A thesis submitted in partial fulfillment of the
requirements of Kingston University

for the degree of Doctor of Philosophy

School of Computing and Information Systems
Kingston University

June, 2004

Moc3 i Lt. o3 KP

KINGSTON UNIVERSITY LIBRARY
Acc. No. 9-41-79T-81

Class No. THESIS. Pf"ip

Acknowledgements

Finished at last! The viva was successful and all I have to do now is to write the
acknowledgements.

I would like to thank my princess Ewa for all she did to help me. Special thanks are due
to my Parents - Tadeusz and Janina Szarowicz and my sister Ewa. It would not have
been possible without you! You were with me in times of trouble, in my crises and
successes, always ready to pick up the phone. Big thank you and dzickujc.

I would like to acknowledge Dr Peter Forte who invited me to do this project and who
was supervising me for two years. Peter has been the best supervisor and director one
could imagine.

I am very grateful to my director of studies - Dr Paolo Remagnino, thank you for your
support, advice, patience and sense of humour! It was not easy but I think I have
eventually managed to convince you that one can defend a PhD in animation which, to
make things worse, was written using UML!

Thanks go to my examiners prof. Norman Gough, prof. Wojciechowski and dr Sarah
Barman and members of staff at our School - Petros Gelepithis, Souheil Khaddaj,
James Orwell, Sergio Velastin, Ruediger Oehlmann and Graeme Jones who contributed
to the successful completion of my degree. I am also grateful to prof. Stanislaw
Kozielski from the Silesian University of Technology and prof. Jan Zabrodzki from
Warsaw University of Technology. I am especially grateful to Jarek Francik for his
most valuable comments, for his sleepless nights spent on writing these comments and
proof-reading the draft. Warmest thanks go to his wife Kasia.

In a special way I would like to thank the members of our prayer group. Thank you
Julius for your support and time, especially in moments of trouble, thank you Ela for
feeding my ever-hungry stomach. Thank you Agnieszka for all you did to support me.
Big thank you to all my English, French, German, Greek, Polish, Russian, Serb,
Spanish, Srilankan, Swedish, ...,

friends.

AMDG

Abstract
Automatic creation of animated crowd scenes involving multiple interacting characters
is currently a field of extensive research. This is because automatic generation of
animation finds immediate applications in film post-production and special effects,
computer games or event simulation in crowded areas.

The work presented here addresses the problem of inadequate application of Al
techniques in current animation research. The thesis presents a survey of different
industrial and academic approaches and a number of lacking features are identified.
After extensive research in existing systems an agent-based system and an animation
framework are chosen for extension and the cognitive architecture FreeWill is proposed.
The architecture further extends its underlying principles and combines software agent
solutions with typical animation elements. It also allows for easy integration with
existing tools.

Another important contribution of FreeWill is a proposal of an algorithm for automatic
generation of high-level actions using reinforcement learning. The chosen learning
technique lends itself well to the animation task, as reinforcement learning allows for
easy definition of the learning task - only the ultimate goal of the learning agent must
be defined. The process of defining and conducting the learning task is explained in
detail. The learning module allows for further automation of the process of animation
generation, shortens the task of creating crowd scenes and also reduces the production
costs. Newly learnt actions can be applied to increase the quality of the generated
sequences.

The learning module can be used in both deterministic and non-deterministic
environments. Experiments in both modes are presented, and conclusions are drawn.
Two modes of control - inverse and forward kinematics are also compared and a
number of experiments are demonstrated. Learning with inverse kinematics control was
found to converge faster for the same task.

A working prototype of the architecture is presented and the learnt motion is compared
with human motion. The results of the comparison demonstrate that the learning scheme
could be used to imitate human motion in crowd scenes. Finally a number of metrics are
defined which allow for easy selection of most relevant actions from the learnt set,
again helping to automate the process.

The work concludes with pointing out further directions of research based on this work
and suggests possible extensions and applications.

11

Table of Contents

Glossary ... 1

Chapter 1- Introduction ... 5
1.1 Methodology ...

9
1.2 Beneficiaries ...

9
1.3 Structure of the Thesis ..

10

Chapter 2- Tools and Techniques .. 12
2.4 Current Approaches To Character Animation

..
12

2.4.1 3D Studio Max, Maya and Softimage
...

12
2.4.2 Massive ... 17

2.5 Motion Capture - the Industry Standard .. 19
2.6 UML ... 21
2.7 Summary ... 22

Chapter 3- Cognitive Architectures and Animation Techniques....... 23
3.1 Cognitive Architectures

.. 23
3.2 Animation Architectures ... 30

3.2.1 Cognition-based animation systems ... 30
3.2.2 Physics-based controllers ... 35
3.2.3 Flocking systems and crowd simulation ... 36

3.3 Agent-based Systems and Methodologies
.. 40

3.3.1 The BDI model. ... 40
3.3.2 SAC ... 41
3.3.3 Gaia

.. 43
3.3.4 Tropos

... 44
3.4 AuRA and Other Selected Robotics Architectures ... 44
3.5 Reinforcement Learning ... 46
3.6 Rapid Prototyping and Motion Capture-based Techniques

.. 48
3.7 Summary

... 49

Chapter 4- The Freewill Prototype .. 51
4.1 Benefits of Agent Technology .. 54
4.2 Comparison of the FCA and SAC Architectures .. 57
4.3 The FreeWill Architecture

.. 59
4.4 The FreeWill Framework

... 62
4.5 Controlling Avatar Behaviours

... 66
4.6 The Interaction Algorithm

.. 71
4.7 Details of the Al Module .. 74
4.8 Communication with 3DS Max .. 75
4.9 Summary of the Prototype .. 76

Chapter 5- Automatic Action Acquisition
.. 77

5.1 The Deterministic Algorithm
................................ ..

77
5.1.1 The exploration policy .. 79
5.1.2 Positive and negative rewards ..

80
5.1.3 Integration with the Free Will framework

............ ...
81

5.1.4 Communication with the animation package
82

iii

5.2 The Non-deterministic Algorithm ..
83

5.3 Evaluation Metrics ..
84

5.3.1 Local distance metric ...
84

5.3.2 Global distance metric ...
85

5.3.3 Action similarity metric ..
86

5.4 Summary ...
87

Chapter 6- Results and Evaluation ..
88

6.1 Crowd Scenes ...
88

6.2 Qualitative Comparison of the FreeWill System
89

6.3 The Learning Tasks
93

6.4 Time Requirements of the Deterministic Algorithm ..
100

6.5 Learning Using the Non-deterministic Algorithm ..
102

6.6 Learning with Non-deterministic Action Selection ..
103

6.7 Evaluation of the Learning Results ..
104

6.8 Metrics Applied to the Learnt Sets ... 6.9 Other Applications of the Learning Technique ..
107

Chapter 7- Conclusions and Future Work ... 109
7.1 Analysis of the Industrial and Research Systems

...
109

7.2 Main Features of the Proposed Framework
.. 110

7.3 Outcomes .. 111
7.4 Main Contribution of the Project .. 112
7.5 General Assessment of the System ... 113
7.6 Possible Extensions .. 113

References .. 116

Appendix A-A List of Publications ... 130

Appendix B- Freewill Algorithms ... 131

Appendix C- Example 3DS Max Scripts ... 133

Appendix D- Example UML Diagrams ... 137

Appendix E- Metrics Results ... 141

iv

List of Figures
Figure 1 Position of the end effector can easily be calculated when all joint rotations are

given (FK), the opposite task is the problem of IK 4
Figure 2 Shots from films where crowd scenes had been added digitally 5
Figure 3 Elements of a crowd simulation tool

6
Figure 4 Images generated in a modern animation package 13
Figure 5 Components making an animation package

14
Figure 6 Character Studio biped

14
Figure 7 Lack of collision detection, manually corrected scene 15
Figure 8 Capturing human motion

20
Figure 9 Digitising human motion using

21
Figure 10 The ACT model 24
Figure 11 Components of a production system 27
Figure 12 Dependencies in a production system 27
Figure 13 Soar's components 29
Figure 14 C4 components 31
Figure 15 Pyramid depicting different models used to build a virtual character 35
Figure 16 Components of the SAC architecture 42
Figure 17 Gaia Models 43
Figure 18 AuRA Reactive Framework

.. .. 45
Figure 19 Proposed extensions to the existing animation packages 53
Figure 20 The FreeWill framework 59
Figure 21 The agent component of FreeWill 60
Figure 22 Sample script for generating avatar behaviour

... .. 63
Figure 23 Avatar interaction 64
Figure 24 UML model of the system 65
Figure 25 Scene as seen by an avatar ..
Figure 26 Different types of actions supported by FreeWill 67
Figure 27 Algorithm controlling an avatar's behaviour 68
Figure 28 Action hierarchy and other Al components 69
Figure 29 Objects participating in the planning collaboration 71
Figure 30 The synchronisation algorithm 73
Figure 31 Synchronisation of inter-avatar interaction

... ..
74

Figure 32 The AI subsystem 75
Figure 33 Integration of the learning module with FreeWill 82
Figure 34 Communication with the animation package 83
Figure 35 Convergence graph for the FK teapot problem (Experiment 2.1) 97
Figure 36 Reward received by an agent (Experiment 2.1) 98
Figure 37 Convergence graph for the FK teapot problem (Experiment 2.2) 98
Figure 38 Reward received by an agent (Experiment 2.2) 99
Figure 39 Convergence graph for the IK teapot problem (Experiment 2.3) 99
Figure 40 Reward received by an agent (Experiment 2.3) .. 100
Figure 41 Convergence graph for the IK teapot non-deterministic problem 103
Figure 42 Reward received by an agent in the IK teapot non-deterministic problem... 103
Figure 43 Convergence for randomised action selection updates 104

V

List of Tables
Table 1 Structure of the thesis ...

11
Table 2 Characteristics of the ViCrowd system ..

39
Table 3 Comparison of the architectures ...

58
Table 4 Attributes of the FreeWill architecture ...

62
Table 5 Low-level actions used to train the avatar ..

78
Table 6 Evaluation of the generated scenes ..

89
Table 7 Different animation architectures ...

91
Table 8 The learning experiments ...

93
Table 9 Resulting action sequences for the teapot problem ..

96
Table 10 Summary of the learning experiments ..

96
Table 11 Simulation times for the Q-learning implementation

101
Table 12 Simulation times of an exhaustive search ..

102
Table 13 Resulting action sequences for the teapot problem ..

103

vi

Glossary

Glossary

Agent - there is no agreement in the scientific community how to define the term.

Researchers usually adopt definitions which are affected by the context of their work on

agent systems. One of the most general formulations of the term was proposed by

Russel and Norvig (1995) as "anything that can be viewed as perceiving its environment

through sensors and acting upon that environment through effectors". This definition

does not imply that agents should be autonomous as suggested by Wooldridge and

Jennings (1995), and they characterise an autonomous agent as a piece of hardware or

(more usually) software-based computer system that enjoys 4 properties:

- autonomy: agents operate without the direct intervention of humans or other

systems, and have some kind of control over their actions and internal state;

- reactivity: agents perceive their environment and respond in a timely fashion to

changes that occur in it;

- pro-activeness: agents do not simply act in response to their environment, they are

able to exhibit goal-directed behaviour by taking the initiative

- social ability: agents interact with other agents via some kind of agent-

communication language;

A survey of agent definitions has been published by Franklin and Graesser (1996), who

also proposed a more general definition of autonomous agents which we shall adopt in

this thesis: "An autonomous agent is a system situated within and a part of an

environment that senses that environment and acts on it, over time, in pursuit of its own

agenda and so as to effect what it senses in the future. "

According to this definition, the agents must be reactive (respond in a timely fashion to

changes in the environment - sense and act), autonomous (exercise control over their

actions), goal-oriented (pro-active), which means they can not simply act in response to

the environment. Finally they must be represented as a continuously running process.
In the context of this work the agents will be visually represented as autonomous

characters and they will persist in a virtual landscape. Reynolds (1999) calls such

agents virtual characters, they "represent a character in a story or game and have some

ability to improvise their actions". He also defines a virtual agent denoting a real agent

in a virtual world. Thus his autonomous characters are situated (embedded in a world

containing other entities), embodied (having some kind of a physical representation),

i

Glossary

reactive and virtual.

Multi-agent system - is a system consisting of many independent agents, each of

which can perceive and act autonomously. Additionally agents can affect each other and

influence decisions made by others.

Animation - fast projection of a sequence of images (called frames of the animation),

which gradually change over time. Because the changes in two consecutive frames are

too small for the human eye to notice in a given amount of time, an illusion of a

continuous, smooth motion is created (after Francik, 1999). In computer animation the

generation of images is performed by specialised software and the motion of objects

between two frames is often calculated according to a set of mathematical formulas.

Hodgins et al (1999) define animation as

"Animation is the production of consecutive images, which, when
displayed, convey a feeling of motion. Animated images are almost magical
in their ability to capture our imagination. By telling a compelling story,
astounding with special effects, or mesmerizing with abstract motion,
animation can infuse a sequence of inert images with the illusion of motion
and life. Creating this illusion, either by hand or with the assistance of
computer software, is not easy. Each individual image, or frame, in the
animated sequence must blend seamlessly with the other images to create
smooth and continuous motion that flows through time. "

Architecture - is a fixed structure that realises a certain system (after Newell, 1990).

Articulated figure - it is a figure or character which consists of a number of objects

called links which are connected by joints. Joints impose constraints on the way the two

connected objects can move and rotate in relation to each other.

Avatar - in the context of computer animation avatar is a graphical representation of a

character or human user in virtual environments. In this work avatar will be used

interchangeably with character, depicting a visible virtual creature together with its

agent aspect, which supplies the Al capabilities.

Collision detection and collision avoidance - collision detection is a process allowing

to establish whether collision between objects in the scene is about to or has already

2

Glossary

taken place. Collision avoidance is a set of techniques manipulating the motion or
behaviour of objects and agents in the scene allowing them to prevent imminent

collisions. The simplest form of collision avoidance would be stopping moving objects.

Crowd scene - is a virtual scene with multiple participating virtual characters.

Embedded agent - an agent which exists in some environment as opposed to an agent

existing in isolation.

Embodied agent - is an agent which has some form of manifestation (a body), agents

which are not embodied would be called abstract. Virtual characters are often seen as

embodied autonomous agents.

Flocking and schooling - is a form of self-organising behaviour often exhibited by

groups of animals (birds, fish, insects) whereby the members of the flock tend to exist in

close proximity to other members of the group. Reynolds (1987) proposed the first

computer model of flocking, where he proposed a number of simple rules constituting

the flocking behaviour.

Keyframed animation -a way of creating animation in which only the main frames of

the sequence are defined and software interpolates between them to create continuous

motion.

Kinematics - the science of motion, where motion is treated without considering the
forces which cause it. If motion of the end-effector is solved as a function of the joint

angles we deal with Forward Kinematics (FK), if the pose of the end-effector is known

and the motion is generated by calculating the joint angles we deal with Inverse

Kinematics (IK), Figure 1. Current professional animation packages implement inverse

kinematics algorithms allowing the artists to only define key poses of the animated
figure (cf. Craig, 1986, Maestri, 1999, Johnson et al, 2000, Faloutsos et al, 2001,

Francik and Fabian, 2002).

3

Glossary

Figure 1 Position of the end effector can easily be calculated when all joint rotations are given (FK), the
opposite task is the problem of IK

Machine learning - is a research field concentrating on building computer systems that

can adapt to the environment with experience. The main branches of ML include

Supervised Learning where a supervisor trains the system by first supplying correct

answers to a number of tasks, Reinforcement Learning also known as learning by trial

and error, where some form of verification is given upon finishing the task and

Unsupervised Learning.

Self-awareness - in the context of this work self-awareness will be defined as ability of

autonomous characters to perceive the surrounding environment and distinguish

themselves from other characters and objects in the virtual scene.

UML - Unified Modelling Language, a graphical modelling tool which supports the

design of complex object-oriented systems.

4

Chapter 1: Introduction

Chapter 1- Introduction
Automatic creation of crowd scenes with many animated virtual characters is an

ambitious challenge for the modern film postproduction industry. The current process,

conducted by skilled animators and directors, is not only labour-intensive but also

tedious and expensive. With the dynamic growth of computer-based techniques film

creators and special effect designers are looking with increasing expectation towards the

computer animation research community.

Figure 2 presents shots from two popular film productions - "The Lord of the Rings"

and "Gladiator". In these and similar other films it was necessary to create scenes with

many human characters performing simple actions in the background.

Even though the creation of those scenes has been extensively supported by modem

computer equipment and sophisticated software packages, the most important part of

the work still involved a substantial amount of human input. First of all in most cases

the real human motion must either be captured and digitised or inputted manually using

a technique called "keyframing" in which the animator defines all key poses of the

animated objects. The first approach requires employing real actors and expensive

hardware and software. Then the digitised motion must be labelled, edited and pasted

into the digital scenes. In many cases the process of editing relies on frame-by-frame

corrections and manual animation. Finally it is often necessary to reiterate the process,

as the missing motion sequences cannot be generated by any other means. The

5

Figure 2 Shots from tilms where crowd scenes had been added digitally: left) Digital army (background
riders) going into battle in The Return of the King from Comingsoon, 2(X)1j; right) background -
soldiers and crowds in the ancient Rome in Gladiator [from Spielberg-dreamworks, 2(X)3]

Chapter 1: Introduction

keyframing-based approach on the other hand is extremely time-consuming and can

only be performed by skilled artists.

A much bigger progress might be made if such scenes could be created entirely by an

intelligent system. For example, such a system would allow the animator to define a

number of interacting characters and then supply a set of parameters and variables such

as character goals, level of aggression or a list of desirable actions. The simulation

would then be started, effortlessly generating the scene. Such an approach relying on

moving the focus of animation to a higher level by changing the emphasis from

animating to directing would significantly improve the capabilities of current animation

systems.

Tools capable of delivering the functionality described above must obviously consist of

many components. Figure 3 presents the most important elements of a package for

automatic generation of crowd scenes.

AI tools and
character control

User Interface
Rendering
module

Character
dynamics

Environment
modelling and

simulation ,.. Video editing
and output

Figure 3 Elements of a crowd simulation tool

First of all, the scene itself must be modelled and simulated. This serves the purpose of

providing a virtual environment for the artificial characters. Additionally, the characters,

which populate the scene, must be represented in some graphical form; it would also be

desirable to provide them with a set of physical constraints and some information on the

dynamics of their motion. The most important part of a virtual character would be the

delivery of navigation and behavioural modules, to allow the character to intelligently

6

Chapter 1: Introduction

move in the environment. It would also be necessary to endow it with other cognitive

capabilities, that is capabilities pertaining to the character's mental capacities, including

its internal world model, ability to learn and make decisions as to what actions to take.

That functionality could be referred to as the character's intelligence and would ideally

deliver sufficient complexity to limit the character creation process. The animation

could thus be defined as a process of declaring the character goals, which are then

achieved automatically using techniques borrowed from the domain of Artificial

Intelligence (AI). These are the issues, which this work is trying to address.

The remaining components of the full system are a standard user interface and the

rendering unit. The user interface allows the creator to work efficiently without the

necessity to know the intricacies of the system's design. When the desired motion has

been generated, a separate module must render the scene - that is create a sequence of
images including the characters, scene objects, textured surfaces, lights, reflexes,

shadows, weather artefacts such as rain and fog and other important elements. The last

stage of the process is then the compositing and editing of the final video or film.

It is clear that a system capable of delivering all the required functionality would be a

complex one. There is nonetheless a range of professional software tools, usually called

professional 3D animation packages, which can deliver most of the elements depicted in

Figure 3. However, whereas they can provide sophisticated graphics capabilities and

complex user interfaces, they fall short on tasks related to Artificial Intelligence. Virtual

characters lack self-awareness and autonomy, the concept of learning is not present in

any of the industrial systems, and even such simple tasks as collision detection may

pose problems.

This thesis addresses problems related to the building of the 'Al tools and character

control' component as shown in Figure 3. We propose and implement an extendable

cognitive architecture (Funge et al, 1999, Funge, 2000) designed to accommodate goals,

actions, knowledge and beliefs, based on the latest developments in AI, in particular, the

concept of autonomous agent (Jennings, 2001, Winikoff et al, 2001). This will, in turn,

enhance the ability of animated characters to display autonomous intelligent behaviour.

The following thesis is being formulated:

7

Chapter 1: Introduction

Application of an intelligent architecture based on the existing techniques
from Artificial Intelligence and using available professional 3D animation
packages may significantly support automatic creation of animated
sequences with many virtual characters.

The goals of the PhD can be formulated as follows:

9 Review of existing intelligent architectures, especially regarding systems for

automatic crowd scene generation and supporting creation of autonomous characters

" Proposal of an architecture capable of representing actions, goals, knowledge, plans,

sensing and beliefs

" Adaptation of the proposed architecture to existing tools, namely to allow co-

operation with professional 3D animation packages (such as 3D Studio Max and

Maya) and to provide automatic collision avoidance which is a feature lacking in

most of the current solutions

9 Construction of an underpinning strong software engineering framework, designed

and documented in a modem modelling language to facilitate ease of
implementation, extendibility and clarity of the proposal

9A study on automatic acquisition of new character actions (such as raising objects)

using machine learning techniques

" Implementation of the prototype and presentation of results

A more general aim of the work is a construction of a tool supporting the work of

professionals thus allowing moving the focus of the work on crowd generation to a

higher level by changing the emphasis from animating to directing by allowing them to

parameterise the system behaviour.

The work presented in this thesis has been divided in two stages. The first part includes

proposal and implementation of a general cognitive architecture supporting automatic

crowd scene generation. The system is then extended using one of the Reinforcement

Learning techniques (Mitchell 1997, Sutton and Barto, 1998, Watkins, 1989, Watkins

and Dayan 1992) thus allowing to address the concept of rapid animation prototyping
(Dontcheva et al, 2003, Liu and Popovic, 2002, Bregler et al, 2002). This reduces the

need of employing motion capture-based techniques (Gleicher, 2001, Vicon, 2001) for

character animation. In order for the proposed architecture to be sufficiently flexible and

general it must be designed following modem software engineering guidelines. This is

8

Chapter 1: Introduction

why system design uses the Unified Modelling Language (UML) (Object Management

Group, 2003, Booch et al, 1999), which is a cross-disciplinary modelling language and

a good design tool for an object-oriented implementation of the system (Booch, 1994,

Coleman et al, 1994).

1.1 Methodology

The methodology of the project is based on the iterative incremental development, as

suggested by the Rational Unified Process - RUP (RUP, 2003), documented in the

Unified Modelling Language (UML), which is a visual modelling tool supporting

design and development of software systems. The architecture is gradually refined

following standard design-implement-deploy cycles, progressively adding new features

and testing new ideas. First, the basic problem of obstacle avoidance was selected, as

this is a feature lacking in current animation packages. The next step is the action

extension, which allows the characters to perform proactive actions (that is actions

executed in order to achieve a high-level goal). The conceptual framework is also

enriched building on the ideas from both the animation and intelligent agent fields. At

this stage the additional actions are prepared manually in the form of script. The

characters are able to generate motion sequences including both reactive and proactive

actions. Having achieved this, the question whether actions could be added

automatically is examined more closely. As a result, a learning algorithm for automatic

acquisition of so-called high-level actions is proposed. This extension broadens the

possible character's action repertoire thus making the created scenes interesting to

professionals. The key technique here is Reinforcement Learning. Using this technique

generation of motion using both forward and inverse kinematics control is investigated.

1.2 Beneficiaries

As mentioned earlier, automatic generation of character animation would find

immediate applications in film post-production and special effects for films requiring

creation of scenes with many interacting characters in the background. Examples might
include digital extras in cities and shopping centres but also, and probably more
importantly, digital battle scenes and combat sequences. Apart from simplifying the task

of animation creators, film directors and post-production professionals, the proposed

extensions can substantially increase the capability and appeal of computer games by

9

Chapter 1: Introduction

allowing the animators to create more advanced scenes, improve quality of group

representation, and allow for automatic crowd generation. Possible applications may

also cover generation of believable scenes for city planning purposes, crowd generation

for virtual reality and surveillance and various commercial presentations. Finally,

simulations of the safe evacuation of crowded areas in the event of fire or other disasters

could also be created with the presented tool.

1.3 Structure of the Thesis

The remainder of this work is divided as follows.

Chapter 2 introduces the techniques currently used for creation of special effects

involving human crowds. It starts with the presentation of three most advanced

commercial animation packages and a custom-based system for character animation

called Massive. This is followed by a brief discussion of the motion capture technique.

The chapter concludes with a short characterisation of UML.

Chapter 3 is an extensive survey of the field of automatic animation generation and

cognitive architectures. The review comprises an insight into general cognitive

architectures and a survey of animation-dedicated frameworks is presented including

cognitive, physics-based and crowd systems. Some of the more interesting agent-

oriented systems are also discussed in more detail. Finally the Reinforcement Learning

technique is presented together with example applications.

Chapter 4 starts with discussion of possible benefits from superseding object-oriented

programming with the more recent concept of agent-orientation. The FreeWill prototype

combining agent-oriented and animation-based concepts is then presented. This is

followed by a detailed description of the architecture presented in UML.

Chapter 5 complements the discussion of the architecture with a proposal of a learning

module, which allows the avatars to acquire new actions through machine learning.

Methods of motion control based on forward and inverse kinematics are also compared

as well as two learning updates. Three metrics are proposed.

10

Chapter 1: Introduction

Chapter 6 presents results obtained from the system, including generation of animation

and application of the learning techniques and metrics.

Chapter 7 concludes the work and presents possible future directions.

The structure of the thesis is graphically illustrated in Table 1

Table 1 Structure of the thesis

Tools, Techniques
and Notations

Motion Professional
Capture 3D Packages

Research
Frameworks UML

Machine
Learning

The FreeWill
Prototype

Theoretical Agent-Oriented
Founda- Software Engi-

tions neering

Event based
Simulation

Cycle

I UMLModels

Results

ReviewofThe Existing
Architectures and Techniques

Modem Animation Robotic
Tools Agents

Phycics-based Animation
Controllers Architectures

Cognitive Agent-based
Architectures Tools and

Frameworks

Reinforcement Crowd
Learning Systems

Automatic
Action

Acquisition

Statespace
Discretisation

FK vs. IK
Control Mode

The Non-deterministic
Algorithm

Conclusions

11

Chapter 2: Tools and Techniques

Chapter 2- Tools and Techniques
Tools currently available on the market offer a set of features supporting automatic

generation of motion for individual characters as well as crowds and flocks, thus trying

to reduce the complexity of the task of animation generation (cf. Monzani et al, 2001).

Examples of such tools may include the Character Studio plugin designed for 3D Studio

Max or the Massive crowd simulation system described later. On the other hand there

are already existing well-established techniques commonly employed by post-

production studios. Those techniques rely mainly on motion capture systems and

keyframed motion (Vicon, 2001, Kinetic Impulse, 2003). There is also a thriving branch

of research dedicated to creation of intelligent creatures. This chapter overviews the

current state of animation packages and industry standards.

2.4 Current Approaches To Character Animation

Professional 3D animation and modelling packages are currently used by production

studios to create computer-generated special effects in film postproduction. This section

presents capabilities and deficiencies of these packages, also including Massive, a

custom built industrial system. In this review a special emphasis is placed on the ability

of animation systems to create and animate intelligent characters, especially in the form

of articulated bipeds, as all professional animation packages are able to animate swarms

and flocks using particle systems (see Reynolds, 1987).

2.4.1 3D Studio Max, Maya and Softimage

Animation packages are tools used to create very complex and realistic images and

animation sequences. They can be used to animate moving objects, fluids and are also

often used to animate characters. One way of doing so is by manually creating virtual

creatures modelled on top of a bone structure, dressing and skinning them and applying

predefined meshes. The motion is then applied, which can be generated using one of the

following techniques: motion capture and predefined motion, keyframed animation or

particle systems. In the hands of an experienced user/animator these packages allow for

creation of very impressive and indeed realistic scenes (see Figure 4). To extend the

capabilities of the animation packages it is possible to create dedicated plug-ins which

enhance functionality delivered by the package, for example it is possible to write

12

Chapter 2: Tools and Techniques

custom exporters, which output the created scenes in a format that can be utilised by

game engines.

Figure 4 Images generated in a modern animation package (the figure presents five different aspects of
creating computer animation)

The most popular and widely used animation packages are 3D Studio Max (Discreet,

2003), Maya (Alias, 2003) and Softlmage (Softlmage, 2003). Their functionality may

be divided into three distinct areas (Figure 5). The first subsystem is a so-called

modeller. This module is responsible for maintaining the internal data structures

supporting all types of objects, scenes and characters. It also allows for visual and

possibly scripted creation and modification of these elements by the user and displays

them on the screen as geometrical objects. The second component is the animation

creator - here the user can for example define motion of objects, adjust timing, add

keyframes and preview the animation. Finally, when the scene is ready, it is passed onto

a rendering engine which, using information such as lighting conditions, texture and

transparency of objects, reflectivity and also desired resolution, number of frames etc.,

creates the final animation which can then be saved on a video tape or film. To extend

the capabilities of the animation packages some companies produce dedicated plug-ins

13

Chapter 2: Tools and Techniques

which add functionality to the package such as extra lighting effects, realistic modelling

of liquids, enhanced physics or character support.

GUI

1 13 III
ý° QO

definition of objects, animation control,
scenes, characters definition of keyframes. definition of

timing, etc. rendering parameters

Modeller

3D AnimatioXcoord
Creator ndividual frames

Renderer

Figure 5 Components making an animation package

An example of the latter may be the "Character Studio" plug-in developed for 3DS

Max. Character Studio extends the capabilities of the package by allowing for creation

of bipeds (see Figure 6), equipped with most typical human joints. The package also

implements a whole range of different control options (generation of human gait, run or

jumps, bending the trajectory, freehand animation, etc.). Scenes can be saved into a file

and imported into more complex virtual scenes. It is possible to import motion capture

files.

Figure 6 Character Studio biped

14

Chapter 2: Tools and Techniques

The biggest gain from using the plug-in is that it incorporates a reliable forward/inverse

kinematics engine integrated into the virtual characters. It is not perfect (e. g. It is

possible to drag one leg onto another) but frees the animator from many simple yet

tiresome corrections. The characters may also form `crowds', where characters (called

delegates) will have a number of behaviours assigned to them, e. g. a `repulsive' or

`follow' behaviour. The mechanism relies on a finite state machine underlying the

character motion and allows for any type of objects to be assigned to the crowd

controller. Like any other geometrical object, the hipeds can also he assigned meshes

and textures.

However the use of bipeds created by the Character Studio plug-in has its limitations.

The main disadvantage is that the characters do not have built-in collision detection (see

Figure 7). More importantly, they are not autonomous, although there is it limited

possibility to create crowd scenes with some sort of predefined intelligent motion (e. g.

the aforementioned repulsive or following modes of behaviour). Nonetheless most of

the job is still left to the animator and director and any enhancements to the avatar

behaviour repertoire must usually be very specific with limited scope for extendibility

or generalisation. Any apparently `autonomous' behaviour must be hard-wired into the

animation sequence. The characters do not have any self-awareness or scene recognition

(identifying objects, avoiding collisions) and the artist has to make all the decisions and

direct hoth main and secondary characters by adding all the necessary keyframes.

