SOME APPLICATIONS OF FLOOD ROUTING

METHODS WITH PARTICULAR REFERENCE TO SMALL

STREAMS

by

Keith Shepherd

1

VOLUME II - APPENDICES

- Appendix I. IMPLIC 6 Computer Program Flow Chart.
- Appendix II. Solution of the Implicit Method Linear System.
- Appendix III. Tables.
- Appendix IV. Figures.
- Appendix V. Plates.

The computer program solves the one-dimensional equations of unsteady flow using an implicit finite difference scheme with an irregular space network and a variable weighting factor.

This appendix provides the mathematical details of the linear system solution technique described in Section 3.4.3. The coefficients of the linear system (Eqn. 3.38) are partial derivatives which must be calculated for each iteration.

The finite difference approximation to the continuity equation is written:

$$Ci_{i} = \frac{1}{2} \left((A_{i+1} + A_{i}) - (A_{i+1}' + A_{i}') \right) + \frac{Dt}{Dx} \left(\theta(Q_{i+1} - Q_{i}) + (1 - \theta(Q_{i+1}' - Q_{i}')) - q Dt = 0. - (II.1) \right)$$

The linear coefficients are obtained from partial differentiation:

$$\frac{\partial Ci}{\partial y^{1}} = \frac{Bi}{2}, \quad \frac{\partial Ci}{\partial y_{i+1}} = \frac{B_{i+1}}{2} \qquad - (II.2)$$

$$\frac{\partial C_{1}}{\partial Q_{1}} = -\frac{Dt}{Dx} \theta, \quad \frac{\partial C_{1}}{\partial Q_{i+1}} = \frac{Dt}{Dx} \theta \qquad - (II.3)$$

Similar coefficients are obtained from the finite difference approximation to the momentum equation:

$$Mi = \frac{1}{2} \left(\left(Q_{i+1} + Q_{i} \right) - \left(Q_{i+1}' + Q_{i}' \right) \right) \\ + \frac{Dt}{Dx} \left(\theta \left(\left(\frac{Q^{2}}{A} \right)_{i+1} - \left(\frac{Q^{2}}{A} \right)_{i} \right) + (1 - \theta) \left(\left(\frac{Q^{2}}{A} \right)_{i+1}' - \left(\frac{Q^{2}}{A} \right)_{i}' \right) \right) \\ - g \frac{Dt}{2} \frac{S_{0}}{2} \beta \\ + g \frac{Dt}{4} \beta \left(\theta \left(Sf_{i+1} + Sf_{i} \right) + (1 - \theta) \left(Sf_{i+1}' + Sf_{i}' \right) \right) \\ + g \frac{Dt}{2Dx} \beta \left(\theta \left(y_{i+1} - y_{i} \right) + (1 - \theta) \left(y_{i+1}' - y_{i}' \right) \right) = 0 , \quad - (II.4)$$

where $\beta = \theta (A_{i+1} + A_i) + (1 - \theta)(A_{i+1}' + A_i')$. - (II.5)

$$\frac{\partial \mathbf{M}\mathbf{i}}{\partial \mathbf{y}\mathbf{i}} = + \frac{\mathbf{D}\mathbf{t}}{\mathbf{D}\mathbf{x}} \left(\frac{\mathbf{Q}^2 \mathbf{B}}{\mathbf{A}^2} \right)_{\mathbf{i}} - \frac{\mathbf{g}}{2} \operatorname{Dt} \operatorname{So} \theta \operatorname{Bi} \\ + \frac{\theta}{4} \frac{\mathbf{g}}{4} \frac{\mathbf{D}\mathbf{t}}{\mathbf{D}\mathbf{x}} \operatorname{Bi} \left(\theta \left(\operatorname{Sf}_{\mathbf{i}+1} + \operatorname{Sf}_{\mathbf{i}} \right) + (\mathbf{1} - \theta) \left(\operatorname{Sf'}_{\mathbf{i}+1} + \operatorname{Sf}_{\mathbf{i}} \right) \right) \\ + \frac{\theta}{4} \frac{\mathbf{g}}{4} \frac{\mathbf{D}\mathbf{t}}{\partial \mathbf{y}_{\mathbf{i}}} \frac{\partial \mathbf{Sf}_{\mathbf{i}}}{\partial \mathbf{y}_{\mathbf{i}}} \beta \\ + \frac{\mathbf{g}}{2\mathbf{D}\mathbf{x}} \frac{\mathbf{D}\mathbf{t}}{\mathbf{D}\mathbf{x}} \left(\theta \left(\mathbf{y}_{\mathbf{i}+1} - \mathbf{y}_{\mathbf{i}} \right) + (\mathbf{1} - \theta) \left(\mathbf{y}'_{\mathbf{i}+1} - \mathbf{y}_{\mathbf{i}}' \right) \right) \\ - \frac{\mathbf{g}}{2\mathbf{D}\mathbf{x}} \frac{\mathbf{D}\mathbf{t}}{\mathbf{D}\mathbf{x}} \left(\frac{\mathbf{Q}^2 \mathbf{B}}{\mathbf{A}^2} \right)_{\mathbf{i}+1} - \frac{\mathbf{g}}{2} \operatorname{Dt} \operatorname{So} \theta \operatorname{B}_{\mathbf{i}+1} \\ + \frac{\theta}{4} \frac{\mathbf{g}}{2\mathbf{D}\mathbf{x}} \left(\theta \left(\operatorname{Sf}_{\mathbf{i}+1} + \operatorname{Sf}_{\mathbf{i}} \right) + (\mathbf{1} - \theta) \left(\operatorname{Sf'}_{\mathbf{i}+1} + \operatorname{Sf'}_{\mathbf{i}} \right) \right) \\ + \frac{\theta}{4} \frac{\mathbf{g}}{4} \operatorname{Dt} \operatorname{B}_{\mathbf{i}+1} \left(\theta \left(\operatorname{Sf}_{\mathbf{i}+1} + \operatorname{Sf}_{\mathbf{i}} \right) + (\mathbf{1} - \theta) \left(\operatorname{Sf'}_{\mathbf{i}+1} + \operatorname{Sf'}_{\mathbf{i}} \right) \right) \\ + \frac{\theta}{2\mathbf{D}\mathbf{x}} \left(\frac{\mathbf{D}\mathbf{t}}{\mathbf{D}\mathbf{x}} - \frac{\partial \mathbf{Sf}_{\mathbf{i}+1}}{\partial \mathbf{y}_{\mathbf{i}+1}} \right) \\ + \frac{\mathbf{g}}{2\mathbf{D}\mathbf{x}} \operatorname{Dt} \left(\frac{\mathbf{h}}{\mathbf{h}} \right)_{\mathbf{i}+1} \left(\theta \left(\mathbf{y}_{\mathbf{i}+1} - \mathbf{y}_{\mathbf{i}} \right) + (\mathbf{1} - \theta) \left(\mathbf{y}'_{\mathbf{i}+1} - \mathbf{y}_{\mathbf{i}}^{\mathbf{i}} \right) \right) \\ + \frac{\mathbf{g}}{2\mathbf{D}\mathbf{x}} \left(\theta \left(\mathbf{h} \right)_{\mathbf{i}+1} - \frac{\mathbf{h}}{\mathbf{i}} \right) - (\mathbf{II} \cdot \mathbf{I} \right)$$

where
$$Sf_{1} = \frac{Q_{1}^{2} n_{1}^{2} p_{1}^{\frac{k}{3}}}{A_{1}^{\frac{k}{3}}}$$
 - (II.8)

and
$$\frac{\partial Sf_{i}}{\partial Y_{i}} = \frac{1}{3} Sf_{i} \left(\frac{4}{Pi} \frac{\partial Pi}{\partial Yi} - \frac{10 Bi}{Ai} \right)$$
 - (II.9)

2-2

Partial differentiation of Eqn. II.4 with respect to discharge gives:

$$\frac{\partial M_{i}}{\partial Q_{i}} = \frac{1}{2} - \frac{2}{D_{x}} \frac{D_{t}}{\partial Q_{i}} \theta \left(\frac{Q}{A}\right)_{i} + \frac{g D_{t} \beta \theta S_{i}}{2 Q_{i}} , \qquad - (II.10)$$

$$\frac{\partial M_{i}}{\partial Q_{i+1}} = \frac{1}{2} + 2 \frac{Dt}{Dx} \theta \left(\frac{Q}{A}\right)_{i+1} + \frac{g Dt \beta \theta S_{i+1}}{2 Q_{i+1}} \quad - (II.11)$$

Additional coefficients are also obtained from partial differentiation of the algebraic external boundary conditions. Upstream boundary conditions and corresponding derivatives may be written:

Discharge hydrograph,
$$B_1 = Q_1 - Q(1)$$
, $\frac{\partial B_1}{\partial y_1} = 0.0$, $\frac{\partial B_1}{\partial Q_1} = 1.0$. - (II.12)

Depth hydrograph, $B_1 = y_1 - y(1)$, $\frac{\partial B_1}{\partial y_1} = 1.0$, $\frac{\partial B_1}{\partial Q_1} = 0.0$. - (II.13)

Similarly, for downstream boundary conditions:

Discharge hydrograph, $B_N = Q_N - Q(N)$, $\frac{\partial B_N}{\partial y_N} = 0.0$, $\frac{\partial B_N}{\partial Q_N} = 1.0$. - (II.14)

Depth hydrograph, $B_N = y_N - y(N)$, $\frac{\partial B_N}{\partial y_N} = 1.0$, $\frac{\partial B_N}{\partial Q_N} = 0.0$. - (II.15)

Rating curve, $B_N = y_N - (f_1 + f_2 Q_N^{f_3})$,

. ----

$$\frac{\partial B_N}{\partial y_N} = 1.0, \ \frac{\partial B_N}{\partial Q_N} = - \langle f_2 \ f_3 \ Q_N^{(f_3-1)} \rangle . \qquad - (II.16)$$

The partial derivatives defined by Eqn. II.1 to II.16 comprise the coefficients of the linear system expressed in a $2N \times 4$ matrix.

