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Abstract

Habitat loss is considered to be one of the greatest challenges currently facing society.

An important part of the European Union's (EU) response to this problem is the

Habitats Directive, the main aim of which is to protect biodiversity through the

conservation and protection of natural habitats. Consequently, accurate mapping of

specific habitats is of high importance in order to monitor ecosystem changes. Within

this context, remote sensing has enormous potential as a source of land cover

information which has been used widely for land cover mapping. In many instances

this land cover mapping is only concerned with one particular habitat. However, in

standard classification analysis, training data for all of the land cover classes

contained in the area is typically required which means a wasteful use of resources.

This thesis aims to address these issues by investigating advanced classification

methods that focus on the accurate mapping of one specific protected habitat. The

data used for this purpose is a Landsat ETM+ image of East Anglia, UK, acquired in

June 2000 and ground truth data in the form of aerial photography. The habitat of

interest chosen for this investigation is fens, a habitat protected by the EU Habitats

Directive, whose diverse and dynamic nature is a particular challenge for its mapping

and monitoring. A second protected habitat, saltmarshes, will be used for comparison

purposes in order to determine any bias within the results.

The methods considered to map the selected habitat consist of binary classifiers and

one class classifiers. The binary classifiers chosen were Support Vector Machines

(SVMs) and Decision Trees (DTs) which are two new methods very recently applied

to land cover classification and remote sensing research. They are still very much the

focus of current research for multiclass classification. In this thesis they are used in its

binary form to classify the class of interest against all the other classes. Both

classifiers perform very well when compared with a classic parametric Maximum

Likelihood Classification (MLC). Narrowing down the idea of classifying just one

habitat of interest, one-class classifiers are put to the test. They have been explored in

pattern recognition research but not yet within remote sensing image classification

and land cover mapping. Specifically, the Support Vector Data Description (SVDD)



classifier is considered particularly suitable for land cover classification as it is based

upon the basis of SVMs which have already been applied in this area with success.

When the results of the SVDD classification are compared against those obtained by

the other classifiers these show an improvement in overall classification and a

reduction in the errors of commission. Furthermore, another method is also put to the

test to improve the accuracy of the classification of the class of interest. This method

is the ensemble of classifiers, which in many research studies within pattern

recognition has proven to improve accuracy of single classifiers. The results in this

thesis also show an improvement in accuracy, although further investigation is

needed.

In conclusion, DT, SVM and SVDD classification methods offer clear advantages

over standard classification analysis when concentrating on the classification and

mapping of a particular habitat. All three classifiers obtained higher accuracies than

the ML classifier with the use of significantly less training data. Furthermore. in the

case of one-class classification only data from the class of interest was needed. Also

in both binary and one-class classification approaches the attention was focused on

separating the class of interest from all the other classes and therefore training

efficiency was bigger than in a standard multiclass classification where efforts are

directly to achieve a high overall accuracy. All three methods were found to be highly

suitable for classifying and mapping a specific habitat and its application should be

considered in future work involving the accurate mapping of protected habitats.
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Chapter 1

Introduction

1 Introduction

"Do you suppose I could buy back my introduction to you?"

Groucho Marx

The purpose of this chapter is to introduce the framework within which this thesis

has been developed. It explains the background and motivations that justify the aims

and objectives of the research undertaken. Finally, it also describes the structure that

this thesis will follow.

1. 1 Background

The purpose of this thesis is to investigate and evaluate methods for the accurate

mapping of one particular habitat of interest with the aid of remote sensing. The

reason for focusing all the attention on one particular habitat is that specific habitats

are being fragmented and lost worldwide with major negative impacts on

biodiversity. This is widely considered to be one of the greatest challenges currently

facing society and constitutes a global problem with economic, biological, societal

and ethical consequences (Van Kooten et al., 2000, Harris, 2004). Therefore, the

mapping and monitoring of these specific habitats is of utmost importance.

This general concern for habitat conservation turned into political commitment

through the signing of the Biodiversity Convention at the Rio "Earth Summit"
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Conference in 1992 by representatives of 168 countries (Ledoux et al., 2000).

Progress has occurred since then, but there are still various issues regarding which

habitats to protect and how much land is required for their conservation (Jones,

2004). For example, the island ecology theory (Macarthur and Wilson, 1967)

contends that species richness increases with an increase in the size of the habitat.

However, the mosaic-concept developed by Duelli (1997) considers that species

richness increases the more habitat types there are and the more heterogeneous these

habitats are.

Apart from this debate about the optimal size of habitats for biodiversity

conservation, the concept of habitat itself has been the focus of much research. Since

the early 1900s there have been various attempts to define the term habitat. For

example, Clements (1916) associated habitat with a "community of plant species in a

phytosociological sense"; Lindeman (1942) went beyond that point and defined

habitat as a "functioning ecosystem". Mills (1969) directly associated community of

species with a particular environment (the habitat) and concluded that the interaction

of these species with each other and with the habitat makes them distinctive

communities separable from other groups. In the late 1980s the European Union

(EU) Habitats Directive defined natural habitats as "terrestrial or aquatic areas

distinguished by geographic, abiotic and biotic features, whether entirely natural or

semi-natural" (Council Directive 92/43/EEC). It is this latter definition that this

thesis will adopt.

Finally, there are also concerns regarding the definition of boundaries and energy

flows within a habitat which have repercussions for its protection and conservation

(Griffiths, 1999). Habitats are dynamic entities. In this sense, since the 1980s

attention has been called towards the instability and chaotic fluctuations that

characterise many environmental systems (Pickett et al., 1989). This is a particular

challenge for habitat protection since habitats are systems opened to external as well

as internal exchanges of materials, energy and organisms and in constant evolution

(Zimmerer, 1994). In this sense the EU Habitats Directive also feels the need to

describe conservation status of a natural habitat. This conservation status is defined

Page 10



Chapter 1

Introduction

as the sum of the influences acting on a natural habitat and its typical species that

may affect its long-term natural distribution, structure and functions (Council

Directive 92/43/EEC).

The above mentioned EU Habitats Directive is part of the European Union's

response to the problem of biodiversity loss as a signatory of the Biodiversity

Convention. Its main aim is to protect biodiversity through the conservation and

protection of natural habitats and of wild fauna and flora (Council Directive

92/43/EEC). The implementation of the Directive establishes the designation of

Special Areas of Conservation (SACs) and Special Protection Areas (SPAs) which

form the Natura 2000 network of protected areas. The aim of Natura 2000 is to

provide the framework for the conservation of the 169 habitat types and 623 species

identified in Annexes I and II of the Directive. These habitat types and species are

those considered to be most in need of conservation at a European level because they

are particularly vulnerable and are mainly, or exclusively, found within the European

Union. In the UK the Directive has been transposed into legislation by The

Conservation (Natural Habitats, etc.) Regulations 1994 and The Conservation

(Natural Habitats, etc.) (Northern Ireland) Regulations 1995 as amended (informally

known as 'The Habitats Regulations'). Once designated, Natura 2000 sites are to be

protected from deterioration and damage and so in effect the Directive is

underpinned by a no-net-Ioss policy (Ledoux et al., 2000). Consequently, any loss of

protected habitats must be compensated by restoration or creation of new ones of at

least the same surface area and providing the same ecological value. Therefore,

sustained accurate mapping of habitats is of high importance in order to keep track of

any habitat losses (Turner et al., 1998).

To meet the reporting requirements for Natura 2000, local authorities have to

produce protected habitat mapping which has to be updated every 6 years. Due to

financial budgets of local and regional authorities, the need for innovative methods

that aim to optimise their resources are essential (Weiers et al., 2004). In this sense,

these authorities are normally interested in a sub-set of the habitats or just one

habitat. This means that an approach which directs all the available resources to map
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habitats of interest could be of great importance for those authorities in charge of

mapping and monitoring protected habitats under the EU Habitats Directive.

In this sense, satellite remote sensing data are important sources for producing

valuable land cover information which is essential to resource management and

monitoring programmes. Land cover information derived from satellite remote

sensing is also an important input in a number of ecological models (Kasetkasem et

01., 2005) and it is particularly useful when repeated measurements at frequent

intervals are needed for habitat monitoring (Fassnacht et al., 2006). Furthermore, it is

well-suited to mapping and monitoring land cover at a range of scales (e.g. Roy and

Tomar, 2000, Amarnath et 01., 2003, Kerr and Ostrovsky, 2003, Rouget, 2003),

including those associated with the demands of the EU Habitats Directive. In

particular, satellite systems such as Landsat, Ie Systeme pour l'Observation de la

Terre (SPOT) and National Oceanic and Atmospheric Administration (NOAA) have

the capacity of observing the Earth's land cover at various scales and time intervals

supplying vital information that previously would have been impossible to acquire.

Nevertheless, it is important to take into consideration that the quality of remote

sensing imagery can vary considerably due to different atmospheric and technical

conditions during the acquisition process (Campbell, 2002). Also, the information

recorded is restricted to the energy returned in one or more wavebands which in

some cases could result in some land cover classes being not identified properly.

These issues are normally addressed by using ancillary data, multiple processing

methods or combined with other analysis such as GIS and other data sources

(Fassnacht et 01.,2006).

Another issue regarding land cover mapping is that the no-net loss policy of the EU

Habitats Directive means that the accuracy with which the habitat of interest is

classified is critical. Furthermore, in management and policy applications high

accuracies are needed due to the implications that this information might have in

decision making (Fassnacht et al., 2006). Although there are many research studies

using supervised classification to map land cover, there are still many issues that

limit the classification and mapping accuracy (Foody, 2002). These problems range
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from the spectral and spatial resolution of the imagery available (which might not be

the most appropriate for the particular case) through to the nature of the classes on

the ground. As a result, there is extensive research to increase the accuracy with

which land cover information acquired from remote sensing imagery is translated

into land cover maps. In particular, a large amount of effort has been directed

towards improving classification methods (Foody, 2002).

The most common method of producing land cover maps from satellite images is

through supervised image classification. This method consists of assigning each pixel

that forms the image to a land cover class defined by the analyst. It is referred to as

being supervised because the analyst provides examples of each class to the classifier

and these are used to outline decision rules in order to label all the other pixels in the

image (Mather, 2004). This is what is called a crisp or hard classification. However,

it could be the case that a single pixel does not correspond to a single class and it

could be that two or more classes are present within the same pixel. This is a

recurrent problem in extracting accurate land cover information from remote sensing

imagery and unmixing classifiers has been used in order to resolve it. These

classifiers calculate the proportion of land cover classes inside the pixel and can be

very informative in that sense. However, they fail to account for the spatial

distribution of each of these classes within the pixel (Verhoeye and Wulf, 2002).

Normally, the output consists of fraction images equal to the number of classes with

each fraction image defining the proportion of that class present within each pixel.

Taking all the above into account, in this thesis it will be assumed that (i) a single

pixel is assigned to a single land cover class (although the limitations of crisp

classification will be taken into consideration) and (ii) a single habitat of interest

corresponds to a single land cover class and that the terms habitat and class may,

therefore, be used synonymously.

In the case that concerns this thesis, mapping one specific habitat of interest, the use

of standard image classification approaches could result in very low accuracies. The

reason for this is that standard classification analyses assume that the classes are

Page 13



Chapter 1

Introduction

discrete, mutually exclusive and have been exhaustively defined. Therefore, all the

classes have to be included in an image classification to ensure the assumption of an

exhaustively defined set is satisfied (Foody, 2004a, 2004b). Furtherernore, the size of

the training set required for a classification is linked to the number of classes as well

as the dimensionality of the data used (e.g. number of wavebands). But in the case of

focusing on only one habitat of interest, most of the classes may be of little or no

interest. Consequently, the requirement to acquire training data for all the classes,

including those that are not of interest is a waste of resources and effort.

In addition to the above, standard image classifiers consider all classes in their

analysis, paying equal attention to all the classes. For example, in standard

probabilistic approaches such as maximum likelihood (ML) classification, the aim is

to maximize the overall probability that a pixel is allocated to a class correctly. The

aim is to have a high overall accuracy rather than a high accuracy for the specific

class of actual interest (Lark, 1995c). Therefore, when the emphasis of the

classification lies upon a specific habitat as with the requirements from the Habitats

Directive, it may be more appropriate and efficient to focus on the single class of

interest, producing an alternative and more efficient approach to those responsible

for habitat management (Pullin et al., 2004).

The idea of focusing on the classification of a class of interest has proved very

valuable in other research areas of pattern recognition such as document

classification (distinguishing one specific category from other categories) (Manevitz

and Yousef, 200 I), texture segmentation (distinguishing one specific texture from

other textures) (Tax and Duin, 2002), and image retrieval (retrieving a subset of

images based on the similarity between given query images) (Lai et al., 2002), but

not yet explored within remote sensing for land cover mapping. This thesis aims to

address this issue by assessing a variety of methods that could be used to accurately

map a single class from remotely sensed imagery. In theory a standard probabilistic

classifier could be optimized to minimize error associated with the class of interest

(Lark, 1995c). This approach, however, typically trades one type of error with

another and may require further analyses to produce a final map of the class of
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interest (Foody et al., 2005). Alternatively, a soft classification may be used. This

approach is also not without problems such as the decision of a threshold

membership value to apply in separating members of the class from non-members.

Moreover, with both approaches, assumptions of the data are also commonly made

with the classifiers used. Consequently, this research will focus on classification

methods which aim to map and monitor a specific class of interest. These methods

are:

1) A non-parametric binary classification analysis that simply seeks to separate the

class of interest from all others. With this approach only a small sample of all the

other classes would be required and the classifier would be concentrating on

separating two classes. This would address the two problems described above: (i)

wasteful use of training data and (ii) wasteful consideration of all the classes by the

classifier. Attractive means to achieve this are through the adoption of decision tree

(OT) classifiers and support vector machine (SVM) classifiers.

A DT classifier learns from a data set and is able to classify previously unseen cases

through the formulation of explicit rules (Goel et al., 2003). They have long been

popular in machine learning, statistics and other disciplines and only recently, DTs

have become popular for the classification of remotely sensed data and the

production of land cover maps (Pal and Mather, 2003, Brown de Colstoun et al.,

2003, Joy et al., 2003). DT algorithms are less demanding than the conventional ML

classifier due to their non-parametric nature, conceptual simplicity and

computational efficiency (Friedl and Brodley, 1997, Pal and Mather, 2003).

As with the DT approach, the potential of SVM for the classification of remotely

sensed data has been recognized recently. Comparative studies have also

demonstrated that a SVM may be used to classify land cover more accurately than

conventional approaches, such as the ML classifier as well as popular alternatives

like Artificial Neural Networks (ANNs) (Huang et al., 2002, Foody and Mathur,

2004a). A SVM is a binary classifier that seeks to fit an optimal separating decision

boundary between the classes. It is therefore, also well-suited to the mapping of a
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single class of interest, by separating it from all others. The advantage of the SVM is

the potential for accurate classification from small training sets, particularly if

intelligently defined (Foody and Mathur, 2004b). Obviously some effort is required

in training the non-habitat class in both DT and SVM but the degree of precision

required is less than in training a conventional classifier and therefore the

classification can be considerably less demanding and less wasteful than standard

classifications (Foody and Mathur, 2004b).

2) Another approach would be to concentrate completely on the class of interest

disregarding the other classes present in the image which yet again could deal with

both problems. Concentrating just on one class and using only data from such a class

of interest can be achieved through one-class classification methods. These methods

have been extensively applied within the area of pattern recognition but have not yet

been applied within the remote sensing community. The advantage of one-class

classifiers is that they can focus totally upon the class of interest without the need of

data from any other class present in the image.

3) Finally, as mentioned earlier in this Chapter, the accuracy with which the class of

interest is classified is essential. In recent years, research into improving

classification accuracy has been carried out within remote sensing proposing the

ensemble of classifiers to produce a single classification. The basis of an ensemble of

classifiers is that if there are different classifiers that can be applied within a research

project, it would be reasonable to consider using them in combination in the hope of

increasing the overall accuracy (Jain et 01., 2000). This approach has received a lot of

attention in pattern recognition and machine learning but it is only very recently that

some research has started in the area of remote sensing. This new approach will also

be explored.
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1.2 Aims and objectives of this thesis

The motivation of the present research is directly related to the classification problem

of one class of interest which is exemplified by the current protection of habitats

legislation designed by the EU Habitats Directive, with a view to consider how

remote sensing could help to achieve a more accurate monitoring of such protected

habitats. As seen in the previous section, to classify a particular habitat of interest is a

challenging task that requires approaches different from the traditional multiclass

classification. Taking all this into account and as mentioned at the very beginning of

this Chapter the main aim of this thesis is:

To investigate and evaluate methods for mapping one particular

habitat of interest with the aid of remote sensing.

As already mentioned in the previous section, sub-aims include increasing the

classification accuracy when focusing on a class of interest by:

1) Optimising the use of training data.

2) Optimising the use of remote sensing methods by applying suitable

classifiers to the specific task of classifying a class of interest.

Specific objectives in order to achieve the above aim and sub-aims include the

assessment of different classifiers and their specific associated issues. These main

objectives consist of:

• Evaluating the potential of binary classification for the mapping of a specific

habitat of interest using SVM and DT classifiers.

• Evaluating the potential of one-class classification for the mapping of a

specific habitat of interest.
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• Evaluating the potential ensemble of classifiers in order to obtain a higher

classification accuracy.

Each of these three objectives will be addressed within the three main research

chapters of this thesis.

1.3 Area of study and habitats of interest

To carry out the evaluation of the above mentioned classifiers, it was decided to

perform the different classifications on a particular habitat of interest protected by

the EU Habitats Directive. A second habitat of interest was also chosen to determine

whether the classification results were biased by the type of habitat. The first habitat

chosen to test the different approaches described in the previous sections was fen.

There are several reasons for choosing this habitat. For example, there are no

examples in the literature of mapping and monitoring fens using satellite remote

sensing methods. The reason for this could be that its rich composition (which could

make it difficult to define spectrally) and its dynamic nature have encouraged field

and aerial photography studies as opposed to satellite remote sensing analysis. This

makes fens a particular challenge for testing the capabilities of the classifiers used

within this thesis. The other habitat chosen for comparison purposes was saltmarsh.

Together with fens, this is a very dynamic habitat protected by the EU Habitats

Directive. However, in this case, it has been the focus of extensive and successful

studies for mapping and monitoring using satellite remote sensing imagery.

Therefore, the results of its classification could serve as a valid point of reference

against those obtained for fens and determine any bias of the classifiers towards a

particular type of habitat.

The area chosen for the study of both habitats was East Anglia, United Kingdom.

Here, the Norfolk Broads is one of two sites selected as SACs under the EU Habitats

Directive for alkaline fens in East Anglia, where a main concentration of lowland

fens occurs. Also East Anglia includes the area of the North Norfolk coast which has
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been selected as a SAC for its saltmarshes which are unparalleled among coastal sites

in the UK for their diversity and are amongst the most important in Europe.

1.4 Thesis structure

In order to achieve the previously mentioned aims and objectives, this thesis has

been structured in seven chapters (see Figure 1) including this introductory chapter

which describes the context within which this research has been developed.

CHAPTER 1.
INTRODUCTION

CHAPTER 2.
TECHNIQUES IN

REMOTE SENSING
CLASSIFICATION

CHAPTER 3.
STUDY AREA +

DATA

Research Chapters'C~:Ai~;m~5.~:~:
- ONec..!.Xss

·QIAS__$;ICAll~
. -" ,..,.

CHAPTER 7.
- DISCUSSION &

CONCLUSIONS

Figure 1.1 Thesis structure. Thefirst three chapters show the background of the research.

The research chapters shiftowards the right showing the progression of the research

towards the final discussion and conclusions.
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The first three chapters provide background information about the research context,

different classification methods and study area and methodology. In particular

Chapter 2 reviews the current classification approaches in remote sensing which are

mainly orientated towards multiclass classification. The basics and process of remote

sensing classification are explained. Different parametric and non-parametric

approaches are described and compared and new approaches such as SVMs and DTs

and one-class classifiers are introduced.

Chapter 3 focuses on the methodology followed to carry out the present research. It

describes the area of study chosen and the data used in terms of remote sensing

imagery and ground data. Furthermore, it describes the procedure followed to acquire

the training and testing sets that will be used within the research chapters and the

measure of the accuracy of classification outputs.

Chapter 4 is the first of the three research chapters within this thesis. It approaches

the issue of classification of a class of interest through binary classification which

corresponds with the first objective described in section 1.2. It contains a detailed

description of the two main classifiers used for the binary approach: SVMs and DTs.

The performance of both classifiers is measured against that of a classic parametric

approach: ML classification.

Chapter 5 is the second research chapter and investigates the idea of one-class

classification and its application within remote sensing and land cover classification.

It explores different one class classifiers addressing the second objective of this

thesis. The results obtained are also measured against the benchmark of the ML

classification.

Chapter 6 is the third and final research chapter of this thesis which addresses the

issue of the ensemble of classifiers (third objective) and assesses whether the

combination of the classifiers used in the present research will increase the final

classification accuracy.
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Finally, Chapter 7 will discuss the results obtained by the different approaches

described in the previous research chapters and assess whether they have met the

aims and sub-aims of this thesis. It also summarises the findings of the research and

presents the conclusions drawn from them. Ultimately it provides recommendations

for future research.
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2 Remote Sensing and Image Classification: Review

and selection of suitable methods for classifying a

habitat of interest

"Human beings, for all their pretensions, have a remarkable propensity for lending

themselves to classification somewhere within neatly labelled categories.

Even the outrageous exceptions may be classified as outrageous exceptions!"

WJ. Reichmann

It is a well-known fact that land cover information is a critical variable linking

human and physical processes (Boyd and Foody, 2004). However, the lack of up- to-

date information on type, location, size and quantity of natural habitats has been

identified as a major constraint for the implementation of the EU Habitats Directive

(Weiers et al., 2004).

In this sense, remote sensing technology is a valuable source of land cover

information which is able to acquire data at various spatial and temporal scales

(Huang et al., 2002). The advantages of remote sensing over alternative forms of

environmental data gathering are that large surface areas can be mapped and

monitored. It is also less costly than aerial and ground surveys for long-term studies

and for large and/or inaccessible areas (Wilkinson, 2000). This is very important

because the common problem for mapping and monitoring programmes is to be able
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to update existing data in a cost and time effective way. Also, the acquisition,

checking and update of data take a great part of the mapping budget (Weiers et al.,

2004).

However, a concern about land cover maps derived from remotely sensed data is that

there are normally disagreements between them and other maps derived from field

surveys. Technical difficulties can occur in the acquisition process of the image such

as adverse weather conditions or sensor characteristics. These difficulties are

inherent to collecting data remotely and could have impacts on the quality of the

final land cover map. Pre-processing techniques aim to correct many of these

technical setbacks. A great part of the current research that aims to correct the

disagreements between land cover maps derived from remotely sensed data and

ground data is directed to decrease error in image classification (Foody, 1999,

Mather, 1999) as well as assessing the suitability of remotely sensed data for certain

mapping applications (Estes et al., 1999; Wilkinson, 2000).

In order to understand the current issues relating to image classification methods and

their applicability to the mapping of one habitat of interest, this chapter will describe

the main steps in the process of land cover mapping from the image acquisition by

the sensor to the accuracy assessment of the resulting land cover map. It will also

address the advantages and disadvantages of current standard image classification

methods and why new approaches are needed in order to classify a specific habitat of

interest.
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2. 1 Remote sensing methods

2. 1. 1 Background

Remote sensing is based upon the interpretation of electromagnetic radiation (EMR)

reflected or emitted by a target which is measured by a sensor that is distant from

such a target (Mather, 200 1). Each feature on the Earth's surface reflects or emits

differently EMR . EMR is a form of energy transfer from one target to another

through space and media and behaves in two inseparable ways; as regular waves of

energy and as rapidly moving and indivisible particles. In remote sensing,

electromagnetic waves are categorised by their wavelength location within the

electromagnetic spectrum (Figure 2.1).
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Figure 2.1 Electromagnetic Spectrum. Based upon Lillesand and Kiefer (2004)

Normally, the spectral sensitivity of the sensors used in remote sensing are within the

ultraviolet, visible, infrared and microwave part of the spectrum and they capture the

reflectance and emission of EMR from Earth surface features in these portions of the

spectrum. Each type of feature has a typical spectral response which is normally

known as the spectral signature. This is a very important characteristic of Earth

surface features because this signature provides a specific description of the response
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of this feature to EMR which could determine which sensor to choose for a particular

application (Lillesand and Kiefer, 2004). A typical average spectral signature for

three main Earth surface features (water, soil and vegetation) could be represented as

in Figure 2.2.
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Figure 2.2 Typical spectral reflectance curve. Based upon Lillesand and Kiefer

(2004).

When the data acquisition process is complete the result is a digital image that

contains raw data. This digital image is a numerical record of the radiance reflected

or emitted from each of the features on the ground in each of the spectral bands that

are being recorded (Mather, 2001). A pixel is the cell of an output device to which a

measurement is allocated. Each pixel is assigned with a digital number (DN)

corresponding to the average radiance measured in this pixel. Typically, the DNs

constituting a digital image are recorded over numerical ranges driven by the number

of bits used to record the image. In such numerical formats, the image can be readily

analysed with the aid of a computer (Lillesand and Kiefer, 2004).

The graphic representation of these pixels is normally carried out in a feature space

which is the space where each pixel is represented as a point. Each measurement

(feature or variable) about the pixel gives a coordinate along one axis of the space.
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The dimensionality of the feature space is equal to the number of variables used (for

example, if two features are used, the space will be a plane, with the first feature on

the X axis, and the second feature on the Y axis). When a pixel is represented in a

feature space it becomes a vector which is formed by the values of that pixel for each

of the variables or features represented in such feature space (see Figure 2.3).
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Figure 2.3 Representation of a pixel (feature vector) in a 2 dimensional feature space. After

Jensen (1996).

Therefore pixels will also be referred to as vectors in many of the following sections

within this thesis. Finally, the distance between two points or vectors within the

feature space is expressed as Euclidean distance.

2.1.2 The image classification process

Image classification is one of the most common methods for image interpretation in

remote sensing. The overall objective of image classification is to categorise all

pixels in an image into land cover classes or themes. Normally, the DN for each pixel

is used as the basis for this classification and it is allocated to a specific class which

matches its spectral signature. This is known as spectral classification. There are also

other types of classification methods used in image interpretation such as (i) spatial

pattern recognition which consists of the classification of image pixels on the basis of
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their spatial relationship with pixels surrounding them (Lillesand and Kiefer, 2004)

and (ii) temporal pattern recognition which uses change in spectral reflectance over

time as the basis of feature identification (Pal, 2002). Nevertheless, spectrally

oriented classification is the most used procedure for land cover mapping (Lillesand

and Kiefer, 2004) and it is also the one chosen for the purposes of this thesis.

Generally, image analysis involves several steps (Figure 2.4 below):
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Figure 2.4, Digital image analysis. Based upon Campbell (2002), If there is ancillary data
available the classification is normally supervised.
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Pre-processing of the digital image consists of operations that prepare the data for

further analysis and where the aim is to correct or compensate for random and

systematic errors that might occur during the image acquisition such as defects in

sensor operation, atmospheric absorption and scattering, variations in illumination,

system noise and geometric corrections (Campbell, 2002). Once this is complete, it

might be necessary to perform a feature extraction in order to reduce data

dimensionality. Feature extraction optimises the use of the available data getting rid

of any redundancy within this data. A discrimination technique can involve graphical

and/or statistical analysis which will determine the degree of separability between

classes. Graphical methods of feature selection include: (i) bar graph spectral plots,

(ii) co-spectral mean vector plots and (iii) feature space plots (Jensen, 1996):

(i) Bar graph spectral plots. In this graphical representation, the means for each band

are displayed in a bar graph format which provides an effective visual representation

of the degree of separability between classes for one band at a time. However, the

display provides no information on how well any two bands would perform.

(ii) Co-spectral mean vector plots can be used to present statistical information about

at least two bands at one time. The greater the distance is between numbers in the

feature space distribution, the greater the potential for accurate discrimination

between classes.

(iii) Feature space plots in two dimensions represent the distribution of all the pixels

in the scene using two bands at a time. The brighter the pixel is in the feature space

plot display, the greater the number of pixels having the same values in the two

bands of interest.

On the other hand, statistical methods are used to quantitatively select which subset

of bands provides the greatest degree of statistical separability between any two

classes. Separability measurements between two spectral classes may greatly reduce

the occurrence of errors of commission and omission. The probability of these errors
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is related to the statistical separability between spectral classes. This may be

quantified by their relative divergence (d'Urso and Menenti, 1996). Divergence

addresses the problem of deciding what the best subset of bands is. It is computed

using the mean and covariance matrices of the class statistics collected in the training

phase of the supervised classification. A problem with this technique is that it could

highlight easily separable classes which will weight the average divergence upward

in a misleading way, with the consequence that sub-optimal feature subsets might be

indicated as best (Richards, 1993). To avoid this, a transformed divergence is used

instead. Transformed divergence gives an exponentially decreasing weight to

increasing distances between the classes (Jensen, 1996).

Having addressed the subjects of pre-processing and feature extraction, the next step

in the image classification process is to choose which classification technique is

going to be adopted (Figure 2.4). First of all, it is necessary to decide whether the

classification is going to be supervised or unsupervised. Supervised classification

methods are based upon ancillary data that provide the researcher with some sort of

knowledge about the area to be classified. This ancillary data can be provided by

field work, aerial photography, maps or reports about the area (Mather, 1999). On the

contrary, in unsupervised classification no prior information about the land cover

types or their distribution is known or required. This method organises the data into

classes sharing similar spectral characteristics. Unsupervised classification methods

divide the scene into more or less pure spectral clusters, which are constrained by

pre-defined parameters that describe their statistical properties and their relationships

with neighbouring clusters (Cihlar, 2000). However, in most studies there are usually

some ground data available. Therefore from here on all the following subsections

will be referring to supervised classification and the steps required to perform this

classification.
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2.1.3 Choosing a classification method and training the classifier

In supervised classification, in order to classify an image into categories or land

cover classes, the classification algorithm needs to be trained to distinguish those

categories. Areas that have similar spectral characteristics are labelled and called

class signatures. However, it is important to take into account that within an area of

particular land cover several spectral classes can occur, resulting in a heterogeneous

spectral signature whose characteristics depend on the proportions of each of the

component land-cover types (Schowengerdt, 1997). Standard classification

algorithms produce a likelihood function in order to assign a class label to each pixel.

As mentioned in Chapter 1, when a class label is assigned to each pixel a hard

classification is produced. When allowing for multiple labels at each pixel a soft

classification is created (Schowengerdt, 1997). In recent years numerous variants of

these two basic classification methods have been developed. These include Decision

Trees (DTs) (Hansen et al. 1996), Artificial Neural Networks (ANNs) (Carpenter et

al., 1997, Foody et 01., 1997, Bischof and Leonardins, 1998, Yool, 1998), fuzzy

classification (Foody, 1996, 1998, Mannan et 01., 1998), Support Vector Machines

(SVMs) (Vapnik, 1998) and mixture modelling (van der Meer, 1995) for supervised

classification; and classification by progressive generalisation (Cihlar et 01.• 1998).

classification through enhancement (Beaubien et al., 1999) and post-processing

adjustments (Lark 1995a, Lark 1995b) for unsupervised classification. Table 2.1

summarises the different types of hard and soft supervised classification methods.
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Hard classification Soft classification

Supervised Parametric Minimum Distance to Mean
Classifier
Parallelepiped Classifier
Maximum Likelihood
Classifier

Non Parametric K-nearest neighbour
Decision Trees
Neural Networks
Support Vector Machines

Mixture modelling
Fuzzy classification

Table 2.1. Supervised multiclass classifications methods

As already established in the introduction, this thesis is not dealing with the issue of

mixed pixels classification. Therefore the following sections will be concentrating on

supervised hard classification methods.

The supervised classification approach involves training the classifier with a number

of sites where the class signature is known. It is very important to define training

areas which represent the spectral characteristics of each class because the quality of

the training set has a significant effect on the classification process and its accuracy

(Chuvieco and Congalton, 1988). It is also important that the training areas are a

homogeneous sample of the respective class, but at the same time include the range

of variability for the class. In many cases it is impossible to obtain homogeneous

sites. One technique for improving training data under these conditions is to "clean"

the sites of outlying pixels before developing the final class signatures. When

classifying the training pixels according to their given signatures some training pixels

are likely to be misclassified. These pixels could be excluded from the training set

and the class signatures are recalculated from the remaining pixels (Schowengerdt,

1997).
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Commonly, supervised image classification constitutes the basis of land cover and

land cover change assessments. Supervised classification algorithms may be grouped

into one of two types: (a) parametric classifiers, if they assume the existence of an

underlying probability distribution of the data, and (b) non-parametric classifiers, if

they do not assume anything about the probability distribution (Cortijo and Perez de

la Blanca, 1998).

Parametric Classifiers

Generally, parametric classifiers assume a gaussian distribution of the data and are

based on the mean vector and the covariance matrix of learned normal distributions

(Hubert-Moy et al., 2001). One of the simplest approaches to supervised parametric

classification is the Minimum Distance (MD) to mean classifier (Figure 2.5). This

classifier utilises the Euclidean distances in spectral feature space between (i) the

pixels to be classified and (ii) the class means (obtained from training data). Each

pixel in the remainder of the image may then be allocated to the class mean to which

it is nearest (minimum distance) in multivariate feature space (Atkinson and Lewis,

2000). The main disadvantage of this classifier is that it assumes that classes are

symmetric in multispectral space (Atkinson and Lewis, 2000).
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Figure 2.5. Minimum Distance to mean (MD) classification strategy. Based on Lillesand and

Kiefer (2004).
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The Parallelepiped classifier introduces sensitivity to each class vanance by

considering the range of values in each category (Lillesand and Kiefer, 2004). An

unknown pixel is classified according to the category range, or decision region, in

which it lies or it is classified as "unknown" if it lies outside all regions. These

regions are then of a rectangular shape and are referred to as parallelepipeds (Figure

2.6).
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Figure 2.6. Parallelepiped classification strategy. Based on Lillesand and Kiefer (2004).

However, a disadvantage of this classification becomes obvious when category

ranges overlap which occurs with the presence of covariance. Pixels that occur in the

overlap areas will be classified as "not sure" or will be arbitrarily placed in one or

both of the two overlapping classes (Lillesand and Kiefer, 2004).

The Maximum Likelihood (ML) classifier is the most popular parametric method. It

quantitatively evaluates both the class variance and covariance when classifying an

unknown pixel (Lillesand and Kiefer, 2004). The data likelihood for each class can

be weighted with some estimate of a priori probability (frequency) that this class

occurs (Strahler, 1980, Hubert-Moy et al., 2001). These a priori probabilities may be

estimated from external information sources such as ground surveys, existing maps

or historical data (Schowengerdt, 1997). The probability density functions are used to
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classify an unidentified pixel by computing the maximum likelihood of the pixel

value belonging to each category. After evaluating the probability of each category,

the pixel would be assigned to the most likely class (Figure 2.7).

Band 1

Figure 2. 7. Equiprobability contours defined by a maximun likelihood classifier. Based on

Lillesand and Kiefer (2004).

