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Abstract

A new procedure in the preparation of polycrystalline, structurally sound,
doped manganites was developed. This method is called “flashing.” Using the new
preparation technique, several batches of samples of Lag 7Cap3MnO3 and Lag7Cags __
- (Mn(1-0Fex)O3 (with x = 0.05 and 0.07) were produced under different pelletizing
pressures and annealing conditions.

In the case of the Ca doped mangamtes electrical re51st1v1ty as a function of
temperature measurements, with and without an applied magnetic field of 350 mT,
show a negative magnetoresistive effect, and a practically field-independent metal-
insulator transition that depends upon heat treatment and annealing conditions.
Similar measurements in Ca and Fe doped manganites reveal the same behavior with
relatively large resistivity values and lower transition temperatures that depend on Fe
concentration. )

- Maximal values for electrical resistivity in Fe doped samples are at least one

order of magnitude higher compared to the maximal values for Ca doped specimens.
‘X-ray diffraction, electrical resistivity, and electron-microscope analyses indicate a
correlation between grain size, annealing environment, conductivity, and magneto-

resistance. Magnetic susceptibility measurements indicate that the metal-insulator -
transition occurs approximately at the Curie temperature in all the cases studied. . -
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Chapter 1 Introduction

1.1 Introduction
- Many centuries ago, electrostatic and magnetostatic effects were observed by
~ ordinary people from s‘everal»different cultures. Since the 16" century, electric and
magnetic nhenomena were systematically studied by William Gilbert (1540 — 1603),
Stephen Gray (1666 — 1736), Charles Dufay 1(1698"— 1739), Benjamin Franklin (1706 —
1790), Charles Augustin Coulomb (17R26 - l806), Michael Faraday (1791 — 1867), and
many other scie‘ntists.1
'l’oday, we kndw that when a conducting material is placed within an electric
ﬁeld; electrlc charges in that material will be forced to mnve in the same general |
direction of the field. 'Tne-_electfic charges crossing’an infinitesimal cross-sectional
area,v perpendicular to ,th:e direéfion of the electri'c‘ﬁeld per unit time per unit area,:'is
deﬁned as the electric current density j. This current densify depends npon the type of

material, the strength of the electric field, and the nnmber of charge carriers available

. per unit volume.

The charactelistics of a material that inhibit the tranepert of charge caniern
within the material is generally refefred to as the materlal's electrical resistiVin (n). |
B ‘The lnverse of | p is tlle,electficaliéonductivity (o). Malerials eXhibiting large electrlcal
| _ .resisti\:lif}lrl are called inéulators and fhb'se with small reéisti\}ity are called conductors.
o In_ éeneral, a magnetic ﬁeld Will.alter the characteflstics ofa niaterial in such a

-

~_way that the material's resistivity will decrease, causing an increase in charge transport

o

by the electric field. This phenomenon is known as magnetoreSistance and was first

>



observed by William 'fhomson (Lord Kelvin) in 1857. Kelvin noticed that, independent
of the type nf material and the strength of the applied field, the decrease in electrical
resistance was relatively small (no more than 5%).2
In this research project, using our experience in the preparation and charac-
" terization Qf a well known “high temperature” superconductor (Y;Ba;Cuz07.5), an
‘ improved.me'thod for the preparation of structurally sound colossal magnetoresistive
manganite samples of Lag 7Cag3MnOs, with different average grain sizes, was
develoned. ’fne effect of air \}s. oxyge;n annealing in the preparation of the samples was
also examined. A second objective of this investigation was to study the effect of the
strong magnetic moment ion Fe' , and the grain size in the magnetoresistance of an iron
doped nlanéanite (Lao.}Cao,gb(Mn a9Fex)03), when subjécted to a “weak” magnetic . -
field of the order of 500 mT. All the prepared samples'w'ere characterized By X-ray
difﬁaction, eiectron-micfosbopy, electrical résistivity measurements and, in so‘me'cases,
rnagnetic susceptibility. Our final objective was to interpret the eXperimental results in ’k
_ _‘ the light of the accepted explanations for colossal mngnetoresistanpe (CMR) in | ‘

' manganites. -

1.2 Historical Overview - Superconductivity
In 1908, Kamerlingh’ anjé,s,‘ working at the university of Leyden, was able to
~liquefy helium. The boiling point of He at atmospheric pressure is 4.2 K. This new

: reséarch tool allowed hifn to study the 'c‘onductivity of metals at very low temperatures. -
o Itwas postulated at‘ that time that ihe resistivity of a metal decreases linearly with
. decreasing temperature until it réaches a finite Valuéjcaﬁed,résidual resistivity.?
. . ! K e :



This finite value was aésumed to depend on the purity of the metal. In 1911,
Kamerlingh Onnes, experimenting with mercury - then the purest available element -
found a very sharp drop in its resistance at about 4.2 K. Below this temperafure value,
the resistance of Hg is practically zero. Onnes called this almost sudden disappearance

- of electrical resistance, superconductivity. A year later, he discovered that a strong

enough applied magnetic field destroyed superconductivity. The plot by Kamerlingh

Onnes of electrical resistance versus absolute temperature is shown below (fig. 1-1).
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Figure 1-1. Resistance in ohms of a specimen of mercury versus absolute
temperature, by Kamerlingh Onnes (photocopy of original). *

For the discovery of superconductivity and liquefying helium, Onnes received
“the 1913 Nobel Prize in Physics.” After the discovery of superconductivity in mercury,

this phenomenon was observed at different transition temperatures in other elements



and in some alloys. In vother words, above a critical temperature (T,), a normal resistive_/
state (norm?l state) is observed; below certain transition temperature T, super-
conductivity is achieved (superconducting state).

In 1933 Walther Meissner and Robert Ochsenfeld found that when

- superconductors in their normal state were cooled below their critical temperatures, in
the presence of a magnetic field, the magnetic field was expelled from their interior.
This phenomenon is called ‘;he Meissner Efféct and illustrates the peffect diamagnptic
nature of the“superconducting state.’ vThus; supefconductivity is characterized by ze;ro
electrical resistance and diamagnetic behavior.

, San after this discovery, the London brothers proposed a phenomenolo gical
equat_ioﬁ to describe the Meissner effect.’ The so-called London equation 1s based on a
postulate that ﬁlodiﬁcs ohm’s law fdr the normal state of a metal ( j =cE).

Aécordiﬁg toi this postulate, fora simply'connected (in the topological sense) mat(;rial
(in thé supercohducting state, the current density j is directly proportional to the |
fnagnétic vector potential A, as expressed in the SI %ysiem, by the equation

.j=-[u1x2]A o o

whefe W, is the permeability of free space and A, is a‘constant with units of length that °
depends on the p‘ar_ticﬁl'ar type of superconductor. This equation is known as the

London equation, and uses the Coulomlb gauge VeA = 0.

-
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The following shows how equation 1.1 predicts the Meissner effect. The curl of

j is given by

ij=-( 1 }VXA ( IZ]B (1.2)*
HOXL Hohi _

- According to one of Maxwell’s equations for the static case, Vx B=p,j (Ampere’s

law). From these equations, it follows that the curl of Vx B is given by:

VX (VxB)=V(V.B)-VB=,Vxj= -(}%}B o 13)

L
Since in classical electrodynamic theory magnetic monopoles do not exist, VeB = 0.

Thus, equation 1.3 is reduced to

2 1 | .
?B (M}B‘ o | a4

.
Excépt for the trivial solution B = 0, this equation does not allow a uniform field inside
a bulk superconductor. For example, in the case of a semi-infinite superconductor on

the positive side of the x-axis, a solution to eq. 1.4 is %

B(x)=B(dje'[i} ) - .(1'.5)

Therefofe an applied magnétic ﬁeld pérallel to‘ the supefconductof boundary decbreiases
exponentlally inside the superconductor Except for this exponentially decaylné
:kpenetratlon of the magnetlc ﬁeld B 1n51de the superconductor is zero. ThlS is the
Melssner effect. The constant M is known as the London penetratlon\ depth 4

" *Although vectors B and H are normally called the magnetic ﬂux densny and the magnetic field mten51ty,
respectlvely, in this thesis we will represent an external magnenc field by B, and the macroscopic magnetic field -
mtcnsxty in the presence of matter by H (see Appendlx B in Solid State Physics by J. R. Hook, and H. E. Hall 1)

[aS



The first microscopic theory of superconductivity was proposed in 1957 by John
Bardeen, Leon Cooper, and Robert Schrieffer, and is known as the "BCS" theory.
A simplified conceptual description of this theory is based on the coupling of pairs of

electrons with a lower energy than two individual electrons, called Cooper pairs, after

“Leon Cooper who showed how interaction between electrons can lead to the formation

of electron pairs composed of opposite momenta and spin.’
Imagine an electron drifting in a metal at T=0K (no lattice vibrations). This

electron produces a momentary and local perturbation of the crystal. After the electron’

has passed by, the crystal not only returns to.its original state, but oscillates around its

rest position. A phonon is created. This phonon or lattice vibration affects a second

conduction electron lowering its energy. The second electron creates a phonon that -

interacts with the first eléctrronja‘nd so on. This passing back and forth of phonons

co.uplcs the two electroné together and brings them into a lower energy state. These
C00pér pairs move cooperatively through the crystal.

Thus, the scattering of electrons is eliminated and zero resistance is observed.

The supercbnducting state is an ordered state of conduction electrons.> Not all

~

‘materials can become superconductors and even with those that can, small thermal -

vibrations in the lattice will break up the electron pairin’g.~ This is why the

superconducting phenomenon is only observed at very low temperatures where lattice

~ vibrations are minimized.

" BrianD. Josephson predicted in 1962, and it was later verified, the existence of

a tunneling current between two shp‘erconduct’orks_ separated by a thin insulating barrier,

wheré the current is carried by these paired eleCtroriS’ (the\ J osephson effect).8

-~ ¢
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By 1986 Georg Bednorz and Karl Miiller found superconductivity in an oxide of
lanthanum, barium and copper at a temperature of 30 Kelvin and began what is now
called the era of high-temperature superconductivity. More recently, higher ﬂcritical

temperatures have been reached. For example, a transition temperature of 125 K was

~achieved in TlgBaZCa2Cu3Olo by Stuart S. Parkin and coworkers.?

Durmg the 20" century, and parallel to the study of superconduct1v1ty, several

smentlsts were interested in magnetore51stance A few years after the dlscovery of

“hlgh temperature superconduct1v1ty in 1986, colossal magnetoremstance,(CMR) was

observed in a manganite. Several high temperature superconductors and manganites

)

have similar crystalline structures based on a cubic lattice called perovskite.

1.3 Histdrical Overview - Magnetoresistance

The ﬁrst report on the electric and magnetrc properties of a mangamte was

pubhshed in 1950 by Harry Jonker and J. H van Santen 10,11 They observed a

transmon from a paramagnetrc insulating to a ferromagnetlc conductmg phase, below

~.room temperature, in Lal-xCaanOg for x values between 0.2 and 0.4. It was soon after -
 this report yvhen' Clare_nce Zener, Junjuri Kanamori, John Goodenough and other |
- scientists proposed the fundamental theory used today to explain the magnetoresistive ‘

" behavior of manganites.12 In 1969',7A1'1en Morrish, Clark Searle and co-workers at the :

‘ Uniyersity of Manitoba‘ measured magnetoresistance effects in a single crystal of

,La069Pb031Mn03 e

by

In 1988 Albert Fert in France and Peter Grunberg in Germany, 1ndependent1y,

dlscovered that alternatlng layers (Itoa few nanometers) of copper and cobalt or 1ron :
A ‘ T Lo -



and chromium produced increases in resistance of more than 50% after a magnetic field
was applied and then removed. This effect was called Giant Magneto-Resistance
(GMR)."”
In 1993 there were reports from Siemens in Germany and Bell Labs in New
Jersey, that certain manganese oxides showed a huge change in resistivity when a
magnetic 'ﬁeld was applied. The effect in these materials—the manganese
perovskites—was so large in comparison to ‘GMR, that it was called Colossal magneto-
 resistance ((5MR).14 : ' h | ) -
The work done by Von Helmolt and-his group in 1994 found a large drop in
eloctrical resistivity irr a thin film of the mixed valence manganite Lao,§7Ba0_33MnO3
near itsipard-ferromagnetic transition temperature. Based on this work, J in,r et al
__observcd an er/en greater resistivity rerp in a bulk polycrystalline sample of
L50.60Y0.07050.33Mn03 13 o
| Some of the new and exciting ideas irrtho application of CMR in electronic
dévice‘s’take advantage of the ability of manganites”to "cha‘ngétheir electrical resistance
“When exposed to magnetic ﬁelds‘. Stronger sigrlals, ':sm.aller, faster, and less experrsive
sensors formagnetio fields, non-volatilo memory syst‘ems~ arld isolation mechanisms are
'expected to come ‘from the devel‘opr‘nevnt of CMR devic"eé.‘ CMR devices couldk be.
oompaﬁble with integraterihGMdS (ICé) and made part of the circuitry and reod-heads
for hard di‘sk‘ drives thot would produco llarger signals and smailer srorago bits.' |
The prospeots of integrating CMR dev‘i\ce‘s bromisos reduced size, lower manufaoturing

~ costs, greater efficiency and stimulates research to understand this new frontier. o



1.4 Objective of this Research Project

A common problem for researchers using pelletized samples of Lag 7Cag3MnQO3,
is the disintegration of the material within a few days. The disintegration of the sample
clearly indicates rapid changes in structure and brings into question the validity of data
acquired from the samples. Long-term structural sta-bilityv is absolutely necessary ;md
therefore the: first objective of this reséarch »proj ebct‘was to develop an improved method
for the preparation of structurally sound samples of Lag 7Cag3MnO3. This was
aécomplished by modifying the fechniques, and using the experience acquired in the
| ﬁreparaiion and characterization of high temperature supverconductors (YlB.azCu3O7_5).f‘

B | The developmgnt of the process for producing stricturally sound pellet samples |
reveals chanées in thé grain size from heat tréatment, and-density changes due to )
varying pelletizing forces used to form the pellets. This research investigates their
. effects on the magneto-résistive characteristics of tﬁe xhanganite samples.