A technique based on Gaussian elimination is used to solve the linear system:

$$A'X = R - (II.18)$$

Two sets of recurrence formulae are applicable to alternate rows, and then components in the solution column vector X are found from a back-substitution process. Initial values are set:

$$t_{1,3} = a_{1,3}$$
, $t_{1,4} = a_{1,4}$, $z_1 = R_1$. - (II.19)

Recurrence formulae for even numbered rows (i = 2, 4, 6, ..., 2N) are written:

$$t_{i,2} = a_{i,1} \frac{t_{i-1,4}}{t_{i-1,3}} + a_{i,2}'$$
 - (II.20a)

$$z_i = a_{i,1} \frac{z_{i-1}}{t_{i-1,3}} + R_1$$
. - (II.20b)

,

Recurrence formulae for odd numbered rows (i = $3, 5, 7 \dots 2N-1$) are written:

$$t_{1,2} = -a_{1,1} \frac{t_{1-2,4}}{t_{1-2,3}} + a_{1,2}$$
, - (II.21a)

$$t_{i,3} = -a_{i-1,3} \frac{t_{i,2}}{t_{i-1,2}} + a_{i,3}$$
, - (II.21b)

$$t_{i,4} = -a_{i-1,4} \frac{t_{i,2}}{t_{i-1,2}} + a_{i,4}$$
, - (II.21c)

$$z_i = -t_{i,2} \frac{z_{i-1}}{t_{i-1,2}} - a_{i,1} \frac{z_{i-2}}{t_{i-2,3}} + R_i$$
 - (II.21d)

Components of the solution vector X are now found from a backsubstitution starting at i = 2N and continuing sequentially to i = 1. The initial value may be found from:

$$x_{2N} = \frac{z_{2N}}{t_{2N,2}}$$
 - (II.22)

The recurrence formula for odd numbered rows (i = 2N-1, 2N-3 5, 3, 1) may be written:

$$x_i = \frac{zi - ti, 4 xi + 1}{ti, 3}$$
 - (II.23)

The recurrence formula for even numbered rows (i = 2N-2, 2N-4 6, 4, 2) may be written:

$$x_i = \frac{z_i - a_i, 4 x_i + 2 - a_i, 3 x_i + 1}{t_i, 2}$$
 - (II.24)

Hence all values of the solution vector X are found and the calculated increments dhi and dQi are used to produce an improved estimate for the value of the dependent variables Qi and yi.

.

This solution technique proved accurate and efficient in the solution of a number of simultaneous equations. A problem does, however, exist if a stage hydrograph is provided as the upstream boundary condition. From Eqn. II.12, $\partial Bi/\partial yi = 0.0$, and therefore from Eqn. II.19, $t_{i,3} = a_{i,3} = 0.0$. As $t_{i,3}$ occurs in the denominator of Eqn. II.20a, the solution technique fails.

As a remedial measure, when an upstream depth hydrograph is supplied, the symbols representing discharge and depth are transposed, to ensure that $t_{i,3} \neq 0.0$ and the solution proceeds correctly. The method described above can cope with all other boundary conditions. This method is principally contained with Subroutine MATRIX of IMPLIC 6. APPENDIX III - TABLES

.

							1		
	ted	(111)	15.0	10.0	11.0	15.0	I	12.0	I
hours)	Pred1c	(11)	12.5	10.0	11.0	15.5	10.0	10.0	10.5
Lag (Ţ	(1)	13.5	24.0	19.0	22.0	19.5	19.0	14.0
Time	Recorded		13.0	24.0	21.5	20.5	20.0	20.0	13.0
mecs)	ted	(111)	115	457	210	130	I	275	ł
on (cw	Predic	(11)	25	375	142	135	150	170	172
enuati		(1)	25	460	250	170	180	255	169
Peak Atte	Recorded		35	473	220	193	258	256	163
5		(111)	0.25	0.35	0.40	0.20	ä	0.25	ł
ameter	H	(11)	0.46	0.42	0.45	0.39	0.45	0.39	0.43
ing par	urs)	(111)	24.0	26.0	20.0	19.0	-	25.0	I
Rout	K (ho	(11)	11.0	24.0	20.0	20.0	21.0	21.0	14.0
	at Erwood	(cumecs)	360	1080	1210	620	815	710	525
	Flood Date		Jan. 1969	Dec. 1965	Dec. 1960	Feb. 1950	Jan. 1948	Nov. 1939	Aug. 1939

Table 4.1. River Wye (Erwood to Belmont) - Muskingum simulation of attenuation and time lag.

Case (1) - Muskingum-Cunge. Dx = reach length/10. Dt = 2.0 hours. Case (11) - Muskingum-Cunge. Dx = reach length. Dt = 6.0 hours. Case (111) - Muskingum. Dx = reach length. Dt = 6.0 hours.

Key:

Time step	Value of	weighting factor	(θ).
(hours)	1.0	0.75	0.5
4	6.56	3.57	1.65
2	3.57	1.99	0.85
1	1.99	1.19	-0.07
0.5	1.19	0.67	0.37

<u>Table 4.2.</u> Implicit Method - Hydro (1)/Slope = 0.001 - peak discharge attenuation (cumecs).

Time step	Value d	of weighting factor	(0).
(nours)	1.0	0.75	0.5
4	15.25	11.59	6.96
2	11.51	9.45	7.20
1	9.43	8.31	7.24
0.5	8.30	7.77	7.20

<u>Table 4.3.</u> Implicit Method - Hydro (1)/Slope = 0.0002 - peak discharge attenuation (cumecs).

Time step	Value o	f weighting factor	(0)
(hours)	1.0	0.75	0.5
4	34.13	27.14	19.36
2	26.75	22.47	17.18
1	22.42	20.08	17.61
0.5	20.06	18.62	17.59

Table 4.4. Implicit Method - Hylro (2)/Slope = 0.0002 - peak discharge attenuation (cumecs).

Time step	Value of	weighting factor	· (θ)
(nours)	1.0	0.75	0.5
2	58.00	50.80	41.80
1	51.88	45.26	42.84
0.5	47.60	44.63	42.20

Table 4.5. Implicit Method - Hydro (3)/Slope = 0.0002 - peak discharge attenuation (cumecs).

Kinematic wave speed (m/s)	2.45	1.35	2.00	2.00
Max. dynamic wave speed (m/s)	7.48	8.49	9.52	9.52
Recorded wave speed (m/s)	2.70	1.54	1.74	1.74
Recorded peak travel time (hours)	5.0	0.6	8.0	8.0
Attenuation (cumecs)	0.37	7.20	17.59	42.20
Hydrograph/ Channel	<pre>Hydro (1)/ (1) Slope = 0.001</pre>	Hydro (1)/ (11) Slope = 0.0002	Hydro (2)/ (111) Slope = 0.0002	Hydro (3)/ (1v) Slope = 0.0002

Table 4.6. Implicit Method - Flood wave celerity and attenuation.

١

Tributary	Catchment Area (km ²)	Length (km)
Ifield Brook	7.8	6.5
Crawters Brook	9.1	10 .5
Mans Brook	6.5	6.5
Gatwick Stream	33.7	12.1
Burstow Stream	39.0	15.8
Salfords Stream	60.8	11.6
Deanoak Brook	42.8	18.5
Leigh Stream	16.1	11.6
Gad Brook	8.5	8.4
Tanners Brook	12.4	6,9
The Rye	3.5	4.2
Downside Stream	4.0	4.9

Table 5.1 Principal Tributaries of the River Mole

Pervious Strata $27\frac{1}{2}\%$ of total as	(km ²) rea	Mixed Strata (1 121% of total	km ²) area	Impervious St 60% of tot	rata (km ²) al area
Lower Greensand Upper Greensand Chalk Bagshot Beds	42 5 69 18	Hastings Beds Reading Beds Alluvium	37 3 21	Weald Clay Gault London Clay	197 10 75
Total	134	Total	61	Total	292

Table 5.2 River Mole Catchment Geological Strata

Table 5.3 Flood Peak Discharge and Level Data.

