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Abstract 

A high proportion of prostate cancer and benign prostatic hyperplasia (BPH) have been 
shown to be dependent on androgen biosynthesis. The biosynthesis of androgens is 
undertaken by a number of important enzymes such as 17a-hydroxylase/17,20-lyase 
and 17~-hydroxysteroid dehydrogenase. Through the inhibition of these enzymes it is 
possible to reduce the amount of androgens present, which in turn reduces the 
stimulation of androgen-dependent prostatic diseases. Within the current study, we 
have undertaken the biochemical evaluation of a number of compounds of varying 
structural features and which were synthesised within our group as potential enzyme 
inhibitors in the tretament of androgen-dependent diseases. 

In general, the results from the current study show that the compounds evaluated 
against the enzyme complex 17a-hydroxylase/17,20-lyase possessed good inhibitory 
activity. In particular, the imidazole-based inhibitors were found to be more potent 
against 17,20-lyase in comparison to 17a-hydroxylase, and were more potent than the 
triazole-based compounds. The most potent compounds within the current study 
include: 1-(7 -phenyl-heptyl)-1 H-imidazole (171) (IC50=98.S±1S.6nM, Kj=SS.3±3.4nM 
against 17,20-lyase and IC50=O.32±O.OS/J-M, Kj=O.21±O.01 ~M against 17a
hydroxylase), 1-[7 -(4-fluoro-phenyl)-heptyl]-1 H-imidazole (179) (IC50=S7.S±1.SnM, 
Kj=21.S±O.1 nM against 17,20-lyase and IC50=173.62± 7.00nM, Kj=77.S±2.SnM against 
17 a-hydroxylase) and 1-[S-(4-bromo-phenyl)-pentyl]-1 H-imidazole (187) 
(IC50=S8.1±S.2nM against 17,20-lyase and IC50=O.SO±O.04/J-M against 17a
hydroxylase), these compounds were all potent inhibitors compared to the standard 
inhibitor ketoconazole (1) (IC50=1.66±O.1S~M, Kj=O.67±O.02~M against 17,20-lyase 
and IC50=3. 76±O.01 /J-M, Kj= 1.24±O.01 ~M against 17 a-hydroxylase). 

In an effort to discover lead compounds in the inhibition of the 17~-hydroxysteroid 
dehydrogenase (17~-HSD) family of enzymes, a range of commercially available 
compounds based on phenyl ketones were initially evaluated against type 1 (17~
HSD1) and 3 (17~-HSD3) of 17~-HSD which are responsible for the reduction of 
estrone and androstenedione to estradiol and testosterone respectively. The majority 
of these compounds were found to possess weak inhibitory activity, however, some 
were found to possess good inhibitory activity. As such, a number of compounds were 
synthesised within our group as potential inhibitors of 17~-HSD1 and 17~-HSD3. The 
results show that the 4-hydroxyphenyl ketone-based compounds were found to be 
highly potent against type 3 in comparison to type 1. For example, 1-(4-hydroxy
phenyl)-nonan-1-one (254) was found to possess (against type 3) inhibitory activity of 
83.S3±0.48% (at [1]=1 OO~M) (IC5o of 2.86 ± O.03~M). Under similar conditions, 254 
was found to possess 36.32±O.33% (at [1]=1 OO~M) inhibitory activity against type1. A 
range of compounds were also synthesised based on the biphenyl ketones, however, 
these were found to be weaker inhibitors of type 3 in comparison to the 4-
hydroxyphenyl ketones although they possessed greater inhibitory activity against type 
1. In an effort to determine the selectivity of these compounds against the overall class 
of HSD enzymes, all inhibitors were evaluated for 3~-hydroxysteroid dehydrogenase 
(3~-HSD) inhibitory activity. We discovered that in general, all of the synthesised 
compounds possessed weak inhibitory activity against this enzyme at inhibitor 
concentration of 1 OO~M and SOO~M, as such, these synthesised compounds could be 
considered to be good lead compounds for the inhibition of 17~-HSD. 
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Chapter 1 



1.0 INTRODUCTION 

1.1 Cancer 

The word cancer is used to describe a group of diseases in which cell 

reproduction has malfunctioned, leading to uncontrolled cell division, resulting 

in the eventual loss of specificity of the cell (Eales et ai, 1997). Cancer does not 

only exist as a single disease but as part of a family of diseases, consisting of 

over 200 different types, which respond to different treatments. 

During the development of cancers, four main features have been noted: 

• Excessive cell proliferation: resulting in the formation of the tumour. 

• Loss of tissue specific characteristics: in the early stages, cancer 

cells that are formed appear and function similarly to the original cells 

from which they are derived, but as the tumour progresses, the tumour 

cells begin to differ functionally, as well as in appearance. 

• Invasiveness: the tumour begins to spread into adjacent tissues, and is 

the point at which it begins to become malignant. [Some tumours, 

however, may exist as benign growths (tumours which do not have the 

ability to damage tissue or spread to distant sites in the body)]. 

• Metastasis: the tumour begins to establish itself in sites distant from the 

initial site of the growth. Most patients who die of cancer usually do so as 

a result of metastasis to vital organs such as the brain or liver; there are 

only a limited number of cases where the patient dies due to the primary 

tumour, as they can usually be removed surgically (Rang et ai, 1996). 
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1.2 The prostate gland 

The prostate is composed of tubular and alveolar glands arranged in lobules 

surrounded by a stroma. It is positioned deep within the pelvis, and is rich in 

nerves, smooth muscle, connective tissue and lymphatic vessels. This 

surrounding stroma not only physically supports the glandular epithelium but 

also contributes to the endocrine and paracrine microenvironment. The 

fibromuscular and glandular organ is made up of four regions: three glandular 

zones and a fibromuscular stroma (Figure 1.1). 

The three glandular zones are the transition zone, the central zone and the 

peripheral zone (McNeal, 1981). The transition zone surrounds the prostatic 

urethra, the central zone surrounds the ejaculatory ducts from the base of the 

prostate to the verumontanum, whilst the peripheral zone is posterior and 

lateral to the prostate. 

bladder 

peripheral zone 

prostatic 
~~ 

sphincter 

~----stroma 

II 
urethra 

Figure 1.1 Glandular zones of the prostate (Shen et ai, 2001) 

The composition of the glandular component is mainly of two types of epithelial 

cells: luminal and basal, and is interspersed with occasional neuroendocrine 

cells. 
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The basal layer is made up of cuboidal cells and the luminal layer is made up of 

a layer of columnar secretory cells. The basal cells next to the basement 

membrane include the stem cells that form the proliferative compartment of the 

prostate epithelium. The luminal cells synthesise and secrete the products of 

the seminal fluid, including prostate-specific antigen (PSA) and prostate-specific 

acid phosphatase, polyamines and prostaglandins (Allsbrook and Simms, 1992; 

Leong et ai, 1988). The luminal cells express androgen receptors (AR) and are 

dependent on androgenic stimulation for their viability and secretory ability. 

The prostatic stroma is a mixture of smooth muscle cells, fibroblasts, blood 

vessels and nerves within the intervening extracellular matrix. Prostate growth 

and differentiation is critically dependent on highly complex but poorly 

understood epithelial-stromal interactions (Pentyala et ai, 1998; Chung et ai, 

1991; Cunha et ai, 1983). 

1.3 Endocrinology of the prostate 

At puberty, when the testes begin to secrete large quantities of testosterone (T), 

there is a large increase in prostate growth (Nnane et ai, 1999b; Suzuki et ai, 

2001). Up to the age of forty-five, the size of the prostate stays constant, but at 

approximately fifty years, there is often another increase in prostate growth, 

despite levels of T decreasing and it is postulated therefore, that an unknown 

factor is involved in the continued growth of benign prostate hyperplasia (BPH, 

Section 1.4) and prostate cancer (Section 1.5) in older men (Mahapokai et ai, 

2000; Long et ai, 2000). 

The majority of circulating T is synthesised within the testes, although 

approximately 10% is produced from adrenal precursors. The hypothalamus 

releases luteinizing hormone releasing hormone (LHRH) in pulses, which in 

turn results in the pulsatile release of follicle stimulating hormone (FSH) and 

luteinizing hormone (LH). There is promotion of T production by the attachment 

of LH to receptors on the Leydig cells of the testes (Gregory et ai, 2001; Landis 

et ai, 1999; Lin et ai, 1993; Linja et ai, 2001; Pentyala et ai, 2000). 
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The T produced by the testes is transported in the blood bound to steroid 

hormone binding globulin; it enters the prostate cell and is converted by 50-

reductase (5AR) to dihydrotestosterone (DHT). This conversion promotes 

further passive diffusion of T into the cell. DHT then binds to the AR in the 

cytoplasm and this DHT -AR complex moves into the nucleus where, after 

binding to a nuclear acceptor site, stimulates the synthesis of proteins. 

Synthesised proteins promote further cellular division, along with synthesis of 

5AR. It is the preferential binding of DHT to the AR rather than T that produces 

the given effect in the prostatic epithelial cells (Bratoeff at ai, 1999). 

1.3.1 Androgen Receptors (AR) 

AR are specific androgen-binding proteins (termed androphilin) and are located 

in the cytoplasm and nucleus of androgen responsive prostate cells. In order for 

androgens to influence the biological activity and growth rate of prostate cells 

the presence of androgen receptors is necessary. As T levels decline during the 

normal ageing process the number of AR would be expected to decline, 

however the reverse is observed, utilising a greater percentage of the T and 

DHT, which is hypothesised for the resulting growth of the prostate. 

Molecular biology has shown the importance of the DHT -AR complex in the 

regulation of gene expression. The other major influence on cellular 

homeostasis and regulation of prostatic growth is exercised by a number of 

intrinsic factors (e.g. peptide growth regulatory factors) through various 

paracrine, autocrine or intracrine interactions (Quigley et ai, 1995). 

1.4 Benign Prostate Hyperplasia (BPH) 

BPH is a non-malignant enlargement which is due to the growth of the stromal 

and glandular components of the prostate (Frye, 1996). There are two major 

factors associated with BPH: the presence of testes and ageing (Denis and 

Mahler, 1990). The prostate reaches its full adult size by the age of twenty and 

remains constant until fifty years of age (Siiteri and Wilson, 1970), when there is 
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a 75% probability of the male population experiencing BPH. The detection of 

hyperplasia is difficult before the age of forty but by the age of forty-five, 50% of 

the male population demonstrates histological hyperplasia on autopsy, and by 

the age of ninety, it is proposed that most men will have histologic BPH (Isaacs, 

1990; Arrighi et ai, 1991). 

BPH is the formation of nodules, which increase the size of the gland and, as 

the prostate is located below the bladder surrounding the urethra, consequently 

results in the obstruction of the urinary tract (Isaacs, 1990; Arrighi et ai, 1991). It 

has been shown that BPH depends on testicular androgens and that the 

absence of functioning testes before the age of forty prevents both BPH and 

prostate cancer (Huggins and Hodges, 1941; Geller, 1993). BPH is caused by 

increased levels of DHT (Imperato-McGinley et ai, 1974; Siiteri and Wilson, 

1970), the most potent androgen. DHT is necessary for the development of 

male characteristics (e.g. thick hair growth, acne, baldness), external genitalia 

and as mentioned, the prostate (Imperato-McGinley et ai, 1974). 

1.5 Prostate Cancer 

Prostate cancer is the most common malignancy in men over the age of forty 

years (Frye et ai, 1996) and can be of two types: hormone-dependent or 

hormone-independent. It has been established that the level of circulating 

androgens is very important to the growth and spread of prostate cancer 

(Huggins and Hodges, 1941). The chances of developing prostate cancer and 

the mortality rate increase in relation to age, peaking in those over the age of 

eighty-five. 

1.5.1 Risk factors for prostate cancer 

The initiation and promotion of prostate cancer has been linked to 

environmental factors such as: damaging radiation, chemical, as well as 

oncogenic viruses. Genetic factors, race, age, hormonal factors and family 
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history are also recognised risk factors (Catalona et ai, 1986; Gormley, 1996). 

Some of these risk-factors are discussed below. 

a Age 

As previously discussed, age IS a major contributing factor to prostate 

cancer. As men pass the age of fifty, the prostate gland begins to enlarge. 

This enlargement is generally benign and may cause slight elevations in 

the PSA level. Due to the growth of the prostate with increasing age the 

prostate gland becomes susceptible to malignancies or abnormalities 

(Crawford, 2003). 

b Race and ethnicity 

It has been shown that prostate cancer varies widely between race and 

ethnic groups, for example, African-Americans have the highest incidence 

rate, whereas native Japanese have amongst the lowest. The reason for 

these risk differences are not clearly understood but dietary and other 

culturally-mediated differences have been suspected to play important 

roles. It has been shown that 5AR activity is higher in Caucasian and 

Black men compared to Japanese subjects (Ross et ai, 1992), which may 

explain the geographical variations in risk not explained by environmental 

exposure and cultural differences. The differences may also be due to AR 

polymorphism (Sartora et ai, 1999; Chang et ai, 2002). 

c Diet 

The importance of dietary factors for prostate carcinogenesis has been 

shown by epidemiological studies. Intake of foods rich in fat including 

meat, are suggested to be risk factors. It was shown experimentally that 

high fat intake promoted rat prostate carcinogenesis (Pollard and Luckert, 

1986; Kondo et ai, 1994; Gann et ai, 1994; Giovannucci et ai, 1993; Harvei 

et ai, 1997), however, other studies revealed no enhancing effect by high 

and low fat intake (Pour et ai, 1991; Shirai et ai, 1991). 
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Other dietary factors that possibly play a modulatory role in prostate 

cancer risk are vitamin E [shown to reduce risk (Zhang et ai, 2002)], 

Iycopene [shown to reduce risk (Chen et ai, 2001 )], dairy products/calcium 

[shown to increase risk (Chan et ai, 2001 )], vitamin 0 [shown to reduce 

risk (Peehl et ai, 2003)], selenium [shown to reduce risk (Duffield-Lillico et 

ai, 2003)] and phytochemicals [shown to reduce risk (Giovannucci et ai, 

2002)]. 

1.5.2 PSA 

It has been postulated that PSA regulates the invasiveness and metastatic 

potential in prostate cancer pathogenesis (Stenman et ai, 1999; Leinonen et ai, 

2000). PSA is a serine proteinase produced mainly by epithelial cells that line 

the acini and ducts of the prostate gland (Zhang et ai, 2000). Its main biological 

function is liquefaction of the seminal gel formed after ejaculation. Normal 

prostate cells produce a PSA count of between 2 and 4ng/mL of blood, 

however, in prostate cancer over 1000ng/mL PSA can be observed - this is ten 

to a hundred times more PSA per volume of tumour in comparison to BPH cells 

(Tortora and Anagnostakos, 1990). 

1.5.3 Molecular genetics of prostate cancer 

The molecular mechanics for the development and progression of prostate 

cancer is poorly understood despite its substantial clinical importance. Prostate 

cancer susceptibility genes may be harboured by four chromosomal loci which 

have been implicated by linkage analyses. Comparative genomic hybridisation 

studies have been used to study chromosomal alteration in prostate tumours. 

These analyses have commonly indicated losses of chromosomes 6q, Bp, 10q, 

13q and 16q, as well as gains of 7, Bq and Xq (Laitinen et ai, 2002). Gain of 

13q12-q13 and loss of 4, 6q24-qter, 20p and 21 q have been associated with 

the acquisition of androgen independence (Hyytinen et ai, 1997). 
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Multicentre linkage studies have associated numerous chromosomal loci with 

prostate cancer, and epidemiological studies have also suggested that 5-10% 

of all prostate cancers are familial (Simard et ai, 2002). 

1.6 Steroid biosynthesis 

Steroid hormones are synthesised from cholesterol within the mitochondria. 

The steroidogenic acute regulatory protein (StAR) mediates the acute 

stimulation of steroid synthesis, which is an active transporter of cholesterol 

through the inner mitochondrial membrane. 

The majority of the enzymes involved in the synthesis of steroids from 

cholesterol are from the cytochrome P450 family. Cytochrome P450s are 

haem-containing proteins which when combined with carbon monoxide possess 

a characteristic absorption maximum at 450nm. They are part of a family of 

enzymes known as oxygenases, that is they are able to incorporate/insert an 

oxygen atom of an oxygen molecule into the substrate (see equation 1.1), 

whilst the other oxygen atom is reduced to water. The stoichiometry of the 

monooxygenation is one mole of substrate, one mole of oxygen and one mole 

of reduced nicotinamide adenine dinucleotide phosphate (NADPH), resulting in 

one mole of product, one mole of NADP+ and one mole of water (Mason, 1957). 

+ 
NADPH + R-H + 0 + H 2 

[P45o] + 
• NADP + R-OH + H20 

Equation 1.1 Enzymatic reaction for cytochrome P450 monooxygenases. 

Proteins with protoporphyrin as cofactor are components of cytochrome P450 

(Figure 1.2). It is thought that the haem of cytochrome P450 is not covalently 

bound to the protein, unlike other haem-containing proteins. The haem iron has 

the capability of forming a total of six co-ordinate bonds and is located at the 

centre of the porphyrin nucleus. Pyrrole nitrogen atoms occupy four of its co

ordinate valencies and as they lie in the plane of the haem ring they are 
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considered planar. The fifth and sixth co-ordination sites are available for 

binding of two axial ligands, the fifth ligand involving a thiolate ion from a 

cysteine residue of the apoprotein, which attaches the haem to the protein and 

is responsible for many of the characteristic properties of cytochrome P450s. 

The sixth co-ordination site is occupied by a weaker ligand (possibly water or 

some amino acid side-chain) and can be displaced by substrates or alternative 

ligands. In addition to these features of the cytochrome P450 molecule, the 

protein moiety of the enzyme includes a hydrophobic pocket, in which the haem 

is situated, and a substrate-binding region. However, due to difficulty 

crystallising these membrane-bound enzymes, specific information regarding 

the active site still remains unclear. 

Figure 1.2 Active site of P450 - a single protoporphyrin IX prosthetic group 

(Oritz de Montellano, 1986, Rovira et ai, 1997). 

I n order for molecules (for example oxygen or carbon monoxide) to bind to the 

haem iron, it must be reduced from the ferric to the ferrous state. This change 

also occurs in the presence of substrate which also causes a conformational 

change, resulting in the loss of the sixth axial bond and a displacement of the 

iron from the plane of the ring towards the thiolate sulphur (a penta co-ordinate 

state) (Figure 1.3). 
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Figure 1.3 Conformational change induced in the P450 active site by the loss of 

the sixth ligand (Hall, 1986). 

The catalytic cycle of cytochrome P450 IS depicted by the hypothetical 

mechanism outlined in Figure 1.4. 

1. Substrate binding 

The binding of a substrate to a P450 causes a lowering of the redox potential 

which makes the transfer of an electron favourable from NADH or NADPH, 

resulting in the low spin hexa co-ordinate iron (1) losing the sixth ligand (a water 

molecule or hydroxyl group from a serine, tyrosine, or threonine residue) to 

form the penta co-ordinated high spin iron (2). 

2. The first reduction 

The next stage in the cycle involves the reduction of the Fe3
+ ion by an electron 

transferred from NAD(P)H which forms a complex with the enzyme, resulting in 

the uptake of one electron by the iron, resulting in the reduction of the ferric to 

the high-spin Fe2
+ state (3). 

3. Oxygen binding 

The reduced Fe2+ configuration IS now able to co-ordinate one oxygen 

molecule, promoted by the loss of the sixth ligand, to form a ferric-oxy 

intermediate (5). 
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4. Second reduction 

A second reduction is required by the stoichiometry of the reaction. A second 

electron is transferred to the ferric-oxy intermediate reducing it to a ferric-peroxy 

state (6) observed from resonance Raman spectroscopy (Egawa et ai, 1991). 

5. Oxygen cleavage 

Cleavage and separation of the two oxygen atoms occurs influenced by the 

strong electron-pushing ability of the fifth ligand (cysteine), resulting in the 

release of water and the formation of a ferryl-oxy intermediate (7). 

6. Oxygen insertion: 

It is thought that the oxygen atom (containing only seven electrons) exerts a 

strong electrophilic activity and abstracts a hydrogen atom or electron from the 

nearby bound substrate, producing a carbon radical and an Fe3
+ -bound 

hydroxyl radical. This latter radical, then recombines with the carbon radical to 

form the Fe3
+ -bound hydroxylated substrate. 

7. Dissociation: 

Dissociation of the hydroxylated product and enzyme occurs. 
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Figure 1.4 The catalytic cycle of cytochrome P-450 (Van Wauwe and 

Janssen, 1989). 

Cytochrome P450s involved in steroidogenesis may be microsomal or 

mitochondrial. Microsomal cytochrome P450s are insoluble in water and are 

difficult to remove from the microsomal membrane, whereas mitochondrial 

enzymes are soluble in aqueous buffer and are associated with the inner 

mitochondrial membrane. The steroidogenic cellular location of enzymes can 

be illustrated diagrammatically as in Figure 1.5. 
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Figure 1.5 Subcellular location of steroidogenesis enzymes within 

steroidogenic cells (Hall, 1986; Auzeby et ai, 1995). 

The first enzymatic step in the steroidal cascade from cholesterol to 

pregnenolone (Preg) is mediated by the cytochrome P450 enzyme cholesterol 

side chain cleavage (P450scc) (Figure 1.6). The 3~-hydroxysteroid 

dehydrogenase (3~-HSD) enzyme catalyses the oxidation of the 3~-hydroxide 

converting Preg to progesterone (P) while isomerisation of the double bond of 

the steroid B ring to the steroid A ring occurs by the action of the isomerase 

enzyme. Androgen biosynthesis involves the conversion of P to 

androstenedione (A) by the action of 17 a-hydroxylase/17 ,20-lyase (P45017a). 

This is then converted to the more potent androgen T by the action of 17~

hydroxysteroid dehydrogenase (17~-HSD) which is converted further to the 

most potent androgen DHT by the action of 5AR (Figure 1.6). 
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Figure 1.6 Steroidal cascade from cholesterol to DHT 

14 



1.6.1 17 a-Hydroxylase/17 ,20-lyase (P45017a) 

As shown in Figure 1.6, cholesterol is converted to Preg and P, which undergo 

further conversion by P45017u to dehydroepiandrosterone (DHEA) and A 

respectively. This conversion occurs in two steps by two separate components, 

the first being the hydroxylation of Preg and P by 17a-hydroxylase to form 17a

hydroxypregnenolone (17aOHPreg) and 17a-hydroxyprogesterone (17aOHP) 

respectively. The second step involves the cleavage of the C(17)-C(20) bond by 

17,20-lyase, resulting in the formation of the C(17) carbonyl functionality. Both 

of these reactions are undertaken by a single enzyme, which is expressed in 

both adrenal and testicular human tissues. 

The enzyme is encoded for by the CYP17 gene located on human chromosome 

10 (Matteson et ai, 1986; Sparkes et ai, 1991). In the testes this enzyme is 

localised on the endoplasmic reticulum of the Leydig cells, in the ovaries it is 

localised on the theca interna region and in the adrenals it is localised on the 

zona reticularis (Chan et ai, 1996; Kuhn-velten and Staib, 1983; Mesiano et ai, 

1993; Sasano et ai, 1989). 

The activity of both 17 a-hydroxylase and 17,20-lyase is decreased upon 

disruption of the lipid environment (Perrin et ai, 1995). The activity of the 

enzyme requires the presence of NADPH and NADPH cytochrome P450 

reductase (Barrie et ai, 1996), as well as cytochrome b5 which acts as an 

alternative electron donor in the donation of the second electron in the P450 

cycle. The 17 a-hydroxylation catalysis of the steroids P and Preg occurs to 

produce their 17 a-hydroxy derivatives, which in turn is followed by the cleavage 

of the C17,20 carbon-carbon bond to give A and DHEA respectively (Nakajin et 

ai, 1981). It was reported by both Chabre et al (1993) and Georgiou et al (1987) 

that 17 a-hydroxylase and 17,20-lyase activity are both sensitive to effects of 

low oxygen, whereby 17,20-lyase is more sensitive than 17a-hydroxylase. A 

similar effect was noticed in the case of the amount of NADPH cytochrome 

P450 reductase present (Lin et ai, 1993). 
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The postulated catalytic cycle for 17a-hydroxylase is shown in Figure 1.7: the 

hydroxylation is believed to occur via an iron-monooxygen (feroxy) species 

(Akhtar et ai, 1997; Lee-Robichaud et ai, 1998). 

o 

·· .... ·VUO-FeIIVI 
o 

o 

o 

Figure 1.7 The postulated mechanism for the hydroxylation of P by 17a

hydroxylase (Akhtar et ai, 1997; Lee-Robichaud et ai, 1998). 

Several mechanisms have been suggested for the 17,20-lyase step, some 

involving attack by a ferroxy species (Ahmed and Owen, 1998), others by a 

peroxy species (Akhtar et ai, 1997). Workers within our group have suggested a 

mechanism involving the ferroxy species rather than both the ferroxy and 

peroxy species in the mechanism where attack on the C(20) carbonyl group 

takes place prior to the attack on the C(17). This postulated catalytic cycle for 

17,20-lyase is shown in Figure 1.8 
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Figure 1.8 A postulated mechanism for 17,20-Lyase (Ahmed, 1999) 
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1.6.2 17~-Hydroxysteroid dehydrogenase (17~-HSD) 

The 17P-HSD family of enzymes plays a pivotal role in the formation and 

inactivation of active androgens and estrogens from circulating steroid 

precursors. This enzyme can thus regulate tumoural cell proliferation in 

androgen- or estrogen-dependent cancers. 17P-HSD catalyses the reduction of 

17 -ketosteroids or the oxidation of 17p-hydroxysteroids using NAD(P)HI 

NAD(Pt as a cofactor (Figure 1.9). The actual size of the enzymes is not 

known but they are predicted to have 327 amino acids (Luu-The et ai, 1989; 

Luu-The et ai, 1990). 

Nine types of 17P-HSD isozymes have been isolated to date in humans, the 

mouse and rat. Types 1, 3, 5 and 7 show 17 -ketosteroid reductase activity of 

which only types 1, 3 and 5 can utilise A as a substrate, whereas types 2, 4 and 

8 catalyse the oxidative reaction (Luu-The, 2001). It is believed that in the 

testes type 3 has a major involvement in T biosynthesis because loss of this 

isozyme results in the failure of masculinisation during development and a rise 

in circulating A along with reduction in circulating T in the adult (Maltais et ai, 

2001 ). 

