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Abstract 
This thesis provides an alternative method to for mapping soil erosion. The method is conducted 

in a smaIl study area of 40 km2 in the Sorbas Basin, Almeria province, Southeast Spain. 

Soil erosion is one of the most destructive land degradation processes and can often lead to serious 

environmental problems. It is important to implement appropriate management strategies to meet 

these challenges at a range of scales. However, prior knowledge of erosion processes and the 

extent to which they operate spatiaIly is often limited and, traditional methods of soil erosion 

mapping are often time and labour intensive. This thesis explores the use of two Artificial 

Intelligence (AI) techniques for soil erosion mapping; Artificial Neural Networks (ANNs) and 

Decision Tree Classifiers (DTCs). The opportunities for employing such methods relate in part to 

their non-linear capabilities, their ability to learn in an inductive manner and incorporate multi

source data sets. 

AI training and test data were collected from 520 individually sampled locations within the study 

area. At each site the dependent variable erosion was estimated, as were a range of independent 

variables through field study. Two Digital Elevation Models were developed. Laboratory analysis 

was also undertaken to explore the physico-chemical processes relating to soil dispersion and to 

determine the applicability of a soil sodicity meter developed by the Co-operative Research Centre 

for Soil and Land Management in Adelaide, Australia. 

Results demonstrate that classification accuracy and overall performance is strongly dependent on 

the independent and dependent variables used, with the more expensive field collected data 

providing improved variables to those extracted from the Digital Elevation Models. Discriminant 

Analysis (DA) classifications were also employed to provide a linear comparison to the AI 

techniques, and performed comparably well. In the Artificial Neural Network classifications the 

composition of the training set was seen to exert significant bias, leading to poor performance and 

often misleading results. Laboratory analysis highlights the complex physico-chemical 

relationships associated with soil dispersion. The findings also indicate that no discernible 

relationship exists between the sodicity meter and standard laboratory procedures employed to 

measure the sodic properties of a soil. 

The thesis demonstrates the potential for employing these methods for erosion risk analysis and 

the ability of inductive approaches to formulate rules that may enhance current levels of 

understanding associated with soil erosion processes. Mapped outputs produced by these methods 

may prove valuable in the management of landscapes susceptible to soil erosion. 
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1 

Introduction to the Thesis 

1.1 INTRODUCTION 

Soil erosion, caused by wind and water is considered one of the most important and 

destructive land degradation processes. It is an increasing global problem (Vrieling et 

ai., 2002), largely due to its inherent ability of creating severe on and off-site impacts. 

These impacts can take many forms; both environmentally and economically. It is 

important to understand both the underlying processes that drive erosional activities 

and the impacts that these processes have to be able to implement appropriate 

management strategies and policies at a range of scales. The number of soil erosion 

investigations and studies has risen drastically in recent years as these concerns have 

grown, leading to the continual development and furthering of current knowledge. 

Landscapes continually change, as does the extent of anthropogenic influences upon 

environments, resulting in the need for continual monitoring and increased process 

knowledge. It is estimated that during the past 50 years, human land use and other 

activities associated with it have resulted in the degradation of some 5 billion ha of 

land globally (Brady and Weil, 2002). In many regions erosion rates are significantly 

exceeding soil formation rates, (e.g. Australia) (see Edwards, 1991), highlighting a 

number of issues relating to long term sustainability. 
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1.2 RATIONALE FOR THE STUDY 

The Mediterranean region is particularly sensitive and vulnerable to soil erosion. It 

affects different parts of the region to varying degrees (Lopez-Bermudez et al., 1998). 

Rojo (1990) suggests that more than 22 million ha of land in Spain is affected by 

erosion rates in excess of 12 t ha- I 
yr-I, exceeding the estimated tolerable limits for 

soil formation of between 2 and 12 t ha- I 
yr-I in Mediterranean environments, a total 

of approximately 44 percent of the land. Furthermore, the National Institute for the 

Conservation of Nature (lCONA, 1988) estimated that within the Mediterranean 

region, more than 9 million ha of land are affected by very intense erosion rates of 

more than 50 t ha-1 
yr-I highlighting the need for management strategies and policies. 

