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Abstract 
The 1986 Chernobyl accident resulted in distribution of Radiocaesium (137Cs) throughout 

much of the northern hemisphere. 137Cs still persists in the environment, particularly in 

Belarus where up to 80% of the radioactive fallout occurred. Monitoring 137Cs across space 

and through time is essential to remediate contamination and remote sensing, particularly 

imaging spectrometry has potential to provide information at appropriate spatial and 

temporal scales. This thesis explores that potential by assessing whether imaging 

spectrometry can be used to monitor 137Cs content of vegetation. 

The research has three main components; field radiometry, laboratory experimentation and 

spaceborne hyperspectral imagery (EO-1 Hyperion). Field radiometry collected spectral 

and biochemical data from Pinus sylvestris growing on the Belarusian landscape 

contaminated with varying levels of 137 Cs, and investigated the links between foliar 

biochemistry, 137Cs specific activity and spectral reflectance. Significant differences exist 

between spectra of Pinus sylvestris contaminated with different levels of 137Cs as well as 

key foliar biochemicals of chlorophyll, nitrogen, cellulose, lignin and water. Partial 

correlation identified which parts of the electromagnetic spectrum 137Cs contamination had 

impacts upon in relation to particular biochemicals. Prediction of leaf/needle biochemicals 

from spectra was possible using regression techniques, but predicting 137Cs specific 

activity from biochemicals was not possible at a statistically significant level. 

Laboratory experimentation results supported fieldwork findings and exhibited significant 
differences in spectral response between contaminated and non-contaminated trees, also 
highlighting non-linearity in uptake and response of Pinus sylvestris to 137Cs (with 

subsequent remote sensing implications). Spectra extracted from hyperspectral imagery 

also show significant difference in their spectra despite assumptions and constraints in 

interpretation of this imagery. The thesis concludes by suggesting that presently, the use of 
imaging spectrometry to monitor 137Cs specific activity of vegetation (0.07 - 39.9 Bq/g) is 

not feasible; mainly due to immature understanding of 137Cs impacts on plant biochemicals 

and the links between foliar biochemistry and 137Cs content. Research limitations present 

opportunities for further research which may allow future monitoring of 137Cs levels using 
imaging spectrometry. 
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Chapter 1, Introduction 

Chapter 1 

Introduction 

1.1 Contamination of Land by Radionuclides 

Humans have affected Earth's biosphere, atmosphere and lithosphere with the term 

`Anthropocene' being coined by some (e. g. Crutzen and Stoermer 2000) to illustrate the 

extent of human impact on the natural environment. In order to understand these 

anthropogenic effects there is a need to monitor the impacts across space and through time. 

This is especially so of contaminated land (Plant et al. 2001). Despite large amounts of 

research into the global environment, most pertains to climate change; there has been 

relatively little research into the quality of Earth's land surface and life support systems 

other than studies commissioned on an ad hoc basis in response to specific problems. One 

exception to this has been the EU funded ERICA project which has provided necessary 

methods to allow societal and scientific issues regarding environmental exposure to 

radiation to be dealt with in a robust and comprehensive way (Brown et al. 2008). The 

importance of developing national and international frameworks for dealing with the 

effects of ionising radiation on biota is corroborated by Copplestone et al. (2004). This 

illustrates the importance of understanding and monitoring contamination of the 

environment by radionuclides. Environmental contamination may be described as the 

impact of chemical compounds, technologies and other human manifestations on the 

environment (Cajaraville 2000); though it is important to note that contamination is not 

always anthropogenic in its origins (e. g. Farias et al. 2003). Spatial and temporal 

information is critical for global and regional change studies including contamination 
(Senay and Elliott 2000). This is especially so with contamination of land by radionuclides 
due to their spatial and temporal dynamics. Radionuclides can be described as any unstable 

nuclide which undergoes natural radioactive decay (Walker 1999). Spatially there is 

constant cycling and transfer of radioactive material through environmental systems and 

secondary events such as biomass burning, which can carry radionuclides into other 
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Chapter 1, Introduction 

territories (Abduragimov and Odnolko 1993). Temporally there are constantly changing 

contamination levels based on half-lives of different radioactive isotopes. Natural 

radionuclides are argued on average to account for 79% of radiation to which humans are 

exposed, whilst 19% is from medical exposure and only 2% from fallout via nuclear 

weapons testing and the nuclear power industry (Zhu and Shaw 2000). Despite the 

relatively small exposure to artificial radioactivity, Salbu (2001) indicates that artificial 

radionuclides from nuclear fuel cycling, nuclear weapons activity and accidents represent a 

significant problem. Major deposition of manmade radionuclides has occurred in large- 

scale weapons testing during the late 1950s and early 1960s and in the 1986 Chernobyl 

accident (Gaso et al. 1998). Future potential threats from radionuclide contamination 
include nuclear waste and accidents (Baklanov et al. 2002) and terrorism (Oumeish 2002). 

The need to understand spatial and temporal dynamics of contamination, combined with 

significant problems caused by current radionuclide contamination and potential of future 

radionuclide threats mean suitable monitoring techniques are required. Currently, a variety 

of methods exist to measure and map environmental radioactivity. Broadly speaking the 

monitoring technique used, depends on the particular radionuclide being measured. 

Radionuclides emitting exclusively a or ß radiation (e. g. 90Sr) require chemical separation 

and non-destructive techniques cannot be used (Michel 2001). For radionuclides emitting y 

radiation, the non-destructive method of gamma spectrometry can be utilised. Both 

laboratory and in situ field adaptations have been made to these techniques in order to 

characterise environmental radioactivity. Indeed, according to Debauche (2004) the gap 
between laboratory and field measurements of radioactivity has closed. To gather 

environmental radioactivity data at appropriate spatial scales and in a time efficient way, 

airborne gamma spectrometry has been the method of choice since the early 1980s but is 

not always precise for low levels of radiation (Guillot 2001). The techniques mentioned so 
far are concerned with the direct measurement of radionuclides however, using these 

techniques, the impacts of radioactivity on biota can only be inferred based on levels of 

particular radionuclides or by performing additional fieldwork to assess impacts. Remote 

sensing, specifically imaging spectrometry, may hold unique potential in monitoring 

radionuclide contamination by providing a measure of impact on biota. This is discussed 

further in section 1.2. 
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Chapter 1, Introduction 

1.2 Remote Sensing Radionuclide Contamination 

It is important at this stage to clarify the remit of the term `remote sensing' as used in this 

thesis. As mentioned above, methods exist to monitor radionuclides using airborne gamma 

spectrometry (e. g. Cresswell et al. 2006) and could be broadly classified as remote sensing 

techniques. The term `remote sensing' in this thesis means the use of instruments sampling 

in the optical range of the electromagnetic spectrum and more specifically, imaging 

spectrometry (described in chapter two). Formally, remote sensing can be described as the 

sensing of electromagnetic energy to record images of the environment which can then be 

interpreted to yield useful information about that environment (Curran 1985). 

Remote sensing techniques have been demonstrated as key in understanding issues of 

global change such as biogeochemical cycles (e. g. Schimel 1995) deforestation patterns 
(e. g. Boyd et al. 2002) urban change (e. g. Chen et al. 2006) and other patterns of land use 

change. Indeed, Rees (1990) suggests that due to sheer number it would be impossible to 

note all the applications of remote sensing. In addition, remote sensing is often the only 

method available at appropriate spatial and temporal resolutions for a variety of studies 

(Alves and Skole 1996). A wide body of literature exists utilising remote sensing as a tool 

to aid the mapping of contamination (e. g. Webster et al. 1999, Zellmer and Eastman 1997). 

Curran (1994) suggests the advent of imaging spectrometry, which samples the 

electromagnetic spectrum in many narrow wavebands, gives the ability to estimate subtle 

changes in physical and chemical variables of the environment (such as vegetation). 

This in turn has enabled remote sensing to be used in monitoring health of vegetation (e. g. 

Belluco et al. 2006). Some studies have already investigated the potential of imaging 

spectrometry as applied to environmental contamination. Jago et al. (1999) for example, 
investigate the effect that soil contamination and nitrogen application have upon spectral 

response in the form of the red edge. More recently, Kooistra et al. (2004) investigated the 

relationship between vegetation reflectance and the elevated concentrations of heavy 

metals in river floodplain soils. Likewise, Koponen et al. (2001) attempt to use imaging 

spectrometry (amongst other remote sensing techniques) to monitor chlorophyll a 

concentrations within a Finnish lake to derive the lake's water quality through the 

characterisation of algal blooms. Potential has been shown by Davids and Tyler (2003) for 
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Chapter 1, Introduction 

inferring levels of radionuclide contamination via remote sensing techniques, but the study 

does not comprehensively investigate the possibilities of using remote sensing to monitor 

such contamination. If remote sensing could be used to monitor radionuclide 

contamination it would offer several benefits, namely: 

9 Measuring contamination indirectly by using vegetation as a bioindicator of 

radionuclide contamination would allow an assessment of the ecological impact of 

radiation 

" Repeat coverage of contaminated areas would facilitate the monitoring of 

ecological recovery 

" Measuring the impact on vegetation would allow the commercial potential of forest 

wood to be exploited 

" Spatial variability of radionuclide contamination within forest ecosystems could be 

measured 
" Opportune spatial and temporal coverage of contaminated areas could be utilised 

" Cost effective spatial coverage could be offered (especially if existing operational 

spaceborne sensors could be used) 

Of these benefits, perhaps the most important and unique, is the potential of remote 

sensing to provide an assessment of the ecological impact of radionuclide contamination 

and in turn, through continued temporal coverage, provide a means for measuring 

ecological recovery. This thesis aims to assess whether remote sensing techniques can be 

used to monitor vegetation contaminated by radionuclides. In order to achieve this research 

aim, an area of land contaminated by radionuclides was required. Belarus contains large 

continuous areas of vegetation contaminated with radionuclides from the largest nuclear 

accident at the Chernobyl Nuclear Power Plant (CNPP), Ukraine (formerly part of the 

USSR along with Belarus). 
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Chapter 1, Introduction 

1.3 Belarus as a Natural Environmental Laboratory 

1.3.1 The Chernobyl Accident 

The Chernobyl accident occurred on April 26th, 1986 at the CNPP, Ukraine, releasing 

approximately 12 x 1018 Bq of radioactivity into the environment and was the result of 

flawed Soviet reactor design, lack of adequate training and an ethos which did not have 

proper regard for safety (World Nuclear Association 2001). The Chernobyl accident 

released 85PBq of Radiocaesium (137Cs) into the environment with the majority of fall out 

occurring in Russia, Ukraine and Belarus (Gaso et al. 1998). The effects of the Chernobyl 

accident are wide ranging in terms of both spatial extent and diversity of effects upon 

people and the environment. Although Ukraine, Russia and Belarus were the three 

countries closest to the Chernobyl nuclear power plant and received the majority of 

contaminants, Rahu (2003) states that lower concentrations affected much of the northern 

hemisphere. Rahu (2003) goes on to describe the Chernobyl accident not simply as an 

event, but an ongoing process, which is still affecting people and the environment. This is 

especially true in Belarus, which was exposed to around 70% of the Chernobyl fallout 

(Soukhova et al. 2003). Almost immediately after the accident, a 30km exclusion zone was 

set up around the power plant, and in the months and years following, areas of Belarus 

were evacuated and restrictions placed on land use. Figures 1.1 and 1.2 show some of these 

restricted areas. 
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Chapter 1, Introduction 

Figure ! J: Photo showing road markings at the entrance to a restricted area where the forests are contaminated with Chernobvi- 

derived radionuclides. 
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Chapter 1, Introduction 

1.3.2 Contamination of Land by Radiocaesium (137Cs) 

Approximately 23% of the Belarusian landscape is contaminated with radionuclides 
(Vargo 2000). Immediately after the accident 1311 was the radionuclide causing most 

radiological concern, however over longer timescales and in the foreseeable future 137Cs is 

the radionuclide of most interest due to its relatively long half-life and mobility in 

ecosystems (IAEA 2006). 90Sr is also of interest, but is less volatile than 137Cs and far less 

(c. 10PBq) was released into the environment than 137Cs (IAEA 2006). The contamination 
has meant formerly productive forest resources and agricultural fields have been restricted 
in their use, which has in turn strained the political, economic and social infrastructure of 

Belarus (IAEA 1996). Amiro and Ipatyev (1999) suggest that many of the most 

contaminated areas have the best potential for harvesting lumber, thus aggravating 

economic impacts. The UN (2003) alarmingly argues that in the 21 years since the 

Chernobyl accident the problems have not gone away whilst international interest and 

assistance has diminished. Unsurprisingly, Chernobyl is listed as one of the top ten most 

polluted places on Earth (Blacksmith Institute 2007). Central to the UN's CORE 

programme (Co-operation for rehabilitation of living conditions in Chernobyl affected 

areas of Belarus) is the need to accurately and regularly monitor the radiological quality of 

the Belarusian landscape. In this research Belarus was used as a natural environmental 
laboratory, having large continuous areas of radionuclide contaminated land. Pinus 

sylvestris (Scots pine) was dominant on the contaminated areas of the Belarusian landscape 

and was focused on in order to minimise confounding variables during the study. The 

research also focused on the radionuclide causing most current and future interest, 137Cs 

(IAEA 2006). 137Cs is a radioactive pollutant causing much concern due to its relatively 
long half life (30.2 years), high bioavailability and behaviour in ecosystems in a way 

similar to potassium (causing high levels of uptake) (Gommers et al. 2005). 

1.4 Research Objectives 

The principal research question answered by this thesis is, `can 137Cs contamination be 

detected using imaging spectrometry techniques? ' 

From this central question come a set of research objectives: 
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" Assess if there are changes in spectral reflectance caused by differing 137Cs levels 

(addressed in chapters four, five, six and seven) 

" Characterise whether 137Cs contamination has any effects on key foliar 

biochemicals (chlorophylls, cellulose, lignin, nitrogen and water) and at what 

regions of the optical range of the electromagnetic spectrum these are detectable 

(addressed in chapters four and five) 

" Determine if key foliar biochemicals can be predicted from spectral response and in 

turn if these biochemicals can be used to infer levels of 137Cs contamination 
(addressed in chapter five) 

" Ascertain whether any 1 37Cs impacts on spectral response and foliar biochemicals 

can be monitored from space using imaging spectrometry (addressed in chapter 

seven) 

These research objectives are met in the thesis chapters, as described below in section 1.5. 

1.5 Thesis Structure 

The thesis consists of eight chapters, the contents of which are described below. 

Chapter 2, Remote Sensing Vegetation Status/Contamination: 

This chapter reviews literature concerning the use of remote sensing, particularly imaging 

spectrometry, to monitor the status of vegetation including foliar biochemical 

concentrations, biophysical properties and applications pertaining to monitoring status, 

stress and contamination. Literature concerning 137Cs and radionuclide contamination in 

general is mentioned, where appropriate, in specific chapters. This chapter concludes by 

drawing out gaps in the literature and highlighting the opportunity for research focussed on 

in this thesis. 

Chapter 3, Laboratories and Instrumentation: 

To meet the objectives three main components of study were undertaken; fieldwork, 

laboratory experimentation and hyperspectral imaging. This chapter outlines the rationale 
behind these components starting with the two laboratories used in the research. Belarus 

(introduced in section 1.3) was used as natural environmental laboratory to undertake 

S 



Chapter 1, Introduction 

fieldwork and is described. In addition to the natural environmental laboratory, an artificial 
laboratory was created to isolate the effects of 137Cs from other environmental variables. 
This was in the form of an experiment in Kingston University's radiochemistry laboratory. 

The rationale behind the experiment is also described in this chapter. The third component 

of this research involved collecting hyperspectral imagery from study sites in Belarus. The 

reasoning behind choosing the Hyperion sensor is discussed. The chapter also summarises 

the necessary instrumentation and techniques used to collect data required for the research. 

Chapter 4, Feasibility of Imaging Spectrometry for Remote Sensing 137Cs Contamination: 

A Pilot Study: 

This chapter describes pilot research undertaken on data collected from Belarus in order to 

assess feasibility and potential of remote sensing to monitor radionuclide contamination 

and as a method to inform and refine further study in the natural environmental laboratory. 

This chapter is based on the paper by Boyd et al. (2006) published in the International 

Journal of Remote Sensing. 

Chapter 5, Predicting 137Cs f om Spectra: 

This chapter contains the results form the extended fieldwork campaign in Belarus. It 
includes analyses of spectra using the statistical techniques of Student's t-tests, correlation 
analysis and predictions using stepwise multiple regression and partial least squares. Using 

these techniques, the links between spectra, foliar biochemicals and 137Cs content are 
assessed. 

Chapter 6,4 rtificial Laboratory Study: 

This chapter describes results from research carried out in the artificial laboratory 

experiment to isolate 137Cs effects and corroborate the results from fieldwork. It looks at 

the effects of 137Cs dose on spectral response and 137Cs uptake as well as the content of 
137Cs in relation to the health and spectral response of Pinus sylvestris. 

Chapter 7, Detecting 137Cs from a Spaceborne Platform: Hyperion Imagery: 

This chapter looks at imagery collected from the fieldwork study sites in Belarus to 
determine if spectra collected from space concur with results from spectra collected in the 
field and in the artificial laboratory setting. 

9 



Chapter 1, Introduction 

Chapter 8, Summary/Conclusion: 

In this chapter a summary of results and a discussion are provided. Implications for remote 

sensing 137Cs contamination are determined as well as research limitations and possibilities 
for further study. 
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Chapter 2 

Remote Sensing Vegetation Status and 
Contamination 

2.1 Introduction 

This chapter outlines the context for the research presented in this thesis. It discusses and 
analyses key research relevant to the overall research aim and objectives marked in chapter 
one. It also presents central theoretical concepts and their relevance to existing research as 

well as this thesis. Finally, it draws out gaps in current knowledge and identifies 

opportunities for research which are exploited in this thesis. 

2.2 Remote Sensing 

To begin, it is necessary to identify the scope and meaning of remote sensing before 

moving onto some of its uses, in particular its application to remote sensing of 

contamination and specifically, contamination of vegetation. Remote sensing uses the 
interaction of electromagnetic waves with materials on the Earth's surface to derive useful 
information about the composition of those materials (Vincent 1997). Further, the 

composition of material on Earth's surface can be used to infer properties of such material 

and in turn processes which have acted upon these (Campbell 1996). Kerr and Ostrovsky 

(2003) suggest that environmental applications require data at a variety of spatial and 
temporal scales, which are often unavailable using traditional field-based methods. Clearly, 

this indicates the theoretical promise which remote sensing shows in monitoring the 
Earth's environment and processes. Scale is one of the most fundamental aspects of any 

research (Quattrochi and Goodchild 1997) and this is reflected in the number of studies 

utilising the spatial and temporal scale remote sensing techniques provide in order to 

monitor contamination. 
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2.3 Remote Sensing Contamination 

Remote sensing of contamination can broadly be split into two main categories. Firstly, 

studies which use the visible impact of contamination in remotely sensed imagery 

(including thermal effects) and secondly, those which analyse changes in spectral response 

of the Earth's surface in response to contaminants. This is in parallel with the development 

of remote sensing techniques which have developed from mainly visual (e. g. panchromatic 

aerial images) to multispectral and more recently hyperspectral data (Rajitha et al. 2007). 

This section uses these two main categories to steer through literature relating to remote 

sensing of contamination. 

2.3.1 Contamination Causing Visible or Thermal Impacts 

A wide body of literature exists using remote sensing as a tool to aid the mapping of 

contamination. The majority of studies however rely on the contaminants having a visible 

effect on the landscape. Webster et al. (1999) for example use aerial photography in order 

to map and provide an inventory for polychlorinated biphenyl contamination in the Donna 

Reservoir, southern Texas. Similarly, Zellmer and Eastman (1997) use historic aerial 

photographs to conduct an environmental site assessment. In addition, Brown et al. (1996) 

use the synoptic view and rapidity of data collection offered by remote sensing to enhance 

the response in cleaning up oil spillage in the St Lawrence River. Again though, this study 

uses remote sensing to map visible changes, as opposed to collect useful data about the 

nature of contamination (e. g. effects on biota, levels of contamination). 

Remote sensing has often been used to detect visible changes over time and in doing so has 

monitored land which has become more or less contaminated. Vagen (2006) for example 

assess changes in landscape and identify contamination in Madagascar, specifically 

contamination from the effects of fire on the landscape. Detecting contamination from fire 

is a key area of remote sensing research and is exemplified by Dwyer et al. (2000) who 

attempt to derive spatial and temporal distribution of vegetation fire and subsequent 

contamination of the environment from satellite observations. Whilst their work provides 
data on a scale that may not have been possible without remote sensing, fires are 
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ephemeral events and as such the temporal resolution of the sensor used meant an 

underestimation of fire numbers. 

Yamano and Tamara (2004) discuss the suitability of using remote sensing to monitor 

contamination of coral reefs, specifically through coral bleaching. Although there is 

potential in using remote sensing to monitor the visual changes in coral after bleaching, the 

majority of operational satellites are stated by Yamano and Tamara (2004) to be too coarse 
in their spatial resolution to detect subtle changes in an otherwise spatially heterogeneous 

area of coral. As spatial resolutions of operational remote sensing systems become finer, 

this barrier to use may be removed. 

Whilst several studies seem to use remote sensing to detect the visual impact of 

contamination, a number of studies use Landsat thermal data in an analytical way in order 

to assess variables such as salinization in coastal waters (e. g. Bayari and Kurttas, 2002). 

More recently, uh din et al. (2008) have used the thermal band from Landsat TM in 

combination with a custom algorithm to map hydrocarbon pollution across contaminated 

sites. This follows research such as that by Kwarteng (1998) which uses multi-temporal 
imagery to monitor oil pollution from the 1991 gulf war. 

It is not just contamination of natural systems which are monitored via remote sensing 

techniques. City areas are studied by Chen et al. (2006) who compare urban heat intensity 

from historical Landsat TM data to more recent heat intensity data from Landsat ETM+. 

This is also compared to land use and land change patterns to assess effects of 

contamination of land on urban heat intensity in China. 

So far, remote sensing of contamination has been discussed in terms of examples which 

rely on a visible (affecting the visible part of the electromagnetic spectrum) or thermal 

effect of contamination to be detected. As remote sensing has progressed from aerial 

photos and panchromatic images to multispectral and more recently hyperspectral data, 

research has attempted to characterise contamination through effects detectable in spectral 

changes on the Earth's surface. 
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2.3.2 Contamination Detectable in Spectral Changes 

Whilst examples mentioned in section 2.3.1 above have utilised the synoptic coverage 

offered by spaceborne and airborne sensors, remote sensing contamination via spectral 
information has often utilised in situ spectral data as well as data gathered from airborne or 

spaceborne platforms. Oron and Gitelson (1996) for example are able to monitor the real 

time quality of wastewaters through spectral information provided by a portable 

spectroradiometer. Other research aims to use both in situ spectral data as well as data 

from airborne or spaceborne platforms. In situ field radiometry is usually to corroborate 

airborne or spaceborne data and Rajitha et al. (2007) illustrate this in research into water 

pollution caused by chemicals associated with shrimp culture in India. Further to this, 

Giardino et al. (2007) compare hyperspectral data collected from space to in situ spectral 

data and get comparable results when monitoring contamination of Lake Garda. 

Both traditional broadband sensors and newer hyperspectral instruments (section 2.6) have 

been used to monitor changes in spectral response due to contamination. Often, remotely 

sensed data is used in combination with ancillary data in order to aid in the understanding 

or monitoring of contamination. For example, Du et al. (2008) assess the environmental 

impact of chemicals on tree health by using a combination of multispectral and 

environmental impact data. 

Research into remote sensing of contamination falls into one of three land cover categories 

namely, the contamination of water (e. g. Vignolo et al. 2006, Hellweger et al. 2004), 

contamination of urban areas (e. g. Chen et al. 2006, Miller and Small 2003) or 

contamination of vegetation (e. g. Li et al. 2005, Jago et al. 1999). 

In terms of vegetation, spectral data has been used in an attempt to detect contamination 
via its effects on biochemical properties of vegetation. For example Jago et al. (1999) used 

shifts in the red edge inflection point to determine contamination of sites by oil. Li et al. 
(2005) used a comparable technique to detect oil induced vegetation stress in New Mexico 

using imagery collected before and after an oil spill event. Similarly, Kooistra et al. (2003) 

attempted to link spectral response to contamination of vegetation on Dutch floodplains by 

heavy metals, though they tried to infer a direct link without measurement of foliar 
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biochemicals and did not demonstrate accuracy levels suitable for operational use. Davids 

and Tyler (2003) present results from a reconnaissance study aimed at assessing whether 

contamination of land by radionuclides can be detected via remote sensing techniques. 

This is an apt use of remote sensing given the spatial and temporal dynamics of 

contamination from radionuclides which have a spatial element in terms of movement and 

cycling of radionuclides through the environment and a temporal element in terms of 

constantly changing radioactivity levels based on the half-lives of different radioactive 

isotopes. These spatial and temporal dynamics match the potential abilities of imaging 

spectrometry. Remote sensing radionuclide contamination has not been fully investigated 

and due to current and potential impacts of radioactive contamination (Baklanov et al. 

2002, Oumeish 2002) would be a useful application of imaging spectrometry. This thesis 

aims to exploit the lack of research into remote sensing radionuclide contamination and 

does so via its effects on vegetation. To investigate this, there is a need for an area of 

contiguous radionuclide contamination, which is present in the Republic of Belarus 

(chapter one and three), a country contaminated by fallout from the Chernobyl nuclear 

accident which has left a legacy of 137Cs on the landscape, particularly affecting large 

forest stands composed of Pinus sylvestris. Smith et al. (2000) suggest 137Cs will persist in 

the rooting zone and as such, the vegetated landscape itself for many years. In this thesis, 

Belarus (chapters one and three) was therefore used as natural environmental laboratory to 

exploit the potential of imaging spectrometry and whether it can be used to monitor 137Cs 

impacts on Pinus sylvestris. 

Imaging spectrometry has never been used operationally to monitor radionuclide 

contamination. Aerial gamma-ray surveys have been utilised to monitor nuclear 

contamination (e. g. Sanderson et al. 2004) but do not give an indication of impacts on 

biota. As stated in chapter one, remote sensing has some unique benefits if it could be 

utilised in monitoring radionuclide contamination. 

Before considering this research opportunity further, it is first necessary to understand the 
importance and theoretical concepts behind remote sensing of vegetation, before 

investigating current research relating to remote sensing of vegetation stress and 

contamination. 
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2.4 The Importance of Remote Sensing Vegetation 

Vegetation is a key component of the Earth's surface and monitoring vegetative land cover 
is often cited as a fundamentally important application of remote sensing due to the role 

vegetation plays in maintaining life on Earth (e. g. Roberts et al. 2003). Vegetation has 

links to various terrestrial physical and social processes. These include biogeochemical 

cycles (e. g. Sato et al. 2007), whereby the spatial variation of vegetation regulates energy, 

water and carbon fluxes within the climate (Kuchment et al. 2006). Economic systems are 

also affected, with vegetation often providing a valuable economic resource. The tropical 

rainforests for example, have been deforested primarily for economic reasons (e. g. Heal 

and Conrad 2006). Changes in terrestrial vegetation patterns have ramifications for climate 

change with remote sensing techniques being signalled as a method to provide necessary 
data for understanding and monitoring these changes. For example, Rosenqvist et al. 
(2000) respond to Kyoto protocol information requirements by discussing the contribution 

that can be made from remote sensing of vegetation. Pollution of the biosphere and 

atmosphere via biomass burning is a further application of remote sensing of vegetation 

and commands a large body of research (e. g. Liu et al. 2005, Smith et al. 2005, Wittenberg 

et al. 2007, Clemente et al. 2006). The importance of monitoring vegetation changes and 

the use of remote sensing has been introduced in this section. Detailed applications of 

remote sensing of vegetation stress are revisited later after some of the reasons as to why 

vegetation acts as a useful discriminator of environmental conditions are considered. 

2.5 Vegetation as a Prisoner of its Environment 

Since vegetation cannot move it is a prisoner of its environment and must, where 
necessary, adapt to that environment in order to survive (Grime 2001). This allows 

vegetation to be used indirectly as a discriminator of the quality or state of the Earth's 

surface. This has been utilised in a large proportion of remote sensing studies which aim to 

collect information about the environment through monitoring vegetation. Perhaps one of 
the most well known uses of remote sensing in vegetation has been the development of the 

normalised difference vegetation index (NDVI) (Jiang et al. 2006) and other associated 
indices. Funk and Brown (2006) for example use NDVI for assessing drought condition 
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and rainfall patterns in Africa. Lunetta et al. (2004) provide estimates of land cover change 

via analysis of imagery derived NDVI. 

Whilst NDVI has been used to infer biomass and sometimes quality of the environment it 

has generally been used to gain only basic information about vegetation albeit at useful and 

synoptic spatial scales. Millington et al. (2003) perceptively capture the idea of a 
discontinuity between the theory of what remote sensing techniques can provide and the 

practical constraints in their operational use. Shaw et al. (1998) suggest that the 

development of remote sensing to monitor vegetation has been slow to develop and is 

partly due to different habitat and vegetation types exhibiting similar spectral properties. 
This has often meant in situ fieldwork is necessary to unravel the relationship between 

spectral response and vegetative properties. Blackburn (2002) demonstrates the need to use 
in situ data and collection methods in order to fully understand the relationship between 

spectral response and vegetation properties at the leaf and canopy level. Jayaraman and 
Srivastava (2002) go further and suggest that such fieldwork is also necessary to 

correspond the spectral response of vegetation in the field to the spectral response 

exhibited in remotely sensed imagery. This presents a small quandary, especially for 

imaging spectrometry; whilst remote sensing is commonly perceived as quick and easy to 

obtain as well as providing a synoptic coverage and fine temporal scale, high spectral 

resolution spectrometry, although offering greater power of analysis, initially requires 

time, effort and expense in establishing the relationship between spectral response and 

absorption/scattering properties. This has meant that whilst imaging spectrometry has 

been seized as an extremely useful tool, it has required a significant scientific issue or 

commercial incentive to be fully exploited. Many may argue that this is the case for all 
data collection techniques, however it may help to explain why Shaw et al. (1998) describe 

the development of the technique as slow. As stated above, a particular problem in 

monitoring vegetation with remote sensing is the similarity of spectral reflectance of 

various species and types of vegetation. Whilst vegetation itself has a distinctive spectral 

response (section 2.5) the subtle changes in spectral response from species to species or 
from differing environmental conditions cannot always be detected using traditional 
broadband sensors such as Landsat TM or ETM+. Some studies however show how subtle 

variations can be detected by decorrelation techniques such as Principle Components 

Analysis (PCA) (e. g. Tyler et al. 2006). The advent of hyperspectral remote sensing and 
imaging spectrometry has enabled some of the mismatches between theory and practice to 
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be eliminated and allows subtle changes in spectral response, which were previously 

undetectable, to be resolved (Liang and Fang 2004). The spectral signature of vegetation is 

crucial to the utilisation of imaging spectrometry and therefore before considering imaging 

spectrometry and vegetation stress research it is necessary to outline the spectral response 
(or signature) of vegetation itself. 

2.6 Spectral Response and Remote Sensing of Vegetation 

The typical spectral reflectance of a healthy green leaf, along with the main absorption 

points and the associated controlling biochemicals is shown in figure 2.1. 
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Figure 2.1: Typical spectral reflectance of healthy green vegetation along with the key absorption points and the biochemicals 

responsible for this absorption. 

At the leaf (or needle) scale, spectral reflectance is controlled mainly by biochemical 

content and changes in reflectance over the 400-2400nm range have been shown to change 
in response to stress agents (Carter 1993). Chlorophyll for example reflects 

electromagnetic energy strongly in the near infrared portion of the electromagnetic 

spectrum and absorbs electromagnetic energy in the red (Lillesand et al. 2004). Figure 2.1 

shows the main absorption features and the key biochemicals (chlorophyll, water, lignin, 

cellulose) known to be responsible for such absorption. Table 2.1 shows forty-two 

absorption features, as well as the associated biochemical, responsible for absorption at 

that wavelength. Figure 2.1 is a visual representation of the biochemicals responsible for 
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controlling absorption of electromagnetic energy, whilst table 2.1 is in essence a text 

version of figure 2.1 with each absorption feature listed, along with the biochemical known 

to be responsible for that absorption. 
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Wavelength Electron Transition or Bond Vibration Biochemical 

430 Electron transition Chlorophyll a 

460 Electron transition Chlorophyll b 

640 Electron transition Chlorophyll b 

660 Electron transition Chlorophyll a 

910 C-H stretch, 3"d overtone Protein 

930 C-H stretch, 30° overtone Oil 

970 0-H bend, l` overtone Water, Starch 

990 0-H stretch, 2°" overtone Starch 

1020 N-H stretch Protein 

1040 C-H stretch, C-H deformation Oil 

1120 C-H stretch, 2od overtone Lignin 

1200 0-H bend, 10 overtone Water, cellulose, starch, lignin 

1400 0-H bend, l' overtone Water 

1420 CH stretch, C-H deformation Lignin 

1450 O-H stretch, l' overtone, C-H stretch, C-H deformation Starch, sugar, lignin, water 

1490 0-H stretch, l` overtone Cellulose, sugar 

1510 N-H stretch, I' overtone Protein, nitrogen 

1530 O-H stretch, 1` overtone Starch 

1540 0-H stretch, 1' overtone Starch, cellulose 

1580 0-H stretch, 10 overtone Starch, sugar 

1690 C-H stretch, 1' overtone Lignin, starch, protein, nitrogen 

1780 C-H stretch, 1' overtone / 0-H stretch / H-O-H deformation Cellulose, sugar, starch 

1820 0-H stretch / C-O stretch, 2" overtone Cellulose 

1900 O-H stretch, C-0 stretch Starch 

1940 O-H stretch, O-H deformation Water, lignin, protein, nitrogen, 

starch, cellulose 

1960 O-H stretch / O-H bend Sugar, starch 

1980 N-H asymmetry Protein 

2000 O-H deformation, C-0 deformation Starch 

2060 N=H bend, 2od overtone I N=H bend / N-H stretch Protein, nitrogen 

2080 0-H stretch / O-H deformation Sugar, starch 

2100 O=H bend / C-0 stretch / C-0 stretch / C-N stretch Starch, cellulose 

2130 N-H stretch Protein 

2180 N-H bend, 2" overtone / C-H stretch / C-O stretch / C=O stretch Protein, nitrogen 
/ C-N stretch 

2240 C-H stretch Protein 

2250 O-H stretch, O-H deformation Starch 

2270 C-H stretch / O-H stretch CH2 bend /CH2 stretch Cellulose, sugar, starch 
2280 C-H stretch / CH2 deformation Starch, cellulose 
2300 N-H stretch, C=O stretch, C-H bend, 2°d overtone Protein, nitrogen 
2310 C-H bend, 2od overtone Oil 

2320 C-H stretch / CH2 deformation Starch 

2340 C-H stretch / 0-H deformation / C-H deformation / 0-H stretch Cellulose 

2350 CH2 bend, 2od overtone, C-H deformation, 2ad overtone Cellulose, protein, nitrogen 
Table 2.1: Forty-two absorption features in the visible and near infrared portion of the electromagnetic spectrum that have been related 

to certain foliar biochemicals. Adapted from Curran (1989). 
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Despite the theoretical promise of remote sensing in monitoring vegetation, practically 

speaking, there are a variety of issues which act as a constraint on its use and these are 

shown in various studies. One such constraint is the difficulty of understanding the 

relationship between spectral reflectance in the leaf and spectral reflectance at the canopy. 

When scaling to the canopy as opposed to leaf level, biophysical properties also affect 

spectral reflectance and understanding how these biophysical properties affect spectral 

reflectance and subsequently the remotely sensed image has been, and remains a key tenet 

of research. Asner (1998) points out that vegetation reflectance is a function of leaf tissue 

properties and biophysical properties going on to state that biophysical issues have not 
been adequately addressed. Serrano et al. (2002) for example highlight the need to separate 

structural from biochemical signals when interpreting remotely sensed data. At the leaf 

scale and in continuous green canopies several studies have successfully estimated 

concentrations of foliar biochemicals such as nitrogen and lignin (e. g. Martin and Aber 

1997, Hlavka et al. 1997, Curran et al. 1997). However, in order to separate biochemical 

from structural signals, canopy biophysical properties themselves need to be identified. 

