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ABSTRACT 

In this thesis, the problem of the metrology of optical surfaces is examined. The need for 

accurate metrology is established with regard to optical wavefronts reflecting or refracting at 

the surfaces of optical components. Optical interferometry is identified as the most useful 

analytical tool for surfilCe metrology by virtue of its high precision and accuracy. Accordingly 

the theory of interferometry is briefly presented. The application of the theory to the 

interferometric instruments is shown together with measuring configurations for the various 

optical surfaces commonly encountered. An extensive overview of the techniques used to 

evaluate data from interferometric measurements is given with particular emphasis on precision 

phase measuring methods. 

Most interferometric measurements of su.rfilCes are made relative to a reference surface of high 

quality. Where the accuracy of the surface to be measured is comparable to, or better than, that 

of the reference surface, an absolute measurement technique is required in order to give 

meaningful results. A review is given of the existing methods for the absolute measurement of 

nominally flat and spherical surfaces and the shortcomings of these methods. 

A new algorithm for the absolute testing of flat surfaces is developed, based on relative 

measurements of pairs from a population of three test flats in a number of positional 

combinations. The new method has a number of potential advantages over those previously 

described, particularly since it yields information about the flats over their entire surfaces on 

a square grid of points. The implementation of the new method on a Zygo Mark IV 

interferometer is desaibed together with experimental results using both synthesized and actual 

experimental data. Suggestions for improvements to the method and its implementation are 

made. 

A speculative study of other possible techniques for absolute flatness measurement is 

presented, including the possible application of the Ritchey-Common test, point diffi"action 

interferometry, phase conjugation and profilometry. 

A full and up to date survey of the pertinent literature is given throughout the thesis. 
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"Mister Logic" Viz Comic 72 June/July 1995 

"We IID.1St, therefore, recognise that what is designated by the terms "glance", "hand", and, in 
general, "body" is a system of systems devoted to the inspection of a world and capable of 
leaping over distances, piercing the perceptual future, and outlining hollows and reliefs, 
distances and deviations- a meaning in the inconceivable flatness of being". 

Maurice Merleau-Ponty, "Indirect language and the voices of silence". 

"TIlE VERY BIG STUPID is a thing which breeds by eating The Future. Have you seen it? 
It sometimes disguises itself as a good-looking quarterly bottom line, derived by closing the 
R&D Department". 

Frank Zappa, "The Real Frank Zappa Book". 

"Heavens!" said Mrs Lambchop. 
"Gosh!" said Arthur. "Stanley's flat!" 
"As a pancake," said Mr Lambchop. "Darndest thing I've ever seen." 
"Let's an have breald3st, " Mrs Lambchop said. "Then Stanley and I will go and see Doctor Dan 
and hear what he has to say. " 

Jeff Brown, "Flat Stanley". 
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Chapter 1: Introduction. 

1.1 The Importance Of Measuring Optical Surfaces. 

In any optical system there will be optical components that are designed to have a specific 

effect on the light travelling through the system. The desired effect may be a change in the 

direction, shape, polarisation or amplitude of the wave, or a combination of two or more of 

these. 

A conventional optical component consists of some bulk material with certain optical and 

physical properties bounded by surDces which define the shape of the component. The optical 

properties include the refractive index and absorption of the material which may vary with the 

wavelength of the light and also the direction in the material. Physical properties such as 

hardness, chemical resistance etc. are important as regards the manufacture and use of the 

component but do not directly affect its optical performance. The function of the component 

depends both on the shape (also known as the figure) of its defining surfaces and also, if the 

light travels through the component, upon the optical properties of the material from which 

it is made. 

If the component is purely reflective (a mirror, for example) its function depends only upon the 

figure of the surface since the light does not travel through the substrate material. 

Geometrically, the light obeys the well known rule that the angle of reflection equals the angle 

of incidence. The direction of an individual ray after reflection is thus dependent upon the 

orientation of the reflective swfiJce at the point where the ray was incident, as shown in figure 

1.1. 
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incident ray -----. 
normal to surface 

reflected ray 

Figure 1.1 Reflection from a surface. 

When a component is transmissive, the direction of the transmitted ray depends upon the angle 

of incidence and also upon the refractive indices of the media on either side of the surface of 

the component. The relationship between the directions of the incident and transmitted rays 

is given by Snell's law; 

where: n1 ,n2 are the refractive indices of the media either side of the surface, and 

81, 82 are the angles of the incident and refracted rays respectively. 

This relationship is illustrated in figure 1.2. 
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incident ray .. / 
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normal to surface 

·\81 
n1 / 

\ 
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/ 

/ 
I 

refracted ray Il2 

Figure 1.2 Refraction at a surface. 

If the refractive indices are known and can be assumed to be constant (homogeneous) 

throughout the media then the only factors affecting the function of the components are the 

figures of the surfaces. 

To illustrate the importance of the surface figure of optical components, consider an imaging 

system. For the performance of the system to be diffraction limited (that is, limited by 

diffraction at the aperture of the system) then the optical components should introduce 

wavefront aberrations no greater than M4 at the wavelength of the light being imaged. If the 

imaging system consists of a single optical surface then the maximum allowed deviation from 

the ideal surface figure is M8 for a reflective component and M4(n-l) for a refractive 

component of index n in air. It can thus be seen that the allowed error on the surface of a glass 

lens (n= 1.5) is approximately four times higher than that of a mirror. For a system consisting 

of multiple optical surfaces, the manufacturing tolerances must, of course, be more stringent. 

Given that the figure of optical surfaces has such an important effect upon the performance of 

the optical components of which they are part, their accurate measurement has a vital part to 
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play in the manuf8cture, evaluation and diagnosis of optical systems. It should be noted, at this 

point, that the term figure strictly refers to the overall shape of the surface which may have 

finer features such as waviness and roughness superimposed upon it. The distinctions between 

these features will be discussed later in the section on spatial frequency considerations (section 

1.2.4). 

This thesis will be concerned, primarily, with techniques for making accurate determinations 

of the overall figures of optical surf8ces. Particular attention will be paid to the special case of 

measuring nominally flat surl8ces. Measurements of other properties such as the homogeneity 

will be discussed only in passing, where the techniques are closely related to measurements of 

surface figure. 

1.2 Interferometry. 

One of the most sensitive tools for measuring the figures of surfaces is interferometry. The 

phenomenon of interference of light occurs wherever two or more electromagnetic waves 

are superposed. If the medium in which the waves meet is linear (which is usually the case 

unless the wave intensities are very high) the electric field vectors of the waves add 

algebraically. Consider two waves, El and ~ of the same frequency: 

El =E01 sin(at+a1) 

and 
E2 = E02 sin(at+a2 ) 

where c.>= the angular frequency of the wave, 

a= -(kx+e), the phase of the wave at X, 

e= the epochal angle, the phase of the wave at x= 0, 

k= the wave number, =21t1J.., 

J..= the wavelength, 

t=time, 

x= distance from the source. 
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Where the two waves overlap in space, the resultant is the linear superposition of these waves; 

E=E1 +E2 

Writing; 

or 

E = E01(sinatcosa l + cos at sinal) 

+E02(sinatcosa2 +cosatsina2) 

= (E01 cosa1 + E02 cosa2)sinai 

+(E01 sinal + E02 sina2) cos at 

Eo cosa = E01 cosa1 + Eoo. cosa2 
and 

Eo sin a = EOI sinal + E02 sina 2 

where 

E; = E;l + E~ +2E01 Eoo. cos(a 2 -a1) 

and 

The resultant wave may now be written; 

E = Eo {cos a sin at + sinacosai) 

= Eo sin(at + a). 

The resultant wave is harmonic with the same frequency as the constituent waves but with a 

different amplitude and phase. 

Since the amplitude of a light wave is not directly observable we must consider the resultant 

intensity of the two waves. The observable intensity of a wave is proportional to the square 

ofits amplitude. The resultant intensity of the interference of two waves is thus proportional 

toEl 

The resuhant is the sum of the two intensities of the two constituent waves plus an interference 

term, 2EotEmcos< a2-aJ. The important quantity here is the phase difference between the two 

interfering waves, a 2-tt l= <1>. When <1>= 0, ±21t, ±41t, ... the resultant is a maximum and 
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interference is constructive and when <1>= ±1t, ±31t, ... the resultant is a minimum and 

interference is destructive. Note that when the intensities of the two interfering waves are 

equal, the resultant is zero for destructive interference and 41 for constructive interference. 

The interference equation may be written conveniently as; 

1 = 10 (1 + r cos¢), 

where 10= 11+12, the DC intensity level, 

y= 2EolEo/lo, the fringe visibility. 

The significance of these quantities is illustrated in figure 1.3. 

I 
(Intensity) 

10 --- ------- ------- ------- -- --- -- ------- -. 2loy(ac signal) 

o 1t 31t 41t 51t + 
(phase) 

Figure 1.3 Intensity distribution for two-beam interference. 

The phase difference, <1>, may arise from a difference in the path travelled by the two interfering 

waves as well as a difference in their epochal angles~ 

¢ = (lex1 - &1) - (lex2 - &2) 

27r ' = -(Xl -X2)+(&1 -&2) 
A. 

In interferometry, the two interfering waves generally arise from the same source, so their 

epochal angles are the same. In this case; 

21! 
¢=-(X1 -X2 )· 

A. 
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The quantity Xl-X2 is known as the optical path difference (OPD) and it can be seen that 

constructive interference will occur when the OPD is a whole number of wavelengths, (OPD= 

0, A, 2A, ... ) and destructive interference when the OPD is an odd number of half wavelengths 

(OPD= Al2, 3A12, SAI2, ... ). 

If the two waves travel through a number of different media with different refractive indices, 

n, the OPD can be written; 

OPD = Lx~ni - LX2jnj 
i j 

In some interferometric techniques such as heterodyne interferometry interference occurs 

between two waves with different frequencies. The two waves (which will have equal 

amplitudes and zero epochal angles for simplicity) may be written as~ 

E,. =~ al(y-~t) 
co:l 

~ = Eo. al(kzx+;-OJ.!)· 

The resultant wave is; 

£=£1+£2 

=£01[oos(~X-(J}lt)+oos(~+;-(J}2t)] 

=2E01 oost[(~ +~)X+;-«(J}1 + (J}2)t] 

xoost[(~ -~)X+;-«(J}l -(J}2)t] 

This equation may be rewritten as; 

where; 

E = 2E" al(k",x +;-(J}J)c:a/ia +;-Qi), 

(J) = t«(J}l + (J}2)' the average angular frequency, 

k = t( kl + k2 ), the average wave number, 

(J) III = t «(J}l - (J}2)' the modulation frequency, 

k .. = t( kl - k2 ), the modulation wave number. 
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The resultant wave arising from the interference of two waves with different frequencies is 

illustrated in figure 1.4. 

Vi \jJVVl \'fVlJJ \jJVWW \'if V V z 

E(z) 

Figure 1.4 Interference between two waves with different frequencies. 

When the frequencies of the two waves are similar, the resultant can be regarded as a travelling 

wave with the average frequency, amplitude modulated by half the difference frequency. Again 

the observed quantity is the wave intensity, proportional to the square of the amplitude. 

E; =4E;1 cos2(kmx+f-mmt) 

= 2E;1[1+cos2(kmx+t-mmt)] 

= 2E;t[ 1 + cos{2(kmx - mmt) + t/J}] 

So, at some point, where two waves with different frequencies interfere, the resultant intensity 

is modulated at a frequency 2wm= (wt-wJ known as the beat frequency. The phase difference, 

4>, between the two interfering waves is replicated in the phase of the modulation envelope and 
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is thus easily measured as shown in figure 1.5. It is this feature that makes heterodyne 

interferometry a useful tool for the accurate measurement of distances. 

21t/COm 

Figure 1.5 Phase of the modulation envelope for heterodyne interferometry. 

Briers (1972) and Stahl (1990b) give useful reviews of the many interferometric techniques 

that may be used in the testing and measurement of optical surfaces and components. In 

addition, Malacara, Cornejo and Murty, (1975) have compiled a very comprehensive 

bibliography of optical testing methods, including interferometry, up to the date of publication. 

F or the measurement of surface figure the Twyman-Green and Fizeau interferometer 

configurations are of the greatest interest. 

1.2.1 Twyman-Green Interferometer. 

The basic Twyman-Green interferometer is shown in figure 1.6. Light from a monochromatic 

point source is collimated to form a plane wavefront and divided in amplitude by a 

beamsplitter. The two wavefronts are reflected by plane mirrors Ml and M2 and then 

recombined by the beamsplitter. Two interference patterns are formed~ one directed back to 

the light source and one towards the observer. The two interference patterns are 

complementary in order to obey the principle of conservation of energy. Where there is a 
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bright fiinge in one pattern there is a dark one in the other. This occurs because there is a 180 0 

(Tt radians) phase change in the wavefronts upon reflection at the beamsplitter when the light 

is incident onto a material of high refractive index (beamsplitter material) from one of low 

index ( air). This effect is illustrated in figure 1.7. 

Ml 

o light source 
- - pinhole 

1l2OPD 

WUljams Type 

1120PD 

o Iigbt source 
- - pinhole 

virtuM imaae ofM2 r-__ _--1 -------- , 
,----------------, 

Figure 1.6 Twyman-Green Interferometers. 
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n=low 

Ref arm Observer 
~--------------

Test arm 

Figure 1.7 Phase changes on reflection from a beamsplitter. 

Considering only the phase changes on reflection at the beamsplitter, the reference wave 

travelling to the observer has been reflected once from a high indexllow index boundary and 

so bas a total phase change of 1t. The reference wave returning to the source has twice been 

reflected from a high/low boundary and so has a total phase change of27t. The test wave is 

only ever reflected from a low indexlhigh index boundary and so has no phase change 

travelling either to the observer or back to the source. Thus when the OPD is such that the two 

waves interfere constructively in the observer's arm of the interferometer, they interfere 

destructively in the source arm. 

If M2 is exactly parallel to the virtual image of M1 the optical path difference (OPD) is 

constant and there is a single fringe across the field of view. IfMl and M2 are non-parallel the 
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OPD will vary and there will be a number of fringes across the field of view. Each fringe 

represents a contour of equal separation between the two mirrors. Since the OPD is twice the 

separation between the mirrors a change in separation of half a wavelength (')./2) corresponds 

to a change in OPD of a whole wavelength (A.). Thus the change in separation represented by 

one interference fiinge is ')./2. Where both mirrors are plane, but with a smaI1 wedge angle 

between them, the fringe pattern will consist of a number of straight and parallel fringes of 

constant separation depending on the wedge angle. If one mirror (MI, say) is plane and the 

other distorted, the fringe pattern will represent a contour map of the surface of the distorted 

mirror. We may then measure the contours or figure ofM2 with respect to MI, the reference 

IIllITOf. 

In the general case that neither MI or M2 are plane, the interference pattern corresponds to 

the difference in the figure of the two mirrors. This can easily be seen with reference to figure 

I.S. IfMI and M2 have the same non-plane figure then their separation is constant and a single 

fiinge will result (or a pattern of equi-spaced straight fringes if there is a wedge angle between 

them). If the figures of the two surfaces are denoted by fMl(x,y) andfM2(x,y), where x and y 

are the Cartesian co-ordinates of the surfaces, then the fiinge pattern yields the information; 

g(x,y)= fM1(X,y)- fwo.<x,y)· 

Figure 1.8 

M2 
Vi1D81" 
afMl 

---

6 .. -. . 

.6 ... - . 

OPD in a Twyman-Green Interferometer. 

M2 
Vi1D81" 
afMl 

A variation of the Twyman-Green interferometer, sometimes known as a Williams 
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interferometer, for measuring concave spherical surfaces is also shown in figure 1.6. The two 

spherical mirrors are placed so that their centres of curvature are at the point source of light. 

In this case the fringe pattern corresponds to the difference between the figures of the two 

surfaces with respect to their centres of curvature. Here, the surface figures are denoted by 

fMl(<I>,8) andfM2(<I>,8) where <I> and 8 are the spherical co-ordinates of the surfaces and the 

ftinge pattern yieldsg(<I>,8) = fM1(cI>,8):fM2(cI>,8). 

The use of the Twyman-Green interferometer for per funning tests on a wide variety of optical 

components and surfaces is described by Birch (1979) and Ma1acara (1992). 
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1.2.2 Fizeau Interferometer. 

The basic Fizeau interferometer configuration is shown in figure 1.9. 

o light somce 
__ pinhole 

observing eye 

r--I--------~ coJ1imatinglens 

Figure 1.9 Fizeau interferometer. 

Light from a monochromatic point source is collimated by the collimating lens. A portion of 

the light is reflected from the surfaces of Ml and M2 ( this will typically be about 4% for 

uncoated glass surfaces). The reflected light is redirected by the beamsplitter towards the 
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observer. In common with the Twyman-Green interferometer, the fiinge pattern observed is 

dependent upon the OPD between the light reflected from Ml and from M2 which is twice the 

separation between the two surfaces. Once again, in order that energy be conserved, there is 

a complementary interference pattern to that directed towards the observer. In this case the 

complementary pattern is transmitted through M2 though it is difficult to observe when the 

reflectivities of the surfaces are low since it is swamped by the light directly transmitted by 

both surfaces. As in the case of the Twyman-Green interferometer, if one surface is assumed 

to be perfectly plane (usually the upper surface, Ml), the interference pattern gives the 

contours of the other surface, M2, and a fiinge interval denotes a height interval of ')../2. For 

the more general case where neither surface is plane, however, the interferogram yields the 

sum of the figures of the two surfuces rather than the difference as is the case for the Twyman

green interferometer. When the figures ofMl and M2 are again given by fMl(X,y) andfM2(x,y) 

respectively then the fringe pattern yields the information g(x,y)= fMl(x,y)+ fM2(-X,y).This may 

easily be seen by reference to figure 1.10. 

Ml M2 Ml M2 
r-- -

'--- -

Ml M2 Ml M2 

Figure 1.10 OPD in Fizeau interferometer. 

The Fizeau interferometer is a very versatile optical measuring instrument which may be 

configured to test a wide variety ofoptica1 components and systems. Harris (1971) devoted 

his Ph.D. thesis to the design and construction of an "universal" Fizeau interferometer system. 

A comprehensive discussion of the Fizeau interferometer and its variants is given by 

Mantravadi (1992a) and an analysis of potential sources of measuring errors is provided by 

15 



Huang (1993). 

1.2.3 Measurement Configurations. 

In the descriptions of the Twyman-Green and Fizeau interferometers given above the 

wavefronts have been assumed to be nominally plane for the measurement of nominally plane 

surface figures. Either type of interferometer may also be used to measure a number of 

different surface figures such as spheres and conic sections (conicoids) and general aspheres. 

These measurements require that the interferometer produce a spherical test wavefront. This 

may be achieved in a Twyman-Green interferometer by placing a converging or diverging lens 

in the test arm (a converging lens is most commonly used since it produces both a convergent 

wavefront before the focus and a diverging wavefront past the focus) . In a Fizeau 

interferometer, the lens may either be placed after a plane reference surface or before a 

spherical reference surface. The configurations for producing a spherical test wavefront are 

shown in figure 1.11. 

Twymm-Grccn 

o 

SpbcricII ___ - __ 

o 

Figure 1.11 Producing a spherical test wavefront. 
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Figure 1.12 shows test configurations for measuring various non-plane optical surfaces. When 

testing spherical surfaces, the focus of the converging test wave coincides with the centre of 

curvature of the spherical test surfaces so that the test wave is normal to the test surface and 

is reflected back upon itself Surfaces with conic section figures have two foci and so an 

auxiliary surface must be included to ensure that the test surface is tested at the appropriate 

conjugates (Stahl, 199Oa). A parabolic surface has one finite real focus and the other at ±co. 

the real focus is placed at the focus of the test wave and the focus at infinity is imaged back 

onto the real focus by an auxiliary flat mirror. An hyperbolic surface has a real focus, at the 

focus of the test wave and a virtual focus which is imaged onto the real focus by an auxiliary 

spherical mirror, centred on the virtual focus. An elliptical surface has two real foci, the first 

at the focus of the test wave. The second focus is imaged onto the first by an auxiliary 

spherical mirror centred on the second focus. 

It should be noted that, for each of the configurations for testing conic sections, the test wave 

is reflected twice from the test surface. This means that the sensitivity of the measurement is 

increased. 

For the Fizeau interferometer; 

g=f.+ f_ + 2f.cos6 

and for the Twyman-Green; 

g=f.- if_ + 2f..p>se), 

where: fim is the figure of the reference surface within the interferometer, 

f _ is the figure of the auxiliary reference surface, 

f_ is the figure of the test surface. 

S is the angle of incidence of the test wave on the test surface. 
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Figure 1.12 Configurations for testing non-plane surfaces. 

In order to test the surfaces of general aspheric optical components that do not have simple 

foci, it is necessary to transform the test wave so that its wavefront matches the nominal shape 
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of the surface to be tested. The transformation of the wavefront is performed by an auxiliary 

optical element known as a null compensator which may be conventional, using reflective 

orrefractive optics, or may be a diffractive element such as a optically or computer generated 

hologram. The principle of using null compensators is illustrated in figure 1.13. 

Figure 1.13 Using a null compensator to produce an aspherical test wavefront. 

There are very many different types of null test and null compensator, depending on the type 

of surface under test. Null tests using conventional compensators are described by Oflher and 

Malacara (1992) and the use of holograms as compensator elements is described by Schulz and 

Schwider (1976) and Creath and Wyant (1992). 

Geary (1989,1987a,b) has described an interferometric test for cylindrical optics using a 

stretched optical fibre as a reference swface. The collimated wavefront from the interferometer 

is focused by the test optic onto the reference surface which reflects it back through the optic 

to the interferometer. 

As well as measuring the figures of optical surfaces, the Fizeau and Twyman-Green 

interferometers are well suited to measuring the properties of many optical components and 

systems in transmission. Test configurations for some typical measurements are shown in 
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figure 1.14. When using a Twyman-Green or Fizeau interferometer to test a component in 

transmission, the test wavefront passes twice through the test object. Where the wavefront 

aberrations introduced by the component are large the returning wavefront may take a quite 

different path through the component than the outgoing wavefront which will make meaningful 

analysis of the interferogram difficult. In such cases it is preferable to measure the component 

in a single pass configuration. An interferometer that is suited to such a measurement is the 

Mach-Zender interferometer as shown in figure 1.1,5. After the wavefront from the source has 

been split by the first beamsplitter, the test wavefront passes through the component under test 

and is recombined with the reference wavefront by a second beamsplitter. 
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Figure 1.14 Testing components in transmission. 
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Figure 1.15 Mach-Zender interferometer. 

1.2.4 Spatial Frequency Considerations. 

Mirror 

When considering the profile of an optical surface, it is convenient to divide the surface 

features into categories depending on their spatial frequency and type. The divisions between 

the categories is somewhat arbitrary and depends on the use to which the surface is to be put 

and the measuring instruments used. To this end, the surface features may be divided into~ 

cosmetic surface quality (defects), roughness, waviness and figure (or fonn) . 

Cosmetic surface quality describes the level of visible defects on the surface of an optical 

component. Defects are localized features such as scratches and digs (small pits or craters) on 

the polished optical surface. These features are important because they can have a serious 
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adverse effect on perfonnance due to light scattering. Scattering can be particularly important 

in laser applications due to the intensity and coherence of the illumination. Unwanted 

diffraction patterns caused by scratches and digs can lead to degraded system perfonnance, and 

scattering of high energy laser radiation can even lead to component damage. The most 

common conventions for specifying cosmetic surface quality are the U.S. Military Surface 

Quality Specification, MIL-O-13830A, the DIN (Deutsche Industrie Norm) specification, DIN 

3140, sheet 7 and British Standard, BS 4301. The cosmetic surface quality specification is 

anived at subjectively by visual comparison of the surface defects with standard scratches and 

digs. The spatial frequency spectrum of cosmetic surface defects is very wide due to their 

transient nature. 

The roughness of a surface is determined by its state of polish. Since a rough surface will 

scatter light strongly, it is clearly an important parameter of the optical surface. The individual 

feature sizes ofa rough sud8ce are very small (10Jlm down to atomic dimensions) and so will 

have a high spatial frequency (>0.1 JIm-I) (Bennett et a1, 1991). For a smooth surface, the 

amplitude of the spatial frequency components will be very small. 

Surface waviness is a feature commonly found on optical surfaces that have been formed by 

diamond turning on a lathe. The features arise as a result of the groove formed in the substrate 

(ftequently a metal such as copper) by inelastic deformation of the material as the diamond tool 

tip removes material to form the required surface figure. The spatial frequencies of the 

waviness features is usua11y well defined due to the regularity of the grooves left by the turning 

process and typically lie in the range 0.1-100 mm-l
. 

The surface feature with the lowest spatial frequencies is the figure or form of the surface. 

The surface figure descnbes the overall shape of the surface (spherical, flat etc.) onto which 

the other surlice features are superimposed. The lower limit of the spatial frequency spectrum 

due to the surface figure is due to the dimensions of the surface itself. The upper limit is 

generally bound by the spatial resolution of the instrument used to measure the surface form. 

The different features of a general optical sur&ce and their spatial frequency spectra are shown 
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in figure 1.16. 

Am . Spatial frequency spectrum 
of surface 

Figure 1.16 Spatial frequency spectrum of a general optical surface. 

This thesis is concerned mainly with measurements of surface figure whose highest spatial 

frequency component is limited by the spatial resolution of the imaging device in the measuring 

instrwnent. In the case of the interferometers considered, the spatial resolution is determined 

by the number of pixels (picture elements) in the electronic camera which images the surface 

under test. Where the image diameter covers (say) 200 camera pixels the minimum resolved 

spatial wavelength will be 100111 the diameter of the image. This is due to the Nyquist sampling 

theorem which states that for a signal to be resolved, the sampling frequency must be at least 

twice the maximum frequency component of the signal. 

To determine the spatial frequency spectrum of a surface, it would nonnally be necessary to 

determine the surface figure and then to transform this into the spatial frequency domain by 

a Fourier transform. Hariharan (1996) describes a method for directly determining the spatial 

frequency spectrum of a nominally flat surface. The method involves making two 

interferograms of a St..lffilce compared to a reference fiat, with the surface translated a distance, 
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X, between the first and second interferograms. Taking the Fourier transfonn of the difference 

between the two interferognuns reveals the spatial frequency spectrum of the test surface. The 

lower limit of the spatial frequency range which can be determined by this technique is set by 

the lateral displacement, X, and the upper limit by the spacing of the elements in the detector 

array. 

Measurement of features with higher frequency components requires techniques with higher 

spatial resolution such as profilometry (Bennet et ~ 1991, 1993) (Bristow, 1991) (Creath 

and Wyant, 1990). 

lel.! Interpretation of InterferogralDs. 

A pattern of straight, equa1ly spaced, parallel lines is the fringe pattern produced by a perfect 

reference surface and a perfect test surface with a tilt introduced between the two. The 

deviation of a fringe from this straight line pattern is a measure of the surface error of the 

element under test. A review of interferogram analysis methods is given by Malacara (1990). 

Test sur&ces whose surfice accuracy is Al10 or worse can be evaluated by visual observation 

of the fiinge pattern produced by the interferometer. Since one fringe separation corresponds 

to ').J2, an error of 0.2 fringes corresponds to an error of 1/10. This can easily be estimated by 

eye. If the required accuracy is better than )./1 0 then the fringe pattern can be photographed 

and accurately measured by manual or semi-automatic means. The best accuracy is obtained 

by capturing the fringe pattern with an electronic camera and performing automatic analysis 

as descnbed in the section on phase measuring techniques (section 1.2.6). 

A typical interferogram might appear as shown in figure 1.17. 

Superimposed upon the fringe pattern is a grid corresponding to perfect straight fringes with 

the average spacing of the interference fringes. Remembering that one fringe spacing 

corresponds to a wavefront error of ),/2, the wavefront error at a point on an interference 

fringe is the deviation of that point from the average fringe grid divided by twice the fringe 
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spacing. Wavefront error= AlB wavelengths. This is the method adopted by the American 

Society for Testing and Materials for the manual interpretation of interferograms (Glassman, 

1978, Bissinger, 1978). Determination of whether the wavefront error is positive or negative 

depends on knowledge of the order of the fringes. The fringe order can be determined by 

finding the thin end of the wedge between the reference and test surfaces since the fringe order 

decreases towards the thin end (the zero order fringe occurs where the OPD is zero). The 

direction of the wedge is easily found by slightly changing the tilt between the two surfaces. 

If the fringe density increases then the wedge angle is increasing. 

Two disadvantages ofnEna) methods ofinterferogram interpretation are, (i) that quantitative 

analysis is time consuming and tedious and, (ii) that information may only be derived at the 

ftinge positions. These problems may, to some extent, be alleviated by semi-automatic analysis 

methods using computer programs (Swantner, 1985). The centres of the interference fringes 

are digitized (either manually or by computer processing of a CCD camera image) and passed 

to a computer program for analysis. An example of a commercial program of this type is 

APEX interferogram analysis software (Telic Optics, 576 Boston RetE., Marlborough, Mass. 

USA). The problem of the sparsity of data points is addressed by interpolation or fitting of 

polynomial functions to the existing data points. A family of polynomial functions well suited 

to the representation of interferogram data are the Zernike polynomials. 
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Figure 1. 17 Typical interference funge pattern. 

1.2.5.1 Zemike Polynomials. 

It is often convenient to express wavefront data in a polynomial fonn as a means of 

interpolating between a sparse array of data points or of dissecting the data into physically 

meaningful terms. A number of properties of the Zernike polynomials make them particularly 

well suited to this task (Wyant and Creath, 1992) . 
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The individual terms of the Zemike polynomials correspond to many of the aberrations 

commonly found in optical tests (defocus, astigmatism, coma etc.). 

The Zemike polynomials, in two real variables (p, the radial variable, and e, the angular 

variable) are orthogonal within a unit circle. This is useful because the wavefronts under test 

commonly have a circular aperture. Their orthogonality means that any polynomial term may 

be subtracted from the data without affecting th~ values of the other terms. 

The Zemike polynomials are also rotationally symmetrical. They are of the form R(p)G(e) 

where G(8) is a continuous function that repeats every 21t radians and rotating the coordinate 

system by « does oot alter the form of the polynomial. Hence 0(6,«)= G(e)G( «). The set of 

trigonometric functions, G(8)= e-.&, where m=O,1,2, ... meets these requirements. 

The radial function R(p) is a polynomial in p of degree n and contains no power of p less than 

m. Another property is that R(p) must be even ifm is even and odd ifm is odd. 

The orthogonal and normalization properties of the radial Zemike polynomial terms are given 

by; 

1 

[R.:(P)R;(P)pip = 2(n
1
+l) 6,.". 

and 

R.:(1) = 1 

The radial polynomial may conveniently be factored into; 

R;'_(P) = g:(P)P"', 

where fr.(p) is a polynomial of order 2(n-m) and can be written; 

Q:(P) = I(-lY (2n-m-s)! p2(rr-'-I). 

pO s!(n-s)!(n-m-s)! 

In practice the radial polynomials are combined with sine and cosines rather than the complex 

exponential form of the angular term. The final Zemike polynomial series, representing the 
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wavefront, W, can be written as 

W = f[A/lQ!(P) + i:Q':(P)P"'(B,.,. cosmB+C,.,. sinm8)] 
1 _1 

where Au, B_, e_ are individual polynomial coefficients. The table below lists the first few 

Zemike polynomials together with the common optical aberration which they represent (where 

appropriate). Notice that each term contains the appropriate amount of each lower order term 

to make it orthogonal to those terms. 

The first 16 Zemike Polynomials. 

n m ~ l!glynomill Aberration 

0 0 0 1 Piston 

1 1 1 poos6 x-tilt 

2 psin6 y-tilt 

0 3 2p2-1 Defocus 

2 2 4 p2cos26 0 0 astigmatism and defocus 

5 p2sin26 45 0 astigmatism and defocus 

1 6 (3p2_2)pcos6 Coma and x-tilt 

7 (3p2_2)psin6 Coma and y-tilt 

0 8 6p4-6p2+1 Third order spherical and defocus 

3 3 9 p3cos36 

10 p3sin36 

2 11 (4p2-3)p2cos26 

12 ( 4p2_3)p2sin26 

1 13 (lOp4-12p2+3)poos6 

14 (lOp4-12p2+3)psin6 

0 15 20p'-30p4+12p2-1 

The fitting of Zemike polynomials to a discrete set of wavefront data points is usually 

accomplished by first fitting an x-y polynomial to the measured data. The x-y polynomials are 
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then transfonned to a linear series of Zemike polynomials by means of a linear transformation 

using matrix nwltiplication. This method has the disadvantage that errors are introduced by the 

intermediate x-y polynomial stage beawse of rounding errors and because the x-y polynomials 

are orthogonal on a unit square and not a circle. M.alacara et al (1990) describe a method of 

overcoming these drawbacks by performing a least squares fitting using orthogonal 

polynomials over a discrete set of data points in a unit circle which tend towards the Zemike 

polynomials as the number of data points becomes large. 

1.2.6 Phase Measuring Techniques. 

There are two main categories of automatic phase measurement techniques. The phase may 

either be determined electronically or analytically. The electronic methods are mostly 

heterodyne techniques. Many of the first techniques were developed before the advent of area 

detector arrays and desktop computers. Because most electronic methods measure only one 

point at a time they must scan to examine an area, their main application today is in distance 

measuring interferometry. 

Analytical techniques make use of area detector arrays and easily available computer 

processing to extract, essentially in real time, phase information from an entire interferogram 

at once. Analytical techniques include phase shifting and spatial carrier techniques. 

1.2.6.1 Heterodyne Techniques. 

The term heterodyne refers to the mixing of two different frequencies to produce a beat signal 

at the difference frequency. As the name implies, in a heterodyne interferometer, the light 

waves in the refen:nce and test beams have di1Ferent frequencies. The difference in frequencies 

is very slight compared to the frequency of visible light (-5xI014 Hz) and may be of the order 

of a few MHz, depending on the technique used. 

The beat ( difference) frequency produced by the interference between the reference and test 

beams is compared to a reference sinusoidal signal which may be produced optically or 
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electronically. The time delay between the crossing of the zero phase points of the test and 

reference sinusoidal signals is a measure of the phase. Every time the test signal passes through 

another zero in the same direction, another fiinge is counted. If the beam is interrupted as the 

detector is scanned across the interferogram, the fiinge count is corrupted and the 

measurement needs to begin again. 

Today, heterodyne techniques are used mainly in distance measuring interferometers. An 

example is shown in figure 1.18 though there are many different implementations of this type 

of instrument. 

Figure 1.18 Heterodyne distance measuring interferometer. 

The light source is a Zeeman laser which produces two orthogonally polarised outputs with 

frequencies a few MHz apart. A small fraction of both outputs is split off before the 

polarization beamspJitter to provide the reference signal. A polarizer at 45 0 is used to combine 

the beams for the reference signal. The reference signal is sinusoidal in time at the beat 

frequency between the two beams. 

The reference and test beams are split by a polarizing beam splitter (PBS). Comer cubes are 

used to reflect the beams back into the PBS. Quarter wave plates in each beam rotate the 

polarizations by 90 0 to the direction they entered. The test and reference beams are 
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recombined by a polarizer at 45° and detected by a second detector. 

The phase, modulo 21t, is found by electronically detecting the phase difference between the 

signaIs from the two detectors. As the comer cube in the test ann is moved in and out relative 

to the rest of the interferometer, the electronics count the number offiinges which pass by. 

This enables the distance over which the test beam comer cube is moved to be measured. 

Using sophisticated electronics, distances may easily be measured to AIlOOO or better. 

The very high sensitivity of heterodyne techniques have led to its use as an optical profiling 

tool (eg. Sommargren, 1981). Profilometers, whatever their measurement technique, are 

usually scanning instruments and commonly scan just a line on an object rather than a whole 

area. This means that the need to scan the detector is not a disadvantage when using 

heterodyne techniques for profilometry. 

Some authors (Massie, 1980, Barnes, 1987) have reported heterodyne interferometers for 

measuring areas. 

Massie's interferometer is shown, simplified, in figure 1.19. 
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Figure 1.19 Massie's heterodyne interferometer. 

The light somce consists of two optical frequencies, (,1)1 and (,1)2 with orthogonal po1arizations. 

The two frequencies are generated from a single frequency emitted by a Krypton ion laser in 

an auxiliary Mach-Zender interferometer (not shown for clarity). Each arm of the Mach

Zender interferometer includes an acousto-optic Bragg cell to shift the frequency in that arm. 

One Bragg cell is driven at 42 MHz and the other at 43 MHz and so the recombined beams 

have a frequency difference of 1 MHz. One arm of the Mach-Zender interferometer contains 

a 1/2 waveplate to rotate the polarization in that arm by 900 so that the two output 

frequencies are orthogonally polarized. 

The main interferometer is a polarizing Twyman-Green type with (,I) 1 in one arm and (,1)2 in the 

other. A lefaence signal for the electronic phase detector is sampled from a point in the image 

plane while the fringe pattern, modulated at the difference frequency, 1 MHz, is detected by 

an image dissector camera. In an image dissector camera, the image is formed on a photo

cathode which emits electrons when incident photons are absorbed. The electrons are focused 

by field coils and accelerated towards an anode where they are detected. The point on the 

photo-cathode from which the electrons are detected is scanned by controlling the field coil 
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currents. The phase difference between the reference and camera signals is electronically 

detected, digitized and stored on a computer which also generates the scanning control signals. 

The scan rate is limited only by the settling time of the electronic phase detector and is quoted 

as SOflS per point for this system which is very much faster than could be achieved by 

mechanical scanning and could rival standard video rates with more sophisticated electronics. 

The quoted phase accuracy is ')./70 which could also, no doubt, be improved. 

The principle ofBames' heterodyne Fizeau interferometer is shown in figure 1.20. 

The laser light is diffracted by a rotating radial diffiaction grating. Spatial filter, SFl, allows 

only the + 1 and -1 diffiacted orders to pass and these have a frequency difference of 2f , where 

f is the line passing frequency of the rotating grating. The separation of the two diffracted 

orders is greatly exaggerated in the figure for clarity. The two diffracted orders are collimated 

by a coUimating lens and reflected from the reference and test surfaces. The two surfaces are 

tilted slightly so that only the + 1 order from one surfilce and the -1 order from the other 

sud8ce pass through spatial filter SF2. The light from the test and reference surfaces interferes 

in the focal plane of the imaging lens to produce an interference pattern modulated at 

frequency 2f A stationary detector, D 1, in the image plane produces a phase reference signal 

and detector D2 is scanned across the interference pattern. The relative phase of the signals 

from D 1 and 02 is measured by an electronic phase detector to give a phase map of the 

interference pattern as D2 is scanned. 

A resolution of ').1200 is claimed for the interferometer but the long measurement time 

necessitated by the mechanical scanning of the detector means that the interferometer accuracy 

is limited by slow drifts in the orientation of the test and reference surfaces and other 

components. 
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Figure 1.20 Barnes' heterodyne interferometer. 

1.2.6.2 Phase Shifting (Quai-Heterodyne) Techniques. 

The development of area image detector arrays (principally charge-coupled devices (CCDs» 

has meant that whole fringe pattern images may be electronically captured, digitized and 

processed by computer. The finite integration (exposure) time of CCDs and the fact that the 

data is read out in a serial fashion (one pixel at a time) means that true heterodyne techniques 

may not be used. 
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In phase shifting techniques, several images (frames) of the interference pattern are acquired 

by the ceo camera and stored by a computer. The phase difference between the reference and 

test beams in the interferometer is shifted by a known amount between the frames. The phase 

sIJjft may be accomplished by a number of methods (Wyant and Creath, 1985, Crane 1969) but 

the most common is to vary the OPD by translating either the reference or test surface along 

the optical axis by means of a piezo-electric transducer. 

As the phase shifter is moved, the phase at each point in the interferogram clumges giving the 

appearance that the fringes are moving across the interferogram. Because of this, the 

techniques are sometimes called fringe scanning or fringe shifting techniques. 