The substrate specificity and steroid biosynthesis by the isozymes IS 

summarised in Figure 1.9. 

o 

o 

Type 3 17P-HSD 
Type 5 17P-HSD 0 

Androstenedione ~ ... ==================,.. Testosterone 

HO 

Type 2 17P-HSD 

o 

Type 1 17P-HSD HO 

E stro n e ~ ... ================::'" 
Type 2 17P-HSD 
Type 4 17P-HSD 

Estradiol 

OH 

Figure 1.9 Steroid biosynthesis and isozyme specificity (Tremblay et al 1999). 
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The catalytic mechanisms, both oxidative and reductive, are shown in Figures 

1.10a and 1.1 Ob (Penning et ai, 1999). 

The catalytic mechanism for HSDs involves a 'push-pull' mechanism, in which a 

conserved catalytic tyrosine (Tyr55) functions as a general acid-base. This 

bifunctionality requires participation from other groups in the tetrad (involving 

Tyr55, His117, Asp50 and Lys84). In the reduction process of HSDs, Tyr55 has 

its acidity enhanced by the adjacent histidine (His117), which is achieved by a 

hydride transfer facilitated by a proton relay to a delocalised positive charge on 

the imidazole ring of His117. In the oxidation process of HSDs, Tyr55 has its 

basicity enhanced by the adjacent Lysine (Lys84), achieved by a phenolate 

anion deprotonating the steroid alcohol so that the hydride ion can be 

transferred back to the cofactor. 

Reduction 

Tyr55 
R Lys 84 

R 

pH optimum = 6.0 

~ 
His 117 I 

R"f@'N_O:-------------H-~----------00 
HN~ \ H'H h 

( 0 R 

"'--0 Asp 50 

A substrate 

l 

NADH 

Figure 1.1 Oa The postulated reduction cycle for 17P-HSD (Penning et ai, 1999). 
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Oxidation 

His 117 

RY"N 
HN:~ 

Tyr55 
R 

NAO+ 

Lys 84 
R 

pH optimum = 9.0 

0 0 

h o R 
Asp 50 

Figure 1.1 Ob The postulated oxidation cycle for 17P-HSO (Penning et ai, 1999). 

1.7 Treatments for prostate cancer 

There are several treatments for prostate cancer in use at present, including 

chemotherapy, surgery, radiation and hormonal therapy. These will be 

discussed below. 

1 .7.1 S u rg e ry 

This is the most common treatment for early stage prostate cancer. This 

involves the partial or total removal of the prostate. The surgery for total 

removal of the prostate is known as radical prostatectomy, and is further 

described in terms of the incisions used. The main risks of surgery are 

incontinence (caused by damage to the bladder sphincter) and impotence 

(caused by the damage or removal of nerves). Another method for surgery is 

surgical castration also known as orchiectomy which is the removal of the 
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testicles which causes a lowering of T levels thereby reducing or stopping 

cancer cell growth, and thus can also be considered as hormonal therapy. 

1.7.2 Radiation therapy 

This is of two types: the use of high energy x-rays to destroy cancer cells, and 

the use of radioactive pellets (called "seeds"), and like surgery it can only affect 

cancer cells in the treated area. It can be used in the early stages of cancer, 

instead of surgery or after surgery to destroy any cancer cells that may remain 

in the area. In advanced stages, it can help to reduce tumour size and relieve 

pain. Both types of radiation therapy obtain similar results in curing prostate 

cancer. 

1.7.3 Chemotherapy 

This method is less commonly used to treat hormone-dependent prostate 

cancer or BPH, however, it is more frequently used in advanced prostate 

cancer where the tumour has become hormone-independent. Some 

stabilisation is provided by doxorubicin (an anthracycline which works by 

intercalating the DNA) but its use is limited due to systemic toxicities, primarily 

cardiotoxicity and immunosuppression (Garsky et ai, 2001). 

Potent inhibitors of microtubule function, paclitaxel and docetaxel, were the first 

taxanes to enter the clinic and had important activity against several common 

human solid tumours. They both play an important role in the chemotherapy of 

hormone-refractory prostate cancer (Obasaju and Hudes, 2001). 

1.7.4 Hormonal therapy 

This is the systemic ablation of the body's T which, for a period of time, will slow 

or stop the growth and spread of prostate cancer. Hormone therapy may also 

be called androgen deprivation or androgen ablation. There are several forms 

of hormonal therapy: 
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LHRH agonists 

LHRH agonists induce a transient rise in pituitary LH which interacts with 

receptors on the interstitial Leydig cells of the testis leading to the synthesis 

and release of T (see Section 1.3). If T levels increase, T itself regulates the 

negative feedback loop and inhibits the release of further LHRH from the 

hypothalamus as well as the release of LH from the pituitary. This results in 

a decrease in the synthesis and release of T from the Leydig cells. When 

treated for the first time there is a surge in T plasma levels to concentrations 

far above pre-treatment values (known as the flare phenomenon). This 

causes worsening of bone pain, urinary obstruction, or other symptoms 

attributable to rapid cancer growth among some patients. However, 

continuous administration results in the receptors for LHRH becoming less 

responsive and results in a reduction in the release of LH, and therefore 

suppresses androgen production. LHRH agonists used include leuprolide, 

goserelin and triptorelin and side-effects associated with these agents can 

include fluid retention, thromboembolism, gynaecomastia and myocardial 

ischaemia. 

ii Anti-androgens 

The primary target in the treatment of prostate cancer and BPH is the 

reduction of T levels by surgical castration or its medical equivalent 

(administration of LHRH agonists). These methods eliminate T production 

from the testes, but not that produced from the adrenals. The importance of 

the requirement of androgens in maintaining tumour growth has been shown 

by improved therapeutic benefits, such as the survival advantage seen in 

patients treated with the combination of LHRH agonists and anti-androgens, 

compared with those given LHRH agonists alone (Labrie et ai, 1983). 

Compounds that cause an antagonistic response by binding to AR are 

known as anti-androgens. It has been postulated that anti-androgens act by 

counteracting the stimulant action of residual adrenal androgens on AR in 

prostate cancer (Kim et ai, 2002). The most commonly used drugs are 

flutamide, bicalutamide and nilutamide and the most common side-effects 
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seen from the use of anti-androgens are due to the decreased levels of 

hormones, for example, loss of sex drive, and impotence. Other side-effects 

include mild nausea, vomiting, diarrhoea, loss of appetite, skin reactions, 

muscle aches, liver problems, blood in the urine and generalised pain and 

decrease in blood counts. 

1.7.5 Enzyme inhibitors 

It has been postulated that compounds that can inhibit the formation of 

androgens by blocking enzymes such as P45017a and 17P-HSD can reduce the 

formation of the androgens and thus reduce BPH or androgen-dependent 

prostate cancer. 

1.7.6 Inhibitors of P45017a 

Inhibitors of this enzyme can be divided into two categories: non-steroidal and 

steroidal. These categories can be further subdivided according to their mode 

of action (reversible or irreversible). In the various studies undertaken, different 

sources of enzymes were used to test the inhibitors as they are species 

dependent, whereby the source of enzyme determines the pathway the 

cascade follows (/14 or /15). In rats, the /14 pathway is predominant whereas in 

humans, it is the /15 pathway, while for pigs, both pathways are viable. 

Non-steroidal inhibitors 

The majority of non-steroidal inhibitors exhibit a basic functionality which is 

capable of co-ordinating with the haem residue of P45017a. They include 

groups such as azoles, pyridyls and phenylamines. However, there are 

other non-steroidal inhibitors that bind to other sites of the enzyme and do 

not contain these functionalities. 

a Imidazole and triazole based compounds 

Ketoconazole (1) (Table 1.1 a) is an oral antifungal agent of the imidazole 

class, which contains two nitrogen atoms in the five membered azole ring. 
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It is almost insoluble in water except at low pH, therefore any conditions 

that increase the acidity or decrease the pH of the stomach will decrease 

the absorption and hence reduce the bioavailability of this compound. 

Ketoconazole has been used in clinical trials in patients with advanced 

prostate cancer. The major drawback is that it is not very potent or 

specific, and has a number of significant side-effects the most notable 

being hepatotoxicity (Trachtenberg and Zadra, 1988). 

The discovery of ketoconazole as a P45017u inhibitor led to the 

development of other imidazole derivatives and also triazole derivatives. It 

has been postulated using superimpositioning studies that the nitrogen of 

the imidazole derivatives forms a dative covalent bond with the iron of the 

haem then positioning itself within the active site of P45017u, and this is 

thought to lead to the inhibitory activity observed with these compounds. 

Triazole compounds have a similar mode of action, but have lower 

inhibitory activity in comparison. Tables 1.1 a-1.1 c outline the structures 

and biological activity of some of these azole based compounds. 
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NO. Structure Biological Source 
Enzyme of Reference Activity 

Enzyme 

() Rotstein et 
2.4J..1M (IC5a) 17,20-Lyase Human ai, 1992 

-cA0 1 a 
~ ,1 - 1\ 

a OZ-O-Q-NJy 
0 

Ketoconazole 2.6J..1M (Ki) 17,20-Lyase Porcine Nagai et ai, 
1987 

N~ 
2 ~oU Mason et O.3J..1M (IC5a) 17 a-Hyd roxylase Human 

h Ih ai, 1987 
CI CI CI 

Econazole 

N~ 
3 ~o» Mason et 

O.3J..1M (IC5a) 17a-Hydroxylase Human 
a hCICllhCI 

ai, 1987 

Miconazole 

N~ O.5J..1M (Ki) 17,20-Lyase 

4 i(oy. Ayub and 
Rat Levell, 

a h S 1987a a a 

Tioconazole O.9J..1M (Ki) 17a-Hydroxylase 

() 56.5nM (Ki) 17,20-Lyase 
N 

5 '-'::: '-'::: 
Ayub and 

I 
I Rat Levell, I 

h h '-'::: 

Ih 1987a 

Bifonazole 86nM (Ki) 17 a-Hyd roxylase 

(J 81.5nM (Ki) 17,20-Lyase 
CI N - Ayub and 6 ~ /; 

1"-':: 
~I 

Rat Levell, 
h 1987a 

~ 

Clotrimazole O.17J..1M (Ki) 17a-Hydroxylase 

~ NH 

7 - N~ 

1'-'::: ~ /; 4.2nM (IC5a) 17,20-Lyase Human 
Ideyama et 

ai, 1999 ,4- N 
H 

YM116 

~J-) 
8 d' o~ 17,20-Lyase 

Nagai et ai, 
16J..1M (Ki) Porcine 1987 

Etomidate 
Table 1.1 a Some azole-based inhibitors of 17 a-hydroxylase and 17,20-lyase. 
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NO. Structure 
Biological 

Enzyme 
Activity leso 

9 
a28nM 

MeO 
17,20-Lyase 

Me 

12 
17,20-Lyase 

13 
17,20-Lyase 

14 N~ 
'==N 

bO.98~M 17a-Hydroxylase 

15 N~ 
'==N 

b3.7~M 17 a-Hyd roxylase 
MeO 

16 N~ 
'==N 

bO.31~M 17a-Hydroxylase 
HO 

N~ 
17 '==N 

b87nM 17 a-Hyd roxylase 
HO 

HO 

18 ~N~ ~ '==N bO.33~M fl 17a-Hydroxylase 
s 

Table 1.1 b Some azole-based inhibitors of 17 a-hydroxylase and 17,20-lyase 

tested against human source of enzyme (aMatsunaga et ai, 2004; bWachall et 

ai, 1999). 
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NO. Structure Biological Activity Enzyme 

N 
19 f) a48% inhibition at - N-N 17a-Hydroxylase fj ~ 2.51JM 

~ /; -
N 

20 (I; a37% inhibition at 
f ~ 

- N-N 17 a-Hyd roxylase 
F 2.51JM 

~ /; -

N 
21 () a30O/o inhibition at 

Ij ~ 
- N-N 17a-Hydroxylase 

rv1eO 2.51JM 
~ /; -

N 

22 (i; 
a35% inhibition at f ~ - N-N 

17a-Hydroxylase 
~ ;; 2.51JM -

23 FN 

~N~ b46IJM (IC50) 17,20-Lyase 
~ ;; 

24 FN 

~NJ b30IJM (IC50) 17,20-Lyase 
°2N ~ ;; 

25 FN 

~NJ b28IJM (IC50) 17,20-Lyase 
H2N ~ /; 

26 -

°2N 
~ ;; N\\ b25IJM (IC50) 17,20-Lyase 

~N 
27 -

H2N ~ ;; N\\ b22IJM (IC50) 17,20-Lyase 
~N 

-
28 CI N~ b29IJM (IC50) ~ ~ 17,20-Lyase 

~N 
Table 1.1 d Some azole-based inhibitors of 17a-hydroxylase and 17,20-lyase 

tested against rat source of enzyme (aZhuang et ai, 2000; bAhmed et ai, 1995). 

b Pyridyl Derivatives 
These compounds have a similar mode of action to azole-based 

compounds, whereby the nitrogen of the pyridyl ring co-ordinates with the 

heam at the active site of P45017u leading to competitive reversible 

inhibition. Some of these have been shown to be more potent inhibitors 

27 



NO. 

29 

30 

31 

32 

33 

34 

35 

36 

than ketoconazole and more selective, for example cyclohexyl derivatives 

of 4-pyridylacetic acid showed more potent inhibition than ketoconazole. 

These compounds are good mimics of the natural substrate, which was 

found by superimpositioning studies on Preg (Laughton et ai, 1990). Their 

potential to be used clinically is limited due to their susceptibility to 

esterases, but the tertiary ester derivatives have been shown to be more 

stable than the secondary ester derivatives. Tables 1.2a-1.2b outline the 

structure and biological activity of some of these pyridyl based 

compounds. 

Structure Biolo ical Activit 
a20~M (IC50) 

a15~M (IC50) 

b36% inhibition at 
125~M 

Enz me 
17,20-Lyase 

17a-Hydroxylase 
17,20-Lyase 

17a-Hydroxylase 

17a-Hydroxylase 

17a-Hydroxylase 

17 a-Hyd roxylase 

17a-Hydroxylase 

17a-Hydroxylase 

Table 1.2a Some pyridyl-based inhibitors of 17a-hydroxylase and 17,20-lyase 

tested against rat source of enzyme (aLaughton et ai, 1990; ~achter et ai, 

1996). 
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NO. Structure Biological Source 

Activity ICso 
Enzyme of 

Enzyme 

~00\ 37 a1.BnM 17,20-Lyase 
Human 

a3.3nM 17a-Hydroxylase 

38 
I",~ 

0°0\ a2.7nM 17,20-Lyase 
~ 

I Human 
N .0 aB.BnM 17a-Hydroxylase 

39 01[00\ a1BnM 17,20-Lyase 
Human 

a43nM 17a-Hydroxylase 

40 
I~ 00\ a74nM 17,20-Lyase 

Human 
N .0 0 a340nM 17 a-Hyd roxylase 

41 ~o~ b5nM 17,20-Lyase 
Human 

b14nM 17a-Hydroxylase 

42 ~ o~ b6nM 17,20-Lyase 

I Human 
N .0 0 b19nM 17a-Hydroxylase 

43 o~ b10nM 17,20-Lyase 
~ 

I Human 
N .0 0 b26nM 17 a-Hyd roxylase 

Table 1.2b Some pyridyl-based inhibitors of 17a-hydroxylase and 17,20-lyase 

(aChan et ai, 1996, bRowlands et ai, 1995). 

c Phenylamines 
pyrrolidine-2,5-diones containing an aniline ring functionality have been 

shown to inhibit P45017u with potencies comparable to ketoconazole 

(Table 1.3). They also have a similar mode of action to the azole-based 

compounds, whereby the nitrogen of the phenylamine ring co-ordinates 

with the haem at the active site of P45017u, leading to competitive 

reversible inhibition. 
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NO. Structure 
Biological Activity 

0/0 inhibition at Enzyme 
100 M 

NH2 

44 
88 17,20-Lyase 

0 0 

45 
95 17,20-Lyase 

o 

48 
89 17,20-Lyase 

o 

Table 1.3 Some phenylamine-based inhibitors of 17a-hydroxylase and 17,20-

lyase tested against rat source of enzyme (Ahmed et ai, 1995). 

ii Steroidal Inhibitors 

Modifications of the natural substrates, mainly at the 17,20 side chain and 

the D-ring, are the basis for the design of steroidal inhibitors. The 

functional groups present on the inhibitor interact at positions at the active 

site that would normally interact with the natural substrate. 
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a Mechanism-based (Irreversible) inhibitors 

These inhibitors work by mimicking the natural substrate or transition 

states involved in the conversion of progestins to androgens. The inhibition 

is irreversible which is made possible by the inclusion of a group capable 

of reacting with the active site. Mechanism-based inhibitors are activated 

by the normal catalytic activity of the enzyme to produce a species 

capable of forming a covalent bond with the active site (Angelastro et ai, 

1989). Examples of such inhibitors are shown in Table 1.4. 

NO. Structure Enzyme 

49 
0.21 17a-Hydroxylase 

50 
1.2 17a-Hydroxylase 

51 
>125 17a-Hydroxylase 

52 
>125 17a-Hydroxylase 

o 

53 H 

34 17a-Hydroxylase 

54 
>125 17 a-Hyd roxylase 

o ~ 

Table 1.4 Some steroidal irreversible inhibitors of 17 a-hydroxylase and 17,20-

lyase tested against rat source of enzyme (Njar et ai, 1996). 
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b Substrate Analogues (Reversible) 

These compounds are structurally similar to the natural substrate, like the 

mechanism-based (irreversible) steroidal inhibitors, but they do not 

undergo irreversible reaction with the active site. They bind reversibly to 

the active site, thus preventing the natural substrate from binding, and 

therefore inhibiting the production of androgens. The mode of action is the 

same as the non-steroidal imidazole- and triazole-based compounds. 

Tables 1.5a and 1.5b summarise the azole-based substrate analogues 

whilst Table 1.6 summarises the pyridyl-based substrate analogues. 

NO. Structure Enzyme 

N 
(17 

55 
N-N 

90 17,20-Lyase 

HO 

56 

N f) 
8 17,20-Lyase 

HO 

57 
13 17,20-Lyase 

HO 

Table 1.5a Some steroidal azole-based inhibitors of 17a-hydroxylase and 

17,20-lyase tested against human source of enzyme (Nnane et ai, 1999a). 
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~ /; 
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H 
N 

~ /; 
N 

'-':N 
~ I 

0 

24 

75 

66 

50 

58 

21 

42 

39 

Table 1.5b Some steroidal azole-based inhibitors of 17a-hydroxylase and 

17,20-lyase tested against human source of enzyme (Jarman et ai, 1998). 
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NO. Structure Enzyme 

68 76 17,20-Lyase 

17a-Hydroxylase 270 
HO 

69 1000 17,20-Lyase 

17a-Hydroxylase 4000 
HO 

70 2.1 17,20-Lyase 

o 

71 

HO 

72 

HO'" 

73 

o 

74 

75 

HO 

2.8 17a-Hydroxylase 

1.8 17,20-Lyase 

2.6 17a-Hydroxylase 

2.5 

4.3 

3.0 

17,20-Lyase 

17a-Hydroxylase 

17,20-Lyase 

4.7 17a-Hydroxylase 

2.9 17,20-Lyase 

13 17a-Hydroxylase 

23 17,20-Lyase 

47 17a-Hydroxylase 

Table 1.6 Some steroidal pyridyl-based inhibitors of 17a-hydroxylase and 

17,20-lyase tested against human source of enzyme (Potter et ai, 1995). 
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1.7.7 Inhibitors of 17P-HSD 

Steroidal Inhibitors 

a Isoxazoles and Pyrazoles 

Competitive inhibition of type 1 17J3-HSO was reported by Sweet et al 

(1991) using estrone (E1) derivatives with pyrazole or isoxazole fused to 

the 16,17 position on the O-ring, whereas for inhibition of type 3 17J3-HSO, 

Levy et al (1987) reported steroidal derivatives with pyrazole or isoxazole 

fused to the 2,3 or 3,4 position on the A-ring. It was noticed in both cases 

that the pyrazole derivative was a better inhibitor than the isoxazole 

analogue. It was suggested that specific intramolecular hydrogen bonds 

between the pyrazole fused to the O-ring and the phenol groups of the 

hydroxysteroid and three specific histidyl residues stabilised the enzyme

inhibitor complex resulting in a good enzyme affinity for type 1 17J3-HSO. 

Tables 1.7a and table 1.7b summarise the isoxazole and pyrazole-based 

inhibitors. 

HO 

79 
424.5 

Table 1.7a Some pyrazole- and isoxazole-based inhibitors of type 1 17P-HSO 

tested against human source of enzyme using estradiol as substrate (Sweet et 

ai, 1991). 
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NO. Structure 

80 
20 

81 
15 

82 
6 

83 
7 

OH 

84 
100 

85 
190 

Table 1.7b Some pyrazole- or isoxazole-based inhibitors of 17P-HSD for 

isozyme type 3 tested against bacterial source of enzyme using T as substrate 

(Levy et ai, 1987). 
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b Estradiol (E2) derivatives 

A series of E2 derivatives bearing a thia-alkanamide side chain at position 

C6 was developed to inhibit 17J3-HSD type 1. The compounds showed 

agonistic activity against estrogen-sensitive ZR-75-1 cells. However, as 

they showed interesting screening data they were explored further and 

showed some potency when tested against human placental cytosolic 

17J3-HSD (type 1) transformation of E1 to E2. Table 1.8 summarises some 

antiestrogen inhibitors. 

NO. Structure 

OH 

86 
0.30 

HO 

S(CH2)2CONBuMe 

OH 

87 
7.80 

HO 

S(CH2hCONBuMe 

OH 

88 
11.20 

HO 

S(CH2)10CONBuMe 

OH 

89 
0.17 

HO 

S(CH2)sCONBuMe 

OH 

90 
12.00 

HO 

S(CH2)sCONBuMe 

Table 1.8 Some antiestrogen inhibitors of 17P-HSD for isozyme type 1 tested 

against human source of enzyme using E1 as substrate (Poirier et ai, 1998). 
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c Androsterone derivatives 

A range of 3~-substituted androsterone derivatives were produced and 

tested for type 3 17~-HSD inhibition. The compounds proved more potent 

than A, the natural substrate, when used as an inhibitor (IG5o -

489±112nM). Table 1.9 summarises some androsterone derivative 

inhibitors. 

NO. Structure 

91 
~ 

(CH'\~ 57 
OH 

92 q 
85 N 

o~ 
-
OH 

93 8t
N 35 

? 
-
OH 

8t
N 

0 

94 
80 

~ 
-
OH 

(0) 

95 ~N 74 ° ° ';r0 
° 

Table 1.9 Some androsterone derivatives as inhibitors of 17P-HSD tested 

against human HEK-293 cells transfected with vectors encoding for type 3 17P

HSD using A as substrate (Maltais et ai, 2002). 
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ii Non-steroidal Inhibitors 

a Phytoestrogens 

Phytoestrogens are plant-derived, non-steroidal compounds with 

estrogenic activity. Phytoestrogens possess antiviral, anti-inflammatory, 

antimutagenic and anticarcinogenic activities (Le Bail et ai, 2000) with 

different mechanisms of action, including inhibition of 17~-HSD. Tables 

1.10a and 1.1 Ob summarise some phytoestrogenic inhibitors of type1 17~

HSD, and Table 1.1 Oc summarises some inhibitors of type 3 17~-HSD. 

101 
1.0 

HO 0 

Table 1.1 Oa Some phytoestrogens as inhibitors of 17~-HSD for isozyme type 1 

tested against human source of enzyme using E1 as substrate (Le Bail et ai, 

1998). 
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tested against human source of enzyme using E1 as substrate (Le Bail et ai, 

2001 ). 
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NO. Structure 

111 
0 

o-v _ II a5.7 

0 

112 
a2.7 

0 

97 

HO 

113 
HO 

114 

115 

116 I '-':: '-':: 
HO ,'l 0 0 

Table 1.1 Oc Some phytoestrogens as inhibitors of 17~-HSD for isozyme type 3 

tested against human source of enzyme using A as substrate (ale lain et ai, 

2001, ble lain et ai, 2002). 
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b Cinnamic acid analogues 

The biosynthesis of f1avanoids proceeds via cinnamic acid or related 

phenolic acids. As flavanoids and their analogues have proved to be good 

inhibitors, cinnamic acid analogues were tested and the results are shown 

in Tables 1.11 a and 1.11 b 

NO. Structure 

o 
117 

o 
118 

O~ 
~CN 

119 

~o VOM8 
I ~ 0 I 

h- h-

120 o 0 
~ o~ 

121 ~
OMe OMe 

o I 
~o ~ OMe 

V 
122 o ~ 

~O~OPh 
V 

123 

124 

Biological Activity 
ICso (J.lM) 

Oxidation Reduction 

26 

13 

135 

0.7 

14 

130 

10 

5 

>200 

No 
Inhibition 

No 
Inhibition 

7 

No 
Inhibition 

No 
Inhibition 

No 
Inhibition 

90 

Isozyme 
type 

1,3 & 5 

1,3 & 5 

1,3 & 5 

1,3 & 5 

1,3 & 5 

1,3 & 5 

1,3 & 5 

1,3 & 5 

Table 1.11 a Some cinnamlc aCid analogues as inhibitors of 17P-HSD tested 

against fungal source of enzyme (Gobec et ai, 2004). 
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Biological Activity 

NO. Structure ICso (IJM) Isozyme 

Oxidation Reduction 
type 

0 

125 MeO 
I~ 

~ °v 11 144 1,3 & 5 
MeO 

~ 

OMe 

126 MeO 
I~ 

~ M 0 7 17 1,3 & 5 
MeO 

0 

OMe 0t? 127 o ~ ~ 

M'O~O~N 57 >200 1,3 & 5 
MeO ~ 0 

OMe 

o~ 128 ~'eO 
'-':: 

~ ~I No 
I o I 160 1,3 & 5 

~'eO 
~ ~ Inhibition 

OMe 

0 
129 

~ 

~V I 
~ 125 >200 1,3 & 5 
~ 

0 

130 MeO 
I~ 

~ 

~V 110 >200 1,3 & 5 
MeO 

0 

OMe 

131 
0 

CO:>-V 3 32 1,3 & 5 
o 0 0 

Table 1.11 b Some cinnamic acid analogues as inhibitors of 17~-HSD tested 

against fungal source of enzyme (Kristan et ai, 2006). 

43 



c Other 1713-HSD inhibitors 

A novel range of compounds has been discovered by high-throughput 

screening. They have shown very high potency towards the type 3 form of 

the enzyme. Some have shown picomolar potency and nanomolar potency 

against the enzymatic activity and cellular activity respectively. Tables 

1.12a to 1.12e summarise some novel inhibitors. 

NO. Structure Biological Activity ICso (nM) 
Enzyme Cellular 

MeO -p" 
CI I 

132 I A N 
~ 

o I A 60 300 
0 

6 
133 I~ N 

~ 

40 710 
o 1&6 

CI ~J3 HO 
I~ 

0 

H 
CH3 

.& N 
~ 134 I 1 1200 0 .& a 

6 
135 

170 1600 IA N ~ 
o I ~ 

.. 
Table 1.12a Some novel compounds as inhibitors of 17~-HSD tested against 

human source of enzyme for isozyme type 3 using A as substrate (Spires et ai, 

2005). 