- P Flood peak data only H/w - Head water level (m) Key:
- RA Automatic records for hydrograph definition T/w - Tail water level (m)
- 2 - Discharge (cumecs)

ð

	definition
ł	hydrograph
,	for
	data
	recorded
	Manually
	ł
	RM

Wilder'	Gates H/w T/w		10.01 10.00		2				88	۹.,		84-8	۹				9.28 8.32	4	•					T	
Esher o w		H / 7	11-43	٩	•	10-93	Q.							10.71		•								0.01	LC.0
Royal	ALL W/H	m / = m / m	14-24 12-95	م	-	; :-	٩	1	1.11	٩	11.11	0	م	21-11	ົດ	-	12-81 10-69	_ ط							
Cobham	H/W T/W		21-18	٩		45-11	۵.	10 21.		٩	19.24		~	5.5	0	-	32-61 20-02	٩						20.10 19.20	Ma d
Downside	H/W T/W		82.22	م	T									たね	Q		55-77	٩	05.22	9				22-22	RM
Stoke D'Ak Bridee	H/W		26.42	٩	10	\$5.57	RM	24.00	= (2				ž.X	RM										
Leather- head	H/W																								
Castle Mill	H/w T/w Q		14:03	٩- (40.36	٩	-	40.21	a	-	10.K	٩	140.87 79.77		<u>م</u>	4+1·13 4+0·11	۵ ۹	-			1-45 20-04 SI-H	RA P RA
y Sidlow Bridge	H/w	5	E ic	۹.	49-94		2	18.64	Q		L8-H4	م	49.04		٩	49.94			28-P+	٩	49.67	Ċ	Ψ¥	49-72	RM
Kinnersle Manor	H/w Q																								
Horley	H/w T/w Q	54.41	٩		- .	RA		7-0	KA	21.2	40	Σ				63-25 53-29	٩ ٩		41.55 81.50	٩ ٩	1.31	RA		53-10 53-00 17-8	P P RA
FLOOD	EVENT	1. 144-164	Sept. 1968			Dec. 1968			Febr. 1968	4. 11A - 15A		Mar. 1969	S. 15M - 16H		DI LI .YON	6. 18H - 19th	OLPI Nov	+"C - P226 2		Jan. 1971	8. ISTh - 19th	Mar. 1971 a.		Two peaks	<u>د</u>

.

	-					_		_		_	_	_		_										_	_			
	Wilder'	Gates	4.22 8.31	٩	0.4.0 0.4.0		2					58-X 01-F	MA MA															
	Esher 2	Z.W.																	6.0	MA			aC-11	î a			·	
	Royal	BITIM	+9·01 H -7	P RM	10.01 28.0		MX MX				1.400	f	WX LL		06.01 61.0	PAN DA		-	94 11.29	AM RM	1. RL 10.95	WO	12.02	Ma			78.0	RA
	Cobham			P RM	0.03 N.50		E C							DW DN	1 61 61 01 0				0.00 19.54 13	AM RM	1 92.91 11-0	Ma	1-6	Ma				
	Downside	11TTW		RA	2 I.I.I.	ž	1.1.6				21.02		2 98-12	Ma	22.4%	AM M	22.34	W	2912	RM	7					.	2.52	RA
	Stoke D'Ab Bridge	997TT									25.18	8			24-98	RM			25-12	AM		<u> </u>	12-31	AM	25.19	RM	6	
<u>ontinued</u>	L/head								20.07	ga	30-72	RA	30.65	RA	r R	R.A.	29. fz	RA	30.69	A A	5 H-1	R.A.	31-00	AA	30.69	ÅÅ		
<u>Table 5.3 c</u>	Castle Mill	1.14 P2. P2 PT-04		AX AX AX	H-18 40-22 56.6	RA RM RA	-14 29.LE	d d	5-31 JR-38 13-91	RA P DA	H-36 40-87	RM RM	H-15 40.41 55 7	AA AM AA	0.98 40.34 LE.9	RA RM RA	1.24 19.92 23.0	RA P RA	1.11 40.48 SH.S	RA RM RA	H.06 40.11 507	RA RM RA	H-36 40-81 79-3	RA RM RA			38-62	ÅÅ
	Sidlow Bridge	29-94	20		S G	RM	ST- 64				8.95	RA	, 5 5 5 4	RM	3- 50-05	RM	1-09-04-	M	50.08 50.08	RM	06-64	RM						
	K/ley Manor								50-22 18.4	٩			T.P1 P9.02	RA RA	JI-09 37.4	RA RA	50-76 26-8	RA RA	51-10 37.4	RA RA	50-84 23-9	RA RA					44.91 13.2	RA RA
	Horley	53-26 52-21 19-8	9 88		53.72 53.67 24.9	P P RA	53.07 53-03	ط	52.54	đ	53-t f	RM	53.52 23.8	RM RA	53.70	RM	53.09	ط	53.62 24.4	RM RA			53-79 23-79 29-7	RA P RA			P.P. 52.10 9.9	RA RA RA
	Flood Event	9. Htth - 16th	JUNE 1971	Har Hol U	107 - 1814 - 2014	JUNE 1971	ll. 3rd-9th	Mar. 1972	12. 20th-22ml	sept. 1973	13. 9th-12th	Fels 1974	14. 13th - 17th	Felr. 1974	IS. Sth 7th	Sept. 1974	16. 27HL-29th	Sept. M74	17. I3H-ISH	HUOV. 1974	18. 18H-19th	Nov. 1914	R. 20th-22 4	HUOV. IGTH	20. 201-22md	Jan. 1975	21. 14th - Mt	0ct 1976

. ...

		┝										
Flood	Horley	¥	(/ley	Sidlow	Castle	T./hoad	Stoke D'A	p Downside	Cobham	Royal	Esher	Wilder'
Event	607 701	Z	lanor	Bridge	Mill		Bridge	M111	M111	Mills	S.W.	Gates
22. IIN-ISH	17 11-85 EL-85	ò S	1.16 44-2	50.13	P4.04 8P.04	11-95	25.18	23.36	19-28 19-24	12-92 11-23	10-93	21.9 22.9
9LLI VON	RA RA R	A	ZA RA	RM	RM RA	RA	RM	RA	RM RM	RM RA	d	۵. م
13. 28th Nov.	87 11-22 21-22	5 SI	1.14 80.	50.10	12.04 PO.14	30-61	21.25	01-22 24-22	20-30 19-51	12.92 11.43	£1-11	9.65 8.85
-2nd Dec 1976	RA RA R	- 	RA RA	RM	RM RM	RA	RM	RA RM	RM RM	RM RA	۹.	RM RM
Two Gots	53-33 21	-is -is	0-81 J9-9	10.64	40.90 40.30	30.54	20.22	23.36 22.62	20.27 19.38	11-28		
-interest	RA A	- 	RA RA	RM	RM RM	RA	RM	RA RM	RM RM	RA		
24. Sth - 10th	21 PT. 52 28-12	<u>و</u>	1-81 04-4					22.96		10-85		
Dec. 1976	RA RA R	- -	RA RA					RA		RA		
25. 31 st Dec. 1976	53-54 53.51 23	<u>.</u> .+	0.02 18.0		61-04	30·47		13-21		10-91		
- SH, Jaw. 1977	RA RA E	Z Z A	2A RA		RA	R.A		RA		RA		
26. 12th -15th	53-61 53-60 Ju	+ . 2 _ Sc	1-35 35-4	19.94	97.04 Ib-04	LS-OF		23.40 22.66				
Jan. 1977	RA RA R	۔ لا	RA RA	٩	RM RA	RA		AA AM				-
27. 3rd -7th	II LO-VS SH-TS	3 7	9.51 Z.O		38.90	29.93		18-22		62-01		
Feb. 1911	RA RA R	۔ ح	ZA RA		RA	RA		RA		RA		
28. 9th - ISH	53.57 52.45 II	8	0.11 05.1	941.641	39-06	30.07		22.90		24.01		
Fels. 1977	RA RA D	A	RA RA	٩	RA	RA		RA		A A		
29. 18th - 22md	52.44 51.96 10	-2 -2	1.41 SO.(28-92	29-90		22-73		12.01		
Feb. 1977 a.	RA RA R	A	RA RA		RA	RA		RA		RA		
Two Peaks	52.33 51.55 6	4 40	1-60 q.q		38.62	3L-12		% ন		10·01		
ذ	RA RA R	A A	2A RA		RA	βA		RA		RA		
30. 6tt - 10th	53.93 31	·2 21	2-L4 12-1	Ŀ. Ş	59.04 SP-04	30.94	25.24	21-42 21 83	20.26 19.54	24-11 26-21		26-8 19.6
Dec. 1977	RA R	۔ ح	ZA RA	RM	RM RM	RA	RM	RA RM	RM RM	RM RA		RM RM
31. 10th - 14th	53-15 Z3	2 20	8יוג סרינ			70·57		13·K		68-01		
Dec. 1977	RA R	- A	RA' RA			RA		RA		RA		-
32 . 11th - 15th				50.05	84.04 PL.04	30-75		23-39 22-74	20.24 19.52	04-11 06-71	60.11	
Jaw. 1978		_		RM	RM RM	RA		RA RM	RM RM	RM RM	RM	

Table 5.3 continued

Table 5.4 Flood peak travel times

Key: Top figure - Travel time between successive stations for which data are available (hours).