L
Solutions to some of those problems are addressed by Maya, one of the most widely

used animation packages. Maya offers many highly sophisticated features, including

support for cloth motion, built-in collision avoidance and a physics engine. It also

supports creation of animated characters by supplying both the forward and inverse

15

Figure 7 Lack ut coIIi,, ion dIrtectiun (I rlt), manually corrected , crnc (rw liI)

Chapter 2: Tools and Techniques

kinematics, animation of objects with joints, built-in constraints and extensive use of

motion capture animation but it does not provide a predefined character creation toolkit

similar to the Character Studio plugin. Therefore the collision detection feature is only

available on the object level. Additionally Maya's characters are completely
`unintelligent'. Despite this lack of functionality Maya remains a very powerful and

popular platform and is more widely used in production studios (as opposed to 3DS

Max, which is a common training platform). A crowd plugin for both Maya and 3D

Studio Max is offered by Al. implant (Al. implant, 2003, Al. implant Animation White

Paper, 2003).

Another important professional animation package is SOFTIMAGEIXSI and its recent

extension called SOFTIMAGEIBEHAVIOR. The BEHAVIOR package was created to

allow for fast production of scenes with multiple interacting objects, such as human

beings, birds, insects but also for example blood cells (Softimage, 2003). The system's
logic relies on a finite state machine, which can be designed using a set of graphical

editing, scripting and debugging tools and a library of pre-defined behaviours. Each

BEHAVIOR character may possess a separate ̀ brain' and can respond and interact with

the environment and other avatars. The character engine comprises real-time inverse

kinematics, automatic obstacle avoidance based on event-responses, dynamic path

planning as well as other features. It is also possible to intertwine kinematics-based

character animation with motion-captured scenes and predefined motion and

additionally to randomise character movements and timing.

Despite the capabilities offered by modem packages animation is still a labour-intensive

task. Using dedicated software, like that described above, animators can decrease this

factor by specifying key frames and allowing the software to interpolate between the
frames thus creating a continuous and fluent animation. The intelligent extensions

support this process even further. Even so, generation of realistically looking sequences,

especially when many characters are involved, demands a high number of corrections

and manual assignments, making the process tedious and expensive, especially when
keyframing is still required. Those problems become especially apparent in where it is

necessary to generate scenes involving many interacting human figures. They can

partially be overcome by approaches based on "motion capture" and duplication of the

16

Chapter 2: Tools and Techniques

characters. Although some of the packages also allow for more automatic scene

generation (SOFTIMAGEIBEHAVIOR, the recent AI. Implant plugin and partially the

Character Studio plugin) this comes at the cost of supplying a set of motion-captured

animation sequences. It is also always necessary to manually create correct assignments

and relations in the character's `brain'. Even then much of the work in such scenes must

be conducted manually by skilled professionals and for a very specific figure's

behaviour it can take days of repetitive work to fine-tune the sequences. Similar

problems arise in such domains as computer games and simulations of safe evacuation

of crowded areas, for example tube stations or skyscrapers, in the event of fire or other

disasters. Some recent work and discussion on issues concerning extensions of Al for

computer games to make the characters more intelligent can also be found in

Woodcock, 2000, Pottinger and Laird, 2000, Kaminka et al, 2002, van Lent et al, 1999,

Amant and Young, 2001. For example van Waveren and Rothkrantz (2002) present a

multilayered architecture for Quake III bots, which use automated path and route
finding algorithms and Spronck et al (2003) applied neural networks to improve the

intelligence of computer controlled opponents in a strategy game. It is obvious however

that further research into applications of Al to the domain of character animation is still

required.

2.4.2 Massive

Unlike the systems described in the previous section, which form parts of professional

3D animation packages, Massive (the Multiple Agent Simulation System In Virtual

Environment) is a dedicated industrial module written specifically to support creation of

combat scenes with tens of thousands of animated characters. The system was written to

aid with creation of battle scenes in the Lord of the Rings trilogy. Thus the focus of the

package is on creation of human-like figures animated using a range of different

methods with primary character control using Artificial Intelligence. Massive equips

each character, known as an `agent', with an artificial brain and allows it to act on its

own. Each character can select from a set of possible motions, each motion lasts about a

second (Koeppel, 2002). The decisions a character makes during the course of the battle

are predetermined by the construction of its brain -a net of so called logic nodes whose

number may vary from a hundred to a few thousand. The logic nodes allow the

character to perceive, interpret and respond to signals coming from the environment and

17

Chapter 2: Tools and Techniques

also control the character's behavioural patterns - e. g. aggression or the fighting style.

The collections of nodes are further divided into more specialised modules, such as

those responsible for navigation, targeting, turning or adopting to the terrain (Lord of

the Rings, 2003). The creation of agent brains is carried out in a specifically designed

graphical user interface. The result is a multidimensional web of connections and

dependencies between various nodes. Additionally Massive employs fuzzy logic for the

decision-making process. This is meant to introduce some unpredictability into the

simulation, since the mechanism behind the agents' brain is a responsive, event-driven

simulation. The decision making process is performed once per frame of animation and

the agents are aware of other characters.

Although the characters are equipped with a relatively complex brain architecture the

actual motion has been pre-processed using motion capture. However the agents' bodies

do react to forces and collisions. A number of different movements and movement

combinations have been captured and hard-wired into the characters' logic.

Additionally some of the interactions between the agents were also modelled purely on

the basis of motion captured sequences involving groups of actors. Thus, combining the

captured motion and the logic delivered by the artificial brain, every character can

exhibit a number of different activities - march, walk, jog, charge, run, flee, shoot,

defend, die, demonstrate combat skills and perform a few other actions. The characters

can also find, identify and engage enemies and exist in a number of emotional states.

The agents in Massive come in two "breeds" - the more complex and clever Master

Agents and more numerous simple agents. The difference is in the size of their brains

(the number of nodes and their connectivity) and the number of different actions they

can exhibit. An additional type of characters are so called `Heroes', whose fights only

rely on choreographed motion sequences and not on the Massive logic.

As demonstrated in the films, the system allowed for easy creation of battle scenes
involving many human-like animated characters, which performed sophisticated

actions, involving for example erecting siege ladders. However the main focus of the

system was to assist the animators and directors in the creation of believable battle

scenes, as opposed to the task of making a number of intelligent characters behave

autonomously. An important and useful feature of Massive is a built-in collision

18

Chapter 2: Tools and Techniques

avoidance, but its creation was simplified to some extend by the predefined nature of

the characters motions. Also the outcome of the battle was predefined and the system

was only employed to create a realistically looking clash. The scenes were additionally

broken into easily manageable smaller pieces and sometimes only specific agents were

chosen for presentation from the simulated scenes to avoid discontinuities in motion and

behaviour. Any changes in character's behaviour require direct intervention into the

structure of its brain and it was even necessary to experiment with the placing of agents

or to animate them directly to achieve the desired effect in terms of timing and layout. It

is not possible within Massive, for example, to let the agents communicate in order to

conduct a synchronised attack. Finally the system is a responsive one and the agents do

not perform any action planning. In summary, despite obvious improvements with

regard to the existing 3D animation packages, the creation of crowd scenes in Massive

still requires a high degree of human intervention.

2.5 Motion Capture - the Industry Standard

Motion capture is a very popular technique widely used in the special effects industry.

This approach usually involves attaching small reflexive sensors (although other

methods are also used e. g. virtual gloves or other mechanical devices) to a human actor

or dancer whose motion is then captured using dedicated cameras, digitised and

converted into a motion capture file format (Figure 8, Figure 9). Such motion can later

be edited, replicated and pasted into pre-created virtual scenes. Instead of animating

each joint of the virtual figure, human motion is captured `as a whole' and applied to the

scene, which gives a very realistic effect. However there are many incompatible motion

capture formats, different types of equipment - some of them difficult to wear and

restraining the actor's moves (gloves). The process is also complex and involves a

substantial amount of post-processing. The number of different behavioural patterns is

hence typically limited by time and budget. For example in "Gladiator" (see Figure

2[right]) there were only a few different characters created for the Colosseum scene. In

this technique the virtual characters are merely copies of real human actors and have no

autonomy or awareness of the surrounding environment. The director or animator

selects a suitable motion from a library of shots, applies necessary adjustments (cloths,

shape of items held etc.) and inserts it into the scene. Thus the generated animation

remains very rigid in the sense that it cannot be shaped beyond the existing clips and if

19

Chapter 2: Tools and Techniques

some of the motions have not been captured they must be recorded before applying

them to the scene. Cassell et al (2001) point out that capturing human motion is an

expensive method and suggests it only be used for foreground characters but not for

crowds of extras. Arikan and Forsyth (2002) summarise the drawbacks of motion

capture as follows:

1. Most motion capture systems are very expensive to use, because the
process is time consuming for actors and technicians and motion data

tends not to be re-used.

2. It is very hard to obtain motions that do exactly what the animator
wants. Satisfying complex timed constraints is difficult and may
involve many motion capture iterations. Examples include being at a
particular position at a particular time accurately or synchronizing
movement to a background action that had been shot before.

Despite these limitations motion capture is currently the most popular technique for the

creation of artificial crowd scenes, and have been successfully used in such recent

productions as "Titanic", "Gladiator", "The Mummy Returns", "Star Wars Episode 1-

the Phantom Menace", "The Patriot", "Enemy at the Gates", "Pearl Harbor" (Vicon,

2003). Apart from creation of crowd scenes motion capture is used to create virtual

stunts and realistic foreground CG characters (e. g. "Lord of the Rings - Two Towers"),

the technique is also used to generate synthetic cartoon characters ("Shrek", "Monsters

Inc. ").

Figure 8 Capturing human motion (image from Vicon, 2001)

20

Chapter 2: Tools and Techniques

. -"~

Figure 9 Digitising human motion using motion capture (images from Kinetic Impulse, 2003)

2.6 UML

The concept of modelling has been widely used in many areas of engineering to help

visualise concepts and thus promote good design, early risk assessment, resource

allocation, efficiency or plan completeness (see Sommerville, 2001). Therefore

application of code modelling in the domain of computer programming and system

development is a very natural idea, helping software engineers to create good programs.

Transparent structure helps tackle complexity, it also promotes code reuse - well-

documented independent modules can be shared over many different applications.

Unified Modelling Language (UML, Object Management Group, 2003) is a visual

modelling tool supporting design and development of software systems, it is also a

means of agreeing on the system requirements. Projects designed in UML can be

analysed from many perspectives, such as use case analysis, individual objects, flow of

control, module interaction, system decomposition, concurrency issues, system

deployment and physical layout, and more. UML is sufficiently flexible to allow design

of both software and non-software projects, and although it was initially designed to

support development of object-oriented programs it supports many different

programming languages including procedural languages and database query languages.

21

Chapter 2: Tools and Techniques

There are numerous tools available on the market, many of which can generate code
directly from the system specification given in UML. UML diagrams often serve
documentation purposes too, given their wide popularity among software engineers,

programmers and system analysts. Therefore UML seems to be the right medium for

designing and documenting good concepts, including candidate architectures for

Artificial Intelligence. Indeed, this is how good software engineering concepts, so called
design patterns (Gamma et al, 1995), are documented. Moreover, the researchers
investigating AI architectures have come up with solutions expanding the core UML

notation, making it even more suitable for documenting research in agent solutions. The

extended notation is known as Agent UML (AUML, 2003). Agent UML was first

proposed by Bauer and Odell and their collaborators (Odell et al, 2000a, Bauer et al,
2001, Odell et al, 2000b, Odell et al, 2001). Similar concepts were also presented by

Yim (Yim et al, 2000) and Bergenti and Poggi (Bergenti and Poggi, 2000). Since then

the AUML standard has been consequently revised and updated (Bauer, 2001, Depke et

al 2001, van Dyke Parunak and Odell, 2001, Wagner, 2002). The main disadvantage of
AUML is currently the lack of tools supporting modelling in this language, which is the

reason for rejecting AUML approach in this work. It should be expected however that

as the technology matures, modelling tools catered for dedicated agent languages will
become available.

2.7 Summary

This chapter has presented the most important animation techniques currently used by

production studios. This includes creation of animation using motion capture and
keyframing. A purpose-build crowd modelling system has also been described. The

presented solutions offer limited character and crowd modelling support but further Al-

based extensions are still desirable. Finally the UML language has been briefly

introduced. The next chapter will now review the state of the art in the research
techniques related to automatic generation of animated figures.

22

Chapter 3: Cognitive Architectures and Animation Techniques

Chapter 3- Cognitive Architectures and Animation
Techniques

The previous chapter introduced the current techniques used in the industry. This

chapter presents the main areas of scientific research supporting the creation of

intelligent animation systems.

There are two dominant approaches taken by researchers working with intelligent

characters. The first one, which might be called `animation orientation' is represented

by groups trying to build animation systems by first creating a small number of very

sophisticated characters. The characters are usually equipped with a high degree of

autonomy, they can learn and perform complex actions. An approach similar to that is

the creation of characters with very complex motor skills using dynamic simulation.

This category usually includes character animation, simulation of human motion,

motion extraction and simulation, and group behaviour. The other approach concerns

the generation of scenes with many characters following the current research in multi-

agent systems. Although there have been few animation systems strictly following the

agent principles (an example may be Flake et al, 2001), the techniques offered by agent-

orientation have a great potential for modelling systems with many interacting

characters.

This chapter presents the current state-of-the art in research falling in both categories

and in the area of cognitive architectures. A few other research fields are also discussed.

These include Reinforcement Learning techniques, some example robot architectures

and motion generation techniques.

3.1 Cognitive Architectures

In the last two centuries we have been observing a huge increase into studies on theories

of human and animal learning and cognition (Newell, 1990). The current literature

published in the English language lists over 50 recognised theories relevant to human

learning and cognitive aspects of knowledge and skill acquisition, and this is without

including neuropsychology, learning disabilities or teaching strategies (Kearsley, 2003).

Despite this variety and richness most of them have a rather limited use in the current

23

Chapter 3: Cognitive Architectures and Animation Techniques

cognitive modelling research. This is because most of them are only crude

approximations trying to explain the way human brain functions at the low level and

while they manage to explain some narrow aspect of the learning and cognitive

processes they lack understanding of the neural function of different brain elements.

This section presents four of the most prominent and widely recognised of these

theories in the context of building artificial intelligent systems. While the first two do

not currently have other than historical importance they laid a foundation for the fourth

one - Soar, which may be considered as a potential candidate architecture for

implementation of an intelligent tool controlling behaviour of animated characters.

ACT*

ACT* (Anderson, 1983) advocates existence of three types of memory structure:

declarative, procedural and working memory (see Figure 10). Declarative memory is

depicted as a semantic net associatively linking propositions, images and sequences.

Procedural memory represents information as productions (statements consisting of

conditions and actions existing in declarative memory). It is also known as long-term

memory. Productions have some degree of activation and the most highly activated part

is referred to as working memory. All knowledge begins as declarative data and gives

rise to procedural information learnt through inferences from existing facts. This

framework supports three important types of learning: generalisation (broadening the

applicability of productions), discrimination (opposite to generalisation) and

strengthening (some productions are applied more often). New productions are formed

from existing ones. One of the strengths of ACT* is that it explains sophisticated human

cognitive skills such as geometry proofs, programming and language learning

(Anderson, 1983, Anderson 1990). It also accommodates the use of goals and plans.

I DECLARATIVE PRODUCTION
MEMORY

Storage Match

Retrieval UORKING Execution
MEMORY

I IL ENCUDINU PEKFUKNRNI: ES

OUTSIDE
WORLD

Figure 10 The ACT model (from Kearsley, 2003)

24

Chapter 3: Cognitive Architectures and Animation Techniques

The GOMS Model

GOMS (Card et al, 1983) represents a theory of the cognitive skills necessary to

perform human-computer tasks. It assumes there is a number of different types of

memory (e. g., sensory store, working memory, long-term memory) for which there exist

separate perceptual, motor, and cognitive processing.

In the GOMS model, cognitive structure consists of four components:

" set of goals

" set of operators

" set of methods for achieving the goals

" set of selection rules for choosing among competing methods

For a given task, it is possible to construct and use a particular model for prediction of

the time required to complete the task. The model can also be used to identify and

predict the effects of errors. The main application of the GOMS framework is to various

computer tasks, it also serves as system design methodology for testing user interface

designs (Kieras, 1988; Oray et al, 1993).

Gagne's Conditions of Learning

Gagne (Gagne, 1985) argues for the existence of several different types or levels of

learning and that each type requires different types of instruction and different internal

and external conditions. There are five main categories of learning: verbal information,

intellectual skills, cognitive strategies, motor skills and attitudes. Therefore to learn

cognitive strategies a learner must practise developing new solutions to problems,

whereas when learning attitudes the learner must experience a credible role model or

strong enough arguments. Learning tasks for intellectual skills can be organised in a
hierarchy based on complexity: stimulus recognition, response generation, procedure
following, use of terminology, discriminations, concept formation, rule application,

problem solving.

The hierarchy helps to identify prerequisites that should be completed to ease learning

at each level. The theory names nine instructional events and corresponding cognitive

processes (Gagne, 1985):

25

Chapter 3: Cognitive Architectures and Animation Techniques

(1) gaining attention (reception)

(2) informing learners of the objective (expectancy)

(3) stimulating recall of prior learning (retrieval)

(4) presenting the stimulus (selective perception)

(5) providing learning guidance (semantic encoding)

(6) eliciting performance (responding)

(7) providing feedback (reinforcement)

(8) assessing performance (retrieval)

(9) enhancing retention and transfer (generalisation).

Gagne's framework covers all aspects of learning but the focus of the theory is on
intellectual skills.

Soar

Soar (Laird et al, 1987), developed by John Laird at the University of Michigan, Paul

Rosenbloom at the Information Sciences Institute of the University of Southern

California and Allen Newell at the Carnegie Mellon University, was meant to be "an

architecture for general intelligence" (Newell, 1990). It was probably the first proposal

to be both theoretically well justified and successfully implemented on a computer,

allowing the creators to conduct `computer-supported' research into the theories of

cognition. Soar emerged from research in AI over many years and contains elements

typically found in production systems (Figure 11) - working memory (also called global
database, short-term memory or fact list) which is the system's representation of the

current state in its world, long-term memory (production rules, knowledge base)

comprising condition/action rules taking the system from one state to another and a

control structure deciding which production rule(s) fire next (Franklin, 1995). A

schematic representation of the co-dependencies of the above mentioned subsystems is

depicted in Figure 12 and the complete Soar system equipped with perceptual and motor

systems is shown in Figure 13.

26

Chapter 3: Cognitive Architectures and Animation Techniques

Production System

working memory
long-term memory

(productions, control (global database,
operators, short-term memory, structure production rules, fact list) knowled

Data Operations of Heuristic
the system search

Figure 11 Components of a production system

Control Structure

Long-term memory
(production rules)

Working memory
(global database)

Figure 12 Dependencies in a production system (after Franklin, 1995)

Soar was built around the following well-defined principles as identified by Newell:

f All tasks are represented in problem spaces, therefore all cognitive actions occur

within a search space. In each problem space there are available operators which can

be applied to the current state. To operate in a problem space the system must know

how to implement the operators and how to guide the search - this knowledge is

kept in the long-term memory.

f Productions provide all long-term memory (search control, operators, declarative

knowledge). Handling all Soar activities is done by this structure -a single

production system. Newell argues that such uniformity of architecture is a good idea

even though many Al researchers hold the view that declarative and procedural

memory are different kinds of memories. Productions comprise sets of conditions

which, if matched by elements in the working memory, fire actions entering new

elements into the working memory. Therefore such a structure can well be described

as a pattern matching system. Many productions may fire in a single cycle - there is

27

Chapter 3: Cognitive Architectures and Animation Techniques

no conflict resolution strategy, which would choose only one, most suitable

production.

f Attribute/value representation is used for all objects. Conditions, actions and

working-memory elements are object-attribute-value triples, those triples are used
for all representations within Soar.

fA preference-based procedure is used to make all decisions (accept/reject,

better/indifferent/worse). Preferences are Soar's means of representing what actions

should be taken. There are different types of preferences -a decision can be

acceptable, rejected, indifferent, better, worse, best and worst. Only the preferences

are considered by the decision procedure when it chooses the next step to take. A

number of common-sense heuristics is applied when making the choice.

f Goals direct all behaviour (subgoals are created automatically from impasses).

Sometimes the decision procedure does not give any obvious decisions to be made.
In such cases the system goes into an impasse and therefore creates a Subgoal to

resolve it, therefore subgoals are only created when Soar does not know what to do

next. There can be four kinds of impasses: a tie impasse - when all alternatives are

acceptable, none are preferred, none can be rejected and they are not indifferent; no-

change impasse - there are no choices at all; reject impasse - the only preference is

one to reject a decision which has already been made; conflict impasse - when for

example one operator is said to be better then some other operator and at the same

time another preference says an opposite thing.

f Chunking of all impasse resolutions occurs continuously. Chunking is Soar's

method of learning, which occurs during problem solving. Chunks are new

productions created when an impasse is being resolved. Chunks can be used as soon

as they are created. Chunking makes Soar's problem solving clearly faster with

practice and allows for inter-task knowledge exchange.

28

Chapter 3: Cognitive Architectures and Animation Techniques

Long term memory

Nroductans

Working memory

Perceptual Motor
systems systems

Senses Muscles External environment

Figure 13 Soar's components (after Newell, 1990)

In summary - it should be pointed out that Soar is a very sophisticated finite-state

machine without deliberative planning facility. There is no automatic task acquisition -
all tasks given to Soar must be hand-coded, Soar learns monotonically and so it can not

recover from learning errors.

Soar is a very popular and widely used tool allowing many researchers to investigate the

working of human cognition, learn more about man-machine interaction and explore

other Al-related fields. For instance NeuroSOAR was a connectionist attempt to

implement Soar's production systems and decision procedure using neural networks
(Cho et al, 1991). However due to uniformity of Soar's design all external knowledge

must be first well understood and encoded into Soar production rules (cf. Wray 2002),

which can be a tedious and demanding process. For example in the Soar-based real-time

system directing computer simulated aircraft pilots (TicAir-Soar) created at the

University of Michigan (Laird and Jones, 1998) there were approximately 5200 rules
(and over 450 operators), many of them acquired after extensive consultations with

experts in the field (military pilots). Such a rule-based knowledge must be complete and

correct otherwise the system will not work properly. The process of acquiring it for

serious applications will inevitably be expensive and require much iteration. For a

system directing interacting characters this may mean that the developers would have to

create hundreds of symbolic rules showing the Soar engine (or any similar one, cf.
CLIPS, Giarratano and Riley, 1989 or JESS, Friedman-Hill 2003) how to handle many
`obvious' things such as biomechanics, inverse kinematics, or world geometry.
Additionally Soar does not offer any way of handling multi-agent interactions (or

29

Chapter 3: Cognitive Architectures and Animation Techniques

interactions between different instances of the Soar engine) other than through the

environment. While this is sufficient to build a successful system the developer would

again have to resort to creation of numerous detailed production rules. Therefore it

appears that Soar may not be the best tool to create the proposed multi-agent animation

system.

3.2 Animation Architectures

Most researchers who build intelligent characters do not attempt to mimic how the

human brain works at the low level (by for example building complex neural

structures). Instead new architectures are proposed, which may be informed by research
into human or animal behaviour or can just be new proposals for creating virtual

systems. The next sections give an overview of the most important systems designed to

support creation of synthetic creatures. Special emphasis is placed on systems which
include some form of Reinforcement Learning, that is unsupervised learning directed by

trial and error.

3.2.1 Cognition-based animation systems

One of the dominant approaches taken by researchers trying to build intelligent

characters is represented by research groups trying to build animation systems by

creating a small number of relatively sophisticated characters, animated using kinematic

techniques and/or predefined motion. The characters are usually equipped with a high

degree of autonomy, can learn and perform complex actions.

A good example here is C4, an architecture proposed by a research group working at the

MIT Media Lab (Isla et al, 2001, Burke et a! 2000). C4 was designed to allow creation

of autonomous and semi-autonomous creatures. The work is informed by the behaviour

of living animals (in particular dogs). The main concept is based on a `brain' divided

into numerous systems communicating through an internal blackboard (Craig, 1995).

The modules making C4 are: sensory and perception system, action system, navigation

and motor system (which in turn is also composed of different layers e. g. Look At

Layer, Emotion Layer), short-term memory and the mental blackboard (see Figure 14).

Thus the whole system is highly modular which is its main architectural principle. The

difference between the perception and sensory systems is that the perception system is

30

Chapter 3: Cognitive Architectures and Animation Techniques

responsible for assigning meanings to the events in the world. Working memory is a

repository for persistent objects constituting the creature's view of the world. An

important point is that the world model not only maintains a list of creatures and objects

present in the simulation but also serves as an event blackboard for posting and
distribution of world events.

The World

Sensory I
system

Perception
system Working

memory
(sort term)

Action
system

Navigation
Black-
board

system

Motor

motion
layers

Figure 14 C4 components (after Isla et al, 2001)

The working of the system is supported by a robust version of a sense-learn-act loop

with strong emphasis on the learning. C4 allows the Al components of the animated

characters to perform (among others) the following capabilities:

f reactive behaviour

f learning

f planning
It is also defined as being highly extensible. The building bricks of C4 are carefully
designed data structures, different for different subsystems, which allow for

representation of many kinds of information present within the system and which have

also great impact on the learning abilities. Examples can be DataRecords holding the

sensory/perceptual information, or PerceptMemory objects residing in the working

memory. Thus each creature acts according to the contents of its own memory.

31

Chapter 3: Cognitive Architectures and Animation Techniques

The results of applying the system to create a film-like demonstration are admittedly

impressing. While some manual modifications to the presented videos might still have

been necessary, the system does allow for natural representation of both

`individualistic' characters (a dog) and semi-autonomous creatures such as a flock of

sheep. It puts a strong emphasis on learning and defines a large hierarchy of stimuli
from the environment (which is necessary in order to train the dog successfully).
Different types of virtual creatures can also be represented.

C4's emphasis on learning, especially in the form of training a home pet (a dog), makes

the system biased towards solutions allowing to handle this type of interaction. This

includes dedicated data structures and a hierarchy of purposefully defined objects. It is

not obvious how this design would fit into simulation of a human crowd (the only
demonstrated type of `crowd' was a flock of sheep) and whether the learning system is

flexible enough to allow unsupervised learning of more advanced activities involving

interaction with objects. This might include for example opening a door. Additionally

the inter-character interaction is limited to flocking behaviour and issue of commands,

the presented scenes do not contain more than one fully intelligent character. Therefore

some serious changes to the system would probably be necessary in order to allow it to

generate many intelligent human-like characters.

An extension of C4, which includes much greater learning capabilities, is described in

Blumberg et al (2002). The applied learning algorithm is a modification of the

Reinforcement Learning technique. However the task of the learning engine is not to

learn the necessary motor skills but rather is defined on a higher level, "with respect to a

motivational goal of moving in a certain way" and happens in real-time during the

interaction with the system. Thus the authors define their learning system as being more

abstract than the traditional approaches and additionally aim to use learning as a means

of increasing online interactive capabilities of their characters and not as a design tool.

The whole system was built to mimic a dog training technique called the "clicker

training". The system uses a so-called pose-graph to generate motion, the nodes of

which are derived from source animation amended by an interpolation technique

(Downie, 2000). Thus the animation is realistic and transitions can be generated in real-

32

Chapter 3: Cognitive Architectures and Animation Techniques

time but the actions must be prepared by an animator and pre-programmed into the

system.

Another example of applying Reinforcement Learning (RL) to animation includes Yoon

et al (2000), where RL techniques were used to create motivational and emotional states
for a human character. This system incorporates such concepts as motivation driven

learning (where the source of the reinforcement signal for learning was the creature's

motivational module), organisational and concept learning but not motor learning.

Similarly as before the learning occurs on a higher level and only affects the character's
behaviour in an indirect way.

Another interesting work presented by the MIT Synthetic Character Group includes a

study of user interaction with high-level control over synthetic wolves, whose emotional

state is maintained by a computer (Tomlinson et al 2002), or a behaviour-based reactive

autonomous cinematography system (Tomlinson et al 2000). In the former the
intelligence was put not into a virtual character but rather into a virtual camera and
lights in order to enhance the emotional expressiveness of the animation. Kline and
Blumberg (2000) proposed an enhancement to the believability of virtual characters by

endowing them with expectations. A summary of the systems created by the group can
be found in Downie et al (2002). Additionally Russel and Blumberg (1999) identify

elements and features which must be exhibited by a good real-time synthetic character

architecture and present an example implemented solution. This discussion is

complemented by Kline and Blumberg (1999) with a methodology for designing virtual

characters exhibiting such characteristics as intentional behaviour and attempts to

satisfy their desires.

The common feature of all systems created by the researchers from the MIT Synthetic

Character Group is that the motor systems are always built upon animation material

prepared by animators rather than creating character motion from scratch (Downie et al
2002).

33

Chapter 3: Cognitive Architectures and Animation Techniques

Funge's Cognitive Architecture

Another example of a system dedicated to the creation of autonomous characters is John

Funge's cognitive architecture (Funge, 1998, Funge, 1999, Funge et al, 1999, Funge

2000). Funge's research interests concern building cognitive systems dedicated for

animated characters. He strongly supports the idea of adding autonomy to computer-

generated creatures and he defines an autonomous character as "a character that, during

the course of a computer game or animation, can decide how to behave on its own. "

(Funge, 1999). Funge argues that virtual characters should maintain a cognitive model

that is an internal model of their world and additionally an explicit representation of

some other knowledge about the character's world (Funge, 1998, Funge et al, 1999).

Therefore he describes autonomous cognitive characters as characters having some
domain knowledge - knowledge about the world's dynamics. At the same time he

claims that generally the character should not be omniscient, which happens when the

characters gain access to the `true' world model. Funge formalises his ideas using the

Situation Calculus (Levesque et al, 1997).

Funge emphasises that the cognitive layer is only one among many models underlying

an animated character (Figure 11). He recognises that a developer trying to build a

virtual scene will be faced with many problems apart from those of Artificial

Intelligence. What he proposes in not only a cognitive architecture but also a whole

process of building a virtual character.

Unfortunately the character interaction component seems to be omitted in the model.
Funge concentrates on building a single character without addressing the problem of
how to exchange information or co-ordinate its behaviour with other creatures. Also the

process of building the whole system, especially how to merge all different aspects of

the cognitive engine, is not addressed in detail and the learning aspect in only

mentioned without deeper consideration. Some extensions introducing the missing

components could make this architecture even more suitable for design and
implementation of intelligent characters inhabiting virtual worlds.

34

Chapter 3: Cognitive Architectures and Animation Techniques

Cognitive Models

Behaviour

Biomechanics

Physics

®" Geometry

Figure 15 Pyramid depicting different models used to build a virtual character (after Funge, 1999)

Genetic-based Approach

Sims (Sims, 1994b) proposed a framework based on genetic algorithms which can

create evolving creatures consisting of simple geometrical figures specialised to perform

different activities, such as swimming or walking. The system could also simulate the

laws of physics (friction, gravity, collisions) and make the evolving creatures compete

for resources thus promoting further specialisation (Sims, 1994a). Another application

of genetic algorithms to behaviour learning for animated characters was presented by

Wan and Tang (2002) and also by Shim and Kim (2003) who presented a technique for

evolving double-winged creatures, using genetic algorithms and neural networks. The

flying creatures are able to fly in virtual landscapes without the need for complex

modelling of flight dynamics. Gritz and Hahn (1997) applied genetic programming to

construct simple controllers for character animation. One of the main problems with

applying genetic techniques to generate animation is finding an appropriate fitness

function, without making it too task-specific.

3.2.2 Physics-based controllers

An approach similar to the one described in the previous section is creation of (usually

bipedal) characters with very complex motor skills using dynamic simulation. In this

approach the emphasis is placed on the creation of one realistically modelled character

simulated using the motion equations and physics-based controllers. Tu, Terzopoluos

and Grzeszczuk (Tu and Terzopoulos, 1994, Grzeszczuk and Terzopoulos, 1995)

present a system for animating dynamically simulated fish and snakes. However a

similar approach applied to dynamic simulation of human figures requires that the

35

Chapter 3: Cognitive Architectures and Animation Techniques

characters have many degrees of freedom thus making it computationally expensive.