Schlerf et al. (2005) discover that forest biophysical variables such as leaf area index (LAI) 

are estimated at a greater accuracy using hyperspectral versus multispectral data, which 

holds potential for future applications of the estimation of foliar biochemistry, and go on to 

state this is feasible at a high accuracy with hyperspectral and not multispectral data. Lee et 

al. (2004) and Thenkabail et al. (2004) corroborate the findings of Schlerf et al. (2005) by 

again indicating the increased ability of hyperspectral remote sensing to monitor canopy 

biophysical properties. Coniferous forests exhibit the greatest challenges in terms of their 

biophysical properties due to their dense small scale clumping (Smolander and Stenberg 

2003) inherent understory and complex structure causing multiple scattering of 

electromagnetic energy (Rautiainen 2005). Having illustrated challenges, Zarco-Tejada et 

al. (2004) highlight the use of radiative transfer models to show the possibilities of linking 

leaf and canopy concentrations of chlorophyll. 

Modelling spectral reflectance has often been implemented to understand the effects 
biochemical constituents of vegetation have on spectral reflectance, for example Dawson 

et al. (1998) developed the Leaf Incorporating Biochemistry Exhibiting Reflectance and 
Transmittance Yield model (LIBERTY) to simulate the optical properties of coniferous 

needles when various biochemical parameters are changed. 
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When remote sensing vegetation, there are a variety of factors influencing the image such 

as atmospheric effects, geometric distortions and the resolution of the sensors (both spatial 

and spectral). Research has attempted to overcome atmospheric impact through correcting 

the image via empirical or modelling techniques (e. g. Adler-Golden et al. 1999, Felde et 

al. 2003). Removing or improving geometric distortions have also been strong research 
foci, though Chavez (1989) suggests that geometric correction has moved at a rate faster 

than the research and improvements into atmospheric correction. In essence, the gap 

between remote sensing theory and what can be achieved in practice is being reduced 

through research. 

Sensor resolution is sometimes, though not always considered a constraint when 

monitoring vegetation. The coarse spectral resolution of traditional broadband sensors (e. g. 

Landsat TM, SPOT) has meant the reflectance spectra of vegetation has not always been 

fully understood from a spaceborne platform. The advent of hyperspectral remote sensing 
in the mid-1980s (Goetz et al. 1985) has enabled detailed spectra to be collected from 

airborne and spaceborne platforms and resulted in research which is able to apply the fine 

spectral resolution of imaging spectrometers to gather information on biochemical and 

biophysical properties of Earth surface features in a way which is analogous to laboratory 

spectra (Ben dor et al. 2004). 

Influences of the atmosphere, sensor geometry and biophysical factors all reduce the 

ability of remote sensing to monitor vegetation. Spatial and spectral resolution are also 

sometimes limiting factors, dependent on the application. For example, in monitoring 

global vegetation, moderate spatial resolutions are preferred (Morisette et al. 2006). 

Broadband sensors do not sample the electromagnetic spectrum at a fine enough resolution 

to fully understand the complex spectral reflectance of vegetation shown in Figure 2.1. 

The mismatch between theory and practice mentioned so far means that some changes in 

spectral response due to environmental processes remain undetected. Hyperspectral remote 

sensing is a relatively new technique which samples in many rather than few wavebands. 
Imaging spectrometry utilises high spectral resolution sensors on board airborne or 

spaceborne platforms to build a datacube for each pixel with finely detailed spectral 
information. 
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2.7 Imaging Spectrometry 

Recent advances in remote sensing mean researchers can understand physical and chemical 

changes in the environment rather than just map them. Curran (1994) describes the process 

of remote sensing in the following terms: 

R =f (x, t, 2,9). 

Where, R is the remotely sensed radiation, which is a function (f) of location (x), time (t), 

wavelength (A) and viewing geometry (0). Remote sensing can provide information when a 

change in x, t, A or 0 gives a detectable change in R. Curran (1994) goes on to argue that 

traditional remote sensing systems sample the spectrum in wavebands which are too broad 

to detect changes and suggests imaging spectrometry has the potential to sample the 

spectrum in many narrow bands, in turn giving an ability to estimate physical and chemical 

variables of the environment. It is the measurement of such physical and chemical 

variables that provides the potential to monitor environmental contamination. 

Spectroscopy is arguably one of the most important methods for analytical chemists 

(Gunzler and Gremlich 2002) and the use of laboratory spectrometers to illuminate and 

subsequently measure the radiation spectrum of a substance is common. Milton (2003) 

argues that spectrometry differs from traditional remote sensing in its focus on absorption 

spectra as opposed to the energy reflected and emitted from an object, plotted against its 

wavelength. Before continuing, it is necessary to eliminate the confusion often caused 

between the interchangeable nature of the terms spectroscopy, and spectrometry. The word 

spectroscopy, like the technique, is well known in analytical chemistry, however, the word 

spectrometry is preferred in remote sensing as the aim is to measure the absorption 

spectrum, not simply observe it (Milton 2003). As such, for the remainder of this thesis, 

the word spectrometry will be used when referring to remotely sensed hyperspectral 

images. When referring to the technique of gamma ray spectrometry to determine 137Cs 

specific activities, the term gamma spectrometry will be used. 

The theoretical potential in narrow band, high spectral resolution spectrometry has resulted 
in a variety of different spectrometers. These spectrometers range in their platforms from 
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portable field spectrometers, to airborne and, more recently spaceborne sensors. Table 2.2 

describes the main properties of a selection of common spectrometers currently in use. 

Name Full Name Number of Spatial Spectral Airborne or 

Bands Resolution Range (in nm) spaceborne 

(in m) platform? 
AHS 

AVIRIS 

CASI 

CHRIS 

HYPERION 

MEItIS 

MODIS 

Airborne 64 

Hyperspectral 

Scanner 

Airborne 224 

Visible/Infrared 

Imaging 

Spectrometer 

Compact Airborne 288 

Spectrographic 

Imager 

Compact High 19 
Resolution (programmable) 

Imaging 

Spectrometer 

HYPERION 220 

Medium 15 

Resolution (programmable) 
Imaging 

Spectrometer 

Moderate 36 

Resolution 

Imaging 

Spectrometer 

Dependent 433 -12700 Airborne 

on flying 

height 

Dependent 400 - 2500 Airborne 

on flying 

height 

Dependent 400 -1050 Airborne 

on flying 

height 

20m 415-1050 Spaceborne 

30m 400-2400 Spacebome 

300m 390-1040 Spaceborne 

250m (bands 400-1440 

1-2) 

500m (bands 

3-7) 

1000m 

(bands 8-36) 

Table 2.2: Examples of selected airborne and spaceborne spectrometers along with 

Spaceborne 

technical details. 

It logically follows from Curran's (1994) description of remote sensing that in order to 

monitor environmental changes, the changes need to have a measurable effect upon the 
biochemical or biophysical characteristics of the vegetation growing in that environment. 
To monitor biochemical properties of vegetation, imaging spectrometry operates in the 

optical range of the electromagnetic spectrum and attempts to measure changes in these 
key foliar biochemicals through associated changes in spectral wavebands. Many studies 

utilise the selective depletion of foliar biochemicals to monitor vegetative quality and 

status of the environment (e. g. Mutanga et al. 2004). 
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Imaging spectrometry requires an ability to use spectral wavebands to predict 
biochemicals which is commonly performed using a variety of statistical methods. The 

advent of these methods traditionally lie in analytical laboratory spectrometry (Barton 

2002). Investigation of leaf biochemistry using statistics has frequently used the technique 

of stepwise multiple regression to select wavebands with the greatest ability to predict 
biochemical content (e. g. Jacquemoud et al. 1995). Despite the disapproval of the 

technique by much statistical literature (e. g. Foster and Stine 2006) several studies have 

shown successful use of the technique (and various modifications) in selecting wavebands 

most suited to predicting biochemicals (Dawson et al. 1995, LaCapra et al. 1996). Many of 

these studies fail to accurately apply their regression models to testing data sets and this 

has been discussed by Grossman et al. (1996). Recently, partial least squares (PLS) has 

been suggested as a possibility for greater accuracy in predicting biochemicals (Ourcival et 

al. 1999). 

Hyperspectral remote sensing has allowed for applications of remote sensing which were 

not possible with broadband remote sensing. Schmidt and Skidmore (2003) discriminate 

between 27 vegetation types in a challenging wetland environment showing that 

hyperspectral data is key to that discrimination. Further studies utilising fine spectral 

resolution to distinguish similar species are evident (e. g. Galvao et al. 2004). Early focus 

of hyperspectral research was on prediction of foliar biochemistry from spectra (e. g. Yoder 

and Pettigrew-Crosby 1995). Current research continues to try to improve accuracy of 

biochemistry prediction, for example by separating plant water content from atmospheric 

water (Schaepman 2007) or by applying novel statistical techniques to improve accuracy 
(e. g. Kokaly and Clark 1999, Curran et al. 2001). More recent research has focused on the 

potential applications of this predicted biochemical data. Mutanga et al. (2005) use 
hyperspectral data in conjunction with statistical techniques to predict pasture quality 

indirectly through the foliar biochemistry of grass. The status of vegetation per se is 

sometimes investigated (e. g. Dobrowski et al. 2005, Zarco-Tejada et al. 2003) but more 

often than not, remote sensing of foliar biochemistry is used as an indirect method to 

monitor status of the terrestrial environment. Rosso et al. (2005) investigate the links 

between heavy metal and petroleum contamination of the spectral reflectance properties of 
Salicornica virginica and suggest that there were sufficient changes in spectral response 

caused by changes in foliar biochemistry which were utilised in order to detect this 

contamination remotely (using imaging spectrometry). Smith et al. (2005) assessed 
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abilities of remote sensing in detecting between plant stress caused by gas leakage and 

other forms of stress and attempted to use differences in chlorophyll concentrations as an 

indicator of stress. What these examples show is that there are a wide variety of studies 

investigating the remote sensing of vegetation stress. This is investigated further in section 

2.8. 

2.8 Remote Sensing of Vegetation Stress 

So far, this chapter has explored literature pertaining to remote sensing per se, the remote 

sensing of contamination and remote sensing techniques to monitor vegetation. This 

section brings these themes together by exploring remote sensing to monitor vegetation 

stress caused by natural and anthropogenic influences. It is split into three subsections 

which are representative of themes in the literature and are, (i) laboratory investigations 

into how vegetation responds to plant stress (in a remote sensing context), (ii) agronomical 

and agricultural research into how remote sensing may be used for the monitoring of stress 

in crops and (iii), how remote sensing may be utilised to monitor environmental stress 

within coniferous and deciduous forests. 

2.8.1 Laboratory Experimentation to Understand Vegetation Responses 

to Stress 

To understand vegetation's response to stress and resulting signature in remotely sensed 

imagery, there is a need to understand processes at the leaf or needle scale (Disney et al. 

2006). This has resulted in a number of studies which utilise laboratory experimentation to 

assess the effects stressors may have on vegetation at the leaf or needle scale and the 

resulting changes in spectral signature which may be detected using airborne or spaceborne 

remote sensing platforms. 

Two recent studies investigated heavy metal impacts on vegetation and resulting spectral 

changes. Firstly, Dungan et al. (2007) grew mustard spinach plants under controlled 

laboratory conditions to assess if any detectable changes in spectra were present between 

mercury contaminated plants and control plants fording that red edge position changes 

relative to the control plants. Sridhar et al. (2007) assessed the impact of Arsenic and 
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Chromium on Chinese brake fern to assess feasibility of using spectral reflectance for 

monitoring Arsenic and Chromium accumulation. This was again under controlled 

laboratory conditions and results showed the possibility of using a unique ratio index to 

monitor changes in plants due to Chromium with the results inferring possibilities of using 

the infrared reflectance of plant canopies to be used to monitor plants grown in heavy 

metals. Interestingly, in a further study, Su et al. (2007) also investigate the effect the 

natural isotopes of Caesium and Strontium have on Indian mustard. The study suggests 

Caesium has an effect on pigment concentrations and internal structure of the plants and 

resulting spectral changes. This signifies potential in using spectral reflectance to monitor 
137Cs in vegetation. 

Whilst laboratory experimentation to understand spectral reflectance in response to 

contaminants has been evident in recent literature, a wide body of research investigates 

crop responses to environmental stress. This is mainly due to industrial and economic 

needs to understand plant physiological status in order to grow crops in the most efficient 

way possible (Dorigo et al. 2007). 

2.8.2 Crop Responses to Environmental Stress 

Due to the need for continually efficient and improved methods of growing crops, remote 

sensing techniques, with a broad spatial and fine temporal resolution have been welcomed 

by the agricultural industry to monitor health and status of crops (Dorigo et al. 2007). 

Much research has sought to understand the effects certain chemical additives (such as 
fertilisers) have on crop quality. For example, Zhao et al. (2005) attempt to maximise the 

output of wheat crops by identifying crops which require nitrogen application. This is 

performed through an analysis of crops using Landsat TM data. Similar research has also 

been concerned with the quality of crops and how to assess best practice in managing and 

harvesting crops. Du et al. (2008) monitor citrus tree health in the Rio Grande valley in an 

attempt to enhance productivity of citrus crops through precision farming. There are also 

attempts to monitor changes of crop health throughout time and this is exemplified by 

Tottrup and Rasmussen (2004) who monitor crop productivity changes in Senegal and 

whether these changes are due to differences in rainfall patterns or anthropogenic impacts. 
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In terms of practical issues, remote sensing of crops is arguably easier than remote sensing 

of forest ecosystems. This is due to the spatial and spectral heterogeneity present in most 

crop types (Dorigo et al. 2007). Despite this, the importance of forest ecosystems has 

meant remote sensing research into monitoring forest physiological status has been wide 

ranging (Penuelas and Filella 1998). 

2.8.3 Remote Sensing Forest Scale Response to Environmental Stress 

Literature associated with remotely sensing forest responses to stress can broadly be 

classified into one of two types. This is dependent on whether the research is concerned 

with understanding vegetation response to stress at a needle/leaf scale or at the canopy 

scale. The canopy scale often brings associated problems such as the effects of biophysical 

properties and technical issues such as geometric and atmospheric correction (Treitz and 
Rogan 2004). 

The presence or susceptibility of a species to pathogens is often a domain of remote 

sensing forest stress. Coops et al. (2006) for example use Landsat TM data to assess stands 

which have been attacked by mountain pine beetle and those stands which are at greater 

risk of attack. Other studies use the synoptic coverage provided by remote sensing to detect 

changes in forest land cover caused by contamination or stress. This is shown in a study by 

Latifovic et al. (2005) who use Landsat TM scenes to monitor vegetation loss after 

contamination following mining development in Canada. 

Soil water deficit and its resulting impacts on ecosystem productivity and forest 

physiological status is a key area of research (e. g. Grant et al. 2006). In situ field studies 

(e. g. Eitel et al. 2006) attempt to characterise the effects of water stress in a species 

specific environment and then apply it to imagery like that collected by Asner et al. (2005). 

Asner et al. (2005) use hyperspectral Hyperion data to explore the development and 
functioning of rainforests in Hawaii by determining tree age and rainfall status from 

imagery. 

Lu et al. (2007) looks at stress in vegetation after the exploitation of coal and subsequent 

effects in terms of reducing nutrients available for vegetative growth. Utilising Landsat 
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TM images in the red and infrared regions of the electromagnetic spectrum, synoptic 

coverage is provided and found to be compatible with observations on the ground. The 

advent of hyperspectral imagery (section 2.6) has resulted in detection of biochemical 

properties of forests to detect stress. For example, salinity stress is often monitored using 

spectral changes (Penuelas and Filella 1998) and this exemplified in research by 

Metternicht and Zinck (2003) who use hyperspectral imagery to infer soil salinity through 

spectral information collected about vegetation growing on that soil. le Maire et al. (2004) 

monitor forest chlorophyll status as a surrogate for natural or anthropogenic stressors. This 

is taken further by studies such as that by O'Neill et al. (2002) who examine spatial 

variability of biochemicals in a spruce canopy. Added challenges arise according to 

whether the forest is composed of coniferous, deciduous or a mixture of tree types. 

Coniferous trees bring added challenges in that they are often more complex in terms of 

structure, clumping and have multiple canopy layers. 

So far this chapter has considered the remit of the term remote sensing, has gone on to 

investigate remote sensing of contamination and then identified an opportunity to monitor 

radionuclide contamination with remote sensing. The chapter has then focussed on the 

importance of remotely sensing vegetation, the methods and concepts used to remotely 

sense vegetation and lastly, has looked specifically at examples of remote sensing 

vegetation stress. As already stated in section 2.3.2 remote sensing of radionuclide 

contamination, specifically 137Cs contamination of Pinus sylvestris represents a research 

opportunity. Before considering this opportunity in more detail, the radiological effects of 
137Cs on vegetation are considered. 

2.9 Radioecological Effects of 137Cs 

Grime (2001) suggests functional differences in plants lead to differences in their uptake 

and cycling of 137Cs, in turn showing factors such as growth rate and life span of the plant 

to be significant in 137Cs uptake rates. This suggests any research investigating the 

potential of imaging spectrometry to monitor 137Cs should minimise confounding variables 

by focusing initially on one species. Current research is still attempting to fully understand 

all the radionuclide pathways and this is reflected by Thiry et al. (2002) who investigate 

the distribution of 137Cs in Pinus sylvestris. They discover that in both young (17 years) 
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and old (58 years) trees, the largest concentration of 137Cs is within the inner bark, the 

lowest within stemwood and medium levels in the outer bark. Though this study provides 

useful and relevant data about the stores of radionuclides in relation to tree age, recently 
Soukhova et al. (2003) have sought to infer more about the transfer processes within tree 

rings in contaminated Russian territory. The study not only investigates Pinus sylvestris, 
but also silver birch (Betula pendula) and does so at four forest sites across a variety of age 

ranges. There is an increased interest in effects of ionising radiation on biota and this is 

illustrated by initiatives such as the Framework for Assessment of Environmental Impact 

(FASSET) and the Environmental Risk from Ionising Contaminants: Assessment and 
Management (ERICA) (Copplestone et al. 2004, Ciffroy et al. 2007). Soukhova et al. 
(2003) state the economic impact of contamination on forest ecosystems as the motivation 
for their study. Such a motivation is reflected by Sandalls et al. (1993) who state that the 

current behaviour and ultimate fate of radionuclides in the environment is a major issue of 

concern for those countries affected. As a potential solution, Vandenhove et al. (2002) 

suggest that changing land use based on radiologically acceptable risks can assure an 

economic return and a feasible remediation option. However, in order to decide which land 

poses a significant risk, and which does not, a regular, accurate and efficient method of 

monitoring is necessary. 

Despite other research seeking to assess 137Cs uptake factors (e. g. Zhu and Smolders 2000) 

there is very little research into the effects of 137Cs on key foliar biochemistry or spectral 

reflectance. Davids and Tyler (2003) show that plant pigments are likely to be affected by 
137Cs through vegetation indices, although they did not collect any biochemical data. 

Willey and Tang (2006) indicate that nitrogen is affected by and alters 137Cs within plants. 
Additionally, work by Mykhaylo et al. (2005) shows 137Cs to bind to lignin and cellulose, 

suggesting these biochemicals may exhibit changes in response to varying 137Cs levels. 

Whilst the effects of 137Cs on plant foliar biochemicals are not fully established, the 

literature discussed suggests 137Cs may have an effect on each one of the principal foliar 

chemicals of a leaf and as such may be detectable in the spectral response of vegetation. 
Having said this, research into 137Cs in the environment pertains mostly to storage, 

transport and uptake (e. g. Poiarkov et al. 1995). There is substantial interest in 

understanding plant mechanisms of 137Cs uptake (White and Broadley 2000) with the view 

to genetically altering gene expression of plants to either increase 137Cs uptake rates (for 

remediation) or reduce them (to prevent dangerous levels in food crops) (Payne et al. 
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2004). The lack of research into 137Cs effects on biochemistry and ultimately spectra 

presents a research opportunity and is necessary to fully assess whether imaging 

spectrometry can be used to monitor 137Cs. 

2.10 Summary 

The following has emerged from this review of the literature: 

" Remote sensing of vegetation is an important application of the technique. A 

mismatch between theoretical promise and practical application has meant research 
has often been able to partly characterise contamination and not fully characterise 
the spectral response of vegetation. 

" Imaging spectrometry presents a new opportunity in terms of its spectral resolution 

and has the ability to acquire detailed spectra which in some cases can be used in a 

way analogous to laboratory spectroscopy and thus has potential to monitor subtle 

changes of vegetation and the environment. 

" There are some successful studies of imaging spectrometry at monitoring 

contamination, and potential shown in monitoring radionuclide contamination 
(albeit in an area of little economic use). The spatial and temporal dynamics of 

radionuclide contamination fit well with the spatial and temporal abilities of 

imaging spectrometry and so might be well suited to monitor radionuclide 

contamination indirectly through the selective depletion of key foliar biochemicals. 

" Belarus has been identified as a natural environmental laboratory having large 

contiguous areas of Pinus sylvestris forest which were contaminated by the fallout 

(mainly 137Cs) from the Chernobyl nuclear accident (probably through artificially 
induced rain). 

" Radioecological literature provides insight into the behaviour of radionuclides in 

the environment, the mechanisms of uptake by plants and ways to alter gene 

expression in order to manipulate that uptake. Some promise has been shown that 
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foliar biochemicals are selectively depleted or altered as a result of 137Cs (e. g. 

Davids and Tyler 2003, Willey and Tang 2006) but more understanding is needed 

to ascertain how 137Cs affects foliar biochemistry and ultimately spectral response. 

The research undertaken in this thesis therefore attempts to understand the effects of 137Cs 

on foliar biochemicals and ultimately spectral response in order to address gaps in both 

radioecological and imaging spectrometry research and does so through the objectives and 

overall aim set out in chapter one. From this chapter has come a research opportunity 

which is exploited in the remainder of the research. This opportunity comes from the gaps 

identified in the literature which are, (i) that remote sensing has not been utilised to 

monitor radionuclide contamination, (ii) the effects of 137Cs on the spectral reflectance of 

vegetation have not been fully considered by the research and may have detectable impacts 

on plant biochemicals and (iv) there is a need to regularly and accurately monitor 

radionuclide contamination in Belarus following 137Cs deposition from the 1986 Chernobyl 

accident. These gaps form the basis of the research opportunity investigated by this thesis; 

namely, can imaging spectrometry be used to monitor 137Cs contamination of Pinus 

sylvestris through an indirect effect on plant biochemical content? 
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Chapter 3 

Study Site, Data and Instrumentation 

3.1 Introduction 

To remotely sense radionuclide contaminated vegetation requires a causal relationship to 

exist between spectral response of vegetation and levels of radionuclide contamination. 

Fundamentally, if there is no link between spectral response and contamination then the 

use of remote sensing techniques are prohibited. The starting point of the research is 

therefore to determine if such a relationship does exist. For the research objectives to be 

met, a number of processes and links need to be investigated and understood. This chapter 

describes the data, and instrumentation used to investigate these processes and links. It 

begins by outlining aspects of the natural environmental laboratory, artificial laboratory 

and hyperspectral imagery collected over the study site (Belarus). It then moves into 

methods of data collection, data needed to drive the research and the subsequent 

instrumentation used to collect such data. It is important to note that whilst conducting 

fieldwork in Belarus, the trip was curtailed due to political intervention (appendix A3). 

Whilst all samples had been collected and measured for spectral response and chlorophyll 

concentration, water content could not be measured for all samples whilst in Belarus (as 

originally planned) and approximately half of the samples had to be frozen and returned to 

the UK for water analysis. Plans for other analyses such as gamma spectrometry had 

always been to return samples to the UK to be measured and so were not affected by the 

curtailment. 
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3.2 Study Site and Environment 

3.2.1 Belarus as a Natural Environmental Laboratory 

Belarus is a landlocked republic located in eastern Europe and is bordered by Ukraine in 

the south, Poland, Lithuania and Latvia in the west and north-west and Russia in the north 

and east (Figure 3.1). Formerly a republic of the Soviet Union, Belarus declared 

independence in 1991 becoming the Republic of Belarus when the Soviet Union was 

dissolved. Administratively, Belarus is split into six regions with the capital city being 

Minsk. Population is approximately 10 million people and Belarus covers approximately 

207 sq km with 36% being covered by forest. 45% farmland. 2% water and 18% classified 

as other land cover. In April 1986, Belarus was contaminated by radionuclides as a result 

of and accident at the Chernobyl nuclear power plant (CNPP). 
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Figure 3. l: Map of Belarus, its regions and bordering countries. 

As mentioned in chapter one. Belarus was used as a natural environmental laboratory as it 

has large areas of its landscape contaminated with 137Cs. Two field campaigns took place 

in Belarus, the results of which are described in chapters four and five. Before considering 

these results it is necessary to underline the methods and strategies used to collect data in 

the natural environmental laboratory. 
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3.2.2 The Artificial Laboratory Environment 

As well as fieldwork in the natural environmental laboratory, an experiment took place in 
Kingston University's radiochemistry laboratory. Specific details regarding the laboratory 

set up and strategies are discussed in chapter six, but the methods used to collect spectral 
data are the same as those for the natural environmental laboratory. 

3.2.3 Imaging Spectrometry 

Hyperspectral imagery was a further component of this research. Hyperspectral imagery 

with the appropriate spectral and spatial resolution to provide spectra compatible with field 

and laboratory data was required. This was collected from the Hyperion hyperspectral 

instrument onboard NASA's EO-1 platform. The methods used to collect and analyse this 

hyperspectral imagery are specific to the particular research undertaken in chapter seven, 

and as such are discussed in that chapter. 

3.3 Data Collection Strategies 

The direct measurement of radionuclides is limited largely to laboratory equipment. This 

means, in the natural environment an indirect discriminator of contamination levels is 

needed. The intimacy of plants with their environment, especially their inability to move 

means they are highly sensitive and responsive to changes in that environment (Herbert 

2002). Similarly, remote sensing is established in vegetation studies and is therefore well 

suited to monitoring the state of vegetation (chapter two). Data collection focused on 

collecting spectral measurements of Pinus sylvestris along with key foliar biochemical 

measurements and, central to this research, 137Cs levels. These key pieces of data allowed 

the links and processes between 137Cs contamination, foliar biochemicals and spectral 

response to be investigated through statistical analysis. 

To assess the potential of remote sensing 137Cs contamination, a comparison of 

contaminated and non-contaminated vegetation was necessary. Ambient background 

radiation levels, combined with radiological maps were used to pick sites in Belarus with 
differing contamination levels. Ambient dose rates were measured using a portable 
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radioactivity meter, measuring background radioactivity in . tSv/h. Levels of background 

radiation at fieldsites ranged from 0.05 to 2.91 pSv/h. Two sets of fieldwork were carried 

out and the strategies used to pick the sites are described in each of the relevant chapters 
(chapters four and five) and their location shown in Figure 3.2. After harvesting branches 

(section 3.3.1) needles were removed and retained in a dark coolbox in preparation for 

biochemical, gamma spectrometry and spectral analysis. These analyses methods are 
described in the subsequent sections of this chapter. 
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3.3.1 Spectral Measurement 

At each field site, Pinus sulvestris trees were chosen to represent the site and what might 

be seen in a remotely sensed pixel (30m x 30m). Branches were selected from the edge of 

forests to account for edge effects as well as across the rest of each site. In addition 
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branches were selected from different positions on the trees so that needles were 

representative of the 137Cs contaminated forests. Branches were collected from the tree 

using a variety of different methods. As many of the branches were beyond unaided human 

reach, a method was devised which used wire saws attached to rope. The rope could then 

be thrown over a branch and with two operators a sawing movement was created which cut 

the branch from the tree. This rope and wire saw method is shown in figure 3.3. Other 

branches were cut using telescopic secateurs (if within reach) or by using a ladder in 
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f igurr ?.? /h, r "pr 'uni ý ur "I method II. S"d to rollrot hrzmrhecs Iron, nee . samples. Rope was thrown over and the saw pulled into 

place and with two operators a sawing action was created to cut the branch from the tree. 

After representative branches were removed from selected trees, the new growth needles 

were picked from the branches and preserved for spectral measurement. Preservation 

included wrapping the base of the needles in black insulation tape in order to prevent 

structural degradation of the needles. The needles were then bagged, labelled and placed in 

a dark coolbox to minimise chlorophyll degradation. For every sample, enough needle 
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material was collected and preserved to allow for spectral, biochemical and gamma 
spectrometry measurements. This was approximately 250g of needles for each sampled 
tree. 

To accurately and efficiently measure the spectral response of vegetation collected in 

Belarus, a portable spectroradiometer was used. This was in the form of an Analytical 
Spectral Devices (ASD) Fieldspec Pro spectrometer, loaned from the Natural Environment 
Research Council (NERC) Field Spectroscopy Facility (FSF) (Formerly Equipment Pool 

for Field Spectroscopy). This is ASD's flagship model (ASD 2004) and has a spectral 

range of 350-2500nm. Table 3.1 concisely conveys the technical attributes of the ASD 

field spectroradiometer. 

ASD FieldSpec Pro System 

Spectral Range: 350 - 2500nm 

Spectral Bandwidth: 1.4nm at 350-1050nm 

2mn at 1000-2500nm 

Sampling Time: 

lOnm at 1400 and 2100nm 

3nm at 700nm 

100 milliseconds 
Table 3.1: Selected technical characteristics of the ASD FieldSpec Pro (ASD 2004). 

Harvested needles were measured on the day they were collected at a temporary laboratory 

created at the Svetolovichi Sanatorium, Belarus (Figure 3.2). In the laboratory experiment 
described in chapter six, needles were measured for spectral reflectance at Kingston 

University. Needles measured for spectral reflectance in Belarus and Kingston University 

were subject to the same methodology. Approximately 5g of needle material was placed 
into a custom made black container to maintain a constant geometry and illumination when 

measuring spectral reflectance. For each sample, four spectral measurements were taken, 

with the pot being turned 900 between each measurement. The four measurements were 

then averaged to give a single spectral reflectance measurement for each sample. The pot 

was always filled to the same level (top of pot) in order to standardise the procedure and 

amount of needle material in the pots. The needles were measured using the contact 

reflectance probe, which provides an artificial light source in the form of a 100w halogen 

reflectorised lamp (NERC FSF 2004). Use of an artificial light source minimised error 

associated with changing irradiance conditions, and provided flexibility in measuring the 
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needles. The contact probe was placed directly over the custom black pots and created a 

seal between needles and light source. The use of airborne or spaceborne remote sensing 

would inevitably be affected by atmospheric effects, but the use of the contact probe 
during field spectrometry minimised factors to take into consideration and helped focus 

primarily on whether a relationship exists between radionuclide levels, foliar biochemical 

concentrations and ultimately, spectral response. Raw ASD spectra were processed to 

absolute reflectance using a white spectralon calibration tile and bespoke ASD calibration 

software, resulting in spectra showing absolute reflectance from 400-2400nm at lnm 

intervals. After collecting spectral measurements, various pre-processing transformations 

of the spectra were performed prior to any analysis. These are described below in section 
3.3.2. 

3.3.2 Spectral Processing 

Absolute reflectance spectra were part of the analysis routine, but spectra were also 

processed into various other manifestations (first derivative spectra, continuum removed 

spectra) in order to compensate for noise in the spectra and to attempt to draw out subtle 

changes and differences between spectra. These processing routines and manifestations are 
described in this section. 

3.3.3 First Derivative Spectra 

Derivative spectroscopy has been used for a number of years in analytical chemistry and is 

powerful in enhancing small fluctuations in the reflectance spectrum as well as aiding in 

the separation of closely related absorption features and minimising noise or background 

effects (Louchard et al. 2002). First derivative spectra were calculated according to 

equation 3.0. 

FDR ; )=(R, J 1)-Ruj))/Ax [equation 3.0] 

Where FDR is the first derivative reflectance, i is the midpoint between spectral 

wavebands j and j+1. Rxu is reflectance at waveband j, R, (1+1) is reflectance at waveband 

j+1, and A,. is the difference in wavebands between j and j+1 (Dawson et al. 1998, 
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Mutanga et al. 2004). In addition to derivative spectroscopy, absolute reflectance spectra 

were also manipulated through the technique of continuum removal. 

3.3.4 Continuum Removal 

Continuum removal isolates absorption features and standardises reflectance across them 

(Underwood et aL 2006). Continuum removal is in essence a feature selection technique 

(Kokaly and Clark 1999, Curran et al. 2001, Mutanga et al. 2004) which isolates 

absorption features from the rest of the spectrum using a continuum line. Once absorption 
features have been isolated using this continuum line then the continuum-removed 

reflectance is normalised using a variety of methods in order to ease intercomparison of 

reflectance and provide different manifestations of the spectra. Kokaly and Clark (1999) 

and Curran et al. (2001) have shown continuum removed spectra to provide higher r2 

values when using regression models to predict foliar biochemicals and given the need to 

accurately assess key foliar biochemicals in this research, continuum removal was 

employed on the spectra. Figure 3.4 shows a conceptual diagram of continuum removal. 

40 



Chapter 3, Study Site, Data and Instrumentation 
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Figure 3.4: Conceptual diagram of continuum removal. Each absorption feature is isolated from the rest of the spectra using a 

continuum line. The reflectance is then standardised using a variety of methods for intercomparison. 

Six absorption features were selected for continuum removal based on the spectra collected 

and literature pertaining to biochemical absorption (e. g. Curran 1989). These are shown, 

together with the continuum line, in figure 3.5. Figure 3.5 shows why six absorption 

features were chosen; these six features adequately represent the absorption features 

evident in the spectral response of Pinus sylvestris. 
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Average Spectral Response and Six Absorption Features Selected for Continuum Removal 
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Figure 3.5: Six absorption features selected for continuum removal. The average spectral response is shown together with the 

continuum line and the six absorption features which are labelled from one to six. 

The continuum line was derived using maxima and minima of a particular absorption 
feature and linear interpolation in between. The continuum at a particular wavelength can 
be described in equation 3.1 below. 

C( (IRZXR`)+R, [equation 3.1] 

Equation 3.1 defines the continuum line (basically linear interpolation); Rt and R2 are the 

minima and maxima reflectance endpoints, X and )c2 are the wavelengths at those 

endpoints, C is the continuum and X; is the wavelength where the continuum is to be 

determined. Continuum removed reflectance is then calculated from equation 3.2, where 

R' is continuum removed reflectance and C is the continuum reflectance at a particular 

wavelength (which is derived from equation 3.1). 

R'= RIC [equation 3.2] 

The continuum-removed reflectance is then normalised in two different ways to create two 

transformations of the spectra for analysis. Initially, the band depth was calculated as in 

equation 3.3. 
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BD-1-R' [equation 3.3] 

The band depth was then normalised to either the area (BDNA) or centre (BDNC) of the 

continuum removed absorption feature. Calculation of BDNA involved dividing the band 

depth at a particular wavelength by the sum of all band depths inside the absorption 
feature. Calculation of BDNC involved dividing band depth at a particular wavelength by 

the centre of the absorption feature (wavelength of maximum depth). BDNA and BDNC 

calculations are shown below in equations 3.4 and 3.5. 

BDNA = BD/(FBD) [equation 3.4] 

BDNC = BDIMAXBD [equation 3.5] 

Where MAXBD is the band depth wavelength with maximum depth inside the absorption 
feature. 

These various transformations of the spectra allowed the links between spectral response, 
137Cs contamination and key foliar biochemicals to be fully investigated. 