One area that is at present experiencing rapid change and increased risk of serious 

erosion, is the province of Almeria, located in Southeast Spain. In recent years the 

interior regions of Almeria have witnessed an extensive and rapid change in both the 

appearance and stability of the natural landscape. This is occurring largely as a 

consequence of changing agricultural regimes, from traditional dry farming (secano) 

methods, towards extensive plantation arboriculture (Faulkner et al., 2003b). These 

areas are described as geomorphologically sensitive prior to any such agricultural 

changes, due to both the climatic characteristics and the sensitive lithologies found in 

the province (see Alexander et al., 1996; Spivey, 1997; Faulkner et al., 2000, 2003b). 

With the added implications of agricultural clearances, the risk of erosional activity is 

greatly increased. 

Management of these environments, in the light of potential human developments, is 

important if these developments are to be economically and environmentally 
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sustainable. Traditional techniques that have aided these management decisions 

include ground-based studies, remotely sensed imagery and aerial photography, and 

physical process models. The use of Artificial Intelligence (AI) based classifiers 

provides an approach that can utilise multi-source data sets (de Carvalho et al., 2004), 

offer the ability to work in a non-linear manner, and an extensive array of studies have 

successfully incorporated them within environmental investigations. For example, 

Ermini et al. (2005) used Artificial Neural Networks (ANNs) to determine landslide 

susceptibility in the northern Apennines in Italy, and Benediktsson et al. (1990) 

compared ANNs to traditional statistical techniques when using multi-source data sets 

in remote sensing. Mahiny and Turner (2003) explored the use of ANNs for the 

determination of vegetation change in Australia, and de Carvalho et al. (2004) used 

both Decision Tree Classifiers CDTCs) and ANNs to map forests in Brazil. Fitzgerald 

and Lees (1993) compared the two techniques for use with remotely sensed data and 

as with all of the aforementioned studies, recognised the advantages they hold. 

Understanding soil erosion processes and the extent to which they may be operating 

spatially in the environment is important to a range of different groups including 

regional governments, local governments and farmers. At smaller scales, land 

managers may have an intuitive empirical understanding of the landscape that aids 

their management decisions. However, erosion maps can aid these decisions and 

assist in the successful implementation of appropriate management strategies and 

policies. Nonetheless, they are only useful if they have been developed with a specific 

end-user in mind, and are at a spatial resolution that is relevant for a specific 

application. At present a soil erosion map exists for the study area, however, its 

resolution is too coarse to be of use at a 'local' scale. Therefore, an opportunity exists 
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to develop and validate a methodology for mapping soil erosion processes spatially 

using multi-source data sets and AI techniques, at a scale deemed viable to assist in 

the implementation of management practices at a variety of spatial scales. 

This study focuses on the development and implementation of a suitable methodology 

for spatially mapping erosion processes. At present, few methods can be implemented 

to determine the spatial extent of soil erosion processes using pre-existing or low-cost 

data sets in combination with one another that are relatively rapid in execution. Such a 

method would present itself as an applicable tool for assisting a range of management 

decisions at various scales. This is largely due to the fact that erosion can be 

considered a primary indicator of the sustainability of land use. The method presented 

here maps erosion in a visually qualitative manner, identifying extreme cases through 

to stable, non-affected sites using a simple sliding scale. 

The following sections within this chapter outline the aims and objectives of the study 

and provide a brief overview of each of the remaining chapters. 

1.3 AIMS AND OBJECTIVES OF THE STUDY 

Through the use of the two AI classification techniques, Artificial Neural Networks 

(ANNs) and Decision Tree Classifiers (DTCs), soil erosion processes and the extent 

to which they are operating in a small study area located in Almeria are mapped. 

Unlike some process models, the temporal dimension is not a factor as the 

classification process undertaken is in essence mapping the current spatial extent of 

erosion in the region: The technique maps 'form' and does not implicitly measure 
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change. Incorporating temporal parameters is beyond the scope of the study. The aims 

and objectives of the thesis are as follows: 

• Aim 1: Evaluate and compare the performance of Artificial Neural Networks 

and Decision Tree Classifiers as soil erosion classifiers. 

Developing and constructing ANNs and DTCs for various classification problems, 

using different independent and dependent variables allows their performances to be 

compared and contrasted. This will highlight potential problems and advantages 

associated with each technique. 