Bottom figure - Cumulative travel time from Horley Weir (hours).

* - No data available.

Ranking - estimate of relative size of flood.

EVENT	Ranking	Horley to Kinnersley	Sidlow Bridge	Castle Mill	Leatherhead	Stoke D'Ab Bridge	Downside Will	Cobham Mill	Royal Mills	Esher S.W.	Wilderness Gates
۱.	(1)	٠	•		*	*	*	*	•	*	44.0 44.0
2.	(4)	•	5.5 5.5		*	7.0 12.5	•	2.75 15.25	12-25 27-5	0.5 28.0	
3.	(19)	*	3.0 3.0	8.0	+	4.5	*	2.0 18.5	7.5 26.0	*	2.5 28.5
4.	(דנ)	*	4.75 4.75	5·75 10·5	¥	*	*	8·75 19·25	8.75 28.0	*	1.5 29.5
5.	(15)	*	5.0 5.0	6.5 11.5	•	7-0 18-5	3.5 22.0	1.0 23.0	1.0 31-0	1+5 32+5	
6.	(22)	*	3·0 3·0	8.0 (1.0	4	•	7.0 18.0	1.0 19.0	10-0 29-0	¥	2.0 31.0
٦.	(20)	*	2.5 2.5	5.75 8.25	*	4	9.0 17.25				
84.	(21)	*	*	9.5 9.5	٠	*	9-15	0-25 19-0	8.0 27.0	2.0 29.0	
٩.	(23)	*	8.5 8.5	6-5 15-0	÷	٠	515 2015	2.0 22.5	7-0 29.5	4	4 · 15 33 · 75
10.	(9)	*	6.0 6.0	5.0	*	*	12.5 12.5	0.5 24.0	7.75 31.75	*	1·25 33·0
Ц.	(26)	*	4.75 4.75	1.75 7.5	*	*	7.5 15.0				
12.	(30)	4-25 4-25	*	6.5 10.75	6.0 16.75						
13.	(3)	*	1.5 1.5	4.0 6.5	4-5 11-0	3.0 14.0	2.5	*	७-० १२-ऽ	*	2.0 25.5
14,	(12)	3.0 3.0	1.0	4.0 8.0	6.5 14.5	٠	4.0	1·25 19·75	7.5 27.25	٠	1.0
15.	(10)	1.0 3.0	1.0 4.0	7.0 11.0	5-25 16-25	2-25 19-5	2.0 21.5	1.5 23.0	9.0 32.0	+	1.0 33-0

.....

EVENT	Ranking	Horley to Kinnersley	Sidlow Bridge	Castle Mill	Leatherhead	Stoke D'Ab Bridge	Downside Mill	Cobham Mill	Royal Mills	Esher S.W.	W1lderness Gates
16.	(25)	4.75 4.75	1.5 6.25	5.75 12.0	51 F	*	3.5 20.25	*	*	*	10.0 30.25
17.	(1)	3.5 3.5	1-5 5-0	4-0 9-0	3·0 12·0	5∙0 ⊡∙0	*	1.0 20.0	10.5 30.5	2.0 31.0	
I 8.	(16)	2·25 2·25	2.5 4.75	3·5 8·25	6.0	*	*	2.5 16.75	8·0 24·75		
. 19,	(2)	*	3.0 3.0	3.0	5.5 11.5	1.5 13.0	*	٠	9.0 22.0	*	2.0 24.0
21.	(33)	5.0 5.0	*	6.0 11.0	*	*	5.0 16.0	*	4-0 20-0		
21.	(8)	3.5 3.5	0.5	4.5 9.5	3.5	5.0 17.0	2.5	2.0	8.5 20-0	0.5 20.5	1-0 31-5
230.	(6)	4.0 4.0	1.0	4.5	6.5	2.0	1.0	2.0	8·5 28·0	0.5 28.5	
236.	(18)	3.0	1-5	4.5	5.0	3.0	1.5	0.5	9.0		
24a.	(27)	3.5	*	+	•	•	11-0	*	8.0		
246.	(28)	4.0	*	*	•	*	10-0				
25.	(14)	3.5	*	4.0 7.5	4-5 12.0	*	2.5 13.5	*	9.0 24.5		
26.	(13)	2.5	1.5	1.0 7.0	6-0 13-0	*	3.0				
27.	(31)	3-0 3-0	•	6.5 9.5	2.5 12.0	*	2·0 14-0	*	7.0 21.0		
28.	(29)	3.5	1.0 4.5	5.5 10.0	2·0 13·0	٠	1.5 14.5	*	7-5 22-0		
29a.	හා	2.5 2.5	#	7.5 10.0	2.0 12.0	*	1.0 13.0	*	5.0 18.0		
296.	(34)	2.0 3.0	+	6-0 9.0	2.0 11.0	*	1.0 12.0	+	5.5 17.5		
30.	(5)	2.5	0.5 3.0	3.0	6.0 12.0	2·0 14·0	1.0 15.0	4.0 19.0	9.5 28.5	*	0.5 29.0
31.	(244)	4.0	*	*	8.0	*	2.0	*	9.0		
32.	(7)	*	5.0 5-0	4.0 9.0	2.5	*	4.5 16.0	1.5 17.5	8.0	0.0 25.5	

•

Table 5.4 continued.

•

Stream	A (km ²)	L(km)	S1085 m/km	URB %	SAAR (mm)	RSMD (mm)	SOIL	Tp (hours)	T _B (hours)	Qp (cumecs)
r Mole, ley	06	13.3	2.80	9.0	850	33.0	0.43	9.4(7.7*)	20.6	24.1
tow Stream	51	15.7	2.25	3.0	800	32.4	0.44	11.8(9.7*)	25.7	11.0
ords Stream	68	15.7	3.60	13.0	750	28.4	0.45	8.6	22.9	16.4
oak Brook	58	18.5	2.60	0.0	800	29.8	0.45	12.4	32.5	6.9
h Stream	21	11.4	4.10	1.0	820	29.0	0.45	9.7	25.7	4.5
Brook	12	8.4	4.75	1.0	810	29.0	0.45	8.8	23.4	2.8
ers Brook	16	6.9	6.10	1.0	800	29.0	0.45	7.8	20.9	6.9
, tle Mill	316	35.5	1.03	7.0	810	28.8	0.44	17.7(16.1*)	39.3	41.9
Molesey	487	76.3	0.85	9.0	770	27.6	0.36	20.9(35.3*)	87.7	29.9

3-10

Key: A - catchment area, L - mainstream length, 81085 - 'U.S. Geological Survey' channel slope, URB - %age urban area, SAAR - average annual rainfall, RSMD - 5 year return period 1 day net rainfall, SOIL - index defined by Eqn. 6.1, Tp - Time to UH peak, T_B - UH time base, Q_p - UH peak discharge.

Table 6.1 River Mole unit hydrograph data.

Chapter 6.

	Total		Effective	Rainfall	(%)
Évent	Rainfall (mm)	Horley	Kinnersley Manor	Castle Mill	Kinnersley - Castle Mill
14	21.7	1	65.0	53.7	44.4
15	41.7	1	50.5	26.4	6.9
16	24.9	I	65.7	42.0	23.1
17	35.7	I	54.2	36.9	24.0
18	20.1	1	62.0	41.6	25.0
19	32.7	81.9	1	69.6	I
25	38.6	52.0	57.3	1	1

- -

Table 6.2 Percentage effective storm rainfall.

<u>Table 6.3</u> River Mole - Kinnersley Manor to Castle Mill geometry functions.