3.3.5 Biochemical Assay 

In order to ascertain whether a link exists between spectral response of vegetation and 

levels of radionuclide contamination, key foliar biochemical contents were obtained. Foliar 

biochemical contents measured were, chlorophylls a and b, total chlorophyll, acid 

digestible fibre (AD fibre), lignin, cellulose, water, elemental nitrogen and nitrogen 15 

(15N). These six biochemicals have been shown to be the principal biochemicals within a 
leaf and are often selectively depleted due to plant stress (Carter 1993). The measurement 

of these foliar biochemicals also allowed isolation of any other environmental factors, 

which might be causing any vegetative stress. Measuring water content for example, might 

indicate water deficiency as a cause of changes to spectral response, rather than 

contamination. Conversely, it may suggest that water deficiency is not causing the plant 

stress and reveal that changes to the spectra are due to radionuclide contamination. In the 

sections below, the techniques for biochemical assay are described. 
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3.3.6 Chlorophyll Concentration 

Chlorophyll is an important photosynthetic light-harvesting pigment. Vegetative content of 

chlorophylls a and b has been shown as an important indicator of plant stressors (le Maire 

et al. 2004). In addition, chlorophyll volume has been statistically linked to vegetation 

reflectance (Zarco-Tejada et al. 2004) and this correlation has allowed the use of remote 

sensing to monitor the state of such vegetation. Chlorophyll varies across species and with 
different stressors and therefore the relationship between chlorophyll and plant stress is not 

a simple one. Rather it is one which often requires in situ data to derive the link between 

chlorophyll, plant stress and reflectance. 

To determine foliar levels of chlorophyll demanded the use of wet chemistry techniques. 

These were carried out on the same day as the needles were harvested and at same time as 

spectral measurements were collected. In Belarus, the temporary laboratory at the 

Svetolovichi Sanatorium was used to undertake chlorophyll analysis on the evening of the 

day the needles were collected. It was important to carry out chlorophyll analysis as 

quickly as possible after harvesting the needles in order to prevent chlorophyll 

degeneration. For each sample, a selection of needles was randomly sub-sampled for 

chlorophyll analysis. The needles were cut into smaller pieces before chlorophyll was 

extracted in a pestle and mortar. Care was taken to ensure each part of the needle was 

included in the analysis for chlorophyll as opposed to just the needle tip or base. The most 

frequently used assay for chlorophyll content in higher plants and green algae is the 

method introduced by Arnon (1949). This method was chosen due to its commonality, 

simplicity and the confidence in results as corroborated by the frequency of its use in the 

literature. It was performed in a darkened room to prevent any chlorophyll degradation 

during measurement. The method involves chlorophyll extraction (using a pestle and 

mortar) in a buffered 90% aqueous acetone solution (10% water), then a determination of 

the extinction point of chlorophyll a (664nm) and b (647nm). This extinction was 

measured using a Hach DRC2010 portable spectrophotometer and the results from the 

extinction points were then placed into a set of simultaneous equations in order to 

determine chlorophyll concentration. Finally, the chlorophyll is related to the volume of 

aqueous acetone as well as the sample weight to give chlorophyll concentration in mg g''. 

To maintain confidence in results, for every fifth sample, chlorophyll measurement was 
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replicated. A handheld portable chlorophyll meter was taken to Belarus in an attempt to 
derive duplicate measurements and add confidence to results. The Minolta SPAD-502 

measures relative chlorophyll content in SPAD units. SPAD units are defined by Minolta's 

Soil Plant Analysis Division (SPAD) and range from 0 (lowest) to 100 (highest). The 

Minolta SPAD-502 has been designed primarily for agricultural and crop science 

applications, with an emphasis on measuring crop health and inferring Nitrogen levels. In 

terms of practicality the SPAD-502 is very quick at taking readings and simply clamps on 
the leaf. However, when applying the device to pine needles in the field a set of challenges 

arose. The long and thin biophysical properties of needles meant the SPAD-502 could not 

simply clamp over the needle. Results from the SPAD-502 were too variable, with 
inconsistencies caused by lack of compatibility of needles with the SPAD-502 device and 
therefore could not be used in the research. 

Porra (2002) suggests that the specific extinction coefficients used by Arnon (1949) may 
be erroneous by up to 19% when determining chlorophyll a and 14% when measuring 

chlorophyll b concentration. As a result, the more accurate simultaneous equations 
developed by Lichtenthaler (1987), and Porra (2002) were used when determining 

chlorophyll. These newer specific extinction coefficients were determined by Mg-atomic 

absorption spectrometry. The equations used are below. 

Chla(mg/ml) =12.25E6" -2.55E' [equation 3.6] 

Chlb(mg/ml) = 20.31E6" -4.91E [equation 3.7] 

TotalChl(mg/ml) -20.3IEM7 -4.91E [equation 3.8] 

Where E664, and E647 are absorptions at 664nm and 647nm respectively. To relate the 

chlorophyll amount to the volume of aqueous acetone and original sample weight the 

chlorophyll amount was then multiplied by the volume of solution, and divided by the 

sample weight in mg. This resulted in chlorophyll concentration in mg/g. Equation 3.9 

shows the calculation. Chlorophyll was accurately reported to a precision of two decimal 

places. 
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ChlConcentration(mg/g) = chlorophyll(mgIm! ) * volume(ml)/sampleweight(mg) 

[equation 3.9] 

3.3.7 Lignin, Cellulose and AD Fibre 

Lignin and cellulose are the structural components of vegetation, and are biochemically 

and physiologically inactive (Jacquemoud et al. 1995). Kokaly and Clark (1999) highlight 

the links between ecosystem function, lignin and cellulose content, and spectral reflectance 

at the leaf and canopy levels. More specifically, Curran (1989) has identified specific 

absorption features in generic spectra of vegetation, which can be related to lignin and 

cellulose. Thus, spectral response may vary in these wavelengths as a function of 

radionuclide contamination and therefore it was important to derive lignin and cellulose 

contents from the vegetation samples. Rowland and Roberts (1994) review and compare a 

number of acid-detergent fibre methods in order to determine content of lignin and 

cellulose in a variety of vegetation types, and find that they produce accurate results. The 

H2SO4 variant was used in this study, as it was found by Rowland and Roberts (1994) to be 

easy to implement, reliable, precise and, unlike the alternative permanganate variant, was 

suitable for application to a wide variety of vegetative materials. 

Unlike chlorophylls, lignin and cellulose are resistant to decomposition and therefore the 

pine needles could be powdered, and brought back to the UK for analysis. The method 

began by weighing out lg of randomly sub-sampled air dried powdered needle material for 

each sample and went through a series of acid digestion stages after which the sample was 

re-weighed. These weights were placed into simple formulas to derive quantity of acid 

digestible fibre (AD Fibre), cellulose and, after an ignition at 550°C, lignin. The method 

first involved digestion of the lg powdered sample in a CTAB solution (0.5m sulphuric 

acid and cetylrimethyl bromide) with slight heating. After filtering the sample through a 

sintered glass crucible (porosity 1µm) the material was dried at 105°C and weighed. The 

sample was then digested in 72% H2SO4 for three hours, filtered, dried at 105°C then re- 

weighed. Finally, the sample was ignited at 550°C for 2-3 hours until only lignin remained. 

The sample was then weighed and the following calculations used to determine acid 

digestible fibre, lignin and cellulose. 
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%ADFibre = (W3 -W2) * 100 /W 1 [equation 3.10] 

%Cellulose = (W 3 -W 4) * 100 /W 1 [equation 3.11] 

%Lignin = (W4 - W5) * 100 /W 1 [equation 3.12] 

Where WI is the weight of the original powdered sample, W2 is the starting weight of the 

sintered crucible, W3 is the weight after the CTAB digestion and drying, W4 is the weight 

after the H2S04 digestion and drying, and W5 is the weight after ignition at 550°C. All 

weights are to three decimal places to gain an accurate determination when working with 

small numbers. 

Throughout the procedure, levels of laboratory equipment meant samples were assayed for 

AD fibre, lignin and cellulose in batches of 15. In order to maintain consistency and check 

standards between batches, every fifth sample was repeated but in a different batch to 

minimise error and isolate real variation in lignin and cellulose quantities from 

experimental error or inconsistencies. 

3.3.8 Water 

Water content was measured via a simple loss on ignition method. Approximately lg of 

each needle sample (selected randomly) was weighed when fresh, dried overnight (24 

hours) in a 70°C oven and was reweighed after drying and cooling. A simple equation then 

allowed percentage water content to be derived. 

%Water = (WI - W2) /W 1* 100 [equation 3.13] 

Where Wl and W2 are weights before and after drying. 

In Belarus, some of the samples were measured for moisture using ovens in the 

Svetolovichi Sanatorium and a portable balance with foil weigh boats. Figure 3.6 

illustrates the portable balance and weigh boats. Some samples were kept frozen (using 
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freezers in Belarus and a coolbox during transit) and transported to the UK for moisture 

analysis due to political reasons forcing a premature exit from Belarus (section 3.1, 

appendix A3). The procedures in the UK and Belarus for water analysis were identical and 

once again, every fifth measurement was replicated to monitor standards and ensure data 

quality. 
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Figure 3.6. Foil irrigh horn and p, tc hl,, halan, " used to measure' miter content of needles in Belarus. 

3.3.9 Nitrogen 

Nitrogen is used in varying forms by plants and there is often variation in nitrogen uptake 

and assimilation, dependent on sources of nitrogen, other nutrients and the growth 

environment (Liu et cal. 2006). In addition, nitrogen content is often used to predict plant 

growth, efficiency and function (Broadley et al. 2000). As a result, nitrogen was 

considered to be an important foliar biochemical in this study and was measured in two 

forms, ' 5N and elemental nitrogen ('4N). 

Nitrogen analysis was the only biochemical in this research which was measured 

externally and was carried out by Iso-Analytical, Sandbach, UK. Powdered needle material 

was sent for each sample and was then sub-sampled at random by Iso-Analytical for 

nitrogen analysis. The laboratory report is included in appendix Al. The technique used 

for analysis was EA-IRMS (elemental analyser isotope ratio mass spectrometry). 
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Elemental nitrogen was measured as a percentage content of the sample. '5N was measured 

in per mil notation versus the international reference standard of air. To minimise error and 

add confidence to results, an international reference standard was used in addition to every 

fifth sample being duplicated. 

Due to budgetary constraints in this research, half of the samples were measured for 

nitrogen. Half of the high, medium and low 137Cs concentration groups were randomly 

selected and sent to Iso-Analytical. 

3.3.10 Gamma Spectrometry 

Accurate measurement of radionuclide levels inside the physiologically active part of the 

trees (i. e. the needles) was pivotal in linking spectral response to radionuclide 

contamination levels. Section 3.3 described the selection of sites using a portable 

dosimeter, which gave ambient dose rates in the growing environment and not specific 

activity inside the needles. Needle specific activity was measured in samples of dried 

needles at Kingston University using gamma spectrometry. The needles for each sample 

were dried for a period of at least 12 hours in a 70°C oven before being packed into 

containers ready for gamma spectrometry. 

Approximately 20g of dried needles per sample were placed in plastic beakers. These were 

placed inside the lead shielding of a high-purity germanium detector (HPGe) where 

gamma rays were counted over a period of 25000 seconds. With each sample, care was 

taken to ensure geometry of counting remained constant. This was secured by maintaining 

full pots of needles and ensuring the needle density inside the pots remained constant for 

each sample. To determine density, the pots were weighed before and after filling with 

needles in order to accurately determine needle mass inside the pots. The aim was to keep 

this as close as possible to 20g whilst continually checking fill levels and spacing of 

needles in the pots. Care was also taken in the placement of the pot inside the gamma 

spectrometer counting chamber and each sample was placed on a marker to ensure there 

was no deviation from the HPGe crystal between each sample. The 137Cs peak in the 

resulting gamma spectra was analysed using Canberra Genie 2000 spectroscopic software 

to give net area (representing total counts) at the 137Cs energy channel (662KeV). 
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The count rate was calculated by dividing the area of the 137Cs energy channel by the count 

time. A decay time correction factor was calculated by determining the number of days 

between the gamma spectrometer measurement date and the reference date when samples 

were collected (15th July 2003 for pilot study fieldwork, 15`h July, 2004 for the second field 

campaign and 4`h August 2005 for the laboratory data). This then enabled decay corrected 
count rates to be calculated. HPGe detector efficiency was calculated using a National 

Physical Laboratory (NPL) standard solution (appendix A2) added to a volume and mass 

of pine needles equivalent to the standard sample mass (equation 3.14 below). 

Efficiency = 
NetArea 

(LiveTime) (Activity)(Yield) [equation 3.14] 

Where the activity (in Bq) is for a pine needle standard, yield is the radionuclide branching ratio for the measured gamma ray and live 

time is the counting time of the NPL standard. 

The HPGe efficiency and 137Cs branching ratio were then used along with the decay 

corrected count rate in equation 3.15 in order to compute needle specific activity. 

A(inBq) = DC/(e * BR) [equation 3.15] 

Where A is the activity in Bq. DC is the decay corrected count rate, e is the efficiency of the detector and BR is the branching ratio of 

662KeV measured gamma ray. 

Finally, the specific activity (Bq/g) was calculated using the weight of the sample. 

SA(Bglg) = AIW [equation 3.16] 

Where SA(Bq/gi is the needle specific activity, A is the activity in Bq calculated in equation 3.15 and W is the sample weight of needles 

These specific activity levels could then be compared to the foliar biochemicals and 

reflectance spectra of the needles in order to investigate links between 137Cs contamination, 

foliar biochemicals and reflectance spectra. 
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3.4 Summary 

This chapter has described methods used to collect and analyse data as well as the 
instrumentation used along with techniques used to ensure consistency and validity of data. 

These methods and associated instrumentation are crucial to the research and underpin the 

research and analyses in subsequent chapters. 
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Chapter 4 

Feasibility of Imaging Spectrometry for 

Remote Sensing 137Cs Contamination: A 

Pilot Study 

4.1 Introduction 

This chapter reports results from pilot field radiometry work undertaken in Belarus. It 

begins by outlining the background to the contaminated Pinus sylvestris in Belarus and 

then describes strategies of data collection. It goes on to illustrate analyses performed and 

results achieved. Research outlined in this chapter forms the basis for field radiometry 

work in chapter five and with regards to the objectives set out in chapter one, considers the 

following: 

" To assess whether there are changes in spectral reflectance caused by differing 
137Cs levels 

9 To characterise whether 137Cs has any effects on key foliar biochemicals and at 

what regions of the optical range of the electromagnetic spectrum these are 
detectable. 

4.2 Background to Data Collection Strategies 

The contamination of forest ecosystems by 137Cs has been the focus of much field-based 

and modelling research aimed at determining the transport process of 137Cs (e. g. Ipatyev et 

al. 1999, Malek et al. 2002). Such research has shown forests to be efficient sinks for 

137Cs, with a number of implications for humans who may use the forest (Gaso et al. 

1998). Currently, many Belarusian forests pose a major radiological hazard to the local 
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population (Amiro and Ipatyev 1999). There is a need to regularly review the potential to 

regain the economic function of the forests and identify those areas that can provide clean 
timber (< 0.74Bq/g) and other resources. Frequently updated information on radionuclide 

concentration over large areas is important for determining forestry practices and land-use 

planning. Imaging spectrometry techniques (as described in chapter two) may enable large 

areas of the Belarusian landscape to be monitored simultaneously. The resulting spectra 

collected from imaging spectrometers can conceivably be used to estimate quantities and 

spatial distributions of canopy biochemicals which could then in turn be used as a 
discriminator of 137Cs contamination (chapter two). Davids and Tyler (2003) highlighted 

imaging spectrometry as having potential in monitoring two forest species (Pinus sylvestris 

and Betula pendula) though their study focused on the Chernobyl exclusion zone where 
high levels of contamination effectively preclude economic use of the forest for many 
decades to come. In contrast, much of Belarus was exposed to lower contamination levels, 

mainly by fission products with approximately 30-year half-lives (chapters one and three). 

In Belarus, the authorities stipulate specific radioactivity levels at which timber may be 

utilised; 1.85Bq/g for lumber wood and 0.74Bq/g for domestic fuel wood (Goor and Thiry 

2004). The pilot study research focuses on locations with known radioactive fission 

product contamination (137Cs) that has been taken out of economic use, but may have 

potential to be returned to economic use in the next few decades. This chapter presents 

field radiometry research which is an initial step towards meeting the overall aim of the 

thesis which is to assess whether 137Cs can be monitored using imaging spectrometry 

techniques. Two main assumptions were made whilst conducting the fieldwork. Firstly it 

was assumed that the specific activity of 137Cs in the needles was representative of the soil 

contamination. This assumption has limitations in terms of different transfer factors and 

other variables which may affect the transfer of 137Cs from soil to needle, meaning the 

needle concentration of 137Cs may not be representative of the contamination in the soil. As 

this research was focussing on the relationship between 137Cs needle concentration and 

spectral reflectance, this assumption was not considered as having serious impacts on 

results, but is important to be aware of when considering the work in context, particularly 

when thinking about spatial resolution of 137Cs. Chapter six illustrates this assumption in 

terms of transfer factors between the growing material and needle not always being linear. 

The second assumption made was that the dose rates measured in the field were 

representative of the 137Cs contamination in the soil and needles. This was not the case, as 

illustrated by discrepancies between dose rate and contamination measured within the 
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needles. This assumption had to be made as ambient dose rate with a portable dosimeter 

was the only quick method available in the field which could provide an indication of 137Cs 

contamination at a particular site or sample. 

4.3 Study Sites and Data Collection 

Forest sites located within the Belarus part of the Bryansk-Belarus radioactive fallout spot 
(centred 200km north-northeast of the Chernobyl reactor) were the focus of the pilot study 
(table 4.1). This contaminated region was formed on 28-29th April 1986, probably as a 

result of fallout which was artificially induced by the USSR via cloud seeding. Ground 

deposition of 137Cs exceeded 1.5MBq/m2 and reached, in some parts, 5MBq/m2. Within the 

Bryansk-Belarus spot is the Vetka region, which comprises a number of contiguous forest 

plantations, the predominant species of which is Pinus sylvestris. These forests were the 

focus of study and were sampled according to two factors; radiation dose and tree age. 

Tree age was considered important since transport and storage of radionuclides within 

trees depends partly on age (Ipatyev et al. 1999, Thiry et al. 2002). 

Four sites were chosen in July 2003 based on the ambient radiation dose rate levels 

measured using a portable dose rate meter at one metre above ground level (table 4.1). 

Two ranges of dose rates were identified, and described as either `high' (1.50pSv/h to 

2.90µSv/h) or `low' (0.05iSv/h to 0.08µSv/h). One old (c. 35 years) forest and one young 

(c. 15 years) forest were sampled for each dose rate range. The sites are designated in table 

4.1 as High Old, High Young, Low Old and Low Young and their location mapped on 

figure 4.1. At each of the four sites between 2 and 13 trees were sampled (table 4.1). 

Whilst more samples would have been preferred the number of samples represents the pilot 

nature of the research in this chapter and constraints on time in the field meant at some 

sites, a representative number of samples were not collected. This was a key aim of 

research in chapter five; to expand and gather a representative sample from each selected 

site. 

Branches facing north, south, east and west were taken to avoid introducing bias from 

different growing conditions. In terms of stand position, trees from the forest edge as well 

as in the middle of the stand were collected in order to fully represent the trees growing on 
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each site. Mean height for old trees was 18m, whilst the mean girth (at chest height) was 
80cm. For the young trees the mean height was 3m and mean girth was 20cm. Needles (<1 

year old) were removed from the branches and subsampled for spectral measurements and 
137Cs specific activity according to the spectral and gamma spectrometry methods 
described in chapter three (sections 3.3.1 and 3.3.10). For each tree, four spectral 

measurements were taken and averaged (according to methods described in chapter 3, 

section 3.3.1), giving one spectral measurement per sampled tree. Mean 137Cs specific 

activity for Pinus sylvestris needles sampled from each of the four sites is reported in table 
4.1. 

Site Designation Site Location Mean Dose Rate Mean Needles 137Cs 

(Nearest Village) (Latitude and (µSv/ h) Specific Activity 

Longitude) (Bq/g) 

Old High (OH) 52 39.269'N 2.33 +/- 0.32 (n=22) 13.37 +/- 9.52 (n=13) 
(Staraja Zakruzza) 031 29.456E 

Old Low (OL) 52 50.110'N 0.15 +/- 0.03 (n=12) 0.38 +/- 0.19 (n=9) 

(Stolbunskaya) 03127.767'E 
Young High (YH) 52 39.809'N 1.59 +/- 0.36 (n=14) 5.27 +/- 3.68 (n=11) 

(Bartolomeevka) 031 22.785'E 

Young Low (YL) 52 26.882'N 0.06+/- 0.01 (n=22) 0.46 +/- 0.19 (n=2) 

(Romanovichi) 03106.187' E 

n= number of trees. 
Table 4.1: site designation, location and mean dose rate at Im above ground (+/_ ! SD) and mean needle specific activity (+/_ ISD) 
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Figure 4.1: Location of the /i ur . ctuc/r cites chosen for investigation. Vote that the site designation information matches the detail in 

table 4.1. 

4.4 Analysis of Spectral Reflectance 

Mean reflectance spectra (%) of the four sites were different across the spectral range 

studied (figure 4.2). The largest spectral reflectances were for old growth forest whose 

needles also exhibited the highest mean levels of 137Cs specific activity (mean 13.7 Bq/g) 

for the four sites studied. The coincidence of high pine needle specific 137Cs activity with 

high spectral reflectances, particularly in the visible and near infrared regions, suggests 

plant stress. Other authors have noted the association between high spectral reflectance and 
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plant stress in certain spectral regions (e. g. Jago et al. 1999, Moran et al. 2000, Kooistra et 
al. 2004). In particular, Jago et al. (1999) showed a strong relationship between vegetation 

contamination and the red edge position (REP). In this research, the REP was investigated 

in relation to specific 137Cs activity, but no significant changes were evident in the REP in 

relation to 137Cs content. 
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Figure 4.2: Mean spectral response for the Pinus sylvestris needles sampled at each site (refer to table 4.1 for further details on 

abbreviations and '37Cs contamination levels). 

Further analyses of the spectra were conducted to determine whether spectral differences 

between the sites were a function of variations in foliar biochemistry which may arise from 

different 137Cs levels in the needles. Variations in these reflectance spectra (such as depth 

and spectral position of absorption features related to biochemicals) were isolated using the 

feature selection technique of continuum removal (Kokaly and Clark 1999, Curran et al. 
2001, Mutanga et al. 2004) (described in chapter three). Feature selection involves the 

search for a subset of the original data which will aid in the decision making process 

regarding the number, location and width of spectral bands which are significant (Warner 

and Shank 1997). Six continuum-removed absorption features were identified using both 

visual analyses of the spectra and by considering specific absorption features noted in the 

literature (e. g. Curran 1989). These features had their centre located around 470nm, 

670nm, 920nm, 1200nm, 1360nm and 1840nm (chapter three, section 3.3.4). 

A statistical comparison between the BDNA spectral value for each wavelength at each of 

the six absorption features between high and low contaminated sites for the young and old 
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forests was undertaken. This comparison was to ascertain whether there was a statistically 

significant difference between the spectra based on differing 137Cs levels and to ascertain at 

which wavelengths this difference was detectable. In turn, wavelengths identified could 

then possibly be associated with foliar biochemical absorption points to determine if a link 

exists between spectral reflectance, foliar biochemicals and 137Cs specific activity. The 

Runs test was employed, being a non-parametric test able to accommodate the small 

sample sizes. The test was used to establish wavelengths displaying statistically significant 
differences (at 0.05 significance level) between sites of high and low contamination levels. 

None of the wavelengths in any of the six absorption features were significantly different 

between the high and low contaminated needles sampled from the young forest sites. This 

was not the case however, for the new growth needles measured from the old forest site 

where a large number of wavelengths in each of the six absorption features were found to 

be statistically different (at 0.05 significance level) between the needles with low and high 

137Cs contamination levels (table 4.2). 
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Significant Wavelengths (nm) Association with Biochemical 

Absorption feature of 470nm 

478 Chlorophyll (460nm) 

522-526 Unattributable 

Absorption feature of 670nm 

596-600 Unattributable 

637-641 Chlorophyll (640nm) 

647-653 Chlorophyll (660nm) 

693 Unattributable 

736 Chlorophyll (724nm) 

742-749 Unattributable 

Absorption feature of 920nm 

921 Nitrogen (910nm) 

926 Nitrogen (910nm) 

947 Unatinbutable 

954-960 Unattributable 

966 Water (970nm) 

973-974 Water (970nm) 

976 Water (970nm) 

978-989 Cellulose (978nm) 

995 Cellulose (978nm) 

Absorption feature of 1200nm 

1145-1146 Unattributable 

1155-1180 Lignin (1174nm) 

1186 Lignin (I174nm) 

1197-1199 Water (1200nm); Cellulose (1194nm); Cellulose (1200nm) 

1217 Cellulose (1216nm) 

1241 Unattributable 

1245 Unattributable 

1264 Cellulose (1275nm) 

1266-1277 Cellulose (1275nm) 

1280 Cellulose (1275nm) 

1283 Cellulose (1275nm) 

Absorption feature of 1360tun 

1361-1408 Water (1400nm); Cellulose (1368nm) 

1422-1341 Nitrogen (1426nm); Lignin (1420nm) 

1432-1499 Nitrogen (1446nm); Nitrogen (1456nm); Nitrogen (1462nm); Lignin (1442); 

Lignin (I450nm); Cellulose (1484nm); Cellulose (1490nm) 

Absorption feature of 1840nm 

1841 -1842 Unattributable 

1843-1888 Unattributable 

1926-1975 Water (1940nm); Nitrogen (1974nm); Lignin (1940nm); Cellulose (1924nm); 

Cellulose (1940nm) 

Table 4.2: Wavelengths for which significantly different BDNA spectra (at 0.05 significance level) were found between spectra of new 

growth needles with low and high "'Cs contamination levels. (Note all spectra were from the old forest sites. ) Many of these 

wavelengths are located within : 2Onm of one of the five principal biochemicals within a leaf, chlorophyll, nitrogen, lignin, cellulose and 

water. 
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Table 4.2 also indicates which of the wavelengths are located within ± 20nm of one of the 

five principal biochemicals within a leaf; chlorophyll, nitrogen/protein, lignin, cellulose 

and water (Curran 1989, Curran et al. 2001). Examination of the first absorption feature in 

the visible region (centred at 470nm) revealed that the wavelength at 478nm can be 

attributable to the electron transition of chlorophyll 436nm. For the absorption feature of 

670nm, it was the wavelengths at 637-641nm attributable to the electronic transmission of 

chlorophyll at 640nm; at 647-653nm attributable to the electronic transmission of 

chlorophyll at 660nm; and the wavelengths at 736nm and 742-744nm attributable to the 

electronic transmission of chlorophyll at 724nm that exhibited significant differences in the 

BDNA spectral response between the high and low contaminated sites. Theory has related 

absorption features in the visible portion of the electromagnetic spectrum to chlorophyll 

content and at the far edge of the feature is the aforementioned red edge position, a 

phenomenon well-documented and used to monitor changes in chlorophyll content and 

vegetation stress (Jago et al. 1999). Specifically the REP has been associated with the 

chlorophyll content of vegetation (e. g. Pinar and Curran 1996) as well as energy scattering 

related to nitrogen levels (Mutanga et al. 2004), The position of the red edge and in turn 

chlorophyll content and scattering properties are often useful indicators of photosynthetic 

processes and the health of vegetation but in the investigations of the REP in this pilot 

research and in the field radiometry described in chapter five, the REP did not vary 

significantly and therefore the REP is not a useful discriminator of 137Cs contamination, 

possibly due to the non-linear response of Pinus sylvestris to 137Cs contamination, as 

discussed in chapters five, six and eight. 

Within the near infrared part of the spectrum two absorption features were examined. For 

the absorption feature of 920nm, significant differences were seen at a large number of 

wavelengths, many of which can be attributable to the biochemicals of nitrogen (C-H 

stretch at 910nm); water (0-H bend at 970nm) and cellulose (0-H stretch at 978nm). The 

absorption feature of 1200nm had significantly different wavelengths attributable to the 

biochemicals of lignin (C-H stretch at 1174nm); cellulose (C-H stretch at 1194nm; O-H 

bend at 1200nm; C-H stretch at 1216nm and C-H stretch at 1275nm) and water (O-H bend 

at 1200nm). Two further absorption features were examined, both in the shortwave 

infrared portion of the spectrum, both of which had a very large number of wavelengths 

with statistically significant differences in BDNA values (at 0.05 level of significance). 

Specifically, the 1360nm absorption feature had wavelengths attributable to the 
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biochemicals of cellulose (C-H stretch and C-H deformation at 1368nm; 0-H stretch at 
1484nm and 0-H stretch at 1490nm); water (0-H bend at 1400nm); lignin (C-H stretch 

and C-H deformation at 1420nm; O-H stretch and C-H stretch and C-H deformation at 
1442nm and O-H stretch and C-H stretch and C-H deformation at 1450nm) and nitrogen 
(N-H symmetrical stretch at 1426nm; N-H stretch at 1446nm; N-H stretch at 1456nm; N-H 

stretch at 1462nm). The absorption feature of 1840nm had wavelengths attributable to the 

biochemicals of water (0-H stretch and 0-H deformation at 1940nm); nitrogen (N-H 

asymmetrical stretch at 1974nm); lignin (0-H stretch and 0-H deformation at 1940nm) 

and cellulose (O-H 1924nm and 0-H stretch and O-H deformation at 1940nm). These 

results indicate that there may be selective depletion of these biochemicals, which indicates 

significant structural differences between the needles from the high contaminated site and 

the low contaminated sites. Similar findings have been associated with other contaminants 
(Jago et al. 1999, Kooistra et al. 2003). 

4.5 Discussion 

The analysis of these absorption features using a continuum-removed transformation of the 

spectral reflectance demonstrates that there are statistically significant differences in 

processed spectra between Pinus sylvestris needles exhibiting 137Cs contamination levels 

partitioned according to radiological risk. Of particular note is that this was only the case 

for the older trees (c. >20 years). This may be due to the higher levels of radionuclides 

within the old trees (see chapter six), or that the trees have been exposed to contamination 

for longer periods. In further research, analyses are required to link the spectral response of 

Pinus sylvestris needles to their foliar biochemicals and to 137Cs specific activity. The 

possibility that by measuring the biochemical concentrations of vegetation compartments, 

estimates of the level of radionuclide contamination can be derived also warrants further 

investigation. This pilot study has indicated that tree age is an important consideration and 

old trees (c. >20 years) have most potential in using their spectral response to monitor 
137Cs. Not only do old trees show significant differences between spectral transformations 

based on 137Cs, but they also harbour most economic potential. The World Bank (2006) 

emphasise the increased production of wood as a key opportunity in developing Belarus' 

energy supply in the future. This is dependent on the availability of wood which does not 

pose a radiological hazard (<0.74Bq/g) and again highlights the need for regular and 
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accurate monitoring of 137Cs contaminated areas so that as forest ecosystems recover, those 
forests which no longer pose a radiological risk can be put back into economic function. 

Results from this chapter have shown that 137Cs contamination may affect the spectral 

reflectance properties of Pinus sylvestris needles, particularly the new growth needles of 

older forests (c. >20 years). A number of wavelengths within six continuum-removed 

absorption features exhibited significantly different BDNA values (at 0.05 significance 
level) between new growth pine needles of old forests with high and low specific 137Cs 

activities. Several of these significant wavebands were near to known absorption features 

that are causally related to the five principal foliar biochemicals of chlorophyll, lignin, 

cellulose, nitrogen and water. 

This pilot research has shown potential in using spectral reflectance and foliar 

biochemistry to monitor 137Cs specific activity. Differences in spectral reflectance at 

wavelengths associated with principal foliar biochemicals have highlighted the possibility 

of using partial correlation and predictive regression routines to link spectral reflectance, 

foliar biochemistry and 137Cs levels. This is undertaken in chapter five which makes use of 

a greatly extended dataset which was collected in Belarus on a field campaign after the 

analysis of the pilot study data. The pilot research has shown potential in using imaging 

spectrometry and also helped to inform future data collection and analyses. Limitations in 

this pilot chapter such as a lack of data, assumptions about transfer between soil and needle 

as well as ambient dose rate not being representative of 137Cs concentration in needles have 

been considered in terms of the overall aims of the research and are acted upon in chapters 

five and six, as well as being considered in the discussion and conclusion in chapter eight. 

Modifications to fieldwork and analyses based on this chapter are described below in 

section 4.6. 
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4.6 Summary and Suggested Modifications to Future Fieldwork 

Suggested modifications to future fieldwork based on the pilot research presented in this 

chapter are: 

9 The potential shown in this chapter has been based on relatively small samples 

sizes and as such a recommendation for future fieldwork and analysis is to increase 

sample size. This would allow greater confidence in results and a wider variety of 

statistical analyses methods to be performed. This is acted upon in an extended 
field campaign and is presented in chapter five. 

"A focus on old trees is recommended as these show statistically significant 
differences between 137Cs specific activity and spectral reflectance as well as 
holding greatest economic potential. Fieldwork in chapter five thus focuses on old 

trees, as does the imagery collected and described in chapter seven. 

" Pilot research has used Pinus sylvestris containing (relatively) very low 137Cs 

specific activities and contrasted this with relatively high levels of 137Cs. Future 

research should consider a greater range of 137Cs levels to better represent the range 

in the Belarusian landscape and ascertain at what levels an effect becomes 

detectable in spectra. This is represented in the data collection strategy of data 

presented in chapter five and in the dosing of Pinus sylvestris grown in the 

laboratory and is presented in chapter six. 

These recommendations are acted upon in subsequent chapters to meet the overall thesis 

aim of investigating whether imaging spectrometry can be used to monitor 137Cs 

contamination. 
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Chapter 5 

Predicting 137Cs Levels from Spectra 

5.1 Introduction 

This chapter describes the results from the main field study in Belarus. It encompasses 

results from two tailed Student's t-tests, regression analyses to predict biochemicals from 

spectra and finally attempts to predict137Cs levels from this biochemical data. The chapter 
is organised in a top-down scientific approach according to the diagram in figure 5.1 which 

shows conceptually how 137Cs might be monitored using remote sensing techniques. The 

chapter begins outlining the protocol of fieldwork and data collection used in this part of 

the thesis. It then describes results of testing the spectra to see if any differences exist 
between high and low contamination levels. This is followed by testing whether any 
differences exist between key foliar biochemical contents at high and low contamination 
levels. In turn, partial correlation is used to assess whether 137Cs is having an effect on any 

of these biochemicals and at which parts of the electromagnetic spectrum. The chapter then 

describes statistical procedures (including stepwise regression and partial least squares) to 

predict foliar biochemicals from the spectra and finally assesses whether 137Cs content can 
be predicted from these key foliar biochemicals by utilising multiple regression and 

artificial neural networks. This chapter addresses three of the four research objectives, as 

set out in chapter one: 

" To assess if there are changes in spectral reflectance caused by differing 137Cs 

levels. 

" To characterise whether 137Cs contamination has any effects on key foliar 

biochemicals and at what regions of the optical range of the electromagnetic 

spectrum these are detectable. 

" To determine if key foliar biochemicals can be predicted from spectral response 

and in turn if these biochemicals can be used to infer levels of 137Cs contamination. 
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Figure 5.1: Conceptual diagram of the top-down approach taken in this chapter. 

There are some key assumptions and limitations which are inherent in the research in this 

chapter and should be noted before proceeding. Firstly, the approach focuses on the 

relationship between foliar biochemicals, 137Cs and spectral reflectance of Pinus sylvestris 

at the expense of exploring biophysical data and its effect on this relationship. This is for 

two reasons. Primarily this is due to pilot research in chapter four showing statistically 

significant differences in spectra between relatively high and low 137Cs contaminated 

spectra and at regions known to be causally related to certain foliar biochemicals (e. g. 

chlorophyll, lignin). Secondly, political reasons prevented a further field trip to Belarus in 

order to investigate biophysical properties in relation to 137Cs concentration. As in chapter 

four, other assumptions and limitations are that the ambient dose rate was assumed to be a 

good indicator for 137Cs contamination of a forest when in reality, ambient dose rate and 
137Cs specific activity of needles do not always correspond. It was also assumed that 137cS 

concentration in Pinus sylvestris needles was representative of contamination in the soil. 