Since the ionic radii of Fe" and Mn+3 are alx;rloét identical, it is possible to
bypass lattice effects in the partial substitution of Mn‘ by Fe. Previous experiinenﬁ in
tkhisk kind of déping show that thqfe is practically no appféciable change in the lattice
i;aramefers of the érystailirie‘ s'tru_ctures 'of Lag7Cag3MnOs, and Lag 7Cag 3 (Mn (1_%)Fex)
03, up tox=0.12 16 Also, the insulator—metallic transition is lost 1f mc;fe than 10% of
~the Mn is‘sﬁbstituted by Fe. Thereforé, an 'objectiye of tﬁis research is to study the
effect of the strong \magne:f:ic moment ion Fe™ on the magnetoresistancke of Lap7Cag

(Mn (l.ngeg)O3, when a “weak” magnetic field of the order of 400 mT i.s applied.



It 1s well known that the oxygen content in some high T, superconductors is
critical to obtain high transition temperatures. This research project investigates the
effects that air and oxygen annealing have on the magnetoresistive properties of the
doped manganite samples prepared using the newly developed pellef preparation
methods. |

Chapters 5-and 6 address each of théaforemention_ed considerations in detail.
Finally, usin"g the data acquired in the:se investigations, the experimental results are ™
interpreted and compared with the currently-accepted explanations for Colossal

Magneto Resistance (CMR).

  10 ;
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Chapter 2  General Characteristics of Manganites

2.1 Introduction

This chapter presents the current working theory of CMR in manganite crystal
structures as summarized from a survey of the literature. A description of the magnetic
properties of solids is convenient for understanding trre following sections and is,

therefore, presented first.

2.2 Magnetic Properties of Solids

| According to Faraday’s law, in any material, an applied magnetic field that
ehangee with time induces an electromotive force (emf) that accelerates eleetrons in the
material. The directi:on ef the resulting current is.such that it opposes the change in the
ﬁeld (Lenz’s law). This phenomenon is known as diamagnetism.

In a material in which some of the atoms possess a permanent magnetic dipole
momen’r, the appiied magnetic field produces a torcrue\:that tries to align the magnetic
momerrts in the direction ef the field. ThiS is calledl paramagnetisnr, and is rrormaily
- stronger t}ran the diafmagnetic effect The strength of the rnegnetic effect on the |

N

materlal is quantlﬁed by the magnetrc susceptlbrhty x deﬁned by equation 2. 1 Where
‘M represents the magnetrc moment per unrt volume, and H is the macroscoplc magnetrc
field interrsity within the specimen. ) ‘
| M=y e
In thé International ASkysterr:r (SD), the urrits for l;reth magnetization (M) and magnerrc

" ﬁeld interrsity H) are Am’.. Therefore, the magnetic 'susceptirzity () is unitless.

o

12



The magnetic susceptibility is negative, very small, and nearly temperature independenﬁ
for diamaggetic materials. It is positive, temperature dependent, and also small for
paramagnets. For example, y of ice has a typical value of — 8.1 x 10°®, and‘ x of
CuSO, at room temperature is 3.8 x 10*.! Alternative definitions of magnetization,
frequently used, refer to magnetic moment per unit mass or per mole. The
corresponding SI units are Am’kg™” and Am’mol’, respectively.

In order to describe a solid from the fnagnetic point of view it is necessary to
specify the sirength and the direction 6f the magﬁetic moment at each lattice site.
Magnetic dipole moments arise in atoms because of the orbital and the spin angular
mbmenta of the electrons. The theory used in this chapter is a quasi-clvassical approach

to magrietisrh and the magnetic properties of materials. Some of these concepts are

discussed in the paragraphs below.

2.2.1 Energy and Space Quantization

An undefstanding of the properties of a oné-reléctron atom is very helpful in
analyiing Ihany-electron atoms. bThe quantization of ehergy of hydfogen—like atoﬁls
k(’hydrogen and its two isotopes deuterium and tritium; sin,;gly ionized helium, 'doubly
ioniZed 11th1um, gfc.) appears nat.ﬁkrbally as a solution to the time independent
; gchrédinger equation wifh a*couiokmb pbtential energy for the nucleus-electron system.
Ina first appfoximati_bn calculation, rthe nucleusris considered as a point \':c\:harge at rést at
the origin’of an ihértial ;fré{me of reference. The possible energies for the bound étates

of the electrori_ are given by equation 2.2.

13



- me'Z” _ 2.180x107%Z’
8egh’n® n’

n

J (2.2)

In this eque;tion n is a positive integer (n=1, 2, 3, 4, .....), m. is the rest mass of the
electron, e is the magnitude of its electric charge, Z is the atomic number of the atom
(the number of protons in the nucleus), €, is the permittivity constant of free space, and
h is Planck’s constant. This equation is normally written in terms of electron-volts
instead of joules (equation 2.3). 2

13.607 22

n2

En= eV ' 2.3)

By considering the electron-nucleus pair as a binary system and their motion
around their common center of mass, a correction to the previous equations can be

. . | M
obtained. In this case, the reduced mass of the electron- nucleus system p (u= M. ,

(5

where M represents the mass o}‘ the nucleus) should reijlace m, in equatioh 2.2. Since
m,<<M, p is approximately eqﬁal to me and this ‘__correcti;onvi's small ;aven for the H
| vatom.» Also, it is possible to introduce é rélativistic 'cour_rectioﬁ, important dnly in ,the
case of large values of Z and .small values of n.2
In quantum r;lechanics, as in classical mechanics; a»particle movihg undera
gentral forcg has an angular momentum that is a\conStthlt pf motion. Expeﬁméntal and
theoretical considerations sth tﬁaf the angula_r mdme;ltum lofa bound_»electrdn is
_quéntize_:d and its maénitude 4is giv‘eny by A |
| P =10+ 1) | - Q2.4)

. wherel= 0,1,2,......,n-1, and 7 is Planck’s)‘coﬁstant divided by 2=.

e
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For each value of the quantum number n, specifying an energy level, there are n
distinct val_ues of angular momentum. Customarily, the different values of / (0, 1, 2,....)
are labeled by the letters s, p, d, f, g, h, ....., respectively. In addition to the .quantization
of the magnitude of the angular momentum, its direction is restricted. This directional
restriction is known as space quantization. It means that, with respect to a given
direction (normally a z-axis), 1 makes only certain angles such that its z-component 1, is
quantized and given by | |

- L=mh .. 2.5)

where m; =0, £1, £2, £3, ......,.+l. See figure 2.1.

m=t2
e de ] fr———— \\ ‘ ) mym -1

m=0 my=0

my=—1p———e - - mpe=~1f

= =2

Figure 2.1 = Illustration of space quantization for the cases / = 1 and 7 = 2 (Adapted
from M. Alonso, and E. Finn, University Physics, volume III — Quantum and Statistical
Phy‘sics).2 o ’ : ' :

“

In quaht;im’ m¢¢hanics v'vve'kc'an only know the magni?ude of the ‘angular\
momenﬁinﬁ and orié of its‘coniponents{ and our knowledge of the other two components
is liniited by the uncertainty rélati\onv - |

| . B AlelyZ‘/zv_hlzf— R | N _""(2.6)

- Thus, it is impossible to precisely determine the direction of the angular moméntﬁm L
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When relativistic corrections are omitted, each energy state of a hydrogen-like
atom come§ponding to a particular value of the quantum number n, contains n angular
momentum states, all with the same energy (eq. 2.3). These states are labeléd ns, np,
nd, nf, etc.

If a first order relativistic correction is introduced, the allowed energy values are

E=E,+AE 2.7)

where AE depends on the values of the quantum numbers n and 1, and is given by,

e (BIZCY 3 L) e
n N\dn I+%) T

In this equation, a. is called the fine structure constant and its value is

€ 1 . -
o= =— (2.9)
- Amngehc 137 S

where c is the speed of light in vacuum. Equatiohs 2.7 and 2.8 show how ‘energy;
levels with the same value of n, but different value of / do not have e)iactly the same
energy E,' |

| Space quantization is evident m experimenté like the Zeeman Effect.- In tHis
experiment, when a sufficiently strong r_négneﬁc field is’ai)plied to One-electfon afoms,
each eriergy level Vsplits into 2/+1 sublevels. The spacings between thesek sublevels are
the sa‘m'e»for all atQms and e.nergvy levelzcz, and depends °’only on'the strength of thé ‘

applied magnetic field.
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2.2.2 The Magnetic moment of an Atom

Thqre is a correlation between the electronic structure of the atom and its
magnetic moment. The magnetic moment of an atom depends upon the orbital motion
of the electron and its spin angular momentum. First, the orbital magnetic dipole
moment of the electron will be discussed.

A flat current-carrying loop produces a magnetic field similar to the one
produced by a bar magnet. AThus, like a baf magnet, a current-carrying loop is said to be
a magnetic ciipole. 3 -

If the electric current in a flat loop is-i and its vector area is A (a vector
pérpendicular to the loop such that its magnitude isﬁequal to the area of the loop, and
directed so that the current is seen moving clockwise when looking along tile directi_c‘)n'b
of the vector), the magneﬁp dipdle moment p associated with the current in a flat loop,
is'deﬁned by equation 2.10.

‘p=iA S (2.10)

A bound electron in its rhotiori aroﬁnd the ﬁucléus prdduces a magnetic ﬁeld just
as a current 1n a loop does. Thus; 'there is an'orbitél.magnetic dipolé moment'assobiated
with a bound eléctroh that can be expressed in terms bf ité angular r‘nomentufn L An
‘ expression»fof the orbital magne’fic dipole moment of the electron M, vélid in Quanttim
r‘rtxechanics,fi's traditionalisf bbtaiﬁed usiilg classical mechanics and assuming that. the
elébtron isina circulér orbit. In this case, the orbital motion of the elect\r\onk corresp\onds
0 é .small currenf, giVehv in terfns of the period T of the orbit, by |

ev
27 r.

S i=== (2.11)

d
T

Then, the magnitude of M is
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Mi=1A="%evr (2.12)
where e is ’Fhe magnitude of the electronic charge, v its speed, and r the radius of the
assumed circular orbit. Since the angular momentum of the electron (1=r Y mev) hasa
magnitude | = rm.v , and the electric charge of the electron is negative, the vector form

of equation 2.12 can be written in terms of 1as

M =- % ol (2.13)

m

€

These vectors are represented in figure 2.2.

/"_— -~\\\

Dlectron s 7 N

motlon ( : . N\
+Ze 1

r. /

. el \\' . —e. /4
Equivalent\ >~__ I __=»" v

current : ‘

Figure 2.2. Representation of the orbital angular momentum 1 and the corresponding
orbital magnetic dipole moment M; of a bound atomic electron. (Adapted from M.
‘Alonso, and E. Finn, University Physws volume III — Quantum ‘and- Statistical
Physws)

The z-componént of M; (M) is also quantized and given by equation 2.14 .

Mlzr_‘-‘/z(ezJ=-( eh ]Im:'llsml‘ ; '(2.1>4)

m 2m,

€

- where the quantity ( 2eh J is called the Bohr magneton Hp, and its value is N

(4
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s =9.2732x 102*JT. A one-electron atom placed in an external magnetic field *
acquires an extra energy Ep and experiences a torque T, given by equations 2.15 and

2.16, respectively.

Ep=-M-B=|—|1-B=|-_|18={-" |mB = iymB (2.15)
2m, 2m, 2m, :
=M x B=-[—3—]1 x B (2.16)

2me. .

Equation 2. 15 illustrates how each energy level spits into equally spaced my levels, -
depending on the magnetic field.