The intensity at each pixel is given by: 

I (x,y) = lo(x,y){l + r o(x,y) cos(;(x,y) + a(t)]} 

where: I(x,y) is the intensity at a single detector point, 

Io(x,y) is the average intensity, 

yr/.:x,y) is the fringe visibility, 

~x,y) is the phase of the wavefront being measured, 

a(t) is the phase shift as a function of time, t. 

Since the detector has to integrate for some finite time, the detected intensity at a single point 

can be written as the integral of the instantaneous intensity over the integration time, A. The 

average phase shift for the ilb frame of data is a j • 

aj+1:J2 

I; (x,y) = t J lo(x,y){l +r o(x,y)cos[;(x,y)+a(t)]}da(t) 
aj-1l12 

After integrating over a(t), the intensity of the detected signal becomes 

It (x,y) = Io(x,y){l +r o(x,y)sinc(+,)cx>s[;(x,y) +a;]} 

where sinc(A/2) = sin(A/2)1(A/2). 
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There are two basic methods of varying the phase between frames. The phase may be varied 

continuously while frames are acquired or may be varied in a step-wise fashion with the phase 

constant during the acquisition period. The first method is potentially faster but requires more 

sophistication from the electronics. 

Mathematically, the only difference between the phase ramping and phase stepping techniques 

is a reduction in the detected fiinge modulation for the ramping method. This is due to the sinc 

term. When the phase is stepped (4=0), the sinc term has a value of 1. When the phase is 

ramped (asa) and a= 1t/2 (90°) then the sine term will be between 0.9 and 1. 4 will generally 

be less than a because of the finite time it takes to read out the CCD array between frames. 

Once a number offrames of data have been acquired the phase is determined computationally 

by one ofa number of techniques (Malacara, 1992). Some of these will now be described. 

1.2.6.2.1 Three-Frame Technique. 

Three frames of intensity data are the minimum required to calculate the wavefront phase 

since there are three unknowns, Io. Yo and <I> in the interferogram intensity equation. 

Using phase shifts of aF 1t/4, 31t/4 and 51t/4, the intensity distributions of the interferograms 

may be expressed as: 

Note that the 
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13 - 12 = ~Ior sin; 

II - 12 = .J2Ior cos; 

(x,y) dependencies are still implied and y is Yo multiplied by the constant sine term. 

The phase at each detector point is then simply; 

The fringe visibility can be calculated using; 

J(l3- /2)+(l1- / 2) 
y = J210 

It is easy to check the signal modulation (2Ioy) and to set a threshold on it of about S-l00A. 

If the moduJation is less than this value at any given data po~ that point is flagged u "bad". 

Bad points are usually alused by noisy pixels and can be due to scratches, dust, scattered light 

etc. 

When a general phase shift, is used, the three intensity measurements become: 

11 =lo[l+ycos(;-a)] 

12 = 10[1 + y cos;] 
13 =Io[l+ycos(;+a)] 

Phase shifts of a=21t/3 (120°) are also commonly used, in which case the phase is given by; 
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1.2.6.2.2 Synchronous Detection. 

An early technique for phase measurement utilized methods of communication theory to 

perform synchronous detection. To synchronously detect a noisy signal, it is correlated (or 

nrultiplied ) with sinusoidal and co sinusoidal signals of the same frequency and averaged over 

many periods of oscillation. The method of synchronous detection as applied by Bruning 

(1974) to phase measurement involves N measurements that are equally spaced over one 

modulation period with phase shifts such that; 

i2n ·th· 1 N at = N' WI 1= , ... , 

the phase can be calculated from; 

-l[L II (x,y) sinal ] tP(x,y) = tan L II (x,y)cosal 

Note that N can be any number of frames. The more frames of data the less error. This 

technique does not take up a large amount of memory for a large number of frames, because 

only running sums of the intensities multiplied by the sine and cosine of the phase shift need 

to be kept. 

1.2.6.2.3 Cam (1966) Technique. 

This technique uses four frames ofintensity data and assumes that the phase shift is not known, 

but that it is constant from frame to frame. In this case, the measured intensity data frames can 

be written as: 
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I. = 1.[1 +roo{;- 3:)] 
I, = I. [I+roo{;- ~)] 
I, =I.[I+roo{;+ ~)] 
I, = 1.[1 +rco{;+ 3:)] 

where the phase shift is assumed to be linear. From these equations, the phase shift can be 

calculated using; 

and the phase at each point is; 

These two equations combine to yield; 

;=tan-1{J[(/1-IIJ+(/2 -/3)][3(/2 -/3)-(/1 -I.)} 

(/2 +/3)-(/1 +1.) 

For this technique, the fringe visibility is given by; 

1 [(/1 - I.) + (/2 -/3)]2 + [(/2 + 13) - (/1 + I. )]2 r=-
24 2 

where it assumed that (X is near 'It/2. 

An obvious advantage of this technique is that the phase shift does not have to be calibrated. 

It is, however, computationally intensive. 
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.2.6.2.4 Four Frame Technique. 

This teclmique is the same as that for synchronous detection with N=4 and leads to an easy-to

calculate equation. The four frames of intensity data are given by; 

II = 10[1 + r cos;] 

I, =1.[I+roo{fI+ ;)=I.[I-rsinfl1 

13 = 10[I+r cos(; + n)] = 10[1-r cos;] 

I, =1.[I+roo{fI+ 3;)1= I.[l+r sinfl1 

The phase at each point is; 

and the fringe visibility is; 

1.2.6.2.5 Five Frame Technique. 

The most popular technique used in commercial interferometers today was developed by 

Hariharan et at (1987). It utilizes 5 frames of intensity data, and is popular because it is quite 

insensitive to connnon systematic errors which are present in phase measuring interferometers 

and data can still be taken rapidly because the number of frames is relatively small. 

This algorithm is designed to reduce the possibility of having the numerator and denominator 

tend to zero, and thereby reduce the uncertainty in the calculation. This algorithm uses five 

frames of intensity data with relative phase shifts of a=n/2. 
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II = 10[1 +yeo!(;-1r)] = Io[l-y eos;] 

I, = 1.[I+rc:o{;- ~ )]=1.[1 +r sin;] 

13 = 10[1 + Y eos;] 

I, = 1.[1+ r c:o{; + ~)]=I.[I-rsin;] 
Is = 10[1 +yeo!(;+1r)] = 10[1- yeos;] 

The phase calculated from this set of intensities is given by~ 

; = tan-I [ 2(12 - I.) ] 
213 -Is -II 

This is a very simple calculation and has a large tolerance to miscalibration of phase shift. 

For this technique, the fringe visibility is given by; 

~[2(12 -1.)2]+(213 -I, -11 )2 
y= 41 

o 

1.2.6.2.6 "2+ 1" Frame Technique. 

When measuring large optical components such as telescope mirrors, not all of the components 

will fit onto a single vibration isolation system. Because of this, there is likely to be a lot of 

vibration and air turbulence causing the interference fringes to move around. In this case, the 

data need to be acquired as filst as possible to freeze the interference fringes in time. Since the 

data need to be taken fist, the munber of data frames needs to be minimized. The "2+ 1" frame 

technique is aimed at solving these problems. 

Three frames of data are required by this technique. They are written as; 
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11 = 10[1 + r cos;] 

I, = /0[1 +YCO{;- ;)]=Io[I+Ysin;] 

13 =..!..{/o[l+rcos;]}+..!..{/o[l+rcos(;+n")]} = 10 
2 2 

The first two frames of data are taken very quickly with a 'It/2 phase shift between them. The 

third frame is the DC intensity (the average of two frames with a phase shift of 'It between 

them) which can be acquired at any time. 

There are only two frames of data which can be affected by vibration and air turbulence. If 

these two frames are taken on either side of the interline transfer in a standard CCD camera, 

Ims exposures can be taken as quickly as 1 JlS apart. This will freeu most vibrations and air 

turbulence that may affect the measurement. These three frames of data can then be combined 

to calculate the wavefront phase from; 

;=tan-1(/z -/3) 
11 -/3 

The fringe visibility for this technique is given by; 

1.2.6.2.7 Scanning Phase Shift Technique. 

Another technique developed for use in the presence of vibration and air turbulence utilizes a 

large number of data frames. This technique was originally developed (Vtkhagen, 1990) for 

TV holography and looking at large structures that could not be isolated; however it can be 

useful for other applications. 

For this technique, many frames of data with random phase shifts are collected. 

Ii = /0[1 + r cos(;+ ai »). 

42 



(Xi will be a random value between 0 and 21t. Every time a new data frame is recorded, the 

maximum and minimum intensity value at each detector point is determined. When the number 

of frames becomes large, these values will approach the maximum and minimum fringe 

intensities, I.- and Ian. This means that these values can be used to determine the DC 

intensity, Io. and the fringe visibility, y, at each data point, leaving the phase, <1>, as the only 

remaining unknown. The phase can be calculated using; 

,=oos-fI;.I. ) 
where ~ is the intensity data frame with a phase shift of (Xi> and 10 and y are calculated from; 

I = 1-. +1_ 
o 2 ' 

and 

Once a large number of frames has been recorded, the phase can be calculated as each new 

intensity frame is recorded. This technique will work as long as vibration and air turbulence 

do not cause the image of the object to move more than a fraction of a pixel from frame to 

frame. This algorithm may easily be programmed in an array processor to calculate the phase 

modulo 21t at video rates. 

1.2.6.2.8 ElTOr Sources in Phase Measuring Techniques. 

There are many sources of error in interferometric measurement. Some sources of error are 

common to all interferometric techniques. Phase measuring techniques have some extra 

potential sources of error which can propagate through the data processing algorithm to give 

erroneous results (Grievenkamp and Bruning, 1992). Reviews of the various sources of error 

in phase shifting interferometry are given by Cochran (1992), van Wmgerden et al (1991) and 

Stahl and Tome (1988). 

All phase shifting algorithms rely on shifting the reiative phases of the test and reference beams 
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in a known manner. In some cases, such as Carre's algorithm (section 1.2.6.2.3), the actual 

value of the phase shift is unimportant so long as it is the same between each of the frames of 

data. Generally, the dependence of the accuracy of a phase shifting algorithm on the accuracy 

of the phase shift varies between algorithms. Inaccuracies in the phase shift may arise from a 

munber of sources. The piezo electric devices commonly used for phase shifting are generally 

non-linear in that their change in dimensions does not relate linearly to the applied voltage and 

in addition, they also exhibit hysteresis. The effect of phase shifter non-linearity may be 

minimized by cahbration of the piezo electric devices and by compensation for their errors in 

the control electronics or in the processing of the acquired data. The extent to which phase 

shifter non-linearity affects the various different phase shifting algorithms has been described 

by a number of authors (Cheng and Wyant, 1985, Ai and Wyant, 1987, Huang, 1992). 

In the descriptions given above of the various phase measuring algorithms, the measured 

quantities from which the phase has been determined are the intensities of the fringes. In order 

to perform the algorithm, the intensities of the fringes must be converted into digital values 

for processing by computer. Two sources of potential error are thus detector non-linearity and 

analogue to digital converter errors. In general, silicon photodetectors such as CCDs are quite 

linear over a large range of incident intensities. At very low intensities a signal present in the 

absence of any light called the dark CWTent can be significant. At high intensities, the detector 

can begin to saturate resulting in non-linearity. Very high contrast fringes with a wide range 

of intensity values can thus suffer from non-linear detection and the accuracy of the phase 

measurement can suffer. Again, the emmt to which detector non-linearities affect the accuracy 

of the phase measurement varies depending on the algorithm used as has been shown by 

Kinnstaetter et al (1988). The analogue to digital (AID) converters used to convert the CCD 

data into digital values are easily made very linear but a potential source of errors arises from 

their quantization of the data. An AID divides the continuously variable input signal into a 

number of discreet steps. Video AID converters commonly convert the camera data into 8 or 

10 bit words meaning that the data are divided into 256 (2') or 1024 (21~ steps. Brophy (1990) 

has derived the error in the computed phase due to quantization of the data for most of the 

common phase shifting algoritlnns. For most purposes, sufficient accuracy is achieved by 8 bit 

AID converters and errors ofless than 0.0001 waves can be achieved by the use of 10 bits. 
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The long coherence length associated with the lasers usually used as the light sources in phase 

measuring interferometry can give rise to the presence of coherent noise which can affect the 

accuracy of the measmement. Coherent noise is caused by spurious reflections and scattering 

of light from surfaces in the interferometer other than those which are being measured and 

results in unwanted interference fringes and speclde being superimposed on the desired 

interference pattern. Coherent noise can be minimized by careful interferometer design (see 

sections 3.1 and 6.4.2). The effect of spurious reflections has been described by Ai and Wyant 

(1988) together with means by which it may be minimized for some of the phase shifting 

algorithms. 

Effects due to instabilities in the interferometer caused by instabilities of the laser source, 

vibration and air turbulence can affect all interferometric measurements. The effect on phase 

measuring methods can, however, be particularly severe since they rely on the variations in the 

fiinge pattern being due only to the phase shifter and not to other causes. These effects may 

be minimised by use of stabilized laser sources, careful VIbration isolation and thermal control. 

Imperfections in the optics of the interferometer other than those in the reference surface can 

have an effect on the accuracy of phase measurements due to propagation errors. If the light 

reflected from the test and reference surfaces does not accurately retrace its path through the 

optical system then the errors in the optics will be apparent in the interference pattern due to 

wavefront shear (see section 5.3). These effects may be minimized by careful nu1Iing of the 

interference fringes so that tilts between the interfering wavefronts are a minimum. An analysis 

of propagation errors is given by Huang (1992,1993) and loswicki (1991). 

1.2.6.3 Spatial Techniques. 

1.1.6.3.1 Fourier Transform Technique. 

The Fourier transform technique (Roddier and Roddier, 1987) is a way to extract phase from 

a single interferogram. It is commonly used in non-destructive testing and stellar interferometry 

where it is difficult to get more than a single interferogram. A flowchart of the basic technique 
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is shown in figure l.2l. 

RECORD 
INTERFEROGRAM 

J.l-
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J.l-
INVERSE FOtJJUEJt 
TRANSFORM 

Figure 1.21 Fourier transfonn phase measuring 
technique. 

A single interferogram is recorded, with sufficient tilt fiinges that none of the fringes are closed 

and that their order increases monotonically across the interferogram. The recorded 

interferogram intensity distribution is Fourier transfonned and one order of the frequency 

spectrum (usually the + 1 or -1 order) is isolated and shifted to zero frequency. After an 

inverse Fourier transform, the result is the phase. The choice of which order to isolate depends 

on a priori knowledge of the direction in which the order of the wedge fringes increases (in 

other words, which is the thick end of the wedge). If the wrong order is chosen, the phase map 

will have the wrong sign (for example, a convex wavefront will be interpreted as a concave 

wavefront. 

This can be illustrated mathematically, by rewriting the interference equation as~ 

1= 10 (x, y) + c(x,y)ei2
'!foX +c· (x,y)e-2JifoX

, 

where 

c(x,y) = Io(x,y)y(x,y)ei;(x,y ), 
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and the * indicates a complex conjugate. The term c(x,y) contains the phase infonnation we 

wish to extract. After performing a one dimensional Fourier transfonn, we have 

where ~ is the spatial frequency in the x direction, ~ is the spatial frequency of the tilt fringes 

and the bars indicate Fourier transforms. The next step is to filter out and isolate the second 

term, and then perform the inverse Fourier transfonn to yield c(x,y). The wavefront modulo 

21t is then given by 

~x,y) = tan-1(Im[c(x,y)]). 
Re[c(x,y)] 

1.2.6.3.2 Spatial Synchronous Detection. 

Another spatial teclmique is known as spatial synchronous detection (W omak, 1984) (Dorband 

et al, 1990) (Kuchel, 1990) (Freischlad et al, 1990b) . In this technique, the interferogram is 

multiplied by a reference pattern in the spatial domain. Again we rewrite the interference 

equation including a spatial carrier frequency; 

I(x,y) = lo(x,y){l +y(x,y)cos[;(x,y) + 27ifox]}. 

~ is the spatial carrier frequency created by adding many tilt fringes. A cosine reference pattern 

can be written as; 

~(x,y) = cos(27ifox). 

This pattern can either be generated analytically in a computer or electronically. These two 

patterns are multiplied together to yield; 

I(x,y)~ (x,y) = 10 (x,y)( cos(27ifox) + y(x,y){ cos(;(x,y) + 47ifox] + cos(;(x,y)}) 

The last term is filtered from the rest of the terms to yield a cosine function at the fundamental 

frequency. 

C(x,y) = lo(x,y)y(x,y)cos[;(x,y)]. 
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Similarly, a second function is created by multiplying the interferogram by a sine reference 

pattern 

R.m(X,y) = sin(27ifox). 

This yields; 

S(X,y) = Io(x,y)r(x,Y)sin[;(x,Y)]. 

The phase is then calculated from; 

;(x,y) = tan-1(S(X,Y»). 
C(x,y) 

The biggest problem associated with all spatial phase measuring techniques is the need to 

introduce a large amount of tilt between the reference and test waves in the interferometer. The 

large tilt means that the two wavefronts travel quite different paths in the interferometer which 

can introduce errors due to aberrations in the interferometer optics (Huang, 1993). 

1.2.6.4 Phase Unwrapping. 

All of the phase measurement algorithms described result in a phase calculation modulo 211: due 

to the periodic nature of the trigonometric functions employed. The results of the computation 

thus contain discontinuities where the phase values jump from 211: to zero. These 

discontinuities are easily removed by using the knowledge that the surface being measured is 

continuous and the assumption that its derivative is also continuous (that is, that the surface 

has no steps). The results of the computation are made continuous simply by adding 211: to the 

phase values at every discontinuity until the resultant phase map is a continuous function. 

1.3 Absolute Interferometric Measurements. 

Using phase measuring interferometry it is possible to determine the wavefront due to the 

interference of light reflected from two surfaces to a precision of 1/500 or better. When the 

measurement is made to determine the figure of one of the surfaces, however, it must be 
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remembered that the wavefront is due to the sum of the figures of the reference and test 

surfaces (Fizeau interferometer) or their difference (Twyman-Green interferometer). 

The measurement is thus a relative measurement and the uncertainty in the result cannot be less 

than the uncertainty in the figure of the reference surface. Commercially produced reference 

SUl'fi1ces typically have a figure error certified to be within ').120 toAIlO. The method used to 

arrive at the figure accuracy is usually not specified and a contour map of the part is very 

seldom supplied, the quoted accuracy usually being a peak-to-valley (P-V) value. 

F or many applications the accuracy of a relative measurement is sufficient but there are a 

growing IlUIJlba" of cases where this is not so. As an example, optical surfaces for use at very 

short wavelengths (soft X-ray telescopes or ultraviolet lasers) will usually be tested at visible 

wavelengths because of the aVailability of convenient visible laser light sources and detector 

arrays. While a SlJ!'face accuracy of All 0 at the test wavelength may be quite sufficient for an 

equivalent component operating at visible wavelengths, this will translate to an accuracy of 

several wavelengths at the design wavelength. For critical applications, this uncertainty in the 

surface figure will be quite unacceptable. 

Clearly then there is a need to be able to make measurements that exceed the accuracy of the 

reference Sl.lIDce (EJssner et al, 1992). Such measurements, that are independent of the errors 

in the reference surface, are known as absolute measurements (as distinct from relative 

measurements). Various methods have been developed for the absolute testing of optical 

surfilces. The absolute measurement techniques are generally dependent on the nominal surface 

figure of the component under test (flat, spherical etc.). 

1.3.1 Flat Surfaces. 

Techniques for the absolute interferometric testing of tIat surfaces can conceptually be divided 

into two groups. The first involves the use of a reference surface whose shape can be 

confidently predicted because it is defined by physical laws and not by manufacturing effort. 

Such a sur&ce is the undisturbed level surface of a liquid which naturally forms a near perfect 
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fiat (actually a sphere ofa radius equal to that of the earth). The second group oftecbniques 

use analytical methods to deduce the figures of the surfaces in the interferometer. These 

techniques generally involve manipulation of the data acquired from several interferograms 

comparing pairs offlats in different orientations. 

1.3.1.1 Liquid Surface Interferometry. 

The surface of a liquid will, in the absence of external forces other than gravity, tend to 

conform to the shape of a gravitational equi-potential of the gravitational field to which it is 

subject. In the case of a liquid at the Earth's surface this corresponds, for practical purposes, 

to a sphere with a radius of 6371 lan. The existence of such an almost perfect, naturally 

occuning, tlat surface has led to its use, by a number of workers, as the reference swface in 

the interferometric examination of flats. Historically, the first use of a liquid flat for forming 

interference was by Lord Rayleigh (1893), though his use of water was far from ideal as will 

be seen. For some authors (Dukhopel, 1971, Gorshkov, 1986, Ketelsen and Anderson, 1988) 

the principal attraction of liquid flats is the ease with which they may be made with large 

apertures for testing large diameter tlats. Chen et al (1993) have developed a large aperture 

phase shifting interferometer for flatness measurement which includes an optional liquid flat 

for calibration purposes though they provide little detail of this aspect of their instrument. 

The National Physical Laboratory (NPL) (Teddington, Middlesex, U.K.) have a liquid surface 

interferometer which is used for cahbration ofthejr 300mm diameter master flats (Dew, 1966). 

A simplified view of their interferometer is shown in figure 1.22 as described by Debenham and 

Dew (1980) . 
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~md 
Test fill ~:t-____ ~-----+' 

Figure 1.22 NPL's liquid surface Fizeau 
interferometer. 

The interferometer is of the Fizeau type with a low pressure mercury lamp source filtered to 

isolate the green line (A=546.07 nm). The fringe patterns are recorded on photographic plates 

for analysis. The liquid surface is approximately 3mm thick to damp vibrations and has a larger 

diameter than the test flat so that edge effects due to surface tension are negligible over the 

aperture of the interferometer. The liquid and test flats are enclosed within a heavily insulated 

box with a double- glazed window for optical access. This is necessary since the liquids used 

have low thermal conductivities and high thermal coefficients of expansion. To further reduce 

thermal effects, the laboratory in which the interferometer is situated is controlled to ±O.05 °c. 
To minimise vibrational disturbances, the floor of the laboratory is isolated from the main 

building, being supported on rubber blocks and a deep bed of sand. Additionally, to reduce 

environmental noise, measurements are performed during "silent hours" when there is little 

activity in the vicinity of the laboratory. Recently the mercury source has been replaced by a 

He-Ne laser (A= 632.8 run) and the photographic camera by a CCD camera to allow automatic 
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wavefront analysis by a Fourier transform or spatial synchronous technique. 

The choice of liquid is very important for obtaining accurate results from liquid surface 

interferometry (Dew, 1966). The liquid must acquire and maintain a stable flat surface and be 

immune to as many environmental f8ctors as possible. Factors that may influence the figure 

of the liquid surface include vibration, absorption of atmospheric water, evaporation, 

electrostatic chaJges and thermal effects. To counter these effect~ the ideal liquid would have 

high viscosity, be hydrophobic, have low vapour pressure and resistivity and have high thermal 

conductivity and low thermal expansion. Mercury has many of these features (Bunnage~ 1966) 

but a high reflectivity resulting in a low fiinge contrast for uncoated test surfaces. Being 

opaque it is also unsuitable for configurations where it is necessary for the test surface to be 

below the liquid surface. The liquid of choice is usually a silicone vacuum pump oil. This has 

the desirable properties of high viscosity, low vapour pressure and hydrophobia. Thermal 

effects are minimised by stringent control of temperature and electrostatic charges are allowed 

to leak away by increasing the humidity of the atmosphere in the vicinity of the surface. The 

high viscosity of the oil necessitates a relaxation time of at least 24 hours for the surface figure 

to settle after the liquid has been poured, making the measurement time rather long. 

One disadvantage of liquid surface interferometry is that the test surfaces may only be 

measured in a horizontal configuration. This can be a problem when the eventual orientation 

of the SlJl'f8ce in use is not horizontal since sag due to gravity can alter the shape of the surface. 

This problem is especially severe for large flats where the diameter to thickness ratio is large. 

Debenham and Dew (1980) have addressed this problem by measuring the flats with the test 

surfiIce both filcing downwards and upwards. The true surface figure, free from gravitational 

sag, is then the mean of the two measurements. The upward facing measurement is made by 

submerging the flat in the oil. The calculation of the mean surface figure must be weighted to 

take account of the bouyancy of the flat when submerged in the oil. The reference wavefront 

is reJlected from the surface of the oil and the test wavefront from the oiVglass boundary. One 

problem with this technique is that the fringe contrast is low due to the reflectivity from the 

oiVair boundary being much higher than the reflectivity from the oil/glass boundary. 

S2 



1.3.1.2 Three-Flat Test. 

In the absence of a natural perfect flat to act as the reference surface in a flatness test it is 

necessary to deduce the figure of the flats in the test by analytical means. The simplest of the 

analytical tests, and that upon which most other flatness tests are based, is the so called "three

flat" test (Emerson, 1952, Primak, 1967, Polster, 1968, Schulz and Schwider, 1976, Schwider, 

1991). As the name implies, the three-flat test uses three nominally flat surfaces. The three 

sur:filces, which shall be labelled A, B and C, are tested in pairs, AB, CB and AC, in a Fizeau 

interferometer to yield the sums of the figures of each pair of flats. The three positional 

combinations are shown in figure 1.23. 

Analysis of the three interferograms yields the functions: 

g,a(x,Y) = fA (x,y) + fB(-X,Y), 

gcs(x,y) = fc(x, y) + !B(-x,y), 

gAC (x, y) = IA(x,y) + fc (-x, y). 

Note the reversal of the coordinate system of the second flat in each combination. Because, 

in a Fizeau interferometer, the two surfiIces face each other, the second surface must be flipped 

over (in this case, about the y-axis) and the direction of the x-axis is reversed. 

This systemoftbree equations has four unknowns: fA(x,y), fB(-x,y), fc(x,y) and fc(-x,y) and so 

is soluble only when x= -x= ° and reduces to three unknowns. 

When x= 0, the solutions to the equations are: 

IAO,y) = g,a + g;c -gCB , 

fB(O,y) = gAB + g; - gAC , 

Ic(O,y) = gcs + gAC -gAB . 
2 

It is thus only possible to deduce the absolute profile of the surfaces under test along a single 
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diameter using three positional combinations of three flats. Determination of the profiles of 

other diameters is only possible by using additional positional combinations. 
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Figure 1.23 Positional combinations for the three-flat test. 
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It is important to note that the success of this method is due to the interferograms yielding 

infonnation about the sum of the figure of the surfaces under test in a Fizeau interferometer. 

Comparing the same three pairs of flats in a Twyman-Green interferometer would yield the 

following functions: 

g..cs(.X,Y) = fA(X,y)- fB(X,Y), 

gCB(X,Y) = fc(x,y)- fB(X,Y), 

gAC(X,Y) = fA(X,y)- fc(x,Y)· 

Though this system of three equations has only three unknowns it has no unique solutions and 

is thus insoluble since the three equations are not independent. 

1.3.1.3 Rotational Methods. 

1.3.1.3.1 Scbulz's Metbod. 

Extension of the basic three flat technique to obtain the absolute profiles of additional 

diameters may easily be achieved by recording an additional interferogram for each extra 

diameter. This approach is, however, very tedious for a large nwnber of diameters. It is, in fact, 

possible to derive the profiles of an arbitrarily large number of diameters from only four 

interferograms (Schulz, 1967, Schulz and Schwider, 1967, Schulz et al, 1971, Schulz and 

Scbwider, 1976, Stahl, 1991). The first three interferograms are the same as the basic three flat 

test to determine a single diameter. In the fourth interftogram, one of the flats is rotated about 

the optiall axis by an angle cfF 2nMIN in order to determine the contours along N diameters. 

M and N are natural numbers, prime to each other. To facilitate the reduction of the 

interferogram data the surfaces of the flats are defined as shown in figure 1.24 for M=1 and 

N=S. 
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Figure 1.24 Definition of surfaces for Schulz's rotational method. 

The five diameters whose profiles are to be determined are labelled diO,±l,±2) for flat A and 

similarly for flats B and C. Also points Ioand '=1 are defined on dA(O, ± 1) which are equidistant 

from the centre of the fiat and simi1arly for flats B and C. These points define the nominal plane 

from which the deviations of each flat will be measured. These points are defined by~ 

140 = 10_
1 
= 101 = 0, 

lho = /,,-1 = I~ = 0, 

leo =h_1 =Ic., =0. 

The seemingly arbitrary choice of three points to define the nominal plane of each flat only 

defines their orientation in space and has no effect on their figure. 

The four positional combination of the three flats are shown in figure 1.25. 
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Figure 1.25 Positional combinations for Schulz's rotational method. 

The measured data for the four GAB, Gcs, G AC and G ABll will not generally be consistent with 

the given definition of the nominal plane of each flat. This is because the tilt between the flats 

during the measI II cment camot be precisely known prior to the measurement. Considering the 

combination AB, it can be seen from figure 1.25 that the points &.10 10. 81 on flat A are 

coincident with the points bb bib b-I , respectively, on flat B. Given that the value of the 

surfiIce fimctions of the fiats is zero at all the points, the value of GAB should be zero at these 

points also. In order to make the measured data consistent it is necessary to subtract 8 linear 

term corresponding to 8 plane, P, defined by the measured values G AB( &'1), G AB( &0) and 

G~aJ. Note that the coordinate system for the measured data is the same as that of the upper 

fiat in the measured combination. The corrected data are; 

gAB = GAB - P(GAB (a_t),GAB (ao),GAB (at») 

similarly, for combinations CB and AC; 
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gCB = GCB - P(GCB(C_I),GCB(CO),GCB(CI») 

gAC = GAC - P(GAC (a_t), GAC (ao), GAC (at») 

The data sets g,. b and gAC are now consistent with the definitions of the nominal planes for 

flats A, B and C. 

The basic three flat test method may now be used to determine the absolute contours of the 

three flats along the diameters dN cis and de. The value of the surface figure function is now 

known at the central point (coordinates (0,0» of each flat and this fact may now be used to 

make the measured data G ABIt consistent with the definitions of the nominal planes. 

It can be seen from figure 1.25 that, in combination ABR, the points 80 and bl are coincident 

&lid the points 8t and bo are coinci.dem. In addition the cmtra1 points of each flat are coincident. 

The measured data at the centre will in general not be equal to the sum of the surface figure 

functions of A and B at the centre and so G ABIt may be corrected thus; 

gAIIR = G A/JR - JiG A/JR(aO),GA/JR(al),[GAIIR(O,O) -{f .. (0,0) + fB(O,O)}D 

The known profile of the diameter, dA(O) on flat A may now be subtracted from 8ABll to give 

the profile of di8!!1ft« da(1) on flat B. Sinularly the profile of diameter da(O) may be subtracted 

from gABlt to give the profile of diameter dA(l) on flat A 

fB[dB(1)] = gA/JR[d .. (O)]- f .. [d .. (0)], 

f .. [d .. (I)] = gABR[d .. (I)]- fB[dB(O)] 

The profiles oftbese two new diameters may now be subtracted from 8AB to give the profiles 

of two further diameters~ 

fB [dB (-1)] = g.e[d .. (1)]- f .. [d .. (1)], 

f .. [d .. (-I)]=g.e[d .. (-I)]- fB[dB(1)]· 

The profiles of these new diameters may then be subtracted from gABlt to give~ 
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Is[ds(2)]=g.4BR[dA(-1)]- iA [dA (-1)], 

IA [d.4 (2)] = gABR[dA(2)] - Is[ds( -1)], 

which may be subtracted from gAB to give; 

Is[ds(-2)] = gAB[dA(2)]-h[dA (2)], 

IA[dA (-2)]=gAB[d.i-2)]-Is [ds (2)]. 

The absolute profiles of five diameters on flats A and B have now been found for the case 

whereN=5. 

Note that for a rotational angle cfF 2n xQ where Q is an irrational number (one that cannot be 

expressed as a ratio of integers, MIN) the number of diameters that may be evaluated is 

theoretically infinite. 

Since its original conception the rotation method of Schulz has undergone several 

improvements wbidJ. have been made possible by the emergence, in the intervening period, of 

computer aided phase measuring interferometry. 

Schulz and Grzanna (1992) redefined the nominal planes from which the surface figure 

fimctioDs would be derived. Rather than define these planes by three discrete points, they were 

defined as the best fit planes to the surfaces being measured in the least squares sense. The 

least &q1.I81'eS best fit plane to the measured data for any combination of flats, with the best fit 

tilt terms removed, equals the sum of the best fit planes of the two surfaces comprising that 

combination This approach reduces the possible error introduced into the analysis by a tilt 

correction based upon only three points since the least squares fit to the data takes account of 

every data point. 

Scb.dz (1993) modified the method by introducing a fifth positional combination with an angle 

of rotation, Ket», equal to an integrallDlltiple of the rotation angle in the fourth, <1>. This has the 

effect of reducing the maximum number of steps required to determine the profile of each 

diameter, hence reducing the accumulation of measuring errors by propagation through the 
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analysis. 

EJssoa- et al (1994) review the developments to date in Schulz's rotation method and describe 

the experimental conditions necessary to obtain the best measurement accuracy with the 

technique. 

A problem with the rotation method is that, in general, points on diameters other than those 

parallel with the x and y axes will not coincide with the measured grid of points. This is 

because the analysis of data works on a radial grid of data and the measured data will be on 

a rectangular or square grid dictated by the geometry of the ceo camera used in the 

interferometec. Interpolation of data is therefore necessary in order to convert the rectilinear 

array of measured data into a radial array for processing, In order for the results to be in a 

useable form after the analysis, it is likely that they will have to be converted back into a 

rectangular array by further interpolation. This data interpolation is a likely source of error in 

the analysis. 

A further refinement of SchuIz's method to avoid the problem of interpolating data has been 

desaibed by Gtzanna (Grzanna and SdIulz, 1990, Grzanna, 1994). In this method, the rotation 

angle is 90° . The x and y axes of the flats are thus rotated onto each other and interpolation 

of data is not necessary. A fi.utber positioDal combination is used with one flat translated along 

the x or y axis with respect to the other in order to f8cilitate the determination of the absolute 

deviations from flatness on a square grid of points. The five positional combinations used in 

this method are similar to those used in the method independently developed by this author and 

to be described in chapter two, though the details of the data analysis are quite different. 

1.3.1.3.2 Ai's Method. 

A fimction in a cartesian cooniil mtes system can be expressed as the sum of four functions with 

different classes of symmetry. The four classes are; even symmetry in both x and y, even in 

x and odd in y, odd in x and even in y, odd in both x and y. 
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F(x,y) = F .. + F., + Fe. + FtI(J' 

where; 

F = [F(x,y) + F(-x,y) + F(x,-y) + F(-x,-y)] 

• 4 ' 
F = [F(x,y)+F(-x,y)-F(x,-y)-F(-x,-y)] 
., 4 ' 

F = [F(x,y)-F(-x,y)+F(x,-y)-F(-x,-y)] 
~ 4 ' 

Foo = [F(x,y)-F(-x,y)-F(x,-y)+F(-x,-y)]. 

4 

Ai and Wyant (19918) describe a method for the absolute testing oftlats where the figures of 

each ftat are decomposed into these four classes of symmetry which are determined separately. 

For COIM'JIieoce, two operators, [r and []8, are defined, descnDing a flipping of the function 

in x and a rotation of the function by e respectively. 

[F(x,y)f = F(-x,y), 

[F(x,y)f = F(xcosO- ysinO,xsinO+ ycosO). 

The measured data for the test are obtained from eight positional combinations of three flats 

wbtle, in some combinations, one ftat is rotated by 180°,90° or 45°. The measured functions 

are; 

gl =/ ... + I:, 
g2 = /~ro + /: , 

g3 = / ... 9lJ + /: , 

g4 =1;'+ I:, 

g, = 1~1tJ + I; , 
g6 =/B + I;, 
g7 = /B9lJ + /; , 

g. =1:'+ I;. 

g .. g~ and !k may then be written; 

gl = 1["'1- + l[ ... }Do + l[ ... P + /r"'J- + l[B1- - l[B}Do - fiBP + l[BJoo. 
g2 = fi ...... + l[ ... }Do - fi ... p - 1["'J- + l[B", - fiB}Do - fiBp + /rB}Do. 

g, = /r."'1- + l[ ... }Do -/r. ... P -/r. ... }eo + /r.CJ- - l[C)Do - l[cp + fic}Do. 
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The odd-even and even odd parts of the surface functions of the flats may thus be obtained 

from; 

fr +fr - [gs -[gstlO 

[.fr fr ]IIOJ 
(C)cw (C)eo - 2' (Ap + (A1-o • 

The even-even parts of the surface functions may also be found from; 

where; 

g
- _ gl + [gr1110 

, 
1-

2 
_ g +[g ]110 
g =' S 52' 

- g +[g t lO 

g _ 41 6 ,- . 
2 

AD oftbe eveo-even, odd-even and even odd terms are now solved, leaving only the odd-odd 

terms which are not soluble from the data sets employed so fir. An odd-odd function in a 

cartesian coordinate system is an odd function in a polar coordinate system with the same 

origin and has a period of 1800
• Thus an odd-odd function, F oo(x,y) may be expressed as a 

Fourier sine series; 
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Foo(x,y) = L~ sin(2m8), 

and 

[Foo (X,y)]90 = - L~ sin(2nJ8) + L~. sin(2m8), -=otItl __ 

where r+r= constant and h,. are the Fourier coefficients. To emphasise the periodicity of 

F 00 a subscript 28 is added. 

FOO;l1l = Foo;lDtltl8 + Foo;z-8' 

[FOIJ;ZS]90 = -Foo;latltlll + Foo;l.-8' 

where 

FOIJ;l.-8 = L ~sin(2m8)= Lh •• sin(4m8)=Foo,.,1, __ _1 

FOIJ;lotltlll = L~. sin(2mO), 
_odd 

F oo:z-e has a fundamental frequency of 4 and can be further divided into two groups; 

Foo,u = Foo,4odtlII +Foo,~, 

[Foo,u]4S = -Foo,4odtI, + Foo,'-I. 

An odd-odd function can thus be expressed as the sum ofmod(m8) terms where m= 2, 4, 8, 

16 •... ; 

Note that each term represents a broad spectrum of Fourier sine terms. For example. F ()(),2odd8 

includes components of sin(28), sin(68), sin(108), sin(148) ... andFoo,40dd8 includes components 

ofsin(48), sin(128), sin(168). sin(209) ... A smooth surface may then be well represented by 

the first two terms. 

The odd-odd components of the surface figure function may now be determined; 
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g'-g' 
Ir - 1 3 

[A)aD,2oo1111P - 2 ' 

Ir -g~-g; 
[B)ao,2oo1111P - 2 ' 

Ir 
_ [G;]-90 - g~ 

(C)ao,2oo1111P - 2 ' 

where 81', 83', 86' aDd 87' are 8b 83, 86 and 87 with the even-even, odd-even and even-odd 

components subtracted; 

The 4odd8 tams are; 

g: = 1[A}oo,28 - 1[B)ao,2l, 

g~ = [f[A}oo,2lr - fiB)oo;l8, 

g~ = 1[B}oo,2l- fiC}oo,28, 

g; = [f[B)oo,28r - f[C)oo;l(J' 

Ir - gl"-g;' 
[A)oo.4oM - 2 ' 

Ir - g:-g: 
(B)oo,4oM - 2 ' 

Ir 
[g;r'-g: 

(C)ao,4oM = 2 ' 

The terms, g", are the measured data with the previously determined terms removed; 

g;= I(A}oo,.r I[s}oo, .. 

g: = [/[A}Do,.r - I[B}oo, .. 

g; =1 [S}oo,..-I [C}oo," 

g:= [f(A}oo,.t
S 

- f(c}oo, .. 

The figures of tile three surfaces may now be written; 
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IA = J(A)IIr + f[A" + f[A»> + f[A}no,2 F '. + f[A}oo, ... 
+higher order tenDs, 

I. = J(.)IIr + f[ ... + J(.»> + f[.}Do,lGMI + 1i8)tJO.4oMI 
+higher order tenDs, 

Ie = J(ct- + f[cp + J(C}to + f[C}oo';bMl + f[CJoo,4oMI 
+higher orda' tenDs, 

The higher order tenDs may be fouDd ftom further positioDal combinations with different 

robIIiooaJ 1D8Ies. For imtance the 8odd6 tams may be found fiom combinations with a 22.5 0 

rotation. 