-

					1	1	1			1			.	T		· · · · ·			7	
plain	ar		0	5.0	7.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2,0	, 2	ہ ب 0	2.0	0 0
flood	ar		· - ? -	5-11	1.11	13.5	13.6	7-17	30.0	16.7	5.3	0.51	12-5	1.01	10.0	و.ع	14.3	3.6	14-3	0.0
Right	ar		o ò	0.0	0:0	0.0 0	0.0	0 0	0.0	o o	0 0	0.0	0.0 0	0.0	0.0	0.0	o o	0 0	0.0	30,0
lain	al	70	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2-0	.2.0	2.0	2.0	۲,0 ۲	2.0	2.0	0,0
flood p	al	1-01	14.3	5.11	0,41	13.5	13.6	16.7	12.5	0.81	25.0	15.0	12.5	ь. <u>8</u>	5.21	L- 81	3.6	14.3	3.6	0.0
Left	al	0.0	0.0	٥٠٥	0.0	0,0	0.0	0.0	0.0	o o	0.0	0.0	0.0 0	0.0	0.0	0.0	0.0	0 0	0.0	0.0 00
meter	p	0.7	0	• -	0 -	0.1	<u>•</u>	0.1	• <u>·</u>	<u>o</u>	0	0.86	08.0	18.0	0.1	o ì	0.1	0 -1	0.1	0.
el peri	p,	2.50	2.50	2.50	2.50	2.42	2-42	2.42	۲٤ ۰۶	7.42	2.26	3-13	3-52	3.09	2-25	3-59	3.18	3.50	21-2	2.40
Channe	P ₀	5-90	5 - 4 I	85.9	5.79	5 - 11	SP-4	4.13	13-00	4.57	5.56	6-09	6-33	81.T	2L·01	16.97	82.9	7.02	9.23	52.11
	в ^а	1-30	1.33	1.76	1.32	1,50	05.1	1.50	1.59	1-50	1.36	9+1 - 1	1-51	1.50	1.4-8	1.56	2.00 2	86.1	1-74	1 · 55
l area	al	5 -60	5 .20	0 0 · 1	5.46	4,01	4,03	3.92	3.00	3.95	5 · 10	5.63	5.88	5.15	3.67	3-32	1.50	1. 65	4-43	6.52
Channe	Ca Ca	0.0	0.0	6.84	0 .0	o .0	0.0	0.0	10-73	0.0	0.0	0.0	0.0	2.10	6.34	16.10	58.9	L2-8	2.84	00.0
eight	yb _r	2-50	2.50	3.20	2.94	3.05	2.89	3-88	3.95	3, 83	2.85	3.38	3.43	3.33	3-78	3.61	3.43	3.35	3-05	7.2.2
Bank h (m)	yb ₁	2.50	2.50	3.20	3.19	2.86	3.05	3.57	3.25	3-23	3-75	3-31	3.53	3.08	3.41	3.61	3-33	3 . 35	3.57	2.89
Invert level	(NDO)	90.F4	46.78	LI - 9 1	45.12	44.66	14-19	43.43	43.14	42.88	42.24	88.24	42.24	41.50	41 . 24	41.04	40.86	40.60	40-32	39.99
Channel Feature	*Surveyed Section	Kinnersley + Manor	Salfords Stream	Sidlow Br. *	Degwoah * Brook	•		Leigh *	Flanchford * Br.	•	•	Rice Br. *	*		•	Bethworth * Br.	•	Bethworth +	Betchworth *	*
Cross- Section	Chainage (m)	000	400	1360	1850	3820	4500	5480	5910	6210	7420	OLOS	8360	9030	10,380	10660	11 340	11940	11960	12 400

.

•

Table 6.3 continued.

ar,						0	2.0				
ar					o o	0.0	4				
ar ₀	30.0	0.07	c c	0 0	10.0	20.0	0.0	10.0			
al2	0.0	0.0	0.4	5.0	0,0	0.0	o o	0.0		,	r
al	0.0	0.0	0.5	o o	0 ò	0.0	o o	0.0		,	1
al ₀	30.0	30.0	0.0	0.0	12.0	20.0	40.0	20-0	,	1	1
p2	0.1	0-1	0 -	0.1	0.1	0.1	0 	0 	0.1	0	0.1
p1	2.92	3, 20	80.4	4-22	3.00	٢٩٠٢	2-37	3-34	3.00	4.84	2.90
P ₀	86.9	81.4	91.11	12.49	6-27	10.04	13.60	12.55	22.16	-+-1 -+-1	8 . 68
8 2	41.1	1.84	1.55	I·S4	1-65	1 - 59	1.53	1-59	1.56	1-49	1.50
al	3.56	2.04	6 - 10	6. 3S	25.4	t-41	4-55	15.3	29.1	7.50	4.50
a ₀	2.89	4.39	5.60	6. 34	0.0	3.27	6-34	4.09	19-52	52.9	18-2
ybr	3.35	2.83	3.34	3.50	3.46	3.26	3.54	3-23	3.14	3.00	2.65
yb ₁	3.20	3.44	3.34	3.51	3.08	3. 26	3.56	11.2	11-2	2-74	3.05
Level	29.62	39.44	39-33	39-38	38-98	16.85	38·49	38.37	38-31	38-22	38.10
Feature	Mill Hill Br.+	*	Tanners Brk.	Brockhum ? Br.	*			old wer	Deepdene • Br.	Boxhill + Br	Castle +
Chainage	04621	13220	13380	13320	13920	14440	02941	02251	01821	007 21	16120

Table 6.4 River Mole - Castle Mill to Leatherhead geometry functions.

•

	plain	r S	2.0	, , , , , , , , , , , , , , , , , , ,	2	•	1	,	1		1		2.0	2.0	2.0	1	2.0	2.0	,	1	
	t flood	ar	0.35	25.0		1	1	1	1	1	1	1	0.0	S.L	2.1	1	0.01	0.3	1	1	
8.	Righ	ar		ò	1	ı	1	1	1	1	6		0,0	0 99	0.09	1	0:0	0 0	1	1	
unction	plain	al	~ 1	1	1	•	1	1	1	1	2.0	2,0	ь, 0 Р, 0	1	I	ہ. ۲	1	1	たの	بن بر	
letry r	flood]	al	-1		1	1	1	•	,	1	S,0	2.5	2.5	1	1	o S	1	1	0.S		
BG geom	Left	al	,	1	1	,	1	1	,	1	60.0	0.0	0.0 0	1	1	4 S 0	T	1	20.0	30.0	
atherne	imeter	po	, <u>`</u>	0 	0.1	0.1	0.1	0.1	0.1	o ì	0.1	0.1	0.1	0 -	0.1	0 <u>.</u>	0.1	0.1	0 · i	0 -	
197 01	el peri	L d	1.81	t 00	4.06	2.42 2.42	3.00	2.88	2.76	2.12	3.05	2-06	ک. او	2.36	2.50	2-03	21.15	3.00	2.05	3.85	
	Ch ann e	PO G	28.12	00.01	10.36	8.16	88.9	22.L	72-8	11-11	8 .50	9.06	9-62	18-01	82.11	11-32	11-57	05.1	21.51	81.51	
		8 23	84.1	21-1	1-72	1.56	- +1	۱.49	15.1	1,60	1-83	1.37	1.37	82.1	1-39	1.52	- So	86.1	1-39	12-1	
	el area	a a	4.81	4.50	4-11	t .00	3.50	3.09	2-69	0,60	1.62	7-12	6.36	キレーキ	3.70	2.75	1.11	0.99	L9.2	2.72	
	Ch ann e	о в	24-00	\$	4,90	4-89	1 88-1	5 ·83	6-79	11-11	9.08	0,0	4.00	6.10	8.78	9.27	10.15	7 · 32	6.34	81.51	r
- 2 - 4	Jugie	$\mathbf{yb}_{\mathbf{r}}$	4-72	3-19	2.14	3,19	3-38	2.82	1.S9	1	4.04	6.20	12·5	3.54	3.35	3-11	1-97	1.56	29.2	2.89	
		yb ₁	5.62	3.88	2-75	3.19	3-26	3-35	3.28	1	1-1	21-Z	3.78	2.99	1.96	2.39	4 .11	2.86	. 3.20	1.50	
T =	level	(MUO)	35-35				36.09.	35.96	35-81	35-35	34,29	33.89	33-77	33.59	33-37	33-21	32.46	32 - 18	30.15	31.00	00.15
[on the div	Feature	*Surveyed Section	Castle * Mill		Rail # Bridge	Footbridge *	*	Pipe	Footbridge *	Footbridge *	Burford Dr. *	*	Raid Bridge +		Footbridge *	*	Swanwerth + Br.	Rail Bridge .*	+	Michlehau # Br	*
Crose-	Section	unainage (m)	000	150	300	590	780	890	1020	1640	1390	2790	3 0% 0	3700	100 1	4480	4900	5270	5430	Sglo	11.20

.