Besides the orbital angular momentum of the electron, its spin also contributes
to the magnetic moment of the atom. Free or bound electrons have anvintriilsic angular
momentum célled spin (s) This is a quantum-mechanical property with no analog in
classical mechanics. The imdea of the ¢lectron spin was first proposed in 1926 by G.

| Uhlenbéck and S. Goudsmit to explain certain features of the spectrum of hydrogen like
atoms.” The exigtence of the electron spin is suﬁpérted by a large accumulation of
"experimental evidence. One of these experiments 1s the Stern-Gerlach experiment in
which a beam of hydrogen-like atoms, in théir ground stat~e,:sp'1its into two beams when
passed through a rion-uniform magnetic ﬁeld.v Each beam corresppnds to one of the two
. p§ssib1e values of the spin (Spin-iup or S'pin-down).k Because the electron is a chafged
particle, its spin aﬁgular momcntL1m should produce an intrinsic or spin fnagnetic dipole
| rhoment .Ms. If we assume thatvt‘he eleéfr_ori is a rotating @hafged bédy, the relatibnslﬁp

_ *Although the vectors B and H are normally called the magnetic flux de,nsit:y and the magnetié field intensity,
respectively, in this thesis we will represent an external magnetic field by B, and the macroscopic magnetic field
intensity in the presence of matter by H (see Appendix B in Solid State Physics by J. R. Hook, and H. E. Hall h.
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between M; and s should be the same as the one between Mjand 1, M;=- % el

me

This is not the case. In agreement with experiments,

M, = - g */z)(-—em—]s | 2.17)

e

where g; is called the gyromagnetic ratio of the electron. Its experimental value is very

close to 2 (g, = 2.0024).2

The total angular momentum j of a bound electron is the sum of its orbital and

spin angular momenta, i.e.
j=1+s (2.18)

and the corresponding total magnetic dipolé moments is

e

](l+gss) : (2.19)

M=M+M;=-% (
As with the orbital angular mdmentum, the spih orbital momentum is also
quantized. The magnitude of s and its 2-c0mpon¢nt are given by equations 220 and

2.21, respectively.
L S=sHDR (220

s=mi @2

- withs=%,andmg=1= Y . The two possible '(')fientations o:f s are shown in figure 2.3.
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Figure 2.3. The two possible orientations of the spin angular momentum of the electron.
(Adapted from M. Alonso and E. an Un1vers1ty Physics, volume III — Quantum and
Statlstlcal Physics).?

Although s is never directed along the z-axis, its two possible orientations are called

spinup 4 and spin down ¥ .

2.2.3 Spin-Orbital Intefaction
In a hydrogen-like atom, the motion of the ﬁosiﬁve nucleus relative to the
electron creates a magnetic field B parallel to th'e- orbital angulaf momentum I that
interacts with the electron’s spin magnetic momeht M;. Since M fs propo;*tiOnal tos,
this interaction iS proportional to the dot prodg’ct s * land is called the spin-orbit
interaction. If is‘respoynsible for the separation of the energy levels in Rairs called |
: abublets (except in the case 1= 0 or “s—levéls”). Ihdeed, the problem of explaining these
doublets ﬁrst' gave rise to the idea of an elecfron spin with two possible orientafions.
T ﬁé-two‘ yellow lines in the emission spectrum of sodium is a well known example.? .
Fof atoms with more than one electron, in additioh to the coulomb potential

“energy associated with each electron and the nucleus, it is necessary to include the
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energies of the interactions between the electrons. In this case, an exact solution of the
Schrodinger equation is impossible. The desire to understand the obsbérved values of the
quantized energy levels, the electronic conﬁgu;ation, the magnetic propertiés, and other
characteristics 0f many-electron atoms is the origin of several fundamental ideas like
Pauli’s exclusion principle, Hund’s rules and the L-S or Russell-Sauhders coupling.
These ideas will be discussed next.

The energy state of an ator; deber;cis on the orbital quantum numbers (n,/,and
my) and the ébin quantum number m;. The-distributidn of atomic electrons among the
allowed energy‘levels gives the electroni§ configuration of the atom. According to
Pauli’s exclusion principle ﬁo two electrons in an atom may have the same quantum
numbers. In addition to many experimental facts, this principle explains the periodic
physical and chemical behavior of _the elements.”

The total angular momentum J of an atom, is the sum of the total orbitai
angular momentum L and the total spih angular mdmenturﬁ S. L is the vector sum of

the angular momenta of the electrons (Z; I;), and S is the vector sum of all the spin

 angular momenta (i s). Thus,

J=L+S | o (2.22)

Becaﬁse of fhe possible different orientations of the orbital and spin angular momenta
of the étomic electrons (I; and s;, respectively) for a given electronic éonﬁguratioh,. it is
possible to helve different values of the quantum nurhber J associated with the total
angular mémehtum J 7 Each value of J corresponds to ‘a different energy of th¢ atom.

- The total angular momentum of an atom determines its magnetic properties and the
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probability of electronic transitions in radiative processes. One method to find the

allowed values of J for a given atomic configuration is called the L-S or Russell -

, :
Saunders coupling after the two astronomers who first used it in the study of atomic

spectra emitted by stars.* s

In this scheme, the magnitude of J is g\iven by the quantum number J according

- .

to the expression‘

P =J+1) k> | (2:23)

The z-component of J is determined by the quantum number M according to
J.=Mhn where M=+1J, £ (J-1), ...... (2.24)

~ Similarly, quantum numbers associated Wlth Land S (L, My, S, and Ms) are

R given by equations (2.25) and (2.26):

L2=LIL+1)A%,  L,=Mph,  My=+L,+(L-1),... (225)

S =S(S+DA%  S,=Msh,  Ms=£S,(S-D), ... (2.26)

Once the values of L and S are found, we can find the value of J. The possible values
of the quantum number J are

J=L+S,L+S-1, ceerey |L-S|. (27
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The state of an atom is characterized by the quantum numbers L, S, and J.
States withf the same values of L and S but different values of J form é multiplet and
have practically the same energy.The differeri;[ values of J corresbonding to a set of
values L and S is cailed the multiplicity and is given by 2S+1. The spectroscopic
* notation uses symbols S, P, D, F, ....., corresponding to the possiblé values of L(0,1,
2,3,4,...), respectively. A superscript to the left of fhe symbol indicates the
 multiplicity and a subscript to the right inaicates the value of J. For example, if the
~ value of the ;[otal angular momentum L is fl, the corresponding spectroscopic notation is
254D

In the presence of an external magnetic field, each multiplet level splits into ML

levels. The spedtroscopic notation for different interactions is illustrated in figure 2.4.

Coulomb Spin-orbit Magnetic-field

interaction interaction =~ . interaction
// IS' . : ISO
. / / : :
apt 1
-——-——$\ ,
~ : 1 1
\\ \ D ‘ Dy L
\\ ‘
\ ' 3P
\ 3 ’ -
.\._'____L__(/ 3p
, N I

‘Figure 2.4. Energy levels of the np® configuration. (Adapted from M. Alonso, and E.
" Finn, University Physics, volume III — Quantum and Statistical Physics).>
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Hund’s rules are used to find the electronic configuration of an atom in its
ground state. They give the values of L, S, and J for this lowest energy state. These
rules, which must be followed in order, are:

1. S takes the maximum value allowed by Pauli’s exclusion principle - as many as
- possible of the electrons must have parallel spins.
2. L takes the maximum value consistéﬁf with the value of S — the electrons have
their ofbital angular momenta as well aligned as possible.

3. Fora shell” less than half full J = | L-S | , and for a shell more the half full J=L+S.!

If the shell is just half full, application of the second rule gives L =0, so J=S.°
For example, the electronic configuration of Fe** is [Ar] 3d°, where [Ar] represent the |
' efectronic configuration of Argon. The five electrons occupy the 3d energy levelé in
such a way that:

1) S=Y+%+%h+Y%+%h=3,

2) L=+2+1+0-1-2=0,and

3) J=L+S=S=¥%.
In this case tﬁe multiplicity is 2S+1 = (2 x %) +1 =6 andk the spectroécopic nbtation for
| ‘the configuration of the ground state of Fe** is ®Ssn. This configuration is illustrated in

figure 2.5 on the following page.

'Energy gzii)s are observed betWeen the allowed energy levels in atoms. These gaps occur between levels 1s and 2s,
between 2p and 3s, 3p and 4s, etc. energy levels grouped between gaps are called shells.? :
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Tt

Figure 2.5 Representation of the spins of the 5 electrons in the 3d level for the
electronic configuration of the ground’ state of Fe**.

224 Pararﬁagnetism

-As previously mentioned, paramagnetism is observed in materials in which -
some of the atoms possess permanent magnetic dipole moments. In the presence of an
applied magnetic field these moments experience a torque that tends to align them in
direction of the field. As the tempefature decreases, this alignment is less and less
affected by thermal motion. Therefore, .paramagnetism is a temperature dependeﬁt
property. The nucleus also has a magnetic dipole moment that is about 2,000 times
‘smaller than the atomic magnetic dipole momeﬁt. Although magnetic effects resultihg
from nuclear magnetic dipole moments are important in some cases like NMR (nuclear
m;agnetic resonance), thesc:veffects will not be éonsidered here.

In terms of L and S the total magnetic dipole moment of an atom can be written

u=-’/2( e J(L%gSS) ; | ’ (2.28)
m, /. : ;

Closed shells of electrons in atoms do not contribute to the total orbital angular
momentum or to the total spin angular momentum. Thus, only atoms with incomplete

- electronic shells have permanent dipolé moments and contribute to paramagnetism.
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Since transition metals have an incomplete 3d shell and rare earths an incomplete 4f
shell, they are paramagnetic. The total magnetic dipole moment of the atom in the
presence of an applied magnetic B field, normally assumed in the z-directioh, acquires
an extra energy Ep givgn by

Eg = -p°B=-uz]§ | (2.29)
The effect of the magnetic field on the ground state of an atom or an ion is to break the
degeneracy associated with the 2J+1 diffc:‘fuéht values of J,. Quantum mechanical
calculations 70f the expected values of Ep (? Ep >) give equally spaced energy levels™

<Bp>=gmlB - (230)

| where J,=-1J, ...... ,-1,0,+1,.....,J, and g is the Landé g-factor given by

o= (3) B {L(L+1)-S(S+1)} @.31)

2 21(T+1)

Comparison of the last two equations suggests an éffective magnetic moment for the ion
Hesr such that

Meir = -glip (232)'
Therefofe, the Landé g-factor gives the number of Bohr magnetoris’associated with the

effective magnétic dipole moment.

Assuming that the pefmanent dipole moments in a solid behave independently
of each other, the relative occupation of the energy levels of éq. 2.30 is a function of

temperature given by the Boltzmann factor

-Eg |, - g1 BJ '
=exp| ————= 2.33
exp(kBT) p( k,T (2 . )f
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where k; is Boltzmann’s constant. The contribution of one atom to the z-component of
the magnetization is -gusJ,. For N magnetic moments per unit volume, the

magnetization is

§

v= NelupJ(+1)B
3k, T

(2.34)

In the following equations, B represents the local magnetic field at the ion -~ the
external magnetic field and the contributions from the magnetic moments of the

neighboring ions." For small magnetic fields the magnetization is a linear function of

(%) but approaches the saturation magneti_zation at large fields. The change in the

guyB

)is approximately 1 and we approach the maximum
B . : ,

function occurs when [

possible alignment of the dipoles with the field. Thus, the saturation magnetizatipn is
NgppJ.. |

The magnetic susceptibility ¥, was deﬁne.d by equatioh 2.1. If yis small,
‘ LLOM<<B and the difference between the appli;a and the local fields as well as that
between B and poH is unimportant. Therefore, from equations 2.1 and 2.34 it follows

that

BeM _ Ng’ppl(+ 1,

- 2.35)
B 3k, T (2.35)

-M
X H

Because of a classical calculation by Langevin of the paramagnetic susceptibility of a
paramagnetic ion of magnetic moment pus, the previous equation can be written in
3 _ N2y 2 - o
terms Ofp as = M - (2.36)
o _ 3k T ;
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where p corresponds to g[J (J+1)]1/ 2 in equation 2.35. Equation 2.36 describes the Curie

law for a paramagnet, i.e.,

C
=— 2.37
L= (237)
with the Curie constant C given by
2.2
c= Np“pgh, (2.38)
3ky

Cﬁrie’s law is valid for localized magnetic moments that can be treated as
distinguishable and obey Boltzmann’s distribution. Another contribution to the
paramagnetism of solids originates in the magnetic moments of conduction ele'ctrons.
These moments are indistinguishable and because of Pauli’s exclusion principle, the
alignment of the moments in the presence of an applied magnetic field is hindered.
Therefore, thé value of the magnetic susceptibility of conduction electrons at a given
temperature is lower than that given by Curie’s law at that tempefature. |

In an applied magnetic field the energy of tine electrons with spins parallel to the
field is lower than the energy of antiéparallel spms Assuming weak magnetic effects,
the applied magnetic field B can be written as

B=puH (2.39).

and'the calculated magnetic susceptibility for N conduction electrons per unit volume is

_3Npepy | o
BELT 2.40
=" (2.40)

with €; the Fermi energy (the highest energy of an electron at 0 K).° The contribution

of the conduction electrons is called Pauli spin paramagnetism. This effect is very weak

- compared to effect of localized moments. The Pauli paramagnetic susceptibility yp is
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actually on the order of magnitude of the diamagnetic susceptibility associated with

conduction electrons 4, (xp = Y gia ) The net susceptibility of conduction electrons is
positive and is equal to about (2/3)y, in approximate agreement with experimental

values.! Although band structure effects and interactions between electrons affect the

calculated values of x  , it gives the correct order of magnitude.