• Aim 2: To determine the ability of Artificial Neural Networks and Decision 

Tree Classifiers to further our current understanding of soil erosion 

processes and how the selection of dependent and independent variables 

influences the classifiers performance. 

The two classifiers used possess the ability to use multi-source data sets, providing the 

opportunity to use variables in combination that was previously unachievable using 

traditional techniques. The influence that different combinations of independent and 

dependent variables have upon classifier accuracy can be determined as can their 

ability to enhance our understanding of the erosion processes. 

Traditional modelling techniques are driven in a deductive manner by prior 

knowledge. However the use of AI classifiers offers the ability to work largely 

inductively by presenting the independent variables and allowing rules and parameters 

to be determined by the classifier alone. 
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A particularly important objective within this aim involves the determination of the 

ability of a field sodicity meter to correctly, measure and classify soil sodicity. The 

presence of sodium as an exchangeable cation adversely affects extensive areas across 

the world (Sumner, 1995). Physical processes such as swelling and dispersion are 

responsible for soil degradation including surface crusting and hardsetting (Sumner, 

1993), a result of poor aggregate stability (Greene et al., 2002), a consequent 

reduction in hydraulic conductivity, and erosion. The determination of sodic soils is 

important so as to allow for appropriate management strategies, and has traditionally 

been undertaken through standard laboratory techniques. However, the determination 

through a simple field meter possesses a number of inherent advantages, such as the 

rapid measurement of levels of sodicity under field conditions. Therefore, the 

determination of the meters applicability is important within this thesis. 

1.4 THESIS STRUCTURE 

Chapter Two, in providing an introduction to the problem of soil erosion and soil 

erosion mapping in Southeast Spain, provides the general scope for the study. This 

chapter documents the need and requirement for erosion mapping detailing current 

erosion and risk mapping methods. The chapter also introduces the study area, 

detailing the geological and geomorphological setting, and highlights the perceived 

geomorphological susceptibility of the landscape. Chapter Three details 

geomorphological issues including scale and threshold concepts, erosion processes, as 

well as current and past soil erosion modelling methods and techniques. This provides 

the reader with the geomorphological process knowledge which aids the 

understanding of the erosion processes operating in Southeast Spain. 
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Chapter Four provides a review of the artificial intelligence classification techniques 

used. It details the workings and theory behind artificial neural networks and decision 

tree classifiers. It also outlines their current uses, the advantages and disadvantages 

associated with each of them. Chapter Five details the methodology and research 

framework upon which this study is based. The chapter includes the determination, 

validation and justification of the dependent and independent variables, their 

acquirement and finally their implementation using both classification procedures 

(ANNs and DTCs). The development of an erosion risk schedule is also discussed and 

outlined based on the relatively simple concept of risk by association. 

Chapter Six presents the results obtained through the various classifications 

undertaken, with particular emphasis upon the aims and objectives set out previously 

in section 1.3. Chapter Seven documents and discusses the results obtained through 

field and laboratory techniques employed to determine soil sodicity and the 

subsequent dispersivity potential. The chapter explores the relationships between 

various measured parameters, including physico-chemical characteristics, and 

concentrates particularly on the relationship between the field sodicity meter and the 

laboratory tests. 

Chapter Eight presents a discussion of the results obtained, relating important findings 

to the appropriate literature. The results are analysed and their wider implications 

discussed, with particular reference and emphasis made to the aims and objectives of 

this work. Chapter Nine outlines the major findings, highlights the associated 

shortfalls and limitations as well as proposing where future work may be focused. 
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2 

Soil Erosion and Erosion Mapping Challenges in Southeast 
Spain 

2.1 INTRODUCTION 

This chapter provides an introduction to the problem of soil erosion and soil erosion 

mapping as well as the scope, emphasis and rationale for the research in this thesis. 

The importance of understanding the nature and magnitude of soil erosion is 

important for many management decisions, and erosion mapping must be appropriate 

to the end-user and for the application for which it is to be applied. Thus, land 

degradation, soil erosion and the multitude of associated problems are initially 

outlined, followed by a review of the methods and approaches used to produce 

erosion maps and erosion risk maps. The study area is introduced, including an 

overview of the regional geology, the lithological units, climate, vegetation and land-

use as it affects the region's geomorphological sensitivity, exacerbated by the recent 

landscape changes. 