Again, in reality there is not always a linear relationship between growing medium 
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contamination of 137Cs and concentration in biota. This is shown to be the case in the 

laboratory study in chapter six. Whilst these assumptions and limitations have implications 

for the wider context of the work, they do not interfere with the main scope of this chapter 

which investigates the relationship at the needle scale between 137Cs concentration of 

Pinus sylvestris, spectral reflectance and foliar biochemistry. 

5.2 Data Collection Strategy and Biochemical Variability 

Pilot work discussed in chapter four has demonstrated the potential of using imaging 

spectrometry to monitor 137Cs contamination and identified key areas where future 

research could be conducted. These were taken into account to plan a fieldwork season in 

the natural environmental laboratory (Belarus). The main recommendations coming from 

chapter four were: 

Expand the number of samples to allow a greater range of statistical techniques to 

be employed in analysis as well as enhance confidence in such statistics. 

" Focus on old trees (c. >20 years) since they show most promise in using imaging 

spectrometry and have economic potential (see chapter four). 

" Look at a greater range of contamination levels in order to better represent those 

present in Belarus and to ascertain which levels might have a detectable effect on 

spectral reflectance of Pinus sylvestris. 

To act upon these recommendations data collection took place in Belarus during July and 

August 2004. Field sites were in the Bryansk-Belarus fallout spot described in chapter four 

(section 4.3) and are shown in figure 5.2. 
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Figure 5.2: Location of the three study sites chosen for investigation during July/August 2004. Note that the site designation information 

matches the detail in table 5.1. 

In the field, sites were categorised according to their ambient radioactive dose rate. 

Ambient dose rate provided a quick indication of contamination levels although specific 
137CS soil characterisation would have been preferred. Since there was no access to a 

laboratory or any in situ devices capable of measuring specific 137Cs activity of soil, 

ambient dose rate was the chosen method of site characterisation. As the focus was on old 

trees (c. >20 years) sites were made up only of mature Pinus sylvestris. A portable 

dosimeter was used to measure ambient dose rate in the field. The location and mean dose 

rates for each site are shown in table 5.1. Levels of background radiation ranged from 0.05 

to 2.91 1Sv/h. Three sites were chosen based on dose rates 1 in above ground level and 
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were split into a control site (ambient dose rates from 0.07 to 0.22 . tSv/h), a medium site 
(ambient dose rate from 0.3 to 0.97 gSv/h) and a high site (ambient dose rate from 0.91 to 

2.46 iiSv/h). 

Field Site 

(Nearest Village) 

Site Location 

(Latitude and 

Longitude) 

Mean Dose Rate 

(µSv/h) 

Mean Needles 137CS 

Specific Activity 

(Bq/g) 

High 52 39'20.67'N 2.03 +/- 0.32 (n7-50) 11.78 +/- 10.33 (n=50) 

(Staraja Zakruzza) 31 29' 52.54'E 

Medium 52 49' 18.04'N 1.07 +/- 0.36 (n=50) 4.56 +/- 4.21 (n=50) 

(Novilovka) 31 6' 16.27'E 

Low 52 50'2.77'N 0.14 +/- 0.03 (n=15) 1.68 +/- 1.60 (n=15) 

(Stolbunskaya) 31 27' 32.46'E 

n= number of trees. 

Table 3.1: Site designation, location and mean dose rate at im above ground (+/-1SD) and mean needle specific activity (+/-1SD). 

At the high and medium sites, 50 trees were randomly sampled, whilst 15 were randomly 

sampled at the low (control) site. This was due to the main interest being in the high and 

medium sites and a restriction upon time in the field. The value of 50 trees was settled on 

through a combination of what was logistically possible in the field and the number 

required for confidence in statistical analysis methods. Randomly chosen trees each had 

north, south, east and west facing branches collected to avoid introducing any bias from 

different growing conditions. Branches were also collected at different heights from each 

tree, again to minimise any bias from differing growing conditions. Mean height of the 

trees was 19m whilst the mean girth at chest height was 89cm. In terms of stand position, 

trees from the edge of the forest as well as within were sampled to maintain a 

representative set of data. At this point, since the work was investigating effects of 137Cs at 

the leaf scale, regard for spatial resolution of imaging spectrometers was not taken into 

consideration. Rather, a variety of trees from across the site were collected. In terms of 

imaging spectrometry new growth needles (since this is predominantly what the sensor 

would monitor) were collected. Whilst old growth needles may be important at certain 

times of year (seasonality) the pilot study and imagery were all collected during the new 

growth summer period hence the focus was upon new growth needles. After harvesting 

branches, needles were removed and retained in a dark coolbox in preparation for 
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biochemical, gamma spectrometry and spectral analysis which was performed using the 
instrumentation and methodologies described in chapter three. 

Before moving into the main sections of the chapter, it is necessary to note basic variation 
in foliar biochemistry and 137Cs data illustrated through basic statistical summaries. This 

achieved three simple objectives: 

" To establish if variability between foliar biochemicals exists, as without these 

variations, changes in spectral reflectance may not be detectable. 

" To examine variability of 137Cs, as without this, there will be no changes in 137Cs 

levels to detect using imaging spectrometry. 

" To determine if any interrelationships exist between the foliar biochemicals. 

Biochemical and 137Cs statistical summaries are shown in table 5.2, with intercorrelations 

of biochemicals shown in table 5.3. It is pertinent to note that the number of nitrogen 

samples assayed was reduced in relation to other foliar biochemicals. This was due to lack 

of suitable pre-processed needle material after an interruption in post-fieldwork processing 

in Belarus because of political reasons (appendix A3). 
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Mean 

StDev 

Coefficient of 

Variance (%) 

Number of 
Samples 

Min 

Median 

Mal 

Water 

Concentration 

AD Fibre 

Concentration 

('/0) 

Lignin 

Concentration 

(%) 

Cellulose 

Concentration 

(%) 

'5N Concentration 

(%) 

64.14 41.60 17.78 24.18 -3.94 
4.62 6.11 7.52 3.26 1.91 

7.21 14.69 42.29 13.47 -48.48 

112 112 112 112 59 

37.27 33.57 10.17 13.89 -7.20 
64.34 39.83 14.35 24.58 -4.33 
85.99 58.67 38.02 30.14 1.41 

Chia Chi b Total Chi Elemental N "7Cs Specific 

(mg/g) (mg/g) (mg/g) Concentration Needle Activity 
(%) (Bq/g) 

Mean 0.73 0.29 1.02 1.44 6.94 

StDev 0.12 0.06 0.18 0.11 7.77 

Coefficient of 15.88 21.45 17.30 7.67 111.86 

Variance (%) 

Number of 116 116 116 59 114 

Samples 

Min 0.44 0.16 0.61 1.18 0.07 

Median 0.73 0.29 1.02 1.45 3.86 

Max 1.14 0.54 1.69 1.69 39.89 

Table 5.2: Descriptive statistics of biochemical data. Note the high coefficient of variance for "'Cs specific needle activity. This is due to 

the high variability of"Cs both across each site and between each site. 

Maximum and minimum values as well as the coefficient of variance indicate that there is 

variance in each biochemical, which is key for detecting changes in spectral response. As 

expected, the greatest variance is in 137Cs and this indicates that imaging spectrometry 

might be used to monitor variation in foliar biochemicals to ultimately ascertain 137Cs 

contamination. Aside from 137Cs variance, the greatest relative variance is 15N 

concentration. This is followed in order by lignin, chlorophyll b, total chlorophyll, 

chlorophyll a, AD fibre, cellulose, elemental nitrogen and water. 

70 



Chapter S, Predicting 137Cs Levels from Spectra 

A: B: C. D: E. 

A: Water 1.00 0.26 0.26 0.16 -0.03 
B: AD Fibre 0.26 1.00 0.79 0.84 0.13 
C: Lignin 0.26 0.79 1.00 0.36 0.04 
D: Cellulose 0.16 0.84 0.36 1.00 0.19 
E: Chi a -0.03 0.13 0.04 0.19 1.00 

F: Chi b -0.19 0.04 -0.04 0.12 0.94 

G: Total Chi -0.09 0.10 0.01 0.17 0.99 

H: Elemental N -0.06 -033 -0.13 -036 0.18 

I: 16N -0.40 -0.46 -0.45 -0.34 -0.27 
J: 137C$ 0.05 0.19 0.08 0.22 -0.11 

F: C: H: I: J: 

A: Water -0.19 -0.09 -0.06 -0.40 0.05 

B: AD Fibre 0.04 0.10 -033 -0.46 0.19 

C: Lignin -0.04 0.01 -0.13 -0.4S 0.08 

D: Cellulose 0.12 0.17 -036 -034 0.22 

E: Chi a 0.94 0.99 0.18 -0.27 -0.11 
F: Chi b 1.00 0.97 0.22 -0.15 -0.10 
G: Total Chi 0.97 1.00 0.20 -0.23 -0.11 
H: Elemental N 0.22 0.20 1.00 0.05 -0.15 
1: "N 

-0.15 -0.23 0.05 1.00 -039 
J: 'Cs 

-0.10 -0.11 -0.15 -0.39 1.00 

Table 5.3: lntercorrelation between foliar biochemicals and "Cs. Data are normally distributed. Bold denotes statistically significant 
correlation at the 95% confidence interval. 

Table 5.3 shows that strong correlations exist between similar biochemical data (e. g. the 

three forms of chlorophyll). This is to be expected given the methods used to assay these 
biochemicals (chapter three). Greatest correlation with 137Cs is between 15N. This is 

followed in order by cellulose, AD fibre, elemental nitrogen, chlorophyll a, total 

chlorophyll, chlorophyll b, lignin and finally water. This interrelationship between foliar 

biochemicals and 137Cs is promising in using spectra to monitor changes in 137Cs via 

variability in key foliar biochemicals. The chapter now continues to assess these 

relationships in greater detail in order to achieve the objectives set out in chapter one and 

reiterated at the beginning of this chapter. 

5.3 Assessing Whether Significant Differences Exist Between Spectra 

Contaminated with High and Low Levels of 137Cs 

Spectra were collected using the ASD FiedSpec Pro radiometer and statistically 
transformed using first derivative and continuum-removal techniques according to the 

methods described in chapter three. The spectra were split up into one of two groups 
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according to their 137Cs content. Two activity groupings were chosen, the first using the 

domestic fuel wood limit (0.74Bq/g) as a cut off between high and low contamination 
levels and the second group utilising the lumber fuel wood limit (1.85Bq/g) imposed by the 

Belarusian authorities on use of lumber wood. 

The first logical step in the research was to see if any differences existed between spectra 
grouped according to contamination levels. Differences were expected, since pilot work in 

chapter four suggested variance existed between spectra partitioned according to 137Cs 

specific needle activity. In the first instance a two-tailed Student's t-test was performed on 
first derivative spectra to see whether any statistically significant differences existed 
between those spectra grouped into high and low 137Cs contamination according to the 

levels described above as well as ascertaining where in the spectrum any such differences 

existed. The two-tailed Student's t-test was performed on normally distributed first 

derivative spectra as this contained all spectral information. Feature selection using 

continuum removal is useful for analysing absorption features with regards to prediction of 
biochemicals (section 5.6) but before data reduction, the whole spectral reflectance was 

assessed for significant differences. Figures 5.3 and 5.4 show the results of a Student's t- 

test using the domestic fuel wood (0.74Bq/g) and lumber wood limit (1.85Bq/g) to split the 

spectra into high and low groups. Only significant t-values (at the 95% confidence level) 

are shown. 

Student's t-test for high vs low spectra using domestic fuel wood limit 
(0.74Bq/g) as the cut off between low and high 
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Figure 5.3: Student's t-test for high versus low spectra using the domestic fuel wood limit as a cut of point between low and high 137Cs 

levels. Data are normally distributed. 
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Using the domestic fuel wood limit as a cut off point, there are statistically significant 
differences across the 400-2400nm range of the electromagnetic spectrum. This 

corroborates pilot work outlined in chapter three which signified that differences existed 
between spectra partitioned by 137Cs content. This is a promising and fundamental result in 

the research, as without these differences between spectra, the use of remote sensing 
techniques to monitor 137Cs is precluded. 

The highest t-value is at 795nm and associated with the far shoulder of the red edge 

portion of the electromagnetic spectrum. This is followed by 2227nm, associated in the 

literature with cellulose and other sugars and starches (Curran, 1989) then by 902nm which 
is associated with plant proteins, then by 1451nm which is controlled by starches, sugars 

and lignin. At this stage it is fruitless to mention all wavelengths highlighted by the t-test 

as the main purpose is to check the spectra for differences. As stated above, the key aspect 

of this result is that it shows there is a statistically significant difference between spectra 

containing different levels of 137Cs. It shows some of the wavelengths exhibiting difference 

are in regions of the spectrum known to be associated with certain foliar biochemicals 

(chapter two, table 2.1) however, before causality between foliar biochemicals and spectra 

can be investigated it is necessary to see if there is also a statistically significant difference 

between foliar biochemicals. This is to assess whether differences in spectra between 

varying levels of 137Cs correspond to differences in foliar biochemicals and are not due to 

other factors affecting spectral response. Prior to looking at differences between foliar 

biochemicals the t-test results from spectra grouped according to the lumber fuel wood 
limit are discussed. 
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Figure 5.4: Student's 6test for high versus low spectra using the lumber limit as a cut off point between low and high "'Cs levels. 

In the lumber wood grouping there are also statistically significant differences across the 

spectrum, again showing promise in the utilisation of imaging spectrometry as a 131Cs 

monitoring technique. The peak t-value is 794nm, again at the far end of the red edge 

shoulder. It is followed by 1926nm , an area of the spectrum controlled by oil according to 

the literature (Curran, 1989). In both the t-test using domestic fuel wood limits and the t- 

test using lumber wood limits, a similar pattern of statistically significant differences exist. 

From these t-tests the key result conveyed is that there are statistically significant 
differences between spectra from varying 137Cs levels which is crucial for remote sensing 

since no difference between spectra would render imaging spectrometry incompatible with 

monitoring 137Cs through the spectral response of vegetation. 

Differences across the spectrum are in regions controlled by pigmentation/photosynthesis, 

structure (lignin/cellulose), nitrogen and water. It appears that 137Cs may be having an 

effect on these key foliar biochemicals and in turn an effect across the spectrum. Before 

turning to correlation analysis, there is now a need to determine whether there are also 

statistically significant differences between key foliar biochemicals. 
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5.4 Assessing Differences between Key Foliar Biochemicals 

Central to this research was the accurate determination of key foliar biochemicals and 
whether such biochemicals were affected by 137Cs. Having seen in section 5.3 that there 

are statistically significant differences between spectra from Pinus sylvestris contaminated 

with relatively high and low levels of 137Cs, the next step is to see if statistically significant 
differences also exist between key foliar biochemicals. Since spectral response is partly a 

manifestation of foliar biochemical content and the spectral response has shown significant 
differences (chapter four, chapter 5, section 5.3) it follows that statistically significant 
differences between foliar biochemicals would be observed. It was important to check that 
differences did exist (partly as a method to check reliability of instrumentation) and to 

ascertain which biochemicals 137Cs may be impacting upon, and which parts of the 

spectrum this effect might be seen. Tables 5.4 and 5.5 show the results of two Student's t- 

tests between key foliar biochemicals. The Student's t-tests are for each grouping of 

contamination (domestic fuel wood and lumber limits). 

Biochemical + T-Value I 

Water (n=2 1) -0.52 
AD Fibre (n=2 1) 1.00 

Lignin (n=21) 2.11' 

Cellulose (n=21) -3.126 
Chlorophyll a (n=21) -0.35 
Chlorophyll b (n=21) -0.74 
Total Chlorophyll (n=21) -0.49 
Elemental N (n=10) 2.11' 
15N (n=10) 1.80 
137Cs (n=21) -6.52b 
Table J. 4: T-test between biochemicals which have been split up according to the domestic fuel wood limit (0.74Bq/g). Bold denotes t. 

value is indicative of a statistically significant difference. Superscript a orb indicate 95% and 99% confidence limits respectively. 

The domestic fuel wood limit grouping shows lignin, cellulose, elemental nitrogen and 
137Cs to have a statistically significant difference between high and low groups. At the 99% 

confidence interval cellulose and 137Cs exhibit statistically significant differences. It would 
be expected that 137Cs shows statistically significant differences as the groups have been 

organised by the level of 137Cs and if performed correctly, the Student's t-test should show 
this difference. In essence the "'Cs t-value provides a form of benchmark to add 
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confidence to the results obtained for other biochemicals. Despite the spectra showing 

statistically significant differences in regions shown to be associated with chlorophyll 

content (section 5.3, figures 5.3 and 5.4) the t-test on the biochemicals has not shown a 

significant difference between any of the chlorophylls, thus suggesting 137Cs may not be 

having a detectable effect on measured chlorophyll content, or is somehow indirectly 

affecting the red edge portion of the spectrum, but this does not manifest itself in measured 
differences in chlorophyll content. Red edge position was calculated for each sample using 
linear interpolation but there was no statistically significant difference between red edge 

positions. This may be through the causal relationship that exists between the foliar 

biochemicals, as described in the literature (e. g. Mutanga and Skidmore 2004) and shown 
through the inter-correlation of biochemistry in the descriptive statistics (section 5.2). 

Biochemical I T- Value I 

Water (n=4 1) -0.04 
AD Fibre (n=41) 2.63 b 

Lignin (n=41) 3.04 b 

Cellulose (n=41) -2.17' 
Chlorophyll a (n=4 1) 0.08 

Chlorophyll b (n=41) -0.39 
Total Chlorophyll (n=4 1) -0.09 
Elemental N (n=19) 2.01' 
15N (n=19) 3.99" 
137Cs (n=41) -7.72b 
Table . L5: T-test between biochemicals which have been split up according to the lumber wood limit (I. 8SBq/g). Bald denotes it-value is 

indicative of a statistically significant difference. Superscript a orb indicate 95% and 99% confidence limits respectively. 

In the t-test performed using the lumber wood limit as the cut off point, structural 

components (AD fibre, lignin and cellulose) as well as the two types of nitrogen (15N and 
elemental nitrogen) are highlighted as having statistically significant differences between 

the two groups. Once more 137Cs is shown as having statistically significant differences at 

the 99% confidence interval which again, would be expected given the way the 

biochemicals have been grouped according to 137Cs level. With this grouping having a 
higher level of 137Cs content as the cut off between high and low, there are additional 
biochemicals which show as being significantly different. In addition, some of the 

confidence levels for the biochemicals change. 15N and AD fibre have been highlighted as 

showing significant differences. 15N is significant at the 99% confidence interval, whilst 

cellulose and lignin have reversed their confidence intervals in this grouping with lignin 

76 



Chapter 5, Predicting "'Cs Levels from Spectra 

having a 99% confidence interval and cellulose lowering to a 95% interval. Elemental 

nitrogen has reduced to a 95% confidence interval whilst AD fibre is significant at the 99% 

confidence interval. This finding is reinforced by literature suggesting nitrogen and lignin 

are affected by137Cs (e. g. Willey and Tang 2006, Mykhaylo et al. 2005). 

Whilst the Student's t-test has exposed biochemicals that are significantly different 

between high and low contamination groupings, it has not identified whether the difference 

is due to 137Cs or at which parts of the spectrum 137Cs is having an impact on such 
biochemicals. To determine 137Cs impact on biochemicals and to ascertain which parts of 

the spectrum may be affected, the technique of partial correlation was employed. 

5.5 Partial Correlations to Determine 137Cseffects on Foliar Biochemicals 

As with the Student's t-test, partial correlation made use of first derivative spectra. This 

was again to make full use of the spectral data and not reduce spectral information though 

feature selection, which may lead to effects of 137Cs on foliar biochemistry and spectra 

being undiscovered. Partial correlation is a type of correlation analysis which measures the 

correlation coefficient between two variables, whilst holding the effects of a third variable 

constant (Nelson 1998). In essence, a third variable or effect is partialled out to ascertain 

what the correlation coefficient would be without the interference of the third variable. 

Figure 5.5 shows the conceptual basis for partial correlation and illustrates that three 

variables, x, y, and z may each be correlated with one another, but that there is an area 

where the relationship between each individual variable and another may be affected by 

the third variable. This area is coloured red in figure 5.5 and is the portion of the 

relationship which partial correlation attempts to isolate in order to see the relationship 

between two variables without the influence of the third. Raw, or standard Pearson 

correlation is known as zero order correlation while the correlation coefficient between 

two variables whilst holding the effects of a third constant is known as first order partial 

correlation. It is also possible to calculate second, third and higher orders of partial 

correlation whereby a number of effects are partialled out from the correlation coefficient. 

In this research, first order partial correlation was used to isolate the effect of 137Cs on each 

key foliar biochemical. The correlation analysis was between each of the key foliar 

biochemicals at every wavelength whilst holding the effect of137Cs constant (see figure 5.5 

caption). All samples were included in the partial correlation as the aim was to see if 137Cs 
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level had an effect on biochemicals and at what wavelength. Equation 5.1 shows how the 

partial correlation coefficient was calculated for each biochemical. 

Three correlations, 
each being intrinsically 
affected by one another. 

Partial correlation 
identifies region where 
third variable is affecting 
relationship and partials 
this effect out. 

Figure 5.5: Partial correlation partials out the eject of a third variable (shaded red) on the correlation coefficient (relationship) 

between two variables. At each wavelength, the three partial correlation variables are, 1. correlation between spectral reflectance and 
Joliar biochemistry 2. correlation between spectral reflectance and 1' Cs 3. correlation between "'Cs ans(%liar biochemistry. 

Interpretation of partial correlation results hinges on how different the partial correlation 

coefficient is from the original zero order correlation. Essentially, the partial correlation 

can be one of three things when compared to the original zero order correlation: 

" Identical (i. e. no change in correlation coefficient) 

0 The correlation coefficient increases 

0 The correlation coefficient decreases 

If the correlation is identical, it can be assumed that the variable partialled out is having no 

effect on the relationship (correlation) between the other two variables. If it increases it can 

be assumed that the partialled variable is suppressing the relationship and if it decreases it 

can be assumed the partialled variable is mediating the relationship. Partial correlation 

therefore statistically uncovers whether the partialled variable is: 

" having no effect on the relationship (variables are conditionally independent) 

" is mediating the relationship (variables are conditionally dependent) 

0 is suppressing the relationship (variables are conditionally dependent) 
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The results of partial correlation analysis are presented here as the difference between zero 

and first order partial correlation where 137Cs is the variable which has been partialled out. 
The correlation coefficients have been squared (coefficient of determination) and 
multiplied so they can be interpreted as percentages and then the first order partial 

correlation has been subtracted from the zero order correlation to give the percentage effect 
137Cs is having at each wavelength on a particular biochemical. The interpretation is that 

the difference shown in each graph represents the percentage of variance between a 
particular biochemical and spectral reflectance at a given wavelength that has been either 
suppressed (positive value) or mediated (negative value) by 137Cs. Whilst it was desirable 

to make a statistical comparison between the zero order and first order partial correlations 
(e. g. by using Hotelling's t-test for correlated correlations (Steiger 1980)) the zero order 

and first order partial correlations were in essence identical correlations (aside from the 

effect of 137Cs) and therefore no suitable statistical test was found to have existed. Making 

links to known absorption points by particular foliar biochemicals is undertaken, making 

use of table 2.1 (shown in chapter two). 

1)Z - 
(i )-ýrRý-ýr, ý 

J(1_r2xz) [equation 5.1] 

Equation 5.1: Calculating first order partial correlations to account for the effect of "'Cs on the relationship between spectral response 
and a particularfoliar biochemical. 

Figure 5.6 shows that there is very little (if any) difference between zero order and partial 

correlation for water. This adds validity to other results such as the t-tests for foliar 

biochemicals since they point to no difference between high and low contamination levels, 

thus also suggesting water and 137Cs are not linked. This is a useful finding since it rules 

out stress from water and a link to 137Cs. It also supports findings from the student's t-test 

on foliar biochemicals where it showed there was no statistically significant difference 

between water from relatively high and low contaminated Pinus sylvestris (section 5.4). 
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Figure 5.6: Difference between first order partial and zero order correlational each wavelength with the effect of '37 Cs being partialled 

out of the relationship between spectral response and water. 

Compared to water, there are some identifiable differences between zero and first order 

partial correlations for AD fibre (figure 5.7). At shorter wavelengths the difference is 

smallest and any differences seem to be negative, indicating 137Cs is mediating the 

relationship at these wavelengths. The spectral bands where differences exist do seem to be 

related to absorption by structural components of vegetation, hence the pattern is as might 

be expected for AD fibre, which is a measure of the structural components of the Pinus 

sylvestris needles. It also exhibits a very similar pattern to the partial correlation results for 

lignin and cellulose which might be expected given that AD fibre, lignin and cellulose are 

all inherently linked through the methodology used to measure them (chapter three, section 

3.3.7). This links to the foliar biochemical t-test result for the domestic fuel wood limit 

(section 5.4) which showed statistically significant differences between AD fibre split up 

according to ' 37Cs contamination levels. 
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Figure 5.7: Difference between first order partial and zero order correlation at each wavelength with the effect of"' Cs being partialled 

out of the relationship between spectral response and AD Fibre. 

For cellulose (figure 5.8) differences are greater than for the chlorophylls (figures 5.10, 

5.11 and 5.12), but not as large as the nitrogen differences (figures 5.13 and 5.14). The 

largest positive differences (suggesting 137Cs is acting to suppress the relationship between 

cellulose and spectral reflectance) are at 439nm (associated with chlorophyll a), 1259nm 

(associated with water, cellulose, starch and lignin) and 2308nm (associated with oil). The 

largest negative differences, which suggest 137Cs is mediating the correlation are at 540nm 

(associated with the accessory pigment phycoerythrobilin), 820nm, 1442nm (associated 

with starch, sugar, lignin and water) and 1816nm (associated with cellulose). Like the AD 

fibre result, the cellulose result is corroborated by the foliar biochemical t-test results 

which showed a statistically significant difference in both the lumber and domestic fuel 

wood groupings for cellulose. 
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Figure 5.8: Difference between first order partial and zero order correlation at each wavelength with the effect of"'Cs being partialled 

out of the relationship between spectral response and Cellulose. 

Partial correlation results for lignin are shown in figure 5.9 and exhibit a similar pattern to 

cellulose, but with slightly greater differences, and some shifts in which wavelengths 

display a difference. The greatest positive differences occur at 439nm and 621 nm 

(associated with chlorophyll), 857nm (associated with lignin), 906nm (associated with 

protein), 981 nm (associated with starch), 1260nm and 2181 nm (associated with protein 

and nitrogen). The largest negative values are at 807nm and 909nm (both associated with 

protein), 1445nm (associated with starch, sugar, lignin and water), 1682nm and 1942nm 

(associated with lignin), 2129nm and 2303nm (associated with protein). Many of these 

wavelengths highlighted by the partial correlation as having the relationship between 

spectral reflectance and lignin affected by 137Cs are in areas of the spectrum associated 

with structural components of vegetation. So far, the results from the partial correlation 

have demonstrated that 137Cs has very little (if any) effect on the relationship between 

water and spectral reflectance. The structural components (i. e. AD fibre, cellulose and 

lignin) do seem to have their relationships mediated or suppressed by 137Cs at certain 

wavelengths which are associated with structural areas of the electromagnetic spectrum. 

These results also fit with the results of the foliar biochemical t-tests which demonstrate 

that there is no statistically significant difference between water based on groups of Pinus 

sylvestris spectra split up according to 137Cs contamination level but that there are 

significant differences between the structural components. 
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Difference Between Zero Order and Partial Correlations for Lignin 
(Partial Controlling for 17Cs) 
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Figure 5.9: Difference between first order partial and zero order correlational each wavelength with the effect of "'Cs being partialled 

out of the relationship between spectral response and Lignin. 

For total chlorophyll (figure 5.10) difference between zero order and partial correlation are 

very small and smaller than the differences shown by the structural biochemicals. The 

largest difference is negative at 540nm which is associated with the region of the spectrum 

controlled by pigmentation and suggests 137Cs is slightly mediating correlation at this 

wavelength. The largest positive difference is at 849nm. Whilst the differences shown are 

small, the nosiest part of figure 5.10 is in the chlorophyll region which would be expected 

given that the partial correlation is attempting to isolate the effect 137Cs is having on 

spectral reflectance and total chlorophyll concentration. Once again, the results from the 

partial correlation echo the biochemical t-test results which show that total chlorophyll is 

not significantly different between 1 37Cs contamination levels. 
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Figure 5.10. " Difference between first order partial and zero order correlation at each wavelength with the effect of "'Cs being 
partialled out of the relationship between spectral response and total Chlorophyll. 

Results for chlorophyll a mirror the patterns in the results from total chlorophyll and 

chlorophyll b (figures 5.10 and 5.12). Differences between partial and zero order 

correlation are on the whole, slightly lower than for chlorophyll b. The greatest negative 

difference is identical to total chlorophyll and chlorophyll b and lies at 540nm whilst the 

greatest positive differences are at slightly longer wavelengths than chlorophyll b and are 

at 849nm and 2100nm (associated with starch and cellulose). 
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Figure 5.11: Difference between first order partial and zero order correlation at each wavelength with the effect of 'j 7Cs being 
partialled out of the relationship between spectral response and Chlorophyll a. 

The largest difference for chlorophyll b is at 540nm and is associated with the accessory 

pigment phycoerythrobilin. This difference is still relatively small in comparison to the 

structural biochemicals and the two nitrogen isotopes. Other negative differences, again 
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small in comparison, are at 1445nm (associated with starch, sugar, lignin and water) and 

1942nm (associated with water, lignin, protein, nitrogen, starch and cellulose). The largest 

positive differences occur at 826nm and 2043nm. Results for all three chlorophylls (a, b 

and total) are small in comparison to the structural biochemicals and the results from the 

two nitrogen biochemicals (figures 5.13 and 5.14). Like all the biochemicals discussed so 

far in the partial correlation results, the results correspond well with the foliar biochemical 

t-test which has shown that none of the chlorophylls have significant differences between 

them when grouped according to 137Cs level using both the lumber and domestic fuel wood 

limits. 

Difference Between Zero and Partial Correlations for Chl b 

(Partial Controlline for "'Cs) 
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Figure 5.12: Difference between first order partial and zero order correlation at each wavelength with the effect of 137Cs being 

partialled out of the relationship between spectral response and chlorophyll b. 

137Cs has the largest impact on the relationship between elemental nitrogen and spectral 

reflectance in the chlorophyll/pigmentation region of the spectrum. Given that elemental 

nitrogen is a component of chlorophyll (Tanaka and Tanaka 2006) this is perhaps not 

surprising. The largest differences are negative, suggesting 137Cs is a mediator of the 

correlation between elemental nitrogen and spectral reflectance. The largest negative 

differences are at 552nm (associated with chlorophyll) and 794nm. Largest positive 

differences are at 437nm (associated with chlorophyll), 577nm (associated with 

chlorophyll), 1677nm (associated with protein, lignin, starch and nitrogen) and 2209nm 

(associated with protein). The differences are relatively larger than for water or the 

chlorophylls suggesting 137Cs might be having an impact upon nitrogen and manifesting 

itself in spectral reflectance (discussed further in chapter eight, section 8.3). The foliar 

biochemical t-tests shown in section 5.4 indicate that there is a significant difference 

85 

-6 -- -- 
400 900 1400 1900 2400 

Wavelength (nm) 



Chapter 5, Predicting 137 Cs Levels from Spectra 

between elemental nitrogen in both the lumber and domestic fuel wood 137Cs groupings 

which seems to be reproduced in these partial correlation results. 

Difference Between Partial and Zero Order Correlations for Elemental 

Nitrogen (Partial Controlling for "'Cs) 
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Figure 5.13: Difference between first order partial and zero order correlation at each wavelength with the effect of "'Cs being 
partialled out of the relationship between spectral response and elemental nitrogen. 

For 15N (figure 5.14) the largest differences are, as might be expected, in the region of the 

electromagnetic spectrum associated with nitrogen absorption. The largest differences are 

positive suggesting that ' 37Cs is acting as a suppressor to the correlation between ' 5N and 

spectra, namely at wavelengths such as 432nm (associated with chlorophyll a), 1545nm 

(associated with starch and cellulose), 1768nm (again associated with cellulose and starch), 

1846nm (associated with cellulose and starch), 2062nm (associated with nitrogen) and 

2322nm (associated with starch). Negative differences suggest 137Cs is mediating the 

correlations at 1436nm (associated with lignin and starch) and 1809nm (associated with 

cellulose). In comparison with all the other foliar biochemicals 15N has a much greater 

difference between its zero order and partial correlations. In the foliar t-test domestic fuel 

wood grouping 15N is not shown to have statistically significant differences yet in the 

lumber wood group is statistically significant at the 99% confidence interval. This suggests 

there may be a cut off point or certain level of137Cs required to have an effect on 15N. The 

relatively large impact which 137Cs appears to have upon the relationship between spectral 

reflectance and 15N is interesting as there is evidence that ' 37Cs uptake and nitrogen are 
linked (Willey and Tang, 2006). 
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Difference Between Zero Order and Partial Correlations for 15N (Partial 

Controlling for 137Cs) 
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Figure 5.14: Difference between first order partial and zero order correlation at each wavelength with the effect of "'Cs being 

partialled out of the relationship between spectral response and 15N. 

Partial correlation results have shown 137Cs has very little impact on the correlation 

between water and the three chlorophylls. Water appears to be conditionally independent 

from 137Cs. The structural biochemicals (AD fibre, cellulose, lignin) and two nitrogen 

isotopes have the largest differences between zero order and partial correlation with ' 5N 

showing the largest differences of all biochemicals. The wavelengths where 137 Cs has any 

impact appear to be as expected in terms of where in the electromagnetic spectrum they lie 

in relation to the particular biochemical. The results also concur with the foliar t-test 

performed in section 5.4 where the biochemicals with a statistically significant difference 

were also the structural biochemicals and two nitrogen isotopes. Whilst correlation does 

not measure causation it remains a very good indicator of interactions between variables 

(Raghuraj-Rao and Lakshminarayanan 2007) hence the correlation combined with the 

Student's t-tests seem to so far indicate that: 

" There are statistically significant differences between spectra from different 

contamination levels. 

" There are statistically significant differences between some key foliar 

biochemicals, namely the structural biochemicals (AD fibre, lignin, cellulose) and 

87 

-6 -- 
400 900 1400 1900 2400 

Wavelength (nm) 



Chapter 5, Predicting "'Cs Levels from Spectra 

the two nitrogen isotopes (15N, elemental nitrogen) which have been split up 

according to 137Cs contamination levels. 

0 Partial correlation has shown that 137Cs appears to be having an impact on the 

relationship between spectral reflectance and the same foliar biochemicals 

identified in the foliar t-tests. 

The next step in the research is to identify whether the spectral reflectance can be used to 

predict these key foliar biochemicals before moving on to finally consider whether the 

foliar biochemicals can be used to infer 137Cs contamination levels. Whilst it may seem 

best practice to focus on only the biochemicals identified as being significant in the t-tests 

and partial correlations, attempting to predict other biochemicals acts as a benchmark and 
helps to ascertain whether foliar biochemicals that are not conditionally independent from 

137Cs are harder to predict than those which are affected by 137Cs. 

5.6 Prediction of Foliar Biochemicals from Spectra 

5.6.1 Stepwise Multiple Linear Regression 

In the literature (chapter two) foliar biochemical absorption has been related to specific 

areas of the electromagnetic spectrum (e. g. Curran 1989) however absorption from 

different plant materials is similar and overlapping, meaning a single absorption band 

cannot always be isolated and directly related to a particular biochemical content (Kokaly 

and Clark 1999). This has resulted in the use of statistics in attempt to select spectral 

wavebands, which are causally and strongly related to biochemical content and which can 

in turn be used to predict foliar biochemical content (e. g. Jacquemoud et al. 1995, Kokaly 

and Clark 1999). This in turn would allow the possibility of predicting foliar biochemistry 

from imaging spectrometry and depending on the relationship between 137Cs and foliar 

biochemicals may allow 137Cs content to be determined from an image. 