44 



NO. Structure Biological Activity ICso (nM) 
Enzyme Cellular 
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Table 1.12b Some tetrahydrobenzazocines as inhibitors of 17P-HSD tested 

against human source of enzyme for isozyme type 3 using A as substrate (Fink 

et ai, 2006). 
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NO. Structure 

144 
9 32 

145 
7 36 

Br 

146 
280 930 

Br 

147 
490 490 

NH2 

148 
8 4 

NHBn 

151 
0.02 4 

Table 1.12c Some tetrahydrobenzazocines as inhibitors of 17~-HSD tested 

against human source of enzyme for isozyme type 3 using A as substrate (Fink 

et ai, 2006). 
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NO. Structure 

152 
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CI 
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2 5 

CI 

154 
OMe 8 53 

CI 

OMe 

155 
3 48 

CI 

156 
5 62 

CI 

157 
CN 

3 15 

CI 

CN 

158 
3 19 

CI 

Table 1.12d Some tetrahydrobenzazocines as inhibitors of 17~-HSD tested 

against human source of enzyme for isozyme type 3 using A as substrate (Fink 

et ai, 2006) 
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NO. Structure 

159 
0.02 0.5 

160 
1.4 2 

CI 

161 
0.02 0.5 

162 
0.9 2 

163 
25 25 

164 
0.7 1 

CI 0 

Table 1.12e Some tetrahydrobenzazocines as inhibitors of 17P-HSD tested 

against human source of enzyme for isozyme type 3 using A as substrate (Fink 

et ai, 2006) 

1.8 Enzyme Kinetics 

Kinetics is the study of the rate of change of reactants to products. An enzyme 

catalysed reaction is dependent upon the formation of product by the 

breakdown of an enzyme-substrate complex. The first time an enzyme

substrate complex was deduced from the kinetics of an enzyme reaction was in 
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1902 by Brown. In 1913 Michaelis and his assistant, Menten derived an 

equation which is crucial in enzyme studies. The basic concepts of Michaelis 

and Menten were confirmed by several other workers who approached the 

problem from different viewpoints, and their work was particularly useful in 

advanced kinetic and mechanistic studies. The dissociation constant is known 

as the Michaelis constant, Km. 

E + S - .... ES :::;;;;-;::=~.... E + P 
k -2 

Where:-

E = Enzyme concentration 

S = Substrate concentration 

P = Product concentration 

. . . 

ES = Concentration of enzyme-substrate complex 

k 1, k -1, k 2, k -2 = rate constants for each step 

K = m 
k 1 + k2 

k -1 + k -2 

When complex concentration is constant the rate of formation equals the rate of 

disappearance. There cannot be any measurement of product if the reverse 

reaction from product to enzyme-substrate complex occurs, thus for the 

reaction to proceed to product formation the rate constant k -2 is assumed to be 

negligible and is omitted, generating the following equation: 

K = m 

Measuring total activity of enzyme is possible, whilst measuring relative 

amounts of free and complexed enzyme is extremely difficult. Representation of 

the proportion of free enzyme is shown by the difference between total enzyme 

(E) and substrate-enzyme complex (ES), thus:-

Rate of ES formation 

Rate of ES removal 

= k1 [E - ES][S] 

= k -1 [ES] + k2[ES] 
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Therefore:-

[E - ES] [S] 
[ES] = Km 

Rearranging the equation results in:-

K = [E] [S] _ [ES] [S] 
m [ES] [ES] 

[E] [S] 
K = - [S] 

m [ES] 

[ES] = [E] [S] 
Km + [S] 

By definition, the observable rate of product formation (v) is proportional to the 

concentration of the enzyme substrate complex, ES. 

v = k2 [ES] 

Thus substituting it into the previous equation:-

v= 
k2 [E] [S] 

Km + [S] 

Measuring the true concentration of enzyme in terms of molar concentration is 

difficult but if the substrate concentration is large in comparison to that of 

enzyme, all of the enzyme will be present as the ES complex and the reaction 

will proceed at maximum velocity. Under these conditions of excess substrate 

and maximum velocity (V max):-

Vmax = k2 [E] 
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Substituting into the previous equation results In the common form of the 

Michaelis equation: 

v = Vmax X [S] 
Km + [S] 

The equation gives a measure of the Michaelis constant (Km) in terms of the 

measured velocity of the reaction (v) which results from a substrate 

concentration ([S]) and maximum velocity (V max) which can be achieved using a 

very high concentration of substrate. 

The value for the maximum velocity is related to the amount of enzyme used 

but the Michaelis constant is peculiar to the enzyme and is a measure of the 

activity of the enzyme. Enzymes with large values for Km show a reluctance to 

dissociate from the substrate and hence are often less active than enzymes 

with low Km values. 

The determination of the Michaelis constant is achieved by plotting the two 

variables with fixed amount of enzyme, producing a characteristic shape. 

Substrate concentration at half the maximum velocity is numerically equal to the 

Michaelis constant: 

V max = V max X [S] 
2 Km + [S] 

[S] = Km 

Although this method is extremely simple, it is experimentally inaccurate. Due 

to the hyperbolic nature of the relationship, the curve approaches maximum 

velocity asymptotically making the deduction of a value for V max difficult. Any 

errors in assessing this value gets reflected in the value ascribed to Km. 
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Due to the reason of poor deduction using the Michaelis graph, other methods 

are used which give a linear graph. They are derived from the rearrangement of 

the original equation and are as follows:-

Lineweaver-Burk equation: 

Hanes Woolf equation: 

Eadie-Hofstee equation: 

Vmax x [S] 
V = --:.;..;.=..:....---

Km + [S] 

_1 _ Km + [S] 
v Vmax X [S] 

1 
v 

1 
v 

----
V max [S] 

Km =---
V max [S] 

1 
+-

Vmax 

1 
+-

Vmax 

multiply both sides by [S] 

[S] = ~ + V[S] 
v V::-~ max 

[S] Km 1 
=- + 

Vmax 
[S] 

V Vmax 

1 Km 1 1 
- - + 

Vmax V Vmax [S] 

multiply both sides by v x V max 

~xVmax 
-"" ~ 

vx~ 
[S] 

v = K - +v Vmax m [S] 

v 
• • V = V max - Km [S] 
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These plots are a perfectly good method for determining kinetic parameters 

when experimental data does not contain errors but it is well known that every 

experiment will contain errors and this will affect the results gained in each 

case. In the cases of Lineweaver-Burk plot and Eadie-Hofstee the points 

furthest from the axis tend to skew the graphs the most as these points are for 

low substrate concentrations which are more prone to errors due to velocities 

being much slower making measurements less accurate. The Hanes-Woolf plot 

is a bit more accurate than the other two methods due to less scatter but still 

inaccurate when compared to another method - direct linear plots (Eisenthal, 

Cornish-Bowden). The direct linear plot is a simple method which plots negative 

substrate concentration and velocity and involves drawing a straight line 

between the points. This is done for each concentration of substrate giving a 

set of lines that cross at a point which is read as Km. Errors not seen on the 

other plots are easily seen in this plot showing outlying points. This method is 

much more accurate for the determination of Km for the substrate (Eisenthal 

and Cornish-Bowden, 1974). 

1.8.1 Enzyme Inhibition 

Substances that decrease the rate of an enzyme catalysed reaction are known 

as inhibitors and their effects may be permanent or transient. There are three 

basic types of inhibition which can be seen by the Lineweaver-Burk plots they 

produce: 

Competitive Inhibition 

Competitive inhibition occurs when a compound has a similar chemical 

structure to the enzyme substrate. The inhibitor interacts with the enzyme to 

form an unproductive enzyme-competitive inhibitor complex. The Lineweaver

Burk plot showing competitive inhibition is shown in Figure 1.11. Another 

method used is the Dixon plot which involves plotting the reciprocal of velocity 

against the inhibitor concentration at each substrate concentration and the Ki 

value is read from the point at which they intersect. The Dixon plot showing 

competitive inhibition is shown in Figure 1.12. 
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Figure 1.11 Lineweaver-Burk plot showing competitive inhibition 

1 
v 
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[S12 

..................................................... , ... 
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[I] 

Figure 1.12 Dixon plot showing competitive inhibition 

Non-competitive Inhibition 

Non-competitive inhibitors bind to sites different from the substrate binding site 

and result in the inhibition of the formation of product by the breakdown of the 

enzyme-substrate complex. Such inhibition cannot be reversed by the addition 

of excess substrate and generally the inhibitor shows no structural similarity to 
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the substrate. The Lineweaver-Burk plot and Dixon plot showing non

competitive inhibition are shown in Figures 1.13 and 1.14. 

1 
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Figure 1.13 Lineweaver-Burk plot showing non-competitive inhibition 
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Figure 1.14 Dixon plot showing non-competitive inhibition 

Uncompetitive Inhibition 

Uncompetitive inhibitors bind only to the enzyme-substrate complex, and not to 

the free enzyme, thus reducing the formation of products. The Lineweaver-Burk 

plot showing uncompetitive inhibition is shown in Figure 1.15. It is not possible 
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to plot a Dixon plot for uncompetitive inhibition as the lines would be parallel, 

and since there is no intersection Ki cannot be determined. 
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Figure 1.15 Lineweaver-Burk plot showing uncompetitive inhibition 
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1.9 Basis of present investigation 

Androgens have been proposed as key endocrine factors for the initiation and 

progression of androgen-dependent diseases such as BPH and prostate 

cancer. One of the methods of treatment is the deprivation of androgens by the 

inhibition of enzymes involved in androgen biosynthesis including P45017a and 

the 17P-HSD family of enzymes. 

Extensive work has been carried out to develop highly potent and selective 

inhibitors of these enzymes. It is thought that the development of inhibitors for 

these enzymes may lead to an improvement in the treatment for hormone

dependent prostate cancer and BPH. Although extensive work has been 

undertaken in this area, there is a need for further development, since only a 

few compounds have been shown to be suitable for clinical trials. 

The aim of the present investigation is to investigate the inhibitory activity of 

compounds previously designed and synthesised within the medicinal 

chemistry research group at Kingston University. The study aims to undertake 

initial screening of a range of compounds and the determination of their full 

biochemical profiles against both P45017a and the 17P-HSD family of enzymes 

(in particular, types 1 and 3). In an effort to determine the selectivity of the 

compounds against the general HSD family of enzymes, the compounds 

designed as inhibitors of types 1 and 3 of 17P-HSD were also evaluated against 

3p-HSD. 
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Chapter 2 



2.0 P45017a 

2.1 Introduction: 

Several methods for assessing the activity of P45017a have been developed 

which have used human, rat or pig testicular microsomal preparation to provide 

the major source of the enzyme (Rowlands et ai, 1995; Chan et ai, 1996; 

McCague et ai, 1990; Nagai et ai, 1987). Preparations from cattle, dog and 

monkey testes and adrenals have also been utilised. It has been found that P 

and Preg are each converted to A and DHEA respectively via their 

corresponding 17 a-hydroxy intermediates (Lynn and Brown, 1958). As the 

enzyme catalyses two enzymatic activities, the assay procedures for each of 

the activities have been developed separately. Generally, the assay for the 

17a-hydroxylase component involves the use of either radiolabelled P (for rat 

enzyme) or radiolabelled Preg (for human enzyme) as substrate. The substrate 

used for the 17,20-lyase component is either radiolabelled 17aOHP (for rat 

enzyme) or radiolabelled 17aOHPreg (for human enzyme). 

Also, there has been some work carried out using non-radiolabelled substrate 

(Sergejew and Hartmann, 1994). This assay was specific for the 17a

hydroxylase component as P was used as a substrate and the source used was 

rat testis. The assay measured the absorbance of all the products at 240nm. 

Initially separation and identification of the radiolabelled steroids used thin layer 

chromatography (TLC) (Betz and Michels, 1973; Li et ai, 1992; Ayub and Levell, 

1987a), after the assay procedure, however HPLC is now more commonly used 

(Barrie et ai, 1989). Also for the non-radiolabelled assay, the method for the 

separation of steroids involved HPLC as the preferred method, as it has a 

better accuracy as well as it can detect much lower concentrations. 

Another method that has been employed has been an acetic acid release assay 

which was originally designed by Chasalow et al (1982), but has been 

developed by Njar et al (1997). This method used 17aOHPreg labelled at the 
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21 position of the substrate and measured the amount of acetic acid released 

during the assay. 

2.2 P45017a Enzyme Assay: 17a-Hydroxylase Component 

Compounds synthesised within the research group (by Dr. Chirag Patel and Mr. 

Imran Shahid) were evaluated for P45017a (17a-hydroxylase) inhibitory activity, 

using the microsomal fraction obtained from rat testicular tissue (Sprague

Dawley). The assay was based on that of Owen (1995) and measures the 

effect of the novel compounds on the rate of conversion of radiolabelled P to 

17aOHP then to A mediated by the action of P45017a (17,20-lyase). However, 

since A is converted to T [mediated by the action of 17~-HSD (type 3)], as such 

so as to take into consideration this conversion of A, we also measured the 

production of T, thereby taking into consideration the majority of products and 

by-products resulting from the action of 17a-hydroxylase. 

The assay reaction is quenched by the addition of diethyl ether (2mL), which is 

then extracted into a clean tube, followed by a further extraction with diethyl 

ether (2x2mL), which then provides the necessary solvent for extraction of the 

radiolabelled substrate and products. 

The reaction products (17aOHP, A and T) along with the starting material (P), 

are separated using TLC. The extracts are applied to TLC plates (POL YGRAM® 

SIL G/UV254 silica gel with fluorescent indicator UV254 pre-coated on plastic 

sheets), together with non-radiolabelled carrier steroids (P, 17aOHP, A and T) 

which are used for the identification of the radiolabelled steroids from the assay 

mixture. The TLC plates are developed using a mixture of dichloromethane 

(70mL) and ethyl acetate (30mL). 

After developing the plates, each steroid spot is identified under UV light and 

cut out, placed in individual scintillation tubes and counted for 3min in a cocktail 

of scintillation fluid (Optiscint HiSafe, 3mL) and acetone (1 mL). The percentage 

conversion of P to 17aOHP, A and T is then determined by dividing the counts 
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per minute (CPM) for both products by the total CPM for all three steroids 

(equation 2.1). 

A+T+17uOHP 
0/0 Conversion = ------__ _ x 100 

A + T + 17uOHP + P 

Equation 2.1 Percentage conversion of P. 

The method outlined in this study does not therefore require a quantitative 

recovery of all reactants and products from the assay mixture. 

2.3 Methods, Materials and Instrumentation 

All non-radioactive steroids and laboratory reagents were analar grade; ~

NADP (mono sodium salt), D-glucose-6-phosphate (mono sodium salt), D

glucose-6-phosphate dehydrogenase (suspension in ammonium sulphate) were 

obtained from Roche Diagnostics, Lewes, East Sussex and ketoconazole was 

obtained from Sigma-Aldrich Company, Poole, Dorset. [1,2,6,7-3H]P was 

obtained from Amersham Pharmacia Biotech UK Limited, Buckinghamshire. 

Radioactivity was measured using a 1217 Rackbeta Scintillation Counter (LKB 

Wallac). Scintillation fluid was Optiscint HiSafe and was obtained from 

PerkinElmer Life and Analytical Sciences, Beaconsfield, Bucks. 

Homogenisation of the rat testicular tissue was carried out using an Ultra

Turrax homogeniser (Janke & Kunkel, Germany). Excess tissue and the 

microsomal fraction was further homogenised with a Potter-Elvehjem 

homogeniser. Centrifugation was carried out using a MSE Europa 65M 

Ultracentrifuge at 10,000 x g (12,000RPM) and at 100,000 x g (35,000RPM). 

All assays were carried out in triplicate - each value is therefore the mean of 

nine determinations. 
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2.4 Buffer, Solution and Substrate Preparation 

Buffers and solutions used in the assay were as follows: 

Potassium Phosphate Buffer pH7.4 (50mM) 

A: 13.61 9 Potassium dihydrogen orthophosphate (KH2P04, mW=136.09) 

dissolved in distilled water (500mL) 

B: 34.84g Dipotassium hydrogen orthophosphate (K2HP04, mW=174.18) 

dissolved in distilled water (1 L) 

Solution B was added to solution A until a pH of 7.4 was reached, to give a 

0.2M buffer. The buffer (250mL) was diluted with distilled water (750mL) to give 

a concentration of 50mM. 

Sodium Phosphate Buffer pH7.4 (50mM) 

A: 3.90g Sodium dihydrogen orthophosphate (NaH2P04.2H20, mW=156.01) 

dissolved in distilled water (500mL) 

B: 4.45g Disodium hydrogen orthophosphate (Na2HP04.2H20, mW=177.99) 

dissolved in distilled water (500mL) 

Solution A was added to solution B until a pH of 7.4 was reached. 

Sucrose Phosphate Buffer pH7.4 (50mM) 

Sucrose (O.25M) in potassium phosphate buffer (50mM, pH7.4). 21.39g 

sucrose (mW= 342.30) was dissolved in potassium phosphate buffer (50mM, 

pH7.4, 250mL). 

NADPH-generating System 

D-glucose-6-phosphate (O.0282g, 0.1 M) 

NADP as the monosodium salt (O.0086g, 0.1 M) 

D-glucose-6-phosphate dehydrogenase (15J.lL, 4iu/mL) 

Phosphate buffer pH7.4 (1 mL, 50mM) 

The generating system was kept on ice until required for use. 
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Substrate preparation of [1,2,6,7 .3H]P (1001JM) 

A stock solution was prepared by transferring radiolabelled [1,2,6,7-3H]P 

(0.22~M, 50~L) to a glass vial and removing the toluene under a stream of 

nitrogen. Unlabelled substrate in propane-1 ,2-diol (99.78~M, 1 mL) was added 

to the radiolabelled residue and mixed thoroughly to give a final concentration 

of 100~M. 

2.5 Preparation of Testicular Microsomes 

Mature male rat testes (Sprague-Dawley) were obtained from Charles Rivers, 

Margate, Kent. The capsule was dissected out and the tissue was 

homogenised in phosphate buffer pH7.4 containing sucrose (50mM, 15mL) 

using a Potter homogeniser and then centrifuged for 20min at 12,000RPM 

(10,000 x g) at 4°C. The pellet was discarded and the supernatant spun at 

35,OOORPM (100,000 x g) for 1 h. The pellet (microsomal fraction) was 

suspended in sodium phosphate buffer pH7.4 (15mL) using a Potter 

homogeniser and aliquots (500~L) pipetted into capped 1.5mL plastic tubes, 

snap-frozen in liquid nitrogen and stored at -70°C until required for use. 

2.6 Protein Assay 

The protein content of the microsomal fraction was determined using the Folin

Lowry assay (Lowry et ai, 1951). This assay depends on the presence of 

aromatic amino acids in the protein. A cupric/peptide bond complex (between 

the alkaline copper-phenol reagent used and the tyrosine and tryptophan 

residues of the protein) is formed and then this is enhanced by a 

phosphomolybdate complex with the aromatic amino acids (Young et ai, 2001). 

The protein content is determined colourimetrically with reference to a standard 

curve of bovine serum albumin (Gibson and Skett, 1994). The optimum 

absorbance was found to be Amax 750nm. 
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Protein standard solutions (0-200jJg/mL, 1 mL) were prepared in test tubes (in 

triplicate), containing varying amounts of bovine serum albumin protein 

standard (200jJg/mL). The microsomes were diluted by a factor of 100 

(50jJL/5mL), and 1 mL (in triplicate) tested alongside the standards. 

Anhydrous sodium carbonate (2%), in sodium hydroxide (0.1 M, 200mL) was 

added to copper sulphate (1 %, 2mL), and sodium potassium tartrate (2%, 

2mL). Aliquots (5mL) were added at 30s intervals to each of the test tubes. 

After standing for 10min, a 500/0 diluted solution of Folin-Ciocalteu's phenol 

reagent (0.5mL) was added to each tube. The tubes were immediately vortexed 

and allowed to stand at room temperature (30min). The optical density (Amax 

750nm) of each solution was measured (UNICAM 8700 series UVNIS) against 

the blank. 

The protein concentration of the testicular microsomes was determined from 

the standard protein calibration curve (Figure 2.1), and was found to be 

15.64mg/mL. 
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Figure 2.1 Calibration graph for protein assay for 17a-hydroxylase 
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2.7 Validation of the 17a-Hydroxylase Assay 

To validate the 17a-hydroxylase assay, it was necessary to determine the 

quantity of non-enymatic product formation. Assay conditions were set so that 

the prepared substrate, P (1 ~M final concentration), was incubated for 30min at 

37°C in the following solutions: 

I. Sodium phosphate buffer (50mM, pH7.4) 

II. Testicular microsomes (O.16mg/mL, 1 O~L) and sodium phosphate buffer, 

lacking NADPH-generating system 

III. Testicular microsomes, denatured by addition of ether (2mL), sodium 

phosphate buffer and NADPH-generating system 

After incubation, the assay mixtures were treated, except (iii), with ether (2mL). 

The solutions were vortexed, then left to stand over ice for 15min. The organic 

phase was extracted into a separate clean tube. The assay mixture was further 

extracted with ether (2x2mL), and the organic layers combined. The solvent 

was removed under a stream of nitrogen, acetone (30~1) was added to each 

tube and the solution spotted onto silica based TLC plates along with carrier 

steroids (P, 17aOHP, A and T, 5mg/mL). The plates were developed using the 

mobile phase which consisted of dichloromethane (70mL) and ethyl acetate 

(30mL). After development, the separated steroids were identified, using an UV 

lamp, cut from the plate and placed into a scintillation tube. Acetone (1 mL) was 

added to dissolve the steroid from the silica plate and scintillation fluid 

(Optiscint HiSafe, 3mL) was then added. The samples were vortexed and then 

read for radioactivity (3min). None of the samples showed detectable quantities 

of 17aOHP, A or T, indicating that (a) testicular microsomes and (b) NADPH 

are both essential requirements for the conversion of P to its subsequent 

products. 
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2.8 Protein-dependency Assay for 17a-Hydroxylase 

An assay was carried out to establish whether the rate of appearance of 

17aOHP, A and T produced during the enzymatic reaction, was proportional to 

the protein concentration. 

Incubations were carried out (in triplicate) using protein concentrations 0.1564, 

0.3128, 0.4692, 0.6256 and 0.7820mg/mL (final concentration), prepared 

substrate P (1.5J.lM final concentration, 15f..l1), NADPH-generating system 

(50~L) and sodium phosphate buffer (pH7.4, made up to 1 mL). The solutions 

were incubated for 15min at 37°C and the reaction was quenched by the 

addition of ether (2mL). The assay was completed as previously described 

(Section 2.7) and the percentage conversions determined using equation 2.1. 

The results are shown in Figure 2.2. 

At 1.5~M substrate concentration, it can be concluded that the kinetics of the 

reaction are linear for concentrations up to 0.47mg/mL protein. 
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Figure 2.2 Plot to show percentage conversion of P at varying protein 

concentrations. 
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2.9 Time Validation Assay for 17a-Hydroxylase 

A time dependency assay was carried out to ensure that the assay was within 

the linear phase of the enzyme reaction. 

The prepared substrate, P (1.5IJM, 15IJL), NADPH-generating system (50IJL) 

and sodium phosphate buffer (pH7.4, 9251JL) were incubated in triplicate at 

37°C in a shaking water bath for 5min. The assay was initiated by the addition 

of testicular microsomes (final assay concentration 0.16mg/mL, 10IJL). After 15, 

30, 45, 60, 75 and gOmin of incubation the assay tubes were quenched by the 

addition of ether (2mL) and placed on ice. The assay was completed as 

previously described (Section 2.7). A graph was then plotted for percentage 

conversion versus time (Figure 2.3). 
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Figure 2.3 Plot to show percentage conversion of P at varying time intervals. 

At O.16mg/mL protein concentration and 1.51JM substrate concentration, it can 

be concluded that the kinetics of the reaction are linear up to 60 min. 
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2.10 Determination of the Michaelis Constant (Km) for 170-

Hydroxylase 

The assay was carried out in triplicate. The prepared substrate was serially 

diluted with propane-1 ,2-diol, to give a range of final incubation concentrations 

of 0.1 to 11JM. All incubations were carried out at 37°C in a shaking water bath. 

Incubation mixtures (1 mL), containing NADPH-generating system (50IJL) and 

prepared substrate, P (of varying concentrations, 10IJL), in phosphate buffer 

(930IJL, pH7.4) were incubated for 5min. The testicular microsomes (10IJL, final 

assay concentration 0.16mg/mL) were thawed and warmed to 37°C before 

addition to the assay mixture. The assay was initiated by the addition of the 

microsomes. After 15min incubation at 37°C, the assay tubes were quenched 

by the addition of ether (2mL) and placed on ice. The assay was completed as 

previously described (Section 2.7). 

The velocity, v, for each substrate concentration was calculated uSing the 

following equation, where units for v are: JlM/min/mg. 

CPM (A + T + 17uOHP) x Substrate cone. [S] (JlM) 
v=--------------------------------------------

CPM (A + T + 17uOHP + P ) x protein conc. (mg/ml) x time (min) 

Equation 2.2 Velocity calculation for each substrate concentration 

2.11 Results: Determination of Km 

The Km and maximum velocity (Vmax) were determined from five different 

general methods for P and are shown in Figures 2.4 to 2.8. 

I. Michaelis Menten plot: v vs [S] where Km = [S] at ~ Vmax (Figure 2.4) 

II. Lineweaver-Burk plot: 1/v vs 1/[S] where -1/Km = x intercept, 1Nmax = Y 

intercept, and KmNmax = slope (Figure 2.5) 

III. Hanes-Woolf plot: [S]/v vs [S] where KmNmax = Y intercept, 1Nmax = slope and 

-Km = x intercept (Figure 2.6) 
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IV. Eadie-Hofstee plot: v vs v/[S] where -Km = gradient, and Vmax = y intercept 

(Figure 2.7) 

V. Direct linear plot where Km and Vmax= intercept of plot lines. (Figure 2.8) 

The Km values obtained from the graphical methods are summarised in Table 

2.1. 
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Plot Km (IJM) 

Michaelis Menten plot 0.25 + 0.05 

Lineweaver-Burk plot 0.77 + 0.18 

Hanes-Woolf plot 0.34 + 0.02 

Ead ie-Hofstee plot 0.39 + 0.03 

Direct linear plot 0.39 + 0.02 

Average Km 0.43 + 0.06 

Table 2.1 Summary of Km plots for 17a-hydroxylase. Results are expressed as 

mean + SD. 