Ialiulion tbIt some of tile eight positioDal combiDatioDs required for the above method are 

DOt IineIdy independeat bas fesUIted in iefiilemellllS of the method and reduction of the number 

of coatinatims required. Ai aod Wymt (1992b) reduce the .unher of combinations to six and 

Sbao et .. (1992) reduce the gunher to the mirirmm offour. The four combinations described 

by Sbao et aI are the same as for SdIulz's method with • rotation angle of 45 0
• This allows 

determination of the odd-odd functions up to the 4odd8 tenDs. Using, instead, an angle of 

22.50 or fiutber subdivision would permit determiDation up to the Bodd8 terms or higher. 

1.3.1.3.3 Rotatioaal Medlods U" PoIyaoIaiaIs (Fritz'. Method). 

The ortbogoDal aDd rotationally invariant properties of tile Zemike polynomials (see section 

1.2.5.1) make than 111 _active proposition b- the II1Ilysis ofwaveftont data where rotations 

ofwawe&oots occur. Fritz (1983, 1984) bas described. method using these properties for the 

absolute measwement offtatness. 

Four positioaIl combinatioos oftbree flats are used, with • rotation of one ftat by an angle, 4», 
about the opbcaI axis, in the SlIDe way IS for the robIIiooaJ method accordiDg to Schulz (figure 

1.25). The figures of the three flats are each described by the sum of a series of Zemike 

polyDomiaIs; 
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fA = f[ArA)"Q!(P) + :tQ;(P)PIII(BrA)"",cosmo+c.A)_Sinm8)], 
1 111:1 

fa = ~[ 4 ... Q:(p) + t.Q;'(P)P·(~'I- cosml/+(:;.)ao sinmll) J. 
fe = ~[4e .. {t(P)+ t.Q;'(P)p"(~CJ-cosml/+Cje)aosinmll)} 

Because of the rotationally invariant form of the Zemike polynomials, the figure of tIat B 

rotated through angle, 4>, can be written as; 

fB = f[~BJ"Q:(P)+ :tQ:(P)plll(B[BJ- cosm(8-;) +C[B)1fIfI sinm(O-;)], 
1 _1 

= f[~B]"Q:(P)+ tQ;(P)plll(B[BJ- cosmO+C[BJ_ sinmo] 
1 _1 

where; 

B[BJ- = B[BJ- cosm; - C[B)_ sinm; 

C[BJ- = B[BJ- sinm; + C[BJ- cosm; 

These four equations can be combined to give the Zemike polynomials for the four test 

combinations. Equating these with the polynomial terms fitted to the measured data for the 

four combinations allows the polynomial coefficients for the three surfaces to be determined. 

The absolute contours of the three tIats are thus determined up to the order of the fit. 

Since the number of polynomial tenns fitted to the data must be finite, the spatial resolution 

of the analysis is limited by the highest order terms. For example a 37 term Zemike polynomial 

fit (a common maximum for commercial software packages for interferogram analysis) has a 

maximum angular term of sms8 and will not describe any surfaces features with angular spatial 

frequency components of greater than 5 cycles/rev .. 

However for sufficiently smooth surfaces (and surfaces sufficiently accurate to warrant 

absolute testing are likely to be very smooth) the method can yield very accurate results. Fritz 

(1984) quotes an accuracy of 11100 when using this method for the certification of250 mm 
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(10 inch) diameter flats. 

1.3.2 Spberical Surfaces. 

The absolute testing of spherical surfaces is much more straightforward than the absolute 

testing of flats. The same techniques as described for flatness testing may be adapted for 

spherical testing. The fact that the centre of curvature of spheres is accessible, however, 

provides us with the means of deriving the absolute contours of spheres over their whole 

surfaces from as few as three separate measurements (Truax, 1988, Creath and Wyant, 1990). 

A report by this author entitled "Absolute interferometric testing of microspheres." was 

commissioned by the National Physical Laboratory (NPL). The report describes in detail the 

various different possibilities for the absolute testing of very small radius spheres, though the 

techniques described are applicable to general spherical surfaces. A copy of the report is 

included in this thesis as Appendix A. 

1.3.3 Otber Surfaces. 

In section 1.2.3 configurations for testing conicoid surfaces were described where the surfaces 

were compared with spherical and flat reference surfaces. Clearly, if the absolute contours of 

the spherical and flat surlBces were known by the absolute measurement techniques described 

above or to be described then the tests of the conicoid surfaces can, themselves, be made 

absolute. 

An interesting possibility for the absolute measurement of conicoids is presented by the 

properties of a rotating liquid swface. In a rotating fluid adding the vectors of the centripetal 

and gravitational accelerations gives a surface that has the shape of a paraboloid. Using a 

reflecing liquid one therefore gets a reflecting paraboloid that could be used as a reference 

surface in an interferometric test. The focal length of the mirror, L is related to the 

acceleration due to gravity, g, and the angular velocity of the liquid, fA) by; 

L --L - 2· 
2tv 
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To date, most interest in rotating liquid mirrors lies in their potential as very large telescope 

primary mirrors for astronomy or LIDAR. A review paper by E. F. Borra, "Liquid mirrors: a 

review. " is available from the Word Wide Web at~ 

http://astrosun.phy.ulaval.caIlmtllmt.home.html. One group of workers are investigating the 

possibility of using rotating liquid mirrors as reference surfaces at Centre Spatial de Liege 

(CSL). Though there are, as yet, no publications in the literature on this aspect of liquid mirror 

research, the group at CSL have a Web page under construction at; 

http://astrosun.phy.ulaval.caIlmtllmt-cs1.html. 

NW;. Since first submission of this thesis, the following paper has appeared in the literature: 

Nmane, N.M, Jamar, C. A, "Parabolic liquid mirrors in optical shop testing." Applied Optics 

35 (31) 6131-6139 (1996). 

68 



Chapter 2: Description Of New Method For Flatness Testing. 

The method for absolute flatness testing to be described is based upon the basic three-flat 

test described in chapter 1 (section 1.3.1.2). The test is extended in order to overcome the 

limitation that it only yields the surface contour along a single diameter for each flat. 

The extension involves taking one of the com~inations involved in the three-flat test and 

modifying it by rotating one tlat through 90°. This rotation of 90° is a special case to which 

the objections raised in the section on rotational methods (section 1.3.1.3) do not apply. A 

square (cartesian) coordinate system rotated through 90° is equivalent to the same 

coordinate system but with the axes interchanged. There is thus no requirement for 

interpolation in order to operate on pairs of points in rotated and non-rotated coordinate 

systems. 

An additional modification of the basic combination is made by translating one of the tlats 

laterally along one axis. Again, this causes no problem with interpolation of data if the 

translation is by an integral number of units along the axis where 1 unit is the spacing 

between adjacent measured points (commonly the spacing between CCD camera pixels). 

2.1 Dermition Of Surfaces. 

The tlatness measuring method requires measurements to be made on a number of different 

combinations of pairs from three flats. In order that data from these measurements may be 

meaningfully processed it is necessary that the coordinate systems for each flat be defined. 

For three tlats denoted by the labels A, B, and C the coordinate systems are defined as 

shown in figure 2.1. 
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Figure 2.1 . Definition of surfaces used in the flatness test. 

70 

x,y) 

x,y) 

ZB 

x,y) 



The origin «x,y) = (0,0» of the coordinate system for each flat is at the geometric centre 

of the surface to be measured for each flat. The figure functions for each flat are fA(x,y), 

fB(x,y) and fc(x,y). 

The contours of the flats are to be derived as the deviations at each point (x,y) from an ideal 

mathematical plane. The choice of the plane from which these deviations are to be derived 

has no effect on the shape of the surfaces since it represents only a variation in piston 

(constant z term) and tilt (terms proportional to the x and y coordinates). The choice of 

plane thus only describes the position and orientation of the plane in space. However, since 

the contours are to be derived from several combinations of pairs of flats, the choice of 

nominal plane is significant with regard to the analysis of data and is described below. 

Any plane may be uniquely defined by any three points through which the plane passes so 

long as these three points do not lie in a straight line (in which case they would only 

describe that line). For the purposes of the following analysis the plane from which 

deviations for each tIat will be derived is defined as that plane passing through the points 

marked "0" in figure 2.1. In other words the deviation of the surface from the plane is 

defined as being zero at each of these three points. The points "0" are equidistant from the 

centre of each flat and lie at coordinates (x,y) = (R,O), (-R,O) and (O,-R) where R is an 

arbitrarily chosen integer radius less than the radius of the flats. The nominal planes from 

which the deviations for each tIat will be determined are thus defined as those passing 

through the points (x,y,z) = (R,O,O), (-R,O,O) and (O,-R,O) for each flat; 

fA (R,O) = fB(R,O) = fc(R,O) = 0, 

fA (-R,O) = fB(-R,O) = fc(-R,O) = 0, 

fA (O,-R) = fB(O,-R) = fc(O,-R) = 0. Eq.2.1 

The significance of this choice of plane will become apparent as the discussion of the data 

analysis proceeds. 
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2.2 Raw Data To Be Analysed. 

The positional combinations in which the three flats are to be measured are shown in figure 

2.2. The combinations are labelled AB, CB, AC, ABR and ABS. In each case, the first 

letter of the label refers to the "upper" flat or flat nearest to the collimating lens of the 

Fizeau interferometer. It can be seen that the coordinate systems for the upper flats are as 

shown in figure 2.1. In the first three combinations AB, CB, and AC the direction of the 

x-axis has been reversed for the "lower" flat by virtue of it having been inverted. In the 

fourth combination, ABR, the lower flat, B, has been rotated by 90° anti-clockwise about 

the origin as seen from flat A. Hence the coordinate system for flat B has also been rotated. 

In the fifth combination the lower flat, B, has had its origin translated by a distance, s, 

along the x-axis in the positive direction with respect to flat A. The y-axes of A and B have 

thus been displaced by distance, s. 

Figure 2.2. Positional combinations used in the test. 

In each of the combinations described above, the interferometer measures the sum of the 

deviations from the nominal planes for the two flats in the combination, plus an unknown 
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piston and tilt associated with the mechanical positioning of the fIats during the 

measurement It is these arrays of data, from the interferometric measurements of each pair 

offlats, that form the raw data from which the contours of each flat will be derived. These 

arrays of data shall henceforth be known as the "uncorrected deviation-sums"; GAB(x,y), 

GCB(x,y), GAC(x,y), GABR(x,y) and GABs(x,y). 

2.3 Analysis Of Data. 

2.3.1 Normalisation Of Initial Data. 

When setting up a pair of flats to form a cavity in a Fizeau interferometer, it is generally not 

possible to know precisely the amount of piston and tilt between the flats prior to the 

measurement Therefore, when the analysis of the fringe patterns is performed, the resulting 

contour map of the air gap will exhibit an amount of tilt and piston dependent upon the 

mechanical placement of the flats (tilt) and the starting point chosen by the phase 

unwrapping algorithm in the interferometer's processing software (piston) (section 1.2.6.4). 

In general then, the contour map (uncorrected deviation-sum), G(x,y) of the air gap for 

each combination will have piston and tilt terms inconsistent with the definition, given 

above, for the nominal plane for each surface. This conflict may be resolved by altering the 

piston and tilt terms without affecting the shape of the contours, as has been discussed 

before (section 2.1). 

For the first three combinations, AB, CB and AC this adjustment may easily be achieved. 

It can be seen from figure 2.2 that the three points defining the nominal plane for each flat 

are coincident since, for AB, (xAoyJ = (R,O) is coincident with (XB,yB) = (-R,O) and vice 

versa, and points (xAoyJ = (XB,yB) = (O,-R) are coincident. This is similarly true for 

combinations CB and AC. Since the deviation from the nominal plane at each of the three 

points "0" for each flat is defined as being zero, it follows that the deviation-sum at these 

three points must also be equal to zero. To correct the piston and tilt terms it is thus merely 

necessary to calculate the planes, P, which pass through the measured, uncorrected, 
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deviation-sums at the three points "0" for each combination and then subtract that plane 

from the uncorrected deviation-sum for each combination, AB, CB and AC. The results are 

the corrected deviation-sum for the pairs of flats, which will now simply be called the 

"deviation-sums"; gAB(X,y), 8cs(X,y) and 8cB(X,y) for AB, CB and AC respectively; 

gAB (x,y) = GAB (x,y) -l(G.u(R,O)'G.u(-R,O)'G.u(O,-R)'](X,y), 

gCB (x,y) = GCB (x,y) -l(Ga(R,O)'Ga(-R,O)'Ga(O,-R)'](x,y), 

gAC(X,y) = G AC(X,y) -l(G,u:(R,O)'G,u:(-R,O)'G,u:(O,-R)'](X,y). Eq.2.2 

The equation ofa plane, Z=P, passing through points (XbYbZl), (x2,Y2>z0 and (X3,Y3,Z]), as 

a function of (x,y)is given by; 

P. (x ) _ J(XI - x) + J(YI - y) + KZI 
[(%I'YI,ZI>'(%l'Yl,Zl),(%',Y"z,>] ,Y - K 

where 

J = (Y2 - YI)(Z3 - Zl) - (Z2 - ZI)(Y3 - YI)' 

J = (Z2 -ZI)(X3 -XI )-(X2 -XI )(Z3 -Zl)' 

K = (X2 - XI )(Y3 - YI) - (Y2 - YI)(X3 - Xl)' Eq2.3 

Thus far it is possible to correct the tilts only for the first three combinations. Further 

analysis, however, will lead to the correction for combinations ABR and ABS. 

2.3.2 Initial Three-Flat Test. 

Referring to section 1.3.1.2, it can be seen that the combinations AB, CB and AC are 

exactly those required to perform the standard three-flat test for absolute flatness 

measurement It can be seen from figure 2.2 that it is only along the y-axis for each flat that 

the contour may be solved since flat C has been inverted about the y-axis between 

combinations CB and AC. The three-flat test is applied to the deviation-sum data for AB, 

AC and CB to yield the absolute contours for flats A and B along their y-axes; 
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iA(O,Y) = gA8(O,Y) + gAC;O,y) - gCB(O,Y) , 

iB(O,Y) = gA8(O,y) + gCB;O,y) - gAC(O,Y) , 

ic(O,y) = gCB(O,Y) + gAC (0, Y) - gA8 (0, Y) . 
2 Eq.2.4 

Flat C will play no further part in the analysis and the following analysis will work towards 

finding the whole-surface contours oftlats A and B only. 

2.3.3 Extension To Orthogonal Diameten. 

Given that the absolute contours of tlats A and B are now known along the y-axis of each 

tla~ it follows that the deviations from the nominal planes for A and B are now known at 

the origins (xAoy J = (XB,yB) = (0,0). These may be denoted by fA(O,O) and fB(O,O). 

The correction of piston and tilt for combination ABR may now be performed. Referring 

to figure 2.2.1, it can be seen that points (x",yJ = (R,O) and (XB,yB) = (O,-R) are now 

coincident and thus the deviation-sum here should equal zero. The same is true for points 

(xA,y J = (O,-R) and (Xs,YB) = (R,O). Additionally, the origins of A and B being coinciden~ 

the deviation-sum here should be fA(O,O)+fJO,O). The piston and tilt correction required for 

ABR is therefore that the plane defined by the difference between the measured, 

uncorrected, combination sum, G ABR(x,y) and the known deviations at these three points 

be subtracted from the measured, uncorrected, deviation-sum. The result is the corrected 

deviation-sum which will now simply be called the deviation sum of ABR, gABR(X,y); 

It is now possible to find the contours of the x-axes of A and B. Subtracting the known 

contour of A's y-axis from the ABR deviation sum data yields the contour ofB's x-axis and 

vice versa; 
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iA(X,O) = gABR(X,O)- iB(O,-y), 

iB(X,O) = gABR(O,-y) - iA(O,-y). Eq.2.6 

2.3.4 Extending the analysis across the flats. 

Once the profiles of Bats A and B have been found along the x and y axes it is possible to 

proceed to find the profiles of an array of equa1l~ spaced chords parallel to the y-axis. First, 

however, it is necessary to correct the piston and tilt in the deviation-sum array for 

combination ABS. The correction of piston and the component of tilt proportional to the 

x coordinate (x-tilt) is straightforward and will be treated first. The correction of the 

component of tilt proportional to the y coordinate (y-tilt) is more difficult. 

2.3.4.1 Correction Of Piston and X-Tilt In ABS Data. 

Referring to figure 2.2 it can be seen that the x-axes of A and B in the ABS combination 

are superimposed but translated by distance, s. This is shown in side view in figure 2.3. 
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Figure 2 .3. Section along x-axes for combination ABS. 

For the purposes of this discussion, consider two points on A; (xA,y J = (R,O) and (xA,y J= 
(-R,O) where, by definition fA = 0. The coincident points on Bare (XB,yB) = (-R+s,O) and 

(XB,yB)= (R+s,O) respectively. At these points the deviation sum should be equal to fB(

R+s,O) and fB(R+s,O) respectively. The x-tilt and piston may thus be corrected in ABS by 

finding a plane defined by the difference between the measured, uncorrected error-sum at 

these two points and the required values. There are, of course, an infinite number of such 

planes since two points can only define a straight line and any straight line lies in an infinite 

number of different planes. It is convenient, therefore, just to set the y component of the 

plane to be removed equal to zero. The ABS array thus corrected for piston and x-tilt will 

be referred to as the "partially corrected deviation-sum", GP ABs(x,y). 

G1s(x,Y) = G ABs(x,Y) -l[G.us(-R+s,O)'G.us(R+S,O)](x,y). Eq.2.7 

It is not possible, at present, to find the correction required for the y-tilt in the ABS data. 
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It will, therefore, be assumed, for the time being, that this correction is not required or that 

it has been carried out. It will be seen that the correction required may be inferred from the 

results of the next step. 

2.3.4.2 Finding The Prordes or Parallel Chords. 

Referring, once again. to figure 2.2, it can be seen that, in combination ABS, the y-axis of 

flat A is coincident with the chord on flat B where XB = s. If the known profile of the y-axis 

of A, fiO,y) is subtracted from the partially corrected deviation-sum array, QP ABS' then the 

result will be the contour of the B chord fB(S,y). That is; 

fB(S,Y) = G~s(O,y)- fA (O,y). Eq.2.8 

It can now be seen that this new chord is coincident with the chord on flat A where XA = 

-s in combination AB. The profile of the B chord may now be subtracted from the AB 

deviation-sum, gAB(X,y), along the chord XA = -s to give the profile of flat A along that 

chord. That is; 

This new chord may now be subtracted from QP ABs(x,y) to give the profile of the chord 

where XB = 2s. That is; 

fB(2s,Y) = (]P.4BS( -s,y) - fA (-s,Y). Eq.2.10 

This process may be continued, subtracting the profile of each new chord from QP ABS or gAB 

to give the profile of a further chord until the edge of the flat is reached. The process will 

then have found the profiles of chords on flat A where XA = -s, -2s, -3 s .... and chords on flat 

B where xB = S, 2s, 3 s .... 
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A similar process may be carried out using the known profile of flat B along its y-axis. 

Subtracting this profile from QP ABs(x,y) gives the profile of the chord on A where XA = s. 

That is: 

fA (s,Y) = G~BS(S,y) - fB(O,y). Eq.2.11 

Then, subtracting this new chord from gAB(X,y) gives the profile of the chord on B where 

XB = -so That is: 

fB(-s,Y) = gAB (s,y) - fA (s,y). Eq.2.12 

And so on. 

The process will then have found the profiles of chords on flat A where xA = S, 2s, 3 s .... and 

chords on flat B where xB = -s, -2s, -3s .... 

This procedure for finding the profiles of the chords is illustrated in figure 2.4 For the sake 

of simplicity and clarity a constant term, c, has been added to the values of QP ABS and gAB 

in order to separate the surfaces of A and B. 
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Figure 2.4. Finding the profiles of parallel chords. 
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2.3.4.3 Correction ofY -Tnt In ABS. 

In the last section it was assumed that the piston and tilt in G' ABs(x,y) had been corrected 

but only the piston and x-component of the tilt have been dealt with. It is now necessary 

to consider what the effect any y-tilt error will be on the profiles of the parallel chords 

found in the last section (2.3.4.2). 

If gABs(X,y) represents the deviation-sum array where piston and tilt (x and y) have been 

fully corrected then the partially corrected combination-sum array (JP ABs(x,y) with residual 

y-tilt error can be given by: 

G1s(X,y) = gABS +ky, Eq.2.13 

where ley is the y-tilt error term. 

Equation 2.8 may now be rewritten; 

The first new chord found thus has an error term equal to the y-tilt error on the partially 

corrected deviation-sum array, (JP ABs(x,y). 

Equation 2.9 now becomes: 

and equation 2.10 becomes: 

fB(2s,y) +2ky = gABs(-s,y)+ky-[fA-s,y)-ky]. Eq.2.16 
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The next B chord has thus gained an extra ley error term. 

In general each chord on the B flat, fB(ns,y), has an error term equal to nley and each chord 

on the A flat, fA(ns,y), has an error tenn equal to -nky. 

In order to find the value of the y-tilt tenn, Ie, the array ofB-chords is inverted and rotated 

by 90° and then added to the array of A-chords in the same way as the flats A and B are 

combined in combination ABR This is illustrated in figure 2.5. Naturally, the chords may 

only be added at the points where they cross, giving a square array of values spaced a 

distance, s, apart. Let this array of values be denoted by G'AB!t(x,y). 

Generally G'AB!t(x,y) is given by; 

G~(x,y) =[fA(P,q)+kpq]+[fB(-P,-q)+kpq] 

= fA (p,q) + fB(-P,-q)+2kpq, Eq.2.l7 

where x = ps, y = qs and p,q = 0, 1, -1, 2, -2, .... 

For the corrected deviation-sum array for combination ABR, gA8R(X,y), the values are given 

by: 

gABR = fA (x,y) + fB(-X,-y). Eq.2.18 

If this array is sampled on a square grid of spacing, s, and the array,G'A8R(P,q), is subtracted 

from it, the result reveals the value of k. 

G~(p,q)- gABR(p,q) = 2kpq, 

k = G~(p,q) - gABR(p,q) . 

2pq Eq.2.19 

Thus the value of the y-tilt error in GP ABs(x,y) has been determined and may now be 

removed to give the corrected deviation-sum array, gABS(X,y) for combination ABS. 
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The absolute contours of the surfaces may now be found with the correct spatial orientation 

between the parallel chords in the array. This may be achieved either by individually 

removing the error tenn, nky from each chord or by using the corrected error-sum array for 

combination ABS, gABs(x,y) and re-performing the analysis from equation 2.8 onwards. 

The equations for finding the profiles of the chords may be written generally as: 
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Find a new chord on A given a chord on B from ABS data~ 

fA (ns,y) = gABs(ns,y)- fB(-n+ l)s,y). Eq.2.20 

Find a new chord on B given a chord on A from ABS data; 

fB(ns,y) = gABs(-(n-l)s,y)- fA( -(n-l)s,y). Eq.2.21 

Find a new chord on A given a chord on B from AB data; 

fAns,y)=gAB(ns,y)- fB(-ns,y). Eq.2.22 

Find a new chord on B given a chord on A from AB data~ 

fB (ns,y) = gAB (-ns,y) - fA (-ns,y). Eq.2.23 

Where n= ±1,±2,±3 ... 

Having found the absolute profiles of an array of chords parallel to the y-axes of flats A and 

B it is a trivial matter to find the absolute profiles of an array of chords parallel to the x

axes. To do this it is only necessary to subtract the profiles of the known chords on flats A 

and B, parallel to the y-axis from the gABR(X,y) data to yield the profiles of the chords 

parallel to the x-axis on flats B and A respectively; 

fB(X,ns) = gABR(-ns,y)- fA (-ns,y), 

fA (x,ns) = gABR(ns,y) - fB(-ns,y). Eq.2.24 

The analysis described yields the absolute contours of the flats at all points on a square grid 

of chords spaced by distance s in the x and y directions. The analysis therefore yields more 

information than the test described by Grzanna (1990, 1994) (see section 1.3.1.3.1) which 

finds the values of the surface figure functions only on a square grid of points from a 

similar set of positional combinations. The array of points found in Grzanna's method are 

included in the results found by the method described above, being the points of 

intersection on the array of chords. 
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2.4 Small Scale Manual Demonstration of the Algorithm. 

In order to demonstrate the validity of the above algorithm and to illustrate the steps in the 

analysis it is helpful to perform a manual simulation using small arrays of data. A random 

array of data is used to simulate the surface function of each flat. The use of a random array 

ensures that the results of the algorithm are not the accidental result of an inappropriately 

chosen figure function. The simulated figure functions for the three flats are shown below. 

For the pwposes of this simulation R =2 and so the appropriate points defining the nominal 

planes for the flats have been set to zero (Equation 2.1) 
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yl x- -4 -3 -2 -1 0 1 2 3 4 

4 63 76 80 33 81 0 12 5 68 

3 93 18 31 93 69 94 32 1 6 

2 17 13 97 85 22 79 33 62 39 

1 64 60 85 43 68 44 82 42 47 

0 80 74 0 17 43 82 0 2 92 

-1. 86 97 68 45 46 25 62 81 93 

-2. 17 7 42 49 0 3 41 30 30 

-3. 81 16 52 95 37 51 34 61 78 

-4. 94 17 43 95 39 46 20 40 4 

FLAT B-fB(x,y) 

yl x- -4 -3 -2 -1 0 1 2 3 4 

4 41 14 3 96 68 70 81 59 57 

3 99 61 44 27 85 21 77 80 42 

2 73 89 85 55 78 47 82 72 41 

1 98 2 91 45 75 88 93 19 44 

0 11 73 0 85 47 91 0 98 68 

-1. 80 49 79 72 93 97 44 17 4 

-2. 61 30 45 63 0 81 44 77 34 

-3. 10 8 16 37 97 94 43 24 99 

-4. 24 77 24 52 20 36 52 11 35 
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FLAT C-fc(x,y) 

yl x- -4 -3 -2 -1 0 1 2 3 4 

4 61 30 SS 73 27 49 42 36 666 

3 4 26 14- 17 26 84 43 2 22 

2 65 81 94 95 36 71 70 26 3 

1 87 65 31 97 7 77 20 77 94-

0 47 31 0 89 48 22 0 84 98 

-1. S6 39 95 1 52 5S 53 6 93 

-2. 55 7 6 99 0 17 46 14 27 

-3. 17 76 66 55 0 31 71 83 76 

-4. 69 95 12 21 12 70 60 82 77 

. 
To demonstrate the normalisation of initial data (section 2.3.1) the data for the AB 

positional combination has had an x and y tilt added. 

Uncorrected data for combination AB. GAB(x.xl 

yl x- -4 -3 -2 -1 0 1 2 3 4 

4 128 14S 173 117 165 114 3S 41 133 

3 142 107 119 127 169 138 95 83 128 

2 64 93 189 144 114 150 136 171 134-

1 113 86 187 142 156 104 190 63 166 

0 152 178 8 118 102 181 16 93 123 

-1. 93 119 119 151 150 110 156 14-7 192 

-2. S3 88 92 138 10 78 100 76 109 

-3. 181 43 100 196 142 99 63 84 lOS 

-4. 129 30 99 137 67 106 S6 131 44 
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According to equation 2.3, the equation of the plane to be removed from GAB (x,y) is; 

P(X,Y) = 2x+ y+ 12. 

Subtracting this plane from GAB(x,y) gives gAB(x,y), the corrected deviation sum for 

combination AB. As expected, gAB(x,y) equals the sum of the surface figure functions for 

flats A and B~ 

gAB (x, y) = fA. (x,y) + fs( -x,y). 

It will be assumed that this correction has also been performed for the measured data, 

Gca<x,y) and G~x,y) to give &:sI..x,y) and g~x,y) respectively. Only the data for the y-axes 

of these two combinations will be shown since these are the only points used in the 

analysis. 

Corrected data for combination AB. i~ 

yl x- -4 -3 -2 -1 0 1 2 3 4 

4 120 135 161 103 149 96 15 19 109 

3 135 98 108 114 154 121 76 62 105 

2 58 85 179 132 100 134 118 151 112 

1 108 79 178 131 143 89 173 44 145 

0 148 172 0 108 90 167 0 75 103 

-1. 90 114 112 142 139 97 141 130 173 

-2. 51 84 86 130 0 66 86 60 91 

-3. 180 40 95 189 134 88 SO 69 88 

-4. 129 28 95 131 59 98 44 117 28 
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Corrected data for combinations CB and AC. aca(O.xl and 1I"c!Q.xl 

Y b(O,y) g...JO,y) 

4 9S 108 

3 1I1 95 

2 114 58 

1 82 7S 

0 9S 91 

-1 145 98 

-2 0 0 

-3 97 37 

-4 32 51 

Equations 2.4 may now be applied to the data to yield the contours of each flat along the 

y-axis. 

y gAB(O,y) 8cB(0,y) SAC(O,y) f,,(O,y)= fB(O,y)= fc(O,y)= 

(gAB+g"c- (gAB+g"c· (gAB+gAC-

8cs)/2 8ca)/2 8ca)/2 

4 149 95 108 81 68 27 

3 154 111 95 69 85 26 

2 100 114 58 22 78 36 

1 143 82 75 68 75 7 

0 90 95 91 43 47 48 

-1 139 145 98 46 93 52 

-2 0 0 0 0 0 0 

-3 134 97 37 37 97 0 

-4 59 32 51 39 20 12 

As expected, these results agree with the initial values entered for the surface figure 

functions of the three flats. 
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It is now possible to consider the measured data for combination ABR, G ABR(x,y) and find 

the profiles of the x-axes of A and B. Following the discussion in section 2.3.3 the value 

of the corrected data at the origin should equal the sum of the two surface functions for A 

and B at the origin; 

gABR (0,0) = l.iO,O) + IB (0,0). 

From equation 2.3, the plane which must be subtracted from GABR(x,y) is; 

P(X,Y) = 3x-2y+20. 

Uncorrected data for combination ABR. YABR£x.xl 

yl x~ -4 -3 -2 -1 0 1 2 3 4 

4 104 178 159 140 104 95 91 36 116 

3 109 84 128 106 156 160 82 32 109 

2 24 64 192 189 38 177 100 103 91 

1 166 96 152 113 171 137 169 106 129 

0 156 170 92 109 110 198 26 128 144 

-1. 166 131 131 152 149 147 171 206 163 

-2. 110 99 142 163 24 74 105 106 118 

-3. 154 113 144 137 161 97 143 110 127 

-4. 167 78 106 164 135 81 88 176 79 
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Corrected data for combination ABa. iABR£u) 

y! x- -4 -3 -2 -1 0 1 2 3 4 

4 104 175 153 131 92 80 73 IS 92 

3 107 79 120 95 142 143 62 9 83 

2 20 57 182 176 22 158 78 78 63 

1 160 87 140 88 153 116 145 79 99 

0 148 159 78 92 90 175 0 99 112 

-1. 156 118 115 133 137 122 143 175 129 

-2. 98 84 124 142 0 47 85 73 82 

-3. 140 96 124 114 135 68 111 85 89 

-4. 151 59 84 139 107 SO 54 139 39 

Using equations 2.6 the profiles offlats A and B along the x-axes are given as follows. 

xIy 8Amt(x,0) fB(O,-y) fA(-x,O)= &uR(O,-y) fA(O,-y) fa(x,O>,", 

8AB1l( -x,O)-fB(O, -y) 8ABIt(O,-y)-fA(0,-y) 

4 112 20 92 107 39 68 

3 99 97 2 135 37 98 

2 0 0 0 0 0 0 

1 175 93 82 137 46 91 

0 90 47 43 90 43 47 

-1 92 75 17 153 68 85 

-2 78 78 0 22 22 0 

-3 159 85 74 142 69 73 

-4 148 68 80 92 81 11 
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It is now possible to consider the simulated measured data for combination ABS, GABs(x,y). 

The simulated data is shown below. Note that the left hand column is empty, corresponding 

to the region where the two flats do not overlap due to the lateral shift of flat B. 

Uncorrected data for combination ADS. GABs£x$ 

yl x- -4 -3 -2 -1 0 1 2 3 4 

4 154 157 129 163 77 114 11 82 

3 84 132 188 105 191 68 SI 70 

2 81 193 188 87 172 100 156 134 

1 134 131 160 177 137 142 14S 58 

0 175 128 44 158 ISO 103 17 177 

-1. 137 118 129 170 142 ISS 178 1S7 

-2. 80 ISS 126 111 30 128 96 78 

-3 IS7 lIS 174 164 178 98 101 107 

-4. 97 96 186 111 99 102 91 lOS 

From the discussion in section 2.3.4., it is only possible, at this point to determine the 

necessary corrections for piston and x-tilt in the data. From equation 2.7, the equation of 

the plane that must be subtracted from the data to perform these corrections is; 

P(X,y) = -3x + 24. 

The partially corrected data, QP ABs(x,y) are shown below. 
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Partially corrected data for combination ABS, ~(x,y), 

yl x- -4 -3 -2 -1 0 1 2 3 4 

4 121 127 102 139 56 96 -4 70 

3 51 102 161 81 170 SO 36 58 

2 48 163 161 63 151 82 141 122 

1 101 101 133 153 116 124 130 46 

0 142 98 17 134 129 85 2 165 

-1, 104 88 102 146 121 137 163 14S 

-2, 47 125 99 87 9 110 81 66 

-3, 124 85 147 140 IS7 80 86 9S 

-4, 64 66 159 87 78 84 76 93 

Using this data, and the data set gAB(X,y), the equations 2,8 to 2,12 may be applied to find 

the profiles of a parallel array of chords on each flat with the y-tilt error terms included. 

Following the discussion in section 2.3.4.3, the array of chords on flat A is added to the 

flipped and rotated array of chords on flat B to give the square array of values, G'ABR(X,y). 

The value of the y-tilt error term is found by subtracting the corrected data for the ABR 

positional combination, gABR(X,y) from G'ABR(X,y) (equation 2.19). 
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Profile of parallel chords on Flat A before y-tilt correction. 

yl x- -4 -3 -2 -1 0 1 2 3 4 

4 111 112 104 45 81 -12 -12 -31 20 

3 129 45 49 102 69 85 14 -26 -30 

2 41 31 109 91 22 73 21 44- 15 

1 76 69 91 46 68 31 66 23 25 

0 80 74 0 17 43 82 0 2 92 

-1 64 78 52 42 46 28 68 90 105 

-2. -7 -11 30 43 0 9 53 48 54 

-3. 45 -11 34- 86 37 60 52 88 114 

-4. 46 -19 19 83 39 58 44- 76 52 

Profile of parallel chords on Flat B before y-tilt correction. 

yl x- -4 -3 -2 -1 0 1 2 3 4 

4 89 SO 27 108 68 58 57 23 9 

3 135 88 62 36 85 12 59 53 6 

2 97 107 97 61 78 41 70 54 17 

1 120 21 107 58 75 85 87 10 32 

0 11 73 0 85 47 91 0 98 68 

-1. 68 40 73 69 93 100 60 36 26 

-2. 37 12 33 57 0 87 56 95 58 

-3. -26 -19 -2 28 97 103 61 51 135 

-4 -24 41 0 40 20 48 76 47 83 
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Sum of A chords and flipped and rotated B chords with y-tilt error., G'ABR~ 

yl x- -4 -3 -2 -1 0 1 2 3 4 

4 200 247 201 155 92 S6 25 -57 -4 

3 179 133 156 113 142 125 26 -45 11 

2 68 93 206 188 22 146 54 42 15 

1 184- 105 152 94 IS3 110 133 61 75 

0 148 159 78 92 90 175 0 99 112 

-1. 132 100 103 127 137 128 ISS 193 153 

-2. SO 48 100 130 0 S9 109 109 130 

-3. 68 42 88 96 135 86 147 139 161 

-4 55 -13 36 lIS 107 74 102 211 135 

yl x- -4 -3 -2 -1 0 1 2 3 4 

4 96 72 48 24 0 -24 -48 -72 -96 

3 72 S4 36 18 0 -18 -36 -54 -72 

2 48 36 24 12 0 -12 -24 -36 -48 

1 24 18 12 6 0 -6 -12 -18 -24 

0 0 0 0 0 0 0 0 0 0 

-1. -24 -18 -12 -6 0 6 12 18 24 

-2. -48 -36 -24 -12 0 12 24 36 48 

-3. -72 ·54 -36 -18 0 18 36 54 72 

-4 -96 -72 -48 -24 0 24 48 72 96 
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It can easily be seen from the values ofG'ABl~(x,y)-gABR(X,Y) and from equation 2.19 that the 

y-tilt error term, k=-3. Therefore the plane that must be subtracted from the partially 

corrected data for combination ABS, G' AJJ..x,y) is P(x,y)=-3y. This gives the fully corrected 

data for combination ABS, gABs(X,y). 

CQrrected data for combination ABS, iABsiul 

yl x- -4 -3 -2 -1 0 1 2 3 4 

4 133 139 114 151 68 108 8 82 

3 60 111 170 90 179 S9 4S 67 

2 54 169 167 69 157 88 147 128 

1 104- 104- 136 156 119 127 133 49 

0 142 98 17 134 129 85 2 165 

-1. 101 8S 99 143 118 134 160 142 

-2. 41 119 93 81 3 104 75 60 

-3. 115 76 138 131 148 71 77 86 

-4. 52 54 147 75 66 72 64 81 

Equations 2.8 to 2.12 may now be applied to this data to derive the profiles of the array of 

parallel chords with the correct spatial relationship to each other. Notice that the results of 

this step are identical to the synthesised data for flats A and B which were input at the start 

of the analysis. This verifies the validity of this flatness measuring algorithm. 
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Profiles ofparaIlel chords on Flat A derived from corrected data 

yl x .. -4 -3 -2 -1 0 1 2 3 4 

4 63 76 80 33 81 0 12 5 68 

3 93 18 31 93 69 94 32 1 6 

2 17 13 97 85 22 79 33 62 39 

1 64 60 85 43 68 44 82 42 47 

0 80 74 0 17 43 82 0 2 92 

-1. 86 97 68 45 46 25 62 81 93 

-2. 17 7 42 49 0 3 41 30 30 

-3. 81 16 52 95 37 51 34 61 78 

-4. 94 17 43 95 39 46 20 40 4 

Profiles ofparallel chords on flat B derived from corrected data. 

yl x" -4 -3 -2 -1 0 1 2 3 4 

4 41 14 3 96 68 70 81 59 57 

3 99 61 44 27 85 21 77 80 42 

2 73 89 85 55 78 47 82 72 41 

1 98 2 91 45 75 88 93 19 44 

0 11 73 0 85 47 91 0 98 68 

-1. 80 49 79 72 93 97 44 17 4 

-2. 61 30 45 63 0 81 44 77 34 

-3. 10 8 16 37 97 94 43 24 99 

-4. 24 77 24 52 20 36 52 11 35 
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1.5 Extending the Spatial Resolution of the Test Using Two Different Lateral Shifts. 

It has been shown that the method described is capable of finding the absolute contours of 

a pair oftlats along a square array ofparaIlel chords. In principle the method may be used 

to find the absolute contours at every point on the measured array of points by making the 

lateral shift in positional combination ABS equal to one pixel. In this case, however, the 

number of steps required to find the contours towards the edges of the flats would be large 

where the pixel spacing is small compared to the radius of the flats. The number of steps 

required to reach the nih chord is 2n. 

Where a large number of steps is required to find the absolute contour at a datapoint the 

effect of the accumulation of random errors in the measured datapoints will become large. 

The effect of experimental errors will be considered in greater detail in the next chapter. 

It will be shown below that the number of steps required to determine the absolute contours 

of the tlats at every datapoint may be greatly reduced by using two positional combinations, 

ABSI and ABS2 with lateral shifts where the two shifts are by different distances, SI and 

~. 

Suppose that, initially, the method described above is followed using only one of the shifted 

positional combinations, ABSI. This will yield the profiles oftlats A and B along a parallel 

array of chords spaced a distance SI apart. These profiles may be written as fA(ns.,y) and 

fs(nsbY) respectively. Suppose now that a similar proceedure is undertaken using the data 

from positional combination ABS2. Instead, however, of using the known profiles offlats 

A and B along their vertical diameters as a starting point for finding the profiles of new 

chords, the profiles fA(nsby) and fB(ns1,y) found from the analysis of the ABSI data are 

used. 