The likelihood (Lk) is defined as the posterior probability of a pixel belonging to

class k:

Lk = P(k I x) = P(k)· P(xl k)
LP(i). P(xl i)

Equation 2.1 Posterior probability

Were P(k) is the prior probability of class k and P(xlk) is the conditional probability

to observe x from class k or probability density function. Usually P(k) are assumed to

be equal to each other and I P(i) .P(x Ii) is also common to all classes. Therefore

Lk depends on P(xlk) or the probability density function. If the probability values are

all below a threshold set by the analyst x will be labelled unknown (Lillesand and

Kiefer, 2004).
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Applications of Maximum Likelihood (ML) classification are well established in the

literature of remote sensing (Swain and Davis, 1978, Estes et al., 1983,

Schowengerdt, 1983, Sabins, 1997, Lillesand and Kiefer, 2004, Jensen, 1996).

Summarising, statistical procedures require that data must be based on some pre-

defined model (usually the gaussian normal distribution). Consequently the

performance of a these classification methods will depend on how well the data

match the pre-defined model. If the data are complex in structure then to model those

in an appropriate way can become a problem. Other drawbacks include that each

sample is tested against all classes, which leads to a relatively high degree of

inefficiency. Out of the three classifiers, the ML classifier addresses the problems of

MD to mean and Parallelipiped classifiers and in spite of its disadvantages it has

been adopted as a standard classification technique for many land cover mapping

applications (Pal, 2002).

Non-parametric Classifiers

To try to solve the problems of parametric classification non-parametric classifiers

are being introduced into image classification methods. Non parametric classifiers

include k-Nearest Neighbour (k-NN) (Cover and Hart, 1967, Devijver and Kittler,

1982), Artificial Neural Networks (ANNs) (Bishop, 1995), Decision Trees (DTs)

(Breiman et al., 1984) and very recently kernel methods and Support Vector

Machines (SVMs) (Vapnik, 1998). Due to their flexibility, these non-parametric

methods are appealing alternatives to parametric ones. However, the training remains

a critical issue. Most of them usually require large training sets to be properly trained

(Hubert-Moy et al., 2001).

The k-NN method is widely used in pattern recognition. This method is effective for

estimation of densities and for classification. As a classifier, this algorithm carries

out the following three steps: (1) calculate the distances between an unknown sample

and all training samples, (2) choose the k-nearest training samples to the sample, and

Page 35



Chapter 2

Remote Sensing and Image Classification: Review and selection of suitable methods

for classifying a habitat of interest

(3) assign a class label by applying the majority rule to the k-nearest samples (see

Figure 2.8). The disadvantage of this method is the large amount of computation

required to calculate the distances of a given sample to all training samples.

Therefore, various methods for reducing the amount of computation have been

proposed. One group of methods aims to reduce the size of the training sample set to

be referred in the search stage. Another group aims to reduce the number of distance

calculations in the search stage by adopting an efficient search procedure (Kudo et

al., 2003).

0 Class 1

• Class 2• Class 3

• Unknown
0
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Figure 2.B. Example of k-NN classifier. Based on Lillesand and Kiefer (2004).

The ANN classifier is a recent popular non-parametric approach to classification.

ANNs have been successfully used in remote sensing and image analysis including

supervised classification (Benediktsson et al., 1990, Hepner et al., 1990, Heerman

and Kahzenie, 1992, Foody and Arora, 1997, Mas, 2004, Ingram et al., 2005) and

unsupervised classification (Baraldi and Parmiggiani, 1995, Schaale and Furrer,

1995, Tso, 1997, Kumaz et al., 2004). The method with the widest reported

application in image classification in recent years is back-propagation (BP), with

several variants available. These employ many processing iterations to arrive at a

solution (Brown et al., 1998). The decision boundaries are not fixed by a

deterministic rule applied to the training signatures but are determined in an iterative

fashion by minimising an error criterion on the labelling of the training data
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(Schowengerdt, 1997). In essence, a neural network may be considered to comprise

a relatively large number of simple interconnected neurons or units that work in

parallel to categorise input data into output classes (see Figure 2.9) (Hepner et al.,

1990, Schalkoff, 1992).

One of the key advantages of ANNs is the distribution-free nature. Prior knowledge

about the statistical distribution of classes is not required (Brown et al., 1998).

However, previous work with ANNs has been adversely affected by a lack of reliable

procedures for developing optimum network architectures, training data and

sampling considerations, difficulty in reaching the global minima of the error curve,

variable output depending on weight initialisation, and slow processing speeds

(Foody et al., 1995, Blamire, 1996, Brown et al., 1998).

0 Class 1

• Class 2
A

Class 3 • Class

• Unknown 1,2 or 3

I

Input
layer

Hidden
layer

Output
layer

Figure 2.9. Example of an Artificial Neural Network classifier

A DT classifier takes a different approach to classification. It breaks an often very

complex classification problem into multiple stages of simpler decision-making

processes (Safavian and Landgrebe, 1991). The tree is composed of a root node

formed from all of the data, a set of internal nodes or splits, and a set of terminal

nodes or leaves (see Figure 2.10).
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Figure 2.10. Example of a Decision Tree Classifier

Each node has only one parent node and two or more descendant nodes. A data set is

classified by subdividing it according to the decision framework defined by the tree

and a class label is assigned to each observation according to the terminal node into

which the observation falls (Friedl and Brodley, 1997). Decision tree classification

methods have significant advantages for remote sensing classification problems

because of their flexibility, simplicity and computational efficiency. Also decision

tree algorithms are generally fast and insensitive to noise in input data and therefore

have substantial utility for classifying the large volumes of data inherent in remote-

sensing land cover mapping (Friedl and Brodley, 1997).

Finally, SVM classifiers are relatively new to the remote sensing community

compared with other popular classifiers such as ML, ANN and DT (Huang et al.,

2002). A SVM employs optimisation algorithms to locate the optimal hyperplane

that separates two classes (Figure 2.11). Statistically the optimal boundaries should

be generalised to unseen samples with least errors among all possible boundaries

separating the classes, therefore minimising the confusion between classes.
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Figure 2.11. Example of optimal hyperplane or boundary between two classes using a SVM

Based upon Burges (1998).

The potential of SVM for the classification of remotely sensed data has only been

recognised recently (Zhu and Blumberg, 2002, Huang et al., 2002, Gualtieri and

Cromp, 1998, Chapelle et al., 1999). Comparative studies have demonstrated that a

SVM may be used to classify land cover more accurately than the conventional ML

classifier and popular alternatives such as DTs and ANNs (Huang et al., 2002, Foody

and Mathur, 2004a).

2.1.4 Classification output: Labelling

After the chosen classifiers have been trained, the third stage of the classification

process is called labelling. Labelling is the process of allocating individual pixels to

their most likely class. This process of labelling can be approached in one of two

ways.

(i) When the number of separable pixels that exist in the area covered by the image is

known, and the estimation of the statistical properties of the values of each of these

pixels is possible (in statistical classifiers), then individual pixels (test pixels) can be

labelled as belonging to the classes based on these statistical properties.
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(ii) When the number and character of the land cover classes present in the images is

unknown a method of allocating and reallocating each pixel to one of an initial set of

randomly-chosen pixels is used. At each stage, each pixel in tum is given the label of

one of these randomly chosen pixels using some classifier. At the end of first

iteration, when every pixel has been labelled, the randomly chosen pixels can be

altered in character (either by combining, splitting, and removing some of the pixels)

according to the nature of the pixels which have been associated with them. This

process of pixel labelling is repeated until the process converges. At this stage the

user can relate these pixels to some land cover class (Schowengerdt, 1997).

2.1.5 Accuracy Assessment

Finally, no classification process is complete without the assessment of its accuracy.

Many methods of accuracy assessment have been discussed in the remote sensing

literature (e.g., Aronoff, 1985, Rosenfield and Fitzpatrick- Lins, 1986, Kalkhan et al.,

1995, Koukoulas and Blackburn, 2001). In general, there are two components of

accuracy within the context of remote sensing. These are positional accuracy and

thematic accuracy (Janssen and van der WeI, 1994). Positional accuracy determines

how closely the positions of objects shown on a rectified image (map) agree with the

true position on the ground. Positional accuracy is achieved by registering an image

to a map with the use of ground control points as reference. Once enough control

points have been identified the image is resampled and a root-mean-square (RMS)

error is calculated. There are different recent studies that look in detail into this type

of accuracy (Fonseca and Manjunah, 1996, Vieira et al., 2004).

On the other hand, thematic accuracy or classification accuracy refers to the

agreement of assigned class labels of a set of samples against those classes observed

on the ground. The most widely used thematic accuracy is derived from a confusion

or error matrix. An error matrix is a cross-tabulation of the assigned class label of a
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set of samples against that observed in the ground or reference data at specified

locations (Foody, 2002). It provides the basis to describe overall classification

accuracy and characterise errors such as errors of omission and commission. Overall

accuracy is obtained by dividing the total number of correctly classified pixels by the

total number of reference pixels. It also measures misclassification errors such as an

omission from the correct class but also a commission into another class (Story and

Congalton, 1986).

A key issue about the measure of accuracy described above is that the basic

assumptions underlying the assessment of classification accuracy may not be

satisfied. For example the data might present problems due to the presence of mixed

pixels making the generalisation of class definitions problematic. Also, it could be

the case that a misregistration of the ground and remotely sensed data sets is present.

This could be due to the fact that the ground data available could not be an accurate

representation of the ground conditions at the time that the remotely sensed image

was taken. Furthermore, the information on the sampling design used in their

acquisition is normally not provided. Obtaining a reliable confusion matrix is,

therefore, not always possible (Smits et al., 1999), but it remains central to most

accuracy assessment and reporting.

Finally, another problem with error matrices for some users is that particular cases

may have been allocated to the correct class purely by chance (Turk, 1979,

Rosenfield and Fitzpatrick-Lins, 1986, Congalton, 1991, Pontius, 2000). To

accommodate for the effects of chance agreement, Cohen's kappa coefficient has

often been used (Smits et al., 1999). The kappa coefficient makes some

compensation for chance agreement and a variance term may be calculated for it

enabling the statistical testing of the significance of the difference between two

coefficients (Rosenfield and Fitzpatrick-Lins, 1986). This is often important, as

frequently, there is a desire to compare different classifications and matrices. A more

detailed account of the' different methods to assess classification accuracy will be

given in Chapter 3.
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2.2 Classifying a class of interest

As mentioned earlier in this chapter, standard classification approaches assume

discrete, mutually exclusive and exhaustively defined classes. If a class is present in

the region to be mapped but absent from the training stage of the classification (i.e.

an untrained class) cases of that class will be commissioned by the trained classes in

the analysis leading to error. This, however, may not actually be measured and

reflected in the accuracy statement. Therefore, it is very important that all classes be

included in a classification training stage to ensure the assumption of an exhaustively

defined set is satisfied.

This has obvious implications for training the classifier such as the size of the

training set required for a classification linked to the number of classes as well as the

properties of the data. Furthermore, some of the classes may be of little or no interest

to the study. As seen previously, the EU Habitats Directive interest commonly

focuses on one or on a sub-set of the classes or land covers under consideration.

Also, in standard classifications, the aim is often to maximize the overall probability

that a pixel is allocated correctly. This may not be appropriate for a specific study as

the focus is on overall accuracy rather than on the sub-set of classes or a class of

actual interest (Lark, 1995c). Therefore, a more logical approach would be to focus

only on data gathering for the class of interest and in addition minimise and optimise

the amount of this data needed to train a classifier.

This approach could have a great potential when considered from the point of view

of the European Habitats Directive and the protection and monitoring of specific

habitats. The possibility of discriminating one priority habitat within an image could

potentially reduce monitoring costs and result in a more time efficient approach to

image classification.
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This thesis will explore two main alternatives to the standard multiclass classification

methods in order to concentrate on the classification of a class of interest. The first

one is the use of a binary classification where the class of interest is classified against

all the other classes present in the image. The second one is one-class classification

methods where the classifier concentrates completely on defining the class of interest

and classifies it from any other possible class.

2.2.1 Binary classifiers for the classification of one habitat of

interest

Rifkin and Klautau (2004) have recently reviewed the concept of standard multiclass

classification. The authors opted for going back to the basic problem of binary

classification. In their work they trained N different binary classifiers, each one

trained to distinguish the examples of a single class from the examples of all the

remaining classes. This process was repeated for all the classes. To classify a new

example the N classifiers were run and the classifier with the most positive outputs

was chosen. This technique is known as "one-versus-all" (OVA) classification. Their

results confirmed that the OVA approach is as valid as other approaches that aim to

achieve a higher multiclass classification accuracy and they argue it should be

preferred due to its computational and conceptual simplicity. The idea of an OVA

approach seemed quite appropriate for this thesis. In this case the OVA approach

would be adopted to perform a binary classification in order to separate the class of

interest from all the other classes. This directs resources towards gathering enough

data to define the class of interest and less so in order to define all the other

individual classes.

With the purpose of assessing which methods would be useful for this binary

classification approach, Table 2.2 below summarises the advantages and

disadvantages of the classifiers described in the previous section:
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Classifiers
Parametric

DisadvantagesAdvantages

Multiclass classifiers
Minimum Distance Simplicity. It only takes into

account the class mean
It assumes that classes are
symmetric in multispectral
s ace

Parallelepiped Sensitivity to class variance

Maximum Likelihood Takes into account both variance
and covariance of the spectral
classes and uses probability
density functions

When overlapping of different
classes occurs decision regions
fit the training data poorly
It still label pixels as unknown
if they don't fit into any
category

Non Parametric
Multiclass classifiers
K-nearest neighbour

Decision Trees

Widely used in pattern
recognition. Effective when
estimating densities and for
classification
Breaks complicated classification
problems into simpler stages.
Flexibility. Computational
efficiency.

Large amount of computation
required

Problems of overfitting.
When an attribute has a large
number of possible values it
may potentially be a problem
Continuous valued attributes
may also be a problem as they
may contain a large or infinite
set of values.

Neural Network Successfully applied in remote
sensing. No deterministic.
Distribution free nature

Complicated network
architectures. Variable output
depending on weight
initialisation, slow processing
speeds.
Optimisation of the algorithm
can be time consuming.

Finds optimal separating decision
boundaries between classes. No
problems with small sets of data.
Few parameters to choose.

Table 2.2. Advantages and disadvantages of 'parametric and non parametric Multiclass

upport Vector
Machine

classifiers.
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SVM is the only classifier that was originally designed as a binary classifier and

therefore it would be expected to perform better in a binary classification problem. It

is also a very interesting algorithm as it has not been explored in depth by the remote

sensing community and even less in its quality as a binary classifier. It has obvious

advantages over the other classifiers in terms of few parameters to choose and having

no problems with small datasets (Table 2.2). Bennett and Campbell (2000) reviewed

different applications of SVM to date and came to the conclusion that SVMs

eliminate problems experienced with other methods such as neural networks. For

example, SVMs have few parameters to pick and the final results are stable,

reproducible and largely independent of the specific algorithm used to optimize the

SVM. However, as mentioned earlier, the potential of SVM for the classification of

remotely sensed data has only been recognised recently and always in the context of

multiclass classification. Chapter 4 assesses the application of such classifier in the

context of classification of a particular priority habitat.

Of the other non-parametric classifiers, the k-NN and ANN classifiers normally

require a large amount of calculations and are computationally demanding. In

particular, ANNs usually require complicated network structures which are often

very subjective (Foody, 2002) and that could collide with the simplicity of an OVA

classification design. Furthermore, both k-NN and ANN classifiers need large

amounts of data in order to train the classifier properly. It has been widely

documented that in order to train a ANN a sufficiently large sample needs to be

obtained, which also has to be unbiased towards the population it is to represent.

However, it may be the case that there is insufficient data of a satisfactory quality

and thus further data will be required and cost issues then become a further worry.

Various studies have incorporated data that have not been representative and have

consequently had difficulties when using the network (Spellman, 1999, Foody,

2002). After considering the problems that the k-NN and ANN classifiers presented

with regards to training data, it was decided not to use these two classifiers for the

purpose of this thesis.
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On the other hand, DTs were an attractive choice. They have not been used by the

remote sensing community as extensively as statistical or neural/connectionist

methods (Pal and Mather, 2003). DTs offer advantages over the above mentioned

methods such as handling data at different scales, flexibility and can be trained

quickly and they are rapid in execution (Friedl and Brodley, 1997). The construction

of DTs involves splitting of the dataset into increasingly homogeneous subsets. At

each level of the tree, a test is applied to one or more attribute values that may have one

of two outcomes. This structure could very appropriate for a binary approach where at

each split the decision tree has to decide if a pixel belongs to the class of interest or the

"other" class. In terms of amount of training data Pal and Mather (2003) concluded that

(i) the accuracy ofDTs got higher as the size of the training data set increased but just up

to a certain point and (ii) DTs did not require a large amount of training data to be

effective.

Taking into account all the above, SVM and DT classifiers were selected as the most

suitable methods for the classification of a specific habitat of interest using a binary

approach. For comparison purposes the results from these classifications were

assessed against those obtained by a standard ML parametric classifier in the

corresponding research chapter.

2.2.2 One-class classifiers for the classification of one habitat of
interest

Another approach to the issue of concentrating on a habitat of interest during the

classification process is one-class classification methods. The problem with the

binary OVA scheme is that it is still necessary to have some sort of data from the

other classes present in the image to perform the classification and therefore the

training stage still involves the collection of data of classes that are of no interest for

the research. One-class classification methods could resolve this issue as only data

Page 46



Chapter 2

Remote Sensing and Image Classification: Review and selection of suitable methods

for classifying a habitat of interest

from the class of interest are necessary to train the classifiers. However, they have

not been applied yet to remote sensing classification (as far as the author is aware).

In practice, one-class classification is a special type of binary classification problem

where each of the two classes has a special meaning. The two classes are called the

target and the outlier class respectively. The target class is the equivalent to the class

of interest. The outlier class is the equivalent to "all the other classes" in the OVA

classification scheme. The important difference between a typical binary

classification and a one-class classification is that in a binary classification it is the

analyst who knows which one is the target class and the classifier treats both target

and non-target as two classes. In one-class classification the classifier is trained to

recognise the target class and any further classification is based on the description of

the target class. The outlier class can be sampled very sparsely or can be totally

absent (Tax, 2004).

There are several one-class classification methods. For example, the reconstruction

methods are designed to model the data. These methods use prior knowledge about

the data and make assumptions about the generating process. Then a model is chosen

and fitted to the data and new data can be described in terms of a state of this model.

In this sense they are very similar to parametric approaches. With the application of

the reconstruction methods, it is assumed that outlier objects do not satisfy the

assumptions about the target class distribution. However, as the outliers are usually

badly represented their reconstruction error is normally high. Therefore, this method

is not optimised for outlier detection. It requires a classification task to be solved and

this can be computationally expensive (Tax, 2001).

Another one-class classifier method is to estimate the density of the training data

(Taras senko et al., 1995) and to set a threshold on this density. They achieve this by

assuming a uniform outlier distribution. Only the prior probabilities of the target and

outlier class should be chosen beforehand. This directly influences the choice where

the probability should be thresholded to obtain a target and an outlier region. Several
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distributions can be assumed, such as a gaussian or a poisson distribution, and

numerous tests, called discordancy tests, are then available to test new objects

(Barnett and Lewis, 1994). When the sample size is sufficiently high and a flexible

density model is used (for example a parzen density estimation), this approach works

very well. Unfortunately, it requires a large number of training samples and it

assumes that the training data are a typical sample from the true data distribution.

This makes the application of the density methods problematic (Tax, 2001).

According to Vapnik (1998) the disadvantage of the estimation of the complete

density of the data is that it might require too much data and could result in bad

descriptions. Therefore, boundary methods are proposed where only a boundary

around the target set is optimised. Inmost cases distances or weighted distances to a

set of objects in the training set are computed. So, although the required sample size

for the boundary methods is smaller than the density methods, a part of the burden is

now put onto well-defined distances. Also, due to their focus on the boundary, the

threshold on the output is always obtained in a direct way. The output of these

boundary methods cannot be interpreted as a probability (Tax, 200 I).

The advantages and disadvantages of these three methods are summarised in Table

2.3 below:

One cia s classifiers Advantages Disadvantages

Reconstruction methods Simplest solution for outlier
detection

Performs poorly in high
dimensional scales.
Computationally demanding.

Density methods Use probability densities to
describe the target class

The estimation of the complete
density of the target class can
result in poor descriptions
It could inherit the disadvantage
of neural networks. When based
on Support Vector classifiers the
data descriptions are more
flexible

Boundary methods Avoids estimation of the total
density of the target class and
focus on the boundary
around it

Table 2.3. One-class classification methods
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When comparing the advantages and disadvantages of the three methods described

above, boundary methods seemed to be appropriate for this research as they do not

make any assumptions regarding the data distribution and they do not require too

much training data. When they are based upon the SVM theory they are more

flexible than the other two approaches as the emphasis is put upon the boundary that

separates the class of interest. For example Tax (2001) uses a Support Vector Data

Description (SVDD) classifier that is inspired by Vapnik's SVM which aims to

calculate an optimum hyperplane boundary that closes around the target class. All

these classifiers will be analysed in detail in the respective research chapters.

2.3 Summary

This chapter has reviewed the process of classification in remote sensing where the

principles of remote sensing and data acquisition are briefly explained. In particular,

the advantages of satellite remote sensing over other ways of data gathering are that

large global surface areas can be mapped and monitored at different spatial and

temporal scales. In many instances, it is also less costly than aerial and ground

surveys. This is a very important issue for local and regional authorities in charge of

mapping and monitoring because the acquisition, verification and update of data take

great part of the mapping budget. Therefore, the use of satellite remote sensing data

could be a suitable choice for habitat mapping and monitoring.

So far, the typical approach to remote sensing classification has been a multiclass

classification that assumes discrete, mutually exclusive and exhaustively defined

classes. It is very important that all classes be included in a classification training

stage. However, this has obvious implications for training the classifier such as the

size of the training required for a classification linked to the number of classes as

well as the properties of the data. Furthermore, some of the classes may be of little or

no interest to the study as with the requirements ofthe EU Habitats Directives which

focuses on particular habitats of interest. To explore the different possibilities to deal

with this problem, section 2.2 described the different stages of standard image
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classification process including feature extraction, training, labelling and accuracy

assessment. In particular, it focused upon the training stage and the parametric and

non-parametric classification methods used by the remote sensing community.

Section 2.3 concentrated on how these methods could be applied to a classification

scheme such as OVA (one-versus-all). After assessing the advantages and

disadvantages of different classifiers, it was decided that SVMs and DTs were the

most suitable methods for mapping a particular class of interest using an OVA

approach. SVM is a classifier that has not been explored in depth yet by the remote

sensing community. However, it has obvious advantages over the other classifiers in

terms of few parameters to choose and having no problems with small datasets. This

is a very interesting characteristic within the context of this thesis in terms of

optimising the amount of training data required. DTs are also chosen as another

classifier to perform an OVA classification. Also binary in nature DTs offer

advantages such as handling data at different scales, flexibility and can be trained

fairly quickly.

Finally, it was decided to go one step forward and explore one-class classifiers in

order to totally concentrate on the class of interest. One-class classifiers are normally

based upon data from a specific class and they are trained on this data in order to

separate this class from all the possible other classes (outliers). One-class classifiers

have been extensively used in pattern recognition but they are a totally novel

approach within remote sensing image classification. Of the three main methods used

in one-class classification, boundary classifiers present more advantages in terms of

needing small training datasets and having good generalisation. In particular, the

SVDD designed by Tax (2001) is based upon the principles of SVM and shares all

the benefits of the SVMs. Therefore, it would be sensible to compare the results

obtained by the binary SVM and the one-class SVDD.

Having reviewed ,different classification methods and identified the classifiers that

are more appropriate for the aim of this thesis, the following chapter will describe the

area of study, data and methods used to investigate these classifiers.

Page 50



Chapter 3

Mapping one specific habitat of interest: Case study and methods

3 Mapping one specific habitat of interest: Case

study and methods

"The true method of knowledge is experiment. "
William Blake

The aim of the present chapter is to describe the area of study, data and methods

chosen for the purpose of assessing the performance of the classifiers selected in

Chapter 2. Choosing the appropriate datasets and processing methods is one of the

most important factors that contributes to the successful application of remote

sensing (Phinn et al., 2000). In order to do this, it is important to take into

consideration a few principles that determine the characteristics of the data needed

for the particular research project. According to different authors (Cihlar, 2000,

Phinn et al., 2000) these important considerations include:

1) Purpose of the research.

2) Suitable analytic methods.

3) Thematic content. Environment type, land cover classes to classify.

4) Selection of suitable remote sensing data.

5) Appropriate training and testing data sets.

The purpose and objectives of this research have already been established in Chapter

1. Also, different classification methods were assessed in Chapter 2 in order to

choose the most suitable ones in order to achieve these aims and objectives.
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Therefore this chapter will be concentrating on the other three data considerations: (i)

the thematic content of the case study (area and habitats chosen), (ii) the remote

sensing data appropriate for this case study (and ground data availability) and (iii) the

procedure followed to acquire the training and testing datasets (see Figure 3.1).

Finally the measure the accuracy of the classification outputs will also be considered.

The classification stage and comparison of different classification methods will be

looked in detail in the corresponding research chapters.