•

continued
4
9
Tabl

	ar_2	1	,			0.7	•	3.0	0.7	0000
	ar_1	•			s S		o Š	v v	3.0	0.0
	ar 0	1		,	ġ		2	0.05	110.0	50.0
	a12	2.0	0.1	0.7	1.0			o ò	0	1.0
, a	47 []]	22.0	21.0	30.0	e g	10.0		0 .0	o 'S	5.0
, a	0	0.0	0.0	0.0	0.0			5 0.0	180.0	100.0
e	27	0.1	0 -	0 `i	0.1	0.1	• •	0:	0.1	0
G	1	7.07	2.85	2-61	2-04	92.2		2.50	۲۰۶	5-27
	70	14.00	16.50	10,50	16.8	9 · 0X	2	۹ . if	11-35	11-33
a,	2	+++-	1.60	1.82	1-90	oL-1		1.64	1-SI	1.51
a	4	2.06	+ -	0.6S	0.23	80.)	۱ - ۲۶	10.65	10-65
e B	5	14.00	16.50	20-50	10.98	46-8		8 . 30	0, 00	00.0
yb	4	2-18	2.43	2.62	2.30	2.00		2.42	21.15	1.90
, yb	1	2-53	2.34	2-77	2.30	2.00		1-78	2r-1	06.1
Level		31-10	45.15	31.42	30.90	30-0T		29.79	28.65	29 - 11
Feature		Priory weir	Priory Wer	Priory Br. *	*	A246 Bridge *	*		Thorneyingt *	Leatherhead +
Chainage		6650	6660	6790	7240	8 100		8370	8870	9190

.

,

• '

•

3-15

<u>Table 6.5</u> River Mole - Leatherhead to Cobham Mill geometry functions.

plain	ar	N O O	0 ŏ	J	2.0	2.0	,	2.0	2.0	o ċ	0.0	2.0	2.0	2.0	2.0	2.0	o ò	o ò	2.0	o o
flood	ar	o o	0.0	1	2.5	2.F	۱	25.0	21-0	0 0	0.0	15.0	23.0	35.0	14.0	0.81	0.0	0`0	0.0	0.0
Right	ar	20.02	s S	1	0, 0	0.0 0	1	0.0	ە ە	0.021	150.0	0.0	0.0	10.0	0.0	0.0	70.0	80.0	160.0	240-0
lain	al,	• • •	0.0	1	,	0.0	0 ò	1	1.0	2.0	2.0	2.0	2.0	0.0	0.0	o O	2.0	2.0	2.0	2-0
flood p	al	0.0	0,0	1	ł	0.0	0.0	t	30.0	9,0	9.0	25.0	O.0L	0.0	0.0	0. 0	50.0	90.0	0·51	15.0
Left	al	0.00	0.25	1	1	0-51	to .0	1	0.02	30.0	20.05	35 · 0	0.0	45.0	100.0	30.0	o O	0 0	0,0	0.0
meter	p2	0	0.1	0-1	0.1	0-1	0.1	0-1	0.1	0.1	0.1	0.1	o 	0-1	0.1	0 :-	0.1	0	0 	0
el peri	L ^d	2.40	7.24	2.24	2.75	3.02	2-84	2.29	2.35	14.2	1.40	3.96	3.04	3.16	3, 18	3.21	3.14	٢٥٠٤	2.99	ર-ડ૧
Chann	p0	33.0	0. SE	0.09	21.51	25.00	41-52	17.46	46-41	18-51	00.21	19.9	10-25	8.37	0 2 .9	19.91	9.28	8 511	13.24	18.52
	а ₂	2.0	2.0	2.0	1-42	1-63	١٠٢٩	÷	8 1	1-50	1.50	44.1	1.43	5 -	9 1	1- 14	[- ፋግ	- FJ	1.47	P8-1
el area	al	5.0	5.0	5.0	3-82	1-62	1-92	2.84	7.87	2-40	2.80	4.65	4-91	3-96	3.01	3.03	3.06	3.09	ぷび	51.1
Ch ann	a 0	33.00	35,00	8.03	19.00	24-89	42.22	21-41	13.51	12-80	14 - 10	95-9	5.86	6.10	6, 34	9.25	8.30	٩.51	11. O	17,00
eight	yb _r	. 89 . 1	2.01	2.59	1-34	1.46	1-83	1-94	2-50	3.68	2.62	2.30	2.50	2.44	3.01	3.26	3.25	2.86	2.62	2.13
Bank h (m)	yb ₁	24-1	רד - ו	H) . Z	3 .6 8	ک8۰۶	2-19	10.2	2.50	۲۹۰۲	2.56	2.30	2.37	2 · 13	2,68	3.56	3-26	80·2 .	2.67	2.13
Invert level	(m) (NDO)	19.20	29 · 11	28-89	28.83	11-81	28.50	27.87	26.97	26-64	26.88	25 · 80	25.63	24-99	13.64	23-10	21.40	22 - 43	22 - 43	22.55
Channel Feature	*Surveyed Section	Timber +	wer	Leatherheun + Br.	Vaterway RJ + Br.	Ruil Bridge *	Rail Bridge +	*	1	uls oldwill + weir	DIS oldwill + Werr	The Aye	•	Channel . Split		Confluence	Footloridge .		-	Stoke D'Alvernon
Cross- Section	Chalnage (m)	- 180	061 -	000	120	I SO	300	760	1300	0061	0261	2340	2410	3000	àsyo	3970	4+00	0064	5400	5 850

.

	ar_2	7 7	2.0	2.0	2.0		1	,	0.0	2.0	2,0	2.0	5.0	7.0	2.0	r v	2.0
	ar ₁	0.81	54-0	80.0	55.0		,	,	0.0	0.87	45.0	42.0	20.0	IS.0	22.0	20.02	2.5
	ar_0	0.0	0.0	6, 03	0.01	1	,	1	0-01	0. OL	So . 0	lo, 0	اوہ ہ	300.0	0.251	0.01	0 0
	al_2	2-0	0.0	2.0	2.0	I		•	2.0	2.0	1.0	2.0	2.0	2.0	5.0	1.0	۲.0 ۲
	all	12.0	0,0	12.0	12.0	1	•	1	15.0	IS • 0	81.0	100.0	30.0	15.0	60 1	0-S1	25.0
	al ₀	0 0	0.04	0.0	0.0	ſ	•	1	30.0	0.001	0- 2 +	35.0	30.0	0.01	25.0	0,01	25.0
	$\mathbf{p_2}$	0:	1.0	0-1	0.1	0	0.1	0.1	0.1	0.1	- 0.1	0.j	0.1	0 	1.0	0-1	0.1
	P1	2-89	3.06	3.24	3.41	4-07	2.00	1.00	2,38	2.96	21-12	2.50	3.21	3.76	4-32	4.28	3-31
ued.	P ₀	15-52	13-08	13-63	25.21	12-63	11,00	03-۲۱	18,50	12.01	21.21	00.41	9. b	10.30	9.50	9.50	00.L
contin	а С	84 -	1.50	1-52	1.55	1.46	00 - 1	00 -	1.63	1-64	1.52	- 41	1, 38	1-42	¥-	54.1	*+· -1
le 6.5	al	3.16	3.70	4-24	8L-4	10.10	0.00	00.00	0 \89	7.2	1 - -	1-22	S-4B	5.00	4-52	ار : د 0	4.02
TaT	a 0	02.21	9.06	16-8	7.32	0.0	22.00	12-50	18.50	8,0j	11-83	99.81	4-88	S1.8	9- 38	6.50	7-00
	$\mathbf{yb}_{\mathbf{r}}$	3.06	1.32	2-71	21.75	3.17	3.17	3-11	2.69	3.86	2.56	2.56	7-80	٤٠٢	og.7	2-68	3.93
	yb ₁	2.38	2.41	2.99	2.93	3.17	2-17	3.11	3.15	2.86	2.62	2.62	11-2	2.65	2 .59	2.44	3 .93
	Level	22.39	21-13	10.91	20-79	20.66	20.66	20.13	19.35	50, 11	19.02	l8 · 35	89 · Li	29 · Lı	29.LI	17.62	16-27
	Feature	•			•	Rail Bridge	Side Weir 🕈	uls Douriside +	ols Dawnside + weir	Relief Chauvel		*	2	Daunside Stream	Side weir		Cothan *
	Chainage	6010	6550	0016	7630	7830	7850	7970	0861	8010	8550	90406	9660	1810	0110	10580	00L01

3-17

functions.	
geometry	
M111s	
Royal	
to	
Cobham Mill	
le -	
· Mo	-
River	
9	
Le d	

.

