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Abstract 

This thesis is concerned with the sheared flow of medium dense slurries, consisting 

of rigid particles in a Newtonian fluid. The particles are rough. The interaction 

between rough particles in the lubrication limit is studied and expanded on. In 

a shear gradient geometry a migration phenomenon occurs, in which the parti­

cles congregate in the low shear rate region. The literature on this phenomenon 

is reviewed and for each model that is available a sample calculation of channel 

flow is calculated. Two models appear to yield realistic results. They incorporate 

the fluctuations in particle motion ( which is a necessary feature of sheared dense 

slurries). These two models require further attention. The first is the granular 

temperature model. This model is studied as an isotropic cell model, which per­

mits first order estimates for its many parameters, thus making the model more 

suitable for practical calculations. The second is the anisotropy-induced model for 

which in the literature only a phenomenological version is available. The latter 

model is studied by setting up an analytical continuum calculation that entails 

explicit fluctuations. It is shown that in steady-state shear a linear approximation 

never leads to a stable result, unless a substantial repulsive particle interaction 

is present. The theory is then modified to include a non-linear term (associated 
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with a rough particle interaction), elaboration of which yields stability, but at 

the same time structures formation. The latter problem (in two dimensions) is 

then further studied by carrying out numerical simulations employing the Discrete 

Element Method. The analytical results are qualitatively replicated: structures 

form when the particle interaction does not involve a substantial repulsive ele­

ment; they disappear when a repulsive elastic interaction is implemented. Thus 

the understanding of the physics of medium dense slurry flow is improved. 
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1. Introduction 

1.1. General 

This thesis is concerned with aspects of the mathematical description of the 

physics of dense slurry flow. A "dense slurry" needs to be defined. Typically 

it is a particle fluid mixture, consisting of more or less spherical particles im­

mersed in a Newtonian fluid. The solids volume fraction needs to be sufficiently 

large so that the particles cannot suffuse through their own pore space. This 

means that a lower limit of the solodosity </> of some 0.25 must be imposed. In 

order for the slurry to flow the solids must not continually be jammed ( ephemeral, 

localised jamming is allowed), which imposes a maximum on the solids volume 

fraction of approximately 0.6. In this thesis two-dimensional slurries will at times 

be studied and for this situation the upper and lower limits are somewhat higher 

and range from 0.4 to 0.65. 

The particle properties also need to be considered. These are rigid particles 

and - this will be a main theme of the thesis - they are not perfectly smooth, 

but have some roughness on their surfaces, which is characterised by an asperity 

height parameter. The ratio of the latter to the particle radius is small, much less 

than unity. 
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The emphasis will be on the constitutive/physical properties of the slurry. The 

physical environment in which it operates is chosen to be a slow-flow (low Reynolds 

number), low temperature (infinite Peclet number) one. Brownian motion is unim­

portant, compared to the motion of the particles induced by the overall strainrate 

of the problem. Gravity can be added to the theoretical considerations as a re­

finement, but it is not essential for the development; sedimentation problems, for 

example, are not considered. 

The above does not mean that there are no practical applications for the 

work here. A variety of problems in geology (for example, flow in volcano pipes, 

see Petford and Koenders (1998)), chemical engineering (for example, filtration 

problems, see Wakeman and Tarleton (1999) and Gundogdu et al (2003b)), civil 

and environmental engineering (for example, erosion problems Tuzson. and Clark 

(1998)) and medical/biological applications (flow of cell-laden sinovial fluid, for 

instance, Buschmann et al (1995), Jay et al (1998)). Note that the length scales 

of all these problems are very different and the study of slurries leads to a very 

wide range of applicability. 
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1.2. Migration 

One of the most fascinating phenomena exhibited by slurry flows is migration in 

a shear rate-gradient field. Typically such fields occur in simple geometries such 

as pipe or channel flow. Figure 1.1 illustrates this. 
j regions of high shear 

Fig 1.1. lliustration of velocity field in channel flow and indication of high and 

low shear zones. 

The effect was first reported by Bagnold {1954), who also suggested a quali-

tative model. The particles in dense slurries flowing in such geometries tend to 

migrate to the low-shear region and congregate in the centre of the channel. The 

effect has been measured in the literature, notably by Lyon and Leal {1998). At 

this stage it is necessary to indicate that there is also some theory to describe this 
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phenomenon. Some of these descriptions require that the solids volume fraction at 

the centre of the channel is the maximum packing fraction ( at which the effective 

slurry viscosity becomes infinite). Whether such a state actually exists or not is 

beside the point, as the experiments show very clearly that the solidosity at the 

centre is not anywhere near the maximum density. 

Another geometry in which migration is important is in agitated slurries, see 

Gundogdu et al (2003a). In these a septum is vibrated from the bottom of a 

container ( a sercalled dead-end filter). In this geometry the particles migrate away 

from the point of agitation and form a solidosity profile that is depth-dependent. 

In this problem there is no mean flow and any theories relying solely on mean flow 

cannot describe this phenomenon and are therefore incomplete. 

A key physical property of sheared dense slurries is that particles cannot move 

in straight lines, but they must have fluctuational motion to be able to overtake 

one another, see sketch in Figure 1.2. The fluctuational motion must be part of the 

description of the particle-fluid mixture, otherwise the physics is not adequately 

represented. The migration phenomenon, which is in some sense similar to thermal 

diffusion, is then associated with higher and lower intensity of fluctuations in the 

shear-gradient field. This mechanism will be explored in depth in this thesis. 
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High velocity 

Low velocity 

Fig 1.2. Sketch of motion of particles in a shear field. 

Another mechanism that is believed to take place is that in a shear field the 

slurry becomes anisotropic. If such anisotropy is present there is a normal stress 

~iated with the sheared mixture. In a shear-gradient system this normal stress 

varies and its gradient causes migration. This will also be explored in depth in 

this work. 

It is furthermore well-known that the shear viscosity of a slurry increases dra­

matically with increasing solids volume fraction. While there are good estimates 

for this effect in the literature (the work by Thomas (1965) has been very signif­

icant), for dense slurries improved modelling is possible. In passing it is noted 

that for dilute slurries estimates for the increased viscosity are available. The 

simplest one goes back a long time: Einstein (1911). The next order correction is 
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by Batchelor and Green (1972), who also highlighted the major problems that the 

description of dilute slurries present; it is even doubtful whether for semi-dilute 

systems a unique viscosity actually exists. 

1.3. Outline of the contents 

Chapter 2 will be devoted to preliminary considerations, particularly regarding 

the ~particle interaction in the lubrication limit and the elastic interaction, 

which is frequently used to stabilise numerical simulations of slurry flow. 

Chapter 3 is devoted to existing models for migration. We discuss phenomeno­

logical models (that are essentially diffusion-type theories), granular temperature 

models ( these take explicit account of the fluctuations in the motion of the par­

ticles in the slurry) and some recent anisotropic theories. All the theories are 

explored in the context of channel flow. 

In chapter 4 a cell model is developed to come to an estimate of the parameters 

in the granular temperature theory. This is a very useful theory and is unique 

in that the dead-end filtration problem can be solved ( this is a problem in which 

there is no overall strainrate). An improved solution over the ones given in the 

literature is presented making use of the coefficients that have been obtained from 

the cell model. 
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In chapter 5 the fluctuations in a uniformly deforming system are studied. 

This is done with the aid of continuum theory with fluctuations that arise at the 

m~scale (this is the scale of a particle and its next-neighbours). Linear stability 

theory is invoked and shows that a sheared slurry is never stable, implying that 

at least some account has to be taken of quadratic terms. The theory employs 

Fourier space. 

Chapter 6 follows on by studying a particular form of the quadratic terms. A 

form for the pressure that arises from collisions of rough particles is put forward 

and formulated in Fourier space. The resulting quadratic theory is studied. There 

are attractors in the system; these are associated with the formation of structures. 

The structures are aligned with the compressive quadrant of the imposed shear 

field. A further elastic interaction ( such as frequently used in Stokesian Dynamics 

simulations) would lead to the disappearance of the structures. 

In chapter 7 the findings of the theory of chapter 6 are tested by studying 

the results of a numerical simulation. The simulation is of the Discrete Element 

Method type. Simulations of a sheared slurry are run with and without an extra 

repulsive interparticle force. The theoretical predictions are verified. Implications 

are disc~. 

Chapter 8 summarises the thesis and makes suggestions for further research. 
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Finally appendices are included. 
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2. Two-particle interaction 

2.1. Introduction 

The study of ~mblies of particles in a suspension is commenced with the inves­

tigation of the two-particle interaction. The main contributor to the interaction 

is the force mediated by the fluid. In slow flow, for dense suspensions, the parti­

cles can come very close, in other words, the ratio of the film thickness between 

particles his small compared to the diameter D. Under these circumstances the 

so-called "lubrication limit" is valid. It is well-known - and will be shown again 

below - that in the lubrication limit for two smooth surfaces the force becomes 

singular at finite relative velocity. This has serious implications, because while a 

large force can be handled ( especially numerically), a singular force cannot be ac­

commodated in either a numerical simulation or even in analytical analysis. The 

lubrication limit has other peculiar properties as will be shown below (Section 

2.2) in that no momentum transfer can take place between particles. This implies 

that no particle pressure can develop and particles could never touch. Experimen­

tally this is not true, as has been shown by Smart and Leighton (1989) so, the 

lubrication interaction needs refinement. The physical basis for a refinement is 

the consideration that "real" particles are rough. The asperity roughness scale is 
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much smaller than the mean value of h, but in fluctuational motion particles can 

come very close together and then touch. When that happens a solid interaction 

takes place. This interaction occurs at a finite relative velocity and the mechanics 

of a collision needs to be studied. 

In work on the numerical simulation of suspensions authors, such as Nott 

and Brady (1994) Schowalter (1996) and Morris (1999) have taken a different 

route to the problem of the singularity as h ---+ O; they assume a repulsive elastic 

interaction, which becomes manifest at a very short range ( similar to the asperity 

length scale). In this section that interaction is also looked at and will be briefly 

discussed. 

2.2. The lubrication interaction 

In this thesis both two and three dimensional approaches will be considered. 

Therefore, the lubrication limit interaction needs to be available for two cases: 

two spheres that approach or depart along their line of centres, which is rele­

vant to the three dimensional problem, and two parallel cylinder surfaces that 

approach or depart in the radial direction - for the two-dimensional problem. For 

the three-dimensional problem the force between the spheres is calculated, while 

for the two-dimensional problem the force per unit length is obtained. 
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2.2.1. Two spheres 

The problem of the interactive force between two spheres has been calculated by 

Jeffreys and Konishi {1984) for arbitrary separations and for arbitrary relative 

motion. In the limit h __... 0 the force exerted on particle µ between two spheres 

of equal diameter D, with relative translation velocity vv - vµ and mean angular 

velocity w is 

(2.1) 

where T/ is the viscosity and the two tensors A and B depend on the film thickness 

ratio h/ D and unit normal vector nµv (pointing fromµ to v) as 

and 

B,; =-~In(~) <,;,nf + 0 (1). (2.3) 

The leading term is obviously the one that pertains to normal motion - that is 

(vr - vf) nf (which is h.); the logarithmic terms are unimportant when h/ D 
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becomes very small. The leading term is 

(2.4) 

The problem has also been calculated for two unequal spheres, see Batchelor (1967, 

p228) 

(2.5) 

2.2.2. Two cylinders 

The problem of two parallel cylinders in the lubrication limit is not reported in 

the literature, but it is easily calculated. The relevant fluid motion equation is 

the creeping flow equation of motion for an incompressible fluid. The problem 

only needs a solution in two dimensions; a sketch is given in Figure 2.1. The fluid 

velocity is denoted by u; the pressure by p. The creeping flow equation is 

(2.6) 

19 



x 

Fig 2.1 D .6.nition ketch of two cylinders. 

Th uation of continuity reads 

(2.7) 

Th Iubri ation limit i now applied. The basic assumption is that gradients in 

the y-dir ction dominate, b cau e the dimension of the problem in this direction 

i h and th horizontal dimension i of the order of the particle diameter and h/ D 

is Vi ry mall. Thus we approximate 

(2.8) 
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and 

(2.9) 

The second element of the lubrication limit is to assume that the horizontal speed 

is much greater than the vertical velocity: luxl >> luyl, so that basically the flow 

is in the x-direction. It follows that 8p/8y ~ 0 and 8p/8x is independent of y. 

The top and bottom cylinder boundaries are described by 

'!fr (x) = -Ja?- x2 + ~ + aT; YB (x) = Ja~ - x2 
- ~ - aB, (2.10) 

where 0/r and a8 are the radii of the top and bottom cylinders. Now equation 

(2.8) is solved under no-slip boundary conditions. One obtains 

U:i; (y) = 2~!: [y2 
- y (YT (x) + YB (x)) + YT (x) YB (x)]. (2.11) 

The equation of continuity is integrated between the two solid boundaries; the top 
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one moves at velocity Vy (T) and the bottom one at velocity vy (B): 

8ux 8uy -+- -Bx 8y 

YT(z) 

0 --. Vy (T) - Vy ( B) = - I ~~ dy = 
YB(x) 

--- -(yB-YT) · 1 B [ap 3] 
1217 8x 8x 

(2.12) 

The second step is permitted because the velocity Ux vanishes at the boundaries, 

(see Appendix B). The pressure gradient is now solved in terms of the relative 

boundary velocity Vy (T) - Vy (B). The problem is symmetric in x and therefore 

the pressure must be a symmetric function and the horizontal pressure gradient 

must vanish at x = 0. Therefore 

8p 1217 [vy (T) - Vy (B)] x 

Bx = - (YB - YT )3 (2.13) 

The vertical component of the force on a section of length L of the top particle is 

now easily calculated as 

1r/2 

Fy = -L f p cos cprTdcp. 

-1r/2 

A little elaboration is convenient; write 
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~12 1 

Fy - -L j pcoscprrdcp = -L j prrdsincp (2.15) 
-~12 -1 

rT rT 

- -L j pdx = -L [px[:,.T + L j x !: dx. 

The stock term vanishes because the pressure vanishes at large distances, so 

(2.16) 

To do the integral the denominator in the integrand is expanded in a Taylor series 

in x. The highest order that can be done analytically is six. An algebra program 

is employed and in the limit h/a-+ 0 the result for equal radii (ar = a8 = a) is 

calculated. The intermediate steps are here given. The Taylor expansion is 

The approximation h/a-+ 0 then yields 

x6 3hx4 3h2x2 

[YT (x) -YB (x)]3
-+ - a3 - ~ - -a- -h3

. (2.18) 
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The quality of the approximation is very good, as illustrated in Figure 2.2. 

80 

50 

20 

10 

o+---,...:::::;...._..--........_-~---==--"--~ 
·1.5 ·1.0 --0.5 0.0 0.5 1.0 1.5 

x/a 

Fig 2.2. The integrand of Equation {2.16) normalise to the particle radius a 

for h/a = 0.05.The integrand is the solid line and the approximation is the dashed 

line. 

fr -[ _{_)_x_2 __ { -)-]3 dx -+ fr x6 3hz4 x2 3h2x2 h3 dx = 
1/1' x -ya x -a!- a2 - -a- -

-r -r 

{2.19) 

a312 [ 2 (h + a}2 tan-1 ( If) - 1rh2 + y'a ( 2h312 
- 21rh,/a - 2a../h - 1ra312

)] 

2h3/ 2 (h + a)2 
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Taking again the limit h/a---.. 0 gives the result 

F. (a)3/2 i = 67r1J [vy (T) - Vy (B)] h . (2.20) 

For unequal radii the result is somewhat harder to write down in a simple for-

mula, but it is easily presented in graphical form. To that end a factor Z (aB/ar) 

is defined such that the force per unit length is 

(2.21) 

The factor Z (a8/ar) is plotted in Figure 2.3. 

1.0..----------------, 

0.8 

0.8 

N 

0.4 

0.2 

o.o ~=----,.----r---......---~----i 
0.0 0.2 0.4 0.6 0.8 1.0 

Fig 2.3 The factor Z as a function of the ratio of the cylinders aB/ar. 
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2.3. Rough particles 

The result of the fluid-mediated interaction between two particles is essentially 

that they can never touch at finite relative velocity: if h ~ O then h must vanish. 

This outcome is the result of the assumption of perfectly smooth surfaces. This 

analysis is correct when particles are far apart ( though still in such a way that 

h << D); when particles come very close together the analysis fails, because real 

particles are never smooth. This fact has been recognised in the literature and in 

this section a short review will be presented. 

According to Da Cunha and Hinch (1966) the roughness does not affect the 

interactive force very much while the particles do not touch. The effects of particle 

roughness are implemented as follows. Instead of considering the gap width h in 

formulas for the interaction parameter, h + ho is used, where h0 is a measure 

for the size of the asperities. Thus when h approaches zero the force remains 

finite. Particles can touch and they will do so at finite velocity. This removes the 

singularity for h ~ O. 

Smart and Leighton {1989) consider smooth particles sparsely covered with 

small hemispherical asperities, see Fig 2.4. They assume, as a first approximation, 

that the asperities have little or no influence on the behaviour of the fluid flow. 

The latter is then still treated using the lubrication limit, but the particles can 
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make solid contact when the asperities touch another solid surface. The asperities 

have height ho, so 

31r77T2i,, 
F = 2 (h + ho) while h > 0 and solid contact for h = O. (2.22) 

O O 
0 0 0 0 

0 0 0 0 o---00 0 
0 0 0 

0 0 

Fig 2.4 Sketch of the particles with roughness as envisaged by Smart and 

Leighton (1989). 

Patir and Cheng (1978) consider a rough surface (densely covered with asper-

ities) and they model the fluid flow numerically using an average flow model. The 

surface-to-surface distance is characterised by h, but this is the mean distance be-

tween the surfaces. It can never become zero, because (see Figure 2.5) asperities 

will touch when h approaches the standard deviation of the asperity height. 
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In addition the flow field is modified by the presence of the asperities. Patir 

and Chang (1978) insert <l>r, a factor in the formula for the force. This factor 

is determined from the numerical simulations and depends on the ratio of the 

surface-tersurface distance and the standard deviation u of the surface roughness 

heights: <l>r (h/u) ~ -0.9exp(-0.56h/u). The force is Fy = -3m/>rTJhR:1/ {2h3
). 

Fig 2.5 Sketch of the particles with roughness as envisaged by Patir and Cheng 

(1978). 

Jenkins and Koenders (2005) propose a model that yields a finite interactive 

force at zero gap width. In this model the assumption is made that there is a dense 

covering of asperities, equivalent to a thin layer of porous material at the surface 

of each sphere. The presence of the layers permits the fluid external to them, the 

clear fluid, to slip at their outer surfaces. Figure 2.6 is how they envisage it. The 
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presence of slip at the outer surfaces of the porous layers covering the spheres 

results in a relation between relative velocity and the force that is not singular. 

They compare their theory with both Patir and Chang (1978) and Smart and 

Leighton {1989 ). They find that the modelling parameters required for the porous 

layer are such that they compare well with these two theories for dense and sparse 

coverings. 

Fig 2.6 Rough particles as envisaged by Jenkins and Koenders (2005). 

In what follows a rough interaction is used for the particles. This is imple-

mented by modifying the formulas for the interaction for smooth particles by 

replacing h with h + ho. 
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2.4. Collisions 

2.4.1. General 

When the two particles touch at some stage in the process, then a collision takes 

place. The dynamics that rules this process is here briefly reviewed, as it will be 

required later on. 