Methodology

One-class
classifiers

~~~..~..~~~~~~~~~=;:~
: Purpose of the ! i Chapter 1

research I I
I I,t!l--------r-------'

I
I
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Area and Habitats

Landsat ETM+ 1
.-----

f-/-------f'/
Remote Sensing and
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Figure 3. J Case study methodology. The sections with dotted line are dealt with in different

chapters.
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3. 1 Thematic content: Habitat of interest and areas

As mentioned in Chapter 1, it was decided to choose a main habitat of interest to

assess the classifiers but also to perform the different classifications on a second

habitat protected by the EU Habitats Directive. The reason for this was to assess

whether the classification results were biased by the type of habitat and area chosen.

After conversations with staff from English Nature and the Environment Agency it

was decided that the two habitats chosen to perform the analysis should be fen as the

first habitat of interest and saltmarsh as the second habitat used for comparison

purposes. The majority of these habitats in the UK are notified as Sites of Special

Scientific Interest (Areas of Special Scientific Interest in Northern Ireland

(SSSIs/ASSIs), Wetlands of International Importance under the Ramsar Convention,

SPAs under the EC Birds Directive and SACs under the EC Habitats Directive. It is

clear that the importance of the monitoring of these habitats is crucial for many areas

and vital for authorities across the United Kingdom. Also both habitats are extremely

dynamic and difficult to map accurately. This is definitely a challenge for the remote

sensing community. This research will try to demonstrate that using remote sensing

methods can aid the process of mapping these land cover classes and their

monitoring.

3.1.1 Fens

The UK is thought to host a large proportion of the fens surviving in the EU. As in

other parts of Europe fen vegetation has declined dramatically in the past century

(The Broads Authority, 2004). According to the Joint Nature Conservation

Committee (JNCC), the UK government's wildlife advisor, fens are "peatlands

which receive water and nutrients from the soil, rock and ground water as well as

from rainfall: they are minerotrophic". In terms of vegetation fens can also be

described as 'poor-fens' or 'rich-fens'. Poor-fens, where the water is derived from

base-poor rock such as sandstones and granites occur mainly in the uplands, or are

associated with lowland heaths. They are characterised by short vegetation with a
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high proportion of bog mosses Sphagnum spp. and acid water (pH of 5 or less). Rich-

fens, are fed by mineral-enriched calcareous waters (pH 5 or more) and are mainly

confined to the lowlands and where there are localised occurrences of base-rich rocks

such as limestone in the uplands and they are characterised by tall-herb communities.

Fen habitats support a great diversity of plant and animal communities. Some can

contain up to 550 species of higher plants, a third of the UK's native plant species;

up to and occasionally more than half the UK's species of dragonflies, several

thousand other insect species, as well as being an important habitat for a range of

aquatic beetles. They are dynamic semi-natural systems and in general, careful

management is needed to maintain open-fen communities and their associated

species richness. Without appropriate management (e.g. mowing, grazing, burning,

peat cutting, scrub clearance), natural succession will lead to scrub and woodland

forming. According to the UK Biodiversity Action Plan (UKBAP) current factors

affecting this habitat type are:

• Past loss of area by drainage and conversion to intensive agriculture.

• Small total area of habitat and critically small population sizes of several key

species dependent on the habitat.

• Lack of or inappropriate management of existing fens leading to drying,

scrub encroachment and succession to woodland.

• Enrichment or hypertrophication resulting in changing plant communities.

• They are particularly exposed to the impacts of climate change such as a rise

in temperature, sea levels and changes in precipitation.

Regardless of all the above, there are not many studies that focus on fens and their

mapping and monitoring. Penny Anderson Associates (PAA) were appointed by

English Nature (EN) in the year 2000 to review and evaluate what research is

currently being done for this and other wetlands within the United Kingdon (from

1995 onwards). The evaluation was based upon database searches, on bibliography

and responses from representatives of individuals and organisations outside EN. The

bibliography from research publications was concerned only with the hydrology of

Page 54



Chapter 3

Mapping one specific habitat of interest: Case study and methods

the habitat and the studies were purely descriptive. Applied research in the form of

projects concerned with fen habitats included one project into fen hydrology, one on

habitat creation/restoration and one concerned with the management of fen

vegetation. This information came mainly from the Broads Authority that had

produced a Fen Management Strategy. Maybe the response from individuals and

organisations was low but more worryingly is the thought that very little research has

been carried out on this habitat (PAA, 2001).

In terms of management and monitoring a Common Standards and Monitoring guide

was published by the JNCC in August 2004. When recommending methods of

monitoring for habitat extent and habitat composition in the Common Standards and

Monitoring guide (JNCC, 2004), the JNCC mentions the use of aerial photography

for this purpose but never mentions the aid of satellite remote sensing. It is therefore

very important to demonstrate that satellite remote sensing data can definitely help in

the monitoring of these important habitats, especially when it comes to address

habitat loss.

Further recommendations from the JNCC in the Common Standards and Monitoring

guide (JNCC, 2004) include monitoring times for these habitats. Generally the best

time to carry out monitoring in wetland systems is between early June and the end of

September, when sedges are flowering or fruiting and their identification is easiest.

However, other times of year may be more appropriate for some investigations. They

recommend that at least one visit should be made to each site within a single six-year

reporting cycle. These considerations reinforce the arguments in favour of the use of

satellite remote sensing data as a suitable option since in the summer there is a higher

probability of cloud free images and the monitoring of these areas can be done every

year with satellites such as Landsat or SPOT at a low cost.

When it comes to selecting an area of study, the Norfolk Broads seems to be an

appropriate option. The Norfolk Broads are located in eastern England (see Figure

3.3) and it is Britain's largest nationally protected wetland. Also it is one of two sites

selected as SACs under the EU Habitats Directive for alkaline fens in East Anglia,
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where a main concentration of lowland fens occurs, and a great part of it is

designated as SPA, also under the EU Directives. There are areas of short sedge fens

(both Schoenus nigricans -Juncus subnodulosus mire and Carex rostrata -

Calliergon cuspidatumlgiganteum mire), which in places form a mosaic with

Phragmites australis - Peucedanum palustris fens. There are complex zonations

present and many differences exist between the individual fens that comprise the site.

The fens are principally of the flood plain mire type. This site contains a range of

rare and local plant species, including the Annex II from the Habitats Directive Fen

orchid Liparis loeselii, lesser tussock-sedge Carex diandra and slender sedge C.

lasiocarpa (http://wwwjncc.gov.uk).

The Broads Authority has developed habitat-based restoration and conservation

strategies. These working strategies are based on a thorough evaluation of the natural

resources. Although they actively use aerial photography for habitat monitoring,

other satellite or airborne remote sensing methods are not being taken into account.

Furthermore, according to the Broads Action Plan 2004, the management of the

Broads will consist of a cyclical process with six stages, of which the first one is a

report of the state of the site. However, currently there is no such information and

therefore no benchmarks against which to assess its condition and monitor change

(The Broads Authority, 2004). All these fully validate the choice of fen as the

primary class of interest for this research.

3.1.2 Saltmarshes

As mentioned earlier, saltmarsh was the habitat chosen in order to test any bias of the

classifiers towards the characteristics of the class fen. Saltmarshes have been the

focus of extensive research within the remote sensing community using multispectral

images (Dale et al., 1986, Donoghue and Shennan, 1987, Phinn et al., 1999) and

hyperspectral airbone data (Bajjouk et al., 1996, Eastwood et al., 1997, Smith et al.,

1998, Silvestri et af., 2002). Coastal saltmarshes are usually restricted to sheltered

locations in five main situations: estuaries, saline lagoons, behind barrier islands, at

the heads of sea lochs, and on beach plains. Saltmarsh vegetation consists of a
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limited number of halophytic (salt tolerant) species adapted to regular immersion by

the tides. A natural saltmarsh system shows a clear zonation according to the

frequency of inundation. At the lowest level the pioneer glassworts Salicornia spp

can withstand immersion by as many as 600 tides per year, while transitional species

of the upper marsh can only withstand occasional inundation

(http://wwwjncc.gov.uk).

The communities of stabilised saltmarshes can be divided into species-poor low-mid

marsh, and the more diverse communities of the mid-upper marsh. On traditionally

grazed sites, saltmarshes vegetation is shorter and dominated by grasses. At the

upper tidal limits, true saltmarshes communities are replaced by driftline, swamp or

transitional communities which can only withstand occasional inundation.

Saltmarshes communities are additionally affected by differences in climate, the

particle size of the sediment and, within estuaries, by decreasing salinity in the upper

reaches (http://wwwjncc.gov.uk).

Furthermore, saltmarshes are an important resource for wading birds and wildfowl.

They act as high tide refuges for birds feeding on adjacent mudflats, as breeding sites

for waders, gulls and terns and as a source of food for passerine birds particularly in

autumn and winter. In winter, grazed saltmarshes are used as feeding grounds by

large flocks of wild ducks and geese. Areas with high structural and plant diversity,

particularly where freshwater seepages provide a transition from fresh to brackish

conditions, are particularly important for invertebrates. Saltmarshes also provide

sheltered nursery sites for several species offish (http://wwwjncc.gov.uk).

Current factors affecting the habitat according to the UK Biodiversity Action Plan

(UKBAP) are:

• Land claim. This practice continued until very recently. As a consequence,

many saltmarshes now adjoin arable land, and the upper and transitional

zones of saltmarshes have become quite scarce in England.
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• Erosion and coastal squeeze. Erosion of the seaward edge of saltmarshes

occurs widely and it is exacerbated by climate change. Furthermore, many

saltmarshes are being 'squeezed' between an eroding seaward edge and fixed

flood defence walls.

• Sediment dynamics. Local sediment budgets may be affected by coast

protection works, or by changes in estuary morphology caused by land claim,

dredging of shipping channels and the impacts of flood defence works over

the years.

• Grazing. Intensive grazing is considered to be a problem in some areas by

reducing the height of the vegetation and the diversity of plant and

invertebrate species.

• Other human influences. Waste tipping, pollution, military activity, oil

pollution, recreational pressure, and eutrophication due to sewage effluent

and agricultural fertiliser run-off. (http://www.ukbap.org.uk)

In terms of monitoring this habitat, the suggested visiting period recommended by

the JNCC is May to October. However, in areas of coastal squeeze, where low-marsh

communities dominate, annuals are relatively more abundant and the assessment will

need to take this into account (April to August is suggested). In addition to the basic

six-yearly monitoring cycles, a more frequent monitoring is recommended.

The area of the North Norfolk coast has been selected as a SAC for the extensive

Atlantic salt meadows that form part of a sequence of vegetation types that are

unparalleled among coastal sites in the UK. Furthermore, for their diversity they are

amongst the most important in Europe. Saltmarsh swards dominated by sea-

lavenders Limonium spp. are particularly well-represented on this site. In addition to

typical lower and middle saltmarshes communities, in North Norfolk there are

transitions from upper marsh to freshwater reedswamp, sand dunes, shingle beaches

and mudlsandflats. The area is also designated as a SPA due to the large numbers of

waterbirds occurring throughout the year. In summer, the site holds large breeding

populations of waders, four species of terns, Bittern Botaurus stellaris and wetland

raptors such as Marsh Harrier Circus aeruginosus. In winter, the coast is used by
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very large numbers of geese, sea-ducks, other ducks and waders. The coast is also of

major importance for staging waterbirds in the spring and autumn migration periods

(http://wwwjncc.gov.uk).

3.2 Remote sensing data and ground data sources

Over recent decades, remote sensing data have become one of the primary sources

for obtaining information about the Earth's land cover. At a global scale, this has

been achieved primarily from data acquired by the Advanced Very High Resolution

Radiometer (AVHRR) onboard of NOAA meteorological satellites (DeFries et al.,

1998, Hansen et al., 2000). At regional and local scales, Landsat and SPOT satellites

have been extensively used to extract information about particular locations (DeFries

and Chan, 2000).

The Landsat satellite programme in particular represents the world's longest

continuously acquired collection of space-based land remote sensing data. For over

30 years, the Landsat satellite series has collected and produced low-cost, moderate-

resolution multispectral data for researchers and decision-makers worldwide. This

provides an invaluable source of information for tracking changes in the environment

over the last 30 years (Lillesand and Kiefer, 2004).

The ETM+ instrument on the Landsat 7 spacecraft contains sensors to record Earth

scene radiation in three specific bands:

• visible and near infrared (VNIR) bands - bands 1,2,3,4,and 8 (PAN) with a

spectral range between 0.4 and 1.0 micrometres.

• short wavelength infrared (SWIR) bands - bands 5 and 7 with a spectral range

between 1.0 and 3.0 micrometres.

• thennallong wavelength infrared (LWIR) band - band 6 with a spectral range

between 8.0 and 12.0 micrometres.

Landsat satellite images are acquired every 16 days with a spatial resolution of 30 m.
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There are numerous applications of Landsat satellite images in which remote sensing

data have been translated into useful ecological information. This information has

been used to describe the status of habitats by land cover mapping and the dynamics

of these habitats by change detection analysis (Cohen and Goward, 2004). Some of

them are highlighted in Table 3.1.

Agriculture, Hydrology Coastal Resources Environmental
Forestry and Monitoring
Range Resources
Discriminating Determining water Determining Monitoring
vegetative, crop and boundaries and patterns and extent deforestation
timber types surface water areas of turbidity
Measuring crop and Mapping floods and Mapping shoreline Monitoring
timber acreage flood plain changes volcanic flow

characteristics activity
Precision farming land Determining area Mapping shoals, Mapping and
management extent of snow and reefs and shallow monitoring

Ice coverage areas endangered habitats
Monitoring crop and Measuring changes Mapping and Determining effects
forest harvests and extent of glacial monitoring sea ice of natural disasters

features in shipping lanes
Determining range Measuring turbidity Tracking beach Assessing drought
readiness, biomass and sediment patterns erosion and flooding impact
and health
Monitoring desert Monitoring lake Determining coastal Assessing and
blooms inventories and circulation patterns monitoring grass

health and forest fires
Assessing wildlife Estimating snow melt Measuring sea Mapping and
habitat runoff surface temperature monitoring lake

eutrophication

Table 3. J. Based upon information from Nasa archives. Updated April 2, J999.

(http://www.nasa.gov).

There are obvious advantages and disadvantages with the use of satellite data. Some

limitations of acquisition and processing of satellite information include: spatial

resolution which would not be suitable to detailed studies of particular habitats;

cloud cover; satellite passover time and tide which could have implications for

coastal habitat mapping and monitoring. However advantages in the use of satellite

data for habitat mapping greatly surpass the disadvantages. They are: cost

effectiveness, timeliness, monitoring capability, large area mapped quickly,

quantitative information obtainable, potential reduction in field work and
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cartographic products easily produced (http://www.nasa.gov).

Taking into account all the above, it was decided to use a Landsat satellite image to

carry out the present research. The Landsat ETM+ image was dated 19th of June

2000 and provided by the NERC Earth Observation Centre. The date when the image

was taken fits in with the recommendations from the JNCC for the optimal time for

monitoring these two habitats as mentioned in the previous section. The area covers

the East Anglia study site (centred on 53.104 Latitude, 1.078 Longitude covering an

area of 34,235.2879 km2 in total). The six spectral bands (bands 1-5, and 7) with a

spatial resolution of 30 m were selected for use in the analysis. The image was

geometrically corrected using the Transverse Mercator Airy Projection, Ordnance

Survey 1936 with an rms error of 0.12 pixels. Because the areas of interest described

in the previous section both lay within the area of Norfolk and to simplify further

analysis, a subset of the image was selected so that it included both areas of interest

(North Norfolk coast and the Norfolk Broads) (see Figure 3.2).

Subset

Figure 3.2. Landsat ETM+ J9'h of June 2000provided by NERC and selected subset of the

image usedfor further analysis
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Aerial photography is normally used as ground data and as a reference for accuracy

assessment in studies involving remote sensing. However, aerial photography is

usually expensive to acquire so existing photography is often used. Whenever

possible, it is advisable that this aerial photography is as close to the date of the

satellite image as possible (Congalton and Green, 1999). The aerial photography

used as ground data for this research was acquired close to the time of the Landsat

ETM+ image. Access to aerial photography, scale 1:10,000 acquired in June 1999 for

the Norfolk Broads, was provided by the Broads Authority. Access to aerial

photography acquired in July 2000 for the North Norfolk area, also 1:10,000, was

provided by the Environment Agency. Both sets had been geocorrected to OS 1936

and were used to select the two classes of interest and six other broadly defined land

cover types featured across the areas of interest. The aerial photographs used as

ground data were not available in digital form. Therefore, they had to be manually

traced, scanned, digitised and co-registered to the Landsat image. The training and

testing data sets were subsequently acquired using these aerial photographs as

reference using a stratified random sampling as will be explained in the following

section.

In order to validate and illustrate the results of the classifications, an area of the

Norfolk Broads was chosen as a sample site for producing a land cover map of fens

(Figure 3.3). This area belongs to the Mid River Yare National Nature Reserve

(NNR). It is a key site in the Norfolk Broads and includes tall fens, botanically-rich

fens meadows and areas of willow-alder carr on fenland peats.
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Figure 3.3 Map of the Norfolk Fens and the test area chosen within the River Yare National

Nature Reserve to illustrate the results of different classification methods (Map based upon

the Broads Authority information).
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3.3 Data selection. Training and testing datasets

Training data selection is one of the major factors determining to what degree the

classification rules can be generalised to unseen samples (Paola and Schowengerdt,

1995). The characteristics of the data used to train the classifier have a considerable

influence on the accuracy of the resulting classification. In supervised classification

pixels of known identity are used to classify pixels of unknown identity. These

known pixels are located within the training areas selected to characterise the classes

and to train the classifier (Campbell, 2002). Therefore the selection of these training

areas is extremely important in order to train the classifier properly.

The sample design is a critical part of the image classification accuracy assessment.

The standard form for reporting overall error for each class of the image

classification is by the use of an error matrix. Error matrices represent the number of

correctly mapped pixels by comparing ground data with corresponding results of

computer-assisted classification. Designing a poor sampling scheme can easily result

in significant biases being introduced into the error matrix, which will then affect the

classification accuracy (e.g. Richards, 1993, Con galton, 1991, Lunetta et 01., 1991).

One sampling technique is systematic sampling. This is a method where the sample

units (here pixels) are selected at some equal interval over time or space. The

advantage of systematic sampling is the uniform spread of the sampled observations

over the entire population. The major disadvantage, on the other hand, is that the

selection procedure implies that each unit in the population does not have an equal

chance of being included in the sample (Berry and Baker, 1968). Systematic

sampling can either be random systematic or stratified systematic. A random

systematic sampling design is when the population elements are arranged in some

order. The first sample is randomly located and thereafter each unit is selected

systematically from around that single sampled unit using a fixed interval (Clark and

Hosking, 1986). Stratified systematic sampling combines the advantages of
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randomization and stratification with the useful aspects of systematic sampling,

while avoiding the possibilities of bias due to the presence of periodicity (Berry and

Baker, 1968).

Another sampling technique is simple random sampling. This method selects sample

units out of the population, such that each element in the population has an equal

chance of being selected (Cochran, 1977). However, simple random sampling tends

to under-sample small but potentially important areas (Congalton, 1988, 1991). That

problem can be overcome by using stratified random sampling, which is a sampling

method in which the elements of the population are allocated into sub-populations

(e.g. strata) before the sample is taken, and then each stratum is randomly sampled.

This sampling approach can be used when specific information about certain sub-

populations and increasing precision of the estimates for the entire population is

desired (Cochran, 1977, Clark and Hosking, 1986). After performing sampling

simulations on three spatially diverse areas, CongaIton (1988) came to the conclusion

that simple random and stratified random sampling provided satisfactory results in all

cases. But as mentioned above, simple random sampling tends to undersample small,

but possibly important, areas.

The habitats of interest selected for this research are located in very specific areas

within the image. Therefore stratified random sampling provides the better choice

and it was the option chosen to select the training and testing sets used by the

different classifiers. Areas of high occurance of the classes of interest were identified

with the aid of the aerial photography used as ground data. These sub-populations

were then randomly sampled. Also, there was no pre-selection of core pixels or

boundary pixels as these could have biased the classification in some way.
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3.3.1 Training and testing datasets

Supervised classification requires data to train and validate classification algorithms.

Training data are examples presented to supervised classification algorithms that are

to be recognized. Validation or testing data are an independent set of data that are

used to assess the performance or accuracy of the classification algorithm. In the

remote sensing context, calibration and validation are generally data from areas on

the ground that are defined by pixels. Calibration and validation sites should be as

homogeneous as possible (Muchoney and Straher, 2002). In this sense, the classes

that form the training and testing sets typically occupy a relatively discrete area of

feature space. The size and location of this area in feature space is determined by the

spectral variation of the class. Therefore, the training samples should be a

representation of such illustration of the class within the feature space.

Furthermore, the impact of the amount of training data used to train a classifier has

been recently reviewed by different authors and the general findings show that

classification accuracy tends to be positively related to training set size (Arora and

Foody, 1997, Foody and Mathur, 2004b, Foody et al., 1995, Huang et al., 2002, Pal

and Mather, 2003 and Zhuang et al., 1994). The recommended size of a training set

is often linked to the degree of complexity of a classifier and the dimensionality of

the data to train such classifiers (Kavzoglu and Mather, 2003 and Tso and Mather,

2001). For example, some of the literature suggests the use ofa minimum of 10-30p

cases per-class for training, where p is the number of wavebands used (Piper, 1992;

Mather, 2004; van Niel et al., 2005). However, acquiring large datasets is normally

costly in terms of time and finance (Buchheim and Lillesand, 1989 and Jackson and

Landgrebe, 2001). This has had as a consequence that many classification analyses

have been performed with training sets that may be smaller than that which might be

expected to be required for an accurate classification (Bishop, 1995, Jackson and

Landgrebe, 2002, Tadjudin and Landgrebe, 1999 and Tadjudin and Landgrebe,

2000).
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The performance of classification algorithms normally degrades in situations such as:

(i) data with high noise content, (ii) small sample sizes relative to number of features

or variables and (iii) irrelevant or redundant information (Kumar et al., 2005). To

solve these problems, research has been based upon (i) investigation into defining an

efficient sampling design for training sample acquisition (Atkinson, 1991, Campbell,

1981 and Webster et al., 1989); (ii) use of feature selection and feature extraction

methods to reduce the dimensionality of the dataset to be classified (Kuo and

Landgrebe, 2002) and (iii) use of unsupervised classifications to help guide the

analysis (Huang, 2002, Jackson and Landgrebe, 2002 and Tadjudin and Landgrebe,

2000). Foody and Mathur (2004b) take another approach in order to reduce the need

for large training datasets by focusing on only those training samples that are helpful

in fitting the decision boundary that can separate the classes accurately. This

assumption is founded on the use of non-parametric classifiers such as SVMs which

might not need a full and representative description of each class in order to classify

it accurately (Foody and Mathur, 2004b). The potential for intelligent training is

obvious for SVM-based classification as the process is based on the notion that only

the training samples that lie on the class boundaries are necessary for discrimination

(Brown et al., 1999), leading to the definition of smaller training sets (Huang et al.,

2002).

The approach taken in the present research will concentrate on reducing data

dimensionality. Although Landsat ETM+ imagery are not particularly high

dimensional datasets, there are still features that can be redundant and it has been

proven that the efficiency of learning algorithms decreases with irrelevant and

redundant features (John, 1997, Kohavi and John, 1997, Kohavi and Sommerfield,

1995, Koller and Sahami, 1996, Langley, 1996, Langley and Sage, 1994, Liu and

Motoda, 1998). Also it is commonly accepted that as the number of variables

increases the number of training samples needed to train the classifiers also grows

(Duda and Hart, 1973, Jain and Chandrsekaran, 1982). Consequently, the

performance of a classifier and the need for large training datasets can be optimised

by removing such noisy, irrelevant or redundant information. Finally, selecting
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which subset of bands provides the greatest degree of statistical separability between

any two classes may greatly reduce the occurrence of errors of commission and

omission. This is mainly achieved by feature extraction and feature selection

methods (Kumar et al., 2005).

Feature extraction consists of linear (and non-linear transformation) of the data and

projections to a lower dimensional space (e.g. principal components analysis, linear

discriminant analysis, Isomap). Feature selection, however, is a special case of

feature extraction and selects a subset of features that describes the data as well as

the original set, getting rid of irrelevant or redundant features. The benefits of feature

selection include the reduction of the amount of data needed for training a classifier,

improving predictive accuracy and reducing execution time (Kumar et a/., 2005).

In remote sensing, feature selection involves graphical and/or statistical analysis to

determine the degree of between class separability. For this thesis's feature selection

analysis, a set of 1,000 pixels, 500 belonging to each class of interest (fen /

saltmarsh) and 500 belonging to the rest of the land cover types amalgamated to one

class, were extracted from the Landsat ETM+ image in each of the 6 non-thermal

spectral wavebands and the Normalized Difference Vegetation Index (NDVI)

derived from the data acquired in ETM+ wavebands 3 and 4. NDVI is a band-ratio

technique which produces a raster model that estimates the degree of

photosynthetically active vegetation within each pixel and that is extensively used for

vegetation studies. Values in this dataset range between -1 and 1, where -1

represents no photosynthetically active vegetation and 1 represents a high degree of

photosynthetically active vegetation. Two bands are needed to calculate this index:

one containing reflectance values for the visible red (VR) spectrum. and the second

containing reflectance values for the near infrared (NIR) portion of the spectrum. The

NDVI model is the quotient of the difference and sum of these two datasets

(Equation 3.1).
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NDVI = (NIR)- (VR)
(NIR) + (VR)

Equation 3.1 Equation used to calculateNDVI values

The transformed divergence (TO) statistic was calculated for every possible pair of

features. The formula for computing the transformed divergence is as follows:

(-D"Ji». =2000(J-exp T )

Where:

i and j = the two classes being compared

C; = the covariance matrix of signature i

JL; = the mean vector of signature i

tr= the trace function (matrix algebra)

T= the transposition function

Dij = Divergence

Evaluation of the derived transformed divergence statistics indicated that the data

acquired in Landsat ETM+ Band 2 and the NDVI offered the highest average

separability. Figure 3.4 and Figure 3.5 illustrate the Landsat ETM+ Band 2 and the

NDVI image respectively for the test area within Mid River Yare National Nature

Reserve (Figure 3.3).
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Figure 3.4 ETM+ Band 2 image/or the test area

Leoend

IIDVI values

.-0.24--0.12
• -0.12- 0

o - 0.1
00.1 - 0.2
00.2 - 0.3
D e,3 - 0.4
.0.4 - 0.45
.0.45 - 0.6

Figure 3.5 ND VI image for the test area. Values in green denote bigger ND VI values

As mentioned earlier, some of the literature suggests a heuristic approach that uses a

minimum of 10-30p cases per-class for training, where p is the number of wavebands

used. In this particular case study two input variables (NDVI and ETM+Band 2)

were used. Therefore, the minimum recommended training set size in this case study
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would be between 20 to 60 pixels per class. It was decided that the training sizes

used for the different classifications should be performed starting from a very small

size below the recommended minimum size to test whether this rule also applied to

these classification methods. A detailed description of these training sets is given for

each of the classifiers in the corresponding sections within the research chapters. It is

important to highlight that the same testing set was used to assess the accuracy of all

the classifiers. This testing set was formed by 50% pixels from the class of interest

and the other 50% by a mixture of pixels from all the other classes merged into the

"other" class, forming a total of250 pixels. The pixels were totally independent from

those used in the training sets to avoid any biases in the confidence level of accuracy

(Fitzpatrick-Lins, 1981, Dicks and Lo 1990). The complete training and testing

datasets for the different classifiers can be found in Annex F of this thesis.

3.4 Accuracy assessment

In order to compare the results obtained by the different classifiers it was necessary

to measure in some way the accuracy of each classifier. Measures of accuracy are

also important in order to analyze sources of error of a particular classification

strategy. However, classification accuracy is not straightforward. Individual

measures of map accuracy are well established in the literature (e.g., Congalton,

1991, Congalton and Green, 1999, Stehman, 1997), but considerable ambiguity

remains about the implementation and interpretation of thematic map accuracy

assessment. Uncertainties include the selection of which accuracy measures to report,

how to interpret them, and the nature and quality of reference samples. As a result,

map quality remains a difficult variable to consider objectively (Foody, 2002).

As mentioned in Chapter 2, the most widely used method for classification accuracy

assessment in remote sensing is a confusion or error matrix. If Table 3.2 is taken as

an example of an error matrix, overall accuracy is obtained by dividing the total

number of correctly classified pixels (diagonal units) by the total number of

reference pixels.
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Predicted

Actual Class A B C 1: Producer's
accuracy

A 15 10 0 25 (15/25)* 100=
60.00%

B 2 20 3 25 (20/25)* 100=
80.00%

C 5 2 18 25 (18/25)* 100=
72.00%

1: 22 32 21 75

User's (15/22)* 100= (20/32)* 100= (18/21)* 100= Overall accuracy:
accuracy 61.20% 62.50% 85.70% (15+20+ 18/75)* 100=

70%

Table 3.2. Error matrix example

Although overall accuracy is the most commonly reported, it is not enough as it does

not indicate how the classifier performs for each of the classes. Producer's and user's

accuracies are ways of calculating individual category accuracies. The producer's

accuracy relates to the probability that a reference pixel will be correctly mapped and

measure the errors of omission. In contrast, the user's accuracy indicates the

probability that a sample from land cover map actually matches what it is from the

reference data and measures the error of commission (Congalton and Green, 1999).

Producer' accuracy can be calculated by dividing the correct number of pixels

cla sified for a particular class by the row total. In Table 3.2 the producer's accuracy

of cia A would be obtained by dividing 15 correctly classified pixels for class A by

25 pixel that belong to this class. This would give a 60.00% producer's accuracy.

The u er's accuracy is calculated by dividing the total pixels classified as class A by

the column total, (this is, 15/22) which result would be 61.20%. This means that only

61.20% of those 100% pixels identified as A are actually class A on the ground.

Having a high producer's accuracy is probably the most important in the context of

the present re earch as this will show the potential of the classifier to identify the

class of interest on the ground. If a low user's accuracy is obtained this means that

there i a high percentage of error of commission, this is, there are more
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pixels identified on the ground as a class of interest than the actual amount. But this

error could be easily corrected by the use of available ancillary data and ground

surveys.

Also as mentioned in Chapter 2, there are a few issues regarding this measure of

accuracy. For example the problem of mixed pixels is not addressed in an error

matrix. However this is not dealt with in this research and therefore it will not be

studied in detail. Another important issue is the effect of chance agreement; this is,

when some cases might be allocated correctly by chance (Congalton, 1991, Pontius,

2000, Rosenfield and Fritzpatrick-Lins, 1986). One measure that has been widely

used in order to address this matter is Cohen's kappa coefficient (Cohen, 1960,

Congalton and Mead 1983, Stehman 1996, Smits et al., 1999). It is also called the

KHAT statistic and indicates whether the confusion matrix is different from a

random result. It is also used to compare different matrices from different classifiers

and to determine if one is significantly better than the other.

Tha KHAT statistic is computed as follows:

Equation 3.2 KHAT statistic

Where r is the number of rows in the matrix, Xii is the number of observations in row

i and column i, (Xi+) and (x+i) are the marginal totals of row i and column i and N is

the total of observations.

Two results can be compared by using a test for significant difference or Z statistic

test:
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Equation 3.3 Z statistic test

Although the above method is extensively used, Foody (2002) points out that

accuracy assessment is still a topic of considerable research within the remote

sensing community, partly because methods such as Kappa statistics have become

standard practice but their use is not always appropriate. Some authors argue that the

K coefficient overestimates the chance of agreement and underestimates the

classification accuracy (Foody, 1992, Ma and Redmond, 1995) or that it is not

appropriate because it is non-probability based (Stehman and Czaplewski, 1998).

Most importantly, various measures of accuracy evaluate different components of

accuracy making different assumptions of the data (Lark, 1995c) and therefore there

is no single universally acceptable measure of accuracy but a variety of indices

sensitive to different features (Stehman, 1997).

While the Z statistics are in principle used to compare different accuracy results, in

the case of this thesis it would not be appropriate as the samples used for comparison

are not independent. Therefore, it would be better to look at specific pairwise

analysis techniques.

Of all the paired tests available, McNemar's test seems to be the most appropriate for

this research (Foody, 2004b). It uses matched-pairs of labels (A, B) and it determines

whether the proportion of A and B labels is equal for both classifiers. It is a variation

of the Chi-square test with the difference that in the Chi-square test the two datasets

are independent and in the McNemar's test the datasets are the same. McNemar's test

should be used when comparing the same data which have been processed in two

different ways. This test is calculated as follows:

Equation 3.4 McNemar's test
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The elements of this formula are given by the following confusion matrix:

Classification 2

Classification 1 Correct Incorrect

Correct /11 /12
Incorrect hl F22

,
Table 3.3 Confusion matrix for McNemar s test. Based upon Foody (2004).

Therefore, the results of all the classifications will be presented using an error matrix

in which overall, user's and producer's accuracies will be compared and also a

McNemar's test will be performed to assess the chance of agreement of those error

matrices. With these accuracy measures, the results obtained by the different

classifiers (using the same testing set, as explained earlier) will be compared as

follows:

Chapters 4 and 5 Chapter 6

Chapter 4

~

( D I D L 0 I SVM ensemble DMLC SVM SVM

~
~

( 0 I 0 ( DT ~T ensembleDMLC DT

~

0I One-class classifiers One-class classifiers ensemble

~
~

( 0 I 0 ( SVDD:Q...!2DD ensemble0 jMLC SVDD

Chapter 5

Chapter 7

Figure 3.6 Comparison of classifier's accuracies in different chapters. The arrows represent

the different comparisons
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3.5 Summary

As mentioned already, the purpose of this research is the investigation of methods for

mapping one particular class (habitat) using remote sensing. It is therefore necessary

to carefully select the training and testing datasets necessary to carry out the two

different approaches that have been selected in the previous chapter: (i) a binary

classification using SVM and DT classifiers and (ii) a one-class classification using

boundary methods. It was decided that the main habitat of interest to perform the

classification should be fen and that the second habitat of interest should be

saltmarsh. The latter was chosen in order to compare the results obtained by the

classifiers with the class fen as this would show whether the classifiers were biased

towards the spectral characteristics of the class. The areas of interest selected for

each of them were The Norfolk Broads and the North Norfolk Coast. The remote

sensing data used in the research was a Landsat ETM+ image dated 19th of June 2000

provided by NERC. The ground data were provided by English Nature and the

Environment Agency in the form of aerial photography taken close to the date of the

satellite image. Finally, it was decided that the results from the classifications

performed by the different algorithms selected in Chapter 2 should be compared

using a confusion matrix. The McNemar's test would be used to assess whether the

accuracies were statistically different.

All the above considerations about data and how the data have been selected to train

the classifiers are of the utmost importance in order to have an accurate output.

Having defined the purpose of this research, the main classification methods to

achieve this purpose and the data to be used in these classifications, the following

chapter will investigate SVM and DT classifiers for the classification and mapping of

a specific habitat of interest.
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4 Binary classification for land cover mapping of a

class of interest: Support Vector Machines and

Decision Trees versus Maximum Likelihood

classifiers