One such statistical technique which has been commonly used in the literature (e. g. 
Mutanga et al. 2005, Kokaly and Clark 1999, Jacquemoud et al. 1995, Curran et al. 2001) 

is stepwise multiple linear regression (SWMLR). SWMLR has its roots in laboratory based 
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near infrared spectroscopy (Barton 2002) and is often used by many laboratories in place 

of analytical chemical techniques when determining composition of dried ground 

vegetative samples (Williams and Norris 1987). The technique works by fitting an 

observed dependant variable (e. g. concentration of a particular foliar biochemical) using a 
linear set of independent variables (e. g. FDR at a number of discrete wavelengths) (Kokaly 

and Clark 1999). The process moves in a stepped fashion (hence its title) either entering or 

removing variables into the regression equation based on user-defined significance 

probabilities. Wavelengths most highly correlated with the dependent variable are added to 

a regression equation, the second wavelength is then added based on partial correlations 

with all other wavelengths and the wavelength with the highest partial correlation is added 
to the equation (Ourcival et al. 1999). The process continues until no further improvement 

in the R2 value is made. Following the addition of each wavelength, every regressor is 

reassessed and may be added or removed depending on its contribution to the regression 

equation. The direction of the stepwise process can be forwards (where the regressors most 
improving the model's fit are brought in), backwards (where regressors which affect the 

regression fit the least are removed) and finally, mixed, which is a combination of forward 

and backward processes iterated until no more regressors can be entered or removed from 

the regression equation, again based upon the significance levels set by the user. 

Stepwise regression is not without problems and one of its worst attributes is that it is 

known to overfit data, especially when the number of predictors is greater than the number 

of observations (Foster and Stine 2006). This is particularly so with applications of 

stepwise regression to spectroscopy since it is common for there to be many more 

predictors (i. e. wavelengths) than observations. Harrell (2006) goes on to describe several 

additional problems associated with the use of stepwise regression procedures, some of 

which are: 

" It yields R2 values which are biased towards being too high. 

" It has problems in the presence of colinearity. 

" It allows the analyst not to think about the problem. 

" Models identified by stepwise procedures have a high likelihood of capitalising on 
chance features and often fail when applied to new datasets and are rarely tested 

this way. 

89 



Chapter 5, Predicting "'Cs Levels from Spectra 

Despite this, the technique is commonly used and several papers in the remote sensing 
domain demonstrate successful use of SWMLR in predicting foliar biochemicals (e. g. 
Jacquemoud et al. 1994, Curran 2001, Mutanga et al. 2004). Attempts were made to 

minimise these problems and were considered when analysing results. 

In this research SWMLR was used to attempt prediction of each key foliar biochemical. 
137Cs was included as a biochemical in this analysis to see whether 137Cs could be 

predicted directly from spectral reflectance. The procedure was undertaken using JMP 6 

statistical software from SAS institute. Mixed stepwise regression was performed (a 

combination of forward and backward modes) and the entry and exit probabilities (f- 

values) for each variable were set at 0.15 according to levels recommended by Grossman 

et al. (1996). To check the predictive power of wavebands chosen by the procedure, a third 

of the data was held back from the regression procedure (according to Grossman et al. 
1996) and used to test accuracy (see table 5.2 for number of samples). To verify that 

predictions were not spurious a randomised set of data was created from the original data 

by randomising the association between foliar biochemical and spectral response. 
Randomisation was conducted using a similar procedure to that described in Grossman et 

al. (1996) whereby a random set of numbers were generated and used as a sort key to 

randomise the order of the biochemicals. The randomised biochemicals were then assigned 

to the spectral data to create an artificial dataset which contained no real relationships 

between biochemical and spectral response. Stepwise regression was then performed on 

this randomised dataset to see how well it performed in comparison to the real dataset. 

This randomisation helped to avoid the pitfall identified by Harrell (2006) where stepwise 

regression capitalises on chance features in the data. The use of a training and testing 

dataset as well as the randomised dataset was undertaken in order to try to minimise some 

of the key problems associated with stepwise regression. 

Table 5.6 shows the results from the stepwise regressions. All wavelengths have been used 

(i. e. stepwise regression was unconstrained) and the stepwise procedure has selected the 

most suitable wavelengths for the regression model. In each case the quantity of 

wavebands was not allowed to surpass one-fifth the number of observations to prevent 

overfitting (Thenkabail el al. 2004a). The stepwise procedure was performed on four 

transformations of the spectra (each described in chapter three); absolute reflectance, first 

derivative spectra (FDS) and the two continuum removed transformations, band depth 
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normalised-to-area (BDNA), and band depth normalised-to-centre (BNC). This was 

undertaken since Kokaly and Clark (1999) and Curran et al. (2001) show that continuum- 

removed reflectance is often able to predict certain biochemicals with a higher accuracy 

than absolute reflectance or first derivative spectra. 

Absolute FDS BDNA BNC 

Reflectance 

Biochemical Regression Validation Regression Validation Regression Validation Regression Validation 
R= R R2 R R= R R2 R 

Water 0.70b 0.60b 0.96b 0.58b 0.90b 0.52b 0.65b 0.65b 

AD Fibre 0.77b 0.25 0.89b 0.04 0.49b 039' 0.29 0.21 
Lignin its ns 0.90b 0.21 0.45b 0.52b 0.66b 0.34' 
Cellulose its ns 0.91b -0.06 0.67b 0.19 0.54b 0.28 

Chia 0.70b 0.5lb 0.93b 0.49b 0.85b 0.38' 0.73b 0.69b 

Chi b 0.846 0.44b 0.95b 0.53b 0.92b 0.53b 0.796 0.68b 
Total Chi 0.79b 0.53b 0.94b 0.54b 0.93b 0.446 0.68b 0.70b 

Elemental N 0.34 0.13 0.866 -0.12 0.6lb 030 0.32 0.16 
'5N 0.636 0.706 0.88b 0.42 0.716 0.48' 0.62b 0.33 
137Cs 0.30 -0.11 0.916 0.08 0.62b 0.14 0.58b 0.09 

ns = no significant R2 or R significant at 95% confidence "=significant at 99% con fidence 

Table 5.6: Results from unconstrained regressions on four transformations of the spectra. Bold type denotes the highest predictive 

power amongst the different spectral transformations. 

The results shown in table 5.6 are organised according to the transformation of the spectra. 
Each transformation contains two columns. The first column shows the regression R2 and 
illustrates the goodness of fit between the data and the regression model for the particular 
biochemical. The second column pertains to the validation of the regressions using the 

testing data set. The validation was performed on data excluded from the model creation 

and is the correlation coefficient between the actual excluded data and the values predicted 
for those excluded data by the regression model. 

In terms of the regression RZ value, stepwise regression performs well in most 

transformations of the spectra. FDS and BDNA have R2 values statistically significant at 

the 99% confidence interval for every biochemical. This is followed by BNC which fails to 

model AD fibre or elemental nitrogen at statistically significant levels. Absolute 

reflectance is worst and fails to predict lignin, cellulose or elemental nitrogen. The 

biochemicals which are unable to be significantly predicted by BNC or absolute 
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reflectance are those that are shown to be conditionally dependent (i. e. affected by 137Cs) 

in the partial correlations from section 5.4. This perhaps suggests that the effect of 137Cs on 

some of the biochemicals makes their prediction more difficult. Interestingly FDS, BDNA 

and BNC are able to model 137Cs content at a statistically significant level. At 137Cs 

prediction, FDS performs best with an R2 of 0.91 followed by BDNA and BNC. Looking 

solely at the ability of the stepwise procedure to model the data is however, flawed in two 

ways. These are both akin to problems suggested with the stepwise method described 

above. These two problems are: 

0 The model rarely fits other data (i. e. the model has power of description but not 

prediction). 

0 The analyst does not think about the problem. 

To overcome these issues, the validation of the model using the testing data set was 

performed. This allowed the overall research problem to be thought about (i. e. that simply 
describing the data but not having predictive power was not enough for this study) and 

therefore the validation of the testing data allowed the true predictive power of the 

regression model to be realised. As a further failsafe, the randomised dataset results were 

compared to the real results. 

Results for predictive power of the regression models are discussed for each biochemical 

as well as the presentation of the wavebands selected by the stepwise procedure for each 

regression model. 

5.6.1.1 Water 

For water, predictive power is relatively high in each transformation of the spectra. BNC 

performs best with an R value (correlation between predicted and actual value) of 0.65 

whilst BDNA performs least well. Predictions from each transformation of the spectra are 

statistically significant at the 99% confidence interval. This is in contrast to results from 

the t-tests and partial correlations where water was not statistically significant and not 
identified as being impacted upon by 137Cs. It implies that 137Cs is not having an effect on 

water and in turn is not affecting the ability to predict it from spectral reflectance. Table 
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5.7 shows the wavelengths identified by SWMLR for the water model. Only wavelengths 
from the spectral transformation with the highest predictive power are shown, however full 

tables of selected wavelengths are available in the appendices. 

Waveband Selected Biochemical R2 (Descriptive 

(nm) Association Power) 

1301 Unattributable 0.38 

1427 Lignin 0.49 

969 Water, starch 0.55 

1426 Lignin 0.60 

1470 Nitrogen/protein 0.61 

1268 Cellulose 0.62 
1270 Cellulose 0.63 

1471 Nitrogen/protein 0.65 

Table S. 7: BNC wavelengths selected by the stepwise procedure for use in the water regression model. Incremental changes in R2 are 

shown based on the addition of each waveband. 

The majority of wavelengths selected cannot be causally linked to water content. One band 

selected is within lnm of the 970nm water absorption waveband. The majority of the other 
bands selected are associated with structural components of the plant. There are no 

wavebands selected at short wavelengths. This is unsurprising as the longer wavelengths 

are associated with water content. In short, whilst wavebands selected give a reasonable 

prediction accuracy of the testing data set, there is a lack of causality associated with the 

wavebands selected by the stepwise process. 

5.6.1.2 AD Fibre 

AD fibre has greatest predictive ability using BDNA with an R value of 0.39 (table 5.6). 

Whilst this is a lower accuracy than water it is significant at the 95% confidence interval. 

The two continuum-removed reflectances provide best predictive ability but only BDNA is 

able to predict in a statistically significant way. FDS has a high R2 value indicating the 

model can describe existing data but fails when applied to new information. From a remote 

sensing perspective, predictive power is key to enable vegetation status (137Cs) to be 

inferred. 
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Waveband Selected Biochemical R (Descriptive 

(nm) Association Power) 

2020 unattributable 0.18 

904 protein 0.27 

910 protein 0.36 

960 Starch 0.44 

964 Water, starch 0.47 

956 Unattributable 0.49 

Table 5.8: BDNA wavelengths selected by the stepwise procedure J 

are shown based on the addition of each waveband 

use in the AD fibre regression model. Incremental changes in R2 

Aside from one long wavelength at 2020nm, the majority of wavelengths selected are 

around 900nm and associated with protein and starch. These are wavelengths which might 

be expected for AD fibre. The first waveband (2020nm) which adds the greatest weight to 

the regression model is unattributable, again highlighting the inability to infer causality 

from model results. Unlike water, AD Fibre is shown in the partial correlations (section 

5.5) to be conditionally dependent on 137Cs and this may explain why predictive power for 

AD fibre is relatively low and is only statistically significant in one transformation of the 

spectra. 

5.6.1.3 Cellulose 

Cellulose is harder to predict than AD fibre with none of the spectral transformations 

giving statistically significant predictive power (table 5.6). Absolute reflectance fails to 

provide any significant model at all, whilst FDS, BDNA and BNC provide a decreasing 

descriptive ability respectively. 
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Waveband Selected Biochemical Association R (Descriptive 

(nm) Power) 

1440 Starch, sugar, lignin, water 0.24 

1206 Water, cellulose, starch, lignin 0.38 

2057 Protein, nitrogen 0.47 

799 unattributable 0.54 

2356 Cellulose, protein, nitrogen 0.60 

2210 unattributable 0.65 

1773 Cellulose, sugar, starch 0.69 

2099 Starch, cellulose 0.72 

2079 Sugar, starch 0.77 

1789 Cellulose, sugar, starch 0.80 

1765 lignin 0.83 

2024 unattributable 0.86 

1937 Water, lignin, protein, nitrogen, 0.88 

starch 
434 Chlorophyll a 0.90 

2342 cellulose 0.91 

Table 5.9: FDS wavelengths selected by the stepwise procedure for use in the cellulose regression model. Incremental changes in R: are 

shown based on the addition of each waveband. Whilst the model has high descriptive ability in the form of an R? of 0.91, it cannot 

predict significantly when applied to the testing data. 

The wavebands chosen for cellulose appear to be generally related to cellulose and its 

constituents (e. g. lignin, starch). Some of the wavebands are unattributable, again 
hampering inference of causality. In the foliar biochemical t-test (section 5.4) aside from 
137Cs, cellulose had the greatest t-value and was the only biochemical in the domestic fuel 

wood grouping to be significantly different at the 99% confidence interval. It is pertinent 

that this biochemical has not been able to be successfully predicted yet is statistically 

different based on 137Cs contamination levels. 

5.6.1.4 Lignin 

Like cellulose, absolute reflectance is unable to provide any significant model when 

utilising absolute reflectance. FDS provides greatest descriptive power (table 5.6) with an 

R2 of 0.90 but fails to predict when applied to testing datasets. The continuum-removed 

reflectances both provide statistically significant predictive ability, though BDNA is 

greatest with an R of 0.52. Whilst this is higher than AD fibre and better than cellulose (for 
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which there was no significant predictive ability) it is not as high as water, which has been 

shown to be conditionally independent of 137Cs content. 

Waveband Selected Biochemical it'-(--Descriptive 

(nm) Association Power) 

2020 Unattributable 0.18 

530 Chlorophyll 0.28 
904 Protein 0.34 

910 Protein 0.38 

915 Protein 0.42 

1466 Starch, sugar, lignin, 0.45 

water 
Table 5.10: BDNA wavelengths selected by the stepwise procedure for use in the lignin regression model. Incremental changes in R: are 

shown based on the addition of each waveband. 

5.6.1.5 Total Chlorophyll 

Total chlorophyll was described and could predict at the 99% confidence interval for every 
transformation of the spectra. FDS had the highest descriptive ability but BNC had the 

greatest predictive ability when applied to the testing dataset, with an R value of 0.70 

(table 5.6), the highest prediction R value of the biochemicals discussed so far. 

Waveband Selected (nm) I Biochemical Association R` (Descriptive Power) 

1341 Unattributable 

552 Chlorophyll 
910 Protein 

905 protein 

2051 Protein, nitrogen 
1052 Oil 

531 Chlorophyll 

909 Protein 

901 Protein 

0.22 

0.42 

0.50 

0.56 

0.59 

0.62 

0.65 

0.67 

0.68 

Table 5.11: BNC wavelengths selected by the stepwise pr 
in R? are shown based on the addition of each waveband. 

use to the total chlorophyll regression model. Incremental changes 

Wavebands chosen by the stepwise procedure include some wavebands directly 

attributable to chlorophyll, with the majority at regions associated with protein at around 
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900nm. This again highlights the limitations to causality associated with unconstrained 

stepwise regression. 

5.6.1.6 Chlorophyll a 

Chlorophyll a follows a similar pattern to total chlorophyll in terms of prediction and 
description. FDS again gives the highest model R2 of 0.93 and BNC gives the highest 

predictive power with an R value of 0.69, which is statistically significant at the 99% 

confidence interval. BDNA performs least well in predictive ability. The use of different 

transformations of the spectra with each one providing differences in their power to model 
biochemicals is corroborated by Kokaly and Clark (1999) and Curran et al. (2001). 

Waveband Selected (nm) I Biochemical Association R` (Descriptive Power) 

552 Chlorophyll 0.44 

916 Protein 0.51 

531 Chlorophyll 0.55 

1899 Starch 0.59 

913 Protein 0.63 

1302 Unattributable 0.66 

1305 Unattributable 0.67 

1304 Unattributable 0.69 

1309 Unattributable 0.70 

905 Protein 0.72 

910 Protein 0.73 

Table 3.12: BNC wavelengths selected by the stepwise procedure for use in the chlorophyll a regression model. Incremental changes in 

R2 are shown based on the addition of each waveband. 

Two of the top three wavebands chosen by the stepwise procedure can be directly 

attributed to chlorophyll (531nm and 552nm), which when combined with the relatively 

high predictive ability adds confidence to the technique and the ability of using spectral 

reflectance to predict chlorophyll a. The majority of other wavebands chosen are 

associated with protein or are unattributable. 
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5.6.1.7 Chlorophyll b 

Like the other two chlorophylls discussed so far, chlorophyll b has statistically significant 
models and predictions for all transformations of the spectra. Once again, FDS has the 
highest model R2 and BNC has the greatest predictive R value of 0.68 (lowest of the three 

chlorophylls). The similarity in modelling and prediction of the three chlorophylls is to be 

expected since they are intrinsically linked by the methodology used for their assay 
(chapter three, section 3.3.6). 

Waveband Selected Biochemical R` (Descriptive 

(nm) Association Power) 

1336 Unattributable 0.22 

645 Chlorophyll b 0.37 

1974 Starch 0.43 

695 Chlorophyll, red edge 0.47 

723 Red edge region 0.59 

905 Protein 0.62 

1443 Starch, sugar, lignin, 0.65 

water 
1302 Unattributable 0.69 

1901 Starch 0.71 

1306 Unattributable 0.73 

1064 Nitrogen/protein 0.74 

912 Protein 0.76 

924 Oil 0.77 

926 Oil 0.78 

923 Oil 0.80 
Table 5.13: BNC wavelengths selected by the stepwise procedure for use in the chlorophyll b regression model. Incremental changes in 

R2 are shown based on the addition of each waveband. 

Some of the wavelengths selected are directly attributable to chlorophyll b or the 

chlorophyll region of the spectrum. Many are unattributable or linked to other 
biochemicals which again starts to prevent causation and may be why there is a divergence 

between the power of the regression models and their ability to predict. So far, the 

chlorophyll models have had the highest predictive ability of the biochemicals. Water and 

the chlorophylls have both had similar levels of predictability and are all biochemicals 

which are shown in the foliar t-tests (section 5.4) not to be significantly different between 
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groupings based on 137Cs contamination levels. This suggests that 137Cs may be inhibiting 

the ability to predict biochemicals affected by it. 

5.6.1.8 Elemental Nitrogen 

Elemental nitrogen has statistically significant models only for FDS and BDNA spectra. It 

has no statistically significant predictive abilities for any of the spectral transformations. 

When linking this to the foliar t-test and partial correlations it is a biochemical with 

significant differences between groupings of high and low 137Cs content in both the 

domestic fuel and lumber wood groupings (section 5.4) and is shown by partial correlation 

to be conditionally dependent on 137Cs (section 5.5). Like the structural biochemicals (AD 

fibre, cellulose, lignin) elemental nitrogen is a biochemical which appears to be affected by 

137Cs and in turn cannot be predicted from the spectra. 

Waveband Selected (nm) I Biochemical Association R` (Descriptive Power) 

785 unattributable 0.32 

674 Chlorophyll a 0.48 

1233 unattributable 0.59 

1928 Water, lignin, protein, nitrogen, starch, cellulose 0.70 

1223 cellulose 0.78 

1457 Starch, sugar, lignin, water 0.82 

1814 cellulose 0.86 

Table 5.14: FDS wavelengths selected by the stepwise procedure for use in the elemental nitrogen regression model. Incremental 

changes in Rz are shown based on the addition of each waveband. 

None of the wavelengths selected by SWMLR (table 5.14) are directly attributable solely 

to nitrogen and most are not attributable to nitrogen at all. This may explain why the model 

has relatively good descriptive power (R2) in comparison to predictive power when applied 

to the testing data set. 

5.6.1.915N 

Unlike elemental nitrogen, '5N has some statistically significant predictive models. These 

are derived from absolute reflectance and BDNA spectra. Absolute reflectance has the 

highest predictive power with an R of 0.70. Description of '5N by the regression models is 
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significant for all transformations of the spectra. This is surprising given the pattern so far 

in terms of 137Cs impacts, which seem to impede predictive ability in some biochemicals. 

Partial correlations (section 5.5) showed that the relationship between spectral reflectance 

and 15N was the one most affected by 137Cs. This is promising as if 15N can be successfully 

predicted from spectra and crucially has a relationship with 137Cs level it may allow the use 

of the spectra to predict137Cs. 

Waveband Selected I Biochemical Association R` (Descriptive 

(nm) Power) 

1694 Lignin, starch, protein, 0.16 

nitrogen 

1412 water 0.54 

1695 Lignin, starch, protein, 0.59 

nitrogen 

1331 unattributable 0.63 

Table 5.15: Absolute Reflectance wavelengths selected by the stepwise procedure for use in the '-N regression model. Incremental 

changes in R' are shown based on the addition of each waveband. 

Only four wavebands were chosen for this model, two of which can be attributed to 

nitrogen. Of the other two, one is unattributable and the other attributable to water. 

5.6.1.10 137Cs 

Table 5.6 shows that FDS and BNC spectra produce statistically significant models for 

137Cs, but fall down completely when applied in a predictive fashion to the testing data set. 

As expected, this result precludes using unconstrained stepwise regression to predict 137Cs 

directly from spectral reflectance and therefore prediction hinges on whether 137Cs can be 

predicted indirectly from the foliar biochemicals. Before testing this, other statistical 

prediction methods are trialled to see if prediction accuracy can be enhanced, however 

prior to these additional methods, SWMLR results using the randomised data set are 

presented to assess the validity of the stepwise results so far. 
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Waveband Selected Biochemical Association R (Descriptive 

(nm) Power) 

1928 cellulose 0.16 
1947 Water, lignin, protein, nitrogen, starch, 0.24 

cellulose 

2188 Protein, nitrogen 0.45 

417 Chlorophyll a 0.51 

1432 lignin 0.60 

2369 unattributable 0.65 

435 Chlorophyll a 0.69 
2195 Protein, nitrogen 0.74 

2234 cellulose 0.77 

2121 protein 0.80 

2148 unattributable 0.83 

2061 Protein, nitrogen 0.85 

1454 Starch, sugar, lignin, water 0.86 

982 starch 0.89 

2225 cellulose 0.91 
Table 5.16: FDS wavelengths selected by the stepwise procedure for use in the J370 regression model. Incremental changes in R2 are 

shown based on the addition of each waveband. 

Wavebands chosen by SWMLR for the 137Cs regression model (table 5.16) are on the 

whole associated with cellulose and nitrogen. This links to other results so far (foliar 

biochemical t-tests, partial correlations) which suggest 137Cs is affecting ability to predict 

these biochemicals. 

5.6.2 Testing Validity of Stepwise Regression using Randomised Data 

Table 5.17 shows the results for unconstrained stepwise regressions performed on the 

randomised data for each biochemical. The stepwise procedure was identical to that 

described in section 5.6.1 other than using the randomised relationship between 

biochemical data and spectral response. 
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Absolute Reflectance FDS BDNA BNC 

Biochemical Regression 

R2 

Validation 

R 

Regression 

R' 

Validation 

R 

Regression 

R2 

Validation 

R 

Regression 

R' 

Validation 

R 

Water 0.39 0.03 0.92 -0.17 0.10 0.08 0.42 0.00 

AD Fibre ns ns 0.88 -0.25 0.40 -0.22 0.31 0.10 

Lignin ns ns 0.83 0.26 0.44 -0.31 0.38 0.28 

Cellulose ns ns 0.79 -0.03 0.66 -0.04 0.45 -0.02 
Chi A 0.08 0.20 0.86 0.10 0.68 -0.05 0.49 -0.23 
Chi B 0.06 0.18 0.81 -0.03 0.68 -0.03 0.25 0.01 

Total Chi 0.07 0.19 0.89 0.10 0.64 0.00 0.45 0.02 

Elemental N ns ns 0.91 -0.00 0.37 0.40 0.30 0.22 

N 0.08 0.07 0.88 -0.09 0.26 0.20 0.11 -0.10 
Cs-137 0.30 0.05 0.88 -0.14 0.52 0.50 0.46 0.02 

ns no significant R or R 

Table 5.17: Results from unconstrained regressions using randomised datasetsJromJour transformations of the spectra. 

Descriptive and predictive power of the models is on the whole orders of magnitude lower 

than when using the real data set. This adds confidence that the stepwise procedure is 

identifying real relationships in the data and selecting appropriate wavebands to model 

those relationships. Worryingly, FDS have relatively high R2 values but these fall down 

when applied to the testing data set. This highlights the need for a testing data set and 

supports Harrell's (2002) view that SWMLR can often capitalise on chance features of the 

data. 

Overall, unconstrained stepwise regression on the real data has chosen wavebands which 

are able to predict foliar biochemical contents with comparable accuracies to other studies 

(e. g. Mutanga et al. 2003, Curran et al. 2001). Although some bands selected by the 

regression are close to known absorption points for the particular foliar biochemical, the 

bands are, on the whole, unique to the current dataset meaning there is a lack of causality 

and repeatability in the technique. Causality and repeatability are important when 

attempting to use spectra collected from remote sensing platforms to try to predict 

biochemicals and ultimately 137Cs. Dawson et al. (1995) have demonstrated that the use of 

forced entry stepwise regression with bands known to be associated with particular foliar 

biochemicals can bypass the hindrance to causality associated with unconstrained stepwise 

regression. 
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5.6.3 Determining Causality with Forced Entry Stepwise Regression 

Problems with unconstrained regression often centre on the lack of causality between the 
biochemicals and chosen wavelengths for the regression model. In constrained (or forced 

entry) regression, wavelengths known to be associated with particular biochemical 

absorption points were entered into regression equations along with wavelengths identified 

in the partial correlations (section 5.5). These wavelengths were entered simultaneously to 
force a regression and taken out sequentially based on changes in the f-values. In table 5.18 
below, four transformations of the spectra are used (described in chapter three, section 

3.3.2) and again are validated using a testing data set which was excluded from the 

creation of the regression models. Since the literature does not provide absorption bands 

for AD fibre of 137Cs, these biochemicals were not used in the constrained regressions. 

Absolute Reflectance FDS BDNA BNC 

Biochemical Regression 

R2 

Validation 

R. 

Regression 

RZ 

Validation 

R 

Regression 

R2 

Validation 

R. 

Regression 

R2 

Validation 

R 

Water 0.55 0.64 0.51 0.68 0.65 0.52 0.49 0.77 

Lignin 0.80 0.29 0.79 0.36' 0.37 0.27 0.43 0.43 

Cellulose 0.67 0.43 0.74 0.22 0.50 0.53b 0.49 0äS 

Chia 0.63 0.61 0.63 0.56 0.66 0.38' 0.49 0.68 

Chi b 0.68 0.57 0.63 0.53 0.62 0.45 0.46 0.66 

Total Chi 0.65 0.58 0.66 0.63 0.60 0.29 0.48 0.68 

Elemental N 0.76 -0.67 0.94 -0.12 0.74 0.36 0.48 -0.16 
0.97 0.23 0.96 0.53' 0.75 0.33 0.73 0.34 

ns = no significant R or R significant at 95% confidence = significant at 99% confidence 

Table 5.18: Results from constrained regressions on four transformations of the spectra. 

BNC spectra appears to have the highest predictive ability for most of the biochemicals. 

Unlike unconstrained regression, all biochemicals have models with statistically significant 

predictive power. Lowest predictive power is for lignin with an R value of 0.43 whilst the 

highest is 0.77 for water. On the whole, the pattern remains the same as in unconstrained 

regression in that water and chlorophylls have models with highest predictive power with 

the structural components and 15N having lower predictive power. Having said this, 

elemental nitrogen which could not be predicted significantly at all in unconstrained 

regression has an R value of -0.67 (statistically significant at 99% confidence interval) 

using absolute reflectance. 
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5.6.4 Testing Validity of Forced Entry Stepwise Regression Using 

Randomised Data 

Table 5.19 shows the results of constrained regression using the randomised data set. There 

is one model in this table which significantly predicts lignin, but at a lower level than the 

real dataset. The rest of the table shows that none of the models can significantly predict 

any of the other biochemicals. This result is similar to the randomised data in the 

unconstrained stepwise regression and again adds confidence to the models generated from 

the constrained regression. 

Absolute Reflectance FDS BDNA BNC 

Biochemical Regression 

R2 

Validation 

R 

Regression 

R2 

Validation 

R. 

Regression 

R2 

Validation 

R 

Regression 

R2 

Validation 

R 

Water ns ns 0.22 -0.04 0.04 -0.05 0.08 0.06 

Lignin 0.60 0.05 0.70 -0.12 0.49 -0.17 0.26 0.41' 

Cellulose 0.66 0.24 0.22 -0.07 0.26 -0.20 0.32 0.15 

Chia 0.13 0.06 0.06 -0.15 0.14 0.04 0.14 -0.14 
Chi b 0.12 0.00 0.05 -0.15 0.14 0.06 0.16 -0.04 
Total Chi 0.13 0.04 0.06 -0.15 0.14 0.05 0.13 -0.17 
Elemental N 0.93 -0.06 ns ns 0.70 0.15 0.45 0.37 

N 'TN- ns ns ns ns 0.73 0.07 0.61 0.10 

ns - no significant R or R- significant at 95% confidence 
Table 5.19: Results from constrained regressions using randomised datasets from four transformations of the spectra. 

By using wavebands known to be associated with each particular biochemical a causal link 

between wavebands and foliar biochemicals can be made leading to greater confidence in 

the technique and is shown in table 5.18 by some higher R values and statistically 

significant predictive models for all biochemicals entered into the stepwise procedure. The 

wavebands used in the regressions along with their biochemical association are listed in 

appendix A4. If 137Cs is to be inferred from foliar biochemical content, then the successful 

prediction of each biochemical is central to the research. Whilst stepwise procedures have 

exhibited predictive power, recently, in laboratory-based near infrared spectroscopy the 

statistical technique of partial least squares (PLS, also known as projection to latent 

structures) has surpassed stepwise regression in its ability to predict content of samples 

(Barton 2002). PLS was applied to this research to see if predictions of foliar biochemicals 

can be any more accurate than using stepwise regression procedures. 
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5.6.5 Partial Least Squares to Predict Foliar Biochemical Content 

Partial least squares (PLS) attempts to overcome the difficulty of overfitting often 
associated with regression techniques (Davies 2001). PLS was developed in the 1960s by 

Herman Wold and is often used in spectroscopic techniques to try to identify the few 

underlying factors which account for most of the variation in the response (Tobias 1997). 

Recent remote sensing literature has suggested that the use of PLS to predict foliar 

biochemicals might be a more accurate technique than SWMLR (e. g. Huanga et al. 2004, 

Ourcival et al. 1999). Since accurate prediction of key foliar biochemicals is central in this 

research in order to infer 137Cs contamination levels, PLS was applied to the spectra and 
biochemicals to see if an improvement over stepwise techniques could be made. 

Table 5.20 shows PLS results for absolute reflectance and FDS whilst table 5.21 shows 
PLS results for the continuum-removed spectra. The overall pattern of predictive power 

remains the same as the stepwise procedures. The biochemicals exhibiting models with the 

greatest predictive power are those for water and chlorophyll and are the biochemicals 

shown not to be statistically different in 137Cs contamination groupings and are also shown 

to be conditionally independent of 137Cs by partial correlation. 15N was again an outlier in 

the argument since it is shown in the partial correlation (section 5.5) to be most 

conditionally dependent on 137Cs yet it is significantly predicted by models from three 

transformations of the spectra in the PLS method. 
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Absolute Reflectance FDS 
Biochemical Percent 

Variance 

Accounted 

For 

Optimum 

Number 

of latent 

vectors 

RMSE Validation 

R 

Percent 

Variance 

Accounted 

For 

Optimum 

Number 

of latent 

vectors 

RMSE Validation R 

Water 97.146 5 0.764 0.74 16.27 1 0.768 0.76 

AD Fibre 27.16 2 1.021 -0.09 62.327 6 0.928 036' 

Lignin 94.943 4 1.021 -0.09 19.622 2 0.901 0.36' 

Cellulose 55.52 1 1.042 -0.20 39.526 3 0.942 0.26 

Chia 82.929 3 0.761 0.49 56.921 5 0.62 0.53 

Chi b 97.892 5 0.751 0.35' 56.848 5 0.582 0.50 

Total Chi 99.116 6 0.751 0.46 56.899 5 0.596 0.52b 

Elemental 

N 

76.33 2 1.024 0.25 21.23 2 0.983 0.17 

81.384 3 0.804 0.63' 39.42 2 0.839 0.77 

Cs-137 59.77 1 1.018 -0.10 22.14 1 1.045 -0.01 
Table 5.20: Results from partial least squares modelling using two transformations of the spectra. °= significant at 95% confidence 

significant at 99% confidence Bold denotes highest validation figure out offour spectra transformations. 

BDNA BNC 

Biochemical Percent 

Variance 

Accounted 

For 

Optimum 

Number 

of latent 

vectors 

RMSE Validation R Percent 

Variance 

Accounted 

For 

Optimum 

Number 

of latent 

vectors 

RMSE Validation R 

Water 49.33 2 0.677 0.61 38.67 2 0.803 0.81 

AD Fibre 2827 1 0.997 0.18 19.88 1 1.002 0.02 

Lignin 36.35 2 0.985 039' 16.11 1 1.02 -0.04 
Cellulose 31.63 1 0.994 0.17 23.91 1 1.019 0.21 

Chi a 84.903 7 0.653 056 48.11 3 0.817 0.73 

Chi b 84.173 7 0.701 0.62 39.78 2 0.842 0.64 b 

Total Chi 84.855 7 0.66 0.59 38.66 2 0.821 0.68 b 

Elemental 

N 

35.21 2 1.017 0.16 10.96 1 0.996 0.01 

N 34.33 1 0.819 0.73 48.19 2 0.695 0.43 

Cs-137 16.76 1 1.046 0.32 16.8 1 1.039 -0.06 
:: 77ý 

Table 5.21: Results from partial least squares modelling using two further transformations of the spectra. ' -significant at 95% 

confidence °= significant at 99% confidence Bold denotes highest validation figure out of four spectra transformations. 

Whether PLS can produce models with greater predictive power than stepwise techniques 

is the main question of interest for this research. To simplify this comparison, the R values 

taken from the best predictive model for each approach are displayed in table 5.22, along 

with the spectral transformation used and whether the PLS method has higher or lower 

predictive power in comparison to the stepwise methods. 
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Biochemical Highest Spectral Highest Spectral PLS higher 

PLS R Transformation Stepwise R Transformation or lower 

value value and type of accuracy 

regression than 

stepwise? 
Water 0.81 BNC VS 0.77 BNC Constrained Higher 

AD fibre 0.36 FDS VS 0.39 BDNA Lower 

Unconstrained 

Cellulose 0.26 FDS VS. 0.55 BNC Constrained Lower 

Lignin 0.39 BDNA VS 0.52 BDNA Lower 

Unconstrained 

Total Chl. 0.68 BNC Vs 0.70 BNC Unconstrained Lower 

Chl. a 0.73 BNC VS 0.69 BNC Unconstrained Higher 

Chi. b 0.64 BNC V& 0.68 BNC Unconstrained Lower 

Elemental 0.25 Abs. Ref. VS -0.67 Abs. Ref. Lower 

nitrogen Constrained 

'TN 0.77 FDS VS. 0.70 Abs. Ref. Higher 

Unconstrained 

bole .. 11: Kesults of a comparison between the power of preatcnve orocnemisay moaets aenvea jrom stepwise ana ýma recnmques. 

Table 5.22 illustrates that PLS is able to predict only three out of nine biochemicals with a 

greater accuracy than stepwise methods. These are 15N and chlorophyll a. Stepwise 

performs better on the other seven biochemicals. On biochemicals shown to be unaffected 

by 137Cs (water, chlorophylls) the two methods provide very similar results in terms of R 

value and spectral transformation used. Since the PLS method is to some degree a function 

of all the inputs, individual wavebands cannot be singled out and this is a hindrance in two 

ways: 

1. It hides causality which might be gained from knowing wavebands. 

2. Input data used to derive the prediction equation may not match spectral resolution 

of future input data, thus rendering the prediction equation unusable. 