					_								_									
	plain		ar_2	2.0		2.0	2.0		2.0		2.0		7.0	J .O	2-0		2-0		2.0	2.0	2.0	
	flood		arj	0.L		8 ·S	S.L		18.0		2-L		24.0	28.0	18: 0		0.81		18.0	0,81	20.02	
	Right	}	ar_0	o o		o ò	130.0		26.0		70.0		0.0	35.0	18.0		20-0		22·0	2.5.0	0.0	
lons.	lain	 	al2	2.0		2.0	2,0		2.0		1-0		2-0	۲.0	2.0	•	2.0		2-0	1-0	2.0	
y funct	flood p		all	2.61		14-0	10.5		24.0		21-0		0.01	2.11	7.0		0, L		S.0	15.2	الو. 0	
geometr	Left 1	 •	al ₀	0.01		0-0L	56.0		35.0		45.0		0.0	4.0	61-0		0.0		0.0	0.0	0,0	
Wills (meter		P_2	1.0	o ÷	0	o ÷	0 ì	0.1	0 1	1.0	0	0.1	0.1	0.1	0 - 1	1.0	0.1	•	0 - 1	۱. ٥	1.0
Royal	l peri		P ₁	4.12	3.09	3-16	3-15	2.83	2.32	2-41	1.SO	2,58	2-67	2-83	3-67	4 .44	۲۶-۹	3-42	3.12	19-2	2-93	1.50
HII to	Ch ann e		P_0	15.50	4.80	01 - 11	16-00	10-30	- SS • L	<i>ц.</i> г	7-89	8.03	8.19	8-48	1-81	7.10	14.00	7.00	96.L	6.90	8.18	9-85
obham A			⁴ 2	1.50	1.46	1-47	1 . لوما	1.48	9+1-1	1-4-1	۱-۴-۱	84.1	3 4 -1	Pt -	1-50	1-51	1.50	1-59	LS -1	53-1	95.1	1-40
ole - C	l area			4.85	3.18	2-10	2-13	2-03	1-92	2-08	2.23	2-39	2.54	1-82	3-11	3 -82	S .63	1-60	2-72	2.92	17-Z	4-36
River M	Channe		40 70	15.00	8.50	10.10	15.30	9-40	6.83	6.92	٦ [.] 8	7.08	7,17	7.32	7-01	٩٠٦٢	12.00	6.50	St.F	5.86	5.80	4-8S
6.6	eight	4	y"r	- ss.	2-38	3-38	2.56	3,20	7-86	3-11	2-80	80. 2	3-87	2.45	2.94	2-13	3.56	3-35	t-os	3-78	3.96	3-84
Table	Bank he (m)	4	7"1	3,38	1,01	2-83	2-32	3.10	2-93	3-17	2.50	2-83	3-72	2.95	3.96	1.80	1.56	9r.2	5.09	3-78	4 ·05	3,35
	Invert level		(1770)	L9.51	16.92	16.61	16.52	15.39	15-33	15.03	14-81	13.96	13-13	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	13-15	13. SH	13-35	12.53	11 ~ 86	06.11	29- I	11 - 92
	Channel Feature	*Surveyed Section	HOTADO	DIS Coldran * Weir			Downside + Br.		*					*		u/swer *	Dis were +	weir		*	*	
	Cross- Section	Chainage		000	14Ó	350	600	900	1260	1600	1930	2250	2580	OLIS	3600	4 000	dro:h	4320	4620	2100	5590	Stso

			r							_				· · · · ·						
ar_2	2.0		2.0			2.0	2.0	۵.۲			2.0		2-0	2.0		2.0		2.0		, ,
arl	25.0		20.0			0.81	18.0	0.91			0.11		0.01	0·L1		0.11		و، ح		
ar ₀	0.0		o ò			0.0	0.0	0.0			0.0		0.0	0.0		0.0		0 0		0
al2	1-0		7.0 7			2.0	2.0	2.0			2-0		2-0	۵.۲	•	2.0		2,0		1
all	o.o		s Ť			ר.5	7.5	0.01			٦.S		11-0	0-[]		20.0		17.0		3
al0	• •		0.0			0.0	0.0	o o			0.0		0.0	0.0		0.0		0.0		
P2	0.1	0.1	0:	0 -1	0 -	0.1	0 ·	0.1	0.1	1.0	0.1	1 · 0	1.0	1-0	0.1	0 -1	0.1	1.0	0.1	0.1
p1	4-08	3-74	3.40	4.92	4.08	3.04	3.42	08.2	2 -4-3	2.43	4-42	٢2٠٢	3.38	4-10	3-10	٦٠٩٤	4.22	3.93	4.65	5.17
P ₀	7-10	0 1 , 1 1	lb.So	06-21	6.56	4.30	3.52	3-94	06.01	13.40	3-64	10-57	7.40	4.24	4-84	S. It	S-44	90.9	J.H	01.4
a ₂	1-53	1. 5 0	93 	1-52	\$	1. 39	SS -1	1-1	1.50	1-53	86.1	1- 28	+++-1	በ-የዓ	1.62	1.68	SL 1	1.89	1.92	19-1
a ₁	3.72	10.5	1.85	3.S2	4.28	5-24	1 .40	72.5	۱-45	5+·I	2-19	3.20	4-92	6.6S	4,08	3.79	٤٠٤١	19.1	רו-ד	2.42
a 0	01 · L	14-00	16 · SO	69- CI	4-53	00.0	05.0	00.1	10.01	12.69	3.66	12.8	4.15	8 0	1.54	20.L	2-50	Το-Γ	8-21	7.16
yb r	3.32	2-22	2.10	2.80	3.35	3.65	3-96-5	4.15	૩.૧૧	3.51	3.99	12.5	8r.S	3.67	3·44	3.55	3.29	4.1	3.60	2-4-7
yb1	3·38	2.53	2-47	2.17	3.60	3.65	3.53	3-72	3.90	3.51	3.61	12.2	3.36	3-76	2.13	3.55	3.26	4-01	3.90	2.10
level	20.21	12.55	83.21	12-19	11 - 31	81 - 11	lo -82	10.51	10.94	11 - 37	10.45	lo . 88	10.64	lo - 32	10.15	lo. 15	10 - 3 6	09 · b	9.6 3	2
Feature	Channel. Split	louf lueure	Painshill. *	Painshill *	A3 Bridge	*			Burwhill + Footbridge	Footbridge *	*	Footbridge *		•			-			
hainage	6150	6300	6400	9430	6750	7160	019L	8060	\$ 500	8610	8800	8970	94-20	9860	10320	05201	081.01	05211	11600	11950

Table 6.6 continued.

•
ЪI
Q
믿
-+-
al
0
0
_
G
60
-
Ø
Ē.
d
E

·						1				r	
ar_2		1.0		2.0		2.0	1		1		1
ar _l		50.0		0.24		0. SS	I		1		I
ar ₀		0.0		80.0		0,0	ı		1		1
al2		1.0		1,0		2.0	2-0	•	0.2.		2.0
all		5.0		15.0		25.0	ود دو		9.59		0·32
a1 ₀		0.0		0.0		0.0	0.0		0.0 0		0. 0
p2	1,0	1.0	1.0	9 -1	0 -	0 · 1	0 • 1	0 -	0.1	0.1	0 · 1
p1	6.10	18.9	5.18	٦٠٦٤	28.5	7-88	9.95	45.8	و. وا	S.00	9.S.S
P ₀	5-12	S-SO	0L.P	29.51	٩, 29	4.64	0.0	3.82	99.5	lo oS	18-20
a2	1-97	1.00	1-83	1,66	1-72	1-77	1.83	1-72	1-60	8+1-1	1.50
al	1-70	2.96	۲۰21	5 ·48	٥،٠٤	48.2	6.03	5 · 78	5.53	5 . 28	2-95
a ₀	84·S	5.64	4.99	5.34	3.56	8L · 1	0,00	3 · 18	5-4-7	9Г.Р	90.81
yb _r	3-78	3-10	3.47	3.70	3.63	29.5	3.60	3.81	4.02	2.89	r. Ŧ
yb ₁	3.60	4-02	3-38	3·63	3.84	3.96	3-49	3.63	3 .63	2.89	7.89
Level	9.63	9-60	4.94	٩ . 66	9 · 39	9.08	۹.67	9 · 34	۹، یہ	10.05	10.06
Feature		•		Esher Footbridge		Atrawy Br. *	*			Ruil Bridge *	Royal Mills *
Chainage	12300	12640	סדוצו	13600	13980	14360	041741	ISOHO	15350	is660	15690

,

3-20

Front	Castle Mill	Peak Trav	el Time (hrs)	Attenuation			
PAGUC	(cumecs)	recorded	predicted	(cumecs)	%		
12	18.5	3.5	3.0	0.1	0.5		
14	55,0	6,0	5.25	2.6	4.7		
15	49.0	5.25	5.25	2.0	4.0		
16	42.0	4.75	4.25	1.0	2.4		
17	59.0	3.0	5.15	2.3	3.9		
18	50.0	5.25	4.75	2.7	5.4		
19	79.0	5.5	6.25	5.3	6.7		

Table 6.7 Castle Mill to Leatherhead flood wave travel time and attenuation.