Equations 2.20 to 2.23 may now be rewritten thus: 

Find a new chord on A given a chord on B from ABS2 data; 

fA(nsl +ms2,y) = gABs(nsl +ms2,y)- fB(-n+ I)SI +(-m+ l)s2'Y)' Eq.2.2S 
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Find a new chord on B given a chord on A from ABS2 data; 

fB(ns l +ms2,y) = gABS (-(n -1)sl -(m-l)s2'Y) - fA (-(n -1)sl - (m-l)s2'Y). Eq.2.26 

Find a new chord on A given a chord on B from AB data; 

fA(nsJ +ms2,y) = gAB(nsl +ms2,Y)- fB(-nsl -ms2.Y)· Eq.2.27 

Find a new chord on B given a chord on A from AB data; 

fB(nsl +ms2.y) = gAB (-ns1 -ms2.Y) - fA (-ns1 -ms2,Y)· Eq.2.28 

Where n= ±1, ±2. ±3 ...• m= ±l. ±2. ±3 ... 

If the two lateral shifts, 51 and ~ are mutually prime integer numbers of pixels (having no 

common integer factors) then any chord may be found from 2(n+m) steps. If SI and ~ are 

chosen such that, as well as being mutually prime. they are of the order of the square root 

of the radius of the flats then the maximum number of steps to find the profile of any chord 

will be minimized. 
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Chapter 3: Implementation of the New Flatness Testing Algorithm on the Zygo Mark 

IV Interferometer. 

The algorithm for the absolute testing of tIat surfaces described in chapter 2 was implemented 

on a Zygo Mark IV phase measuring Fizeau interferometer (Zygo Corporation, Laurel Brook 

Road, P.O. Box 448, Middlefield, CT 06455-0448, U.S.A) at the National Physical 

Laboratory (NPL, Teddington, Middlesex, U.K. TWll OLW). 

This Chapter describes the development of software for the implementation of the testing 

algorithm as well as hardware to facilitate the necessary measurements. The debugging and 

testing of the software using synthesized data are described. Limitations of the software, 

dictated by the interferometer's internal computer architecture, are identified as an obstacle to 

the full practical implementation of the algorithm using real experimental data. Suggestions as 

to how these problems may be overcome and the algorithm improved further are discussed 

together with an analysis of the propagation of experimental errors and how this may be 

minimized. 

3.1 The Zygo Mark IV Interferometer. 

The Zygo Mark IV interferometer is a phase measuring Fizeau instrument with a Helium-Neon 

laser source (Domenicali and Hunter, 1980). A simplified view of the internal features of the 

interferometer is shown in figure 3.1. The 2 mW Helium-Neon laser light source is spatially 

1ihered using a microscope objectiw/ pinhole combination and converted to a plano wavefront 

by a collimating lens to give a measurement aperture of 100 mm (4 inches). The plane 

wavefront illuminates the interference cavity formed by the two optical flats. The position of 

the first flat in the cavity is modulated by a piezo-electric phase shifter to allow phase 

measurement as described in section 1.2.6.2. The light reflected by the interference cavity is 

directed along one of two paths. In alignment mode the reflected light falls on a screen placed 

at the back focus of the collimating lens and the images of the pinhole formed there due to the 

two surfaces in the interference cavity are imaged onto the CCD TV camera. This allows the 

elements in the interference cavity to be aligned by adjusting their tilts such that the two point 
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images are central and coincident in the camera's field of view. In measurement mode the fringe 

pattern fonned by the interference cavity is imaged onto a rotating diffuser screen which 

reduces the coherence of the light. The reduction in the coherence of the light greatly reduces 

the problems that would otherwise arise owing to the formation of spurious interference 

fringes due to stray reflections in succeeding optical elements. The image of the interference 

pattern is transferred to the CCD device in the camera via a zoom lens with a 6: 1 ratio. This 

allows the interference patterns due to test elements smaller than the maximum interferometer 

aperture of 100 mm ( 4 inches) to fill the field of view. 

lV_ 

cco 

Figure 3.1 The Zygo Mark IV interferometer optical system. 

Data acquisition and control of the Zygo Mark IV interferometer is accomplished by a 

proprietary computer system. A block diagram of the integrated Mark IV interferometer 

system is shown in figure 3.2. 
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Figure 3.2 
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The Zygo Mark IV interferometer system. 
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The contro~ acquisition and analysis functions of the interferometer system are handled by the 

Zygo Mark IV processor and peripheral devices. The processor is based on the Motorola 
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68000 microprocessor operating at a clock speed of 10 Mhz with 2 Mbytes random access 

memoI)' (RAM). The data "window" used in the Mark IV is a 210 x 280 pixel array. Analogue 

data from the CCD camera is processed to digital light intensity data utilizing an 8 bit analogue 

to digital converter. The digital infonnation is loaded into a memory array for manipulation and 

data analysis. The data acquisition time for the Mark IV is lOOms. The Zygo processor does 

not feature a hard disk drive for storage and program and permanent data storage functions 

are handled by an external dual 3.5 inch floppy disk drive with a storage capacity of 720 

Kbytes per disk. Operator input is via a keyboard for text and numerical input and a trackball 

as a pointing device. 

The Mark IV interferometer system utilizes two display devices. A monochrome video fringe 

monitor is used for system alignment and fringe acquisition. The fringe monitor also displays 

any cursors currently active which define current measurement windows or act as alignment 

aids. The primary display for the processor system is a colour monitor for displaying textual, 

numerical and graphical information. Hard copy output for the system is via an inkjet printer. 

Specifications for the Mark IV interferometer system as supplied by Zygo are as follows: 

• Aperture: 4 inches (100mm) 

• Light source: Helium-Neon laser operating at 632.8 nm. Maximum output power less 

than 1.5 mW. 

• Accuracy: Better than ').ISO peak-to-valley (P-V), being the overall system 

accuracy for absolute testing using the three-flat test. 

• Instrument precision: better than ').1500 rms, being the residual rms error of the 

difference of two consecutive measurements, each consisting of an average of 4 sets 

of data. The specification is derived from a sample of 100 measurements and represents 

the mean value plus 20 (98 % confidence). 

• Repeatability ofP-V and rms: better than AllOO and lllOOO respectively, being for a 

population of 100 ~ where each sample consists of an average of 10 sets 

of data. The specifications are for the 20 (98 % confidence) repeatability of the data. 

• Spatial resolution: 210 x 280 pixels. 

103 



• Computational resolution: 11512 fringe. 

3.1.1 Holding The Test Flats. 

The Zygo interferometer system features a standardized bayonet type system for the mounting 

of reference optics and accessories. Reference optics, be they flat or spherical, are held in an 

aluminium cell which mates with a bayonet recept.acle on the front of the phase shifter on the 

interferometer. The bayonet mount ensures stable and repeatable positioning of the reference 

optics and the receptacle features x and y tilt adjustment controls to align the surface to the 

interferometer. For holding the test surfilces relative to the interferometer, a variety of mounts 

with different numbers of degrees of freedom are available. For flatness testing, the required 

degrees of freedom are x and y-tilt and translation in the x and y directions. The mounts are 

equipped with the standard bayonet receptacle to accommodate swfaces mounted in bayonet 

equipped cells. For wunounted surf8ces, there is a spring-loaded self-centring three jaw chuck 

which mates with the bayonet receptacle on the adjustable mount. 

For the absolute flatness testing method to be implemented, three flats, A, B and C are used 

in various positional combinations. In one positional combination, CB, flat C is mounted in the 

interferometer. In all of the other positional combinations, AB, AC, ABR, ABS} and ABS2, 

flat A is mounted in the interferometer. Flats A and C are thus fitted in standard bayonet fitting 

cells. The third flat, B, is always mounted externally to the interferometer and requires to be 

rotated through an angle of 90 0 for combination ABR and translated in the x direction by a 

known amount in combinations ABS} and ABS2. To facilitate this, a special cell was 

constructed for flat B, an otherwise unmounted flat. 

The cell for mounting flat B is shown in figure 3.3. The cell is machined from aluminium in the 

form of a ring. The optical flat is held in place by a flange at the rear of the cell and by three 

nylon screws equi-spaced around the edge. The cell is designed to be held by the self-centring 

three jaw chuck in the test surface mount. The cylindrical jaws of the chuck locate in three of 

the v-section grooves machined around the periphery of the cell. The v-section grooves are 

located every 30 0 around the periphery of the cell which allows the cell to be accurately 
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rotated through 90 0 for positional combination ABR. In order to further facilitate the 

positioning offlat B, a ring shaped accessory (figure 3.4) bearing fiducial pointers is attached 

to the front of the cell. The ring is attached by screws into tapped holes in the front of the cell. 

The screws pass through arc shaped slots machined into the ring which allow the angular 

position of the ring to be adjusted. This adjustment is necessary since the angular position of 

the jaws of the three jaw chuck depend on the diameter of the object held and is thus not 

predetermined. 

In use, the fiducial pointers are used to align flat B with cursors on the interferometer's fringe 

monitor in order to ensure the correct lateral translations in positional combinations ABS 1 and 

ABS2. 

~A 
I 

sectB-B 

Figure 3.3 Cell for mounting flat B. 
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1D2mm (4") 

Figure 3.4 Alignment ring for flat B's mounting cell 

The interferometer and test surface mount are both supported on a pneumatically vibration 

isolated optical table to ensure stable mutual positioning. In order further to reduce the 

possible influence of environmental disturbances, the optical table is housed in a room 

equipped with air conditioning to ensure a stable air temperature of 20°C and the interference 

cavity may be surrounded by bafiles to minimize effects due to air movement. The possible 

effects of air movement may be further minimized by placing the two flats as close together 

as the mounting hardware will permit, thus reducing the thickness of the air gap. 

Minimizing the thickness of the air gap between the flats also reduces the effect of aberrations 

introduced by the interferometers collimating lens on the measurement. Where the collimation 

is perfect and the angle of incidence of the light on a cavity of thickness, t, is everywhere 

normal, the OPD between test and reference wavefronts is 2t. Where the collimation is 

imperfect and the illumination angle varies from normal by 06, the OPD is 2tJcos06. The OPD 

thus varies over the field of view by 2t( l-lIcoso 6) even when t is constant, thus introducing 

an error into the measurement. Since the magnitude of this error is proportional to t, it is 

desirable to keep t as small as is practicable. Reducing t also minimizes the effect of aberrations 

introduced into the test wavefront by errors in the back surface of, or inhomogeneities in, the 

reference flat by the same argument. When t is zero, aberrations introduced by the collimator 
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or substrate of the reference flat only cause a geometrical distortion of the fringe pattern which 

will be negligible for a well adjusted system. 

A general view of the Zygo interferometer hardware is given in figure 3.5. Detail of the 

mounting hardware for flat B is shown in figure 3.6. 

Figure 3.5 General view of the Zygo interferometer hardware. 
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Figure 3.6 Detail of flat mounting hardware showing, clockwise from top left: flat A in 
Zygo bayonet mount, mounting cell for flat B, Zygo three axis mount, flat B unmounted and 
alignment ring for flat B. 

3.2 The Zygo Interferometry Programming Language (ZIPL). 

The Zygo Mark IV interferometer system is supplied with standard software for perfonning 

common relative measurement functions. Where the standard user interface software does not 

fulfill the requirements for the analysis of a specialist measurement technique, a programming 

language is supplied to allow the user to write customized processing software. The 

proprietary progranuning language is called the Zygo Interferometry Programming Language 

(ZIPL). 

ZIPL is an interpreted computer language very much like BASIC. Most of the common 

BASIC commands (gosub, for .. to .. next etc.) are common to ZIPL. In addition ZIPL includes 

many commands that are specific to the control of, and analysis of data in, a Zygo 

interferometer system. A brief description of those specialized ZIPL commands used in the 

flatness analysis software are descnbed in the table below. More detailed descriptions of these 

commands and those not described may be found in the ZIPL user manual . One useful feature 

of most interpreted BASIC languages that is missing from ZIPL is a renumbering facility. This 
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means that it is important, when writing ZIPL code, to leave plenty of unused line numbers 

between lines of code to allow for later additions and corrections. 

Functions of Specialized ZIPL Commands 

Command Function 

acquire Acquire light level data from interferometer. 

average Average multiple datasets. 

clr Remove user defined variables from memory. 

connect Convert unconnected phases to connected phases. 

convert Convert light level data to phase data. 

coordinates Specify pixel coordinate system (squared or rectangular). 

cursor Set up cursors on fringe monitor. 

finat Sets fields for display of numerical information. 

initialize Initialize a disk or volume U. 

invert Invert the data. Used for Mark IV interferometer. The processor unit may 

also be used with the Maxim profiler which does not use this command. 

isometric Display data in isometric plot format. 

mask Restrict area of operation. 

multiply Multiplies current dataset by a factor. 

printer is Selects the print device. 1 =monitor, 2=printer. 

scroll Put the graphics terminal into scroll mode. 

square Convert the data into squared format. The interferometer has a 

rectangular CCD array. This command makes the data look like it came 

from a square array. 

subtract Subtract dataset in user volume from current data. 

units Specify units for parameter input or analysis output. 

window Specify data area of interest. 

zgen Generate a surface from the ZGEN system variables. 
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zremove Subtract a swface defined by the ZGEN system variables from the current 

data set. 

In addition to featuring special conunands for interferometry, ZIPL defines a number of System 

Variables which are distinguished by being written in capital letters. The table below describes 

the significance of those ZIPL System Variable used in the flatness analysis software. 

SiiJ1ificance of System Variables 

System Variable Significance 

CURSOR[n][m] The coordinate extents of cursor n. 

DATA The name of the array into which data sets are loaded in order for 

them to be operated upon. 

DATAPOINT[x][y] The value ofan element of DATA at coordinates (x,y). 

ERROR Query error number. 

ERRORS Query text description of error. 

TIMER Set millisecond timer. Query current value. 

ZGEN[n] Access value of nib Zernike coefficient.ZGEN[36],[37],[38] are x 

and y centre coordinates of the function and radius of the function 

respectively. 

The storage of data in ZIPL is in one offour areas known as "volumes". These volumes are 

named A, B, M and U. The A and B storage volmnes are the two floppy disk drives, each with 

a capacity of 720 Kbytes. There is no hard disk drive. Volumes M and U are the "main" and 

"user" volumes respectively and occupy RAM of which there is a total of 2 MBytes. It is 

unclear how nmch of the 2 MBytes is available to volumes M and U since the operating system 

and program code occupy some of this space. Obviously, to maximize program execution 

speed it is desirable that the data being processed is stored in RAM but when several large 

datasets are in use there is insufficient RAM available so the floppy disk volumes, A and B, 

must be used to store some data during program execution as will be seen in the description 

of the flatness testing software below. A feature of ZIPL code is that elements of measured 

datasets may only be accessed when that dataset is loaded into the system variable array, 
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DATA This is a major constraint which dominates the structure of the code, as will be seen. 

3.3 Development of ZIPL code to implement the flatness testing algorithm. 

The overall structure of the program code closely parallels the development of the flatness 

testing algorithm as described in chapter 2. The complete ZIPL program listing is included in 

this thesis as Appendix B. Important sections of~e code are described in some detail below 

where this helps to demonstrate the functions being performed. 

The program is structured from a group of subroutines. The main program body is contained 

in line numbers 10 to 999. 

10 rem REFERENCE FLAT CALIBRATION PROGRAM 

20 rem BY JOHN MITCHELL (KINGSTON UNIVERSITY) 

2S on error gosub @_aftermath 

30 gosub @Jnit 

40 gosub @_cursors 

SO gosub@_aC<Lcb 

60 gosub @_&CCL8C 

70 gosub @_ac<Labr 

80 gosub @_aC<Lab 

90 gosub @_ac<Labsi 

100 gosub @_8C<Labs2 

110 gosub @_make_blanks 

120 gosub @_do)1f 

130 gosub @_do_schulz 

140 gosub @_adj_abs 

ISO gosub @_solve 

900 ? ERROR: ? ERRORS 

999 end 
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Lines 30 and 40 call subroutines to initialize constants and cursors etc. for later use by the 

program. Lines 50 to 110 call subroutines which handle the measurement and acquisition of 

the various datasets from the different positional combinations used in the absolute flatness 

testing algorithm. Lines 120 to 150 call subroutines which perform the major sections of the 

data processing to derive the absolute contours of the flats from the measured datasets. 

Subroutine @_doJIf perfonns the basic three fiat test to find the profile of the first diameters 

on each flat. @_do schulz finds the profiles of the diameters orthogonal to those already found. 

@_adLabs corrects datasets ABSI and ABS2 for piston and tilt. Finally, @_solve finds the 

solution for the contours of the flats over their entire surfaces. 

In order to facilitate easy understanding and reading of the program code, the first line number 

and a brief description of the function of each subroutine is given in the table below. 

position and function of the proiJlllD subroutines 

Subroutine name Line Function 

Dumber 

@_~ab 6000 Acquisition of AB dataset. 

@_~abr 5000 Acquisition of ABR dataset. 

@_a~absl 7000 Acquisition of ABSl dataset. 

@_~abs2 8000 Acquisition of ABS2 dataset. 

@ ac<Lac 4000 Acquisition of AC dataset. 

@_ac<Lcb 3000 Acquisition of CB dataset. 

@ ac<Ldata 10000 Acquisition of datasets from interferometer. 

@ adj abr 18000 Correction of piston and tilt in ABR dataset . 

@ adLabs 23000 Correction of piston and tilt for ABS 1 and ABS2 datasets. 

@ adj datal 11000 Correction of piston and tilt for AB, AC and CB datasets. 

@_adj-xtilt 24000 Correction of piston and x-tilt for ABSI and ABS2 

datasets. 

@_aftermath 32000 Provides diagnostic data in the event of a fatal program 

error. 
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@_chord.J>rint 37000 Prints the data for a horizontal chord for diagnostic 

purposes. 

@_cursors 2000 Sets up cursors to define the extent of acquired data and 

fringe monitor cursors to aid positioning of the flats. 

@_delay 22000 Delays program execution before data acquisition to allow 

settling of fringe pattern. 

@_diagnost 31000 Provides diagnostic data at various stages of program 

execution. 

@_do_ftf 15000 Performs standard three flat test on AB, AC and CB 

datasets to find the profiles of the vertical diameters. 

@_do_schulz 17000 Performs Schulz's method to find profiles of horizontal 

diameters. 

@_find.J>lane 12000 Determines the coefficients of the plane passing through 

three points. 

@_findflt 25000 Determines and removes the y-tilt error in the ABS1 and 

ABS2 datasets. 

@jnit 1000 Sets the value of constants used during program execution 

and allows the operator to choose whether to acquire new 

data, use old data or synthesize data for test purposes. 

@_init_temp 16000 Initializes two arrays for the temporary storage of data. 

@_make_blanks 14000 Creates blank datasets in which to write the results of 

processmg. 

@_minmax 21000 Determines the extent and centres of the datasets from 

cursor data. 

@new 20000 Prepares for the acquisition of new data. 

@_old 19000 Prepares for the use of old data. 

@Jemove.J>lane 13000 Removes a plane from the current dataset given the 

coefficients of that plane. 

@_resu1ts_disk 35000 Prepares a floppy disk for storage of the final results of 

the program. 
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@_solve 30000 Determines the contours of the whole oftlats A and B 

once all data has been corrected. 

@_step_chordsl 26000 Determines the profiles of additional chords on A and B 

starting from a known chord on fiat A 

@_step_chords2 27000 Determines the profiles of additional chords on A and B 

starting from a known chord on tlat B. 

@_sub_templa 28000 Routine used by@_step_chordsl (performs equation 

2.26). 

@_sub_templb 28500 Routine used by @_step_chords2 (performs equation 

2.25). 

@_sub_temp2a 29000 Routine used by@_step_chordsl (performs equation 

2.27). 

@_sub_temp2b 29500 Routine used by @_step_chords2 (performs equation 

2.28). 

@_synth 34000 Synthesizes datasets for the purpose of testing the 

operation of the program. 

@_temp_diag 33000 Prints the contents of arrays temp 1 and temp2 for 

diagnostic purposes. 

@_zgen_clear 36000 Sets the values ofZemike coefficients ZGEN[O] to 

ZGEN[35] equal to zero. 

A flow chart showing the structure of the first section of the program, dealing with 

initialization and data acquisition is shown in figure 3.7 . 

. First, constants for later use by the program are set. Constants, sl and s2, are the pixel shifts 

for positional combinations ABSI and ABS2, respectively. Constant, bad= 99999.0, is the 

value given by the processor to a measured pixel when the phase of the wavefront at that pixel 

cannot be correctly determined. This can be either because of an optical defect at that point 

such as a speck of dust on one of the surfaces, or because that point is outside the aperture of 

the interference cavity formed by the two surfaces. At frequent points during the program, it 

is necessary to check whethe£ a point is bad since otherwise a bad point may then be converted 
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by a mathematical operation to an erroneous value that would not be recognized as such by 

the processor. The constant, multfact, is used to increase the dynamic range of the calculations 

in the processing. The significance of this constant will be described later. 

laY. cb to dIIk 

_.ectocllk 

..... lIIIrtoclsk 

Figure 3.7 Flow chart for initialization and data acquisition. 

115 



At this point the user is asked to decide upon the source of the data to be processed by the 

program. If the user chooses to process old data or synthesized data, the section of the 

program devoted to the acquisition of new data is skipped. If old data is chosen, then the user 

must supply a floppy disk containing measured data acquired during a prevoius run of the 

program. The synthesized data option generates datasets corresponding to the various 

positional combinations using the subroutine @_syntb. This option is for the purpose of 

program development and debugging where it is desirable to have a priori knowledge of what 

the final results of the program should be. This will be described in further detail later . 

When making a new measurement from freshly acquired data, the new data option is chosen 

and program execution passes to the @_new subroutine. The user is asked to input values for 

the number ofmeasuremeots to be averaged, meas_no, and for the pre-acquisition delay. Each 

dataset will then consist of the average of a number of measurements in order to reduce 

random measuring errors. The delay introduced before measurement allows the operator to 

retire from the vicinity of the interferometer in order to allow his effect on the local 

environment to dissipate. Control of the program then passes to the data acquisition routines 

for each positional combination. 

Before any data is acquired, subroutine @_cursors allows the measurement cursors to be 

defined by the user. Cursor 1 is an elliptical cursor which is set by the user by using the 

trackball to draw an eDipse around the image of the interference cavity on the fiinge monitor. 

This cursor defines the extent of the data which is to be acquired. Subroutine @_minmax 

determines, from the system variables for cursor 1, CURSOR [l]the maximum and minimum 

values of the dataset x and y coordinates as well as the x and y centre coordinates and the 

radius of the datasets. Cursors 2 to 9 are point cursors that, when turned on, appear on the 

fringe monitor to provide alignment guides for the various positional combinations. The 

positions of the cursors as they would appear on the fringe monitor if they were all turned on 

are shown in figure 3.8. 

Alsa shown are the values returned by @ minmax from the system variable CURSOR [1]. 
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Definition of cursors and values returned by @_minmax. 

-x 

xmax 

The order in which the various positional combinations is measured is chosen to minimize 

handling of the three flats. For example, after measuring the first combination, CB, the flat 

mounted in the interferometer is always flat A which need not be touched from that point 

onwards. 

The routines, @_aC<Lcb to @-.aC<Labs2, which handle the acquisition of the datasets for the 

various positional combinations each prompt the user to position the appropriate flats in the 

interferometer and in the test flat mount with respect to the appropriate alignment cursors 

which are turned on for the positional combination which is to be measured. The subroutine, 

@_ ac~ data, is then called which handles the actual data acquisition. The subroutine, 
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@_laLdata is shown below. 

10000 @_8C<Ldata: 

10010 ? "PRESS <RETURN> WHEN READY TO ACQUIRE DATA." 

10020 input ready$ 

10025 gosub @_de1ay 

10030 window 1 

10040 average clear 

10050 fori=1 to meas no 

10060 acquire: convert: connect 

10070 average sum 

10080 next i 

10090 average calc 

10100 square: invert 

10105 multiply muJtfact 

10110 return 

Once the user bas confirmed that the interferometer is correctly aligned (line 10020) there is 

a delay set by subroutine @_delay to allow for environmental effects to settle. The data is then 

~ meas_no times in order to mjnimize random errors in a loop (lines 10050 to 10080). 

The command, "acquire", acquires the fringe pattern intensity data from the interferometer's 

ceo camera. The command "convert" then converts the intensity data to phase data using a 

five frame phase measuring algorithm (section 1.2.6.2.5). "Connect" then performs a phase 

unwrapping algorithm to remove phase discontinuities from the phase data (section 1.2.6.4). 

After the measurement loop, the measurements are averaged (line 10070). The CCD camera 

in the Mark IV interferometer bas a rectangular pixel array but a square grid of data is more 

useful. The command "square" converts the rectangular array of measured data into a square 

array. The processor in the Mark IV interferometer system is capable of performing control 

and analysis functions for a variety ofZygo interferometric instruments (for example, the Zygo 

Maxim interterometric profiler). Depending on the type of interferometer (the Maxim profiler 

is a Mirau-type interferometer), the phase data calculated by the acquire! convert! connect 
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commands may be the negative of their true values. This is the case with the Zygo Mark IV 

FIZeaU interferometer and so the command "invert" inverts the calculated dataset to give the 

correct values. 

Once the phase data have heal acquired the datasets for positional combinations AB, CB and 

AC are adjusted for piston and tilt as described in section 2.3.1. This is accomplished by 

subroutine @_adLdatal which picks out the three points at which the nominal plane for the 

positional combination is defined. Subroutine @_find""plane determines the coefficients of the 

plane to be removed and subroutine @_remove -plane subtracts that plane from the current 

dataset. In the first implementation of @_remove ""plane, the plane coefficients were used to 

calculate the z coordinate values of the plane which were then subtracted from the dataset a 

point at a time. This process was found to be exceedingly slow, taking some 20 minutes to 

execute for each dataset. Subroutine @Jemove-piane was rewritten so that the plane to be 

removed was described in terms of the first three Zernike polynomials via the system variables 

ZGEN [0] ,ZGEN [1] and ZGEN [2]. System variables ZGEN [36], ZGEN [37] and ZGEN 

[38] define the centre and radius of the surface defined by the Zernike polynomials. The 

command zremove 3 subtracts the plane so descnDed from the current dataset. The execution 

of the rewritten subroutine was considerably faster, taking only seconds to execute. It appears 

that the ZIPL language is not optimized for operations that interrogate the DATA system 

variable on a point wise basis via the DATAPOINT system variable. This feature has a major 

impact on the processing speed of later portions of the program where there is no choice but 

to operate on the data on a pointwise basis. 

13000 @_remove-plane: ? "REMOVING PLANE" 

13010 rem REMOVES A PLANE FROM THE DATASET GIVEN THE PLANE 

13020 rem COEFFICIENTS 1),1( AND THE POINT zO,yO.;zO 

13030 ZGEN [O]=(I*xO+J*yO)/K +zO: ? ZGEN [0] 

13040 ZGEN [I]=-I*radius*IIK: ? ZGEN [1] 

13050 ZGEN [2]=-1 *radius·llK: ? ZGEN [2] 

13060 ZGEN [36]= xcent 

13070 ZGEN [37]= ycent 

13080 ZGEN [38]= radius 
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13090 zremove 3 

13900 return 

After the data for each positional combination have been acquired and, where appropriate, 

adjusted for piston and tilt, they are stored on floppy disk drive B. There is insufficient RAM 

to hold this many datasets in memory at once. 

The rat stage in the data processing is to find the absolute profile of the vertical diameters of 

flats A and B by the three flat method as described in section 2.3.2. This section of processing 

is accomplished by subroutine @_do_ftf. A flow chart showing the sequence of processing is 

shown in figure 3.9. 
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Figure 3.9 Flow chart for @_do_iff. 
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The processing sequence for @_do)lfis straightforward. First the two temporary data array~ 

tempI and temp2 are initialized by subroutine @_init_temp which writes the constant "bad" 

(= 99999.0) into every position. TempI is used to calculate the absolute profile of the vertical 

diameter of flat A and temp2 is used to calculate the absolute profile of the vertical diameter 

of flat B. The vertical diameter from the data for positional combination AB is written into 

arrays temp 1 and temp2. The vertical diameter from the data for positional combination CB 

is then subtracted from tempI and added to temp2. Finally, the vertical diameter of the data 

for combination AC is added to temp 1 and subtracted from temp2 and the contents of the 

arrays divided by two to give the contours of the vertical diameters of flats A and B 

respectively. The values of the central points on the diameters of A and B are written to 

constants acent and bcent respectively since these points will be needed for the correction of 

piston and tilt in the data for combination ABR The results so calculated are stored by 

overwriting them into a datafile called blank.da and then saving the datafiles as a.da and b.da. 

These two new datafiles will be used to store the results for flats A and B as processing 

progresses. 

The datafile blank.da is a datafile of the same size as the other datafiles which contains only 

invalid or "bad" datapoints (= 99999.0). Blank.da is created by subroutine @_make_blanks 

which again uses Zemike polynomials as a short cut to generate the data in a short time. In this 

case, the system variable ZGEN[38], which corresponds to the radius of the surface to be 

generated is set to zero thus ensuring that all the data in the file are "bad". 

The next stage in the data processing is to find the profiles of the horizontal diameters of flats 

A and B as discussed in section 2.3.3. This section ofprocessing is accomplished by subroutine 

@_do_schulz, so named since the procedure is a special case of the rotation method due to 

Schulz (section 1.3.1.3.1) with a rotation angle of9O°. A flow chart showing the sequence of 

processing in @_do_schulz is presented in figure 3.10. 
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Figure 3. 10 Flow chart for @_do_schulz. 
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The first stage of the processing in @_do_schulz is the correction of piston and tilt for 

positional combination ABR This correction is accomplished by subroutine @_adLabr which 

finds the three points through which the plane to be removed from the dataset for combination 
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ABR, abr.da, passes according to equation 2.S. The coefficients for this plane are found by 

@_find..,plane and then removed from the dataset by @Jemove plane. Subroutine 

@_do_schulz then proceeds to find the profile of the horizontal diameters oftlats A and B. 

This is achieved by subtracting the known profile of the vertical diameters of flats B and A 

respectively from abr.da using temporary arrays temp 1 and temp2 according to equations 2.6. 

The newly calculated data for flats A and B are written into datafiles a.da and b.da 

respectively. 

The next stage in the data processing is the correction of piston and tilt for the datasets abs l.da 

and abs2.da for positional combinations ABS 1 and ABS2 respectively. This correction is 

accomplished in two stages within subroutine @_adLabs. A flow chart showing the sequence 

of processing in @_adLabs is presented in figures 3.11 a and 3.11 b. 

The first step in the correction of absl.da and abs2.da is the adjustment of x-tilt and piston as 

described in section 2.3.4.1 and this is accomplished by subroutine @_adLxtilt. For each of 

positional combinations ABS 1 and ABS2, two points to define the plane to be subtracted from 

the data are determined by finding the difference between the measured values of the datasets 

at these points and the expected values from the known horizontal diameters offlats A and B. 

The third point needed to define the plane is chosen so that the y component of that plane will 

be zero. The coefficients of the planes to be subtracted are found by @_find..,plane and 

removed from the data by @_remove..,plane. 

The corrections of the y-tihs in datasets absl.da and abs2.da are determined by first finding the 

profiles of an array of parallel chords as described in section 2.3 .4.2 and then deducing the y

tilt correction term from these, as descnbed in section 2.3.4.3. This procedure is performed 

by subroutine @_findfit. The procedure for finding the y-tilt correction for combinations 

ABSI and ABS2 is the same. Accordingly, datasets absl.da and abs2.da are, in tum, renamed 

abs.cIa and processed in an identical manner. 
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Figure 3.11b Flow chart for @_adLabs (continued). 

125 



r----------- ------------, 
: CLacLxtIt : 
I I 
f I 
L I 
I I 
I I 
~ I 
I I 
I I L____________ -----------~ 

Figure 3.11 a Flow chart for @_adLabs. 
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The profiles of parallel chords are found by subroutines @_step_chordsl and @_step_chords2 

which use, as a starting point, the previously known profile of a chord on flat A and flat B 

respectively. In this case, the previously known chords are the vertical diameters of the flats. 

Starting with a known chord on flat A, @_step_chordsl calls subroutine @_ sub _temp 1 a which 

finds the profile of a new chord on flat B from the data for positional combination ABS 

(equation 2.26). The profile of this new chord on B is then used by subroutine @_sub_temp2a 

to find the profile of a new chord on flat A from the data for positional combination AB 

(Equation 2.27). @_sub_templa and @_sub_temp2a are performed, in tum, within a loop 

until the edge of the data is reached. Starting with a known chord on flat B. @_step_chords2 

operates in a similar manner to find the profiles of new chords using subroutines 

@_sub_templb (Equation 2.25) and @_sub_temp2b (Equation 2.26). 

Having found the profiles of a parallel array of chords on flats A and B, the y-tilt correction 

required for the ABS dataset is found according to the discussion in section 2.3.4.3 and 

equation 2.19. A mean value for the y-tilt correction tenn is found by solving equation 2.19 

at each point where p==q. The y-tilt terms are then removed from the ABS datasets using the 

ZIPL "zremove" command. 

Having corrected piston and tilt in the ABS 1 and ABS2 datasets, the final stage in the data 

processing is to find the contours of the whole surface of flats A and B using both of the 

shifted datasets as described in section 2.5. This procedure is performed by subroutine 

@_solveforwhich a flow chart is shown in figure 3.12. 

Initially, a set of parallel chords, spaced by distance s2, is found starting from the known 

profiles of the vertical diameters of flats A and B using subroutines @_ step _chords 1 and 

@_step_chords2from the data for positional combination ABS2. These chords are then used, 

in turn, to find the entire set of chords covering flats A and B from the data for positional 

combination ABS2, again using subroutines @_step_chordsl and @_step_chords2. Once all 

the chords have been found, the complete data for flats A and B are stored on a floppy disk. 
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Figure 3. 12 Flow chart for @_solve. 
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3.4 De-Bugging and Testing of the Program Code Using Synthesized Data. 

In order to facilitate the de-bugging and testing of the absolute flatness testing program, a 

section of code was written to synthesize data for the various positional combinations from 

three surf8ces of known shape. The generation of the synthetic data is handled by subroutine 

@_synth as shown below. 

34000 @_synth: 

34010 ? "Place a disk containing a datafile named ab.da and corresponding" 

34020 ? "cursor file in drive B" 

34025 ? "Press return when ready": input ready$ 

34030 copy "B:cursors.cu to CURSORS 

34040 gosub @ mjnmax 

34050 copy "B:ab.da" to DATA 

34060 rem copy DATA to "U:A.da" 

34070 units waves 

34080 window calc 1: window data 1 

34090 ? "place disk to receive synthesized data in drive B" 

34100 ?"NB. this disk will be initialized 

34110 ? "Press return when ready" 

34115 input readyS 

34120 initialise "B" 

34130 copy CURSORS to "B:cursors.cu" 

34150 ZGEN [36]= xcent 

34160 ZGEN [37]=ycent 

34170 ZGEN [38]= radius 

34180 for i= 0 to 35 

34190 ZGEN [i]= 0 

34200 next i 

34201 ZGEN [0]= 0.1: ZGEN [1]= 0.05: ZGEN [2]= 0.1 

34202 zgen 5 
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34203 copy DATA to "U:Ada" 

34210 remAB 

34215 units waves: gosub @_zgen_clear 

34220 ZGEN [4]= 0.1 

34230 zgen 5 

34240 invert 

34250 copy DATA to "u:x.da" 

34260 copy "U:A.da" to DATA 

34270 subtract "U:X.da" 

34274 multiply multfact 

34275 gosub @_adLdatal 

34280 copy DATA to "B:ab.da" 

34285 ? "AB": rows= 19: cols= 19: spacing= 10: gosub @_diagnost 

34290 remCB 

34295 gosub @_zgen_clear 

34296 units waves 

34300 ZGEN [31= 0.1 

34320 zgen 5 

34330 subtract "U:X.da" 

34335 multiply multfact 

34340 80sub@_adLdatal 

34350 copy DATA to "B:cb.da" 

34355 ? nCB": gosub @_diagnost 

34360 remAC 

34365 80sub @_zgen_clear 

34370 delete "U:X.da": delete "U:x.at" 

34375 units waves 

34380 ZGEN [3]= 0.1 

34400 zgen5 

34410 invert 

34420 copy DATA to "U:x.da" 
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34430 copy "U:Ada" to DATA 

34440 subtract "U:x.da" 

34445 multiply multfact 

34450 gosub@_adLdata1 

34460 copy DATA to "B:ac.da" 

34465 ? "AC": gosub@_diagnost 

34470 rem ABR 

34475 gosub @_zgen_clear 

34480 delete "U:XJla": delete "U:x.at" 

34490 units waves 

34500 ZGEN [4]= -0.1 

34510 zgen 5 

34520 invert 

34530 copy DATA to "U:X.da" 

34540 copy "U:Ada" to DATA 

34550 subtract "U:X.da" 

34555 multipy multfact 

34560 copy DATA to "B:abr.da" 

34565 ? "ABR": gosub @_diagnost 

34570 rem ABS 1 

34580 delete "U:Xda": delete "U:x..at" 

34590 ZGEN [36]= xcent+sl 

34595 units waves 

34600 ZGEN [4]= 0.1 

34620 zgen 5 

34630 invert 

34640 copy DATA to "U:X.da" 

34650 copy "U:Ada" to DATA 

34660 subtract "U:Xda" 

34665 multiply multfact 

34670 copy DATA to "B:absl.da" 
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34675 ? "ABSl": gosub @_diagnost 

34680 rem ABS2 

34690 delete "U:X.da": delete "U:X.at" 

34700 ZGEN [36]= xcent+s2 

34705 units waves 

34710 ZGEN [4]= 0.1 

34730 zgen 5 

34740 invert 

34750 copy DATA to "U:x.da" 

34760 copy "U:Ada" to DATA 

34770 subtract "U:x.da" 

34775 multiply multfact 

34780 copy DATA to "B:abs2.da" 

34785 ? "ABS2": gosub @_diagnost 

34790 for i= 0 to 38 

34800 ZGEN [i]= 0 

34810 n~i 

34820 initialize "U" 

34830 gosub @_make_blanks 

34999 return 

Subroutine @_synth, as shown, generates each synthetic dataset from three synthetic surfaces 

corresponding to flats A, B and C which are each defined in terms of the Zernike polynomials 

via the ZIPL ZGEN system variables. The extent of the surfaces are defined in terms of the 

CURSOR system variable recovered from a previously saved cursor file from an actual surface 

measurement. 

For the case of@_synth as shown, flat A is defined as a perfectly tlat surface characterized by 

0.1 waves of piston (ZGEN [0]= 0.1), 0.05 waves of x-tilt (ZGEN [1]= 0.05) and 0.1 waves 

ofy-tilt (ZGEN [2]= 0.1). Flat B is defined as having 0.1 waves of 00 astigmatism (ZGEN 

[4]= 0.1). Flat C is defined as a spherical surfice with 0.1 waves of defocus error (ZGEN [3]= 
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0.1). 

To generate the synthetic datasets for each positional combination, the second surface for that 

combination is generated in the DATA system variable. inverted and then stored in the user 

volume of memory as "U:Xda". The first surface for the combination is then generated in 

DATA and "U:x.da" is subtracted from it. It is necessary to use the invert then subtract 

sequence since ZIPL does not have a command for adding two datasets. For the rotated 

positional combination, ABR, flat B is described by -0.1 waves of 0° astigmatism since 

rotating a purely astigmatic surface by 90° is equivalent to inverting it. For the shifted 

positional combinations. ABSI and ABS2, the centre of the dataset describing flat B is shifted 

by adding s 1 and s2 respectively to ZGEN [36] which defines the central x coordinate of the 

dataset. 

Before being stored the datasets for each positional combination are multiplied by factor 

multfact. This factor was introduced to extend the dynamic range of the calculations as will 

be explained later. For the time being, factor multfact should be considered to be absent or 

equal to one. 