These two issues coupled with the generally lower predictive power of PLS mean in this 

research, stepwise procedures are favoured. 

So far, this chapter has shown that spectra split into high and low contamination levels 

according to 137Cs content exhibit statistically significant differences. It has gone on to 

illustrate foliar biochemistry also shows significant differences when split up according to 

137Cs level. Partial correlation was used to demonstrate which biochemicals had their 

relationship with spectral reflectance affected by 137Cs. In section 5.6 the chapter has 
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focused on techniques to predict foliar biochemistry from spectral response and shown 

stepwise techniques to be desirable over PLS methods. The final key in terms of using 

spectra to infer 137Cs levels is whether the biochemistry can be used to derive 137Cs 

content. If this is case then it signals the opportunity of using spectral reflectance to predict 
biochemistry and in turn ascertain levels of 137Cs. The final section of this chapter looks at 

the link between leaf biochemistry and 137Cs content. 

5.7 Predicting 137Cs from Foliar Biochemicals 

5.7.1 Multiple Regression 

Initially, a simple multiple linear regression was performed to attempt prediction of 137Cs 

using foliar biochemistry. The foliar biochemicals were used as the independent variables 

and 137Cs was set as the dependent variable. The first model is shown in figure 5.15 and 

uses all nine foliar biochemicals as inputs. 
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Figure 5.15: Multiple linear regression model to predict 137Cs specific activity using all nine foliar biochemicals as inputs 

The model R2 of 0.40 is not statistically significant and means it cannot be used with 

regards to the ability of using foliar biochemistry to predict 137Cs specific activity. Since 

previous techniques of analysis have shown a difference in the effects of 137Cs on certain 
biochemicals, the biochemicals were split into two groups and then input separately into 

two further regression models. The two biochemical groups were based on whether the 

particular biochemical had been identified as significant in the foliar t-test (section 5.4) and 
if it was conditionally dependent or independent as signified by the partial correlations 
(section 5.5). Conditionally dependent biochemicals were identified as elemental nitrogen, 
'5N, lignin, cellulose and AD fibre. Conditionally independent biochemicals were 
identified as water, and the three variants of chlorophyll (a, b and total). The two multiple 

regression models using these separate biochemical groups are shown in figures 5.16 and 
5.17. 
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Figure S. 16: Multiple linear regression model to predict "Cs specific activity from the conditionally independent biochemicals 
(water and three variants of chlorophyll). 

The conditionally independent biochemicals produced an R2 of 0.05, corroborating that 

they are unaffected by 137Cs and showing that they do not have any power in predicting 
137Cs specific activity on their own. This represents a research paradox since the 

biochemicals which can be predicted with highest accuracies in the stepwise procedures 

are those which have been shown not to be affected by137Cs. In contrast, the biochemicals 

identified in stepwise models as having lower prediction accuracies seem to have the best 

potential for inferring 137Cs levels. 
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Figure 5.17: Multiple linear regression model to predict '"Cs specific activity from the conditionally dependent 

biochemicals (three structural biochemicals and two isotopes of nitrogen). 

Using biochemicals shown to be conditionally dependent of 137Cs the R2 is 0.30 which 

although not statistically significant is a far higher level than the conditionally independent 

biochemicals can provide. 

The final link between foliar biochemistry seems to be missing or is not being uncovered 
by the multiple regression models. Literature suggests this link might be non-linear (e. g. 

Calabrese and Baldwin 2000). As such, neural networks, with their strengths in modelling 

non-linear relationships, may prove a better predictive tool than multiple regression. 

5.7.2 Artificial Neural Networks 

Artificial neural networks are a form of machine vision (Carpenter et al. 1999) and have 

been utilised in aspects of research, particularly when linear models do not suit the data. 

Simple neural networks were investigated using SAS institute's JMP statistical exploration 
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software to ascertain whether they might have potential for modelling the relationship 
between 137Cs and spectra. Figure 5.18 shows a conceptual diagram of an artificial neural 

network using all foliar biochemicals. 

Moisture 
AD Fibre 

H1 
Lignin 

Cellulose 
Chl A H2 Cs-137 
Chl B 

Total Chl 
H3 

Elemental N 
N15 

Figure 5.18: Artificial neural network conceptual diagram showing nine biochemical inputs and three hidden nodes used to model "'Cs 

specific activity. 

The neural network using all nine biochemicals as inputs produces a high R` value of 0.98 

which is far higher than the multiple regression model. When this was applied to a test 

dataset however, the predictive ability was not statistically significant with an R value of 

0.30. This illustrates how neural networks have good ability in modelling given data, but 

perform poorly when applied to new data sets. Before continuing, the neural network 

method followed the same approach used in the multiple regression section and tested 

models using biochemicals which were split into two groups. These groupings are the 

same as described in section 5.7.1. 
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Figure 5.19: Artificial neural network conceptual diagram showing four conditionally independent biochemical inputs and three hidden 

nodes used to model "Cs specific activity. 

Using the biochemicals shown to be conditionally independent the neural network had an 

R2 value of 0.39, which although lower than the network using all biochemicals is higher 

than the multiple regression model using the same biochemicals as inputs. When applied to 

the testing dataset, the neural network predicted versus actual values had a correlation 

coefficient of 0.13 which is not statistically significant and is much lower than when using 

all the biochemicals as inputs to the network. Figure 5.20 shows the conceptual diagram 

for the neural network using the conditionally dependent biochemicals as inputs. As an 

exploration of neural networks to assess if improvements over linear regression could be 

made, SAS suggested settings (SAS 2005) were used in the generation of the networks. 

These are shown in table 5.23. 

Neural Network Settings 

Hidden nodes 3 

Overfit penalty 0.001 

Number of tours 20 

Maximum iterations 50 

Convergence criterion 0.00001 

Table 5.23: SAS suggested settings for generating a neural network as used in this research. 
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Figure 5.20: Artificial neural network conceptual diagram showing five conditionally dependent biochemical inputs and three hidden 

nodes used to model "'Cs specific activity. 

Using the conditionally dependent biochemicals only, the RZ value is 0.83 and although 

slightly lower than when using all nine biochemicals in the model is much larger than the 

model which used only the conditionally dependent biochemicals. A third of the data was 

held back randomly to use as a testing data set (training n= 75, testing n=37). For 

prediction using the test data, the model had a correlation coefficient between actual and 

predicted of 0.24 which is not statistically significant. The value is similar to that when 

using the entirety of biochemicals in the model. 

So far, multiple regression and artificial neural networks have failed to predict 137Cs from 

foliar biochemistry with statistically significant levels. This signals that either the link 

between measured foliar biochemicals and 137Cs does not exist or that it is not being 

uncovered by these modelling techniques. The multiple regression and artificial neural 

networks have corroborated other results which show that 137Cs has an impact on structural 

components and nitrogen, but little or no impact on water or chlorophylls. 

5.8 Summary 

This chapter has so far shown the following: 

" Pinus sylvestris spectra grouped based on their specific 137Cs activity differ at a 

statistically significant level across various wavelengths. 

" Foliar biochemistry from Pinus sylvestris grouped based on their specific 137Cs 

activity also differ at a statistically significant level for AD fibre, cellulose, lignin, 
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elemental nitrogen and 15N. Total chlorophyll along with chlorophylls ab and 

water do not differ at statistically significant levels. 

" Partial correlation has corroborated the foliar t-tests and shown 137Cs affects the 

relationship between spectral reflectance and elemental nitrogen, '5N, AD fibre, 

lignin and cellulose but not water or the three variants of chlorophyll. The foliar 
biochemical t-test and partial correlations have led to the designation of 
biochemicals into one of two groups, either conditionally dependent of 137Cs or 

conditionally independent of137Cs. 

" Prediction of foliar biochemicals from spectra can be performed at statistically 

significant levels for all nine foliar biochemicals using one of four transformations 

of the spectra. Stepwise regression both unconstrained and constrained was tested 

along with PLS, but stepwise regression was shown to be more suitable for this 

research. The predictive ability of the models highlighted a research paradox; that 

the biochemicals conditionally independent of 137Cs could be predicted with greater 

accuracy than those conditionally dependent on 137Cs. 

" Ultimately the chapter investigated the final link in attempting to use spectra to 

infer 137Cs specific activity but showed that predicting 137Cs specific activity from 

foliar biochemistry does not seem possible at statistically significant levels using 

multiple regression or artificial neural networks. This may be due to a missing 

relationship or the lack of ability in terms of the statistical techniques used to model 
137Cs from biochemistry. 

To sum up, 137Cs is impacting on some biochemicals and affecting spectra, but there is a 

missing link between 137Cs and biochemistry. This may be due to the immaturity of 

biological understanding concerning 137Cs impacts upon plant biochemistry. Also, whilst 

this chapter has shown spectra differ between 137Cs activity levels, the spectra might be 

affected by intrinsic environmental variables and natural processes which are hiding the 

link between 137Cs and spectral response. The limitations described in section 5.1 provide 

opportunities for further research in order to understand more fully the results from this 

chapter. In particular, if returning to the field, the measurement of biometric properties 

such as leaf area index (LAI) of needles and canopy structural properties would be a key 
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area to develop and research further and may help to understand the relationship between 
137Cs contamination and spectral reflectance. This is especially so in terms of providing 

understanding to results from hyperspectral images (chapter seven) where the canopy and 

biophysical properties are inherent in the data (image). The next chapter uses an artificial 

environmental laboratory in order to filter out external environmental variables and assess 

the impacts of 137Cs on Pinus sylvestris when no other confounding variables are present. 
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Chapter 6 

Detecting 137Cs Levels in Pinus sylvestris 
Grown in an Artificial Laboratory 

Environment 

6.1 Introduction 

Field radiometry results from chapters four and five have shown significant differences in 

spectra from samples with differing levels of 137Cs, but a major research obstacle is the 

inability to conclusively and causally relate changes in spectra to 137Cs. This is due to the 

number of biochemical and biophysical variables in the natural environment, which could 

also be responsible for changes in spectral response. Research described in this chapter 
illustrates results from a laboratory-based experiment designed to isolate the effects of 
137Cs on spectral response of Pinus sylvestris. By performing the experiment in a 

controlled laboratory setting, all variables could be held constant other than 137Cs levels. 

This chapter begins by outlining the concept, methodology and set up of the experiment. It 

then describes uptake of 137Cs by the trees before analysing the health of the trees, as 

assessed by the technique of chlorophyll fluorescence (CF). This chapter finally looks at 

the spectral reflectance of the trees in relation to 137Cs and plant health. 

6.2 Trees and Growing Conditions 

Trees were grown hydroponically in Kingston University's radiochemistry laboratory. The 

experiment utilised young Pinus sylvestris trees of approximately three years old. In total, 

20 trees were used, and these were split into four groups, each containing five trees. 

Ideally, more trees would have been grown, but logistical and regulatory constraints in 

Kingston University's radiochemistry laboratory meant a maximum of 20 trees could be 
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grown. The tree groupings corresponded to the levels of radioactivity added to the growing 

conditions (dose) and are detailed in table 6.1, but can be broadly described as relatively 
high, medium and low levels of 137Cs, as well as a control group (no 137Cs). The trees were 

grown in hydroponic conditions, with the growing medium being oxygenated water. 
Hydroponic growth conditions were chosen to minimise factors associated with the mixing 

and cycling of 137Cs in soils or other solid media. Growth conditions were perfected 

through a pre-experiment trial, which was run for one month, with 20 trees being placed in 

hydroponic conditions. The trial helped to establish the method of oxygenating water, as 

well as identifying correct levels and types of nutrients needed for healthy growth. 
Consistency of growth conditions between each tree was important for two reasons; firstly 

to ensure 137Cs uptake was not varied by changes in the growing conditions, and secondly 

so that any changes in spectral reflectance could be linked to 137Cs contamination (as 

opposed to variations in growing conditions). The trees were split up across the growing 

area to prevent any spatial bias being introduced to the growing position of particular 

groupings and rotated each week, again to ensure all trees were grown in the same 

environmental conditions. In addition, the hydroponic solution was monitored weekly and 

nutrients added to maintain the same growing medium for each tree. The growing 

conditions and laboratory setup are illustrated below in Figure 6.1. 
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Oj High intensity fluorescent 
grow lights. 

Black plastic covering to 
prevent algae growth in 
hydroponic solution. 

O High powered air 
pumps used to 
oxygenate hydroponic 
solution. 

Trees grown by window 
to allow maximum possible 
natural light in addition to 
the grow lights 

Four groups of five trees 
were spread across the 
lab benches and tables 

Figure 6.1. An annotated phum, summarising the laburator v conditions and setup during the experiment. 

6.2.1 Dosing the Trees with "'Cs 

137Cs was added to the trees from a stock solution of 137Cs for which the activity was 

quantified using a National Physical Laboratory (NPL) 137Cs standard (appendix A5). 

Gamma spectrometry was used to check each solution before it was added to the tree via a 

pipette. Having determined the activity of the stock 137Cs solution, it was then possible to 

decide a suitable volume to be dispensed into each of the trees' hydroponic solution. Given 

that the top soil in the higher level contaminated regions of Belarus (where field 

radiometry was conducted, see chapters four and five) is typically about lOOkBq/kg 

(Entwistle et a!. 2005) it was appropriate to use a nutrient solution with specific activity at 

around this l00kBq/kg level, and above. The low, medium, and high 137Cs doses were 
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made up to give a ratio of specific activity in the nutrient solution in the ratios 1: 3: 10, with 

the total lowest activity in the nutrient solution of about 200kBq. As already stated in 

section 6.2, five samples were assigned to each activity level as well as a control group 

which did not have any 137Cs added to the growing medium. Table 6.1 shows the 

approximate doses applied to each tree. It is important to note that the lowest experiment 

dose rates were high in comparison to field sites in Belarus. This is due to the short length 

of the experiment and a desire to see the effect on the trees from the 137Cs, even if it may 
be exaggerated. In addition, the dose rate does not necessarily correspond to the specific 
137Cs activity contained in the needles themselves (section 6.2.3). Specific 137Cs activity 
for the needles was measured at the end of the experiment and is reported in table 6.2. 

Dose Group Total Activity (Bqs) 

High 206OkBq (2.06MBq) 

Med 617kBq 

Low 206kBq 

Control No 137Cs added (0 Bq) 

Totals 14.4MBq (each of the above multiplied by 5, since there are 5 trees in each group) 
Table 6.1: Approximate' Cs (in Becquerels) added to the different groups ofPinus sylvestris. The three radioactive groups had I37Cs 

added in three activity ratios, approximately 1: 3: 10, with the lowest level containing a total of 2O6kBq '37Cs. 

6.2.2 Measuring Reflectance Spectra 

An Analytical Spectral Devices (ASD) Fieldspec Pro was used to collect reflectance 

spectra of the Pinus Sylvestris needles according to the method described in chapter three 

(section 3.3.1). Reflectance spectra were collected after one month of growth in the 137Cs 

hydroponic solutions. Spectra were not collected throughout the experiment due to 

constraints in borrowing equipment from NERC FSF, but also because the focus of the 

experiment was in how the reflectance spectra were affected by 137Cs per se, and not how 

the trees responded or changed over a short period of time. This is due to the experiment 

acting as a link and providing insight into field radiometry work already conducted in 

Belarus (chapters four and five), where the trees have been exposed to 137Cs since the 1986 

Chernobyl accident. As mentioned above, since the experiment was run over a short period 

of time, and with younger trees than in the fieldwork, the doses of 137Cs added to the trees 

were elevated compared to dose rates found in the field. The low site in the laboratory 

experiment roughly matched the dose levels in the high field site. This was done to 

120 



Chapter 6, Detecting '"Cs Levels in Pinus sylvestris Grown in an Artificial Laboratory Environment 

promote an effect in the trees and subsequently the spectra, over the relatively short time 

scale of the experiment. 

After one month in 137Cs hydroponic conditions, all needles were harvested from each tree, 

and a sub-sample was selected randomly for spectral reflectance measurement. Figure 6.2 

shows the mean absolute reflectance spectra collected for each group of trees. As the trees 

were small saplings (c. <3 years), there was not enough new growth over the one-month 

time scale of the experiment to provide material for biochemical assay as material was 

needed for 137Cs specific activity measurement. This is a limitation of the laboratory 

experiment and highlights opportunity for further research. 

6.2.3 Measuring Specific 137Cs Activity 

In section 6.2.1 dosing of the trees with 137Cs was discussed. Whilst the dose rate provides 

an indication of 137Cs levels contained within the trees' growing environment, it does not 

provide detail as to how much 137Cs has been transferred from the growing medium into 

the physiologically active part of the tree (i. e. the needles). Central to the experiment was 

linking spectral response to levels of 137Cs inside the needles, therefore a measure of 137Cs 

specific activity was performed using gamma spectrometry as described in chapter three 

(section 3.3.10). These levels could then be linked to the spectra and the plant health. 

Specific 137Cs activities for each tree are presented in Table 6.2 and Figure 6.2. 

6.2.4 Measuring Plant Health using Chlorophyll Fluorescence 

In addition to spectral reflectance measurements and gamma spectrometry, the needles 

were measured at intervals throughout the experiment using the technique of Chlorophyll 

Fluorescence (CF). CF (illustrated in figure 6.2) is a natural property of green plants which 

can be utilised to provide a quick, non-invasive and non-destructive way to monitor 

photosynthetic pathways, and in turn the health status of vegetation (Frankart et al. 2003). 

This technique allowed the health of the trees to be monitored throughout the experiment, 

with the possibility of linking 137Cs levels to changes in CF and thus plant health. Since the 

experiment was run before all field data had been analysed, it was thought that chlorophyll 

may be impacted by 1 37Cs and thus CF was considered to be a useful technique to 

121 



Chapter 6, Detecting "'Cs Levels in Pinus svlvestris Grown in an Artificial Laboratory Environment 

investigate the link between spectral reflectance, chlorophyll, and plant health as affected 
by 137Cs. Chapters four and five show chlorophyll to be conditionally independent of 137Cs 

however the technique was useful to give an indicator of plant health and to assess if 

chlorophyll was being affected by '37Cs but being masked by other variables in the field 

data. 

CF was measured using a pulse amplitude modulation (PAM) fluorometer; model PAM- 

210 (Waltz, GmbH). Parameters measured were Fv/Fm, Phi PSII (Fm'), electron transport 

rate (ETR), photochemical quenching (qP) and non photochemical quenching (qN). Each 

one of these parameters relates to the ways in which light energy is dissipated from the 

plant. Light emitted at longer wavelengths (fluoresced) is light which is dissipated by the 

plant and not used for photochemistry. Whilst a variety of CF parameters were measured, a 

key indicator of plant health is the ratio of variable to maximum fluorescence (Fv/Fm) 

(Kochevaa et al. 2004). The analyses in this paper therefore focus on the important 

parameter of Fv/Fm; the other CF parameters are beyond the scope of this research 

chapter. 

Measured 

" 
Fm - Fo 0= Maximum fluorescence in 

abscence of any photochemical 
"_ 

Fv/Fm quenching. 

Iw 
Loss as heat. 

ý-ý Cannot be measured, 
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II Reaction Centre 

Closed off by 
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flash of light shuts off PSII. 
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with photochemistry 
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Figure 6.2: Conceptual illustration of the process of Chlorophyll Fluorescence (CF) and parameters measured. 
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6.3 Analysis and Discussion 

This section is split into two main parts. Firstly the 137Cs uptake by the plants as well as the 
health of the plants as measured by Fv/Fm, and secondly the analysis of the trees' spectral 

reflectance in relation to 137Cs contamination and plant health. 

6.3.1 Specific 137Cs Activity and Plant Health 

Table 6.2 shows specific 137Cs activity for each tree, whilst figure 6.3 presents the mean 

specific activity for each group. One sample has been excluded in the calculation of the 

mean in the high group. The particular sample is `high 4' which is highlighted in table 6.2 

and is thought to be an anomalous result. This is due to the sample containing very few 

needles relative to the other samples and the resulting effects on efficiency of counting 
during the gamma spectrometry process. 
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Iýpccitic kcti,. it% of Needles 

Control Specific Low Specific \ledium 

Activity Activity 

(Bq/g) (Bq/g) 

Specific 

Activity 

(Bq/g) 

High Specific 

Activity 

(BgIg) 

1 0.07 1 86.06 I 177.55 1 1.86 

2 0.36 2 35.34 
_ 19.46 2 0.65 

3 0.10 3 36.41 I ti36.2 7 3 

L 

399.25 

4 0.08 4 61.47 -i 4 2792.04' 

5 0.39 5 . 34 ý. n 5 65.04 

Average n 45.1_2 277.0 7 116.70 

StDev 0.16 30.08 341.42 190.75 

Coefficient 

of Variance 

(%) 

79.83 66.66 123.23 163.46 

Table 6.2: Specific "'Cs activities for each sample, as measured by gamma spectrometrv. * denotes the suspected anomaly ('high 4) 

which is included in the table for completeness of data. but which is excluded from calculation of mean and standard deviation and thus 

any subsequent analysis. 

The uptake of 137Cs is non-linear despite all other growing conditions being kept constant. 

Unexpectedly, the medium group of trees have the highest specific "'Cs activity, pointing 

to a higher transfer factor in this group, or perhaps a blocking mechanism (preventing 137Cs 

uptake) at certain 137Cs concentrations. This is corroborated by White and Broadley (2000) 

who suggest that in the presence of a constant Potassium (K) concentration (as in the 

hydroponic solutions in this experiment) an inhibitory effect limits Cs uptake as the Cs 

concentration increases. In essence the blocking mechanism is active due to the K uptake 

pathways in plants closing in high concentrations of Cs. 
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Mean Specific "'Cs Activity of Needles in each Group of 
Pinus Sylvestris 
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Figure 6.3. Mean specific " Cs acitvity in Bq g for each group of trees as acquired by gamma spectrometry. n-5 in each group except 

'high' where n=4 due to a likeh. anomaly being removed from the mean calculation. 

The Fv/Fm values indicate that plant health is also non-linear in its response to 137Cs 

contamination. Healthy green plants usually have an Fv/Fm value ranging from between 

0.7 and 0.8, with the figure tending to decrease with stress (Rosso et al. 2005). Figure 6.4 

shows mean Fv/Fm values for each group and according to this measure the medium group 

of trees are the least stressed. followed by the high and then the low and control groups. 

This is surprising in that the control group are the most stressed. This points to the 

possibility of a hormetic dose response rate. Hormesis is a dose response characterised by a 

stimulation at low doses and a high dose inhibition (Calabrese 2005). 

In the case of this experiment. 137Cs appears to have a positive effect on the health of the 

plants as the dose rate increases until a threshold is reached at the high level where health 

(as indicated by Fv/Fm) then begins to decline. Interestingly, the needles with the highest 

mean specific 137Cs activity also have the highest mean Fv/Fm values. This may be partly 

explained by the blocking mechanism mentioned above which according to White and 

Broadley (2000) also inhibits uptake of other nutrients and thus trees in the highest dose 

group may be lacking in nutrients relative to the medium group because of this blocking 

mechanism. This provides interesting further opportunity for the experiment in terms of 

measuring the 137Cs left in the solution to ascertain if 137Cs is being stored elsewhere in the 

plant or if it is left in the solution. This highlights a limitation in the methodology of the 
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current experiment; that only 137Cs needle specific activity was measured as opposed to the 

specific activity of the growing solution as well. 

If the response by Pinus sylvestris to 137Cs contamination is hormetic then it has important 

implications for remote sensing of radionuclide contamination and could effectively 

preclude sensing low-level radioactive stress which might be disguised as healthy forests 

rather than those being stimulated by low dose radiation. The analysis of the spectra is 

therefore key in determining whether changes in the spectra caused by 137Cs can be 

isolated and detected. Having said this it is pertinent to remember that the 137Cs levels in 

this artificial laboratory study are higher than those collected in Belarus (section 6.2.1). 

Average f Fm Values for each Group of Pinus Sylvestris 
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Figure 6.4: Average FviFm values as measured by Chlorophyll Fluorescence. 

6.3.2 Spectral Analysis 

Spectra were collected on needles harvested at the end of the experiment. Figure 6.5 shows 

the average spectral reflectance for each group of trees and indicates that there are 

differences in spectra between groups. The next step in spectral analysis involved 

exploring the correlation between spectral reflectance and specific 137Cs activity. 

Correlation was computed against absolute reflectance as well as two statistical 

transformations of the spectra, the first derivative and continuum-removed BDNA 

reflectance (described in chapter 3, section 3.3.4). Statistical transformation of the spectra 
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using derivative spectroscopy and continuum removal allowed subtle changes in spectral 

response to be resolved and assessed. 

Averge Spectral Reflectance for each Group of Pinus Svlvesrris 
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Figure 6.5: Mean spectral reflectance 
. 
for each group of Trees in the experiment (control lou". medium and high). 

The correlation coefficient was squared to convert it to the coefficient of determination. 

allowing the strength of the correlation to be assessed as the percentage of reflectance that 

might be caused by changes in 137Cs levels. After correlating spectral response with 

specific 137Cs activity, Fv/Fm measurements were correlated with spectral reflectance, first 

derivative and continuum removed reflectance. This was to see if wavebands significantly 

correlated with 137Cs might also be related to plant health (as determined by Fv/Fm) and 

whether any of these wavelengths are associated with key foliar biochemicals and their 

known absorption points. In addition. consideration was given to whether results from the 

laboratory were similar to those obtained in the field (chapters four and five). 

Figure 6.6 shows the coefficient of determination between absolute reflectance and 

specific 137Cs activity. At the 95% confidence level no bands are significantly correlated 

with 137Cs, with a maximum of approximately 15% of spectral variation possibly being 

explained by 137Cs (at hands 1390nm and 1874nm). 
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Coefficient of Determination Between Absolute Reflectance and Specific 
'nCs Activity 
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Figure 6.6: Coefficient of determination between raw spectra (absolute reflectance) and specific 1370; activity across the entire 

spectrum. The coefficient of determination is the squared correlation coefficient and is interpreted as the percentage of variation in one 

variable possibly caused by the other. n- 20.95% confidence level is 19.7% (0.4442). 

Figure 6.7 illustrates the coefficient of determination between absolute reflectance and 

Fv/Fm values and it appears that there are many bands which have a statistically 

significant correlation with Fv/Fm values. This is perhaps somewhat expected, as Fv/Fm is 

a good indicator of plant health, which in turn would be expected to affect many 

wavelengths. Generally longer wavelengths from 1160nm onward have a higher proportion 

of variation that might be explained by changes in Fv/Fm. At the shorter wavelengths the 

430-530nm region is significant. Again, this is expected given the known absorption by 

pigments/chlorophyll in this region and the direct impact on Fv/Fm these pigments would 

have. 
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Coefficient of Determination Between Absolute Reflectance and Fv/Fm 
(Wavelengths Significant at 95% Confidence and Above Shown) 
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Figure 6. ' Coefficient q1-determination between raw spectra (absolute reflectance) and Fv Fin values across the entire spectnun. The 

coefficient of determination is the correlation coefficient squared and is interpreted as the percentage of variation in one variable which 

is possibly caused by the other. n 20. 

The spectra were then transformed to the first derivative to determine if significant 

correlations existed. Demetriades-Shah (1990) indicates that the first derivative is suitable 

for removing background signals and resolving overlapping or complex absorption 

features. Figure 6.8 illustrates the mean first derivative at each wavelength for each group 

of trees. 
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a 

ä 

d 

m 

Ä 
C 
w 

Wavelength (Am) 

Control Low Medium High 

Figure 6.8: Mean first derivative spectra for each group oof frees in the experiment (control loin. medium and high). 
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Correlation between the first derivative at each wavelength and specific 137Cs activity 

(shown in figure 6.9) identified a variety of wavelengths significant at the 95% confidence 

level. The correlation analysis was performed on all samples (as there would not be enough 

samples to perform a statistically valid correlation for individual groups) with a total 

sample size of 20. Notably significant correlations exist at 424nm, 761nm, 1163nm, 

1016nm, 1058nm, 1255nm, 1694nm, 1808nm and 2311nm. Some of these bands are close 

to known biochemical absorption features. For example 424nm is close to the chlorophyll 

absorption feature at 430nm, whilst the 1255nm band is close to the cellulose feature at 

1275nm. The band with the highest correlation is 1163nm. 1163nm is close to a noted 

lignin absorption feature (1174nm). Some of these significant wavebands are similar to 

those identified in the field radiometry research (chapters four and five) (Boyd et al. 2006). 

It is interesting to note that 137Cs is known to bind to lignin (e. g. Andolina and Guillitte 

1990) and is postulated as a possible reason why fungi in radionuclide-contaminated areas 

seem to concentrate 137Cs; they break down lignin (Nimis 1996). Whilst lignin content was 

not measured in the samples in this experiment (due to lack of needle material), needles 

collected in the field radiometry work have been assayed for lignin content and lignin has 

been highlighted by the foliar biochemical t-test (chapter five) to be significantly different 

based on changing 137Cs levels. 

Coefficient of Determination Between First Derivative and Specific ̀ Cs 
Activity (Wavelengths Significant at 95% Confidence and Above Shown) 
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Figure 6.9: coefficient of determination between fast derivative transformed reflectance and specific t 37Cs activity. Values significant at 

the a- 5% (95% confidence) level and above are shown. n- 20. 
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Figure 6.10 represents correlation between first derivative spectra and Fv/Fm values (plant 

health). As with the absolute reflectance correlation, there are many more bands that are 

statistically significant and the significance level of these bands is generally higher than for 

correlation between first derivative and specific 137Cs activity. 

Coefficient of Determination Between First Derivative and 
Fv/Fm (Wavelengths Significant at 95% Confidence and Above 
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Figure 6.10: Coefficient of determination between first derivative transformed reflectance and Fv/Fm values. Values significant at the a 

= 5% (95% confidence) level and above are shown. n -20. 

As with absolute reflectance, these results are expected given that Fv/Fm is an indicator of 

overall plant function which would be expected to affect spectral reflectance (and its 

transformations) at the majority of wavelengths. Fv/Fm would therefore be expected to 

account for a large proportion of variation in reflectance. There are some significant 

wavelengths which are similar to the correlation between specific 137Cs activity and first 

derivative, notably at 1163nm (lignin) and 424nm (chlorophyll). Interestingly 761nm is not 

significant in Fv/Fm correlation, but is significant in137Cs correlation and is located at the 

red edge shoulder. Additionally, 1058nm (starch/sugar) and 1255nm (cellulose) are not 

significant in Fv/Fm correlation, but are in the 137Cs correlation. 

The final correlations performed were between specific 137Cs activity, Fv/Fm values and 

spectra which had been transformed into band depth normalised to area (BDNA). The 

BDNA is the end product of continuum removal (isolating spectral absorption features 

from the rest of the spectra) and is a function of a given wavelength within a particular 
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absorption feature. Continuum removal is reported by Curran et al. (2001) to provide a 
more accurate prediction of foliar biochemicals than the first derivative. Based on visual 
analysis of absolute reflectance as well as significant features in the literature and work in 
the pilot study (chapter four), six features were chosen for continuum removal, and 
ultimately, BDNA calculation. These were centred at 470nm, 670nm, 920nm, 1200nm, 
1360nm and 1840nm. BDNA was calculated according to the method outlined in chapter 
three. Only one of the six continuum-removed absorption features contained significant 
correlations with Specific 137Cs Activity. This was the 1200nm feature and is shown in 
figure 6.11. 
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Coefficient of Determination Between BDNA and Specific "'Cs 
Activity at 1200nm Absorption Feature (Wavelengths Significant at 95% 

and Above Shown) 

a 
D 

23.7 

22.7 

0 
21.7 

20.7 

19.7 - 
II16 1166 1216 1266 

Wavelength (nm) 

Figure 6.11: Coefficient of determination between band depth normalised to area reflectance and specific "'Cs activity. This is at the 
1200nm absorption feature. Values significant at the a- S% (9S% confidence) level and above are shown. n- 20. 

The coefficient of determination is lower than for similar wavelengths in the first 

derivative. A marginally significant waveband lies at 1136nm, close to the known 

absorption feature by water at 1140nm. 1240-1280nm are also significant bands and the 

peak of significance at 1255nm is close to (within 20nm) a known cellulose absorption 

point. This wavelength is also highlighted in first derivative correlation. Cellulose is 

related to lignin (Fioretto et al. 2005) and in turn may relate to the aforementioned binding 

of 137Cs to lignin. 
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In figure 6.12, the coefficient of determination between BDNA and Fv/Fm values shows 
there are a number of significant wavebands, with particularly high coefficient of 
determination values at 1120nm (lignin) and bands (centred around 1260nm) which are 

also significant in the coefficient of determination for specific 137Cs activity. 
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Figure 6.12: Coefficient of determination between band depth normalised to area reflectance and Fv/Fm values. This is at the 1200nm 

absorption feature. Values significant at the a- 5%(95% confidence) level and above are shown. n= 20. 

6.4 Summary 

The findings of this experiment can be summarised as follows: 

1. Uptake of 137Cs by the plants has not been linear and the `medium' group had the 

highest specific 137Cs activity, suggesting the possibility of a blocking mechanism in 137Cs 

uptake. In addition, the Fv/Fm values point to a non-linear, hormetic dose response to 
137Cs, with possible implications for remote sensing radionuclide contamination. 

2. It has been shown through correlation with various manifestations of the spectra 
(absolute reflectance, first derivative, BDNA) and 137Cs, that certain wavelengths vary in 

their reflectance, possibly as a function of specific 137 Cs activity. This is particularly at 

wavelengths associated with lignin and cellulose (structure of plant) and may be linked to 

the known binding of 137Cs to lignin. There is also significant correlation between Fv/Fm 

values and spectra as well as at many more wavebands than specific 137Cs activity, 
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although this is perhaps expected given that plant health is expected to affect spectral 

response across the entire spectrum. Of the three types of spectra, the first derivative 

exhibits the greatest number of significantly correlated bands in both 137Cs specific activity 

and Fv/Fm values. 

3. The value of the experiment has been in keeping all variables constant except the 137Cs 

dose. Confidence that the changes in spectra and correlations are attributable to 137Cs is 

therefore higher than for spectra collected in field studies (chapters four and five). It has 

also identified further research opportunity with a need to measure foliar biochemicals as 

well as 137Cs and spectral reflectance. Overall the experiment has shown that spectra do 

differ based on changing 137Cs levels and that wavelengths affected seem to be related to 

similar foliar biochemicals identified in the field studies (chapters four and five). 

Several key lessons can be learned from the experiment described in this chapter and the 

strengths of the approach can be summed up as follows: 

" An understanding of the relationship between spectral reflectance and 137Cs 

concentration in Pinus sylvestris can be gained at its simplest level. 

" Modifications to future fieldwork can be informed by the results of the experiment 

" Other data such as potassium and specific activity of the growing medium could be 

measured, thus further enhancing the usefulness of the experiment and in turn the 

fieldwork. 

There are also several limitations which arise in the experimental approach and which 

should be considered for further research. These are: 

" The lack of biochemical data is a hindrance to linking field and laboratory data and 

could be rectified in the future by prolonging the growing period in order to gain 

more needle material. 

" The discrepancy between the age of trees in the laboratory experiment versus those 

in the field data prevent a true comparison of results between laboratory and field. 
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In the future older trees could be considered for use in the experiment, subject to 

logistical constraints. 

" Measurement of 137Cs specific activity in the needles along with spectral 

reflectance measurements could be undertaken at regular intervals throughout the 

experiment to gauge how trees respond through time and at what stage effects of 
137Cs concentration become visible in spectral reflectance data. 