2.12 Discussion 

The average Km value for 17a-hydroxylase with the substrate P using Sprague

Dawley testicular microsomes was found to be 0.43 + 0.06IJM, compared to Km 

values obtained by other workers against rat testicular microsomes, i.e., Km = 

1.4!J-M (Hartmann et ai, 2000) and Km = 4.3nM (Barrie et ai, 1997). Evidence of 

inhibition at high substrate concentration is seen by the upward curve on the 

Lineweaver-Burk plot. Non-linearity is seen for the Lineweaver-Burk plot which 

explains the poor R2 values for the Hanes-Woolf and Eadie-Hofstee plots. 
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2.13 Preliminary Screening of Synthesised Compounds for 17a

Hydroxylase Inhibitory Activity 

The assay procedure for screening involved inhibitors and standard 

(ketoconazole) dissolved in absolute ethanol and diluted to give the required 

final incubation concentration. The assay was carried out (in triplicate) at 37°C 

in a shaking water bath. The total assay volume was 1 mL. Prepared substrate, 

P (15J..1L, 1.5J..1M/tube), inhibitors (20J..lL, in ethanol), NADPH-generating system 

(50J..lL) and sodium phosphate buffer (pH7.4, 905J..1L) was added to each tube. 

The testicular microsomes and assay tubes were pre-incubated for 5min at 

37°C in a shaking water bath prior to the addition of the microsomes (1 OJ..lL, final 

assay concentration 0.16mg/mL) to the tubes. After 15min incubation at 37°C, 

the assay tubes were quenched by the addition of ether (2mL) and placed on 

ice. The assay was completed as previously described (Section 2.7). Control 

samples with no inhibitor were incubated simultaneously. The results were 

determined by using equation 2.1 to determine the percentage conversion of P 

and then comparing the conversion in the presence of inhibitors to that of the 

controls. Results are shown in Tables 2.3a - 2.1 Oc. 

2.14 Determination of ICso 

ICso is the inhibitor concentration required for 50% inhibition of the enzyme. ICso 

determination was carried out on ketoconazole and all inhibitors which showed 

significant 17 a-hydroxylase inhibitory activity. The assay was carried out in the 

same manner as described in Section 2.13, except that a single inhibitor (20J..lL) 

was tested over a range of final assay concentrations depending on their 

preliminary screening result. The ICso was determined from plots of percentage 

inhibition versus Log [I] (Figures 2.17 - 2.26; Figures 2.37 - 2.41; Figures 2.46 

_ 2.49; Figures 2.53 - 2.56 and Figures 2.69 - 2.72). 
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2.15 P45017(1 Enzyme Assay: 17,20-Lyase Component 

The compounds tested for 17a-hydroxylase activity were also tested for 17,20-

lyase inhibitory activity, using the microsomal fraction obtained from rat 

testicular tissue (Sprague-Dawley). The assay was based on that of Owen 

(1995) and measures the effect of the novel compounds on the rate of 

conversion of radiolabelled 17aOHP to A mediated by the action of P45017a 

(17,20-lyase), and also considering the conversion to T mediated by the action 

of 17~-HSD (type 3) as mentioned in Section 2.2. The assay reaction is 

quenched and the extraction carried out in a similar manner to the 17a

hydroxylase assay. 

The reaction products (A and T) along with the substrate (17aOHP) are 

separated using TLC. The TLC plates are developed using a mixture modified 

from that of Owen (1995), ie. dichloromethane (70mL) and ethyl acetate 

(30mL). 

The percentage conversion of 17aOHP to A and T is then determined by 

dividing the CPM for both products by the total CPM for all three steroids 

(equation 2.3). 

A+T 
0/0 Conversion = -------- x 100 

A + T + 17uOHP 

Equation 2.3 Percentage conversion of 17aOHP. 

As with the 17a-hydroxylase assay the method outlined does not require a 

quantitative recovery of all reactants and products from the assay mixture. 
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2.16 Methods, Materials and Instrumentation 

Methods, materials and instruments were, in general, as described in Section 

2.3 except that [1 ,2,6,7-3H]17aOHP was obtained from Amersham Pharmacia 

Biotech UK Limited, Buckinghamshire and was used in place of P. 

2.17 Buffer, Solution and Substrate Preparation 

Buffers and solutions used in the assay were prepared as for the 170-

hydroxylase assay (Section 2.4). 

Substrate preparation of [1,2,6,7 .3H]17aOHP (100J,lM) 

A stock solution was prepared by transferring radiolabelled 170· 

hydroxy[1 ,2,6,7-3H]progesterone (O.27~M, 50~L) to a glass vial and removing 

the toluene under a stream of nitrogen. Unlabelled substrate in propane-1,2-diol 

(99.73~M, 1 mL) was added to the radiolabelled residue and mixed thoroughly 

to give a final concentration of 1 OO~M. 

2.18 Preparation of Testicular Microsomes 

The testicular microsomes were prepared as described in Section 2.5. 

2.19 Protein Assay 

The protein content of the microsomal fraction was determined as previously 

described in Section 2.6. The results are shown in Figure 2.9 below. 
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The protein concentration of the testicular microsomes was determined from 

the standard protein calibration curve (Figure 2.9) and was found to be 

15.37mg/mL. 

2.20 Validation of the 17,20-Lyase Assay 

To validate the 17,20-lyase assay, it was necessary to determine the quantity of 

non-enymatic product formation. Assay conditions were set so that the 

prepared substrate, 17aOHP (11JM final concentration), was incubated for 

30min at 37°C in the following solutions: 

I. Sodium phosphate buffer (50mM, pH7.4) 

II. Testicular microsomes (O.15mg/mL, 1 O~I) and sodium phosphate buffer, 

lacking NADPH-generating system 

III. Testicular microsomes, denatured by addition of ether (2mL), 

sodium phosphate buffer and NADPH-generating system 
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After incubation, the assay mixtures were treated, except (iii), with ether (2mL). 

The solutions were vortexed, then left to stand over ice for 15min. The organic 

phase was extracted into a separate clean tube. The assay mixture was further 

extracted with ether (2x2mL), and the organic layers combined. The solvent 

was removed under a stream of nitrogen, acetone (30/-11) was added to each 

tube and the solution spotted onto silica based TLC plates along with carrier 

steroids (17aOHP, A and T, 5mg/mL). The TLC plates were developed using a 

mobile phase consisting of dichloromethane (70mL) and ethyl acetate (30mL). 

After development, the separated steroids were identified, using an UV lamp, 

cut from the plate and placed into a scintillation tube. Acetone (1 mL) was added 

to dissolve the steroid from the silica plate and scintillation fluid (Optiscint 

HiSafe, 3mL) was then added. The samples were vortexed and then read for 

radioactivity (3min). None of the samples showed detectable quantities of A or 

T, indicating that (a) testicular microsomes and (b) NADPH are both essential 

requirements for the conversion of 17aOHP to its subsequent products. 

2.21 Protein-dependency Assay for 17,20-Lyase 

An assay was carried out to establish whether the rate of appearance of A and 

T produced during the enzymatic reaction, was proportional to the protein 

concentration. 

Incubations were carried out (in triplicate) using protein concentrations 0.0767, 

0.1534,0.3068,0.4602, 0.6136mg/mL (final concentration), prepared substrate, 

17aOHP (1/-1M final concentration, 10/-1L), NADPH-generating system (50~L) 

and sodium phosphate buffer (pH7.4, made up to 1 mL). The solutions were 

incubated for 30min at 37°C and the reaction was quenched by the addition of 

ether (2mL) and placed on ice. The assay was completed as previously 

described (Section 2.20) and the percentage conversions determined uSing 

equation 2.3. The results are shown in Figure 2.10. 
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Figure 2.10 Plot to show percentage conversion of 17aOHP at varying protein 

concentrations. 

At 1 ~M substrate concentration, it can be concluded that the kinetics of the 

reaction are linear for protein concentrations below 0.31 mg/mL. 

2.22 Time Validation Assay for 17,20-Lyase 

A time dependency assay was carried out to ensure that the assay was within 

the linear phase of the enzyme reaction. 

The prepared substrate, 17aOHP (1 ~M, 1 O~L), NADPH-generating system 

(50~L) and sodium phosphate buffer (pH7.4, 930~L) were incubated in triplicate 

at 37°C in a shaking water bath for 5min. The assay was initiated by the 

addition of testicular microsomes (final assay concentration 0.15mg/mL, 1 O~L). 

After 10, 20, 30, 40 and 50min of incubation the assay tubes were quenched by 

the addition of ether (2mL) and placed on ice. The assay was completed as 

previously described (Section 2.20). A graph was then plotted for percentage 

conversion versus time (Figure 2.11). 
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Figure 2.11 Plot to show percentage conversion of 17aOHP at varying time 

intervals. 

At 0.15mg/mL protein concentration and 1lJM substrate concentration, it can be 

concluded that the kinetics of the reaction are linear up to 50min. 

2.23 Determination of Km for 17,20-Lyase 

The assay was carried out in triplicate. The prepared substrate was serially 

diluted with propane-1,2-diol, to give a range of final incubation concentrations 

of 0.25 to 1lJM. All incubations were carried out at 37°C in a shaking water bath. 

Incubation mixtures (1 mL), containing NADPH-generating system (50lJL) and 

prepared substrate, 17aOHP (of varying concentrations, 10lJL), in phosphate 

buffer (930lJL, pH7.4) were incubated for 5min. The testicular microsomes 

(10lJL, final assay concentration 0.15mg/mL) were thawed and warmed to 37°C 

before addition to the assay mixture. The assay was initiated by the addition of 

the microsomes. After 30min incubation at 37°C, the assay tubes were 

quenched by the addition of ether (2mL) and placed on ice. The assay was 

completed as previously described (Section 2.20). 
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The velocity, v, for each substrate concentration was calculated uSing the 

following equation, where units for v are: ~M/min/mg. 

CPM (A + T) x Substrate conc. [S] (J..lM) 
v=--------------------------------------------

CPM (A + T + 17a-OHP) x protein conc. (mg/ml) x time (min) 

Equation 2.4 Velocity calculation for each substrate concentration 

The Km and Vmax were determined from five different general methods (see 

Section 2.11) for 17aOHP and are shown in Figures 2.12 to 2.16. 
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Figure 2.12 Michaelis Menten plot for 17 ,20-lyase. 
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Plot Km (~M) 
Michaelis Menten plot 0.20 + 0.03 
Lineweaver Burk plot 0.45 + 0.08 

Hanes-Woolf plot 0.27 + 0.02 
Ead ie-Hofstee plot 0.32 + 0.04 
Direct linear plot 0.28 + 0.02 

Average Km 0.30 + 0.04 
Table 2.2 Summary of Km plots for 17 ,20-lyase. 

2.24 Discussion 

The average Km value for 17,20-lyase with the substrate 17aOHP uSing 

Sprague-Dawley testicular microsomes was found to be 0.30 + 0.04J..1M, 

compared to Km values obtained by other workers against rat testicular 

microsomes i.e., Km = 192 + 0.42nM (Ayub and Levell, 1987b), Km = 4.55J..1M (Li 

et ai, 1992) and Km = 524.9 + 174.52nM (Dalla Valle et ai, 1996). Evidence of 

inhibition at high substrate concentration is seen by the upward curve on the 

Lineweaver-Burk plot. Non-linearity is seen for the Lineweaver-Burk plot which 

explains the poor R2 values for the Hanes-Woolf and Eadie-Hofstee plots. 

2.25 Preliminary Screening of Synthesised Compounds for 

17,20-Lyase Inhibitory Activity 

The assay procedure for screening involved inhibitors and standard 

(ketoconazole) dissolved in absolute ethanol and diluted to give the required 

final incubation concentration. The assay was carried out (in triplicate) at 37°C 

in a shaking water bath. The total assay volume was 1 mL. Prepared substrate, 

17aOHP (10J..lL, 1.0J..lM/tube), inhibitors (20J..lL, in ethanol), sodium phosphate 

buffer (pH7.4, 910J..lL), NADPH-generating system (50J..lL) were incubated at 

370C. The testicular microsomes were thawed and warmed to 37°C before 

addition (O.15mg/mL final concentration, 1 OJ..lL) to the assay mixture. The assay 

was incubated at 37°C for 30min and then quenched by the addition of ether 

(2mL) and placed on ice. The assay was completed as previously described 

(Section 2.20). Control samples with no inhibitor were incubated 
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simultaneously. The results were determined by uSing equation 2.3 to 

determine the percentage conversion of 17aOHP and then comparing the 

conversion in the presence of inhibitors to that of the controls. Results are 

shown in Table 2.3a - 2.1 Oc. 

2.26 Determination of leso 

ICso determination was carried out on ketoconazole and all inhibitors which 

showed significant 17,20-lyase inhibitory activity. The assay was carried out in 

the same manner as described in Section 2.25, except that a single inhibitor 

was tested over a range of final assay concentrations depending on the initial 

screening results. The ICso was determined from plots of percentage inhibition 

versus Log [I] (Figures 2.27 - 2.36; Figures 2.42 - 2.45; Figures 2.50 - 2.52 

and Figures 2.57 - 2.68). 

2.27 Results for Unsubstituted Phenyl Alkyl-1 H-imidazoles 

against P45017a 

The results are shown in Tables 2.3a and 2.3b 

2.27.1 Discussion 

The ICso was conducted on ketoconazole for comparison. Compounds 165 and 

167 were both less potent than ketoconazole for both 17a-hydroxylase as well 

as 17,20-lyase. Compounds 169 - 174 were all more potent than ketoconazole 

against both components. Compound 168 however was found to be weaker 

than ketoconazole against the 17a-hydroxylase component but equipotent 

against the 17,20-lyase component. 

82 



----

17 a-hydroxylase 17,20-lyase 

Compound 
Structure 0/0 Inhibition at 10JJM ICso Values (J,lM) 0/0 Inhibition at 10J,lM ICso Values (J,lM) 

No. 

0 
1 -cA0 

a ~ 0 ~ 
olta-Q-'G"y 61.54 + 1.53 3.76 + 0.01 78.69 + 2.44 1.66 + 0.15 

0 

Ketoconazole 
r 
V'-

165 J 'N~ 13.51 + 0.65 154.20 + 7.93 12.64 + 0.65 50.90 + 0.86 I ~ L- -1 \ N 

./"'-.. 

166 I y- ~NCJ 10.56 + 1.76 N/A 6.36 + 0.65 N/A 

r -

167 '-'::: 'N ~ V'-~ 
I f" -3 '=N 23.35 + 0.97 30.95 + 0.68 39.95 + 0.89 6.14+1.21 

./"'-.. 

168 I j -:NCJ 40.69 + 0.72 8.65 + 1.37 65.95 + 0.25 2.23 + 0.38 

./"'-.. 

169 I j- ?NCJ 59.74 + 0.63 2.20 + 0.25 72.59 + 0.31 1.31 + 0.21 

-- - -

Table 2.3a Results from preliminary screening and le50 data of some unsubstituted phenyl alkyl-1H-imidazoles and ketoconazole 

for 17 a-hydroxylase/17 ,20-lyase activity. 
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17 a-hydroxylase 17,20-lyase 

Compound 
Structure 0/0 Inhibition at 10IJM ICso Values (IJM) % Inhibition at 10IJM ICso Values (J,lM) 

No. 
r- -

~ 

170 J ~N~ 61.28 + 0.58 0.87 + 0.03 86.99 + 1.29 0.51 + 0.03 I ~ "- -6 \ N 

-

171 ~ ........ N ~ ~~ 
I f- -7 '=N 67.45 + 0.48 0.32 + 0.05 88.67 + 0.32 0.099 + 0.016 

r- -

172 ~ r--..N ~ r- ~ 
I f" -8 '=N 

70.17 + 0.63 0.25 + 0.01 88.38 + 0.14 0.21 + 0.02 

-

173 ~ ........ N ~ ~~ 
I f- -9 '=N 64.52 + 0.29 1.06 + 0.03 89.06 + 2.68 0.35 + 0.01 

r- -

~ 

174 J ~~~ 65.20 + 0.71 1.75 + 0.02 79.63 + 0.89 1.04 + 0.06 I ~ c.. -10'-==N 

Table 2.3b Results from preliminary screening and IC50 data of some unsubstituted phenyl alkyl-1H-imidazoles for 17a

hydroxylase/17,20-lyase activity. 
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Figure 2.17 Plot of percentage inhibition versus log [1] for ketoconazole (1) 

against 17 a-hydroxylase. 
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Figure 2.18 Plot of percentage inhibition versus log [165] for 1-benzyl-1 H

imidazole (165) against 17 a-hydroxylase. 
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Figure 2.19 Plot of percentage inhibition versus log [167] for 1-(3-phenyl

propyl)-1 H-imidazole (167) against 17 a-hydroxylase. 
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Figure 2.20 Plot of percentage inhibition versus log [168] for 1-(4-phenyl-buyl)-

1 H-imidazole (168) against 17 a-hydroxylase. 
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Figure 2.21 Plot of percentage inhibition versus log [169] for 1-(5-phenyl

pentyl)-1 H-imidazole (169) against 17a-hydroxylase. 
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Figure 2.22 Plot of percentage inhibition versus log [170] for 1-(6-phenyl-hexyl)-

1 H-imidazole (170) against 17a-hydroxylase. 
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Figure 2.23 Plot of percentage inhibition versus log [171] for 1-(7-phenyl

heptyl)-1 H-imidazole (171) against 17 a-hydroxylase. 
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Figure 2.24 Plot of percentage inhibition versus log [172] for 1-(8-phenyl-octyl)-

1 H-imidazole (172) against 17 a-hydroxylase. 
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Figure 2.25 Plot of percentage inhibition versus log [173] for 1-(9-phenyl-nonyl)-

1 H-imidazole (173) against 17a-hydroxylase. 
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Figure 2.26 Plot of percentage inhibition versus log [174] for 1-(10-phenyl

decyl)-1 H-imidazole (174) against 17a-hydroxylase. 
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Figure 2.27 Plot of percentage inhibition versus log [1] for ketoconazole (1) 

against 17,20-lyase. 
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Figure 2.28 Plot of percentage inhibition versus log [165] for 1-benzyl-1 H

imidazole (165) against 17,20-lyase. 
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Figure 2.29 Plot of percentage inhibition versus log [167] for 1-(3-phenyl

propyl)-1 H-imidazole (167) against 17,20-lyase. 

-0.7 

90 

80 

70 
c 
0 .... 
..c 60 
..c 
c 

~ 0 50 

f 30 

20 

-0.2 

Y = 27.388x + 41.966 
R2 = 0.97 

0.3 0.8 1 .3 1 .8 

Log [168] (~M) 

Figure 2.30 Plot of percentage inhibition versus log [168] for 1-(4-phenyl-butyl)-

1 H-imidazole (168) against 17,20-lyase. 
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Figure 2.31 Plot of percentage inhibition versus log [169] for 1-(5-phenyl

pentyl)-1 H-imidazole (169) against 17,20-lyase. 
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Figure 2.32 Plot of percentage inhibition versus log [170] for 1-(6-phenyl-hexyl)-

1 H-imidazole (170) against 17,20-lyase. 
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Figure 2.33 Plot of percentage inhibition versus log [171] for 1-(7-phenyl

heptyl)-1 H-imidazole (171) against 17,20-lyase. 
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Figure 2.34 Plot of percentage inhibition versus log [172] for 1-(8-phenyl-octyl)-

1H-imidazole (172) against 17,20-lyase. 
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Figure 2.35 Plot of percentage inhibition versus log [173] for 1-(9-phenyl-nonyl)-

1 H-imidazole (173) against 17,20-lyase. 
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Figure 2.36 Plot of percentage inhibition versus log [174] for 1-( 1 O-phenyl

decyl)-1H-imidazole (174) against 17,20-lyase. 
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2.28 Results of 4-Fluoro-substituted Phenyl Alkyl-1 H

imidazoles against P45017a 

The results are shown in Table 2.4 

2.28.1 Discussion 

Compound 175 was less potent than ketoconazole for both 17a-hydroxylase 

and 17,20-lyase. Compounds 178 and 179 were both more potent than 

ketoconazole against both components. Compound 177 however was found to 

be much weaker than ketoconazole against the 17a-hydroxylase component 

but equipotent against the 17,20-lyase component. Compound 176 was found 

to show much less potency against 17a-hydroxylase and thus was not tested 

against 17,20-lyase. 
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17 a-hydroxylase 17,20-lyase 

Compound 
Structure 0/0 Inhibition at 10IJM ICso Values (IJM) % Inhibition at 10IJM ICso Values (JJM) 

No. 
r- -

~ 

175 '1' 'N~ 20.47 + 1.79 96.46 + 0.20 50.98 + 1.36 11.26 + 0.22 I L - 1 '==N 
F ~ 

r- -

~ 

176 '1' ~N~ 22.48 + 1.84 120.20 ± 7.74 45.07 + 1.21 N/A I ... -2 '==N 
F ~ 

- -
~ 

177 '1' 'N~ 40.77 + 0.53 27.81 + 1.44 73.15 + 0.33 1.96 + 0.01 I ... -3 \ N 
F ~ 

-
~ 

178 I '1'- ~NCJ 84.89 + 1.82 0.75 + 0.005 84.07 + 0.58 0.10 + 0.01 

F ~ 
- -
~ 

179 '1' 'N~ 88.04 + 0.52 0.174 + 0.00 90.45 + 0.68 0.058 + 0.002 I c- - 7 '==N 
F ~ 

Table 2.4 Results from preliminary screening and IG50 data of some 4-fluro-substituted phenyl alkyl-1 H-imidazoles for 17a

hydroxylase/17,20-lyase activity. 
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Figure 2.37 Plot of percentage inhibition versus log [175] for 1-(4-fluoro-benzyl)-

1 H-imidazole (175) against 17a-hydroxylase. 
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Figure 2.38 Plot of percentage inhibition versus log [176] for 1-[2-(4-fluoro

phenyl)-ethyl]-1 H-imidazole (176) against 17 a-hydroxylase. 
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Figure 2.39 Plot of percentage inhibition versus log [177] for 1-[3-(4-fluoro

phenyl)-propyl]-1 H-imidazole (177) against 17 a-hydroxylase. 
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Figure 2.40 Plot of percentage inhibition versus log [178] for 1-[5-(4-fluoro

phenyl)-pentyl]-1 H-imidazole (178) against 17a-hydroxylase. 
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Figure 2.42 Plot of percentage inhibition versus log [175] for 1-(4-fluoro-benzyl)-

1 H-imidazole (175) against 17,20 lyase. 
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Figure 2.43 Plot of percentage inhibition versus log [177] for 1-[3-(4-fluoro

phenyl)-propyl]-1 H-imidazole (177) against 17,20 lyase. 
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Figure 2.44 Plot of percentage inhibition versus log [178] for 1-[5-(4-fluoro

phenyl)-pentyl]-1 H-imidazole (178) against 17,20 lyase. 
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Figure 2.45 Plot of percentage inhibition versus log [179] for 1-[7 -(4-fluoro

phenyl)-heptyl]-1 H-imidazole (179) against 17,20 lyase. 

2.29 Results of 4-Chloro-substituted Phenyl Alkyl-1 H-imidazoles 

against P45017a 

The results are shown in Table 2.5 

2.29.1 Discussion 

Compound 180 was less potent than ketoconazole for both 17a-hydroxylase and 

17,20-lyase. Compound 183 was more potent than ketoconazole against both 

components. Compound 182 however was found to be weaker than 

ketoconazole against the 17a-hydroxylase component but more potent against 

the 17,20-lyase component. Compound 181 was found to show much less 

potency against 17a-hydroxylase and thus was not tested against 17,20-lyase. 
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17 a-hydroxylase 17,20-lyase 

Compound 
Structure 0/0 Inhibition at 10IJM ICso Values (IJM) 0/0 Inhibition at 10JJM ICso Values (JJM) 

No. 
r 

~ 

180 J ~N~ 45.70 + 0.98 29.84 + 0.27 73.65 + 0.99 4.94 + 0.17 I ~ ~ -1 '==N 
CI 

-
.....-..... 

181 J 'N~ 28.42 + 2.92 49.64 ± 1.48 57.38 + 2.50 N/A I ~ ~ -2 \ N 
CI 

r -

~ 

182 J ~N~ 71.00 + 0.53 5.85 + 0.19 80.85 + 1.28 0.55 + 0.07 1,& ~ -3 \ N 

CI 
-

.....-..... 

183 J 'N~ 84.93 + 0.27 0.57 + 0.03 84.84 + 1.33 0.086 + 0.006 1,& - -5 \ N 
CI 

Table 2.5 Results from preliminary screening and ICso data of some 4-chloro-substituted phenyl alkyl-1 H-imidazoles for 17 a

hydroxylase/17,20-lyase activity. 
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Figure 2.46 Plot of percentage inhibition versus log [180] for 1-(4-chloro

benzyl)-1 H-imidazole (180) against 17 a-hydroxylase. 
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Figure 2.47 Plot of percentage inhibition versus log [181] for 1-[2-(4-chloro

phenyl)-ethyl]-1 H-imidazole (181) against 17a-hydroxylase. 
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Figure 2.48 Plot of percentage inhibition versus log [182] for 1-[3-(4-chloro

phenyl)-propyl]-1 H-imidazole (182) against 17 a-hydroxylase. 
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Figure 2.49 Plot of percentage inhibition versus log [183] for 1-[5-(4-chloro

phenyl)-pentyl]-1 H-imidazole (183) against 17 a-hydroxylase. 
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Figure 2.50 Plot of percentage inhibition versus log [180] for 1-(4-chloro

benzyl)-1 H-imidazole (180) against 17,20 lyase. 
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Figure 2.51 Plot of percentage inhibition versus log [182] for 1-[3-(4-chloro

phenyl)-propyl]-1 H-imidazole (182) against 17,20 lyase. 
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Figure 2.52 Plot of percentage inhibition versus log [183] for 1-[5-(4-chloro

phenyl)-pentyl]-1 H-imidazole (183) against 17,20 lyase. 