2.2 LAND DEGRADATION AND SOIL EROSION 

Land degradation can be defined in many ways; largely involving any change in the 

land that reduces its condition or quality resulting in the deterioration of the physical 

and chemical properties of the soil (I meson and Emmer, 1992), rendering the land less 

useful and of limited economic value. It can take many forms, including land 

clearance and deforestation, the agricultural mining of soil nutrients, pollution and 

poor agricultural practices (Brady and Weil, 2002; USDA, 2005). However, soil 

erosion is perhaps the most serious form of land degradation (Jayasuriya, 2003) and is 
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becoming an increasing global problem (Vrieling et ai, 2002), creating severe on and 

off-site impacts. Consequently, it is important to understand both the underlying 

processes that drive erosional activities and the extent to which they operate, so as to 

provide a suitable position to implement appropriate management strategies and 

policies at a range of scales. 

2.3 CURRENT EROSION AND RISK MAPPING METHODS 

Three traditional methods exist that have been used extensively in the detennination 

and mapping of soil erosion. Firstly; ground based fieldwork incorporating methods 

such as erosion pins and sediment traps offer the ability to investigate erosion 

processes at the field plot scale. Secondly, remote sensing and aerial photography 

offer the ability to remotely detennine erosion processes and the extent to which they 

are operating at a greater scale. Remote sensing consists of the interpretation of 

electromagnetic energy reflected by a target object observed by a sensor that is not in 

contact with the object (Mather, 1999). These approaches have a range of distinct 

advantages for studying geographical phenomena, including the ability to analyse 

problems at a range of temporal and spatial resolutions. Spatially, remote sensing 

exceeds other methods of data collectiqn as vast areas of a landscape can be covered 

by either satellite imagery or photography which pennit a range of investigations at 

spatial and temporal scales that would otherwise be impossible to achieve. 

Furthennore, many remote sensing instruments or platfonns are hyperspectral and 

have the ability to measure varying levels of reflectance in different parts of the 

electromagnetic spectrum through narrowly defined spectral channels (Campbell, 

2002). This allows for the rapid distinction and separation of different land coverages 

or atmospheric variations. King and Delpont (1993) discussed the usefulness and 
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applicability of remote sensing for assessing the spatial and temporal variability of 

various factors that influence the susceptibility of soils to erosion. Signs of 

degradation can be recorded on bare ground, such as crusting and scouring which 

indicate poor surface conditions, they can also be provided by vegetation and land

use, both of which are important indicators of soil conditions. Finally the morphology 

of the landscape will assist in the determination of slopes at risk. 

Modelling approaches have been used extensively with varying degrees of success, 

developed for investigations at a range of scales from the plot to the national and 

continental scales. Such approaches attempt to simulate the complex processes 

involved in soil erosion to improve our understanding of them. The process modelling 

approach also offers the ability to work at a range of scales and can provide both 

qualitative and quantitative outputs. 

Although three traditional approaches have been identified here for mapping or 

predicting soil erosion, a fourth approach has been applied in a number of limited 

studies. Artificial Intelligence (AI) approaches offer the unique ability of pattern 

recognition and the identification of subtle relationships between dependent and 

independent variables using a range of data types. They can use relatively low-cost 

data from a range of sources and use small data sets. Here each technique has been 

outlined separately, however it is often the case that such methods are used in a 

synergistic manner in order to complement one another and provide more useful tools. 

It is important however to be aware of the view of soil erosion produced, either actual 

or predicted (Ellis, 1997) in order to determine the usefulness and applicability of 

each approach for any given problem. 
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2.4 STUDY AREA 

2.4.1 Introduction 

The study area is located in the province of Almeria, near the small municipality of 

Sorbas in Southeast Spain (Figure 2.1). The total annual precipitation in the province 

is highly variable, ranging from less than 200mm a year in coastal areas such as the 

Cabo de Gata (130mm) (Tout, 1987), increasing to 400-500mm on the mountains 

(Sierras) (Garcia-Latorre et al., 2001). As a consequence of topography distinctive 

local micro-climates exist (Burke and Thomes, 1998) and in localities with the lowest 

rainfall, precipitation events largely take the form of short duration but high-intensity 

storms which occur in autumn and spring. These are intervened by midwinter 

droughts and hot dry summers (Mather, et al., 2001a; Harvey, 1982). The mean 

annual temperature in the region is c. 18'C, averaging 23'C in the summer, 13"C in 

the winter (Wheeler, 1996) with maximums of c. 40'C in July and August (Mather et 

al.,2001a). 