Despite these limitations, the experimental approach has provided useful data about how 
137Cs affects spectral reflectance of Pinus sylvestris and is useful for considering the 

implications of using remotely sensed imagery to attempt to measure 137Cs contamination. 
Chapter seven describes research into hyperspectral imagery in relation to monitoring 137Cs 

specific activity of Pinus sylvestris. 
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Chapter 7 

Detecting 137Cs from a Spaceborne 

Platform: Hyperion Imagery 

7.1 Introduction 

This chapter outlines research undertaken on hyperspectral imagery collected over the 

contaminated field sites described in chapter five. It begins by describing the processes of 
imagery collection and the radiometric and geometric correction routines applied to the 

imagery. It then details the extraction of spectra from certain pixels as well as the analyses 

of those spectra and finally compares spectra collected from space (imagery) to those 

spectra collected in the field. The chapter concludes by considering whether spaceborne 

hyperspectral imagery has the capability to detect changes in spectra caused by 137Cs levels 

in Pinus sylvestris. It is important to note that this chapter is a brief scoping study assessing 

whether differences between 137Cs contamination levels can be seen in spectra collected 

from space. This is mainly due to the limitation that the imagery was collected 

approximately one year after the field data (chapters four and five) and for further 

analyses, data collected coincidently with the imagery would be required. Political and 

logistical reasons prevented a return to Belarus to collect the necessary coincidental data. 

As such, the assumption was made that the forests from the hyperspectral images are 

identical in terms of their biophysical properties. The theme followed in this chapter is to 

link changes in spectra caused by varying foliar biochemicals in relation to 137Cs content. 

Assumptions for the work centre around the accuracy of the atmospheric correction and 

biophysical factors. Both images were collected approximately two weeks apart and as 

such differences in scene illumination and radiometric quality exist. Whilst atmospheric 

correction was performed it is likely that some radiometric discrepancies remain. For the 

purposes of this research, biophysical factors were also assumed to be having no impact 

when comparing pixels from sites of differing contamination levels. In reality, biophysical 
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properties of forest canopies are likely to have large effects on differences in spectral 

response. These assumptions form opportunities to expand upon this work in the future. 

7.2. The Hyperion Hyperspectral Instrument 

High resolution spectral data is key to this research and therefore a spaceborne sensor 

capable of resolving detailed spectra was needed in order to make comparisons with field 

spectroscopy data from chapters four, five and six and to determine whether any subtle 

changes in spectral response, which might be related to 137Cs content of vegetation, could 
be detected from space. Hyperion was chosen to collect spectra over the contaminated 

Belarusian landscape due to its technical attributes, which provided an ability to resolve 

detailed spectra at an appropriate spatial resolution. 

The Hyperion sensor is one of three land imaging devices onboard the National 

Aeronautics and Space Administration (NASA) Earth Observation 1 (EO-1) satellite. 

Hyperion was the first civilian hyperspectral sensor to be deployed on a spaceborne 

platform and was originally conceived as an experimental technology demonstration 

mission (Pearlman et al. 2003). It is a tasking sensor with a spatial resolution of 30m, 

which is designed to match the spatial resolution of Landsat data in order to allow 

comparison and validation of EO-1 data. Spectrally, Hyperion is capable of resolving 242 

spectral channels from 400 - 2500nm at 10nm intervals, though not all these bands are 

usable. Out of 242 channels, bands 1-7 (356-417nm) and 225-242 (2406-2578nm) are not 

calibrated. Bands 58-70 (VNIR) and 71-76 (SWIR) are also not calibrated. This leaves 198 

calibrated bands but there is a small amount of overlap between the VNIR and SWIR 

instruments. These are bands 56-57 and 77-78. Therefore, out of 198 calibrated bands there 

are 196 unique usable channels. Hyperion is a pushbroom sensor with a ground surface 

cross-track width of approximately 7.5km with a typical scene length being 42km although 

this varies based on the data acquisition request (DAR) and can be up to 185km. The main 

technical attributes of the Hyperion instrument are summarised in table 7.1. 
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Hyperion Technical Specifications 

Spatial Resolution 30m 

IFOV 42.4 micro radians 
Number of Spectral Bands 242 

Wavelength Range 400 - 2500nm 

Spectral Coverage VNIR 10.11 - 10.13nm 

SWIR 10.08 -10.09nm 
Band Width VNIR 10.11-10.13nm 

SWIR 10.08 -10.09nm 
Swath Width 7.5km 

Typical SNR 65-130 

Data Quantization 12-bit 

Altitude 705km (as of September 25 2005, EO-1 orbit 
lowered by 5-6km) 

Table 7. I: Summary of H)perion tedmiccl specj/Jcations (adapted Jrom Pearlman et aL 2003). 

As mentioned above, Hyperion provides a suitably fine spectral resolution to characterise 

the spectral response of 131Cs contaminated Pinus sylvestris, but is at the time of writing 

also the only spaceborne imaging spectrometer with a fine enough spatial resolution 

suitable for monitoring small scale changes over the Belarusian landscape. Hyperion was 
thus selected as the most appropriate spaceborne imaging spectrometer from which to 

collect data from the contaminated Belarusian landscape. 

7.3 Data Acquisition over the Belarusian Landscape 

Since Hyperion is a tasking sensor, a data acquisition request (DAR) was submitted to the 

United States Geological Survey (USGS). The centre coordinates of each of the three 

fieldsites mentioned in chapter 5 (section 5.2) were used to define the centre point of the 

required images. Three DARs were submitted (one for each of the fieldsites; control, 

medium and high). Nadir collection was specified to give maximum radiometric quality. 
Each DAR allowed three attempts to collect a scene with less than 25% cloud cover. If 

after three collections none of the resulting images had less than 25% cover the DAR was 

still considered fulfilled. The DARs for the medium and high sites provided two images 

with quality classified by the USGS as `very good'. Each of the three attempts at 

acquisition over the control site resulted in images of 100% cloud cover and as a result the 

DAR was fulfilled although no image was provided for the control site. To collect 

spaceborne spectra from forests with no contamination an alternative was needed. To 
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gather such spectra, clean Pinus sylvestris stands were identified within the image which 

was acquired over the high 137Cs contaminated field site and these were used to provide 

spectra from trees not contaminated with 137Cs. The images collected along with the 

position of the medium, high and clean forests are shown in figures 7.1 and 7.2. In 

addition, the metadata for the medium and high images are shown in appendix A6. Once 

data had been collected, imagery was pre-processed to correct geometric and radiometric 

distortions. 
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Imagery Information 

Field Site 
Scene ID 
Date of Acquisition 
Site Latitude 
Site Longitude 

Staraa Zakruzza (High) 
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24/08/05 
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Belarus and a zoom of the field area. The main H. iperion scene is appro. rimately 7.7km wide and I85km long. 
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7.4 Pre-processing of Imagery 

Data was received from USGS in the hierarchical data format (HDF) and was already 

radiometrically calibrated (correction of known issues and nominal artefact removal) to a 
level 1R data product. In order to determine the spectral content of an image pixel, the 

atmosphere must be characterised to a sufficient accuracy (Sanders et al. 2001). In 

addition, effects of path radiance, water vapour and other trace gases can be removed and 
DN values of radiance could be converted to absolute reflectance (Goetz et al. 2002). This 

was important in this research so that spectra collected from field sites could be compared 

with those collected from space. The effects of the atmosphere on the imagery were 

characterised and corrected by utilising using the Fast Line-of-sight Atmospheric Analysis 

of Spectral Hypercubes (FLAASH) model. 

7.4.1 Atmospheric Correction using FLAASH 

The most accurate techniques for atmospheric correction are those based on empirical 

methods (Ben-dor et al. 2004) whereby field data is collected coincidentally with imagery 

and used to correct for atmospheric effects. In this work, imagery was collected 

approximately one year after the field data and so this precluded the use of empirically 

based techniques. The alternative to empirical methods rely on modelling the radiance at 

the sensor by using radiative transfer models (French et al. 2002). These models require 

basic information about the scene (e. g. site height, visibility, acquisition times) and use this 

information along with physical principles to correct for atmospheric effects. Several 

models exist (e. g. ATREM, HATCH, ACORN) but all are alike in their approach and 

derive similar results (Staenz et al. 2001). FLAASH is an atmospheric correction module 

which runs within RSI's ENVI image processing software. It was developed by Spectral 

Sciences Inc. under sponsorship of the U. S. Air Force Research Laboratory and utilises the 

MODTRAN model (RSI 2005). 

The two Hyperion images were atmospherically corrected using ENVI 4.2 and the 

FLAASH module at the University of Southampton. FLAASH contained a built in 

spectrograph definition file to correct for the known spectral smile of Hyperion (Jupp et al. 
2001). Full images (not subset) were entered into the FLAASH module. As only two 

142 



Chapter 7, Detecting 137Cs from a Spaceborne Platform: Hyperion Imagery 

images required correction, computation time did not pose a problem and the finest 

resolution MODTRAN model was selected (5cm). In addition, spectral polishing was 
implemented to remove spectral artefacts from the spectra (RSI 2005). The output resulted 
in two atmospherically corrected Hyperion images which were then spectrally subset to the 

unique usable bands described in section 7.2 and were then ready for geometric correction. 

7.4.2 Geometric Correction 

Geometric correction was applied to the images so pixels could be chosen and extracted 
based on fieldwork locations. The method used was similar to that described by Dyk et al. 
(2002). A geometrically corrected Landsat image was used as the reference image and 
forty ground control points (GCPs) were selected for each image. A simple nearest 

neighbour polynomial transformation was then applied in ENVI resulting in a 

geometrically corrected Hyperion scene. For the high image, the RMS error was 0.311 

pixels (9.3m) and for the medium image RMS error was 0.294 pixels (8.8m). Following 

this geometric correction and the atmospheric correction described in section 7.4.1 two 

Hyperion scenes were ready for extraction of pixels for spectral analysis. 

7.5 Extraction of Spectra From Pixels 

The focus of this chapter remained on old trees (c. >20 years) as these have been shown to 

have most potential for utilising imaging spectrometry to monitor their 137Cs content as 

well as their inherent economic value. In addition, the images were collected to match data 

from the field sites in chapter five, which were also old trees (c. >20 years). Spectra were 

extracted from the pixels representing the medium and high field sites (described in 

chapter five, section 5.2) and also from an area of Pinus sylvestris in the Staraja Zakruzza 

(high) image which is known to be clean (little or no 137Cs contamination). From each of 

the three image areas, spectra from 20 pixels were extracted. In addition, at the centre of 

each site a window of 5x5,10x10 and 15x15 pixels was extracted to represent the average 

spectral response at each of the three locations. In the medium and high Pinus sylvestris 

stands, spectra were selected based on the GPS coordinates taken in the field. Pixels were 

selected based on their proximity to the field GPS coordinates collected. In the clean site, 

pixels were selected randomly since no fieldwork took place at this site. Ideally, each of 
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the spectral samples collected from the field (chapter 5) would have had a representative 

pixel in the image from which corresponding spectra could have been extracted. The 

spatial resolution (30m pixels) of Hyperion precluded this and meant that each pixel 

represented at least one field sample. Pixels were therefore chosen based on 137Cs levels of 
field spectra which could be related to a particular pixel. This gave spectra which could be 

identified as having either low, medium or high levels of 137Cs despite the inter-site 

variability of 137Cs. Collection of 20 pixels from each site allowed a fair representation of 
the samples collected in the field. Once extracted, the spectra were then processed to first 

derivative spectra (FDS) and analysed to assess whether significant differences existed 
between spectra contaminated with relatively high and low 137Cs levels. 

7.6 Analysis of Image Spectral Information 

The first analysis was to assess whether significant differences existed between spectra 

contaminated with high and low levels of 137Cs. Splitting samples into relatively high and 
low levels of 137Cs was straightforward in the field and laboratory samples since 137Cs 

specific activity of Pinus sylvestris was measured using gamma spectrometry. In the 

imagery this presented a challenge since specific 137Cs activity of pixels was not known. 

To overcome this, spectra were chosen and extracted from pixels that were spatially close 

to field samples of a known activity and as such, 137Cs specific activity of the pixels could 

be inferred. Needles are likely to bioaccumulate 137Cs differently to the rest of the tree and 

as such, using needle as opposed to whole wood concentration of 137Cs may give a skewed 

indication of true 137Cs concentrations in Pinus sylvestris. This is an additional limitation 

which warrants further investigation. There is thus a need to investigate the relationship 
between needle accumulations of 137Cs and whole wood activity concentrations. 

Domestic and lumber fuel wood limits used in chapters four and five could not be used to 

split spectra from pixels as the exact 137Cs activity level was not known. Although each 

sample in chapters four and five had data for ground level ambient dose rate and specific 
137Cs activity of needles, the spatial resolution of Hyperion imagery (30m) precluded the 

use of extracting exact activities from known samples. As such spectra were split simply 

between high (nearest field samples above lBq/g) and low (nearest field samples below 

0.5Bq/g). Analysing whether differences existed between high and low spectra was then 
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carried out by performing a two-tailed Student's t-test to see if statistically significant 
differences existed, at which wavelengths and whether these were in similar areas of the 

electromagnetic spectrum to those shown by the t-tests for the field (chapter 5) and 
laboratory (chapter 6) spectra. Student's t-tests were performed between FDS collected 
from each site and the results are presented below in figures 7.3,7.4 and 7.5. 

Student's t-test for high vs low spectra exhacted from Hyperion pixels 
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Figure 7.3: Student's test results for high versus low FDS extracted from Hyperion pixels. Only wavelengths significant at the 99% 

confidence interval are shown (3.57 is the minimum Fvalue required for a 99% significance level). 
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Figure 7.4: Student's t-test results for high versus medium D'Cs FDS extracted from Hyperion pixels. 
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Student's t-test for medium vs low spectra extracted from Hyperion pixels 
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Figure 7.5: Students t-test results for medium versus low WCs FDS extracted from Hyperion pixels. 

The t-test result in figure 7.3 shows statistically significant differences exist between 

Hyperion spectra from Pinus sylvestris forests contaminated with relatively high and low 

levels of 137Cs. The high and low pixels in this t-test came from the same image (figure 

7.1). As the high and low spectra have come from the same image, this helps to minimise 
differences that might otherwise be associated with radiometric or geometric image 

distortions. The wavelength of maximum difference is at 448nm and is associated with 

chlorophyll content. The second is at 702nm and is associated with the red edge region of 
the electromagnetic spectrum. This is followed by 998nm (associated with starch) and 
814nm (unattributable). As spectra extracted from Hyperion imagery corresponded to low, 

medium and high levels of 137Cs, the t-test was performed between each of these groups to 

assess whether the same wavelengths differed significantly and which might be related to 

certain foliar biochemicals. 

The general pattern is shown by figure 7.4 to be similar as that for high versus low spectra, 

except the graph appears nosier than in high versus low. This maybe partly due to 

comparing spectra from differing images, which although should be feasible given the 

atmospheric correction employed, radiometric error and distortion cannot be completely 

eradicated. The wavelength of maximum significance is again at 437nm (associated with 

chlorophyll), followed by 1442nm (associated with lignin), 722nm (associated with 

chlorophyll), 692nm (associated with chlorophyll), 2017nm (associated with starch), 
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1291nm (unattributable), 1956nm (associated with water, lignin, protein, nitrogen, starch 

and cellulose), 529nm (associated with chlorophyll) and 2240nm (associated with 

cellulose). So far there appear to be significant differences between Hyperion spectra of 
different 137Cs levels, though radiometric and geometric distortions (attempted to be 

minimised via corrections) may be accentuating such differences. This does not however 

account for differences between high and low 137Cs pixels, which have been taken from the 

same image and show similar significant differences. Figure 7.5 shows the Hyperion 

spectra for medium versus low 137Cs spectra to assess whether the pattern of difference is 

the same as in figures 7.3 and 7.4. 

The general pattern of significant wavelengths is once again similar with 437nm 

(associated with chlorophyll) being the largest significant t-value. This is followed by 

1442nm (associated with lignin), 722nm (associated with chlorophyll), 692nm (associated 

with chlorophyll), 2017nm (associated with starch), 1291nm (unattributable), 1956nm 

(associated with water, lignin, protein, nitrogen, starch, cellulose), 529nm (associated with 

chlorophyll) and 2240nm (associated with cellulose). There are more significant t-values in 

the medium versus low 137Cs levels, which may be corroborated by the different transfer 

factors as shown by the laboratory experiment (chapter 6) whereby medium contamination 

levels contained more 137Cs than the trees growing in greater levels of 137Cs. Once again, 

these could be due to radiometric and geometric distortions since the spectra are taken 

from two different images. In all three t-tests, the chlorophyll waveband has emerged with 

the highest t-value. In chapter 5 however, chlorophyll is considered as conditionally 

independent of 137Cs. In short, there are statistically significant differences across the 

spectra in all three t-tests, however it is difficult to isolate whether these differences are 

caused by changing 137Cs levels or other environmental factors. Since there is no 

coincident biochemical data, environmental factors are difficult to rule out. To try to 

eliminate other environmental conditions and assess whether these differences follow a 

similar pattern to the field spectra, the t-test result from field spectra and imagery are 

presented on the same graph in figure 7.6 for ease of comparison. 
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Comparison of t-values from Hyperion extracted spectra and field spectra 
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Figure 7.6: Comparison of sratrstical4. significant t-values for spectra taken front H3nerion pixels and spectra collected with the ASD 

field spectrometer in Belarus (Split according to the domestic fuel wood (0.74Bq g) limit). Vote that a secondary axis has been used to 

ease comparison and interpretation of results. 

Figure 7.6 shows three areas of the spectrum where statistically significant differences 

from imagery and field spectra match. These are at approximately 430nm (associated with 

chlorophyll), from 770 - 815nm (red edge/unattributable) and finally at around 2040nm 

(associated with cellulose). The same comparison is shown in figure 7.7, however using 

the lumber fuel wood limit (1.85Bq/g) spectra as opposed to the field spectra separated 

according to the domestic fuel wood (0.74Bq/g) limit. 
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Figure 7.7 shows there are four areas of the spectrum where there are statistically 

significant differences which match in terms of field spectra (lumber wood limit) and 

Hyperion extracted spectra. There are differences at 437nm (associated with chlorophyll) 

804nm (unattrihutahle), 1602nm (unattributable) and 1956nm (associated with water, 

lignin. protein, nitrogen, starch, cellulose). Chapter 5 showed that chlorophyll did not 

differ significantly based on changing 137Cs levels, yet this region appears as the most 

statistically significant in terms of the t-value. possibly suggesting that the differences 

shown in the chlorophyll region of the spectrum are affected by another environmental 

variable (such as biomass) and not differing '; 7C's levels. A potential way to analyse if the 

differences are due to "'Cs is to compare significant differences from imagery pixels with 

those from the laboratory experiment (chapter 6) where everything remained constant other 

than 137Cs levels. This was performed and the results are shown in figure 7.8. 
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Due to the magnitude of difference between 137Cs levels used in the laboratory and those in 

the field as well as the spectral resolution of the Hyperion instrument versus the ASD 

spectrometer there are many more wavelengths in the laboratory spectra that are 

significantly different between high and lo«w 137Cs levels and these tend to occupy 

continuous parts of the spectrum rather than discrete wavelengths. Having said this, some 

areas of significant difference match. These are at 450nm (associated with chlorophyll), 

697nm (associated with chlorophyll/red edge) 724nm (associated with chlorophyll), 

830nm (unattributable). 1956nm (associated with water, nitrogen, starch, cellulose), and 

2054nm (associated %%ith nitrogen). 

7.7 Sum man 

In analysing Hyperion extracted spectra. this chapter has shovvn that statistically significant 

differences do exist between spectra from relatively high and low levels of 137Cs. 

Assuming no differences exist in biophysical properties, isolating whether these 

differences are causally related to 1 37Cs or due to other environmental -variables has been 

the research challenge in this chapter. By comparing the location of significant t-values 

from imagery with those collected in the field and laboratory it can be shown that some of 

these differences occur in the same position of the electromagnetic spectrum and some of 
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these areas are associated with key foliar biochemicals shown to be affected by 137Cs. 

Ultimately, whilst this adds confidence that 137Cs impacts can be seen in spectra collected 
from space, it is by no means conclusive. This is partly due to the results shown in chapters 
4,5 and 6 which do not identify any particular wavelengths or biochemicals that are 
definitively associated with 137Cs. Further research whereby field spectra and biochemicals 

collected coincidentally with spaceborne imagery would help to solve research issues 

highlighted in this chapter and is an area worthy of further study. Collecting field data with 
due regard to spatial resolution of the imaging spectrometer would also help to assess 
implications for spatial variability of 137Cs in Pinus sylvestris. In addition and perhaps 

most importantly, the assumption regarding forest biophysical properties would need to be 

addressed. Forests are challenging targets in terms of their biophysical properties due to 

the clumping of optically active surfaces, influences of understory, soil and bark as well as 

the effect of relief and shadow (Schlerf et al. 2005). The influence of 137Cs on forest 

biometric properties and scaling these effects from the needle to the canopy represents a 

challenge for this research. This chapter however, does indicate potential in spaceborne 

hyperspectral imagery for monitoring 137Cs levels in Pinus sylvestris. The assumptions and 

limitations represent opportunity for further investigation. 
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Chapter 8 

Discussion and Conclusion 

8.1 Introduction 

This final chapter brings together results from each of the research chapters to assess how 

the aims and objectives set out in chapter one have been met and show the implications for 

using imaging spectrometry to monitor 137Cs levels. It also considers limitations within the 

research as well as opportunities for further study. 

The principal research aim of this thesis was set out in chapter one and was `can 137Cs 

contamination be detected by using imaging spectrometry techniques? ' To answer this 

question, four specific research objectives emerged and these are revisited here, providing 

suitable headings under which to discuss and conclude the research. 

8.2 Are Changes in Spectral Response Caused by Differing 137Cs Levels? 

Pilot study research (chapter four) has shown statistically significant differences exist 

between spectra of pine needles contaminated with relatively high and low levels of 137Cs. 

These differences in spectra signified potential in using spectral response to delineate 

between 137Cs specific activity of Pinus Sylvestris. Tree age was also investigated in this 

chapter and old trees (c. >20 years) were considered most appropriate for monitoring in 

terms of the effects of 137Cs and the economic potential given by trees of this age. 

Subsequent fieldwork focused on old trees; however the laboratory study described in 

chapter six used Pinus sylvestris trees of approximately three years old. Logistically and 

practically, old trees could not have been dosed with 137Cs and therefore there was no 

choice but to use young Pinus sylvestris. As a means to try to circumvent the inconsistency 

in tree age between fieldwork and laboratory, dose rates of 137Cs were enhanced in the 

laboratory relative to those in the field. Time was essentially substituted with increased 

137Cs levels. In the laboratory study, spectra show differences, when all other variables 

were kept constant other than levels of 137Cs. This corroborates what was discovered in the 

fieldwork chapters (four and five); that spectral reflectance (and various manifestations) 
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differ at statistically significant levels in response to 137Cs. Hyperspectral imagery 

collected over the contaminated fieldsites also exhibit statistically significant differences in 

their spectral response. The research based on Hyperion hyperspectral imagery (chapter 

seven) makes several assumptions regarding biophysical properties which cannot be 

ignored, but which point to openings for further research. The fact that statistically 

significant differences do exist in hyperspectral imagery however does indicate potential in 

the ability to use spacebome hyperspectral imaging to monitor 137Cs levels in Pinus 

. 7lvestris. Each part of the overall investigation (fieldwork studies, laboratory experiment, 

and Hyperion hyperspectral imaging) has discovered that spectral reflectance and its 

manifestations (FDS, BDNA, BNC) show changes according to 137Cs levels within Pinus 

sylvestris. Several factors are limiting the ability to compare results from each component 

of this work and are also preventing the relationship between spectral reflectance and 137Cs 

from being fully understood. In data from the fieldwork (chapters four and five) there is 

the difficulty of isolating changes in spectra and attributing them to effects of 137Cs 

concentration as opposed to other environmental variables. The laboratory experiment was 
designed to observe effects of 137Cs concentration on spectral reflectance of Pinus 

syylvestris without any confounding environmental variables; essentially to investigate the 

system in its simplest form. Comparisons between laboratory and field data are however, 

hindered by differences in tree age between the laboratory (c. <3 years old) and field (c. 

>20 years old) samples and the lack of biochemical data in the laboratory study. Repeating 

this experiment and addressing these issues is a key area to follow should this work be 

continued. Comparing results from imaging spectrometry work (chapter seven) to other 

research results presents a major challenge in terms of the complexity of the biophysical 

parameters of Pinus sylvestris and their relationship to l37Cs concentration. The 

hyperspectral Hyperion imagery will be affected by canopy structure, forest stand height 

and leaf area index (LAI) (Skowronski et al. 2007) all of which may be affected by 1"Cs 

concentration and require further investigation. Additionally, the lack of coincidental field 

data collected alongside the imagery as well as inherent radiometric and geometric 

distortions prevents a true comparison of imaging spectrometry data to field and laboratory 

results. Further work can focus on these limitations to provide data from field, laboratory 

and imagery that could be compared in order to confidently assess whether changes in 

spectral response are caused by differing 137Cs levels and the mechanisms by which '37Cs 

is causing these spectral changes (i. e. biophysical factors, biochemical factors, or a 

combination of both). 
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8.3 Does 137Cs Contamination have any Effects on Key Foliar 

Biochemicals and at what Regions of the Optical Range of the 

Electromagnetic Spectrum are these Detectable? 

The Student's t-test between content of nine key foliar biochemicals indicted that up to 

five exhibited statistically significant differences when grouped according to levels of 
137Cs. Depending on the method used to group the samples (lumber or domestic fuel wood 

limit) affected which biochemicals were highlighted by the t-test as being significant. In 

the domestic fuel wood limit (0.74Bq/g) grouping three biochemicals were highlighted as 

significant (lignin, cellulose and elemental N). In the lumber wood limit (1.85Bq/g) five 

biochemicals were shown to be statistically significant (AD fibre, lignin, cellulose, 

elemental nitrogen and ESN). It might be expected that the domestic fuel wood (0.74Bq/g) 

grouping would show a greater number of statistically different biochemicals since the cut 

off between high and low is based on the limit for a low or non-radioactive material, 

meaning the difference between high and low levels of 137Cs is greater in this group than 

the lumber (1.85Bq/g) limit. This suggests that the effect of 137Cs on biochemicals is not 

necessarily detectable on a linear basis and suggests effects from 137Cs do not occur until 

higher concentrations are reached. This is corroborated by results from the artificial 

laboratory experiment where uptake of 137Cs and its effects on plant health are nonlinear. It 

also shows'37Cs seems to stimulate plant health at relatively low to medium levels but at 

the highest level has an adverse impact on health. This again might explain why more 
biochemicals differ significantly in the grouping with a higher cut off limit between high 

and low levels of 137Cs. Although the laboratory results have provided useful analyses it 

must be borne in mind that young trees (c. <3 years old) were used in the laboratory 

experiment for a relatively short period as opposed to old trees in the field (c. >20 years 

old). The main use of the laboratory experiment has been to assess whether differences in 

spectral reflectance of Pinus sylvestris occur when all other variables are held constant. 

This has been the case and has strengthened confidence in t-tests from the field spectra and 

spectra extracted from Hyperion pixels. In addition to the t-test between foliar 

biochemicals, partial correlation was used to indicate if 137Cs was to blame for the 

differences between foliar biochemicals as highlighted by the t-test and additionally, to see 

which part of the spectrum was affected by the 137Cs. 
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Partial correlations identified two sets of foliar biochemicals; those whose spectral 

response was affected by 137Cs (conditionally dependent) and those whose spectral 

response remained unaffected by 137Cs (conditionally independent). Elemental nitrogen, 
15N, AD Fibre, Lignin and Cellulose are all conditionally dependent but water and the 

three variants of chlorophyll are conditionally independent of 137Cs concentration. 

This is unexpected given that spectral response seems to be significantly different in 

regions of the electromagnetic spectrum associated with absorption by chlorophyll. In the 
laboratory study, and hyperspectral imagery spectra, wavebands in the chlorophyll region 

of the spectrum are affected by 137Cs. It may be that the methods used to monitor 

chlorophyll concentration are not accurate enough or that 137Cs has an indirect non-linear 

effect on chlorophyll. Also, since chlorophyll is comprised of nitrogen and nitrogen is 

affected by 137Cs then this may be why 137Cs seems to be related to spectral response in 

this part of the spectrum but not chlorophyll itself. 

Water remains unaffected by 137Cs according to both partial correlations and t-tests. This 

helps to eliminate water deficiency as an alternative variable causing changes in spectral 

response. Partial correlation and t-tests have shown the two forms of nitrogen and the 

structural components to be affected by 137Cs. These two biochemicals are now discussed 

according to the literature and why they might be affected by 137Cs. 

In biomass production, lignins show variation depending on growth conditions of trees and 

not only are they a part of natural physiological development but they provide flexible 

metabolic responses to external factors such as environmental pollution (Chaplin 1991). 

Lignification is shown to protect plants against pathogens (Cook et al. 1995) and there is 

also evidence that increases in K concentration stimulates lignification (Mandre et al. 
2006). In terms of 137Cs this is of interest as Cs is illustrated by White and Broadly (2000) 

to behave in an analogous way to K. This suggests 137Cs may be stimulating lignification 

through plant response to 137Cs as a pathogen and/or in response to the 137Cs per se as an 

alternative to K. Whilst the partial correlations and t-tests show significant differences 

between lignin based on different 137Cs levels the laboratory experiment lacks biochemical 

data which would have allowed greater insight into the process of lignification with 

regards to 137Cs. 
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When significant differences between spectral response of varying 137Cs levels are 

considered alongside plant structural components (lignin, cellulose, AD fibre) the two 

results concur with each other. Differences in spectral response in fieldwork, artificial 
laboratory study and the Hyperion extracted spectra all show significant differences in 

wavelengths known to be associated with cellulose and lignin. In chapter five, the second 
highest t-value for the domestic fuel wood grouping is at a wavelength associated with 

cellulose. In the laboratory study the highest correlation between 137Cs levels and spectral 

response is at a wavelength associated with lignin and is followed by a wavelength 

associated with cellulose. Despite limitations in the laboratory and hyperspectral imaging 

investigations, the collective results indicate that there is a relationship between 137Cs, 

plant structural components and spectral reflectance. Understanding and utilising this 

relationship hinges on the ability to use spectral reflectance to predict lignin or cellulose 

and in turn predict 137Cs. Results from the fieldwork (chapter five) and the laboratory study 
(chapter six) indicate that this prediction is not possible given the current understanding of 

the interplay between the three components of 137Cs, plant structural components and 

spectral reflectance. To unravel this interplay, further research could investigate how 137Cs 

affects plant structural components by comparing the effect of 137Cs to that of stable Cs 

isotopes. This would allow an understanding of how the radiation is affecting plant 

structural components. In addition, the effects of alternative Chernobyl-derived 

radionuclides such as 90Sr could be monitored in order to see if 137Cs is causing changes in 

structural components or whether 90Sr is responsible, or alternatively whether a 

combination of both 137Cs and 90Sr is causing changes to plant structure. If this is the case 
it may explain why the effects of 137Cs on plant structural components cannot be fully 

understood from the current results since the effects of 9°Sr have not been measured. 

Comparing the influences of short lived radionuclides such as 134Cs to the long lived 

isotopes such as 137Cs may also provide useful evidence as to the effects of 137Cs uptake on 

plant structural components and how this manifests itself in spectral reflectance. 

The two variants of nitrogen ('5N and elemental N) were both shown by partial 

correlations and the foliar biochemical t-tests to be affected by 137Cs specific activity. In 

the domestic fuel wood (0.74Bq/g) grouping, only elemental N was discovered as 

significant, but in the lumber limit (1.85Bq/g) both variants of N were identified as being 

affected by 137Cs activity. In the artificial laboratory study (chapter six) and hyperspectral 

imagery research (chapter seven) some spectral wavelengths identified as being different in 
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relation to 137Cs levels were associated with N although there were not as many bands as 
the structural components. Nitrogen has been previously shown to affect 137Cs content in 

various plant species (e. g. Fuhrmann et al. 2003). In addition, Willcy and Tang (2006) 

show that 137Cs contamination may affect sources of N used by plants, hence the findings 

of this thesis; that 137Cs either affects or is affected by N. In terms of using spectral 

reflectance (and ultimately, imaging spectrometry) to predict 137Cs there is a requirement 

to be able to use spectral reflectance to predict changes in plant biochemicals (such as 13N, 

elemental N, lignin, cellulose and AD Fibre) and in turn 131Cs specific activity. This thesis 
has shown that 137Cs affects spectral reflectance and that certain foliar biochemicals arc 

conditionally dependent on'37Cs, thus giving potential to indirectly estimate 137Cs content 
from spectral reflectance, however this thesis has shown that prediction of biochemicals 

and indirectly, 137Cs from spectra is not straightforward. 

8.4 Can Key Foliar Biochemicals be Predicted from Spectral Response 

and in turn Used to Infer Levels of137Cs Contamination? 

Chapter five has shown that foliar biochemistry of 137Cs contaminated Pinus sylvestris can 

be predicted with accuracy comparable to other applications of field and imaging 

spectrometry in predicting foliar biochemistry (e. g. O'Neill et al. 2002, Grossman et al. 

1996, Curran et al. 2001). Biochemicals shown to be conditionally independent of 137Cs 

have regression equations with greater accuracy than those biochemicals which arc 

conditionally dependent on 137Cs. This suggests 137Cs may be affecting biochemicals in a 

non-linear way and interfering with predictive ability. In particular, the concept of 

radiation hormesis is evident in the literature (e. g. Calabrese 2005). llormesis, or hormctic 

response is well documented in toxicology (e. g. Calabrese 2005) and, as applied to 

radioecology, is the lack of, or stimulating effect of ionising radiation at low dose rates, but 

adverse effects at high dose rates. Hormesis appears to fit well with the results from the 

artificial laboratory study suggesting 137Cs may have a stimulating effect at low doses with 

resulting implications for attempting to use imaging spectrometry to monitor 137Cs. Aside 

from the differences in predictive ability of the regression equations between conditionally 

dependent (two forms of nitrogen, structural biochemicals) and independent biochemicals 

(water, chlorophylls), all can be predicted at a statistically significant level. Stepwise 

multiple linear regression (SWMLR) was used alongside the technique of partial least 

squares, but when considered side by side, SWMLR was most suitable for this research. 
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Forced entry stepwise regression allowed causality to be assigned to the wavebands 

selected by the statistical procedure. Transformations of spectral response using first 

derivative and continuum-removal techniques showed that prediction accuracy of 
particular biochemicals depended on the transformations of the spectral reflectance used 

and corroborate other research which utilises various spectral transformations to predict 

biochemicals (Curran et al. 2001, Kokaly and Clark 1999). Prediction of foliar 

biochemistry was central to being able to infer 137Cs through the effects of 137Cs on the 

foliar biochemicals and in turn spectral response. The ability however to use foliar 

biochemicals to predict 137Cs has not been successfully demonstrated in this thesis. Using 

standard linear regression to predict 137Cs from biochemicals did not result in any 

statistically significant model. Aside from standard linear regression, neural networks 

were employed to account for the possible non-linearity of the 137Cs effect on foliar 

biochemicals. The maximum R2 produced by the neural network was 0.83 but when 

applied to a test data set the R value was only 0.24 which is not statistically significant. 

Again, the lack of ability to predict 137Cs specific activity from foliar biochemicals 

underlines current literature and understanding regarding the behaviour of 137Cs with 

regards to plant physiology; it is not fully understood. This has implications for the use of 

imaging spectrometry as although subtle changes in spectra can be detected and foliar 

biochemicals predicted, the lack of any evident link between 137Cs and foliar biochemistry 

presently precludes the use of spectra to infer 137Cs specific activity. Having said this, 

further research opportunities may hep to refine understanding of the links between 137Cs, 

foliar biochemicals and spectral reflectance and in turn may allow the use of imaging 

spectrometry. In particular, research into understanding the relationship between 137Cs 

concentration and forest biophysical properties would complement results from this thesis 

and may help to understand the complexity of links between 137Cs concentration, foliar 

biochemistry, biophysical properties and ultimately spectral reflectance of Pinus sylvestris. 

Biophysical variables such as leaf area index (LAI), tree height, tree girth, as well as 

canopy measures such as crown density and canopy structure would help to elucidate the 

effects 137Cs is having on Pinus sylvestris and in turn may lead to a suitable method of 

using imaging spectrometry to measure 137Cs concentration in that Pinus sylvestris. 

158 



Chapter 8, Discussion and Conclusion 

8.5 Can any 137Cs Impacts on Spectral Response and Foliar Biochemicals 

be Monitored from Space Using Imaging Spectrometry? 