2.30 Results of 4-Bromo-substituted Phenyl Alkyl-1H-imidazoles 

against P45017a 

The results are shown in Table 2.6 

2.30.1 Discussion 

Compound 184 was less potent than ketoconazole for both 17a-hydroxylase 

and 17,20-lyase. Compounds 186 and 187 were both more potent than 

ketoconazole against both components. Compound 185 was found to show 

much less potency against 17a-hydroxylase and thus was not tested against 

17,20-lyase. 
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17 a-hydroxylase 17,20-lyase 

Compound 
Structure ICso Values (JJM) 0/0 Inhibition at 10IJM ICso Values (IJM) % Inhibition at 10JJM 

No. 
r -

r-~ ~ i'-N ~ 184 I f~ -1 '=N 
49.29 + 1.97 16.55 + 0.23 76.25 + 0.65 2.85 + 0.08 

Br 
- -
V"'--

185 J ~N~ 37.54 + 0.60 30.66 + 0.13 61.52 + 2.49 N/A I h "- -2 \ N 
Br 

-
~ 

186 J ~N~ 70.15 + 0.94 2.95 + 0.03 86.29 + 0.3 0.33 + 0.02 I h - -3 \ N 
Br 

r -

V"-

187 J ~N~ 89.22 + 0.31 0.50 + 0.04 81.34 + 3.85 0.058 + 0.005 I h "- -5 \ N 
Br 

- ---- -- --

Table 2.6 Results from preliminary screening and IC50 data of some 4-bromo-substituted phenyl alkyl-1H-imidazoles for 17a

hydroxylase/17,20-lyase activity. 
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Figure 2.53 Plot of percentage inhibition versus log [184] for 1-(4-bromo

benzyl)-1 H-imidazole (184) against 17 a-hydroxylase. 
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Figure 2.54 Plot of percentage inhibition versus log [185] for 1-[2-(4-bromo

phenyl)-ethyl]-1 H-imidazole (185) against 17 a-hydroxylase. 
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Figure 2.55 Plot of percentage inhibition versus log [186] for 1-[3-(4-bromo

phenyl)-propyl]-1 H-imidazole (186) against 17 a-hydroxylase. 
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Figure 2.56 Plot of percentage inhibition versus log [187] for 1-[5-(4-bromo

phenyl)-pentyl]-1 H-imidazole (187) against 17 a-hydroxylase. 
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Figure 2.57 Plot of percentage inhibition versus log [184] for 1-(4-bromo

benzyl)-1 H-imidazole (184) against 17,20 lyase. 
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Figure 2.58 Plot of percentage inhibition versus log [186] for 1-[3-(4-bromo

phenyl)-propyl]-1 H-imidazole (186) against 17,20 lyase. 
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Figure 2.59 Plot of percentage inhibition versus log [187] for 1-[5-(4-bromo

phenyl)-pentyl]-1 H-imidazole (187) against 17,20 lyase. 

2.31 Results of Phenyl Alkyl-1 H-triazoles against P45017a 

The results are shown in Tables 2.7a - 2.7b 

2.31.1 Discussion 

The compounds were screened against both components but the IC50 was 

carried out against the 17,20-lyase component only, as, in general, they 

showed weak inhibition against 17a-hydroxylase. They were in general weaker 

in comparison to ketoconazole, except compound 194 which showed similar 

potency to ketoconazole for the lyase component. 
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17 a-hydroxylase 17,20-lyase 

Compound 
Structure % Inhibition at 100IJM % Inhibition at 100J,lM ICso Values (J,lM) 

No. 
-

v....... N 
188 J ~N~) 6.84 + 0.86 2.71 + 0.20 680.02 + 7.72 

I ~ "- -1 '==N 

r- -

/"'.. N 
189 J '~) 10.92 + 1.94 0 N/A I.;:; - _2 N, N 

r- -

190 ~ N ~ Jv--..~ ~N 
I .;:; L - 3 '=~ 17.22 + 1.28 37.46 + 0.93 151.79 + 2.90 

~ -
v--.... N 

191 J ~N~) 28.99 + 0.99 63.65 + 0.77 39.56 + 0.24 I ~ ~ -4 \ N 

;:;- -
/"'.. N 

192 I Y _?N~~ 55.00 + 0.36 81.20 + 0.31 9.53 + 0.48 

- - -- - - --- - - - -

Table 2.7a Results from preliminary screening and ICso data of some unsubstituted phenyl alkyl-1H-[1,2,4,]triazoles for 17a

hydroxylase/17,20-lyase activity. 
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17 a-hydroxylase 17,20-lyase 

Compound 
Structure 0/0 Inhibition at 100IJM 0/0 Inhibition at 100JJM IC50 Values {JJM} 

No. 

-
/'-.. N 

I 193 J 'N/~ 60.39 + 0.57 89.56 + 0.35 8.15 + 0.85 I ~ - -6 \ N 

r- -

194 ~ N ~ (V'--I'-- /N"7 
I ~ ... -7 \ N 

73.17 + 1.23 93.88 + 0.20 2.17 + 0.01 

-
~ N 

195 J 'N/~ 76.56 + 0.03 94.38 + 0.20 2.69 + 0.01 I ~ ... -8 \ N 

r- -

196 ~ N ~ (V'--I'-- /N"7 
I ~ ... -9 \ N 

79.10 + 0.24 94.51 + 0.37 2.87 + 0.17 

;- -

197 ~ N ~ ("" /N"7 I ~ c- -10\ N 
79.58 + 1.48 91.68 + 0.39 3.07 + 0.12 

'----- - - ----

Table 2.7b Results from preliminary screening and IC50 data of some unsubstituted phenyl alkyl-1 H-[1 ,2,4,]triazole for 17 a

hydroxylase/17,20-lyase activity continued. 
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Figure 2.60 Plot of percentage inhibition versus log [188] for 1-benzyl-1 H

[1 ,2,4]triazole (188) against 17,20-lyase. 
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Figure 2.61 Plot of percentage inhibition versus log [190] for 1-(3-phenyl

propyl)-1 H-[1 ,2,4]triazole (190) against 17,20-lyase. 
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Figure 2.62 Plot of percentage inhibition versus log [191] for 1-(4-phenyl-butyl)-

1 H-[1 ,2,4]triazole (191) against 17,20-lyase. 
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Figure 2.63 Plot of percentage inhibition versus log [192] for 1-(5-phenyl

pentyl)-1H-[1 ,2,4]triazole (192) against 17,20-lyase. 
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Figure 2.64 Plot of percentage inhibition versus log [193] for 1-(6-phenyl-hexyl)-

1 H-[1 ,2,4]triazole (193) against 17,20-lyase. 
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Figure 2.65 Plot of percentage inhibition versus log [194] for 1-(7 -phenyl

heptyl)-1H-[1 ,2,4]triazole (194) against 17,20-lyase. 
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Figure 2.66 Plot of percentage inhibition versus log [195] for 1-(8-phenyl-octyl)-

1 H-[1 ,2,4]triazole (195) against 17,20-lyase. 
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Figure 2.67 Plot of percentage inhibition versus log [196] for 1-(9-phenyl-nonyl)-

1 H-[1 ,2,4]triazole (196) against 17,20-lyase. 
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Figure 2.68 Plot of percentage inhibition versus log [197] for 1-( 1 O-phenyl

decyl)-1 H-[1 ,2,4]triazole (197) against 17,20-lyase. 

2.32 Results of Substituted Phenyl Alkyl-1H-triazoles against 

P45017a 

The results are shown in Tables 2.8 - 2.9 

2.32.1 Discussion 

The compounds were screened for both components; those showing good 

inhibition were tested for ICso against the 17a-hydroxylase component (shown 

in table 2.9, Figures 2.69 - 2.72). All the compounds tested were shown to be 

much weaker than ketoconazole, including compound 194 which had shown 

equipotency when tested for 17 ,20-lyase inhibition. 
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17 a-hydroxylase 17,20-lyase 

Compound 0/0 Inhibition at 0/0 Inhibition at 

No. 
Structure 

100IJM 100IJM 
-

/""-.. N 
198 I J "N/ ~ 16.25 + 1.13 31.46 + 2.41 - -1 \=:: 

F 
~ -N 

-
/""-.. N 

199 I J "N/ ~ 13.58 + 0.58 25.21 + 3.29 - -2 \=:: 
F 

~ -N 

-
/""-.. N 

200 I J "N/ ~ 24.70 + 0.54 45.90 + 0.12 
- -3 \=:: 

F 
~ -N 

-
/""-.. N 

201 I J "N/ ~ 70.96 + 0.53 81.82 + 1.40 
- -5 \=:: 

F 
~ -N 

r-

V'-. N 
202 I J r--N/ ~ 26.93 + 2.90 45.70 + 1.11 

'- -1 \:= 
CI 

~ -N 

r 

V"-. N 
203 I 

J r--N/ ~ 16.93 + 0.31 31.72 + 0.6 
'- -2 \:= 

~ -N 
CI 

- -
/""-.. N 

204 I J "N/ ~ 39.50 + 0.61 74.38 + 1.40 
- -3 \:= 

~ -N 
CI 

r -

v---.. N 
205 I 

J r--N/ ~ 57.33 + 4.98 84.41 + 0.85 
- ~5 \:= 

~ -N 
CI 

Table 2.8a Results from preliminary screening data of some para-substituted 

phenyl alkyl-1H-[1 ,2,4]triazoles for 17a-hydroxylase and 17,20-lyase activity. 
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17 a-hydroxylase 17,20-lyase 

Compound 0/0 Inhibition at 0/0 Inhibition at 

No. 
Structure 

100IJM 100IJM 
-
~ N 

206 I J ~N/~ 24.92 + 1.06 50.65 + 1.24 
- -1 '== 

Br 
~ -N 

r- -

~ N 
207 I J ~N/~ 22.79 + 0.80 39.42 + 2.68 

"- -2 '== 
Br 

~ _N 

r- -

.............. N 
208 I J 'N/~ 24.11 +1.91 50.87 + 1.16 

- -3 '== 
Br 

~ -N 

-
.............. N 

209 I J 'N/~ 79.07 + 0.35 85.97 + 0.53 
- -5 '== 

Br 
~ -N 

- .., 
A N 

210 I J 'N/~ 28.56 + 0.76 47.67+1.11 
"- -1 '== 

~ -N 

°2N 

Table 2.8b Results from preliminary screening data of some para-substituted 

phenyl alkyl-1H-[1 ,2,4]triazoles for 17a-hydroxylase/17,20-lyase activity. 
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Compound 

No. 

194 

201 
F 

205 
CI 

209 
Br 

Structure 

........ N 
7N ~ 
~ N 

....... N 
5N '> 

l::N 

....... N 
5N 'J 

l:::N 

17 a-hydroxylase 

ICso Values (IJM) 

32.22 + 2.64 

43.74 + 3.51 

45.52 + 6.01 

37.79 + 3.65 

Table 2.9 Results from preliminary screening and IC50 data of some phenyl 

alkyl-1 H-[1 ,2,4]triazoles for 17a-hydroxylase activity. 
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Figure 2.69 Plot of percentage inhibition versus log [194] for 1-(7 -phenyl

heptyl)-1 H-[1 ,2,4]triazole (194) against 17a-hydroxylase. 
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Figure 2.70 Plot of percentage inhibition versus log [201] for 1-[5-(4-fluoro

phenyl)-pentyl)-1 H-[1,2,4]triazole (201) against 17a-hydroxylase. 
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Figure 2.71 Plot of percentage inhibition versus log [205] for 1-[5-(4-chloro

phenyl)-pentyl)-1 H-[1,2,4]triazole (205) against 17a-hydroxylase. 

122 



65 

60 

55 

c 50 0 
:t:= 
..c 

45 ..c 
c 

~ 0 
40 

35 

30 

25 

0.6 

y = 24.71x + 11.627 
R2 = 0.96 

0.8 1 1.2 1.4 

Log [209] (~M) 

1.6 1.8 2 

Figure 2.72 Plot of percentage inhibition versus log [209] for 1-[5-(4-bromo

phenyl)-pentyl)-1 H-[1 ,2,4]triazole (209) against 17a-hydroxylase. 

2.33 Results of Phenylamine Derivatives against P45017a 

The results are shown in Tables 2.1 Oa - 2.1 Oc. 

2.33.1 Discussion 

The compounds were screened against both components and were found to be 

much weaker than ketoconazole. 
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17 a-hydroxylase 17,20-lyase 

Compound Structure 0/0 Inhibition % Inhibition 

No. 

211 f)·····(Fu 
3.80 + 0.91b 15.06 + 2.59b 

H~ 

CH3 I 

212 f)·····LJ=° 8.18+2.51 b 16.14 + 1.97b 

H2N 

fi-CH3 

213 f)·····LFO 4.82 + 1.60a 
30.00 + 1.44 b 

I ~ 0 16.35 + 3.32b 
H2N 

,fiCH3 

214 f)·····LFO 4.87 + 4.11b 32.94 + 4.44b 
I ~ 0 

H2N 
-

Table 2.1 Oa Results from preliminary screening and IC50 data of some para-substituted 4-(S)-(4-amino-benzyl)-oxazolidin-2-one for 

17u-hydroxylase/17,20-lyase activity. (Where a [I] = 500~M, b [I] = 1000~M). 
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- -
~-~ 

17 a-hydroxylase 17,20-lyase 

Compound 
r----

Structure % Inhibition 0/0 Inhibition 
No. 

nCH3 

215 JY"L ~ '" FO 12.83 + 0.01 b 31.63 + 3.49b 

I .0 ° 
H2N 

nCH3 

216 JY"L 5.93 + 1.45b 24.12 + 1.63b 
~ '" FO 

I .0 ° 
H?N 

HsCH
3 

217 JY·····LFO 15.72 + 3.87b 24.27 + 1.36b 

I ~ ° 
H,N 

n CH3 

218 JY·····LFO 12.76 + 7.40b 7.84 + 0.79a 

I ~ ° 
H?N 

Table 2.1 Ob Results from preliminary screening and ICso data of some para-substituted 4-(S)-(4-amino-benzyl)-oxazolidin-2-one for 

17a-hydroxylase/17,20-lyase activity. (Where a [I] = 500jJM, b [I] = 1000jJM). 
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-

17 a-hydroxylase 17,20-lyase 

Compound 
Structure 0/0 Inhibition % Inhibition 

No. 

nCH3 

10.24 + 7.28b 13.26 + 1.04a 
219 ~""(FO 40.97 + 0.66b 

I ~ 0 
H.,N 

ITaCH
3 

11.30 + 0.27b 9.80 + 0.14a 220 ~""'(FO 39.73 + O.SOb I ~ 0 
H.,N 

tJgCH3 

14.98 + 0.54b Ob 221 ~""'(FO I .0 0 
H.,N 

,[iCH3 

222 " N 10 
7.11 + 1.15b ob ~""CFO I .0 0 

H.,N 

nCH3 

223 " N 11 Ob 15. 13 + 4.64 b ~""CFO I .0 0 
H"N -

Table 2.1 Oc Results from preliminary screening and IC50 data of some para-substituted 4-(S)-(4-amino-benzyl)-oxazolidin-2-one for 

17u-hydroxylase/17,20-lyase activity. (Where a [I] = 5001JM, b [I] = 1000IJM). 
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2.34 Protein Assay for 17a-Hydroxylase 

Due to the number of assays carried out, it was necessary to prepare a new 

batch of enzymes for testing. This was carried out as previously described in 

Section 2.5. 

The protein concentration of the testicular mlcrosomes was determined as 

previously discussed in Section 2.6. The protein concentration was found to be 

10.47mg/mL. 

2.35 Protein-dependency Assay for 17a-Hydroxylase 

The protein-dependency assay was determined as previously mentioned In 

Section 2.8. The reaction was found to be linear for concentrations below 

0.21mg/mL. 

2.36 Time Validation Assay for 17a-Hydroxylase 

The time validation assay was determined as previously mentioned in Section 

2.9. The reaction was found to be linear for time intervals up to 45min. 

2.37 Determination of Km for 17a-Hydroxylase 

The determination of the Michaelis constant was carried out as previously 

mentioned in Section 2.10, The Km values obtained from the graphical methods 

are summarised in Table 2.11, and the average Km was found to be 0.87 + 

Plot Km (J-IM) 
Michalis Menten plot 0.34 + 0.015 
Lineweaver-Burk plot 1.46 + 0.34 

Hanes-Woolf plot 1.08 + 0.99 
Eadie-Hofstee plot 1.06+0.12 
Direct linear plot 0.37 + 0.03 

Average Km 0.87 + 0.04 
Table 2.11 Summary of Km plots for 17a-hydroxylase. 
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2.38 Preliminary Screening of Synthesised Compounds for 17a

Hydroxylase Inhibitory Activity 

The preliminary screening assay was carried out as previously mentioned in 

Section 2.13, except that the substrate concentration used was 3IJM (15IJL), 

inhibitor (10IJL), NADPH-generating system (25IJL), protein (0.10mg/mL, 51JL) 

and buffer (445IJL). The results are shown in Tables 2.13a - 2.13e. 

2.39 Determination of ICso for 17a-Hydroxylase 

The IC50 was determined as previously mentioned in Section 2.14 except the 

concentrations and volumes used were as mentioned in Section 2.38. The 

results and plots are shown in Tables 2.13a - 2.13e and Figures 2.73 - 2.99. 

2.40 Protein Assay for 17,20-Lyase 

Due to the number of assays carried out, it was necessary to prepare a new 

batch of enzymes for testing. This was carried out as previously described in 

Section 2.5. 

The protein concentration of the testicular microsomes was determined as 

previously discussed in Section 2.19. The protein concentration was found to 

be 18.93mg/mL. 

2.41 Protein-dependency Assay for 17,20-Lyase 

The protein-dependency assay was determined as previously mentioned In 

Section 2.21. The reaction was found to be linear for concentrations below 

0.379mg/mL. 
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2.42 Time Validation Assay for 17,20-Lyase 

The time validation assay was determined as previously mentioned in Section 

2.22. The reaction was found to be linear for time intervals prior to 50min. 

2.43 Determination of Km for 17,20-Lyase 

The determination of the Michaelis constant was carried out as previously 

mentioned in Section 2.23, The Km values obtained from the graphical methods 

are summarised in Table 2.12, and the average Km was found to be 1.66 + 

0.101JM 

Plot Km (J,lM) 
Michalis Menten plot 2.86 + 0.18 
Lineweaver-Burk plot 1.87 + 0.09 

Hanes-Woolf plot 1.61 + 0.07 
Eadie-Hofstee plot 0.40 + 0.01 
Direct linear plot 1.58 + 0.11 

Average Km 1.66+0.10 
Table 2.12 Summary of Km plots for 17,20-lyase. 

2.44 Preliminary Screening of Synthesised Compounds for 

17,20-Lyase Inhibitory Activity 

The preliminary screening assay was carried out as previously mentioned in 

Section 2.25, except that the substrate concentration used was 5IJM (10IJL), 

inhibitor (4IJL), NADPH-generating system (10IJL), protein (0.19mg/mL, 21JL) 

and buffer (174IJL). The results are shown in Tables 2.13a - 2.13e. 

2.45 Determination of IC50 for 17,20-lyase 

The IGso was determined as previously mentioned in Section 2.26 except the 

concentrations and volumes used were as mentioned in Section 2.44. The 

results and plots are shown in Tables 2.13a - 2.13e and Figures 2.100 - 2.126. 
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2.46 Results of Substituted Benzyl-1H-imidazoles against 

P45017a 

The results are shown in Tables 2.13a - 2.13e 

2.46.1 Discussion 

In general most compounds were poorer inhibitors in comparison to 

ketoconazole for both components, except compounds 234 and 241 which 

showed equipotency to ketoconazole for 17,20-lyase component. 
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17 a-hydroxylase 17,20-lyase 

Compound 
Structure ICso Values (IJM) 0/0 Inhibition at 10JJM ICso Values (IJM) % Inhibition at 10IJM 

No. 

165 VN:) 13.95 ± 2.15 214.58 + 19.67 31.81 + 0.77 39.06 + 1.22 
,& ~ N 

F 

224 I~ N:) 13.56 ± 0.64 139.51 + 13.43 37.66 + 0.89 30.26 + 1.90 

~ ,& N 
F 
I~ 225 N:) 11.97 ± 1.35 101.42 + 6.16 32.90 ± 0.79 30.02 + 1.43 

~ ,& N 

175 ffN:) 12.76 ± 1.87 99.37 + 8.82 38.00 + 0.98 18.44 + 0.17 
,& ~ 

F N 

F 
I~ 226 N:) 18.64 ± 0.51 70.66 + 6.72 44.99 ± 0.92 9.60 + 0.14 ~ 

F 
,& N 

F 
I~ N:) 

227 ~ 23.26 ± 0.41 83.10 + 7.05 41.94 ± 0.68 11.80 + 0.41 ,& N 

F 
----_.-

Table 2.13a Results from preliminary screening and ICso data of some substituted benzyl-1 H-imidazoles for 17a-hydroxylase/17 ,20-

lyase activity. 
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17 a-hydroxylase 17,20-lyase 

Compound 
Structure 0/0 Inhibition at 10IJM ICso Values (t.JM) % Inhibition at 10IJM ICso Values (IJM) 

No. 

CI 

228 I~ N:) 33.21 ± 0.69 96.71 + 13.20 52.94 + 0.39 8.27 + 0.80 

~ ~ N 
CI 

I~ 229 N:) 26.54 + 2.25 43.08 + 2.21 44.03 ± 0.88 10.61 + 0.39 
~ ~ N 

180 I~ N:) 23.81 ± 0.54 31.63 + 3.86 56.41 + 0.46 8.98 + 0.57 ~ 
CI 

~ N 

CI 

230 CI 
I~ 13.80+1.15 4.28 + 0.27 

N:) 39.19 ± 0.46 58.69 + 1.13 
~ ~ N 

CI 

231 I~ N:) 39.66 ± 0.59 21.99 + 0.96 62.64 ± 0.94 3.90 + 0.18 

~ 
CI 

~ N 
- --- - -- ----- - '---

Table 2.13b Results from preliminary screening and IC50 data of some substituted benzyl-1H-imidazoles for 17a-hydroxylase/17,20-

lyase activity. 
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17 a-hydroxylase 17,20-lyase 

Compound 
Structure 0/0 Inhibition at 1 O~M ICso Values (~M) % Inhibition at 10J,lM ICso Values (J,lM) 

No. 

CI 

232 I~ N:) 30.94 ± 1.30 19.95+1.88 57.31 ± 0.07 4.50 + 0.20 ~ ~ N 
CI 
CI 

233 I~ N:) 24.68 + 0.72 32.27 + 1.27 54.17 + 0.22 13.25 + 0.74 

~ ~ CI N 
CI 

I~ 234 N:) 39.29 + 0.96 12.22 + 0.88 60.68 + 1.04 2.07 + 0.07 ~ 
CI ~ N 
CI 

I~ N:) 
235 ~ 35.44 ± 1.28 22.56 + 0.34 56.42 + 1.31 3.34 + 0.11 ~ N 

CI 
Br 

236 I~ N:) 29.70 ± 0.88 15.45 + 0.98 57.32 ± 0.50 5.17 + 0.57 

~ ~ N 
Table 2.13c Results from preliminary screening and ICso data of some substituted benzyl-1 H-imidazoles for 17 a-hydroxylase/17 ,20-

lyase activity. 
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17 a-hydroxylase 17,20-lyase 

Compound 
Structure 0/0 Inhibition at 10IJM ICso Values (IJM) % Inhibition at 10IJM ICso Values (J-IM) 

No. 

Br 
I~ 237 N:) 26.46 ± 1.83 21.25+1.71 54.42 + 0.47 6.29 + 0.53 

~ ~ N 
184 I~ N:) 41.58 + 1.28 59.68 ± 0.46 3.77 + 0.28 ~ 23.47 + 1.90 

Br 
~ N 

Br 
I~ N:) 

238 ~ 36.29 ± 0.34 23.62 + 2.00 59.00 + 0.90 3.16 + 0.11 ~ N 
Br 

I 

239 I~ N:) 34.56 + 0.37 22.67+1.18 59.86 + 1.14 2.96 + 0.26 

~ ~ N 
I 
I~ 240 N:) 37.38 + 1.42 16.56 + 1.05 60.75 + 0.28 3.51 + 0.23 

~ ~ N 
241 I~ N:) 47.72 ± 0.56 10.06 + 0.96 63.74 ± 0.26 1.58 + 0.17 ~ 

I 
~ N 

--

Table 2.13d Results from preliminary screening and ICso data of some substituted benzyl-1H-imidazoles for 17a-hydroxylase/17,20-

lyase activity. 
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17 a-hydroxylase 17,20-lyase 

Compound 
Structure 0/0 Inhibition at 10IJM ICso Values (IJM) 0/0 Inhibition at 10IJM ICso Values (IJM) 

No. 

242 I~ N:) 16.30±1.90 72.05 + 3.95 43.25 ± 0.56 8.22 + 0.97 ~ 
HO 

~ N 

243 I~ N:) 27.39 ± 1.33 25.38 + 1.65 ~ 57.30 ± 0.99 7.17 + 0.13 

°2N ~ N 

244 I~ N:) 7.67 + 0.05 ~ 29.07 ± 0.50 40.26 + 3.49 54.64 ± 0.20 
~ 

4 N 
N 

245 I~ N:) 24.20 ± 0.54 50.56 + 8.01 55.43 + 1.03 8.81 + 0.43 ~ 
H3C 

~ N 

F3C 
I~ N:) 

246 ~ 5.90 ± 1.33 244.85 + 24.45 25.39 + 1.16 19.46 + 0.75 ~ N 

CF3 

Table 2.13e Results from preliminary screening and IGso data of some substituted benzyl-1 H-imidazoles for 17 a-hydroxylase/17 ,20-

lyase activity. 
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Figure 2.73 Plot of percentage inhibition versus log [165] for 1-benzyl-1 H

imidazole (165) against 17a-hydroxylase. 
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Figure 2.74 Plot of percentage inhibition versus log [224] for 1-(2-fluoro-benzyl)-

1 H-imidazole (224) against 17 a-hydroxylase. 
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Figure 2.75 Plot of percentage inhibition versus log [225] for 1-(3-fluoro-benzyl)-

1 H-imidazole (225) against 17a-hydroxylase. 
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Figure 2.76 Plot of percentage inhibition versus log [175] for 1-(4-fluoro-benzyl)-

1 H-imidazole (175) against 17 a-hydroxylase. 
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Figure 2.77 Plot of percentage inhibition versus log [226] for 1-(3,4-difluoro

benzyl)-1 H-imidazole (226) against 17 a-hydroxylase. 
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Figure 2.78 Plot of percentage inhibition versus log [227] for 1-(3,5-difluoro

benzyl)-1 H-imidazole (227) against 17a-hydroxylase. 
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Figure 2.79 Plot of percentage inhibition versus log [228] for 1-(2-chloro

benzyl)-1 H-imidazole (228) against 17 a-hydroxylase. 
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Figure 2.80 Plot of percentage inhibition versus log [229] for 1-(3-chloro

benzyl)-1 H-imidazole (229) against 17a-hydroxylase. 
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Figure 2.81 Plot of percentage inhibition versus log [180] for 1-(4-chloro

benzyl)-1 H-imidazole (180) against 17a-hydroxylase. 
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Figure 2.82 Plot of percentage inhibition versus log [230] for 1-(2,3-dichloro

benzyl)-1 H-imidazole (230) against 17a-hydroxylase. 
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Figure 2.83 Plot of percentage inhibition versus log [231] for 1-(2,4-dichloro

benzyl)-1 H-imidazole (231) against 17 a-hydroxylase. 
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Figure 2.84 Plot of percentage inhibition versus log [232] for 1-(2,5-dichloro

benzyl)-1 H-imidazole (232) against 17 a-hydroxylase. 
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Figure 2.85 Plot of percentage inhibition versus log [233] for 1-(2,6-dichloro

benzyl)-1 H-imidazole (233) against 17 a-hydroxylase. 
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Figure 2.86 Plot of percentage inhibition versus log [234] for 1-(3,4-dichloro

benzyl)-1 H-imidazole (234) against 17a-hydroxylase. 
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Figure 2.87 Plot of percentage inhibition versus log [235] for 1-(3,5-dichloro

benzyl)-1 H-imidazole (235) against 17a-hydroxylase. 
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Figure 2.88 Plot of percentage inhibition versus log [236] for 1-(2-bromo

benzyl)-1 H-imidazole (236) against 17a-hydroxylase. 
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Figure 2.89 Plot of percentage inhibition versus log [237] for 1-(3-bromo

benzyl)-1 H-imidazole (237) against 17 a-hydroxylase. 
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Figure 2.90 Plot of percentage inhibition versus log [184] for 1-(4-bromo

benzyl)-1H-imidazole (184) against 17a-hydroxylase. 
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Figure 2.91 Plot of percentage inhibition versus log [238] for 1-(3,5-dibromo

benzyl)-1 H-imidazole (238) against 17 a-hydroxylase. 
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Figure 2.92 Plot of percentage inhibition versus log [239] for 1-(2-iodo-benzyl)-

1 H-imidazole (239) against 17a-hydroxylase. 
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Figure 2.93 Plot of percentage inhibition versus log [240] for 1-(3-iodo-benzyl)-

1 H-imidazole (240) against 17a-hydroxylase. 
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Figure 2.94 Plot of percentage inhibition versus log [241] for 1-(4-iodo-benzyl)-

1 H-imidazole (241) against 17a-hydroxylase. 
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Figure 2.95 Plot of percentage inhibition versus log [242] for 4-imidazol-1-

ylmethyl-phenol (242) against 17a-hydroxylase. 