Despite that complication a lot of research is being conducted in this field. Hodgins et al

(1995) propose controllers for three different athletic behaviours. Apart from dynamic

simulation they also use state machines, techniques for reducing disturbances to the

system introduced by idle limbs, and inverse kinematics. Van de Panne and others (van

de Panne et al, 2000) propose a limit cycle algorithm for the animation of a walking

biped and a dynamic motion planner for simplified characters (Acrobot, Luxo). Laszlo

et al (1996) applied the limit control cycle technique to a 19 degree-of-freedom model

of a human, similarly Anderson and Pandy (1999) investigated realistic simulation of

human gait using a 23 degree-of-freedom model.

There have been few attempts to build dynamic controllers, which could control more

than one specific motion. Examples of these are the ones proposed by Pandy and

Anderson (1999) who tried to create a controller applicable to both jumping and

walking behaviours and also the work presented by Faloutsos and his colleagues

(Faloutsos et al, 2001 a, Faloutsos et al, 2001b, Faloutsos, 2002), who combined several

different controllers and additionally applied Support Vector Machines (see Christianini

and Shawe-Taylor, 2000) to automatically learn preconditions of different dynamic

actions as an off-line process. An alternative to physically-based simulation was

proposed by Lee et al (2000) by implementing a system in which constraints imposed

on motion of a character are calculated in a procedural way. Thus the calculations are

faster and more stable and can easily be used in real-time applications.

3.2.3 Flocking systems and crowd simulation

A similar branch of research is automatic generation of animation sequences involving

multiple computer characters, which is also concerned with the creation of intelligent

characters but on a more massive scale. This is often referred to as crowd scenes. One of

the first papers to be published in this area was Reynolds (1987) where an algorithm for

simulating flocking behaviour was presented. Reynolds introduced the concept of

"boids" (from bird-like, bird-oid), which is sometimes used to refer to agents, which are

a part of a flock, herd, school or swarm and not necessarily birds. His ideas included

separate vision systems for each simulated bird, collision avoidance and distributed

behavioural modelling. The system was superior to the previously applied force fields

36

Chapter 3: Cognitive Architectures and Animation Techniques

(Amkraut, 1987, after Reynolds, 1987) and particle systems (Reeves, 1983, after

Reynolds, 1987). Furthermore Reynolds related his research to studies conducted by

zoologists. More recently he extended his system by considering different types of

behaviours which can be exhibited by flocking agents (Reynolds, 1999).

Another example of a complex animation system is that proposed by Terzopoulos and

his collaborators (Terzopoluos et al 1994, Terzopoluos et al 1996), who extended ideas

proposed by Reynolds. They created a marine world inhabited by realistically looking

and behaving animals (mainly fish) to explore synthetic vision and navigation systems

and applied flocking algorithms to fish equipped with a vision system (Tu and

Terzopoulos, 1994). They also employed machine learning to acquire complex motor

skills for the simulated fish. The virtual characters are able to learn low-level motions

and also high-level behaviours. In their approach the researchers use physics-based

simulation and create a dynamic model of the fish with muscles and springs. Such an

approach to motion control however makes the simulation computationally demanding

and so Grzeszczuk (Grzeszczuk, 1998, Grzeszczuk et al, 1998) proposed an application

of neural networks to emulate dynamics. They claim that using this approach physically

realistic animation can be generated one or two orders of magnitude faster than when

using numerical simulation (Grzeszczuk et al, 1998). Still the system can only be

applied to characters with relatively small number of degrees of freedom.

Anderson et al (2003) took further the ideas proposed by Reynolds and implemented a

system generating flocking behaviours with constraints imposed by the user. The

constraints can be defined for positions and timing for any number of characters,
including the centre of mass for subsets of the flock and it is also possible to define

desired shapes for the flock. The system calculates the motions in two steps - first an
initial set of trajectories, which match the criteria is proposed, next the motion is

improved (e. g. collision avoidance is added) while preserving the constraints. This two-

state process introduces some problems however, as it may be difficult to quickly
improve some trajectories (e. g. when many obstacles are present). The system is aimed

at off-line production environments and can generate many candidate solutions.

I--- MSRARY

37

Chapter 3: Cognitive Architectures and Animation Techniques

Hodgins and collaborators worked on the modelling of motion of many agents with

significant dynamics (Brogan and Hodgins 1997, Hodgins et al 1995) and also on

adapting similar behavioural patterns to different creatures and environments (Hodgins

and Pollard, 1997, Pollard and Hodgins, 1998). Metoyer and Hodgins (2000) presented

a framework for rapid crowd motion prototyping, where simplified bipeds are playing

American football. Additionally their agents can learn high level behaviours from real

data using a memory-based learning algorithm.

Another important field of research within the crowd-modelling framework is

simulation of human behaviour in urban environments. An example is the Informed

Environment framework (Ferenc et al, 1999a) based on hierarchical decomposition of

the scene with additional shift of part of the intelligence from the characters to scene

objects (smart objects, Kalimann, 2001). In another paper (Ferenc et al, 1999b) this

concept is utilised to perform simulations with virtual characters.

Tecchia et al (2001,2002a) proposed a system for simulating agent behaviour in urban

environments, the results they presented included up to 20 thousand agents, although it

is claimed that the system can simulate up to 50 thousand figures. They also proposed a

four-layered structure for agent control, which included 2D-grid inter-agent and agent-

environment collision detection, based on collision maps (two-dimensional maps of

objects) with a possibility of adding an elevation model. The system has been extended

by adding rendering of shadows (Tecchia et al, 2002b), in that case however the

presented results do not comprise inter-agent collision avoidance (Loscos et al, 2001,

Loscos et al, 2003). Still (2000) modelled crowd dynamics to simulate emergency

evacuation from stadiums and railway stations.

Two interesting recent architectures are ViCrowd (Raupp Musse and Thalmann, 2001)

and ALOHA (O'Sullivan et a! 2002). Both architectures support simulation of human

crowds in real time. ViCrowd attributes intelligence to groups of characters rather than

individual agents. This is in part implied by the required real-time performance of the

framework. The system allows for control of the animation using scripted behaviours,

external interaction or reactive rules and events, including general, local and emotional

events. Crowds, groups and individual characters are equipped with intentions, beliefs

38

Chapter 3: Cognitive Architectures and Animation Techniques

and knowledge, however the most `intelligent' entities are the groups. Navigation is

handled through precomputed paths, calculated for movements of each individual for

the task of travelling between the current goal and the next one. A dedicated scripting

language has also been created for control of the simulation. A short summary of the

system is shown in Table 2.

Table 2 Characteristics of the ViCrowd system (after Raupp Musse and Thalmann, 2001)

Structure Crowd, groups and agent levels
Participants Many
Intelligence Limited
Physics-based No
Collision handling Collision avoidance
Control Pre-defined behaviour, rules and guided

control

ALOHA puts greater emphasis on time efficiency of the simulation, thus optimising the

geometry of the characters as well as motion and behaviours. The system can

additionally be coupled to a voice generation module (Cassell et al, 2001).

Monzani (Monzani et al, 2001) presents a crowd simulation system based on agents

driven by the BDI architecture. The creation of an agent is split into parts, including

low-level and high-level tasks. The low-level layer comprises what they call physical

elements, that is a 3D graphical representation of the avatar, animation and sound

generation. Agents are able to interact with objects and other characters and

communicate verbally. The high-level aspect of the architecture spans beliefs, emotions,

goals and predefined plans. The authors of the architecture strongly emphasise the need
for separating the motion generation and behavioural aspects of the agent's design.

During the simulation each agent is controlled by a separate thread and awareness of

other agents and their actions are implemented by some form of shared memory. Certain

aspects of the agent design are modelled in UML, however the presented design is very

general and mainly comprises multiple layers of inheritance necessary to construct the

agent (see also Monzani, 2002). Animation is handled using a layered architecture

supporting actions, tasks and task stacks. The system creates a scenario-driven

simulation with inter-avatar task synchronisation through smart objects (Kallmann,

2001), which contain information about their functionality and guide the interaction.

39

Chapter 3: Cognitive Architectures and Animation Techniques

Arafa et al (2002) describe two XML-based languages for scripting the animation of

simulated characters, Character Mark-up Language for attribute definition and

animation scripting and Avatar Mark-up Language meant to be used by human

animators. Also recently Devillers and Donikian (2003) proposed a scenario language

for controlling and directing semi-autonomous creatures. The language supports among

other features character communication and scenario scheduling.

Ulicny and Thalmann (2001) proposed a crowd simulation system in which agent

behaviour can be both scripted and autonomous. Each agent consists of three elements:

attributes, high-level behaviours (implemented using finite-state machines build on top

of low-level actions) and rules governing the selections of the behaviours. Low-level

actions include pre-recorded animation sequences and walking. Additionally events

provide the agents with a way of interacting with the environment or other agents.
Global path planning is also used. The authors implicitly distinguish between visual

representation of the character and the logic (called an agent). The simulations are

conducted in real-time and allow for user intervention.

More recently Mac Namee and Cunningham (2003) proposed an architecture for

creation of socially aware non player characters in computer games. Their work is

influenced by the studies of personality models and they focus their attention on the

modelling of emotion using neural networks. Their agents are also claimed to be

proactive and persistent, meaning that they exist and act regardless of the course taken

by the human player.

3.3 Agent-based Systems and Methodologies

This section presents examples of agent-oriented design techniques, which could

potentially support the creation of multiple animated characters. First the BDI model

and its descendant - the SAC concepts are discussed, this is followed by a presentation

of two important agent-oriented design methodologies - Gaia and Tropos.

3.3.1 The BDI model
Together with the appearance of multi-agent systems into the main stream of Al

research, many of the proposed frameworks are based on the notion of an intelligent

40

Chapter 3: Cognitive Architectures and Animation Techniques

agent. An example is the BDI, Belief Desire Intention, architecture proposed by Rao

and Georgeff in 1991 (Rao and Georgeff, 1991, Rao and Georgeff, 1993, Rao and

Georgeff, 1995, Georgeff et al 1999). The BDI architecture has its foundations in

philosophy but referenced to computer-based systems, and proposes a unified

framework for the development of agents in situated planning systems, that is systems

embedded in dynamic environments, which have to recognise and respond to occurring

events. At the same time these systems must attempt to achieve their goals. Thus Rao

and Georgeff conclude that situated systems must be both reactive and goal-oriented.

The model relies on five important concepts:

- beliefs, which in general represent the agent's knowledge base,

- desires describe a set of states the agent wants to "effectuate"; generic desires do not

have to be consistent

- goals -a set of consistent desires (at a specific time),

- intentions depict the current goal and the means to realise it, in other words this is

the set of currently assumed plans,

- plans, are predetermined action or goal sequences, which accomplish specific tasks.

Rao and Georgeff also propose a theoretical formalism to support their findings. In

general however, despite numerous applications of this architecture, it remains rather

theoretical and complex in implementation (Winikoff, 2001).

3.3.2 SAC

Recent proposals by Winikoff (Winikoff et al, 2001, Harland and Winikoff, 2001)

extend the BDI architecture to make it more accessible as a software engineering
development framework (see Figure 16). Winikoff's objective is to propose "a

simplified model which retains the power (and efficiency) of the BDI model but allows

more people to develop intelligent agent systems" - hence the name SAC (Simplified

Agent Concepts). Winikoff's concepts are much more `implementable' than the original
BDI architecture and he puts more emphasis on goals, events and construction of plans.

41

Chapter 3: Cogin'tire Architectures and Animation Techniques

Percepts

Environinent

Action

Figure 16 Components of the SAC architecture (depicting two agents, after Winikoff, 2001)

SAC agent's execution model can be described in 7 steps:

f percepts are interpreted and give rise to events (which are internal agent's events

and not events coming from the environment, examples can include appearance of a

new object in vicinity but also a tick of an internal clock)

f agent's beliefs are in turn updated

f events can create reflexive actions and possibly new goals

f goals are updated

f plan is chosen (if necessary)

f chosen plan is expanded

f an action is chosen, scheduled and performed

SAC agents have separate reactive and proactive execution cycles, with the reflexive

actions triggered by events. Events in the context of this architecture are internal - they

are defined as interpreted percepts of some significance to the agent and can also be

generated inside the agent (for example by the agent's clock). Winikoff also allows the

environment to be implemented as an agent, although it is not necessary. The developer

is responsible for the identification of all agent's goals - "it is important for the

developer to identify the top level goals of the agent as well as subsidiary goals which

are used in achieving main goals. " Additionally the agent may be equipped with a plan

library from which it can select appropriate plans when necessary.

42

Chapter 3: Cognitive Architectures and Animation Techniques

The principles underlying the SAC model do not allow it to include specific needs of

system developers and different agent types. Therefore extensions to this architecture

will generally be necessary in more complex applications.

3.3.3 Gaia

Gaia (Wooldridge et al, 2000) is a methodology for agent-oriented analysis and design.

Gaia is intended to be applied to large-scale real world applications, with coarse-

grained, heterogeneous agents using substantial computational resources, static inter-

agent relationships and services, and a small number of different agents. Apart from

addressing the issues of designing the internal structure of an agent, Gaia also presents

ways of dealing with the societal aspects of multi-agent systems design. Gaia is meant

to be neutral with regard to specific target domains and agent architectures. Gaia divides

the process of modelling a multi-agent system into three stages: requirement capture,

analysis, and design, inputs and outputs from the last two stages are presented as models

(Figure 17).

requirements
statement

permissions &
protocols responsibtldi s

roles

=intes
ýalysls

model

7

model

Design
agent LeE3 acquaintance
model model model COMM a agenttypes functions of cation

and instances the agent links

Figure 17 Gaia Models (after Wooldridge et al, 2001)

Although the Gaia methodology seems very elegant, this comes at the cost of a lack of
detail. Most of the models only capture more formally what every agent designer would
have done if faced with a task of designing such a system. Additionally from the point

of view of applying Gaia to design a breed of animated agents Gaia falls short in this

task as it is aimed at designing heterogenous agents, which share common goals.
Additionally Gaia does not explicitly address the problem of situatedness, even though

it is one of the key agent concepts.

43

Chapter 3: Cognitive Architectures and Animation Techniques

3.3.4 Tropos

Tropos (Mylopoulos et al, 2001, Castro et al, 2001, Giunchiglia et al, 2001) is another

popular software development methodology aimed at creating agent-oriented solutions.

Tropos spans the whole design cycle of the system, capturing early and late

requirements, analysis and architectural and detailed design. This is in contrast to Gaia,

which only models the two intermediate stages. Tropos also proposes extensions to

UML diagrams, which accommodate extensions required by multi-agent systems. The

framework is generally designed to support development of multiplatform,

`componentised' software systems, such as e-business applications. Because of this

however, the generic Tropos diagrams tend to contain large numbers of elements, which

makes them complex and difficult to follow. The development procedure lacks more

detailed transitions and consists mainly of a set of milestone models.

Other similar methodologies include MaSE (Wood and DeLoach, 2001, Raphael and

DeLoach, 2000), which uses UML diagrams as part of the process, CASSIOPEIA

(Collinot et al, 1996) oriented towards the design of a robotic soccer team and

Prometheus (Padgham and Winikoff 2002) evolved in an industrial environment. This

list is not exhaustive, most of the agent-oriented design methodologies however are still

too biased towards specific solutions and immature to be applied to a problem of

generating intelligent animated agents. For a survey of such methodologies see Iglesias

et al, 1999 and also Kinny et al, 1996, a good comparison of several of these

methodologies can also be found in Dam and Winikoff, 2003.

3.4 AuRA and Other Selected Robotics Architectures

Some of the issues tackled by the research in robotics are closely related to problems

encountered when trying to create intelligent animated characters. While much of the

work into construction of autonomous robots stills tries to address mechanical aspects

of robot creation and problems with imperfect sensing and actuating, there is a

substantial amount of overlap in both of these fields. Thus some of the results of

research into robotic systems are interesting when building an architecture suitable for

animation of autonomous avatars.

44

Chapter 3: Cognitive Architectures and Animation Techniques

One such example is AuRA (Autonomous Robot Architecture) proposed by Arkin

(Arkin, 1992, Arkin et a!, 1993, Arkin 1998). The architecture consists of two parts: a

reactive component built upon motor schema behaviours, which are analogous to

animal behaviours, and a deliberative hierarchical planner. Each motor schema (see

Figure 18) comprises a number of perceptual schemas, which fire when necessary

stimuli are present in the perceived environment. Thus a particular motor schema

contributes to the robot's behaviour when a set of conditions associated with it is

supplied by the robot's surroundings. Examples of motor schemas may include move-

ahead, move-to-goal avoid-static-obstacle, escape, follow-the-leader and other

behaviours. Eventually all contributing motor schemas are translated into corresponding

action vectors (comprising orientation and magnitude), normalised and added using

vector summation and the result is passed to the motors controlling the robot.

ES1 PS1 = 00 0
MS1 F

PS2 ' V2ct r

0

ES2
MOTO RS

PS3

ES3
MS2 ES - environmental stimulus

PS - perceptual schema
MS - motor schema

Figure 18 AuRA Reactive Framework (after Arkin, 1998)

The deliberative part of the AuRA architecture is a hierarchical planner consisting of a

mission planner responsible for managing the high level goals, spatial sequencer

constructing navigational paths from cartographic information stored in the long-term

memory and plan sequencer which translates paths into motor behaviours. The planner

communicates with the schema controller (middle part of Figure 18) and intervenes

only when the reactive module fails to cope with the task. The architecture has also been

equipped with two types of learning capabilities. The first one is online adjustment of

schema gains and parameters controlling the schemas. These modifications control the

strength with which each schema can contribute to the general behaviour of the system.

45

Chapter 3: Cognitive Architectures and Animation Techniques

The second learning framework based on genetic algorithms allows building families of

robots with varying fitness functions, thus optimising performance in regard to speed,

safety or time constraints.

The AuRA architecture demonstrates that even relatively simple framework based on

several reactive behaviours can generate a realistically behaving intelligent system.
Extra units such as a planner help resolve critical situations and manage goal-directed

behaviour and the addition of learning capabilities allows the designer to easily adjust

the working parameters of the system and also to impose more complex constraints on

the overall performance of the system.

Another useful approach to designing robotic systems was presented by Ishiguro and his

colleagues (Ishiguro et al, 1999). Although the proposal is also a hybrid robotic

architecture, they focus their attention on presenting a development process applicable

to the design of robotic systems. Only then do they move onto creating a functioning

robot. The approach is based on situated modules, that is condition-action pairs encoded
in a procedural language. Kumar (Kumar, 1998) on the other hand explored the

possibility of extending the BDI concepts in the context of robotic agents and proposed

a much more theoretical framework for reasoning, acting and rule acquisition for

reactive behaviours.

3.5 Reinforcement Learning

When performing fully automated acquisition of high-level animation actions it is

desired that a user only define a goal for the learning task without intervening in the

way the action is performed. Reinforcement Learning (RL) methods (Sutton and Barto,

1998, Mitchell, 1997) fulfil these criteria. RL is a machine learning technique in which

an agent learns by trial and error which action to perform by interacting with the

environment. Models of the agent or environment are not required. At each discrete

time step, the agent selects an action given the current state and executes the action,

causing the environment to move to the next state. The agent receives a reward that

reflects the value of the action taken. The objective of the agent is to maximise the sum

of rewards received when starting from an initial state and ending in a goal state. One

incarnation of RL is Q-learning (Watkins, 1989, Watkins and Dayan, 1992). The

46

Chapter 3: Cognitive Architectures and Animation Techniques

objective in Q-learning is to generate Q-values (quality values) for each state-action

pair. At each time step, the agent observes the state s, , and takes action a. The choice

of actions in early stages is usually random (any action may be selected from the

possible actions set) and becomes more informed as the agent learns more about the

environment (agent favours actions which give higher rewards thus exploiting its

knowledge). After executing an action the agent then receives a reward r dependent on

the new state s, +, .
The reward may be discounted into the future, that is rewards

received n time steps into the future are worth less by a factor y" than rewards

received in the present. Thus the cumulative discounted reward is given by

R=r, +Yrt+, +Y2rt+2+... +"rt+n (1)

where yE [0,1). The Q-value is updated at each step using the update equation (1) for a

deterministic Markov Decision Process (MDP) as follows

Q (s , at)(r+, +Ymax Q (St+1, a) (2) n

A sequence of actions ending in a terminal state (known as an absorbing state) is called

an epoch. Q-learning can be implemented using a look-up table to store the values of Q

for a relatively small state space. Neural networks are also used for the Q-function

approximation (Bertsekas and Tsitsiklis, 1996, Haykin and Saher, 1999).

Reinforcement Learning has been applied to create successful board games

implementations (Schraudolph et al, 1994, Thrun, 1995), with unmanageable state

spaces. Backgammon is the most successful example (Tesauro, 1994). Reinforcement

Learning has also been used in robotics to control one or more robotic arms (Davison

and Bortoff 1994, Schaal and Atkeson, 1994), Sutton (1996) succesfully applied RL to

various optimisation tasks including control of the Acrobot -a two-link robot actuated

only at the second joint and Boone (1997) compared Q-learning with other control

methods for the Acrobot task including the A* search. Recently Tedrake and Seung

presented a Reinforcement Learning technique for expanding a controller for the planar

one-legged hopping robot (Tedrake and Seung, 2002). Q-learning-based solutions have

also been modified and adapted. Examples include ant systems (Gambardella and
Dorigo, 1995, Monekosso and Remagnino, 2001, Monekosso et al, 2002) or reward

shaping (Ng et al, 1999) a technique in which additional rewards are used to guide the

learning. Recent applications of RL to character animation have been presented before.

A survey of Reinforcement Learning techniques can be found in Kaelbling et al (1996),

47

Chapter 3: Cognitive Architectures and Animation Techniques

an excellent tutorial on Reinforcement Learning techniques was published by Harmon

and Harmon (1996) and Touzet (1999) describes techniques for combining Q-learning

and neural networks in the context of robotics.

3.6 Rapid Prototyping and Motion Capture-based Techniques

Although not directly related to the creation of intelligent characters, motion capture-
based techniques allow for creation of realistic animation without the need for

keyframing or behaviour simulation through application of techniques which allow for

generation of new motion from a database of clips. This can also serve as an interesting

technique for visualisation of behaviours generated using intelligent techniques, in cases

where low-level motion generation in impractical. Similarly rapid prototyping

techniques offer an opportunity to quickly sketch an animation sequence without the

need for simulated motion. Some of the motion learning techniques can also be included

in this category. Therefore this section presents the most recent advances in both

domains.

Fang and Pollard (2003) proposed a system for fast generation of motions for characters
having from 7 to 22 degrees of freedom using physical simulation. Another recent

system for creating and editing of character animation was presented by Dontcheva et al
(2003). The system is capable of rapid prototyping of expressive motion and can work
in real time. It is based on a motion capture framework with immediate feedback

displayed on a large screen. Similarly the system presented by Lee and his colleagues
(Lee et al, 2002) allows the user to combine clips from a database of mocaped data by

identifying possible transitions between motion segments. The system works in real-

time and can additionally be controlled by sketching required motions or by acting them
in front of a camera. The generated results are comparable to recorded human motion.
Zordan and van Der Horst (2003) presented an new solution for mapping motion

capture using optical motion capture systems to joint trajectories for a fixed limb-length

skeleton based on virtual springs. This allowed them to generate smooth and uniform

motion applied to virtual avatars.

Neff and Fiume (2003) focused on improving existing animation to make it more

aesthetically pleasing, they proposed three tools for varying timing and shape of motion

48

Chapter 3: Cognitive Architectures and Animation Techniques

and Kovar and Gleicher (2003) proposed a novel technique for motion blending -a
technique which allows to create new motions by combining multiple clips according to

some criteria.

Li with his colleagues (Li et al, 2002) described a system for synthesis of complex

human motion (dancing) from motion captured data. The system learns so called motion

textons (repetitive patterns in complex motion) and their distributions and can

synthesise new motion. A similar concept was introduced by Liu and Popovic (2002).

They presented a system for rapid prototyping of realistic (highly dynamic) character

motion from a simple animation provided by an animator. The system learns an

estimator for predicting transition poses from examples taken from a database of motion

captured motions. Similarly Pullen and Bregler (2002) proposed a system generating

motion from a motion capture library based on a small number of keyframes sketched
by the animator. The concept is based on the observation that joint movements are often

correlated and thus the missing data can be derived from real motion.

Another real-time motion synthesis framework was created by Arikan and Forsyth

(2002). The system allows to generate motion from mocap by pasting sequences.
Although the system works in real time it requires precomputation of the clips (they

quote 5 hours for a library of 60-80 short motions). Another interesting system is that

presented by Bregler et al (2002), where they propose a `cartoon capture and

retargeting' technique which allows to capture expressive motion from traditional 2D

cartoons and apply it to 3D models and 2D drawings.

All of the above systems allow for fast creation of realistically moving animated

characters without the need for sophisticated Al-based techniques. However the task of
directing the motion is still left to the animator and the systems cannot cope with

animations with inter-character interaction, or where it is necessary to animate avatars
in a complex environment.

3.7 Summary

This chapter presented main areas of research necessary to consult when building

systems able to control intelligent characters. The most important part of the review

49

Chapter 3: Cognitive Architectures and Animation Techniques

included animation frameworks and architectures, which can be divided into three

categories. Some of the presented solutions focus on creating a small number of very
intelligent characters (C4 and its extensions, Funge). Such architectures are usually

geared towards embracing a user in a compelling interactive experience, such as

training a pet or playing against a clever computer controlled opponent in games. This

usually means that the underlying system is very complex and specialised and

characters are difficult to duplicate. Second group of animation architectures includes

physics-based systems, which are capable of generating characters with very complex

motor skills. Such systems generate realistic motion using physical simulation, however

currently the level of intelligent behaviour generated by such systems is low.

Additionally physical simulation tends to be computationally demanding and controllers

offering multiple behaviours are not as yet widely popular. Finally there is a number of

crowd systems which allow to generate numerous scene participants, usually at a cost of

partially sacrificing autonomy (predefined scenarios), motion realism and/or creation

time (mocapped sequences, keyframed motion) or character intelligence (state

machines, reactive behaviours). Other systems discussed in this chapter included

cognitive systems trying to mimic the function of human brain, autonomous agents,
Reinforcement Learning and rapid animation prototyping. All approaches presented in

this chapter can contribute to creation of an architecture which can automatically

generate complex character animation. Although many animation architectures present a

great potential, they are usually too specific to generate multiple crowd participants able

to interact with each other and the environment. The next chapter will now move on to

propose an intelligent system building on some of the presented solutions and extending

them.

50

Chapter 4: The Free Will Prototype

Chapter 4- The FreeWill Prototype

The previous chapters presented an overview of the current research in the field of

digital character animation, intelligent architectures, agent-oriented design

methodologies and also described existing industrial systems and 3D animation

packages. The survey demonstrates that industrial solutions offer high-quality

capabilities for the creation, texturing and rendering of virtual scenes, and also offer

specialised procedures for incorporating digitised human motion into the animation

sequences. This is an important factor contributing to improve the realism of the digital

scenes. The drawback of the existing professional animation systems is that they rely on

manual creation of animation, keyframing techniques or motion acquired from real

actors. They fail to deliver tools for automatic prototyping and creation of scenes

comprising high numbers of avatars. Any automation of the process employed to create

animated crowd scenes is usually limited to the creation of kinematics-based motion

and in some cases to the use of state machines to speed up the creation of different

behavioural schemas. In such cases the assignment of states and related motion must

always be conducted manually, characters are not self-aware, autonomy is very limited

and even collision detection is not always present.

In contrast to this, systems for character animation created by the research community

offer a number of complex AI techniques suitable to improve the way character

animation is made. This for example includes specialised architectures supporting

automatic control of avatars performing simple reflexive and complex pre-planned

actions. Learning and emotions are other important features. Hence the scientific

frameworks are able to create highly autonomous, interactive characters, which can

explore their environment, perform complex actions and even learn new ones (see

Chapter 3). The characters are capable of maintaining their own representation of the

world, they can interact with each other and the external user, have complex motor and

navigation capabilities. In most cases however, research methods focus on building

custom systems and their characters are animals or simplified human-like creatures,

because such representation is easier to animate and render. Integration with existing

tools is rarely provided and motion is usually pre-generated. Easy generation of crowd

scenes with anthropomorphic beings is not always possible and again dedicated systems

51

Chapter 4: The Free Will Prototype

must be written to create animation sequences with characters endowed with additional

mental, emotional or motor skills. Additionally, very few authors of these systems take

into consideration the fact that an architecture able to accommodate complex human-

like look and behaviour will always be a challenging engineering task. Thus even

though used research architectures are complex and achieve their goals, they are very
hard to emulate and extend, and usually remain rather closed systems. Application of

modern software engineering principles and design methodologies would certainly
improve the readability, reuse and extendibility of such architectures and possibly offer

a more modular design and easier implementation.

It is therefore clear that extensions to the existing animation packages made by

incorporating ideas from industrial animation systems, research proposals, and concepts
from software engineering would allow to build a far more powerful animation

architecture. The AI fields, which appear particularly useful for this purpose, are
intelligent architectures, autonomous agents and machine learning, since they allow for

enhancement of the automation level. On the other hand, software engineering concepts

and good software design practises would certainly allow for creation of a system which
is more robust, easy to implement, reuse and extend. Finally, if the proposed system

allowed for creation and rendering of a virtual scene within a professional animation

system, the high quality of the resulting animation and flat learning curve for existing

users would be assured. To provide this, the process of creating the animation sequences
involving animated characters might be conducted in an external module feeding the
Artificial Intelligence and returning to the animation package a set of necessary motion

commands for each avatar (Figure 19). Thus the proposed extensions could be

incorporated into existing animation packages by adding an additional module on top of
the existing components and allowing it to communicate with the animation engine.
Figure 19 proposes the extensions, which could be made to the existing animation

packages depicted in Figure 5 to address the need for intelligent behaviour.

52

C/ui ter 4: The Fret, Will Prototype

GU1l

III

definition of objects. animation control,
scenes. characters definition of keyframes, definition of

timing, etc. rendering parameters

Modeller

3D Mo" 13
Animation --irrdividüäl frame

Creator
)

in 3D coords

Renderer

____ _____ _______

ýý ii_lý'
ý_

'-----------------------__-- --ý_ ý.. --

Motion
commands

Scene
definition Action enerator

Motion commantl
generator

Motlel tlefmrtion

N Engine

Kno+rledge 8 ase

Scheduler

Scripting language

GUI1

V 111

Theoretical
Cognitive

Architecture
(Model

Figure 19 Proposed extensions to the existing animation packages

This chapter presents an intelligent architecture, FreeWill, which combines concepts

from Artificial Intelligence with a strong software framework, that extends the

capabilities of existing animation packages. FreeWill has been designed to automate the

process of creating scenes involving many interacting human-like characters and

incorporates goals, plans and actions thus allowing for collision-detection, self-

53

Chapter 4: The Free Will Prototype

awareness, autonomy, and learning. The architecture, is built based on two of the

systems presented in Chapter 3. These are the Funge's Cognitive Architecture (FCA)

which addresses many problems closely related to creation of intelligent animated

creatures and the agent-based SAC architecture (Simplified Agent Concepts) proposed

to make agent notions more approachable to software developers. It will be shown that

by merging and extending the ideas, which underlie these approaches, a more robust

and flexible architecture can be created. Additionally the process is underpinned by a

strong software engineering framework documented in UML upon which the

implemented prototype has also been based.

The chapter is divided into a number of sections. Section 4.1 presents the benefits from

applications of the agent-oriented design approach. In Section 4.2 a detailed comparison

of the FCA and SAC concepts is introduced, which gives a foundation for the main

ideas underlying FreeWill. Then, in Section 4.3, a description of the main constructs of

the architecture is provided, with main focus on the hybrid agent-animation structure of

the system. These proposals are underpinned by a software architecture modelled and

presented using UML. Finally all main subsystems of the framework are presented in

detail.