Hyperspectral remote sensing is a relatively new technology and has the ability to provide 
detailed spectral signatures of the Earth's surface (Liang and Fang 2004) and thus may be 

able to monitor changes in spectral reflectance caused by "'Cs contamination. Chapters 

four, five and six have all demonstrated that spectral response changes based on 
differences in 137Cs and this therefore gives potential in using spaceborne imaging 

spectrometers to monitor these changes. Foliar biochemistry is shown to vary in chapter 
five and all nine foliar biochemicals can be predicted at statistically significant levels, 

however when utilising foliar biochemistry to predict 137Cs, no significant model can be 

generated. This means that although it is possible to use spaceborne imaging spectrometry 

to monitor changes in spectral response, it is currently not possible to link foliar 

biochemicals and 137Cs. Since the links between spectral reflectance, 137Cs and foliar 

biochemistry are not yet fully understood, it is impossible at present to use imaging 

spectrometry to monitor 137Cs specific activity of vegetation. Not only are these links not 
fully understood, but limitations in chapter seven mean at present it can only be postulated 

that the differences in spectra caused by 137Cs are visible from space and concur with 

spectral results from field radiometry (chapters four, five and six). The lack of coincident 

biochemical data and assumptions about biophysical properties when scaling from leaf to 

canopy mean that presently results of this research preclude the use of spaceborne imaging 

spectrometry, but with further research and understanding, this may be possible. In the 

artificial laboratory experiment the notion of hormesis was explored whereby 137Cs seemed 

to stimulate plant health at low levels and in turn would have implications in using 

spaceborne imaging spectrometry in that 137Cs contaminated forests may appear as healthy 

stands of Pinus sylvestris. Again, further research opportunities would enable this to be 

explored further in relation to foliar biochemicals, 137 Cs and spectra. 

Spatially, spaceborne imaging spectrometry is also a challenge in that chapter five has 

shown 137Cs to vary considerably over a field site. Chapter five also shows variability of 
137Cs over a single sample (tree) exists but is less than the variability over a field site. 30m 

spatial resolution of Hyperion is currently the finest spatial resolution of any spaceborne 
imaging spectrometer but given variability if 137Cs over a field site, future imaging 
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spectrometers with finer spatial resolution may hold greater potential in mapping subtle 
differences in 137Cs levels form spectra. 

In short chapter seven has shown potential in using spaceborne imaging spectrometry to 

monitor 137Cs, but further investigation and understanding is required before research can 

reach a definitive answer. 

8.6 Research Limitations 

The main limitations of this research come from chapters six and seven (artificial 

laboratory study and hyperspectral imaging). In chapter six an artificial laboratory 

experiment provided a unique opportunity to isolate the effects of 137Cs on spectral 

response, however practical constraints meant young Pinus sylvestris trees (c. <3 years) 

were used when field radiometry work in chapter five focused on older trees (c. >20 years) 

which had been growing at the time of initial contamination (1986 Chernobyl accident). 
Dose rates in the laboratory were increased to try to overcome this limitation by 

substituting time with dose, but physiological differences between young and old trees 

mean when results from the laboratory and field are compared the differences in age must 
be borne in mind. Practically speaking, running an experiment with old trees could not take 

place in a laboratory experiment and application of 137Cs to Pinus sylvestris in the natural 

environment would pose ethical and legal issues. 

The laboratory experiment was run over a relatively short timescale (due to practical 

constraints such as equipment loan) and this resulted in small amounts of new growth 

needles which meant foliar biochemistry could not be measured due to lack of needle 

material. Provision of biochemical data may have elucidated the relationship between 
137Cs, foliar biochemicals and spectral response and presents an opportunity for further 

research (section 8.7). 

In chapter seven, limitations arose from several areas. The lack of coincident biochemical 

and other field data created difficulty causally linking Hyperion extracted spectra to foliar 
biochemistry and ultimately 137Cs. It also meant atmospheric correction of imagery had to 
be performed using mathematical models as opposed to the more accurate empirical line 
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method. Radiometric error could therefore potentially be responsible for some of the 

differences in spectra shown in chapter seven rather than 137Cs. Additionally the collection 

of the image over the control site was never successful due to cloud cover, meaning 

secondary knowledge of field areas had to be used to choose clean forest stands where no 
fieldwork had taken place. When analysing spectra from hyperspectral images assumptions 

were made regarding biophysical properties which in future research would need more 

detailed consideration. Variability of 137Cs is shown in chapter five to change over a field 

site with the spatial resolution of Hyperion possibly being too coarse to measure spectral 

changes of 137Cs contaminated Pinus sylvestris over the Belarusian landscape. These 

limitations form the basis for further research opportunities. 

8.7 Further Research Opportunities 

Repeating the artificial laboratory experiment presents a particularly useful opportunity to 

unravel the relationship between spectral response, 137Cs and foliar biochemistry. 

Measuring key foliar biochemicals as well as spectral response and 137Cs specific activity 

would enable isolation of the effect of 137Cs on spectra and biochemicals and could aid in 

understanding this same relationship in field data. Staged doses and running the 

experiment over a longer timescale are also factors which could be applied to the design of 

an experiment to some of the questions remaining from the current experiment and add 

value to field results. 

With regards to fieldwork, further biochemical data could be collected alongside spectra to 

assess if 137Cs is affecting these. For example literature shows similarities between Cs and 

K (e. g. White and Broadley 2000) and this suggests it may be beneficial to investigate K 

concentration and its relationship with 137Cs and spectral response. Mutanga et al. (2004) 

investigate grass quality using K, P, Ca and Mg and this biochemistry could be added to 

further field radiometry work to improve understanding of 137Cs effects and ultimately 

attempt prediction of 137Cs from biochemistry. 

Assessing potential of spaceborne imaging depends on the success of further field and 

laboratory work, but collecting imagery coincident with field data would allow increased 

radiometric accuracy of hyperspectral datacubes and could be linked with field data. 
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Additionally the consideration of biophysical parameters would enable greater confidence 

in spectral changes with relation to 137Cs. 

8.8 Conclusion 

In conclusion, potential exists to monitor 137Cs contamination of Pinus sylvestris using 

imaging spectrometry. With regards to the objectives set out in chapter one, this research 

has shown the following: 

" Field radiometry and the artificial laboratory study has shown there are changes in 

spectral reflectance in response to differing 137Cs levels. 

" 137Cs contamination affects the relationship between spectral reflectance and two 

forms of nitrogen (elemental N and 15N) as well as lignin, cellulose, and AD Fibre. 

Total chlorophyll, chlorophylls a and b and water are not affected by 137Cs 

contamination. The effects are detectable at wavelengths associated with these 

biochemicals and this is illustrated by partial correlations in chapter five. 

" All foliar biochemicals can be predicted at a statistically significant level using 

spectral reflectance or a statistical transformation of it. Predicting 137Cs specific 

activity from foliar biochemistry is not possible using methods and data in this 

research, though further research may change this. 

" Changes in spectral response appear in spectra extracted from spaceborne 

hyperspectral imagery, however limitations and assumptions mean other variables 

cannot be excluded as being responsible for these changes. At present 137Cs impacts 

on spectral response and foliar biochemicals are not fully understood and as such 

monitoring 137Cs concentration of Pinus sylvestris from space using imaging 

spectrometry is not feasible. Opportunities identified for further research may 

clarify the relationship between 137Cs, foliar biochemistry and spectral response 

ultimately allowing the use of imaging spectrometry to monitor 137Cs specific 

activity. 
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This thesis has undertaken comprehensive and wide-ranging research with many methods 

and data (field radiometry, laboratory study, hyperspectral imagery) used to investigate 

whether Pinus sylvestris contaminated with 137Cs can be detected using imaging 

spectrometry techniques. It has shown potential highlighted limitations and identified 

where further work is necessary. Current knowledge and results do not allow the use of 

imaging spectrometry techniques to map 137Cs contamination but when results from this 

thesis are combined with further research the use of imaging spectrometry may well be a 

feasible method to monitor 137Cs content of vegetation. 
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Appendix Al 

Laboratory Report and Standards from Iso-Analytical 

The nitrogen analysis (both elemental nitrogen and 15N) were completed by elemental 

analyser isotope ratio mass spectrometry (EA-IRMS). The laboratory report and reference 

standards used are shown in this appendix. 
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Contact: Paul Goldsmith 

Analysis: Nitrogen-15 and elemental nitrogen of plant tissue 

IA Ref. No.: 060713-2 

Reported by: Charles Belanger 

Date: 1 September 2006 

We have completed nitrogen-15 and elemental nitrogen analysis of the supplied 
plant samples. The results of analysis can be found as an e-mail attachment in MS 
Excel format with the name 060713-2-results. XLS. The samples were measured 
with 20% duplication with all replicate results given. Nitrogen-15 results are 
presented in per mil notation (%o) versus the primary international reference 
standard of Air. Elemental nitrogen results are presented in percent notation 
(wtJwt. ) 

Nitrogen-15 Analysis 

The technique used for analysis was EA-IRMS (elemental analyser isotope ratio 
mass spectrometry). In brief, tin capsules containing sample or reference material 
are loaded into an automatic sampler on a Europa Scientific elemental analyser. 
From where they are dropped in sequence into a furnace held at 1000 °C, where 
they are combusted in an oxygen rich environment. The tin capsules flash 
combust, raising the temperature in the region of the sample to - 1700 °C. The 
gases produced on combustion are swept in a helium stream over combustion 
catalyst (Cr203), copper oxide wires (to oxidize hydrocarbons), and silver wool to 
remove sulphur and halides. The resultant gases, N2, NOX, H2O, 02, and CO2 are 
swept through a reduction stage of pure copper wires held at 600 °C. This step 
removes 02 and converts NOX species to N2. A magnesium perchlorate chemical 
trap is used to remove H2O and a Carbosorb trap is used to remove CO2. Nitrogen 
is resolved using a packed column gas chromatograph held at an isothermal 
temperature of 100° C. The resultant chromatographic peak for N2 enters the ion 
source of a Europa Scientific 20-20 IRMS where it is ionized and accelerated. Gas 
species of different mass are separated in a magnetic field then simultaneously 
measured using a Faraday cup collector array to measure masses 28,29, and 30 
for15N analysis. 

Both references and samples are converted to N2 and analysed using this method. 
The analysis proceeds in a batch process by which a reference is analysed followed by a number of samples and then another reference. 
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Elemental Nitrogen Analysis 

The elemental nitrogen content of the samples is calculated using the total ion 
beam area (in units of ampere-seconds) generated from the IRMS. Each sample's 
total ion beam area (or TBA) is compared to the TBA of the reference standard 
which is [so-Analytical Ltd. working reference standard IA-RO01 wheat flour 
(1.88% nitrogen). IA-R001 is calibrated and traceable to IAEA-N-1 pure 
ammonium sulphate (21.21% nitrogen) supplied by the International Atomic 
Energy Agency, Vienna. 

Reference Standards 

The reference material used during analysis was Iso-Analytical Ltd. working 
reference standard IA-R001 (wheat flour) with aö 15N value of 2.55 %o vs. Air. IA- 
R001 is traceable to IAEA-N-1 (ammonium sulphate) with an accepted 815 N value 
of 0.40 %o vs. Air. IA-R001 was chosen as a reference material as it most closely 
matches both the isotopic and elemental composition of your samples. 

For quality control of isotopic analysis, test samples of IA-R001, IAEA-N-1 and 
IAEA-N-2 (ö 15N of 20.30'% vs. Air) were measured along with the plant samples. 
The results for these analyses are given in the attached table. 

The International Atomic Energy Agency, Vienna, distributes IAEA-N-1 and IAEA- 
N-2 as isotope reference standard materials. 

The unused portions of each sample will be returned to you if you request us to do 
so, otherwise the samples will be placed in storage for a period of three months 
after which time they will be disposed of. 

If you require any further information regarding the analysis or wish to discuss any 
related issues, please do not hesitate to contact me. 

Analysed and Reported by: 

Charles Belanger, BSc. 

For and on-behalf of. 

Iso-Analytical Limited 
Millbuck Way 
Sandbach, Cheshire 
CWI 1 3HT 
UK 
Tel: 44 (0)1270 766771 Fax: 44 (0)1270 766709 
E-mail: infoa-iso-analvtical. com 

Checked by: 

Steven Brookes, PhD. 
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Appendix A2 

National Physical Laboratory Pine Needle Standard 

To accurately determine specific 137Cs activity of Pinus sylvestris needles, a National 

Physical Laboratory (NPL) standard of known activity was used to create a pine needle 

standard. This enabled the efficiency of the detector to be calculated in turn allowing 

accurate determination of specific 137Cs activity. The NPL certificate for the radionuclide 

solution used in the creation of the standard is shown in this appendix. 
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t/ i4yrL 
-I 

:; ATIONÄL PHYSICAL LABORATORY 
i irný trýn .ý {iddlesex UK TII OLW Switchboard 020 397? 32 

Certificate of Calibration 

MIXED RADIONUCLIDE 
STANDARD SOLUTION 

0478 

PARAMETER MEASURED: Gamma rays emitted per second per gram of solution 
at each of twelve specified gamma-ray energies. 

DATES OF CALBRATION: 2 April 2003 to 12 April 2003 

rr)ENTIFIC -MTTON , Ampoules A 105/03 to A 148/03 
Product code R08-03 

DESCRIPTION A mixed radionuclide solution containing 
Americium-241, Cadmium-109, Cobalt-57, Cerium-139, 
Mercury-20',. Tin-113, Strontium-85, Caesium-137. 
Cobalt-60 and Yttrium-88 as chlorides in 4M 
hydrochloric acid. The carrier concentration is 
approximately 25 µg of each of the above elements, 
except Americium, per gram of solution. Supplied as 10 
g nominal of solution contained in a flame-scaled 10 ml 
British Standard glass ampoule. 

t'NC'EKT, \I. \TIES 

i ne r Gý, iced uncertaintle, are based on standard uncertainties multiplied by a coverage factor 

,. : =2. kshich pu, ides a level of confidence of approximately 95%. The uncertainty 
%, tluatlon base peen carried out in accordance «tth UKAS requirements. 

Reference: F-03()'; 020611 

Date of k sue: 14 Mai '(K)? 
C�rr,.. 

Checked by: 

Paffe I of d 
Signed ~ ? -ý's-- -_ý, luthorised Signatory) 
Name: Mr S ht Jerome for Managing Director 

- ., ir , rý rn; = .... ' : '. ý1 5: ýý¢4a nn .4r ar:. 'K7t JsYC=i Ff ýmo. u4e x. ,.,. .1 o1ýnatýrr; >. eý' 'r. ̂ . o p. ý^ ýa tr". '. aC . 4.7 c lft! [xf nntwUZ"ý ', 
ý 

."x -e' ,. r-. r ri, n"""ý, +veeý 4, ifwtd t, "rKe c, "t^rt'e 
. 
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r. ý, T; P; {ýýSICAL LABORATORY 
C ý! it NIltltltl r+ý1t 

NIE'ASURE MENTS 

The samples were prepared by grarimetric dilution of a solution containing a mixture of the 
i. «honuclidrs concerned. The mixture solution had been previously standardised in a manner 
traceable to national standards of radioactivity. The gamma-ray emission rate per unit mass of 
the components of the mixture were confirmed using a hyperpure Ge y-ray spectrometer, The 

accuracy of the dilution factor was checked using a 'well-type' Nal(TI) gamma detector. 

RESULTS 

CCamma-ray emission rates per unit mass at 12: 00 GMT on l May 2003 

Nuclide Gamma-ray 
energy (MeV) 

Gamma rays per second 
per gram of solution 

Overall 
uncertainty 

Americium-241 0.060 j 19.2 f 2.7 c. o 

Cadmium-109 0.098 10.2 ±6.3 % 

Cobalt-57 122 8.8 t 1.6 So 

I Cerium-131) I 0.166 9.1 t 1.5 % 
1 ýlercun"_O3 0.279 

± 
12.9 t1.5 9o 

Tin- 113 (via 
Indium- I 13m) 

0.392 25.6 jt3.6 % 

Strontium-85 0.514 35.0 s 2.6 % 

Caesium-I37 0.662 41; 4 ±2.0To 

Yttnum-83 0.898 72.7 t 1.7 % 

Cobalt-00 1.173 57.7 ± 1.6 % 

cobalt-60 1.333 57.7 t 1.6 % 

Yttrium-88 
r, 

1.836 
i 

76.8 t 1.4 % 

UNCERTAINTIES 
The reported uncertainties are based on standard uncertainties multiplied by a coverage factor 
of k_2. which provides a level of confidence of approximately 95%. The uncertainty 
evaluations have been carried out in accordance with UKAS requirements. 

Reference: E03050206/1 
.. Page 2 of 4 

Checked by: 
ýý Qý 
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NATIONAL PHYSICAL LA13OIZATORY 
t onthmtahon Shut 

FOR: School of Life Sciences 
Kingston University 
Penryhn Road 
Kingston-Upon-Thames 
Surrey 
KT 12EE 

For the attention of. Dr Alan Flowers 

AMPOULES SUPPLIED WEIGHT OF SOLUTION 

A 107/03 10.63g ±. 0.02 g 

7/7/c3 PI5 WsEP TD kV Sovaa. r "e(. E/A 4/L 
,- 

10.56y j 0.021. 

DATE OF P. ACK! NG. I6'" June 2003 

UNCERTAINTIES 
The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage 
factor of k=2, providing a level of confidence of approximately 95'x. The uncertainty 

evaluation has been earned out in accordance with UKAS requirements. 

Reference: E03050206/1 Page 3 uf4 

Checked by. 
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NATIONAL PHYSICAL LABORATORY 
er GAMMMiA-RAY EMISSION PROBÄ IL7+ 9' she 

Nuclide Gamma-ray energy 
(MeV) 

Gamma rays 
per decay 

Uncertainty 

Americium-241 0.060 0.360 t 0.008 

Cadmium-109 0.088 0.0363 ±0.0004 

Cobalt-57 0.122 0.8560 ± 0.0034 

Cerium-139 0.166 0.7987 ± 0.0012 

D Mercury-203 
1! 

Tin- I13(via 
Indium-113m) 

0.279 

0.392 

0.8148 

0.6489 

±0.0016 

±0.0026 

Strontium-85 0.514 0.984 f 0.008 

(; Caesium-137 0.662 0.851 1±0.004 

[ýýº, air_ýn 1 171 a 99R57 +0.00044 

1.333 1 0.99983 t 0.00012 

Yttrium-88 0.898 0.940 ±0.006 
1.836 0.9936 ±0.0006 

HALF-LIVES 

Ný uclide 

i 

Half-life 
(days) 

15 7S50 

462.6 

271.79 

137.640 

46.595 

115.09 

64.849 

11020 

1925.5 

Uncertainty 
(days) 

t 480 

1.4 

±0.18 

10.046 

0.026 

0.08 

± 0.008 

t 120 

1.0 

Americium-241 

Cadmium-109 

u Cobalt-57 

Cerium-139 

i: Alercurv-203 

Tin-I 13 

Strontium-85 

Caesium-137 

Cobalt-60 

Yttrium-88 106.630 ± 0.050 

UNCERTAINTIES 
The reported uncertainties are based on standard uncertainties multiplied by a coverage factor 
o- -_, ýNlt, cih provides a level of confidence of approximately 95%. The uncertainty 
e, aluation, ý have been carried out to accordance with UKAS requirements. 
Reference: E03050206/1 Page 4 of 4 

Checked by: 

.ý 
>>', 

ým, a; ` 
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Appendix A3 

Belarus Deports Chernobyl Expert 

Whilst in Minsk, after the collection of field data, but whilst pre-processing biochemical 

material, Alan Flowers was arrested by the KGB and subsequently deported. This resulted 
in an early exit from Belarus. The BBC news story detailing the expulsion is contained in 

this appendix. 
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OQO NEWS 

Belarus deports Chernobyl expert 
A British scientist who studied the Chernobyl disaster in the forma, fovtet Union has been Nnystarkously deported frei, Belarra While os a IacWre tour. 

The decision to rescind his visa was made by the former Soviet ntoubilc s interior min". 

Or Man Flowers, a specialist In radiology based at Kingston University, said he was being removed because of his contact with nan gawmment groups. 

The Foreign Of ice confined the deportation but declined to comment. 

Or Flowers reportedly started studying the effects of the disaster in 1992. 

Radioactive ram 

The C hemobvl power station, In Beiarus' neighbounng former Soviet republic Ukraine, exploded on 26 Apra 1986. 

The blast, which killed at least 30 people and forced the evacuation of 135,000 more people because of the level of nuclear contamination in the area, was the worlds worst nuclear 

disaster 

Vladimir Kuzura, an official from the Belarusian Interior Ministry, refused to explain the reasons behind the withdrawal of Or Rowenf viol end the deportation order 

But Dr Flowers is said to have made a claim that, if proved right, would cause groat embarrassment to former top Soviet officals. 

According to Vera Wrh, who was the Soviet correspondent of the scientific journal Nature at the time of the tragedy, many believe the then Soviet Union needed clouds to make 
them ram an Belarus 

Freedom of speech 

The move was aimed at preventing winds from blowing contaminated material towards Moscow, theorists say. 

But many scientists are highly dubious of darns for successful cloud-seeding. One of the problems ei proving that any nkr following experiments would not held fallen anyway. 

According to Ms Rich, who is currently a freelance writer for the Ukrainian Weekly, Or Flowers said he had many colleagues in BeIanis who bow" In this theory but would never 
admit it in public for fear of retaliation. 

In her aride, one quoted him as saying: *For e full understanding of the distribution and effects of the Oiernobyl A1kwt, we need as mud, evidence as possible. 

'What caused the rain is still an uncertainty in our knowledge about the Intensity and natura of the contamination. ' 

The ChemotrA disaster led to a dramatic rise In the number of cases of thyroid cancer, leukaemle and birth defects, especially in Belarus. 

Up to seven million people are believed to have been affected. 

Belanrsi n President Alexander Lukashenko has snposed strict controls on freedom of expression, and the country Is being kKreab tpy Isolated by the waist. 

Stuft from sac VFws 
Mtp"', rw, bbc , urc ncýoün" tVhirworWteurope/3543073 stm 

PuWL h". 20, 'u"' )' '9 24 49 GMr 

0 BBC MMVI: 
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Appendix A4 

Wavebands Used for Forced Entry (Constrained) Regression 

In chapter five, forced entry regression was used to produce predictive models of foliar 

biochemistry from reflectance data. The wavebands used in this constrained regression 

were not included in the chapter, but are listed in this appendix for reference. They include 

wavelengths known to be associated with a particular biochemical and wavelengths 

identified in the partial correlation analysis. The tables show the wavelengths retained by 

the forced regression and whether they are attributable to a particular biochemical, or from 

the partial correlation procedure (or both). 
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Moisture: 

Wavelength (nm) Association 
970 Water 
552 Chosen by partial 
981 Chosen by partial 
1436 Chosen by partial (attributable to water) 
1942 Chosen by partial (attributable to water) 

Lignin: 

Wavelength (nm) Association 
1120 Lignin 
1174 Lignin 
1192 Lignin 
1206 Lignin 
1442 Lignin 
1542 Lignin 
1672 Lignin 
1690 Lignin 
1696 Lignin 
1786 Lignin 
1940 Lignin 
2068 Lignin 
2090 Lignin 
2214 Lignin 
2300 Lignin 
439 Selected by partial correlation 
857 Lignin 
906 Selected by partial correlation 
981 Selected by partial correlation 
2181 Selected by partial correlation 
434 Selected by partial correlation 
807 Selected by partial correlation 
820 Selected by partial correlation 
1445 Selected by partial correlation (attributable to lignin) 
1766 Selected by partial correlation (attributable to lignin) 
1809 Selected by partial correlation 
2129 Selected by partial correlation (attributable to lignin) 
2201 Selected by partial correlation (attributable to lignin) 
2303 Selected by partial correlation (attributable to lignin) 
2373 Selected by partial correlation 
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Cellulose: 

Wavelength (nm) Association 
1275 Cellulose 
1448 Cellulose 
1484 Cellulose 
1490 Cellulose 
1536 Cellulose 
1540 Cellulose 
1578 Cellulose 
1924 Cellulose 
1940 Cellulose 
2084 Cellulose 
2340 Cellulose 
2356 Cellulose 
439 Selected by partial correlation 
540 Selected by partial correlation 
820 Selected by partial correlation 
876 Selected by partial correlation 
909 Selected by partial correlation 
1053 Selected by partial correlation 
1257 Selected by partial correlation (attributable to cellulose) 
1442 Selected by partial correlation (attributable to cellulose) 
2043 Selected by partial correlation 
2080 Selected by partial correlation (attributable to cellulose) 
1259 Selected by partial correlation 
2025 Selected by partial correlation 

Chlorophyll a: 

Wavelength (nm) Association 
_ 540 Selected by partial correlation (attributable to chlorophyll) 

577 Selected by partial correlation (attributable to chlorophyll) 
613 Selected by partial correlation (attributable to chlorophyll) 
849 Selected by partial correlation 
895 Selected by partial correlation 
1942 Selected by partial correlation 
2043 Selected b partial correlation 

Chlorophyll b: 

Wavelength (nm) Association 
660 Chlorophyll 
540 Selected by partial correlation (attributable to chlorophyll) 
577 Selected by partial correlation (attributable to chlorophyll) 
613 Selected by partial correlation (attributable to chlorophyll) 
849 Selected by partial correlation 
895 Selected by partial correlation 
1942 Selected by partial correlation 
2043 Selected by partial correlation 
2100 Selected by partial correlation 
2303 Selected by partial correlation 
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Total Chlorophyll: 

Wavelength (nm) Association 
540 Selected by partial correlation (attributable to chlorophyll) 
577 Selected by partial correlation (attributable to chlorophyll) 
613 Selected by partial correlation (attributable to chlorophyll) 
849 Selected by partial correlation 
895 Selected by partial correlation 
1942 Selected by partial correlation 
2047 Selected by partial correlation 

Elemental Nitrogen: 

Wavelength (nm) Association 
910 Nitrogen 
1020 Nitrogen 
1030 Nitrogen 
1060 Nitrogen 
1426 Nitrogen 
1456 Nitrogen 
2060 Nitrogen 
2168 Nitrogen 
2180 Nitrogen 
2274 Nitrogen 
2294 Nitrogen 
2300 Nitrogen 
428 Selected by partial correlation 
863 Selected by partial correlation 
902 Selected by partial correlation (attributable to nitrogen) 
916 Selected by partial correlation (attributable to nitrogen) 
1441 Selected by partial correlation (attributable to nitrogen) 
2039 Selected by partial correlation 
2081 Selected by partial correlation (attributable to nitrogen) 
859 Selected by partial correlation 

200 



Appendices 

15N: 

Wavelength (nm) Association 
910 Nitrogen 
1020 Nitrogen 
1030 Nitrogen 
1060 Nitrogen 
1426 Nitrogen 
1446 Nitrogen 
1456 Nitrogen 
1510 Nitrogen 
1694 Nitrogen 
1974 Nitrogen 
1980 Nitrogen 
2054 Nitrogen 
2060 Nitrogen 
2180 Nitrogen 
2274 Nitrogen 
2300 Nitrogen 
2342 Nitrogen 
432 Selected by partial correlation 
552 Selected by partial correlation 
794 Selected by partial correlation 
1260 Selected by partial correlation 
1436 Selected by partial correlation (attributable to nitrogen) 
1809 Selected by partial correlation 
2379 Selected by partial correlation 
1259 Selected by partial correlation 
976 Selected by partial correlation 
1385 Selected by partial correlation 
1545 Selected by partial correlation 
1768 Selected by partial correlation 
1846 Selected by partial correlation 
2062 Selected by partial correlation (attributable to nitrogen) 
2209 Selected by partial correlation 
2322 Selected by partial correlation 
2361 Selected by partial correlation 
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Appendix A5 

National Physical Laboratory Standard for 131 Cs Solution 

When dosing the trees grown in the artificial laboratory environment, a 137Cs standard was 

used to dose the Pinus sylvestris trees. This is shown in this appendix. 
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\ NATIONAL PHYSICAL LABORATORY 
Teddington Middlesex UK TWI I OLW Switchboard 0181-977 3222 

CENTRE FOR IONISING RADIATION AND ACOUSTICS 

Certificate of Calibration 
" 

MIXED RADIONUCLIDE 

STANDARD SOLUTION 

U/ / 

PARAMETER MEASURED: Gamma rays emitted per second per gram of solution at 
each of twelve specified gamma-ray energies. 

DATES OF CALIBRATION: 2 July 1996 to 21 September 1996 

IDENTIFICATION: Ampoules A938/96 - A960/96 
Product code R08-04 

DESCRIPTION: A mixed radionuclide solution containing Americium-241, 
Cadmium-109, Cobalt-57, Cerium-139, Mercury-203, 
Tin-113, Strontium-85, Caesium-137, Cobalt-60 and 
Yttrium-88 as chlorides in 4.0 M hydrochloric acid. The 
carrier concentration is 25 pg of each of the above 
elements, except Americium, per gram of solution. 
Supplied as 10 g nominal of solution contained in a 
flame-sealed 10 ml British Standard glass ampoule. 

UNCERTAINTIES 

The uncertainties are for a confidence probability of not less than 95%. 

Reference. R1604 Page 1 of 4 
Date of issue 1 October 1996 Si ned: ý^ or the Managing Director, NFL 

f 

ý) 

Checked by: Natur. Dr JB Hunt 

7hs aftfk sr n tnrs6ýJOy q s. nurmnrnt w . rcaýnued nalnný! ttundýrb. r. d b the rwý aY mm"re""t naliwd at ffi NPL or wher 
rotor+unl ýrto1r! , unJ+MS Y6oýtonn. T hm cz Ot le Bey Only br OY! lohtd un full. rnlos prrwusswn for the pubfautwn .y jn .' pmwd [r,, Wt Ir taw alar'nn1, n w. nnj /ram eM AY, rjiwf Duseto.. It Aun na of /he/f . quer b the sul cl oýaJ$rrnon Ny altnbuln lu"pne iMut sAwn ºy Mr Aso . sntrwd Meru 

203 



Appendices 

F NATIONAL PHYSICAL LABORATORY 
Continuation Sheet 

MEASUREMENTS 

The solution was prepared by gravimetric dilution of a mixture of the radionuclides 
concerned, the component nuclides of which had been individually assayed using a high- 
pressure re-entrant ionisation chamber. The chamber had been previously calibrated for these 
radionuclides using absolute counting techniques. The activity concentrations of the 
components of the mixture were confirmed using a hyperpure Ge y-ray spectrometer. The 
accuracies of dilutions were checked using a 'well-type' NaI(TI) gamma detector. 

RESULTS 

Gamma-ray emissions at 12: 00 GMT on 1 October 1996 

Nuclide Gamma-ray 
energy (MeV) 

Gamma rays per second 
per gram of solution 

Overall 
uncertainty 

Americium-241 0.060 144 ± 2.4% 

Cadmium-109 0.088 103 ± 1.8% 

Cobalt-57 0.122 78.4 t 0.8% 

Cerium-139 0.166 218 ± 2.1% 

Mercury-203 0.279 113 t 3.6% 

Tin-113 (via 0.392 
Indium 113m) 

249 3 1.5% 

Strontium-85 0.514 530 t 4.2% 

Caesium-137 0.662 311 t 2.3% 

Yttrium-88 0.898 3785 t 1.0% 
Cobalt-60 1.173 704 t 2.1% 

Cobalt-60 1.333 705 t 2.3% 

Yttrium-88 1.836 4001 t 3.8% 

UNCERTAINTIES 

The uncertainties are for a confidence probability of not less than 95%. 

Reference: R1604 

Checked by: O'1 ýfO 
"- 

Page 2of4 
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NATIONAL PHYSICAL LABORATORY 
Continuation Sheet 

FOR: Kingston University 
Penrhyn Road 
Kingston Upon Thames 
Surrey 
KTl 2EE 

For the attention of Mr N Varley 

AMPOULES SUPPLIED WEIGHT OF SOLUTION 

A941/96 10.50 ± 0.02 g 

DATE OF PACKING: 24 October 1996 

UNCERTAINTIES 

The uncertainties are for a confidence probability of not less than 95%. 

Reference: R1604 

Checked by: Cý, 
Page 3 of 4 
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NATIONAL PHYSICAL LABORATORY 
Continuation Sheet 

GAMMA-RAY EMISSION PROBABILITIES 

Nuclide Gamma-ray energy 
(MeV) 

Gamma rays 
per decay 

Uncertainty 

Americium-241 0.060 0.360 t 0.008 

Cadmium-109 0.088 0.0363 t 0.0004 

Cobalt-57 0.122 0.8560 s 0.0033 

Cerium-139 0.166 0.7987 z 0.0012 

Mercury-203 0.279 0.8148 ± 0.0016 

Tin-113 (via 
Indium-113m) 

0.392 0.6489 ± 0.0025 

Strontium-85 0.514 0.984 s 0.008 

Caesium-137 0.662 0.851 t 0.004 

Cobalt-60 1.173 
1.333 

0.99857 
0.99983 

t 0.00043 
t 0.00012 

Yttrium-88 0.898 
1.836 

0.940 
0.9936 

t 0.006 
t 0.0006 

HALF-LIVES 

Nuclide Half-life 
(days) 

Uncertainty 
(days) 

Americium-241 1.5785 x 105 t 0.0047 x 105 

Cadmium-109 462.6 s 1.4 

Cobalt-57 271.79 t 0.18 
4 

Cerium-139 137.640 t 0.045 

Mercury-203 46.595 t 0.025 

Tin-113 115.09 t 0.08 

Strontium-85 64.849 ± 0.008 

Caesium-137 1.102 x 10' t 0.012 x 10` 

Cobalt-60 1925.5 t 1.0 

Yttrium-88 106.630 ± 0.049 

UNCERTAINTIES 

The uncertainties are for a confidence probability of not less than 959%. 

Reference: R1604 

Checked by: 
BfOs"O Page 4 of 4 
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Appendix A6 

Hyperion Imagery Metadata 

The metadata for the two Hyperion images used in chapter seven are shown in this 

appendix. The metadata are split into high and medium and correspond to the specific 
details of each image described in chapter seven itself. 
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High Metadata: 

Attribute 
IEntity ID j EO 1H 1810232005236110PW_SGS_01 

(cQuisition Dm 2005108124 
[NY-con( r 53°04'58"N, 31°38'08"E 

NL' C<nncr 53°03'50"N, 31°44'46"E 

SW Comcr 52°11'47"N, 31'13'43"E 

SEComer 52°10'40"N, 31°20'14"E 
ImaPc Cloud Cä 10% to 19% Cloud Cover 

.Is 
ouality 9 

R=iving Station SGS 
Scene Sm Tune 2005: 236: 08: 38: 39307 

Scene Stop Time 2005: 236: 08: 38: 55307 
IV= Entcrcd 2005/0905 
Tact Path 11181 

pct Row ( L23 

Otbit Path 11 181 
SQtbit Row 23 

D wsc Availab c il Yes 

L ook Ane1c-ý -13798 
Sun Azimuth 152211748 
dun Elevation 4533 2296 

208 



Appendices 

Medium Metadata: 

- r ] [1 H181023MO5252110PJC_SGS_Ol 

Acquisition Datc 20050909 

NW Comer- 1 53'13'42'N. 31.13'42'E 

Comer-1 53°12'35 14.31'20'24'E 
SW Corner -1 32'20'29'N, 30"49'46'E 

1 32°l9'23'N. 30°56'21'E 
jmarc Cloud Covcr Cto 9% Cloud Cover 

pC OuaI1N 11 9 

IýCCCIYtTL' C" pn SGS 

&MQ SfartT = 5 251-08: 38: 26.434 

Sccnc Stpo Tu7c 2D05 232: 08: 38: 42.434 
Date Entrncd 

Ttcl P, 7ß1 

2°°5ipg/? ° 

181 
pct Rpw E23 

Qrbit a 181 
4ý1iRow 23 

9rvwsc AYa'labIC Yes 
Lý4kAr -39313 
Sun ALr+ut 133 412771 
Sun Ekvanon 40°39°03 
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