70 

60 

c 
o 50 
~ 

.c 

..c 
c 

;:::g 40 
o 

30 

y = 31.996x + 5.9937 
R2 = 1.00 

20+-----~------~------~----~------~----~ 

0.5 0.75 1 1.25 1.5 1.75 2 

Log [243] (~M) 

Figure 2.96 Plot of percentage inhibition versus log [243] for 1-(4-Nitro-benzyl)-

4H-imidazole (243) against 17a-hydroxylase. 
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Figure 2.97 Plot of percentage inhibition versus log [244] for 4-imidazol-1-

ylmethyl-benzonitrile (244) against 17 a-hydroxylase. 
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Figure 2.98 Plot of percentage inhibition versus log [245] for 1-(4-methyl

benzyl)-1 H-imidazole (245) against 17a-hydroxylase. 
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Figure 2.99 Plot of percentage inhibition versus log [246] for 1-(3,5-Bis
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Figure 2.100 Plot of percentage inhibition versus log [165] for 1-benzyl-1H

imidazole (165) against 17,20-lyase. 
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Figure 2.101 Plot of percentage inhibition versus log [224] for 1-(2-fluoro

benzyl)-1 H-imidazole (224) against 17,20-lyase. 
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Figure 2.102 Plot of percentage inhibition versus log [225] for 1-(3-fluoro

benzyl)-1 H-imidazole (225) against 17,20-lyase. 
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Figure 2.103 Plot of percentage inhibition versus log [175] for 1-(4-fluoro

benzyl)-1 H-imidazole (175) against 17,20-lyase. 
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Figure 2.104 Plot of percentage inhibition versus log [226] for 1-(3,4-difluoro

benzyl)-1 H-imidazole (226) against 17,20-lyase. 
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Figure 2.105 Plot of percentage inhibition versus log [227] for 1-(3,5-difluoro

benzyl)-1 H-imidazole (227) against 17,20-lyase. 
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Figure 2.106 Plot of percentage inhibition versus log [228] for 1-(2-chloro

benzyl)-1 H-imidazole (228) against 17,20-lyase. 
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Figure 2.107 Plot of percentage inhibition versus log [229] for 1-(3-chloro

benzyl)-1 H-imidazole (229) against 17,20-lyase. 
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Figure 2.108 Plot of percentage inhibition versus log [180] for 1-(4-chloro

benzyl)-1H-imidazole (180) against 17,20-lyase. 
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Figure 2.109 Plot of percentage inhibition versus log [230] for 1-(2,3-dichloro

benzyl)-1 H-imidazole (230) against 17,20-lyase. 
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Figure 2.110 Plot of percentage inhibition versus log [231] for 1-(2,4-dichloro

benzyl)-1 H-imidazole (231) against 17,20-lyase. 
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Figure 2.111 Plot of percentage inhibition versus log [232] for 1-(2,5-dichloro

benzyl)-1 H-imidazole (232) against 17,20-lyase. 
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Figure 2.112 Plot of percentage inhibition versus log [233] for 1-(2,6-dichloro

benzyl)-1 H-imidazole (233) against 17,20-lyase. 
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Figure 2.113 Plot of percentage inhibition versus log [234] for 1-(3,4-dichloro

benzyl)-1 H-imidazole (234) against 17,20-lyase. 
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Figure 2.114 Plot of percentage inhibition versus log [235] for 1-(3,5-dichloro

benzyl)-1 H-imidazole (235) against 17,20-lyase. 
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Figure 2.115 Plot of percentage inhibition versus log [236] for 1-(2-bromo

benzyl)-1 H-imidazole (236) against 17,20-lyase. 
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Figure 2.116 Plot of percentage inhibition versus log [237] for 1-(3-bromo

benzyl)-1 H-imidazole (237) against 17,20-lyase. 
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Figure 2.117 Plot of percentage inhibition versus log [184] for 1-(4-bromo

benzyl)-1 H-imidazole (184) against 17,20-lyase. 
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Figure 2.118 Plot of percentage inhibition versus log [238] for 1-(3,5-dibromo

benzyl)-1 H-imidazole (238) against 17,20 lyase. 
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Figure 2.119 Plot of percentage inhibition versus log [239] for 1-(2-iodo-benzyl)-

1 H-imidazole (239) against 17,20-lyase. 
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Figure 2.120 Plot of percentage inhibition versus log [240] for 1-(3-iodo-benzyl)-

1 H-imidazole (240) against 17,20-lyase. 
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Figure 2.121 Plot of percentage inhibition versus log [241] for 1-(4-iodo-benzyl)-

1 H-imidazole (241) against 17,20-lyase. 
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Figure 2.122 Plot of percentage inhibition versus log [242] for 4-imidazol-1-

ylmethyl-phenol (242) against 17,20-lyase. 
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Figure 2.123 Plot of percentage inhibition versus log [243] for 1-(4-Nitro

benzyl)-4H-imidazole (243) against 17,20-lyase. 
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Figure 2.124 Plot of percentage inhibition versus log [244] for 4-imidazol-1-

ylmethyl-benzonitrile (244) against 17,20-lyase. 
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Figure 2.125 Plot of percentage inhibition versus log [245] for 1-(4-methyl

benzyl)-1 H-imidazole (245) against 17,20-lyase. 
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Figure 2.126 Plot of percentage inhibition versus log [246] for 1-(3,5-Bis

trifluoromethyl-benzyl)-1 H-imidazole (246) against 17,20-lyase. 
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2.47 Determination of the Dissociation Constant of the Enzyme

Inhibitor Complex (Ki) for a number of Inhibitors against 17a

Hydroxylase 

Ki is the dissociation constant of the enzyme-inhibitor complex and is thus used 

to compare the affinity of the inhibitor for the enzyme. Ki determination was 

carried out for ketoconazole and also for those compounds that had a lower 

IG50 than ketoconazole. 

The assay involved the incubation, in triplicate, of varying inhibitor 

concentrations at varying final substrate concentrations. Each assay tube 

contained substrate (of varying final concentration, 15IJL), NADPH-generating 

system (25IJL), phosphate buffer (445IJL), enzyme (0.10mg/mL final 

concentration, 51JL) and inhibitor (of varying final concentration, 10/-11). The 

procedure was otherwise as that described earlier (Section 2.38). 

2.48 Determination of the Ki values for a number of Inhibitors 

against 17,20-Lyase 

Ki determination was carried out for ketoconazole and also for those 

compounds that had a higher potency than that of ketoconazole. The assay 

involved the incubation, in triplicate, of varying inhibitor concentrations at 

varying final substrate concentrations. Each assay tube contained substrate (of 

varying final concentration, 10IJL), NADPH-generating system (10IJL), 

phosphate buffer (174IJL), enzyme (0.19mg/mL final concentration, 21JL) and 

inhibitor (of varying final concentration, 4IJL). The procedure was otherwise as 

that described earlier (Section 2.44). 

2.49 Results - Graphical Determination of Ki 

The Ki for each inhibitor was calculated by two different graphical methods: 

(1) The velocity, v, for each reaction at each inhibitor concentration was 

determined in a similar manner to that described in Section 2.10/2.23 
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(equation 2.2/2.4) and a Dixon plot carried out to determine (i) the Kj value, 

and (ii) the type of reversible inhibition occuring, for each inhibitor. In the 

Dixon plots of 1/v versus [I], the point of intersection of the lines at different 

substrate concentration gives the Kj value on the [I] ordinate. In cases 

where the lines cross at two or more points, the values are averaged to give 

a mean value for Kj• 

(2) A Lineweaver-Burk plot of 1/v versus 1/[S] for each inhibitor concentration 

was obtained and the slope of each plot plotted against the inhibitor 

concentration. The K; was obtained by extrapolation of the line to the 

negative abscissa intercept. 

The results and plots are shown in Table 2.14 and Figures 2.127 - 2.168. 

2.49.1 Discussion 

K; values for ketoconazole obtained by other workers within the field against rat 

microsomes was 39.5J.,JM (Li et ai, 1992) and 160 ± 4.92nM (Ayub and Levell, 

1987a) for 17a-hydroxylase and 3.6J.,JM (Li et ai, 1992) and 84 ± 3.5nM (Ayub 

and Levell, 1987a) for C17,2o-lyase where Km for 17a-hydroxylase was 33.85J.,JM 

(Li et ai, 1992) and 89 + 0.65nM (Ayub and Levell, 1987a) and Km for C17,20-

lyase was 4.55J.,JM (Li et ai, 1992) and 250 ± 0.75nM (Ayub and Levell, 1987a). 

the K; value we obtained for ketoconazole was 1.24 ± 0.01 J.,JM and 0.67 ± 

0.02J.,JM for 17a-hydroxylase and 17,20-lyase respectively. Compounds that 

showed more potency than ketoconazole were evaluated for K; along with 

ketoconazole. K; was also conducted on compounds 221 and 228 which were 

amongst the most potent benzyl imidazoles but with lower potency than 

ketoconazole. The Lineweaver-Burk plots seemed to indicate that the type of 

inhibition is mixed inhibition for all the compounds tested apart from 

ketoconazole which showed competitive inhibition. 
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Compound 
Compound 17a-hydroxylase 17,20-lyase 

No. Ki values (nM) ICso (nM) Ki values (nM) ICso (nM) 

1 Ketoconazole 1240.0 + 10.0 3760.0 + 10.0 665.0 ± 15.0 1660.0 + 150.0 
-

V"'-

171 J ~N~ 207.0 ± 11.0 320.0 + 50.0 55.3 ± 3.4 99.0 + 16.0 I h- "- -7 \ N 

I""' -

~ 

178 J ~N~ 265.0 ± 13.0 750.0 + 5.0 100.0 + 10.0 I L.. -5 \ N 52.0 ± 2.0 
F h-

I""' -

~ 

179 J ~N~ 77.5 ± 2.5 173.62 + 7.0 57.5 + 1.5 I '- -7 \ N 21.5 + 0.1 
F h-

I""' -

~ 

183 Y t'-N~N 208.0 ± 6.0 570.0 + 30.0 40.0 ± 2.0 86.0 + 6.0 I '--5\ / 

CI 
h-

CI 
I~ 234 N~ 4740.0 ± 200.0 12220.0 + 880.0 1855.0 ± 135.0 2065.5 + 69.5 ~ 

CI 
h- N 

241 I~ N~ 3930.0 ± 120.0 10060.0 + 960.0 1580.0 + 170.0 ~ 735.0 ± 55.0 
h-

I N 

Table 2.14 Results from le50 and Ki data of some imidazoles for 17u-hydroxylase and 17,20-lyase activity. 
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Figure 2.127 Dixon plot of 1/v versus [1] for ketoconazole (1) against 17a

hydroxylase giving a Ki value of 1230nM. 
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Figure 2.128 Lineweaver-Burk plots of 1 Iv versus 1/[S] for ketoconazole (1) 

against 17a-hydroxylase. 
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Figure 2.129 Plot of slope of Lineweaver-Burk plots versus the concentration of 

ketoconazole (1) against 17a-hydroxylase showing a Ki of 1250nM. 
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Figure 2.130 Dixon plot of 1/v versus [171] for 1-(7-phenyl-heptyl)-1H-imidazole 

(171) against 17a-hydroxylase giving a Ki value of 195nM. 
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Figure 2.131 Lineweaver-Burk plots of 1 Iv versus 1/[8] for 1-(7 -phenyl-heptyl)-

1 H-imidazole (171) against 17a-hydroxylase. 
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Figure 2.132 Plot of slope of Lineweaver-Burk plots versus the concentration of 

1-(7-phenyl-heptyl)-1H-imidazole (171) against 17a-hydroxylase showing a Ki of 

218nM. 

168 



-0.8 -0.6 -0.4 -0.2 o 0.2 

[178] (!-1M) 
0.4 0.6 0.8 1 

• [S] 3 IJM 
• [S] 2.5 IJM 
"' [S] 2 IJM 
X[S] 1.51JM 
)K [S] 1 IJM 

Figure 2.133 Dixon plot of 1/v versus [178] for 1-[5-(4-fluoro-phenyl)-pentyl]-1H

imidazole (178) against 17a-hydroxylase giving a Ki value of 278nM. 
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Figure 2.134 Lineweaver-Burk plots of 1 Iv versus 1/[S] for 1-[5-(4-fluoro

phenyl)-pentyl]-1 H-imidazole (178) against 17a-hydroxylase. 
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Figure 2.135 Plot of slope of Lineweaver-Burk plots versus the concentration of 

1-[5-(4-f1uoro-phenyl)-pentyl]-1 H-imidazole (178) against 17a-hydroxylase 

showing a Ki of 252nM. 
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Figure 2.136 Dixon plot of 1 Iv versus [179] for 1-[7 -(4-fluoro-phenyl)-heptyl]-1 H

imidazole (179) against 17a-hydroxylase giving a Ki value of 80nM. 
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Figure 2.137 Lineweaver-Burk plots of 1/v versus 1/[8] for 1-[7-(4-fluoro

phenyl)-heptyl]-1 H-imidazole (179) against 17a-hydroxylase. 

en ..... 
0 
0. 

-....-
0 
Q) 
0. 

..Q 
(f) 

-0.1 -0.05 

15 

14 

13 

12 

11 

10 

9 

8 

7 

6 

5 

-1 

Y = 54.406x + 4.0503 

0.05 

[179] (IJM) 

R2 = 0.98 

0.1 0.15 0.2 

Figure 2.138 Plot of slope of Lineweaver-Burk plots versus the concentration of 

1-[7 -(4-fluoro-phenyl)-heptyl]-1 H-imidazole (179) against 17a-hydroxylase 

showing a Ki of 75nM. 
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Figure 2.139 Dixon plot of 1/v versus [183] for 1-[5-(4-chloro-phenyl)-pentyl]-

1 H-imidazole (183) against 17a-hydroxylase giving a Ki value of 214nM. 

16 

14 

12 
..-
!-. 
C> 
E 10 -c: 
'E -~ 8 
::J.. --< 
~ 6 

-0.8 -0.6 -0.4 -0.2 o 0.2 

1/[5] (I-IMr1 

0.4 0.6 0.8 

y = 10.719x + 2.9708 
R2 = 0.99 

y = 6.909x + 3.4604 
R2 = 0.91 

y = 4.6869x + 3.2124 
R2 = 0.76 • '''y = 3.9413x + 3.0692 

1 

R2 = 0.96 
y = 2.4863x + 3.3146 

R2 = 0.88 

• [I] 0.6 fJM 
• [I] 0.3 fJM 
A[I] 0.15 fJM 
X [I] 0.075 fJM 
~ [I] 0 fJM 

1.2 

Figure 2.140 Lineweaver-Burk plots of 1/v versus 1/[8] for 1-[5-(4-chloro 

phenyl)-pentyl]-1 H-imidazole (183) against 17a-hydroxylase. 
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Figure 2.141 Plot of slope of Lineweaver-Burk plots versus the concentration of 

1-[5-(4-chloro-phenyl)-pentyl]-1 H-imidazole (183) against 17a-hydroxylase 

showing a Ki of 202nM. 
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Figure 2.142 Dixon plot of 1/v versus [234] for 1-(3,4-dichloro-benzyl)-1H

imidazole (234) against 17a-hydroxylase giving a Ki value of 4940nM. 
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Figure 2.143 Lineweaver-Burk plots of 1 Iv versus 1/[S] for 1-(3,4-dichloro

benzyl)-1 H-imidazole (234) against 17a-hydroxylase. 
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Figure 2.144 Plot of slope of Lineweaver-Burk plots versus the concentration of 

1-(3,4-dichloro-benzyl)-1 H-imidazole (234) against 17a-hydroxylase showing a 

Ki of 4600nM. 
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Figure 2.145 Dixon plot of 1/v versus [241] for 1-(4-iodo-benzyl)-1H-imidazole 

(241) against 17a-hydroxylase giving a Ki value of 4050nM. 
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Figure 2.146 Lineweaver-Burk plots of 1/v versus 1/[5] for 1-(4-iodo-benzyl)-1H

imidazole (241) against 17a-hydroxylase. 
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Figure 2.147 Plot of slope of Lineweaver-Burk plots versus the concentration of 

1-(4-iodo-benzyl)-1 H-imidazole (241) against 17a-hydroxylase showing a Ki of 

3810nM. 
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Figure 2.148 Dixon plot of 1/v versus [1] for ketoconazole (1) against 17,20-

lyase giving a Ki value of 680nM. 
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Figure 2.150 Plot of slope of Lineweaver-Burk plots versus the concentration of 

ketoconazole (1) against 17,20-lyase showing a Ki of 650nM. 
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Figure 2.151 Dixon plot of 1/v versus [171] for 1-(7-phenyl-heptyl)-1H-imidazole 

(171) against 17,20-lyase giving a Ki value of 51.88nM. 
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Figure 2.152 Lineweaver-Burk plots of 1 Iv versus 1/[S] for 1-(7 -phenyl-heptyl)-

1 H-imidazole (171) against 17,20-lyase. 
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1-(7-phenyl-heptyl)-1 H-imidazole (171) against 17,20-lyase showing a Ki of 
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Figure 2.154 Dixon plot of 1 Iv versus [178] for 1-[5-(4-fluoro-phenyl)-pentyl]-1 H-

imidazole (178) against 17,20-lyase giving a Ki value of 54nM. 
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Figure 2.155 Lineweaver-Burk plots of 1/v versus 1/[8] for 1-[5-(4-fluoro

phenyl)-pentyl]-1 H-imidazole (178) against 17,20-lyase. 
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Figure 2.160 Dixon plot of 1/v versus [183] for 1-[5-(4-chloro-phenyl)-pentyl]-
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Figure 2.161 Lineweaver-Burk plots of 1/v versus 1/[8] for 1-[5-(4-chloro

phenyl)-pentyl]-1 H-imidazole (183) against 17,20-lyase. 
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Figure 2.162 Plot of slope of Lineweaver-Burk plots versus the concentration of 

1-[5-( 4-chloro-phenyl)-pentyl]-1 H-imidazole (183) against 17,20-lyase showing 

a Ki of 42nM. 
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Figure 2.163 Dixon plot of 1/v versus [234] for 1-(3,4-dichloro-benzyl)-1 H

imidazole (234) against 17,20-lyase giving a Ki value of 1990nM. 

45 

40 

35 

'";" - 30 
0> 
E -c 25 
E -~ 20 ::::l. --> -"I"'"" 15 

10 

-0.1 o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1/[S] (j.JMr1 

y = 39.984x + 2.6876 

R2 = 1.00 

y = 30.703x + 2.6508 

R2 = 1.00 

y = 23.67x + 2.9483 

R2 = 1.00 

Y = 17.815x + 3.9046 

R2 = 0.99 

y = 10.115x + 4.3436 

R2 = 1.00 

.[1] 3.51-1M 

II [I] 1.75 ~M 

• [I] 0.875 I-IM 

X [I] 0.4375 ~M 

'" [I] 0 ~M 

Figure 2.164 Lineweaver-Burk plots of 1/v versus 1/[8] for 1-(3,4-dichloro

benzyl)-1 H-imidazole (234) against 17,20-lyase. 
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Figure 2.166 Dixon plot of 1/v versus [241] for 1-(4-iodo-benzyl)-1 H-imidazole 

(241) against 17,20-lyase giving a Ki value of 680nM. 
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Figure 2.167 Lineweaver-Burk plots of 1/v versus 1/[8] for 1-(4-iodo-benzyl)-1H

imidazole (241) against 17,20-lyase. 
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Chapter 3 



3.0 HSDs 

3.1 Type 3 17~-HSD Enzyme Assay (A to T) 

3.2 Introduction 

Compounds synthesised within the research group (by Miss Rupinder Lota) 

were evaluated for type 3 17J3-HSD inhibitory activity using the microsomal 

fraction obtained from Sprague Dawley rat testicular tissue. The assay used 

was based on that of Le Lain et al (2001) and measures the effect of potential 

inhibitors on the rate of conversion of radiolabelled A to T. 

To separate A and T from the reaction mixture, the method of TLC was 

employed. The extracts, together with the carrier steroids (5mg/mL), were 

applied to TLC plates (the carrier steroids were used to identify the 

radiolabelled steroids from the assay mixture). The mobile phase used was that 

developed as mentioned in Chapter 2, Section 2.2. 

After elution and identification using UV light, each steroid was cut out and 

counted for 4min per tube in a cocktail of scintillation fluid and acetone. The 

percentage conversion of A to T was determined by the division of the CPM for 

the product from the total CPM of both steroids. 

3.3 Methods, Materials and Instruments 

All methods, materials and instruments used were as mentioned in Chapter 2, 

Section 2.3. [1 ,2,6,7-3H]A was obtained from Amersham Pharmacia Biotech UK 

Limited, Buckinghamshire. 
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3.4 Buffer, Solution and Substrate Preparation 

Buffers and solutions used In the assay were as described in Chapter 2, 

Section 2.4. 

Substrate preparation of [1,2,6,7 .3H]A (1 OOIJM) 

A stock solution of substrate was prepared by transferring radiolabelled 

[1,2,6,7-
3
H]A (O.22IJM, 201JL) to a glass vial and removing the toluene:ethanol 

mixture under a stream of nitrogen. Unlabelled substrate in propane-1,2-diol 

(99.78IJM, 1 mL) was added to the radiolabelled residue and mixed thoroughly 

to give a final concentration of 1001JM. 

3.5 Preparation of Testicular Microsomes 

The microsomes were prepared as previously described in Chapter 2, Section 

2.5. 

3.6 Protein Assay 

The protein concentration of the testicular microsomes was determined as 

previously described in Chapter 2, Section 2.6. The results are shown in Figure 

3.1. 

The protein concentration of the testicular microsomes was determined from 

the standard protein calibration curve (Figure 3.1) and was found to be 

9.74mg/mL. 
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Figure 3.1 Calibration graph for protein assay for type 3 17f3-HSD. 

3.7 Validation of the 17B-HSD Assay for Conversion of A to T 

To validate the 17P-HSD assay, it was necessary to determine the quantity of 

non-enzymatic product formation. Assay conditions were set so that the 

prepared substrate, A (1 JJM final concentration), was incubated for 30min at 

37°C in the following solutions: 

I. Sodium phosphate buffer (50mM, pH7.4) 

II. Testicular microsomes (O.097mg/mL, 10JJL) and sodium phosphate 

buffer, lacking NADPH-generating system 

III. Testicular microsomes, denatured by addition of ether (2mL), sodium 

phosphate buffer and NADPH-generating system. 

After incubation, the assay mixtures were treated, except (iii), with ether (2mL). 

The solutions were vortexed, then left to stand over ice for 15min. The organic 

phase was extracted into a separate clean tube. The assay mixture was further 

extracted with ether (2x2mL), and the organic layers combined. The solvent 
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was removed under a stream of nitrogen, acetone (30~1) was added to each 

tube and the solution spotted onto silica based TLC plates along with carrier 

steroids (A and T, Smg/mL, approximately 101JL) were spotted onto TLC plates 

and run, using a mobile phase consisting of dichloromethane (70mL) and ethyl 

acetate (30mL). After development, the separated steroids were identified, 

using an UV lamp, cut from the plate and placed into scintillation vials. Acetone 

(1 mL) was added to each vial in order to dissolve the steroid from the silica 

plate and then scintillation fluid (Optiscint HiSafe, 3mL) was added. The 

samples were vortexed and then read for radioactivity (4min). None of the 

samples showed detectable quantities of T, indicating that (a) testicular 

microsomes and (b) NADPH are both essential requirements for the conversion 

of A to T. 

3.8 Protein Dependency for Type 3 17~-HSD 

An experiment was performed to establish whether the rate of appearance of T, 

produced during the enzymatic reaction, was proportional to the protein 

concentration. 

Incubations were carried out (in triplicate) using protein concentrations 0.097, 

0.244, 0.487, 0.731 and 0.974mg/mL (final concentration), prepared substrate, 

A (11JM final concentration, 101JL), NADPH-generating system (50 IJL) and 

phosphate buffer (pH7.4, to 1 mL). The solutions were incubated for 30min at 

370C and the reaction was quenched by the addition of ether (2mL) and placed 

on ice. The assay was completed as previously described (Section 3.7) and the 

percentage conversions determined using equation 3.1. The results are shown 

in Figure 3.2 

Percentage Conversion = 
T 

x 100 
A+T 

Equation 3.1 Percentage conversion of A to T. 
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Figure 3.2 Plot to show percentage conversion of A to T at varying protein 

concentrations. 

At 1 ~M substrate concentration, it can be concluded that the kinetics of the 

reaction are linear for concentrations up to 0.49mg/mL protein. 

3.9 Time Dependency for Type 3 17~-HSD 

Time dependency experiments were performed to ensure that the assays were 

within the linear phase of the enzyme reaction. 