On impact the relative velocity is reversed and the particles will bounce away 

from one another with a new initial velocity, which is given by the coefficient of 

restitution ec. We call the velocities of two particles before the collision v 1, v2 and 

after the collision yt, ~· Their masses are m1, m2, Conservation of momentum 

dictates that 

(2.23) 

The relative velocity before the collision is V12 = v2-V1 and after the collision 

yt2 = ~ - Vi. The normal velocity before the collision is 

( 
12) 12 g = v12.n n . (2.24) 
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The coefficient of restitution operates such that 

(2.25) 

The tangential velocity is left unchanged by the collision. Now the resulting 

velocities can be solved. Call 

then: 

m1m2 
me11=--­

m1 +m2 

The duration of the collision process is here taken to be infinitely short. 

(2.26) 

(2.27) 

These formulas are obviously true for dry contacts, but in this thesis contacts 

are in a fluid and the question is whether they remain valid. The answer is to 

compare interaction times. The actual solid contact time is assumed to be very 

short compared to the the total interaction time of the two particles. So, during 

solid contact the fluid may be supposed to "stand still". Under these conditions 

the above formulas are a reasonable approximation of the solid contact physical 
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process. 

2.4.2. Two particles pushed together by a constant force 

The above formulae are now employed to study how two spherical particles behave 

when they are pushed together by a constant force between them. This is a one-

dimensional problem. The constant force is called F0 ; the particle locations are 

x1 and x2• The lubrication interacitive force for spheres is employed and thus the 

equations of motion are 

Subtracting gives 

·· 31rD21J • 
mh = - 4 ( h + ho) h + Fo. (2.29) 

This is integrated once to give 

[
. . ] 31r D2

rJ ( h ( t) + ho ) 
m h (t) - h (0) = 4 ln h (0) + ho + Fot. (2.30) 

No further analytical progress can now be made; a numerical solution must be 

found using a Runge-Kutta procedure. Scaling of the problem, such that h is 
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expressed in terms of D and t is expressed in terms of 'c = frm/ (r,D), permits 

non-dimensional plotting. Fig 2.6 shows an illustration of the solution. The 

particles bounce back and are repeatedly driven together again. 

0.0005 

0.0004 

~ 0.0003 

0.0002 

0.0001 

0.0000+-~--.-~-"---~~~____::,...:;:,,~---1 
0.0 0.2 0.4 0.8 0.8 1.0 

th 

Fig 2.6. Illustration of the bounce properties of collisional/lubrication inter­

action: h/ D as a function oft/,. In this example the value of the time constant 

Tc= f.,.m/ (TJD) = 13s. The restitution coefficient is 0.5. The force F0 = 27N. 

2.5. Repulsive force or definition of overlap 

Finally, in this section, we discuss an aspect of the particle interaction that is 

encountered in the literature, especially the Stokesian Dynamics literature. In 

practical computing terms a finite time step means that particles will sometimes 

overlap. To avoid such an unphysical effect, a repulsive short range interaction is 

introduced, this is fully discussed in Dratler and Schowalter (1996). 
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A repulsive short-range force is introduced, which has a form, which is similar 

to the Derjaguin force in physical chemistry, see for example Atkins(1982) 

(2.31) 

Here Fo is a constant, describing the intensity of the force, and h0 the range of 

the interaction. Dratler and Schowalter (1996) find that structures disappear for 

smooth particles when the range is increased from zero to a small fraction of the 

mean particle diameter (but this could be of the order of magnitude of the mean 

surface-to-surface distance). Usually, a short range repulsive force is introduced 

between the spheres to model qualitatively the effect of this non-hydrodynamic in-

teraction. This is a numerical convenience, which has the advantage of preventing 

any overlapping cl~ encounters between the particles. In our work we already 

have a roughness length in the lubrication interaction, so there appears to be little 

need for an extra (elastic) force. However, the introduction of the extra elastic 

force is so ingrained in the slurry flow simulation community that its effect should 

be discussed in the simulation results. It has an important effect on structures 

formation and it will be reviewed in Chapter 7. 
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3. Existing migration models 

3.1. Introduction 

In the last 20 years various models have been put forward to describe and ex­

plain the migration phenomenon described in Chapter 2. In this chapter the main 

models are disc~ and their features are investigated in a channel flow geom­

etry. Despite being a simple geometry, the advantages and shortcomings of the 

published models are quite clearly exposed with a minimum of mathematical elab­

oration. In this geometry, which also permits easy experimentation ( see Lyon and 

Leal (1998)), the particles migrate to the centre of the channel. For simplicity the 

particles are assumed to be spherical and monodisperse; the latter implies that no 

segregation has to be accounted for. The particles are not perfectly smooth. The 

flow regime and particle size are such that the Brownian motion is irrelevant. In 

practical flow situations this means that the particles are super-micron sized and 

such particles are never perfectly smooth, though their surface asperity roughness 

is much smaller than the particle diameter. The flow regime is characterised by 

the channel Reynolds number and the Peclet number. The former is small (less 

than unity}; the latter infinite. The ratio of the particle diameter to the channel 

width is very much smaller than unity and the length of the channel is much 
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greater than its width. 

The very fact that there exist various approaches implies that the physics of the 

subject of dense slurry flow is not entirely settled yet. For historical reasons the 

Bingham plastic model has been incorporated in the review, though this model 

was never primarily devised to describe dense slurry flow. Nevertheless, it has 

some interesting features and produces a cross-streamline profile that could be as­

sociated with a solidosity distribution, albeit primitively. The next class of models 

is due to Leighton and Acrivos {1987) and Phillips et al {1992). In these mod­

els a phenomenological constitutive diffusion relation (Fick's law) is used. The 

constitutive features of the diffusion coefficient vary somewhat, but they share 

properties that are particularly keenly demonstrated in the channel flow prob­

lem. A different class of models is the granular temperature set of models due 

to McTigue and Jenkins {1992) and Nott and Brady {1994). In these models the 

fluctuational motion is characterised by a temperature field and appropriate equa­

tions are developed to characterise this field in conjunction with the other relevant 

fields. A brief discussion of the boundary conditions is provided below. Finally, 

a new model that recognises the inherent anisotropy of the field parameters is 

discussed; this model has been published recently by Morris and Miller {2006), as 

well as Stickel et al (2005), and the channel flow problem exposes its features. 
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In the sections below the particle radius is denoted by a and the channel 

width by 2Ww. The flow velocity in the channel is called u (only one component is 

needed, as it is a on~ensional problem). The streamwise and cross-streamwise 

e<r0rdinates are x and y, respectively. The pressure is p, the shear stress is denoted 

by T and the shear rate 8u/8y is abbreviated to 7. 

3.2. Bingham plastic flow model 

The Bingham plastic model is one of the oldest models to describe non-uniform 

flow through a channel, see textbooks, such as Bird et al (1982). This model 

describes plug flow. To make it applicable to particle-laden flow a two-solidosity 

model must be put forward. There is a critical solidosity 'Ps· Inside the plug the 

condition <p > </J,, holds and outside the plug</>< <Ps· Inside the plug the particles 

are interlocked to such an extent that they cannot shear. Introducing two volume 

fractions<!>,, and </Ji, such that </>p > <p8 and </>1 < </>s, a simple - first order - model 

can be set up. The flow is assumed to organise itself in such a way that all the 

particles inside the plug are at a volume fraction 'Pp and all the particles outside 

the plug are at <t,
1

. Now, if the plug width is 2P then plainly 

(3.1) 
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This defines the plug half-width P for the cases of sufficiently dense flow: <f> > (/> 
1

. 

In a Bingham model in a channel flow situation the shear stress is given by 

(3.2) 

therefore the yield stress is To= P{)p/{)x. The other parameter in the Bingham 

model is the fluid visoosity, which here is µ ( c/> 1) . (In the next section a simple 

viscosity function of the solidosity will be introduced, see also Section 3.3). 

So, instead of the traditional two parameters of the Bingham model, the yield 

stress To and the fluid viscosity µ, two solidosities are introduced that lead to 

these parameters: 'Pp and q,1. In the traditional Bingham model the yield stress 

is a given material parameter, but in the application here it is a parameter that 

depends on the pressure gradient. While this is an exceedingly primitive model, it 

does give a first-order idea of the migration in a channel. The constitutive model 

then reads 

(3.3) 

38 



Thus for y > P the fluid velocity gradient is 

ou 
-8y 

ou 
8y - (3.4) 

Note that the gradient vanishes at the plug boundary y = P. To obtain the 

fluid velocity a boundary condition needs to be applied. No-slip at the boundary 

y = W10 gives 

u(y) - ( ): [y2 -2Py+Ww(2P-Ww)], y>P; (3.5) 
2µ <t>, x 

u(y) - ( ) : (y' +2Py+ Ww(2P-Ww)], y<-P; 
2µ <t>, x 

u(y) 1 8p )2 IYI <P. - ( ) 8 (Ww - p ' 
2µ <t>, x 

This relation is plotted in Figure 3.1. 
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Fig 3.1. Plot of velocity inside and outside the plug for Bingham plastic model, 

equation {3.5). 

3.3. Diffusive models 

The Diffusive Flux Model was introduced by Leighton and Acrivos (1987) and 

Phillips et al {1992). The initial intention of these models was to describe Couette 

flow. While these are phenomenological models, the authors do introduce some 

physical argumentation by way of support. 

As an auxiliary feature a solidosity-dependent viscosity is required. A simple 

relation is the one put forward by Krieger (1972). The viscosity of the mixtureµ 
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depends on the solidosity </> as follows 

( 
</> )-n 

µ(</>) = TJ 1- <Pm , (3.6) 

where T/ is the fluid viscosity and <Pm and n are two parameters. <Pm is the maximum 

packing volume fraction ( <Pm = 0.68 for rigid spheres, though this is the static 

value and the real value may be somewhat lower in practical flow applications); 

n is determined from experiments (see Thomas (1965)) and a reasonable value 

appears to be n = 1.82. 

A note on the maximum packing density should here be provided. The maxi-

mum closest packing for equal spheres is the hexagonal close packing, which yields 

a volume fraction of 1r / JIB = 0. 7 4048.... The random closest packing has recently 

been determined at 'roughly' 0.64, see Anikeenko and Medvedev (2007). When 

Krieger wrote his paper the random close limit was believed to be slightly higher 

at 0.68. Krieger determined the value from an experimental curve fit of equation 

(3.6), but in these experiments the maximum density was of course never quite 

achieved. 

In Section 3.3 more will be explained about viscosity relations, because relation 

(3.6) assumes that the structure of the suspension is isotropic while essentially the 
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mixture is regarded as a Newtonian fluid. The latter implies that the shear stress 

T is obtained from the shear rate 'Y as 

T = µ (</>) "f· 

Stress equilibrium now states that 

op or 
--+-=0 ox oy . 

{3.7) 

{3.8) 

The equation of continuity is satisfied automatically in a one-dimensional problem. 

The above equations are, of course, standard expressions for the flow of a fluid 

in a channel; the new element is introduced by considering some form of Fick's 

law, which states that the instantaneous materials flux N is proportional to the 

concentration gradient V <f>. The materials flux, which is the volume of material 

that crosses a unit area per unit time, satisfies the continuity equation 

{3.9) 

The materials flux for a single species of particle ( as is the case for monodis-

perse mixtures) equals <f>v, where v is the material velocity ( of which u is the 
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x-component ). 

The phenomenology that is introduced in the diffusive flux models is now 

outlined. The authors of these models recognise various mechanisms by which 

diffusion may take place. These mechanisms give rise to different fluxes, which 

are all added up to give the total flux. In steady state 8</>/at = 0, thus v7.N = 0. 

Four mechanisms for diffusion have been recognised: (I) a collisional mechanism, 

{2) a viscosity gradient mechanism, (3) a shear stress gradient mechanism and (4) 

a molecular mechanism. In what follows ( 4) will be neglected as the particles are 

deemed to be sufficiently heavy that this mechanism is irrelevant. The collisional 

mechanism, which is a very important feature in dense slurry flow, leads to peculiar 

results, which ultimately must lead to a rejection of the diffusive flux class of 

models, as it gives unphysical results. 

Generally, diffusion can only take place when there are irreversible processes 

at work. So for each of these mechanisms the irreversible element needs to be 

identified. 

3.3.1. Collisional mechanism 

In the case of the collisional mechanism the particles can touch one another and 

in the "collision" that takes place transfer of momentum takes place because 
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the relative speed of impact between a particle pair is greater than the relative 

speed of separation after the collision. This is a very clear mechanism. It can 

only take place when the particle surfaces have a roughness. When particles are 

perfectly smooth they can never touch, see da Cunha and Hinch (1966), Jenkins 

and Koenders (2005) and Davis and Koenders (2007a). In Section 7.2 this is 

further elaborated. Phillips et al (1992) develop an expression for the diffusion 

coefficient, based on a scaling argument for irreversible twerbody motion. In the 

argument a test particle experiences a number of collisions that is proportional to 

'Y<P· The spatial variation in the collision frequency over a distance of the order 

of the particle radius a is then av' (-y</>). The assumption the authors make is 

that particle migration velocity is linearly proportional to a V ( -yq>). The flux N 

is therefore proportional to </,a V ( 'Y<P). The missing dimensional factor here is a 

length and therefore the authors suggest that the proportionality constant is set 

to a nondimensional coefficient Kc (the subscript refers to "collision") times the 

particle radius a. This simple argument leads to 

(3.10) 

A solution for the channel flow problem is now easily obtained. From continuity 
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it follows that V .N = 0, which leads to 

(3.11) 

In fact the term inside the square brackets vanishes, as it represents the parti-

cle flux and in the steady state the particle flux is zero. From (3.8) and (3.7), 

furthermore, one obtains 

- &p + {) (µ (</>) 'Y) = 0. 
ox 8y 

(3.12) 

The pressure gradient is a constant, independent of y. Furthermore, at the centre 

of the channel - y = O - the shear rate 'Y vanishes, so the two equations lead to 

(3.13) 

(3.14) 

Or, combining, and assuming that the solidosity is never zero 

{) ({)p y</> ) - 0 
{)y oxµ(</>) - . 

(3.15) 
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The pressure gradient is independent of y, therefore the solution of Equation 

(3.15) is 

y µ (<P) 
Ac=T, (3.16) 

where Ac is an integration constant. It is immediately clear that this does not rep-

resent a physical solution, because the function µ ( <P) / <P is never zero. Therefore, 

the collisional mechanism on its own does not describe the migration phenomenon. 

3.3.2. V1SCOSity gradient mechanism 

This mechanism is also described by Phillips et al (1992) and also by Leighton 

and Acrivos {1987). 

The idea is that if two particles form a doublet in the presence of a viscosity 

gradient the doublet may be wrenched out of the straight streamline by rotation. 

This would happen, because the viscosity on the densely packed side of the doublet 

is greater than that on the more dilute side, thus causing more resistance to flow 

on the dense side to which the doublet will respond by rotation. This is clearly an 

irreversible process. It is a possible mechanism if doublets are prevalent; this may 

be the case, because in the lubrication interaction the force required to separate 

two nearby particles at gap width his proportional to h-1
. Therefore, if particles 

have taken positions that are very close together their relative velocity will be 
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small and the endurance of the doublet is great. Thus they operate as one, very 

elongated particle, which makes the rotation degree of freedom important. 

Leighton and Acrivos (1987) suggest an expression for the materials flux as-

sociated with a viscosity gradient. This is essentially a scaling argument. The 

diffusion ooeflicient itself contains no ingredients with the dimension of a Pascal 

and therefore the viscosity gradient must be counteracted by the viscosity itself to 

arrive at a diffusion coefficient. A time scale is again provided by the local shear 

rate (the interaction frequency is proportional to ,ya) and a length scale by the 

particle radius a. Thus the authors come up with a flux N µ for this particular 

process that has the form 

• 2 ( a2 ) 8µ(</>) 
Nµ = -Kµ'Y<P µ (</>) 8</> v'</>. (3.17) 

Here Kµ is another constant. 

The flux due to the viscosity gradient is added to the collisional flux and 

employing the equation of continuity,as before, the resulting equations are 

8 [ 2 8 (7</>) K · </>2 (.!!__) 8µ (</>) 8<1>] = O· (3.18) 
8y Kea </> 8y + µ'Y µ (</>) 8</> 8y ' 
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- ap + 8 (µ ( </>) -r) = o 
8x 8y . (3.19) 

Similar manipulations as in the previous sub-sub-section and setting the total 

particles flux to ooro then lead to 

Kca2</> {J (y</>/ µ ( </>)) + K _Y_<f>2 (_i:__) aµ ( </>) 8</> = 0 (3.20) 
{}y µ µ ( </>) µ ( </>) 8</> 8y . 

Will the viscosity gradient mechanism solve the problems at y = 0 that the 

collisional mechanism suffered from? The answer is "yes". Equation (3.20) has 

an analytical solution; introduce an integration constant B, then 

(3.21) 

The function <f>-1µ (</>)l-K,./Kc approaches zero when Kµ/ Kc > 1. The zero point 

occurs for </> = <f>m, implying that no solution can exist that does not lead to the 

maximum density in the centre of the channel. 

Another problem associated with this solution is that the derivative 8</> / 8y may 

jump in y = O; there can be a so-called "Ocusp". The derivative in y = 0 is eval­

uated from the solution (3.21): (8ip/{Jy)o = ±1/ [B8/84' (,r'µ (,t,)l-K,/KtJ 
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Simple arithmetic shows that this derivative is infinite in magnitude when Kc/ Kµ < 

n/ (n + 1) and zero when Kc/ Kµ > n/ (n + 1). For n = 1.82, n/ (n + 1) = 0.645. 

Phillips et al { 1992) have established that Kc/ Kµ ~ 0.66, thereby avoiding the 

cusp in channel flow in the second decimal place. 
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Fig 3.2. Plot of the solidosity as a function of the position in the channel for 

various values of the ratio Kc/ Kw 
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Fig 3.3. Solidosity gradient as a function of the solidosity for various values of 

The findings are summarised in the two plots, Figs 3.2 and 3.3. The behaviour 

of the solidosity profile near the centre of the channel is evident. 

3.3.3. The shear stress gradient mechanism 

This mechanism is described by Leighton and Acrivos (1987), but not included in 

the key paper by Phillips et al (1992). The mechanism operates not on a solidosity 

gradient, but occurs in a homogeneous mixture where there is a stress gradient. 

A scaling argument similar to that for the viscosity gradient mechanism leads to 
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an expression for the particles flux of the form 

(3.22) 

Leighton and Acrivos (1987) employ this expression to calculate the onset of 

migration in start-up flow. Otherwise, it has not been employed by other authors. 

It has no application to the problem of migration in steady channel flow, as there 

is no solidosity gradient in Formula (3.22). 

3.4. Granular Temperature models 

3.4.1. General outline 

These models are entirely different from the phenomenological models discussed so 

far. The main versions of the granular temperature models are due to Mc Tigue and 

Jenkins (1992) and Nott and Brady (1994), both stemming from the early 1990s. 

Here the McTigue and Jenkins version will be used, because it is based on a simple 

scaling, while Nott and Brady's paper (1994) is founded on a numerical simulation. 

In order to do justice to these theories tensor notation will be employed, (see 

appendix A). 