As an aid to diagnosing bugs in the program, three subroutines, @_temp_diag, @_diagnost 

and @_chord-print, were written to provide diagnostic output at various points during 

processing. When called, @_temp_diag outputs the contents of the temporary data arrays, 

temp I and temp2. When called, @_diagnost outputs a sample of the current contents of 

DATA on a square grid, the spacing of which is defined before the routine is called. When 

called, @_chord-print prints the values ofa selected horizontal chord from DATA. 

In order to illustrate the use of the diagnostic output of these sections of code, the diagnosis 

of the last major bug to be found in the program is described below. 

The program was run using the synthesized data option to construct simulated datasets as 

described above. The program run time is very long, approximately five hours, considering its 

complexity. This is probably due to the slow access to elements of the DATA system variable 
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as described above. This has a dramatic effect on the speed at which the program runs since 

the algorithm requires the data to be processed on a point-wise basis in a number of long 

program loops. The long run time means that it is impractical to stop the program during its 

execution to check on the progress of the data processing and it is necessary to rely on the 

output of the diagnostic routines at pre-chosen key points in the data processing scheme. 

Three dimensional plots of the final results of the program for flats A and B are shown in 

figures 3.13 and 3.14. The plots were obtained by loading the result datasets a. da and b. da into 

DATA and using the ZIPL "isometric" command to produce the plot. 

P-V=1639 internal units (1 

L 
x 

Figure 3.13 Isometric plot of results for flat A (with bug). 

Figure 3.14 Isometric plot of results for flat B (with bug). 
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It can easily be seen that the results are far from the expected plane (flat A) and astigmatic (flat 

B) swfaces figures. It can also be seen that the predominant feature of the results is a waviness 

that increases away from the horizontal diameter (y=O). The profile of the horizontal diameter 

offlat A appears to be straight as expected and the profile of the horizontal diameter of flat B 

can be seen to be slightly curved which may be consistent with the desired astigmatic figure. 

Figure 3.15 shows a plot of the data for flat A along a horizontal chord (y=60). The data was 

output by subroutine @_chord-'print and the y-axis units are ZIPL "internal units". One 

internal unit equals 1/512 fringe (111024 ).). 
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Figure 3.15 Plot of horizontal chord offlat A with bug (y=60). 

Two major features are immediately obvious from the plot. Firstly, there is a discontinuous 

change in the overall slope of the line in the vicinity ofx=O. Secondly, there is a complex 

periodicity to the plot. It might be suspected that the periodicity is related to the lateral shifts 

in the positional combinations ABS 1 and ABS2 and indeed this becomes obvious when the 

data are re-plotted using every 10th point (sl= 10) and every 3rd point (s2= 3) in figures 3.16 

135 



and 3 .17 respectively. 
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Figure 3.16 Every 10th point on horizontal chord offlat A with bug (y=60). 
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Figure 3.17 Every 3n1 point on horizontal chord of flat A with bug (y=60). 
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The plot in figure 3.16 consists of two straight line segments with their intersection at x= 10. 

The point at x= 0 has a value of 0 as would be expected since this lies on the vertical 

diameter. The plot in figure 3. 17 consists of a repeating pattern of two straight line segments. 

The intersection of the two lines in the middle section of the pattern occurs at x= 3. 

Further clues as to the nature of the bug may be found by examining the data after the 

processing carried out by @_ step _chords 1 and @_step_chords2 during the execution of 

@_findytilt. The data are made available by a call to subroutine @_diagnost at line 25132 

which prints out a sample of the data in a.da on a square grid spaced by 10 pixels. Figure 3.18 

shows plots of horizontal chords of the data for y= -50, 0 and +50. 
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Figure 3.18 Horizontal chords offlat A after chord stepping in@_find31ilt (with bug). 

As before the plots are characterized by two straight line segments intersecting at x= 10. To 

the left of the intersections the plots for y= 50 and y=-50 are symmetrical about the plot for 
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y= 0 as would be expected for the straight vertical chords for a flat surface. To the right of the 

line intersections, however, the symmetry is no longer present indicating that the profile of the 

vertical chords for x> 10 are no longer straight. This can be seen by plotting the profiles of a 

few vertical chords from the same data as shown in figure 3. 19. 
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Figure 3.19 Vertical chords of flat A after chord stepping in @_find ytilt (with bug). 

As suspected, the profiles of the vertical chords for x ~ 10 have the correct, straight, profile. 

Chords for x> 10 have incorrect, curved profiles. 

The above evidence indicates that the error in the processing is located in one of the routines 

responsible for finding the profiles of chords, either in the positive x direction for flat A or in 

the negative x direction for flat B. This narrows down the search for program bugs to 

subroutines @_step_chords2, @_sub_temp1b or @_sub_temp2b. Further evidence for this 

may be obtained by plotting the data for the diagonal diameter of flat A after processing by 

@Jindfit as shown in figure 3.20. It is this data that is used by @_findytilt to calculate the 

y-tilt error in the ABS datasets and is expected to follow a quadratic form as discussed in 

138 



section 2.3.4.3 (equation 2.19). 
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Figure 3.20 Diameter x=y of flat A after chord stepping in @_findJlilt (with bug) 
compared with expected result. 

It can be seen that the data follows the expected quadratic form for x~ 10. For x> 10 the data 

deviates from the expected fonn. Hence one obvious effect of the bug in the program is that 

the calculation of the y-tilt adjustment will be in error. 

Further clues as to the location of the bug in the program may be obtained by examination of 

the data output for flat B. Figure 3.21 shows the profiles of horizontal chords from the data 

for flat B after the chord stepping procedures in @_findJlilt. 
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Figure 3.21 Horizontal chords offlat B after chord stepping in @_findytilt (with bug). 

Once again the plots are characterized by a discontinuity though for flat B it occurs at x=O. 

This fact, together with the fact that the discontinuity in the data for flat A does not occur until , 
x= 10, indicates that the probable location of the bug is in the routine that finds the profile of 

the first new chord on flat B in B's negative x direction. This subroutine is @_sub_temp2b and 

indeed, close inspection of this section of code revealed the bug shown below. 

29500 @_sub_temp2b: 

29510 for dpy= ymin to ymax 

29520 temp 1 [dpy]= had 

29525 dpoint= DATAPOINT [xcent+chord][ycent] 

29530 if dpoint= bad then goto 29560 

29540 iftemp2 [dpy]= bad then goto 20560 

29550 tempI [dpy]= dpoint- temp2[dpy] 

29560 next dpy 
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29900 return 

In line 29525, ycent had been typed instead of dpy meaning that the chord of data from which 

temp2 was subtracted each time @_sub_temp2b was called consisted entirely of data values 

equal to the value of the centre point on the correct chord. 

Such a program bug and others would have been very difficult to spot without the diagnostic 

data supplied by the diagnostic routines built into the program for that purpose. 

Having corrected the bug described above, the program was rerun using the same synthetic 

data as described above. Isometric plots of the output of the program for flats A and B are 

shown in figures 3.22 to 3.24. 

x 

Figure 3.22 Isometric plot of results for flat A (bug corrected). 
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x 

Figure 3.23 Isometric plot of results for flat B (bug corrected) 

P-V=21 internal units (O~02A,) 

\ 

tt. 
x 

Figure 3.24 Isometric plot ofresuIts for flat B with astigmatism removed (bug corrected). 

At first glance, the results for flat A (figure 3.22) appear no better than those previously 

obtained but this is due to the difference vertical scaling between the plots. The P-V value for 

this data is only 29 internal units (0.028 ).) whereas the P-V value for the previous results for 

flat A was 1693 internal units (1.65 A). The results for flat B appear more promising, however, 
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with the plot (figure 3.23) showing a distinct astigmatic contour. Removing the astigmatism 

and tilt from the data for flat B (figure 3.24) reveals the residual noise which is similar in 

appearance to the results for flat A and has a P-V value of21 internal units (0.02 ).,). 

Again the data output by the diagnostic routines may be used to provide clues as to the origin 

of the noise which is superimposed upon the correct contours of the flats. Figure 3.25 shows 

a plot of the data for a horizontal chord offlat A (y= 60) output by routine @_chordj>rint. 
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Figure 3.25 Plot of horizontal chord offlat A with bug corrected (y=60). 

The amp~de of the variations in this plot is very much less than that for the output from the 

bugged program and the previously obvious slope discontinuity is no longer present. There is 

still an overall slope error (the ideal output being a straight horizontal line with data value 

equal to zero) and there is an apparently periodic oscillation about the mean slope. The 

periodic nature of the line is again related to the two lateral shifts of 10 and 3 pixels as can be 

seen from figures 3.26 and 3.27 respectively. 
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Figure 3.26 Every 101h point on horizontal chord offlat A with bug corrected (y=60). 
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Figure 3.27 Every 3rd point on horizontal chord offlat A with bug corrected (y=60). 
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Again the plot for every 10dt point is an approximately straight single line and the plot for every 

3M point consists of a repeated sequence of approximately straight line segments. The reason 

for the step-like nature of the lines is ZIPL's use of integer calculation for its manipulation of 

the DATA system variable. This aspect ofZIPL processing provides a clue as to the reason 

for the tilt error in the results. Plotting the data for flat A along the diagonal where x=y after 

the chord stepping procedures in @_findytilt (figure 3.28) shows that the data follow the 

expected quadratic form. 

Figure 3.28 Diameter x=y of flat A after chord stepping in @_findytilt with bug corrected. 

The correction of the y-tilt in the data for the shifted positional combinations, ABS 1 and 

ABS2, calculated from this data and the data for Flat B will be of the order of 0.1 A, this being 

the tilt given to flat A when generating the synthetic data. From the processing point of view, 

0.1 A = 102.4 internal units. When the plane to be removed from the data is generated the 

zremove command will truncate the argument supplied to it to an integer value thus 

introducing a significant truncation error. The linear fit to the data shown in figure 3.26 
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indicates that the slope of the data at y= 60 for every 101b point on flat A is about -10 internal 

units per 100 pixels. From the discussion in section 2.3.4.3 and equation 2.19, this indicates 

a residual y-tilt error in the dataset for ABS1 of approximately 0.6 internal units over the 

radius of the dataset. This value is below the resolution available for generation of a correction 

plane to be removed from the data. In addition, the values of the plane at any point will have 

been rounded (or truncated) to integer values, so introducing further errors. The introduction 

of truncation errors due to ZIPL's use of integer arithmetic is not solely confined to the 

removal of y-tilt errors in the ABS datasets. The same problem will introduce errors at all 

points during the processing where a tilt correction must be made. That is, errors will be 

introduced during @_adLdata1 for the initial correction of the datasets for AB, AC and CB, 

during @_adLabrforthe correction of the dataset for ABR and during @_adLxtilt for the 

correction of the x-tilt in the ABS datasets. Truncation errors will also be introduced during 

@_do_ftf where a division by two takes place in the calculation of the profiles of the first 

diameters of the flats. 

The errors in the output of the program may thus be attributed to the accumulation of multiple 

truncation errors during the processing due to the lack of numerical precision in the 

calaJlations performed by ZIPL. The problem oflow numerical precision has, to some extent, 

been alleviated by expanding the dynamic range of the raw data as described below. 
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3.4.1 Increasing the Numerical Precision of the Calculations. 

As described above, the Zygo Mark IV processor performs arithmetic functions on the DATA 

system variable using internal units (= 111024 l) and integer arithmetic. The value ofa data 

point may take any integer value between -32767 and +32767. Any attempt to write a DATA 

value outside of this range causes the program to crash with an "overflow" error. Writing a 

non-integer value to DATA causes the value to be rounded to the nearest integer value. When 

processing datasets corresponding to nearly flat surfiIces with little tilt, the range of data values 

covers only a small range of the allowed values about zero and so the errors caused by 

truncation of the data are significant in comparison to the data. This is particularly so for the 

algorithm described above since the errors introduced at any step in the processing will 

propagate through to the next processing step. 

The effect of truncation errors on the processing were reduced by the introduction of the 

multiplication filctor, "IIJUlt&ct" (line 1050). It should again be stressed that this factor had not 

been introduced to the program at the time the above results were generated. The introduction 

of multfBct increases the numerical precision by multiplying the data values of the raw data at 

the time of acquisition (line 10105 in@_&CCLdata) or at the time of synthesis (in @_synth) by 

multfact. 

Multiplication of the data does not increase the precision of the raw data but increases the 

dynamic range available to the processing. For example, a multiplication factor, multfact= 10 

would increase the numerical precision to the equivalent of having one decimal point of 

precision. The choice of value for multfact is a compromise between increasing the numerical 

precision and avoiding the poSSIbility of a data overflow. Even so, during the processing.for 

@_find yti1t the data values can become very large due to the uncorrected y-tilt error and SO 

the data are tested for potential overflow before being written into DATA and ignored if they 

fall outside the allowed range. This only has the effect of potentially reducing the number of 

data points available for the calculation of the y-tilt error. The value ofmultfact used for the 

results given below is 50. 
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When the processing of the data is complete, the dynamic range of the data is re-compressed 

by dividing the data by multfact. Figures 3.29 to 3.31 show isometric plots of the results of the 

processing using the same synthetic data as above with dynamic range expanded 50 times. 

Figure 3.29 Isometric plot of results for flat A with numerical precision expanded 50X 

x 

Figure 3.30 Isometric plot of results for flat B with numerical precision expanded 50X. 
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Figure 3.31 Isometric plot of results for flat B with astigmatism removed and numerical 
precision expanded 50 X. 

The P-V value for the data for flat A (figure 3.29) is 2 internal units (0.002),,) and the P-V 

value for the residual error for flat B (figure 3.31), having had the astigmatic figure removed, 

is 3 internal units (0.003),,). The data for the horizontal chord of flat A where y= 60 is shown 

in figure 3.32. The data are mostly zero which is the expected value for the flat surface but 

data values of -1 internal units become increasingly common in the negative x direction 

implying the very small residual tilt of the data shown by the linear fit to the data. The slope 

of the linear fit is of the order of 0.5 internal units (0.0005 ).,) over the aperture of the flat. The 

increased numerical precision has thus reduced the slope errors due to the integer arithmetic 

of ZIPL to a very low level. Increasing the value of multfact would further increase the 

precision of the calculations but that would risk the possibility of the data causing an overflow 

error. 
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Figure 3.32 Plot of horizontal chord offlat A with numerical precision expanded 50 X. 
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3.5 Results of Experiments Using Real Measurements. 

Having perfonned the above experiments using synthesized data, there can be reasonable 

confidence that the software is free from bugs and performs the flatness testing algorithm 

described in chapter two within the limits imposed by the Zygo Mark IV system software. The 

next stage in the development of the flatness testing method is to investigate how the algorithm 

performs using data obtained from actual measurements of the various positional combinations. 

This was carried out as described below. 

Of the three flats used in the test, two (flats A and C) were mounted in standard Zygo bayonet 

mounting cells. The third flat (flat B) was mounted in the specially constructed mount 

described in section 3. 1.1 to facilitate accurate rotation by 90 0 and lateral translations. All 

three flats have a nominal diameter of 100 mm (4 inches). 

The two flats for each positional combination were placed as close together as the mounting 

hardware would allow (about 10 mm) in order to minimize the possibility ofair currents within 

the interferometer cavity disturbing the fringe pattern. Close spacing of the two surfaces also 

reduces the magnitude of measurement errors due to aberrations in the collimator as discussed 

in section 3.1.1. The cavity was adjusted to give a nulled interference pattern (one fringe over 

the field of view). This was necessary in order to ensure that the multiplication of the wave 

front data would not cause an overflow error. The allowed DATA values of -32767 to 32766 

correspond to a maxinmm fringe density of64 fringes (32 waves) across the field of view. This 

corresponds to a maximum number offringes before multiplication by multfact of 64+multfact 

fringes. For multfact= 50, the maximum number of fringes is therefore 1.28. A larger value of 

multfilct would make it very difficult to set up a sufficiently nulled cavity to avoid an overflow 

error. The cavity was then surrounded by acrylic baftles to exclude ambient laboratory air 

currents. 

The variable meas_no was set to 10 so that each dataset would be the average of ten 

measurements. The variable delay was set to 300 to give a five minute delay between 

instructing. the interferometer to proceed with a measurement and the measurement taking 

place. This was to allow the operator to leave the laboratory while the measurement took place 
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in order to minimize any possible environmental effects on the interferometer due to the 

proximity of the operator. 

Plots of the results of the processing of the acquired interference patterns for flats A and Bare 

shown in figures 3.33 and 3.34. 

The plots show the, now familiar, ridged appearence of data where the correction of y-tilt has 

been in error. The P-V value for flat A is 119 internal units (0.116 ')..) and for flat B, 125 

internal units (0.122 ')..). A plot of the data for the horizontal chord of A where y= 60 is shown 

in figure 3.35. The reason for the y-tilt error is likely to be due to the sensitivity of the 

algorithm to experimental errors accumulating during the chord stepping process as will be 

discussed in section 3.5.1 . 

x 

Figure 3.33 Isometric plot of results for flat A derived from measured data. 
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x 

Figure 3.34 Isolmetric plot of results for flat B derived from measured data. 
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Figure 3.35 Plot of horizontal chord offlat A derived from measured data (y= 60). 

Plotting every lOth point (figure 3.36) and every 3rd point (figure 3.37) of the data shown in 
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figure 3.35 confirms the suspicion that the determination of the y-tilt errors in the ABS 

datasets are in error. The plot of every 101b point forms a smooth curve and the plot of every 

3rd point shows the kind of discontinuous repeated pattern seen from the experiments with 

synthetic data before the introduction of enhanced numerical precision. The nature of the 

curves is perhaps more clearly shown in figures 3.38 and 3.39 where the overall tilt (linear fit 

to the data) has been subtracted. 
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Figure 3.36 Every 10111 point on horizontal chord offlat A derived from measured data (y= 
60). 
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Figure 3.38 Every lOltt point on horizontal chord of flat A derived from measured data 
minus linear fit (y=60). 
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Figure 3.39 Every 3rd point on horizontal chord offlat A derived from measured data minus 
linear fit (y= 60). 

The curve in figure 3.38 is likely to be close to the true profile of the flat along that chord since 

plotting every 101b point only shows the tilt error for that chord due to the y-tilt error of 

positional combination ABSI and this has been removed by subtracting the line of best linear 

fit. The plots for all data points and for every 3rd datapoint have a more complex nature with 

error contributions from the y-tilt errors of combinations ABS 1 and ABS2. That being the 

case, the plot of figure 3.3 8 suggests that flat A has a convex profile with a P _V value along 

the chord y= 60 of approximately 32 internal units (0.03 ).). This would be consistent with 

1120 ). accuracy of the flat as quoted by Zygo, by whom it was manufactured. The concave 

profile of the flat was confirmed by performing an absolute measurement of a single 

(horizontal) diameter of flat A using Zygo's own three-flat test software. The profile obtained 

is shown in figure 3.40. The vertical axis values are shown in Ilm and the P _V value along the 

horizontal diameter is 0.042 Ilm (=0.066 A, =1/15 ). at A= 632.8 om). Note that this value is 

outside the quoted accuracy for the flat. 
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Figure 3.40 Results ofZygo three·flat test for horizontal diameter of flat A. 

The experiment to derive the contour of the flats using the new algorithm was repeated four 

times. On each occasion, the results were similar and those given above are representative of 

the sample. Plots of every 10th point on horizontal chords all show a convex profile though 

the amplitude of the tilt errors in the data vary in each case. 

Having obtained error free results using synthesized data, the source of errors when using 

measured data must derive from experimental errors. Sources of experimental errors are 

discussed in the next section. 

3.5.1 Sources of Experimental Error. 

Sources of error that may affect the results of the flatness measurement technique can be 

classified into two categories. Firstly there are errors introduced by the interferometer itself 

(not including reference surface errors). Secondly there are errors introduced by the 

experimental technique including environmental factors. 

3.5.1.1 The Effect of Interferometer Erron. 

Interferometer errors will affect the accuracy of the measurements of the OPD associated with 

the interferometer cavity. Interferometer errors may result from a variety of sources such as 

phase shifter nonlinearity or camera nonlinearity as has been discussed in section 1.2.6.2.8. 

Since the interferometer used is a commercial instrument, the details of the individual factors 

which affect its measurement accuracy are not known. For example, no infonnation is available 
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about any feedback mechanisms that may be employed to compensate for hysteresis in the 

piezo-electric phase shifters. 

It is possible, however, to estimate the overall accuracy of any wavefront measurement from 

the manufacturer's specifications (section 3.1). The system accuracy for a three-flat test is 

specified as better than i../50. Assuming the three measurements for the three-flat test are 

independent and applying probability theory (Boas ,1983, chapter 16) then for equation 2.4; 

Var(fA) = va{ gAB + g~c - gCB ) 

= (t)2 var(gAS) + (t)2 var(gAC) + (-t)2 var(gcB) 

= t[ var(gAS) + var(gAC) + var(gCB)]. 

0' f = ~tO'! 
=..[f0' ,. 

assnming that the individual measurement errors are statistically distributed about some mean 

and that the probable errors for each positional combination are the same, 0&. The probable 

error for any measurement is thus ';(4/3) x 1/50 l= 0.023l = 23 internal units. 

Disregarding, for the moment, errors in the results of the calculations due to errors in tilt 

correction the errors due to the interferometer will propagate through the calculation as 

follows. The calculations to find the value of new points involve only simple subtractions of 

the values of known points from the dataset of one of the positional combinations. From the 

discussion in section 2.5, the number of steps required to find the value of a new point is 

2(n+m) where, for the algorithm as implemented here, n is the number of 10 pixel jumps in x 

to reach the point from the 3mth chord from the centre. For a flat with an approximate radius 

of 100 pixels, the maximum value of2(n+m) is approximately 30. The maximum expected 

error in the result is then ';300&= 125 internal units (0.12 A). 
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The effect of interferometer errors on the determination oftitt errors will now be considered. 

For the correction of the tilt of the datasets for positional combinations AB, CB and AC, the 

tilt is detennined from the values of three points on a 60 pixel radius circle using equation 2.3. 

The error in x and y-tilt determinations is therefore given by; 

0' x-tilt = 0' y-tilt 

=JJo2 O', 
=0.0120', 

= 028 internal units/ pixel. 

For the tilt correction of the dataset for ABR., the errors in the determination of the x and y-tilt 

are given by; 

0' x-tilt = 0' y-tllt 

=J~2O'g 
=0.0240', 

= 0.54 internal units/ pixel. 

For the determination of the x-tilt correction in the data for the ABS positional combinations, 

two points are used, 120 pixels apart. The error is given by; 

0' x-tilt = J 1~ 0' , 

=0.0120', 

= 028 internal units / pixel. 

For the determination of the y-tilt correction in the data for the ABS positional combinations 

the values of the chords determined for A along a 45 0 diagonal are added to the corresponding 

values of the chords on B, rotated. The difference is found between the sum and the 

corresponding value from the ABR dataset (section 2.3.4.3) The average of these differences, 

weighted by 1In2
, where n is the index of the chords is the y-tilt correction; 

/II 

Y -tilt =.l ~ .l..(A. -B -ABR.) ./11 ~,,2 ., ...... ) (-•• -M) • "( ........ ) 
11=1 

The error on the values of each chord is v'(2n)0, as discussed above and so the error on the 
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y-tilt determination is given by; 

U y _tilt = -!-f[(;!rf2J2nu, +0",.] 
11=1 

Because of the 1In4 term, a good approximation of the error may be obtained from the first 

(n=l) term of the summation; 

O"y_tilt =7(2J2 + l)ug 

= 0.9 internal units/ pixel for ABSI 

= 10 internal units / pixel for ABS2 

The magnitudes of these probable errors are sufficient to explain the y-tilt errors encountered 

when analysing data from measurements made with the interferometer. In fact the errors seen 

in the results are much smaller than this (about 0.07 internal units per pixel x-tilt error) 

suggesting that the manufacturer specifications on which the estimates are based may be rather 

conservative. The section on recommended further work (section 4.2.2) will suggest means 

by which the effect of interferometer errors may be reduced. 

It is assumed that the imaging system in the interferometer is free from geometrical distortions. 

If this is not the case then errors may be introduced due to loss of registration between the 

coordinate system of the flats and the coordinate system of the data as the chords are stepped 

across the aperture. The geometrical distortion would have to be greater than the pixel spacing 

for this to have a large effect on the results and it is hoped that the assumption of low 

distortion is justified. An investigation to confirm this optimism will be suggested in section 

4.2.4. 
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3.5.1.1 Errors Due to Experimental Technique. 

Aspects of experimental technique that may introduce errors into the measurements may be 

classified into two categories. Firstly, perturbations of the interferometer cavity due to 

environmental disturbances would affect the measurement accuracy. Secondly, misalignments 

of the test tlats forming the interferometer cavity could affect the correct interpretation of the 

data during the execution of the processing algorithm. 

Perturbations of the interferometer cavity during the acquisition of the data may arise from 

vibration, instabilities of the mounting hardware, air currents or thermal effects. Vibration 

effects are minimized by mounting the interferometer and mounting hardware on a 

pneumaticaIly isolated optical table and by the absence of the operator at the moment the data 

are acquired. Mounting hardware instabilities should be minimal since the mounts are rigid and 

stably supported on the same platfonn as the interferometer. Air currents are minimized by the 

shielding of the interferometer cavity and the absence of the operator during the acquisition 

of data, as has been described above. Thermal effects are minimized by the temperature 

controlled environment of the laboratory and by minimal handling of the hardware between 

data acquisitions. Any thermal effects due to handling were minimized by the wearing of cotton 

gloves and leaving an interval of 15 minutes between handling and initializing the acquisition 

process. It is believed that the precautions taken to minimize environmental disturbances 

should be such as to allow the interferometer's accuracy to attain its full potential. 

For a test flat diameter of lOOmm, the field of view of the interferometer covers a diameter of 

approximately 200 pixels on the ceo camera. The separation between pixels thus corresponds 

to approximately 0.5 mm. This implies that, to achieve correct registration between the 

sur:&ces of the flats and their coordinate systems assumed by the processing algorithm, the flats 

should be positioned to an accuracy of better than 0.5 mm in x and y. For flats A and C, it is 

assumed that the bayonet cells in which they are mounted and the registration of the mounting 

hardware are sufficient to ensure adequate positioning accuracy. This may not be the case in 

practice. For the positioning offlat B, the accuracy relies on alignment of the fiducial marks 

on its mounting cell with cursor marks on the fringe monitor. It is unlikely that this method can 
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be relied upon to position the flat to an accuracy of better than O.Smm. Techniques by which 

the registration accuracy of the flats may be improved will be suggested in the section on 

recommended further work (section 4.2.3). 
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Chapter 4: Conclusions and Suggestions for Further Work. 

4.1 Conclusions. 

In Chapter 1 the need for accurate metrology of optical swfaces was identified. Since this 

metrology is usua1ly accomplished by the comparison of the surface with a reference surface, 

the need for absolute measurement methods was established. A review of the current state of 

the art of absolute measurement techniques, with the emphasis on the measurement of flat 

surfdces, was presented. The need for an improved flatness measuring algorithm suited to the 

characteristics of the interferometric measuring instruments and, in particular, their detector 

geometry was identified. 

Such an algorithm was developed in Chapter 2:. The algorithm was based on and developed 

from the basic three-flat absolute measurement technique described in Chapter 1. Extra 

positional combinations of the three flats were introduced involving a 90 0 rotation of one flat 

about the optical axis and a lateral translation perpendicular to the optical axis. Reduction of 

the data from measurement of these positional combinations in a Fizeau-type interferometer 

resulted in the derivation of the surface figure of each flat on a square grid of points. Proof of 

the validity of the algorithm was provided by a small scale manual demonstration of the 

algorithm using arrays of randomly generated numbers as simulated surface figure functions. 

The principle of reducing the propagation of experimental errors by introducing extra 

positional combinations with different lateral shifts was introduced. 

In Chapter 3 the implementation of the algoritlnn developed in Chapter 2 was described. Some 

detailed attention was given to an example of the diagnostic procedures used in de-bugging 

the software since this accounted for a good deal of the effort that went into program 

development. During the development of the implementation of the algorithm, it became clear 

that the Zygo Mark IV computer hardware and Zygo's proprietary computer language, ZIPL, 

have serious shortcomings with regard to their capabilities for the processing required. These 

shortcomings forced a rather unnatural program structure and resulted in an extremely long 

run time. More serious, however, was the lack of numeric precision due to the integer 
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aritlunetic which forced the somewhat clumsy "fix" described in section 3.4.1. With the benefit 

of hindsight, it would have been advantageous to have used the Zygo hardware for data 

acquisition only with the data reduction functions handled by an auxiliary computer. Indeed, 

this is recommended below as a prerequisite to further development of the flatness 

measurement algorithm. 

Once the program had been debugged and the problem of the lack of numerical precision had 

been overcome, results obtained from synthesized data confirmed the validity of the algorithm. 

The results obtained from real measurements of pairs of flats suffered from large errors. 

Possible sources of these errors were identified as the accumulation of interferometer errors 

through the data processing and also as the result of errors in the mechanical positioning of the 

flats. Means by which these errors may be reduced are recommended below with other 

suggestions for further work. 

Ultimately, even if the propagation of errors through the data processing and errors due to 

experimental technique can be reduced to negligible proportions, the accuracy of the result will 

be limited by the basic accuracy of the interferometer. The basic accuracy of the Zygo Mark 

IV is quoted by the manufacturers as being ')../50 which sets a limit on the ultimate accuracy 

attainable by any algorithm. To achieve more accurate results it would be necessary to obtain 

(or construct !) an interferometer with significantly higher basic accuracy. 

4.2 Suggestions for Further Work. 

4.2.1 Transfer of Data Processing to PC. 

A large proportion of the effort that has gone into this research project has been involved with 

the development and de-bugging of the software to perform the tlatness testing algorithm. The 

difficulties inherent in this process have been due largely to the nature of the computer 

hardware and Zygo's ZIPL programming language. Given that the program as it now stands 

takes some five hours to process the data, it is felt that further program development using the 

Zygo processor and ZlPL would be unwieldy and lead to an even more unacceptably long run 
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time. 

It is suggested that the role of the Zygo processor and ZIPL be limited to the functions of data 

acquisition. The raw data thus acquired by the Zygo system would then be transferred via the 

processor's serial (RS232 standard) communication link to an auxiliary (probably an mM PC 

compatible) computer for processing. The processing algorithm may be implemented in any 

of the many programming languages available (BASIC, C, etc.). 

The advantages to using a PC to perform the processing functions of the algorithm would be 

manyfold: 

• Perhaps the most important benefit would be the availability of floating point arithmetic 

to eliminate the problem of lack of numerical precision due to ZIPL's integer 

arithmetic. 

• A PC would benefit from increased memory and hard disk storage which would 

remove the processing bottleneck associated with the need to transfer data to and from 

the slow floppy disk media in the ZIPL program. 

• The necessity to load data to the DATA system variable in ZIPL would be removed. 

This would simplify the program structure since each dataset could be immediately 

available in its own array or file. Since the main reason for the slow execution of the 

ZIPL program is believed to be the slow access to DATA on a point-wise basis, the 

execution of the algorithm should be vastly speeded up. 

• Since program development and subsequent data processing could take place on any 

PC remote from the interferometer, program development and many experiments 

would not be subject to the availability of the Zygo system. 

• One poSSIble approach to data processing on a PC would be to program a spreadsheet 

package (Microsoft Excel or Borland Quatro Pro, for example) to execute the 

algorithm. This would have the advantage that it would provide a built-in, user friendly 

means to examine the data, both numerically and graphically, during and after 

processing. 

• A PC software package could process data originating from Fizeau interferometers 
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other than the Zygo Mark IV. It would simply be necessary to convert the data files 

produced by each interferometer to a common fonnat for which the PC software is 

designed. 

4.2.2 Improvements to Data Processing Algorithm. 

The flatness measuring algorithm described in preceding chapters has been shown to yield 

correct results for synthetic data where no measurement errors exist. For data resulting from 

real measurements of flats where random errors are inevitable, however, the algorithm, in its 

present form, has been shown to be wlnerable to the accumulation of errors to the extent that 

the results are unacceptably inaccurate. The following improvements and modifications to the 

algoritlnn are suggested in order to reduce the propagation of errors during data reduction. It 

is suggested that these improvements are implemented after the transfer of processing 

functions from the Zygo processor to a PC to facilitate easier program development and de

bugging. 

The correction of tilt in the raw data for positional combinations AB, CB, AC and ABR as the 

algoritlnn currently stands, depends upon finding the equation of a plane passing through three 

points. The error in the coefficients of the plane is thus highly dependent on the errors in the 

height of the three points. It is suggested that, rather than define the nominal plane of each flat 

in tenns of three points, it be defined as the best fit plane to the surface of the flat, in a least 

squares sense. The coefficients of the best fit plane would then be a function of every point on 

the surface and would thus have a much lower error since the RMS error of a random 

distribution is very much less than the P-V error for a large number of points. The correction 

of the piston and tilt of the datasets for combinations AB, CB, AC and ABR would then 

involve finding the best fit plane to the measured data and subtracting that plane from the data. 

This is valid since the best fit to the sum of two sets of data (the individual surfaces) is equal 

to the sum of the best fits to each set of data. This approach can only work for the positional 

combinations where every point on each flat is coincident with a point on the other flat in the 

combination. For the shifted combinations ABS 1 and ABS2 some points on each flat do not 

contribute to the sum of the surf8.ce figures represented by the measured wavefront and so the 
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best fit plane to the data will not be a true measure of the required tilt correction. The tilt 

correction for these datasets must therefore be carried out in the way described in Chapter 2. 

The accuracy of the tilt correction may, however, be increased by considering more data 

points. For the correction of piston and x-tilt as described in section 2.3.4.1, only two points 

along the already determined horizontal diameters of flats A and B were considered. By 

considering every point at which the diameters of flats A and B are coincident in the ABS 1 and 

ABS2 datasets the piston and x-tilt may be found,more accurately by a least squares fit. 

In the ZIPL implementation of the algorithm, the y-tilt in the datasets for ABS 1 and ABS2 was 

found by deriving the coefficient of the quadratic surface defined by equation 2.19. To derive 

the coefficient, only those points on the surface where x=y were considered. The determination 

of the quadratic coefficient and therefore the y-tilt would be more accurate by considering 

every point on the surmce and finding the best fit quadratic surface, in the least squares sense. 

The extent to which the measurement errors accumulate at a point depends on the number of 

steps required to derive the value of the surface figure function of the flat at that point. The 

algorithm, as it stands, reduces the maximum number of steps required to find the surface 

figure function by using two different lateral shifts for combinations ABS 1 and ABS2 (section 

2.5). The maximum number of steps may be further reduced by adding a third laterally shifted 

positional combination (or more). If all three lateral shifts were mutually prime integer 

numbers of pixels then the number of steps would be reduced by an extension of the argument 

put forward in section 2.5. An alternative approach would be to make the third lateral shift the 

product of (or integer multiple thereof) the original two shifts. The profiles of chords found 

using this large shift would have small errors since they would reach the edges of the flats in 

a small number of steps. Some of the chords found from the smaller shifts would be coincident 

with those found from the large shift and so their errors could be compensated and controlled. 

It is suggested that the efficacy of these enhancements be tested experimentally by introducing 

random errors to simulated datasets from which the results are to be derived. This would not 

be easy to achieve in a ZIPL program since there is no random number generating function 
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available. Most, if not all, programming languages for the PC have a random number 

generating function. 

4.2.3 Improvements to Experimental Procedure. 

As discussed in section 3.5.1.2. the most likely sources of errors due to experimental technique 

arise from errors in the positioning of the flats in the interferometer cavity. It is suggested that. 

to ensure proper alignment. the flats be fitted with a removable cross wire graticule. When 

aligning the flats, the exact position of the cross wire would be monitored by observing the 

phase values returned by the phase measuring process. Where the cross wire obscures the 

interferometer cavity, "bad" values will be returned and the position of the flat will be adjusted 

so that these values &ll along the desired x and y axes of the pixel array. When mounted in the 

reference flat position in the interferometer, a flat is adjustable only for x and y-tilt. In order 

to ensure, therefore, that the cross wire positions are consistent for the flats mounted in the 

reference position (flats A and C), means must be provided either for x-y translation of the flat 

in this position or for x-y translation of the cross wire on the flat. Additionally, rotation of the 

cross wire IIDJst be allowed for to ensure that the axes of the pixel array and the cross wire are 

parallel. For the flats mounted in the test position, the necessary degrees of freedom are 

provided by the mounting hardware. The cross wires must, of course, be removed when data 

measurements are being made and so a means must be provided whereby they may be 

repeatably re-positioned. This may be achieved by means of a kinematic type mount (for a 

discussion of kinematic mounts, see section 6.2.2). 

4.2.4 Miscellaneous Suggestions. 

In section 3.5.1.1, it was mentioned that an assumption upon which the flatness measuring 

algoritlm relies is that there be negligible geometrical distortion in the imaging system of the 

interferometer. It is suggested that an experiment be carried out to confinn (or otherwise) the 

validity of this assumption. This might be achieved simply by placing a calibrated artifact (such 

as a graticule with a grid or checkerboard pattern) in the interferometer cavity. The function 

mapping the coordinate system of the flats to the coordinate system of the interferometer's 
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CCD array would then be determined by examining the position of the artifact's features in the 

acquired data array. 

The algorithm, as it stands, is designed to find the absolute contours of the flats at every point 

on the measured array. For a 100 mm diameter flat covering an approximately 200 pixel 

diameter area on the CCD array this corresponds to a square array of approximately 0.5 nun 

pitch. According to the Nyquist sampling theorem, therefore, the surface figure functions can 

be determined up to a maximum spatial frequency of 1 cycle per nun. It is likely that smoothly 

polished optical flats will have surface figure functions with maximum spatial frequency 

components much less than 1 cycle per nun (see section 1.2.4). If this is the case then an array 

of data values for every CCD pixel contains a large amount of data that is redundant in an 

accurate description of the surface figure. It is suggested that the spatial frequency spectrum 

of the surfaces of the flats to be measured be investigated. This could be achieved by 

measuring the spatial frequency spectrum of the wavefront produced by a pair of flats fOrming 

an interferometer cavity. This would be valid since it is highly unlikely that the highest spatial 

frequencies of the two flats would cancel each other. Cancellation of lower spatial frequencies 

is more likely but this is not the section of the spectrum of interest in this case. It is irrelevant 

from which flat the high frequency components originate since it is the maximum spatial 

frequency component within the population of flats to be measured which is of interest. The 

spatial frequency spectrum of the data would be derived by performing a Fourier transform. 

If this experiment revealed that the maximum spatial frequency component of the population 

of flats to be measured was much less than that requiring measurement at every pixel then the 

algorithm could easily be modified, by a different choice of lateral shifts, to calculate the 

contour on a sparser grid of points. This would result in a lower accumulation of errors since 

the maximum number of steps to calculate the surface figure function at any point on the grid 

would be reduced. The values of the surface figure function at intermediate pixel positions 

would be found by interpolation with negligible loss of accuracy. 
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Chapter 5: Discussion of Other Approaches to the Problem of Absolute Flatness 

Measurement. 

In previous chapters the discussion of the measurement of flatness has considered that the 

absolute contours must be derived from relative measurements made by conventional (Fizeau) 

interferometers. It has been shown that the absolute contours may be derived from a number 

of relative measurements between pairs from a population of several flats. The derivation of 

the contours requires a good deal of data reduction which has been shown, inevitably, to lead 

to the accumulation of experimental errors, though these may be minimized. In this chapter the 

possibility of a more direct approach to the measurement of flatness will be considered. To 

this end, several techniques have been identified which may, individually or in combination, 

lend themselves to flatness measurement. Techniques to be considered include~ the Ritchey

Common test, common-path interferometry, shearing interferometry, photo-refractive crystals 

for phase conjugation and wavefront storage, and profilometry. Of these, profilometry is an 

odd one out since it generally involves eumining a SlI118ce on a point by point basis. The other 

techniques lend themselves to a whole-surface examination. In order to simplify the structure 

of the discussion, the separate techniques will first be described in isolation. Any promising 

avenues consisting ofa combination of techniques will be discussed afterwards. 