"The world is divided into two classes, those who believe the incredible,

and those who do the improbable. "

Oscar Wilde

The present chapter is the first of the three research chapters that form the core of

this thesis. The objective of these research chapters is to evaluate the potential of

different classification methods in order to classify accurately a particular habitat of

interest. In doing this, these chapters will contribute towards the overall aim of this

thesis: to investigate and evaluate classification methods for mapping one particular

habitat of interest with the aid of remote sensing data. These chapters also intend to

meet the sub-aims of this thesis increasing the classification accuracy when focusing

on a habitat of interest by (i) optimising the use of training data and (ii) optimising

the use of remote sensing by applying suitable classifiers to the specific task of

classi fying a class of interest.
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In order to do this, the specific objective of this chapter is to evaluate the potential of

binary classification for the mapping of a specific habitat of interest using SVM and

DT classifiers. These two classifiers have been recently introduced to remote sensing

land cover mapping and provide an alternative to the standard multi-class classifiers

when focusing on a specific land cover class of interest (as explained in Chapter 2).

The results obtained by the SVM and DT classifiers will be compared against those

of a ML classifier which as mentioned in Chapter 2, will be used as benchmark. In

order to achieve this objective, this chapter will be structured as shown in Figure 4.1:

Introduction

Prindples

1.

Case study

Prindples

2. Support Vector
Machine classifier

Case study

Prindples

3. Decision Trees
classifier

Case study

Figure 4. J Chapter 4 structure

5. Condusions

1-/ ~7
4. Comparison

of results '--- __yv

To be able to understand the following sections within this chapter it is necessary to

describe a few basic concepts about binary classification. In binary classification, a

training set X" used to train the classifier is formed by the set of pixels

X" = {(xi,yJi=l, ....,N}, in which Xi is a vector formed by the values of that pixel

for each of the variables represented in feature space and will be labelled with Yi
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being Yi E {+ I,-I} . Those pixels belonging to the class of interest will be labelled as

Yi = +1 and those pixels that belong to the other class will be labelled as Y
i
= -1. In

order to perform this OVA binary classification, a function has to be derived from

the training set in such a way that for a given pixel Xi an estimate of the label

Yi E {+ l,-I} can be obtained (Tax, 2001). Inmost classification methods the type of

function f is chosen before hand and just a few parameters of the function have to

be determined. The function can be represented by f (x;w) which states the

dependence on the parameters or weights w. Examples of these functions have been

described in Chapter 2 and include those used by parametric and non-parametric

classifiers. The separating function is normally represented by a separating

hyperplane in the feature space. A hyperplane is an N-dimensional analogy of a line

or plane, which divides an 'N + ] I dimensional space into two (Figure 4.2).

• w2. /
w1• ••

•• • ••. :.
•• •••• • •••• ......Separating Hyperplane

••
Feature 1

Figure 4.2 Representation of a hyperplane separating two classes.

The following ection will describe the principles behind ML, SVM and DT

cIa ifier and how these classifiers can be applied to the classification of a class of

intere t. It j important to highlight that this is not an exhaustive description of the

three cIa ifier and that only the most important and relevant aspects will be

explained. The results obtained by the three classifiers will be compared and in the

final ection conclusion will be derived from the results of the three classifications.
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4.1 Maximum Likelihood classification: Principles and

application to the case study

Discriminant analysis based on ML classification algorithms is still widely applied

and it is traditionally used as a baseline for the classification of remotely sensed data.

Furthermore, ML is still the standard in the routine work of the space agencies and

remote sensing research and it is normally used as a benchmark when assessing the

performance of any other classifiers (Arbia et al., 1999).

ML classification is based upon the assumption that there exist statistical models

describing the distribution of the classes in the feature space. Given these models, the

class of a new object is determined by calculating which of the models is more likely

to describe that object. ML classification usually assumes normal (Gaussian) models.

The normal distribution is specified by two parameters, the mean and the variance. A

characteristic property of the normal distribution is that 68% of all of its observations

fall within a range of ±l standard deviation from the mean, and a range of ±2

standard deviations includes 95% of the scores. In other words, in a normal

distribution, observations that have a standardized value of less than -2 or more than

+2 have a relative frequency of 5% or less. (standardised value means that a value is

expressed in terms of its difference from the mean, divided by the standard

deviation) (Hill and Lewicki 2006). The mean controls the location of the

distribution and the variance controls the spread of the data. When more than one

feature is involved, there is one mean for each feature making up a mean vector. The

multivariate equivalent of the variance is the variance-covariance matrix,

representing the variability of pixel values for each feature within a particular class

and the correlations between the features.

Given these two parameters, the statistical probability of a pixel being a member of a

particular land cover class is computed. The results are probability density functions

which are used to classify the unknown pixel by computing the probability of the
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pixel belonging to each category by a discriminant analysis (Figure 4.3) (Lillesand

and Kiefer, 2004).

0 Class 1

• Class 2...
Class 3

• Unknown
N
"0
Cro
CD

Band 1

Figure 4.3. Maximum likelihood classification. Based upon Lillesand and Kiefer (2004).

The unknown pixel is assigned to the class for which the probability of membership

i the highe t. Although in practice the assumption of normally distributed data is not

alway met, the classifier generally outputs an acceptable result (Pal, 2002).

For the multivariate case, statistical theory describes the probability that an

observation vector x = (x, 'X2X3 xJ belongs to class kj= 1,2, 3 c, based on

the following formula:

-1/2 -1/2(x-,uk .l." -I(x-,uk.)
J L.k· Jxe J (1)

Where Pic (x) is the probability density value associated with the observation vector
j

x quantified for class kj' I k, is the covariance matrix of the class kjwith dimension

p x P, /-Lie is the mean vector of the class kj and II represents the determinant of the
J

given matrix. As applied in maximum likelihood decision ruel, this equation allows

the calculation of separate probabilities that an observation is a member of each of k
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classes. The individual is then assigned to the class for which the probability value is

greatest.

In an operational context this equation can be reduced to the following one by taking

logarithms to the base e:

[ ] 1 1 I lIT -IIn ~ (x) = -- pln(2Jl") --In D, --(x - mk) • D, . (x - mk )
J 2 2 } 2 } } j

(2)

where Dk
j

is the estimate of matrix L kj and mkj is the estimate of f.1k
j
• These

estimates are computed from the training data. As p In(2Jl") is the same for all

classes it can be regarded as a constant and omitted. The remainder of this equation

could be written as follows:

(3)

where the expression

(4)

is the measure of the distance of one observation vector from the class mean rnk,
}

corrected for the variance and covariance of the class kj and is known as the

Mahalanobis distance. An observation vector will be assigned to the class for which

the value - 2Inlpk/x)J is the smallest.

Furthermore, a ML classification normally assumes a linear discriminant analysis

(LDA). However, it is important to know that quadratic discriminant analysis (QDA)

and regularized discriminant analysis (RDA) methods are also used as classification

methods to determine to which class an unknown pixel belongs. LDA assumes that
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the variability within each group follows a normal distribution with the same matrix

of covariance. If the covariance matrices of the categories are not equal, then the

separation surface is achieved by a quadratic function which has greater curvature

the greater the difference between the covariance matrices. Using QDA each of the

covariance matrices is estimated separately, which requires a larger sample of data

than that used in LOA to reach the same level of reliability in the predictions

(Sanchez and Sarabia, 1995). After experiments carried out with these three

discriminant methods and different type of data, Sanchez and Sarabia (1995)

concluded that the dominant component is the size of the training data while

changing the method is not significant. The increase in the percentage of correct

classifications can only be associated with the degree of separability between classes.

One of the important drawbacks of the ML classifier is that the reliability of the

results obtained declines when the distribution of the data differs from normality.

Furthermore, the reliability of the estimates of mean vector and variance-covariance

matrix is affected by the relationship between sample size and the number of

features. In general, the bigger the sample and the bigger the number of features the

better the classification (Pal, 2002). But this leads to another important drawback

which is the computational cost required in order to classify each pixel. To address

these issues new classifiers such as the SVMs and DTs are being introduced into

remote sensing research. Nevertheless, as mentioned at the beginning of this section,

ML classification is normally used as a benchmark against which the results of other

classifiers are measured and it was used for that purpose within this thesis.

4.1.1 Classification of a habitat of interest using ML classification.

Case study.

ML classifiers are normally used to perform standard multiclass classifications where

all the classes present in the image are taken into account. As mentioned in Chapter

3, some of the literature suggests the use of a minimum of 10-30p cases per-class for
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training, where p is the number of wavebands used (Mather, 2004). As a feature

selection was performed with the result of having ETM+Band 2 and NDVI as input

variables, the minimum recommended training size for each class should be of

approximately between 20 and 60 pixels. In order to assess the impact of training

data size in the performance of the ML classifier, it was decided to perform the ML

classification with two training sets. One of them was formed by less than the

minimum amount recommended of pixels per class (Table 4.1) and another training

set with more than the minimum examples for each class (150 pixels per class)

(Table 4.2). The rest of the classifiers were subsequently trained within this range of

values for comparison purposes.

Training

Class Pixels

15
15
15
15
15
15
15

Water 15
Table 4.1 ML cia sification. Training set 1. 15 pixels per class

Training et 2

Pixels
150
150
150

150
Urban 150 I
Water 150
Table 4.2 ML classification. Training set 2. 150pixels per class
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Moreover, as mentioned in Chapter 3, the same testing data set was used to test the

accuracy of all the classifiers within this thesis. The testing set is formed by 250

pixels, 50% belonging to the class of interest and 50% belonging to the other class.

The confusion matrices obtained for each of the training and testing sets are as

follows:
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Chapter 4

Binary classification for land cover mapping of a class of interest: Support Vector

Machines and Decision Trees versus Maximum Likelihood classifiers.

The confusion matrices shown in Table 4.4 and Table 4.6 were obtained using 15

pixels per class which is less than the recommended range of I0-30p pixels per class.

As it can be observed, the overall accuracy obtained when using fen and saltmarsh as

classes of interest were 69.60% and 61.20% respectively. When focusing on the

results of a class of interest (e.g. fen) the producer's accuracy obtained was 72.80%

and user's accuracy 89.22%. For saltmarsh, the result for the producer's accuracy

was 52.00% which is quite low when compared with the producer's accuracy

obtained for fen but a very high user's accuracy of 90.28%.

Increasing the training dataset to 150 pixels per class produced an increase in overall

accuracy for fen and saltmarsh (71.20% and 64.80% respectively). The main class of

interest to this thesis, the class fen, also showed an increase in producer's and user's

accuracy (77.60% and 87.39% respectively) (seeTable 4.3). This increase was also

shared by the class saltmarsh which producer's accuracy increased up to 62.40% and

the user's accuracy to 93.98% (Table 4.5). As mentioned before, the ML classifier

obtains better classification accuracies the bigger the sample and the bigger the

number of features (Pal, 2002). Consequently, the overall accuracy and the

producer's and user's accuracy for each of these classes could be potentially higher

by using all the features available or by adding more pixels to the training datasets.

However, this would increase enormously the amount of training data needed (e.g.

150 pixels multiplied by 6 non-thermal bands per class). This would result in a very

large training dataset and a huge computational effort. Also, as already mentioned,

this parametric classifier focuses on obtaining a high overall accuracy without paying

attention to any particular class. These are precisely two of the issues that this thesis

is addressing.

As said at the beginning of this section, the purpose of performing a ML

classification was to use the results obtained by this classifier as a benchmark for

those obtained by other classification methods. Therefore, these results shown above
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were taken as a benchmark to measure the ones obtained by the SVM and DT

classifiers in the following sections of this chapter.

4.2 Support Vector Machines: Principles and Case study

The basis of SVMs started in the 1970's with the theories published by Vapnik and

Chervonenkis on statistical machine learning (Vapnik and Chervonenkis, 1971,

1979) and later on with the development of the support vector machine algorithm

(Vapnik, 1995, 1998). Machine learning non-parametric classifiers were developed

in order to give a better solution to the problems that could not be solved by

conventional parametric classifiers. Its use has been increasing in several research

areas. For example handwritten digit recognition (Cortes and Vapnik, 1995, Le Cun

et 01., 1995), text categorisation (Drucker et 01., 1999, Joachins, 1998), face detection

(Osuna et 01., 1997), pharmaceutical data analysis (Burbidge et 01., 2001,

Czerminski et 01., 2001), time series forecasting (Tay and Cao, 200 I, Cao, 2003) and

computational neuroscience (Eghbalnia and Asadi, 2001).

It is only very recently that SVMs have started to be applied in remote sensing

(Huang eta!., 2002, Zhu and Blumberg, 2002, Pal and Mather, 2003, 2005, Foody

and Mathur, 2004a). Huang et a!. (2002) compared the performance of SVMs for

land cover classification against DT, ML and ANN classifiers using data from

Landsat Thematic Mapper. Of the four classifiers ML had lower accuracies than the

three non-parametric ones. Their results showed that the SVM was more accurate

than DTs and also gave higher accuracies than ANNs when more variables were used

in the calculations. Other comparative studies include Pal and Mather (2003. 2005)

where the performance of SVMs are compared against DTs and ANNs using data

from ETM+, SAR and DAIS hyperspectral data. Their results show that the

performance and accuracy obtained by a SVM is comparable to that of ANNs and

DTs. More advanced research into the nature of SVMs includes Foody and Mathur

(2004b) in which the potential for intelligent training of SVMs is investigated. This
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is based on the idea that only a specific part of a training data set is necessary to train

the classifier.

The wide range of applications and success of the SVMs are mainly due to the

following characteristics (Bennett and Campbell, 2000):

1) The general methodology is very flexible. It can be customized to meet

particular application needs.

2) They eliminate problems experienced with other methods such as neural

networks and decision trees:

a. There are few parameters to pick.

b. The final results are stable, reproducible and largely independent of

the specific algorithm used to optimize the SVM.

3) The method is relatively simple to use compared to classifiers such as neural

networks.

4) They have proven to be robust to noise and perform well on small training

samples.

5) SVMs always find a global solution. A global solution means that there exists

no other point in the feasible region at which the objective function takes a

lower value (Burges, 1998). This is a distinctive characteristic of SVMs in

contrast to the case of ANNs where many local minima solutions exist. Both

concepts are exemplified in Figure 4.4.
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F(x)

p

global

(x)

Figure 4.4 Local minima and global solution. If a classifier starts with a weight set

corresponding to paint P the first solution that it encounters is at M. This is called local

minima and corresponds to a partial solution in response to the training data. Mg is the

global minimum or global solution. In neural networks unless measures are taken to escape

from the local minima the global solution will never be reached (Based upon Burges, 1998).

It is all these characteristics and its binary nature that makes the SVM a very suitable

approach for its application to classifying a specific habitat of interest. Therefore, the

following sections will describe the principles behind the SVMs and the application

of this classifier in the case study.

4.2.1 Support Vector Machines: Principles

In the two-class classification problem where {Xi Yi}, i = 1, , I, y. E {-1,1} it is

necessary to find an optimal separation between those two classes. When operating

in a multi-dimensional feature space this separation is normally achieved by a

separating hyperplane. In this case a hyperplane would separate positive from

negative examples and would satisfy w . X + b = O. where w is the normal to the

Page 93



Chapter 4

Binary classification for land cover mapping of a class of interest: Support Vector

Machines and Decision Trees versus Maximum Likelihood classifiers.

hyperplane, Ibl/lHI is the perpendicular distance from the hyperplane to the origin

and IHI is the Euclidean norm of w .

N
(I)._
:Jco
(I)
u..

•
•• ••·.~.•••• w

•• • ••••• •

•
b t « w n

•
x· w+b=O

origin

Feature 1

Figure 4.5. Representation of separating Hyperplane(w.x + b =0. Based upon Burges

(1998).

If d, (d.) are the shortest distance from the hyperplane to the closest positive

(negative) example, the margin of a separating hyperplane would be d,+ d.. For the

linearly separable case the support vector machine looks for the hyperplane with the

largest margin (ee Figure 4.6). If all the training data satisfy the following

constrain:

Xi ·w+b~+l for Yi =+1

Xi ·w+bS;-l for Yi =-1

Then the e can be combined into:

(1)

(2)

If the first inequality holds the points that lie in HI: Xi· W + b = 1 and if the second

holds H2: Xi· W + b = -1. These points are called support vectors. H I and H2 are

parallel (they have the same normal w) and no training points fall between them (see
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Figure 4.6). Therefore it is possible to find a pair of hyperplanes which give

maximum margin subject to constrains (2).

N

~
::J...-
co
Q)
LL

Feature 1

Figure 4.6. Optimal separating hyperplane. The circled points represent support

vectors. Based upon Burges (1998).

As said before, those points that lie on one of the hyperplanes HI or H2 are called

support vectors. They are critical elements of the training set. They lie closest to the

decision boundary. If all the other training points were removed or moved around

and the training was repeated the same separating hyperplane would be found. This

is a fundamental advantage of SVMs with respect to other classifiers such as ANNs.

]f the orne of the training data were to be removed or values moved around, the

ANN's architecture would have to be redesigned and the same solution would be

difficult to achieve again.

All the above applies when dealing with linear separable cases. However, it is often

the ca e that the classifier has to deal with non-linearly separable cases. In order to

be able to generalise the above method to a nonlinear case it is necessary to switch

this problem to a Lagrangian formulation. A Lagrangian formulation is an algebraic

term within the context of problems of mathematical optimization subject to

constraints. The aim of a Lagrangian is that the constrains are placed in the

Page 95



Chapter 4

Binary classification for land cover mapping of a class of interest: Support Vector

Machines and Decision Trees versus Maximum Likelihood classifiers.

Lagrangian multiplier themselves of the form a, , i = 1,..... ,1.. Therefore, the

constrained problem can be converted to an unconstrained problem by forming a

Lagrangian formulation and this would facilitate its application to non-linear cases.

To form a Lagrangian the constraint equations are multiplied by positive Lagrangian

multipliers and substracted from the objective function. The objective function in this

case is the maximisation of the margin and is given by .!.11~12.Lagrange multipliers
2

are therefore introduced for each of the inequalities of constraints (2).

(3)

Having done this, it is possible to establish a dual problem. Minimise L» with respect

to wand b and simultaneously all derivatives of Lp vanish subject to a, ~ 0 (this is

called constraints C1 ) or maximise L» subject to the constraints that the gradient of

L» with respect to wand b vanish and also a, ~ 0 (called constraints C2). This is a

quadratic problem called Wolfe dual (Fletcher, 1987) and it has the property that the

maximum of l-r subject to constrains C Ioccurs at the same values of the w, b and a

as the minimum of Lp subject to constrains C2.

The dual formulation will be expressed as:

(4)

In this solution the points that are a,» 0 are the support vectors and they are essential

for the calculation of the optimal hyperplane. All other training points have a, = 0

and are not necessary for any of the calculations performed. The dual formulation is

still feasible when applied to non-separable data but the dual could grow quite large.

To further relax the constrains on the Lagrange multipliers when necessary, slack

variables are introduced (Cortes and Vapnik, 1995).
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X; ·w+b~+I-q;

Xi ·w+b~-I+q;

for Y; =+1

for Yi=-1
(5)

Being qi ~ 0 V/

For an error to occur qi must be bigger than I, so L;q; is an upper bound on the

number of training errors. So we can assign an extra cost for errors to the objective

function 11~12/2 in the form of: "~12 /2 +C(L;q;) where C is a parameter to be

chosen by the user, a larger C corresponding to a higher penalty to errors.

a) Non-linear Support Vector Machines. The Kernel space

As seen in the previous section, a non-linear problem is much more difficult to solve

than linear cases and real world applications normally require more flexible solutions

than linear functions. A further step in the search for simplification of non-linear

problems is the introduction of kernel representations. These kernel representations

were introduced by Boser, Guyon and Vapnik (1992), based upon the work of

Aizerman et al. (1964), and they consist of projecting the data into a high

dimensional Euclidean space H in which the linear learning machines can be

implemented (see Figure 4.7).
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Figure 4.7 Mapping into feature spaces.

For that a mapping ¢ is performed so that ¢: Rd ~ H. The kernel function would be

expressed in the form of:

K(Xj' x j) = ¢(Xj)· ¢(x j) (6)

The use of kernels makes it possible to map the data implicitly into a feature space

and to train a linear machine in such space. The key is finding a kernel function that

can be evaluated efficiently. There are many valid functions with kernels as

described by Smola et al. (1998). For the aim of this research we will be focusing on

three of the most important ones: (i) polynomial, (ii) gaussian radial basis function

and (iii) exponential radial basis function.

(i) Polynomial kernel:

(7)
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(ii) Gaussian radial basis function (RBF):

(8)

(iii) Exponential radial basis function:

(9)

Where s is the width of the gaussian and the exponential kernels. The kernel function

plays a major role in locating decision boundaries between classes. Therefore, the

selection of kernel function and appropriate values for corresponding kernel

parameters might greatly affect the performance of the SVM (Huang et al., 2002). In

fact, according to Huang et al. (2002), some of the most important factors that affect

the classification accuracy ofSVM classifiers are:

1. Choice of kernel used.

2. Choice of the parameters related to a particular kernel.

3. Choice of parameter C.

However, there is little guidance in the literature on the criteria to be used to choose a

kernel and its specific parameters (Pal and Mather, 2005). According to Cherkas sky

and Ma (2004) practical approaches to choose the most appropriate kernel

parameters and value of C can be summarized as follows:

I. Kernel free parameters and C can be selected by users based on a priori

knowledge and/or user expertise (Cherkassky and Mulier, 1998; Scholkopf et
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al., 1999, Vapnik, 1998, 1999). Obviously, this approach is not appropriate

for non-expert users.

2. Kwok (2000) and Smola et al. (1998) proposed asymptotically optimal

values of the free parameter which are proportional to noise variance, in

agreement with general sources on SVM (Cherkassky and Mulier, 1998,

Vapnik, 1998, 1999). The main practical drawback of such a proposal is that

it does not reflect sample size.

3 Selecting parameter C equal to the range of output values (Mattera and

Haykin, 1999). This proposal does not take into account possible effects of

outliers in the training data.

4 Using cross-validation for parameter selection (Cherkassky and Mulier,

1998, Scholkopf et al., 1999, Hsu et al., 2003). The only drawback of this

approach could be very computation and data-intensive.

Considering all the above the most straightforward option for parameter selection

seems to be cross-validation. It is therefore this approach that will be used to

calibrate the kernels used in this research.

4.2.2 Classification of a habitat of interest using the SVM

classifier. Case study.

After reviewing the basics of SVMs, this section describes the different classification

experiments that were carried out., The SVM used to perform this research was the

Support Vector Machine Toolbox developed by Steve Gunn (Gunn, 1998), a member

of the Image Speech and Intelligent Systems Group at the University of

Southampton. The main reason for this selection was that this particular SVM had a

user-friendly graphical interface specially designed to analyse binary classifications.
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As mentioned at the end of the previous section, the most straightforward method for

selecting the optimal parameters to be used by the SVM is cross-validation. In v-fold

cross-validation, the training set is divided into v subsets of equal size. Sequentially,

one subset is tested using the classifier trained on the remaining subsets. Therefore,

each instance of the whole training set is predicted once so the cross-validation

accuracy is the percentage of data that are correctly classified (Hill and Lewicki

2006). In previous studies using the polynomial kernel (Cortes and Vapnik, 1995,

Huang et al., 2002) degrees of 1 to 8 were tested. These researchers found that

depending on the input variables the degree of polynomial would have a major or

minor impact in the final accuracy. In this case only two input variables were used

but it was still decided to test the polynomial with values 1 to 10 to cover a slightly

bigger range than previous studies. For the RBF kernel the default value of 1 for the

free parameter was used in previous research (Vapnik 1995, Joachims, 1998). Other

authors (Huang et al., 2002) decided to use values 1 to 20. However in this latter case

the overall accuracy only changed slightly when the value increased beyond 7.5.

Based upon these studies it was decided to test the kernel using values 1 to 10. There

were no studies found on the assessment of the better values to be used for the

exponential kernel. It was decided to test the exponential kernel between the same

values of the other two for comparison purposes.

These three main kernels were cross-validated in a 5-fold cross validation test using

values 1 to 10 for their respective free parameters. For values of C exponentially

growing sequences of C seems to be a practical method to identify the optimal value

(Hsu et al., 2003). Consequently, it was decided to use values 1, 10, 102, 103 in order

to calibrate the different kernels. The detailed results of this cross-validation are

described in Annex B. The results for fen as the class of interest showed that the

polynomial kernel failed to separate the two classes and classified all the pixels as

the "other" class. The other two kernels gave positive results. As a general tendency

for the gaussian and exponential kernels the accuracy results were higher when using

free parameter values 1 to 3 with a clear decrease in accuracy as the parameter value
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gets higher. Although the accuracy results were quite similar with both kernels the

accuracy obtained by the gaussian kernel was always a bit higher than the

exponential kernel. After averaging the results of the cross-validation, the highest

overall accuracy was obtained by the gaussian kernel when using a value of C = 100

and free parameter value of I.

To test whether the above results were biased in any way by the data provided or the

spectral characteristics of the class of interest, another cross-validation was

performed using saltmarsh as the class of interest. The results (Annex B) showed that

the general tendencies are the same as before. The polynomial kernel continued

classifying all the data as "others". Also as with the class fen, the accuracy for the

other two kernels seemed to decrease when the free parameter value increased and in

general the best accuracies were obtained by the gaussian kernel. In terms of the

value for misclassification errors, C = 10 and C = 100 gave the higher accuracies. In

the case of saltmarsh the overall best accuracy was obtained by the gaussian kernel

when using a penalty value of C = 10 and free parameter value of 2 and the same

result was obtained by the Exponential kernel C = 10 and free parameter value of 1.

These parameters were consequently used by the SVM classifier when it was trained

with the datasets of varying sizes. The effect of different training sizes on the overall

accuracy of SVMs has been tested by previous research but always on multiclass

classification (Huang et al., 2002, Pal and Mather 2003). In this thesis, this was

assessed for the binary classification. As described in Chapter 3 and earlier in the ML

classification, it is suggested that a minimum of 10-30p cases per-class is used for

training, where p is the number of wavebands used. In order to test whether this was

also the minimum size recommended for this particular case study it was decided to

go below this limit and above this limit. The sizes in this experiment ranged from 30,

50, 100, 150, 200, 250 to 300 pixels where each set contained the pixels from the

previous one so that 30 E 50 E 100 E ISO E 200 E 250 E 300. Following a binary

(OVA) classification approach these training sets were divided 50150 between the

target class and the "other" class. As already mentioned, the testing set for all the
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classifiers was 250 pixels that was divided in the same 50/50 proportion (see Annex

F for full training and testing datasets).

The classification performed for fen as the class of interest gave the following

results:

Support Vector Machine
Fens as class of interest

100.00 ... • • • •• ...
90.00 _:::=: • • • •: • • • -....
80.00

70.00
30 50 100 150 200 250 300

-+- O\€rafl accuracy % 88.40 88.80 91.60 91.60 91.60 91.60 92.00

___ Produce~s accuracy % 98.40 96.80 98.40 98.40 98.40 98.40 96.80

I-A- User's accuracy 82.00 83.45 86.62 86.62 86.62 86.62 88.32

Training set sizes

Figure 4.8. Accuracy resultsfor classfen for different training sizes

Figure 4.8 shows that the small training datasets of30 and 50 pixels achieved a lower

overall accuracy than sizes 100 and above. However, the producer's accuracy for fen

was similarly high for all the training sets. That means that the capacity of the SVM

to differentiate the class of interest from all the other classes was quite high even

when using very small training sizes. The user's accuracy stayed in the range of

82.00-88.00% which denoted a relatively high error of commission. With a training

size of 100 pixels the SVM achieved an overall accuracy (91.60%) and a producer's

accuracy of 98.40%. The increase on training set size to 150, 200, 250 and 300 did

not change this result. Adding more pixels to the training set did not seem to add any

new information into the classifier. So it could be concluded that for this particular

case, the SVM found the optimal solution for the classification of the class of interest
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with a training set of 100 pixels which is within the minimum recommended size

(l0-30p pixels).

To make sure that these results were not achieved by the SVM classifier because it

was using this particular class of interest, the same classification was performed

using saltmarsh as the class of interest. The results obtained were:

Support Vector Machine
Saltmarshes as class of interest

100.00 ..-
90.00 ...____ .. .. .. .. .. ..
80.00

70.00
30 50 100 150 200 250 300

~ Overall accuracy % 90.40 92.00 92.00 92.00 92.00 92.00 92.00

- Producer's accuracy % 99.20 97.60 97.60 97.60 97.60 97.60 97.60

_._ User's accuracy % 84.35 87.77 87.77 87.77 87.77 87.77 87.77
Training sizes

Figure 4.9. Accuracy resultslor class saltmarshlor different training sizes

For saltmarsh as class of interest (see Figure 4.9 above) the SVM found an optimal

solution using a training size of 50 pixels with an overall accuracy of 92.00% and a

producer's accuracy of 97.60%. After this, the accuracy values stayed the same

independently of how much more data were added. Once more, this highlights the

capacity of a SVM to find an optimal solution with a very small training dataset. As

with the class fen, the producer's accuracy showed values of 97.60% for most of the

training sizes and the user's accuracy stayed in the range of 84.00-88.00%. As

mentioned in Chapter 3, this low user's accuracy could be rectified in a post-

classification analysis if enough field data were available for the area. Confusion

matrices for both classes and all the sizes can be found in Annex A.
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Finally, one important characteristic of SVM classification is that it only uses a

percentage of the training data to find the optimal hyperplane. The more data it uses

the more it relies on the training dataset and the more difficult it would be to

generalise to unseen samples. Therefore, the number of support vectors used in each

of the above cases could give us an indication of how much the SVM relied on the

training data for its calculations and if this was producing over-fitting. For that

reason, the percentage of support vectors used in each training dataset was

calculated.

Training sizes

Percentage of support vectors used by the SVM
for Fens and Saltmarshes

80.00

60.00
(fIIJ

F(fIIJ
FtfII F" F.. '=L F~40.00

20.00

0.00 - - - - ... - -
30 50 100 150 200 250 300

o Fens 56.70 50.00 44.00 46.30 50.50 47.60 45.70

o Saltmarshes 63.30 56.00 48.00 42.70 45.00 41.60 37.00

Figure 4.10 Number of support vectors used by the SVM classifierfor fen and saltmarsh

As seen in Figure 4.10, it was in the small training sets where the SVM relied more

on the data, with 56.70% of the data being considered as support vectors for fen

(training size 30) and 63.30% and for saltmarhes (training size 30). After this, the

SVM used 50.00% or less of the data as support vectors in the rest of the training

sizes. This is a clear advantage over other classifiers where the calculations rely on

the whole training dataset, which could in some cases over-fit the classification.

Here, all the data that were not used as support vectors could be absent from the

training set and the results still would be the same. Graphical representations of these

support vectors and the separating hyperplane for each training data set can be found
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in Annex C (please note that the decision boundaries shown in the graphics are only

indicative ).

Finally the ML classification results were used as a benchmark to assess the above

SVM classification results. For that the ML results obtained when using a training set

of 150 pixels per class were compared against the results obtained by the SVM using

a training set of 100 pixels (50 belonging to the class of interest and 50 belonging to

the other class).

Comparison of accuracies SVM v MLC
Fens as class of interest

Classifiers

Figure 4.11 Comparison oj accuracies SVM v MLC. Fen as class oj interest
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Comparison of accuracies SVM v MLC
Saltmarshes as class of interest

Classifiers

Figure 4.12 Comparison of accuracies SVM v MLC Saltmarsh as class of interest

The results in Figure 4.11 and Figure 4.12 showed clearly that the SVM obtained

much higher overall and producer's accuracies for both fen and saltmarsh as classes

of interest. Performing the McNemar's test confirmed that this difference is

significant (Z = - 7) at the 95% confidence interval. However, the user's accuracy

was higher for both classes when using the ML classification. Tills could be due to

the fact that the error of commission was spread across the 8 different classes in the

image. As already mentioned in Chapter 3, for the purpose of this thesis the

producer's accuracy is the most important one as it indicates the capacity of the

classifier for identifying the class of interest from all the others. The errors of

commission pointed out by the user's accuracy can be easily corrected with the use

of ancillary data. Therefore, it can be concluded that the binary SVM classifier is

suitable for the application to land cover mapping when focusing on a specific

habitat surpassing greatly the accuracy of a standard ML classification. Also, the

SVM achieved these results with a fraction of the data used by the ML. In the

comparison illustrated above in Figure 4.11 and Figure 4.12 the ML classifier used a

training set of 1,200 pixels in total as supposed to the SVM with a training set of

only] 00 pixels which highlights the capacity of the SVM to obtain high accuracies

with very small training datasets.
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Having reviewed the principles behind SVMs and demonstrated its suitability to the

classification of a class of interest, the following section describes the DT classifier

and its application to the case study.

4.3 Decision Trees classifiers

Decision Tree (DT) classifiers have long been popular in machine learning, statistics

and other disciplines for solving classification problems. The beginning of DTs dates

from work in the social sciences by Morgan and Sonquist (1963) and Morgan and

Messenger (1973). Breiman et al. (1984) had a decisive influence both in bringing

the work to the consideration of statisticians and in proposing new algorithms for

constructing trees. At around the same time DT induction was beginning to be used

in the field of machine learning (Quinlan, 1979, 1983, Patterson and Niblett 1983,

Kononenko et al., 1984, Cestnik et al., 1987). Since then, DT classifiers have been

used successfully for a wide range of classification problems but have not been

tested in detail by the remote sensing community in spite of their advantages

over other non-parametric classifiers (Pal and Mather, 2003). These

advantages include the ability to handle data at different scales and do not require

assumptions regarding the distributions of the input data (Friedl and Brodley, 1997).

In addition they handle nonlinear relations between features and classes, allow for

missing values and are capable of handling both numeric and categorical inputs

(Fayyad and Irani, 1992, Hampson and Volper, 1986). Therefore they are becoming

increasingly popular due to their conceptual simplicity and computational efficiency

(Pal, 2002).

There are a few studies that have investigated the use of DT for the classification of

remotely sensed data. Lees and Ritman (1991) looked at the use of DTs for mapping

vegetation species using Landsat and other spatial data. Byungyong and Landgrebe

(1991) used DTs to classify AVIRIS data. Eklund et al. (1994) used a DT approach

to assess the effect of incremental data layers on groundwater recharge estimates.
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Friedl and Brodley (1997) showed that DT algorithms consistently outperformed ML

methods when classifying spectral data. They noted, however, that DT algorithms

tend to optimise overall classification accuracy at the expense of smaller classes. For

this reason, the methods used to assess the accuracy of a classifier must be carefully

selected. Pal and Mather (2003) assessed the effectiveness of DT methods for land

cover classification and found that the performance of DT classifiers is acceptably

good when classifying data from Landsat ETM+ data in comparison with other

classifiers such as ANN and ML classifiers. Brown de Colstoun et al. (2003) applied

DT classifiers to vegetation mapping using multitemporal Landsat ETM+ data. They

have also been applied to hyperspectral imagery (Lawrence and Labus, 2003, Yang

et al .• 2003), incorporating ancillary data with multispectral imagery for increased

classification accuracy (Lawrence and Wright, 2001), and change detection analysis

(Rogan et al .• 2003).

The advantages that DTs can offer to the remote sensing community include an

ability to handle data measured on different scales, lack of any assumptions

concerning the frequency distributions of the data in each of the classes, flexibility,

and capability to handle non-linear relationships between features and classes (Friedl

and Brodley, 1997). In contrast to other classifiers such as ANNs, DTs can be trained

quickly, and are rapid in execution (Gahegan and West, 1998). Furthermore, they can

be used for feature selection/reduction as well as for classification purposes (Borak

and Strahler, 1999).