Major fault 

o 10 20 kll 

o Study.re. 

, . , 

Figure 2.1: Location map of the study area (Adapted from Mather and Stokes, 1996). 
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The study area is located in the Sorbas Basin, and enclosed by the Sierra de Bedar and 

Sierra de los Filabres to the north, the Sierra Alhamilla and the Sierra Cabrera to the 

south and the south-east respectively. The following sections within this chapter will 

review the geological and lithological setting of the region and their reported 

geomorphological sensitivities. 

2.4.2 Regional Geological Setting 

Almeria province is occupied within the easternmost part of the Betic Cordillera, 

which evolved in response to the relative motions of the European and African plates 

from the late Jurassic to the early Miocene (Bourrouilh and Gorsline, 1979; Smith and 

Woodcock, 1982; Garcia et al., 2003; Viseras et al., 2003) or the early Cretaceous to 

the Miocene (Alonso-Chaves et al., 2004). The Betic Cordillera, located in southern 

Spain, is an ENE-WSW trending thrust belt and Alpine fold (Keller et al., 1995), and 

as stated by Lonergan et al. (1994) is split into Internal and External Zones as with 

other Alpine systems. The External Zone can be subsequently split into the Pre-Betic 

Zone, comprising of platform and shelf sequences of marginal facies (Garcia

Hernandez et al., 1980), and the Sub-Betic Zone, which contains deep-water 

Cretaceous to early Tertiary sedimentary sequences with minor basaltic volcanics. In 

contrast, the Internal Zone, simply known as the Betic Zone, is composed dominantly 

of metamorphosed Paleozoic to Triassic rocks, resulting from the convergence 

between Africa and Europe (Lonergan, 1993). 

The Betic Cordillera is comprised of a series of uplifted Paleozoic to Triassic 

metamorphic rocks separated by east-west orientated small sedimentary basins (Braga 

et al., 2003), such as the Sorbas Basin, filled with post-orogenic detritus of Neogene 
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age (Harvey and Wells, 1987; Scotney et aI., 2000). The Sorbas Basin is located 

within the Internal zone of the Betic Cordillera and is well defined within the Sierra 

de los Filabres and Sierra de Bedar in the north, and the Sierra Cabrera and Alhamilla 

to the South, comprising metamorphic rocks from the Internal Betics (Mather et aI., 

2001 b). However, the eastern and western margins are less well defined topographical 

highs (Mather, 1993). The geological setting of the Basin can be seen in Figure 2.2. 

Within the Basin, compression has been dominantly north-south, with associated east-

west extension during the Quaternary (Mather and Westhead, 1993). Much of the 

compressional movement has taken place along the major left-lateral strike-slip faults 

(Weijermars, 1991 ; Bousquet, 1979) which forms part of the left-lateral, Trans-

Alboran shear zone (de Larouziere et a!., 1988). 
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Figure 2.2: Detailed geological map of the Sorbas region (Adapted from Weijermars, 
1991). 
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As can be seen in Figure 2.3, PliolPleistocene conglomerates dominate the southern 

end of the Sorbas Basin. These conglomerates have been divided into two main units 

by Mather and Stokes (1996, 2001), Mather (1993) and Mather (2000a, 2000b) 

consisting of a Triassic-metacarbonate-rich unit (TRU), and a Messinian carbonate

rich-unit (MRU), the former being overlain by the latter. The two units show a 

number of differences with regards to their composition, all of which are 

consequences of alterations in the fluvial systems from which they were developed, 

which can either be put down to autocyclic or allocyclic controls on the basin. 

Autocyclic controls may include a river capture event, consequently changing the 

source area, or it may be the exhaustion of a specific source area. The possible 

Allocyclic controls responsible for such an event to take place may include tectonic 

activity, consequently changing the development of the system, or climatic influences 

may playa role. 