5.1 The Ritchey-Common Test. 

Given that the normals to a nominally flat surface are nominally parallel it seems natural that 

an optical test of that surface should be conducted in parallel or collimated light whose 

wavefront is also flat. The problem with this approach lies in the difficulty of generating an 

error free collimated beam of light (one with a perfectly flat wavefront). In general the best that 

can be done is to collimate a diverging spherical wavefront with a lens or concave mirror which 

is likely to introduce aberrations into the beam, however small. In the Fizeau interferometer, 

the abemltions in the collimated wave are largely compensated for if the interference cavity is 

milled and the test and reference surfaces are close together. Under these conditions the test 

and reference wavefront nominally travel the same path and so the aberrations due to the 

collimating optics are cancelled so long as they are small. Unfortunately, as has been shown 
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in previous chapters, the aberrations due to the reference surface are difficult to detennine. 

In contrast to a collimated wavefront, a perfect diverging spherical wave is easy to generate 

by a spatial filter. A laser beam focused onto an aperture (pinhole) whose diameter is equal to 

or smaller than the Airy spot size will diverge after the aperture, in the far field, as a perfect 

spherical wave having had any aberrated components filtered out in the focal plane by the 

pinhole. One test for flat surfaces utilizing a divergent spherical wavefront is the Ritchey

Common test (Ritchey,I904, Shu,1983). The basic arrangement of the Ritchey-Common test 

is shown in figure 5.1. 

11I.,.UI .... 

Figure 5.1 Ritchey-Common test. 

A diverging spherical wave is generated by the interferometer and reflected from the test flat 

at some angle of incidence, e. A spherical mirror is placed with its centre of curvature at the 

image of the point source and reflects the test wave back to the interferometer where the 

wavefront is measured. The measured wavefront contains information about the interferometer 

errors, the spherical mirror errors and the test fiat errors. If the errors due to the interferometer 

and the spherical mirror are previously detennined then the test flat errors may be determined 

except for those tenns contributing to tilt and focus. The errors due to the interferometer and 

spherical mirror may be found relatively straightforwardly where the interferometer is of the 

Fizeau or Twyman-Green type by the absolute sphericity test proposed by Jensen (1973). 
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Jensen's sphericity test is fully described in Appendix A (section 6.3 .2.1). 

Since tilt and focusing are adjustment parameters for the test setup, they cannot be determined 

by measurement. It is possible, however to determine these "free" parameters unambiguously 

by computation provided that the results of the measurements taken at two different angles of 

incidence are combined as described by Kuchel (1986). The test configurations used for the 

measurements are shown, slightly simplified, in figure 5.2 . 

.------..I~.. ~ __ L ~~ 
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Figure 5.2 
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Test configurations for absolute testing offlats in the Ritchey- Common test. 

The vertex distance, L, from the point source to the test flat is measured along the optical axis. 

Two coordinate systems are defined~ Xr. yf> 2f in the vertex of the test flat and x" y" Z, in the 

vertex of the spherical mirror which has a radius of curvature of -R. Wavefront measurements 

are made at two different angles of incidence, a 1 and a2. It is assumed that the wavefront 

errors due to the auxiliary components (the interferometer and the spherical mirror) have been 
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found previously by means of Jensen's test or otherwise. 

The reference coordinate system for the measurements in the Ritchey-Common configuration 

is "s, y., Z. in the vertex of the spherical mirror. The two configurations shown are used to 

measure the wavefronts U ul (x.,y.) and U «2 (x.,y.). The two wavefronts include the wavefront 

error, H (x.,y.) and the wavefront error caused by the test flat. 

Ua(x.,y.) = H(x.,y.) + 2U;: (x.,y.). 

This can be used to compute the wavefront error W «(x.,y.) which is added to a perfect 

spherical wave mirrored on this flat in a single reflection under angle a; 

w,,(x.,y.) = t[Ua(x.,y.)-H(x.,y.)]. 

The relationship between the coordinate systems in the flat and the spherical mirror results 

from the geometry of the configuration; 

xfRoosa 
x. =. , 

xfsma+L 

-1 xL 
x =--x • 

f oosa x. tana-R' 

-y R 
Y 

_ f 

.- xfsina+L' 

y.L y-----='----
f - x. tana-R 

When a light ray is incident at a local angle, ~, the phase shift (wavefront error), Wp, 

experienced on reflection is related to the phase shift, W.I.' which it would experience on the 

same surface at normal incidence; 
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The wavefront error, W u(,x.,yJ, may thus be unambiguously converted into a test flat inherent 

wavefront error, W ... (XvyJ. This, however does not unambiguously describe the flat surface 

since those components ofW u(x.,y.) describing piston, tilt and focus are dependent upon the 

test setup and cannot be determined by measurement. Varying defocussing components, 

dx(x. 2+y/), in W u(x.,y.) lead to different results for W Jx~yf). These free parameters may, 

however, be determined by computation from the results of two measurements at different 

angles of incidence. A non-linear optimization routine is used for the determination of the 

focusing terms d1 and ~ inW d(X.,Y.) and W u2(X.,Y.) such that the wavefront errors W.!.l(Xt,yJ 

and W .!.2('X~Yf) show the best possible correspondence. 

Wa1 (x .. , y..) = Ra1(x .. ,y .. )+d1 x (X .. 2 + y .. 2) 

~l(X"y,) = RJ.l (x, ,y, ) +e1x, + hY, + gJ 

W:2(X",y,,) = Ra2(x .. ,y .. )+d2 x (X .. 2 + y .. 2) 

~2(X"y,) = RJ.2(x"y,)+e2x, + f2Y, + g2 

Cl>(d1,d2) = :L[ RJ.l(Xfi,Yj) - RJ.2(Xfi'Yj)]~ minimum. 
i,j 

Whel-e d, e, f and g are focus, x-tilt, y-tilt and piston terms respectively. Rd and Rill are the 

wavefront errors obtained by measurement from which the piston, tilt and power terms are 

eliminated. For the computation of the merit function, Cb, the tilt and piston included in W.!. are 

not taken into account. Since the shape of the test flat is the same in the two measurements, 

the focus terms are optimized until the difference between the functions R.l.l and R-L2, ~ is a 
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mmnnurn. 

Kuchel reports that, using angles of incidence of 38° and 52°, several flats of diameter 356 nun 

were measured with an RMS uncertainty of less than 1 DDl. 

The Ritchey-Common test for measuring flatness is of particular interest since several of the 

techniques to be considered below show promise for the absolute measurement, at the centre 

of curvature, of spherical mirrors or spherical waveftonts. 

5.2 The Point Diffraction Interferometer. 

An interesting form of interferometer which relies on the fact that a perfect spherical wave is 

produced on diffraction from a small circular aperture is the Point Diffi"action Interferometer 

(PDI). The PDI was first described by Linnik (1933) and rediscovered by Smartt (Smartt and 

Steel, 1975). An English language translation of Linnik's original paper appears (without 

figures) in a paper by Speer et al (1979) describing the use ofa PDI for measuring grazing 

incidence X-ray optics. The principle of the POI is shown in figure 5.3. A converging wave 

from the system under test comes to a focus on a neutral density (ND)filter which has a small 

pinhole aperture. Light falling on the pinhole is diffracted to form a diverging spherical 

reference wavefront. The rest of the incident wavefront passes attenuated, but otherwise 

unchanged through the filter where it interferes with the spherical reference wave to give a 

fringe pattern directly representative of the deviations of the incident wavefront from a truly 

spherical wave. Tilt fringes may be introduced by displacing the pinhole laterally from the 

centre of the focused beam as shown in figure 5.3. Similarly, de-focus fringes may be 

introduced by displacing the pinhole axially from the focus of the incident wave. A simple point 

diffraction interferometer is manufactured and marketed by Eating Electro-Optics Inc (89 

Doug Brown Way, Holliston, MA 01746, USA) consisting of an NO filter with pinhole, a 

three axis positioning mount and ground glass viewing screen. The optimum size of the pinhole 

is about the size of the Airy disk that would be produced by the incident wavefront if it were 

free from aberrations. The optimum attenuation of the NO filter is chosen so that the test and 

reference waves are of equal intensity, so maximizing the fringe visibility. Smartt and Steel 
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(1975) recommend transmittances for the ND filter of between 0.005 and 0.05 with 0.01 being 

a useful general purpose value. 

\ 
\ 

\ 

I 
I 
" / 

/ 

Figure 5.3 Principle of the point diffraction interferometer (PDI). 

The operation of the point dim-action interferometer is similar to that of the phase contrast 

interferometer (Zemike, 1943). In the phase contrast interferometer the phase of the reference 

wave is shifted relative to the aberrated wave. In the point diffraction interferometer, the 

amplitude of the two waves are altered. 

The complex amplitude of the incident wave may be written as~ 

A(x,y) = exp[i 2; W(X,y)]. 
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where W(x,y) is the aberration function of the wavefront. This may be re-written as; 

where W (x, y) represents an ideal spherical wavefront. The complex amplitude is thus 

expressed as a perfect wavefront (first term) plus aberrations (second tenn). Since the two 

terms are differently distributed in the image plane, they may be separately modified. This is 

the technique used in the phase contrast and point diffiaction interferometers. The complex 

amplitude of the wave, having passed through the interferometer is given by; 

[ 
21r - ] [ 21r ] ~r 21r - ] A'(x,y) = a exp(i8) exp iTW(x,y) +exp iTW(x,y) -ehtti;:W(X,y) 

where a is the amplitude transmittance and 0 the phase difference introduced to the reference 

wave. The irradiance of the fringe pattern is then given by; 

l(x,Y) = a' +4 sin' {~ [W (x,Y) - W(x,Y) l} 
-4sin{~ [w (x,y) - W(X,Y) l} 
xa sint [W(x,y) - W(X,y) 1+ 6}. 

When a= 1 and 6= 0, the trivial case of unity irradiance over the entire field results. 

For the point diffi'action interferometer, the irradiance function may be obtained by setting 

0=0; 

l(x,Y) = a' +(I-a)4sin' {~ [W(x,y) - W(X,Y) l}. 

For a basic PDI consisting of a pinhole in an absorbing film the phase shift, 6, is constant 

(conveniently regard as zero as above). This means that the phase shifting methods of 
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evaluating the wavefront (section 1.2.6.2) may not be applied. Spatial methods of wavefront 

analysis (section 1.2.6.3) may be applied iflarge numbers of tilt fringes are introduced into the 

interference pattern as described above. 

In order to apply phase shifting techniques to the PDI, a number of workers (WU et al, 1984, 

Kadono et al, 1987, Mercer and Creath, 1996) have developed versions where the phase of 

the reference wave may be shifted relative to the test wave. Wu et al and Kadono et al describe 

a polarization technique for performing the phase shifting. The technique of Kadono et al is 

shown in figure 5.4. 

Figure 5.4 

P1 Q H P2 

9P1 

Polarization technique for phase shifting PDI (Kadono et al, 1987). 
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The neutral density filter with pinhole of the basic PDI is replaced by a linear polarizing film, 

PI, oriented at an angle epI to the vertical, with a smaIl pinhole. The incident wavefront is 

plane polarized at an angle, <1>, to the vertical. The dc portion of the incident wave, W 111.: (the 

reference wave) passes through the pinhole and the aberrated portion, W.c (the object wave) 

passes through the polarizer. Both waves then pass through a quarter wave plate, Q, with its 

fast axis vertical, a half wave plate with its fast axis at an angle eH to the vertical and then a 

polarizer oriented vertically. The amplitude of the wave in front of PI is given, using the Jones 

vector as; 

{cos;) Ao(x,y) = [W«(x,y) + Wac (x, y)\ sin; . 

The transformation matrices for the components of the interferometer are give by; 

for (x,y)=0 

Q=(~ ~) 

., =(~ ~) 

The amplitude of the dc component of the incident wave after transmission by the phase shifter 

is given by; 
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W.:, = P,H(OH)QW.,( ::) 

_ (sin;Sin20H -i ooS;ooS20H ) 
-Wde o 

= W.,(f(OH';) ",,:[i'" .. (OH )1) 

where 

'l'de(OH) = tan- I (tan;tan20H) -t, 

I(OH';) = ~(sin2 ;sin2 20H +ooS2 ;ooS2 OH). 

Similarly, the amplitude of the ac component of the transmitted wave is given by; 

W; = PIP2B( 0 H )QPIW«(CX:
S
;) 

sm; 

= cos( 0 PI - ;)WeP,H( 0 H)'::) 
= 0 _ '" w (sinO PI sin 20 H - i cosO PI oos20 H) 

cos( PI ." ) QC 0 

= W
e

( cos(0Pl -;)f(OH~;)exp[i'" e(OH)I) 

where 

'I' QC = tan-I ( tan 0 pI tan20H ) -t· 

When the angle BpI of linear polarizer PI is chosen to be BpI = -<1>, the relative phase 

difference between the ac and de components is given by; 

alfl = IfI «(OH)-1fI de(OH) 

= -2tan-I(tan;tan20H )· 

Thus the relative phases of the reference and object waves may be varied by rotating half wave 

plate, H and a phase shifting algorithm (section 1.2.6.2) may be employed to detennine the 

object wavefront, W";. 
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Mercer and Creath (1996) describe a phase shifting point diffraction interferometer utilizing 

a film of liquid CtyStal material as the phase shifting element. The principle of the liquid crystal 

point diffraction interferometer is illustrated in figure 5.5. 

moclj~ voltage 

Figure 5.5 Mercer and Creath's liquid crystal point diffraction interferometer. 

A 9 J.lm thick film of nematic liquid crystals is sandwiched between two thin glass plates with 

transparent conductive coatings on their inner surfaces. A transparent plastic microsphere of 

9 J.lm diameter is embedded in the liquid crystal layer and acts as the diffracting aperture for 

the reference wave. The object beam is phase shifted by modulation of the voltage across the 

liquid crystals, which alters their refractive index. The glass plates are prepared so that the 

birefringent liquid crystals are homogeneously aligned with their directors (long axes) oriented 

vertically, parallel to the plates. This configuration allows phase modulation of vertically 

polarized light travelling through the layer. Horizontally polarized light is not phase shifted. 

The uniaxial liquid crystal layer has a refractive index equal to the extraordinary refractive 

index for light polarized parallel to the aligned directors. As the amplitude of the applied 

electric field increases, the molecules rotate and the refractive index of the layer shifts towards 
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the ordinary index of refraction. The refractive index equals the ordinary refractive index when 

the molecules are aligned perpendicular to the plates (parallel to the electric field). The light 

diffracted by the embedded microsphere does not pass through the liquid layer and so is not 

phase shifted. By varying the modulating voltage to the liquid crystal layer, the relative phases 

of the object and reference beams may be varied, thus allowing the use of a phase shifting 

algorithm (section 1.2.6.2) to evaluate the object wavefront. 

5.2.1 Absolute Measurement of Concave Spheres and Flats with the Point Diffraction 

Interferometer. 

In normal use the point diffraction interferometer is used to measure a converging wavefront 

from an optical system where the light source is a diverging wavefront from a point source 

(pinhole). In order to measure a concave sphere at its centre of curvature, the point source and 

point of measurement should be coincident at the centre of curvature. This implies that a point 

diffraction interferometer could be employed for the measurement of concave spheres if the 

interferometers pinhole doubled as the point source for the test wavefront. A possible test 

configuration is shown in figure 5.6. 

R 

Figure 5.6 Absolute measurement of a concave sphere using the PDI. 

A laser beam is incident on the pinhole of the PDI and is diffracted to form a diverging 

spherical test wavefront. The laser beam is oriented in such a way that the undiffracted portion 

escapes from the optical system in order to avoid spurious light interfering with the desired 

wavefronts. The test sphere, positioned with its centre of curvature coincident with the 
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pinhole, reflects the test wavefront to give the aberrated object wavefront. The object 

wavefront passes through the PDI and a portion of it is diffiacted at the pinhole to form the 

spherical reference wavefront. The interference pattern fonned by the object and reference 

waves contains information only about the aberrations introduced by the test sphere and so 

gives an absolute measurement of the sphere contours. 

In order to measure flat surfaces, the arrangement for the absolute testing of spheres may be 

modified to encompass the Ritchey-Common test (section 5.1) whereby the path of the test 

beam is folded by the flat. 

5.3 Shearing Interferometry. 

In shearing interferometry, there is no separate reference surface or reference beam with which 

the object wavefront is compared. Instead the object beam is split and one half displaced (or 

sheared) in some filshion The two beams are then recombined to fonn an interference pattern. 

The object beam is thus compared with a sheared version of itself The wavefront shear may 

take one of a number of forms, the most common of which is a lateral shear (Briers, 1972, 

Mantravadi, 1992b) where the object beam is displaced laterally in the plane of the wavefront 

(if the wavefront is nominally plane) or rotated about its centre of curvature (if the wavefront 

is nominally spherical). Other forms of shearing interferometry are radial, rotational and 

reversal shear (Malacara, 1992, Briers, 1972). In radial shearing one wavefront is magnified 

with respect to the other before they are recombined. In rotational shearing, one wavefront is 

rotated about the optical axis with respect to the other. In reversal shearing, one wavefront is 

reversed about a diameter of the wavefront. The subject of shearing interferometry is large and 

a full discussion is beyond the scope of this thesis and is given in the references cited. The 

discussion here will be restricted to the basic theory oflateraI shearing interferometry since this 

has possible applications for flatness measurement in combination with other techniques. 

The principle oflateral shearing interferometers is shown for collimated and converging light 

in figure 5.7 
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Figure 5.7 Schematic illustration oflateral shearing in collimated and converging light. 

Very many optical arrangements exist for producing lateral shear. Two simple arrangements 

for collimated and convergent light, based on the Michelson interferometer are shown in figure 

5.8. 

----

Figure 5.8 Lateral shearing interferometers for converging and collimated light based on 
the Michelson interferometer. 
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Figure 5.9 schematically shows the original wavefront and the sheared wavefront where the 

shear is in the x-direction. The wavefront error of the original wave is given by W(x). When 

the wavefront is sheared in the x direction by an amount S, the error at the same point for the 

sheared wavefront is W(x-s). The resulting path difference which is the quantity determined 

from the fringe pattern is Il. W= W(x)- W(x-s). When the shear, S, is small the information from 

the fringe pattern approximates to the slope of the original wavefront in the x-direction; 

This equation becomes more exact as S tends to zero but the sensitivity of the test also reduces 

as S decreases. As this implies, the sensitivity of the test is zero in the direction orthogonal to 

the shear direction and to find the slope in both x and y directions two interferograms must be 

measured with shears in the x and y directions. 

W1 

, 
W1' 

I S 

W(x) 

AW(X) 

Figure 5.9 Original and sheared wavefronts and the resultant wavefront. 

Since lateral shearing interferometry does not measure the shape of the wavefront directly, the 

data obtained from the interferograms must be processed to recover the original wavefront 
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shape. Where S is small and the data approximate the wavefront slope, the wavefront shape 

is obtained by integrating the slope. Various methods have been described for evaluating lateral 

shearing interferograms. Rimmer (1974) describes a method whereby the wavefront may be 

determined on a rectangular grid from the data obtained from two orthogonal shears. Fischer 

and Stahl (1993) describe a method whereby the interferometric slope data are fit to the 

derivatives of the Zemike polynomials (section 1.2.5.1) in order to derive a representation of 

the original wavefront in tenns of the Zemike polynomials. 

The use of shearing interferometry to measure flat surfaces may be achieved by shearing the 

wavefront reflected from the surface. There are, however, difficulties in making the test 

absolute because the original and sheared wavefronts must, by definition, follow different paths 

through.whatever optical system is employed to produce the shear. Since the interferometer 

optics will inevitably contain unknown residual aberrations the two wavefronts will be 

aberrated differently and the test will not be absolute. The absolute calibration of a shearing 

interferometer is likely to be at least as difficult a task as the calibration of a conventional 

interferometer and this, together with the fact that the wavefront is not directly determined, 

makes the shearing interferometer an unlikely candidate for absolute measurement. It will be 

seen, however, in section 5.4.2, that shearing may be possible without auxiliary optics by the 

use of photorefractive non-linear optical devices. 

5.4 Photorefractive Non-Linear Optics. 

Photorefractive non-linear optical media are materials in which the refractive index depends 

on the local electric field and hence the local amplitude of light in the material (Feinberg, 

1988). The effect is non-linear since its magnitude varies with the magnitude of the field. Most 

materials are linear at norma1light intensities and hence show no non-linear characteristics at 

intensities less than those produced by focused high power lasers. A few materials, however, 

exhibit marked photorefractive effects at the intensities produced by low power light such as 

that produced by the helium-neon laser. Single crystal Barium Titanate (BaTi03) is the most 

efficient of these materials for use with a He-Ne laser. Other photorefractive media requiring 

the higher intensities available from an Argon ion 1aser are Lithium Niobate (LiNb03), Bismuth 
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Silicon Oxide (BSO) and Strontium Barium Niobate (SBN). 

If two or more light waves overlap within a photorefractive medium an interference pattern 

results. The local refractive index of the medium is modulated by the intensity variations of the 

interference pattern and so a phase grating is written into the material which mimics the 

interference pattern. Diffraction by the phase grating will couple light from each incident light 

wave to the others (a process known as mixing). This mixing effect may be used to generate 

the phase conjugate of any incident wavefront (Yeh, Chapter 6,1993, Boyd et ai, 1987). 

The principle offour wave mixing to produce phase conjugation is shown in figure 5.10. Two 

beams are incident on, and interfere inside, a photo refractive medium. Beam 1 is called the 

object beam which contains spatial information and beam two is called the reference beam and 

is a plane wave. 

Figure 5.10 Phase conjugation by four wave mixing. 

The electric fields of the beams are written~ 

E} = A1exp[i(ax-k} or)] 

E2 = A2 exp[i(ca -k2 or)] 

where kl and kl are wave vectors. 

As a result of the interference between the two beams, the intensity can be written~ 
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In the photorefractive medium the intensity variation results in a variation of refractive index.. 

Assuming the change in the index, an, to be proportional to the intensity, then an may be 

written~ 

where c.c. denotes the complex. conjugate of the preceding term. The wavefront information 

of the object beam is thus recorded in the medium in tenns of an, a phase grating. The process 

is ex.actly analogous to the recording of an object wave in holography. 

The complex. amplitude (amplitude and phase) of the object beam can be reconstructed from 

the phase grating by illuminating the medium with a third, readout beam. The electric field of 

this beam is writte~ 

The polarization of the medium will contain the term; 

p = 1l1lo&o[ A; ~e-i(K+ks)-r + ~~ • ei(K-ks)of' ]~eiU + c. C. 

The polarized medium will radiate waves at a frequency (j) with wave vectors of either K +k3 

or K-k3 . If the readout beam is counter-propagating relative to the reference beam (k3 = -k1) 

then K+k3= -kl and the first term of the polarization will radiate efficiently. The electric field 

of the radiated beam is writt~ 

where~ 

A. = cno(~~)~· 

k. =-k1 
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E4 is exactly the phase conjugate of the object wave, Eb its complex amplitude, A,., is 

proportional to the complex conjugate of the amplitude of the object wave, At- and its wave 

vector is equal and opposite to that of the object wave. 

The practical result of this is that when an object beam illuminates a photo refractive medium 

pumped by two counter-propagating beams, the phase conjugate of the object beam is 

generated. The shape of the phase conjugate wave is exactly the same as that of the object 

wave but propagates in the opposite direction. The phase conjugate wave will exactly retrace 

the path of the object wave and any reciprocal transformations, including aberrations, that 

were performed on the object wave will be cancelled in the phase conjugate wave. A 

photorefractive aystal used to generate the phase conjugate of an object wave is called a phase 

conjugate mirror (pCM). 

Feinberg (1982) discovered that phase conjugation could be achieved in BaTi03 without the 

use of externally applied pump (refeIence and readout) beams. It was discovered that when the 

crystal was illuminated, at an appropriate angle, by the object beam, the pump beams were 

spontaneously generated within the crystal by scattering from defects and total internal 

reflection from the crystal filces. In the words of Feinberg (1988) the effect is "caused by dirt". 

A possible mechanism for this effect is as follows. When the object beam enters the 

photorefractive crystal, a certain proportion of the light is scattered from internal or surface 

features. Some of the scattered light will propagate at the correct angle to be totally internally 

reflected from the crystal faces and phase gratings will build up where the various beams 

overlap. Those gratings with the correct orientation to fulfill the requirements for efficient four 

wave mixing will reinforce the intensity of the beams which formed them by coupling light 

from the incident radiation. These gratings will then tend to build up at the expense of the less 

efficient gratings UDtil counter-propagating pump beams are formed within the crystal and the 

phase coqugate of the object beam is generated. A typical arrangement of beams within a self

pumped phase conjugator (SPPC) is shown in figure 5.11. 
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Figure 5.11 Self-pumped phase conjugator. 

The fidelity of the phase conjugate beam from a SPPC is greater than that from an externally 

pumped crystal since the self-generated pump beams are automatically exact conjugates of 

each other. 

5.4.1 Interferometers Using Phase Conjugate Mirrors. 

Conventional interferometers employ combinations of lenses, mirrors and beamsplitters. In 

practice none of these elements is ever perfect and they introduce aberrations to the wavefronts 

that may add errors to the determination of the wavefront to be measured. The property of 

phase conjugate mirrors (PCMs) that cancel the aberrations added to an incident object beam 

in the phase conjugate reconstruction make it interesting to investigate the properties of 

interferometers employing PCMs in place of conventional mirrors (Yeh, chapter 9, 1993). The 

obvious point at which to start such an investigation is to replace the reference mirror in a 

conventional Fizeau (Gauthier et a1, 1989) or Twyman-Green (Feinberg, 1983) interferometer 

with a PCM as shown in figure 5.12. 
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Figure 5.12 Fizeau and Twyman-Green interferometers using phase conjugate mirrors. 

The quality of the lenses, L2, used to focus the light onto the PCMs is unimportant since the 

aberrations introduced will be cancelled on reflection. It might be imagined, at first sight, that 

such arrangements would yield an absolute measurement of the figure of the test flats since the 

PCMs apparently provide a "perfect" reference wavefront but this assumes that the collimation 

provided by lenses L1 is perfect. Consider the case where the collimation is not perfect shown 

in figure 5.13 for a Fizeau interferometer and also in figure 6.12 for a Twyman-Green 

interferometer. 
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Figure 5.13 PCM Fizeau interferometer with collimator error. 

The collimating lens, LI, is shown with (exaggerated) defocus error. The portion of the light 

reflected by the PCM retraces its path through the collimator exactly and so the defocus error 

is cancelled. The light reflected from the test flat, however, follows a different path and the two 

interfering beams have equal but opposite curvature at the image plane. As a result, the 

interference pattern contains a term due to twice the defocus error in the collimator as well as 

that due to the test tIat errors. In a conventional interferometer, where the test and reference 

surf8ces are parallel and close together, the defocus error would be the same in both beams and 

so would cancel in the interference pattern. The same argument applies to collimator 

aberrations other than defocus. Howes (1986) uses this sensitivity of the PCM interferometer 

to collimator errors as a test for collimation accuracy by using a Twyman-Green interferometer 

with PCM and assuming a high quality tIat surface. It is impossible simultaneously to test for 

collimation accuracy and for the accuracy of the flat. 

Some authors (Simova et al, 1993, Sasaki et al, 1993, Wang et al, 1994) have exploited the 

aberration doubling effect of interferometers with PCMs to increase the sensitivity of 

conventional interferometers by a factor of two. The arrangement described by Simova et al 

is shown in figure 5.14. 
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Figure 5.14 PCM interferometer with doubled sensitivity (Simova, 1993). 

Light reflected from the test object is used as the input to a phase conjugate interferometer of 

the Twyman-Green type. The wavefronts reflected from the PCM and the reference mirrors 

contain equal but opposite aberrations due to the test object. The sensitivity to the aberrations 

caused by the test object is thus double that of a conventional Twyman-Green interferometer. 

The interferometer is still, of course, sensitive to the aberrations due to the reference flat and 

the collimating lens. The arrangements described by Sasaki et al and Wang et al are similar but 

employ a Fizeau PCM interferometer in place of the Twyman-Green. 

To test a concave spherical surface, it is possible to dispense with the need for a collimating 

(or other beam shaping) lens by the use of a Twyman-Green interferometer of the Williams 

type (section l.2.1, figure l.6). Shukla et at (1990a,b) describe a phase-conjugate 

interferometer for testing concave spherical surfaces as shown in figure 5. 15. 
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Figure 5.15 Williams type Twyman-Green interferometer with PCM for measuring concave 
spherical surfaces. 

The interferometer would appear to offer an absolute test for concave spherical surfaces but 

unfortunately it is sensitive to wavefront aberrations due to the beamsplitter. If the beamsplitter 

aberrations could be made insignificantly small or be calibrated then the interferometer would 

offer the possibility of absolute flatness testing by combination with the Ritchey-Common test 

(section 5.1). 

5.4.2 Photo refractive Phase Conjugators for Wavefront Storage and Shearing 

Interfero~etry. 

A feature of photorefractive non-linear materials that was not mentioned in the treatment given 

above (section 5.4) is their slow response time. For example, at power levels ofa few mW 

from a He-Ne laser, the phase gratings in Barium Titanate can take tens of seconds or even 

minutes to build up. The response time is inversely related to intensity and speeds up as the 

power level increases. For applications requiring the processing of rapidly changing optical 

signals this can be a considerable disadvantage. The effect, however, can be put to use to store 

and retain wavefront information for some time after that wavefront has changed or ceased to 

exist. For example, the phase conjugate of a wave illuminating an externally pumped 
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photorefractive crystal will continue to be produced for some time after the original wave has 

been blocked by a shutter. This effect may be used to produce an interference pattern between 

a wavefront and that same wavefront recorded at some earlier time. The change in the 

wavefront between the two recordings may be due to some dynamic effect such as fluid flow 

or mechanical loading of some component or may be introduced by displacing (or shearing) 

an optical component. Several authors have described interferometers utilizing this effect. The 

interferometer described by Chang et al (1988) ~tilizes two separate photorefractive BSO 

crystals to record the wavefront at different points in time which are then interfered together. 

Yang et al (1991), Yang and Siahmakoun (1993) and Sun et al (1996) describe interferometers 

where the two wavefronts are sequentially recorded in the same Barium Titanate crystal. The 

interferometer described by Sun et al improves the fidelity of the phase conjugate waves by 

generating the pump beams by self-pumped phase conjugation of a single incident external 

pump beam. This interferometer is illustrated in figure 5.16. 

Figure 5.16 Phase conjugate shearing interferometer (Sun et al, 1996) 

The object wave is incident upon the photorefractive crystal and the phase gratings build up 

to produce the phase conjugate wave. The phase conjugate wave is directed to the observer 

but, at this point, there are no interference fringes. Once the conjugate wave has built up, the 

shutter is closed and no light falls on the crystal though the phase gratings will persist for some 

time. The component in the optical system which is to be measured is then displaced by a 
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known distance and the slDJtter re-opened. The new object wave is then incident on the crystal 

and a new set of phase gratings begin to build up within it. For some time, both the old and 

new sets of phase gratings exist within the crystal and the phase conjugates of both old and 

new object waveforms are produced and are directed to the observation plane where they 

interfere. The interference pattern so produced is equivalent to a shearing interferogram but 

the shear is produced by a mechanical movement and not by an optical shear. The 

interferogram thus contains information only about the optical component. This arrangement 

could be used to test flats by using an object wave reflected from the flat surface and shifting 

the tlat laterally between closing and re-opening the shutter to produce a lateral shearing 

interferogram. 

5.5 Profllometry. 

As its name suggests, profilometry is the science of the measurement of profiles, particularly 

surface profiles. As such, profilometry covers a very wide range of measurement techniques 

including those already described in preceding sections and chapters. In general, however, the 

term, profilometry, is used to describe the measurement of surface profiles over small areas 

with high spatial resolution or measuring profiles by scanning techniques. This narrowing of 

the definition of profilometry still leaves a large range of applicable technologies and these may 

be roughly categorized as follows; 

• Stylus profilers work by tracing the very fine tip of a compliantly mounted stylus over 

the surface to be measured. The vertical movement of the stylus is sensed by some 

means (optical, capacitance sensor etc.) and combined with the lateral scanning motion 

to build up the surfilce profile. Because the stylUS has a very small area in contact with 

the sample the contact pressure can be very high resulting in permanent surface 

damage, particularly of soft materials. 

• Scanning probe microscopes (SPMs) are a family of instruments which profile a 

surface by moving a fine tip in close proximity to the surface. The first instrument of 

this type was the scanning tunnelling microscope (STM). The STM works by moving 

a conductive tip towards a conductive surface with a voltage between the two until a 

tunnelling current is detected. Tunnelling is a quantum mechanical effect whereby an 
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electrical current can flow across an insulating gap if the gap is sufficiently narrow (less 

than 1 run). The magnitude of the current is highly dependent on the thickness of the 

gap. The profile of the surface is determined by monitoring a feedback loop which 

keeps the current constant by controlling the height of the probe as it is scanned across 

the surfBce. SlMs have vertical resolutions of Angstroms and lateral ranges of tens of 

J.lm. The other common fonn of SPM is the atomic force microscope (AFM). The 

AFM measures the attractive atomic force which occurs between the probe tip and the 

surface when their separation is of the order of 1 run by detecting the deflection of a 

cantilever beam on which the probe is mounted. The sample need not be electrically 

conducting. The resolution and range of the AFM is similar to that of the STM. 

Bennett et al (1993) present the results of a study comparing the results obtained with 

an AFM to those obtained with a conventional stylUS profiler on a variety of super 

smooth surfaces. 

• Optical profilers are a large family of instruments which use light to detennine the 

profiles of surfaces. They may be divided into two categories depending on whether 

they employ interferometric or non-interferometric techniques. They may also be sub

divided into three further categories of those which measure surface height directly, 

those which measure surface slope or those which measure surface curvature. 

S.5.1 Non-Interferometric Optical Height Prorden. 

The most common fonn of non-interferometric optical height profiler is the focus sensor. This 

type of instrument works by scanning a focused laser spot across a surface and adjusting the 

height of the objective lens to maintain focus as the surface height varies. The focus is 

determined by monitoring the shape and position of the focus of the reflected light which 

returns through the objective lens. The height resolution of a focus sensor depends on the 

depth of field, and thus the focal length of the objective lens but is not as great as that of 

interferometric instruments. Instruments based on focus sensors are described by Breitmeier 

and Ahlers (1987) and Lou et al (1984). 
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5.5.2 Interferometric Optical Height Profilers. 

Interferometric optical height profilers can be divided further into two categories; those which 

measure profile simultaneously over a small area and those which build up a profile by scanning 

a measurement point over a surface. 

Height profilers which measure simultaneously over an area are basically miniaturized 

conventional interferometers built into optical microscopes as shown in figure 5.17. 
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Figure 5.17 Interferometric microscopes for height profiling. 

Each of the interferometer types requires a reference surface and so the measurements obtained 

are relative. In order to allow phase measurement of the interference pattern imaged onto the 

CCD camera, the reference surfaces are mounted on piezo-electric transducers. Commercial 

instruments of this type are the Zygo (Middlefield, CT, USA) Maxim and Wyko (Tuscon, AZ, 

USA) TOPO profilers. The Wyko instrument utilizes a white light source and Michelson, 
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Mirau or Linnik objectives, depending on the required magnification. The Fizeau objective 

cannot be used with a white light source because of the unequal path length between test and 

reference beams. The Zygo instrument utilizes a laser source and Fizeau objectives (Biegen, 

1988). 

Another type of interferometric height profiler is the concentric beam interferometer which 

does not require a separate reference surface. The concentric beam interferometer employs a 

type of radial shear called exploded shear where the diameter of one beam is reduced to a point 

which acts as the test beam. The reference beam is collimated and coaxial with the test beam. 

The phase of the reference beam is related to the average height of the test surface over the 

area illuminated and the phase of the object beam to the height of the point at which it is 

focused on the sample. An example of this type of instrument using heterodyne techniques 

(section 1.2.6.1) is described by Pantzer et al (1986) and illustrated in figure 5.18. 

\ 

Figure 5.18 Concentric beam profiler due to Pantzer (1986). 

Another method for producing concentric reference and test beams is described by Downs et 

al (1989) using a birefiingent lens. A birefiingent lens has different focal lengths for orthogonal 

polarization states and so it is possible to produce both a collimated reference beam and a 
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focused test beam using the same lens. 

A problem with the concentric beam type profiler is that it is insensitive to surface features 

with low spatial frequency because of the averaging of the phase of the reference beam. A 

profiling instrument described by Sommargren (1981) overcomes this problem by focusing two 

beams onto the surface to be profiled (figure 5.19). The reference beam spot is focused onto 

a point on the surface which is on an axis about which the surface is rotated. The test beam 

spot traces out a circular path as the surface is rotated and the profile is measured along that 

path. The instrument uses heterodyne phase measurement and a Wollaston prism is used to 

separate and recombine the two orthogonally polarized laser frequencies. 

Wollaston p1sm 

Figure 5.19 Sommargren's heterodyne profilometer. 

Whilst the interferometric height measuring systems described directly measure the profile of 

the test surface, they are prone to errors, over long scan lengths, resulting from errors in the 

mechanical slides employed to perform the scanning. Ultimately, the accuracy which can be 

achieved over a linear scan is limited by the straightness of the scanning motion and so the 

techniques are best suited to the measurement of the high spatial frequencies of a profile rather 
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than the overall shape. 

5.5.3 Non-Interferometric Slope-Measuring Prot1lers. 

An approach to profiling surfaces which avoids the need for a reference surface is to measure 

the surface slope or gradient. The surface profile may then be determined by numerically 

integrating the slope data. A non-interferometric method of measuring surface slope is to 

monitor the angle of a beam of light reflected from a surface as the beam is scanned across the 

surface. This is the approach employed by Virdee (1993, 1995) who uses an auto-collimating 

technique as shown in figure 5.20. 
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Figure 5.20 Virdee's slope-measuring optical profiler. 

scan direction 
~ . 

The laser beam is scanned across the surface to be measured by a pentaprism. The rest of the 

instrument is fixed in relation to the test surface. A pent~prism has the property that it reflects 

the incident light through precisely 90 0 regardless of its orientation. The slope of the test 

surface at which the laser beam is incident causes the reflected beam to return to the instrument 

at a small angle to the incident beam, as shown. The reflected beam is focused onto a position 
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sensitive split photodiode via an "optical micrometer" consisting ofa tiltable parallel sided glass 

plate. In the absence of the optical micrometer, the focused spot would generally fall on the 

split photodiode off centre giving a non-nulled signal. The signal is nulled by a feedback loop 

which tilts the optical micrometer to centre the focused spot. The angular deviation of the 

reflected beam and thus the slope of the surface are determined by the tilt of the optical 

micrometer necessary to give a nulled signal. The sensitivity of this auto-collimating system 

is such that it has a resolution of 0.01 arc seconds. The line profiles of the surface are then 

obtained by integrating the slope values with respect to distance. The major limitation of the 

accuracy of this technique is due to thermal gradients giving rise to refractive index variations 

in the air which cause the laser beams to deviate from straightness. By careful environmental 

control keeping the thermal gradients to 0.I°C/300 mm Virdee claims a measurement 

uncertainty of ±2 mn over a scan length of 100 mm. Two dimensional surface profiles are built 

up by measuring a grid of parallel profiles in perpendicular directions. The uncertainty in the 

twist of the surface is removed by diagonal scans at 45° angles. 

5.5.4 Interferometric Slope-Measuring Promen. 

Interferometric slope-measuring profilers work by measuring the height difference between 

two closely spaced points on the suri3ce to give the average slope of the surface between those 

two points. The measurement points are then scanned in a 1inear path across the surface to give 

the slope profile along that path. The slope data is again integrated to give the height profile. 

Examples oftbis type ofprofiler are described by Makosch and Drollinger (1984), Omar et al 

(1990) and Takacs et al (1987) (also Takacs and Qian, 1989). The instruments described by 

Makosch and Drollinger and Omar et al are similar to that described by Sommargren (section 

5.5.2) except that the two measurement points are scanned in a linear path rather than a circle 

in order to measure slope rather than height. The instrument described by Takacs et al is 

shown, slightly simplified, in figure 5.21. 
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Figure S.21 Takacs' interferometric slope measuring ineterferometer. 