Granular temperature theory is a continuum theory. The conservation of mass 
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and linear momentum are of course valid. A particle-fluid mixture as described in 

the introduction of this chapter pos.sesses a solidosity </> and a stress tensor u. The 

equations of continuity of mass and linear momentum for steady state processes 

read 

I. 8aij _ Q 
J• + a - . x· 1 

(3.23) 

(3.24) 

Here the vector f represents the body force, for example one associated with the 

gravity field</> (p. - p1) g (p. and p1 are the mass densities of the solid and fluid, 

respectively and g is the acceleration due to gravity). The vector v is the mixture 

velocity. In McTigue and Jenkin's (1992) version the spheres are deemed to be 

neutrally buoyant (p. = p
1

) and the fluid merely mediates the interactive force 

between the particles. The fluid motion is not solved in any detail and the fluid 

stress is represented by a pressure term only. The stress tensor u is therefore 

the intergranular stress minus a fluid pressure. The theory is easily amended to 

introduce body forces, etc. The simplifying assumptions are made to clarify the 

structure of the theory. 

The equations of continuity themselves are not sufficient to solve a problem in 

a given geometry. If constitutive equations are supplied in the usual way, relating 
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the components of the stress tensor to those of the velocity gradient, there are 

five variables in the problem(</>, Vx, Vy, Vz and the pressure p) and four equations. 

So there is no possible solution. McTigue and Jenkins(1992) propose to solve 

this problem by introducing another field variable, the granular temperature T, 

an extra equilibrium equation and two further constitutive equations: Fourier's 

law for the heat flux and a relation between the intergranular pressure and the 

granular temperature. This is common practice in the description of dry granular 

flow (see for example Jenkins and Savage (1983)). Purely from a mathematical 

perspective this leads to a system in which the number of equations equals the 

number of variables. It is a more complicated theory than the theories discussed 

above. 

The physical background to the theory is as follows. In a dense slurry purely 

affine motion (that is motion entirely associated with a uniform strain rate) is im­

poesible; particles need to make excursions to avoid one another. The extra motion 

- in addition to the motion given by the strain rate - needs to be accounted for, as 

it represents extra work done. The extra fluctuational motion is characterised by 

a scalar variable, the temperature - just like the molecular motion in a gas. So, 

when an energy dissipation balance is set up, effects from the fluctuational motion 

need to be accounted for. Furthermore, in the granular temperature model, the 
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fluctuations are responsible for an extra pressure term in the intergranular stress; 

this is the so-called particle pressure. The particle pressure describes the transfer 

of momentum in collisions between particles. The collisions - or solid contacts -

will only take place when the particles are rough ( this has been explored in much 

greater detail in Section 2.3). In addition McTigue and Jenkins (1992) hypoth­

esise that the momentum transfer that takes place is proportional to the speed 

of the ftuctuational motion. The theory leads to migration effects. The idea that 

collisions and fluctuations are somehow linked had already been put forward by 

Leighton and Acrivos (1987) and Phillips et al (1992), see Section 3.3. 

3.4.2. Scaling the granular temperature theory and general formulae 

The key interaction between particles, as mediated by the fluid, is the lubrication 

interaction, which is valid when the ratio of the gap width h to the particle 

diameter D is much smaller than unity. The force with which particles oppose their 

relative normal motion equals 31rTJD2h/ (8h). Therefore, the non-dimensional ratio 

D / h provides a good scaling parameter. Dimensions are completed by supplying 

factors of 'I and D. Furthermore, all bulk physical parameters will be proportional 

to the solidosity <J,. 

The stress er in a slurry 88 described in the Introduction will consist of two 
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parts, a pressure term and a deviatoric part t. The pressure is the sum of the 

fluid phase pressure p and the particle pressure p. The viscous part of the inter­

granular stress is given by an isotropic viscosity-type constitutive equation with 

two Lam~ coefficients X and µ. So, the tensor t is related to the strain rate d 

(~; = ! (8vi/8x; + 8v;/8xi)) as 

(3.25) 

The granular temperature is defined as the sum of the fluctuation speeds in a phys­

ically infinitesimally small element (i.e. many particles, but small representative 

volume; this is similar to the 'material point' in continuum mechanics) 

{3.26) 

where the prime denotes a fluctuation (that is v' = v-v) and the over bar is a 

volume average. 

The rate of working of a control volume (per unit volume) is compensated 

by two factors. The first is that granular heat can be taken away or supplied to 

the volume. To describe this a heat flux vector Q needs to be introduced, the 

divergence of Q is the heat source. The second factor is the dissipation - transfer 
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of granular heat due to the fluctuational motion to "ordinary" thermal heat (the 

dissipation 1); this term is proportional to the granular temperature. The balance 

equation for the rate of work of the fluctuational motion then reads 

(3.27) 

The first term is the divergence of the heat flux; the second term the rate of 

mechanical work and the third term is the dissipation. The heat flux is assumed 

to satisfy Fourier's law of heat conduction, with heat conduction coefficient K 

All the coefficients of the theory are now summarised, using the scaling sug-

gested by the lubrication interaction 

- D (3.28) .\ = o.or,</>-; 
h 

D 
µ. = 0.1TJ<I>,;; (3.29) 

D 
~ = 0.2TJ<I>,;; (3.30) 

- r,</> D T· 
'Y = o.3 D2 h , (3.31) 

p=0.4 ~~ /f. (3.32) 
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The non-dimensional coefficients oo-3 are all of order unity; o4 needs to con­

tain input from the collision rheology, which - in its simplest form - would be a 

coefficient of restitution. This issue will be addressed more fully in Section 4.4. 

3.4.3. Migration in channel flow using granular temperature theory 

Practical calculations with the granular temperature model are very rarely done. 

Part of the difficulty is supplying boundary conditions. Another one is the value 

of the coefficients .ao-.; no measurements of these has been undertaken. For 

channel flow McTigue and Jenkins (1992) themselves solve the model for smooth 

boundary conditions. For rough boundaries the same problem was solved by 

Petford and Koenders (1998). A further "zero motion" problem has been solved. 

This problem is one of a geometry in which the permeable bottom of a cylindrical 

vessel is agitated. The slurry inside the vessel is in a fluidized state and because 

of the particle pressure the bottom septum is cleared of particles and therefore 

unclogged. It is called the zero-motion problem, because there is no strain rate or 

transport; the agitation keeps the conformation in a steady state. The solution 

to the problem is reported by Gundogdu et al, (2003b) and Davis and Koenders 

(2007c). 

Other than the question 88 to what exactly the value of the coefficients o:o_4 
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is, the fact that these may be solidosity dependent has never been explored. This 

is important, as in the channel flow problem the solidosity by the walls drops to 

a small value (</> < 0.2) and the simple lubrication theory scaling beaks down. 

The theory can only handle dense systems. Petford and Koenders (1998) solve 

the dense part and connect a solution for the dilute region by employing simple 

viscous theory. 

In order to demonstrate the capabilities of the theory below the coefficients 

c:t0_ 4 will be given an effective value. An estimate of the coefficients will be derived 

from a cell model in chapter 4. 

In the channel configuration the equations in the previous section now take 

the special form, first derived by McTigue and Jenkins (1992) 

_8u fJQ -({)u)2 -- . - -_{)T 
t 12 = µ {)y; - {)y + µ fJy - , - 0, Q - K, By . (3.33) 

The stress is ui; = - (p + p) 6i; + ti; (p is the fluid pressure; p is the particle 

pressure); the stress equilibrium equation is expressed as 8ai;/8x; 

G 8t12 O; op =0· 8tn = O· - +- - ax ' ax l {)y 
op 

0, (3.34) -
{)y 
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where G = up/8x. The continuity equation is satisfied automatically, because the 

velocity does not depend on x. 

A scaling is introduced by McTigue and Jenkins (1992), which renders the 

equations non-dimensional. The particle velocity and granular temperature at 

the centre of the channel are called u0 and T0 respectively. Then 

yW10 = y, ttUo = u, 'I'To = T. (3.35) 

Substituting this into the equations shows that non-dimensionality is achieved 

when 

(3.36) 

Now, introducing a parameter€= ..j2o:2/o:3a/Ww and again using s = h/ D, the 

relevant equations take the form 

a _1au) 0 1 + 8fJ (</>s ay = ; 
(3.37) 

(3.38) 

(3.39) 
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Denoting the root-mean-square fluctuation velocity f 112 by w in equation 

(3.38} and integrating equation (3.38) once we obtain 

"" -1 A -k-1 'f's w = , (3.40) 

where k is a constant, defined by the boundary condition for the temperature and 

the solidosity at either the centre or the wall. 

The streamwise momentum balance equation (3.37), assuming 8ft/8y(O) = 0, 

integrates to: 

au ""-1 A 8y = -'f' sy. (3.41) 

The equations (3.39}, (3.40}, and (3.41) combine to give: 

(3.42) 

Finally, substitution of (3.40} into (3.41) and integration yields 

U(!i) - V = k f.' W(~)~d{, (3.43) 

where V = u(l} is the wall slip velocity. 
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When the values of k, f and the slip velocity at the boundaries are supplied 

these equations can be solved with a Runge-Kutta procedure. The purposes of 

this section is to demonstrate that solutions are possible and also to see what 

properties they have - especially for the solidosity field. Now we make use of the 

work by Torquato et al (1990). In this work a connection is given between the 

mean value of h/ D and the solidosity. The connection is given by a constitutive 

equation for the separations by Torquato et al (1990) for the spherical particles 

in the regime where the solidosity is not too small(</>> 0.2). 

(1 - </>)3 
8 

= 12</> (2 - </>)° 
(3.44) 

It was shown by Gundogdu et al (2003b) that this expression maybe approximated 

by the more convenient formula </)s-1 ~ 0.257e9
·
94<ti. Thus from equation (3.40) 

it follows that 0.257e9.94cf>(O)ti,(O) = k-1
.Therefore a solution may be generated by 

simply specifying </> ( o) and k, bearing in mind that w' ( 0) = 0. 

In Fig 3.4, below, two results are shown for f = 0.3 and two values of the 

constant k. It is observed that the behaviour at the boundary for the two values 

is very different and this reflects the physical character of the boundary. To see 

how, the scaled speed is also plotted: Fig 3.5. It is observed that the temperature 
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gradient and therefore the granular heat supply is different at the boundary for the 

two cases. This may reflect the fact that in the case of the smaller temperature 

gradient the boundary is very bumpy, while for the larger gradient the wall is 

smoother. 
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Fig 3.4. The solid~ity as a function of position for two values of the integration 

constant k. </> (0) = 0.5 and e = 0.3. 
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Fig 3.5. The scaled fluctuation speed as a function of position for two values 

of the integration oonstant k. </> (0) = 0.5 and E = 0.3. 

This concludes a demonstration of what this model is capable of. It is very 

important to note that in these examples the solidosity at the centre of the chan-

nel does not have the maximum value as was required by the previous models. 

Solidosities well below the maximum have also been measured: Lyon and Leal 

(1998). 

3.5. Anistroplc models 

Both Morris and Boulay (1999) and Stickel et al (2005) introduce anisotropic 

models for the suspension stress. In this section these models are briefly reviewed. 

63 



The main principle is as follows. The authors put forward that a sheared sus­

pension becomes transverse anisotropic with the direction of the principal axes 

aligned to the principal axes of the rate of strain d. There is then a further ex­

tension required to deal with the situation in which there is no rate strain ( as 

at the centre of the channel). Morris and Boulay (1999) introduce a non-local 

term as they want to avoid having to introduce an extra field as in the granular 

temperature theory. The non-local term is entirely phenomenological and for the 

moment this aspect is left to one side, as it is not central to this thesis. 

The induced structure in the case of channel flow in which there is a shear field 

i, which has the direction of ±1r / 4 with respect to the channel axis. The authors 

say that the suspension stress is then 

(3.45) 

where the two coefficients 1/n, 1/p, as well as the tensor Q, must be determined 

by inspecting numerical simulations. f/p is well-known and could for example be 

given by the Krieger (1972) formula: Equation (3.6). The normal form of Q is 
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given as 

1 0 0 

Q = 0 .X2 0 

which must be rotated over ±,r / 4 for the case of pure shear to give 

f. -1.X2 0 

Q= Y1 Y1_x O 2 2 2 

0 0 

(3.46) 

(3.47) 

From numerical simulations the parameters .X2 and .X3 have been determined: 

A2 = 0.8 and A3 = 0.5. These values are approximate. 

The implications of this model are now explored. From equation (3.24) we can 

get, 

(p) 8 (p) 
_8p+8au +~=0; 

8x 8x 8y 

8 (p) 8 (p) 
a12 a22 _ o· -+--, 
8x 8y 

as before 8u~> /8x = O and 8a~> /8x also vanishes. 
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CP> a ( . ) 
OU12 _ TJn'Y O (TJpd12) 
8y - _,,, 8y Q12 + 2,,, 8y . (3.50) 

So, 

_ op _ T/ 8 ( TJn 'Y) Q + 2 8 ( TJ/r) _ O· 
ox 8y 12 T/ 8y - ' (3.51) 

and 

8u22 __ 8(TJn'Y) v2,\ _ 
8y - T/ 8y 2 2 - 0. (3.52) 

It follows that 

T/n'Y = C. (3.53) 

Now there is a boundary condition 'Y (0) = 0 and so the model collapses unless T/n 

becomes infinite at the centre of the channel. Miller and Morris (2006) introduce 

the functional relation 1Jn = Kn (</>/<Pm) (1 - <f>/<l>m) 2
, implying that - unless non-

local terms are introduced that would add a contribution to the right-hand side 

of equation {3.52) the solidosity must be maximal at the centre, just like in the 

models by Phillips {1992) and Acrivos (1987). The anisotropy does nothing but 

provide an alternative formulation for the transverse contribution to the stress. 

The model is therefore similar to the Phillips and Acrivos models and gives similar 

results. 
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3.5.1. Discussion 

In this chapter four types of models have been introduced. All these are phe­

nomenological, though tentatively informed by possible physical processes. The 

Bingham flow model is of course old. However, the formulation in this chapter 

in which the yield stre.ss is solidosity-dependent ( whereas in the traditional for­

mulation there is a yield stress which is a given constant, which makes the plug 

width velocity-dependent). It gives a first order clue to the kind of rheology that 

is required to obtain the migration effect. It is a very crude model, which cannot 

handle the oontinuous solidosity profiles that are observed in experiments. 

The diffusion models by Phillips (1992) and Acrivos (1987) are now well­

established. They cannot inform on the zero-motion problem, but would appear to 

give reasonable answers in the channel flow (and also Couette flow) problem). As 

such they offer an improvement over the Bingham flow model. However, they must 

possess maximum solidosity at the centre of the channel, which is not observed 

in experiment, see Lyon and Leal (1998). A point to note is that the literature 

on these models is somewhat misleading. Nott and Brady (1994), for example, 

note the cusp that is possible in these models. They fail to explore this further 

and do not see that for larger values of Kc/ Kµ the sharp cusp disappears. For 

some reason the Nott and Brady (1994) paper is widely quoted, see for example 
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Morris and Boulay (1999). While it is still necessary to have maximum solidosity 

at the zerc:rshear-rate point, the analysis shown in this chapter demonstrates that 

no sharp cusp is necessary. 

The granular temperature model is a mature physical model. One of its draw­

backs is that it needs so many coefficients. In the next chapter it will be shown 

how those coefficients can be obtained by theoretical means. However, the model 

is phrased in isotropic terms and cannot cope with structure formation. For this 

reason it has been rejected, partly based on experiments by Shapley et al (2002). 

The anisotropic models by Morris et al (2006) and Stickel et al (2005) rely heavily 

on input from numerical simulations. The difficulty is that these simulations all 

employ the el~ic particle interaction, described in section 2.5. None use colli­

sional rheology. It is therefore necessary to develop a new theory that predicts 

structures formation based on collisional rheology. This will be done below in 

chapter 7. Further numerical simulations, involving collisional rheology will be 

developed and described in chapter 7. 
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4. Particle fluid flow in a cell model 

4.1. Introduction 

For dense slurries it is ~ible to elaborate cell models. These are small assemblies 

of particles, for example one central particle surrounded by its nearest neighbours. 

The idea is that for dense assemblies the contribution to the mechanics of the 

central particle will be dominated by the interaction of the nearest neighbours 

and all other particles will exert a far smaller influence. A further concept that is 

important is the mean field assumption. This is a first order approximation which 

says that the volume average of the cells is manifest in the rheological parameters 

(for example, a viscosity parameter) only. In this chapter a cell model is developed 

for the isotropic version of the granular temperature theory. For the predictions 

of the viscosity a comparison with experiments is available, which turns out to be 

rather encouraging. For the prediction of the other parameters no experimental 

data are available at this stage. We calculate a test in which the parameters of 

the granular heat conduction and dissipation dominate and it is hoped that soon 

experimental data will be available. A test is currently being run at Edinburgh 

University. 
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4.2. Isotropic viscosity estimate 

Th fluid visc ity i TJ and the particles have equal diameters D. The lubrication 

interac ion i us d· the gap width between particles is h. In addition a nota­

tion du to Koend rs(1997) will be used: particles are distinguished by a Greek 

sup r ript. Paramet rs that represent properties of two particles will be given 

ript ; for example the branch vector linking the centres of two nearby 

particl (la bell ,d µ and 11) with positions xµ and x 11 is cµ,11 xv - xµ, see Fig 

4.1 The unit normal vector align d with the branch vector is nµ 11 
- cµ 11 

/ cµ 11 
( cµ 11 

is horthand for I cµ.v I) and i directed along the line centers from xJL to xv. 

Fig. 4.1. illustration of the cell model. 
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For particles in close proximity a cell model considers particles and their im-

mediate neighbours. A paper by Jenkins and Koenders (2005) is relevant. In this 

paper interacting particles are considered with interaction K... The lubrication 

force for two particles in close proximity with velocities vµ and vv is 

(4.1) 

The interaction is the particle-pair interaction, defined in such a way that Ff"v = 

KrJ' (v; -11), thus KrJ' = 31rTJD2nrvnr I (Bhµv). In quasi-static equilibrium the 

sum of forces on each particle is zero, hence 

N" °'"" Kl:'.v (v~ - v':) = 0 L...J IJ J J ' 
(4.2) 

v=l 

where N"' is the number of neighbours of particle µ. 

The stress of an assembly of N particles, occupying a volume V, is 

N N" 

t · · = ~ °'"" °'"" Ffv d:3. v · 
IJ 2V L...J L...J 

µ=l v=l 

(4.3) 

With the lubrication interaction the stress tensor is automatically symmetric. 

This is correct 
88 

long 88 the interaction between particles is merely due to 
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the fluid-mediated force. However, collisions may also take place and the stress 

contribution given by ( 4.3) is merely the viscous part of the stress. Furthermore, in 

order to accommodate collisional momentum transfer an appropriate term should 

be added to (4.2). However, in the simplest approximation (4.2) is not used. 

An immediate estimate for the viscosity of the medium can be obtained using a 

mean-field approximation. The latter implies that the motion of nearby particles 

is given by the mean strain rate d, so that v'f - vf = dik0cv. Substituting in the 

expression for the viscous stress gives 

(4.4) 

In the approximation each of the terms in the sum over µ gives the same contri-

bution and therefore the double sum may be written as a single sum 

(4.5) 

where the over bar denotes the average. Now using N/V = 64>/ (1rD
3

) and replac­

ing h"" with its average value given by formula (3.44) one is left with 
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N,, 

t,·,· 91/</> D""' nµv ...J.W _µ.vnµvd 
- sn2 h L...,,, i c:i c:t k kt 

v=l 

(4.6) 

To evaluate the summation an angular particle distribution function w (n) is intro-

duced. For an isotropic distribution w (n) is constant and such that J w (n) dn = 

Ne - the number of nearest neighbours. So, w (n) = Ne/ (411"). For the nearest 

neighbours h < < D and therefore c =Dn. Now the sum is replaced by an integral 

with weighting function w (n) 

N,,. 