4.1 Benefits of Agent Technology

Only about 10-15 years ago the dominant technique in software labs was still structural

programming. In the late eighties and early nineties a new programming paradigm

called object-orientation was born and quickly became very popular (although the

technology was actually first developed in the early seventies by Xerox). A number of

techniques and methodologies, such as Object Modelling Technique (Rumbaugh et al,
1991), Responsibility Driven Design (Wirfs-Brock et al, 1990), Object-Oriented

Software Engineering (Objectory - Jacobson et al 1992), Object-oriented Design

(Booch, 1991), the Fusion Method (Coleman et al, 1994) were created, thus building

strong foundations for the software engineering techniques and implementation of new,

better programming languages. Object-orientation introduced or extended a number of

very useful and interesting ideas such as inheritance, polymorphism, encapsulation,

abstraction, easier code reusability or component-based architectures. It is currently the

main technique for code design and implementation, and is supported by a number of

54

Chapter 4: The Free Will Prototype

tools, methodologies, visual modelling applications and most importantly modem

programming languages. Object-orientation (00) was a natural step towards enhancing

a single programmer's creativity and the ability to control a growing amount of lines of

code.

However the object oriented programming did not fulfil all its promises. Jennings

(Jennings, 2001) enumerates the following shortcomings of the 00 approach:

f objects are passive in principle and can only be invoked by other objects (or actors);

they have no initiative, this means that objects do not provide behaviour activation

encapsulation - so once a method is called it does what it has been programmed to

do

f objects do not provide a sufficient level of abstraction for complex systems - the

level of granularity is too high and the interactions between entities must be pre-
defined in a detailed way

f the 00 approach does not provide sufficient support for specification and

management of dynamic organisational relationships (the only such 00 mechanism
is inheritance hierarchy).

Therefore with the fast growth of the processing power and the complexity of software,

some software engineers tried to introduce a yet higher level of abstraction for

developing complex system, a novel, more intelligent and versatile type of applications

assisting the users in many every day routine tasks. The entities of that approach were

called agents and the technology is known as agent orientation. The concept was coined
by Shoham in the early nineties (so in fact his idea was parallel to the growth of 00). In

his most widely known paper (Shoham, 1993), Shoham introduced agent-oriented

programming (AOP). A more theoretical view on the problem was also presented by

Rao and Georgeff (Rao, and Georgeff, 1992) and agent-orientation is currently one of

the most rapidly growing fields of research in the domain of Artificial Intelligence and

software engineering. Despite the fact that all early applications of AOP were
implemented in object-oriented languages, the underlying concepts of this technique are

very different. Agent orientation further removes coupling of software components,
introduces action encapsulation (as opposed to data encapsulation in 00), presents
interaction as an active process (interaction relationships are fixed in 00) and promotes

55

Chapter 4: The Free Will Prototype

flexible behaviour of agents (by adding both reactive and proactive actions) (Jennings,

2001).

Jennings argues that an agent oriented approach (Shoham, 1993, Burmeister, 1996,

Wooldridge, 1997, Wooldridge and Jennings, 1998, Nwana and Ndumu, 1998,

Jennings, 1999, Jennings, 2000, Jennings 2001, Wooldridge and Ciancarini, 2001) is

much more suitable for the development of systems which can handle the necessary

complexity. The main advantages of AO according to Jennings include:

f reduction of coupling of components - each agent can be a self-contained entity and

will exchange messages with other agents only sporadically (when considered on

the software level)

f no need to manage control - the agents are active all the time, hence they can

respond to signals from the environment as they arise

f strong support for high-level interaction which additionally can be initiated by the

agent

f flexible behaviour - agents support both reactive (responding promptly to external

events) and proactive (making decisions and deciding what to do to achieve the

goal) behaviour.

Winikoff (Winikof, 2001) also notes that the inherent property of an agent is having

many goals and many ways of fulfilling them and that agents make their decisions

according to the actual feedback from the environment.

Agent orientation has been used successfully to deliver applications in different

domains, such as traffic and transportation (Burmeister et al, 1997), real time tracking

(Horling et al, 2001), or network resource configuration (Hayzelden and Bigham,

1998), to name but a few. More examples can be found in Mondal and Jain, 2001,

Jennings and Wooldridge, 1998, Burmeister et al, 1998, Burmeister et al, 1997,

Georgeff and Rao, 1996. Some of the most prominent agent design methodologies have

been presented earlier.

However, despite there being a few implementations of agent languages and platforms
(Rao, 1996, Mayfield et al, 1996, JACK, 2003, T-Tool, 2003, FIPA, 2003, AgentTalk -

56

Chapter 4: The Free Will Prototype

Winikoff, 2003), there is still no widely recognised standard. Additionally new ones are

constantly being contributed. Even assuming that one could create agent architectures

still based on object languages, even an agent design methodology has not been agreed

upon. Finally, apart from the lack of methodology, the agent community is still working

on the design notation. Agent UML (AUML, 2003) seems to be the main candidate, but

the definition of this modelling language is still far from completion.

Given the complexity and intrinsic structure of the problem presented in this work

(many autonomous avatars, complex external environment, interaction with other

packages) it appears that the agent-oriented approach is an appropriate one for the

development of the FreeWill project. However due to the lack of mature tools

supporting such approach a mere application of the existing techniques might not be

sufficient to conduct full design and implementation. Given the maturity of the object-

oriented techniques, including programming languages and modelling tools an object-

oriented approach has been chosen for the implementation and the agent concept has

only been used to support the high-level design of the system. Hence FreeWill tries to

merge useful concepts from the agent-oriented approach with a sound software

engineering framework, exploiting ideas from both agent orientation (design principles,

structure of the system) and object orientation (implementation). The next section

presents the hybrid agent and animation concepts underlying the system's design.

4.2 Comparison of the FCA and SAC Architectures

In this section specific features of the FCA architecture proposed by Funge and the

agent-based SAC concept are compared before discussing how a synthesis and

extension of the two might be achieved.

As suggested in Chapter 3, the FCA architecture is strongly biased towards building an
intelligent character. It addresses the low-level concepts of character creation including

physical representation, motion and navigation as well as the cognitive features. The

SAC framework is more concerned with creation of multiple autonomous agents and

uses some concepts from the BDI approach. Both architectures stress the importance of

goals, reactive and proactive behaviour, and the need for some representation of the

character's knowledge (beliefs). They are also built based on the sense-think-act cycle -

57

Chapter 4: The Free Will Prototype

a standard approach to building systems which have to communicate with the

environment. But whereas in FCA the sensing process always updates the character's

world model in SAC it first gives rise to internal events, which may in turn update the

agent's beliefs. FCA is a dedicated animation architecture, SAC is a general-purpose

model for designing and implementing situated agents. What follows from this is that

only FCA includes animation concepts such as geometry or inverse kinematics. FCA

also addresses the problem of learning in the form that it may be necessary for some

characters to be able to learn new behaviour. Following the BDI's statement that agents

should in general maintain a list of predefined plans SAC includes the concept of plan

libraries. On the other hand FCA allows to pre-define behaviour (in the form of reactive

behaviour rules or state machines) but for the goal-directed behaviour recommends

doing searches in (perhaps pruned) situation trees. Similarly the interaction aspect of

SAC remains in strong contrast with FCA which does not provide any explicit

mechanism to allow interaction between the animated characters (a possibility of using

a communication protocol is only mentioned).

The table below provides a summary of these and other important features of both

systems.

Table 3 Comparison of the architectures

Architecture name FCA SAC
Design paradigm Character oriented Agent oriented
Recognition for the animation
aspect

Yes No

Representation of the
character's knowledge

Internal world model +
domain knowledge

Beliefs (a knowledge base)

Autonomy Yes (based on action
search, planning and
reasoning)

Yes (based on planning and
reasoning)

Learning Recognition for learning No explicit emphasis on
learning

Reactive and pro-active
behaviour

Yes Yes

Interaction with other
characters

Implicit (perceived clues) Explicit

Main implementation cycle Sense-think-act Sense-think-act
Sensing/perceiving Updates the world model Gives rise to (internal) events
Planning Search on atomic actions Plan libraries
Ease of implementation Not obvious Easy to follow development

model
Goals Yes Yes
Formalism Situation calculus Linear logic

58

Chapter 4: The Free Will Prototype

4.3 The FreeWill Architecture

The main goal of FreeWill is to propose an architecture suitable to create intelligent and

realistic animation in the form of crowd scenes. Therefore it contains elements found in

both animation-driven systems and distributed (multiagent) solutions. The system

incorporates the concept of agents and plan libraries from the SAC model and it also

addresses the need for representing the avatar by giving it a physical body, ability to

move and to maintain an internal world model. Additionally, these concepts are

extended by separating the agent from the environment and introducing external events

as a means of providing a uniform way of interacting with other objects and agents.

Each avatar participating in the animation consists of an intelligent agent implemented

as a modified SAC agent together with a body layer, which is responsible for handling

the visible part of the agent (see Figure 20).

FreeWill
Scheduler Character

Intartact to
His anima-

tlon packayo

Body
Mind

SAC
A9. nt

ýrcePtsl0^s

Environment
(animation package)

Figure 20 The FreeWill framework

The geometry, physics (kinematics) and behavioural layers are incorporated from the

FCA architecture. Each avatar is ultimately modelled as a set of simple geometrical

shapes controlled by the forward and inverse kinematics (implemented by the existing

animation package and only visible after rendering). All characters follow simple

patterns of behaviour, which allow them to be identified as anthropomorphic creatures.
Additionally, in accordance with Funge's view, a substantial part of the character's
knowledge is the internal world model, which is updated by sensing. On the other hand

agent concepts allow to build a more specialised `mind' - the agents store plan libraries

59

Chapter 4: The Free Will Prototype

instead of creating plans from scratch every time a new plan is needed, new plans are

constructed only if there is no existing template, and characters must interact. The

interaction includes actions executed by two different avatars and as such is fully

modelled by reaction to events, which are created during the sensing process. This is

similar to the way humans interact with each other (using hand-eye co-ordination).

The agent components are presented in Figure 21. The agent consists of a knowledge

base, a planning unit and a stack of actions currently scheduled for execution. The

knowledge base maintains the internal world model and all the agent's goals (primary

and secondary). Primary goals represent an agent's ultimate aim of the simulation and

would normally be assigned to it by the animator. This may include end positions (get

to the end of a sidewalk) or resulting states of the animation (kill your enemies).
Secondary goals on the other hand are goals created by the agent during the course of

the simulation. Example secondary goals would be `shake hands with a friend' or `look

at a watch while waiting for a bus'. The planner handles the task of pre-processing the

desired course of action and also manages the plan library -a list of high-level, complex

actions, which the agent can perform. An example of such an action may be a
handshake. In each processing cycle the plan is reviewed and if necessary the action

stack may be updated, then the last action from the plan is chosen and executed.

Scheduler

Event

Queue of
events

Knowledge
Action Agent base

Internal
Currently world model

scheduled
actions Goals

Planner

Planning
unit

Plan
library

II

Figure 21 The agent component of FreeWill

60

Chapter 4: The Free Will Prototype

The main difference between the SAC model and FreeWill is that events to which the

agents respond are not created inside the agent but are external - come from the

scheduler. They are however submitted to the scheduler queue by the agent when it

decides to update its knowledge base or when an action must be performed. External

events allow for a greater uniformity of the architecture - both acting and sensing events

can be modelled in this way and similarly scene objects can be handled following this

scheme. It is also in line with the principle of easy implementation. Event-based

systems with external events are popular and straightforward to implement.

The scheduler serves as an event dispatcher and sequencer. All events are managed

globally, scheduled and then distributed to appropriate avatars. This allows for greater

flexibility (an avatar may or may not wish to `see' the results of its actions) and

efficiency (simple data access collision resolving) and also provides a uniform way of

both maintaining the avatar's awareness and communicating with other avatars and

possibly world objects too. The FreeWill execution cycle proceeds as follows:

1. A sensing action is executed by the avatar

2. Agent's beliefs are updated
3. Current plan is evaluated, if there is a need to perform a reflexive action the current

action queue is cancelled and a new action gets submitted

4. Goals are updated if necessary

5. Plan is updated if necessary
6. Last action is chosen and submitted to the scheduler, when the avatar is later asked

to execute the action it also submits a new sensing action to be put in the event

queue (Figure 21)

Point 3 indicates that FreeWill agents have common reactive and proactive execution

cycles unlike the SAC agents. The main features of the proposed architecture are

gathered in Table 4:

61

Chapter 4: The Free Will Prototype

Table 4 Attributes of the FreeWill architecture:

Architecture FreeWill FCA SAC
name
Design paradigm Character oriented Character oriented Agent oriented
Recognition for the Yes Yes No
animation aspect
Representation of Internal world model Internal world model Beliefs (a
the character's + knowledge base + domain knowledge knowledge base)
knowledge
Autonomy Yes (based on action Yes (based on action Yes (based on

search and planning) search, planning and planning and
reasoning) reasoning)

Learning Off-line learning of Recognition for No explicit
new actions learning emphasis on

learnin
Reactive and pro- Yes Yes Yes
active behaviour
Interaction with Implicit (perceived Implicit (perceived Explicit
other characters clues) clues)
Main Sense-think-act with Sense-think-act Sense-think-act
implementation external events
cycle
Sensing/perceiving Updates the world Updates the world Gives rise to

model model (internal) events
Planning Plan libraries + Search on atomic Plan libraries +

construction of plans actions constr. of plans
Ease of Easy to follow (UML Not obvious Easy to follow
implementation documentation exists) development model
Goals Yes Yes Yes
Formalism None Situation calculus Linear logic

4.4 The FreeWill Framework

An animated sequence consists of characters (avatars) interacting within a graphically
defined setting. As explained earlier, avatars are modelled as agents with a

geometrically implemented body (all physical objects are represented as 3D geometrical

shapes). The setting is a virtual environment, for instance a city street populated by

avatars walking in either direction. The basic requirement is for the avatar to be able to

walk towards a set destination (goal-oriented behaviour) while avoiding collisions. The

primary goal must always be assigned to each avatar, if any additional goal is used, they

must also be explicitly declared by the user. The activities which the avatars exhibit in

order to fulfil their goals are called actions and can include simple movements such as
joint rotation but also complex high-level sequences, for example a handshake.

Characters performing actions which require explicit interaction between two avatars
(handshake) shall be called participants or "friends".

62

Chapter 4: The Free Will Prototype

Subject to fulfilling its goals, an avatar's behaviour is otherwise autonomous.

Characters deliberate the manner in which the primary goal is fulfilled and the

animation would look different if generated multiple times. The action is simulated by

the FreeWill engine, and the result is passed onto the animation package. The

interaction with the animation package can take the form of a script - Figure 22

(fragment of the handshake script, more examples can be found in Appendix C) or

stepfiles (in the case of 3D Studio Max, see Amiguet Vercher, 2000) or as direct

communication via the COM interface. In the example script shown in Figure 22 two

new keyframes for Avatar! are created - first two lines define the current position as the

starting keyframe (time 0), next the time is advanced by 10 units and the avatar right

arm is rotated by 30 degrees along the local z-axis. A new keyframe is then defined,

time is advanced again and the right forearm is rotated by 80 degrees (bending the

elbow). Again a keyframe is defined. After the scripts have been executed, the

animation package renders each frame and produces a video of the simulated interaction

of the avatars. A scene from one such video is shown in Figure 23 (characters avoiding

each other on a sidewalk).

biped. AddNewKey LarmContl 0
biped. AddNewKey RarmContl 0

sliderTime = 10

rotate RForearml 30 [-1,0,0]
biped. AddNewKey LarmConti 10
biped. AddNewKey RarmContl 10

sliderTime = 20
rotate RForearmi 80 [0,0, -1]
biped. AddNewKey LarmContl 20
biped. AddNewKey RarmContl 20

Figure 22 Sample script for generating avatar behaviour

For the purpose of modelling the presented architecture, a number of classes and

collaborations have been identified.

63

4: The FreeWill Prototype

Figure 23 Av; itai Iluerictiun

ýiYlt

..
ýýý

The class structure underpinning FreeWill is depicted in Figure 24, which presents a

UML model of the system. As shown in Figure 24 the principal elements of the system

airc:

" World comprising all physical objects, including avatars, participating in the scene.

Details stored for each object include a complete description of shape, dimensions,

colour, texture, current position etc, sufficient to render the object.

" . ýýutur, which consists of a physical body together with a mind, instantiated as a

separate object (on-board "brain") for each avatar, this structure corresponds with

the Character component from Figure 20. The body provides the mind with all

necessary sensing and actuator services, while the mind itself is responsible for

perception (interpretation of information) and the issue of appropriate motion

commands based on goal planning. As a subsystem, the mind engine is built of an

action planner, a motion controller, and a knowledge base storing cg gals and acts,

and the avatar's private world mode! (which represents the fragment of the virtual

world currently seen and remembered by the avatar and is implemented as a subset

of the world objects). The knowledge base is currently implemented as a collection

of goal, fact and world objects, which in turn consist of methods and attributes. For

goals this includes the type of goal and its parameters (e. g. end position) and facts

are lists of items (e. g. avatar's friends). The world objects stored in the knowledge

base can be used to access object information such as colour or position. Such

structure could however be easily expanded to contain information in a form of

logic clauses. This would facilitate the use of logical inference engines to make

decisions concerning large numbers of goals and facts.

64

Chapter 4: The Free Will Prototype

"A Scheduler based on discrete event simulation and a queue handler enabling the

autonomous behaviour to unfold within the virtual world by passing control to

appropriate world objects (including avatars) according to the event which is

currently being processed.

" There is also one external component used to generate the final animation - the

animation package or more generally visualisation engine - this part of the system is

responsible for displaying the world model and the interacting avatars. This can be

for example performed by the package 3D Studio Max as described above. The

system could also interface other products and other formats, e. g. those using

motion capture files. The visualisation engine must also allow for rendering the

scenes and for saving the final animation.

PeriodicEventGen

GiveControlToO Scheduler
bject returns an
Event

0.. n
Event

World

ýGiveControlToObjecto
1

Avatar EventY
n Object

0.. n
Agent

1.. n ActionPlanner

11

MotionControl 1
1

Bod Mind
velocity 1

. position 1 KnoMedgeBase

1

1.. 2 1.. n1 1.. n
fsionCone 8oundingBox Actuator 1 O.. n 1.. n

WorldModel Fact Goal

Interfaces with

Sensor
Visualization AnimScriptFIl F Engine

Freewill character
Figure 24 UML model of the system

65

Chapter 4: The Free Will Protot pe

4.5 Controlling Avatar Behaviours

One of the key elements of the knowledge base is the internal world model. Each time

an avatar performs an action, the process is initiated by first updating the avatar's world

model, which means a new sensing event must be inserted into the queue. Thus the

avatar has a possibility to assess the results of its actions. The avatar senses the world

via a vision cone, through which it gains awareness of immediate objects in its path (see

Figure 25). The information obtained from the vision cone is then used to modify the

avatar's plan and perform the next action. This happens when a sensing event is selected

from the queue - the avatar then updates its world model and reconsiders the chosen

course of action. Finally a new acting event is generated and next time the avatar is

given control the last action from the queue is executed.

411
aä

0! 9

In general the avatars are able to perform two types of actions - simple, built-in actions

such as walking and more complex actions including collision avoidance, handshakes or

interaction with objects. The second group of actions is constructed in three ways.

Firstly a prescripted action can be added to the avatar's plan library, an example of such

action present in the implemented system is the handshake. The avatar can also

synthesise a more complex action from the simple ones during the run-time - collision

avoidance is one example. Finally new actions can be learnt offline, this technique will

be described in the next chapter. With regard to interaction there also exist three

categories. The system discriminates actions performed by a single avatar (waving,

66

Figure 25 Scene as seen by an aNatar

Chapter 4: The Freewill Prototype

looking around), avatar-object interactions (door opening) or avatar-avatar interactions

(handshake, collision avoidance). Actions performed by exactly two avatars and
involving explicit interaction (handshake) are the most complex ones. Figure 26

illustrates all different types of actions present in the FreeWill system.

single

avatar-abject
interaction

avatar-avatar
interaction

reactive

pre-scripted

xI I
synthesised II

in

learnt

proactive

Figure 26 Different types of actions supported by FreeWill

The main simulation loop is located within the Scheduler class, which consecutively

picks events from the event queue, the events are placed in the queue in the order they

are submitted by the avatars (FIFO). Control is then passed to the appropriate world

object to which the event refers (which will usually be an avatar) and necessary actions

are taken. These can be:

- an `act' action - such as move a hand or make step. The action is rolled out (the

avatar's state variables are updated) and a new line is added to the script file. This

action returns a new sensing event related to this avatar to be inserted in the event

queue

-a `sense' action - which means that the avatar should compare the perceived
fragment of the world with its own internal model. Then the avatar has a chance to

rethink its plan and possibly update goals and the planned set of future actions. This

action returns a new acting event.
The returned actions are inserted in the event queue and the time is advanced so that the

next event can be selected. A PeriodicEventGenerator class has been introduced to

generate cyclic sensing events for each avatar so that even a temporarily passive avatar
has its internal world model updated.

FreeWilI
Action

67

Chapter 4: The Free Will Prototype

Avatar behaviours are goal directed. The primary goal is provided by the user and

represents the aim of the simulation for that avatar. An example might be `get to the end

of the sidewalk'. However the fulfilment of this goal may be enacted with

accomplishment of secondary goals which are set and assessed by the avatar. Examples

are `avoid collisions' and `shake hands with friends'. Such goals are a part of the

avatar's knowledge. When to give such goals priority can be inferred from the current

world state. The knowledge base provides information about static world objects and

other avatars (e. g. a list of friends). The avatar can be given two types of actions by the

scheduler - if the action is an `acting' action then the motion (a step, arm rotation etc.)

is immediately executed. For sensing actions however the avatar needs to sense its

environment and process this information. It may happen that as a result of the new

state of the world the avatar has to modify its plan. In this case a new plan is generated.

This algorithm is depicted below, an expanded version of it, including participating

objects is attached in Appendix B.

START

ISenseCurrentWorldState

GetCurrenMlorldM odel

currentModel T
out of date? ModifyCurrenModdModel

F

currentPlan
needs

>---L+eateNewPlan

revising?

F

DecomposeLastActon
PidkLastLowLeveLAcflon

I ConvertActonToEvent
SubmiToEventQueue

STOP

Figure 27 Algorithm controlling an avatar's behaviour

The goal-planning algorithm constructs plans using the notion of an action as a generic

planning unit. An action can be defined at various levels of specialisation - from very

68

Chapter 4: The Free Will Prototype

general ones (e. g. `get to the end of the sidewalk') to fairly detailed activities ('do the

handshake'). The most detailed actions (microactions) are said to be at level 0 (Figure

28). Examples of such actions would include atomic joint rotations and actions which

can not be further decomposed, for example predefined motions supplied by the

animation package (mocapped actions, predefined animated sequences etc.). Level 0

actions correspond to action events in the event queue and also to script file entries. In

general every action is implemented by an avatar's member function, which will

perform the action and update the state of objects affected by it. These objects can be

world objects or parts of the avatar's body. The planning unit (ActionPlanner) operates

on actions from level N to 1- creating general plans and then refining them. The

ActionPlanner maintains the chosen plan from which the last action is submitted to the

MotionControl unit. It is then decomposed into a set of level 0 microactions (e. g.
handshake consists of a set of arm and hand movements) which can be executed one by

one. Any change in the plan may cause the list of microactions to be dropped and new

ones to be generated.

ActionPlanner

F1 'PIanO pý3
4ExploreSolutionso
4GetMicroAction(1

Plan

Al Engine

MotionControl
*#UpdateWModeIQ
4RewsePlanQ 'Canoe ctiono **PickActiono O*Decompose poseo

*#GetCurrActiono

MicroActionO
61

1 *GetGoalsQ Microaction
IeveE3 O.. n 'P, ModifyGoalQ

O#GetObjectlnfoQ Action
I OlUpdate World O $)Precnnditit

1

1 O.. n t.. n
WorldModel Fact Goal

O.. n

Figure 28 Action hierarchy and other Al components

1

69

Chapter 4: The Free Will Prototype

The general planning collaboration is described in Figure 29. The collaboration is

initiated by the Avatar attempting to update its world model (because some changes

were detected in the perceived world state). The request is passed onto the Mind object

which in turn updates the WorldModel stored in the character's KnowledgeBase. At this

stage the Avatar submits another request to revise the current plan and the request is

passed to the ActionPlanner object. If the ActionPlanner decides to update the current

plan, it communicates with the KnowledgeBase to retrieve the goals and the current

world model. Once a new sequence of high-level actions has been created the first

action is then passed to the MotionControl object and decomposed into atomic actions.

When the Avatar requests the next action the first action from the MotionControl queue
is returned, it is next wrapped into the Event structure and submitted to the EventQueue

(this is not shown in the diagram).

The scheduler then selects the next action to be executed. If the action event is a sensing

event the collaboration starts again for a different avatar, if an action event is pulled
from the queue then the action is executed by the appropriate avatar (or object),

meaning all the necessary properties of the participating world objects are updated. At

the same time the actuators pass the information of that movement to the interface with

the animation package so as to update the state of the world that will be displayed in the

animation. For UML diagrams illustrating the full sensing and acting collaborations see

Appendix D.

70

Chapter 4: The FreeWill Prototype

1: UpdateWModel()

3: RevisePlan()

2: Modiýrld()
10: PickActiono

Mind 4: Plan(
11: GetMicroAction(

5: GetGoals()

8: GetO " nfo())

KnowledgeBase

7: GetOpjectAttnbs()

6: Explore ions()

ActionPlanner
T19:

Decompose()

111 12: GetCurrAction()

Figure 29 Objects participating in the planning collaboration

4.6 The Interaction Algorithm

For an autonomous animated character to be believable it must be able to perform

actions involving at least two avatars. Such actions, to look natural, must be

synchronised in time and aligned in space. The spatial aspect of the interaction is

handled by defining the required distance between the avatars for each of the

collaborative actions. The orientation of interacting characters must also be set and here

they are assumed to be always facing each other. Another important aspect of such

actions is the timing, since for such actions as a handshake even a small difference in

timing will cause the sequence to look unrealistic. FreeWill does not use dummy objects

to co-ordinate the collaborative actions (cf. Monzani, 2002), neither an explicit

communication language as this is usually not the way humans synchronise their

actions. The solution proposed is based on finite state machines (see Cremer et al,
1995), which take the interaction through a number of stages and allow for spatial

alignment (initial stages) and temporal synchronisation (late stages). Such an approach

allows for easy substitution of actions in the plan library without the need to modify the

synchronisation scheme, thus allowing for quick creation of different animations. The

details of the synchronisation algorithm for actions involving two avatars, are presented
in Figure 30, and the different stages of the interaction process are illustrated in Figure

31. The algorithm distinguishes three separate states for the action duration - the close-

71

Chapter 4: The Free Will Prototype

up, preparation and execution stages. During the first phase the avatars notice the other

participant and start walking towards it (the time of noticing the other character does not
have to be the same). For some actions this will only happen if the action has not

previously been executed with the same participant (e. g. handshakes). However if the

action can be executed the current goal will be replaced with a newly created
intermediate goal and the avatar will pursue the new goal by approaching the other

character. When the distance between the two characters decreases to some predefined

value, one of the participants (because of the chosen event scheduling scheme this will
initially happen to one of the characters) will stop walking and enter the preparation

phase. The preparation phase involves initiating the action (e. g. raising a hand). Upon

finishing the preparation phase the avatars execute the main part of the action (shake

hands) and resume the primary goal. If necessary the knowledge base is also updated

with a new fact stating that the two avatars have executed the action. A pseudocode

version of this algorithm can be found in Appendix B.

72

Chapter 4: The Free Will Prototype

START

in
WALKING

state?
YF

in PRE-
PARING
state?

XF

in WAI-
TING
state?

I see other
T agent AND

not executed

Kafreadady?

F

Plan other actons

T' Wait unbl ready
Set own state (WAITING)

if fnend ready or executing
T Plan collaborative action

Set own state (E)<ECUTING)
else
Wait until friend ready

F

in EXEC I- T
Plan summarising action

TING Set own state WALKING

state?
Resume Previous Goal
Update KB (action executed)

F

Create new positional
Goal (otherx, other. y)

Substitute
current Goal

distance >
MIN_DIST?

F

other state
PREPARING
or WAMNG?

If possible
Plan path to current Goal

Initiate collaborative action
Set own state (PREPARING)

STOP

Figure 30 The synchronisation algorithm (handshake)

Although for action synchronisation it might be useful to implement a dedicated

communication language, the only use of such a language would be in actions involving

direct collaborative interaction between avatars (e. g. a group task including gathering a

number of avatars in order to lift a heavy object). Therefore high-level communication
is not currently included in the FreeWill interaction scheme.

T

Plan path to LT
current Goal j'-

Initiate
collaborative action
Set own
state (PREPARING)

73

Chapter 4: The Free Will Prototype

walking towards
the participant

participant in the
N field of ''

reached he participant
walking

interaction' finished

preparing for a
synchronised action

ready to startIthe interaction

executing the]_participant ready waiting for the
interaction other participant

Figure 31 Synchronisation of inter-avatar interaction

4.7 Details of the Al Module

A detailed view of the Al subsystem is presented in Figure 32. It consists of 3 general

parts - the main class - Mind, the planning cluster and a knowledge base. Mind, apart
from serving the purpose of a module's container, is also the subsystem's interface,

through which other units request services and update information about the

environment. The planning classes do both the actual planning and maintain a list of

planned actions, which can be executed in turn. The knowledge base stores all other
information. The figure also presents some of the most important methods and

properties of the implemented prototype and detailed relationships between different

objects.

74

Chapter 4: The Free Will Prototype

**PlanO the
&ExploreSolut onsQ *PIanQ

t 4GetMicroAcLonO ýAddActionQ
4ActionPlannerQ

Pl

**GetLestActionQ

4RewsePlanQ 1

4llpdateWorldModetQ
f h 4MindO

4IndMmdQ MotionControl

'CancelCurrActionQ MicroActionO
'-Decompose()
**GetCurrActionQ -theMicroActi _MicroActionOQ
*#MohonControlQ

ALAction

mit s
40type: mt
Vo : int

MicroactionO object mt
Knowled eBase TodeftaT: int

'Microact'onOQ ? oparamA: mt
4GetGoalsa 'MicroactionDo

4ModifyGoal(
4llpdateWorldQ

'GetTypeo
4SetTypeo

1 'GetObjectlnfoo 'GetPerformero

4KnowledgeBaseQ
'k

4SetPerformerQ
4GetOb ec1Q InitiateWorldo

'AddGoalO
j

4SetObjectO

**GetMyselfQ 4GetDeltaTQ
**GetNoNeighboursQ
4

4SetDettaTQ
**AIAclionQ GetNeighbourQ
'%, GetParamAQ
'#SetParamAQ

101 4eie. n�nn

un
WorldModel Goal

'I'IvlodifyWorldQ posiionX: int
t 'GetObiectAttnbso ýb9Q>goaRype

orrype
in t 4WorldModelQ :

ýIndiateWorldQ 4GetGoalPosQ
4GoaIQ

Figure 32 The Al subsystem

4.8 Communication with 3DS Max

In the current implementation, the presented prototype communicates with the

animation package 3DS Max using an off-line file-based communication mode

(stepfiles+scripts). The generation of the animation is executed as an external process

and an animation file is generated. The file is then imported into the animation engine

for rendering. A similar mode of communication could be used to retrieve the scene

information to be used to construct the virtual world. In the learning unit presented in

Chapter 5 another type of communication is presented which allows for real-time

control of the avatars and direct export of scene objects into the FreeWill system using

3DS plugin capabilities. Avatar collision detection in the current implementation is

based on detecting objects intersecting with the directional vector of the agent.