2.4.3 Lithological Units 

The TRU consists of Triassic limestone and Tortonian sandstone clasts, whereas the 

upper unit, the MRU consists of Messinian limestone, with the two units being 

separated by a weakly developed unconformity (Mather, 1993). The TRU is the 

dominant sedimentary sequence of the two units in the area, and as seen in Figure 2.3, 

is prolific in the west of the basin, where it forms 95-100 percent of the total sequence 

(Mather, 1993). However, Mather and Stokes (2001) infer that it becomes less 

dominant towards the east where it is overlain by the MRU 

Mather (1993) suggests that the TRU was most probably sourced from an area on the 

northern side of the Sierra Alhamilla as the area is rich in Triassic limestone and 
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would contain an abundant supply of sandstone for transport. The lateral extent and 

thickness of the sequence suggests that the TRU was deposited through a number of 

coalescing alluvial fans, all of which were sourced from the southern Sierras at fairly 

rapid rates due to the lack of any observable well developed soils. Furthermore, 

paleocurrent data of the clasts identified in the unit also suggest the Alhamilla as the 

derivation of the material found within the unit. 

The MRU however, was not likely to have been sourced from the Sierra Alhamilla 

area, primarily due to the lack of sandstone found within the unit, and the clast 

assemblage being dominated by Messinian limestone (Mather, 2000a). The spatial 

extent of the MRU tends to indicate that the potential source area was much smaller, 

and much closer, than the one supplying the TRU. With the development of relatively 

well developed paleosols, the system consisted of overall lower supply rates of 

sediment to the system through smaller channels (Mather, 2000a 2000b). Using 

paleocurrent data, the source area is therefore believed to be located in the region 

around Cantona (Mather, 2000a, 2000b, Mather and Stokes, 2001), southeast of the 

unit. 
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Figure 2.3: Geological map of the study area (Adapted from Mather, 2000a). 

2.4.4 Climate, Vegetation and Land-use 

16 

The study area outlined in Figure 2.1 is commonly identified as being located within 

Mediterranean semi-arid and arid areas of the sub-tropical climatic belt (Bryan and 

Yair, 1982). During the winter months, precipitation events are associated with fronts 

coming from the Atlantic Ocean to the west. However after summer and during the 

autumn, they are largely a consequence of Mediterranean fronts (Lazaro et aI. , 2001 ). 

Such events may provide storms and torrential rainfall during the months of 

maximum vegetation stress and minimum coverage, thus increasing their erosive 

potential. Moreover, Zukowskyj et al. (2005), Lazaro et al. (2001), Thomes (1996), 

Lopez-Bermudez and Romero-Diaz (1989) have stated that high inter-annual rainfall 

variations exist and the recurrence of drought means that the semi-arid area has 

similar conditions to arid areas for at least one in ten years (Cerda, 1997). 
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Vegetation in the region is relatively sparse with a predominance of sclerophylous 

shrubs (Garcia and Chuvieco, 2004), including Stipa tenacissirna (Cerda, 1997), 

Retarna sphaerocarpa (Haase et al., 1996) and Anthyllis cytisoides (Haase et al., 

2000; Blackburn and Steele, 1999). Nonetheless, substantial areas of the region are 

simply bare surfaces, particularly on south-facing slopes where water stress is at its 

most extreme (Zukowskyj et al., 2005). Even under thin vegetation cover the semi

arid climate increases the effectiveness of runoff during storm events (Harvey et al., 

2001). 

Due to low rainfall, farming in the region has traditionally been restricted to dry 

farming and non-irrigated cultivation (secano) (Spivey, 1997). However, since 1986 

and Spain's succession to the European Union, the Common Agricultural Policy 

(CAP) promoted agricultural activity, largely in the form of irrigated plantation 

aboriculture (e.g. Olives) in the region. Furthermore, in the coastal regions large areas 

have been devoted to intensive horticulture under plastic greenhouses (Orgaz et al., 

2005). Approximately 27000 hectares of land is now covered by greenhouses in 

Almeria (Molina-Aiz et al., 2004), taking advantage of the high radiation levels, mild 

winters, the availability of underground water and the development of economic 

exchanges within the European Union (Gary, 2000). 