L nr' d;" <!( n:11 (4.7) 

ar.=1 

The integrals are listed in Batchelor (1976, p 252). 

This result is interpreted in terms of the Lame constants X and 71 

(4.8) 
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Substitution gives 

(4.9) 

Using formula (4.9) the value of µ/r, is plotted in Figure 4.2 for Ne = 6; the 

same plot shows the Krieger approximation - Equation (3.6)- and the Thomas 

approximation {196fi); the latter is based on a best fit to measured data. For 

Ne = 6 experiments and mean field approximation coincide quite well. 

This gives some confidence that the cell model represents a valid approximation 

of the rheology. Two of the five parameters of the Granular Temperature model 

are now estimated; they are a0 and a 1, which take the form 

(4.10) 
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Figure 4.2. Relative viscosity as a function of solidosity for various models 

4.3. The rate of working balance 

In this section the fluctuation energy balance that is required for the granular 

temperature model will be discussed. Using the cell model the formulas for the 

granular temperature theory (McTigue and Jenkins(1992)) can be rediscovered 

and estimates for the various parameters can be obtained. Two parameters have 

already been found in the previous section; they are ao and a1. The other para-

meters (a2 and a 3) are associated with the rate of working balance. In the cell 

model the rate of working balance is more complicated than the straightforward 
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stress calculation and there is a physical background that needs to be addressed. 

The total energy of a sample of the slurry with volume Vis (see Becker and 

Btlrger (1975), section 4.8) 

(4.11) 

where p is the ~ density of the material and e the internal energy per unit 

volume. The first law of thermodynamics is invoked to decompose the rate of 

change of the total energy in a "work" part (W) and a "heat" part (Qc) (the 

heat here is the - traditional - caloric heat and the subscript c has been added to 

distinguish it from the "granular heat" of the granular temperature theory). The 

rate of change (co-moving with a continuum material point) is denoted by a dot. 

(4.12) 

The heat is supplied or extracted from the volume V by means of a (caloric) heat 

flux Qc through the boundaries with area A, 

(4.13) 
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Combining and employing Gauss' theorem leads to 

w = J (-divq., + (pe) + ~(~2
)) dV. 

v 
(4.14) 

In the granular temperature theory the changes in the interior of the material is 

supposed to be arranged in such a way that the internal energy remains unchanged, 

in other words, heat is supplied to, or extracted from, any sample of the material 

so that 

(4.15) 

For a practical realisation of this requirement one may consider that the internal 

energy depends on the temperature only, which would imply that heat is supplied 

to, or extracted from, the experiment to keep it at a constant temperature. 

The implication of the requirement of constant internal energy is that the rate 

of working only becomes manifest through a change in the kinetic energy 

(4.16) 

For quasi-static experiments this would imply that the rate of working on a volume 

vanishes. This is the basis for the rate of working balance. 
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The rate of working balance for the cell model requires an adaptation. The 

continuum mechanics form of the rate of working is W = J TividA, where the 
A 

vector 'T is the traction. The discrete form would be the sum over the inner 

product of contact force and velocity, but the contact forces are defined in between 

the particles, while the velocities are defined at the centres of the particles. In 

order to arrive at a sensible expression for the rate of working of one cell ( a particle 

N"' 
µ and its set of neighbours { v}) the form E Fµ 11 

( xµ) · vµ needs to be evaluated. 
11=1 

To that end an extrapolation of the contact force is performed: Fµ 11 (x11
) = Fµ 11 

-

! (VF) t(x"+x.,) · c"". So the rate of working per unit volume in an assembly of N 

particles is 

(4.17) 

The flux dot here means 'cermoving with the centre of gravity of the particles in 

the assembly'. The expression ( 4.17) is now further elaborated. The velocity of 

the particles is decomposed into an average motion, (v), the motion due to its 

first order gradient Vv and fluctuations v'; thus vµ = (v) + (v'v) · xµ + v'µ and 

v11 = (v) + (Vv) . x" + v'v. The first term in expression ( 4.17) then becomes 
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NIA NI' 

L F'"' · vµ = L FIA"· { (v)IA + (v'v). xµ + v'µ) = {4.18) 
v=l v=l 

NIA NI' NI' 

(v)IA · LF'"' + [(v'v) · xµ]. LFµ" + v'µ. LFµ 11
• 

11=1 11=1 11=1 

The first two terms in this contain the sum of forces, which in the quasi-static 

case would vanish and in the dynamic case leaves an acceleration term. The 

third term is the granular dissipation. Note that the forces here include forces 

associated with collisions. The latter are proportional to Jv'µ · v'µ, so while they 

give a contribution to the stress, the correlation between the vector fluctuation 

v'IA and the collisional force vanishes. Therefore, in expression (4.18) the force 

in the third term is merely the contribution of the lubrication force, which is 

proportional to v" - vlA = Vv · cµ" + v'" - v'µ. 

The granular temperature is now defined as the product of the fluctuations 

v;µv'f = TIA6i;/3. The third term in expression (4.18) becomes 

(4.19) 

In further evaluating this expression it is assumed that the cross-correlation of 
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velocity fluctuations between neighbouring particles are negligible compared to 

the aut<rcorrelate. Furthermore, the auto-correlate is approximately isotropic. 

The contribution of this term to the rate of working per unit volume is obtained 

in a way similar to the stress calculation in the previous section 

21r 1T 

3 'lr'T/ D
2 

1 N Ne J J n . n --+ -----T-- da. dusmu 
8 h 3 V 41r 

0 0 

-~r,D
2
T N N 

- 8 h V c· 

The second term in expression ( 4.17) is 

(4.20) 

(4.21) 

The second term on the right-hand-side contains the definition of the stress ( 4.3) 

and will be treated as such. The first term on the right hand side is elabo­

rated further by setting the velocity in the midpoints between particles µ and 

1 This 
18
, again written in terms of averages and fluctuations: 

v to 2 (v" + v"). g.& 
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! (v" + v") = (v) + ! {Vv) {2x" + cµv) + ~ (v'µ + v'v), which leads to 

NI' 

L {F;)i(x"+x") dJ.v {v;)}(x"+x") 
11=1 
NI' 

- ~ (Ff' di")· [(v;) + ~ :: (2r,' + d,'") + ~ (vj + v7)] . (4.22) 

Each term will now be evaluated. The fist term leads to 

N" 

(v;) 8/x,. L (Frll dlv)' (4.23) 
v=l 

which is proportional to the divergence of the macroscopic stress tensor and van-

N" 
ishes in a quasi-static application. The term (Vv) · xµ I: (Fµ 11 cµv) , similarly, is 

11=1 

small and furthermore when evaluated over an assembly contains the definition of 
NI' 

the centre of gravity, which makes it vanish. The term~ (Vv) · E (Fµvcµv) · cµv 
11=1 

requires the input of the force, which is the collisional force and the lubrication 

force. The latter leads to a sum over an odd string of unit normal vectors, which 

vanishes in the mean field approximation. The collisional force is proportional to 

Vv'" · v'"n"", which also leaves a string of three unit vectors. Finally, the term 
NI' 

! E {F""c""). (v'" + v"') is considered. For the interparticle force the lubrication 
11=1 

term is used again, which leaves 

81 



(4.24) 

Expanding (11k -V::) as before and retaining even strings of the unit vector only, 

leaves the following 

N" 
~ LFfvc!;v (vj +v;v) = 

v=l 

N" µv 
3 D2 ~ n; µv ..J.W ( Iv 1µ Iµ Iµ Iv Iv Iµ IV) 

16
1rf1 LJ h).wnk c1 vk V; - vk V; + vk v; - vk v; . 

v=l 

(4.25) 

Retaining the autocorrelate of the fluctuations only, reduces the term in brack-

ets to (-11':v'f + vtvr) and using the definition of the temperature leads to 

- (T" - T") 6A:;/3. The difference in the temperatures is written as aI' /38xm<f',,;. 

The summation is now evaluated in the mean field approximation 

(4.26) 
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Altogether one obtains 

l N N" 

- 2 L L ( (v'F)4(x"+xv) Cµv) · Vµ 

µ=l v=l 

(4.27) 

8vi t·. + 1rrJD
4 
N Ne 8

2
T 

axj IJ 96Vh 8xk8x1. 

The rate of working per unit volume is obtained from equations (4.20) and (4.27) 

Finally, using N/V = 6</J/ (1rD3), the rate of working per unit volume equation 

may be written in the form 

with 

and 

1 ( 2)" 8Qi avi -- pv = -- + tij- - 'Y 
2 axi axj 

__ 3TJ<PNcT 
' - 4hD 

Qi=-
TJD<PNc 8T 

16 axi 
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(4.30) 

(4.31) 



These results are compared with the constitutive parameters of the Granular Tern-

perature model - expressions (3.30), (3.31) - and thus two other coefficients of the 

Granular Temperature model are estimated; they are o:2 and o:3 , which take the 

form 

(4.32) 

4.4. Particle pressure 

This foundation for the particle pres.5ure p, as used in the Granular Mechanics 

model, is now investigated. In a dense slurry flow two mechanisms for migration 

were put forward, a collisional one and a viscosity gradient one. McTigue and 

Jenkins {1992) consider the collisional mechanism only, which they relate strictly 

to the velocity fluctuations in the flow. The velocity fluctuations are manifest in 

the interactive force, just as in the previous section, and therefore - if the pressure 

is derived from formula (4.3) - the following is obtained 

N N" 
_ 1 ~ "' Ffµv __µv = 
p=-2v~~ i Gi 

µ=l v=l 

( 4.33) 

_ 311' rJD
3 I: 

B V pairs {µv} 
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One would expect the average of the terms under the sum to be zero as there are 

as many positive as negative contributions. If, however, collisions are taken into 

account, the normal speed fluctuations' = 1 (vr - v1) nr'I before a collision is 

systematically greater than the outgoing speed fluctuation due to the fact that 

energy is lost in the collision. Therefore taking a time average that is long corn-

pared to the collision time, but short compared to the evolution of the assembly, 

the terms that 'are about to' and 'just have' in equation (4.33) need to be consid-

ered only. The ~mbly is so large that there are equal numbers of pairs that are 

about to take place in a collision with a specified speed and pairs that have just 

been involved in a collision with the same speed before the collision (in this short 

time interval over which the average is taken). Because of the loss of mechanical 

energy in the collision the pair interaction between each equivalent for-and-after 

event may be grouped as s' (1 - ec), where ec is the coefficient of restitution (s' 

is the speed before the collision). s' is always positive and proportional to the 

magnitude of the velocity fluctuations in the assembly Jr. Taking a mean field 

approach the average particle pressure is therefore 

_ 31rr,D3 ~ 
8 V L-, 

pairs {µ11} 

(4.34) 
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The particle pressure does not come about due to phenomena that occur on 

the cell scale. Rather the statistics of the whole assembly are important. 

4.5. Granular temperature model in a vibrated dead-end filter 

In the past the dead-end filtration problem with oscillated septum has been cal­

culated with the Granular Temperature model:Gundogdu and Koenders (2003b), 

Davis and Koenders (2007c). The geometry of the problem is defined by a one­

dimensional co-ordinate - the z-direction - pointing upwards. The model has been 

augmented with a gravity term and a drag term to accommodate the effects of 

the mean fluid flow in the dead-end filter. The fluid drag is described by Darcy's 

law - see Happel {1991)- and relates the fluid pressure gradient to the superficial 

fluid velocity U by means of a coefficient R. The latter may be expressed as 

R = TJK<p ( D / h) / D2, where x is a non-dimensional coefficient with a measured 

value of 2.2. The particle mass density is Pp, the fluid mass density is p1, the 

acceleration due to gravity is g. Here the equations for the dead-end filtration 

problem are not re-derived, but taken over from Gundogdu et al (2003b). The 

Granular Temperature model can be reduced to two equations of scaled parame­

ters. The scaling is of the distances, which are expressed in the particle diameter 

- z = z• D _ and the granular temperature is scaled to the value at the position of 
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the septum at z = 0: T = TT*. The equations are 

(4.35) 

(4.36) 

The coefficient J which is associated with an exponential fit of formula (3.44) and 

has the value J = 9.94. The parameter S = xV/a.4D represents the ratio of 

the drag exerted by the mean fluid flow to the strength of the vibration induced 

agitation. This ratio and the total solids volume leads to a solidosity profile. In 

the calculations in Gundogdu and koenders (2003b), Davis and Koenders (2007c) 

the coefficients o0_ 3 have been used and - in the absence of anything better - have 

been set to unity. .Ai3 the main purpose of the present thesis is to show the effects 

of the improved. estimates of the the coefficients, gravity is neglected: g = 0 (in 

a recent paper Davis and Koenders (2008) have done calculations to include the 

effects of gravity). 

Using the new values of coefficients a.0_ 3 a solution is obtained for a given set 

of parameters (fluid velocity, amplitude of agitation). A Runge-Kutta procedure 

is employed. The resulting values of T* and </> are plotted in figures 4.3 and 4.4 
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for Ne = 6. The graph in figure 4.3 shows that the granular temperature as a 

function of the position for two different set of values of a 0_ 3 ; it is observed that -

mainly as a result of the fact that the coefficient in the dissipation is much greater 

than previously thought - the penetration of the fluctuations decay over a much 

shorter distance than with the parameters set to unity. Similarly, the solidosity in 

figure 4.4, shows the same effect, though the value at the septum - z = 0 - is not 

so different; the prediction of this value is important for engineering applications. 

These graphs have been plotted for a solids content of Vs/Ao = 4.2D, where Vs is 

the given total solids volume and Ao is the area of the cylindrical filter. 
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Scaled granular temperature as a function of the scaled distance 
Figure 4.3. 
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from the septum for new values of ao-3 and a 0_ 3 = 1. Particles with a size of 100 

µm, experiencing an agitation at 250H z with amplitude of two particle diameters 

against a mean downward flow of 10-3ms-1. The value of Sis approximately equal 

to 0.04. {using x = 2.2 and 04 = 0.2). 
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~1=9120 

0.8 

; 0.8 
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0 2 .. 6 8 10 12 

z/D 

Figure 4.4. Solidosity profiles for new and old values of eto-3· Parameters as 

in Figure 4.3. 
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5. Continuum theory with fluctuations 

5.1. Introduction 

The cell model from the previous chapter gives information in the context of the 

mean strain theory. In reality fluctuations are present. These occur on the meso­

scale, that is a scale of the order of magnitude - or slightly larger - than the cell 

scale. Later on the problem will be studied further using numerical simulations, 

however, insight can also be obtained by analytical means. This involves the use 

of continuum theory. 

One of the most startling conclusions of this chapter will be that a flow­

ing sheared slurry is not linearly stable, unless a substantial particle pressure 

is present. Clearly, that is not a satisfactory situation and the further question of 

stability needs to be addre:ooci. 

5.2. Field equations 

The role of the fluctuations can be illuminated by considering a continuum theory 

in which the field variables may fluctuate. The field variables are the solids velocity 

v, the fluid superficial velocity U, the fluid pressure p, the solidosity q> and the 

stress tensor -po+ t, where t is the suspension stress tensor. The field equations 
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are as follows. The two equations of continuity for incompressible phases 

(5.1) 

(5.2) 

The fluid resistance through a packed bed is described by Darcy's law 

(5.3) 

where R ( </>) is the resistance. The stress equilibrium equation is 

(5.4) 

As constitutive equations the isotropic stress-strainrate will be used as before, 

while the particle pressure p is for the moment set to zero. Thus one has as before 

(5.5) 

These equations are now used to study the fluctuations in the system. In order 
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to distinguish the continuum fluctuations from the fluctuations in a cell ( though 

at a later stage the two may be identified as being equal) averages and fluctuations 

are introduced. The former are denoted by () and the latter by a superscript +. 

It is assumed that the slurry is statistically homogeneous, so no spatial derivatives 

have to be considered. The time differentiations D/ Dt are co-moving with the 

particle phase: D / Dt = 8 / 8t + v. V. Expanding the equations up to first order 

in the fluctuations leads to the following set 

D</)+ (,1.,) ov( = O· 
Dt + 'f' OXi ' 

(5.6) 

D</)+ au/ o</J+ _ 
--+ (1-</))-+ (Ui-vi)-

0 
-0. 

Dt OXi Xi 
(5.7) 

(5.8) 

(5.9) 

The unknowns in this set are <P+, v+, u+ and p+; in three dimensions there are 

eight unknowns with eight equations. It is a homogeneous system and therefore 

all the fluctuating fields will be zero! Fluctuations are not possible (It is assumed 

here that the system is stable). The reasoning leads one to the need to introduce 

fluctuations that originate on the cell scale. 
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5.3. Fluctuations on the cell scale 

Typically a time and space fluctuating term is needed ( average zero) that creates 

stres;es on the small meso scale. These stresses will be called t+ and the term to 

be added to equation (5.9) is att/8xi. Even with the simple cell model that has 

been developed above, it is easy to see where such terms may come from. The 

local sum in the definition of the stress (4.3) - that is the sum that contains the 

local, on~ll contribution is 
N" 
~ Ffl'vd:v L...J i J , 

v=l 

(5.10) 

and this will contain a contribution due to local anisotropy that is proportional 

to (d). In cases where the mean strain rate is zero, a higher order term may 

be introduced that couples to local asymmetry and is proportional to the strain 

rate gradient ( though this would undermine the assumption that there are no 

macroscopic gradients in the system). It is emphasised that t+ does not couple 

to the velocity fluctuation itself, but to pack-ing fluctuations. 

5.4. Solution by Fourier transform 

A spatial Fourier transform is now carried out; the amplitudes of the fluctuations 

are denoted by a,,.. and the wave vector is called k. The set of algebraic equations 
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now reads 
..... 

~: + i (</>) k/iJi = O; (5.11) 

D~ .( ..... ..... 
- Dt + i 1 - </>) kjUj + i (Uj - Vj) kj</> = 0. (5.12) 

(5.13) 

-iktf;-ktk; (X) V;-{µ} (kf,), + k,k;V1)+ik;i ( ;: (d.nm) 81, + l:J, (d;,)) +ik1t,1 = o. 

(5.14) 

The mean velocity difference between fluid and solids is assumed to be zero: 

{U - v) = 0. E1iminating fi, U and v leads to the differential equation 

El = (</>) (1 - </>) k;ktf;t + (</>) (1 - </>) kiktXit ..... 
Dt (R) + k2 (1 - </>} ( (.\) + 2 (µ)) (R) + k2 (1 - </>) ( (>.) + 2 (µ)) <P, (

5
.l

5
) 

where X;t = ( (dmm) 6;t8X/8</> + 2 (d;t) aµ/8</>) and k = jkj. 

5.5. Linear stability 

The first thing that can be read from this differential equation is the stability. The 

problem is stable while k;ktX;t ~ O 1for all vectors k. Purely contracting flows 

are thus always stable ( (dmm) < 0), while purely expanding flows ( (dmm) > 0) are 

1 Asymptotic stability is obtained when the criterion is expressed without the equal sign. 
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never stable. For shear the problem is more complicated. Shear in the xy plane 

leads to d12 = ~1 = 'Y· Thus X12 = X21 = 21k1k2, which can be either positive 

or negative. Therefore, shear is not stable. In all this the particle pressure has 

been neglected. Assume that the particle pressure depends on the solidosity only. 

Ha term - ({}p/8</>) (8</>+ /8xi) is added to the stress equilibrium equation, X is 

modified to X;t = ( (dmm) 6;t8>i./8</J + 2 (d;t) aµ/8</J) -&p/8</)bjf_· Therefore, for a 

shearing mode of flow in which -&p/8</)k2 + 2ik1k2 < 0 the flow is stable. This 

stability aspect under small fluctuations has never been studied before. 