2.2.5 Diamagnetism B

The source of diamagnetism, as shown classically by Langevin and in agreement
with qﬁantum mechanics, is the acceleration (or deceleration) that a changing épplied
rhagnetic field produces on the electrons orbiting the atomic nucleus. Detailed
quantum-meqhanical calculations show that the induced electric currents produced by -
the accéleréted charges have certain stability and screen the interipr of any material

from the applied field. The induced magnetic moment on an isolated atom by an

applied magnetic field is given by

2 R
”='[fi)<p2>3, N 2.41)

where Z ié the atomic number, e the magnitudé of fhe charge of the electron, m its mass,
B the applied magnetic field, kan‘d <p>>is the mean square distance of the electrons
from the z-axis (an axis through the nucleus in difection of B).! |

Since the diamagnetic effect is weak, it is poséible to ignore the effect on the
field at the pésition of an atom induced by the magnetic moments of its neighbors. In

this case we can assume B = p,H. Thus, for N identical atoms per unit volume the
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magnetization is

2

M=Np=-N[ Ze )<p2>qu. | Q4
../‘\/ 4m V

Finally, from the definition of magnetic susceptibility (equation 2.1) we have

_ M - Ze2 2>
HOE | (4m Juo<p . (2.43)

This theoretical equation agrees well with eXperiment'al results.
Paramagnetic and diamagnetic effects coexist at the microscopic level. The -
dominant effect determines the type of magnetization (positive or negative) observed

experimentally in a given specimen.

2.2.6 Magnetic Order
The behavior of paramagnetic materials was explained by assuming that the
permanent magnetic dipole moments behave independently of one another. Even in
the presence .of an external magnetie field, no \net magnetization is observed if the
directions of the magnetic moments are completely randomized by thermal motion.
For a given parémagnet, kbelow a certain temperature, the ihteractions between the
‘ p‘ermanent magnetic dipole momeﬁts can no longer be ignored and spontaneous
magnetization is observed in theebsence of an external magnetic field. At this
temperature, the material undergoes a phase transition from a disordered to a magnetic
orderedVState.’ The transition téniperature varies widely from material to matefial.
For example, it is 1,388 K for cobalt, and below 1 K for ionic salts with magnetic:iohs

- very separated.
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When all the moments contribute equally to the spontaneous magnetization the
magnetic order is called ferromagnetic. If half the dipoles are aligned in one direction

and the other half in the opposite direction, no spontaneous magnetization is observed.

This is the case of antiferromagnetic order. In some cases the cancellation of parallel

and antiparallel magnetic moments is not perfect and a net magnetization remains.

This type of behavior is called ferrimagnetism.

Before quantum mechanics; and in\;(:)Pr.der'to eXplain the ferromagnetic transition,
P. Weiss suégested that the spontaneous rﬁagnetization of iron was due to the alignment
of the atomic niagnetic moments. He proposed the existence of a “molecular field”
proportional to the»magneti‘zation and affecting any moment. The resulting effective
magnetic field (B.g) can be written as

Betr = Bioc + AloM (2.44)

where B is the magneﬁc field at the positiori of the atom and ApoM is the Weisé |
molecular field. A is a dimensionless constant ﬂ.la"tf' deteﬁnines the strength of the
molecular field. 7 |

Detailed qu‘antum-rhechanical éalculations using the idea of a mblecular ﬁeld

give the following expression for the magnetic susceptibility

(T-T.)

(2.45)

_M__C
x H

c

 This equation is a modified Curie law called the Curie-Weiss law and describes fairly

well the behavior of ferromagnetic materials at high temperatures. C is the Curie

constant, T is the curie temperature and represents the upper temperature at which
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ferromagnetic order is observe. At T = T, the magnetic susceptibility diverges, and for
temperatures below T (T < T,) spontaneous magnetization occurs.

Néel generalized Weiss® idea of a “molecular field” to antifenomagﬁetic order,
and divided the lattice of magnetic atoms into two sublattices A and B, with opposite
orientations of the magnetic moments. 'The field produced by each sﬁblattice affects the

other one. In this case the magnetic susceptibility is given by the modified Curie law

H

@) >0

where C is the Curie constant and Ty, called the Néel temperature, represents the onset

of antiferromagnetism. As shown by equation 2.46, the magnetic susceptibility is

reduced below the Curie law value and remains finite at all temperatures.'

2.3 Literature Survey of Research on Manganites

CMR has been observed in doped manganites based on LaMnOs, a perovskite
.type of structuré. The general formula for the{sﬂd doped manganites is RE;.xAEMnOs3,
where RE stands for a trivalent rare-earth eleméntbsuch as La, Pr, Nd, Sm; Eu, Gd, Ho,
Tb, Y, etc. or Bi**, and AE for a divalent alkaline earth ion as Sr, Ca, Ba, or Pb%".

The (RE, AE) site is normally calléd perovskite site-A, the Mn site is the B-site.
See figure 2.6 oﬁ the following ﬁage (Adapted from Neil Mathur, ah‘d Peter Littlewood;

Physics Today, January 2003, page 27).°
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Figure 2.6 Perovskite structure of the Mn oxide or manganite. The Mn ion and its
neighboring oxygen form the octahedron MnOg4 shown in the figure.

An interesting characteristic of the RE;.<AE,MnQOj; perovskite structure is it§_
flexibility for chemical modification of the A-site or A-site doping. For example, in
La;xCaxMnOs the solid state solution accepts values of x from 0 to 1. In the cése of
AE = Sr, x can have values up to 0.7 under normal preparation conditions, and up to 1.0
under high pr‘essure.9 In the manganite oxide LaMnO3 the Mn ion has Valénce 3+. In
the alkaline earth substituted perovskite type manganese oxides the Mn ion can have
two oxidation states Mn®" and Mn“. For examplg\,_ if 10% of the La is substituted by
Ca, then 90% of the Mn ions will be Mn** and the other 10% Mn**. The average Mn
valence in this case ﬁll be 3(0.9) + 4(0.1) = 3.1 . Therefore, in the case of
- Lap7Cap3MnQ3, the average Mn valence (AV)is AV =3(0.7) +4(0.3)=3.3.

The behavior of an electron‘in a solid is goyerned byk its chargge, its spin, its
orbital symmetrj} (the probabilitj/' density of the electron cloud), and its interactions with
other electrons and ions. Because bf the flexibility of the perovskite structure to accept
doping on the ’A-Site, ménganites are ideal for the study of stroﬁgly correlated electronic
systems. They allow us to observe the competition between different effects like kinetic
energy of mobile eleCtroné, their Coulomb répuision, the coupling between chafge

carriers and the lattice, etc.



The Mn®* ion has 4 electrons in the outermost, five-fold degenerate, 3d energy
level. The crystal field splits the five d orbitals into a tyg triplet and an eg doublet.
Depending upon the type and the amount of doping, the separation betweeﬂ the triplet
and the doublet is between 2 and 4 eV. These transition-metal 3d electrons experience a
Coulomb repulsion that tends to localize them. This interaction corﬁpetes with the

hybridization with oxygen p electrons that tend to delocalize the 3d electrons.

(L‘J’

According to Hund’s rule, in orde; to minimize'elecfrostatic repulsions, the spins of
these 4 electrons are up (lowest energy). Tﬁree of them are in a lower energy triplet
state. The triplet has a total spin 3/2, and is called core spin S;. The three electrons in
the triplet state are bound to the rﬁanganese ion - localized electrons. The remaining

| electron goes into a linear combination of e, orbitals and the system further reduces its
energy by splitting the doublet st_ete into another 2 hyperfine sublevels, as shown in

ﬁgure 2.7. This importaht effect in the manganites is called the Jahn -Teller effect.'

E X .
doublet e, -

triplet tgg ﬁ Sc=3/2

Flgure 2.7 = The5- fold degenerate 3d energy level of Mn*", the triplet, the
doublet and the Jahn-Teller effect.

3d level
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ground state is again insulating. This is clearly illustrated in figure 2.11, a phase

diagram on the doping (x) temperature (T) plane for this compound.
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Figure 2.11 Phase diagram of La;xCayMnOj3 on the doping (X) temperature (T) plane.
(Adapted from A. J. Mills, Nature, vol. 392, 12 March 1998)."°

Within the appropriate doping range, the application of an external magnetic

field H aligns the spins of the charge carriers producing an additibnal‘decrease in

electrical ‘resistivity.' This is the magnetoresistance effect (MR), normally defined by

MR = 100% [p(H’T)—P(O,T)]

247
p(0.T) 247
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bandwidth, reducing resistivity and exhibits a metallic behavior. This is often referred
to as the double-exchange (DE) process.

The application of an external magnetic field would align the magnetic moments
and widen the bandwidth. Magnetoresistance would be observed near the Cuﬁe
temperature. In the calcium-doped materials? eiectron — phonon coepling competes
with the double-exchange mechanism to in}}ibit the movement of charge carriers.

The calcium-doped fnanganese perevsk'ite, ebove the Curie temperature, is
pafamagneﬁc and insulating. It has been feunds that this calcium-doped material, when
subjected to an external magnetic field, exhibits a much greater magnetoresistance
effect than, for example, the metallic strontium-doped material,

Lattice vibrations, called phonons, affect the transport of charge carriers and this
interference diminishes as the temperature approaches the Curie temperature.
Vibrations of the oxygen ions (see figure 2.9) push electrons toward the vacant s"eates of
the manganese ion. This in turn, produces a local distortion of the lattice as mentioned
earlier (see fig. 2-8). This distortion, or polaron, acts like an electron-trapping
mechanism, restricting the movement of charge carriers and resultihg in the insulating
~ state, above the Curie temperature. As the teelperatﬁre drops, the polarons disappear
with a resulting_ iﬁcrease in bandwidth and increased mobility of electrons.

It is interesting to note other findings thet connect the bandwidth dependence to
the electron-phonon coupling. Researchers at the Los Alamos National Laboratory and
at J ohns-Hopkins University have shewn that the electron-phonon coupling is stronger
for narrow-bandwidth materials and that the resulting self-trapping effect leads to

higher resistivities.®
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Depending on the external conditions, the following three electronic phases can be
distinguished: an electronic insulating solid or charge ordered insulaﬁng phase (COI), a
poorly conducting electroniéjliquid with paramagnetic characteri.‘stics (PMj, and a
metallic electronic gas or ferromagnetic metallic phase (FMM).

At a given temperature and applied magnétic field, the phase stability depends
on the competition between the delocalizing double exchange interaction (DE), and the
localizing Jahn-Teller effect (JT). The DE ;xcﬁange favors the motion of a valence
electron bet;veen two adjacent Mn®" and Mh” ions via the intervening O ion
(delocalization). The J-T effect is a valence electron induced local distortion of the
MnOQg octahedron thét tends ;[o trap the electron (localization).

When the temperatlife is high, the spiﬁs are randomly oriented and ‘;he electron-
léttipe (electron-phonon) interaction or J-T effect is very strong. The localized yalence
¢1.ectrons areina poorl); conducting phase, and the magnetic structure is paramag;letic
(PM phase). As the temperature decreases, under a strong J-T effect and a weak DE
}interaction, antiferromagnetism is favored by a virtual exchange process called
superexchange. The electronic system behaves as an insulating SOl;ld, and the charge
ordered insulating phase (COI) is observed. A:c low temperatures, when the spins are
aligned, the DE is enhanced and cqndu‘ctivityk increases. Ferrbmag_nefism is observed.
’I‘his is the ferromagnetic metallic phase (FMM). |

. Depending upon valence elec;tron concentration and témperature, other phases
form. For example, as shown in ﬁgure 2.15 on fhe following page, a ferromagnetic

charge ordered phase was detected in TEM and electron holbgraphy experiments.
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In summary, in divalent cation doped manganites, below a certain temperature,
CMR occurs when a large applied magnetic field aligns the spins on‘the Mn sites and
the valence electrons flow eésily from one Mn ion to the next, through the ‘intervening
O ion. The colossal change in electrical resistivity is due to the highly insulating nature
of the sample at high temperatures.