2.4.5 The Geomorphological Sensitivity of the Almeria Landscape 

The region of the Sorbas Basin has undergone two major river capture and 

rejuvenation events. The first occurred during the early Pleistocene, and re-routed 

approximately 15 percent of the original Sorbas Basin drainage to the Carboneras 

basin (Mather, 2000a, 2000b). The second occurred during the late Pleistocene (ca. 
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100 ka; Harvey et al., 1995) and re-routed 73 percent of the Carboneras basin in the 

south, to the east (Mather, 2000a). The Rambla Mocatan is 13 km above the capture 

site, and has consequently undergone significant moderation by river capture. This 

consequently led to base level changes of around 90 metres (Harvey et al., 1995), and 

thus created a situation of intense incision. This led to the oversteepening of slopes, in 

an area that is highly sensitive to base level changes due to the extremely weak 

lithologies. Alexander et al. (1996), Spivey (1997) and Faulkner et al. (2000, 2003b) 

recognised the sodicity and consequent dispersive nature of both the TRU and MRU 

making them highly susceptible to erosion. As a result significantly sized badland 

landscapes have developed, one of particular importance here are the Mocatan 

badlands which have been the subject of numerous research investigations due largely 

to its apparent susceptibility to subsurface piping and erosion (see Faulkner et aI., 

2003b; Faulkner et al., 2000, Spivey, 1997; Alexander et al., 1996). 

Further intensifying the sensitivity of the Almeria landscape are the extensive 

agricultural clearances in the interior regions developed as a direct response to the 

1992 reforms of the CAP. Zukowskyj et al. (2005) suggests that the expansion of 

plantation arboriculture, through such clearances, has been ongoing for at least a 

decade and the resultant erosion risks have been documented. Faulkner et al. (2003b) 

stressed the heightened erosion risks associated with rapid and extensive clearances 

on the susceptible lithologies, whereby slopes are reshaped, old trees are removed and 

the land ploughed. 

The region also suffers from great spatial and temporal annual and inter-annual 

variations in rainfall events (Geeson and Thomes, 1996; Faulkner et al., 2003b). 
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Thus, frequent drought periods occur creating the potential for vegetation aridization 

(de la Rosa et al., 1999). The threat of desertification increases as the already 

unreliable winter rainfall may become more extensive and shift northwards as a 

product of climate change (Imeson and Emmer, 1992). It has been estimated through 

the use of Global Circulation Models that the temperature in the Mediterranean basin 

could increase by 1°C by 2030 (Perry, 1997). However, projecting the extent of 

precipitation change in the region is more difficult (Wigley, 1992). Nonetheless, 

Imeson and Emmer (1992) envisaged a range of short-term (50 years) impacts of 

climate change on sensitive Mediterranean soils. Firstly, the transport and distribution 

of salts and the salt balance of the soil can lead to an increase in potential erodibility 

and a subsequent decrease in the stability of soil aggregates in semi-arid regions, 

induced by a general decrease in precipitation or an increased evapotranspiration rate. 

Secondly, Imeson and Emmer (1992) proposed that the precipitation of calcium and 

magnesium carbonates could lead to a distinct caliche layer, often connected with 

desertification and can impede plant growth and productivity. Finally, as the organic 

content of a soil is closely correlated to precipitation, and to soil moisture, any 

variation that may occur as a result of climate change will strongly influence soil 

aggregate stability. 

It is readily evident therefore that the landscape is geomorphologically sensitive as a 

result of the dispersive nature of the lithological units as discussed previously, 

coupled with the topographic nature of the region. Moreover, the climatic setting of 

the area means that extreme precipitation events can occur during summer months, 

when vegetation cover is at its lowest and thus erosion potential at its maximum. 

Combined with the agricultural renaissance of the region (Harvey et al., 2001) and the 
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potential negative impacts associated with climate change, it is easy to understand the 

susceptibility and serious erosion risk. 

2.5 THE NEED FOR EROSION AND RISK MAPS AND THEIR 
APPLICATION 

Section 2.3 of this chapter has briefly documented the main methods and techniques 

employed to produce erosion maps and predicted erosion maps for studies at a range 

of scales. Such practices have been used to develop erosion maps for various regions 

of the world as they have numerous practical applications (e.g. for landscape 

managers, local government and individual landowners). Through the production of 

erosion maps it is possible to readily identify and determine the spatial extent of the 

operative processes. This enables the subsequent recognition of susceptible areas (for 

example, lithologies, soils, geologies and slopes) and may therefore assist in the 

understanding of specific processes. In addition to this, mapping and predicting risk 

allows environmental managers to precisely identify areas where intervention must be 

of high priority (Haboudane et ai., 2002). 