In these considerations one must bear in mind that the character of the prob­

lem is such that stability under small fluctuations does not necessary mean that 

there is no global stability. Assume that for some direction k/ k the solidosity 

grows exponentially, then there comes a point at which the solidosity is so large 

that the maximum density is reached; at that point all the particles will touch 

and a collision process must take place, which will lead to a large particle pres­

sure. This effect might be captured by a quadratic approach, but not by linear 

fluctuations. This is why, in some sense, the quadratic term has to be introduced 

pre-emptively to make the linear analysis work. A more rigorous quadratic theory 

will be presented in Section 6.1. 
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5.6. Linearly stable solutions 

Now the analysis is continued for stable problems. Equation (5.15) is readily 

solved, using a temporal Fourier transform with frequency w; the amplitude of 

all Fowier transforms is denoted by a tilde, for example the amplitude of of efy is 

denoted by </>. Note that the amplitude is still a complex variable, because of the 

spatial Fourier transform. Straightforwardly, one obtains 

~ = (</J) (1 - </>) kjkelje 
(iw [ (R) + k2 (1 - </J) ( (-\) + 2 (71))] - (</>) (1 - </J) kiktXje). 

(5.16) 

And what has been introduced here into the problem is a time scale through the 

parameter w and a length scale through k. 

At this point the influence of permeability effects can be discerned. Suppose 

that there is a fluctuation in the distortion of a cell that leads it to contract or 

expand. The fluid must then be squeezed in or out into the surrounding medium. 

If the mean flow resistance is such that ( R) < < k2 
( 1 - <P) ( (X) + 2 (71)) for all 

relevant k then this permeability effect may be neglected. In a continuum theory 

there is no way of telling whether this happens or not, as all values of k are 

permissible. In reality it is known that only those values of k that correspond 

to a length scale that is larger than a cell size are important. Call this size 
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1/ko, then only values of k < ko need to be considered. The relevant spectrum of 

values of k is further limited by the consideration that the assembly size imposes a 

minimum value; let this be Na/ ko, where Na represents something like a maximum 

correlation length (say 10). Thus the relevant range for the magnitude of the wave 

vector is ko/Na < k < ko. If in this range (R) << k2 (1 - </>) ( (X) + 2 (µ)) then 

the effects of seepage may be ignored. In practice that means large particles as 

(R) scales as n-2• 

5. 7. Quantifying the fluctuations 

The extra stress caused by the continuum fluctuations is now elaborated. Starting 

point is the expression for the stress ( 4.4) 

(5.17) 

The fluctuation is 

(5.18) 

The term in brackets is obviously time dependent. It states how the cell is de-

formed in the flow process. 
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Finally the fluctuations in the particle velocities are evaluated in terms of the 

stress fluctuations; this entails the substitution of the solution for the solidosity 

fluctuations. The result is rather tedious and reported here for completeness. v 

18 

where 

Do= (R)2 w2 + 2 (R) w2k2 (1 - </>) ( (">..) + 2 (µ)) + 

+ (l _ </>)2 [ ( (>.)2 + 4 (>.) (µ) + 4 (µ)2) w2k
2 + (</>)

2 
kiYi] , (5.20) 
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6. Stability and structures formation 

6.1. Introduction 

The linear perturbation analysis in chapter 5 leads to peculiar stability considera­

tions. :Essentially its result is: no sheared slurry flow can be stable unless there is 

a stabilising particle pressure. The form of the particle pressure used in chapters 

is one that depends entirely on the solidosity fluctuations. The solution of the 

solidosity in the Fourier domain is then, see expression (5.16) 

- (</J) (1 - </J) k·ktl·t 
</>= 1 1 (61) 

(iw [(R) + k2 (1-</J) ((-\) + 2 (µ))] - (</>) (1-</>) kiktXit)' . 

where X;t = ( (du) 6;t8'X/8</> + 2 (djt) aµ/8</>) - [)p/8</>flit and the stress fluctua-

tions originate on the cell-scale with Fourier amplitude t. The Fourier transforms 

here are both spatial and temporal. The stability stipulation follows from equa-

tion (5.15), and requires that Xjtkjkt ~ 0. The purpose of this chapter is to 

accommodate the particle pressure into the stability analysis and to study the 

implications. At issue is the fact that the particle pressure is not a simple fluctu-

ating term. In the McTigue and Jenkins (1992) version of the theory its form is 

proportional to D/hvT and this has no first order fluctuation, as is seen when one 
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tries to expand the expression: ( D / h n) + = a ( D / h) / 8<fxp + JT + D / h ( JT) +. 

As vT is itself already composed of fluctuations there is no first order term. A 

second order term is therefore imperative. 

Now, a problem arises. The analysis as it stands is carried out in the Fourier 

domain, which is done to avoid the spatial partial differentiations in the problem. 

Ha non-linearity is introduced the Fourier analysis becomes far more complicated. 

Ultimately numerical tools will have to be introduced and the transparency that 

comes with an analytical solution is lost. The way forward is to make assumptions 

that enable one to maintain analytical insight, but which still capture the essence 

of the problem. Below such an approach is outlined. While all the assumptions 

that have been made would appear to be reasonable ones, it is always possible to 

debate the approach, as speculative elements are present. 

The key to a successful conclusion of the theory is to introduce a new expression 

for the particle pressure in the Fourier domain. This expression approximates 

the McTigue and Jenkins (1992) if a local contribution is taken, but is subtly 

different. It is also non-linear, which enables a more advanced stability analysis. 

In general this is of course wrong; a product in the spatial domain should be 

replaced with 8 convolution in the Fourier domain. The error is corrected by 

introducing 
8 

weighting function. If this can be accepted a non-linear differential 
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equation replaces equation (5.15). This new differential equation will be shown to 

...... 
possess attractors outside </> = 0. An analytical solution is still possible and the 

system is stable around the attractors. However, it will be shown that structures 

appear. In this way a link is made with Morris' (2006) work. 

6.2. Convolutions 

In this sub-section the mathematical properties of the convolution are discussed. 

Consider two functions in the space domain f ( x) and g ( x), each having 

Fourier transforms J(k) and g(k). The Fourier transform is defined as 

J(k) = j d3xf (x) e-ik.x; (6.2) 

its inverse is 

(6.3) 

The delta function is 

) - __!___ j d kik.(x-y) · 53 (x-y - 3 3 
(271") 

(6.4) 

The Fourier transform of the product f (x) g (x) is 
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Jg (k) = J d3xf (x) g (x) e-ik.x = 

(2:)• I dax I d,Lf (J) e"·• I d,m9(m) e""•e-;kx = 

(2:)' J d,lf (J) f d,m9(m) 63 (I+ m - k) = 

1 I ...... (21r')3 d3mf (k- m) g(m). 

Conversely, the inverse transform of a product of two functions is 

(6.5) 

I dakf (k)g"(k) e"'·· = I d,k I d,yf (y) .-iky I d,zg (z) .-·····flex= (6.6) 

(2n'}3 J d3y J d3zf (y) g (z) <53 (x - y - z) = 

(211-)3 J d3yf (y) g (x -y). 

This is, of course, a well-known result and generally true for a wide class 

of functions, including all the functions that have physical meaning in contin-

uum mechanics. An important example of a convolution in the context of non­

hom.ogeneous media is the 'influence function'. The function g (x) is then a func-

tion that multiplies a position-dependent weight to contributions f (x) to give a 
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weighted sum. Convolutions of this kind occur quite frequently in the calculation 

of effective ("overall") moduli in a randomly nonhomogeneous medium. AB this 

is the use of the convolution that will be employed below a further elaboration is 

here given. 

By way of example consider the simple isotropic function in two dimensions 

F (k) = k'e-liii, where i is a number (preferably an integer) and a a lengthscale. 

The inverse Fourier transform of this function in two dimensions is 

00 2,r 

F(I I ) = _l_Jdk!d'l?ki+le-kaeiklxlcos(t?-<p) = (6.7) 
x t cp ( 211-)2 

0 0 

00 

(-1)'+1 fl+l Jdke-k0 Jo(klxl) = 
IJi+ia: 

0 

i+l {1+
1 

( 1 ) 
(-1) f)l+ia: Ja:2 + lxl2 . 

Clearly the use of F (x) 88 an influence function is obvious, as it multiplies any 

contributions further away from an evaluation point with a decreased weight. The 

rate at which it does so is controlled by the length scale a. The greater f is ( for 

higher l the function may be negative) the steeper the decline, see Figure 6.1 
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where the function is plotted normalised to the value in lxl = o. 
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Fig 6.1. The normalised influence function for various values of f. 

The example is pmely mathematical and for illustration only. However, in 

studying the physical problem an issue come to the for that was first observed 

in the previous chapter, the fact that in the continuum theory there is no length 

scale. For a linear analysis this does not matter, but in a more realistic setting it 

should be considered that there is no continuum physics on scales less than the 

cell scale. In the Fowier domain smaller scales correspond to larger wave vectors. 

To avoid problems for k -+ 00 a suppressing factor is introduced. In the above this 

has been achieved by employing the exponential e-ka, which 'cuts off' at length 

scales which are significantly 1~ than a. 
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6.3. Cell-scale correction for the equation that governs ~ 

In this sul>-section it is shown that the inclusion of a non-linear term requires 

an appropriate cells-scale correction. In the previous sub-section it was shown 

that a multiplicative term, for example of the form e-ka, needs to be included 

to avoid problems at the sul>-cell-scale. Here that concept is taken further. For 

simplicity the mean fluid motion is ignored by making (R) = 0 and the global 

loading path is one of a pure shear rate with no volume effects: (dii) = 0, and 

therefore X;t = 2 (d;t) oµ/8</,. Including the particle pressure term in the evolution 

equation for the solidosity fluctuations gives 

,,.... 

The term proportional top is going to be non-linear - say quadratic in</>. If the 

latter is cut off by a factor f (k) (this was e-ka in the previous subsection) then Ji 

will be cut off 88 /2 ( k). At the same time the second term on the right hand side 

is cut off according to f ( k) and in a stationary model in which the second and 

third term are balanced a factor J (k) is lost. This is avoided by realising that 

the equation is flawed in the first place, because it was derived assuming that the 

partial differentiations that give rise to the factors ki kt would be valid at sub-cell 
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scales, which obviously they are not. The problem is circumvented by introducing 

a cut-off from the outset and replace k;kt everywhere by k;kd (k) 

(6.9) 

The question now is: what is an adequate choice for f ( k)? To find out 

more k;ktf {k) /k2~ {k) is viewed as a convolution in the spatial domain, that 

is k;ktf {k) /k2~ {k)-+ {211')2 J [.r-1 (k;kd (k) /k2
)] (x - y) </>+ (y) d2Y (.r-1 is the 

inverse Fourier transform). It is expected that a local contribution to</>+ (y) will 

dominate, though that should not be infinite. 

The first possibility is that no weighting function is needed, so set f ( k) = 1 

and evaluate 

(6.10) 

This I I 
. . I I O ( I 1-2) and therefore another choice for f (k) c ear y diverges m x -+ as x 
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is made; as in the previous subsection set f (k) = e-ka. Now the integrals are 

(6.11) 

This still diverges as lxl -+ 0 and a f 0, indicating that a simple exponential 

is insufficient to suppress the infinity. A sharper cut-off is required and a function 

107 



of the form f (k) = e-k2a
2 

is attempted. The integrals are then 

(6.12) 

(6.13) 

This is finite for lxl -+ 0 as the modified Bessel function 11; 2 ( z) behaves as 

/2i1i + 0 { z5l 2). In passing it is noted that the expression in square brackets 

declines as lxl-3/
2 for lxl -+ oo. Therefore, for a cut-off function the choice 

I (k) = e-k2il2 is made. 

6.4. Stability analysis with non-linear particle pressure 

The expression for the particle pressure fluctuations in the Fourier domain are 

now introduced. Clearly, they must be proportional to J. However, an influence 

function is required. For this the choice IJI is made; in other words the magnitude 

of the fluctuations itself acts as influence function. This choice is the only one 

Possible for positive influence functions, other than that factor of k might be 
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included. Inspecting the equation of continuity for the particles it is observed 

that a time scale and a length scale are required to connect between 1i1 and lvl; 

the time scale is derived from the overall time scale of the problem, which is l(d)l-1 

and a length scale follows from k-1. The spatial dimension of the problem is called 

d. The dimension of~ is then lengthd; the other dimensions are standard: (d) has 

dimension time-1, k has dimension length-1, p/TJ has time-1lengthd. Dimensional 

analysis leads then to the following choice of p 

~ - 1i1i 
P (k) = CTJ l(rl)I kad+l' (6.14) 

where c is a constant; the length scale a is the particle size. The value of c is of the 

order of unity times (1 - ec) (the solid collisional restitution factor that appears 

in the particle pressw-e). 

Here the dimension is set to 2. Equation (6.9) becomes for pure shear 

Pi_ _ (4') k,ktl (k) t;, (IP) k,k,f (k) x,,~ _ (IP) C17 I (~I ~ l:l 
Dt - k2((X}+2(µ)) + k2((.X)+2(µ)) (.X)+2(µ)ka 

(6.15) 

This equation is multiplied by the complex conjugate of i (complex conjugates 

· t f the whole equation is taken 
are denoted by a*}; then the complex conJuga e O 
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and the result is multiplied by J. The two equations are then added up; this gives 

_ (</>) k3ktf (k) (t;tJ + 0tl) (cp) f (k) k1k2X12~* 

k2 ( (\) + 2 (µ)) + k2 ( (,~) + 2 (µ)) </xp 

(<l>)C1Jl(d)I---* IJI 
(X) + 2 (µ) </></> kad+l · (6.16) 

Rearranging and using the fact that#*= IJl2 

leads to 

_ (</>) k3kt/ (k) (t;tJ + ljtl) + (</>) f (k) k1k2X12 1"'12 

k2 ( ( ,\) + 2 (µ)) k2 ( ( ,\ / + 2 (µ)) </> 
(6.17) 

(</>) CTJ l(d)I IJ( 
(X) + 2 (µ) kad+l · 

The homogeneous part of this equation contains attractors. The part pr~ 

portional to ( t},~ + t;/;f) fluctuates in time, so the physical interpretation of 

equation (6.17) is that jJj2 fluctuates around the attractors, the fluctuations be­

ing driven by the anisotropic cell fluctuations. The attractors are found by setting 
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which leads to 

k1k-il (k) X12 l"'l2 _ _ IJl3 _ 
k2 </> CT/ I (d) I kad+I - 0, (6.19) 

or 

(6.20) 

The location of the attractors is illustrated by making a phase diagram. Choosing 

the sign of the shear rate such that X12 > 0, then the phase diagram looks like 

Figure 6.2. 

Figure 6.2. IDustration of the phase diagram of equation ( 6.17). In this picture 

k has been set to unity. 

It is observed that for kik2 < O IJI = O is the attractor, while for k1k2 > 0 

,~, = [k1k2J (k) x
12

/ (kcr, l(d)I a-d-1)] is the attractor and IJI = 0 is the repeller. 
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Using thi finding the harmonic intensity is as illustrated in fig 6.3. 
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Figure 6.3. Th harmonic density as it follows from the homogeneous part of 

Equation 6.17; the loading here is pure shear. 
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The result shows that there are peaks in the spectrum in the expansive di­

rection, implying structures that are layered in the contractive direction. The 

harmonic density is further modified by the explicit time-dependence of the terms 

proportional tot. These are expected to be small and will cause excursions around 

the attractors, causing the smooth line of figure 6.3 to be clouded, as if it is topped 

with sugar. 

It is emphasised again that the analysis given in this sub-section is wrong in 

that the result is directional, while the initial assumption was isotropic. Never-

theless, it shows that the inclusion of non-linearity into the equations that rule 

small perturbations results in a stable outcome. It also shows that the stability is 

accompanied by structures formation. 

6.5. Added isotropic elastic interaction 

If the particles feel an added elastic interaction, that is a term arises in P which 

is isotropic and proportional to <P + only, then 

- as was seen_ X;t = ( {du) 8it8>../8<P + 2 {djt) aµ/8</>) -&p/8</>8it and Xitkik'­

gets and extra term -8p/8</)k2. If the latter is sufficiently large then X12k1k2 < 0 

and the system is linearly stable. The stability equation from the previous sub-

section becomes 
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with the front factor to the first term negative. This implies that there is no 

solution for the attractor other than !JI = 0, which means that there are no 

structures. H the term {Jp/8</> is slowly increased from zero then the attractor 

outside 1~1 = 0 will move to the left ( the structure amplitude becomes less) until 

it is zero. 

So, this theory predicts that when an elastic interaction of increasing strength 

is introduced the structures will gradually disappear. This prediction will be 

verified in the next section. 

6.6. Other higher order terms 

The particle pressure introduced here represents a second order term of the form 

J IJI · It is added to a system of equations that is linear in J and this system was 

obtained by doing a linear expansion. Naturally there must be terms that can be 

obtained by expanding further to a quadratic form. In the Fourier domain these 

terms will take the form of convolutions. These can again be viewed as integrals 

over weighting functions. The difference between these terms and the term of the 
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form 4> j?,j is that the weighting functions obtained from the quadratic expansion 

fluctuate with an average of zero, while the weighting function for the term of the 

form 4> 1i1 is 1i1. The latter is always positive and truly adds the contributions of 

J from it.s surroundings, while a fluctuating weighting function will more or less 

cancel out. This is the reason that the quadratic fluctuations are dominated by 

the ?, l?>I term. 
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7. Simulation 

7.1. Introduction 

Numerical simulations, which take account of the hydrodynamic force between 

suspended particles have been developed in recent years; they are swift becoming 

useful tools for studying the dynamics and rheological properties of suspensions. In 

order to understand and interpret the results of the simulations theory is required 

that provides a framework for the interrogation of the numerical experiment. In 

this thesis the theory has been developed first - previous chapters - and now the 

simulation is developed. 

In the last fifteen years a number of papers have been published describing 

simulations of particle fluid mixtures. These will now be briefly reviewed. The 

simulist's ideal would be to simulate the fluid particles and solid particles in the 

SllSpension simultaneously. For the systems envisaged in this thesis, where the par­

ticles are macroscopic, non-Brownian objects, computers are not powerful enough 

yet to accomplish such a calculation (though for smaller, colloidal particle-fluid 

systems - at given temperature_ good progress is being made, see Heyes (1995)). 

The fluid must therefore be modelled as a continuum. There are two groups of 

these simulations: those that employ a Stokesian Dynamics (SD) method: Bossis 
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and Brady (1984) Dratler and Schowalter (1996), Sighh and Nott (2002), Mar­

chior and Acrivos (2001) and those that use a Lattice Bolzmann (LB) approach, 

Ladd (1994). In the former the Stokes equations (that is the very low-Reynolds 

number Navier Stokes equations) are solved by means of a 'multipole expansion' 

that is broken off after a finite number of terms. In LB, the evolution of a dis­

cretized velocity distribution of the fluid particles is calculated on a grid (lattice); 

this method is ideal for the very complicated boundary conditions that are en­

countered in particle fluid systems. 