.

٠

	Royal Mills	Predicted	I	9.5	9.5	9.5	đ	8 . 5
Time (hours)	Cobham -	Recorded	9.0	10.5	8.0	11.0	9.5	10.0
Peak Travel	ead - Cobham	Predicted	6.0	7.5	7.5	7.0	4.5	8.0
	Leatherh	Recorded	5.75	6.5	0.6	4.5	3.5	5.0
	nredicted	Royal Mills	• 1	67.3	67.0	64.1	I	77.5
flows (cumecs)	nredicted	Cobham	54.9	63.8	63.4*	60.5*	49.2*	76.0*
Peak 1	recorded	Leatherhead	47.1	57.0	56.9	53.0	43.9	70.8
	Event		15	17	22	23a	23b	30

Table 6.8 Leatherhead to Royal Mills flood peak discharge and travel time.

*From Leatherhead rating curve.

.

•

APPENDIX IV FIGURES

•

Figures

Fig. 2.1. Elementary one-dimensional control volume.

Fig. 2.2. Flood Wave time lag and attenuation.

Fig. 2.3. Graphical representation of the continuity equation.

.

Fig. 2.4. Typical loop rating curve.

Fig. 2.6. Rectangular grid for the characteristics method.

Fig. 2.7. Fixed rectangular space/time grid.

Fig. 2.8. Typical saw-tooth fluctuations (surge wave analysis).

Fig. 2.9. Variation of accuracy with θ and Dt (after Fread (Ref. 44)).

Figures Chapter 3.

(after Price (Ref. 90)).

Fig. 3.2. Regular implicit method finite difference grid.

Fig. 3.3. Definition of channel geometry parameters.

Fig. 3.4. Irregular implicit method finite difference grid.

Fig. 3.5. Variation of Manning's n for the Neuse River, North Carolina (after Amein and Fang (Ref. 11)).

Fig. 3.6. Channel and flood plain meanders.

Fig. 3.7. Flood plain representation scheme.

.

Fig. 3.8. Tributary inflow representation.

•~

Figures Chapter 4.

Fig. 4.2. River Wye - Muskingum simulation of December 1960 flood.

flood.

4-13

Fig. 4.7. Backwater profile prediction - hypothetical channel.

Discharge (cumecs)

.

Fig. 4.10. Discharge attenuation due to flood plain storage.

:

Fig. 4.13. Hydro (1), Slope = 0.0002, Sine wave flood routing.

Fig. 4.15. Hydro (2), Slope = 0.0002, Sine wave flood routing.

Fig. 4.16. Hydro (2), Slope = 0.0002, θ = 1.0, Effect of varying Dt.

Fig. 4.17. Hydro (3), Slope = 0.0002, Sine wave flood routing.

4-23

4-24

4-25

<u>Fig. 4.21.</u> River Clyde Estuary - modelled reach.

•

Fig. 4.22. River Clyde - Spring tidal curve prediction.

Fig. 4.23. River Clyde - Predicted spring tide discharge curve at Greenock.

Fig. 4.24. River Clyde - Predicted spring tide water level profiles.

Fig. 4.25. River Clyde - Recorded spring tide water level profiles.

Fig. 4.26. River Clyde - Numerical instability for $\theta = 0.5$ (Neap tides).

Fig. 4.27. River Clyde - Neap tidal curve prediction ($\theta = 0.6$).

Fig. 4.28. River Clyde - Predicted neap tide discharge curve at Greenock.

Fig. 4.31. Canal surge - Variation of water level at barrier.

Fig. 4.32. Compound model of the River Mole - Implicit simulation of November 1974 flood.

Figures

Chapter 5.

Fig. 5.1. The Lower River Thames Catchment.

Fig. 5.2. The River Mole Catchment.

Fig. 5.4. River Mole - Catchment geology.

Fig. 5.5. River Mole - Flow accretion.

Fig. 5.6. Downside Mill level recorder site.

Fig. 5.7. Royal Mills level recorder site.

Fig. 5.10. River Mole - Sample channel cross-sections (Downside Mill).

Fig. 5.12. River Mole - Sample flood map (Cobham).

-

for Tanners Brook.

•

Fig. 6.8 River Mole - Unit hydrograph for Castle Mill.

Fig. 6,9 River Mole - Unit hydrograph for Molesey.

Fig. 6.10 Event (19) - UH predictions.

Fig. 6.11 Event (25) - UH predictions.

Fig. 6.12 Kinnersley Manor to Castle Mill - Event (12) simulation

Fig. 6.16 Kinnersley Manor to Castle Mill - Event (17) simulation.

Fig. 6.17 Kinnersley Manor to Castle Mill - Event (18) simulation.

Fig. 6.18 Horley to Castle Mill - Event (19) simulation.

Fig. 6.19 500 year return period design flood for Horley

Fig. 6.20. Event (1) - UH predictions (Horley).

4-66

Fig. 6.26 Castle Mill to Leatherhead - Model Scheme

Fig. 6.31 Tailwater level hydrographs at Castle Mill.

Fig. 6.38 Leatherhead to Royal Mills - Event (22) simulation.

4-82

F1g. 6.42

<u>Fig. 6.43</u> Leatherhead to Cobham Mill - Event (23) level hydrographs.

Fig. 6.44 Cobham Mill to Royal Mills - Model Scheme

continued

4-88

APPENDIX V PLATES

•

.

.

Plate 1. Horley Gauge Weir and Head Water Level Recorder.

Plate 2. Horley Gauge Weir and Tail Water Level Recorder.

Plate 3. Kinnersley Manor Weir and Head Water Level Recorder.

Plate 4. Kinnersley Manor Weir.

Plate 5. Sidlow Bridge and Gauge Board.

Plate 6. Channel Downstream of Sidlow Bridge.

Plate 7. Flanchford Bridge.

Plate 8. Flooding Upstream of Flanchford Bridge - Event 32.

Plate 9. Flooding Downstream of Flanchford Bridge - Event 32.

Plate 10. Flow through Betchworth Bridge - Event 30.

Plate 11. Downstream Face of Betchworth Bridge - Low Flow.

Plate 12. Flooding Downstream of Betchworth Bridge - Event 30.

Plate 13. Betchworth Weir - Low Flow.

Plate 14. Betchworth Weir Drowned Out - Event 30.

Plate 15. High Flow through Brockham (Borough) Bridge - Event 32.

Plate 16. Flooding Downstream of Brockham Bridge - Event 32.

Plate 17. Channel Upstream of Deepdene Bridge.

Plate 18. Flooding Upstream of Deepdene Bridge - Event 32.

Plate 19. New Crump Weir at Castle Mill - Event 32.

Plate 20. Burford Bridge.

Plate 21. Channel Upstream of Burford Bridge.

Plate 22. Flooding Upstream of Burford Bridge - Event 32.

Plate 23. Flooding Upstream of Priory Bridge - Event 32.

Plate 24. Flooding Upstream of Leatherhead Bridge - Event 32.

Plate 25. High Flow through Leatherhead Bridge - Event 32.

Plate 26. Flooding Upstream of Stoke D'Abernon (Slyfield) Bridge - Event 30.

Plate 27. Site of Level Recorder at Downside Mill and Downside Rail Bridge.

Plate 28. Downside Mill Weir.

Plate 29. Cobham Mill Sluices.

Plate 30. Channel Downstream of Cobham Mill.

Plate 31. Channel Upstream of Cobham Mill.

Plate 32. Flooded Road Upstream of Cobham Mill - Event 32.

Plate 33. New Downside Bridge and Gauge Board - Low Flow.

Plate 34. High Flow through Downside Bridge - Event 32.

Plate 36. Flooding Downstream of Downside Bridge - Event 32.

Plate 37. Painshill Weir and Gauge Board from Cobham Bridge.

Plate 38. Painshill Weir Drowned Out and Flooding Upstream of Cobham Bridge - Event 32.

Plate 39. Cobham Bridge and Painshill Weir - Low Flow.

Plate 40. Cobham Bridge and Painshill Weir - Event 32.

Plate 41. Channel Downstream of Cobham Bridge.

Plate 42. Flooding Downstream of Cobham Bridge and New A3 Bridge - Event 32.

Plate 43. Albany Bridge.

Plate 44. Automatic Tilting Gate at Royal Mills.

Plate 45. Site of Automatic Level Recorder at Royal Mills.

Plate 46. Wilderness Sluice Gates.

Plate 47. Zenith Weir at the Confluence of the River Mole and River Ember.

Plate 48. Confluence of the River Mole and River Thames opposite Hampton Court.