75

Chapter 4: The Free Will Prototype

4.9 Summary of the Prototype

This chapter presented the FreeWill prototype aimed at supporting creation of 3D

animated autonomous characters. The system proposals have been presented as a

theoretical cognitive architecture derived from two existing systems, comprising goals,

actions, plans, sensing and addressing the need for a geometrical representation. The

architecture was then modelled using a software engineering notation and a number of

issues such a planning collaborations and action synchronisation have been considered.

The main missing element at this stage is automatic addition of actions into the system.

This issue will be addressed in the next chapter. Results obtained by implementing the

proposed system will be presented in Chapter 6.

76

Chapter 5: Automatic Action Acquisition

Chapter 5- Automatic Action Acquisition
The architecture presented in the previous chapter relies heavily on the number of
different high-level actions, which the avatars can perform. So far the only way of

adding new actions to the avatars' behaviour repertoire has been by manually scripting

them. Ideally, however, an animation generation framework, apart from importing

predefined actions in a form of a script or motion capture file should also allow for

automatic generation of new actions, at least for the purpose of animation prototyping.
This chapter presents a technique for automatic acquisition of new high-level actions

using machine learning.

5.1 The Deterministic Algorithm

The initial proposal of the learning mechanism is based on the deterministic version of

the Q-learning algorithm, with the update equation presented before:

Q (sr, a,)F-r,
+t +ymaxQ (s,

+1, a) (3)
a

The simulation is conducted within a fully controllable, virtual world, hence both the

rewards and the results of agent's actions are fully deterministic. This assumption

allows building the learning module around this simpler version of the algorithm. As

described in Chapter 2 the Q-learning algorithm requires that the state-action space and

the goals of the agent be defined explicitly. Therefore the development of the learning

module has been conducted in a few general steps:

a) The goals of the learning process have been identified as any complex (high-level)

actions consisting of a number of smaller hand and body movements.
b) The agent has been assigned a number of simple actions, which include arm,

forearm and hand motion along a number of orthogonal axes, and also walking and

grabbing (this includes only the actual motion of the fingers). The selection of

actions depends on the mode of control. Two modes of control have been proposed
to acquire the motion - in the first one the agent is controlled using forward

kinematics, in the second one inverse kinematics may be used. All simple actions

used by the agent are grouped in Table 5 and graphically depicted in Colourplate 1.

c) The state space has been defined. Each mode of control (forward and inverse

kinematics) corresponds to a different state space, but in both cases the state space is

77

Chapter 5: Automatic Action Acquisition

a discretisation of a continuous space defined as a number of degrees of freedom for

the joints necessary to be used to participate in the task. For the forward kinematics

mode of control the degrees of freedom of the arm are defined as rotations around

spatial axes, with discretisation defined over the angles of rotation. Additionally

each of the angles is limited to a specific range (larger however that the biologically

feasible motion to enable detection of violation of the biomechanical constraints). In

the inverse kinematics case the state-space discretisation is applied over the spatial
location of the end effector (hand) of the agent. In both cases walking along one
dimension gives an additional action, descretised to include several steps around the

agent's starting position. The only represented states are those of the agent. The

states of the external objects (door, teapot) can be represented as additional

variables, thus reducing the state-space of the learning task and allowing for a more

precise control and rendering of those objects. Additionally, because the actual
definition of the state space depends on the type of problem, the state-space may be

defined on a per-task basis. In some cases, for example, the definition of the learning

task precludes the use of particular actions such as walking. This allows for the size

of that space for a particular task to be defined as a subset of the full state space

available to the agent.

d) The action space has been defined. For each possible state space dimension there are

always two possible actions, which allow moving the body part (arm, forearm, hand

etc.) along the specified dimension in the opposite directions. Examples here might
be simple walking forward and backwards or hand movement along the vertical axis

resulting in lowering or raising a hand.

e) The exploration policy has been defined. This is presented in the section below.

Table 5 Low-level actions used to train the avatar:

Forward kinematics control Inverse kinematics control
1. Rotate arm up/down by Da 1. Move palm by Ax
2. Rotate arm forward/backward by Da 2. Move palm by Ay
3. Rotate forearm by Da 3. Move palm by Az
4. Rotate hand along Z axis by Aa
5. Rotate shoulder along Z by Aa
6. Perform the grabbing action 4. Perform the grabbing action
7. Move forward/backward by Ax 5. Move forward/backward by Ax

78

Chapter 5: Automatic Action Acquisition

5.1.1 The exploration policy

According to the Q-learning algorithm the Q-values are initially set to random values

and the agent starts exploring the environment. Upon reaching a goal the agent is then

randomly placed in a new state and begins a new iteration. It is apparent that in those

initial stages the exploration policy followed by the agent should not rely on the current

Q-values. This is because the values are highly unreliable and many of the states have

not been explored at all yet. Only after a number of iterations, when the agent increases

its belief about the quality of the Q-values can the action selection policy be changed to

one relying more on the current Q-values (this is called the exploitation phase). The

exploration/exploitation strategy applied by the action learning module uses the

Boltzmann distribution (see Michell 1997). For equal Q-values the action is chosen at

random, otherwise actions with higher Q-values are preferred. The equation is given
below:

k
P(a; I s) _ k Q(S, aj) (4)

i

where P(a; I s) is the probability of selecting action a, given that the agent is in state s,

k>0 is a constant which determines how strongly the selection favours actions with high

Q -values,
Q (s, a) is the current approximation of the Q-function. For the action

acquisition tasks presented in this thesis, k=2. Such representation of the

exploration/exploitation policy in early stages assigns similar probabilities to state

transitions not visited yet and changes bias as the agent learns more about the results of its

actions.

An additional problem when learning a motion sequence for an animated agent is that not

all of the state space is interesting from the animation generation point of view. Although

the Q-learning algorithm does not give preference to any part of the state-space, in

animation tasks there is always a number a privileged states which are more important to

the task definition. This includes mainly the starting state of the animation, since the task

is run to generate a sequence from a rigidly defined starting pose. Therefore the

exploration policy utilised by the learning module was additionally reinforced to proceed

more frequently around the initial motion states. This has been implemented by finishing

79

Chapter 5: Automatic Action Acquisition

each learning task with a number of iterations in which the agent is always placed in the

same starting state. The number of these special iterations has been set to span about 5-

10% of the total number of epochs, thus optimising the path through the state space for a

particular problem. Additionally 0.5% of all actions selected by the agent are random,

regardless of equation (4) (Sutton and Barto, 1998) and an upper limit was imposed on the

length of the exploration phase - if the agent did not encounter an absorbing state after

several hundred transitions the iteration was restarted.

5.1.2 Positive and negative rewards

Each learning task must include at least one state in which the agent receives a positive

reward. This is the goal state and upon visiting it the agent finishes the current epoch

and starts a new one. An example of reward state may be one in which the agent finds

itself in a particular position, or when a state of another object changes (e. g. a teapot is

lifted above a certain height). Such positive rewards are used by the learning algorithm

and contribute to finding the optimal path through the state space.

Additionally, it is also desirable that the agent avoids certain states while learning the

optimal solution. An example might include a state in which the agent collides with an

object from its surrounding environment or when the position of one of the agent's

limbs exceeds the limits imposed by biological constraints (e. g. overstretching a joint).

In such cases it is necessary to inform the agent that the constraints have been broken.

While it is possible to limit the state space so that it does not include the wrong

positional states (by limiting the angles by which an arm can be rotated thus directly

imposing the biological constraints), such solution can not be applied to the problem of

collision avoidance. Neither can it be adopted when the inverse kinematics is used,
because the IK algorithm imposes its own constraints on rotational angles resulting
from the underlying calculations. A technique unifying the problem of state space
limitation has therefore been applied which uses negative rewards to label out undesired

motions. Thus the algorithm remains fairly general, and the tagging of the state-space
happens during the learning process without a need for additional knowledge about the

environment prior to the simulation. Additionally the negative rewards are not

propagated to the surrounding states but are only used to locate the undesired state

transitions.

80

Chapter 5: Automatic Action Acquisition

The collision detection approach presented in Chapter 4 is not sufficient to detect

collisions between the agent and the small objects with which the agent must interact

during the learning. Therefore a quick and efficient way of detecting collisions was

necessary. The desired collision detection algorithm should avoid testing all the polygonal
faces in both objects for overlap as this is a very expensive operation. More efficient

solutions are based on spatial volumes (spheres) and bounding boxes but for these

algorithms tightness of fit between an object and its bounding volume is crucial for the

precision of the collision test. In a situation requiring the collision detection to be performed

with a high level of precision this approach is insufficient or it requires strong spatial

subdivision techniques applied in a hierarchical manner. Therefore the collision detection

used by the learning module is based on the OBB (oriented bounding boxes) approach
(Gottschalk, 1996). The OBB method allows for tight approximation of the surrounded

object and it is not very computationally intensive. For details of the method and its

implementation to character animation see system designed by Francik (2003).

5.1.3 Integration with the FreeWill framework

The presented learning module can at this stage be easily integrated with the main FreeWill

framework. The most important part of the integration includes transition of the generated

motion sequences, as the learning process is performed off-line, in isolation from the crowd

simulation engine. However the scripts generated in the course of learning can be directly

ported into the FreeWill's plan library. The next step is the modification of the planning

module to take into account the newly added actions. This may for example include

definition of pre- and postconditions for each new action. It may also be possible to utilise

the newly learnt sequences with avatars with different body textures (if the bone structure is

the same), to add variety to the motion (by adding a number of similar actions), or to

replace bad hand-animated sequences. Parameterisation of the learnt sequences could also
be attempted to allow reuse of new motion for characters with different body sizes. Figure

33 illustrates integration of the learning module with the FreeWill system.

81

Chapter 5: Automatic Action Acquisition

FreeWill agent

Currently
Knowledge

base
scheduled

actions

Planner

I
Plan

litrcry

Learning module

Learning
unit

I Communication
unit

Sequence
storage

AI cirn Lecrnt
parcmeters cz? icn

Figure 33 Integration of the learning module with FreeWill

5.1.4 Communication with the animation package

The learning extension presented here requires real time communication capabilities with

the animation package. Therefore an extension of the communication mechanism described

in the previous chapter was necessary. The learning module uses the Microsoft COM

technology to invoke functions written in Max Script, which in turn control the behaviour of

objects inside the animation package. In the same way the information about the objects is

returned to the learning unit. Additionally the collision detection algorithm has been

implemented as a plug-in integrated with the 3DS Max animation framework.

The simulation proceeds in a number of iterations. When it is terminated the shortest

sequences of actions fulfilling the goal of the learning task are saved into a file in a form of

script. A typical learning cycle will generate up to several thousands different solutions, the

final number depending on the length of the simulation and complexity of the task. The

resulting scripts can then be verified in the animation package, imported to FreeWill and

used to generate the final animation. The framework is depicted in Figure 34.

82

Chapter 5: Automatic Action Acquisition

Plug-ins

3D Studio
Animation

t

®J

COM
Interface

Script Main
Application

Figure 34 Communication with the animation package

5.2 The Non-deterministic Algorithm

Depending on the task, it is also possible to implement the action acquisition

mechanism using the non-deterministic version of the Q-learning algorithm. This

version of the algorithm generates more robust solutions with respect to uncertain action

selection mechanisms and non-deterministic rewards.

The non-deterministic update equation is:

Q (s1, a,)=(1-an)Q (s,, a,)+a�[r, +, +ymaxQ(s±1, a)](5)

where a� is defined as follows: a,, =1yE (0,1)
1+ visits� (s, a) '

The variables s and a are respectively the state and action updated during n-th iteration

and visits�(s, a) is the total number of times this state-action pair has been visited up to

and including the n-th iteration (Mitchell, 1997).

The definition of the state space and the action space remain the same. So do the

exploration policy and the conditions under which the agent receives rewards.

83

Chapter 5: Automatic Action Acquisition

The non-deterministic version of the learning has been applied to the inverse kinematics

mode of control in a non-deterministic environement. Results obtained from both

approaches have been summarised and compared in the next chapter.

5.3 Evaluation Metrics

The learning task defined in this chapter is in fact an optimisation problem formulated over

the number of actions necessary to fulfil the goal. This means that apart from trying to find

a set of transition states from the starting position to the goal state, the agent will also

minimise the number of actions necessary to achieve its goal. Additionally, as mentioned

before, during the process the agent may in fact find more than one sequence, all of which

lead to the desired solution in a minimum number of steps. If the number of such solutions

is small, they can all be reviewed manually according to some predefined criteria (the

chosen criteria can be perceived realism of the sequence, a particular sequence of actions,

way of approaching external objects including limb orientation in space, movement

direction etc.). However, in the case of more than several different solutions this approach is

highly unfeasible. This section presents three metrics which try to select a small number of

action sequences from the full set of generated solutions. One or more of these metrics

would normally be used by the user to limit the number of final animation sequences which

will be added to the plan library or directly inserted into the animated scene.

5.3.1 Local distance metric

The local distance metric (LDM) selects a pair of animation sequences and generates a

distance value depicting the similarity of these sequences - the higher the distance

value, the more dissimilar the two sequences are. The distance, which is commutative,

is calculated on the basis of individual actions in the sequence, located on

corresponding positions within the string. Each two such actions are compared and if

they appear to be different, the total distance for the sequence is increased by one,

otherwise it remains the same. The resulting set of distance values, for all permutations

of the action sequence pairs in the input solution set, is then searched for the maximum

and the resulting subset can be generated as pairs of sequences for which the distance is

equal to the maximum. It is also possible to add other pairs with the distance value

lower than the maximum within a given margin, thus allowing the user to influence the

size of the presented subset. The formal definition of the metric is given below.

84

Chapter 5: Automatic Action Acquisition

Let us consider two learnt sequences of the same length M, A and B, consisting of a

number of low-level composite actions each:

A= ala2a3a4 ... aM

B=bbbb b (6)
123 4* , *M

The length of each sequence, that is their cardinality, is thus given as M= card(A) =

card(B). A distance between two sequences A and B can now be defined - similar to the

Hamming distance (Cover and Thomas, 1991) - as:

M
dAB = dBA = sign (a;

-b;
) I

ýýý

The local distance metric finds all pairs of sequences for which the distance is equal to the

maximum distance found between any two sequences in a given set:

dmax = max {CAB }' V, V'A#B (8)
AES BES

where S is a set of all sequences found for a given task.

When applying the metric it is possible to release the constraint put on the maximum

distance between the two sequences by setting it to a value lower than dmax, thus

increasing the number of different pairs in the resulting set.

Example

A=00004444461181
B=06000444414184
C=06100444414187
d, B=5 dAc=6 dBC=2, d, r, x=6

5.3.2 Global distance metric

The local distance metric from the previous section finds sequences, which substantially

differ from each other, but it does not guarantee that the resulting set will be well sampled.
This is because one sequence very different from all other ones will affect the maximum
distance and cause this particular sequence to be paired with a number of other solutions

which may nevertheless be mutually similar. The global distance metric (GDC) relies on

85

Chapter 5: Automatic Action Acquisition

finding an average sequence, from which the distance of individual sequences can be

assessed following the model defined by the local distance metric. The average sequence is

created by finding, for each consecutive position in the sequence, an action which appears

most frequently in this position, considering all the action sequences from the input set. The

average sequence is thus defined as:

Avg =1 arg max(h, (0, »,.. " ", arg max(hM (O;)) } (9)

where the function h. (O;) indicates the histogram of occurrences of actions on the j-th

position in sequence O; . The average sequence is built by using the argmax - over all

possible sequences (VO;). Each argmax operator returns the action a in the set S of

available actions, yielding the maximum number of occurrences in the histogram. If there

are several maxima, then one of such actions is chosen at random.

Example

A=00004444461181
B=06000444414184
C=06100444414187

0=06000444414181
dAo=4 dBo=1 dco =2, dm=4

5.3.3 Action similarity metric

This metric is similar to the local distance metric in that it considers pairs of action

sequences. The numbers of occurrences of each composite action within both sequences are

counted and compared between the two sequences, the resulting differences in occurrences

of each composite action are added up. The result is a scalar, which is higher if the

sequences consist of a larger number of different composite actions. Thus the similarity

metric for two action sequences A and B is defined as:

L
kAB = kBA =

2: I gaj (A) - gad (B) I
(10»

i=1

86

Chapter 5: Automatic Action Acquisition

where the function g,,, (S) indicates the a, bin of the histogram of occurrences over all

actions in sequence S and L is the number of all different low-level actions used to train the

agent.

Example

A=00004444461181
B=06000444414184

k, B= ý-41+13-21+10-01+10-0I+15-61+10-01+11 - 11+10-01+11 - 11=2

5.4 Summary

This chapter presented an adaptation of both Q-leaming updates to the task of automatic

acquisition of actions for an animated bipedal avatar. The details of the state-action spaces
for this problem have been presented as well as the exploration strategy employed. The

integration with the main FreeWill engine has also been explained, and the modified real-
time communication with the animation package has been illustrated. Finally, based on the

conclusion that the algorithm may generate multiple optimisation solutions for the given
tasks, a number of metrics have been proposed for selecting a subset of solutions. The

reason for doing this is to further automate the process of adding new actions by presenting
the human user with a small number of varied action sequences.

87

Chapter 6: Results and Evaluation

Chapter 6- Results and Evaluation

The proposals presented in Chapters 4 and 5 have been implemented as a prototype version

of the FreeWill architecture (Amiguet-Vercher et al, 2001, Szarowicz et al, 2001a, 2001b,

2002,2003,2004,2005, Forte and Szarowicz, 2002, Szarowicz and Forte, 2003, Szarowicz

and Remagnino, 2004, Szarowicz, 2004). Results obtained from this implementation are

presented in this chapter. The chapter is divided in two parts. The first part presents results

obtained from the FreeWill crowd system prototype (Sections 6.1,6.2) and includes a

comparative study and evaluation against three other animation frameworks. The second

part presents results generated by the learning module described in Chapter 5 and compares

action acquisition for the two modes of control used - forward and inverse kinematics.

6.1 Crowd Scenes

The experiments run using the FreeWill framework involved a number of avatars

participating in a crowd scene. The example settings are presented below.

In the first setting the characters were placed on a sidewalk. Each avatar was given a

primary goal of getting to the opposite end of the sidewalk, while at the same time avoiding

collisions. Additionally a couple of avatars were defined as `friends', which resulted in a

handshake being performed before completing the primary goal. Colourplate 2 presents the

change of goal-directed behaviour exhibited by two avatars changing their current goals in

order to shake hands with a friend. Before starting the simulation the avatars were placed at

a considerable distance from each other, so that they could not see each other. They were

also given primary goals ('get to the position (X, Y)', which in this case is the end of a

sidewalk, Colourplate 2, shots 1-2), which they try to pursue immediately after the

simulation is started. Hence they start walking in the opposite directions and as a result the

distance between them decreases (Colourplate 2, shots 3-4), eventually they recognise each

other as friends and decide to replace the main goal with an intermediate one ('shake hands

with a friend'). Their plans are updated and they start the synchronisation sequence

preparing for the handshake (shot 5). Next if there is no unexpected problems the

handshake is rolled out (shots 6-8) and the avatars return to their original goal - they try to

continue their journey to the desired location. However at this point they detect an avatar

colliding with their chosen path so a reflexive action is submitted to the action queue

88

Chapter 6: Results and Evaluation

('avoid'), meaning all other actions are cancelled (shots 9-11). Eventually the avatars re-

plan a new path to the goal and decide to pursue it (shot 12).

The implemented system was able to successfully generate a scene with 20 avatars walking

on a sidewalk, the avatars performed both reactive (collision avoidance) and proactive (the

only implemented one was handshake) actions. Colourplate 3 presents a few shots from a

completed animation, Colourplate 4 presents the same scene as seen by a single avatar.

A different scene has also been generated. In this scene the avatars fight a medieval battle

using shields and swords. This setup proved the generality of the architecture - apart from

redefining the avatars' goals and adding a new action to the plan library ('attack and

defend') no other changes were necessary in order to generate the scene. Colourplate 5

presents a few shots from the second sequence.

The evaluation criteria for the generated sequences were based on asserting lack of

collisions in the scene, the fulfilment of avatar goals and on qualitative impression of

believable motion. All characters achieved their goals, while managing to avoid collisions

and perform additional actions.
Table 6 summarises the two experiments, detailed evaluation of the system is presented in

the following section.

Table 6 Evaluation of the generated scenes

Scene No. of
avatars

Additional actions
performed

Goals fulfilled Quality of generated
motion

Sidewalk 20 Yes Yes Good
Castle 13 No (not defined) Yes Acceptable

6.2 Qualitative Comparison of the FreeWill System

FreeWill is an architecture designed to conduct simulation of multiple articulated human

figures participating in crowd scenes. In this respect it is similar to a few other architectures

presented in Chapters 2 and 3. In this section the main features of FreeWill are evaluated by

comparing it to three most prominent crowd modelling systems, chosen as being

representative to different approaches to the problem of crowd modelling. The first one is

the ViCrowd framework which represents a recent animation generation tool proposed by

89

Chapter 6: Results and Evaluation

the research community, the second one is the industrial Massive crowd system constructed

and successfully employed to simulate battle scenes in the "Lord of the Rings" trilogy.

Finally, since the two systems do not exhibit any learning capabilities the C4 system is also
included in the comparison.

The FreeWill system, similarly to ViCrowd, is a research framework designed to simulate

crowd scenes with many interacting avatars and is additionally aimed at being used as a

plugin to existing professional animation packages. Although the maximum number of

agents is smaller than in the Massive and ViCrowd systems this is imposed by the

limitations of the animation package and can be negotiated by migrating to a better 3D

engine. FreeWill comprises a cognitive architecture incorporating goals, knowledge (facts),

beliefs (which are the sensed state of the world) and intentions (currently executed plan).
FreeWill's actions include both synchronised inter-avatar actions based on finite state

machines as well as object interaction and the primary simulation entity are individual

agents. The reactive control is based on external events and motion control relies primarily

on scripted high-level actions. The simulation task is fully parameterised, thus promoting

modularity, and so for example an explicit scripting language can easily be added.
FreeWill's main focus is on autonomous behaviour and as yet it does not allow for

execution of scripted scenarios. The system includes a learning engine which allows for

automatic learning of new motor actions based on simple definition of the task (only the

goal needs to be provided), the agents do not possess any emotional states. Depending on

the type of simulation FreeWill implements collision prediction and avoidance based on

changing the velocity vector and also supplies full collision detection during the learning

process. Finally the FreeWill architecture is underpinned with a software engineering

model, documented in a modern graphical modelling language. This guarantees ease of
implementation, expandability and system verification, promoting further growth of the

architecture.

None of the above architectures includes a formal agent communication language

typical to other multi-agent systems. Similarly motion is not generated using physics-
based simulation, but keyframing, kinematics and scripting are used instead. The table
below summarises the most important features of each of these three architectures.

90

4
b

`n
2 0 c N öc 0

y _

iz
CD. 92.

Ü "ý N

a.
`Crý

O
"ý

Ü

ý?
Q

Ü
RS vý "O w N

rn

Gn - U
w-

(n - N aý bý0 C w
E E g ý dC

Ö O
1 .

cad
U ^ý

y

Ev >
cd . öc

u r_ r - ZZ E .a
cu
y

b 5: 3 ý, ^
w

L
Ü O 2 yw Oý aý Oýý b i v : W Cy '"'

xý ö c
¢ Z aZ U o. ¢ äý S t ý a .

3N i. O C
O

yG 1.
Ri H yý

i3 A 10 O.
y "y U O D' U u

L

m r- (A

> 'O

E
O C

ä 2 °°
O
E2 GA 2r

CU
i - c

>,

"
LA ce
`' ro ö . 'm . _ ö "C v

i c öö
i b8 u' a - v > °? ö o

U ¢ ý vD O U C> ¢ . -" w tu vý ¢ w x a4 8

c

ä u7 ý, aý
Q o o ri >_ ti ?,

nu
9 v W

. 12 CÖ y r_
Q)

0) v
ti..

>

a)
. Ü O ... w

O cý ~ 79 O
a

(t
E

. c

o 6
N ".

Ec
rn

v
O .+

o" y
OQ

O ¢
Ü

aý 02
2 v S o

rA E-
n

v, 2 au x S as E(x Z el w z rx E.
..

NOU C Uy

3 = u C C

`ý ^ý 7O ý bA +r ti
+r N pp 'L7

u b .s
uO«
CC

cC 0
id

0
1ý

to
C

G
d

- C
.O

3 ^ý" 0

ý?

O O O f1 ýy O Np yU

ý
G «ý

"
y

A
.

O" U c ä
u

vý
N y

C
Qý U0

Gn N
y 'C .b

O
O
w

U
cu C U Ce

Cd
x

ý
N

ýC °
En H

w "y ¢ ý vý H x ýo ý vý ýo t7 as V vi a w . aý

L

Q

e el o

v

2. ` ,
tc
ä 2 c

Q

t' g f r, t ; . '
v C1 Ze

U Qi
Q
1. o f

>, , -_ ,Q tl oý V
1

ý ?

2 Z: 4 Ci 72 04 :
ýe

21 M
gý

Il ý I2 -e QZ -2 -E -e ul --zýZ cý 2, - 2 2-e u < ý Z
- l 4

U

U

0

cl

V

C'

.o
ti

W

h

ýi

b

ö

C ýd c-)

d C c
' _

O
> >,

u

>
''' v

c ä E

b .r .+ cý i at
iu

m O ä ý
C..

'
CÜ u

'C
C cUd tiU.

ÖC
' O O

'd 'am
S vý

o z 0 Q 0 Z
ö
Lö

° Z W
° Z U

°
; -6

ö ö

tom/]
i

Cý ^
ý

a)

+ý C
(

't'ý C . ýC n C O

ý O CD
rn .. Ö 'C b

Su C Z <% ý aä z x z Z

b
.öö

`U° ö c, ö
aý

v; ON UUUt. C

o h

0
rn

2
. Ei .. ° C 0 U a ß y z w Z

a) .ß sY b ýö
C

v 'b UI:

o

32 CyJ

V

Cý

>VJ Z Z Z

ýy

Or

2121 Q

.
V 0. ý ý ýi 'ýci ýl Ri V ýY ý oki ýý

"ý GL

N
Oý

Chapter 6: Results and Evaluation

In summary, FreeWill exhibits many features typically found in recent crowd simulation

systems, such as limited autonomy, reactive events, or collision prediction. The main

missing features compared to other similar frameworks is the lack of support for user-
defined scenarios and emotions. However FreeWill extends the crowd simulation
framework by adding action learning capabilities, thus removing the need for maintaining

expensive libraries with motion captured or keyframed actions. Better collision avoidance,

compared to existing systems, has also been added. An important aspect of the architecture
is the existing UML documentation, as the design of other crowd simulation systems has

not been documented in any formal way. Existing documentation allows to easily
implement a similar system and also to immediately include a set of modules affirmed as

necessary components of such an animation framework. Furthermore a well-defined design

and development process can also be followed. A number of extensions could still be made

to make FreeWill more reliable and flexible, these will be discussed in Chapter 7.

6.3 The Learning Tasks

Two learning tasks have been defined and executed using the learning module presented in

the previous chapter. The first task required the avatar to learn how to open and pass

through a locked door. In the second task the character had to lift a stationary object. Each

task was conducted using both the forward and inverse kinematics control modes. Table 8

illustrates all experiments, details are provided below.

Table 8 The learning experiments

Forward Kinematics Inverse Kinematics

Door Opening Task Experiment 1.1 Experiment 1.3
Ex eriment 1.2

Teapot Task Experiment 2.1 Experiment 2.3
Experiment 2.2

The door opening task

For this task the goal of the agent is to get through a locked door. The door would be

unlocked upon touching the door handle (although this could easily be extended by adding

a simple animation in which the agent actually rotates the handle, as demonstrated in the

second experiment). The avatar would then have to push the door and pass through. The

agent is rewarded whenever its position is behind the door. The simple actions available to

the agent were selected from Table 5, for the FK these were actions 1,2,3,7 (Experiment

93

Chapter 6: Results and Evaluation

1.1) and 1,2,3,4,5,7 (Experiment 1.2), da was set to 20 degrees, step size (Ax in action 7)

was 35 cm, in all experiments y=0.95. Experiment 1.2 differed from Experiment 1.1 in

that two additional degrees of freedom for the arm motion were added. Therefore the state

space for the first experiment consisted of approximately 12000 states distributed across 4

dimensions (2 degrees of freedom for the left arm, 1 for the left forearm and 1 for

backward/forward walk, the sizes of these dimensions were 12,16,11 and 6 respectively).

Eight simple actions were available to the agent at each time step. These were three

rotations - two for the arm and one for the forearm - in two opposite directions and walk

along one axis (2*3+2). The two additional degrees of freedom of the hand (hand and arm

rotation around the z-axis, 13 different positions for each) added for the second experiment

made the total number of states of over 2 million and 12 actions per state. In the first

experiment the solution is usually found in only about 250 iterations, the second experiment

requires at least 1500 iterations. The lengths of the shortest solutions in both experiments

were 5 simple actions.

The task of experiment 1.3 is the same as for the previous ones but the mode of control and

the state and action spaces have been changed. The simple actions available to the agent are

1,2,3 and 5 (Table 5, inverse kinematics column), Ax = 35 cm for walk (the size of a single

step) and Ax = Ay = dz =5 cm for the motion of a hand, y=0.95. Thus a 3-dimensional

cube of x, y, z positions around the initial position of the avatar's hand has been defined, the

last dimension was walk along one axis. Therefore the agent could choose from 8 simple

actions - hand motion along 3 spatial axes in two opposite directions for each axis plus

walk (2*3+2). The total simulated state space was 1 296 000, however this initial number

was highly redundant and could be reduced to 6720 (8 states for the x-direction, 14 for y

and 10 for z, plus 6 positions for the walk). This reduction will be demonstrated in the

second task (see below). Similarly as before the solution is usually found in a few hundred

iterations.

The teapot lifting task

The goal here is to lift a teapot (z co-ordinate of the teapot position has to increase).

Therefore the agent is rewarded whenever the end position of the teapot is higher than the

start position. The simple actions available to the agent are again selected from Table 5, for

the FK these are actions 1,2,3,4,6 (experiment 2.1 and 2.2). Unlike in the previous task, the

94

Chapter 6: Results and Evaluation

agent was assigned an additional action (action 6- grab an object) which improved the

resulting animation and served as a means of representing the state of the teapot

(grabbed/not grabbed). The learning parameters were set as follows: zlalpha was set to 20

degrees in experiment 2.1 and to 10 degrees in 2.2 and y=0.95. The difference between

experiments 2.1 and 2.2 is therefore not in the size of the state-space but in the sampling of

it - the space axes are sampled more densely and thus the state space size of the second task

is larger. The state-space in the first experiment consists of about 13000 states, and for the

second one is about ten times bigger (121 000 states). The dimensionality of both tasks is 5

-2 degrees of freedom for the left arm, 1 for the left forearm, 1 for hand rotation and 1 for

the state of the teapot. The respective size of these dimensions are 7,12,11,7,2 for

experiment 2.1 and 12,20,18,14,2 for experiment 2.2. Ten simple actions are available to

the agent at each time step (2 for each state-space dimension, as described earlier). The

minimum number of iterations for the first experiment is about 4 000 and 20 500 for the

second one. Thus, despite the tenfold growth of the state-space, the minimum number of
iterations increased by a factor of about 5. The lengths of the best solutions found are 9 and
14 respectively (differences resulting from different definitions of the state space).