The terminology of trees is graphic. The root is the top node and examples are passed

down the tree, with decisions being made at each node until a terminal node or leaf is

reached. Each non-terminal node contains a question on which a split is based (see

Figure 4.13).
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88

Figure 4.13. Decision tree. A, Band C denote thefinal classification of training data into

these three classes. After Pal and Mather (2003).

A range of factors need to be considered with regards to how the tree is constructed

depending on the type of test and the nature of the data that are used to build the DT

(Brodley and Utgoff, 1992). These factors include (i) how the estimation procedure

handles different types of data (Fayyad and Irani, 1992) (ii) how missing data are

handled (Quinlan, 19 6) (iii) the partition merit criteria used to measure the goodness

of a split (Safavian and Landgrebe, 1991) and (iv) the specific algorithm to perform

feature election at internal nodes when multivariate tests are employed (Kittler,

1986).

Therefore, the design of a DTs can be divided into the following stages:

a) the appropriate choice of tree structure

b) the choice of feature subsets to be used at each internal node

c) the choice of the decision rule or strategy to be used at each internal node.
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a) Appropriate choice of tree structure

In general there are two approaches to the design of DTs: Manual design methods

and heuristic search methods (Swain and Hauska, 1997). Manual methods use

statistics such as the mean vector and covariance matrix, which are calculated for all

classes. Afterwards a graph is derived in which the means and variances for all the

classes are plotted for each feature. This graph is called a coincident spectral plot. It

is often possible to estimate suitable decision boundaries from this graph such that all

classes are separated in a number of decision steps. This method is not suitable when

two or more features are to be used in a given stage of the tree because the graph

does not show how the interactions between features can be used. Also it is not

suitable if the data are not normally distributed, thus making it difficult to estimate

the covariance matrices in an unbiased way. Therefore, if the difficulty of

discriminating the classes requires the use of a combination of several features, the

manual design approach based on the spectral plot is severely limited (Pal, 2002).

With the heuristic approach it is assumed that a training data set consisting of feature

vectors and their corresponding class labels is available. The DT is then constructed

by recursively partitioning the training dataset into purer, more homogenous, subsets

on the basis of a set of tests applied to one or more attribute values at each branch or

node in the tree (Figure 4.13). At each node a decision algorithm decides how the

data are split. DT classification algorithms can be distinguished according to whether

these algorithms are homogeneous or heterogeneous (Friedl and Brodley, 1997).

Traditional approaches are based on homogeneous classification models for which a

single algorithm is used to estimate each split. Two types of DTs that are based on

such homogeneous classification are: (i) univariate DTs and (ii) multivariate DTs. A

hybrid hypothesis space on the other hand would allow the combination of different

algorithms but they are only applied in complex classification problems (Friedl and

Brodley, 1997).
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(i) Univariate Decision Trees (UDT)

In a Univariate Decision Tree (UOT) the decision boundaries at each node of the tree

are defined by a single feature of the input data. The data are split into two or more

subsets on the basis of a test of a single feature of the input data and each test is

required to have a discrete number of outcomes (Friedl and Brodley, 1997). The

specific values of the decision boundaries in a UDT are estimated empirically from

training data. A boolean test of the form Xi > b is estimated at each internal node

where Xi is a feature in the data space and b is a threshold in the observed range of Xi.

The value b can be estimated by using some objective measure that maximises

dissimilarity or minimises similarity of the descendent nodes. (Friedl and Brodley,

1997). As each test in UDT is based on one of the input variables, it is restricted to

representing that variable axis, as show in Figure 4.14.

••• ~• •• •N •
Q)...~-

~ ...co
Q) •••LL • • ••••

Feature 1

Figure 4.14. Axi parallel decision boundaries of a univariate decision tree. Based upon

Friedl and Brodley (1997).
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(ii) Multivariate Decision Trees (MDT)

Multivariate Decision Trees (MDT) are similar to UDTs except that the splitting test

at each node is based on more than one feature of the input data. The test at each

node has the form:

(1)

Where x i represent the features in the data space, a is the vector of coefficients of

the linear discriminant functions, and c is the threshold value. The decision

boundaries are represented graphically in Figure 4.15 .

•••• •••
Feature 1

Figure 4.15. Decision boundaries for a multivariate decision tree classifier. Based upon

Friedl and Bradley (1997).

However, the higher complexity of MDT implies that different algorithms have to be

used to e timate the splitting rule at internal nodes which can vary depending on the

type of data and classification problem. Also several different algorithms have to be

performed for feature selection at each node. This feature selection is made on the

ba is of the data in a particular node and it does not apply a uniform set of features

for the entire tree. In general MDT are more difficult to interpret than UDT and

should be applied only when necessary (Friedl and Brodley, 1997).
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Regardless of the structure of tree chosen (univariate, multivariate or hybrid), at each

node in the tree the DT tries to minimize the number of features included in the test.

The two basic approaches are Sequential Backward Elimination (SBE) and

Sequential Forward Selection (SFS) (Broadley and Utgoff, 1995). Sequential

Backward Elimination is a top down method that starts with all the features and tries

to remove the feature that will cause the smallest decrease of some partition-merit

criterion that reflects the amount of classification information conveyed by the

feature (Kittler, 1986). Sequential Forward Selection (SFS) is a bottom up search that

starts with zero features and tries to add the feature that will cause the largest

increase of some partition-merit criterion.

Of the two, the most popular method is the Sequential Backward Elimination. There

are two choices that must be made to implement the SBE algorithm: the choice of (i)

partition-merit criterion and (ii) the stopping and pruning criteria. A partition-merit

criterion may measure the accuracy of the test when applied to the training data or

measure the entropy, as with the Information Gain Criteria (Quinlan, 1986) and the

Gini index (Breiman et al., 1984). The stopping criterion determines when to stop

eliminating features from the linear combination test.

(i) The Partition merit criterion.

The Information Gain Criteria was developed by Quinlan (1986) in the following

way. When applied to a set of training objects, info (T) gives the average amount of

information needed to identify the object of a class in T. This amount is also known

as the entropy of the set T.

" IT. I
info ..(T) = I-I 'I'inf o(~)

i-I T
(2)

The quantity
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gain (x) = info (1) - in/ox (1) (3)

measures the information that is gained by partitioning T in accordance with the test

x. The gain criterion (Quinlan, 1993) selects a test to maximise this information gain.

However, the gain criterion has one significant disadvantage in that it is biased

towards tests with many outcomes. The gain ratio criterion (Quinlan, 1993) was

developed to avoid this bias. The information generated by dividing T into n subsets

is given by

split inf o(x) = ±t 11T;11.10g2(IT; IJ
1=1 T T

(4)

The proportion of information generated by the split that is useful for classification is

gain ratio (x) = gain (x) / split info (x) (5)

This compares with CART's impurity function approach (Breiman et al., 1984),

where impurity is a measure of the class mix of a subset and splits are chosen so that

the decrease in impurity is maximised. This approach led to the development of the

Gini index (Breiman et al., 1984).

i{p) =LP,P j =1- LP~ (6)
j

The impurity function approach considers the probability of misclassifying a new

sample from the overall population, given that the sample was not part of the training

sample, T. This probability is called the misclassification rate and is estimated using

either the re-substitution estimate (or training set accuracy), or the test sample

estimate (test set accuracy). The node assignment rule selects i to minimise this

misclassification rate. In addition, the Gini index promotes splits that minimise the
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overall size of the tree (Evans, 1998). Gini attempts to separate classes by focusing

on one class at a time. It will always favour working on the largest or the most

"important" class in a node. This means that when classifying the binary DT can

identify the class of interest out of the classes present in the classification. This is

extremely important in this thesis as the focus of the classification is on one specific

class. Therefore, the logical choice for the present case study will be choosing a DT

with the Gini index splitting criteria.

(ii) The stopping and pruning criteria

The result of dividing the training data into subsets may produce a very large and

complex tree. Also, fitting a decision tree until all leaves contain data for a single

class may over-fit to the noise in the training data, as the training samples may not be

representative of the population they are intended to represent. According to Breiman

et al. (1984) there are two ways in which a DT classifier can be modified to address

these problems:

1. Deciding not to divide a set of training data any further (also called stopping

criterion), and

2. To remove retrospectively some part of the tree structure built by recursive

partitioning (known as pruning).

The first approach looks at the best way of splitting a dataset and to assess the split

from the point of view of a factor such as information gain or error reduction. If this

assessment falls below some threshold, the division is rejected. The problem with

this approach is to identify an acceptable stopping rule (Breiman et al., 1984). If the

threshold value is too high it can terminate division before the benefits of subsequent

splits become evident, while too Iowa value results in little simplification of the tree.

In the second

approach, the tree is allowed to grow in full. Then, this over-fitted tree is pruned.

This method needs more computation in building parts of the tree that are
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subsequently discarded, but this cost is offset against benefits due to more thorough

exploration of possible partitions.

4.3.1 Classification of a habitat of interest using the DT classifier.

Case study.

Of all the DTs available, it was decided to use the CART method implemented by

Salford Systems to perform the classification. This method is based upon Breiman's

approach to DT classifiers and has been extensively applied in different disciplines

such as meteorology (Burrows et al., 2001, Dunsmuir et al., 2003, Firth et al., 2005),

clinical studies (Chang et al., 2002, Bolt et al., 2004, Chavanet et al., 2004),

ecological analysis (Fabricius and De'ath, 2000, Feicht et al., 1998, Koh and Sodhi,

2004). It has also been tested with remote sensing data (Hansen et al., 1996, Frield

and Brodley, 1997). The results of this work showed that CART's DT performed

comparably to other established classifiers such as ML and ANNs. They also showed

that DTs have advantages in terms of feature selection and handling missing data

(Frield and Brodley, 1997).

The reason for choosing CART was that it uses the Gini Index as the main splitting

criteria. As mentioned earlier, one very important characteristic of this index is that

the class of interest can be pre-defined and the splitting rule will prioritise the

classification of this class over any other. This was extremely important in this case

study and a clear advantage of using this classifier in an OVA binary classification

scheme. Another advantage of CART is that the testing and selection of the optimal

tree are an integral part of CART. It calculates the classification for both multivariate

and univariate trees. The best linear combination found by CART for a multivariate

approach is added to the set of possible univariate tests and the best of this new set is

chosen as a test at the current node. In terms of pruning, CART introduces the notion

of over-growing trees and then pruning back; this idea guarantees that important tree

structures are not overlooked by stopping too soon. In other words, CART tries to
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achieve the global solution instead of stopping at a local minima as explained in the

previous section.

The range of training sets used to train the DT classifier were the same as those used

previously to train the SVM. This is, training sets of 30, 50, 100, 150, 200, 250 to

300 pixels where each set contained the pixels from the previous one so that

30 E 50 E 100 E 150 E 200 E 250 E 300 and the same testing set as used before with

250 pixels in the same 50/50 proportion. In previous studies regarding training set

sizes impact on DT classifiers, Oates and Jenson (1997) suggested that increasing the

number of training data only affected the size of the tree but had a little effect on the

classification accuracy. However, Pal and Mather (2003) showed that the size of

training datasets affected the final accuracy of the DT and that this accuracy

increased with increase of training data up to a point where the DT got stabilised and

adding more training data did not increase the accuracy .. The results obtained for the

present case study were the following:

Decision Tree classifier
Fens as class of interest

100.00 •_____. • • • •
90.00

80.00

70.00
30 50 100 150 200 250 300

1-- Overall accuracy % 84.40 88.40 91.60 91.60 91.60 92.00 92.00

1-- Producer's accuracy % 95.20 98.40 98.40 98.40 98.40 96.80 96.80

1__ User's accuracy % 78.29 82.00 86.62 86.62 86.62 88.32 88.32

Training sizes

Figure 4.16 Binary Decision Tree classification. Fen as class of interest
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Training sizes

Decision Tree classifier
Saltmarshes as class of interest

110.00

100.00 _...

90.00

80.00

70.00
30 50 100 150 200 250 300

-+- Overall accuracy % 83.20 91.20 95.20 96.40 96.40 96.40 97.60

-+- Producer's accuracy % 85.60 99.20 94.40 95.20 95.20 95.20 98.40

- User's accuracy % 81.68 85.52 95.93 97.54 97.54 97.54 96.85

Figure 4.17 Binary Decision Tree classification. Saltmarsh as class of interest

With regards to different training sizes the results agreed with those of Pal and

Mather (2003). For fen the DT achieved a high accuracy using a training set of 100

pixels which did not get significantly higher after that. With saltmarsh as the class of

interest the same trend was observed, although here the accuracies obtained were

much higher with 97.60% overall accuracy for the training set with 300 pixels as

suppo ed to 92.00% for the same amount of training data for fen. This could be due

to the higher separability of the class saltmarsh from all the other classes. As with the

class fen, the DT achieved high accuracies with sizes as small as 100 pixels.

Confusion matrices for each of the training sizes can be found in Annex A.

With regard to the tree structure, the higher accuracy of saltmarsh was obtained by a

more complicated tree than the one for fen. A detailed account of trees for different

training sizes can be found in Annex D. Figure 4.18 below compares the trees

obtained by the classifiers with a medium training size of 150 pixels.
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Decision Tree FENS
CART

Decision Tree SAL TMARSHES
CART

D Mixture of both classes D Mixture of both classes

D Terminal node. Class Fens D Terminal node. Class Saltmarshes

I Terminal node. Class Others I Terminal node. Class Others

Figure 4. J 8 Decision Tree structure resultant with the binary classification in CART fen and

saltmarsh

The difference between both trees could be due to the different spectral signature of

each cIa s of interest and the degree of separability between that class and all the

other . As seen in previous sections, the DT aims to refine the training sample into

subsets which have only a single class. CART performs the cost-complexity pruning

automatically and produces the optimal tree. However if the researcher thinks that

the tree is still quite complex this can be pruned back further. As an experiment it

was decided to prune again the saltmarsh's tree. The result obtained for the pruned

tree can be seen in Figure 4.19 below.
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Decision Tree SALTMARSHES pruned
CART

D Mixture of both classes

D Terminal node. Class Saltmarshes

I Terminal node. Class Others

Figure 4.19 Decision Tree outputfor saltmarsh after cost-complexity pruning

The overall accuracy for this new tree was slightly lower than the original (93.20%

as supposed to 94.40% respectively). This confirms the fact that pruning a DT can

cause it to misclassify more of the training data. The reason for this is that the leaves

of the pruned tree will not automatically contain training data from a single class.

Instead, there will be a class distribution specifying, for each class, the probability

that a training data sample at the leafbelongs to that class (Pal and Mather, 2003).

In conclu ion, all the above results agreed with those of Pal and Mather (2003) in

that:

(i) Accuracy increased with increase of training data up to a point. For example

for fen the accuracy seemed to get to a maximum at 100 pixels and there was

no major increase using bigger sizes. For saltmarsh this was also the case.

(ii) The DT classifier did not need a great amount of training data to be

effective. In this particular case 100 pixels seemed to be sufficient.

Finally, these results were compared against those obtained by the standard ML

classifier. As with the SVM, it was decided to compare the results obtained by the
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ML classification using a training set of 150 pixels per class with those obtained by

the DT classifier using a training set of 100 pixels (50 pixels belonging to the class of

interest and 50 belonging to the other class). The results were:

90.00

86.62

91.60

77.60

87.39

Comparison of accuracies DT v MLC
Fens as class of interest

110.

70.00

• Producer's accuracy %

71.60

Classifiers

Figure 4.20 Comparison of accuracies DTv MLC. Fen as class of interest

94.40

95.93

95.20

62.40

93.98

64.80

Comparison of accuracies DT v MLC
Saltmarshes as class of interest

• Producer's accuracy %

• User's accuracy %

70

50.

Classifiers

Figure 4.2 j Comparison 0/ accuracies DT v MLC. Saltmarsh as class 0/ interest
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The accuracies obtained by the DT classifier were significantly higher than those

obtained by the multiclass ML classifier (Z = - 7) at 95% confidence interval. For

fen as class of interest the ML classification still obtained a higher user's accuracy

than the DT classifier (see Figure 4.20). However, for saltmarsh this was not the

case, and the DT obtained a user's accuracy of 95.93% as supposed to 93.98%

obtained by the ML classification (Figure 4.21). Also it is once again important to

highlight that the ML classifier used a training set of 1,200 pixels in total as

supposed to the DT with a training set of only 100 pixels.

4.4 Summary and Conclusions

Satellite remote sensing has enormous potential as a source of land cover information

and in particular, for monitoring land cover and its dynamics at the scales associated

with the demands of the EU Habitats Directive. In standard statistical supervised

image classifications, the aim is to maximize the overall probability that a pixel is

allocated to a class correctly. This requires that each class within the area to be

mapped is included in the analysis to satisfy the assumption of an exhaustively

defined set of classes. This approach treats all classes equally, including those of no

interest, rather than focus on a class that is of real interest.

The results obtained by the classifiers showed that significant increases in accuracy

can be achieved through the use of binary classifications that aim to separate the

class of interest from all others. In the classifications performed using the binary

SVM and DT, the classes of interest (fen and saltmarsh) were classified with much

higher accuracies than those obtained by the ML classifier. This clearly highlights

the potential of these classifiers for land cover mapping of specific habitats that may

aid environmental monitoring as part of obligations linked to the EU Habitats

Directive. In particular, the use of these classifiers could reduce problems associated

with having to exhaustively define and train all classes. As demonstrated in this

chapter a conventional statistical classifier such as a multiclass ML requires a large
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training sample for each class present in the image in order to exhaustively define

each class and obtain acceptable accuracies. However, the reliability of the results

obtained with this classifier declines when the frequency distribution of the data

departs from normality. It should also be noted that all features are used to

discriminate between classes, rather than the minimum effective set.

For the binary classifiers, high accuracies were obtained with only 50 pixels per

class. Furthermore, even the accuracies obtained by these classifiers with only 15

pixels per class surpassed the accuracy obtained by the ML classifier using a training

set of 1,200 pixels. The accuracies were higher when selecting the class saltmarsh as

the class of interest which could indicate that the separability between this class and

all the other classes is higher than the one for fen and the other classes.

Furthermore, both classifiers seemed to show a high error of commission. This could

be important in some cases because the EU Habitats Directive requires that relevant

authorities carry out very precise mapping and monitoring of protected habitats. This

problem could be addressed if other ancillary data and field surveys are available to

correct the classification in the areas that have been misclassified as the class of

interest. In conclusion, the ability to focus on the class of specific interest and to

reduce the amount of effort wastefully directed on other classes may help realise the

potential of remote sensing as a viable source for land cover mapping of specific

protected habitats to the relevant authorities. This chapter has demonstrated that both

SVM and DT classifiers have the ability of optimising the training process by using

very small training data sets in order to achieve high classification accuracies. This

optimisation could be further refined in the case of SVM as only the data selected as

support vectors are needed for the separation of the class of interest from all the other

classes. Furthermore, the suitability of SVM and DT binary classification for the

classification of a habitat of interest under the requirements of the EU Habitats

Directive has also been confirmed.
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However, although binary classifications usmg SVM and DT classifiers can be

successfully used for classifying a class of interest, training data for the 'other' class

are still required. It could be that in some cases these data are very difficult to

acquire. In this sense, the following chapter will address the problem of the

classification of a particular class by focusing solely on this class of interest by using

one-class classification methods.
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5 One-class classification methods and their

application to one class land cover mapping

"It's not that I'm so smart, it's just that I stay with problems longer".

Albert Einstein

The previous research chapter investigated a binary classification approach in order

to classify a habitat of interest from all the other habitats present in an image.

However, as already mentioned, one disadvantage of binary classifiers is that they

still need to have some information about the other classes present in the image in

order to amalgamate them into the "other" class. It could be that in some instances

these data are not available or very difficult to acquire. Also, it is reasonable that if

the focus of the research is one class of interest, all the classification efforts should

be concentrating on this class. These issues could be addressed with the application

of one-class classifiers which only require training data from the class of interest in

order to classify it accurately. This would also be in line with the EU Habitats

Directive requirements and the need of the relevant authorities to optimise their

resources in order to comply with these requirements.

The problem of remote sensing classification and land cover mapping when focusing

on a class of interest is very similar to those problems encountered in pattern

recognition. It is virtually impossible to have a description of all the possible data

that a classifier could encounter in real life situations. For example, it is impossible
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to have a description of all the document categories in document classification or all

the possible textures in texture segmentation. However, it is possible to describe the

category or texture of interest and separate this from all other possible occurrences.

Likewise, in remote sensing, there is a limit to the number of classes that can be

differentiated in an image and the amount of data that are possible to be collected for

each of them. Sometimes the lack of ground data or appropriate spatial and spectral

resolution makes it impossible to exhaustively define all the classes present in the

image. A method that allows concentrating on the description of a class of interest

regardless of how many other classes are present in one image is therefore extremely

attractive.

One-class classification has proved very valuable to solve these issues in areas of

pattern recognition such as document classification (distinguishing one specific

category from other categories) (Manevitz and Yousef, 2001), texture segmentation

(distinguishing one specific texture from other textures) (Tax and Duin, 2002), and

image retrieval (retrieving a subset of images based on the similarity between given

query images) (Lai et al., 2002). It has also recently being used in ecological models

coupled with GIS to predict the potential distribution of a new forest disease called

Sudden Oak Death in California (Guo et al., 2005). However, it has not yet been

applied to remote sensing image classification and land cover mapping (as far as the

author is aware).

Therefore, taking into account all the above, the specific objective of this chapter is

to evaluate the potential of one-class classification for the mapping of a specific

habitat of interest using remote sensing data and will be structured as follows:
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Figure 5.1 Chapter 5 structure

Following Figure 5.1, the first section of this chapter will describe the principles of

one-cia classification methods and compare the different methods in order to assess

which one is most appropriate for ultimately achieving the aim of this thesis.

Following the conclusions of this section, the SVDD one-class classifier is

investigated and applied to the case study. Finally, these results are compared against

tho e obtained by the standard ML classifier and conclusions about the applicability

of one-cia classifiers to remote sensing land cover classification will be drawn.
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5.1 One-class classification. Principles and methods

The term one-class classification is believed to originate from Moya (Moya et al.,

1993), but also outlier detection (Ritter and Gallegos, 1997), novelty detection

(Bishop, 1994, Markou and Singh, 2003) or concept learning (Japkowicz et al.,

1995) are used. These different tenns normally derive from the different applications

of this type of classification. Within this thesis the term used is one-class

classification as the aim ofthis research is to classify one habitat or class of interest.

As mentioned in Chapter 1, one-class classification is a special type of binary

classification problem with two classes: (i) the target and (ii) the outlier class.

(i) Target class refers to the class of interest and it is assumed to be sampled well and

that enough training data are available. It does not necessarily mean that the

sampling of the training set is done completely but that enough samples are provided

to characterise the class in the feature space. For the purpose of the present thesis, the

target class and class or habitat of interest are used as equivalent terms,

(ii) Outlier class refers to any other class different from the class of interest. In the

binary classification problem this would be the equivalent to the 'other' class. It can

be sampled very sparsely or can be totally absent. There could be many reasons for

this. For example, in remote sensing it might be that this class is very hard to

measure, or it might be very expensive to do the measurements on these types of

habitats, or that the outliers (other classes) are so abundant that a good sampling is

not possible or simply, the attention is focused upon a class of interest and the

sampling of outliers is considered wasteful.

In one-class classification only target class data (wJ in Figure 5.2) are used in the

training stage. However, in the testing and validating stage the classifier will

encounter outlier data that were not present in the training stage. This means that the
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classifier has to have the capacity to distinguish if the data in a testing set belong to

the target class or are unknown and as such belong to the outlier class. The success of

the application of one-class classification depends upon the type of method used and

the statistical properties of the target class data (Markou and Singh, 2003).

Consequently, there are different approaches to one-class classification. The main

ones are reconstruction methods, density methods and boundary methods.

Reconstruction methods and density estimation are not always easy to achieve, as

they rely on the density and description of the data and as such require a large

amount of training data as will be explained later in this section. To deal with this

problem, boundary classifiers concentrate on fitting a separating boundary around the

target class. The problem of finding a boundary in one-class classification is harder

than the problem of two-class classification. The reason for this is that in two-class

problems the decision boundary to separate one class from another is supported by

samples of both cIa ses WI (target class) and W2 (other classes) as seen in Chapter 4.

However, in the ca e of one-class classification, only data from the target class WI are

available and therefore only one side of the boundary is supported. It is therefore

difficult to decide how tight the boundary should be and the nature of such boundary

(see Figure 5.2) (Tax and Duin, 2001).

B2

B1

Figure 5.2 Different possibilities oj boundaryfit around the target data being Bl and B2 two

input variables
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In that sense, the support vector novelty detectors (SVNDs) have been recently

developed and they are largely based upon the theory of statistical machine learning

and support vector machines. The first SVND was proposed by Tax and Duin (1999),

to estimate a boundary in the form of a sphere that contains all the target data

patterns within the smallest radius. They called it Support Vector Data Description

(SVDD). Another alternative SVND is proposed by Scholkopf et al. (2001). Instead

of a sphere, a function is estimated to separate the region of normal data patterns

from that of outliers with maximal margin, thus detecting the outliers from the

normal data patterns. As demonstrated in Scholkopf et al. (2001), the two SVNDs

are very similar. The advantage of Tax's approach is that a closed boundary is

obtained around the target class. This characteristic could be important in the case of

remote sensing when a class of interest could be surrounded by all the other classes

in the feature space and therefore the more effective separation of this class from all

the others would be a closed boundary.

The following section describes the different one-class classification methods and

compares their performance when applied to remote sensing classification using data

from the case study.

5.1.1 One-class classification methods

In the area of remote sensing it is practically impossible to train a classifier on all

possible classes that it is likely to come across. In this sense, one-class classification

is a particularly suitable approach as only data from one class are used to train the

classifier (Markou and Singh, 2003). As mentioned in the introduction to this section,

the three main methods in order to approach the problem of one-class classification

are: (i) density methods, (ii) reconstruction methods and (iii) boundary methods.
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(i) Density methods

Density methods are based upon the estimation of the density of the target data. The

three main density methods used for one-class classification are Gaussian, Mixture of

Gaussians and Parzen density.

The Gaussian is a simple method that imposes a normal density model of the data.

Chow (1970) studied the trade-off between recognition rate for the target class and

proportion of data rejected based on a threshold determined by the user. Developing

the work of Chow, Hanssen et al. (1997) introduced the concept of classifier

confidence in its decisions. Fumera el al. (2000) also built upon Chow's research by

suggesting the use of multiple thresholds, one for each class. However, the Gaussian

density model is very rigid because in most of the cases real data are not normally

distributed and according to Markou and Singh (2003) this technique has therefore

little importance in practical applications

To remedy some of the problems with the Gaussian approach, the normal distribution

is extended to a Mixture of Gaussians (MoGs) which was defined by Bishop (1995)

as a combination of normal distributions. Roberts and Tarassenko (1994) developed

a method in which the number of gaussians was defined beforehand by the user and

the means and covariance could be estimated by an algorithm that ensured that every

gaussian had seen each sample in the training data at least once. This method is very

similar to those of Barnett and Lewis (1994), Bishop (1994), Tarassenko (1995),

Parra et at. (1995), Desforges et at. (1998), Brotherton et at. (1998), Yeung and

Chow (2002) and others. The main disadvantage with the use of MoGs is that

normally a large number of samples are needed to train the model (Markou and

Singh, 2003).

Finally, Parzen density estimation (Parzen, 1962) uses diagonal covariances matrices

for its calculations. A good description of the model depends on the

representativiness of the training set. During testing distances to all training objects
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have to be calculated and sorted which limits greatly the applicability of the method.

Studies applying this method can be found in Yeung and Chow (2002) Bishop

(1994), Tarassenko (1995) Tarassenko et al. (1999), Desforges et al. (1998),

Brotherton et al. (1998) and others. But like the other two methods it presents two

main drawbacks: (i) in general, a large number of samples are required and (ii) they

will not be very efficient with training data which do not represent the complete

density distribution (Tax and Duin, 2004).

(ii) Reconstruction methods

These methods use prior knowledge about the data and make assumptions about the

generating process therefore producing a model of the data. Most of them assume the

clustering characteristics of the data or their distribution in subspaces. There are quite

a few examples of reconstruction methods: (i) clustering methods such as K-means

clustering, Self Organising Maps (SOM), (ii) Principal Components Analysis (PCA),

Mixture of Principal Components Analysis, (iii) Diabolo Networks and Autoencoder

Networks.

Clustering approaches partition the data into a number of clusters where each data

point is assigned a degree of membership to each of the clusters. In the K-means

method the degree of membership is thresholded and a new data point belongs or not

to a cluster depending on the threshold. Outliers can be detected when a point does

not belong to any of the clusters (Markou and Singh, 2003). SOM were proposed by

Kohonen (2001) and it is an unsupervised approach. Some sort of cluster

membership value is thresholded to determine whether a sample belongs to a cluster

or not. However, in all the clustering methods the Euclidean distance is used in the

definition of the error and the computation of the distance. Therefore they are very

sensitive to scaling ofthe features.

Another reconstruction method is Principal Components Analysis (PCA). PCA tries

to capture the variance of the data as best as possible. For that PCA is a technique
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that stretches the range of the data along an orthonormal axis. The preserved

direction in which the data are distributed is called an eigenvector of the

transformation and the associated amount by which it has been stretched is an

eigenvalue. The PCA is relatively sensitive to the scaling of the features as this

directly influences the feature variances. To get a more efficient performance, PCA

can be extended to a mixture of PCAs. This introduces several principal components

bases and a mixture of probability models is optimised. However the number of free

parameters in this method is very high and consequently the sample size for training

is also very high (Markou and Singh, 2003).

Finally, auto-encoders and diabolo networks are neural network approaches to

describe the distribution of the data. The difference between the two of them comes

from the number of hidden layers and the sizes of the layers. The number of free

parameters in both of them is very high and they inherit the same problems as

conventional neural networks requiring a predefine network structure that can vary in

complexity and therefore make their use and implementation difficult (Tax, 2001).

In conclusion, reconstruction methods also present several drawbacks. Some of them

are quite sensitive to scaling of the features (clustering methods), others also need a

great amount of training data in order to be properly trained (PCA) and finally the

diabolo networks and autoenconders need to predefine a network structure that can

be quite complicated. To try and address these problems, boundary methods will use

a totally different approach.

(iii) Boundary methods

In boundary methods only the boundary around the target set is optimised. Therefore,

a smaller sample size than for density or reconstruction methods is required. Also,

due to their focus on the boundary, the threshold on the output is always obtained in

a direct way and consequently the outputs of boundary methods are not interpreted as

a probability (Tax, 2001). The main boundary methods are the K-centres method, the
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nearest neighbour (NN) method and the support vector data description (SVDD)

method.

K-centre method covers the dataset with k small balls with equal radii. The ball

centres are placed in training objects. It resembles the K-means method but they

differ in the error which is minimised. K-centre tries to optimise the centres and radii

of the balls to accept all the data. The method is very sensitive to outliers in the

training set but it will work well when clear clusters are present in the data.

In the NN method a test object or pixel z is accepted depending on its distance to the

nearest training data points. A hypersphere is centered on the test object or pixel z
and the volume grows until it captures k objects from the training set. The number k

is determined beforehand by the researcher. The problem of this technique is that for

large datasets a large number of calculations have to be performed (Markou and

Singh, 2003). It has no free parameters so it relies completely on the training dataset.

Because it uses distances to the training samples it is scale sensitive. Also it can

reject parts of the feature space which are within the target distribution.

As an alternative to the above one-class classifiers, a SVDD was proposed by Tax

and Duin (1999), where a boundary in the form of a sphere contains all the target

data within the smallest radius and all the outliers will lie outside this sphere. These

outliers are identified by calculating the distance of a new object z to the centre of

the sphere. Another boundary method was proposed by Scholkopf et al. (2001).

Here a function is estimated to separate the region of normal data patterns from that

of outliers with maximal margin. As said before, both classification methods are very

similar. The only difference is that the SVDD always finds a closed boundary around

the target class.

In order to assess the performance of each of the above one-class classifiers, Tax

(2001) compared all the above methods using different artificial datasets. He arrived

to the following conclusions:
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1) When the sample sizes are very small the density and reconstruction methods

perform poorly and the best performing methods are the boundary ones. For larger

samples most of the methods seem to perform well.

2) When the distribution of the target dataset and testing dataset are the same the best

classification methods are the density methods. In particular, the Parzen density

method appears to perform very well on the considered data.

3) When the training data distribution is different from the testing data distribution

the boundary methods are preferred and the SVDD achieves very good

generalization. This is quite important as it is the most likely situation with real data

and the SVDD is still able to find a good description of the data.

All the above shows that the SVDD has clear advantages over other one-class

classifiers when the sample sizes are small and when the test data distribution is

different from the training data and this would make it especially suitable for remote

sensing applications. However, before concentrating on the advantages of the SVDD

it was decided to assess the performance of the other one-class classification methods

using remote sensing data to see if the results will share the same conclusions as

those described above.

5.1.2 Comparison of one-class classification methods

The Data Description MATLAB toolbox named DD_tools version 1.12 developed by

Tax (2004) was used for this experiment. To compare the different one-class

classifiers the training data collected for the class of interest were used and these

training data consisted of pure pixels. This means that the data were very clearly

defined in the feature space and had limited complexity. Also the dimensionality was