Phase coexistence is generally more/likely to be observed in systems that exhibit
first order phase transitions, i.e. discontincccs jumps in order and latent heat. This is
the case of Wlow temperature transitions bctween COI and FMM, and temperature- ~
induced transitions between COI and PM.  If the electron-lattice coupling is weak
enough, the observed phase transitions are continuous (second order). This is, for

example, the case of observed magnetic transitions from F MM to PM.®

2.6 The Role of Grain Boundaries in CMR of Manganltes |

In order to facilitate technological apphcatlons of CMR, it is necessary to find
materials with an 1nsu1ator to metal trans1t1on as close as possible to room temperature

.and with a stfong enough‘ MR characteristic in low magnetic fields (ﬁelds of the order

- of a few hundred milyli-tesla).’ |

It 1s well known that two independent processes contribute to the increase in
magnetization of a ferromégnetic sample in an cxtemal magnetic field: i) In -weak fields
thc volumc cf domainé with ﬁlagnetic moment parallel to the applied field grows at the
o eXpense cf uhfavorably oriented»domains, and ii) Strong magnetic fields simply rotate

the magnetization of domains.’
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In trying to understand the mechanisms for CMR in doped manganites, many
experimepts have been done at low magnetic fields (LFMR), as well4 as at high
magnetic fields (fields of thg order of a few Tesla—HFMR). The samplesrused are
monocrystalline or polycrystalline thin films or bulk polycrystalline materials. The type
of thin film produced for MR studies dependsﬁonz the relationship between the
crystalline structures and lattice parameters of the substrate and the film deposited on it.
Lattice parameters mismatch can produced s&ucturally stressed single crystal or
polycrystaliine thin films. Grain size, intérfaces and grain boundaries clearly affect
LFMR in Mn perovskites.!” Although the origin of LFMR is still unclear, two possible
explanations have béen propésed: i) A spin tunneling process across interfaces of
grains separated by an energy barrier, related to the relative orientation of the
magnetizations of the grains. ii) The spin dependent scattering at interfaces. '® Josep |
Fontcuberta and his group at the “Universidad Aﬁténoma de Barcelona” studied:the
effect of grain size and grain boundaries on MR of polycrystalline samples of Lag 67
Sro33Mn 03 at low-and high magnetic fields.'. They found that as the a§erage grain
size decreases, the value of electrical resistivity at any temperaturé increases, and that in
the case of samples with grain sizék below 30 ﬁm, a clear insulating behavior appears
below 100 K. Samples with an average grain size larger than 30 nm exhibit metallic

Wbehavidr all the ‘way down from T,. See figure 2.16 oh the following page (adaptéd
frorﬁ Ll Balcelis, J. Fontcuberta, B. Martinez, and X. Obradors, Phy. Rev. -B, 55,

n_ufnber 22, December. 1 998—II).
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Figure 2.16 Temperature dependence of the zero field resistivity for
samples of different grain sizes.'
The analysis of these HFMR experiments shows that as the average grain

- diameter d decreasés, the HFMR effect incre;ses. »This suggests the existence of a

surface layer, possibly of non-ferromagnetic nature, of thickness t that increase$ asd

decreases. Thé thickness t is diréctly related to the intergranular resi.ﬁs‘tance and the
“height of the energy barrier that the conduction electrons must cross or tunnel. On the
~ other hand, LFMR investjgatioh reveals that as d decreases, MR indreases up to a grain
size limit of about 0.5 pm diameter, Below this grain size, no further increase in MR ié

observed.
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Chapter 3 Experimental Techniques and Equipment

3.1 Introduction

e

[P

The basic equipment ueed by researchers for investigation into super-
conductivity is essentially the same used to make measurements of CMR in manganate
materials. Voltage, current, pressure and temperature measurements as Well asa
vacuum system and cryogenic system for'séhlple temperature reduction vary only in
brand name and precision of measurements. The ‘s’ame measurement equipment and
sample producing techniques are ueed for characterizing the magneto-resistive
properties of samples such as the polycrystalline doped manganites. This chépter
reviews the equipment, processes and procedures used for the investigations of this

research project.

: 3.2 Techniques and Equipment

A standard, generally accepted technique was used in the preparation of
samples, vehieh iﬁciuded a typical selid-state—-l’reaction of high purity oxides or
carbonates of the elements involved. These compounds were ground to a fine powder
using an agate rr'lortar‘and pestle. This mixtute was placed in a high temperature
alumina crucible and sintered at a high enough temperature to react the chemicals and
achieve thedesir‘ed cryStalline strecture. To ensurea complete reactiko'n, the process of
re-griﬁciing and sinteriﬁg was‘repeated several times. '

For the sintering process; a Thermolyne programmable high temperature muffle
furnace, type _46 .100‘ was used (figure 3-1). This furnace perrhits sintering temperatures

up to 1700°C.
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is connected to contacts (a,b) and voltage measurements are taken across contacts (c,d).
After switching, the constant current source is connected to contacts (b,c) and a voltage
measurement is taken across contacts (d,a).

The correction factor 'f' is obtained from the following formula:

2 4 :
f=1- Riped =Rovas | 2| | Ripoa = Rio Umﬁ_mmj
Rab,cd + ‘Rbc,da 2 Rab,cd + Rbc,da 4 12

R, —R
Here we let x =| —20cd_~beda
R”b,Cd +Rbc,da

m2 (2] [In2F

and since BN =0.3466 ,

=0.1201,

=0.0277 ,

then the correction factor is f= 1- 0.3466 x*- 0.0924 x*.

This correction factor and the abO\;é\Van der Pauw formula were used in
conjunction with an Excel Spreadsheet for calculating the resistivity of each pellet .
sample as,‘a function of temperature.

- Typically, mégnetic fields are applied to samples by positic;ning the opposite
poles éf a magnet on each side of the shroud of the cold head. FOr these investigations,
a more stable and uﬁiform magnetic field waé obtained by using two ceramic disk
magnets. One magnet was placed on each side of the co‘ld finger, sandwichiﬁg the

Vpellet sarﬁple in between. Measﬁrements of the m‘agnetic field density at the position of

the péllét ‘samp‘le were consistently 350 mTesla."

63



To avoid the possibility of any magnetic remanence, resistivity data were first
taken Yvithout the magnets in place. Once satisfactory data were obtained without the
field, the magnets were positioned with great care for symmetry on all ﬁxes about the
pellet sample.

Modern and appropriate equipment was used to produce structurally sound
polycrystalline doped-manganite samples and to accurately measure their electrical
resistivity as a function of temperaturt;, ‘With and without, an applied magnetic field.
The exiéting equipment was improved by the addition of a temperature controller, a
switching box for forward/reverse/transverse voltage reading across samples. A new
hydraulic die with much finer tolerance pistons and mold was acquired for the sample

pellet producing system.
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Chapter 4

Preparation of Polycrystalline Superconducting Samples of Y;Ba;Ca307.5

4.1 Introduction

The era of high transition temperature superconductivity (“High T.”
superconductivity) began in 1986 with.the pfeparation ofa barigm-doped lanthanum
after this discovery, three main types of high temperature superconductors were found.
They are: Y1Ba,Cus;07.5 (YBCO), BiSrCaCuO7_s and T1,Ba;Cu30y, with transition
* temperatures of 90, 104, and‘ 125 K, respectively.'?

The standard procedures for making polycrystalline, superconducting pellet
samples of these materials, the experimental techniques and the hardware and
equipment required for their characterization are very similar to those necessary for the
preparation and characterization of polycrystalline rhagnetoresistive samples of the
doped manganite La(;.xCa,MnOs. As described in Chapter 2, 'the phenorﬁenon of
colossal rhagnetoresistance (CMR) has béén obseryed in doped manganites. The
laboratofy and equipment were set up to produce superconducting samples of YBCO.
Genefally accepted, standard results for this superconductor were used to fine-tune the
entire system. Once satisfactory samples were made, the entire system was ready to

commence investigations into colossal magnetoresistance.
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4.2 Preparation of Superconducting YBCO Samples

._ For the preparation of the superconducting pellet samples, oxides or carbonates
of Y, Ba and Cu (Y203, BaO,, BaCO,, CuO) were used with purities of 99.99%, 99.9%,
99.9% and 99.9%, respectively. Since the Yttrium-Barium-Copper oxides and their
characteristics have been well documented, the standard 1-2-3 compouﬁd‘
{Y1Bay,Cu30(7.5)} was used for setting up and getting the entire system functioning
properly. In conjunction with several steel dies and pistons, a hydraulic press capable
of exerting 134,000 Newtons of fofcé (10° Pascals of pressure with the dies used here)
was used for forming the pellets.'

After mixing, in appropriate proportions, the oxides or carbonates of the
- elements involved, the chemicals were ground to a very fine powder with an agate
mortar and pestle. The sample powder, in a high temperature ceramic crucible, was
then placed into a éintering oven where the temperature was monitored with a chromel-
alumel thermocouple. Experiments with sintering time and temperatures from 700°C to
940°C over 12 hours to 48 hours, indicated that the best results were achieved by
sintering at a temperature of 875°C for 12 hours with two intermediate grindingé and
Sinteringé.

Structurally‘sound sample pellets were produced by adjus;’\ting fabrication
processes such as pelletizing pressure and compressing technique, sintefing time and
temperature, and énnealirig time and temperature. Typical problems that were corrected
were fracturing of the pellet upon removal from the die and wafer;like layering of |
pellets due to inconsistencies Within‘ the sample powder when placed into th¢ die. ;TWO;

imiidrtant solutions were found that greatly increased the production of good pellet
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samples. One solution was to slowly increase the pelletizing pressure by .17 x 10° Pa
increments and holding at that pressure for several minutes while any trapped air
escaped. The other solution came from procuring a substantially thick—wall die, with
pistons lengths being twice the diameter of the die hole into which the sample powder
was placed. The highly polished die wall was lubricated with steric acid. The use of
non-tipping pistons, machined to extremely close tolerance to fit the die hole, assured a
constant, evenly distributed pressure over the entire sample powﬂer within the die
chambér. After experimenting with érange of pressures used with the hydraulic press
and the dwell-time for the pressure increase incremenfs, it was found that ideal
pelletizing was achieved With a pressure of 5.5 x 10° Pa, increased at 2-3 minute
“intervals at .17 x 10% Pa each;

Annealing in oxygen has become a standard practice aS it has been found fhat
the superconducting transition temperature decreases continuously with de6£easing
oxygen content.> The pellet samples were plaéed in a ceramic boat and inserted into
the quartz-glass tube of a tube oven and centered in the oven where they were annealed
in a continuous flow of oxygen for 24 hours as the temperatufe decreased from 770°C

to room temperature.

4.3 ‘Charactkefrization of YBCO Samples

- The ﬁost-annealing process included cutting the sampl.e; into a parallelepiped
shape. 'After cleanihg the sample with acetone, the sample was 'mountedkon the plug-in
- frame which inserts into the electrical contacts of the cold finger within thé cold head.

Silver paint was used to make wire contacts on the sample at each end and two contacts
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spaced approximately one-third the length of the sample, from each end. The contacts
thus'situated were used as a four-probe method for electrical measurements of voltage
change with temperature.

The principle technique used to determine the onset of the superconducting state
is to measure electrical resistance as a function of temperature R(T). When a ready
indication is desired, a two-probe measure across the specimen is most convenient. A
better and more precise method, thai elimiﬁates the resistance of the contacts, uses a
four—ﬁrobe contact setup for determ_ining R(T). . -

Using a jeweler’s saw, the specimen for which resistance measurements were
made was cut into a symmetric shape such as a parallelepiped. Two contacts (probes)
for input current were attached near the ends and two contacts (probes) were attached
near the centef, all in a linear fashion. For the input current, a constant current soﬁrce
was used. |

Being placed close together, the center two voltage-contacts have a very small
amount of specimen material and therefore resistance between them. This small
specimen resistance in parallel with the very largek voltmeter fesistance, permits
virtually all of the current to pass betwef;n the specimen voltage contacts. The silver
contactrresistance at the current input poihts is negligible. The simiiarly very _low
resiétance of the silver voltage contacts on the specimen and at the voltmeter and the
very high fnput resistance (ohm/volt) of the voltmeter assure a very accurate voltage
. measurement bctwéen the center-two (voltage) contacts on the specimen. :
~ Since this ‘phase of the equipment and process setup was intendgd to establish a

functional system for investigations into colossal magnetoresistance, resistance
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Y Ba;Cu307.5 with 8 ~ 0.2 yield an onset of Tat 90 K.! The oxygen content of the

superconducting samples used here could be increased with further oxygen annealing.

The YBCO samples used here were analyzed and the compositions were

determined by electron microprobe x-ray analysis (sometimes referred to as Energy

Dispersive Analysis of X-rays or EDAX).
~ A cursory arithmetic check to determine atomic percentages yields:

Yy Ba, Cus Ogs [where (7-8)=6.5]
orl + 2 + 3 + 6.5 = 12.5 atoms

so Y —1/12.5 = 0.08 or 8%
‘Ba—2/12.5 = 0.16 or 16%
Cu—>3/12.5 = 0.24 or 24%
0 —6.5/12.5= 0.52 or 52%

These percentages are in good agreement with the sample analysis made at Kingston

University’ and are summarized in table 4-1 below.