Both methods break down when the distance between the particles becomes 

small. In LB, for example, the distance between the particle surfaces may become 

smaller than the lattice dimension and then special measures have to be taken 

to keep the method going. In both LB and SD the problems associated with 

close proximity between particles may be resolved by noting that an analytical 

solution of the fluid flow for narrow gaps between smooth surfaces is available: 

this is of course the lubrication limit, see Section 2.2. The motion of the particles 

is determined by the force they exert on one another and the lubrication limit 

provides an approximation for the force between two smooth particles that move 

relative to one another. This force is singular ( normal relative motion between 

two spheres is resisted by the force proportional to h-
1

) when h vanishes and 
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in practical computing terms where time steps are finite the implication is that 

particles will sometimes overlap. This is highly unphysical and must be avoided 

at all cost. Therefore, in the literature on both SD and LB, a strongly repulsive 

short-range interaction is introduced, which keeps the particles away from one 

another. The short-range interaction is also described in this thesis, see Section 

2.5. 

In the simulation that is proposed here neither Lattice Bolzmann, nor Stoke­

sian Dynamics will be used and the role of the repulsive short-range force is 

re-examined. The approach taken here is to take the view that - as a result of 

the singularity of lubrication interaction - the actual fluid motion in the pores 

of the slurry is relatively unimportant, and the whole simulation is done with 

the lubrication interaction only. Furthermore, the particles are rough and the 

velocity-distance-dependence of the interactive force is given by equation (2.11) . 

At the same time a collision rheology for particle pairs is implemented, just like 

in Section 2.4. 

The fluid is now merely a medium for the transferral of the interactive force, 

which applies at "contact points" _ these are the points of closest proximity -

and the simulation is done using the Discrete Element Method (DEM). What this 

implies is a very quick and very transparent simulation. 
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The purpose of our simulation {which is really a solution of a many-particle 

problem) is to use the theory developed in Section 2.2 to investigate the outcome. 

In brief the theory states that structures form when there is a collisional rheology 

for the particle pressure and that these structures disappear when a strong inter-

action is introduced that repels the particles. The latter is of course exactly what 

the authors of the LB and SD methods do and the question is whether their simu-

lations are in any way trustworthy for the understanding of slurry flow behaviour. 

Put another way: is a slurry in which a short-range interaction operates a different 

system than one in which there is merely a collisional contact rheology? Bear in 

mind that the current mainstream papers on slurry simulation do not employ the 

rough particle interaction and rely entirely on the "Derjaguin" (double layer type) 

interaction to make the simulation work. 

Yet another way of phrasing this is in terms of length scales. The asper­

ity height is one length scale, the range of repulsive force is another one. For 

"classical" particles (in real, civil engineering or geological slurries) the roughness 

length scale is much greater than the double layer interaction length scale. So it 

makes sense to investigate what the implications are that result from a choice of 

interaction. 

Th . ula . bed . two or three dimensions; below a two-dimensional e SlDl t1on can one m , 
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implementation is featured. This has the advantage of easy visualisation and also 

makes a comparison with theoretical derivation in chapter 2 more relevant. The 

simulation is the solution to the shear problem for many particles. This is ex­

actly what the theory also attempts. The shear rate is :y. The fluid viscosity is 

1/ = 0.001P88, a time step proportional to inverse of shear rate, (1/:Y) and particles 

are restricted to the (x, y)-plane, the plane of shear. 

7.2. Discrete Element Method 

The Discrete Element Method (DEM) is a family of the numerical methods for 

computing the motion of a large numbers of particles. The method is for granular 

materials 88 individual elements which can make and break contacts with their 

neighbours and are capable of analyzing interacting bodies undergoing large ab­

solute or relative motions. In the DEM, elements can represent either discrete 

objects, such 88 individual grains of sand, or bulk materials. In the experiments 

Presented in this study the former is obviously used. To avoid the assembly falling 

into a regular packing, the particles are hetero-disperse, drawn from a narrow 

grainsize distribution. Generally, contact forces are determined between nearest 

neighbours and the interactive force is in the direction of the vector that connects 

the line of centres. The collision of two discs produces non-zero forces only when 
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particles overlap (slightly). 

The (DEM) simulation is started by putting all particles in a random position 

and giving them initial 7.ero velocity. The interactive forces on each particle are 

summed at each time step and then Newton's law is used to obtain the accelera-

tion. 

F 
a=-, 

m 
(7.1) 

where m is mass of particle, F is the sum of forces. There are various possible 

integration schedules. The simplest one is the Euler system. Integration over a 

small time !:At will give the velocity and position of the particles at time t + D.t as 

follows 

v(t + ~t) = v(t) + a(t)Llt; (7.2) 

1 2 
x(t + ~t) = x(t) + v(t) ~ t + 2a (~t) · 

(7.3) 

A somewhat more efficient scheme is Verlet's schedule, which is designed to sup­

press the term proportional to (6.t)3 by considering the kinetic variables at times 
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t ± b,.t. The 'basic' Verlet schedule takes the form 

x(t + b,.t) = 2x(t) - x(t - b.t) + a (6t)2 . (7.4) 

The incorporation of the velocity in the scheme leads to the so-called 'velocity' 

Verlet integration 

1 
x(t + b,.t) = x(t) + v(t) 6 t + 2a (6t)2

; (7.5) 

1 
v(t + b,.t) = v(t) + 2 [a(t) + a(t + ~t)] ~t. (7.6) 

All three schedules are commonly used. Cundall and Strack (1979), who invented 

the DEM method, use the Euler schedule. Where there are collisions in the system, 

which operate in one time step, the Euler method is probably preferable. 

After each integration step the new positions are used to compute the forces 

during the next step and this loop is repeated for a long series of time steps. 

The force that we have considered in our simulation is the lubrication interac-

tion for rough particles, which has been calculated analytically, in chapter 2 for 

small Reynolds numbers. Because of the roughness, there is no singularity for 

h-+ 0. So the particles can touch each other at finite velocity. On touching the 

122 



collision rheology described in chapter 2 is invoked. 

7.3. Details of the simulation 

Particles in this simulation can contact at non-zero velocities so a collision mech­

anism has to be supplied. There are N particles in a two dimensional rectangular 

box, which leads to a ~ensional 'volwne' fraction </J = 1r N a2 
/ A, where A 

is the area of the rectangle. For hetero-disperse aggregates in which there are 

7li particles with radius a. (E Ttj = N) the solidosity is <P = 1r :E ( nial) / A. The 

particles are positioned in the box by drawing from a grainsize distribution until 

a preset solidosity is reached. From the latter the mean distance between par­

ticles is estimated using formula (3.44); this formula is obviously valid in three 

dimensions and not in two, but only a rough estimate of h/a is required. The 

mean velocity between particles is of the order -ya. The time step is then such 

that At<< h/ (,ya). In the program !l.t = 0.lh/ (-ya) is chosen. 

Boundary conditions are applied by making the top and bottom walls of fixed 

particles with average radius. These walls are given equal sized velocities in oppo­

site directions. The boundary conditions in the horizontal direction are periodic. 

The initial conditions is that all particles have zero velocity. It then takes about 

10,000 steps before the motion at the boundary is communicated to all the parti-
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cles and the study of the result can commence. The initial particle positions are 

randomly generated. 

The program uses a scaled unit system. All lengths are scaled to a factor 

a,; all masses tom. and all times tot,. In a three dimensional setting the mass 

density scaling is now m,/ (a,)3
; the viscosity scale ism,/ (asts); the velocity scale 

is a,/t,. The lubrication interaction is also used in its three dimensional version 

in which a front factor D2TJ appears, which has to be declared in the program. 

Typical values for the particle diameters are order of magnitude of millimeters, 

for the particle mass density order 103kg/m3 and for the viscosity the water value 

10-3 Pas. Typical velocities are of the order of 10-2m/ s. 

The simulation is performed using different particle sizes; the initial configu­

ration for N = 80 is presented in figure 7.1. The restitution coefficient for the 

collisional rheology is ec = 0.26. The asperity height is 0.01 (a). 
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Fig 7.1. Initial configuration of particles in a shear box. 

7.4. Structures formation 

The first simulation that is shown here is the one with parameters as in the pre­

vious su~section. The interparticle interaction is here the lubrication interaction 

with collision, onl7/. In figures 7.2, 7.3 and 7.4 the resulting particle positions are 

displayed at progressive times for an average solidosity of 0.55. 
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Fig 7.2. The shear box simulation with rough lubrication interaction only after 

600 time steps. 

Fig 7.3. The shear box simulation with rough lubrication interaction only after 

1000 time steps. 
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Fig 7.4. '!he shear box simulation with rough lubrication interaction only after 

1500 time steps. 

It is clearly seen that 'streets' develop. The simulation organises itself in 

structures. The wavelength of the structures is some three particles. 

The effect is to a large extent, independent of the solidosity. However, for high 

solidosites (t/> > 0.65) an effect called "jamming" occurs. When the assembly gets 

in to the jamrned state particles make enduring contact and no smooth flow takes 

Place. This regime is not the subject of this thesis. 
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7.5. Effect of repulsive force 

To prevent particle overlap, the Stokesian Dynamics community introduce an 

inter-particle repulsive interaction of the form discussed in Section 2.5. 

(7.7) 

A useful reference here is Dratler and Schowalter (1996). They experiment with 

the repulsive force and find that when it is very small or very short range structures 

form, just as the ones found in the previous sub-section. They then increase 

the strength of the interaction and the structures disappear. Their conclusion 

is extraordinary: structures are undesirable and therefore the repulsive force is 

imperative. 

Here the repulsive force will also be used in the simulation. Figures 7.6, 7.7 

and 7.8 show the result at different time steps for average solidosity of 0.58, ho = 

0.03 (a} and Fo a 'large' value of 10. 
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Fig 7.7. Simulation with repulsive interaction after 2000 time steps. 

Fig 7.8. Simulation with repulsive interaction after 7500 time steps. 

The results are consonant with Dratler and Schowalter (1996). No 'streets' 

appear, as in the previous sub-section. There may be a mild general anisotropy 

in the compressive quadrant direction, but no structures formation. 
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The interpretation is different than Dratler and Schowalter's (1996) conclu­

sions, however. The theory in the previous chapter shows that when there is an 

elastic interaction structures will become less prominent and for a strong enough 

interaction they will even disappear altogther. Thus the system with a repulsive 

interaction is a different physical system than the one without. When there is no 

repuJsive int.eraction (and only a collisional contact rheology for rough particles) 

structures must imn; they are a natural part of the system. 

7.6. Discuaalon 

The first thing to note is that the loading sequence used in these two-dimensional 

simulations is in fact not pme shear, but also involves a rotation. The rotation 

will have the effect of destroying the structures somewhat, but apparently the 

creation of structures is a very strong effect, so they are still prominent. The fact 

that there is theory in the context of which the simulation can be interrogated is 

very useful. This is what Dratler and Schowalter (1996) did not have. 

Onoe structures form the aggregate obviously becomes very anisotropic, which 

would strengthen the argumentation put forward by Morris and Miller (2006) as 

to th 
r. r. . ation in shear gradient geometries. The 

e origin of the driving ,orce ,or IIllgr 

. gth the McTigue and Jenkins fact that a collisional rheology is reqmred stren ens 
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{1992) case. It is now clear that for slurries of non-interacting rough particles both 

particle pressure and anisotropy are required ingredients. There is apparently no 

such thing as a 'simple slurry'. 

The correspondence between theory and simulation suggests that the form 

for the particle pressure used in section 6.4 is probably correct. There is a non­

local element, which in the space domain is represented as a convolution with 

a weighting function. The strength of the weighting function is the fluctuation 

intensity itself. The non-locality also assists in extrapolating the theory to zero 

shear regions. 
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8. Conclusions 

8.1. Main conclusions 

The main conclusions of this thesis are as follows. 

1. In Chapter 2 it is found that a rough particle interaction with additional 

collision rheology added to a lubrication limit analysis can be devised. This is 

used as the interaction between two particles. 

2. In reviewing the existing models in Chapter 3 it was found that the Phillips 

et al (1992} model leads to the maximum solidosity for the slurry at the centre of 

a channel. In the literature it is widely reported to be a cusp, but it was shown 

that if the ratio of diffusive to collisional coefficients is chosen to be in a certain 

range then the derivative of the solidosity profile at the centre of the pipe vanishes. 

The maximum solidosity is still required, however. This is does not agree with 

experiments by Lyons and Leal (1998). 

3. The diffusive models are not able to describe slurry flow in a channel accu-

rately {though they capture the effect of migration). The granular temperature 

model by McTigue and Jenkins (1992) is able to describe the flow in such a way 

that the solidsosity at the centre of the channel is not necessarily the maximum 

solidosity.. However, this model requires a large number of constants as well as 
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boundary conditions for the fluctuation intensity. 

4. The Morris and Miller {2006) model derives a normal stress from presumed 

anisotropy. The coefficients of the anisotropy have been derived from numeri­

cal simulations, but no insight is given in how these coefficients follow from the 

physics of the flow. The experiments by Shapley et al (2002) support the idea of 

anisotropy. 

5. The coefficients of the Granular Temperature theory can be obtained from 

a cell model using mean field ~umptions and Torquato et al's (1990) estimate 

of the gap width between particles in an isotropic packing. The prediction for the 

shear viscosity is surprisingly correct when compared with an experimental review 

by Thomas (1965). Improved estimates for the other coefficients can also be found. 

One of these - the coefficient that describes the dissipation due to fluctuations in 

the particle motion _ is significantly different from the value usually employed in 

the literature. The oscillated dead-end filtration problem (which is particularly 

sensitive to this coefficient) has been recalculated with the improved estimate, 

leading to a sharper gradient of the solidosity profile near the septum compared 

to previous estimates. 

6. Fluctuations are analysed using continuum theory (Chapter 5). A meso-

SCOpic stress fluctuation needs to be introduced into a system in which an average 
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strain rate operates. Conditions for the necessity to include continuum fluid pres­

sure and fluid flow are derived. A linear stability analysis shows that without a 

linear particle pressure the problem is never stable in shear. The granular tern-

perature model does not give a linear (elastic) particle pressure - it is quadratic 

in the fluctuations - but the elastic repulsion force generally used in Stokesian 

Dynamics simulations is linear. The analysis shows why the SD community is so 

keen to employ this interaction. It also shows that a sheared slurry requires at 

least some quadratic input to be stable. 

7. The ground is laid for a quadratic term in the stability analysis. The analysis 

talces place in the Fourier domain; a quadratic term is therefore a convolution 

in the spatial domain. This is defensible if the term can be interpreted as a 

convolution with 8 short-range influence function. For the latter the absolute 

value of the density fluctuations is ch~en. 

8. 'lb link the stability analysis on the continuum level with the fluctuations 

that arise from the mes<H:Eill scale a cut-off is introduced. Analysis shows that a 

Ga . fo f ff ( t'al does not decline fast enough) satisfies the nsman nn o cut-o exponen 1 

requirements of being locally finite. 

A 
. . . al . . carried out and it shown that there are 9. quadratic stability an ys1s is 

These two are explored. The attractor outside 
two attractors in the problem. 
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'fluctuation=zero' denotes structure formation. These structures are manifest 

through two peaks in the density fluctuation spectral intensity. 

10. A simuJation is carried out using a Discrete Element Method with parti­

cles interacting via the fluid lubrication limit with added roughness and collision 

rheology. The simulation clearly displays the formation of structures in shear. 

The direction of the structures is aligned with the compressive quadrant of the 

shear field. 

11. Structures disappear when an additional repulsive interparticle force is 

introduced. These findings are consonant with the theoretical predictions. 

8.2. Suggestions for further research 

The anisotropy obtained from the non-linear analysis should incorporated in a 

granular temperature model to arrive at a complete description of dense slurry 

flow. The anisotropy can be introduced at cell level. A concomitant experimental 

programme of work should determine the components of the viscosity tensor and 

make verifications of the theoretical predictions. Other numerical simulations - the 

ones reported here are somewhat primitive - should also be carried out, especially 

in three dimensi' ons. 

Further theoretical work should extend to three dimensions. A more thorough 
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study of oths quadratic effects is the subject of another PhD thesis. A link 

between cell models and continuum models should be explored more to gain better 

insight in the role of the fluctuations. The current cell model, which is based on 

the mean field 888U1Dption is somewhat primitive, though a good start. 
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9. Appendices 

9.1. Appendix A: Cartesian tensors and summation convention 

Vectors and tensors are denoted by bold-face characters. Their Cartesian corn-

ponents are indicated by su~ripts. Throughout this thesis we use Einstein's 

summation convention: whenever the same Latin subscript appears twice in a 

term, it means a sum over the value of that index. Here are two examples. The 

scalar product of two vectors v and w is 

The divergence of a vector field v is 

where x is the position vector. 

9.1.1. Invariance properties 

Tb . d tensors are given in a coordinate frame. 
e components of Cartesian vectors an 

eh e The components of the tensor 
On rotation of the frame the components ang · 
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* 
in the rotated frame is denoted by Tii· The rotation transformation is called Q, 

which has the property det (Q) = 1 and the inverse Q-1 = QT (the transposed). 

Here is a list of transformation properties and invariants. 

9.1.2. Scalars (tensors of order zero) 

Scalars do not change value under rotation. Examples of physical quantities that 

are scalar are energy, p~ure, etc .. 

9.1.3. Vectors (tensors of order 1) 

Vectors v transform as Vi = Qiivi. There are no invariant vectors. The scalar V£V£ 

(the quadratic length of the vector) is invariant. Physical examples of vectors are 

the velocity or the position vector. 

9.1.4. Tensors of order 2 

• 
A second order tensor T transforms as Tii = QilQikTtk· Physical examples are 

the stress, the strain, etc.; these are all symmetric tensors: Ttk = Tkt· The inverse 

of T is T-1
1 
which is defined by means of the introduction of the Kronecker delta 

6 hich uals 1 b · · d zero otherwise· ~ir-:;_1 = 8il· The tensor bis i;, w: eq w: en i = J an · 1 

the identity. Invariant 2-tensors are a multiple of b · 
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On rotation the eigen values of T do not change. Hence the equation that 

generates the eigenvalues remains unchanged and the coefficients of this equation 

are invariant under rotation. In two dimensions there are two invariants: the trace 

~i and <let (T). 

9.1.5. Tensors of order 3 

These are used very rarely in physics, except for the Levi-Cevita tensor e, defined 

as zero when any two subscripts are the same, c123 = 1 and any even permutation 

of subscripts multiplies the result by -1. There are no invariant third order 

tensors. 

9.1.6. Tensors of order 4 

* 
A fourth order tensor A transforms as Aijki = QipQjqQkrQisApqrs· The prod-

uct of two tensors is AB, with components AijkiBkimn· In physical applications 

one mostly has symmetries Aijki = Ajikl = Aijik· Sometimes the symmetry 

Aijki = Akiij is encountered. Physical examples are the stiffness tensor, the corn-

pliance tensor and the viscosity tensor. The inverse of a fourth order tensor 

with symmetries in the first and last two subscripts is A-1
, defined such that 

AifkiAkimn = Iijmn; the identity for symmetric fourth order tensors is I, defined 
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as I,;mn == j (6.,,.6;,a + t5;mt5m), Invariant fourth order, symmetric tensors have the 

form ~;w = >..6,;6w + µ (6u:6;t + 8il8;k); X andµ are called the Lame coefficients 

(elasticity theory) or the bulk and shear viscosity (fluid dynamics). 

9.1. 7. Tensor notation 

The contraction of a vector Vi with the second index of a tensor ti; would be 

Note that the result is now a vector. 

Here, the ~index tensor ti; is, in a given coordinate system, a collection of 

nine scalars 

hich ansfo 
. part' ul wa:y under a change of coordinates: let the 

w must tr rm m a 1c ar 

· c d let the components of the 
old coordinates be x, and the new coordmates "-i, an 
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same tensor be denoted Ti in the new coordinates. Then 

This is just a generalization of the transformation for vectors. 