very low with only 2 variables. These characteristics agreed with those of the
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training data set created by Tax (200 I) where the data contained a maximum of 3

clusters and the dimensionality ranged from 2 to 10. Therefore, it was decided to use

the same free and user defined parameters than those used by Tax (200 I) to avoid

exhaustive experimentation. The purpose of the test was to give an indication of how

well each method performed using remote sensing data even if the parameters had

not been entirely-tuned.

Therefore, the parameters used for the experiment were as follows: the number of

clusters in the K-means and K-center methods was set to 10, which is enough to find

2 or 3 clusters in these experiments. The dimensionality of the SOM was set to 2.

Because the SOM uses k = 10 neurons for each dimension in the map, in total ro » 2

neurons are required. The auto-encoder network had 10 hidden units. For the SVOO

a gaussian kernel was used with C = 10.

The experiment was carried out with a training set of 100 pixels (bigger than the

minimum size recommended (l0-30p) to ensure that the classifiers had enough data

to achieve a description of the target class) and 2 input variables (NOVI and ETM+

Band 2). The testing set was the same one that is being used throughout this thesis

for all the experiments consisting of 250 pixels of which 50% belong to the target

class and 50% to the 'other' class. These experiments were performed for both fen

and saltmarsh as classes of interest. The results were as follows:
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Figure 5.3 Overall accuracy resultsfor the one-class classifiers Fen as class of interest
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Figure 5.4 Overall accuracy resultsfor the one-class classifiers Saltmarsh as class 0/
interest

Looking at the overall accuracy obtained by the different classifiers (see Figure 5.3

and Figure 5.4 above) all the density classifiers showed high accuracies for both fen

and saltmarsh which is shared by the K-means reconstruction classifier and the

SVDD boundary classifier. Although the training dataset was relatively small, the

density classifiers performed well. The reason for this could be that the training data

Page 138



Chapter 5

One-class classification methods and their application to one class land cover

mapping

for the class of interest and the testing data distribution in the feature space were very

similar (see Figure 5.5 and Figure 5.6 for fen as and Figure 5.7 and Figure 5.8 for

saltmarsh), which as seen previously is one of the conditions for these type of

classifiers to perform well.

Training data set
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Figure 5.5 Training data for fen in 2 dimensional feature space
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Figure 5.6 Testing datafor fen in 2 dimensional feature space
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Figure 5.7 Training datafor saltmarsh in 2 dimensionalfeature space
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Figure 5.8 Testing datafor saltmarsh in 2 dimensionalfeature space

When using fen as the class of interest, apart from the K-means classifier, the

reconstruction methods did not seem to respond as well as the other methods and the

overall accuracies were lower than those obtained with the density methods.

Although the K-means classifier performed well with these particular data, it relies
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on calculations of Euclidean distance to the unknown sample to the different clusters

so it could be computationally very expensive. With saltmarsh, the PCA method

obtained also high overall accuracy. Finally, of the boundary methods, the SVDD

gave the best overall accuracy for both fen and saltmarsh. To have a closer look at

these results producer's and user's accuracies were calculated.

Producer's and user's accuracies
Fens as class of interest

100.00 f" ,..'"
f' f' ""

f'
80.00

F

60.00 . 11I' I!
40.00

20.00 Jl
0.00

Gaus Parz - autoe
1\-

sian
Mog mean som pea centr nn s\dd

en
.S

nco
"10 Producer'S accuracy % 84. 8084.8 083.2 083.2 080.8 087.2 069.6 020.80 88.00 88.00

Ia User's accuracy % 97.25 98.1596.3 097.2 095.2 883.2 1 98.86 17.33 74.8394.02

Classifiers

Figure 5.9 Producer's and user's accuracy for the one-class classifiers. Fen as class of

interest

When u ing fen as the class of interest (see Figure 5.9 above) the SVDD obtained the

highe t producer's accuracies for both fen and saltmarsh (88.00% for both classes).

In the case of fen, this was the highest producer'S accuracy of all the classifiers.
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Producer's and user's accuracies
Saltmarshes as class of interest

100.00 ~
~ ~ oC - r-

80.00
F

60.00

40.00

20.00

-
l,~

l~fl
O.OO.J1l!!~"''''''''''''~I\~'_ ................ u...I.-"K,I..oII!I.... • ..J..I....

Parz .. auto entssia Mog mea som pca cen r nn svdd
n en ns enco _e

10Producer's accuracy % 86.4088.8087.20 86.40 69.6085.60 59.2085.6C 84.0088.00

I_ User's accuracy % 95.5896.5297.3293.9198.8693.86100.093.8687.5095.65

Classifiers

Figure 5.10 Producer's and user's accuracy for the one-class classifiers. Saltmarsh as class

of interest

For saltmarsh (see Figure 5.10 above) this high producer's accuracy was shared by

the MoG and Parzen density classifiers. Obtaining high producer's accuracy is

important because the aim of this thesis is to accurately classify and map a particular

habitat of interest. A high producer's accuracy means that a big percentage of the

data have been identified as the class of interest. As seen in earlier chapters, high

user's accuracies could also be important in order to minimise the errors of

commission. As it can be observed in Figure 5.9 and Figure 5.10, SVDD offered

high results for both accuracies.

In conclusion, although the density classifiers and the K-means reconstruction

method showed high accuracies, it was decided that the SVDD classifier offered the

best option for the classification of remote sensing data as it does not depend totally

on the characteristics of the whole training and testing datasets and therefore has

potentially a higher degree of flexibility. Further advantages of using the SVDD

boundary method over density classifiers also include: (i) works very well with small

training datasets that do not necessarily have to have the same density as the test data
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and (ii) being based upon the theory of support vectors it is likely to show good

generalisation.

Therefore, the following section will concentrate on describing this one-class

classifier and its application to the case study.

5.2 Support Vector Data Description (SVDD). Principles and

case study

As already mentioned, Tax and Duin (1999) developed a model based upon the

Support Vector Machine classifier (Vapnik, 1995) called the Support Vector Data

Description (SVDD). The sphere definition in Tax's SVDD has been related to the

Minimum Enclosing Ball (MEB) problem in computational geometry (Badoiu et al.,

2002, Kumar et al., 2003). This theory establishes that given a set S of points, the

MEB of S, denoted by MEB(S), is the unique minimum radius ball that contains all

of S. The MEB is required to enclose all data points in S, including even outliers.

SVDD on the other hand, leaves outliers outside the sphere as it will be explained

later on in this section. Moreover, MEB can only handle low-dimensional data,

whereas SVDD can function in the possibly infinite-dimensional kernel-induced

feature space (Markou and Singh, 2003)

In the SVDD, the hypersphere around the target class is characterised by a centre a

and radius R > 0 (Figure 5.11). The volume of the sphere is minimised by

minimising R2 with the function F:

F(R,a) = R2 (1)

With the constrains that all the training data are within R2

(2)
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Figure 5.11 The hypersphere containing the target data, described by the center a and

radiu R.. Based upon Tax (2001).

on idering R2 instead of just simply R avoids overtraining including the possibility

that the training set i not a total representation of the class of interest and therefore

data belonging to the target class can be outside the hypersphere defined by R but

inside R2.

Because it is possible to calculate the centre of the hypersphere a, is it easy to test if a

new object (in our case a pixel) Z is accepted by the sphere description and therefore

belongs to the class of interest (Figure 5.11). For that, the distance from the pixel z to

the centre of the hypersphere is calculated. A test pixel z is accepted within the

hyper phere when this distance is smaller than or equal to the square radius. This can

be formulated as:

(3)
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Where / is defined as:

{
Iif A is true}

/(A) = o otherwise
(4)

In the SVDD the pixels that are support vectors lie on the border of the hypersphere.

As well as with the support vectors in the SVM, these support vectors are essential

for the calculation of the optimal hypersphere. The difference between both methods

is that SVM normally uses a percentage of the data as support vectors (as seen in

Chapter 4) whereas SVDD normally only needs very few pixels in order to define the

hypersphere (Tax and Duin, 2004). This is because when defining a rigid sphere only

the coordinates of the centre of the sphere and the radius of the sphere are required.

Therefore, in theory, only two support vectors are enough to determine the sphere

(independent of dimensionality). For d-dimensional data, the required number of

objects can increase up to d +1 (Tax and Duin, 2004).

However, this model can be too rigid when applied to real data when it is possible

that the training dataset is not completely representative of the variability of the

target class, and also it could be possible that some outliers could be within the

description of the hypersphere. To relax this model and allow for these possibilities

Tax (2001) introduces the idea of slack variables that measure the distance of a point

to the boundary and determine if this point is outside the description. Also, the

parameter C is introduced so that it gives the trade off between the volume of the

description and the misclassification errors. C is a parameter to be chosen by the

user, a larger C corresponding to a higher penalty to misclassification errors. This

gives the following error:

E(R,a,~) = R2 +CL~i (5)

with constraints that (almost) all objects are within the sphere:
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(6)

As with SVMs to relax even more these constraints and to make this method suitable

for non-linear cases the formulation can be transformed into a Lagrangian (as

explained in Chapter 4). Constraints (6) can be incorporated into equation (5) giving

the following formulae:

L(R,a,;,a,y)=R2 +CI;; - Ia;{R2 +;; -(x; ·x;-2a·x; +a.a)}- Iy;;; (7)
i j

Where the Lagrange multipliers are a; ~ 0 and y; ~ O. L has to be minimized with

respect to R, a and Z. To minimize L:

(8)

(9)

C-a.-y. =0, , (10)

Resubstituting (8) and (10) into equation (7) gives:

L= Ia,{x; .x,)- Ia;aAx; .xJ
i.]

(11)

With an upper bound

(12)

being a the Lagrangian multipliers as described in Chapter 4.
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This upper bound means that when objects obtain a, = C these objects are

considered as outliers. Furthermore, in the minimization of L, a large fraction of

a, = o. So there are only a few objects Xi with aj > o. These objects are the support

vectors.

The one-class classifier Support Vector Data Description can then be expressed as:

fSVDD{z;a,R): I~lz_all' sR'): {(z. z)- 2~ai{z. ,,)+ taia)'i .xJ,;R' J
(13)

However, it can be argued that it is still unlikely that this model will fit the data well

in real life situations. If the data were to be mapped in a different feature space, it

would be possible to obtain a better fit between the actual data boundary and the

hypersphere model. As with Vapnik's model (1995) Tax assumes a mapping ¢ofthe

data using kernel functions.

When a kernel function maps the target data into the feature space the hypersphere

model fits the data in a better way and a better classification performance is obtained.

Then equations 8 and 9 will become:

L= Iaj¢(xj).¢(x;)- Iajaj¢{x;).¢(xJ
i,}

(14)

and
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One of the strengths ofSVMs and the SVDD is that they allow the researcher to have

control of the analysis and to choose an appropriate kernel given the data and the

problem specific knowledge (Smola et al., 1998). Moreover, according to Tax

(200 I), when outliers are available they can be used during the training to obtain a

more precise data description and to obtain a tighter boundary around the data in the

areas where outliers are present. In this scenario it could be argued that it is possible

to train both a SVDD and a traditional (two-class) classifier on these data. This is

true when both a representative sample from the target class and a large amount of

example outliers are available. In that case the conventional classifier could work as

well or better than the SVDD. The choice between a SVDD and an ordinary

classifier is therefore influenced by both the number of outlier objects available for

training and how well they represent the target and the outlier distributions (Tax,

2001). The advantage of the SVDD approach for remote sensing classification is that

these outliers do not need to be as well defined as in a binary classification. Also,

samples of outliers should be easy to find within an image.

Having reviewed the principles behind the SVDD classifier, the following section

will show the application and results of the classification performed by the SVDD

using the case study data.

5.3 Case study. SVDD and classification and mapping of a
class of interest.

It was decided to compare the performance of the one-class classifier SVDD using a)

only the class of interest to train the classifier (SVDD A) and b) incorporating some

outliers (SVDD B). In order to do this it was necessary to define (i) the training

data sets and (ii) the parameters used by the SVDD classifier.
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(i) Training and testing datasets

One of the advantages ofSVMs and SVDDs over other classifiers is their capacity to

use smaller training datasets to get similar levels of accuracy. To assess the impact of

training dataset size and to establish a minimum training set to train the SVDD

classifier it was decided to use a series of very small training datasets. As mentioned

already in Chapter 3 and Chapter 4, some of the literature suggests the use of a

minimum of 10-30p cases per-class for training ( p being the number of wavebands

used) (Mather, 2004). As with the previous binary classifiers, it was decided to use a

range of training sets that included smaller training sizes than the recommended to

assess the performance of the classifier. The training datasets ranged from 5, 10, 20,

25, 50, 75, 100, 125, to 150 pixels in which each of the datasets included the

previous one so that 5 e 10 e 20 e 25 e 50 e 75 e 100 e 125 e 150. In SVDD B

the training sets were composed of 75% of the same pure pixels used in the SVDD

A, adding in each set 25% of data composed by "outliers" or a group of pixels

collected from the other 7 classes identified in the image.

The testing set was formed by 50% pixels from the class of interest and 50% of

outliers forming a total of 250 pixels. As already established, this is the same testing

set that was used for the binary classifications performed in Chapter 4. All the

training and testing sets can be found in Annex F.

ii) SVDD parameters

As with the SVM, the use of kernels makes it possible to map the data implicitly into

a feature space and to train a linear machine in such space. The key is finding the

kernel function that makes the calculations of hypersphere in the feature space more

efficient. As with the binary SVM, it was decided to assess the three most important

kernel functions as described by Smola et al. (1998): (i) polynomial, (ii) gaussian

radial basis function and (iii) exponential radial basis function. The best performing
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kernel was selected by a 5-fold cross validation. It was also decided to perform the

kernel selection using the same values for the free parameters as those used when

selecting the kernel for the binary SVM classification. This is, for the polynomial

kernel it was decided to test the polynomial with values 1 to 10 based upon previous

studies (Cortes and Vapnik, 1995, Huang et al., 2002). For the RBF kernel, also

based upon earlier studies (Vapnik 1995, Joachims, 1998, Huang et al., 2002), it was

decided to test the kernel using free parameter values of 1 to 10. And finally, due to

the lack of references regarding the exponential kernel it was decided to keep within

the above range of values. Each kernel was tested with different values of C (l, 10,

100, 1000). The criteria used to select both kernel and value of C was the overall

accuracy obtained in the classification. The detailed results of this 5-fold validation

can be found in Annex B. The results showed that the polynomial kernel (free

parameter 1 to 3) and the RBF kernel (free parameter 8 to 10) provided the best

accuracies for both fen and saltmarsh. For both the highest overall accuracy was

obtained by the polynomial kernel free parameter 2, so it was decided to use these

parameters for the application of the SVDD to the case study. In tenns of the value

of C, the value C = 1 gave computational errors and consequently the cross-

validation was only effective when using values 10, 100 and 1000. Bigger values did

not change the accuracy results obtained by C = 1000. The highest results were

obtained when using C = 100 and the polynomial kernel so consequently these were

the parameters used for the experiments that followed.

5.3.1 SVDDA

The SVDD A was trained using the parameters described in the previous section and

training datasets composed exclusively of the class of interest with sizes ranging

from 5 to 150 as described earlier. The results obtained for fen and saltmarsh can be

observed in Figure 5.12 and Figure 5.13 below:
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Training sizes

SVDD
Fens as class of interest
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- Overall accuracy % 86.00 90.80 90.80 93.60 94.80 94.80 93.20 93.20 93.20 95.60

- Producer's accuracy 73.60 83.20 83.20 88.80 92.00 92.00 96.80 96.80 96.80 93.60

1-.- User's accuracy % 97.87 98.11 98.11 98.23 97.46 97.46 90.30 90.30 90.30 97.50

Figure 5.12 Training sizes impact on overall classification accuracy (fen)

SVDD
Saltmarshes as class of interest
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I=--- Overall accuracy % 76.80 88.80 86.80 89.20 90.80 90.80 90.80 90.80 91.20 91.20
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1-- Producer's accuracy % 56.80 81.60 84.80 91.20 95.20 95.20 95.20 95.20 96.00 96.00
- .-

1__ User's accuracy % 94.67 95.33 88.33 87.69 87.50 87.50 87.50 87.50 87.59 87.59

Training sizes

Figure 5.13 Training sizes impact on overall classification accuracy (saltmarsh)

When training the SVDD for fen as target class, there was a general increase in

overall accuracy with the increase of training size. The lower accuracies were

obtained with the very small training datasets (5 to 15 pixels). The training size of25

pixels obtained high overall, producer's and user's accuracies (94.80%, 92.00% and

97.46% respectively) (see Figure 5.12). Increasing the training set size to bigger

training sizes 50, 75, 100, 125 and 150 did not produce a significant increase in

Page 151



Chapter 5

One-class classification methods and their application to one class land cover

mapping

accuracies (Z < -1.96) at 95% confidence interval. In the case of saltmarsh the same

trend occurred (see Figure 5.13).

This shows one of the major advantages of classifiers based upon support vector

machines over all the other classifiers. This is, its capacity to obtain high accuracies

using only a small amount of training data. In particular, with SVDD these

accuracies are obtained with only data from the class of interest so the researcher can

optimise the training process focusing only on this class. Confusion matrices for each

of the training sizes can be found in Annex A.

5.3.2 SVDD B

As stated earlier on, it was decided to test the SVDD using a sample of outliers to see

if this would alter in any way the result obtained when using only the class of interest

when training the classifier. This classification was performed on training sets

formed by 75% of the target class and 25% of data composed by "outliers".

However, in this case, the results obtained were exactly the same as the ones

obtained with no outliers. When this result was obtained, it was decided to increase

the number of outliers in the different datasets with a composition of 60% of pure

pixels and 40% outliers. This also had no impact on the final result. The conclusion

drawn from this could be that in this case study outliers are pure pixels that occupy

small remote areas in the feature space and consequently do not affect the definition

of the boundary around the target class (see Figure 5.14 below).

Page 152



Chapter 5

One-class classification methods and their application to one class land cover

mapping

Training set with outliers
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Figure 5.14 Training set with outliers. 75% target data 25% outliers. Fen as class of

interest.

However, in cases when the class of interest has been selected through a process of

intelligent training where only those pixels likely to be support vectors are selected,

the addition of outliers does seem to produce a positive effect and the accuracy

results are higher (Foody et al., in press)

To have a closer look at the performance of the SVDD it was decided to compare it

against the standard ML classification. The comparison was done between the ML

results obtained with a training dataset of 150 pixels per class against those obtained

by the SVDD with a training dataset of 100 pixels belonging to the class of interest.

These results are illustrated in Figure 5.15 and Figure 5.16 below.
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Comparison of accuracies SVDD v MLC
Fens as class of interest

Classifiers

Figure 5.15 Comparison of accuracies SVDD vMLC. Fen as class of interest

Comparison of accuracies SVDD v MLC
Saltmarshes as class of interest

Classifiers

Figure 5.16 Comparison of accuracies SVDD vMLC. Saltmarsh as class of interest

These results highlight the suitability of the SVDD to classify of a habitat of interest

using remote sensing data with results that significantly surpassed those obtained by

the standard ML classifier (Z = ~8 at 95% confidence interval). They clearly
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emphasize the potential of this one-class classifier for remote sensing applications

when concentrating on the classification and mapping of a particular class.

5.4 Summary and Conclusions

This chapter has reviewed the principles behind one-class classification and

compared the applicability of different one-class classifiers to remote sensing

classification using a training dataset of 100 pixels. The results showed that in this

case, density classifiers performed quite well due to the fact that training and testing

datasets shared the same distribution in the feature space. Of the other classifiers, the

classifier K-centre (reconstruction method) showed a high accuracy for both fen and

saltmarsh and so did the SVDD. However, the SVDD was considered to be more

suitable for remote sensing classification due to its advantages in terms of flexibility

and ability for generalisation using small training datasets that do not necessarily

have to share the same distribution in the feature space as the test data. Also it is

important to highlight that the SVDD showed the highest producer's and user's

accuracies which could be extremely important in cases where ground data are not

readily available. Furthermore, the SVDD achieved these high accuracies with

training sizes as small as 25 pixels. As a reference, these results could be compared

against those obtained by the Land Cover Map of Great Britain 2000 (LCM2000).

Here the class fen had been aggregated into the class "seminatural grass". For this

aggregated class the producer's accuracy was 41.00% and the user's accuracy was

48.00%. However, the general conclusions of the report stated that the average

classification accuracy for target classes is of 80.00-85.00% (Fuller et al., 2002).

Either way, the results obtained by the SVDD clearly surpass those of the LCM2000.

One clear advantage of the SVDD is that it does not require data from any of the

other classes in the image. Furthermore, being based upon the theory of support

vector machines the ability to generalise to unseen data is much higher than other

one-class classifiers. Moreover, the SVDD only needs only a few support vectors (d

+ 1), where d is the dimensionality of the data, to be able to define an optimal
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hypersphere around the target data. This could have additional implications for

further research as the training process could be optimised as far as identifying these

few pixels and discard the rest of the data. In this sense, however, it is very important

to remember that the SVDD is a one-class classifier and as such it requires a

relatively good description of the target class in order to be able to find these key

pixels that act as support vectors.

The findings of this chapter demonstrate the suitability of the SVDD one-class

classifier for classification of remotely sensed data and land cover mapping depicting

a specific class of interest. Moreover, the ability of the SVDD classifier to operate

with minimal training data means that a competitive and efficient approach to the

classification can be adopted. These results fully contribute towards the aim and sub-

aims of this thesis. The full implications of these findings are also of real value in

many studies, particularly those where resources are scarce, time is limited and

where there is a particular habitat of interest that needs to be classified and mapped.

This is fully in line with the needs of relevant authorities that have to comply with

the mapping and monitoring requirements of the EU Habitats Directive.

Having addressed the issues of binary and one-class classification for the

classification of a particular habitat of interest, the following chapter will attempt to

achieve better results than the ones achieved by these classifiers by applying a new

trend in pattern recognition that is being recently introduced into remote sensing:

ensemble of classifiers. This last research chapter will build upon the results obtained

by the SVM, DT and SVDD with the purpose of achieving even higher classification

accuracies in order to satisfy the EU Habitats Directive mapping and monitoring

requirements.
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6 Ensemble of Classifiers for the classification of a

habitat of interest

"You build trust through the ensemble work."

Eric Bass

The main aim of this last research chapter is to investigate advanced methods in

order to obtain a higher accuracy than the binary and one-class classifiers explored

previously in this thesis.

As seen in chapters 4 and 5, the traditional approach to solving a classification task is

to compare the performance of several classifiers in order to select the most suitable

one for a particular case. However such an approach does not always guarantee that

the optimal solution has been found (Roli and Giadito, 2002). There are different

reasons for this. Individual classifiers try to find hypotheses within the search space

H that will provide the optimal solution to the classification problem. If there are

enough available data it is possible for individual classifiers to find the optimal

solution for the classification problem. In this case, different classifiers can obtain

similar solutions and it is possible to select just one of them which offers more

simplicity or higher generalization potential (Valentini and Masulli, 2002). However,

it could be the case that the training dataset is not a very representative sample and

that individual classifiers that perform very well with this training data do not

perform that well when confronted with real data. So, although they perform well

with the training data, the classifiers are far from being the optimal classifier for the
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case study (see case 1 in Figure 6.1 below) and therefore their generalization is very

poor. Another case (case 2 in Figure 6.1 below) could be that the search paths of the

different algorithms of individual classifiers stop the search when they arrive at a

solution which is far from the optimal solution to the classification problem. Finally

it could happen that the individual classifiers are not the ideal ones for the case study

and that the optimal classifier for that case is outside the search space (case 3 III

Figure 6.1).

1) H 2) H 3) H

OCl OCl
C2 Copt Search path Cop, C.
0 • for classifier • • C3C· 0• C20

Figure 6.1. Reasons why best individual classifiers do not guarantee an optimal solution. C,

Cl, C3 represent the individual classifiers. C, is the classifier obtained by an ensemble and

CoI'l is the optimal classifier. H is the search space where the classifiers are looking/or the

optimal solution. In I) the ensemble Ce is closer to the optimal classifier 2) the search path

0/ each classifier might not go near the optimal classifier 3) the optimal classifier might be

outside the search pace. Based upon Gunter and Bunke (2004).

Therefore, an alternative approach has emerged over recent years and it is based

upon the idea of combining different classifiers (Windeatt, 2003). The basis of an

ensemble of classifiers is that instead of choosing the classifier that gives the highest

accuracy for a particular case there is the possibility that using them in a combination

could increase the overall accuracy of the classification and find a result closer to the

optimal olution (Ce in Figure 6.1) (Jain et al., 2000, Windeatt, 2003). This idea has

been studied by mathematicians since the is" century with the Condorcet Jury

Theorem (1785). This theorem stated that the judgment of a group is superior to that

of an individual, with the condition that the members of the group have reasonable

competence (a probability of being correct higher than 0.5). Within the context of
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machine learning the theory of combining classifiers can be traced back as far as the

1960s when they were investigated by Nilsson (1965). But it was the work on neural

networks by Hansen and Salamon (1990) that generated a new research interest on

combining classifiers and it has been during the last decade that this area of research

has greatly evolved within statistical pattern recognition and machine learning.

In remote sensing, the application of an ensemble of classifiers is very recent and

there are few examples in the literature linking an ensemble of classifiers and remote

sensing. A few studies include multi date land cover detection change (Bruzzone et

al., 2004), neural network ensembles for image classification (Giacinto and Roli,

2002) enhanced classification algorithms for land cover classification (Chan et al.,

2001, 2003) and multiple classifiers applied to multisource remote sensing data

(Briem et al., 2002), all of which presented encouraging results although the authors

are aware that more research is still needed in this area.

Taking all the above into account, the present chapter's objective is to assess the

method of an ensemble of classifiers to evaluate whether this approach would

enhance the performance of binary and one-class classifiers to classify and map a

class of interest. The different ensembles of classifiers were constructed using fen as

the only class of interest. It was not considered necessary to construct the different

ensembles using also the class saltmarsh because the investigation in the previous

research chapters demonstrated that the performance of these classifiers was not

habitat specific.

The following sections look in more detail into different ensemble methods by

describing the principles behind the ensemble of classifiers and different methods

available. Following this, it is shown how the ensemble of classifiers was formed and

tested using the binary and the one-class classifiers studied in chapter 4 and 5.

Finally, an overall ensemble with both binary and one-class was built and final

conclusions were drawn. The structure of this chapter is illustrated in Figure 6.2

below.
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Introduction

Principles

1.Ensemble of

Methods

SVM ensemble

classifiers
DT ensemble

3. Ensemble of
one-class
classifiers SVDD ensemble

4. Final Ensemble. Binary ~
and one-class classifiers

4. Conclusions

Figure 6.2 Chapter 6 structure

6. 1 Ensemble of classifiers. Theory and methods

In the extensive literature that has been produced since 1990 (Battiti and Colla, 1994,

Drucker et al., 1994, Fillipi et al., 1994, Lam and Sue, 1995, Woods et al., 1997, Xu

et al., 1992, Kittler et al., 1998, Jain et al., 2000, Sharkey et al., 2000, Dietterich,

2000), a variety of terms has been used to define the idea of combining classifiers.

Such terms include committee of classifiers, classifier fusion, ensemble of classifiers,

combination of classifiers and aggregation of classifiers. Of all of them, the term

ensemble seems to have the widest meaning including a wide range of combining

methods. Consequently this term will be the one adopted within this thesis.
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can be done in two main ways: (i) parallel combining of classifiers and (ii) stacked

combining. Parallel combining might be especially useful if the objects are

represented by different feature sets, and they are often, but not necessarily, of the

same type. In stacked combining the different classifiers are computed for the same

feature space. Stacked classifiers are normally of a different nature (Duin, 2002).

Whatever the method chosen for combining the classifiers, the diversity of these

classifiers is of great importance. If the classifiers were identical there would be no

gain or any progress by combining them. The hypothesis that an ensemble of

classifiers is more accurate than any of its individual component classifiers if and

only if the component classifiers are accurate and diverse was first introduced within

the machine learning community by Hansen and Salamon (1990). In their work they

demonstrated how using individual classifiers that are independent and with error

rates less than 50%, the error rate of the ensemble classifier will decrease with the

number of individual classifiers. Diversity has been recognised as a key issue in

ensembles of classifiers (Lam, 2000, Cunningham and Carney, 2000). However.

other authors (Shipp and Kuncheva, 2002) found that the correlation between

diversity and combination methods is not very high or consistent and that the issue of

diversity measures in designing ensembles is still very much open.

Furthermore. the classifiers used in the ensemble should be different but they should

also be comparable. i.e. their outputs should be represented such that a combining

classifier can use them as inputs (Duin, 2002). In this sense, a reliable set of different

classifiers might be generated in the following ways: (i) different initializations, (ii)

different parameter choices, (iii) different architectures, (iv) different classifiers, (v)

different training sets and (vi) different feature sets. Of all of these, the last three

make a bigger contribution towards diversity of classifiers (Duin, 2002).

However, it is the manipulation of the training sets that has captured a great part of

the research on ensemble diversity. This manipulation consists of the classifier

running several times using each time a different partition of the training set. Itworks

well for learning algorithms whose output predictions have changes in response to a
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small change in the training samples. Among all these methods, cross-validation,

boosting and bagging are the most successful and representative methods. In

particular, bagging and boosting have demonstrated their superiority when compared

against other ensemble methods by different researchers (Dietterich, 2000, Quinlan,

1996, Bauer and Kohavi, 1999). The difference between the three methods is that in

cross-validation the training dataset is divided into k subsets which are used to train

the classifier k times. Then the average error across all k trials is computed. However,

bagging and boosting modify the original training dataset, building classifiers on

these modified training sets and then combine them into a final decision (Skurichina

et al., 2002).

In the case of bagging, which was first proposed by Breiman (1996), the classifier is

run several times on training samples, which are obtained randomly based upon the

original training samples by sampling with replacement with the same size as the

original training size. Some training samples may appear in the produced training

sets while others may not. Such a training set is called a bootstrap replicate of the

original training set, and this technique is called Bootstrap Aggregating, from which

the name of Bagging is derived. These methods have been shown to reduce the

variance of the classification (Gislason et al., 2004). Boosting was first proposed by

Freund and Schapire (1996) and it was aimed to enhance the performance of weak

classifiers. The training sets are obtained in a deterministic way as opposed to

bagging where the training sets are obtained randomly and independently from the

previous step of the algorithm. In each training set a higher weight is assigned to

cases that are incorrectly classified in a present trial and so they have a higher

probability of being chosen in a new training set. The aim of boosting is to maximize

the margins of the training data in a similar way to the SVM. Boosting margins are

maximized locally and subject to a particular training set whilst SVM looks for a

global optimization. Boosting reduces both the variance and the bias of the

classification and in general is a very accurate classification technique (Gislason et

al., 2004). But it also has a few drawbacks: it is a computationally demanding and

slow process, it can overtrain and therefore jeopardize its generalization capacity and

it is very sensitive to any noise present in the training data (Briem et al., 2002). Well-
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known algorithms for boosting include Adaboost (Freund and Schapire, 1996) and

Arc-4x (Breiman, 1998). A comparison of ensembles using bagging, Adaboost and

Arc-4x boosting for a case ofland cover classification is shown in Chan et al. (2003).

In their research they compare the performance of the above ensemble methods for

the classification and mapping of logged forest in tropical Africa. Their results show

that in terms of overall classification accuracy, bagging, Adaboost and Arc-4x are

similar and also that the accuracy enhancements between them are marginal.

Bagging is normally useful for linear classifiers constructed on small training

samples and reducing data dimensionality (Skurichina et al., 2002). Also it is

effective when a learning algorithm is unstable and a small change in training

samples leads to a large change in accuracy (Chan et al., 2003). Boosting on the

other hand, is efficient for low complexity classifiers that are constructed on large

training samples (Skurichina, 2001, Freund and Schapire, 1997).

Once a number of diverse classifiers have been obtained by any of the approaches

described above, a method for combining such classifiers is required. An extensive

account of such methods can be found in Shipp and Kuncheva (2002) and Kittler et

al. (1998). Recent studies have reported that voting methods used in ensembles of

classifiers are useful to increase accuracy in land cover classification from remote

sensing data (Chan et al. 2001, DeFries and Chan, 2000). The simplest one of the

voting methods uses the majority rule. Although this is extremely simple it has been

regarded as a very robust combination compared to more sophisticated ones (Yu,

2003). This method is based on an ensemble of classifiers which combines the

outputs of a set of classifiers (Hansen and Salamon, 1990, Benediktsson and Swain,

1992, Wolpert, 1992). Voting considers only the output by each classifier and

regards the output which appears most often when counting the output of the

classifiers as output of the combined classifier. According to Brodley and Friedl

(1996) a majority vote ensemble classifier will outperform each individual base-level

classifier on a dataset if two conditions hold: (1) the probability of a correct

classification by each individual classifier is greater than 0.5 and (2) if the errors in

predictions of the classifiers are independent (Hansen and Salamon, 1990). More
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elaborate schema used weight voting rules where each component is associated with

weight during the training stage. In weighted voting schemes, each vote receives a

weight, which is usually proportional to the estimated generalization performance of

the corresponding component classifier (Bauer and Kohavi, 1999). The weighted

majority voting is similar to weighted voting; the main difference is how the weights

are generated. It makes predictions by taking a weighted vote among a pool of

classification algorithms and learns by altering the weight associated with each

prediction algorithm.

To conclude this section, it is important to note that, although all the above studies

support the use of ensembles over a simple classification method, some classification

and pattern recognition problems can actually be solved by a single classification.

Furthermore, according to Skurichina et al. (2002) it is normally in cases where the

data distribution is very complex or high dimensional when an ensemble of

classifiers is likely to perform better.

Taking all the above into account, the following sections of this chapter will address

the application of ensemble methods to the classifiers that have been studied in the

previous research chapters, this is, binary SVMs and DTs classifiers, one-class

classifiers and within these the SVDD classifier. The purpose of these experiments

will be to assess whether an ensemble could obtain a higher accuracy than the one

already achieved by these classifiers and if their application would be appropriate to

meet the aim of this thesis.

6.2 Ensembles of binary SVM and DT classifiers

6.2.1 SVM Ensembles

The idea of forming SVM ensembles in order to increase classification accuracy was

suggested by Vapnik (1999). As seen in Chapter 4, the SVM classifier showed good

generalization and the parameters were easy to learn for a global optimum (Burges,

1998). Because of this, SVM ensembles have not been considered as a method for
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improving classification accuracy until very recently. SVM algorithms are normally

implemented using approximate parameters and sometimes this is not enough to

classify all unknown test examples. Therefore, despite the high performance of SVM

several researchers have sought to achieve better results with ensemble methods

(Derbeko et al., 2002, Kim et al., 2003, Pavlov et al., 2000, Valentini et a/., 2003,

Valentini et al., 2004).

Kim et al. (2003) proposed to use an SVM ensemble using (i) bagging and boosting

methods to construct the ensembles and (ii) majority voting, weighted majority