Similarly an experiment with biped control using inverse kinematics control mode when

attempting to lift the teapot has also been conducted (Experiment 2.3). The simple actions

available to the agent in this case are actions 1,2,3 and 4 from Table 5 (inverse kinematics

column), and Ax = dy = dz =8 cm for the motion of a hand, y=0.95. Therefore the state-

space is 4-dimensional and the agent can choose from 8 simple actions - hand motion along
3 spatial axes in two opposite directions for each axis plus the grabbing action. The total

size of state space is only 2240 (8* 14* 10*2). The algorithm needs about 800 iterations to

find a solution, and the best solution found was 10 actions long.

For both tasks the number of states across each dimension was chosen to provide

sufficient sensitivity but also to eliminate as many unnecessary states as possible.
Therefore only reasonable angles for joint movements were selected, these were taken

from human joint constraints: forearm can only rotate by about 180 degrees around the

x-axis, arm 270 degrees around the x-axis (forward/backward) and 180 degrees around

the y-axis (up/down). Two additional states were added for each joint to represent the

illegal motions, so called forbidden states (e. g. for the forearm rotation -20 degrees and

95

Chapter 6: Results and Evaluation

200 degrees would be the forbidden states). For walking only the route through the door

was represented as walking to the door could easily be achieved within the FreeWill

system. Finally in all experiments the Q-table was represented as a lookup table and the

values were initialised to 0 before the simulation.

Results of all experiments are summarised in Table 9 and Table 10, the number of iterations

required to find a stable optimum solution would normally be 1.5-2 times higher than these

presented in Table 10. Example sequences (Experiment 2.3) are depicted in Colourplate 6.

Table 9 Resulting action sequences for the teapot problem

Example action
sequence

Length of the shortest
sequence found

Door task:
FK control (1.1) 1 1666 5
FK control (1.2) 14666 5
IK control (1.3) 24666 5
Teapot task:
FK control (2.1) 340442187 9
FKcontrol (2.2) 40000226 1 24 1 87 14
IK control (2.3) 1124422060 10

Table 10 Summary of the learning experiments (*simulated state space, **sufficient state space)

FK IK
State space Actions/ Min. no. State space Actions/ Min. no.
(dimensio- state iterations to (dimensio- state iterations to

nality) find a nality) find a solution
solution

12672 8 200 1 296 000* (4D)
** ** Door (6720) 8 700 2 141 568 12 1500 (6D)

12936 10 4000
T p (5D) 2240

ea ot 8 800 120 960 (4D)
5D 10 20500

Convergence and average reward graphs for the teapot simulation are depicted in Figure

35-Figure 40. Figure 35, Figure 37 and Figure 39 present convergence graphs depicting

the total Q-value (sum of Q-values from the entire Q-table) as a function of the number

of epochs. The fastest and most distinct convergence can be observed for Experiment

2.3 (IK control) and the slowest is for Experiment 2.2 (FK with larger state-space).
Similarly Figure 36, Figure 38 and Figure 40 present a sum of rewards received by an

96

Chapter 6: Results and Evaluation

agent at the end of an epoch as a function of the number of epochs, calculated as a sum

of all Q-values and rewards collected by the agent in the states visited between the start

state and the absorbing state. In the first and last figure the curve is relatively flat for

most of the simulation. This is because the agent reaches the predefined limit on the

number of visited states without receiving a reward relatively often. In such a case the

agent is placed in a new random state and his reward sum is set to zero. When the

constraint is released (toward the end of the simulation) the longer spikes represent

epochs in which the agent was stuck in local minima for a long period of time and

managed to accumulate high rewards. When this constraint is not imposed at all (Figure

38) the sum of rewards grows during the initial exploration phase and eventually

stabilizes for the rest of the simulation. The resulting animation solution is identical to

the previous case, only the way of exploring the state space proceeds in a different

manner. Sequences of shots from resulting animations are presented in Colourplates 6-

10.

6. E+07

5. E+07

4. E+07

ý
3. E+07

2. E+07-2m

1. E+07(5

0. E+OOö
00 10000 15000 20000 25000 ~

-1. E+07

-2. E+07

-3. E+07

-4. E+07
Epoch no.

Figure 35 Convergence graph for the FK teapot problem (Experiment 2.1)

97

Chapter 6: Results and Evaluation

1600000

1400000

1200000

1000000. -

"Ai6 3
800000 111-1

V
600000 0

0*

A

400000

200000

0

5000 10000 15000 20000 25000
-200000

Epoch no.

Figure 36 Reward received by an agent (the peaks at the end are caused by removing the limit on
maximum number of random actions, averaged over samples of 20 values), Experiment 2.1

30000 60000

Epoch no.

7. E+08

6. E+08

5. E+08

4. E+08

3. E+08a,

2. E+08;

1. E+08P

0. E+00

-1. E+08

-2. E+08

-3. E+08

Figure 37 Convergence graph for the FK teapot problem (Experiment 2.2)

98

Chapter 6: Results and Evaluation

4000000

3500000

3000000

2500000 3

2000000
LlijLll 1500000 >

. 4)
1000000

500000

0

ROOM 0000
Epoch no. -500000

Figure 38 Reward received by an agent (the limit on maximum number of visited states during the
exploration phase was increased ten times in this experiment, compared to Experiment 2.1, so it almost

did not affect the curve), averaged over samples of 20 values, Experiment 2.2

1. E+07

8. E+06

6. E+06

4. E+06 d 2 e

2. E+06 O

E+00 0 ö
. (-

2000 4000 6000 8000
-2. E+06

-4. E+06

-6. E+06
Epoch no.

Figure 39 Convergence graph for the IK teapot problem (Experiment 2.3)

99

Chapter 6: Results and Evaluation

3500000

3000000

2500000 .o
2000000

1500000

1000000 U
d

500000

0
2000 4000 6000 8000

. 500000

Epoch no.

Figure 40 Reward received by an agent (the peak at the end is again caused by removing the limit on
maximum number of steps per epoch in the exploration phase), averaged over samples of 20 values,

Experiment 2.3

6.4 Time Requirements of the Deterministic Algorithm

This section compares the execution time of the algorithm on a computer with Pentium

11 400 MHz processor and 384MB RAM running version 3.1 of the 3D Studio Max

package and Character Studio version 3.0. The execution times presented here are

intended only to allow for relative comparisons as the actual timing may be influenced

by many factors such as processor speed and workload, communication speed between

the COM interfaces, the quality of the random number generator (e. g. if the same,

already performed action, is repeated a number of times) and also by the working speed

of the animation package. Additionally it is difficult to assess the overheads introduced

by the inter-application interfaces, plugin communication and execution and collision

detection routines. Therefore the purpose of presenting them here is to allow the

comparison between the Q-learning implementation and an exhaustive search

performed in similar conditions on the same task state space.

The times obtained differ considerably for each of the simulations presented above. For

example, despite defining a relatively large state space for the door opening task, the

actual part of the state space necessary to solve the problem is only a small fraction of it.

Hence the algorithm produces the results very quickly (and in a small number of
iterations) -3 minutes for Experiment 1.1,8 minutes for 1.2 and 9 minutes for 1.3. For

comparison, it takes only 30 seconds (6 times faster) for experiment 1.1 to run on 1,5

GHz processor with 0,5 GB RAM. The results of experiment 2 were as follows: over

100

Chapter 6: Results and Evaluation

5.5 hours for experiment 2.1,3-4 days for experiments 2.2 and 130 minutes for 2.3. The

timing however strongly depends on the actual number of iterations performed and

increases quickly as the agent explores the state space, finds a solution and then gets

stuck in local minima. Times for all experiments are shown in Table 11. The table

presents average numbers of iterations necessary to reach any correct solution for all

three experiments. Similarly, numbers of iterations necessary to reach the best solution
for a given task (as found at the end of simulation, after convergence had been reached),

and times necessary to accomplish these given numbers of iterations using the

experimental setup defined before are also presented.

Table 11 Simulation times for the Q-learning implementation

Experiment Avg. no Avg. no iterations Avg. time for Avg. time for
iterations to to reach the best first solution the best

reach a solution found solution
solution

FK (2.1) 3800 5000 5.5 hours 6 hours
FK (2.2) 20500 45000 18 hours 4 days
IK (2.3) 800 1500 80 minutes 130 minutes

For comparison, assuming that the avatar control system performs 12 actions per second
for the FK algorithm and about 9 for the IK task (which are the numbers of actions per

second obtained during the learning task) the times necessary for exhaustive search of

the state space would be as presented in Table 12. The length of the sequence was

assumed to be shorter by two actions compared to the best solutions found by the Q-

learning algorithm to allow for possible better solutions, this is 12 and 8 actions for FK

and IK respectively (please refer to Table 9). Additionally the size of the action set

available in each state was reduced by 2 for the forward kinematics case (only the more

complex task was considered) to 8 actions and by 1 in the case of the inverse kinematics

control, which means 7 actions were considered in each state. These reductions

approximate the pruning of the search tree as a result of collisions and other forbidden

A
movements. The time estimates (t) were calculated according to this equation:

NM
Ns

101

Chapter 6: Results and Evaluation

where NA is the number of actions which the agent can choose from in each state, M is

the assumed length of the optimum sequence and Ns is the number of actions per

second which can be executed by the software when the agent is continuously

performing the actions.

Table 12 Simulation times of an exhaustive search

Control
method

Actions per
state

Sequence length No. actions per
second

Time [seconds]

FK 8 12 12 5.7 * 109 (_ 181 years)
IK 7 8 9 6.4 * 105 (- 7.5 days)

The results depicted in Table 12 show that an exhaustive search performed on the FK

state space would require over 180 years to complete (assuming that the optimum

sequence is shorter by two actions from the best Q-learning solution found). The result
for the IK is only about 7.5 days, this is nevertheless still substantially longer then the

results obtained using Q-learning. The difference for the estimated search times between

the FK and IK modes is caused by the fact that the IK state space is noticeably smaller,

however the FK results demonstrate that as the space size increases the search quickly

becomes unfeasible, even when it is still possible to find a solution using the Q-learning

method.

6.5 Learning Using the Non-deterministic Algorithm

This section presents results obtained when applying the non-deterministic update of the

Q-learning algorithm to the task of action acquisition. The task implemented using this

technique is the IK-controlled teapot problem. The state space is the same as in the

deterministic implementation, and the length of the shortest solution is also 10 simple

actions (Table 13). The convergence is reached faster - in approximately 800

interactions as opposed to about 3000 in the deterministic case and the time necessary to

reach the optimum solution is shorter as well - about 90 minutes on average (550

iterations). The convergence is also more pronounced (Figure 41). This suggests that the

non-deterministic version of the algorithm generates comparable results in a shorter

amount of time. Figure 42 presents the stabilisation of the total sum of rewards with the

number of epochs.

102

Chapter 6: Results and Evaluation

Table 13 Resulting action sequences for the teapot problem

Teapot State Actions Example action Length of the shortest
task: space per state sequence sequence found
IK control 2240 8 2144122064 10

4D

0
500 1000 1500

-50

m
-100-'ý

a

-150
0

-200

-250
Epoch no.

Figure 41 Convergence graph for the IK teapot non-deterministic problem

160

140

120

100
80
60 >

40

20

0

20 -
Epoch no.

Figure 42 Reward received by an agent in the IK teapot non-deterministic problem

6.6 Learning with Non-deterministic Action Selection

An additional simulation with the non-deterministic update has also been executed, in

which the outcome of the action selection was randomised in some percentage of cases.

The action selected by the agent according to its Q-table was replaced with a random

103

Chapter 6: Results and Evaluation

action with some predefined probability. The results of that simulation for different

levels of action randomisation are presented in Figure 43.

0

-50

-100

-150

-200

-250

-300

-350

-400

-450

1113 2225 3337 4449 5561 6673 7785 8897 1 - no random

-5%

-10%

-25%

-50%

Figure 43 Convergence for randomised action selection updates

As presented in Figure 43 the speed of convergence is decreased with the growth of the

uncertainty of the action selection mechanism. However, convergence is still reached

even for relatively high uncertainty levels. Although the results of this experiment do

not have much significance in a fully predictable animated landscape, they suggest

possible utilisation of the action acquisition scheme for robotic environments.

6.7 Evaluation of the Learning Results

The results presented in the previous sections indicate that the [K learning mode is

faster and easier to implement. The convergence is reached in a smaller number of

iterations, compared to the FK case, and is more pronounced (the curve is flatter).

However the ultimate assessment can only be made upon analysing the resulting

animations. Because of the relative simplicity of the door opening tasks, the results

obtained for this task are not very different (see Colourplate ll for comparison with real

data). However noticeable differences exist in the second learning task. In experiment

2.1 (rarely sampled forward kinematics control) most of the results are of insufficient

quality - the motions are too jerky and inaccurate. This has been improved substantially
by increasing the sampling rate of the state space - results obtained from experiment 2.2

104

Chapter 6: Results and Evaluation

are of sufficient visual quality. Some artefacts still remain however - this mainly

concerns unnecessary motions and especially a zigzag-like way of approaching the

teapot which is present in some animations, but the result is resembling human motion

with a sufficient detail as demonstrated in Colourplate 7 and 8. Indeed the way of

executing the action achieved using the FK mode of control matches the way of

executing the same action by a human actor without giving her additional guidelines

prior to performing the task.

Results yielded by Experiment 2.3 are also interesting. First of all the state space is

substantially smaller than for the FK experiments and therefore the solutions are found

in fewer iterations. The resulting motion looks realistic, despite the fact that the human

actor did not initially perform the action in the way suggested by the IK solution. This

does not mean humans cannot perform the lifting task in this way as demonstrated in

Colourplate 9 and 10, and the reason for this way being less natural is only in the fact

that the table was relatively high. Reducing the height of the table changes the way of

performing the task by humans (the hand does not have to be moved around the table).

Moreover, the generated motion still looks natural, and contains fewer unnecessary

artefacts compared to the FK solution, because IK control implicitly rejects some of the

unnecessary moves. The IK state space can be represented in a more compact way (only

three values need to be stored regardless of the hand position). This however causes

problems when more expressive motion or combination of different modes of control

are required (for the door opening task it was necessary to combine IK hand control and

walking), as the representation of the state space for such extensions is more uniform

when using the FK approach. The main problem with FK approach is its extensibility -
additional degrees of freedom very quickly expand the state space and substantially
increase the number of iterations required to find a solution. Therefore tasks for which

more than 6-7 degrees of freedom is necessary may have to be simulated using the more

compact IK control.

It also appears that the non-deterministic algorithm generates the solution faster than the

deterministic one, maintaining the same quality of the results. Future implementations

therefore should rely on this version of the Q-learning technique.

105

Chapter 6: Results and Evaluation

The number of iterations required to reach convergence differs from about 700 to about

20 000 (and amounts to 100 000 only for the most complex problem), with about 100-

130 state transitions on average per iteration. These are relatively small values, for

example Laurent and Piat (2001) used 2 million steps for their enhanced Q-learning

algorithm and Aljibury et al (2002) report 650 million Q-table updates during a 10-day

simulation. The reason for this discrepancy is a rather small state space for the IK-

controlled problems and also the modified exploration strategy in the final stages of the

algorithm execution (bias towards one starting state). The result is comparable to other

work for the most complex FK task (over 10 million updates).

In summary the learning technique presented here generated satisfactory results when

applied to a non-trivial task. Comparison of the generated motion to the motion of a
human actor indicates that the sequence is sufficiently realistic to be applied in a crowd

scene. Although the technique appears to be difficult to scale up, some extensions,

especially using the IK control, will be possible to it, allowing to add a few additional
degrees of freedom to simulate a task requiring the use of both hands or the head motion
by the simulated biped. Additionally results obtained with a better hardware

configuration suggest that a modern computer will improve the learning times by at
least one order of magnitude.

6.8 Metrics Applied to the Learnt Sets

Based on two result sets generated by the learning algorithm the Local Distance Metric

and the Global Distance Metric have been calculated. The first result set (Set 1)

contained 651 sequences each consisting of 14 actions obtained from experiment 2.2,

the second set contained 72 sequences (Set 2) with 11 actions each, generated by

experiment 2.3. The reduced sets generated by the metrics are presented below.

LDC applied to Set 1 generated 120 sequences with the maximum distance of 12 (all

pairs have been included in Appendix E).

LDC applied to Set 2 generated 72 pairs of sequences with the maximum distance of 8.

An example of such a pair has been presented in Colourplate 6.

GDC applied to Set 1 generated 40 sequences most distant from the averaged sequence,

the maximum distance was 8.

106

Chapter 6: Results and Evaluation

GDC applied to Set 2 generated 4 sequences most distant from the averaged sequence,

the maximum distance was 6. The four resulting sequences were:

241 14 220460 (seq 25, Colourplate 12)
24 14 12 20460 (seq 29, Colourplate 12)
44 1 12220460(seg60)
44121220460(seg65)

Although these sequences are the most distant from the average, they are relatively

similar (see Colourplate 12) and therefore an extension of this approach has been

proposed. The resulting set proposed for addition to the plan library should include

sequences for which the GDC generates the highest and the smallest values thus

guaranteeing to include both most average and most different sequences. Rerun of the

GDC algorithm with a distance of 0 resulted in further 4 sequences being proposed for

the action library:

1 14 44222060 (seq 8, Colourplate 13)
41 14 4222060 (seq 41, Colourplate 13)
41414222060(seg46)
41441222060(seg51)

This extension of the algorithm applied to Set 1 generated additional 10 sequences.

The results indicate that for large sets of sequences the sets of sequence pairs generated

by the LCD are still too large to be analysed individually. The GDC metric reduces the

amount of resulting sequences, however the most distant solutions appear to be very

similar. The proposed extension of generating both most distant and most average

solutions and selecting a few examples from each set overcomes this problem.

6.9 Other Applications of the Learning Technique

A filled Q-table contains optimum transitions from any state to the goal state. Therefore

the results of the learning tasks demonstrated in this chapter can be used to create

animations from any starting position of the agent thus adding more than one specific

action to the plan library at a time. It may even be possible to store the learnt Q-tables

rather than single action sequences and use them whenever the agent needs to perform

an action starting from a state present in the Q-table and ending in a goal state defined

107

Chapter 6: Results and Evaluation

for the specific learning task for which the Q-table was generated. For an example, see

Colourplate 14.

Similarly the Q-learning technique may be used to learn the same action for a different

configuration of objects (for example the size of the table or teapot may be different)

and encode this different configuration as a set of varying preconditions for the same

action. Equally the size of the avatar itself can be changed and a new solution for a

different character may be generated (see Pollard and Hodgins, 1998 for a different

solution to this problem).

Another benefit of using the learning technique for action acquisition is that the

resulting sequence comes in a form of a script, which can then easily be manipulated

and parameterised and also incorporated into other animation tools. This is in strong

opposition to the keyframing and motion capture based approaches which, although

easily portable and capable of delivering realistic motion, are nevertheless difficult to

modify using automatic methods. This advantage is also utilised when calculating the

metrics presented in the previous sections, as it is otherwise difficult to calculate metrics
for motion sequences without underlying semantic representation.

Finally the technique can be applied to other research domains such as robotics,

provided the robot can already perform basic actions such as walking.

108

Chapter 7: Conclusions and Future Work

Chapter 7- Conclusions and Future Work

The aim of this thesis was to create an architecture capable of automatic generation of

crowd scenes with many interacting human-like characters. Research was conducted in

two stages - first of all, a general architecture for crowd simulation was proposed and

an initial prototype was built. Second stage was to enhance the action library by adding

algorithms for fully automatic acquisition of actions. This chapter discusses the main

achievements of the project, highlighting the strengths and weaknesses of the proposed

solutions.

7.1 Analysis of the Industrial and Research Systems

As discussed in Chapter 2 some of those packages offer limited character and crowd

extensions, but the main identified problems included lack of AI-based frameworks,

collision detection and focus on animating rather than directing the crowd sequences.
The Massive system, for example, partially overcomes some of the problems but it

remains a specialised engine, which also heavily relies on a large database of motion

captured clips, which are usually difficult to obtain and often must be recorded for

specific tasks.

Although many academic animation architectures present a great potential, they are

usually too specific to generate multiple crowd participants able to interact with each

other and the environment. Existing crowd systems, on the other hand, do not offer any

action acquisition mechanisms, and often rely mainly on pre-recorded scenarios without

sufficient scope for character autonomy. Physics-based systems at the moment do not

offer any intelligent capabilities and are usually computationally very expensive. Agent

systems address the problems of agent communication, social behaviour and knowledge

representation but they are rather generic, without explicitly addressing the problem of
implementing animated agents. Additionally none of the reviewed frameworks offered a

way of integrating with existing professional tools, the design process has not been

documented nor a uniform design and documentation notation selected.

109
Y

Chapter 7: Conclusions and Future Work

The importance of a better crowd modelling tool has been pointed out in this work.

Such an architecture should comply with the recent advances in software engineering

and should also easily integrate with existing animation systems.

7.2 Main Features of the Proposed Framework

FreeWill extends both the SAC and FCA architectures, using some of their underlying

concepts. It recognises the need for multilayered character structure (necessary to

represent the creature's body), simple motion patterns, and cognitive capabilities. It also

uses the agent-derived concepts of beliefs, goals and intentions and maintains plan

libraries. FreeWill represents the view that events should be represented as entities

external to the agent. This is based on the assumption that any process not comprising

part of the agent should not be included in its design, including sensory events and

action execution. Such an approach simplifies the design of the system, as the sense-

think-act loop only relies on one type of event. FreeWill addresses the problem of

collision detection, missing in many of the professional packages, collision detection is

handled by each character separately. The motion layer of the FreeWill agents is

managed by an external animation engine and relies on kinematics motion. Agents

maintain a list of currently executed actions and goals, they can plan ahead and sense

the environment. Full UML documentation of the system is provided and several

different communication techniques with the animation package are proposed. However

FreeWill does not address the problem of representing character emotions and scenario

prototyping is not possible within the framework. Also action acquisition remains a

problem, as all new actions have to be manually scripted. Therefore an important

extension to the FreeWill architecture has been developed that allows for automatic

acquisition of actions. The underlying algorithm relies on one of the machine learning

techniques, namely Q-learning.

The learning requires a discretisation of the state space and also an explicitly defined set

of simple actions. At this stage the only required input is the goal of the learning task,

and the action sequence fulfilling the goal is found automatically. Two control

mechanisms can be used to learn the new action - the forward and inverse kinematics,

and additionally both the deterministic and non-deterministic Q-learning algorithms are

proposed for investigation. Such a definition of the learning task however generates

110

Chapter 7: Conclusions and Future Work

multiple solutions, posing a problem of how to select a few most suitable. In the case

when only a small number of such solutions is found, these can be presented to the

human user for selection or all of the solutions can directly be added to the action

library. However in most cases the number of solutions found exceeds a hundred. To

allow for automatic selection of learnt sequences a number of metrics is proposed. The

aim is to select a small number of varying action sequences.

7.3 Outcomes

Upon implementing the FreeWill architecture, the observed results confirm that the

current set of AI tools (such as planning, machine learning, finite state machines and

agent-oriented approach) generates a crowd simulation framework which is

significantly more versatile than existing state-of-the-art approaches, providing

additional functionalities. The architecture generates believable animation sequences
(Colourplates 2-5) and it is easy to redefine character actions and goals. The number of

participating characters is limited only by the capabilities of the animation packages

used, and the speed of the microprocessor. In many respects the architecture

outperforms existing approaches by applying the learning mechanism, providing better

collision detection and easy integration with existing tools. The learning results for the

simulated tasks are comparable with real human motion (see Colourplates 7-11), can

easily be parameterised and extended. The results indicate slight superiority of the non-

deterministic Q-learning algorithm, and also show that the IK control method promises

greater scope for extendibility. The IK-controlled, non-deterministic algorithm is also

the fastest converging one. Although the learning system is far from real-time

performance, the pre-processing must only be done once, and a sufficiently rich action
library will allow for generation of scenes with avatars presenting extensive behaviour

"repertoires". The metrics also fulfil their role (Colourplates 12,13), although the

application of the global distance metric had to be modified as a result of the

experiments conducted. The proposed set of actions should consist of both maximum

and minimum distance actions.

111

Chapter 7: Conclusions and Future Work

7.4 Main Contribution of the Project

This section again shortly summarises the main contribution of the thesis.

State of the art
This work presented an extensive overview of the field of character animation including

industrial and research systems. The review included such domains as animation

architectures, motion capture, crowd simulation and rapid animation prototyping. The

suitability of different agent design methodologies to character creation has also been

considered. It has been established that there is a potential for such applications to be

made in automatic crowd modelling systems. Additionally Reinforcement Learning in

the context of character animation has been discussed.

A new architecture
Based on the conclusions from the literature review a new hybrid animation architecture

called FreeWill has been proposed. It combines the multiagent as well as the animation

concepts. The architecture defines all main components of a crowd simulation

architecture and a design framework documented in UML. The main distinguishing

aspects of the architecture are uniform representation of actions and external events.

Other important features are also goals, plan libraries and collision avoidance. The

system allows modelling both inter-agent and agent-object actions. A prototype version

of the proposed architecture has been implemented and evaluated. Three types of

possible communication with professional animation packages have been identified and

applied to the architecture.

Action acquisition
The proposed architecture has been extended to accommodate automatic action

acquisition based on machine learning. The chosen algorithm was Q-learning and both

the deterministic and the non-deterministic versions of the algorithm have been applied

to the task of motor learning. The results are complex actions with quality comparable

to real human motion. Two modes of control - forward kinematics and inverse

kinematics were used in conjunction with the learning algorithm. This allowed for

comparison of the two techniques along such dimensions as size of the state space,
learning time and quality of the results.

112

Chapter 7: Conclusions and Future Work

Animation metrics
A number of metrics have been proposed to select a representative sample of solutions
from the results generated by the learning algorithms.

7.5 General Assessment of the System

The proposed architecture has been qualitatively compared with three other important

architectures - two representative to academic research and another one applied by the

industry to generate special effects in film postproduction. As a result the FreeWill

architecture appears to offer a similar set of features regarding knowledge

representation, behavioural modelling, reactive control, and autonomy. A number of

properties have also been identified in which the new architecture outperforms the

existing frameworks. This includes learning, collision avoidance algorithms applied and

the software engineering approach. Also the learning algorithm generates realistic

results in a relatively small number of iterations and allows for motion prototyping or

even complete replacement of other expensive techniques for crowds where fine detail

is not a crucial factor. The architecture integrates easily with existing professional

packages what was one of its design principles.

It is therefore believed that the problem of proposing a flexible character animation

framework based on current advances in Artificial Intelligence has been solved.

7.6 Possible Extensions

A number of extensions can be made to the presented architecture. Some most obvious

would involve implementing the features missing in the current prototype. This might
include replacement of the current ad hoc planning routines with a complete planning

algorithm based on one of the inference engines. A method of automatic import of

predefined 3D scenes into the system and labelling the scene elements would also

enhance the capabilities of the existing implementation.

It would also be useful to expand the architecture by adding some features present in

other systems, as identified in Chapter 6. Adding scenarios and other motion control

approaches such as import of motion capture files or keyframed sequences should not

113

Chapter 7: Conclusions and Future Work

be too difficult, especially if the rendering is done in a professional animation system.

An increase in the sampling of the IK state space may also be necessary. Although the

assumed sampling generates good results, a better sensitivity would be necessary in task

relying on finer object control. The state space itself should be extended to allow for

more complex tasks. This might include defining additional degrees of freedom to

accommodate other limbs (e. g. the right hand), spine and head. Current results suggest

that 3-4 additional degrees of freedom in the IK experiments should be a feasible

extension. A useful approach might be to start learning with a coarsely defined state

space and gradually increase the sampling rate in the regions of the state space visited

when generating the approximate solution. Some experiments involving the learning

parameters y and a may also be attempted to identify values yielding highest

convergence speed. Finally modelling of character emotions could be proposed, which

would however require relatively large modifications of the architecture (for example

the characters should be able to vary their motion to allow them to display emotions,

some emotion representation scheme would also be necessary, events influencing

character emotions must be identified).

Future research might concentrate on further optimisation of the learning task

(modification of the non-deterministic IK-based learning scheme seems to be a good

starting candidate). It would also be interesting to explore other learning algorithms to

find one which can learn the best action sequence in the shortest amount of time. Such

an attempt has already been made (see Lach 2003) and the attempted technique was

genetic programming (Koza, 1992). Also genetic algorithms could be used for this task.

A comparison of two or more different learning approaches applied to the same task

might then be attempted. A way of tackling the state explosion identified by the learning

routines might also be to use neural networks (Haykin and Saher, 1999).

Another application of the presented system would be an on-line learning crowd system.
The starting point would be a FreeWill system with very few actions present in the plan
library. In the course of the simulation the agents could apply the learning framework to

tackle a particular problem, such as using a lift. This would allow for greater flexibility

compared to other systems as the application of the learning scheme allows to adjust the

same action to the needs of a specific agent (position, body orientation, size of the

114

Chapter 7: Conclusions and Future Work

avatar etc.). Thus the characters would populate the action library with new actions
learnt `on demand'. It is expected that a varied and interesting scene would be generated

with this approach. It might also be possible to reapply the learning scheme to the newly

created high-level actions, thus creating composite actions and effectively building a
hierarchical reinforcement learning system.

115

Avatar degree,, of IrLc ! III I-K (from top-left: Rotate ii iii 111,1, '%v n I'v A(r_ I Lilt .u iii
forward/backward by Au. Rotate forearm by Au. Rotate hand along I. axis by Au, Rotate shoulder

along Z by Au)

º'

A Ltar clrrLL, (, I lice I , ni III (NIOOvc palm by JAx. Ay. Aij)

Colourplate 1 Avatar degrees of freedom

.I

4

10

qq

'ýý , ~1

12
('oluurplate 2 Avatars shaking han(l, ati a result of han ink li eu uai tO st ake hand, %k ilh a mend

ý1om- 1F iW

,
`` ,! 69

--

�v"1 2

/i
`, 0

RM

low

ýj @MI

ý ý-

ý,.
'ýý

"-r

DIY . ""

` ýý "mot

`r.

ý'

/
Colourplate 3 Avatars mingling on a sidewalk

ir ct- ow
--, Z 00 ÄO

ýý

Colourplate 4 Scene as seen by a single avatar

Colourplate 5A battle scene simulated in FreeWill

A ýý
t

41. ; At-,
44 ::. '04

º, ý,, to.,

Frame 40 Frame 60 France Kll Frame 11111 Frame 120

? ýx M T; Y

0.

Frame 140 Frame 160 Frame 180 Frame .. (X) Frame 220

1. Is.

"I 0410.. q P. q

1 jýj

vs-,

-4ý 4, t, I

Frame 40 Frame 60 Ilrame KU Frame IOO Frame I_'O

Frame 140 Frame 160 1 1.1111c I. ýu Frame 2(N) fý. ýnýr �ýý

Colourplate 6 Two different action sequences selected using the Local Distance Metric (IK set)

iý'ýý'rýJýý
ý"rý irk irk ýiJ Colourplate 7- FK controlled motion compared to motion of a human actor

AAAA

ý1 1ýº _.. _.. r

1l1ý , ýý
ý

ý y'

Colourplate 8- FK controlled motion compared to motion of a human actor

00.
Colourplate 9- IK controlled motion compared to motion of a human actor

A

 s

A

ILI 1! 1 1!! J'l iLA

I 111 U"l iliA II

Colourplate 10 - IK controlled motion cumpzued tu nwuun of a human actor

Colourplate 11 - FK and IK controlled motion compared to motion of a human actor

Sequence no 25 with maximum distance from average sequence

4
4ftp

Sequence no 29 with maximum distance from average sequence

Frames presented are frames no.: 40 60 80 100 120 140 160 180 200 220

Colourplate 12 Sequences generated by the Global Distance Metric

U low A> 14ýt. >71

"ý 614 41 64 vi 64 4)64

4 º4 &!) 4,0,4 W-,) 4,0,1 1\4, i "

Sequence no n with minimum distance from aýeragc , equcnce

1N

4

1 b. 1 "1
Ifr1IP) ýr

4

Sequence no 41 with minimum distance true) uýerage sequence

Frames presented are frames no.: 40 60 80 100 1 20 140 160 180 200 220

a

Colourplate 13 Sequences generated by the Global Distance Metric

r

late 14 Avatar starting tram a ditfercnt position and achieving a goat using the same Q table.