9.2. Appendix B: Lemma 

In this part we will prove that if f (o: (z), TJ) = f (/3 (z), TJ) = 0 then 

l} [.(z) 1a(z) [) 
- J (z, TJ) 8TJ = 8 J (z, TJ) BTJ. 
8z fJ(z) /3(z) z 

For small values of ~z the left hand side is: 

__!__ [/.o<-+"-'> I (z + llz, ~w,,-1*> I (z, ~)a~] (9.1) 
~z fJ(z+~z) /3(z) 

PC ) f°'(z) 
- __!__ f. z f (z + ~z, TJ) OTJ + Ja f (z + ~z, TJ) OTJ 

~z fJ(z+~z) f3(z) 

1
a{z+~) {°'(z) ) [) 

+ J ( z + ~z, TJ) OTJ - J 
8 

f ( z, T/ T/ 
a(z) f3(z) 

But 
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1 {/J(z) 

7iz JfJ(z+Az) f (z + Liz, TJ) OT}= f (/3 (z) + Liz, TJ) 

and 

1 r<a+Az) 

7iz Jo(11) f (z + Liz, TJ) OT}== f (o: (z) + Liz, TJ)' 

and the no-slip condition gives 

f (P(z) + Liz, TJ) + f (o: (z) + Liz, TJ) = O. 

Hence (9.1) becomes 

i [[<z> I (z + Liz, r,) &rJ - t~(z) J (z, TJ) aTJ] 
/J(z) }f3(z) 

= r<z) J (z + Liz, TJ) OT] - f (z, TJ) OTJ. 
JfJ(a) Liz 

'laking the limit as Az approaches zero, we obtain the required result. 
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9.3. Program description 

This is the basic program used in chapter 7. Modifications include the insertion 

of the elastic force and different initial conditions. 

real:x(2000},y(2000},R(2000},vx(2000},vy(2000},rho(2000},m(2000} 

In this program x, y are arrays holding position coordinate. 

R containing radii. 

vx, vy containing velocity in x and y . 

rho and m is density and mass of particles. 

wall particle centres xtwc:top wall, xbwc: bottom wall 

real: xtwc(2000},ytwc(2000},xbwc(2000},ybwc(2000} 

xtwc, ytwc,xbwc,ybwc contain position coordinate for the center of the wall 

particles. 

integer: ip(2000},N,p(2000} 

p is to distinguish particles, it is 1 for particles. 

N is number of particles excluding wall particles. 

ip 

real: xp(2000},yp(2000},vxp(2000},vyp(2000} 

xp,yp,vxp,vyp are temporary storage for calculating new velocities and posi-

tions. 
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integer:w ,h,grhnd, bhnd,dhnd,mytime 

w, hare width,height,grhnd,bhnd,dhnd animation handles. 

parameter(grhnd=ll,bhnd=12,dhnd=13) 

external copy2clpbrd For copying to clipboard 

real: xmax,ymax,xmin,ymin,rmax,rmin,crp 

xmax, ymax, they are bound area that the particle can be in side. 

common/maxmin/xmax,ymax,xmin,ymin,rmax,rmin,ipmin,ipma:x 

rmax and rmin are maximum and minimum radii. 

rwal is radius of wall that is average particle radii in side the box. 

common/paranis/crp,pi 

crp is multi pliers to display the animation on screen. 

common/paranisl /visef,avr ,rwall, boxl, boxw 

visef is coefficient in the force, in terms of viscosity, . . . etc. 

boxl and box w are length and width od box. 

avr is anarage 

rwall is radius of wall 

open ( 4,file='simo _ c.out') 

pi=ACOS(-1.0) 

write ( 4,105) pi 

144 



105 format (E12.3) 

visef 0.001 coefficient in the force, in terms of viscosity, . . . etc. 

np=7 Number of imaginary rectangular 

N =80 N is number of particles excluding wall particles. 

phi=0.55 phi is solidosity 

rmin=0.002 

rmax=0.008 

mytime=l 

boxl=20*(rmin+rmax) boxl is length of box. 

np=7 number of imaginary rectangular in side box. 

produce partcle radii. 

call radius(N ,rmin,rmax,r ,avr) 

rwall=avr 

vol=O.O vol is volume of box that is summation of each disc or particles. 

do i=l,N 

vol=vol+pi*r(i) **2 

rho(i)=l.0 

p(i)=l p identify particle type, p=-1 is for particle in walls and 

p=l is for particle in middle. 
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end do 

boxw=vol/ (phi*boxl) boxw is width of box 

nwall=nint(boxl/ (2*avr)) 

write(* ,lO)boxl,boxw,rwall,nwall 

format('boxl=';f8.2,2x,'boxw=',f8.2,2x,'Rwall=',f8.2,2x,'Nwall=',i5) 

For calculating the position of particles in the top and bottom of the wall , 

particle are added to the array contain the particle inside the box. 

Npart=N 

do i=l,Nwall 

xbwc(i)=2*(i-l)*rwall+rwall 

ybwc(i)=rwall 

xtwc(i)=2*(i-l)*rwall+rwall 

ytwc(i)=boxw+ybwc(i)+2*rwall 

end do 

call positions (N ,r, boxl, boxw ,rwall,x,y) 

Add wall particles to the list 

N=Npart 

DO il=l,Nwall 

N=N+l 

Nwall is the number of particles in wall. 
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x(N)=xbwc(il) 

y(N)=ybwc(il) 

R(N)=rwall*0.99 

rho(N)=10**4 

p(N)=-2 For bottom wall particle identification 

end do 

do il=l,Nwall 

N=N+l 

x(N)=xtwc(il) 

y(N)=ytwc(il) 

rho(N)=10**4 

R(N)=rwall*0.99 

p(N)=2 For top wall particle identification 

end do 

give wall particles a velocity 

DO il=Npart+ 1,N-Nwall 

vx(il)=lO.O 

vy(il)=O.O 

vx(il+Nwall)=-10.0 
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vy(il+Nwall)=O.O 

end do 

vwall=l.O 

phicoeff ((1-phi)**3)/(6*phi*(2-phi)) A constitutive equation for the 

separation given by Torquato. 

hl=rwall*phicoeff mean gap between particles 

t=0.00001 *(hl *boxw)/(vwall*rwall) time step 

write( 4,15)phicoeff,hl,t 

15 format('phicoeff ',f6.4,2x, 'hl=' ,f8.2,2x, 't=' ,£8.2) 

find max. and min of particle locations. 

call find max _ min(N ,x,y,r) 

Find particle masses. 

call find_ mass(N,r,rho,m) 

copy arrays into prime arrays 

do i=l,N 

xp(i)=x(i) 

yp(i)=y(i) 

vxp(i)=vx(i) 

vyp(i)=vy(i) 
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end do 

boxl=nwall* (2*rwall) 

crp=lOOO/boxl A factor for display purposes 

xlength=(boxl) *crp 

ylength=(ymax+rwall) *crp 

w=nint(xlength)!width 

h=nint (ylength) !height 

iw=winio@('%sp%es%ca[Roughsimo _ c Particles]&' ,O,O) 

iw=winio@('%lw&' ,lwhnd) 

iw=winio@('%mn[&File[E&xit]]&','EXIT') 

iw=winio@('%mn[&Edit[&Copy to Clipboard]]&',copy2clpbrd) 

iw=winio@('%'gr[rgb _ colours, white]', w,h,grhnd) 

tsleep=0.05 waiting time for the animation update 

do istep=2,100 Number of step 

callanimate _particles(N ,grhnd,lwhnd,dhnd, w ,h,ylength,x,y,r ,ip) 

call sleep@( tsleep) 

callindividual _particle_ motion(N, t,p,r ,m,x,y, vx, vy,xp,yp, vxp, vyp) 

do i=l,N 

x(i)=xp(i) 
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y(i)=yp(i) 

vx(i)=vxp(i) 

vy(i)=vyp(i) 

end do 

call densfunc( np,N ,x,y, boxl,boxw ,mytime) 

mytime=mytime+ 1 

this periodic boundary has been reorganised in the final version; 

call periodic_ boundary(N,x) 

call clear screen@ 

end do 

stop 

end. 

subroutineindividual _particle_ motion 

This subroutine calculate hydrodynamic force and also new position, new ve­

locity and utilizing momentum law. 

real:x(2000),y(2000),vx(2000),vy(2000),xp(2000),yp(2000) 

real:vxp(2000),vyp(2000),r(2000),m(2000) 

integer: N,p{2000) 

real: rmin ,rmax 
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common/parmnsl /visef,avr ,rwall, boxl, boxw ,rmin ,rmax 

write( 4,33) 

33 format(' - Individual particles-') 

dc=avr 

e=0.26 

do i=l,N 

distance criterion 

coefficiant restituation 

flubx and fluby are the x and y component of the forces exerted on the particle 

by another particles . 

fluhx=O.O 

fluhy=O.O 

if(p(i)**2.ne.4) then 

doj=l,N 

dists=SQRT( (x(j)-x(i) )**2+(y(j)-y(i) )**2)-R(j)-R(i) Distance be-

tween surface to surface of particles 

if( dists.lt.dc.and.i.ne.j)then look into the criterion again 

h0=0.0001 *avr hO is roughness parameter of the particles 

distc=SQRT( (x(j)-x(i) )**2+(y(j)-y(i) )**2) Distance between centre to 

centre of particles 

rnx=(x(j)-x(i)) / distc Normal vector 
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rny=(y(j)-y(i))/distc flubx=flubx+visef*((vx(j)-vx(i))*rnx+(vy(j)­

vy(i))*rny)*rnx/(dists+hO) hydrodynamic force 

fluby=fluby+visef*((vx(j)-vx(i))*rnx+(vy(j)-vy(i))*rny)*rny/(dists+ho) 

endif 

end do 

78 format ('dist',E12.3) 

end if 

For new position I have calculated the amount of displacement due to the above 

forces from the velocities of individual particles, and then utilizing conservation 

lows(momentum) calculating the velocity after collision ,sending the particle a way 

from each other. 

ax=flubx/m(i) 

ay=fluby /m(i) 

accelaration 

Temporary storage for calculating new velocities and position. 

xp(i)=x(i)+0.5*ax*t**2+vx(i)*t 

yp(i)=y(i)+0.5*ay*t**2+vy(i)*t 

vxp(i)=vx(i)+ax*t 

vyp(i)=vy(i)+ay*t 

end do 
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39 format (13,4E15.3) 

do i=l,N 

doj=l,N 

dists= SQRT((x(j)-x(i))**2+(y(j)-y(i))**2)-R(j)-R(i) 

if( dists.lt.dc.and.i.ne.j) then 

distc=SQRr( (x(j)-x(i) )**2+(y(j)-y(i) )**2) 

rnx=(x(j)-x(i)) / distc 

rnr-=(y(j)-y( i)) / distc 

Check /or collision for particles inside the box. 

if ( dists.lt.0.0) then 

if ((p(j)**2.ne.4).and.(p(i)**2.ne.4)) then 

collision for particles in slurry 

vxi-vxp(i) 

vyi=vyp(i) 

VJd=vxp(j) 

vyj=vyp(j) 

vxp(i)=vxi-m(i)*m(j)*(l+e)*((vxi-vxj)*rnx)*rnx/(m(i)*(m(i)+m(j))) 

vyp(i)=vyi-m(i)*m(j)*(l+e)*((vyi-vyj)*rny)*rny/(m(i)*(m(i)+m(j))) 

vxp(j)=vxj+m(i)*m(j)*(l+e)*((vxi-vxj)*rnx)*rnx/(m(j)*(m(i)+m(j))) 
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vypQ)=vyj+m(i)*mO)*(l+e)*((vyi-vyj)*rny)*rny/(mO)*(m(i)+m(j))) 

xp(i)=xp(i)-(0.5+0.0002)*(R(i)+R(j)-distc)*rnx 

xpQ)=xpO)+(o.s+o.0002)*(R(i)+R(j)-distc)*rnx 

yp(i) yp(i)-(0.5+0.0002)*(R(i)+R0)-distc)*rny 

ypQ)-ypO)+(o.s+o.0002)*(R(i)+R(j)-distc)*rny 

else 

if (P0)**2.eq.4)then 

when j is the wall particle 

vxi-vxp(i) 

vyi=vyp(i) 

vxj=vxpO) 

vyj=vypO) 

vxp(i)=vxj-e*(vxi-vxj) 

vyp(i)=vyj-e*(vyi-vyj) 

xp(i)=xp(i)-(1.+0.0002)*(R(i)+R(j)-distc)*rnx 

yp(i)=yp(i)-(1.+0.0002)*(R(i)+R(j)-distc)*rny 

else 

when i is the wall particle 
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vxi=vxp(i) 

vyi=vyp(i) 

vxj=vxp(j) 

vyj=vyp(j) 

vxp(j)=vxi+e*( vxi+vxj) 

vyp(j)=vyi+e*(vyi+vyj) 

xp(j)=xp(j)+(l.+0.0002)*(R(i)+R(j)-distc)*rnx 

yp(j)=yp(j)+(l.+0.0002)*(R(i)+R(j)-distc)*rny 

endif 

end if 

end if 

end if 

end do 

end do 

36format('==>','i=',i3,2x,'parmass=',fl.0.2,lx,'flubx=',fl0.2,lx,& 

&; 'ftuby=' ,fl.0.2,lx, 'x=',f8.2,lx, 'y=',f8.2,lx,'vx=' ,f8.2,lx,'vy=' ,f8.2) 

return 

end. 
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Subroutine densfunc( np,N,x,y, bo:xl, boxw,mytime) 

This suborning calculates, the densities with in imaginary vertical strips within 

simulation, this done to follow the migration of particles. 

dimension x(2000) ,y(2000) 

dimension a1(20),a2(20),b1(20),b2(20) 

generate box boundaries 

open file to see a result 

OPEN(5,FILE='h.dat') 

do m=l,np 

al, a2, b1, b2, defined the rectangular strip suborning position. 

al(m)=float(m-l)*boxl/float(np) 

a2(m)=.5*boxw+.5*boxl/float(np) 

bl(m)=float(m)*boxl/float(np) 

b2(m)=.5*boxw-.5*boxl/float( np) 

end do 

do m=l,np 

icount=O 

do i=l,N 

itest=O 
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Investigate particle are inside the imaginary rectangular. 

if ( (x(i).gt.al(m) ).and.(x(i).lt.bl(m))) itest=itest+ 1 

if ((y(i).lt.a2(m)).and.(y(i).gt.b2(m))) itest=itest+l 

if (itest.eq.2) icount=icount+ 1 

end do 

print * ,m,icount,mytime 

write (5,131)m,icount,mytime 

end do 

131 format (319) 

return 

end. 

Subroutine positions(N ,r, boxl, boxw ,rwall,x,y) 

Initializes position within the box and tests that no particles are overlapping 

with walls or other particles. 

real r(2000),x(2000),y(2000) 

integer rej,try 

seed=l.324 

penfact=l.0 a measure of the penetration of the particles 
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do 50 i=l,N 

rej=l 

try=O 

do while (rej.eq.1) 

try=try+l 

if(try.gt.10) then 

try=O 

seed=2.1 *seed 

end if 

rej=O 

seed=rastgele( seed) 

posx=seed*boxl 

seed=rastgele( seed) 

posy=seed*(boxw+2*rwall) 

!seedy=seed 

check overlap wi.th the walls 

if(posx.lt.r(i)) rej=l 

if(posx.gt. (boxl-r(i))) rej=l 

if(posy.lt.(r(i)+2*rwall)) rej=l 
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if(posy.gt.( (boxw+2*rwall}-r(i))) rej=l 

check overlap with other particles 

if(i.ne.1 }then 

j=l 

99 if(j.le.i-l}then 

if(rej.eq.1} j=i-1 

dist=(posx-x(j) )**2+(posy-y(j)) **2 

if( sqrt( dist) .It. penfact* ( r(i) +r(j))) rej=l 

j j+l 

goto 99 

endif 

end if 

end do 

x(i)=posx 

y(i)=posy 

50 continue 

return 

end. 

function rastgele( seed) 
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real: help 

help=(3.141593+seed)**4 

rastgele=help-int (help) 

return 

end 

subroutine radius(N ,rmin,rmax,r ,avr) 

real r(2000) ,rmin,rmax,avr 

integer bins,cnt,N 

We splits the total number of particles in to 10 bins containing the particle in 

the same size. 

bins=lO 

lots is the number of particle in each bin. 

lots=N /bins 

cnt=l 

radmin=99999. 

radmax=-99999. 

rtot=O.O 

do 15 j=l,bins 
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rad is radiuse of particle in each bin. 

rad=rmax-0-1 )*(rmax-rmin) /bins 

do i=l,lots 

r(cnt)=rad 

cnt=cnt+l 

end do 

if( (N-cnt) .It.lots )then 

do i=cnt,N 

r(i)=rmin 

end do 

end if 

15 continue 

To find maximum and minimum of particle by comparison, and then fine the 

average si.ze of the particles. 

do i=l,N 

radmin=min(radmin,r(i)) 

radmax=max(radmax,r(i)) 

rtot=rtot+r(i) 

end do 
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avr=rtot/N 

print*,avr 

write( 4,10 )radmin,radmax,avr 

10 format('radmin=' ,f8.2,2x, 'radmax=' ,f8.2,2x, 'average r=' ,f8.2) 

return 

end. 