As the measuring head is scanned over the test surface the OPD between the two beams varies 

as the height difference between the two measurement spots changes. The varying OPD is 

detected from the interference fringe pattern focused on the detector. The whole measuring 

head including the detector is mounted on a precision air bearing slide to scan the test surface. 

The interferometer is thus not immune to variations in tilt of the measuring head due to slide 

inaccuracies which will show up as errors in the detennination of the surface slope and thus 

its profile. 
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5.5.5 Non-Interferometric CUlVature-Measuring Profden. 

It can be seen that profiling instruments are sensitive to relative movements between the 

measuring instrument and the test surface and thus to the straightness of the mechanism used 

to perfonn the scanning. A property of the shape of a surface which is insensitive to the 

position from which it is measured is its second derivative or curvature. An instrument which 

measures the curvature of a surfiIce will be insensit!ve to variations in the piston and tilt of the 

measuring position. The height profile of a surface may be obtained by twice integrating the 

curvature data. A non-interferometric instrument of this type is described by Glenn (1990a,b) 

and manufactured by Bauer Associates (Wellesley, MA, USA). The measurement scheme 

employed by Glenn is similar to the auto-collimating technique used by VIrdee (section )5.5.3 

except that the difference in the angles of two, initially paralle~ beams reflected from closely 

spaced spots on the surface is measured in order to give the derivative of the slope and thus 

the second derivative of the height. 

5.5.6 Interferometric CUlVature-Measuring Prorden. 

This author is unaware of any published descriptions of curvature measuring interferometers 

in the literature but presents here an untested concept for such an instrument. Two versions 

of the proposed instrument are shown in figures 5.22 and 5.23 which use the same basic 

principle. In one version (figure 5.22) the measured quantity is the polarisation state of the 

light and in the other (figure 5.23) the measured quantity is the phase ofan optical heterOdyne 

signal. The principle will be described assuming the polarisation version of the profiler with 

reference to figure 5.22. 

Light from a polarised laser source is split into three parallel beams by multiple beamsplitter, 

BS. The first beam fonns the reference probe and is reflected by the polarising beamsplitter, 

PBS. The second beam fonns the test probe and is also reflected by PBS. The third beam 

passes from the system, having bad its plane of polarisation rotated 90° by half-wave retarder 

plate, J./2. 
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The test beam is focused onto the sample by objective lens, L2, reflected and then transmitted 

by PBS, having had its polarisation rotated 90° by double passage through quarter-wave 

retarder plate, J..14-1. The test beam then returns to the sample, having been reflected by 

mirror, M, via lens, LI and is again reflected. The test beam is now reflected by PBS, having 

had its plane of polarisation rotated a further 90° by J..14-1 and returns to BS. 

The propagation of the reference beam proceeds in a similar fashion except that it is focused 

onto the sample at two points symmetrically about the test beam. This is achieved by its off

axis passage through L 1 returning it along a parallel but displaced path for the second pass to 

the sample surface. The reference beam is brought to two foci either side of the test beam by 

having its direction of propagation deviated by the wedge prisms. The spacing between test 

and reference spots is determined by the wedge deviation angle, 4> and the focal length ofL2, 

f; spacing=f tan<l>. 

After its second pass, the reference beam is reflected by PBS to BS via retarder J..12 which 

rotates its polarisation by 90°. The test and reference beams recombine in BS and then pass 

through quarter-wave plate J..14-2 to give a linearly polarised beam whose polarisation vector 

depends on the relative phase of the test and reference beams. The relative phase of the beams 

depends on their optical path difference (OPD). The OPD will vary as the sample is scanned 

beneath the probe beams depending on the surface topography. The changing state of the 

polarisation, which may be measured electronically as shown, or otherwise, is thus related to 

the profile of the scanned surface. Since the reference spots are symmetrically placed either 

side of the test spot, the interferometer is self-compensating for tilts of the sample and would 

thus not require a precision translation stage or a controlled laboratory environment to operate 

effectively. 
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Figure 5.22 Polarization interferometric curvature-measuring profiler. 
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Figure 5.23 Heterodyne interferometric curvature-measuring interferometer. 
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The operation of the heterodyne version of the instrument is similar except that the reference 

and test beams are derived from the two orthogonally polarised oscillation modes with slightly 

different frequencies of a Zeeman laser (or other two frequency laser source). When 

recombined, the two beams beat together to produce a signal at their difference frequency 

whose phase mimics the optical phase difference between the two beams. This signal frequency 

wiD be of the order of a few MHz (for a Zeeman laser) and so its phase may easily be measured 

electronically with respect to a reference signal derived from the laser beam before the 

interferometer, as shown. 

This concept is derived from the design of an interferometer to measure thermal expansion 

coefficients on which this author worked at the GEC research labs (Wembley, Middx. UK.) 

during 1984. Descriptions of related interferometer designs are given by Bennett (1977), Okaji 

and Imai (1984) and Birch (1987). 

5.6 Miscellaneous ideas. 

5.6.1 A Perfect CoUimator? 

In section 1.3.3 it was noted that the surface of a liquid rotating about a vertical axis assumes 

the form of a paraboloid. If a sufficiently high quality paraboloid surface could be achieved by 

these means then it could form the basis of a collimator for the interferometric testing of flats 

by placing a point source at its principal focus. Rotating liquid mirrors have been used as large 

diameter primary mirrors for telescopes where their retlectivity must be high. Consequently, 

mercwy has been used as the liquid. As was discussed in section 1.3.1.1 mercury is not an ideal 

choice for liquid surface interferometry because of its low viscosity. For optical testing 

purpo~ however, the reflectivity of such a mirror need not be high and so a more ideal liquid 

such as the silicone oil used for flat liquid surface interferometry could be used, resulting in 

improved surface figure over a mercury mirror. 

A disadvantage ofusing a rotating liquid mirror as a collimator is that the axis of the collimated 
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beam would necessarily be vertically orientated. The flat being tested would then have to be 

positioned in a horizontal plane and thus subject to gravitational sag. This is one of the major 

disadvantages of conventional liquid surface interferometry. 

5.6.2 An Absolute Reference Plane for Height Measuring Prordometry. 

The central (zero ordec)fiinge of the interference pattern funned by two coherent point sources 

defines a plane in three dimensions. The other fringes in the pattern are hyperbolic in cross 

section. If a means could be devised to reference the position of the measuring head of a height 

measuring profilometer to the central maximum of the zero order fringe of such an interference 

pattern then the problem of the slide errors in the scanning mechanism of the profilometer 

would be solved. One way in which this might be achieved is to devise a sensor which samples 

the interference pattern from the two point sources at a point in space and uses a feedback 

mechanism to lock the sensor position to the fiinge centre. This could be achieved with high 

precision by using a heterodyne teclmique and two point sources with slightly different optical 

frequencies (see section 1.2.6.1). In order to totally define the position of the measuring bead, 

it would have to be equipped with three such sensors to control the tip and tilt as well as the 

height. The problem of locking the sensors to the zero order fringe could be solved by using 

two or more wavelengths. In this way the fringes formed by each wavelength would only 

coincide exactly for the zero order. 
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Appendix A: Absolute Interferometric Testing or Microspberes. 

(Report commissioned by NPL, Marcb 1996) 

6.1 Introduction. 

Recent advances in areas such as fibre and integrated optics and optical computing have led 

to the emergence of a new class of very small scale optical components. Some examples are: 

optical microspheres employed as lenses to couple light between optical fibres and integrated 

optical devices; 

microlens arrays used to facilitate free-space communication between devices in optical 

processing and computing applications. 

The surface figure of these micro-optical devices has a profound effect on their performance 

and so must be tightly controlled. In order to facilitate the accurate manufacture of small 

spherical surfaces, techniques must be developed to perform accurate measurements of their 

surface figure. 

In a previous report, Stevens (1994) descnbes experimental investigations of interferometric 

techniques for measuring the surfaces of microspheres made at NPL. Non-absolute 

measurements were made using a variety of interferometers of the Fizeau and Twyman-Green 

type with both low coherence mercwy sources and high coherence laser sources. Some of the 

practical problems associated with the small radius of curvature of the test surfaces were 

identified. 

This report develops the work undertaken at NPL. Particular emphasis is placed on making 

absolute measurements of the surface figures of micro spheres. 

6.2 Cboice Of Type Of Interferometer. 

Interferometers for the measurement of surface contours may be broadly classified into two 

general classes, shearing and non-shearing interferometers. Shearing interferometers are 
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considered unsuitable for the given task because of the difficulty of interpreting the interference 

fiinges and the accumulation of errors that can occur as a result of integrating the slope data 

that the fringes yield in order to derive the surface contours (Stevens,I994, Malacara, 1992, 

Saunders. 1961 ). Of the non-shearing interferometers, those most suitable for measuring 

surfiIce contours are those which analyse the wavefront reflected from the surface under test 

(as distinct from the transmitted wavefront). Of these, the two basic interferometer types are 

the Fizeau and Twyman-Green interferometers. . 

The Fizeau and Twyman-Green interferometers will each be considered and their relative 

merits for the measurement of microspheres will be examined. 

6.2.1 The Fizeau Interferometer. 

In a Fizeau interferometer. interference fringes are generated by a low finesse cavity formed 

by refelence and test surf8ces where the surfaces are illuminated at nominally normal incidence. 

In its most common form. for the measurement of plane surfaces, the cavity is formed by plane 

reference and test surfaces which are nominally parallel, though there may be a small wedge 

to introduce tih fringes (Malacara, 1992). The fringe pattern formed by a Fizeau interferometer 

yields information about the distance between conjugate points on the reference and test 

surfaces. If the reference surface is perfect, with no deviations from the ideal surface figure, 

then the fringe pattern will relate directly to the figure of the test surface. If, however, the 

reference surface is imperfect then the fringe pattern will relate to the sum of the figures of 

both surfaces. 

The FtzeaU interferometer is relatively insensitive to environmental disturbances since, for the 

most part, the reference and test wavefronts follow a common path. 

For the measurement of spherical sudices, the cavity consists of concentric reference and test 

surfaces. This arrangement is shown in figure 6.1. The cavity spacing is modulated by the 

piezo-electric transducer, PZT. in order to phase step the interference fringe under computer 

control. The fringes are acquired by the CCD camera and analysed by the computer using one 
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of the phase measuring algorithms developed for wavefront analysis (Malacara, 1992; 

Creath, 1992). Commercial software packages exist for this purpose. NFL possesses Wyko's 

OOSIRTI software which handles PZT control, acquisition of CCO camera data and data 

analysis. 

Condensing Optics 

Objective 

Pinhole 

PZT 

Tc:st Spbcrc 

Figure 6.1 Fizeau interferometer for measuring spheres. 

D 

NPL possesses a commercial phase measuring Fizeau interferometer (Zygo Mk IV) which has 

a variety of reference spheres of different numerical apertures. For reasons which remain 

unclear, the Zygo interferometer seems unable to focus its CCO camera onto very small 

spheres which results in spurious fringe patterns making analysis of surface shape difficult or 

impossible. 
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A significant drawback to the use of a Fizeau interferometer for the measurement of small 

spheres is the requirement for a reference surface of high numerical aperture. Not only is the 

manufucture of such a surface of high quality difficult, but a high numerical aperture can result 

in errors in the phase measurement algorithm. By reference to figure 6.2, it can be seen how 

the phase shift varies with numerical aperture. Suppose, for a certain required phase shift, the 

PZT translates the reference surface a distance, ox, along the optical axis. At an angle, a, from 

the optical axis, the separation between reference and test surfaces is now only ox cos a. Thus 

for high numerical apertures, the phase shift will vary considerably over the field of view. For 

most phase measuring algorithms, this will result in large errors since they rely upon the phase 

shift being a particular value, depending on the algorithm. However, there is one algorithm by 

Carre (Carre,1966~ Creath, 1992) for which this is not a problem since it assumes that the phase 

shift is not known but is constant from frame to frame. Unfortunately this algorithm is 

computationally intensive and is not usually implemented in commercially available software. 

The Wyko software, for example, implements the five frame technique (Hariharan et al, 198 7 ~ 

Creath, 1992) which is the most popular with commercial interferometers since it is relatively 

insensitive to common systematic errors. 

x 
Optical Axis 

Test Surfa:c 

Figure 6.2 Variation of phase shift with numerical aperture. 

In order to avoid the variation of phase shift with numerical aperture, the component translated 

by the PZT (the reference surface) must be used in collimated light and so must be plane. This 
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may be achieved by transforming the plane wavefront into a spherical wavefront between the 

plane reference surface and the test sphere as shown in figure 6.3. In this arrangement, 

however, the reference surface is not compared directly with the test sphere but with the 

combination of test sphere and condensing optics. There are absolute measurement techniques 

which enable the errors in both the reference surface and the condensing optics to be isolated 

and so removed and these will be described later. 

It should be noted that the problem of the variation of phase shift with numerical aperture may 

also be avoided if the phase shift is achieved by means other than a mechanical translation of 

the reference or test surface. The optical path length between the two surfaces may be altered 

by changing the refractive index of the medium between them. This may be accomplished by 

varying the pressure where the medium is gaseous (usually air). Alternatively, the optical path 

length may be kept constant and the phase difference between the wavefronts reflected from 

the two surfaces varied by modulating the wavelength of the light source. This would require 

a tunable source such as a semiconductor diode laser. 
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Figure 6.3 Modified Fizeau interferometer for measuring micro spheres. 

6.2.2 The Twyman-Green Interferometer. 

In a Twyman-Gretm interferometer, light is divided by a beamsplitter and travels separately to 

the test and reference surfaces. The light reflected from these surfaces is then recombined by 

the beamsplitterto form an interference pattern (figure 6.4). When the reference and test arms 

are of the same length the virtual image of the reference surface is in the same position as the 

test surface (rather than opposing it as in the case of the Fizeau interferometer). In this case, 

then, the fringe pattern represents the difference between the figures of the two surfaces. 

Again, since the converging lens which transfonns the collimated light into a spherical 

wavefront is effectively between the reference and test surfaces, the test wavefront is due to 
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both the converging optics and the test surface. The same absolute measurement techniques 

mentioned above may be used to isolate errors arising from the reference surface and 

condensing optics. 

D 

Figure 6.4 Twyman-Green interferometer for measuring spheres. 

Unlike the Fizeau interferometer, the test and reference arms follow separate paths and so the 

Twyman-Green interferometer is more susceptible to environmental disturbances. However, 

since an instrument designed to measure small spheres would be of compact dimensions, it 

would be straightforward to provide vibrational isolation and shielding from other disturbances 

such as air currents. Having separate reference and test arms does have some advantages. The 

reference surface is not required to transmit any light which greatly simplifies its mounting on 

the PZT and also its substrate need not be of high optical quality. The Twyman-Green 

arrangement also allows for greater flexibility in the positioning of, and access to, the various 

optical components. 

A particular problem encountered by both Fizeau and Twyman-Green interferometers when 

using highly coherent light sources (lasers) is that of coherent noise. The high degree of spatial 
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and temporal coherence of lasers means that any scattered light from dust or optical 

imperfections, or any spurious reflections from other than the test or reference surfaces, that 

pass through the exit pupil of the system will cause speckle noise or spurious fringes across 

the field of view. The obvious solution to this problem is to use a less coherent light source 

such as a filtered low pressure mercury lamp or a laser passed through a moving ground glass 

screen (Schwider and Falkenstorfer,I995). With a less coherent source, so long as the test and 

reference paths are matched to within the coherence length, fiinges will be formed but spurious 

light will be outside the coherence length and so will not contribute to the fringe pattern. 

Unfortunately a highly coherent source is necessary for the absolute measurement methods to 

be described. Other practical methods of reducing the coherent noise problem will be discussed 

later. 

6.3 Absolute Measurement Methods. 

Measurements of surfaces by Fizeau or Twyman-Green interferometers are relative to the 

reference surface and any other beam shaping optics. This is sufficient where the accuracy 

required of the measurement is less than the uncertainty in the reference optics. Where a highly 

accurate measurement must be made, however, an absolute measurement method must be used 

to separate the interferometer and test surface errors. 

Such methods may be broadly classified into two categories. First, there are methods which 

make relative measurements between pairs of surfaces from a population of three nominally 

spherical Sl.lTfuces. The data so obtained are used to deduce the absolute figures of the spheres. 

Such methods are directly comparable to the well known three-flat technique (Malacara, 1992) 

and its derivatives for the absolute measurement of flat surfaces and will, accordingly, be 

referred to as 'lhree-sphere" techniques. Second, there are methods which make use of the fact 

that the centre of curvature of a converging spherical wavefront is accessible (the so called 

"cat's-eye" position) in order to separate interferometer and test surface errors. These methods 

will be referred to as "cat's-eye" techniques. 
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6.3.1 Three-Sphere Techniques. 

Let us consider three spherical surfaces, A, B, C, as shown in figure 6.5. The deviations, for 

each surface, from an ideal sphere are fi4>,6), fB(4),6),fc(4>,6), respectively, where 4> and 6 are 

the angular co-ordinates with respect to their centres of curvature. 

C ,. "'1 C , .• 2 C J . 43 

Figure 6.5 Three sphere absolute test. 

These three spheres are measured in pairs, AB, CB, AC as shown in figure 6.5 in a Fizeau 

interferometer where the upper surface acts as the reference surface and the lower as the test 

surface. The measurements determine the functions respectively, which are defined as follows: 

gAB(¢,8) = fA (¢,8) + fB (-¢,8) 

gCB(¢,8) = fC<¢,8) + fB (-¢,8) 

gAc(¢,8) = fA (¢,8) + fc( -¢, 8) 

zsince the Fizeau interferometer yields the sum of the deviations of each surface from the ideal. 

We now have a system of three equations with four unknowns: . The system has solutions only 
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where <I> = ° and reduces to three unknowns. The solutions are: 

IA(OJ}) = gAB (0,8) + gAc;0,8)- gCB(0,8) 

iB(O,8) = gAB (0, 8) + gCB;O, 8) - gAC (0, 8) 

IC<0,8) = gCB(O,8) + gAC;O,8) - gAB (0, 8) 

The basic three-sphere method can thus only yield the profile of the spheres along a single 

central section where <I> = o. 

It should be noted that this method can only work for an interferometer of the Fizeau type 

which yields the sum of the figures of the two surfaces. A Twyman-Green interferometer which 

yields the difference would, for the same pairs of surfaces, determine the functions: 

gAB(;,8) = IA(;,8)- IB{-;,8) 

gCB(;,8) = Ic(;,8)- IB(-;,8) 

gAC(;,8) = IA(;,8)- ic(-;,8) 

This system of equations has no unique solution even when <I> = 0. 

The basic three-sphere technique may be extended in various ways to yield information about 

further central sections or the whole of the spherical surfilces (Sclmlz and Shwider, 1976; Gubin 

and Sharonov, 1990). Each of these methods involves a fourth positional combination of two 

of the three spheres where one sphere is rotated about the optical axis through a suitably 

chosen angle. The method of Schulz and Schwider involves stepping the profile of the central 

section originally determined by the basic three-sphere test around the optical axis to yield the 

profiles of a number of further central sections determined by the chosen rotation angle. This 

method is prone to an accumulation of experimental errors as the number of new profiles 

increases. Gubin and Sharonov describe a method similar to that described by Fritz 

(Fritz, 1984) for flat surfaces. The surfaces and the four interferograms are approximated by 

a system of polynomials that are orthogonal on a circular part of a sphere (Zernike 

polynomials) and the polynomials are manipulated to give a polynomial description of the 
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absolute figure of the surfaces. The method is computationally intensive and its accuracy is 

highly dependent upon the accuracy to which the rotation of the sphere can be achieved. 

All three-sphere techniques rely upon the direct comparison of pairs of spherical surfaces in 

a Fizeau interferometer. This means that where the surfaces have high numerical aperture, the 

problem of the variation of phase shift over the field of view (see section 2.1) will always be 

a serious limitation on the accuracy of these methods. 

6.3.2 Cat's-Eye Techniques. 

These techniques may be used in either Fizeau or Twyman-Green interferometers which have 

an external and accessible focus known as the cat's-eye position. Placing a reflective surface 

at this position produces an interferogram which contains information only about the errors 

in the interferometer. Manipulation of this infonnation with that obtained when the test surface 

is included may be used to detennine separately the errors due to the test surface and the 

interferometer. 

6.3.2.1 Three Position Cat's-Eye Technique. 

This technique was first introduced by Jensen (Jensen, 1973) and later developed by others 

(Bruning et al,1974~ Truax,1988~ EIssner et al,1989~ Creath and Wyant, 1990). It involves three 

separate measurements which are combined to determine the surface minus the errors due to 

the interferometer and the reference surface. It works equally well in a Fizeau or Twyman

Green interferometer. 

The three measurements are shown in figure 6.6. 
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Figure 6.6 Three position cat,s-eye test. 

The first measurement is with the test surface at the focus of the converging lens (also known 

as the cat's-eye position). 
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The second measurement is with the test surface positioned such that its centre of curvature 

is at the focus of the converging lens (also known as the confocal position). 

The third measurement is taken after rotating the test surface 1800 about the optical axis (the 

rotated confocal position). 

Assuming a single measurement is equal to the difference in the wavefronts due to the test and 

reference arms of the interferometer, 

For measurement # 1, 

Where: 

w. = Wco""+~",, 
,.6t4nr/ 2 

W cmv = the aberrations due to a double pass of the optics in the test arm or the 

interferometer (this is usually just the converging lens, but can include other optics), 

W = W rotated by 180 0
• 

com> com> 

This measurement can be written as 

W - Wcom +WCOIIV W 
[rxw - 2 rttf-

This equation works for either a Twyman-Green or a Fizeau interferometer. 

For measurement #2 the test ann wavefront is given as 

W,.n_ = W «mY + W,..ItftII;f 

where W tut.Jwf = effects due only to the test surface. 

Thus, measurement #2 can be written as 
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For measurement #3, the test surface is rotated by 1800
• With the test surface contributions 

given by W t&rI:rrDf' this measurement can be written as 

The three measurements can then be used to solve for the test surface using 

Wo. + ~IO" - W focu - W joaI.r 
W. _-" = -------::---"--".U-J 2 

Which is simply calculated with additions, subtractions and 1800 rotations of the three 

measurements. (In the computer, the data are rotated about their centres, not the centre of the 

CCO array). 

The aberrations in the interferometer and errors due to the reference surface can be obtained 

by calculating 

This leference wavefront can then be subtracted from measurements of subsequent test spheres 

as long as the radii of curvature are similar. If there is a large difference in radii of curvature, 

a new reference wavefront must be generated. 

This is the method implemented in Wyko's DOSIRTI software. 

6.3.2.2 Alignment Of Test Sphere And interferometer. 

The critical part of this test is the alignment of the test sphere relative to the interferometer. 

Incorrect location of the optical axis causes a wavefront shear upon rotation of the data which 

introduces errors that are proportional to the errors present in the individual wavefronts 
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(Truax, 1988). The optical axis is defined by the first measurement in the cat's-eye position 

with the fiinges nulled. The detector in the interferometer should be centred on the optical axis. 

Next, the test surface needs to be aligned relative to the optical axis in order to rotate the test 

surface by 1800 without altering the interference pattern. Figure 6.7 illustrates the possible 

misalignments of the sphere and the axis of rotation with respect to the optical axis. The 

necessary alignments are: 

the vertex of the sphere must lie on the optical axis, 

a) the axis of rotation defined by the rotation stage must coincide with the optical axis, 

b) the centre of curvature of the test surface must lie at the focus of the converging lens. 

Figure 6.7 Alignment of test sphere. 
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In order to achieve this, a mount with eight degrees of freedom as shown in figure 6.8 is 

required. The test sphere is mounted on a small x-y stage in order to align the centre of 

curvature of the sphere with the axis of the rotation stage, 6. The axis of the rotation stage is 

made parallel to the optical axis by tip/tilt stage, ex -p. The centre of curvature of the sphere 

is brought into coincidence with the focus of the converging lens by the X-Y-Z translation 

stages. 
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Figure 6.8 Mount with necessaIy degrees of freedom to align test sphere. 

Generally, lateral alignments are the most critical and should be held to within one pixel or less. 

Let us assume that the field of view covers approximately a 100 pixel diameter area on the 

CCD camera array. For a field of view covering a lOOJ.1m diameter microlens, the lateral 

resolution required from the positioning devices would be 111m or less. This is relatively easy 

to achieve for lateral motions using flexure mounts with very fine pitch adjustment screws. 

However, for the rotation stage, this is a very stringent specification for axial concentricity and 

repeatability . 

Since the rotation mount does not require continuous adjustment, but needs only two 

positions, 180 0 apart, it may be possible to achieve the specification using a two-position 

kinematic mount as shown in figure 6.9. 
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Figure 6.9 Kinematic mount for 180 degree rotation. 
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Any optical mount's position can be defined uniquely in terms of six independent co-ordinates; 

three translations and three rotations with respect to some arbitrary fixed co-ordinate system. 

A mount is said to be kinematic when the number of degrees of freedom (axes of free motion) 

and the number of physical constraints applied to the mount total six. This is equivalent to 

saying that any physical constraints applied are independent (non-redundant). A kinematic 

mount therefore has six independent constraints. The most common type of kinematic mount 

is the "cone, groove, and flat" mount illustrated in figure 6.9. Consider the optic as being 

attached to the co-ordinate system of the three balls in the figure and its corresponding mount 

having the cone, the groove and the flat. If the optic is first seated in the cone, three degrees 

of freedom (x, y, z translations) are eliminated without redundancy. 

At this point the optic can still rotate freely about all axes. Next, the second ball is seated in 

the groove which is aligned toward the cone. This constrains two more degrees of freedom, 

pitch and yaw. Finally, there is only one degree of freedom left to constrain, which is roll. This 

is accomplished by seating the third sphere on the flat. Six non-redundant constraints make this 

a kinematic mount. 
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The kinematic mount shown in figure 6.9 has two sets of cones, grooves and flats so that it has 

two fully constrained positions 1800 apart. Such a mount would have to be constructed with 

care so that there was not a translation along the optical axis between the two positions. 

6.3.2.3 Two Position Quasi-Absolute Cat's-Eye Technique. 

Because the alignment of the test surface, in the above technique, gets more difficult as the 

numerical aperture gets larger, a simpler technique has been developed (Creath and 

Wyant, 1990). 

This technique only requires two measurements, these being the first two measurements of the 

three position absolute measurement technique (figure 6.6). 

The first measurement is with the test surface at the focus of the converging lens: 

W _W.,.",..+W.,.",.. W 
fix;vI - 1'Jf-2 

The second measurement is with the test surface positioned such that its centre of curvature 

is at the focus of the converging lens: 

Wao = W IU1JWf + W conv - W nprm 

When the first measurement is subtracted from the second, the result is the wavefront due to 

the surface plus an error term due to the converging lens: 

"aT W W. W_ -WI10m' 
"0" - foau = ,.stnof + 2 

For aberrations with even symmetIy, such as defocus, spherical and astigmatism, the error term 

is zero since these aberrations cancel out (w = w ). The difference of the two _ conv 

measurementsthenbecom~ 

Woo - W foau = W IUtnI7f 
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For aberrations with odd symmetry, such as coma, W = -w , the difference between the 
COfN COfN 

two measurements will be 

Most spherical surfaces do not have coma in them, and because a misalignment of the spherical 

test surface would not introduce coma into the measurement, it can be assumed that any coma 

in the measurement should be due to the interferometer. As long as the coma is assumed to be 

in the interferometer and not in the test surface, it can be subtracted from the measurement to 

yield the test swface independent of the interferometer. 

F or higher order aberrations, those with even symmetry will cancel while those with odd 

synunetry will not cancel and should be subtracted from the measurement result as long as they 

are not in the test swface. 

The odd aberrations in the result may be found by rotating the data set by 1800 and subtracting 

it from the data set before rotation: 

This technique is much simpler to implement than the three position cat's-eye technique but 

makes assumptions about the test swface that render it only quasi-absolute. The assumptions 

made may be valid for spherical swfaces manufactured by conventional means. There are, 

however, probably no grounds for such assumptions for surfaces formed by other means, such 

as the reflow of islands of photo-resist to form spherical microlenses. 

A very important feature of both cat's-eye methods is the inversion of the wavefront in the 

cat's-eye position. As can be seen from figure 6.6, in the cat's-eye position, the incident 

wavefront does not retrace its path upon reflection from the test surface but is inverted. This 

means that the light source must be temporally and spatially coherent. If a partially coherent 

source were used in order to reduce coherent noise problems then fringes would not be formed 

in the eat's eye position unless the wavefront in the reference arm were inverted also (for 

instance, by using a cat's-eye reflector in place of the plane reference surface). This would 
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make the absolute measurement teclmiques unworkable since the contribution of the reference 

arm, , to the fiinge pattern would then be different for the cat's-eye and confocal positions. 

6.4 Proposal for the Absolute Measurement of Microspheres. 

Of the absolute measurement techniques examined above, the method of choice is the three 

position cat's-eye technique (3.2.2). It is a truly absolute technique, requiring only simple 

mathematical manipulation of experimental data and does not suffer from limitations on 

accuracy due to variation of phase shift at high numerical aperture. Moreover, the software to 

perform the data manipulation exists as an integral part of the Wyko DOSIRTI phase 

measuring interferometer software which NPL already possesses. 

The Twyman-Green is the preferred configuration of the interferometer to perform the 

measurements. The flexibility in the positioning of optical components that the Twyman-Green 

affords is particularly advantageous with regard to the measurement of small radius spheres. 

Because the surface of the spheres will be very close to the focus of the converging lens, the 

position of the image planes of the surface will be highly sensitive to sphere radius. It will 

require considerable manoeuvrability in the imaging optics in order to cope with a range of 

sphere diameters. Indeed, this requirement may, in some measure, explain the apparent inability 

of the Zygo Fizeau interferometer to properly image the surfaces of small spheres (see section 

2.1). 

6.4.1 Features of the Proposed Twyman-Green Interferometer 

A schematic diagram of the proposed Twyman-Green interferometer is shown in figure 6.10. 

The design has some similarities to that proposed by Shwider and Falkenstorfer (1995) for 

measuring microspheres except that it utilises highly coherent light in order to permit absolute 

testing. 
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Figure 6.10 Schematic of proposed Twyman-Green interferometer for absolute 
measurement of spheres. 

The light source is a helium-neon laser (l = 632.8 nm), expanded by a spatial filter (objective 

lens, Ll and pinhole PHI) and collimated by lens L2. 

An adjustable field-stop aperture, FS, is imaged onto the test surface by the 4f system of 

lenses, L3 and L4. The field-stop may prove useful, for example, to avoid illuminating the 

substrate or mount, where the numerical aperture of the interferometer exceeds that of the 

spherical surface to be measured, thus minimising spurious reflections. If this facility is not 

required, then FS, L3 and L4 may be omitted. 

The bearnsplitter is of the polarising variety, consisting of a polarising beamsplitter cube, PBS, 

half- and quarter-wave retardation plates, l/2 and l/4, and analyser, P. The quarter-wave 

plates rotate the plane of polarisation by 90° on double-pass and the half-wave plate is rotated 

to adjust the intensities in either arm of the interferometer to give high contrast interference 

fiinges. The orthogonally polarised reference and test beams are made to interfere, when they 

are recombined by the beam splitter, by analyser, P. Using a polarising beamsplitter has the 
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added advantage that some spurious reflections will be greatly attenuated. 

If the reflectivities of the reference and test surfaces are always similar, the beamsplitter 

components may be replaced by a conventional beamsplitter cube. 

Where plane surfaces are present in the beams, as in the case of the beamsplitter, the surfaces 

should be tilted very slightly so that any stray reflections exit from the optical system. 

The reference surface is a plane mirror, M, which may be coated or uncoated depending on the 

type of beamsplitter used. It is mounted on a piezo-electric transducer, PZT, for phase 

stepping. 

In the test arm of the interferometer, the collimated beam is transformed into a converging 

spherical wave by the converging lens, L6, which is a high quality microscope objective. IfL6 

is not corrected for infinite conjugates, then the negative lens, LS, must be included to simulate 

the back conjugate (16 em for standard microscope tube length). 

~ L2 to L6 should be chosen for minimum aberration since any misalignment of the test 

surface introduces errors proportional to the interferometer aberrations (see section 3.2.2). 

This may, in itselfbe a good reason for omitting L2 and L3. The most critical component is 

L6 since it operates at a high numerical aperture and should be of the highest possible quality. 

In the exit arm of the interferometer, a magnified real image of the test surface is formed on 

the rotating ground glass screen, GO, by lenses L 7 and L8 . The interference fiinge pattern is 

observed by a CCD camera equipped with a zoom lens. 

An additional lens, L9, may be inserted into the beam in order to form a real image of the 

source pinhole on the ground glass screen. This is to facilitate alignment of the interferometer 

by superimposing images of the source pinhole reflected from the reference and test surfaces. 

An intermediate real image of the source pinhole exists at the focus of lens L 7. A pinhole 
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aperture may be placed at this focus to reduce the problem of spurious reflections and coherent 

noise as will be described in the next section. 

6.4.2 Reduction of Coberent Noise. 

Since the interferometer must use highly coherent light, there is likely to be a problem of 

coherent noise due to spurious reflections and ~ttered light. The coherent noise manifests 

itself as unwanted high frequency spurious fringes and speckle noise superimposed upon the 

interference pattern due to the reference and test surfaces. Since the required ftinge patterns 

will be nulled (as near as is possible, a single fringe across the field of view), they will be well 

separated from the noise in terms of spatial frequency. 

Schwider et al (1986) propose removing the noise by a posteriori digital spatial filtering of the 

fringe pattern by convolution of the data with a suitable function. A similar effect could be 

achieved in the Wyko DOSIRTI software by representing the fringe patterns in terms of the 

Zernike polynomials and then setting the high order terms equal to zero. 

A simpler and more direct method of removing the coherent noise would be by direct optical 

spatial filtering. Since the fringe pattern is at the front focus oflens LS, its Fourier transform 

is located at the back focus, which is also the front focus of lens L 7. It is then a simple matter 

to remove the high spatial frequencies from the fringe pattern by placing a suitable diameter 

circular aperture (pinhole, PH2) at the rear focus ofLS. In effect, L 7, L8 and PH2 are a simple 

4f spatial filter. Geometrically speaking, only light reflected from the reference and test 

surfaces and forming a real image of the source pinhole at the front focus of L 7 will pass 

through the pinhole PH2. The diameter of the pinhole should be just a little larger than the 

diameter of the point-spread function of the image of the source pinhole. 

Once the fringe pattern has been imaged by L8, the coherence of the light is destroyed by the 

rotating ground glass screen. This will prevent any further coherent noise being generated by 

spurious reflections or scattering within the ceo camera or its lens. This feature is common 

in commercial phase measming interferometers such as those mam.dBctured by Wyko and Zygo 
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(see, for instance, Domenicali and Hunter (1980». 

6.4.3 Mapping the Test Result to the Spherical Surface. 

Having performed the absolute measurement procedure, the result is a two dimensional array 

of deviations from a perfect spherical surface mapped onto the flat surface of the detector 

array. In order for the result to be meaningful and useful, it is necessary to know the 

geometrical relationship between conjugate points on the sphere and the detector array. In 

other words, the geometrical distortions of the imaging optics must be determined. 

Given that a condition for accurate absolute measurement is that the optics be of a very high 

quality, it may be sufficient to model the geometrical distortions in the imaging optics. This 

would simply be achieved by entering the prescriptions and positions of the optical elements 

into an optical ray tracing program. 

A preferable approach, however, would be to make direct measurements of the distortions of 

the imaging optics. One method, used by Gates (1960), is to place an engraved steel ball in the 

object space of the interferometer and measure the positions of the images of the engraved 

marks in the image space. This technique would, however, be difficult to implement for very 

small spheres. An alternative approach may be to illuminate a suitable graticule in the image 

plane of the interferometer (that normally occupied by the CCD array) and measure its image 

in the object space of the interferometer (that normally occupied by the test sphere) using a 

travelling microscope. 

Whichever method is used, it will have to be repeated for each radius of sphere tested because 

of the sensitivity of the image plane position to sphere radius (see section 4). 

For most microlenses, the numerical aperture of the interferometer will be sufficient to cover 

the surface of the lens in a single measurement. For micro spheres, however, a single 

measurement will cover only a sub-aperture of the entire spherical surface. To find the figure 

of the whole surface of a sphere, multiple sub-apertures must be measured and linked together. 
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Theoretical approaches to this problem have been reported in the literature (Williams and 

Kwon,1987~ Day et al,1987). The technique involves modelling the full spherical surface in 

tenns of a set of spherical hannonics. The full aperture spherical hannonic coefficients are then 

estimated from the individual sub aperture Zernike coefficients. At the time of writing, 

however, these authors had not yet verified their approach in practice. 

One of the practical difficulties of measuring the full aperture of a sphere by sub aperture 

testing is that of controlling the change in orientation of the sphere between measurements. A 

suggestion made by Shinn (1996) is to adapt a method used in the gem faceting trade. The gem 

to be worked is waxed onto a "stick" that has an indexing pin. When all the possible facets 

have been worked with this grip, the gem is transferred to another "stick" with the aid of a 

fixture, thus retaining the orientation. When making interferometric measurements, the 

contamination of the test surface by wax would be undesirable and so a gentler method of 

gripping the spheres, for example by a low vacuum at the end of a small diameter tube, would 

be more appropriate. 

6.5 Optical Phase Conjugation. 

Phase co~on is a non-linear optical effect whereby an optical wavefront incident upon the 

phase conjugating medium is reflected in such a way that its spatially dependant characteristics 

are reversed. The reflected wavefront thus retraces its incident path exactly, so cancelling any 

aberrations introduced into the incident beam by optical elements in its path. The effect is 

therefore also known as wavefront reversal. 

Phase conjugation may be produced by a number of different non linear optical interactions 

such as three wave and four wave mixing, stimulated Brillouin scattering, stimulated Raman 

scattering and photon echoes. For interferometry the most useful method of producing phase 

conjugation is by degenerate four wave mixing in photorefractive materials (Yeh, 1993). A 

photorefractive material is one where the local refractive index of the material varies with the 

local electric field strength, and thus with the local optical intensity. 
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Figure 6.11 shows, diagrammatically, the four wave mixing process. Consider four waves 

overlapping in an interaction region within the photoreftactive medium. The incident wave, 

WiDe interacts with the write beam. W Mile to create a spatial interference pattern in the region 

where they overlap. The resultant optical intensity distribution "writes" a volume phase 

diffiaction grating into the material by the photoreftactive effect. This process is analogous to 

volume holography where the object wave is WiDe and the reference wave is W,,*. The read 

beam, W reD is co~gate to W Nile and interacts with the diffiaction grating to produce the phase 

conjugate of the incident wave, W cuV' Note that the read and write beams can be interchanged 

and that interaction between any combination of W iIc or W CXIIi with W \Mile or W l'OIII would produce 

the same diflTaction grating. The four wave mixing is thus said to be degenerate. 

WCCIIIj 
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Figure 6.11 Phase conjugation by degenerate four wave mixing. 

A phase conjugating device used to produce the conjugate of an incident wave is commonly 

known as a phase conjugate reflector or phase conjugate mirror (pCM). The read and write 

beams may be externally applied to the photorefractive medium or may be internally generated 

by total internal reflection of light scattered from the incident beam. This is known as self-
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pumped phase conjugation (Feinberg, 1982). A common photorefractive material for 

interferometry is single crystal Barium Titanate (BaTi03) which will exhibit photoreftactive 

effects with the relatively low intensities available from helium-neon lasers. A potentially useful 

feature of externally pumped PCMs is that, for sufficiently intense read and write beams, the 

reflectivity can be more than 100010. 

6.S.1 Applications of Phase Conjugation to Absolute Interferometry. 

Because of their ability to cancel aberrations in the incident wavefront, phase conjugate mirrors 

(PCMs) would seem to show great potential for developing interferometer configurations 

where the test surface is the only source of aberration in the observed fringe pattern. Such an 

interferometer would be intrinsically absolute since it would be free from error sources due to 

reference surfaces, beam shaping optics etc .. 

Several authors have described interferometers using PCMs (for example, Fainman et 

al,(1981); Ikeda et al,(1982); Gauthier et al,(1989); Shukla et at, (1990); Wang et at, (1994». 