Colourp

.,; ý

v'

References

References
[1] Al. implant, http: //www. ai-implant. com, accessed on 31 Oct 2003

[2] AI. implant Animation White Paper, accessed from http: //www. ai-implant. conVpdf/Al. implant-
Anim-White-Paper. pdf on 3 Nov 2003

[3] Alias website, www. aliaswavefront. com, accessed on 24 Oct. 2003

[4] Aljibury H., Arroyo A., Nechyba M., Using Locally Weighted Regression to Enhance Q-
Learning in Proc. FCRAR 2002, Miami, May 2002

[5] Amant R. St. and Young M. R., Artificial Intelligence and Interactive Entertainment,
Intelligence, Vol. 12, Issue 2, pp 17-19, Summer 2001

[6] Amkraut S., personal communication, January 8,1987

[7] Amiguet Vercher J., Automatic crowd scene generation in SPIE Journal of Electronic Imaging,
International technical group newsletter 11(1) December, pp. Front Page, 2000

[8] Amiguet Vercher J., Szarowicz A., Forte P., Synchronised multiagent simulations for automated
crowd scene generation, Workshop on Spatial and Temporal Reasoning with Agents Focus -
International Joint Conference on Artificial Intelligence IJCAI-0I, August 4-10, Seattle. USA,
2001

[9] Anderson J., The Architecture of Cognition, Cambridge, MA, Harvard University Press, 1983

[10] Anderson J., The Adaptive Character of Thought, Hillsdale, NJ, Erlbaum Associates, 1990

[11) Anderson F. C. and Pandy M. G., Three-Dimensional Computer Simulation Of Gait,
Bioengineering Conference Big Sky, Montana, June 16-20,1999

[12] Anderson M., McDaniel E., Chenney S., Constrained animation of flocks, Proceedings of the
ACM SIGGRAPH San Diego, California, USA, 2003

[13] Arafa Y., Kamyab B., Mamdani E., Kshirsagar S., Magnenat-Thalmann N., Guye-Vuillemc A.,
Thalmann D., Two Approaches to Scripting Character Animation, Proc. Workshop Embodied
Conversational Agents - let's specify and evaluate them! at AAMAS 2002, Bologna, Italy, 2002

[14] Arikan O. and Forsyth D. A. , Interactive Motion Generation From Examples. Proceedings of the
2002 ACM SIGGRAPH, San Antonio, Texas, USA, 21-26 July 2002

[15] Arkin, R. C., Modeling Neural Function at the Schema Level: Implications and Results for
Robotic Control", chapter in Biological Neural Networks in Invertebrate Neuroethology and
Robotics, ed. R. Beer, R. Ritzmann, and T. McKenna, Academic Press, pp. 383-410,1992

[16) Arkin, R. C., Behavior-Based Robotics, The MIT Press, 1998

[17] Arkin R. C., Carter W. M., MacKenzie D. C., Active Avoidance: Escape and Dodging Behaviors
for Reactive Control. International Journal of Pattern Recognition and Artificial Intelligence
(IJPRAI), Volume 7 (1), World Scientific Publishing, pp. 175-192,1993

[18] AUML, Agent UML website, www. auml. org, accessed on 19 May 2003

[19] Bauer B., UML Class Diagrams: Revisited in the Context of Agent-Based Systems, in
Proceedings of Agent-Oriented Software Engineering (AOSE) 2001, Agents 2(X)l, Montreal,
2001

116

References

[20] Bauer B., Müller J. P., Odell J., Agent UML: A Formalism for Specifying Multiagent Software
Systems, International Journal of Software Engineering and Knowledge Engineering, Vol. 11,
No. 3, pp 1-24,2001

[21] Bergenti F. and Poggi A., Exploiting UML in the Design of Multi-Agent Systems, ESAW
Workshop at ECAI 2000

[22] Bertsekas D. P. and Tsitsiklis J. N., Neuro-Dynamic Programming, Athena Scientific, 1996

[23] Blumberg B., Downie M., Ivanov Y., Berlin M., Johnson M. P., Tomlinson B., Integrated
learning for interactive synthetic characters, ACM Transactions on Graphics, Vol. 21, Iss. 3,
pp4l7-426, July 2002

[24] Booch G., Object-Oriented Design with Applications, Benjamin/Cummings, Redwood City, CA,
1991

[25] Booch G., Object-Oriented Analysis and Design with Applications (second edition). Addison-
Wesley: Santa Clara, California, 1994

[26] Booch G., Rumbaugh J., Jacobson I., The Unified Modeling Language User Guide, Addison-
Wesley, 1999

[27] Boone G., Efficient reinforcement learning: Modelbased acrobot control, Proceedings ICRA
1997

[28] Bregler C., Loeb L., Chuang E., Deshpande H., Turning to the Masters: Motion Capturing
Cartoons, Proceedings of the 2002 ACM SIGGRAPH, San Antonio, Texas, USA, 21-26 July
2002

[29] Brogan, D. C. and Hodgins, J. K. Group Behaviors for Systems with Significant Dynamics,
Autonomous Robots 4(1), pp. 137-153,1997

[30] Burke R., Isla D., Downie M., Ivanov Y., Blumberg B., Creature Smarts: The Art and
Architecture of a Virtual Brain, Proceedings of the Game Developers Conference 2000

[31] Burmeister B., Models And Methodologies For Agent-Oriented Analysis And Design, in Klaus
Fischer, editor, Working Notes of the KI'96 Workshop on Agent-Oriented Programming and
Distributed Systems. 1996

[32] Burmeister B., Haddadi A., Motylis G., Application of Multi-agent Systems in Traffic and
Transportation, IEE Proceedings Software Engineering, Vol. 144, No. 1, February 1997

[33] Burmeister B., Bussmann S., Haddadi A., Sundermeyer K., Agent-Oriented Techniques for
Traffic and Manufacturing Applications: Progress Report, in N. Jennings and M. Wooldridge,
editors, Agent Technology: Foundations, Applications, and Markets. Springer-Verlag, 1998

[34] Card S., Moran T. Newell A., The Psychology of Human-Computer Interaction, Hillsdale, NJ,
Erlbaum, 1983

[35] Cassell J., Vilhjälmsson H. H., Bickmore T., BEAT: The Behavior Expression Animation
Toolkit, ACM SIGGRAPH 2001 Los Angeles, CA, USA, 12-17 August 2001

[36] Castro J., Kolp M., Mylopoulos J., A Requirements-Driven Development Methodology, in
Proceedings of the 13th International Conference on Advanced Information Systems
Engineering (CAiSE'01), Interlaken, Switzerland, pp. 108-123, June 4-8,2001

[37] Cho B., Rosenbloom P. S., Dolan C. P. Neuro-SOAR: A neural network architecture for goal-
oriented behavior, Proceedings of Thirteenth Annual Conference of the Cognitive Science
Society, Lawrence Erlbaum Associates, Chicago, IL, 1991

117

References

[38] Christianini N. and Shawe-Taylor J., Support vector machines and other kernel-based learning
methods. Cambridge University Press, 2000

[39] Coleman D., Arnold P., Bodoff S., Dollin C., Gilchrist H., Hayes F., and Jeremaes P., Object-
Oriented Development: The FUSION Method, Prentice Hall International, 1994

[40] Collinot A., Drogoul A., Benhamou P., Agent oriented design of a soccer robot team, in
Proceedings of the Second International Conference on Multi-Agent Systems (ICMAS-96),
Kyoto, Japan, 1996

[41] Comingsoon website, http: //www. comingsoon. net, accessed on 26 January 2004

[42] Cover T. M. and Thomas J. A., Elements of Information Theory, Wiley Interscience, 1991

[43] Craig J., Introduction to Robotics: Mechanics and Control, Addison-Wesley, 1986

[44] Craig J., Blackboard Systems, Ablex, 1995

[45] Cremer, J., Kearney, J., and Papelis, Y., HCSM: Framework for Behavior and Scenario Control
in Virtual Environments, ACM Transactions on Modeling and Computer Simulation, 5(3): 242-
267,1995

[46] Dam K. H., Winikoff M., Comparing Agent-Oriented Methodologies, Proceedings of the Fifth
International Bi-Conference Workshop on Agent-Oriented Information Systems, Melbourne,
July 2003

[47] Davison D. E. and Bortoff S. A., Acrobot software and hardware guide, Technical Report
Number 9406, Systems Control Group, University of Toronto, Toronto, Ontario M5S 1A4,
Canada, June 1994

[48] Depke R., Heckel R., Küster J., Improving the Agent-Oriented Modeling Process by Roles, Proc.
of Fifth International Conference of Autonomous Agents (Agents 2001), pp. 640-647, Montreal,
2001

[49] Devillers F. and Donikian S., A scenario language to orchestrate virtual world evolution,
Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
San Diego, California, USA, pp265 - 275,27-31 July, 2003

[50] Discreet website, www. discreet. com, accessed on 24 Oct 2003

[51] Dontcheva M., Yngve G., Popovic Z., Layered Acting for Character Animation, Proceedings of
the ACM SIGGRAPH San Diego, California, USA, 2003

[52] Downie M., Behavior, Animation and Music: The Music and Movement of Synthetic
Characters, M. Sc. Thesis, The Media Lab. MIT, 2000

[53] Downie M., Tomlinson B., Blumberg B., Developing an aesthetic: character-based interactive
installations, Computer Graphics Vol. 36, Issue 2, May 2002

[54] Faloutsos P., Composable Controllers for Physics-Based Character Animation, Ph. D. Thesis,
Department of Computer Science, University of Toronto, 2002

[55] Faloutsos P., van de Panne M., Terzopoulos D., Composable Controllers for Physics-Based
Character Animation, in Proceedings of SIGGRAPH 2001. Los Angeles, USA, August 2001

[56] Faloutsos P., van de Panne M., Terzopoulos D., The virtual stuntman: dynamic characters with a
repertoire of autonomous motor skills, Computers and Graphics, Volume 25, Issue 6, pp. 933-
953, December, 2001

118

References

[57] Fang A. C. and Pollard N. S., Efficient Synthesis of Physically Valid Human Motion, ACM
Transactions on Graphics 22(3) pp417-426, SIGGRAPH 2003 Proceedings, 2003

[58] Farenc N., Boulic R., Thalmann D., An Informed Environment Dedicated to the Simulation of
Virtual Humans in Urban Context, Proc. Eurographics 99, Milano, Italy, pp. 309-318,1999

[59] Farenc N., Raupp Musse S., Schweiss E., Kalimann M., Aune 0., Boulic R., Thalmann D., A
Paradigm for Controlling Virtual Humans in Urban Environment Simulations, Applied Artificial
Intelligence Journal, 1999

[60] FIPA, from: http: //www. fipa. org, accessed on 12 Nov 2003

[61] Flake S., Geiger C., Küster J. M., Towards UML-based Analysis and Design of Multi-Agent
Systems, in Proceedings of International NAISO Symposium on Information Science
Innovations in Engineering of Natural and Artificial Intelligent Systems (ENAIS'2001), Dubai,
March 2001

[62] Forte P., Szarowicz A., The Application of AI Techniques for Automatic Generation of Crowd
Scenes, The Eleventh International Symposium on Intelligent Information Systems, Sopot,
Poland, June 3-6,2002

[63] Francik J., Data Flow Tracing for Algorithm Animation, PhD thesis (in Polish), Silesian
University of Technology, Gliwice, Universite de Lille, 1999

[64] Francik J., A Framework for Program Control of Animation of Human and Animal Characters,
Studia Informatica, Vol. 24, No. 4 (56), pp55-65,2003

[65] Francik J. and Fabian P., Animating Sign Language in the Real Time. 20th IASTED
International Multi-Conference Applied Informatics Al 2002, pp. 276-281, Innsbruck, Austria
2002

[66] Franklin S., Artificial Minds, The MIT Press, 1995

[67] Franklin S. and Graesser A., Is it an Agent, or just a Program?: A Taxonomy for Autonomous
Agents, Proceedings of the Third International Workshop on Agent Theories, Architectures, and
Languages, Springer-Verlag, 1996

[68] Friedman-Hill E., Jess in Action Java Rule-based Systems, Manning Publications, 2003

[69] Funge J. D., Making Them Behave: Cognitive Models for Computer Animation, PhD thesis,
Department of Computer Science, University of Toronto, 1998

[70] Funge J. D., AI for Games and Animation. A Cognitive Modeling Approach, AK Peters Natick,
Massachusetts, 1999

[71] Funge J. D., Tu X., Terzopoulos D., Cognitive Modeling: Knowledge, reasoning and planning
for intelligent characters, Computer Graphics Proceedings: SIGGRAPH 99, Aug 1999

[72] Funge J., Cognitive Modeling for Games and Animation, Communications of the ACM, Volume
43, Number 7, July 2000

[73] Gagne, R., The Conditions of Learning (4th ed.). New York: Holt, Rinehart & Winston, 1985

[74] Gambardella L. M. and Dorigo M., Ant-Q: A Reinforcement Learning approach to the travelling
salesman problem, Proceedings of ML-95, Twelfth Intern. Conf. on Machine Learning, Morgan
Kaufmann, pp. 252-260,1995

119

References

[75] Gamma E., Helm R., Johnson R., Vlissides J., Design patterns: elements of reusable object-
oriented software, Addison-Wesley, 1995

[76] Georgeff M. P. and Rao A. S., A profile of the Australian AI Institute, IEEE Expert, 11(6),
pp89-92, December 1996

[77] Georgeff M., Pell B., Pollack M., Tambe M., Wooldridge M., The Belief-Desire-Intention
Model of Agency, Proceedings of the 5th International Workshop on Intelligent Agents V
Agent Theories, Architectures, and Languages ATAL, Paris, 1999

[78] Giarratano J. and Riley G., Expert Systems, PWS-KENT, 1989

[79] Giunchiglia F., Mylopoulos J., Perini A., The Tropos Software Development Methodology:
Processes, Models and Diagrams, Technical Report No. 0111-20, ITC - IRST, Nov 2001

[80] Gleicher M., Making Motion Capture Useful, Siggraph 01 Courses, Los Angeles, USA, August
2001

[81] Gottschalk S., Lin M. C., Manocha D., OBB-Tree: a hierarchical structure for rapid interference
detection, Proc. of ACM SIGGRAPH, 1996

[82] Gritz L. and Hahn J., Genetic Programming Evolution of Controllers for 3-D Character
Animation, Proceedings of the Genetic Programming'97 Conference, July 1997

[83] Grzeszczuk R. and Terzopoulos D., Automated Learning of Muscle-Actuated Locomotion
Through Control Abstraction, Proceedings of SIGGRAPH 95 ACM SIGGRAPH, pp. 63--70,
1995

[84] Grzeszczuk R., PhD Thesis, NeuroAnimator: Fast Neural Network Emulation and Control of
Physics-Based Models, Dept. of Computer Science, University of Toronto, May 1998

[85] Grzeszczuk R., Terzopoulos D., Hinton G., NeuroAnimator: Fast Neural Network Emulation and
Control of Physics-Based Models, proceedings of SIGGRAPH 98, Computer Graphics
Proceedings, Annual Conference Series, pp. 9-20, Orlando, Florida, 1998

[86] Harland J. and Winikoff M., Agents via Mixed-mode Computation in Linear Logic: A Proposal,
Proceedings of the ICLP'01 Workshop on Computational Logic in Multi-Agent Systems
(CLIMA-01), Paphos, December, 2001

[87] Harmon M., Harmon S., Reinforcement learning: a tutorial, accessed from
http: //www. nbu. bg/cogs/events/2000/Readings/Petrov/rltutorial. pdf, on 08 Oct 2002, published
December 1996

[88] Haykin S. S. and Saher S., Neural networks: a comprehensive foundation. - 2nd ed. - Upper
Saddle River, N. J.: Prentice Hall, 1999

[89] Hayzelden A. L. G. and Bigham J., Heterogeneous Multi-Agent Architecture for ATM Virtual
Path Network Resource Configuration, Proceedings of the Second International Workshop on
Intelligent Agents for Telecommunication IATA'98,1998

[90] Hodgins, J. K., Wooten, W. L., Brogan, D. C., O'Brien, J. F., Animating Human Athletics,
Proceedings of Siggraph '95, In Computer Graphics, pp 71-78,1995

[911 Hodgins, J. K. and Pollard, N. S., Adapting Simulated Behaviors For New Characters,
SIGGRAPH 97, Los Angeles, CA, 1997

[92] Hodgins J. K., O'Brien J. F., Bodenheimer R. E., Computer Animation, In the Wiley
Encyclopedia of Electrical and Electronics Engineering, John G. Webster, ed., v. 3, pp. 686-690,
1999

120

References

[93] Honing B., Vincent R., Mailler R., Shen J., Becker R., Rawlins K., Lesser V., Distributed sensor
network for real time tracking. In Proceedings of the fifth international conference on
Autonomous agents, pages 417-424, ACM Press, 2001

[94] Iglesias C. A., Garijo M., Gonzalez J. C., A survey of agent-oriented methodologies, in Mueller
J. P., Singh M. P., Rao A. S. (eds). Intelligent Agents V- Proceedings of the Fifth International
Workshop on Agent Theories, Architectures, and Languages (ATAL-98), Lecture Notes in
Artificial Intelligence. Springer-Verlag, Heidelberg, 1999

[95] Ishiguro H., Kanda T., Kimoto K., Ishida T., A Robot Architecture Based on Situated Modules,
International Conference on Intelligent Robots and Systems, pp. 1617-1623,1999

[96] Isla D., Burke R., Downie M., Blumberg B., A Layered Brain Architecture for Synthetic
Creatures, pp. 1051-1058, in Proceedings of Seventeenth Joint Conference on Artificial
Conference IJCAI-0 1,4-10 August, Seattle, USA, 2001

[97] JACK, from: http: //www. agent-software. com/shared/products/index. html, accessed on 12 Nov
2003

[98] Jacobson I., Christerson M., Jonsson P., Övergaard G., Object-Oriented Software Engineering. A
Use Case Driven Approach, ACM Press/Addison-Wesley, 1992

[99] Jennings N. R., Agent-Oriented Software Engineering, in Proceedings of the 9th European
Workshop on Modelling Autonomous Agents in a Multi-Agent World: Multi-Agent System
Engineering (MAAMAW-99), LNAI 1647, ppl-7, Valencia, Spain, June 30-July 2,1999

[100] Jennings N. R., On agent-based software engineering, Artificial Intelligence, vol. 117, no 2,
pp277-296,2000

[101] Jennings N. R., An agent-based approach for building complex software systems,
Communications of the ACM, 44(4), pp35-41,2001

[102] Jennings N. R. and Wooldridge M. J., Applications of Intelligent Agents, in Jennings N. R. and
Wooldridge M. J. (eds) Agent Technology: Foundations, Applications, and Markets, pp3-28,
Springer-Verlag: Heidelberg, Germany, 1998

[103] Johnson W. L., Rickel J. W., Lester J. C., Animated Pedagogical Agents: Face-to-Face Interaction
in Interactive Learning Environments, International Journal of Artificial Intelligence in
Education 11, pp47-78,2000

[104] Kaelbling L. P.. Littman M. L., Moore A. W., Reinforcement learning: A survey, Journal of
Artificial Intelligence Research, vol. 4 pp. 237-285,1996

[105] Kallmann M., Object Interaction in Real-Time Virtual Environments, PhD thesis, Lcole
Polytechnique Federale de Lausanne, 2001

[106] Kaminka G. A., Veloso M. M., Schaffer S., Sollitto C., Adobbati R., Marshall A. N., Scholer
A., Tejada S., GameBots: a flexible test bed for multiagent team research, Communications of
the ACM, Vol. 45, Issue 1, pp43-45, January 2002

[107] Kearsley G., Explorations in Learning & Instruction: The Theory Into Practice Database,
accessed from: http: //tip. psychology. org/ on 20 Mar 2(103

[108] Kieras D. E., Towards a practical GOMS model methodology for user interface design, in M.
Helander (Ed.), Handbook of Human-Computer Interaction, Amsterdam, Elsevier/North
Holland, 1988

[109] Kinetic Impulse website, http: //www. kinetic-impulse. com, accessed on 16 Oct 2003

121

References

[110] Kinny D., Georgeff M., Rao A., A Methodology and Modelling Technique for Systems of BDI
Agents, in Van de Velde W. and Perram J. W. (eds), Agents Breaking Away: Proceedings of the
Seventh European Workshop on Modelling Autonomous Agents in a Multi-Agent World, (LNAI
Volume 1038), pp56-71. Springer-Verlag: Berlin, Germany, 1996

[111] Kline C. and Blumberg B., The Art and Science of Synthetic Character Design, Proceedings of
the AISB 1999 Symposium on Al and Creativity in Entertainment and Visual Art, Edinburgh,
Scotland, 1999

[112] Kline C. and Blumberg B., Observation-based expectation generation and response for
believable reactive agents, Proceedings of the Fourth International Conference on Autonomous
Agents, ACM Press New York, pp. 46-47, Barcelona, Spain, 2000

[113] Koeppel D., Massive Attack, Popular Science 2002, accessed from
http: //www. popsci. com/popsci/science/article/0,12543,390918-1,00. html, on 11 Jan 2003

[114] Kovar L. and Gleicher M., Flexible automatic motion blending with registration curves,
Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
San Diego, California, USA, pp214 - 224,27-31 July, 2003

[115] Koza J. R., On the Programming of Computers by Means of Natural Selection Artificial System,
MIT Press, 1992

[116] Kumar D., A Hybrid Connectionist and BDI Architecture for Modeling Embedded Rational
Agents (1998), Cognitive Robotics: Papers from the 1998 AAAI Fall Symposium, Technical
Report FS-98-02,1998

[117] Lach E., Genetic Programming in the Animation of Human Avatars, 3rd Int. PhD Students'
Workshop on Control and Information Technology IWCIT'03, Gliwice, Poland, 2003

[118] Laird J. E., Newell A., Rosenbloom P. S., Soar: An architecture for general intelligence,
Artificial Intelligence, vol. 33 (1), ppl-64,1987

[119] Laird, J. E. and Jones R. M., Building advanced autonomous Al systems for large scale real time
simulations. Computer Games Development Conference. Long Beach, CA, 1998

[120] Laszlo J., van de Panne M., Fiume E., Limit Cycle Control and its Application to the Animation

of Balancing and Walking, Proceedings of SIGGRAPH 1996, (New Orleans, LA, August 4-9,
1996), in Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH,

pp. 155-162,1996

[121] Laurent G. and Piat E., Parallel Q-Learning for a block-pushing problem, Proceedings of the
International Conference on Intelligent Robots and Systems, IROS 2001, pp286-291. Maui,
Hawaii, USA, 29 Oct-3 Nov 2001

[122] Lee J. W., Baek N., Kim D., Hahn J. K., A Procedural Approach to Solving Constraints of
Articulated Bodies, Eurographics 2000 Short Presentations Programme, Interlaken, Switzerland,
August 20-25,2000

[123] Lee J., Chai J., Reitsma P. S. A., Hodgins J. K., Pollard N. S.. Interactive Contol of Avatars
Animated With Human Motion Data, Proceedings of the 2002 ACM SIGGRAPII, San Antonio,
Texas, USA, 21-26 July 2002

[124] Levesque H., Reiter R., Lesperance Y., Lin F., Scherl R.. Golog: A logic programming language
for dynamic domains, Journal of Logic Programming, Special issue on Reasoning about Action
and Change, 31: 59-84,1997

122

References

[125] Li Y., Wang T., Shum H. -Y., Motion Textures: A Two-Level Statistical Model for Character
Motion Synthesis, Proceedings of the 2002 ACM SIGGRAPH, San Antonio, Texas, USA, 21-26
July 2002

[126] Liu K. C. and Popovic Z., Synthesis of Complex Dynamic Character Motion From Simple
Animations, Proceedings of the 2002 ACM SIGGRAPH, San Antonio, Texas, USA, 21-26 July
2002

[127] Lord of the Rings website, http: //www. lordoftherings. net, accessed from
http: //www. lordoftherings. net/effects/index. html on 18 Sep 2003

[128] Loscos C., Tecchia F., Chrysanthou Y., Real-time shadows for animated crowds in virtual cities,
Proceedings of the ACM Symposium on Virtual Reality Software and Technology (VRST) '01,
pp85-92, Banff, Alberta, Canada, November 2001

[129] Loscos C., Tecchia F., Chrysanthou Y., Real Time Shadows for Animated Crowds in Virtual
Cities, project website, accessed from:
http: //www. cs. ucl. ac. uk/research/vr/Projects/CrowdsNRSTOI, on 03 Jul 2003

[130] Mac Namee B. and Cunningham P., Creating Socially Interactive Non Player Characters: The t-
SIC System, International Journal of Intelligent Games and Simulation, Vol. 2 No. 1, February
2003

[131] Maestri J., Digital Character Animation, New Riders Publishing, 1999

[132] Mayfield J., Labrou Y., Finin T. Evaluation of KQML as an Agent Communication Language,
Proceedings on the IJCAI Workshop on Intelligent Agents II: Agent Theories, Architectures, and
Languages, vol. 1037, Springer-Verlag, pp. 347-360,1996

[133] Metoyer, R. A., Hodgins, J. K., Animating Athletic Motion Planning By Example. Proceedings
of Graphics Interface 2000, pp. 61-68, Montreal, Quebec, Canada, May 15-17.2000

[134] Mitchell T. M., Machine Learning, McGraw Hill, 1997

[135] Mondal A. S., Jain A. K., A Multi-Agent System For Sales Order Processing, Intelligence, Vol.
12, Issue 3 pp 32-42, Fall 2001

[136] Monekosso N. D. and Remagnino P., Q-Learning augmented with synthetic pheromones,
Proceeding of 2nd International Workshop of Central and Eastern Europe on Multi-Agent
Systems, CEEMAS'01, Cracow, Poland, Lecture Notes in Artificial Intelligence Springer
Verlag, 26-29 September 2001

[137] Monekosso N. D., Remagnino P., Szarowicz A., An Improved Q-Learning Algorithm Using
Synthetic Pheromones in From Theory to Practice in Multi-Agent Systems, Lecture Notes in
Computer Science, vol. 2296 Edited by Dunin-Keplicz, B. and Nawarecki, E., Springer-Verlag,
pp. 197, March, 2002

[138] Monzani J. -S., An architecture for the Behavioural Animation of Virtual Humans, PhD Thesis,
Ecole Polytechnique Federale de Lausanne. 2002

[139] Monzani J-S., Caicedo A., Thalmann D., Integrating Behavioural Animation Techniques, Proc.
Eurographics 2001, vol. 20, issue 3, Manchester, UK, 2001

[140] Mylopoulos J., Kolp M., Castro J., UML for Agent-Oriented Software Development: The
Tropos Proposal, in Proceedings of the Fourth International Conference on the Unified Modeling
Language, Toronto, Canada, October 2001

123

References

[141] Neff M., Fiume E., Aesthetic edits for character animation, Proceeding of the 2003 ACM
SIGGRAPT/Eurographics Symposium on Computer Animation, pp239-244, San Diego,
California, USA, 2003

[142] Newell A., Unified Theories of Cognition, Harvard Press, 1990

[143] Ng A. Y., Harada D., Russell S., Policy invariance under reward transformations: Theory and
application to reward shaping, Proceedings ICML-99, Bled, Slovenia, 1999

[144] Nwana H. S. and Ndumu D. T., A Brief Introduction to Software Agent Technology, in Jennings
N. R. and Wooldridge M. J. (eds) Agent Technology: Foundations, Applications, and Markets,
pp29-47, Springer-Verlag: Heidelberg, Germany, 1998

[145] Object Management Group, OMG Unified Modeling Language Specification v. 1.5, January
2003, See http: //www. omg. org or http: //www. uml. org

[146] Odell J., Van Dyke Parunak H., Bauer B., Extending UML for Agents, in Proceedings of the
Agent-Oriented Information Systems Workshop at the 17th National Conference on Artificial
Intelligence, pp3-17, AOIS Worshop at AAAI 2000

[147] Odell J., Van Dyke Parunak H., Bauer B., Representing Agent Interaction Protocols in UML, in

proc. ICSE Workshop on Agent-oriented Software Engineering, Limerick, Ireland, 2000

[148] Odell J., Van Dyke Parunak H., Bauer B., Representing Agent Interaction Protocols in UML,
Agent-Oriented Software Engineering, Paolo Ciancarini and Michael Wooldridge eds., Springer,
Berlin, pp. 121-140,2001

[149] Oray W. D., John B., Atwood M., Project Ernestine: Validating GOMS for predicting and
explaining real-world task performance, Human Computer Interaction, 8, pp112-120.1993

[150] O'Sullivan C., Cassell J., Vilhjälmsson H., Dingliana J., Dobbyn S., McNamee B., Peters C.,
Giang T., Levels of Detail for Crowds and Groups, Computer Graphics Forum, Vol. 21(4) pp
733-742, November 2002

[151] Padgham L., and Winikoff M., Prometheus: A Methodology for Developing Intelligent Agents,
Proceedings of the Third International Workshop on Agent-Oriented Software Engineering, at
AAMAS'02, Bologna, Italy, 2002

[152] Pandy M. G. and Anderson F. C., Three-Dimensional Computer Simulation Of Jumping and
Walking Using the Same Model, in Proceedings of the VIlth International Symposium on
Computer Simulation in Biomechanics, August 1999

[153] Pollard, N. S. and Hodgins, J. K.. Adapting Behaviors to New Environments, Characters, and
Tasks. Yale Workshop on Adaptive and Learning Systems, 1998

[154] Pottinger D. C. and Laird J. E., Game AI: The State of the Industry, Part Two, Game Developer,
August, 2000

[155] Pullen K. and Bregler C., Motion Capture assisted Animation: Texturing and Synthesis,
Proceedings of the 2002 ACM SIGGRAPH, San Antonio, Texas, USA, 21-26 July 2002

[156] Rao A., AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language, Seventh
European Workshop on Modelling Autonomous Agents in a Multi-Agent World, Eindhoven,
The Netherlands, 1996

[157] Rao A. S. and Georgeff M. P., Modeling Rational Agents within a BDI-Architecture,
Proceedings of the 2nd International Conference on Principles of Knowledge Representation and
Reasoning pp 473--484, Cambridge, MA, USA, April 1991. Morgan Kaufmann Publishers, 1991

124

References

[158] Rao A. S. and Georgeff M. P., An Abstract Architecture for Rational Agents' in B. Nebel, C.
Rich, W. Swartout (eds.): Proc. International Conference on Principles of Knowledge
Representation and Reasoning (KR-92), Morgan Kaufmann, San Mateo, 1992

[159] Rao A. S. and Georgeff M. P., Intentions and Rational Commitment, 1993, revised, from:
http: //citeseer. nj. nec. com/rao93intentions. html, accessed on 11 Feb 2002

[160] Rao A. S. and Georgeff M. 0., BDI Agents: From Theory to Practice, in Proceedings of the First
International Conference on Multiagent Systems ICMAS95, June 12 - 14,1995

[161] Raphael M. J. and DeLoach S. A., A Knowledge Base for Knowledge-Based Multiagent System
Construction, Proceedings of the National Aerospace and Electronics Conference (NAECON),
Dayton, OH, October, 2000

[162] Raupp Musse, S. and Thalmann, D., A Hierarchical Model for Real Time Simulation of Virtual
Human Crowds, IEEE Transactions on Visualization and Computer Graphics, V. 7, N. 2, pp.
152-164, April-June, 2001

[163] Reeves W. T., Particle Systems -A Technique for Modeling a Class of Fuzzy Objects, ACM
Transactions on Graphics, Vol 2 No. 2, April 1983

[164] Reynolds, C. W., Flocks, herds, and schools: A distributed behavioral model, Computer
Graphics, SIGGRAPH '87 Conference Proceedings, vol. 21(4) pp25-34, ACM SIGGRAPH
1987

[165] Reynolds, C. W., Steering Behaviors For Autonomous Characters, in the proceedings of Game
Developers Conference 1999 held in San Jose, California. Miller Freeman Game Group, San
Francisco, California, pp763-782,1999

[166] Rumbaugh J., Blaha M., Premerlani W., Eddy F., Lorenson W., Object-Oriented Modelling and
Design, Prentice Hall, Englewood Cliffs, 1991.