Subroutine periodic_ boundary(N ,x) 

real x(2000) ,xr(2000) ,xl(2000) !r(2000) 

padded array 

integer ipl(2000),ipr(2000) 

xl left padded and xr: right 

real xmax,ymax,xmin,ymin,rmax,rmin 

common/maxmin/xmax,ymax,xmin,ymin,rmax,rmin,ipmin,ipmax 

common/ paramsl /visef,avr ,rwall, boxl, box 

il, ir, are counter to keep track of the number of the discs replace in the top 

and bottom of the wall. 

ipl, ipr is an arry of the indices for xr and xl arrays. 

xl, xr are arrays holding the coordinates of the wall particles. 

il=O 

ir=O 
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do i=l,N 

It cheek if it is out of the visible wall, if so a new particle add it to the wall. 

if(x(i).gt.boxl)then ! r(ipmax) idi rwall yerine** 

ir=ir+l 

ipr(ir)=i 

xr(ipr(ir) )=x(i) 

end if 

if(x(i).lt.O.O)then r(ipmin) idi rwall yerine 

il=il+l 

ipl(il)=i 

xl(ipl(il))=x(i) 

end if 

end do 

If one of the particles moves out side the wall the boxl either added or subtracted 

to placed it at the beginning of the wall. 

do k=l,ir 

x(ipr(k) )=xr(ipr(k) )-boxl r(ipmax} idi rwall yerine 

end do 

do k=l,il 
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x(ipl(k) )=xl(ipl(k) )+boxl !r(ipmax) idi rwall yerine 

end do 

return 

end 

Subroutine find_ max: _ min(m,dl,d2,d3) 

It set some preliminary value for reduce x and y, min and max and compares 

with each of the stores values to test new min and max 

real d1{2000),d2(2000),d3{2000) 

integer m 

real xmax,ymax,xmin,ymin,rmax,rmin,crp 

common/maxmin/xmax,ymax,xmin,ymin,rmax,rmin,ipmin,ipmax 

common/params/crp,pi 

ipmin=O 

ipmax=O 

xmax=-999999. 

xmin=999999. 

ymax=-999999. 

ymin=999999. 

rmax=-999999. 
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rmin=999999. 

do i=l,m 

if( dl(i).gt.xmax)then 

ipmax=i 

xmax=dl(i) 

end if 

if( dl(i).It.xmin)then 

ipmin=i 

xmin=dl(i) 

endif 

ymax=max(ymax,d2(i)) 

ymin=min(ymin,d2(i)) 

rmax=max(rmax,d3(i)) 

rmin=min(rmin,d3(i)) 

end do 

return 

end 
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10. List of symbols 

Latin Symboles 

A interaction tensor for relative translation velocity 

A area of rectangle 

Ac integration constant 

Ao area of the cylindrical filter 

a particle radius 

ar, aB radii of top and bottom cylinders 

as length scale 

7i length scale 

a acceleration 

B interaction tensor for relative angular velocity 

B integration coefficient 

C integration constant 

c coefficient 

c constant 

c branch vector 

D particle diameter 

166 



d dimension 

d strain rate tensor 

E total energy 

ec coefficient of restitution 

e internal energy per unit volume 

e unit vector along the co-ordinate axes 

f coefficient 

f.,. time constant coefficient for the collisional problem 

F force 

F example of simple of isotropic function in two dimensions F ( k) = k'-e-ka 

f body force 

G fluid pressure gradient 

g normal velocity between particles in a collision problem and also gravi-

tational acceleration 

h gap width between two particles 

ho roughness length scale ( or range of elastic interaction) 

I unit tensor 

proportionality coefficients for collisional ( c), viscous (µ) and 

shear stress gradient ( T) transport mechanisms 
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k \Va.Ve vector 

k magnitude of k 

ko cell size inverse 

k integration constant in the granular temperature theory 

L section length of a cylinder 

l number 

m particle mass 

m8 mass scale 

N materials flux (subscripts denote which mechanism) 

N number of particles 

Na maximum correlation length 

Ne Number of nearest neighbors 

n unit normal vector 

n parameter in the Krieger (1972) viscosity model 

ni number of density 

P half plug width in the Bingham model 

p fluid pressure or viscous suspension pressure 

p particle pressure 

Q granular heat flux 
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Q tensor rotation 

QC Caloric heat 

R radius of curvature 

R flow resistance factor in Darcy's law 

s any second order tensor 

s parameter, S = xU / a4D 

s separation 

I 

normal speed fluctuation s 

T granular temperature 

t viscous stress 

ts time scale 

u superficial velocity 

u fluid velocity 

u x-component of the particle velocity v 

v volume of assembly 

Va solid volume 

v particle velocity 

Ww half channel width 

w work 
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w work per unit volume 

x position vector 

x x-component of x 

y y-component of x 

YT,B functions describing the top and bottom cylinder surfaces 

Greek symbols 

a 0_ 4 non-dimensional coefficients in the granular temperature theory 

'Y, 'Y shear strain, shear rate 

7y granular dissipation 

8 asperity height in Jenkins and Koenders(2005) 

Ojk Kronecker delta. 

TJ fluid viscosity 

iJ angle between pole and wave vector k 

</> solidosity 

</> 1 solidosity in the flowing region in the Bingham model 

<Pm maximum suspension solidosity 

</>p plug solidosity in the Bingham model 

<Pr factor introduced by Patir and Cheng (1978) 

<l>s critical solidosity in the Bingham model 
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4> average solidosity in the Bingham model 

K. granular heat conduction coefficient 

A number 

X, µ viscosity Lame coefficients 

µ suspension viscosity 

p I fluid m~ density 

Ps solid m~ density 

u stress tensor 

a standard deviation of the surface rouhgness in Patir and Cheng {1978) 

and Jenkins and Koenders {2005) 

T shear stress 

T traction 

To yield stress in the Bingham model 

Tc time scale for the collisional problem 

w angular velocity 

({) angle between vector x and pole 

x Coefficient for the fluid drag 

171 



11. References 

Anikeenko, A.V and Medvedev, N.N. (2007) Polytetrahedral Nature of the Dense 

Disordered Packings of Hard Spheres. Phys. Rev. Lett. 98, 235504. 

Atkins, P.W. (1982) Physical Chemistry. Oxford University Press. 

B 

Bagnold, R.A. (1954) Experiments on a gravity-free dispersion of large solid 

spheres in a Newtonian fluid under shear. Proc. Royal Soc. London A223, 49-63. 

Batchelor, G.K. (1967) An introduction to fluid dynamics. Cambridge Uni­

versity Press. 

Batchelor, G.K. and Green, J.T. (1972) The determination of the bulk stress 

in a suspension of spherical particles to order c?, J. Fluid Mechanics 56 (3), 401 

- 427 

Becker, E. and Burger, W. (1975) Kontinuumsmechanik. Teubner, Stuttgart. 

Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (1960) Transport phenomena. 

Wiley New York. 

Bossis, G. and Brady, J.F. (1984) Dynamic simulation of sheared suspensions. 

I. General method. J. Chem. Phys. 80 5141-5154. 

Brady J.F., Bossis G. (1985) The rheology of concentrated suspensions of 

172 



spheres in simple shear-flow by numerical simulation. J Fluid Mechanics 155, 

105-129. 

Buschmann, M.D., Gluzband, Y.A., Grodzinsky, A.J. and Hunziker, E.B. 

(1995) Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose 

culture. J. of Cell Science 108, 1497-1508. 

c 

Cundall, P. and Strack, 0.D.L. (1979) A discrete numerical method for gran­

ular ~mbiles. Geotechnique 29(1), 47-65. 

daCunha, F.R. and Hinch, E.J. (1966) Shear-induced dispersion in a dilute 

suspension of rough spheres. J. Fluid Mechanics, 309, 211-223. 

D 

Davis, M. and Koenders, M.A. (2007a) Particle-pressure induced transient 

changes in oscillated particle-fluid systems. Trans Filtration Soc. 7 (4), 326-336. 

Davis, M. and Koenders, M.A. (2007b) Oscillated densley packed granular 

media immersed in a fluid. J. Sound and Vibration, 308, 526-540. 

Davis, M. and Koenders, M.A. (2007c) Combined gravity and mean flow effects 

on agitated slurries in a dead-end filtration set-up, J. Powder Technology 182 (2), 

307-312. 

Davis, Mand Koenders, M.A. (2008) Combined gravity and mean flow effects 

173 



on agitated slurries in a dead-end filtration set-up. Powder Technology 182 (2), 

307-312. 

Dratler, D.I. and Schowalter, W.R. {1996) Dynamic simulation of suspensions 

of non-Brownian hard spheres. J. Fluid Mechanics 325, 53-77. 

Drew, D.A. {1986) A flow structure in the Poiseuille flow of a particle-fluid 

mixture. In Papanicolau, G. Advances in Multiphase Flow and Related Problems. 

Los Angeles, SIAM, 55-66. 

E 

Einstein, A. {1911) Eine neue Bestimmiung der Molekuldimensionen. Ann. 

Physics, 17, 459. 

G 

Gundogdu, 0., Koenders, M.A., Wakeman, R.J. and Wu, P. {2003a) Perme­

ation through a b ed on a vibrating medium: theory and experimental results. 

Chem Eng Science 58 (9), 1703-1713. 

Gundogdu, 0., Koenders, M.A., Wakeman, R.J. and Wu, P. {2003b) Vibration­

assisted dead-end filtration: experiments and theoretical concepts. Chem. Engi­

neering &search and Design, 81 (8), 916-923. 

H 

Happel, J. and Brenner, H. {1991) Low Reynolds Number Hydrodynamics. 

174 



Kluwer Academic Publishers, Dordrecht. 

Heyes. D. and Mitchell. J. (1995) Brownian -dynamics simulation of Model 

Stabilised Colloidal Dispersion under shear. J. Chem.Boe. Faraday Trans 91 (13), 

1975-1989. 

J 

Jay, G.D., Haberstroh, K. and Cha, C.J. (1998) Comparison of the boundary­

lubricating ability of bovine synovial fluid, lubricin, and Healon. J. of Biomedical 

Materials Research 40, 414-418. 

Jenkins, J.T. and Koenders, M.A. (2005) Hydrodynamic interaction of rough 

spheres. Granular Matter, 7 (1), 13-18. 

Jeffrey, D. J. and Konishi,Y. (1984) Calculation of the resistance and mobility 

functions for two unequal rigid spheres in low-Reynolds-number flow. J. Fluid 

Mechanics 139, 261-290. 

Jenkins J.T. and Savage S.B. (1983) A theory for the rapid flow of identical 

flow of indentical, smooth, nearly elastic, spherical -particles. J. Fluid Mechanics 

130, 187-202. 

K 

Kim, S. and Karrila, S.J. (1991) Microhydrodynamics: principles and selected 

applications., New York: Dover publications. 

175 



Koenders, M. (1997) A first order constitutive model for a particulate suspen­

sion of spherical particles. Acta Mechanica 122, 1-19. 

Koh, C.J., Hookham, P. and Leal, L.G. (1994) An experimental investigation 

of concentrated suspension flows in a rectangular channel. J. Fluid Mechanics 

266, 1-32. 

Krieger, J.M. (1972) Rheology of monodisperse latices. Adv. Colloid Interface 

Sci. 3, 111-136. 

L 

Ladd A.J.C. (1994) Numerical simulations of particulate suspensions via a dis­

cretized Boltzmann equation. Part 1. Theoretical foundation, J. Fluid Mechanics 

271, 285 - 309 

Ladd A.J.C. (1997) Sedimentation of homogeneous suspensions of non-Brownian 

spheres. Phys. Fluids 9 (3), 491-499. 

Leighton, D. and Acrivos, A. (1987) The shear-induced migration of particles 

in concentrated suspensions.}. Fluid Mechanics, 181, 415-439. 

Lyon, M.K. and Leal, G. J., (1998} An experimental study of the motion of 

concentrated suspensions in two-dimensional channel flow. Part 1. monodisperse 

systems. J. Fluid Mechaics 363, 25-56. 

M 

176 



Marchioro, Mand Acrivos, A. (2001) Shear-induced particle difliusivites from 

numerical simulation. J. Fluid Mechanics 443, 101-28. 

McTigue, D.F. and Jenkins, J. T. (1992) Channel Flow of a concentrated 

suspension. In Shen, H.H., Advances in Micromechanics of Granular Materials, 

New York: Elsevier 381-390. 

Morris J.F. and Miller, RM. (2006) Normal str~driven migration and ax­

ial development in pressure-driven flow of concentrated suspensions. J. Non­

Newtonian Fluid Mechanics 135, 149-165. 

Morris, J.F. and Boulay, F. (1999) Curvilinear flows of non-colloidal suspen­

sion: the role of normal stresses, J.Rheology 43, 1213-1238. 

N 

Nott, P.R. and Brady, J.F. (1994) Pressure-driven flow of suspensions: simu­

lation and theory, J. Fluid Mechanics 275, 157-199. 

p 

Patir, N. and Cheng, H.S. {1978) An avrage flow model for determining ef­

fects of three- dimensional roughness on partial hydrodynamic lubrication. J. 

Lubrication Technology Trans ASME 100, 12-17. 

Petford, N. and Koenders, M.A. (1998) Granular flow and viscous fluctuations 

in low Bagnold number granitic magmas. J. Geological Soc. London 155, 873-881. 

177 



Phillips, R.J., Armstrong, R.C., Brown ,R.A., Graham, A.L. and Abbott, J.R. 

{1992) A constititive model for concentrated suspensions that accounts for shear­

induced particle migration. Phys. Fluids A 4, 30-40. 

R 

Rutherford, M.J. and Gardner, J. (1999) Rates of magma ascent. In Sigurds­

son, H. ( ed) Encyclopedia of Volcanoes. Academic Press, San Diego, 207-217. 

s 

Santra, S.B., Schwarzer, S.and Herrmann, H. (1996) Fluid-induced particle­

size segregation in sheared granular assemblies. Phys Rev E 54 (5), 5066-5072. 

Shapley, N.C., Armstrong, R.C. and Brown, R.A. (2002) Laser Doppler ve­

locimetry measurments of particle velocity fluctuations in a concentrated suspen-

sion. J. Rheology 46(1), 241-272. 

Singh, A. and Nott, P.R. (2000) Normal stresses and microstructure in bounded 

sheared suspensions via Stokesian Dynamics simulations. J. Fluid Mechanics 412, 

279-301. 

Smart J.R. and Leighton D.T. (1989) Measurement of the hydrodynamic sur­

face roughness of non-colloidal spheres, Physics of Fluids A 1 (1); 52-60. 

Sparks, R.S.J. (1976) Grain size variations in ignimbrites and implications for 

the transport of pyroclastic flows. Sedimentology, 23, 147-188. 

178 



Stickel J.J. and Powell R.L. (2005) Fluid mechanic, and rheology of dense 

suspensions. Ann. Rev. Fluid Me.chanics , 37, 129-149. 

T 

Thomas, D.G. (1965) Transport characterstia; of suspension: VII. A note on 

the viscosity of Newtonian suspensions of uniform spherical particles. J. Colloid 

Science, 20, 267-277. 

Torquato, S., Lu, B. and Rubinstein, K. (1990) Nearest-neighbor distribution 

functions in many-body systems. Phys Rev A 41 (4), 2059-2074. 

Tuzson, J.J. and Clark, H.Mcl. (1998) The slurry erosion process in the Cori­

olis wear tester. Proc. FEDSM '98, ASME. Fluids Engg., Division Summer 

Meeting, June 21-25, 1998, Washington, D.C., paper no. FEDSM98-5144. 

w 

Wakeman, R.J. and Tarleton, E.S. (1999) Filtration: equipment selection, 

modelling and process simulation. Elsevier Advanced Te,chnology, Oxford. 

Wakeman, R.J. and Smythe, M.C. (2000) Clarifying filtration of fine particle 

suspensions aided by electrical and acoustic fields. '.Irans. I Chem. E, 78 (A), 

125-135. 

Williams, J.R., Hocking, G. and Mustoe, G.G.W. (1985) The Theoretical Basis 

of the Discrete Element Method. NUMETA 1985, Numerical Methods of Engi-

179 



neering, Theory and Applications, A.A. Balkema, Rotterdam, 897-906. 

Wilson, C.N.J. (1984) The role of fluidization in the emplacement of pyroclastic 

flows. 2: Experimental results and their interpretation. J. of Volcanology and 

Gmthermal Jlesearch, 20, 55-84. 

Wilson, H.J. and Davis, R.H., (2000) The viscosity of a dilute suspension of 

rough spheres, J. Fluid Mechanics 421, 339-367. 

180 



Acknowledgment 

Firstly, I would like to record my gratitude to Professor Curt Koenders for his su­

pervision, advice and guidance from the very first stage of this research, as well as 

lending me his extraordinary experience throughout the work. He has encouraged 

and supported me in many ways. I really thank him for his patience, brilliant 

ideas which have inspired and enriched my growth as a student, a researcher and 

as the scientist I would like to become. I am indebted to him more than he knows. 

I acknowledge Dr Mastaneh Davis for valuable advice in research, discussion 

in science, support, using her precious time to read my research and her critical 

comments. 

I gratefully thank my friend Stephen for his advice and guidance, who always 

grants me his time. Many thanks for his support and helping me to gain a better 

understanding of mathematics. 

My thanks to Nick for his time, support, advice and helping me especially in 

programming. I would also like thank Simon and Gill, for such a good atmosphere 

in the office, my friend Amir, for his help and support in many ways, and Andrea 

for her welcoming me for the week that I was in Salisbury during writing up, by 

providing pleasant surroundings in which to conduct my research and spend my 

181 



leisure time. 

Many thanks to Dr. Peter Soan, my second supervisor, for his advice and help. 

I gratefully thank my brother Majid for his support in many ways and for 

providing this opportunity for me to continue with my studies. My thanks to him 

for sharing his house, food and life with me and his patience during this period. 

I could never started all this without his support. 

Many thanks to my sister Farah for all her kindness, support and encouraging 

me to be more patient in all the challenges in my life. 

Collective and individual acknowledgements to my family, especially my par­

ents who deserve special mention for their tireless support and prayer. My father 

'God bless him' who put the fundamental desire to learn into my character, show­

ing me the joy of intellectual pursuit, encouraging and supporting me in each and 

every endeavour. To my Mum, for supporting and encouraging me and raising me 

with caring and gentle love. Nazi, Ehsan, Hamid thank for being supportive and 

caring siblings. 

I would like to thank everybody who was important to the successful realisa­

tion of this thesis, as well as expressing my apologies that I could not mention 

personally each and every one. 

Many thanks to Kingston University, for the good working environment from 

182 



which I benefited throughout my studies. 

Finally I would like to thank ORSAS and the Materials Research Group at 

Kingston University for financial support. 

183 


	555076_-001
	555076_-003
	555076_-004
	555076_-005
	555076_-006
	555076_-007
	555076_-008
	555076_-009
	555076_-010
	555076_-011
	555076_-012
	555076_-013
	555076_-014
	555076_-015
	555076_-016
	555076_-017
	555076_-018
	555076_-019
	555076_-020
	555076_-021
	555076_-022
	555076_-023
	555076_-024
	555076_-025
	555076_-026
	555076_-027
	555076_-028
	555076_-029
	555076_-030
	555076_-031
	555076_-032
	555076_-033
	555076_-034
	555076_-035
	555076_-036
	555076_-037
	555076_-038
	555076_-039
	555076_-040
	555076_-041
	555076_-042
	555076_-043
	555076_-044
	555076_-045
	555076_-046
	555076_-047
	555076_-048
	555076_-049
	555076_-050
	555076_-051
	555076_-052
	555076_-053
	555076_-054
	555076_-055
	555076_-056
	555076_-057
	555076_-058
	555076_-059
	555076_-060
	555076_-061
	555076_-062
	555076_-063
	555076_-064
	555076_-065
	555076_-066
	555076_-067
	555076_-068
	555076_-069
	555076_-070
	555076_-071
	555076_-072
	555076_-073
	555076_-074
	555076_-075
	555076_-076
	555076_-077
	555076_-078
	555076_-079
	555076_-080
	555076_-081
	555076_-082
	555076_-083
	555076_-084
	555076_-085
	555076_-086
	555076_-087
	555076_-088
	555076_-089
	555076_-090
	555076_-091
	555076_-092
	555076_-093
	555076_-094
	555076_-095
	555076_-096
	555076_-097
	555076_-098
	555076_-099
	555076_-100
	555076_-101
	555076_-102
	555076_-103
	555076_-104
	555076_-105
	555076_-106
	555076_-107
	555076_-108
	555076_-109
	555076_-110
	555076_-111
	555076_-112
	555076_-113
	555076_-114
	555076_-115
	555076_-116
	555076_-117
	555076_-118
	555076_-119
	555076_-120
	555076_-121
	555076_-122
	555076_-123
	555076_-124
	555076_-125
	555076_-126
	555076_-127
	555076_-128
	555076_-129
	555076_-130
	555076_-131
	555076_-132
	555076_-133
	555076_-134
	555076_-135
	555076_-136
	555076_-137
	555076_-138
	555076_-139
	555076_-140
	555076_-141
	555076_-142
	555076_-143
	555076_-144
	555076_-145
	555076_-146
	555076_-147
	555076_-148
	555076_-149
	555076_-150
	555076_-151
	555076_-152
	555076_-153
	555076_-154
	555076_-155
	555076_-156
	555076_-157
	555076_-158
	555076_-159
	555076_-160
	555076_-161
	555076_-162
	555076_-163
	555076_-164
	555076_-165
	555076_-166
	555076_-167
	555076_-168
	555076_-169
	555076_-170
	555076_-171
	555076_-172
	555076_-173
	555076_-174
	555076_-175
	555076_-176
	555076_-177
	555076_-178
	555076_-179
	555076_-180
	555076_-181
	555076_-182
	555076_-183