Element Theoretical Atomic Sample Analysi55
Percentage Atomic Percentage
Y 8 8.04
Ba 16 15.31
Cu 24 2464
o 52 52.01

Table 4-1 Table of theoretical and actual atomic percentages
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Chapter S Preparation of CMR Samples

5.1 Introduction

Initially, after the discovery of a new type of solid-state compound that
exhibited the phenomenon of colossal magnetoresistance, the immediate interest of
researchers was focused on its characterization. This characterization was done
immediately after the pellet ’samples of the compound were produced. While this
immediate characterization yielded interesting and useful results, the long-ter_rrl
usefulness of the samples Was‘ limited due to the physical instability of the pellets. Little
attention was given to the preparation of strncturally sound pellet samples that could be
- studied over an extended period of time."

In this research project, recognizing the importance of long lasting and stable
solid state structures in technological applications, a new method in the preparation of

structurally sound polycrystalline sarnples of doped manganites was developed. This

new method introduced into the process is called “flashing”.

52 Sanlple Preparation
, Usbing the procedures and techniques for producing snperconducting YBC
salnples (see chapter 4), colossal magnetoresistive pellets of La§_7Cao_3MnO3 were
~ prepared from a mixture of high quality La;O3, CaCO3 and l\/ln02_ (99.99%> pure).
These pellets, cornrnonly referred to as LCM compounds; were made using standard
stoichiomefric methods to produce the compound La0,7Cao,3MnO3.
_- Theconeistency of the LCM compound was of such a nature that it would not »

bond with the normal heat,treatrnentpand pelletizing pressure used for the YBC samples.
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Two other considerations must be incorporated into a general pellet fabrication
procedure. It has been found that when grain size is reduced, there is a greater change

in magnetoresistance.’

Also, that the Curie Temperature ( T, ) increases with oxygen
content.® With these considerations, in order to maximize T, and MR, the following

pellet fabrication process was established.

¢ Oxides finely ground

e Mixture sintered at 1180°C for 14 hours

e Mixture reground and sintered at 1180°C for 14 hours
e Mixture pressed into pellets

e Pellets 'flashed' at 1450°C for 10 minutes

e Pellets held in O, at 800°C for 24 hours

o Pellets annealed for 5 days in O, from 800°C to 450°C

This process produced pellets that were structurally stable with no indication bf
weakening or deterioration over a period of seven months.g o

To determine if there were structural changes to the crysfalline structure caused
- by the ﬂashing process, which would render the sample unusable for CMR
investigations, X-ray diffraction patterns of some of the samples were compared to
X-ray diffraction patterns found in the publications.” An example is shown in _ﬁgilre

5-12 on the following page.
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Figure 5-12 Left--published X-ray diffraction pattern.® Right--X-ray diffraction
pattern of an LCM sample after flashing.

A desirable characteristic of magnetoresistive materials would be a large change
in resistivity over a large temperature range, induced by a 'low' magnetic field. Much of
the early research involved the use of 'large' magnetic fields (several Teslas), depending
on the compound being investigated and temperatures below 80 K. More recent’
investigations have revealed interesting factors that affect magnetoresistance. For

- example, researchers at the University of Cambridge and Imperial College® fdund that
bulk Lao 67Cag 33Mn0O; samples made with varying grain siZe showed that while .
resistivity increased with reduced grain size, magnetoresistance increased. The Curie
temperature T, remained constant.” The experimental results of samples 1, 2 and 3 are
i‘n‘ agreement with previous observations where resistivity increased as grain size
deéreased. |

Othef réSearchers suggest that an optimal grain size kshould be aroﬁnd 1-3
microns, and that greater magnetoresistance can be achieved by increasing the number
of weak-link grain boundaries by using smaller grain sizes.'"” Their investigations also

_ ‘s_‘howed that a pértial-melt, fusing grain boundaries together, enhanced the magneto-

'~ resistive effect when subjected to a 'small' applied magnetic field (~300mT)."
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Chapter 6 Experimental Results and Analysis

6.1 Introduction
As previously mentioned (see chapter 2), the first goal of this research project

was to find an experimental method for the preparation of structurally sound Ca, and Ca
and Fe doped manganites. This objective was achieved with the devélopment of a new
process called “flashing”, discussed in chapter 5. |

- Several samples prepared for this project, using this technlque, were left in open
crucibles, exposed to the atmosphenric environment of the laboratory — dry during the
winter and humid during the summer. After about three years of exposare, no visible
sign o‘f deterioration has been observed in these pellets. In a couple of cases, resistivity
measurements vs. temperature were taken several months after the electrical resistance
was measured for the first time. The reaalts were the same.

| This structural stability contrasts with our iﬁitial experience with pellets

changmg 1nto dust after a few days of their brepara’uon Recently, a conversation with
Dr. | Fontcuberta (a researcher at the “Inst1tuto de C1enc1as de Materiales” of the
“Universidad Aut(')lloma de Barcelona”) confirmed that this lack of structural stability
was a comrhon dendminator, éspécially in the case of t‘herpreparation of Sr doped CMR
samples. We belieVa that rhany of the electrical resistivity vs. temperature curves found
*in the litérature 'rebresent measurements itaken lmmediately after the corrésponding
pellet was ‘pfepaled, and tl1at the important problem of structural stal)ility was simply
rlot addrasséd. We expect that the “flashing” technique can ba applied to the

préparation of any doped manganite.
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In order to find the optimum process in the preparation of structurally sound
samples, many polycrystalline pellets were prepared and characterized. Normally, the
typical insulator-metal transition was observed but the resistivity vs; temperature
characteristic changed with time due to structural instability.

Two pellets were pressed to pressures of 1.7 x 10 and 5.7 X 10° Pa,
respectively. These samples were flashed at 1230°C for 10 minutes and then they were
annealed in an oxygen atmosphere for 48 hou-rs. As shown in chapter 5, the flashing
techﬁique used in the preparatioﬁ of the samples did not affect their polycrystalline
structures. Even though both pellets were difficult to cut using a jeweler’s saw, they
were labeled ;‘soft” and “hard” because of the pressures used in their preparation.

Using a standard four-probe technique, the resistance vs. temperature (R vs. T)
characteristics for both samples weré obtained, with and without an applied magneﬁc
field of the order of 350 mT. See figures 6-1 and 6-2, page 85. |

It is interesting to notice tﬁat in the case of the “hard” sample the magneto-
resistance was positive. ‘A new R vs. T curve was oBtained again with the same result.
- The “soft” and “hard” samples were used in a collaboratioﬂ study between our lab at

Grand Valley State University and Thg; University of South Carolina where
sophiéticated equipment for magnetic measurements is available. The two samples
Wéfe characterized\ by electron-microscope analyzes,‘resistivity vs. temperature,
magnetic suscéptibility, and magnetoresistance at different magnetic field strengths (0,
-100, 200, 3‘00:, 40-0, 500, kand 1000‘ mT). These results were presented during the
- géneral anmial meeting of the American Physical Society in March of '200.2, and kare

‘summarized together in the following pages.”>>
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As explained in the introduction to this chapter, the magnetic measurements for
the hard and soft samples were made at the University of South Carolina and at the
National Magnetic Laboratory (NML) in Tallahassee, Florida, wheré appropriate and
sophisticated equipment was available. The graphs (ﬁgufes 6-4 through 6-16) were
produced from the data obtaineci at these facilities and were receiqu» in alm elecﬁonic
format for subsequent reproduction in this thesis.

The NML Lises non-SI meaéurement units with the equipment at that facility.‘
For fhis reason, the axes labels and numerical units used in tﬁe graI;hical representations
produced from the analyses performed at that facility are reproduced, as received, with
non-ST units. ‘The following paragraphs provide useful information for interpreting the

graphs (figures 6-6 through 6-15).

Figures 6-6 and 6-7:

The red circles represent experimental data and the greén blocks represent
computer generated data using the equation printed on the graph. The equation is for a
stfaight-line, y=b+tmx. The correlation coefficient R indicates the relationship between
log(R/T) and T (K™") where R in log(R/T) is the fésistance, not to be confused with R

| prin_téd on the field of the graph and typicaily used to e#press the correlation coefficient
Cin cbrnputer progréms. The coﬁelation coefficients of .9996531 and .9898576 for
N | figures 6-6‘and 6-7, respectively, indicate a very strong correlation and therefore

linearity.
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Figures 6-8, 6-14 and 6-15:

The information about the best-fit between the experimental data (red circles)
and the computer generated data (green squares) is given by the insét of figure 6-8. The
first line of the inset shows the equation of the power law used in the computer program
(y=ml + m2*m0”m3 ) where the numbers 0,1,2 and 3 are subscripts. This equation,

written in terms of resistivity and temperature is p =m; + my T™ . The computer

calculated values of m; and m; and the exponent mj; are also ;hown in the inset. The
large number of significant figures are an artifact of the computer program generating
the values graphed. This precision is limited by the error, seen in the inset, and is based
upon the number of significant figures of the actual data. Furthermore, the inset gives
the calculated value of chi-s_quare (Chisq) and the correlation coefficient (R). The
smaller the value of chi-square, the better the agreement between experimental and
theoretical Valués. Chi-square =0 Wovuld mean a perfect fit. The chi-squére value in the ‘
~ inset, on the order of 107, indicates an exceptionally close fit as can be seen by the
curves in the graph itself. A correlation coefficient between zero and one indicates the
relationship between the data being compared, with R=0 héving no correlation apd R=1
being a very strong relationship. The‘_\’/alu’e in the i'nset‘indicates a very strong

relationship with a value of .9999592. Similar insets are used in figures 6-14 and 6-15.
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Figures 6-9 and 6-10:

The insets show the symbols used in each case for normalized resistance versus
temperature. After each symbol is a ratio between resistance measufed with an applied
magnetic field at a given temperature, to its value with zero field and T=300 K.

For example, R(0.3,T)/ R(0, 306) means the ratio of resistance at 0.3 Tt;,sla at a specific

value of T (K) to the resistance at zero Tesla and at T=300 K.

Figﬁfe 6-13: ' ' v | -

Since it is simpler to accurately measure the mass of a sample rather than its
volume, in mégnetic labs it is preferred to calculate mass susceptibility (magnetic
moment per unit mass per magnetic field intensity). In addition, the cgs system of units
is normally used at the above mentioned labs. The units for mass susceptibility in this
graph are in (emﬁ/g.gaués).

The corresponding units for mass susceptibility [(m] in the SI system would be

2
[X ]_ (mag.momentper unit mass) ,— ( kg J m’
e | (mag.'intensity)

In the inset of the figure, the symbol used in each graph is shown together with the masé

susceptibility, the units, and the corresponding field intensity.
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In both cases (soft and hard samples), from 220 K to 260 K, the electrical
resistivity increases linearly with temperature (metallic transport). Above 280 K, the
electrical resistivity decreases linearly with temperature (insulating fransport). The
temperature where the metal-insulator transport transition occurs is very similar for soft
and hard samples, and coincides well with the Curie temperature, as confirmed by the
magnetic measurements shown later. These experimental values of resistivity are such
that, at any temperature, the resistivify of the hard sample is less than the resistivity of
the soft sample, i.e., the hard sample is more conductive than the soft. -
For the temperature region above the transition, the model by Jaime and

Salomon predicts an exponential behavior given by equation 6.1.*

Feefr) @

where E, is the activation energy, and kg is the Boltzmann constant. From this equation

. RY ...
we should expect a linear relationship between Ln [?J and T, i.e.

Ln (%) =Ln R§ + (EBJ T! 6.2) .

This model is in a very good agreement with the experimental results for the soft and

- hard samples’as shown by the following figures 6-6 and 6-7 (also see page 90).
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The experimental values of the effective magneton numbers for Mn** and Mn**
are 5.0 and 4.0, respectively.7 In an ideal Lag 7Cag3MnO3 specimen 70% of the Mn ions
are Mn®", the remainder (30%) are Mn** ions. Thus, it is natural to ékpect an effective
magnetic moment p = (0.7 x 5.0 + 0.3 x 4.0) pg = 4.7 pp  in this type of sample.

Taking into account the effect of weak diamagnetic La®>" ions, unavoidable Mn
vacancies and porosity of the matefial, the saturation Vﬁlue for the effective magneton
number (4.3), achieved at fields above 40 mT, as shown by thé previous graph, is in

good experimental agreement with a theoretical value of 4.7.

6.3 Effect of Grain Size and Annealing Atmosphere in Lay;Cag3;MnQO3; Samples

~ Once the flashing teChnique was established, and structural stability achieved,
the main research goal was to determine the optimum flashing témperaturé, For this
purpose, four samples were prepared, flashed at 1300, 1450, 1525, and 1600°C, and
annealed in an O, atmosphere. These samples correspond to Batch 14 #1 through #4 in
the laboratory record book.

The four samples were analyzed with an electron-microscope at Kingston

University.® | Micro graphs of the four samples of batch 14, at 6000X magnification, are

shown on the following page (figure 6-17).
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A simple calculation of the atomic composition for an ideal specimen of

Lao_,7Ca0.3Mn03 gives the following values: 14% La, 6% Ca, 20% Mn, 60% O, and no

contamination. After studying four different, representative areas in each sample, the

average atomic composition for these specimens was determined. In table 6.2, below,

these results are presented and compared to ideal atomic compositions.