Each of these authors has, in a variety of different configurations, generated the reference 

wavefront by reflection from a PCM rather than from a conventional reference surface. None 

of the interferometers, however, are intrinsically absolute since optical imperfections that were, 

in the conventional interferometer, self compensating, have become significant. This appears 

to be a generally applicable feature of phase conjugate interferometers and is illustrated for the 

case of a simple Twyman-Green interferometer in figure 6.12. 
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Figure 6.12 Comparison of conventional and phase conjugate interferometers. 

Let us assume that the collimating lens in the interferometer has some aberrations (illustrated, 

in this example, by simple de-focus). In the case of the conventional interferometer the de

focus error is common to both the wavefronts reflected from the test surface and from the 

reference surface. When the two wavefronts recombine, the defocus error cancels and the 

fringe pattern is due only to the difference between the reference and test surfaces. For the 

phase conjugate interferometer, the wavefront reflected from the test surface still contains the 

de-focus error but this has been eliminated from the reflected reference wave. The fringe 

pattern is now due to the test surface errors and the collimator errors. In the conventional 

interferometer the accuracy is limited by the reference surface~ in the phase conjugate 

interferometer the accuracy is limited by the collimator. Neither configuration can be said to 

have any particular advantage over the other. The principle illustrated by the above example 

seems to apply wherever PCMs are employed to compensate for the errors in one part of an 
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interferometer. Whatever advantage is gained is negated by the exaggeration of errors in 

another part. 

The example above does, however, indicate a potentially useful application ofPCMs to the 

alignment of optical systems (Howes,1986). If it is assumed that the flat test surface has no 

error, then the fringe pattern will indicate how weD the incident beam is collimated. Perfect 

collimation is achieved when the interference fringes are straight. This arrangement may be of 

use in aligning.the interferometer proposed for measuring microspheres (section 4.1, figure 

6.10). If the test surfiIce is replaced by aPCM, then correct alignment oflenses L2, L3, L4 will 

be indicated by straight interference fringes. The reference surface may then be correctly 

aligned, perpendicular to the incident beam, by nulling or 'lluffing out" the fringes. 

It should be noted that, in any optical system containing a PCM, or where a plane reflector is 

placed exactly perpendicular to a collimated beam, some of the light is likely to be reflected 

back into the laser cavity, causing instability in the laser output. This problem may be 

prevented by inserting an optical isolator between the laser and the interferometer. 

In an interferometer for measuring convex: spherical suri8.ces, the interferometer must produce 

a converging spherical wavefront to match the nominal shape of the test surface. The optics 

used to transform the wavefront from the Jight source into the converging wavefront are likely 

to have by far the largest aberrations of the whole optical system and so will be the limiting 

factor on the intrinsic accuracy of the interferometer. It is easy to produce a diverging spherical 

wavefront free from aberration by using a spatial filter. Reversing the spherical wavefront by 

using a PCM will produce a converging spherical wavefront free from aberration. 

A simple interferometer using this principle is illustrated in figure 6.13. The diverging spherical 

wavefront is produced by the spatial filter consisting of the objective and pinhole. The 

wavefront is reversed by the PCM and may be phase modulated by an electric field appJied to 

the photo-refractive crystal in order to allow phase measuring interferometry. The beamspJitter 

reflects a portion of the converging spherical wave to the test surface where it is reflected to 

form the test wavefront. The beamsplitter also reflects a portion of the diverging spherical 
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wavefront to fonn the reference wavefront. Assuming the beamsplitter to be perfect, the 

interference pattern due to the test and reference wavefronts will contain infonnation only 

about the test wavefront. Unfortunately since the beamsplitter cannot be assumed to be perfect, 

the interferometer is not intrinsically absolute. For some applications, however, where the 

complicated nature of absolute measurement procedures are unjustified, this arrangement may 

be of utility since, for a high quality beamsplitter, the aberrations would be much less than for 

a high numerical aperture converging lens. 

Figure 6.13 Phase conjugate interferometer for measuring micro spheres. 
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6.6 Summary. 

From the above discussion, recommendations and conclusions are as follows: 

the three position cat's-eye absolute measurement technique is that best suited to testing high 

numerical aperture spherical surfaces; 

• a laser Twyman-Green phase measuring interferometer should be constructed with a 

plane reference surface in one arm and the spherical test surface in the other; 

• the Wyko OOSIRTI software is capable of performing the interferometer control 

functions and the data analysis of the absolute measurement; 

• the interferometer optics should be of the highest possible quality·; 

• special attention should be paid to the very stringent requirements for the positioning 

of the test surface·; 

• PCMs might be considered a useful tool for aligning the interferometer but do not 

appear to offer any new solutions to the absolute measurement problem. 

• The acceptable quality of the interferometer optics is related to the accuracy attainable in 

positioning the test sphere. The error introduced into the measurement by the aberrations in 

the test wavefront is due to the shearing of those aberrations by any misalignment in the test 

sphere upon rotation (fruax, 1988). If there is no misalignment (perfect positioning) then the 

test wavefront errors are completely eliminated by the three position eat's eye technique 

described above. 
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AppendiI B: Listing of the ZIPL Implementation of the Flatness Testing Algorithm. 

10 rem REFERENCE FLAT CALIBRATION PROGRAM 

20 rem BY JOHN MITCHELL (KINGSTON UNIVERSITY) 

25 on error gosub @_aftermath 

30 gosub @jnit 

40 gosub @_cursors 

50 gosub @_a~eb 

60 gosub @_a~ae 

70 gosub @_~abr 

80 gosub@_~ab 

90 gosub @_~absl 

100 gosub @_a~abs2 

110 gosub @_make_blanks 

120 gosub @_do_fif 

130 gosub@_do_schulz 

140 gosub@_adLabs 

150 gosub @_solve 

900 ? ERROR: ? ERRORS 

999 end 

1000 @jnit: elr 

1010 rem SETS UP CONSTANTS ETC. FOR LATER USE BY PROGRAM 

1020 plotter is 1 : scroll : printer is 1 

1030 dim temp 1 [289] : dim temp2[289] 

1040 bad=99999.0 

1050 mu1ttact=50 

1070 sl= 10: s2= 3: rem pixel shifts for absl and abs2 

1080 on error goto 900 

1090 initialize "Mil: initialize "U" 

1500 ?"DO YOU WISH TO USE OLD DATA <0> OR ACQUIRE NEW DATA 

<N>" 
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1505 ? "OR MAKE SYNTHETIC DATA <S>?" 

1510 input old_newS 

1520 ifold_newS= "0" or old_newS= "0" then gosub @_old: goto120 

1530 ifold_newS= "N" or old_newS= "n" then gosub @_new: gotol900· 

1535 if old_newS= "S" or old_newS= "s" then gosub @_synth: goto 120 

1540 ? "INVALID INPUT- TRY AGAIN": goto 1500 

1900 return 

2000 @_cursors: 

2010 rem SETS UP THE CURSORS NEEDED LATER IN THE PROGRAM 

2020 coordinates squared 

2030 ? "SET UP AN ELLIPTICAL CURSOR AROUND THE IMAGE ON THE 

FRINGE" 

2040 ? "MONITOR USING THE TRACKBALL" 

2050 cursor 1 ellipse 

2060 gosub @_minmax 

2120 rem HORIZONTAL FIDUCIAL CURSORS FOR abr 

2130 cursor 2 point xmin+5, ycent 

2140 cursor 3 point xmax-5, yeent 

2150 rem VERTICAL FIDUCIAL CURSORS FOR ab 

2160 cursor 4 point xcent, ymin+5 

2170 cursor 5 point xcent, ymax-5 

2180 rem VERTICAL FIDUCIAL CURSORS FOR absl 

2190 cursor 6 point xcent+s 1, ymin+5 

2200 cursor 7 point xcent+sl, ymax-5 

2210 rem VERTICAL FIDUCIAL CURSORS FOR abs2 

2220 cursor 8 point xcent+s2, ymin+S 

2230 cursor 9 point xcent+s2, ymax-S 

2240 cursor all off 

2250 cursor 1 on 

2260 copy CURSORS to "B:cursors.cu" 

2900 return 
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3000 @_ac<Lcb: 

3010 ? "PLACE FLAT C IN INTERFEROMETER AND FLAT B IN MOUNT." 

3020 ? "ADmST FOR A SillTABLE FRINGE PATTERN" 

3030 ? 

3040 gosub @_~data 

3050 gosub @_adj_datal 

3060 copy DATA to "B:cb.da" 

3070 return 

4000 @_aCCLac: 

4010 ? "PLACE FLAT A I N INTERFEROMETER AND FLAT C IN MOUNT." 

4020 ?" ADmST FOR SUIT ABLE FRINGE PATTERN." 

4030 ? 

4040 gosub @_~ data 

4050 gosub@_adLdatal 

4060 copy DATA to "B:ac.da" 

4070 return 

5000 @_~abr: 

5010 cursor 2 on: cursor 3 on 

5020 ? "PLACE FLAT A IN INTERFEROMETER AND FLAT B IN MOUNT" 

5030 ? "SUCH THAT THE ALIGNMENT FIDUCIAL IS ALIGNED WITH THE" 

5040 ? "HORIZONTAL CURSOR MARKS ON THE FRINGE MONITOR." 

5050 ? "ADJUST FOR SUITABLE FRINGE PAITERN." 

5060 ? 

5070 gosub @_~ data 

5080 copy DATA to "B:abr.da" 

5090 cursor 2 off: cursor 3 off 

5100 return 

6000 @_aCCLab: 

6010 cursor 4 on: cursor 5 on 

6020 gosub @_~abv 

6030 gosub @_adj_datal 
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6040 copy DATA to "B:ab.da" 

6050 cursor 4 off: cursor 5 off 

6060 return 

7000 @_ac<Labs1 : 

7010 cursor 6 on: cursor 7 on 

7020 gosub @_~abv 

7030 copy DATA to "B:absl.da" 

7040 cursor 6 off: cursor 7 off 

7050 return 

8000 @_ac<Labs2: 

8010 cursor 8 on: cursor 9 on 

8020 gosub @_~abv 

8030 copy DATA to "B:abs2.da" 

8040 cursor 8 off: cursor 9 off 

8050 return 

9000 @_~abv: 

9010 ? "PLACE FLAT A IN INTERFEROMETER AND FLAT B IN MOUNT" 

9020 ? "SUCH THAT THE ALIGNMENT FIDUCIAL IS ALIGNED WlTII" 

9030 ?"THE VERTICAL CURSOR MARKS ON THE FRINGE MONITOR." 

9040 ? "ADruST FOR A SUITABLE FRINGE PATTERN." 

9050 ? 

9060 gosub @_ac<Ldata 

9070 return 

10000 @_~data: 

10010 ? "PRESS <RETIJRN> WHEN READY TO ACQUIRE DATA" 

10020 input ready$ 

10025 go sub @~ delay 

10030 window 1 

10040 average clear 

10050 for i=l to meas_no 

10060 acquire: convert: connect 
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10070 average sum 

10080 next i 

10090 average calc 

10 I 00 square: invert 

10105 multiply multfact 

10110 return 

11000 @_adj_data1: 

1I01O ? "ADRJSTING mT OF DATA" 

11020 xO=O: yO=-6O: zO=DATAPOINT [xcent1[ycent-60] 

11030 xl=60: yl=O: zl=DATAPOINT [xcent+60][ycent] 

11040 x2=-60: y2=O: z2=DATAPOINT [xcent-60][ycent] 

11050 gosub @_find-plane 

11060 gosub @_remove-plane 

11070 return 

12000 @_find...,plane: 

12010 ? "FINDING COEFFICIENTS OF PLANE" 

12020 I=«y1-yO)*(z2-zO)-(zl-zO)*(y2-yO» 

12030 J=«zl-zO)*(x2-xO)-(x1-xO)*(z2-zO» 

12040 K=«xl-xO)*(y2-yO)-(yI-yO)*(x2-xO» 

12050 return 

13000 @_remove-plane: ? "REMOVING PLANE" 

13010 rem REMOVES A PLANE FROM THE DATASET GIVEN THE PLANE 

13020 rem COEFFICIENTS I,J)( AND THE POINT zO,yO,zO 

13030 ZGEN [O]=(I*xO+J*yO)/K +zO:? ZOEN [0] 

13040 ZGEN [1]=-1 *radius*IIK: ? ZOEN [1] 

13050 ZGEN [2]=-1 *radius*JIK: ? ZOEN [2] 

13060 ZGEN [36]= xcent 

13070 ZOEN [37]= ycent 

13080 ZGEN [381= radius 

13090 zremove 3 

13900 return 
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14000 @_make_blanks: 

14010 remCREATEBLANKDATAFILESINWlDCHTOWRITEaANDb DATA 

AS IT IS CALCULATED 

14020 rem DATAFILES WILL INITIALLY CONTAIN "BAD DATA" ie. 

14030 rem ALL DATAPOINTS= 99999.0 

14040 ZGEN [0]=1 

14050 ZGEN [36]= xcent 

14060 ZGEN [37}= ycent 

14070 ZGEN [38]= 0 

14075 zgen 1 

14080 mask 1 

14090 copy DATA to "B:blank.da" 

14110 return 

15000 @_do_flf. units internal 

15005 gosub @Jesu1ts_disk 

15010 rem PERFORMS STANDARD THREE FLAT TEST TO FIND 1st 

DIAMETER (VERTICAL) 

15020 rem FIND DIAMETER OF FLATS A AND B 

15030 gosub @_init_temp 

15040 copy "B:ab.da" to DATA 

15050 for dpy= ymin to ymax 

15060 tempI [dpy]= DATAPOINT [xcent][dpy] 

15065 temp2 [dpy]= DATAPOINT [xcent][dpy] 

15070 next dpy 

15075 cent= ycent: gosub@_temp_diag 

15080 copy "B:cb.da" to DATA 

15090 for dpy= ymin to ymax 

15100 if tempI [dpy]= bad then goto 15130 

15110 ifDATAPOINT [xcent][dpy]= bad then goto 15130 

15120 tempI [dpy]= tempI [dpy]-DATAPOINT [xcent][dpy] 

15125 temp2 [dpy]= tempI [dpy]+DATAPOINT [xcent][dpy] 
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15130 next dpy 

15135 gosub @_temp_diag 

15140 copy "B:ac.da" to DATA 

15150 for dpy= ymin to ymax 

15160 if tempI [dpy]= bad then goto 15190 

15170 ifDATAPOINT [xcent][dpy]= bad then goto 15190 

15180 tempI [dpy]= (tempI (dpy]+DATAPOINT [xcent][dpy])/2 

15185 temp2 [dpy]= (temp2 [dpy]-DATAPOINT [xcent][dpy])/2 

15190 next dpy 

15195 gosub @_temp_diag 

15200 acent= templ[ycent] 

15210 copy "B:blank.da" to DATA 

15220 for dpy= ymin to ymax 

15230 DATAPOINT [xcem][dpy]= tempI [dpy] 

15240 next dpy 

15245 ? "vertical diameter of A" 

15246 rows::: 19: cols::: 1: spacing= 10 

15247 gosub @_diagnost 

15250 copy DATA to "M:a.da" 

15440 bcent= temp2 [ycent] 

15450 copy "B:blank.da" to DATA 

15460 for dpy= ymin to ymax 

15470 DATAPOINT [xcent][dpy]= temp2 [dpy] 

15480 next dpy 

15485 ? "vertical diameter ofB" 

15486 gosub @_diagnost 

15490 copy DATA to "M:b.da" 

15500 return 

16000 @jnit_temp: 

16010 rem INITIALISES TWO ARRAYS FOR TEMPORARY STORAGE OF DATA 

16020 fori= 0 to 288 
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16030 tempI [i]= bad 

16040 temp2 [i]= bad 

16050 next i 

16060 return 

17000 @_do_schulz: 

17005 gosub @_minmax 

17010 rem FINDS HORIZONTAL DIAMETERS OF FLATS A AND B BY 

METHOD 

17020 rem ACCORDING TO SCHULZ 

17030 gosub@_adLabr 

17040 rem FIND HORIZONTAL DIAMETER OF FLAT A 

17050 gosub @_init_temp 

17060 copy "M:b.da" to DATA 

17070 for dpy= ymin to ymax 

17080 tempI [dpy]= DATAPOINT[xcent][dpy] 

17090 next dpy 

17100 copy "U:abr.da" to DATA 

17200 for dpx= xmin to xmax 

17210 if temp 1 [ycent+xcent-dpx]= bad then goto 17240 

17220 ifDATAPOINT [dpx][ycent]=bad thengoto 17240 

17230 temp2 [dpx]=DATAPOINT [dpx][ycent]-templ [ycent+xcent-dpx] 

17240 next dpx 

17250 copy "M:a.da" to DATA 

17260 for dpx= xmin to xmax 

17270 DATAPOINT [dpx][ycent]= temp2 [dpx] 

17280 next dpx 

17281 ? "horizontal diameter of A" 

17282 rows= 1: cols= 19: spacing = 10 

17283 gosub @_diagnost 

17285 delete "M:a.da": delete "M:a.at" 

17290 copy DATA to "M:a.da" 
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17300 rem FIND HORIZONTAL DIAMETER OF FLAT B 

17310 gosub @jnit_temp 

17320 copy "M:a.da" to DATA 

17330 for dpy= ymin to ymax 

17340 tempI [dpy]= DATAPOINT [xcent][dpy] 

17350 next dpy 

17360 copy "U:abr.da" to DATA 

17370 for dpy= ymin to ymax 

17380 if tempi [dpy]= bad then goto 17410 

17390 ifDATAPOINT [xcent][dpy]= bad then goto 17410 

17400 temp2 [dpy]= DATAPOINT [xcent][dpy]-templ [dpy] 

17410 next dpy 

17420 copy "M:b.da" to DATA 

17430 for dpx= xmin to xmax 

17440 DAT APOINT [dpx][ycent]= temp2 [ycent+xcent-dpx] 

17450 next dpx 

17451 ? "horizontal diameter ofB" 

17452 gosub @_diagnost 

17455 delete "M:b.da": delete "M:b.at" 

17460 copy DATA to "M:b.da" 

17470 return 

18000 @_adLabr: 

18010 ? "ADJUSTS ~T OF abrDATASET" 

18020 copy "B:abr.da" to DATA 

18030 xO= 0: yO= 0: zO=(DATAPOINT [xcent] [ycent])-acent-bcent 

18040 xl= 60: yl= 0: zl= DATAPOINT [xcent+60][ycent] 

18050 x2= 0: y2= -60: z2= DAT APOINT [xcent][ycent-60] 

18060 gosub @Jind-"lane 

18070 gosub @_remove -"lane 

18074 delete "B:abr.da": delete "B:abr.at" 

18075 ? "abr after adj_abr" 
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18076 gosub @_diagnost 

18080 copy DATA to "B:abr.da": copy DATA to "U:abr.da" 

18090 return 

19000 @_old: 

19010 ? "PLACE DISK CONTAINING DATA PREVIOUSLY ACQUIRED IN 

DRIVEB":? 

19020 ? "PRESS <RETURN> WHEN READY" 

19030 inputready$ 

19040 copy "B:cursors.cu" to CURSORS 

19050 gosub @_minmax 

19900 return 

20000 @_new: 
20010 ?" ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• " 

20020 ? "IMPORTANT- PLACE A BLANK DISK OR DISK CONTAINING NO 

IMPORTANT DATA" 

20030 ?"IN DRIVE B. TIllS DISK WILL BE INITIALISED, IE. WIPED CLEAN 

BEFORE" 

20040 ? "PROCESSING BEGINS 

20050 ?" ••••••••• * •••••• **.* •• * ••••••••••• * •••••••• * ••••••••••••••• " 
20060 ? "PRESS <RETURN> WHEN READY" 

20070 input readyS 

20080 initia1ise"B" 

20090 ? "INPUT NUMBER OF MEASUREMENTS TO BE AVERAGED" 

20100 input meas_no 

20110 ?"ENTER DELAY BEFORE ACQUIsmON (SECONDS)" 

20120 input delay 

20900 return 

21000 @ mimnax: 

21010 xmin= CURSOR [lUI] 

21020 ymin= CURSOR [1][2] 

21030 xmax- CURSOR [1][3] 
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21040 ymax= CURSOR [1][4] 

21050 xcent= int«xmin+xmax)/2) 

21060 ycent= int«(ym.in+ymax)/2) 

21070 radius= int«xmax-xmin)/2) 

21080 ifint«(ymax-ymin)/2) > radius then radius= int«(ymax-ymin)/2) 

21900 return 

22000 @_delay: 

22010 TIMER= 0 

22020 if TIMER > delay* 1000 then goto 22900 

22030 goto 22020 

22900 return 

23000 @_adLabs: 

23005 ? "adjusting abs" 

23010 gosub @_adLxtilt 

23015 copy "B:ab.da" to "U:ab.da": copy "B:ab.at" to "U:ab.at" 

23020 copy "B:absl.da" to "M:abs.da" 

23025 copy "B:absl.at" to "M:abs.at" 

23026 ? "find y-tih" 

23030 s= s1: roWF 19: cols= 19: spacing = 10 

23031 ? "absl" 

23040 gosub @_find.fiJ.t 

23050 delete "B:absl.da": delete "B:abs1.at" 

23060 copy DATA to "B:absl.da" 

23070 delete "M:abs.da": delete "M:abs.at" 

23080 copy "B:abs2.da" to "M:abs.da" 

23085 copy "B:abs2.at" to "M:abs.at" 

23090 5=s2: rows=19: cols= 19: spacing = 3 

23091 ? "abs2" 

23100 gosub @_find.fiJ.t 

23110 delete "B:abs2.da": delete "B:abs2.at" 

23120 copy DATA to "B:abs2.da" 
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23900 return 

24000 @ aei" xtilt: _ L 

24001 ? "adj x tilt" 

24010 copy "M:b.da" to DATA 

24020 Pl= DATAPOINT [xcent+6o+s1][ycent]: ? "Pl=";Pl 

24025 P3= DATAPOINT [xcent+60+s2][ycent]: ? "P3=";P3 

24050 P2= DATAPOINT [xcent-6O+s1][ycent]: ? "P2=";P2 

24060 P4= DATAPOINT [xcent-60+s2][ycem]: ? "P4=";P4 

24070 copy "B:abs1.da" to DATA 

24080 xO= -60: yO= 0: zO= DATAPOINT [xcent-6O][ycent]-P1 

24090 xl= 60: yl= 0: zl= DATAPOINT [xcent+60][ycent]-P2 

24100 x2= xO: y2= 10: z2= zO 

24105 ? "absl" 

24110 gosub @_find""plane 

24120 gosub @-!emove,.plane 

24125 rows= 1: cols= 19: spacing = 10 

24126 ? "Horizontal diameter ofabsl after adj_xtilt" 

24130 delete "B:absl.da": delete "B:abs1.at" 

24140 copy DATA to "B:abs1.da" 

24150 copy "B:abs2.da" to DATA 

24160 xO= -60: yO= 0: zO= DATAPOINT [xcent-60][ycent]-P3 

24170 xl= 60: yl= 0: zl= DATAPOINT [xcent+60][ycent]-P4 

24180 x2= xO: y2= 10: z2= zO 

24185 ? "abs2" 

24190 gosub @Jind"'plane 

24200 go sub @_remove""plane 

24201 ? "Horizontal diameter ofabs2 after adj_xtilt" 

24205 gosub @_diagnost 

24210 delete "B:abs2.da": delete "B:abs2.at" 

24220 copy DATA to "B:abs2.da" 

24900 return 
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25000 @_findJtilt: 

25010 copy "M:a.da" to DATA 

25020 for dpy= ymin to ymax 

25030 tempi [dpy]= DATAPOINT [xcent][dpy] 

25040 next dpy 

25050 strt= 0: finish= radius 

25055 gosub @_step_chordsl 

25060 copy "M:b.da" to DATA 

25070 for dpy= ymin to ymax 

25080 tempI [dp]= DATAPOINT[xcent][dpy] 

25090 next dpy 

25100 strt= 0: finish= radius 

25110 gosub @_step_chords2 

25115 ? liB after stepchords2" 

25116 gosub @_diagnost 

25120 gosub @jnit_temp 

25130 copy "M:a.da" to DATA 

25131 ? "A after stepchords2" 

25132 gosub @_diagnost 

25140 for dp= s to radius step s 

25150 tempI [xcent+dp]= DATAPOINT [xcent+dp][ycent+dp] 

25160 tempI [xcent-dp]= DATAPOINT [xcent-dp][ycent-dp] 

25170 next dp 

25180 copy "M:b.da" to DATA 

25190 for dp= s to radius step s 

25200 ifDATAPOINT [xcent-dp][ycent-dp]= bad then tempI [xcent+dp]= bad 

25205 if temp I [xcent+dp]= bad then goto 25220 

25210 tempI [xcent+dp]= tempI [xcent+dp]+ DATAPOINT [xcent-dp}[ycent-dp] 

25220 ifDATAPOINT [xcent+dp][ycent+dp]= bad then tempI [xcent-dp]= bad 

25225 if tempi [xcent-dp]= bad then goto 25240 

25230 tempI [xcent-dp]= tempI [xcent-dp]+DATAPOlNT [xcent+dp][ycent+dp] 
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25240 next dp 

25260 copy "U:abr.da" to DATA 

25270 for dp= s to radius step s 

25280 ifDATAPOINT [xcent+dp][ycent+dp]= bad then tempI [xcent+dp]= bad 

25285 if tempI [xcent+dp]= bad then goto 25300 

25290 tempI [xcent+dp]= (tempI [xcent+dp]- DATAPOINT 

[xcent+dp ][ycent+dp ])12 

25300 ifDATAPOINT [xcent-dp][ycent-dp]= bad then tempI [xcent-dp]= bad 

25305 if tempI [xcent-dp]= bad then goto 25320 

25310 tempI [xcent-dp]= (tempI [xcent-dp]-DATAPOINT [xcent-dp][ycent-dp])l2 

25320 next dp 

25330 n= 0: tot= 0 

25340 for dp= s to radius step s 

25350 if tempI [xcent+dp]= bad then goto 25380 

25360 n=n+1 

25370 tot= tot+(templ [xcent+dp]*s*sI(dp*dp» 

25380 if tempI [xcent-dp]= bad then goto 25410 

25390 n=n+l 

25400 tot= tot+(templ [xcent-dp]*s*sI(dp*dp» 

25410 next dp 

25420 y_tjIt= tot*radiusl(s*n) 

25430 ZGEN [0]= 0 

25440 ZGEN [1]= 0 

25450 ZGEN [2]= y _ tilt 

25460 ZGEN [36]= xcent 

25470 ZGEN [37]= ycent 

25480 ZGEN [38]= radius 

25490 copy "M:abs.da" to DATA 

25500 zremove 3 

25900 return 

26000 @_step_<?hordsl: finat 0,0,4,0: printer is 2: ? "step_chords 1 " 
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260 1 0 for chord= strt to finish step s 

26015 ifxcent+chord+s > xmax then goto 26100 

26020 copy "M:abs.da" to DATA 

26030 gosub @_sub_templa 

26040 copy "M:b.da" to DATA 

26045 if xcent+chord+s > xmax then goto 26080 

26050 for dpy= ymin to ymax 

26055 ifxcent+chord+s > xmax then goto 26070 

26056 iftemp2 [dpy] > 32766 then goto 26070 

26057 iftemp2 [dpy] < -32767 then goto 26070 

26060 DATAPOINT [xcent+Chord+s][dpy]= temp2 [dpy] 

26070 next dpy 

26080 delete "M:b.da": delete "M:b.at" 

26090 copy DATA to "M:b.da" 

26100 copy "U:ab.da" to DATA 

26110 gosub@_sub_temp2a 

26115 ifxcent-chord-s < xmin then goto 26180 

26120 copy "M:a.da" to DATA 

26130 for dpy= ymin to ymax 

26135 ifxcent-chord-s < xmin then goto 26150 

26136 if tempI [dpy] > 32766 then goto 26150 

26137 if tempI [dpy] < -32767 then goto 26150 

26140 DATAPOINT [xcent-chord-s][dpy]= tempI [dpy] 

26150 next dpy 

26160 delete "M:a.da": delete "M:a.at" 

26170 copy DATA to "M:a.da" 

26180 next chord 

26900 return 

27000 @_step_chords2: ? "step_chords2" 

27010 for chord= strt+s to finish step s 

27020 copy "M:abs.da" to DATA 
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27030 gosub@_sub_tempIb 

27040 copy "M:a.da" to DATA 

27050 for dpy= ymin to ymax 

27051 iftemp2 [dpy] > 32766 then goto 27070 

27052 iftemp2 [dpy] < -32767 then goto 27070 

27060 DATAPOINT [xcent+chord][dpy]= temp2 [dpy] 

27070 next dpy 

27080 delete "M:a.da": delete "M:a.at" 

27090 copy DATA to "M:a.da" 

27100 copy "U:ab.da" to DATA 

27110 gosub @_sub_temp2b 

27120 copy "M:b.da" to DATA 

27130 for dpy= ymin to ymax 

27131 if tempI [dpy] > 32766 then goto 27150 

27132 if tempI [dpy] < -32767 then goto 27150 

27140 DATAPOINT (xcent-chord][dpy]= tempI [dpy] 

27150 next dpy 

27160 delete "M:b.da": delete "M:b.at" 

27170 copy DATA to "M:b.da" 

27180 next chord 

27900 return 

28000 @_sub temp Ia: 

28010 for dpy= ymin to ymax 

28020 temp2 [dpy]= bad 

28025 dpoint= DATAPOINT [xcent-chordUdpy] 

28030 if dpoint= bad then goto 28060 

28040 if temp 1 [dpy}= bad then goto 28060 

28050 temp2 [dpy]= dpoint-templ [dpy] 

28060 next dpy 

28499 return 

28500 @_sub_templb: 
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28510 for dpy= ymin to ymax 

28520 temp2 [dpy]= bad 

28525 dpoint= DATAPOINT [xcent+chord][dpy] 

28530 if dpoint= bad then goto 28560 

28540 if temp 1 [dpy]= bad then goto 28560 

28550 temp2 [dpy]= dpoint-templ [dpy] 

28560 next dpy 

28900 return 

29000 @_sub_temp2a: 

29005 ifxcent-chord-s < xmin then goto 29499 

29010 for dpy ==ymin to ymax 

29020 temp 1 [dpy]= bad 

29024 ifxcent-chord-s < xmin then goto 29060 

29025 dpoint= DATAPOINT [xcent-chord-s][dpy] 

29030 if dpoint= bad then goto 29060 

29040 iftemp2 [dpy]= bad then goto 29060 

29050 temp 1 [dpy]= dpoint-temp2 [dpy] 

29060 next dpy 

29499 return 

29500 @_sub_temp2b: 

29510 for dpy= ymin to ymax 

29520 temp 1 [dpy]= bad 

29525 dpoint= DATAPOINT [xcent+chord][dpy] 

29530 if dpoint= bad then goto 29560 

29540 if temp2 [dpy]= bad then goto 20560 

29550 tempI [dpy]= dpoint- temp2[dpy] 

29560 next dpy 

29900 return 

30000 @_solve: 

30005 ? "solve" 

30006 ? "find 3-spaced starting chords" 
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30010 delete "M:abs.da": delete "M:abs.at" 

30020 copy "B:abs2.da" to "M:abs.da" 

30030 copy "B:abs2.at" to "M:abs.at" 

30040 s= s2 

30050 copy "M:a.da" to DATA 

30060 for dpy= ymin to ymax 

30070 tempI [dpy]= DATAPOINT [xcent][dpy1. 

30080 next dpy 

30090 strt= 0: finish= 18 

30095 rows= 19: cols= 11: spacing= 3 

30100 gosub@_step_chordsl 

30105 ? "A after stepchordsl" 

30106 gosub @_diagnost 

30110 copy "M:b.da" to DATA 

30120 for dpy= ymin to ymax 

30130 tempi [dpy]= DATAPOINT [xcent][dpy] 

30140 next dpy 

30150 strt= 0: finish= 15 

30160 gosub @_step_chords2 

30165 ? "B after step_chords2" 

30166 gosub @_diagnost 

30170 delete "M:abs.da": delete "M:abs.at" 

30180 copy "B:abs1.da" to "M:abs.da" 

30190 copy "B:abs1.at" to "M:abs.at" 

30200 s=sl 

30205 ? "step on lOs" 

30210 for strt= -IS to 12 step s2 

30215 ? "strt="; strt 

30220 copy "M:a.da" to DATA 

30230 for dpy= ymin to ymax 

30240 tempI [dpy]= DATAPOINT [xcent-strt][dpy] 
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30250 next dpy 

30260 finish= radius 

30270 gosub @_step_chordsl 

30280 copy "M:b.da" to DATA 

30290 for dpy= ymin to ymax 

30300 tempI [dpy]= DATAPOINT [xcent-strt][dpy] 

30310 next dpy 

30320 finisb= radius 

30330 gosub@_step_chords2 

30340 next strt 

30350 copy "M:a.da" to DATA multiply (l/multfact) 

30360 copy DATA to "Aa.da" 

30370 copy "M:b.da" to DATA multiply (l/multfact) 

30380 copy DATA to "Ab.da" 

30900 return 

31000 @_diagnost: 

31010 final 0,0,11,0 

31020 units internal 

31030 firstrow= ycem-(int(rows/2)*spacing) 

31040 firstcol= xcent-(int( colsl2) * spacing) 

31050 printer is 2 

31060 1 "first row of ";rows; "is ";firstrow 

31070 1 "first column of ";cols;"is ";firstcol 

31080 1 "spacing is ";spacing; "pixels" 

31085 1:1 

31090 for dpy= firstrow to firstrow+«rows-l )*spacing) step spacing 

31095 ind= 0 

31100 for dpx= firstcol to firstcol+«cols-l)*spacing) step spacing 

31110 1DATAPOINT [dpx](dpy];" "; 

31115 ind= ind+ 1 

31116 if ind= 6 then 1: ind=O 
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31120 next dpx 

31130 ? 

31140 next dpy 

31145 1:1 

31999 return 

32000 @_aftermath: 

32010 1 ERROR: ? ERRORS 

32020 1" Aftermath after fatal error" 

32030 1 "contents of A datafile" 

32040 copy "M:ada" to DATA 

32050 rows= 19: cols= 19: spacing= 10 

32060 80sub @_diagnost 

32070 spacing= 3 

32080 80sub @_diagnost 

32090 ? "contents ofB datafile" 

32100 copy "M:h.da" to DATA 

32110 spacing =10 

32120 80sub @_diagnost 

32130 spacing= 3 

32140 gosub @_diagnost 

32210 end 

32999 return 

33000 @_temp_diag: 

33001 units internal 

33005 printer is 2 

33010 1 "tempI 

33020 finat 0,0,20,0 

33030 1 "center pixel is ";cent 

temp2" 

33050 for dp= cent-90 to cent+9O step 10 

33060 1 tempI [dp]~ 

33070 ? temp2 [dp] 

260 



33080 next dp 

33999 return 

34000 @_synth: 

34010 ? "Place a disk containing a datafile named ab.da and corresponding" 

34020 ? "cursor file in drive B" 

34025 ? "Press return when ready": input ready$ 

34030 copy "B:cursors.cu to CURSORS 

34040 gosub @_minmax 

34050 copy "B:ab.da" to DATA 

34060 rem copy DATA to "U:Ada" 

34070 units waves 

34080 window calc 1: window data 1 

34090 ? "place disk to receive synthesised data in drive B" 

34100 ? "NB. this disk will be initialised 

34110 ? "Press return when ready" 

34115 input ready$ 

34120 initialise "B" 

34130 copy CURSORS to "B:cursors.cu" 

34150 ZGEN [36]= xcent 

34160 ZGEN [37]= ycent 

34170 ZGEN [38]= radius 

34180 for i= 0 to 3S 

34190 ZGEN [i]= 0 

34200 next i 

34201 ZGEN [0]= 0.1: ZGEN [1]= 0.05: ZGEN [2]= 0.1 

34202 zgen S 

34203 copy DATA to "U:Ada" 

34210 remAB 

34215 units waves: gosub@_zsen_clear 

34220 ZGEN [4]= 0.1 

34230 :z:gen S 
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34240 invert 

34250 copy DATA to "U:x.da" 

34260 copy "U:Ada" to DATA 

34270 subtract "U:Xda" 

34274 multiply multfilct 

34275 gosub@_adLdatal 

34280 copy DATA to "B:ab.da" 

34285 ? "AD": rows= 19: cols= 19: spacing= 10: gosub @_diagnost 

34290 remCB 

34295 gosub @_zgen_clear 

34296 units waves 

34300 ZGEN [3]= 0.1 

34320 zgen 5 

34330 subtract "U:X.da" 

34335 multiply multfilct 

34340 gosub @_adLdatal 

34350 copy DATA to "B:cb.da" 

34355 ? "CB": gosub @_diagnost 

34360 remAC 

34365 gosub @_zgen_clear 

34370 delete "U:Xda": delete "U:Xat" 

34375 units waves 

34380 ZGEN [3]= 0.1 

34400 zgen S 

34410 invert 

34420 copy DATA to "U:x.da" 

34430 copy "U:Ada" to DATA 

34440 subtract "U:Xda" 

34445 multiply mu1tfact 

34450 gosub @_adLdata1 

34460 copy DATA to "B:ac.da" 
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34465 ? "AC": gosub @_diagnost 

34470 rem ABR 

34475 gosub@_zgen_clear 

34480 delete "U:X.da": delete "U:Xat" 

34490 units waves 

34500 ZGEN [4]= -0.1 

34510 zgen 5 

34520 invert 

34530 copy DATA to "U:X.da" 

34540 copy "U:A.da" to DATA 

34550 subtract "U:X.da" 

34555 multipy multfact 

34560 copy DATA to "B:abr.da" 

34565 ? "ABR": gosub @_diagnost 

34570 rem ABS 1 

34580 delete "U:Xda": delete "U:Xat" 

34590 ZGEN [36}= xcent+sl 

34595 units waves 

34600 ZGEN [4]= 0.1 

34620 zgen 5 

34630 invert 

34640 copy DATA to "U:Xda" 

34650 copy "U:A.da" to DATA 

34660 subtract "U:X.da" 

34665 multiply multfact 

34670 copy DATA to "B:absl.da" 

34675 ? "ABSl": gosub @_diagnost 

34680 rem ABS2 

34690 delete "U:x.da": delete "U:X.at" 

34700 ZGEN [36]= xcent+s2 

34705 units waves 
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34710 ZGEN [4]= 0.1 

34730 zgen 5 

34740 invert 

34750 copy DATA to "U:X.da" 

34760 copy "U:A.da" to DATA 

34770 subtract "U:X.da" 

34775 multiply multfact 

34780 copy DATA to "B:abs2.da" 

34785 ? "ABS2": go sub @_diagnost 

34790 for i= 0 to 38 

34800 ZGEN [i]= 0 

34810 next i 

34820 initialize "U" 

34830 gosub @_make_blanks 

34999 return 

35000 @Jesults_disk: 

35010 ? "Please replace program disk in drive A" 

35020 ? "with a disk to record the results" 

35030 ? "This disk will be initialised !" 

35040 ? "Press return when ready" 

35050 inputready$ 

35060 ? "Are you sure you have removed the program disk? <Y>" 

35070 input ready$ 

35080 ifready$= "Y" or readyS= "y" then initialize "A": goto 35999 

35090 goto 35010 

35999 return 

36000 @_zgen_clear: 

36010 for i= 0 to 35 

36020 ZGEN [i]= 0 

36030 ne~ i 

36999 return 
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37000 @_chord-print: 

37010 finat 0,0,6,0 

37020 units internal 

37030 printer is 1 

37040 ? "Prints out entire contents of selected horizontal chord from DATA" 

37050 ? "Enter which chord (in relation to center) you wish to print out" 

37060 input ch 

37070 printer is 2 

37074 ind=O 

37080 for dpx= xmin to xmax 

37100 ? DATAPOINT [dpx][ycent+ch];" "; 

3 711 0 ind= ind+ 1 

37120 ifind= 10 then ?: ind= 0 

37130 next dpx 

37135 ?:?:?:? 

37140 printer is 1 

37150 return 
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