voting and stacked architectures as combination methods. Their results showed that

these three methods produced higher accuracies than the SVM that was in principle

chosen as the single best classifier. Another approach can be found in Ma et al.

(2004). They used SVM ensembles also using bagging and boosting in order to

reduce the size of training datasets and consequently increase SVM training speed.

Their results showed that the SVM trained with the original dataset and with the

bagged and boosted training sets were the same as long as the parameter C was

calibrated accordingly. Their conclusions were that duplicating a sample n times was

equivalent to increasing its parameter C n times when training the SVM so the

increase in accuracy was relative.

As seen in the previous section, bagging is the most effective method when the

training sample size is smaller or comparable with the data dimensionality. In the

case of this thesis the calibration of different classifiers had been obtained by using

the minimum training size set possible with which high accuracy results were

obtained. In this sense, it was logical to say that the appropriate technique in order to

create an ensemble of diverse SVMs was bagging. Moreover, because the results of

the SVM were shown as labels the voting measure to apply to the ensemble was

majority voting (Kimura and Shridhar, 1991, Franke and Mandler, 1992). If the

outputs were based on a posteriori probabilities then an average or a linear

combination method would be applied (Hashem and Schmeiser, 1995, Kittler et a/.,

1997). When the classifier outputs are fuzzy membership values then other methods
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such as belief functions or fuzzy rules are used (Tresp and Taniguchi, 1995, Rogova,

1994).

In order to construct an ensemble of classifiers it was also necessary to determine

how big the ensemble should be. Early work on ensembles suggested that ensembles

with as few as ten members were adequate to sufficiently reduce test-set error

(Hansen and Salamon, 1990). To confirm this suggestion Opitz and Maclin (1999)

evaluated 23 different datasets using neural networks and decision trees. For neural

networks both bagging and boosting showed that much of the reduction in error

occurs after ten classifiers, in some cases 15. A similar conclusion was reached for

bagging and decision trees, which is consistent with Breiman (1996). Boosting for

decision trees also showed this tendency although the reduction of error continued at

a very small rate until the 25th iteration was reached. Yuan and Cho (2006) use a 10-

member SVM ensemble in their research as an optimal size for obtaining a

significant error reduction. Taking into account all the above it was concluded that to

test whether this approach could obtain a higher classification accuracy than the one

already obtained by the SVM, an ensemble of 10 members should be sufficient. The

starting training set consisted of 150 pixels dataset which is above the recommended

minimum training size (I 0-30p). In order to compare the results with those obtained

by a simple SVM classifiers such as the one used in Chapter 4, the same testing set

of250 pixels was used.

Therefore, the method followed to construct the ensemble is as shown in Figure 6.4

below:
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When comparing the error matrix of the SVM and the SVM ensemble (see Table 6.1

and Table 6.2 below) the user's accuracy for fen was definitely higher when using

the ensemble (94.40% as opposed to 86.60%). However, the producer's accuracy

was reduced from 98.40% to 94.40% in the ensemble.

SVM Predicted
Ensemble

Fen Other L Producer's
accuracy

Actual Fen 118 7 125 94.40%
Other 7 118 125 94.40%
L 125 125 250
User's 94.40 94.40 Overall
accuracy % % 94.40%

Table 6.1 Error matrix/or the SVM ensemble using fen as the target class

SVM Predicted
Fen Other L Producer's

accura~
Actual Fen 123 2 125 98.40%

Other 19 106 125 84.80%
L 142 108 250
User's 86.60 98.14 Overall
accuracy % % 91.60%

Table 6.2 Error matrix/or the SVM using fen as the target class with a training size 0/150

pixels

The reason for this reduction in producer's accuracy could be due to the fact that

bagging forms the new datasets from the original one by sampling with replacement.

This means that some support vectors can be omitted from the training datasets

which could contribute to lower producer's accuracy when the classifier is

confronted with testing data. To illustrate this, the results for the producer's accuracy

of the different bagged training datasets are shown in Figure 6.5:
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Producer's accuracy
for different training sets

98.00
97.00 A96.00

~ 9S.00
0

94.00
93.00

~ ~ ....

92.00
91.00

Training Training Training Training Training Training Training Training Training Training
1 2 3 4 5 6 1 8 9 10

I-tr- Producer's accuracy 93.60 93.60 94.40 97.60 93.60 93.60 93.60 97.60 93.60 97.60

Figure 6.5 SVM ensemble producer's accuracy results

As it can be seen, there were a few cases where the producer's accuracy was as high

as 97.60%. However, the major parts of the training sets generate lower accuracies

and consequently when performing the majority voting the final producer's accuracy

for the ensemble ended up being lower than that of the simple SVM classifier.

Although the increase of overall accuracy could be seen as an advantage, the

reduction on producer's accuracy is a clear disadvantage .. As explained in Chapter 3,

producer's accuracy is very important as it determines the capacity of the classifier

for identifying the class of interest on the ground.

6.2.2 Decision Trees Ensembles

The flexible nature of decision trees has supported recent advances in the field of

machine learning such as ensemble of classifiers. Widely applied methods to create

an ensemble of DT are boosting and bagging (Freund and Schapire, 1997, Quinlan,

1996). In bagging, several decision trees are created from random subsets of the

training data and the final result is produced from a majority vote by all the trees.

Boosting creates a series of decision trees in an iterative way, with each successive

tree focusing on the errors of the previous tree. A boosted tree is then produced by

voting among the different trees that have been created (Friedl et al., 1999).
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As seen in Chapter 4, in remote sensing classification and land cover mapping

decision trees have been applied to images generated from MODIS data (Friedl et al.,

2002), AVHRR (DeFries et al., 1998; Hansen et al., 2000), and Landsat Thematic

Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) (Lawrence and Wright,

2001, Pal and Mather, 2003, Lawrence et al., 2004). The benefits of decision trees

have also been demonstrated with multitemporal Landsat ETM+ data (Brown de

Colstoun et al., 2003).

Their use within land cover mapping is further supported due to the flexibility for

handling continuous or categorical variables, ancillary or missing data and for

obtaining higher accuracies due to the use of ensemble methods (DeFries and Chan,

2000). Therefore decision trees are increasingly being used for analysis and

classification of remotely sensed imagery (Brown de Colstoun and Wathall, 2006).

However, they present a few problems that have activated further research in the area

in order to obtain higher accuracies and this has lead to the development of ensemble

methods. These problems include: (i) DT classification do not necessarily produce

the optimal tree (ii) inaccuracies in the training data can greatly affect the decision

tree as they can represent a great portion of the variability of the data and (iii) an

unbalanced dataset can also affect the performance of a DT (Friedman, 200 I).

Therefore, methods such as boosting and bagging, have recently been developed to

address these limitations (Bauer and Kohavi, 1999, DeFries and Chan, 2000, Friedl

et al., 1999).

Boosting increases classification accuracy in many cases and in others the results are

comparable to other ensemble methods (Freund and Schapire, 1996, 1999, Opitz and

Maclin, 1999) but it does not address the issues of inaccurate training data or

unbalanced datasets (Bauer and Kohavi, 1999). Bagging also shows higher

accuracies when compared with a simple DT classifier and as mentioned in the

previous section it is particularly effective when dealing with small datasets.

Very recently, a new approach to ensembles of decision tree classifiers has been

proposed by Breiman (1999). This approach is called Random Forests and they use a
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similar but enhanced method of bootstrapping (Gislason et al., 2004). Ham et al.,

(2005) applied Random Forests to the classification of an hyperspectral remote

sensing image. Their results were good for a study that had a very limited training

dataset. Gislason et al. (2004) applied this ensemble method to the classification of

remote sensing data using multi source remote sensing and geographical data and its

accuracy was comparable with that of other ensemble methods such as bagging and

boosting. It is however specially designed for high dimensional data so it was not

applied within this thesis.

Considering all the above, the approach taken to construct the DT ensemble was

based upon bagging and followed the same structure as the SVM ensemble (see

Figure 6.6):
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After performing the majority voting of all the results the overall accuracy was

94.4% which showed an increase when compared with the simple DT classifier used

in Chapter 4 with an accuracy for the same training data size of 91.60%. Comparing

the two error matrices (Error! Reference source not found. and Table 6.4 below) it

can be observed that the ensemble obtained an error matrix with the same values for

producer's and user's accuracies of 94.4%. This shared the same trends than the

SVM classifier with an increase in the user's accuracy and a decrease in the

producer's accuracy of the DT ensemble with respect to the simple DT classifier.

DT Predicted
Ensemble

FE Other L Producer's
accuracy

Actual FE 118 7 125 94.4%
Other 7 118 125 94.4%
L 125 125 250
User's 94.4% 94.4% 94.40%
accuracy

Table 6.3 Error matrix for the DT ensemble using fen as the target class

DT Predicted
FE Other L Producer's

accuracy
Actual FE 123 2 125 98.40%

Other 19 106 125 84.80%
L 142 108 250

User's 86.60 98.14 91.60%
accuracy % %

Table 6.4 Error matrix for the DT using fen as the target class wzth a training size of 150

pixels

In the case of DTs this decrease in producer's accuracy could be again due to the

nature of the bagging method. This is, DTs classifiers are quite dependant on the

characteristics of the training dataset. In tills sense, bagging could be providing

datasets in which the variability of the target class is not well represented and

therefore affects the capacity of the DT for identifying such class.
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Furthermore, the above results showed that both SVM and DT ensembles obtained

exactly the same solution. When checking the results in detail, exactly the same

pixels were being misc1assified. When plotting these points in a feature space (Figure

6.7 below) it becomed apparent that they were in the borders of the spectral signature

of the class fen.

Missclassified Pixels

0.6
0.5

t t•0.4 •
0.3 j • TestingFens

~ • Missclassified fens
Z 0.2

Missclassified others

0.1 .\;•0
D 20 40 • 60 80-0.1

ETM+ Band 2

Figure 6.7 Misclassified fen pixels in the feature space

As it is possible to associate these pixels to their coordinates on the ground correctly

it would be easy to get ground data and confirm whether they belong to the class of

interest or not (see Table 6.5 below).
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x y ETM+B2 NDVI Misclassified as class

636491 323042 53 0.07 Fen

636865 321036 54 0.4 Fen

641557 321206 50 -0.04 Fen

636967 319846 54 0.29 Fen

636559 319608 61 0.23 Fen

636593 319608 61 0.18 Fen

636661 319540 61 0.18 Fen

591917 334228 55 0.47 Others

570973 338002 56 0.44 Others

577501 344666 60 0.04 Others

632921 306178 60 0.46 Others

632717 306076 60 0.48 Others

587089 341912 55 0.48 Others

608271 329366 59 0.36 Others

Table 6.5 Coordinates and details of misclassifiedpixels in the SVM and DT ensembles

6.3 Ensembles of one-class classifiers

As with the binary classification problems, a single one-class classifier might not be

sufficient to exploit the discriminative characteristics of the data and as a result the

ensemble of classifiers has been the focus of recent investigation (He et al., 2004).

Although the amount of research regarding ensembles of classifiers is quite abundant

in binary and multicJass classification problems as seen in previous sections, one-

class classification ensembles have not been explored in depth.

Two different ways of combining one-class classifiers have been proposed by Tax

and Duin (2004). The first consists of combining classifiers trained on different

datasets; the second is to combine different classifiers trained on a common training

dataset. Their research indicated that the first option gave better results than the

second and this could be due to the fact that different datasets contain more

information than different views of the individual classifiers on one dataset. They
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based their research upon estimated posterior probabilities and therefore, did not use

the majority voting approach in their comparison of different methods.

As with the previous classifiers, using labels as outputs (class of interest, other class),

the ensemble of one-class classifiers will be combined using majority voting.

Furthermore, in the case of one-class classifiers, outlier distribution is unknown and

prior probabilities and posterior probabilities are difficult to estimate. Therefore, the

ensembles of classifiers that use combination rules based upon these estimated

probabilities do not get better results than those of the individual classifiers (Tax

2001).

Taking into account all the above, the ensemble of one-class classifiers used the

output labels of the classifiers and performed the majority voting method. This kept

the analysis in line with the ones carried out for the binary classifiers in the previous

section. Also following the approach of Tax and Duin (2004) the ensembles were

constructed using two approaches: (i) combining different one-class classifiers

trained with the same data and (ii) combining the same one-class classifier trained

with different datasets.

(i) Combining different classifiers trained on a common training set

The first ensemble of classifiers was formed by the one-class classifiers that were

assessed in Chapter 5 with the exception of the K-centre classifier that did not

achieve an overall accuracy of 50% for fen as class of interest and as such would not

add anything in order to increase the accuracy of the ensemble.

When constructing the ensemble and performing a majority voting with the rest of

the classifiers (Figure 6.8) the outcome was an overall accuracy of 91.2% with a

producer's accuracy for fen of88% and user's accuracy of 94.02% (see Table 6.6).
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Majority voting

Ensemble output

Figure 6.8 Schematic representation of the One-class classifiers Ensemble

One class Predicted
classifiers
ensemble

FE Other L Producer's
accuracy

Actual FE 110 15 125 88%
Other 7 118 125 94.40%
1: 117 133 250
User's 94.02% 88.72% Overall
accuracy 91.20%

Table 6.6 Error matrix/or the one-class classifiers ensemble using/en as the target class

The overall accuracies obtained by the ensemble were very close to those obtained

by the density classifiers and were exactly the same as the one obtained using only

the SVDD classifier which confirms the findings of Tax and Duin (2004) that the

ensemble of different classifiers trained with the same dataset normally equals the

performance of the strongest classifier.

(ii) Combining one type of classifiers trained on different training datasets

In order to test whether using different training sets would make any difference upon

the accuracy obtained by a one-class classifier, the technique of bagging was used

once more due to the small datasets involved in this thesis. The classifier chosen was

the focus of much of Chapter 5, the Support Vector Data Description. Once more the
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ensemble's structure was the same as the one used in the previous sections (see

Figure 6.9).

Page 179



rnc{j]>InrnqOJIn
I-[I]qOJ

·{IJ9J]Cl ~ In
Cl I-
III

OO[IJ OJ Clc:
1'\ ~ i c::> ~ s

>
en Q) >-
Q) en -x C) qrn OJ 'C
'0. .= 00.= f q ~ '(ij'
L() CO ::!:-, ...... !::

...... we{]~
10...~.... mcU~._
'0>
......~
.';::
...Q w9JJ~-e
~
'0>
~
<:::> Wq._
......~
"~~~.s
" ~~~......
10... r-, r-,
~
t: en-

- Q)~ .~ ~~ Q.c;~ 0".s L() enN2
U -,
'0--o ~

10... --...Q~ ~....
§- ~~
G ~

kl

-, ""-

"5
0-

"5
0

~ Q)

:0
E
Q)
(j)
c;
w

-,

;::~ <:::l:s 00

'" ......
'".s 'U
I..l ~
~ Q..,
'U......~
E
<:u

'"~
Q
S2
V)

'U
~
~
>;:
.9
~....
>;:
'U
~
10...

~
10...

.~....~
E
'U-s::
~
0-
'-0
'U
10...
;::s

~



Chapter 6

Ensemble of Classifiers for the classification of a habitat of interest

When performing the majority voting the final overall accuracy was 96.9%, which

meant a very slight increase in accuracy compared with the one obtained by the

simple classifier with 95.2% (Table 6.8 and Error! Reference source not found.

below).

SVDD
Ensemble Predicted

Producer's
Fen Other L accuracy

Actual Fen 118 7 125 94.4%
Others 2 123 125 98.4%
L 120 130 250
User's Overall
accuracy 98.3% 94.6% 96.9%

Table 6.7 Error matrix for the SVDD Ensemble using fen as the target class

SVDD Predicted
Producer's

Fen Other L accuracy
Actual Fen 117 8 125 93.6%

Others 3 122 125 97.6%
~ 120 130 250
User's Overall
accuracy 97.5% 93.8% 95.6%

Table 6.8 Error matrix for the SVDD using fen as the target class with a training size of 150

pixels

Looking in detail at the results, the 7 pixels belonging to the class fen misclassified

as 'others' were the same than the ones misclassified by the SVM and the DT

ensembles. However, the SVDD ensemble obtained a much better result when

classifying the other class with only 2 misclassified pixels which also were

misclassified by the other two ensembles (see Table 6.5 below).
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x y B2 NDVI Missclassified as class

636491 323042 53 0.07 Fen
636865 321036 54 0.4 Fen
641557 321206 50 -0.04 Fen
636967 319846 54 0.29 Fen
636559 319608 61 0.23 Fen
636593 319608 61 0.18 Fen
636661 319540 61 0.18 Fen
608271 329366 59 0.36 Others
570973 338002 56 0.44 Others

Table 6.9 Coordinates and details of misclassifiedpixels in the SVDD ensemble

In conclusion to this section it can be said that the both ensembles (different one-

class classifiers using the same training data and SVDD using a bagging technique

on the training data) did not obtain significantly higher accuracies than the ones

already obtained by simple classifiers.

6.4 Combining all classifiers

Going back to the first section of this chapter, it was established that an ensemble of

classifiers has to be formed by a group of different classifiers and that their outputs

should be comparable (Duin, 2002). It was also recognized that there were different

methods of generating different classifiers such as: (i) different initializations (ii)

different parameter choices (iii) different architectures (iv) different classifiers (v)

different training sets and (vi) different feature sets (Duin, 2002). Although a great

part of the research has concentrated on producing ensembles with different training

sets, the combination of different classifiers can also contribute greatly towards the

creation of an ensemble that could obtain higher accuracies than the single

classifiers.

Over the past three chapters very different classifiers has been used in order to

classify a class of interest. Some are multiclass classifiers (MLC), some are binary in
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nature (SVM, DT) and finally, one-class classifiers. Because the training and testing

of all of the classifiers had been carried out with the same datasets (only taking the

data for the class of interest in the case of one-class classifiers) the results obtained

by them were comparable. As a final experiment it was decided to combine all of

them in one single ensemble and in that way test whether the advantages of binary

and one-class classification combined could get higher classification accuracies. The

ensemble of all these classifiers is represented in Figure 6.10:
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Once again, the results of this ensemble gave an accuracy of 94.4% (see Table 6.10)

which was not bigger than the accuracy obtained by the simple SVDD. The user's

and producer's accuracy were also very similar to those obtained by the SVDD.

All
classifiers
ensemble Predicted

Producer's
Fen Other ~ accuracy

Actual Fen 115 10 125 92.00%
Others 4 121 125 96.80%
~ 119 131 250
User's Overall
accuracy 96.64% 92.37% 94.4%

Table 6.10 Error matrix/or the all classifiers ensemble usingfen as the target class

6.5 Summary and Conclusions

The objective of this chapter was to test several ensembles of classifiers in order to

assess whether this method could achieve higher accuracies than those obtained by

the classifiers that had been already explored in Chapters 4 and 5. In section 6.2 the

binary classifiers SVM and DT were used to create two ensembles in which the

classifier diversity was guaranteed by using the bagging technique on the training set.

The results obtained showed that

(i) The overall accuracy of the SVM ensemble was 94.4% as opposed to

91.6% obtained when using the simple SVM classification in Chapter 4.

The error matrices of both the SVM ensemble and the SVM (see Table

6.1 and Table 6.2) showed a higher user's accuracy of the class of interest

fen when using the ensemble (94.4% as supposed to 86.6%). However,

the producer's accuracy for fen was reduced from 98.4% to 94.4% in the

ensemble.
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(ii) The overall accuracy of the DT ensemble was 94.40% which showed an

increase when compared with the simple DT classifier used in Chapter 4

(91.60% overall accuracy). The two error matrices (Table 6.4 and Error!

Reference source not found.) showed producer's and user's accuracies

of 94.40%. This meant quite an increase in the user's accuracy but a

decrease in the producer's accuracy with respect to the simple DT

classifier.

These results demonstrate the efficiency of an ensemble of classifiers in improving

the overall accuracy compared with that of the simple SVM and DT classifiers.

However, the question is which results are more suitable to use for this particular

land cover classification. As discussed in Chapter 4, ultimately it all depends on

whether the final user considers a high producer's accuracy as the main objective and

whether a low user's accuracy can be subsequently corrected with the use of ground

data. Much of the decision on which classifier to adopt will probably be based upon

the availability of these ground data. If these are not available, the ensemble option

offers similar values for both accuracies and therefore a greater certainty that the

pixels allocated to the class of interest are actually that class on the ground.

Regarding the ensemble of one-class classifiers the main results were:

(i) When constructing an ensemble using different one-class classifiers

training with the same dataset the overall accuracy obtained was 94.80%

with a producer's accuracy for fen of 91.20% and user's accuracy of

98.28%, which were results very close to those obtained by a simple

SVDD used in Chapter 5.

(ii) When constructing the ensemble using the SVDD with a bagging training

set the results showed an overall accuracy of 96.90% which was slightly

higher than the accuracy obtained by the simple classifier with 95.20%

(Table 6.8 and Error! Reference source not found.).
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(iii) A final ensemble using all the classifiers described in Chapters 4 and 5

did not show a higher accuracy than that obtained by the simple SVDD.

As a general conclusion, the results of this chapter concur in part with the findings of

many other researchers that outline the better performance of an ensemble of

classifiers as opposed to a single classifier. The main reason for this success is

believed to be due to the degree of diversity within the ensemble, which is a line of

research very much alive with many researchers currently studying this idea in depth

within pattern recognition (Kuncheva, 2005). It is true that for the binary classifiers

there was an increase in overall accuracy and user's accuracy. However, the decrease

in producer's accuracy could be a drawback when the objective of the classification

is to obtain an accurate land cover map of a class of interest. In the case of one-class

classifiers the ensemble technique failed to obtain a higher overall accuracy than the

obtained by the SVDD. Furthermore, using the SVDD with the bagging technique

did not produce a significant increase in any of the accuracies.

In this chapter, very simple experiments were carried out in order to test an ensemble

of classifiers for land cover classification. Only bagging was used as a diversity

measure using a small training dataset and only one ensemble size was assessed.

Also only output labels was taken into account and consequently majority voting was

the method used when combining the classifiers within the ensemble. Finally, the

performance of the ensembles could have been affected by the small training dataset

used and the low dimensionality of the data as highlighted by Skurichina et al.

(2002), which definitely means that a lot more research is needed in this area.

To conclude, the following chapter will address a final discussion of the findings of

this thesis, derive conclusions from these findings and identify future areas of

research.
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7 Final discussion, conclusions and further research

"Finally, in conclusion, let me sayjust this ",

Peter Sellers

This thesis has investigated several classification methods in order to accurately classify a

particular class of interest using remote sensing data. Focusing on a class of interest has

been the focal point in other research areas such as those in pattern recognition but not yet

commonly explored within remote sensing classification and land cover mapping. In this

sense, this research was carried out within the context of current habitat conservation

concerns in order to assess whether these classification methods would be suitable for

mapping specific habitats protected by the EU Habitats Directive. The classification

methods used for this purpose aimed to increase classification accuracy when

concentrating on a particular habitat and to optimize the training process and avoid the

waste of resources by (i) eliminating or significantly reducing the collection of data for

classes that are of no interest (ii) optimising the performance of the classifiers by

concentrating the classification on the class of interest using binary and one-class

cIassi fication approaches.

The purpose of this final chapter is to assess whether the aims and objectives of this thesis

were met. For that, the first part of the chapter consists of a final discussion comparing the

performance of the different classifiers analysed in the previous research chapters for the

classification and mapping of a specific habitat. Conclusions are drawn from this

discussion and identification of areas of further research will conclude this thesis.
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7. 1 Final discussion: Comparison SVDD, SVM and DT classifiers

In Chapter 4, the outcomes of the classification performed by the binary SVM and DT

classifiers were compared against that of a standard ML classification with the conclusion

that both binary classifiers attained higher accuracy results than the ML classifier. In

Chapter 5, different one-class classifiers were compared in order to assess their suitability

for the classification of a habitat of interest with the conclusion that the SVDD classifier

was the one that provided more advantages. The results obtained by this classifier were

also compared against the performance of the standard ML classifier with the conclusion

that the SVDD results also surpassed that of the parametric classifier (see Figure 7.1 and

Figure 7.2 below).

Comparison of accuracies for ML,SVDD,SVM and DT classifiers
Fens as class of interest

: :90.00

~
~0

70.00

50.00 MLC SVDD SVM DT
-+- Overall accuracy 71.60 93.20 91.60 91.60- _ - r- - - - -
-- Producer's accuracy 77.60 96.80 98.40 98.40

- -- - -I- _-
I _._ User's accuracy 87.39 90.30 86.62 86.62

Classifiers

Figure 7.1 Comparison of accuracies for ML, SVDD, SVM and DT classifiers. Fen as class of

interest
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Comparison of accuracies ML, SVOO, SVM, OT
Saltmarshes as class of interest

90.00 / i -==-== •
70.00

50.00 MLC SVDD SVM DT
-+- Overall accuracy 64.80 90.80 92.00 95.20
- - - - --_ -.- -- -
_ Producer's accuracy 62.40 95.20 97.60 94.40
___._ User's accuracy 93.98 87.50 87.77 95.93

Classifiers

Figure 7.2 Comparison of accuracies for ML, SVDD, SVM and DT classifiers. Saltmarsh as class

of interest

These results clearly stated that:

1) Both approaches (binary and one-class classification) were suitable for its

application to land cover classification using remote sensing data

2) For the particular case of focusing on a class of interest, both approaches

surpassed the results obtained by the ML standard classification

3) Both approaches used significantly less training data than the ML classifier

Therefore, having clearly demonstrated that these two approaches can be successfully

applied to the classification and mapping of a particular habitat of interest under the

requirements of the EU Habitats Directive, this final discussion compares the

performances of binary classifiers against the one-class classifier and highlights

advantages and disadvantages in the application of each of these methods.

For that, it was decided to carry out a comparison between overall, producer's and user's

accuracies for the SVM, DT and SVDD classifiers with fen as the class of interest. It was

not considered necessary to compare the results of the three classifiers for the class

saltmarsh as the correspondent research chapters already demonstrated that the

performance of these classifiers was not habitat specific although the high degree of

Page 190



Chapter 7

Final discussion, conclusions andfurther research

separability of the class of interest from all the other classes could produce higher

accuracies as in the case of saltmarsh when using a binary classification. When

performing the classification using the one-class classification approach the accuracies

obtained for both classes were very similar.

The SVDD training sizes used for comparison were 15, 25, 50, 75, 100, 125 and 150.

These sizes were compared against training sets of 30, 50, 100, 150, 200, 250 and 300

pixels for the SVM and DT. The reason for this is that in this way the comparison

between the two types of classifier was done using the same amount of information about

the class of interest. The results are shown in Figure 7.3, Figure 7.4 and Figure 7.5 below:

Comparison Overall accuracy
SVM-DT-SVDD

Fens as class of interest

Percentage

.O-.erall accuracy SVM

• Overall accuracy DT

Training sizes

Figure 7.3 Comparison of overall accuracies SVM-DT-SVDDfor fen as class of interest
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Comparison Producer's accuracy
SVM-DT-SVDD

100

90
Percentage

80

Training sizes

Figure 7.4 Comparison of producer's accuracies SVM-DT-SVDD for fen as class of interest

Comparison User's accuracy
SVM - DT - SVDD

Fens as class of interest

Percentage

Training sizes

Figure 7.5 Comparison of user's accuracies SVM-DT-SVDD for fen as class of interest

Furthermore, the McNemar's test was performed in order to see whether the differences

in accuracy were statistically significant (Z > ~ 1.96 at 95% interval)
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SVDD-DT McNemar Test

5 r-------------------------------------------------------~
4
3
2 -------- --------- ------------ ------------ ----~--~--"i3--------fr---=-=.::- -.:.,:--"''''-_-----------------
1 ~
o
-1
-2
-3
-4
-5 r-~~_,------,_------r-----_,------,_------r_----_,

30

1/1
CII
::l
iii
>
N

-

50 100 250 300150 200
[z values 1.73 3

III
CII
::l

~
N

IZvalues

4 4 2.84 2 2

Training sizes

Figure 7.6 McNemar's test. Z valuesfor SVDD-DT.

5 .--------------------------------------------------,
4
3
2
1
o r-------------------------------------------------------~
-1
-2 --------------------------------------------------------------------------
-3
-4
-5

SVDD-SVM McNemar Test

- - - - - - - - - - - - - - - - - - - - - - - - - - - -~-z~~ .............~~~- -0.,:-:":'-':":- -:..:-:..:-.:.:-~;.;-:.::-"-

250 300100 150 20030 50

1.73 322.83 22.12 3.87

Training sizes

Figure 7.7 McNemar's test. Z valuesfor SVDD-SVM
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1 1 a a a a

DT-SVM
McNemar Test

5 ,----------------------------------------------------,
4
32 ----------- _
1
a r------------------~--------~~~----~~----_6------~--~-1 ~ ~ ~ ~
-2 ---------- _

-3
-4
-5 r--=~_r--~--,_----_r------._------r_----_r----~

30 50 100 150 200 250 300

IZvalues 3.16

Training sizes

Figure 7.8McNemar's test. Z valuesfor DT-SVM

In terms of overall accuracy, the highest value was obtained by the SVDD when using the

150 training dataset with 95.60%. This compares to the highest accuracy of 91.60%

obtained by the SVM and DT with 100 training pixels. Furthermore, when using 50 pixels

as training data the SVDD still produced an overall accuracy of 94.80%. These were very

encouraging results as the SVDD achieved these high overall accuracies only using target

data to train the classifier. Having a closer look at the other accuracies, the producer's

accuracy was higher when using the binary approach, which means that the classifiers

actually identified a higher proportion of pixels as the target class which is of the utmost

importance for this research. However, the user's accuracy showed that the SVDD was

the one that classified the highest percentage of pixels being actually fens on the ground.

The McNemar's test showed that these differences between the SVDD and the two binary

classifiers were statistically significant at the 95% confidence interval (see Figure 7.6 and

Figure 7.7) which reflected the different nature of these two approaches. The SVM and

DT classifiers presented very similar results for all the accuracies and only showed a

significant difference for the small training set of 30 pixels as seen in Figure 7.8.

When these classifiers were compared in the validation area of the River Yare NNR (see

Figure 7.10 and Figure 7.11) the differences between the two approaches were obvious.
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Test area
River Yare NNR
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Figure 7.9 Test area River Yare NNR
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Binary Map of Fens
in an area of the River Yare NN R

Maximum Likelihood classifier
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• Fens predicted by classifier that are actual fens on the ground
D Fens on the ground not predicted by the classifier
• Fens predicted by the classifier that are not fens on the ground
D Others
• Water (derived from GIS data provided by OS@Crown Copvriqht)

Figure 7.10 ML classification result for fens in the River Yare NNR test area
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Binary Map of Fens
in an area of the River Yare NNR
Support Vector Machine classifier
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• Water {derived from GIS data provided by OS @Crown CoPvriqht)

Figure 7.11 SVM classification result for fens in the River Yare NNR test area
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Binary Map of Fens
in an area of the River Yare NNR

Decision Tree classifier
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• Fens predicted by classifier that are actual fens on the ground
D Fens on the ground not predicted by the classifier
• Fens predicted by the classifier that are not fens on the ground
D Others
• Water (derived from GIS data provided by OS @Crown Copvriqht )

Figure 7.12 DT classification result jor fens in the River Yare NNR test area
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Binary Map of Fens
in an area of the River Yare NNR

Support Vector Data Description classifier (A)

r
:.'!,

, ",:' ,·I....,',,',',"':,...~ .
. " .,.

i....._,:"

r.

"-"

"

, '

- ,,'

Scale: 1:10000. '
',' " ."., "I, ,.'

" ,,'

...~
r-, . :~'~' .).' '

' ....~.' _, ....

• Fens predicted by classifier that are actual fens on the ground
D Fens on the ground not predicted by the classifier
• Fens predicted by the classifier that are not fens on the ground
D Others
• Water (derived from GIS data provided by OS@Crown CoPvriqht)

Figure 7.13 SVDD (A) classification result for fens in the River Yare NNR test area
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Binary Map of Fens
in an area of the River Yare NNR

Support Vector Data Description classifier (B)
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Figure 7.14. SVDD (B) classification result for fens in the River Yare NNR test area
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The SVDD classifier performed much better than the standard ML classifier but the

area correctly identified as fen was smaller than that of the SVM and the DT (See

Figure 7.10, Figure 7.11, Figure 7.12 and Figure 7.13 above). The SVM, DT and

SVDD maps were classified using a training set of 100 pixels for SVM and DT and

100 pixels for SVDD (A). The reason for the performance of the SVDD classifier

when mapping the class fen in this area could be that the SVDD did not have enough

training data about the class fen even though this training size produced high

accuracies when testing it against a 250 pixel dataset. This could be due to the fact

that this habitat is highly heterogeneous and consequently a 100 pixel training dataset

might not define fully the variability ofthis class which can result in the definition of

a very small radius for the optimal hypersphere. This could end up in overfitting and

this could explain the results obtained for the area of the Mid River Yare NNR (See

Figure 7.13). As described in Chapter 5, the SVDD has the advantage of being based

upon the support vector theory and consequently the amount of data needed to

describe the target class is not as large as with other one-class classifiers but still a

good description of the target class is needed in order to find the optimal hypersphere

without overfitting the training data.

To put the above to the test another map was produced using a training dataset of300

pixels. The resultant map (see Figure 7.14) achieves a highly accurate classification

of the area identified as fens by the aerial photography. This confirms the high

potential of this one-class classifier for its application to land cover mapping

focusing on a class of interest and further research is definitely recommended.

Regarding the other two classifiers, although they did not show any significant

differences when tested with the 250 pixels testing set, when it came to the validation

area the results showed that the DT classified the area more accurately than the SVM

classifier (Figure 7.11 and Figure 7.12). Both of them had commission errors but the

DT identified accurately more fens than the SVM. Maybe this is due to the fact that

the DT software CART has the ability to focus on the class of interest when
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performing the classification with a very strong binary split search which might

produce better results when tested with the validation data. Also the training dataset

might reflect very well the variability of the class of interest which is one of the

factors affecting the performance of the DT classifier in order to discriminate this

class from all the other classes. However, one very important advantage of SVMs

over DT and other standard classification methods is that only a percentage of the

training data is taken into account for the calculation of the optimal hyperplane that

separates the class of interest from all the other classes. It is also possible to identify

which are the exact pixels that are support vectors. Each of these pixels have

associated X and Y coordinates, which means that it is possible to locate accurately

in the field those important areas in order to train the classifier. Also it indicates

which pixels from the "other" class are to be taken into account in order to find the

optimal hyperplane. This potentially allows the researcher to:

1. discard the classes and set of pixels within the "other" class that do not

contribute towards to final solution

2. concentrate on those locations of the class of interest and other classes that

seem to have important characteristics in terms of training the classifier.

This has enormous implications for future research and refinement of the training

and classification process as recently studied by Foody and Mathur (2004b) where

the training can be directed to those specific pixels that act as support vectors

optimising even more the training process and obtaining better accuracies.

In terms of simplicity and computational efficiency, the DT was the fastest and most

user-friendly method of the three. The SVM and SVDD required much more time

and effort in order to find the optimal parameters. These conclusions were also

shared by Pal and Mather (2003) in their comparison of SVMs and DTs.

Furthermore, in the case of this thesis, CART uses a Windows interface that was

easy to use and that could be quickly mastered by any user. In the case of the SVM

and the SVDD they both operate in the MATLAB environment which programming

language has to be learned previously. The advantage of MATLAB is that it can
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solve computing problems faster than with traditional programming languages, such

as C, C++, and Fortran. Furthermore, the SVM Toolbox developed by Steve Gunn

(Image Speech and Intelligent Systems Group at the University of Southampton)

offered a graphical user interface within MATLAB specially designed for binary

classification problems. The DD_tools MATLAB toolbox used for the SVDD did not

provide any graphical user interface but, as it was based upon the principles of the

SVM, it was easier to understand once the SVM and MATLAB programming had

been mastered. In this sense, these characteristics could have implications for

relevant authorities in order to adopt one method or another. In certain applications

the use of SVMs and SVDDs could be more advantageous even though the training

of personnel on these methods could take longer. In this sense, the decision as to

which classifier to use for a particular application depends mainly on the advantages

and disadvantages described in Table 7.1. The DT used in this thesis (CART) has the

advantage that the analyst does not need to learn any programming language. Also, if

the training data are well sampled and reflects the variability of the class it can

produce very good results. SVM however gives an opportunity for development and

the on-going mapping of a particular habitat can be greatly refined by the selection of

appropriate training data that can be used as support vectors and therefore can be

more appropriate for on-going monitoring programmes. Furthermore, using a SVDD

has the great advantage of concentrating solely on a class of interest and training data

are only needed for this class.

Summarising, the advantages and disadvantages of each of the above methods are as

follows:
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Advantages

ISVM
I

Disadvantages

-DT --

• Performs well with small training
datasets

• It finds the global optimal solution
• Generalises well
• Only uses part of the training data
for the calculations of the optimal
hyperplane, the support vectors. Any
other data can be absent and the
results are the same.

• Classification obtained depends
on the choice of parameter values
such as kernel, kernel parameters
and value of C. This choice is
normally approximate.

• Results show high error of
commission that could be an issue
if not enough ancillary data are
available to correct them

• It requires skills such as
understanding MATLAB
programmmg language before
being able to train and test the
classifier

• Potential for refinement of the

• The classification obtained is
mainly affected by the splitting
rule and pruning method chosen
• It relies on the characteristics of
training dataset to train the
classifier, especially the
representation of the variability of
the class by the training dataset

•Results show high error of
commission that could be an issue
if not enough ancillary data are
available to correct them

training process and increase in
accuracy when focusing on specific
classes

SVDD

• Performs well with small training
datasets and increases accuracy with
training data set up to a point

• It is statistically simple and easy to
use (Windows interface) with no
need of knowledge of programming
language.

• CART finds the optimal global
solution by over-growing the trees
and pruning them back

• The time to train and test the
classifier is very short compared to
the other two classifiers

• Only uses data from the class of • The producer's accuracy values
interest, therefore optimising the are not as high as those obtained
training stage by the binary classifiers

• It is based on the theory of support • As with the SVM the
vectors and as such only uses part of classification obtained depends
the data for calculating the optimal on the choice of kernel, kernel
hypersphere parameter and value of C.
• It also finds the optimal global • It also requires skills from the
solution analyst such as understanding the

• The results obtained are not MATLAB programming
probabilities environment

Table 7.1 SVM, DT and SVDD advantages and disadvantages

Finally, as discussed in Chapter 6, ensembles of classifiers were formed for each of

these methods in order to assess whether this approach could increase the accuracies

obtained by these classifiers. The conclusions for fen as the class of interest showed

that overall accuracies were definitely higher (see Figure 7.10 below).
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Comparison of overall accuracies
Simple SVDD, SVM and DT classifiers versus Ensembles

100.00

98.00

96.00

94.00

92.00

90.00
SVDD DTSVM

Simple classifiers 95.10 91.60 91.60
.40

Classifiers

Figure 7.10 Comparison of overall accuracies between SVDD, SVM and DT classifiers and

respective ensembles.

The ensembles also produced higher user's accuracies for the DT and SVM and

slightly lower for the SVDD (see Figure 7.11 below).

Comparison of user's accuracies
Simple SVDD, SVM and DT classifiers versus Ensermles

DT
98.30 86.62• Simple classifiers 86.62
97. 94.40o Ensembles

Classifiers

Figure 7.11 Comparison of user's accuracies between SVDD, SVM and DT classifiers and

respective ensembles.

However, when comparing the producer's accuracies between the simple classifiers

and the ensembles, the latter obtained lower producer's accuracies than the original
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SVM and DT classifiers and the increase was marginal for the SVDD classifier (see

Figure 7.12 below).

Comparison of producer's accuracies
Simple SVDD, SVM and DT classifiers versus Ensembles

100.00

98.00

96.00

94.00

92.00
90.00~_iIiiiII_

Simple classifiers

o Ensembles 94.40 94.40 94.40

Classifiers

Figure 7.J2 Comparison of producer's accuracies between SVDD, SVM and DT classifiers

and respective ensembles.

It was therefore concluded that for this particular case study, the option of using

ensembles of cIa sifies was not the most appropriate due to the decrease in

producer's accuracy as this is considered to be of utmost importance for the purpose

of this thesis. Also the small increase in producer's accuracy for the SVDD classifier

did not compensate the computational effort involved. However, it could be an

option suitable for other remote sensing studies and consequently further research in

this area is recommended in the following section.

7.2 Conclusions and further research

As stated at the beginning of the Introductory chapter, the main aim of this thesis was

to investigate and evaluate suitable methods for the accurate mapping of one

particular habitat of interest with the aid of remote sensing. It also included the

following sub-aims to increase the classification accuracy when focusing on a class

of interest (i) optimising the use of training data and (ii) optimising the use of remote
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sensing by applying suitable classifiers to the specific task of classifying a class of

interest. These aims and sub-aims were addressed through three specific objectives

that consisted of investigating the application of three alternative methods. These

alternative methods consisted of a binary classification approach using SVM and DT

classifiers and a one-class classification approach using specifically the SVDD

classifier and the higher accuracy obtained by both approaches using the ensemble

technique. These approaches were investigated in Chapters 4, 5 and 6 respectively,

using remote sensing data from a Landsat ETM+ satellite image of East Anglia and

focusing on two different habitats of interest. The habitat fen was the main focus of

the investigation and saltmarsh was a second class of interest used to assess whether

the performance of the classifiers was biased towards the specific characteristics of

one class. The results showed that the behaviour of the classifiers was the same when

using both classes, although results for saltmarsh were generally better than those

obtained for fen as the class of interest. The reason for this could be that the degree

of separability of the class saltmarsh against all the other classes is higher than the

class fen. These results obtained by the binary and one-class classifiers were

compared against those obtained by a standard parametric ML classification with the

outcome of all the classifiers performing considerably better than the ML classifier.

Consequently, these classifiers are not habitat specific and are perfectly suitable for

its application to classifying and mapping a particular habitat of interest. This is

particularly important in the case of the SVDD classifier as this was the first time

that this was applied to remote sensing classification for land cover mapping (far as

the author is aware).

Furthermore, the application of these classifiers aimed to optimise the use of training

data. By choosing a binary approach the classification would only require very little

data belonging to the other classes present in the image. And in the case of one-class

classification only data from the class of interest were needed. Moreover, the binary

nature of the SVM and DT classifiers meant that the attention was focused on

separating the class of interest from all the other classes and therefore training

efficiency was bigger than in a standard multi class classification where efforts are

directly to achieve a high overall accuracy. In the case of the SVDD it is only
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necessary to provide enough information about the target class so that this classifier

can generate a description of this class and consequently be able to distinguish it

from any other possible class. The application of this classifier was particularly

important because one-class classification has not been applied before to remote

sensing classification. The choice of one or another for a particular application

depends on the advantages and disadvantages of each of them as discussed in the

previous section.

Finally, the technique of using an ensemble of classifiers was put to the test. This

technique is also a very novel method that has only very recently been applied in

remote sensing classification but has not yet been studied in detail. In this particular

case, the results showed that the ensemble of classifiers obtained higher overall

accuracy compared with that of the simple SVM, DT and SVDD classifiers. In the

case of the SVM and DT ensembles this increase in overall accuracy was

accompanied by a decrease in producer's accuracy. As producer's accuracy is

considered to be of great importance because it reflects the capacity of the classifier

to identify the class of interest on the ground, it was concluded that the ensemble was

not the appropriate option for this case study. In the case of the SVDD the increase of

accuracy was very small and not worth all the computational effort involved in

constructing the ensemble.

All the above have practical implications from the point of view of authorities that

have to comply with the requirements of the EU Habitats Directive. The protection

of habitats listed in the Directive is closely related to obligatory monitoring of these

habitats which implies accurate mapping for monitoring and impact assessment.

Specifically, the Directive requires that within Natura 2000 sites measures are taken

to maintain and restore these habitats to a "favourable conservation status" which

roughly means that a species or habitats have to be in a stable or increasing state.

Authorities at different levels dealing with these issues have an obvious challenge

and attention is increasingly focused on the issue of management in accordance with

the provisions of Article 6 of the Habitats Directive. However, proposed monitoring

and management options have to deal with the ecological requirements of the
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different protected habitats (which can vary significantly from one to another) and

which in tum are also influenced by the economic, social and cultural requirements

of the area (Keramitsoglou et al., 2005). For example, in the particular case of the

Norfolk Broads, the Broads Authority's statutory duties try to balance navigation,

nature conservation and recreation/amenity interests. This is a complex political,

economic and environmental context that now has to incorporate the requirements of

the EU Habitats Directives with a rather rigid regulatory interpretation of nature

protection.

For the Broads Authority and many others, to incorporate the EU Habitats Directive

into their statutory obligations means that a cost-effective and time consistent

practice has to be developed. In this sense, for many of these authorities, traditional

approaches for habitat mapping based upon field work are still thought to provide

high accuracy at local level applications. However, Cherrill and McClean (1999)

found that although standard methods of surveying are widely used by different

researchers, agreement between pairs of maps in the UK averaged only 25.6% which

represents a huge problem in terms of quality assurance of habitat mapping. Only

recently, it has been recognised that integrating remote sensing data with field survey

can increase the precision of habitat mapping (Cherrill and McClean, 1999). In that

sense, aerial photographs offer the advantages of generally good availability, high

quality and resolution and potential regional-scale coverage and they are now widely

used by authorities at local and regional level such as the Broads Authority and the

Environment Agency. However, they have some disadvantages such as their high

cost and the temporal gap between different photographs which can vary from 3 to 6

years or more. Satellite imagery has been so far less used (or not at all) for terrestrial

habitat classification and mapping because of cost, poor availability (e.g., in regions

prone to regular cloud cover) and because resolutions maybe not appropriate for the

mapping of specific habitats. However, technology has advanced in recent years and

costs and availability issues have been overcome. Satellite remote sensing has the

clear advantage of a high temporal resolution (16 days as in the case of Landsat) and

different spatial resolutions that can meet local and regional monitoring needs.

Therefore, there is definitely a great potential for satellite imagery to contribute more
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and more to monitor habitat conservation (Mehner et 01., 2004, Kerr and Ostrovsky,

2003, Turner et 01., 2003, Read et 01., 2003, Mumby and Edwards, 2002, Nagendra

and Gadgil, 1999).

Within this context, the binary and one-class classification methods studied within

this thesis have shown a high suitability for mapping specific habitats in need of

careful monitoring using satellite remote sensing data. The accuracies obtained by all

of them surpass those of the standard parametric classifiers such as Maximum

Likelihood classification. However, the ML classifier is still widely used as

exemplified by the Land Cover Map of Great Britain (LCM2000). Based upon the

results of this thesis, the use of DT, SVM and SVDD classifiers is highly

recommended as an alternative to standard classifiers such as ML. Furthermore,

these classifiers have proven to be highly suitable for classifying and mapping a

specific habitat and its application should definitely be considered in future work

involving the accurate mapping of protected habitats. These methods could be used

to support and complement existing monitoring methods already in place meeting the

needs of relevant authorities and ultimately the requirements of the EU Habitats

Directive.

Taking all the above into account, this thesis has definitely opened up new areas for

future research for classifying and mapping a particular habitat of interest. In terms

of the different methods that have been explored further research could address:

1) Investigation in the potential increase of classification accuracy by the

optimisation of the training process. In the case of SVM classifiers this could

be done by identifying specific training data used for the calculation of the

optimal separating hyperplane. This could mean that this classifier could be

finely tuned to the particular characteristics of a specific habitat under study

and be a very cost-effective method for the relevant authority as only specific

data would have to be collected regularly. DT and SVDD classifiers on the

other hand depend more on a good description of the class of interest in order

to perform well. Although SVDD is based upon the support vectors method,
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this thesis has found that it is very much dependant on a very good

description of the habitat to be classified and mapped as it does not count

with any other data regarding the other classes present in the image. For DT

this is also the case as the training data should reflect as much as possible the

variability of the classes to be classified.

2) Further investigation into the use of outliers to optimise the classification

using the SVDD classifier. As seen in chapter 5, the incorporation of outliers

in the training set when performing the one-class classification using the

SVDD did not have any impact in the final classification accuracy. However,

a second application of this classifier in Foody et al., (2006, in press) shows

that the use of outliers can make a difference in the final classification

accuracy. This second study uses very specific training datasets that have

been acquired in order to intelligently train a SVM. These classes are also

more homogeneous than the classes fen and saltmarsh upon which this thesis

has focused. This highlights again the importance of further research into

training data used for training these classifiers and the importance of the

degree of spectral variability of the class under study.

3) More in detail investigation of other one-class classifiers. As seen in Chapter

5, there are different types of one-class classifiers (density methods,

reconstruction methods and boundary methods) that have been used in pattern

recognition studies but have not yet been applied within the remote sensing

community. When comparing the performance of these classifiers in Chapter

5, the results showed that some of these classifiers (in particular the density

methods) were comparable to those obtained by the boundary classifiers and

in particular the SVDD classifier. However, these one-class classifiers are

very dependant upon the density and of training data sharing the

disadvantages of parametric classifiers. But, in certain cases, these classifiers

could be useful and their investigation within remote sensing applications is

highly recommended.
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4) Future work could also include further research regarding ensemble

techniques. Chapter 6 illustrated how the use of ensemble of classifiers could

obtain higher accuracies using bagging techniques and majority voting. In

this particular case, the results showed a marginal increase of accuracy that in

most of the cases was not worth all the computational effort involved.

However, further research could include the use of boosting methods, bigger

training sizes and bigger ensemble sizes, and use of a posteriori probabilities

and other combining rules in order to assess whether this technique can

significantly increase classification accuracy for specific cases.

5) Application of all the methods for the classification of a particular habitat

using hyperspectral remote sensing imagery. The present thesis has based the

assessment of binary and one-class classifiers using multispectral remote

sensing data acquired by Landsat sensors. Further assessment of these

classifiers could include studies where detailed spatial resolution is needed

and where hyperspectral data are used. One particular application within the

requirements of the EU Habitats Directive could be the mapping and

monitoring of specific protected species that are key for the conservation of

protected habitats.

6) Finally, another area of future research could be based upon the classification

of a particular habitat addressing the problem of mixed pixels and soft

classification. This is a research area that this thesis has not explored.

However, when dealing with hetereogenous habitats such as fen and

saltmarsh there could be cases where certain ambiguity exists as to what class

a pixel belongs. This is in tum translated into errors of omission and/or

commission. In order to address the accuracy requirements to comply with

legislations such as the EU Habitats Directive, it will be necessary to resolve

these ambiguities. In this sense, SVMs are a useful tool that has been recently

applied to unmix the class proportions in a pixel (Brown et al., 2000) and that

definitely require further research for the mapping of specific habitats.
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This thesis has addressed the issue of classification of one particular habitat of

interest using remote sensing data in order to comply with the requirements of the

EU Habitats Directive. For that, advanced classification methods from pattern

recognition and machine learning have been applied to remote sensing in order to

answer a scientific problem within the environmental sciences community. This

confirms that in order to address a pressing challenge such as biodiversity

conservation (and monitoring) advances in environmental science, computation,

technology and legislation have to come together appropriately.
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1) Error matrices for different training data sets using the one class SVM

classifier. Fens (FE) as class of interest

SVM Predicted

Training size FE Other l: Producer's

30 accuracy

Actual FE i12~ 2 125 98.40%

Other 27 ,,' WH

. 98 125 78.40%191. /!%i'

l: 150 100 IIrY'}25~;i
;id!!;.Ji!i!

User's 82.00% 98.00% 88.4%

accuracy

SVM Predicted

Training size FE Other l: Producer's

50 accuracy

Actual FE 121 4 125 96.80%
!If!

Other 24 "11 ~·~l) 125 80.80%

l: 145 105 I~ i.25Q
.~;.... t1 'iji,"

User's 83.45% 96.19% 88.80%

accuracy
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SVM Predicted

Training size FE Other 1: Producer's

100 accuracy

Actual FE 123 2 125 98.40%

Other 19 106 125 84.80%

1: 142 108 250.,.

User's 86.62% 98.15% 91.6%

accuracy

SVM Predicted

Training size FE Other 1: Producer's

150 accuracy

Actual FE 123 2 125 98.40%

Other 19 106 125 84.80%

1: 142 108 250

User's 86.62% 98.15% 91.6%

accuracy

SVM Predicted

Training size FE Other 1: Producer's

200 accuracy

Actual FE 123 2 125 98.40%

Other 19 106 125 84.80%

1: 142 108 250

User's 86.62% 98.15% 91.6%

accuracy
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SVM Predicted

Training size FE Other l: Producer's

250 accuracy

Actual FE I / '~il\:f 121", 4 125 96.80%
li,ii )(F/ WHit

Other 16 fl0iwVi 109 125 87.20%
'. ~,i. ,t; iitf

l: 137 113 1'~11'la5O>4" ";Vv w

User's 88.32% 96.46% 91.6%

accuracy

SVM Predicted

Training size FE Other l: Producer's

300 accuracy

Actual FE 1<;1'" 121f 4 125 96.800/0
·.••i· +"i/·n

Other 16 il~~!{!'09 i 125 87.20%

l: 137 113 [.[.1250',\ .

.'x ':'7 ,Wi

User's 88.32% 96.46% 92.00%

accuracy
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2) Error matrices for different training data sets using the one class SVM

classifier. Saltmarshes (SA) as class of interest

SVM Predicted

Training size SA Other 1: Producer's

30 accuracy

Actual SA 124 1 125 99.200/0

Other 23 102 125 81.600/0

1: 147 103 250

User's 84.35% 99.03% 90.400/0

accuracy

SVM Predicted

Training size SA Other 1: Producer's

50 accuracy

Actual SA 124 1 125 99.200/0

Other 21 104 125 83.20%,

1: 145 105 250
.,'

User's 85.52% 99.05% 92.00%,

accuracy
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SVM Predicted

Training size SA Other 1: Producer's

100 accuracy

Actual SA 122 3 125 97.60%

Other 17 #&108 125 86.40%
I" " '@ 7

1: 139 111 250

User's 87.77% 97.30% 92.00%

accuracy

SVM Predicted

Training size SA Other 1: Producer's

150 accuracy

Actual SA 122 3 125 97.60%

Other 17 108 125 86.40%
iii

1: 139 111 ;lff"250
; d i!1L'lki''.&'

User's 87.77% 97.30% 92.00%

accuracy

SVM Predicted

Training size SA Other 1: Producer's

200 accuracy

Actual SA 122, 3 125 97.60%

Other 17 1m :%11 108" 125 86.40%
" i"i'0

1: 139 111 250'1
" '

User's 87.77% 97.30% 92.00%

accuracy
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SVM Predicted

Training size SA Other 1: Producer's

250 accuracy

Actual SA wV*:1 I22'? 3 125 97.60%
:: '

Other 17 I::'~:::;!08!! 125 86.40%
I@ ::~Ri;

1: 139 111 Ii ~~~.

User's 87.77% 97.30% 92.00%

accuracy

SVM Predicted

Training size SA Other 1: Producer's

300 accuracy

Actual SA 122' 3 125 97.60%
:

Other 17 1jlJ 108 125 86.40%
1!,

1: 139 111 ;50

User's 87.77% 97.30% 92.00%

accuracy
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3) Error matrices for different training data sets using the one class DT classifier.

Fens (FE) as class of interest

DT Predicted

Training size FE Other 1: Producer's

30 accuracy

Actual FE 119 6 125 95.20%
""

Other 33 ;;!r .92 125 73.60%
I.;;; bHp '}

1: 152 98 10fT '250'
IWi", q'tw ',,¥w.,

User's

accuracy 78.29% 93.88% 84.4

DT Predicted

Training size FE Other 1: Producer's

50 accuracy

Actual FE hi 'N!,~~£ 2 125 98.40%

Other 27 j~" ,jt·i~?8 125 78.40%

1: 150 100 ~i~)l~i:~~i
User's

accuracy 82.000/0 98.00% 88.4
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DT Predicted

Training size FE Other 1: Producer's

100 accuracy

Actual FE @'@";v1ll23" 2 125 98.40%

Other 19 ........i~i:;~I:p6!( 125 84.80%
•iif4iiilW,W!A;;;;&

1: 142 108 ~]~g::"
User's

accuracy 86.62% 98.15% 91.6

DT Predicted

Training size FE Other 1: Producer's

150 accuracy

Actual FE .1 "'123. 2 125 98.40%
,[

.ff@ "

Other 19 IIJ[;;'~i!P6 125 84.80%

1: 142 108 1;'lli~t50'ifi

User's

accuracy 86.62% 98.15% 91.6

DT Predicted

Training size FE Other 1: Producer's

200 accuracy

Actual FE 1:~li'
123; 2 125 98.40%
.@i.

Other 19 I,:~i~l~~:~:125 84.80%

1: 142 108 [iii:2S()1f
i0"ri

User's

accuracy 86.62% 98.15% 91.6
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DT Predicted

accuracy

User's

88.32% 96.46%

250

Other I:. Producer'sFETraining size

accuracy

Actual FE 125 96.80%

Other 125 87.20%

137 113 250
,h

92

DT Predicted

Training size FE Other I:. Producer's

300 accuracy

Actual FE }; 121 4 125 96.80%

Other 16 .if &\1 N ,109" 125 87.20%
'\" '.

I:. 137 113 ,< t'~50,i, ~.
User's

accuracy 88.32% 96.46% 92
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4) Error matrices for different training data sets using the one class DT classifier.

Saltmarshes (SA) as class of interest

DT Predicted

Training size SA Other 1: Producer's

30 accuracy

Actual SA 107 18 125 85.60%

Other 24 101 125 80.80%

1: 131 119 250

User's

accuracy 81.68% 84.87% 83.2

DT Predicted

Training size SA Other 1: Producer's

50 accuracy

Actual SA 124 1 125 99.20%

Other 21 104 125 83.20%

1: 145 105 250

User's

accuracy 85.52% 99.05% 91.2

Page A-l l



AnnexA

Confusion Matricesfor ML, SVM, DT and SVDD classifications

DT Predicted

Training size SA Other ~ Producer's

100 accuracy

Actual SA I, """··118' 7 125 94.40%

Other 5 ti><i\'<+120 125 96.00%
i!;~-e f,iP

~ 123 127 Ii 250
";;i}! "

User's

accuracy 95.93% 94.49% 95.2

DT Predicted

Training size SA Other ~ Producer's

150 accuracy

Actual SA w 1'19' 6 125 95.20%
;itt

Other 3 ¥~;rl~~w~;il125 97.60%

~ 122 128 ~t~~Q:l
User's

accuracy 97.540/0 95.31% 96.4

DT Predicted

Training size SA Other ~ Producer's

200 accuracy

Actual SA . iii',· .'" 6 125 95.20%.¥,q (~1""~9!;
Other 3 1'2t; 125 97.60%

IN iNiz

~ 122 128 f(W;~1~~;1
User's

accuracy 97.54% 95.31% 96.4
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DT Predicted

Training size SA Other 1: Producer's

250 accuracy

Actual SA ~;'\w'jiWI19 6 125 95.20%".. r' ';i'l
Other 3 r'~:llja:t' 125 97.60%

1: 122 128 !0·;,:ZSg:
User's

accuracy 97.54% 95.31% 96.4

DT Predicted

Training size SA Other 1: Producer's

300 accuracy

Actual SA I::' 123 2 125 98.40%
.j % '

Other 4 "q7Ir~~"il 125 96.80%
...... /'

1: 127 123 w;l50
1;6%.m ~Jit.,

User's

accuracy 96.85% 98.37% 97.6
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AnnexA

Confusion Matrices for ML, SVM, DT and SVDD classifications

5) Error matrices for different training data sets using the one class svnn
classifier. Fens (FE) as class of interest

svnn Predicted

Training size FE Other 1: Producer's

5 accuracy

Actual FE 92 33 125 73.60%

Other 2 123 125 98.40%

1: 94 156 250

User's 97.87 78.85

accuracy 0/0 %

svnn Predicted

Training size FE Other :E Producer's

10 accuracy

Actual FE 104 21 125 83.20%

Other 2 .123 125 98.40%

1: 106 144 250

User's 98.11% 85.42%

accuracy
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AnnexA

Confusion Matrices for ML, SVM, DT and SVDD classifications

svnn Predicted

Training size FE Other I: Producer's

15 accuracy

Actual FE 104 21 125 83.20%

Other 2 123 125 98.40%

I: 106 144 250

User's 98.11% 85.42%

accuracy

SVDD Predicted

Training size FE Other I: Producer's

20 accuracy

Actual FE 109 16 125 87.20%

Other 2 123 125 98.40%

E 111 139 250

User's 98.20% 88.49%

accuracy

SVDD Predicted

Training FE Other I: Producer's

size 25 accuracy

Actual FE 115 10 125 92.00%

Other 3 122 125 97.60%

E 118 132 250

User's Overall

accuracy 97.46%, 92.42% 94.80%
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AnnexA

Confusion Matricesfor ML, SVM, DTand srtm classifications

SVDD Predicted

Training FE Other 1: Producer's

size 50 accuracy

Actual FE 115 10 125 92.00%

Other 3 122 125 97.60%

1: 118 132 250

User's Overall

accuracy 97.46% 92.42% 94.80%

SVDD Predicted

Training FE Other 1: Producer's

size 75 accuracy

Actual FE 121 4 125 96.8%

Other 13 112 125 89.6%

1: 134 116 250

User's Overall

accuracy 90.30% 96.55% 93.20%

SVDD Predicted

Training FE Other 1: Producer's

size 100 accuracy

Actual FE 121 4 125 96.8%

Other 13 112 125 89.6%

1: 134 116 250

User's Overall

accuracy 90.30% 96.55% 93.20%
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AnnexA

Confusion Matrices for ML, SVM, DT and SVDD classifications

SVDD Predicted

Training FE Other ~ Producer's

size 125 accuracy

Actual FE 121 4 125 96.8%

Other 13 112 125 89.6%

~ 134 116 250

User's Overall

accuracy 90.30% 96.550/0 93.20%

SVDD Predicted

Training FE Other ~ Producer's

size150 accuracy

Actual FE 117 8 125 93.6%

Other 3 122 125 97.6%

:r. 120 130 250

User's Overall

accuracy 97.50% 93.85% 95.60%

SVDD Predicted

Training FE Other 1: Producer's

size 200 accuracy

Actual FE 117 8 125 93.6%

Other 3 122 125 97.6%

1:: 120 130 250

User's Overall

accuracy 97.50% 93.85% 95.60%
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AnnexA

ConfusionMatricesfor ML, SVM, DTand SVDD classifications

6) Error matrices for different training data sets using the one class SVDD

classifier. Saltmarshes (SA) as class of interest

SvnD Predicted

Training size SA Other l: Producer's

5 accuracy

Actual SA 71 54 125 570/0
"IWM

Others 4 '121 125 96.80%
% 'i

1: 75 175 250
'\ '" i1:,

User's Overall

accuracy 99.01% 83.22% 76.80%

SvnD Predicted

Training size SA Other 1: Producer's

10 accuracy

Actual SA 102 23 125 82%
,"

Others 51< :': l~Oi) 125 96.00%~,:ii,

1: 107 143 \f!5~:
User's Overall

accuracy 99.01% 83.22% 88.80%
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AnnexA

Confusion Matricesfor ML, SVM, DTand SVDD classifications

svnn Predicted

Training size SA Other ~ Producer's

15 accuracy

Actual SA IiiiS ::i&%106' 19 125 85%
ii"~ ""c,/p:

Others 14 iBM" 1:11* 125 88.80%:r i±lIL'iC<)F

~ 120 130
~~{

User's Overall

accuracy 99.01% 83.22% 86.800/0

svnn Predicted

Training size SA Other ~ Producer's

20 accuracy

Actual SA 114 11 125 91%
w

"

Others 16
,,,1109 125 87.20%

n', " c.z;

~ 130 120 \~5q
r4cdiM\~

User's Overall

accuracy 99.01% 83.22% 89.20%

SVDD Predicted

Training SA Other ~ Producer's

size 25 accuracy

Actual SA 100 25 125 80%

Others 1 124 125 99.2%

~ 101 149 250

User's Overall

accuracy 99.01% 83.22% 89.600/0
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AnnexA

Confusion Matrices/or ML, SVM, DTand SVDD classifications

SVDD Predicted

Training SA Other l: Producer's

size 50 accuracy

Actual SA 102 23 125 81.6%

Others 1 124 125 99.2%

l: 103 147 250

User's Overall

accuracy 99.03% 84.35% 90.40%

SVDD Predicted

Training SA Other l: Producer's

size 75 accuracy

Actual SA 104 21 125 83.2%

Others 1 124 125 99.2%

l: 105 145 250

User's Overall

accuracy 99.05% 85.52% 91.20%

SVDD Predicted

Training SA Other l: Producer's

size 100 accuracy

Actual SA 116 10 125 92.8%

Others 2 123 125 98.40/0

l: 118 133 250

User's Overall

accuracy 98.31% 92.48% 95.60%
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AnnexA

Confusion Matricesfor ML, SVM, DTand SVDD classifications

SVDD Predicted

Training SA Other 1: Producer's

size 125 accuracy

Actual SA 116 10 125 92.8%

Others 2 123 125 98.4%

1: 118 133 250

User's Overall

accuracy 98.31% 92.48% 95.60%

SVDD Predicted

Training SA Other 1: Producer's

size 150 accuracy

Actual SA 115 10 125 92%

Others 2 123 125 98.4%

1: 117 133 250

User's Overall

accuracy 98.29% 92.48% 95.20%

SVDD Predicted

Training size SA Other 1: Producer's

200 accuracy

Actual SA 115 10 125 92%

Others 2 123 125 98.4%

1: 117 133 250

User's Overall

accuracy 98.29% 92.48% 95.20%
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AnnexB

Parameter choice for SVM and SVDD by cross-validation

ANNEXB

Parameter choice for SVM and SVDD by cross-

validation
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AnnexB

Parameter choice/or SVAf and SVDn by cross-validation

1) SVM parameters. Cross-validation. Fens as class of interest

a) Fens C=1

100.00

~---:.. • : : : : •• •SO.00 • • • • • • • • • •
0.00

1 I 2 I 3 I 4 I 5 I 6 7 I 8 I 9 I 10
-+- Polynomial SO.00[50. e>q so.00:50. 00 50. 00:SO.OCSO.00; 50. 0150. oqso. 00
-Gaussian 91.07188.6983.3~80.36:78.57i78.57 78.57: 78.571 78.5~78.57

--A- Exponential 89.88[78.5~77.38~71.43:68.45[66.07 63.69[62.5061.3161.31

Free parameter value

-+- Polynomial
-Gaussian
--A- Exponential

b) Fens C=10

100.00

80.00 .~ • .==t::::::: : :60.00
• • • • • • • • • •40.00

20.00

0.00
1 I 2 I 3 I 4 5 I 6 I 7 8 I 9 10

-+- Polynomial SO.00; SO.OQ SO.OOjSO.OCSO.00; SO.00; SO.00 50. 00:SO.DC 50.00

-Gaussian 90.48192.2685.71180.9578.57178.57:78.57 78.57178.57 78.57

--A- Exponential 91.67[82. 7479.17:78.5~n.38,77.38i73.8166.67[64.2964.29
Free parameter value

-+- Polynomial
-Gaussian
--A- Exponential
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Annex B

Parameter choice for S~ and SvnD by cross-validation

c) Fens C=100

100 00
l::::::::::: 1~SO.00 • • • • •

60.00 • • • • • • • • • •40.00

20.00

0.00
1 I 2 3 I 4 5 I 6 718 9 110

-+- Polynomial 50.00: SO.00 SO.00 SO.00 SO.OO;SO.OCSO.00: SO.00 SO.00
1
SO.OC

_Gaussian 92.86 90.4892.26 85. 71j81.55?9. 7678.57:78.57 78.57:78.51
__._ Exponential 89.88

1

84.5286.90: SO.95 SO.36~SO.~ 79. 76i 79.17 79.17[79.17
Free parameter value

-+- Polynomial
_Gaussian
__._ Exponential

d) Fens C=1000

100.00

80.00
---=I : I-=- • • • • • •

60.00 • • • • • • • • • •40.00

20.00

0.00
1 I 2 3T41516 718 9 I 10

-+- Polynomial 50.00: SO.00 SO.00; SO.00 SO.00; SO.00 50.00:50.00 50.00:50.00

_Gaussian 88. 10j92.2691.07i89.8883. 93: SO.9f 79. 17i78.5f 78.57177.38

__._ Exponential 89.88 88.1086.31
1
85.7183.33;79.11 78.57:n.3877.98~78.57

Free parameter value

-+- Polynomial
-Gaussian
__._ Exponential
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AnnexB

Parameter choice for SVM and SVDD by cross-validation

2) SVM parameters. Cross-validation. Saltmarshes as class of interest

a) Sartmarshes C=1

150
~e

-+- polynomial:::J 100 :su ; ;u ; ; -GaussianIV ; I1! 50 ! _.._ Exponential
CD

~ 0
1 2 3 4 5 6 7 8 9 10

-+- polynomial 50 50 50 50 50 50 50 50 50 50

-Gaussian 96.43[95.8391.67
1
86.9C 84.52179.7€ 74.40?0.2~66.07[63.1C

_.._ Exponential 95.24[80. 3662.50'59.5~ 59.52;58.92 58.93:58.9~ 58.93;58.92
Free parameter

b) Sartmarshes C=10

150
~
I!

100 -+- polynomial:::J ::s-;uu ; ;=:; _GaussianIV i- 11! 50 _.._ Exponential
CD

~
0

1 2 3 4 5 6 7 8 9 10

-+- polynomial 50 50 50 50 50 50 50 50 50 50

_Gaussian 97.6295.~ 93.45[88.1086.31[80.95[77.3870.83 66.0~63.1a

_.._ Exponential 97.62.86.9C 77.98 68.4~63.10:60.12:59.5~58.93158.~58.93

Free parameter
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Annex B

Parameter choice for SVM"and SVDn by cross-validation

c) Saltmarshes C=100

150
>-u
III~

100 -+- polynomial~ -==I:::::::=::o :u :==t==I~ _GaussianIII

1! 50 • • • • • • • • • • --.- ExponentialI
CD
>
0

0
1 2 3 4 5 6 7 8 9 10

--+- polynomial 50 50 50 50 50 50 50 50 50 50
-Gaussian 94.0597.0:;; 94.05

1
88.1086.31

1
83.3378.57173.8170.8367.26

1--.- Exponential 94.05' 88.69 76.19171.43 69.64166.0~72.02:68.4567.2665.481

Free parameter

d) Saltmarshes C=1000

100
>- .-L::::::::~:==::::u 80f!

~ -+- polynomial~u 60u
III • • • • • • • • • • -Gaussian
1! 40

--.- Exponential
CD 20>
0

0
1 2 3 4 5 6 7 8 9 10

--+- polynomial 50 50 50 50 50 50 50 50 50 50

-Gaussian 94.64 94.05.91.6789.88 86.31 184.52?9. 76
1
75.0( 72.6~67.86

--.- Exponential 94.05189.88179. 7~72.02 69.64:65.4863.10163.1C 63.10:63.10

Free parameter
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Annex B

Parameter choice for SVM and SVDD by cross-validation

PageB-6

3) svnn parameters. Cross-validation. Fens as class of interest

a) Fens C=10

100 00

90.00 ~: ~' ~ ~ :80.00 -
70.00

60.00

50.00
1 2 3 4 5 6 7 8 9 10

-+- Polynomial 91.06 91.06 91.06 89.87 89.87 89.87 90.47 89.87 89.87 90.91
_Radial 78.25 85.83 88.21 87.02 90.60 89.40 89.40 90.60 91.79 91.79
-.- Exponential 67.86 n.38 80.95 81.55 73.81 79.76 83.93 79.17 79.76 80.36

Free parameter

b) Fens C=100

100

>-u
l!
:::J
U
U
ca

90 :;:::
-==

• :: : :-: :80

70

60

50
1 2 3 4 5 6 7 8 9 10

-+- Polynomial 92.26 93.78 92.86 91.67 91.07 91.67 91.67 93.17 91.07 91.67

-Radial 77.38 85.12 87.5 88.1 89.29 89.29 89.88 90.48 90.48 90.48

-+- Exponential 63.1 76.19 81.55 80.36 73.81 79.76 79.17 73.81 79.76 80.36

1!
GI
>o

Free parameter value



AnnexB

Parameter choice/or SVM and SvnD by cross-validation

c) Fens C=1000

100.00
>- :;;: I

~ ~

o 90.00 : ::':: :f
::l

80.00uu --co

f
70.00

Q) 60.00>
0

50.00
1 2 3 4 5 6 7 8 9 10

-+- Polynomial 90.96 91.56 91.56 90.37 89.72 89.97 89.97 90.22 90.22 90.22

-Radial 76.19 86.31 88.10 89.29 90.48 90.48 91.67 92.26 92.26 92.26

-.- Exponential 63.10 76.19 81.55 80.36 73.81 79.76 79.17 73.81 79.76 80.36
Free parameter

4) SVDD Cross-validation. SaItmarshes as class of interest

a) Saltmarshes C=10

11000

90.00 >< :;::==t:::::::: : : : ~
70.00

50.00
1 2 3 4 5 6 7 8 9 10

-+- Polynomial 92.26 91.67 89.29 92.26 91.67 89.28 90.48 90.48 92.26 92.26

_Radial 85.71 86.31 91.07 90.48 89.88 89.88 89.88 90.48 90.48 89.88

-6- Exponential 66.07 83.33 n.98 n.38 87.50 80.36 80.95 n.98 77.38 n.38
Free parameter
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AnnexB

Parameter choice/or SVM and SVDD by cross-validation

b) Saltmarshes C=100

100.00
>-

~

~

u 90.00l!
:J
U 80.00u
C'G

1! 70.00
Q) 60.00>
0

50.00
1 2 3 4 5 6 7 8 9 10

-+-- Polynomial 94.64 95.24 94.64 93.45 93.45 93.45 93.45 93.45 93.45 94.05

-Radial 80.95 85.71 92.26 92.26 92.86 93.45 94.05 94.05 94.05 94.64

-6- Exponential 64.88 84.52 88.69 79.17 88.69 79.17 79.76 88.69 79.76 89.29
'--------

Free parameter values

Free parameter

c) Saltmarshes C=1000

100 00
90.00 r~ :;;:::: :80.00
70_00

60.00
so.00

1 2 3 4 5 6 7 8 9 10

-+-- Polynomial 95.24 95.24 94.64 92.86 93.45 93.45 93.45 93.45 93.45 93.45

_Radial 80.95 85.71 87.SO 91.07 91.67 92.26 92.86 92.86 92.86 92.86

-6- Exponential 64.29 82.74 87.SO 77.38 86.90 77.38 77.98 86.90 77.98 77.38
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ANNEXC

SVM Support Vectors and Separating Hyperplanes

ANNEXC

SVM Support Vectors and Separating Hyperplanes
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ANNEXC

SVM Support Vectors and Separating Hyperplanes

1) Support Vectors and separating hyperplanes for the SVM per training

size. Fens as class of interest

•
••• •1

t , •
~,
•

• •

•
• • •

Training size 30
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ANNEXC
SVM Support Vectors and Separating Hyperplanes

• •••
•...• •
•

••

"• • •

••

• • •

Training size 50

• • ••
• •

• •
•••

.,
c•• •

• ••
• ••
•• •

• • • ••..
Training ize 100

Page - 3



ANNEXC
SVM Support Vectors and Separating Hyperplanes

r • •
• •

• ..
• •..

~ •.. • •, *'
t... t....
• •• • •

•• •• •• •
• ..

• • • • ••

Training ize 150

, •
• ..

*'
~.. ·...• •.:,\..

'*
•

# •• ••• ,.
••
•

••

••
••• ..

• • •• • • ••

Training size 200

Page C- 4



A EXC
SVM Support Vectors and Separating Hyperplanes

, • ••• • •
•

•
•
• •# •• •
t •• ,
• • •• • • ••

rainin iz 2 0

••

•• • ~ .• ....
• ••••• ,. •• • • •• •

• •• •• • ••• • • • .tII

•

rainin iz 0



ANNEXC

SVM Support Vectors and Separating Hyperplanes

2) Support Vectors and separating hyperplanes for the SVM per training

size. Saltmarshes as class of interest.

• •
• •• .... • I:

•• •l-
•• .,
• •••..•

•

• • •

Training ize 30
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ANNEXC

SVM Support Vectors and Separating Hyperplanes

• •
• •

• • •• ••
t ..
:1)

•I •... ..
.-• •

• • •

Training siz SO

• ••
•• • ..

.. .)

••
.. ...
• •

• • • • •

Tr inin iz 100

Pa e - 7



ANNEXC
SVM Support Vectors and Separating Hyperplanes

, • •• .. ••
• a • •• • ..'\

" •• .-.... •• .-
'* ~ ..

..
~..

.. .... .-.-
.- ;. •
• •
• ,

• • • • ••
t

Training ize 150, • •.. ••
• • •• • • •• •

•

• .-• •.- ..
• (. ••• ••

• ,
• • •• • • ••

raining iz 200
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ANNEXC

SVM Support Vectors and Separating Hyperplanes

, • •... ••
:.\ • •.~.... ~. --:

,.

" ,. ..
•• ..

• •t· ••• • • ••
• ,

• • • ••• • • • ••
•

Training size 250

• ••
* •

..
\

,. ..
•.. •.. • •,. ••• •••• •

• ~.. •• •••• • •• • • •
•

Training ize 300
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AnnexD

Decision Trees Structures

ANNEXD

Decision Trees structures

PageD-l



AnnexD

Decision Trees Structures

1) Decision Trees. Optimal tree structure by training set size

Fens as class of interest

Training size 30 pixels

Terminal
Node 1

W= 10.000

Node 1
NDVI
W= 30.000

N =30

Node 3
B2
W= 17.000

N = 17

Terminal
Node 2

W= 2.000

• Ft"IlS

• Other class

PageD- 2

Node 2
82
W=20.000

N= 20

Terminal
Node 3

W= 15.000

Terminal
Node 4

W= 3.000



Annex D

Decision Tree Structures

Training ize 50 pixels

Node 1
B2
W= SO.OOO

N = 50

Node 2 Terminal
B2 Node 3
W· 32.000 W= 18.000

N = 32

Terminal Terminal
Node 1 Node 2

W .. 7.000 ,wa 25.000

F ns

tit 1 lass

Training ize 100 pi el

Node 1
82
W·100.000

N -100

Node 2
82
W·63.000

N·63

Terminal
Node 3

w= 37.000

-TermInal
Node 1

W·13.000

Terminal
Node 2

W. 50 000

Fe-ll.~
• rher class

Po e D- 3



AnnexD

Decision Trees Structures

Training size 150 pixels

Node 1
82
W= 150.000

N = 150

Node 2 Terminal
82 Node 3
W=95.000 W= 55.000

N= 95

Terminal Terminal
Node 1 Node 2

W= 21.000 W= 74.000

• F(,IlS

• Other class

Training size 200 pixels

Node 1
82
W=200.0OO

N= 200

Node 2 Terminal
82 Node 3
W= 132.000 W= 68.000

N = 132

Terminal Terminal
Node 1 Node 2

W= 33.000 W= 99.000

• F(,IlS

• Other class
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Annex D

Decision Trees Structures

Training size 250 pixels

Node 1
82
W=250.0m

N= 250

Node 2 Terminal
82 Node 3
W= 164.000 W= 86.000

N = 164

Terminal Terminal
Node 1 Node 2

W= 40.000 W= 124.000

• Fens

• Other class

Training size 300 pixels

Node 1
82
W= 300.000

N = 300

Node 2 Terminal
82 Node 3
W= 199.000 W= 101.000

N = 199

Terminal Terminal
Node 1 Node 2

W= 49.000 W= 150.000

• Fens
• Other class
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Anne.xD

Decision Trees Structures

Decision Trees. Optimal tree structure by training set size

Saltmarshes as class of interest

Training size 30 pixels

Node 1
NOV I
W= 30.000

N =30

Node 2
82
W-15.000

N -15

Node 4
NDVI
W= 15.000

N = 15

Terminal
Node 1

W·1000

Node 3
82
W=14.000

N "14

Node 5
B2
W= 5.000

N=S

Terrrinal
Node 4

W= 3.000

Terminal
Node 5

W= 2.000

Terminal
Node 2

W"13.000

Terminal
Node 3

W= 1.000

F l\~

• rhei class
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Terminal
Node 6
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AnnexD

Decision Trees Structures

Training size 50 pixels

Node 1
82
W= SO.oeo

N= 50

Node 2 Terminal
82 Node 3
W=36.000 W= 14.000

N= 36

Terminal Terminal
Node 1 Node 2

W-11 000 W= 25.000

• Fens
Other lass

Page D- 7



nnex D

Deci ion Tree Structure

Trainin ize 100 pi el

Node 2
82
We 74000

N·74

Termn~
2

w-st.ooo

l\~

th 1 ). SS

Pag

Node 1
82
W:100.000

N = 100

Node 3
NDVI
W=54 000

N·54

I Termlna I
Node 3

~

Terminal
Node 4

W=26.000



AnnexD

Deci ion Tree Structure

Training ize ISO

Node 1
82
W-1S0.000

N = 150

I Terminal
Node 1

W= 38 000

I I

Node 3
NOVI
W=101.000

N = 101

Ncde2
82
W=112.000

N= 112

Termnal
Node 2

W-100000

us
ther lass
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W= 1.000
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AnnexD

Decision Trees Structures

Training size 200 pixels

Node 1
B2
W= 200.000

N = 200

Node 4
B2
W= 149.000

N = 149

Node 2
B2
W= 51.000

N = 51

Terminal
Node 1

W .. 48.000

Node 5
NDVI
W= 101.000

N = 101

Node 3
NDVI
W= 3.000

N=3

Terminal
Node 2

W-1.000

Terminal
Node 3

W= 2.000

Terminal
Node 4

W= 100.000

Terrrinal
Node 5

W= 1.000

• F(>llS

• rher lass
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Node 7
NDVI
W= 3.000

N=3

Terminal
Node 6

W= 1.000

Terminal
Node 7

W= 2.000

Node 6
B2
W= 48.000

N = 48

Terminal
Node 8

W = 45.000



AnnexD

Deci ion Tree Structure

Training ize 250 pixels

TerrTllnsl
Node 1

W· 58.000

Node 3
B2
W=61.000

N,. 61

Terminal
Node 2

W .. 1000

us

• tit 1 lass

Page D-ll

Node 2
B2
W= 187.000

N = 187

Node 4
NOVI
Wz 3.000

N=3

Terminal
Node 3

W· 2.000

Terminal
Node 4

W= 125,000

Node 1
B2
W= 250.000

N =250

NodeS
NOVI
W= 126.000

N = 126

Termnel
Node 5
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