Element | Ideal Avg. atomic | Avg.atomic | Avg. atomic | Avg. atomic
atomic % % % - % %

, Sample # 1 Sample # 2 Sample # 3 Sample # 4
La 14 15.35 16.40 15.47 ~15.40
Ca 6 6.58 6.83 6.39 7.08
Mn 20 20.24 22.14 21.43 27.19
0] 60 56.15 54.35 56.59 49.96
Si 0 1.68 0.28 0.12 0.37

Table 6.2. Average atomic compositions for batch 14 samples — Ideal atomic %.

Even though the high purity of the oxides and carbonates of the elements used in

the preparation of the samples were thoroughly mixed and sintered several times, some

differences between actual and ideal compositions remain. This is mainly due to

experimental error during the weighing process with an analytical balance, the presence

of small amounts of unreacted material, oxygen vacancies, and the unavoidable but

small contamination produced by reaction with the crucible and traces of impurities in

the oxides and carbonates used.

- Within a reasonable experimental error, the sample composition is close to the

ideal. The main contaminant is Si, from thé standard high temperature crucible used in

the experiments. ‘As table 6.2 shows, the oxygen content of the sample flashed at the
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In all of these cases, the insulator to metal transition was observed at a critical

temperature T,. The main results of the resistivity vs. temperature experiments are

summarized in table 6.3, where T¢(0), T¢(B ), pmax (0), and pmax (B) represent transition

temperatures and peak electrical resistivity values with and without an applied magnetic

field B. Thashing is the flashing temperature.

Sample # | Tc(0) (K) | TeB)(K) | pmax (0)(Q-cm) | Pmax (B) (Q-cm) | Thashing (C)
1 248 248 0.133 0.130 1300
2 271 273 0.061 0.058 1450
3 266 269 0.039 0.037 1525
4 251 253 0.236 0.226 1600

Table 6.3. Summary of some experimental results for the four samples of Batch 14.

In order to visualize these results, the peak values of electrical resistivity and the '

transition temperatures, without an applied magnetic field, were plotted as a function of .

flashing terﬁperature (see figures 6-22 and 6-23, next page).

These two figures show that as the flashing temperature increases to 1525°C, the

maximum value of resistivity without an applied magnetic field pnax(0), decreases.

Also, that the maximum value of the transition temperature is obtained with a flashing

temperature of 1450°C. From these graphs, it can be seen that there is an optimum

flashing temperature range for which the transition temperature is greatest and for

which the electrical resistivity is lowest. - These effects are due to the increase in grain

size as flashing temperature increases. At temperatures above this ideal range, the

material begins to melt and becomes an insulator.
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Maximum Resistivity vs. Flashing Temperature

0.30
0.25 {-
0.20 1
015 -

Resistivity (ohm-cm) No B-field

0.00 +—or—— : i : i _—
1200 1300 1400 - 1500 1600 1700
Flashing Temperature (C)

Figure 6-22. Peak values of electrical resistivity, without an applied magnetic
field, pmax(0) vs. flashing temperature.

Maximum Tc vs. Flashing Temperature

275

Tc-No B-field

245 : — ;
1200 1300 1400 1500 1600 1700
Flashing Temperature (C)

Figure 6-23. Insulator — metal transition temperature, without an apphed
magnetlc field, vs ﬂashmg temperature
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A new and interesting result discussed in this chapter is the positive magneto-
resistance observed, and verified for different applied magnetic fields, in the “hard”
sample. After observing the magneto-resistance of the hard samples, other researchers
suggest that the combination of pelletizing pressure, flashing femperatu;e, and
annealing environment used with these samples, produced inhomogeneities that caused
the observed positive magnetoresistance.® This could be the subject of future
investigations.

From the analysis of the four samples pelletized at a pressure of 6.7 x 10% Pa and
different flashing temperatures (Batch 14), an optimal flashing at 1450°C was
determined. 1This flashing temperature produces a low electrical resistivity and a high

transition temperature (see figures 6-22 and 6-23).
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Chapter 7

Iron Doped Manganites - Experimental Results — Analysis

7.1 Introduction

Many experiments in the partial substitution of Mn in Ca doped manganites
have been performed.” In particular, Fe substitutions with a generic formula
Lag 7Cap3(Mn;.xFey)Os 3 Although the results of severai of these experiments are very
interesting, they do not address the problem of the structural stability of the samples.

Once again, the initial experience in the preparation of Ca and Fe doped
manganites was similar to the preparation of Ca doped samples. Without the flashing
technique explained before, the samples crumBled after a few days. Therefore, the final
experimental goal of this research project was the preparation of structurally sdund iron
doped manganifes, their characterization, the analysis of the experimental results, and -
the eomparison with results obfained by other researchers.

The’ iron doping of manganites is particularly interesting for two reasons:
First, the ionic radii of Fe*" and Mn>" are very similar (0.64 and 0.66 A, respectively)4 5
this fact reduces the lattice effect of iren doping in mangani;tes to a minimum.
Second, among the “3d” ions or iron group ions, Fe** and Mn?* share the highest
experimental magneton number (see table 7-1).3 Therefore, a strong influence of the
relatively high’magnetic moment of Fe** on the electrical conductivity and on the
paramagnetic-fefr_omagnetic transition temperature of iron doped manganites ie |

expected.
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7.2 Results and Analysis

Previous experiments in Fe doping of manganites showed that for levels
between zero and 8% Fe, typical CMR electrical resistivity vs. temperature curves are
obtained, with transitions decreasing in temperature at about 22 K for each 1% Fe
doping (see figure 7-1, adapted from J.R. Sun, et al *). For doping levels above 8% Fe,
the electrical resistivity increases sfeadily as temperature degfeases (the typical behavior

of semiconductors) and no transition to a metallic state is observed.

ION CONFIGURATION | BASIC LEVEL | MAGNETON # "
Ti*, v¥ 3d! Dyp 1.8
v 3 1 %k, 2.8
crt, v 343 *Fi 3.8
Mn®**, Cr? - 3d! | Do 4.9
Fe*', Mn*" 3 - Ssn . 5.9
Fe** 3d° Dy 54
Co? - 3d? “Fon 4.8
N 3d? | B 32
cu® - 3d Dsp 1.9

* Experimental values

Table 7-1. ‘Effective Magneton Numbers for the Iron Group Ions
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Figure 7-1. Electrical resistivity vs. Temperature for iron doped manganites.
Curves for 2, 4, 6, and 8% Fe substitution are shown.?

" A careful look at figure 7-1 shows that the 5 and 7% Fe doping le§els - not
presenf - would be ideal to compare electrical resistivity values and transif[ioh
temperatures with those found in the experimént by J.R. Sun and hiS group.’

Except for the addition of irQn oxide (F e203) kirll‘ appropriaté proportions,
the preparation teéhnique followed for Ca and Fe doped manganite samples’
La§_7Céo_3Mn1.x Fe O3, waé the Sanie as the one used in the preparation of Ca doped
maﬁganites, explained in chapter 5.

Two 5% Fe doped pellets (La0‘7C;10_3Mn1_o,osFeo.osOg) wefe preparéd. To in-
~ crease inter-grain contact, a pressﬁre of 6.7 x 10® Pa was used to produce 13mm-
diénieter pellets.'l These pellets were “flashed” at 1250°C and 1500°C, respectively,’for

a period of 10 minutes. The pellets were labeled Batch 15, samples #1land #2,

respectively. The last step in the sample preparation was the annealing in an O, |

atmosphere from 850°C to room temperature, during a time interval of 48 hours. 'k
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Some of the experimental results for samples of batch 15 are summarized in table 7-2.

Sample | Flashing Pmax(0) | Pmax(B) | % change
number | temp. (C) To(OK) | T(B)K) (Q-cm) | (Q-cm) | in MR
1 1250 165 165 1.80 1.63 7%
2 1500 173 180 45 40 10%
Table 7-2 :

Using an electron-microscope, an average atomic composition for the two
samples of batch 15 was determined and micrograph pictures at different magnifications

8 A calculation of the atomic composition of an ideal specimen of

were taken.
Lap 7Cag3MnggsFeo 0503 gives the following values: 14% La, 6% Ca, 19% Mn,

1% Fe, 60% O, and no contamination. Notice that a 5% atomic substitution of Fe for
Mn results in a 1% Fe content in the specimen. After studying different,krepresfeAntative
areas in each sample, the average atomic composition for these specimens was

determined. In table 7-3, below, these results are presented and compared to ideal

atomic compositions.

Element Ideal atomic % | Avg. atomic % ' Avg. atomic %
Sample # 1 Sample # 2
La 14 14.92 14.54
Ca 6 6.96 7.18
Mn 19 20.98 20.80
" Fe i 1.00 1.05
0 60 56.83 56.46
Si 0 0.18 0.0

Table 7-3. Atomic compositions, actual and ideal, for batch 15 samples.
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Even though the high purity* oxides and carbonates of the elements used in the
preparation of the samples were thoroughly mixed and sintered several times, some
differences between actual and ideal compositions remain. This is mainly due to
experimental error during the weighing process with an analytical balance, the presence
of small amounts of un-reacted material, oxygen vacancies, the unavoidable but small
contamination produced by reaction with the crucible, and traces of impurities in the
oxides and carbonates used in the breparation.

| Within a reasonable experimental error, the sample 'compesition is close to the
ideal. The main contaminant is Si, from tlre standard high temperature crucible used in
the experiments. As table 7-3 shows, the oxygen eontent of the two Fe doped samples,
flashed at different temperatures, is practically the same. There is no correlation, in this
case, between oxygen content and the small difference in transition temperature. |

| Micrographs of the two samples of batch 1 5, at 6000X magniﬁcarien, are shown

together for comparison purposes on the following page (figure 7-5). As observed in
the case of Ca doped manganites, care‘ﬁllkinspection of these micrographs shows how
the grains fuse more and more as the flashing temperature ‘increa’ses.k While for sample
#1 it possible to estirnate an average érain sizes of the order of 2.0 m, for sample wit

is not possible.

% (Lay03) 99.99%, (CaCOs) 99.95%, (Fez03) 99.97%, (MnO2) 99.999%
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Since the maximum magnetoresistive effect and the minima values of electrical
resistivity for the 5% Fe doped samples occurred at a flashing temperature of 1500°C,
this flashing temperature was used in the preparation of. 7% Fé doped samples. The
samples were flashed for 15 minutes. In order to investigate the effect of different
pelletizing pressures and annealing atmospheres, six 7% Fe doped samples were
prepared by the solid-state reactiQn technique previously discussed.

These pellets were pressed in paifs with pelletizing préssures of 0.67 x 10%,

3.3 x 10% and 6.7 x 10® Pa, respectively. One of each of the pellet pairs was annealed in
air and the other one of the pair was annealed in an oxygen atmosphere. During the
oxygen annealing pfocess the samples were slowly cooled down from 800°C to 300°C
over a period of 30 hours. The temperature was decreased to room teinpérature 6ver a
period of 4 hours. As with previous manganite samples, the electrical resistivity asa
function of terﬁperature was calculated for thebsix 7% Fe doped samples; The
corresponding plots are shown in figures 5-6 through 7-11. For comparison and

convenience, these plots are shown in their respective pairs, on the following pages.
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In the case of sample 1 (7% Fe, 0.67 x 10® Pa, air annealed) there is a slight
positive magnetoresistance effect in the temperature range between about 80 K - 105 K.
This positive magnetoresistance effect, as mentioned before, has been attributed by

some researchers to the presence of inhomogeneities.’

The rest of the samples of batch
17 (samples 2 through 6) show the normal negative magnetoresistance over most of the

studied temperature range. The same small positive magnetoresistive effect appeared in

these last five samples in a temperature range well below the transition temperature.

Other results shown in graphs 7-6 through 7-11 are summarized below in table
7-4. The parentheses (B) and (0) indicate the presence or absence of an applied

magnetic field, respectively.

Sample | T(0)(K) | TeBXK) | puax(0) | pmax(B) | Annealing Pressure
number (Q-cm) | (Q-cm) | atmosphere (108 Pa)
1 117 112 186 | 12.0 Air 067
2 127 129 152 | 9.6 Oxygen 0.67
3 112 109 | 402 | 27.0 Air 3.3
4 127 126 | 253 15.7 Oxygen 33
5 112 111 39.7 | 275 |  Air 6.7
6 125 125 19.0 | 115 | . Oxygen 6.7

Table 7-4. Summary of some experimental results for samples of Batch 17.