[167] Russell S. and Norvig P., Artificial Intelligence: A Modern Approach, Englewood Cliffs, NJ:
Prentice Hall, 1995

[168] RUP website http: //www. rational. com/products/rup, accessed on 11 Sep 2003

[169] Russell K. B. and Blumberg B., Behavior-Friendly Graphics, in Computer Graphics
International, pp44,1999

[170] Schaal S. and Atkeson C., Robot juggling: An implementation of memory-based learning.
Control Systems Magazine, 14,1994

[171] Schraudolph N. N., Dayan P.. Sejnowski T. J, Temporal difference learning of position
evaluation in the game of Go. In J. D. Cowan, G. Tesauro, and J. Alspector, editors, Advances in
Neural Information Processing Systems 6, pp. 817-824, Morgan Kaufmann, San Mateo, CA,
1994

[172] Shim, Y: S. and Kim C. -H., Generating flying creatures using body-brain co-evolution.
Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
San Diego, California, USA, pp276 - 285,27-31 July, 2003

[173] Shoham Y.. Agent-oriented programming, Artificial Intelligence, 60(1), pp5I-92,1993

[174] Sims K., Evolving 3D Morphology and Behavior by Competition, Artificial Life IV
Proceedings, ed. by Brooks & Maes, pp. 28-39, MIT Press, 1994

[175] Sims K., Evolving Virtual Creatures, Computer Graphics (Siggraph '94 Proceedings), pp. 15-22,
July 1994

125

References

[176] Softimage news website, www. softimage. com/home/press/pressreleases, accessed on 15 Sep
2003

[177] Sommerville I. Software engineering, Addison-Wesley, 6th ed 2001

[178] Spielberg-dreamworks website, www. spielberg-dreamworks. com, accessed from
www. spielberg-dreamworks. com/gladiator/Image_Gallery_Two. htm on 05 May 2003

[179] Spronck P., Sprinkhuizen-Kuyper I., Postma E., Improving Opponent Intelligence Through
Offline Evolutionary Learning, International Journal of Intelligent Games and Simulation, Vol. 2
No. 1, pp20-27, February 2003

[180] Still G. K., Crowd Dynamics, PhD thesis, Warwick University, 2000

[181] Sutton, R. S., Generalization in reinforcement learning: Successful examples using sparse coarse
coding, In Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E., editors, Advances in Neural
Information Processing Systems: Proceedings of the 1995 Conference, pp. 1038-1044,
Cambridge, MA, MIT Press, 1996

[182] Sutton R. S. and Barto A. G., Reinforcement Learning: an introduction, MIT Press, 1998

[183] Szarowicz A., Reinforcement Learning Techniques for Action Generation Using Inverse
Kinematics, Postgraduate Research Conference PREP 2004,5-7 April, Hatfield, United
Kingdom, 2004

[184] Szarowicz A., Amiguet-Vercher J., Forte P., Briggs J., Gelepithis P., Remagnino P., The
Application of Al to Automatically Generated Animation, Australian Joint Conference on
Artificial Intelligence, A110 I, Adelaide, Dec 10-14,2001

[185] Szarowicz A., Amiguet Vercher J., Forte P., Multiagent interaction for crowd scene generation,
Workshop on Autonomy Delegation and Control Interacting with Autonomous Agents -
International Joint Conference on Artificial Intelligence IJCAI-01, August 4-10, Seattle, USA,
2001

[186] Szarowicz A., Forte P., Amiguet-Vercher J., Gelepithis P., Application of Autonomous Agents
for Crowd Scene Simulation, 2nd Hellenic Conference on Artificial Intelligence, SETN-02,
Thessaloniki, Greece, April 11-12,2002

[187] Szarowicz A., Forte P., Combining Intelligent Agents and Animation. AIxIA 2003 - Eighth
National Congress on Al, Lecture Notes in Artificial Intelligence, vol 2829 Springer-Verlag,
September 22-26, Pisa, Italy, 2003

[188] Szarowicz A., Mittmann M., Remagnino P., Francik J., Automatic Acquisition of Actions for
Animated Agents, 4th Annual European GAME-ON Conference, November 19-21, London,
United Kingdom, 2003

[189] Szarowicz A., Mittmann M., Francik J., Chapter Intelligent Action Acquisition for Animated
Learning Agents in Learning Coordination and Communication in MultiAgent Systems, Theory
and Applications Edited by Lakhmi C. Jain, World Scientific, to appear, 2004

[190] Szarowicz A., Remagnino P., Avatars That Learn How to behave, European Conference on
Artificial Intelligence ECAI 2004, Springer, Valencia, Spain, 2004

[1911 T-Tool, from: http: //sra. itc. it/tools/t-tool, accessed on 9 Sep 2003

[192] Tecchia F., Loscos C., Conroy R., Chrysanthou Y., Agent Behaviour Simulator (ABS): A
Platform for Urban Behaviour Development, presented at the ACM/EG Games Technology
Conference, January 2001

126

References

[193] Tecchia F., Loscos C., Chrysanthou Y., Image-Based Crowd Rendering, IEEE Computer
Graphics and Applications, vol. 22, number 2, March-April 2002

[194] Tecchia F., Loscos C., Chrysanthou Y., Visualizing Crowds in Real-Time, Computer Graphics
forum, vol. 21, Number 4, pp 753-765, December 2002

[195] Tedrake R. and Seung H. S., Improved Dynamic Stability using Reinforcement Learning,
Proceedings of the International Conference on Climbing and Walking Robots (CLAWARU2),
2002

[196] Terzopoulos D., Tu X., Grzeszczuk R., Artificial Fishes: Autonomous Locomotion, Perception,
Behavior, and Learning in a Simulated Physical World, Artificial Life, 1(4): 327--351,1994

[197] Terzopoulos D., Rabie T., Grzeszczuk R., Perception and Learning in Artificial Animals,
Artificial Life V: Proc. 5th Inter. Conf. on the Synthesis and Simulation of Living Systems,
Nara, Japan, 1996

[198] Tesauro G., TD-Gammon, a self-teaching backgammon program achieves master-level play.
Neural Computation, 6(2) pp. 215-219,1994

[199] Thrun S., Learning to play the game of chess. In G. Tesauro, D. S. Touretzky, and T. K. Leen,
editors, Advances in Neural Information Processing Systems 7, MIT Press Cambridge, MA,
1995

[200] Tomlinson B., Blumberg B., Nain D., Expressive autonomous cinematography for interactive
virtual environments, Proceedings of the Fourth International Conference on Autonomous
Agents, Barcelona, Spain, pp. 317-324,2000

[201] Tomlinson B., Downie M., Berlin M., Gray J., Lyons D., Cochran J., Blumberg B., Leashing the
AlphaWolves: mixing user direction with autonomous emotion in a pack of semi-autonomous
virtual characters, Proceedings of the ACM SIGGRAPH symposium on Computer Animation,
San Antonio, Texas, 2002

[202] Touzet C. F., Neural Networks and Q-Learning for Robotics, IJCNN '99 Tutorial, 1999
International Joint Conference on Neural Networks, Washington, DC - July 10-16,1999

[203] Ulicny B. and Thalmann D., Crowd simulation for interactive virtual environments and
VRtraining systems, Proc. Eurographics Workshop on Animation and Simulation, pp. 163-170,
Springer-Verlag, 2001

[204] van de Panne M., Laszlo J., Huang P., Faloutsos P., Dynamic Human Simulation: Towards Agile
Animated Characters, Proceedings of the IEEE International Conference on Robotics and
Automation 2000, pp. 682-687, San Francisco, CA, 2000

[205] van Dyke Parunak H. and Odell J., Represening Social Structures in UML, From Proc. of Agent-
Oriented Software Engineering (AOSE) 2001, pp. 17-31, Agents 2001. Montreal, 2001

[206] van Lent, M., Laird, J., Buckman, J., Hartford, J., Houchard, S., Steinkraus, K.. Tedrake, R.
(1999) Intelligent Agents in Computer Games, in Proceedings of the National Conference on
Artificial Intelligence, Orlando, July 1999

[207] van Waveren J. and Rothkrantz L., Artificial Player for Quake III Arena, International Journal of
Intelligent Games & Simulation, Vol. 1 No. 1, pp. 25-32, March 2002

[208] Vicon 8 Motion Capture System - Demonstration CD, presented at 3December Exhibition,
London, 2001

[209] Vicon website, http: //www. vicon. com/entertainment/applications/tilm. shtnil on 09 May 2003

127

References

[210] Wagner G., A UML Profile for External AOR Models, Proc. of Agent-Oriented Software
Engineering (AOSE), Workshop at AAMAS 2002, pp. 99-110, Bologna, Italy, 2002

[211] Wan T. R. and Tang W., Simulating Virtual Character's Learning Behaviour as An Evolutionary
Process Using Genetic Algorithms, Journal of WSCG, Volume 10, Number 3,2002

[212] Watkins, C. J. C. H., Learning from delayed rewards, PhD thesis, University of Cambridge,
Psychology Department, 1989

[213] Watkins, C. J. C. H. and Dayan, P., Technical Note: Q-Learning. Machine Learning 8: 279-292,
1992

[214] Winikoff M., RMIT Department of Computer Science Seminar, Simplifying Agent Concepts -
presentation, 5 June 2001

[215] Winikoff M., AgentTalk, from: http: //goanna. cs. rmit. edu. au/-winikoff/agenttalk/, accessed on
10 Nov 2003

[216] Winikoff M., Padgham L., and Harland J., Simplifying the Development of Intelligent Agents,
In A12001: Advances in Artificial Intelligence. 14th Australian Joint Conference on Artificial
Intelligence, LNAI 2256, pages 557-568, Adelaide, December 2001

[217] Wirfs-Brock R., Wilkerson B., Wiener L., Designing Object-Oriented Software, Prentice-Hall,
Englewood Cliffs, 1990

[218] Wood M. and DeLoach S. A., An Overview of the Multiagent Systems Engineering
Methodology, in Agent-Oriented Software Engineering. P. Ciancarini, M. Wooldridge, (Eds.)
LNAI Vol. 1957, Springer Verlag, Berlin, January 2001

[219] Woodcock S., Game AI: The State of the Industry, Game Developer, August, 2000

[220] Wooldridge M., Agent-based software engineering, IEE Proc Software Engineering 144, pp26-
37,1997

[221] Wooldridge M. and Jennings N. R., Agent Theories, Architectures, and Languages: a Survey, in
Wooldridge and Jennings Eds., Intelligent Agents, Berlin: Springer-Verlag, 1-22,1995

[222] Wooldridge M. and Jennings N. R., Pitfalls of agent-oriented development, in Proceedings of the
Second International Conference on Autonomous Agents (Agents 98), pp385-391,
Minneapolis/St Paul, MN, May 1998

[223] Wooldridge M., Jennings N. R., David Kinny, The Gaia Methodology for Agent-Oriented
Analysis and Design, Autonomous Agents and Multi-Agent Systems, Vol. 3, No. 3, pp285-312,
2000

[224] Wooldridge M. and Ciancarini P., Agent-Oriented Software Engineering: The State of the Art, In
P. Ciancarini and M. Wooldridge, editors, Agent-Oriented Software Engineering. Springer-
Verlag Lecture Notes in AI Volume 1957, January 2001

[225] Wray, Soar: A Functional Approach to General Intelligence, accessed from:
http: //ai. eecs. umich. edu/-soar/docs. html, 2002

[226] Yim H., Cho K., Kim J., Park S., Architecture-Centric Object-Oriented Design Method for
Multi-Agent Systems, ICMAS 2000

[227] Yoon S. Y., Blumberg B. M., Schneider G. E., Motivation driven learning for interactive
synthetic characters. In Proceedings of Autonomous Agents 2000

128

References

[228] Zordan V. B. and Van Der Horst N. C., Mapping optical motion capture data to skeletal motion
using a physical model, Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, San Diego, California, USA, pp245 - 250,27-31 July, 2003

129

Appendix A: A List of Publications

Appendix A-A List of Publications
Books and Chapters
[1] A. Szarowicz, M. Mittmann, J. Francik, Chapter "Intelligent Action Acquisition for Animated

Learning Agents" in 'Learning Coordination and Communication in MultiAgent Systems, Theory
and Applications Edited by Lakhmi C. Jain, World Scientific, to appear, (2004)

[2] N. D. Monekosso, P. Remagnino, A. Szarowicz, Chapter "An Improved Q-Learning Algorithm Using
Synthetic Pheromones" in 'From Theory to Practice in Multi-Agent Systems, Lecture Notes in
Computer Science. VOL. 2296 Edited by Dunin-Keplicz, B. and Nawarecki, E., Springer-Verlag,
March, pp. 197. (2002)

[3] M. Czaja, A. Szarowicz, Chapter "Foundations of Digital Technology" in 'Construction and Design
of Computers, vol. 2211 Edited by Grzywak A., Silesian Technical University Press, pp. (in Polish).
ISBN/ISSN 0434-0825-098 (2000)

Journal Papers
[4] A. Szarowicz, J. Francik, M. Mittmann, P. Remagnino, "Layering and Heterogeneity as Design

Principles for Animated Embedded Agents" in International Journal of Information Sciences, to
appear, Elsevier, (2005)

Conferences
[5] A. Szarowicz, P. Remagnino, "Avatars That Learn How to behave", European Conference on

Artificial Intelligence ECAI 2004, Springer, Valencia, Spain, (2004)

[6] A. Szarowicz, "Reinforcement Learning Techniques for Action Generation Using Inverse
Kinematics", Postgraduate Research Conference PREP 2004,5-7 April, Hatfield, United Kingdom,
(2004)

[7] A. Szarowicz, M. Mittmann, P. Remagnino, J. Francik, "Automatic Acquisition of Actions for
Animated Agents", 4th Annual European GAME-ON Conference, November 19-21, London, United
Kingdom, (2003)

[8] A. Szarowicz, P. Forte, "Combining Intelligent Agents and Animation". AIxIA 2003 - Eighth
National Congress on Al, Lecture Notes in Artificial Intelligence, vol 2829 Springer-Verlag,
September 22-26, Pisa, Italy, (2003)

[9] P. Forte, A. Szarowicz, "The Application of Al Techniques for Automatic Generation of Crowd
Scenes", The Eleventh International Symposium on Intelligent Information Systems, Advances in
Soft Computing Physica-Verlag, June 3-6, Sopot, Poland, pp. 209-216. ISBN/ISSN 3-7908-1509-
8/1615-3871 (2002)

[10]A. Szarowicz, P. Forte, J. Amiguet Vercher, P. Gelepithis, "Application of Autonomous Agents for
Crowd Scene Generation", 2nd Hellenic Conference on Artificial Intelligence SETN-02, vol. 2 April
11-12, Thessaloniki, Greece, (2002)

[11]J. Amiguet Vercher, A. Szarowicz, P. Forte, "Synchronised multiagent simulations for automated
crowd scene generation", Workshop on Spatial and Temporal Reasoning with Agents Focus -
International Joint Conference on Artificial Intelligence IJCAI-01, August 4-10, Seattle, USA, (2001)

[12]A. Szarowicz, J. Amiguet Vercher, P. Forte, "Multiagent interaction for crowd scene simulation".
Workshop on Autonomy Delegation and Control Interacting with Autonomous Agents - International
Joint Conference on Artificial Intelligence IJCAI-01, August 4-10, Seattle, USA, (2001)

[13]A. Szarowicz, J. Amiguet Vercher, P. Forte, J. H. Briggs, P. Gelepithis, P. Remagnino, "The
Application of Al to Automatically Generated Animation", 14th Australian Joint Conference on
Artificial Intelligence AI01, LNAI 2256: Advances in Artificial Intelligence Springer-Verlag, Dec
10-14, Adelaide, Australia, pp. 487-494. (2001)

130

Appendix B: Free Will Algorithms

Appendix B- FreeWill Algorithms

Al. Algorithm controlling an avatar's behaviour (pseudocode, see Section 4.5)
DoSensing()
{

image = Body. Sense()
{

return VisionCone. Getlmage()
}
Mind. UpdateWorldNodel(image)
{

Knowledgesase. ModifyWorld(image)
{

WorldModel. ModifyWorld(image)
}

}
Mind. RevisePlan()
{

ActionPlanner. Plan()
{

KnowledgeBase. GetGoals()
ExploreSolutions()
KnowledgeBase. GetObjectInfo()
{

WorldModel. GetObjectAttribs()
}
CreatePlanC)
lastAction = SelectLastPlannedActionC)
MotionControl. Decompose(lastAction)

}
action = Mind. PickAction()
{

microAction = ActionPlanner. GetMicroACtionC)
{

return MotionControl. GetCurrentAction()
}

return microAction
}
return ConvertActionToEvent(action)

A2. The synchronisation algorithm (pseudocode, see Section 4.6)

if (self. state == STATE_WALKING)
{

if (friend = SeeFriend() && ! ShakenHandsYet(friend))
{

if (plan empty)
{

aGoal = new Goal(friend. x, friend. y);
knowledgeBase. SubstituteCurrentGoal(aGoal);

if (GetDistToFriend() > 2*STEP_SIZE)
{

add to plan (turn to goal) // goal == friend
add to plan (make step)

}
else
{

if (friend. State == STATE_PREPARING)
(friend. State == STATE_WAITING))

{
if ((DistanceToFriend - STEP_LENGTH) >

FRIEND_HANDSHAKE_DISTANCE)
{

add to plan (turn to goal) // goal == friend
add to plan (make step)

}

131

Appendix B: Free Will Algorithms

else
{

add to plan (turn to goal) II goal == friend

stepSize = DistanceToFriend -
FRIEND_HANDSHAKE_DISTANCE - STEP_LENGTH

add to plan (make step, stepSize)

add to plan (step in place)
add to plan (raise hand)
self. SetState(STATE_PREPARING);

}
}
else
{

add to plan (step in place)
add to plan (raise hand)
self. SetState(STATE_PREPARING);

}
}

else
execute last action from the plan

}

else
{

plan other actions
}

}
else if (self. state == STATE_PREPARING)
{

if (self. ready())
self. SetState(STATE_WAITING);
if (plan empty)
add to plan (no action) II wait until finished

}
else if (self. state == STATE_WAITING)

if (friend. ready()) 11 (friend. executing())
{

add to plan (shake hand)
self. SetState(STATE_EXECUTING);

}
else II wait for the friend
{

if (plan empty)
add to plan (no action)

}
}
else if (self. state == STATE_EXECUTING)If when shakehand executed - finish
{

add to plan (lower hand)
add to plan (step in place)
add to plan (step in place)

self. SetState(STATE_WALKING);
knowledgeBase. ResumePrimaryGoal
SetHasShakenHands(friend);

}

132

Appendix C: Example 3DS Max Scripts

Appendix C- Example 3DS Max Scripts
B1. The handshake script
The script generates a handshake action for two avatars

--seting control params for the biped
RarmCont3 = (biped. getNode currentBip 2). transform. controller
LarmCont3 = (biped. getNode currentBip 1). transform. controller
RArm3 = biped. getNode currentBip 2 link: 2
LArm3 = biped. getNode currentBip 1 link: 2
RForearm3 = biped. getNode currentBip 2 link: 3
LForearm3 = biped. getNode currentBip 1 link: 3
RHand3 = biped. getNode currentBip 2 link: 4
LHand3 = biped. getNode currentBip 1 link: 4

--animation sequence now interlaced
animButtonState=on

--bip01 then bip02
biped. AddNewKey LarmCont3 sliderTime
biped. AddNewKey RarmCont3 sliderTime

sliderTime = sliderTime+20

rotate RForearm3 30 [-1,0,0]
biped. AddNewKey LarmCont3 sliderTime
biped. AddNewKey RarmCont3 sliderTime

sliderTime = sliderTime+20

rotate RForearm3 80 [0,0, -1]
biped. AddNewKey LarmCont3 sliderTime
biped. AddNewKey RarmCont3 sliderTime

sliderTime = sliderTime+22
rotate RHand3 10 [0,0, -i]
biped. AddNewKey LarmCont3 sliderTime
biped. AddNewKey RarmCont3 sliderTime

-- moving down both hands
sliderTime = sliderTime+14
rotate RForearm3 10 [0,0,1]
biped. AddNewKey LarmCont3 sliderTime
biped. AddNewKey RarmCont3 sliderTime

-- compensating with the hand

rotate RHand3 10 [0,1, -1]
biped. AddNewKey LarmCont3 sliderTime
biped. AddNewKey RarmCont3 sliderTime

-- moving up both hands
sliderTime = sliderTime+6
rotate RForearm3 20 [0,0, -1]
biped. AddNewKey LarmCont3 sliderTime

133

Appendix C. Example 3DS Max Scripts

biped. AddNewKey RarmCont3 sliderTime

-- compensating with the hand
rotate RHand3 10 [0, -1,1]
biped. AddNewKey LarmCont3 sliderTime
biped. AddNewKey RarmCont3 sliderTime

-- moving down both hands again (2)
sliderTime = sliderTime+10
rotate RForearm3 20 [0,0,1]
biped. AddNewKey LarmCont3 sliderTime
biped. AddNewKey RarmCont3 sliderTime

-- compensating with the hand
rotate RHand3 10 [0,1, -i]
biped. AddNewKey LarmCont3 sliderTime
biped. AddNewKey RarmCont3 sliderTime

-- moving up both hands again (2)
sliderTime = sliderTime+10
rotate RForearm3 20 [0,0, -1]
biped. AddNewKey LarmCont3 sliderTime
biped. AddNewKey RarmCont3 sliderTime

-- compensating with the hand
rotate RHand3 10 [0, -1,1]
biped. AddNewKey LarmCont3 sliderTime
biped. AddNewKey RarmCont3 sliderTime

sliderTime = sliderTime+28
rotate RForearm3 100 [0,0,1]
biped. AddNewKey LarmCont3 sliderTime
biped. AddNewKey RarmCont3 sliderTime

rotate RForearm3 30 [1,0,0]
biped. AddNewKey LarmCont3 sliderTime
biped. AddNewKey RarmCont3 sliderTime

animButtonState=off
--end of animation sequence

B2. Example teapot lifting script
This script was generated as a result of applying the learning algorithm to the task of
lifting a teapot (Chapter 5)

animationRange = interval 0 400

CreateSceneC)
CreateBiped ()

bipLClavicleCtrl = (biped. getNode bipObj 1). transform. controller
teaCtrl = tea. controller
tea2 = Teapot radius: 15 smooth: on segs: 4 body: on handle: on spout: off
lid: on mapCoords: off pos: [15,35,108] isSelected: on
tea2Ctr1 = tea2. transform. controller

animate on

134

Appendix C. Example 3DS Max Scripts

sliderTime =0
addNewKey tea2Ctrl 0
biped. AddNewKey bipLClavicleCtrl 0

sliderTime = 20

BipedMoveLHandTo 0.000000 8.000000 103.298172
addNewKey tea2Ctrl 20
biped. AddNewKey bipLClavicleCtrl 20
sliderTime = 40

BipedMoveLHandTo -8.000000 8.000000 103.298172
addNewKey tea2Ctrl 40
biped. AddNewKey bipLClavicleCtrl 40
sliderTime = 60

BipedMoveLHandTo -8.000000 8.000000 111.298172
addNewKey tea2Ctrl 60
biped. AddNewKey bipLClavicleCtrl 60
sliderTime = 80

BipedMoveLHandTo -16.000000 8.000000 111.298172
addNewKey tea2Ctrl 80
biped. AddNewKey bipLClavicleCtrl 80
sliderTime = 100

BipedMoveLHandTo -16.000000 8.000000 119.298172
addNewKey tea2Ctrl 100
biped. AddNewKey bipLClavicleCtrl 100
sliderTime = 120

BipedMoveLHandTo -16.000000 8.000000 127.298172
addNewKey tea2Ctrl 120
biped. AddNewKey bipLClavicleCtrl 120
sliderTime = 140

BipedMoveLHandTo -16.000000 16.000000 127.298172
addNewKey tea2Ctrl 140
biped. AddNewKey bipLClavicleCtrl 140
sliderTime = 160

BipedMoveLHandTo -16.000000 24.000000 127.298172
addNewKey tea2Ctrl 160
biped. AddNewKey bipLClavicleCtrl 160
sliderTime = 180

BipedMoveLHandTo -8.000000 24.000000 127.298172
addNewKey tea2Ctrl 180
biped. AddNewKey bipLClavicleCtrl 180

GrabTeaPot()

sliderTime = 200

BipedMoveLHandTo -8.000000 24.000000 127.298172

ReleaseTeaPotC)

tea2. rotation = tea. rotation
tea2. pos = tea. pos

135

Appendix C: Example 3DS Max Scripts

addNewKey tea2Ctrl 200
biped. AddNewKey bipLClavicleCtrl 200

GrabTeaPot()

sliderTime = 220

BipedMoveLHandTo 0.000000 24.000000 127.298172

ReleaseTeaPot()

tea2. rotation = tea. rotation
tea2. pos = tea. pos
addNewKey tea2Ctrl 220
biped. AddNewKey bipLClavicleCtrl 220

delete tea
delete boxHandle

136

Appendix D: UML Diagrams

Appendix D- Example UML Diagrams
As described in Chapter 4 the FreeWill system has been designed and documented
using UML. Some of the UML diagrams are presented below, see also Chapter 4.

Recognise
objects
present in the
world.

D

RecogniseObjects

AvoidObjects

InteractWithObjects

TrafficParticipa

: include"» GetGoal

---<sir]clude»ý

PlanBehaviour
<Zinclude» AssureGoal

D

CreateActionSequence

Initial use case model of the system (1)

ExecutePlans
A

«ext6nd»

ReachGoal

137

Appendix D: UML Diagrams

Rollout actions

Actuator /r1

Update Environment

-`ý AnimationPackag

Animator ControlSimulation

Render

lrextgnd»

RunSimulation
AssignGoals

SetParameters

Initial use case model of the system (2)

UpdateWorldMap

, Control) r
CompareWoddMap

Recognise
objects from
the map in the
perceived
world

RecogniseObjects

GuidePaths

Compare the
stored map
with the
present state
of the world.

Verify that the
route agrees
with the one
marked on
the map.

CD

DoSensing
UpdateWorldModel

Process Sensedlnformation Sensor

Initial use case model of the system (3)

138

Appendix D: UML Diagrams

PeriodicEventGen

GiveControlToO
bject returns an
Event

World

4GiveControlToC

Scheduler

4PickNextEventO
4SubmitEventO

Object
Avatar

n --I--
7,. n h""n 4GetControlO

dºConvActionToEventO

11

Event
dk>type
dk>object

0
kparameters
ktime

H

ActionPlanner

Piano
1 4ExploreSolutionsO

`*GetMicroActionO

,

Body Mind
velocity

osition
MotionControl

p *UpdateWModeIQ
4SetHeadingo
*#S

4RevisePlanQ
4PickActionQ urrActionQ

DecompecomposeQ enseQ 4
1

GetCurrActionO

L KnowledgeBass
1.. n 1.. n 1.. n
fsionCone BoundingBox Actuator 4GetGoalsO

**ModifyGoalO
4ExecuteChangeQ 4GetObjectlnfoO

4UpdateWorldO

Sensor AnimScriptFILE
Interfaces with
Visualization *openQ WorldModel
Engine **closeQ O.. n I.. in

ýrvriteO 4ModifyWorldQ Fact Goal
ýGetObjectAttribsO

Class diagram of the system

139

Appendix D: UML Diagrams

Sensing event
is returned

New
microaction
returned

2: GW. ontrorroObject()

G)3tControl()
ýýy 11: ConvActionToEwntO

A fragment of
the world
returned

4 em

8: Decompose()
iO: GetCurr ctnn(-)-

Microecuon -
returned

-

5: UpdateWModel()
6: R@, A**Plano

90 9. Dcý PickActiono

Mind 7: Plan(

A sensing collaboration

140

Message sequence for an acting event
1: PickNextEvent()
12. SubmutEvent()

31.

Appendix E: Metrics Results

Appendix E- Metrics Results
Three metrics have been proposed as a way of limiting the number of different action
sequences generated by the learning algorithm. Definitions of these metrics and
discussion of results are presented in Chapters 5 and 6, this appendix presents pairs
generated by the Local Distance Metric on a set of 651 sequences obtained for the FK
teapot experiment and a set of 72 sequences obtained for the IK teapot experiment. The
third part of this appendix presents the result of applying the Global Distance Metric to
the first set of sequences (for discussion see Section 6.8).

6,457 40,605 108,589 233,397
6,458 41,450 108,590 233,543
6,610 41,451 109,435 233,544
6,611 41,603 109,437 237,400
7,456 41,604 109,588 237,401
7,458 45,454 109,590 237,547
7,609 45,455 110,435 237,548
7,611 45,607 110,436 238,399
8,456 45,608 110,588 238,401
8,457 46,453 110,589 238,546
8,609 46,455 219,469 238,548
8,610 46,606 219,470 239,399
12,460 46,608 220,468 239,400
12,461 47,453 220,470 239,546
12,613 47,454 221,468 239,547
12,614 47,606 221,469 306,469
13,459 47,607 222,475 306,470
13,461 102,433 222,476 307,468
13,612 102,434 223,474 307,470
13,614 102,586 223,476 308,468
14,459 102,587 224,474 308,469
14,460 103,432 224,475 309,475
14,612 103,434 231,397 309,476
14,613 103,585 231,398 310,474
39,451 103,587 231,544 310,476
39,452 104,432 231,545 311,474
39,604 104,433 232,396 311,475
39,605 104,585 232.398 no of pairs: 120
40,450 104,586 232,543
40,452 108,436 232,545
40,603 108,437 233,396

LDM applied to the FK set

0,31 4,28 9,39 13,36
0,32 4,54 9,40 13,62
0,58 4,55 9,67 13,63
0,59 4,67 9,68 15,25
0,62 4,68 11.29 15,33
0,63 6,25 11,37 15,60
2,29 6,52 11,65 16,25
2,56 6,65 12.29 16.33
2,60 7,25 12,37 16,60
3,29 7.52 12,65 17,58
3,56 7,65 13,27 17,59
3,60 9,31 13,28 17.67
4,27 9,32 13,35 17,68

141

Appendix E. Metrics Results

19,56 21,62 25,49
19,65 21,63 25,50
20,56 23,52 27,47
20,65 23,60 28,47
21,54 24,52 29,44
21,55 24,60 29,45

LDM applied to the IK set

most 433 548
different: 434 586
(max ==8) 436 587
220 437 589
221 451 590
223 452 604
224 454 605
307 455 607
308 457 608
310 458 610
311 460 611
397 461 613
398 544 614
400 545 no of seqs: 40
401 547

GDM applied to the FK set

31,42
32,42
no of pairs: 72

most similar: (disc==2)
0
21
33
60
96
147
225
318
462
621
no of seqs: 10

142