Incubations were carried out (in triplicate) using prepared substrate, A (1 ~M 

final concentration, 1 O~L), NADPH-generating system (50~L) and sodium 

phosphate buffer (pH7.4, 930~L). The samples were warmed to 37°C in a 

shaking water bath before the addition of the testicular microsomes 

(0.097mg/mL final concentration, 1 O~L), at differing time intervals (15, 30, 45, 

60, 90 and 120min). The reaction was quenched by the addition of ether (2mL) 

and placed on ice. The assay was completed as previously described (Section 

3.7). A graph was then plotted for percentage conversion versus time (Figure 

3.3). 

191 



100 

90 

80 

70 
c: 
a 60 en 
I.-

m 
> 50 c: 
a 
() 

40 
'cfl. 

30 

20 

10 

0 

0 

y = -0.0117x2 + 2.1372x 

R2 = 0.9753 

15 30 45 60 75 90 105 120 135 

Time (mins) 

Figure 3.3 Plot to show percentage conversion of A to T at varying time 

intervals. 

At 0.097mg/mL protein concentration and 1 J..IM substrate concentration, it can 

be concluded that the kinetics of the reaction are linear up to 60min. 

3.10 Determination of Km for Type 3 17~-HSD 

The prepared substrate, A (1 OOJ..lM) was serially diluted, using propane-1,2-diol, 

to give a range of final incubation concentrations of substrate (0.2 to 1.5J..1M). All 

incubations were carried out in triplicate at 37°C in a shaking water bath. 

Incubation mixtures (1 mL), containing NADPH-generating system (50J..lL) and 

prepared substrate A (of varying concentration, 10J..lL), in sodium phosphate 

buffer (930J..lL, pH7.4), were allowed to warm to 37°C. The testicular 

microsomes were thawed and warmed to 37°C before addition (0.097mg/mL 

final concentration, 10J..lL) to the assay mixture. The solutions were incubated 

for 30min at 37°C and the reaction was quenched by the addition of ether (2mL) 
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and placed on ice. The assay was completed as previously described (Section 

3.7). The velocity, v, for each substrate concentration was calculated using 

Equation 3.2, where units for v are: IJM/min/mg. 

CPM (T) x substrate concentration [S] (J.lM) 
v= 

CPM (A+ T) x protein concentration (mg/ml) x time (min) 

Equation 3.2 Velocity calculation for each substrate concentration 

3.11 Results - Graphical Determination of Km 

The Km and V max were determined from five different general methods for A, as 

previously described in Chapter 2, Section 2.11, and are shown in Figures 3.4 

to 3.8 and the averages of three assays are summarised in Table 3.1 
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Figure 3.4 Michaelis Menten plot for type 3 17(3-HSD. 
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Plot Km (IJM) 

Michalis Menten plot 0.35 + 0.03 

Lineweaver-Burk plot 0.44 + 0.05 

Hanes-Woolf plot 0.34 + 0.04 

Eadie-Hofstee plot 0.37 + 0.03 

Direct linear plot 0.35 + 0.01 

Average Km 0.37 ± 0.03 

Table 3.1 Summary of Km plots for type 3 17~-HSD. 

3.12 Discussion 

The average Km value for type 3 17J3-HSD with the substrate A using Sprague

Dawley testicular microsomes was found to be 0.37 + 0.03j..1M, compared to Km 

values obtained by other workers i.e., Km = 0.77 + 0.26j..1M (Le Lain et ai, 2001). 

3.13 Preliminary Screening of Compounds for Type 3 17~-HSD 

Activity 

The assay procedure for screening involved inhibitors and standards (baicalein 

and 7-hydroxyflavone) dissolved in absolute ethanol and diluted to give the 

required final incubation concentration. The assay was carried out (in triplicate) 

at 37°C in a shaking water bath. The total assay volume was 1 mL. Prepared 

substrate A (1.5j..1M/tube, 15j..1L), NADPH-generating system (50j..lL) and 

Inhibitor (100j..lM, 20j..lL), in sodium phosphate buffer (905j..1L, pH7.4), were 

allowed to warm to 37°C. The testicular microsomes were thawed and warmed 

to 37°C before addition (0.097mg/mL final concentration, 10j..lL) to the assay 

mixture. The solutions were incubated for 30min at 37°C and the reaction was 

quenched by the addition of ether (2mL) and placed on ice. The assay was 

completed as previously described (Section 3.7). Control samples with no 

inhibitor were incubated simultaneously. The results were determined by using 

equation 3.1 to determine the percentage conversion of A to T and then 

comparing the conversion in the presence of inhibitors to that of the controls. 

Results are shown in Tables 3.2a - 3.4b. 
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3.141C50 of Compounds for Type 317~-HSD activity 

IC50 determination was carried out on baicalein and 7 -hydroxyflavone and all 

inhibitors which showed significant 17~-HSD inhibitory activity. The assay was 

carried out in the same manner as described in Section 3.13, except that each 

inhibitor (20lJL) was tested over a range of final assay concentrations 

depending on its preliminary screening result. The IC50 was determined from 

plots of percentage inhibition versus Log [I] (Figures 3.9 - 3.24). 

3.15 Results for 4-Hydroxyphenyl Ketones 

The results are shown in Tables 3.2a - 3.2d 

3.15.1 Discussion 

Good inhibitory activity has been found by the evaluation of flavonoid-based 

compounds and due to a lack of compounds in the clinic it was found that 

evaluation against a single standard was not possible, as such baicalein (113) 

and 7 -hydroxyflavone (97) were used. All compounds were screened against 

type 3 17~-HSD and it was found that compounds 248 - 260 showed more 

potency than the standards and thus IC50s were conducted on the whole range 

247 - 260. It was found that compounds 252 - 262 were more potent than both 

standards but 248 and 249 were equipotent and more potent than baicalein 

respectively but less potent than 7 -hydroxyflavone while 250 was equipotent to 

7 -hydroxyflavone. 
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Compound No. Structure 0/0 Inhibition at 100JJM ICso Value (IJM) 

113 I HO 
38.78 ± 1.36 185.92 + 12.70 

Baicalein 
HO 

I II 
OH 0 

0 
II 

97 
53.93 + 1.07 66.98 ± 0.95 

7 -hyd roxyflavone 
HO- ~ ~O~ ~Ph 

247 36.59 + 0.52 1708.92 + 170.71 

HO 
o 

248 39.04 ± 0.42 150.56 + 12.21 

HO 

Table 3.2a Results from preliminary screening and le50 data of some 4-hydroxyphenyl ketones for type 3 17P-HSD activity. 
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Compound No. Structure 0/0 Inhibition at 100J.lM ICso Value (~M) 

0 

249 J: 60.18 ± 0.77 89.51 ± 6.73 
I 

HO 

0 

250 ~~ 61.81 ± 0.89 60.52 + 5.83 

HO 
o 

251 76.40 ± 0.18 18.02 + 0.96 

HO 
o 

252 80.26 ± 0.20 7.84 + 0.36 

HO 

o 

253 82.58 ± 0.49 6.52 + 0.18 

HO 
Table 3.2b Results from preliminary screening and IC50 data of some 4-hydroxyphenyl ketones for type 3 17~-HSD activity. 
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Compound No. Structure 0/0 Inhibition at 100J-lM ICso Value (~M) 

0 

254 83.53 ± 0.48 2.86 ± 0.03 

HO 
0 

255 81.39 ± 0.09 4.97 ± 0.25 

HO 
0 

256 78.92 + 0.58 7.55 + 0.32 

HO 

0 

257 65.88 ± 0.42 27.15+2.23 

HO 

Table 3.2c Results from preliminary screening and ICso data of some 4-hydroxyphenyl ketones for type 3 17f3-HSD activity. 
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Compound No. Structure % Inhibition at 100IJM ICso Value (J,lM) 

o 

258 64.77 ± 0.40 33.19 ± 1.62 

HO 

0 

259 1J 62.94 ± 0.82 36.16 + 2.45 

~ 
HO 

0 

260 l' ) 63.62 ± 0.78 29.66 ± 0.76 

HO 

Table 3.2d Results from preliminary screening and IC50 data of some 4-hydroxyphenyl ketones for type 3 17f3-HSD activity. 
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Figure 3.9 Plot of percentage inhibition versus log [113] for baicalein (113) 

against type 3 17~-HSD. 
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Figure 3.10 Plot of percentage inhibition versus log [97] for 7 -hydroxyflavone 

(97) against type 3 17J3-HSD. 
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Figure 3.11 Plot of percentage inhibition versus log [247] for 1-(4-hydroxy

phenyl)-ethanone (247) against type 3 17J3-HSD. 
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Figure 3.12 Plot of percentage inhibition versus log [248] for 1-( 4-hydroxy

phenyl)-propan-1-one (248) against type 3 17J3-HSD. 

203 



c 
0 
~ 
.c 
..c 
c 

~ 0 

80 

75 

70 

65 

60 

55 

50 

45 

40 

35 

30 

25 
1.3 

• 

y = 38.192x - 23.249 
R2 = 0.98 

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 

Log [249] (~M) 

Figure 3.13 Plot of percentage inhibition versus log [249] for 1-(4-hydroxy

phenyl)-butan-1-one (249) against type 3 17J3-HSD. 
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Figure 3.14 Plot of percentage inhibition versus log [250] for 1-(4-hydroxy

phenyl)-pentan-1-one (250) against type 3 17J3-HSD. 
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Figure 3.16 Plot of percentage inhibition versus log [252] for 1-(4-hydroxy

phenyl)-heptan-1-one (252) against type 3 17~-HSD. 
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Figure 3.17 Plot of percentage inhibition versus log [253] for 1-(4-hydroxy

phenyl)-octan-1-one (253) against type 3 17~-HSD. 
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Figure 3.18 Plot of percentage inhibition versus log [254] for 1-(4-hydroxy

phenyl)-nonan-1-one (254) against type 3 17~-HSD. 
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Figure 3.19 Plot of percentage inhibition versus log [255] for 1-(4-hydroxy

phenyl)-decan-1-one (255) against type 3 17J3-HSD. 
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Figure 3.20 Plot of percentage inhibition versus log [256] for 1-(4-hydroxy

phenyl)-dodecan-1-one (256) against type 3 17J3-HSD. 
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Figure 3.21 Plot of percentage inhibition versus log [257] for cyclobutyl-(4-

hydroxy-phenyl)-methanone (257) against type 3 17J3-HSD. 
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Figure 3.23 Plot of percentage inhibition versus log [259] for cyclohexyl-(4-

hydroxy-phenyl)-methanone (259) against type 3 17~-HSD. 
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3.16 Results for the Biphenyl Ketones 

The results are shown in Tables 3.3a - 3.3b 

3.16.1 Discussion 

All compounds were screened against type 3 17J3-HSD and it was found that 

they were in general weaker than the standards baicalein and 7-

hydroxyflavone. 

Compound No. Structure 
0/0 Inhibition at 

100J,lM 

113 HO 

Baicalein 
49.43 ± 1.16 

HO 

OH 0 
0 

97 
66.42 ± 2.05 

7 -Hydroxyflavone 

HO 

261 0 

262 o 

263 20.36 ± 1.74 

2 

264 8.55 ± 1.00 

3 

Table 3.3a Results from preliminary screening data of some biphenyl ketones 

for type 3 17P-HSD activity. 
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Compound 

No. 

265 

266 

267 

268 

269 

270 

271 

272 

273 

Structure 

7 

8 

10 

0/0 Inhibition at 100IJM 

10.22 ± 1.72 

1.18 ± 0.30 

o 

13.29 ± 0.26 

17.86 ± 1.14 

16.52 ± 0.91 

4.30 ± 0.40 

15.22 ± 1.64 

23.48 ±0.35 

Table 3.3b Results from preliminary screening data of some biphenyl ketones 

for type 3 17P-HSD activity. 
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3.17 Results for Commercially Available Compounds 

The results are shown in Tables 3.4a - 3.4b 

3.17.1 Discussion 

A number of commercially available compounds containing phenyl and carboxyl 

groups were screened for inhibitory activity against type 3 17J3-HSD and it was 

found that they were, in general, weaker than the standards baicalein and 7-

hydroxyflavone. 

Compound 

No. 

113 

97 

274 

275 

276 

277 

278 

HO 

HO 

HO 

F 

Structure 0/0 Inhibition at 100IJM 

49.43 ± 1.16 

OH 0 
0 

66.42 ± 2.05 

Ph 

12.00 ± 1.51 

18.17 ± 1.17 

11.22 ± 0.97 

20.16±2.51 

35.71 ± 1.29 

Table 3.4a Results from preliminary screening data of some commercially 

available compounds for type 3 17P-HSD activity. 
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Compound 

No. 

279 

280 

281 

282 

283 

284 

285 

286 

287 

Structure 

3 

0 

4 

HO 

0 

HO 

o 

0/0 Inhibition at 100IJM 

15.34 ± 2.35 

16.33 ± 1.39 

23.01 + 2.06 

18.38 + 0.32 

0 

Ph 49.70 ± 0.06 

19.64 + 0.30 

CI 

35.35 ± 1.55 

41.45 + 0.71 

23.29 + 1.06 

Table 3.4b Results from preliminary screening data of some commercially 

available compounds for type 3 17P-HSD activity. 

213 



3.18 Type 1 17~-H5D Enzyme Assay (E1 to E2) 

3.19 Introduction 

Compounds previously tested against type 3 17J3-HSD were evaluated for type 

1 17J3-HSD inhibitory activity using the microsomal fraction obtained from 

Sprague Dawley rat testicular tissue. The assay used was based on that of Le 

Lain et al (2001) and measures the effect of potential inhibitors on the rate of 

conversion of radiolabelled E1 to E2. 

To separate E1 and E2 from the reaction mixture, the method of TLC was 

employed, where extracts, together with the carrier steroids (5mg/mL), were 

applied to TLC plates. The mobile phase used was that of Tremblay et al (1999) 

and was a mixture of dichloromethane (90mL) and ethyl acetate (10mL). 

After elution and identification using UV light, each steroid was cut out and 

counted for 4 min per tube in a cocktail of scintillation fluid and acetone. The 

percentage conversion of E 1 to E2 was determined by the division of the CPM 

for the product by the total CPM of both steroids. As such, there is no 

requirement for quantitative recovery of all the reactants and products from the 

assay mixture in this study. 

3.20 Methods, Materials and Instruments 

All methods, materials and instruments used were as mentioned in Chapter 2, 

Section 2.3. [2,4,6,7-3H]E1 was obtained from Amersham Pharmacia Biotech 

UK Limited, Buckinghamshire. 

3.21 Buffer, Solution and Substrate Preparation 

Buffers and solutions used in the assay were as for those in Chapter 2, Section 

2.4. 

214 



Substrate preparation of [2,4,6,7.3H]E1 (100J,lM) 

A stock solution of substrate was prepared by transferring radiolabelled 

[2,4,6,7-3H]E1 (O.305IJM, 201JL) to a glass vial and removing the 

toluene:ethanol mixture under a stream of nitrogen. Unlabelled substrate in 

propane-1,2-diol (99.695J.lM, 1 mL) was added to the radiolabelled residue and 

mixed thoroughly to give a final concentration of 1001JM. 

3.22 Preparation of Testicular Microsomes 

The microsomes were prepared as previously described in Chapter 2, Section 

2.5. 

3.23 Protein Assay 

The protein concentration of the testicular microsomes was determined as 

previously described in Chapter 2, Section 2.6. The results are shown in Figure 

3.25. 
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Figure 3.25 Calibration graph for protein assay for type1 17(3-HSD 
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The protein concentration of the testicular microsomes was determined from 

the standard protein calibration curve (Figure 3.25) and was found to be 

11.74mg/mL. 

3.24 Validation of the 17B-HSD Assay for Conversion of E1 to E2 

To validate the 17P-HSD assay, it was necessary to determine the quantity of 

non-enzymatic product formation. Assay conditions were set so that the 

prepared substrate, E1 (1 ~M final concentration), was incubated for 30min at 

37°C in the following solutions: 

I. Sodium phosphate buffer (50mM, pH7.4) 

II. Testicular microsomes (0.15mg/mL, 1 O~L) and sodium phosphate buffer, 

lacking NADPH-generating system 

III. Testicular microsomes, denatured by addition of ether (2mL), sodium 

phosphate buffer and NADPH-generating system 

After incubation, the assay mixtures were treated, except (iii), with ether (2mL). 

The solutions were vortexed, then left to stand over ice for 15min. The organic 

phase was extracted into a separate clean tube. The assay mixture was further 

extracted with ether (2x2mL), and the organic layers combined. The solvent 

was removed under a stream of nitrogen, acetone (30111) was added to each 

tube and the solution spotted onto silica based TLC plates along with carrier 

steroids (E 1 and E2, 5mg/mL, approximately 1 O~L) were spotted onto TLC 

plates and run, using a mobile phase consisting of dichloromethane (90mL) and 

ethyl acetate (10mL). After development, the separated steroids were identified, 

using an UV lamp, cut from the plate and placed into scintillation vials. Acetone 

(1 mL) was added to each vial in order to dissolve the steroid from the silica 

plate and then scintillation fluid (Optiscint HiSafe) was added. The samples 

were vortexed and read for radioactivity (4min). None of the samples showed 

detectable quantities of E2, indicating that (a) testicular microsomes and (b) 

NADPH are both essential requirements for the conversion of E 1 to E2. 
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3.25 Protein Dependency for Type 1 17~-HSD 

An experiment was performed to establish whether the rate of appearance of 

E2, produced during the enzymatic reaction, was proportional to the protein 

concentration. 

Incubations were carried out (in triplicate) using protein concentrations 0.00, 

0.12, 0.29, 0.59, 0.88 and 1.17mg/mL (final concentration), prepared substrate, 

E1 (1 \JM final concentration, 10\JL), NADPH-generating system (50J.,JL) and 

sodium phosphate buffer (pH7.4, to 1 mL). The solutions were incubated for 

30min at 37°C and the reaction was quenched by the addition of ether (2mL) 

and placed on ice. The assay was completed as previously described (Section 

3.24) and the percentage conversion determined using Equation 3.3. The 

results are shown in Figure 3.26. 

E2 
Percentage Conversion= x 100 

E1 +E2 

Equation 3.3 Percentage conversion of E 1 to E2 

At 1 \J M substrate concentration, it can be concluded that the kinetics of the 

reaction are linear for protein concentrations up to 0.6mg/mL. 
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Figure 3.26 Plot to show percentage conversion of E1 to E2 at varying protein 

concentrations. 

3.26 Time Dependency for Type 1 17B-HSD 

Time dependency experiments were performed to ensure that the assays were 

within the linear phase of the enzyme reaction. 

Incubations were carried out (in triplicate) using a final concentration of 

prepared substrate, E1 (1jJM, 10jJL), NADPH-generating system (50jJL) and 

sodium phosphate buffer (91 OjJL, pH7.4). The samples were warmed to 37°C in 

a shaking water bath before the addition of the testicular microsomes 

(0.35mg/mL final concentration, 30J-l1), were added at differing time intervals 

(30, 45, 60, 75, 90, 120 and 180min). The reaction was quenched by the 

addition of ether (2mL) and placed on ice. The assay was completed as 

previously described (Section 3.24). A graph was then plotted for percentage 

conversion versus time (Figure 3.27). 
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Figure 3.27 Plot to show percentage conversion of E1 at varying time intervals. 

At 0.35mg/mL protein concentration, and 1jJM substrate concentration, it can be 

concluded that the kinetics of the reaction are linear up to 120min. 

3.27 Determination of Km for Type 1 17B-HSD 

The prepared substrate, E1 (100jJM) was serially diluted, using propane-1,2-

diol, to give a range of final incubation concentrations of substrate (0.2 to 

1.0jJM). All incubations were carried out in triplicate at 37°C in a shaking water 

bath. Incubation mixtures (1 mL), containing NADPH-generating system (50jJL) 

and prepared substrate (of varying concentration, 10jJL), in sodium phosphate 

buffer (910jJL, pH7.4), were allowed to warm to 37°C. The testicular 

microsomes were thawed and warmed to 37°C before addition (0.35mg/mL final 

concentration, 30jJL) to the assay mixture. The solutions were incubated for 

90min at 37°C and the reaction was quenched by the addition of ether (2mL) 

and placed on ice. The assay was completed as previously described (Section 

3.24). The velocity, v, for each substrate concentration was calculated using 

equation 3.4, where units for v are: jJM/min/mg. 
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CPM (E2) x substrate concentration [S] (11M) 
v= ----------------------------------~~~~---

CPM (E1 +E2) x protein concentration (mg/ml) x time (min) 

Equation 3.4 Velocity calculation for each substrate concentration 

3.28 Results - Graphical Determination of Km 

The Km and Vmax were determined from five different general methods for E1, 

as previously described in Chapter 2, Section 2.11, and are shown in Figures 

3.28 to 3.32 and the averages of three assays are summarised in Table 3.5 
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Figure 3.28 Michaelis-Menten plot for type 1 17J3-HSD. 
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Figure 3.31 Eadie-Hofstee plot for type 1 17~-HSD. 
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Figure 3.32 Direct linear plot for type 1 17~-HSD 
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Plot Km hJM) 

Michalis Menten plot 0.47 + 0.03 

Lineweaver-Burk plot 1.68 + 0.44 

Hanes-Woolf plot 1.76 + 0.45 

Ead ie-Hofstee plot 1.63 + 0.36 

Direct linear plot 1.67 + 0.50 

Average Km 1.44 + 0.36 

Table 3.5 Summary of Km plots for type 1 17~-HSD. 

3.29 Discussion 

The average Km value for 17~-HSD with the substrate E 1 using Sprague

Dawley testicular microsomes was found to be 1.44 + 0.36~M, compared to Km 

values obtained by other workers i.e., Km = 3.3 + 0.9~M (Le Lain et ai, 2001). 

3.30 Preliminary Screening of Compounds for Type 117~-HSD 

Activity for the Conversion of E1 to E2 

The assay procedure for screening involved inhibitors and standards (baicalein 

and 7 -hydroxyflavone) dissolved in absolute ethanol and diluted to give the 

required final incubation concentration. The assay was carried out (in triplicate) 

at 37°C in a shaking water bath. The total assay volume was 200~L. Prepared 

substrate, E 1 (5IJM/tube, 101JL), NADPH-generating system (1 O~L) and inhibitor 

(100IJM, 41JL), in sodium phosphate buffer (pH7.4, 170~L), were allowed to 

warm to 37°C. The testicular microsomes were thawed and warmed to 37°C 

before addition (0.35mg/mL final concentration, 6~L) to the assay mixture. The 

solutions were incubated for gOmin at 37°C and the reaction was quenched by 

the addition of ether (2x2mL) and placed on ice. The assay was completed as 

previously described (Section 3.24). Control samples with no inhibitor were 

incubated simultaneously. The results were determined by using equation 3.3 

to determine the percentage conversion of E 1 to E2 and then comparing the 
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conversion in the presence of inhibitors to that of the controls. Results are 

shown in Tables 3.6 - 3.B. 

3.31 Results - Preliminary Screening 

The results are shown in Tables 3.6a - 3.8b 

3.31.1 Discussion 

The compounds, in general, showed equipotency to the standards for both the 

4-hydroxyphenyl ketones as well as the biphenyl ketones. The commercially 

available compounds were in general weak inhibitors in comparison to the 

standards. 

224 



Compound 

No. 

113 

Baicalein 

97 

7 -hydroxyflavone 

247 

248 

249 

250 

251 

252 

Structure 0/0 Inhibition at 100J,lM 

HO 
31.63 + 4.91 

HO 

OH 0 

25.63 ± 2.94 

HO Ph 

20.83 + 0.91 

HO 

0 

17.47 + 0.91 

HO 

0 

35.11 + 2.92 

HO 
0 

39.76 ± 1.31 

HO 
o 

45.68 ± 1.34 

HO 
o 

47.58 + 2.60 

HO 

Table 3.6a Results from preliminary screening data of some 4-hydroxyphenyl 

ketones for type 1 17P-HSD activity. 
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Compound 

No. 
Structure 0/0 Inhibition at 100J,lM 

0 

253 36.87 +0.89 

HO 
0 

254 36.32 + 0.33 

HO 
0 

255 28.15 + 3.46 

HO 
0 

256 30.61 + 3.78 

HO 
0 

257 42.47 + 2.66 

HO 
o 

258 43.97 ± 0.78 

HO 
o 

259 49.54 + 2.57 

HO 
o 

260 47.23 + 2.41 

HO 
Table 3.6b Results from preliminary screening data of some 4-hydroxyphenyl 

ketones for type 1 17P-HSD activity. 
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Compound 

No. 

113 

Baicalein 

97 

7 -hyd roxyflavone 

261 

262 

263 

264 

265 

266 

267 

HO 

HO 

Structure 0/0 Inhibition at 100IJM 

31.63 + 4.91 

OH 0 
o 

25.63 ± 2.94 

31.24 + 2.79 

33.50 + 2.73 

36.59 + 0.56 

2 

45.49 + 0.53 

33.55 ± 0.73 

36.05 + 0.66 

34.79 + 0.25 

6 

Table 3.7a Results from preliminary screening data of some biphenyl ketones 

for type 1 17p-HSD activity. 
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Compound 

No. 

268 

269 

270 

271 

272 

273 

Structure 0/0 Inhibition at 100IJM 

31.26 ± 0.28 

28.23 ± 1.64 

8 

29.43 ± 0.37 

10 

34.47 ± 0.10 

44.04 ± 1.72 

48.79 ± 0.22 

Table 3.7b Results from preliminary screening data of some biphenyl ketones 

for type 1 17P-HSD activity. 
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Compound No. Structure 0/0 Inhibition at 100IJM 

113 HO 

Baicalein 12.34±1.46 

HO 

OH 0 
0 

97 
5.73±0.16 7 -hydroxyflavone 

HO 

274 F 3.65 ± 0.41 

275 8.31 ± 0.91 

276 6.45 ± 0.29 

277 o 

278 °2N 13.80 ± 2.52 

279 < > < 5.12 ± 3.45 

0 
280 5.09 ± 3.90 

281 30.73 ± 1.59 

282 23.73 ± 2.85 

4 

Table 3.8a Results from preliminary screening data of some commercially 

available compounds for type 1 17P-HSD activity. 
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Compound No. Structure 0/0 Inhibition at 100IJM 

o 
283 Ph 23.14 ± 0.20 

HO 

o 

284 4.92 ± 1.14 

CI 

285 14.43 ± 1.05 

o 

286 17.75 ± 2.34 

HO 

o 

287 23.33 ± 2.77 

Table 3.8b Results from preliminary screening data of some commercially 

available compounds for type 1 17P-HSD activity. 
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3.32 3~-HSD Enzyme Assay 

3.33 Introduction 

Compounds evaluated against 17r3-HSD were also evaluated against 3r3-HSD 

using the microsomal fraction obtained from Sprague Dawley rat testicular 

tissue. The assay used was modified from assays of Cooke and Robaire (1986) 

and Cooke et al (1998) and measures the effect of novel compounds on the 

rate of conversion of radiolabelled DHEA to A mediated by the action of 3~

hydroxysteroid dehydrogenase (3~-HSD), followed by the conversion to T 

mediated by the action of 17~-HSD (type 3). This assay was conducted to 

determine whether the inhibitors were specific for 17r3-HSD or inhibitors of 

HSDs in general. 