From these data, we see that the transition temperature T, does not necessarily
increase with the application of the magnetic field. However, in all the cases (with and
without an applied magnetic field), T, is higher for the O annealed samples compared |
" 'to T, for the air z.mnealed‘sarhples. As shown in table 7-5 on the following page, the

percent difference in the magnetoresistance at the transition temperature, defined as
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Avg. Avg. Avg. Avg. Avg. Avg.
Ideal Atomic | Atomic | atomic | atomic | atomic | atomic
Element | atomic % % % . % % %
% Sample | Sample | Sample | Sample | Sample | Sample
1 2 3 4 5 6
La 14 15.5 16.1 15.7 16.2 15.8 15.5.
Ca 6 6.7 6.8 6.8 6.8 6.7 6.9
Mn 18.6 204 | 207 20.7 21.2 20.6 20.4
Fe 1.40 1.78 1.76 1.52 1.55 1.74~ 1.62
0 60 557 | 547 | 552 | 541 | 551 | 548
Si o | o0 24 12 13 18 21

Tablé 7-6. Atomic compositions for batch 17 samples.

As in the case of 5% Fe-doped samples, eQen though high qualify oxides and
carbonates were used, and careful preparation techniques were follbwed, some
differences between actual and ideal compositions remained. This is attributekd to
unavoidable contamination from crucibles and impuri;ties' in the precursof matérials
used. | |

With_in a reasonable experiniental error, the sampie composition is close to the
idgal. The main contaminant is Si, from the standaid high terriperature crucible used in .
the experiniehts! As table 7-6 shows, the oxygen content of the 7% Fe ddped samples is
‘prac'tically the same. There is no correlation, in this case, between oxygen cohtent and |
the small différgnée in transition temperatures. - |

Micrographs of the six samples of batch 17, at 6000X magnification are, for

conveniencé, shown together on the following page (figure 7-15).
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While on first examination, these micrographs appear to be quite similar, a
careful inspection using the included 10 um scales reveals larger voids in samples
pressed at 0.67 x 10% Pa (#1, and #2). As expected, the apparent density of the other
samples, produced under greater pressure, is higher. The actual density coul‘d clarify
these micrograph observations. Immediately after the pellets were pressed, they had flat
cylindrical shapes. After the temperature treatments of “flashing” and annealing, they
contracted and slightly deformed.b This made it difficult to éccurately determine their
densities by simply measuring masses with an analytical balance and dimensions with a
vernier caliper. Approximate values of density were calculated for each of the six

samples of batch 17 and are shown below in table 7-7.

Sample # 1 2 3 4 5 6

p(glem’  |4317| 431 | 457 | 453 | 464 | 494

Pressure

(10° Pa) .67 67 3.3 33 6.7 6.7

*estimate ;
Table 7-7. Approximaté densities for the six samples of batch 17.

The densities of the samples follow the expected pattern: highér densities for
samples pelletized at greafer pressure.

Fiﬁally, with tﬁe help of Dr. Ruslan Prosorov at the University of South
Carolina, thé» magnetic mass susceptibility as a function of temperature, for all the 7% ‘
Fe-doped samples of batch 17, was determined using a computef controlled SQUID | |
susceptorheter. Mez;tsurements for applied magnetic fields of 0.1, 0.4, and 1 Tesla were

~taken. The plotted results are shown on the following page (figure 7-16).
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By combining equations 2.1 and 7.2, it is possible to write

B
M = E;%n—x) . (7.3)
For diamagnetic and paramagnetic substances, the absolute value of the magnetic
susceptibility y is very small compared to 1.
Therefore, for these materials, M = ﬁ (7.4)

Ko
The inverse relationship between magnetic susceptibility and magnetic field induction

shown by equation 7.4, is apparent in ﬁgureb7-16.

7.3 Conclusions

In the case of Ca and Fe doped maﬁganite samples, the “ﬂashing” technique is
applicable and useful in the preparation of structurally sound pellets. Using this
“flashing” technique, 5 anc‘1.7% Fe-dopeq specimens were prepared. Eighg samples
were produced and analyzed (batch <1‘5, samples #1 and #2, and batch 17, sampl_es #1
through #6). Electron microscope anaiyses indicate fhaf, within reasonable
experimental error, the atomic composition of thesé samples is ideai. Furthermore,
there is practically no correlation between oxygen content, flashing ternperatu:e, and
pelletizing pressure. Electron microscope micrographs show the effect of increaéing
“flashing” temperature on the increase of grain size and connectivity.

In the case of 5% Fe-doped manganites, the eleptrical resistivity vs. temperature
graphs show how, as the flashing terhpere}ture increases, the insulator-to-metal transition
becomes sharper, and the percent difference in resistivity at the transition (Tc) increas‘es.

The comparison of resistivity values and atomic concentrations for Ca and Fe doped

8



samples flashed at 1500°C (sample #2 of batch 15 and all the samples of batch 17)
indicates that, as the percent Fe doping increases from 5 to 7%, the electrical resistivity
at T increases about two orders of magnitude and the oxygen content slightly
decreases. The change in T is about 25 K per 1% Fe doping. Also, Ca and Fe doped
samples are more resistive than the Ca doped manganites. These observations éoincide
with previously published results’.

In all the Fe doped cases, T, is approximately the same with and without an
applied magnetic field. For 7% Fe samples, the percent difference in resistivity at the
transition temperature, with and without applied magnetic field, increases with flashing
temperature for oxygen annealing, but decreases for air annealed samples. Magnetic
susceptibility vs. temperature measurements for the six 7% Fe doped samples of batch
17, at different magnetic fields, réveal the expeéted para-ferromagnetic 'transition. The
onset of the niagnetic transition is the same in all the cases (about 145 K) — see figure
7-16. This is approximately the Curie temperature. As can be seen in table 7-4, the

observed electrical resistivity transition occurs slightly below the Curie temperature.
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General Conclusions and Comments — Future research

In any technological application involving solid-state devices, the use of
materials with lasting and stable properties is essential. The “flashing” procgdure
developed in this research project will be of vital importance in future manganite
research and applications.

The “flashing” procedure was used in the preparatiph of all of the samples
sfudied for this project. It was observed that, as the flashing temperature increases to an
optimal value, the grains grow larger, become more connected and, for a given Fe
concentration, the electrical resistivity decreases and the transition temperature
increases. Beyond a certain flashing temperature point, the material begins to |
decompose and becomes more and more resistive. For a given doping conceﬁtration, it
is possible to bﬁnd an optimum flashing temperature.

This research has provided a more complete picture of the magnetoresistive -
properties of Ca and Fe doped manganites with doping leveis between 0.0 and .08 . We
now know that increasing the Fe doping level to 7% prox;ides a éubstantial improviemen,t
0\;er a 5% doping level in that the rﬁégnetoresistance effect is increased by nearly four
timés,(lO% for 5% Fe doping and 40% for 7% Fe doping---see figure 7-14).

The resistive transition and resistivity are higher for Ca doped samples
compared to Ca and Fe doped samples. kAs the Fe concentration increases, the samples
become less cobnductive and the transition témperaturc decreases at a rate of about 25 K v
k‘ for each 1% of Fe content. With thé excéption of the “hard” sample, negative magneto-

resistance is observed in all the cases studied. In general, the onset of the magnetic
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transition is field independent, coincides with the resistivity transition for Ca doped
specimens and is higher for Ca and Fe doped specimens.

This research has shown conclusively that annealing in oxygen not only
increases MR characteristics, but also increases the transition temperature as well. Both
of these properties are valuable advances toward the use of MR materials in’
commercial/industrial applications.

Future researchers will benefit from the discovery in this project that sample
fabrication has the additional tuning parameter of adjusting the pelletizing pressure used
to make the pellets. As the research her¢ has shown, the increased inter-grain
connectivity resulting from incréased pelletizing ‘preséure increases the MR response of
the material. |

Other than the study of the effect of ﬂéshing in other Ca and 3d-elemént doped
manganite samples and their characteriiation, an obvious continuation of this research
would be the systematic study of the positive mégﬁetoresistance observed in the case of
the “hard” Ca doped manganite péllet. This would require the preparation of many
samples under different flashing temperatures, pelletiziné pressures and annealing
conditions. A very detailed electrqr;-microscope study of ;111 the samples would be

required.
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APPENDIX A

Presentations given at the American Physical Society annual meeting,.

. “Modified Solid State Reaction Technique to Produce Structurally Sound
Polycrystalline Samples of Colossal magnetoresistive Lag 7Cag3Mn0O3.”

J. Brower, J. A. Estrada, V. Montgomery, T. Datta, and M. Blelwelss Bulletin
Am. Phys. Soc., Vol. 45, No. 1, 756, 2000.

. “Magnetoresistance of Lanthanum—based Perovskite Manganites” A. Lungu, M.
Bleiweiss, S. Saygi, T. Datta, Z Igbal, J. Amirzadeh, J. A. Estrada, and J.
Brower. Bulletin Am Phys Soc., Vol. 45, No. 1, 852, 2000.

. “Magnetic and Transport Properties of Lanthanum Based CMR Systems ” JLA.
Estrada, J. Brower, V. Montgomery, M. Bleiweiss, T. Datta, E. Palm, B. Brant,
and R. Tsu. Bulletin Am. Phys. Soc., Vol. 47, No. 1, Part I, 510, 2002.

. “Correlation between Heat Treatment, Resistivity and Magnetoresistance in
Polycrystalline Samples of Lag 7Cag3MnO;3.”

J. A. Estrada, J. Brower, and V. Montgomery.

Bulletln Am. Phys. Soc Vol 47, No. 1, Part I, 540, 2002
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‘Recently, there has been a renewed interest in the colossal
magnetoresistance observed in manganites with the perovskite structure R1-
xAxMnQO3 (where R is a rare-earth element and A is Ba, Ca, or Sr). Trouble is,
polycrystalline samples of these materials sometimes disintegrate after several
days, making it difficult to research and to develop into devices.

Researchers at Grand Valley State University (MI), UK's Kingston
University, and the University of South Carolina have been working on a
modified solid-state reaction technique for the preparation of structurally sound
polycrystalline samples of La0.7Ca0.3MnO3. First, the stoichiometry mixture is
calcined at 1180 degrees C, in air atmosphere, for 14 hours. The resulting
compound is reground, and the process is repeated once more. Then, after
carefully regrinding, a pellet-is pressed. The pellet is put in a high-temperature
alumina crucible on a bed of powder of the same chemical composition. Using
a high-temperature furnace, the crucible and its contents are rapidly heated to a
temperature of 1250 +/- 4 degrees C. This temperature is manually controlled
and maintained for 10 minutes. Then the pellet is left to cool to room
temperature in the furnace. Flnally, the sample is annealed in O2 atmosphere
from 900 degrees C to 400 degrees C for four days.

The structurally sound pellet is now ready for characterization, such as
X-ray diffraction, electron microscopy, transport measurements with and
without applied magnetic fields, and magnetic moment measurements.
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List of Abbreviations

Temp (K)
or T(K) Temperature in Kelvins
V1234+ Voltage in milli-volts. Voltage measurement taken across contacts (1,2)
with current (milli-amperes) across (3,4).
V1234 - Same contacts used with polarity reversed on (3,4).
Vavgl234  Average of voltage measurements V1234+ and V1234 -,
V1324+ Voltage in milli-volts. Voltage measurement taken across contacts (2,3)
with current (milli-amperes) across (1,4).
V1324 - Same contacts used with polarity reversed on (1,4).
Vavgl324 Average of voltage measurements V1324+ and V1324 -.
1 2
Pellet sample
contact placement .
4 3
R1234 Resistance (V/I) for each contact configuration used.
R1324 ' T :
X Used with the Van der Pauw formula X = Rozsn = Rusan
' ‘ Russay+ Rusaa
For calculating the correction factor for the physical dimensions of a
disk-shaped sample. ’
Corrfact = Correction factor f= 1- 0.3466x° - 0.0924x* where x is the value in the
' column labeled “X” (see X, above) and is used in the Van der Pauw
formula o R
_ nd (R(1,2,3,4) + R(1,3,2,4)) £
In2 2 '
to calculate the resistivity of the pellet sample.
p(Q-cm)  The resistivity in ohm-centimeters of the péllet samplek.
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Resistance vs Temperature for YBC Sample #5 .

4.5 /
//’//
35
- /’/
g 3
= //
%z.s ) <
A
HE &
f
15
1 <.
05 1
0
[} 50 100 150 200 250
Temperature (K)
; ) R
T(K) V+ (uV) V- (V) avg V(uV) (m-ohms)
205.4 180 182 181 4.5
280.2 164 183 174 4.4
250.2 - 143 176 160 4
230.5 129 170 150 3.8
210.1 118 163 141 35
190.6 106 155 . 131 = 33
160.4 89 144 116 2.9
140 79 134 - 106 2.6
120 69 125 97 2.4
100.5 56 115 86 2.1
92.7 49 109 79 2
90.3 46 106 76 19
88.8 43.3 107 75.4 1.88

87.8 42.5 104.8 73.6 1.84
87.24 38.7 100.8 69.8 - 1.74
86.76 33.1 94.7 639 4 16
85.73 11.3 73.9 426 1.06
84.73 -21.3 -3565 = -284 0.71

84.5 Extrapolated to R=0 at 84.5 0
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