To separate DHEA, A and T from the reaction mixture, TLC was employed. The 

extracts, together with the carrier steroids (Smg/mL), were applied to TLC 

plates. The mobile phase used consisted of a mixture of dichloromethane 

(80mL) and ethyl acetate (20mL). 

After elution and identification using iodine vapour and UV light, each steroid 

was cut out and counted for 4min per tube in a cocktail of scintillation fluid and 

acetone. The percentage conversion of DHEA to A and then to T, was 

determined by the division of the CPM for both products from the total CPM of 

all three steroids. 

3.34 Methods, Materials and Instruments 

All methods, materials and instruments used were as mentioned in Chapter 2, 

Section 2.3. [1,2,6,7-3H]DHEA was obtained from Amersham Pharmacia 

Biotech UK Limited, Buckinghamshire. 
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3.35 Buffer, Solution and Substrate Preparation 

Buffers and solutions used in the assay were as for those in Chapter 2, Section 

2.4. 

Except:-

Tris-HCI Buffer pH8.4 (50mM) 

A: Tris(hydroxymethyl)aminomethane (NH2C(CH20Hh) (mW - 121.14) 

(6.057g) dissolved in distilled water (500mL) 

B: Hydrochloric acid (0.1 M) 

Solution B was added to solution A (500mL) until a pH of 8.4 was reached. The 

solution was made up to 1 L with distilled water. 

Substrate preparation of [1 ,2,6,7.3H]DHEA (100IJM) 

A stock solution of substrate was prepared by transferring radiolabelled 

[1,2,6,7-3H]DHEA (0.333IJM, 201JL) to a glass vial and removing the 

toluene:ethanol mixture under a stream of nitrogen. Unlabelled substrate in 

propane-1,2-diol (99.667IJM, 1 mL) was added to the radiolabelled residue and 

mixed thoroughly to give a final concentration of 1001JM. 

3.36 Preparation of Testicular Microsomes 

The microsomes were prepared as previously described in Chapter 2, Section 

2.5 

3.37 Protein Assay 

The protein concentration of the testicular microsomes was determined as 

previously described in Chapter 2, Section 2.6. The results are shown in Figure 

3.33. 
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The protein concentration of the testicular microsomes was determined from 

the standard protein calibration curve (Figure 3.33) and was found to be 

11.74mg/mL. 
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:a.0.15 
0 

0.1 

0.05 

0 

0 

y = 0.0027x 
R2 = 0.99 

50 100 150 200 
[Protein] (~g/mL) 

Figure 3.33 Calibration graph for protein assay for 3r3-HSD 

3.38 Validation of the 3~-HSD Assay 

250 

To validate the 3P-HSD assay, it was necessary to determine the quantity of 

non-enzymatic product formation. Assay conditions were set so that the 

prepared substrate, DHEA (1 J..IM final concentration), was incubated for 30min 

at 37°C in the following solutions: 

I. Tris-HCI buffer (50mM, pHB.4) 

II. Testicular microsomes (O.29mg/mL, 25J..1L) and Tris-HCI buffer, lacking 

NADPH-generating system 

iii. Testicular microsomes, denatured by addition of ether (2mL), Tris-HCI 

buffer and NADPH-generating system 
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After incubation, the assay mixtures were treated, except (iii), with ether (2mL). 

The solutions were vortexed, then left to stand over ice for 15min. The organic 

phase was extracted into a separate clean tube. The assay mixture was further 

extracted with ether (2x2mL), and the organic layers combined. The solvent 

was removed under a stream of nitrogen, acetone (30".tI) was added to each 

tube and the solution spotted onto silica based TLC plates along with carrier 

steroids (DHEA, A and T, 5mg/mL, approximately 1 O~L) were spotted onto TLC 

plates and run, using a mobile phase consisting of dichloromethane (80mL) and 

ethyl acetate (20mL). After development, the separated steroids were identified, 

using iodine vapours and UV lamp, cut from the plate and placed into 

scintillation vials. Acetone (1 mL) was added to each vial in order to dissolve the 

steroid from the silica plate and then scintillation fluid (Optiscint HiSafe, 3mL) 

was added. The samples were vortexed and read radioactivity. None of the 

samples showed detectable quantities of T and A, indicating that (a) testicular 

microsomes and (b) NADPH are both essential requirements for the conversion 

of DHEA to its subsequent products. 

3.39 Protein Dependency for 3B-HSD 

An experiment was performed to establish whether the rate of appearance of A 

and T, produced during the enzymatic reaction, was proportional to the protein 

concentration. 

Incubations were carried out (in triplicate) using protein concentrations 0.00, 

0.12, 0.29, 0.59, 0.88 and 1.17mg/mL (final concentration), prepared substrate, 

DHEA (1 ~M final concentration, 1 O~L), NADPH-generating system (50~L) and 

Tris-HCI buffer (pH8.4, to 1 mL). The solutions were incubated for 30min at 37°C 

and the reaction was quenched by the addition of ether (2mL) and placed on 

ice. The assay was completed as previously described (Section 3.38) and the 

percentage conversions determined using equation 3.5 
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20 

i 

10 l 

Percentage Conversion = A+T 
x 100 

Equation 3.5 Percentage conversion of DHEA to A and T. 

y = -29.656x2 + 102.68x 
R2 = 1.00 

O.-------~------~----~------~------~------~ 

0.000 0.200 00400 0.600 0.800 1.000 1.200 
[Protein] (jJg/ml) 

Figure 3.34 Plot to show percentage conversion of DHEA at varying protein 

concentrations. 

At 1jJM substrate concentration, it can be concluded that the kinetics of the 

reaction are linear for protein concentrations up to O.BBmg/mL. 

3.40 Time Dependency for 3f3-HSD 

Time dependency experiments were performed to ensure that the assays were 

within the linear phase of the enzyme reaction. 

Incubations were carried out (in triplicate) uSing a final concentration of 

prepared substrate, DHEA (1jJM, 10jJL), NADPH-generating system (50jJL) and 

Tris-HCI buffer (920jJL, pHB.4). The samples were warmed to 37°C in a shaking 
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water bath before the addition of the testicular microsomes (0.23mg/mL final 

concentration, 20J,.lL), added at differing time intervals (15, 30, 45, 60, 90 and 

120min). The reaction was quenched by the addition of ether (2mL) and placed 

on ice. The assay was completed as previously described (Section 3.38). A 

graph was then plotted for percentage conversion versus time (Figure 3.35). 
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0 

y = -0.0042x2 + 0.8917x 

R2 = 0.98 
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Time (mins.) 

105 120 135 

Figure 3.35 Plot to show percentage conversion of DHEA at varying time 

intervals. 

At 0.23 mg/mL of protein concentration and 1 J,.IM substrate concentration, it can 

be concluded that the kinetics of the reaction are linear for time intervals up to 

60min. 

3.41 Determination of Km for 3~-HSD 

The prepared substrate, DHEA (100J,.lM) was serially diluted, using propane-

1,2-diol, to give a range of final incubation concentrations of substrate (0.8 to 

4.0J,.lM). All incubations were carried out in triplicate at 37°C in a shaking water 

bath. Incubation mixtures (1 mL), containing NADPH-generating system (50J,.lL) 

and prepared substrate (of varying concentration, 40J,.lL), in Tris-HCI buffer 
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(890IJL, pH8.4), were allowed to warm to 37°C. The testicular microsomes were 

thawed and warmed to 37°C before addition (O.23mg/mL final concentration, 

201JL) to the assay mixture. The solutions were incubated for 40min at 37°C 

and the reaction was quenched by the addition of ether (2mL) and placed on 

ice. The assay was completed as previously described (Section 3.38). The 

velocity, v, for each substrate concentration was calculated using the equation 

3.6, where units for v are: IJM/min/mg. 

CPM (A + T) x substrate concentration [S] (J.!M) 
v=----------------------------------------------------

CPM (OHEA + A + T) x protein concentration (mg/ml) x time (min) 

Equation 3.6 Velocity calculation for each substrate concentration 

3.42 Results - Graphical Determination of Km 

The Km and maximum velocity (Vmax) were determined from five different 

general methods for DHEA, as previously described in Chapter 2, Section 2.11, 

and are shown in Figures 3.36 to 3.39 and the average of three assays are 

summarised in Table 3.9 
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Figure 3.36 Michaelis Menten plot for 3J3-HSD. 
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Figure 3.37 Lineweaver-Burk plot for 3~-HSD. 
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Figure 3.38 Hanes-Woolf plot for 3J3-HSD. 
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Figure 3.39 Eadie-Hofstee plot for 3(3-HSD. 
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Figure 3.40 Direct linear plot for 3(3-HSD 
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Plot Km (lJM) 

Michalis Menten plot 1.77 + 0.31 

Lineweaver-Burk plot 4.85 + 0.55 

Hanes-Woolf plot 5.22 + 0.71 

Ead ie-Hofstee plot 4.45 + 0.35 

Direct linear plot 5.83 + 0.54 

Average Km 4.87 + 0.70 

Table 3.9 Summary of Km plots for 3p-HSD. 

3.43 Discussion 

The average Km value for 3(3-HSD with the substrate DHEA using Sprague

Dawley testicular microsomes was found to be 4.76 + 0.63IJM, compared to Km 

values obtained by other workers i.e., Km = 0.71 ~M (Simard et ai, 1993) and Km 

= 420nM (Cooke and Robaire, 1986). 

3.44 Preliminary Screening of Compounds for 3~-HSD Activity 

The assay procedure for screening involved inhibitors and standards (baicalein 

and 7 -hydroxyflavone) dissolved in absolute ethanol and diluted to give the 

required final incubation concentration. The assay was carried out (in triplicate) 

at 37°C in a shaking water bath. The total assay volume was 2001JL. Prepared 

substrate DHEA (15IJM/tube, 30IJL), NADPH-generating system (10IJL) and 

Inhibitor (100IJM or 5001JM, 20IJL), in Tris-HCI buffer (136IJL, pH8.4), were 

allowed to warm to 37°C. The testicular microsomes were thawed and warmed 

to 37°C before addition (O.23mg/mL final concentration, 41JL) to the assay 

mixture. The solutions were incubated for 40min at 37°C and the reaction was 

quenched by the addition of ether (2mL) and placed on ice. The assay was 

completed as previously described (Section 3.38). Control samples with no 

inhibitor were incubated simultaneously. The results were determined by using 

equation 2.1 to determine the percentage conversion of P and then comparing 

the conversion in the presence of inhibitors to that of the controls. 
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3.45 Results - Preliminary screening 

The results are shown in Tables 3.10 - 3.12 

3.45.1 Discussion 

The compounds in general showed very poor potency or were inactive for this 

enzyme at both 1 OO~M and 500~M inhibitor concentration. 
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Compound No. Structure 0/0 Inhibition 

113 HO 

Baicalein 
28.26 ± 0.79a, 24.01 ± 2.44b 

HO 

OH 0 
0 

97 

7 -hydroxyflavone 

HO Ph 
0 

247 4.72 ± 1.10b 

HO 

248 Ob 

HO 

0 

249 Ob 

HO 
0 

250 Ob 

HO 
o 

251 

HO 
o 

252 3.08 ± 1.02b 

HO 
Table 3.10a Results from preliminary screening data of some 4-hydroxyphenyl 

ketones for 3p-HSD activity, (where a[I]=1 OOJ,.lM and b[I]=500J,.lM). 
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Compound No. Structure 0/0 Inhibition 

0 

253 5.71 ± 0.30b 

HO 

0 

254 9.02 ± 0.41b 

HO 

0 

255 4.23 ± 0.59a, 21.08 ± 2.08b 

HO 
0 

256 20.11 ± O. 73a, 40.68 ± 1.09b 

HO 

0 

257 21.47 ± 1.17b 

HO 
o 

258 33.59 ± 1.03b 

HO 
o 

259 4.31 ± 2.35a, 34.56 ± 1.26b 

HO 
o 

260 9.83 ± 1.43a, 47.42 ± 0.47b 

Table 3.10b Results from preliminary screening data of some 4-hydroxyphenyl 

ketones for 3p-HSD activity, (where a[I]=1 OOJ..lM and b[I]=500J..lM). 
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Compound No. Structure 0/0 Inhibition at 100IJM 010 Inhibition at 500IJM 

113 HO 
""""/' ........" ........" ........" 

Baicalein II II 28.26 ± 0.79 24.01 + 2.44 

HO 
I 

OH 0 
0 
II 

97 

7 -hydroxyflavone ~~ 0 0 

HO 

261 ;1\\\--1, .\....-...L/ 5.56 ± 0.08 12.91 + 0.21 

262 10.63 ± 0.70 5.35 + 0.07 

1 

263 9.72 ± 0.03 12.40 + 0.22 

2 

Table 3.11 a Results from preliminary screening data of some biphenyl ketones for 3~-HSD activity. 
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Compound No. Structure 0/0 Inhibition at 1 OO~M % Inhibition at 500~M 

264 25.51 ± 0.08 10.33 ± 0.33 

265 4.34 ± 0.95 24.10 + 0.07 

266 7.68 + 0.78 22.97 + 0.51 

5 

267 o 24.72 ± 0.97 

268 o o 

269 o o 
8 

Table 3.11 b Results from preliminary screening data of some biphenyl ketones for 3~-HSD activity. 
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Compound No. Structure 0/0 Inhibition at 100JJM % Inhibition at 500IJM 

270 4.38 ± 0.63 o 
10 

271 o 4.36 + 0.68 

272 19.81 ± 0.76 23.38 + 0.12 

273 21.80 ± 0.26 22.37 + 1.13 

Table 3.11 Results from preliminary screening data of some biphenyl ketones for 3~-HSD activity. 
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Compound No. Structure 0/0 Inhibition at 100IJM 

113 HO 

Baicalein 28.26 ± 0.79 

HO 

OH 0 
0 

97 

7 -hydroxyflavone 0 

HO 

274 F 2.37±1.12 

275 o 

276 o 

277 o 

278 °2N 11.49 ± 0.61 

279 < > ~ 0 

0 

280 0 

281 o 

3 

282 o 

4 

Table 3.12a Results from preliminary screening data of some commercially 

available compounds for 3P-HSD activity. 
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Compound No. Structure 0/0 Inhibition at 100IJM 

o 

283 Ph 5.59 ± 2.11 

HO 

284 o 
CI 

285 o 

286 o 

HO 

287 
o 

Table 3.12b Results from preliminary screening data of some commercially 

available compounds for 3~-HSD activity. 
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Chapter 4 



4.0 DISCUSSION 

4.1 Inhibition of P45017a 

Consideration of the inhibitory activity possessed by the range of synthesised 

compounds considered within the current study shows that, in general, the 

azole-based inhibitors are more potent than the phenylamine-based 

compounds (the latter possessing very poor inhibitory activity even at 

[1]=100J.!M). Within the azole-based compounds, the imidazole-based inhibitors 

are more potent than the triazole-based compounds. 

Furthermore, we observe that the inhibitory activity is strongly correlated with 

the ability of the ligating species to donate a lone pair of electrons. The 

weakest ligating group is the phenylamine and we observe that extremely weak 

binding amine group result in the inhibitors based on this functionality to 

possess the weakest inhibitory activity. The imidazole functionality, however, 

being a stronger base than either triazole or the phenylamine-based 

compounds, is able to donate its lone pair of electrons more readily, resulting in 

the increased inhibitory activity of the imidazole-based compounds. The lack of 

inhibition within the phenylamine based compounds is particularly surprising 

since inhibitors using the phenylamine functional group to bind to the haem 

whilst using a pyrrolidine-2,5-dione ring system to interact with the enzyme 

active site have previously shown some good inhibitory activity (Ahmed, 1990), 

the binding mode of these compounds have been rationalised previously using 

the substrate-haem complex approach (Ahmed and Davis, 1995; Ahmed and 

Keane, 1998). It should be noted that the substrate-haem complex approach 

was used as the start point for the design (by Professor Ahmed) of compounds 

based on the Evan's chiral auxiliary (Figure 4.1) and in the design of all of the 

compounds considered within this study - the development of the substrate

haem complex approach has been well documented and will not be discussed 

here. 
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Figure 4.1 To show the binding of a phenylamine-based inhibitor within the 

overall representation of the 17 a-hydroxylase/17 ,20-lyase active site. 

A detailed consideration of the inhibitory data displayed by the synthesised 

azole-based inhibitors suggest that the inhibitory activity is related to the overall 

length of the alkyl chain (spacer) group, which separates the phenyl ring from 

the imidazole moiety. For example, from considering the inhibitory data for the 

non-substituted phenyl alkyl imidazoles, we observe that on going from the 

phenyl butyl imidazole (167) to the phenyl nonyl imidazole (173), there is a 

marked decrease in the IC50 value (against lyase) from 2.23+0.38IlM to 

0.35±O.01IlM respectively - a less dramatic decrease is also observed when 

the IC50 values against 17 a-hydroxylase for the same range of compounds is 

considered. 

A similar trend is also observed for the 4-substituted phenyl alkyl azole-based 

compounds, that IS, inhibitory data shows that compound 177 
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(ICso=1.96+0.01/-!M against lyase and ICso=27.81 +1.44/-!M against 17a

hydroxylase) possesses greatly reduced inhibitory activity compared to the 

corresponding larger alkyl chain inhibitors, such as compound 179 

(ICso=57.5+1.5nM against lyase and ICso=173.62+ 7 .OOnM against 17 a

hydroxylase). This increase in inhibitory activity with increasing length of the 

alkyl chain has been rationalised using the sUbstrate-haem complex approach 

which suggests that the ability of the inhibitors to bind to the complex increases 

(and therefore the inhibitory activity) with the ability of the 4-substituted phenyl 

ring system to undergo more effective interaction(s) with appropriate amino acid 

group(s) at the active site, thereby leading to a more stable enzyme-inhibitor 

complex and thus resulting in potent inhibitory activity (Figures 4.2 and 4.3). 

A similar trend is also observed within the series of compounds which do not 

contain a heteroatom within the phenyl ring system. That is, consideration of 

tables 2.3a to 2.3b shows us that there is an increase in inhibitory activity with 

increasing alkyl chain length. Due to the lack of a heteroatom, these 

compounds would not be expected to undergo any polar-polar interaction(s) 

postulated for the 4-substituted inhibitors. A detailed consideration of the non

substituted compounds together with their physicochemical properties, in 

particular, 10gP, shows that a non-linear correlation appears to exist between 

the hydrophobicity of the inhibitors and the observed inhibitory activity (Figure 

4.4). Although, the increasing inhibitory activity with increasing alkyl chain 

length within the non-substituted azoles may initially appear to weaken the 

hypothesis used to rationalise the inhibitory activity observed within the 4-

substituted compounds above, we suggest that the correlation observed 

between the inhibitory activity of the non-substituted compounds and their 

physicochemical properties suggests that other parameters playa major role in 

determining the overall inhibitory activity of this enzyme. 
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• • 

Figure 4.2 To show the binding of compound 177 bound within the overall 

representation of the 17 a-hydroxylase/17,20-lyase active site. 

Figure 4.3 To show the binding of compound 179 bound within the overall 

representation of the 17 a-hytdroxylase/17,20-lyase active site. 
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Figure 4.4. Polynomial (n=6) plot of LogP versus ICso values (against lyase) 

for the non-substituted imidazole 

Another trend which is observed is the effect of the substitution on the inhibitory 

activity of the compounds. For example, consider the range of compounds 

which contain a pentyl alkyl spacer group between the phenyl ring and the 

imidazole ring systems and the observed ICso values. Detailed consideration of 

inhibitory activity shows that these compounds depend upon the polar-polar 

interaction between the inhibitor and the enzyme active site wall. Furthermore, 

we observe that the inhibitory activity of these compounds increase on going 

from the f1uoro substituted (which possesses the weakest inhibitory activity 

within the range of 4-substituted derivatives considered) to the bromo 

derivative. We postulate that the observed structure-activity relationship may 

be related to the ability of the heteroatom to 'donate' electrons, as such, fluorine 

being a highly electronegative atom does not share its electrons as readily as 

bromine. 

In conclusion therefore, in the design of further novel inhibitors of P45017a, two 

factors need to be considered: the ability of a polar group to undergo interaction 

with corresponding group(s) at the active site (for example, a halogen group 

such as a bromine atom); and a 10gP factor, which would appear to aid the 

stabilisation of the inhibitor-enzyme complex. These two factors are clearly 
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present in steroidal inhibitors which are able to ligate to the haem iron atom 

through the formation of a dative covalent bond, as such, these compounds 

possess highly potent inhibitory activity in comparison to the non-steroidal 

inhibitors considered here. 

4.2 Inhibition of isozymes of 17J3-HSD 

As previously mentioned, due to a lack of compounds in the clinic for 17J3-HSD, 

it was not possible to compare the biological activity (and therefore relative 

potency) of the synthesised compounds within the current study against a 

single and well defined standard compound. However, a number of workers 

within the field have previously undertaken biochemical evaluation of flavonoid

based compounds, in particular, Baicalein (113) and 7 -hydroxyflavone (97). 

We have therefore also evaluated our novel inhibitors using these two 

compounds for comparison. 

17f3-HSD3 

In general, the results of the study shows that the 4-hydroxyphenyl ketone

based compounds are potent inhibitors of 17P-HSD3, with only two inhibitors 

showing poor inhibitory activity and ICso values. Detailed consideration of the 

inhibitory activity shows that compounds 254 (ICso=2.86IJM) and 255 

(ICso=4.97IJM) are highly potent inhibitors of this isozyme of 17J3-HSD. As 

such, 254 is some 65 and 23 times more potent than Baicalein 

(ICso= 185.92IJM) and 7 -hydroxyflavone (ICso=66.98IJM) respectively. 

Compounds 252 (ICso=7.84IJM), 253 (ICso=6.52IJM) and 256 (ICso=7.55IJM) 

have also been shown to be extremely good inhibitors in comparison to the two 

standard compounds. 

A detailed consideration of the inhibitory activity observed within this series of 

compounds show that the potency of the compounds appear to increase with 

increasing alkyl chain length and therefore the logarithm of the calculated 

partition coefficient (logP). A plot of 10gP (calculated using Quantum CaChe 

254 



Project Leader) versus IGso shows a very good correlation (R2=0.95) (Figure 

4.5), with an optimum 10gP of approximately 3.8 and 4.3, corresponding to 

compound 254. 
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Figure 4.5. Plot of IGso versus calculated 10gP for a small range of the 

compounds (carbon chain length from 5 to 10) synthesised within the current 

study (Lota et ai, 2006). 

Molecular modelling of these compounds were undertaken (by Professor 

Ahmed) which suggested that the 4-hydroxyphenyl ketone-based inhibitors may 

possess two modes of binding to the active when compared to the steroid 

backbone. That is, the inhibitors are presumed to bind to the active site such 

that the carbonyl moiety within the inhibitor mimics the C(17)=O of the 

substrate, however, in one scenario the alkyl chain extends towards the area of 

space normally occupied by the rings A, Band C of the steroid substrate, 

placing the 4-hydroxyphenyl moiety beyond the (C15) and C(16) position of the 

steroid backbone (Figure 4.6a). The alternative mode of superimpositioning 

involves the 4-hydroxyphenyl being positioned towards the steroid backbone 

whilst the alkyl chain is now positioned such that it extends far beyond the D

ring (Figure 4.6b). 
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Figure 4.6a. Superimposing of novel 

inhibitor onto the backbone of A 

R 

o 

Figure 4.6b Alternative mode of 

superimposing of novel inhibitor onto 

the backbone of A 

Owen and Ahmed (2004) have previously suggested that the area of the 

enzyme active site corresponding to the O-ring of the natural substrate may be 

populated with hydrogen donor and bonding groups as well as NAOPH. This 

area of the active site would therefore be expected to be constrained and the 

volume of space available for the acyl chains to be restricted, in particular for 

the larger alkyl chain containing compunds. As such, binding in such a manner 

where the alkyl chain extends out beyond the O-ring as suggested by Figure 

4.6b is highly unlikely due to steric interactions which would therefore lead to 

reduced inhibitory activity. We therefore suggest that the mode of binding 

suggested in Figure 4.6a is more preferable and is the mode of binding for the 

majority of the compounds - Figure 4.7 shows the binding of one of the 

inhibitors in such a manner whilst Figure 4.8 shows the alternative mode of 

binding which is suggested to be undertaken by the small alkyl chain containing 

compounds. Furthermore, from the consideration of the potency of the larger 

alkyl chain containing compounds, we suggest that the 4-hydroxyphenyl moiety 

may be involved in hydrogen bonding interactions with the active site about the 

C(15) and C(16) area of the steroid backbone and which would result in 

stronger binding and therefore increased inhibitory activity. 
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Figure 4.7. Superimpositioning of a low energy conformer of 254 (in ball and 

stick representation) onto the backbone of A (Lota et ai, 2006). 

Figure 4.8. Superimpositioning of 248 (in ball and stick representation) onto the 

backbone of A (Lota et ai, 2006). 

That the 4-hydroxy moiety is able to undergo this favourable hydrogen bonding 

interaction, resulting in the increased potent inhibitory activity observed within 

the larger inhibitors of 17~-HSD3, is supported by the observation that when 

compounds lacking hydrogen bonding groups are evaluated against this 

enzyme they showed poor inhibitory activity. That is, the poor inhibitory activity 
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observed within the biphenyl and non-hydroxy containing compounds would 

appear to support our hypothesis regarding the ability of the larger alkyl chain 

containing compounds to hydrogen bond to groups within the active site of 17J3-

HSD3. 

17{3-HSD1 

The compounds were also evaluated against 17J3-HSD1 in an effort to evaluate 

the selectivity of the 4-hydroxyphenyl ketones. From the consideration of the 

results (and the small range of isozymes considered), we observe that these 

compounds are indeed selective inhibitors of the 17J3-HSD family of enzymes. 

However, of the compounds evaluated, only the biphenyl-based compounds 

showed any level of potency against this isozyme. 

3{3-HSD 

All the compounds synthesised were also evaluated against 3J3-HSD in an effort 

to evaluate the general potency of the comounds against the overall family of 

HSD enzymes. From the consideration of the inhibitory activity obtained, it 

would appear that, in general, all of the compounds are non-inhibitors of 3J3-

HSD and therefore would appear to be specific inhibitors of 17J3-HSD3. 
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