It has been demonstrated here that the Almeria province of southern Spain is a highly 

sensitive environment and the threat of erosion is of great concern. At present large 

badland landscapes occur in varying locations controlled largely by topographic and 

lithological features, however, the situation at present is such that management 

strategies and practices are required across the region as the sensitivity of the 

landscape is further increased. Erosion maps exist, but they are at a resolution that is 

too general to be of 'local' use, potentially inhibiting and restricting management 

strategies. Erosion maps serve a range of different purposes, dictated largely by the 

end user(s). Such maps must be at an appropriate scale and resolution to answer the 
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question being posed. For example, the individual land owner (farmer) will require a 

map at a much finer resolution than would a local government who require a general 

overall view of the situation. Thus, through the development and implementation of a 

suitable methodology, the main aim of this thesis is to determine the applicability of 

an AI methodology with which such a map could be produced relatively quickly 

through the incorporation of a range of different data sets. 

2.6 CONCLUSIONS 

This chapter has provided an introduction to the multifaceted problem of land 

degradation and soil erosion. The various methods and techniques used to map 

erosion have also been discussed, from the traditional modelling and remote sensing 

approaches to the more recent and less conventional AI methods. Through the detailed 

introduction of the study area the geomorphological sensitivity of the region has been 

illustrated and the subsequent need for an erosion map proposed. 

The following chapter introduces the subject of semi-arid and badland 

geomorphology, and related scale and threshold concepts. Furthermore, it details the 

erosion processes operating in southern Spain including an in-depth discussion of the 

physical and chemical processes related to soil dispersion, and provides a 

comprehensive review of erosion studies undertaken in the region. 
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3 

Geomorphological Theory and Soil Erosion Processes, 
Modelling and Mapping 

3.1 INTRODUCTION 

This chapter investigates badland and semi-arid geomorphology. Badland and semi-

arid studies are important because the principle operative factor, soil erosion, is 

detrimental to land productivity and often requires some level of management. This 

chapter begins by attempting to comprehensively review the fundamental 

underpinnings of geomorphology. It also highlights the importance of recognising and 

working at the appropriate spatial and temporal scale. Badland geomorphology is 

briefly introduced and reviewed, followed by a review of surface and subsurface 

erosion processes. Particular reference is given to an area in the Almeria province. 

Soil dispersivity is an important element of badland geomorphology and is 

extensively discussed to provide a better all-round understanding of the physical and 

chemical processes associated with subsurface erosion. 

Soil erosion modelling is discussed with a review of a number of the key models 

along with techniques that have been used by various authors who have determined, 

quantified or mapped soil erosion. Finally, soil erosion risk, hazard and potential are 

reviewed to allow a better understanding of an often vague terminology. 

3.2 SCALES OF INVESTIGATION AND THRESHOLDS 

The determination of a suitable scale to observe and understand the landscape is 

crucially important in the development of a successful geomorphological 
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investigation. As a consequence, scale has formed a key element in geomorphological 

debate. Schumm and Lichty (1965) outlined distinctions between cause and effect in 

landscape evolution are dependent upon the time span and spatial extent of the 

geomorphic system. The resolution used in any research/investigation should depend 

upon the problem being investigated (Schumm, 1991). Delcourt and Delcourt (1988) 

stated that a successful research design first determines the scale at which the 

phenomenon of interest occurs and then defines appropriate methods of analysis to 

determine the patterns and processes operating. Based on this statement, a scale 

paradigm possessing a range of domains can be seen in Figure 3.1, highlighting four 

broad scales of investigation. The scales range from the largest, the mega-scale, to the 

macro-scale, the meso-scale and finally the smallest, the micro-scale. The scales are 

simply generalised domains and any given study can be within one of them or in some 

instances cross scale boundaries to ensure an appropriate scale of investigation. 
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Figure 3.1: Spatial-temporal domains for different research scales (Delcourt and 
De1court, 1988). 

Schumm and Lichty (1965) recognised the need to identify appropriate timescales in 

which to study geomorphic systems. They classified time into three broad time spans; 

cyclic, graded and steady time (see Figure 3.2). The longest time span is cyclic time, 
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or geologic time, and spans an entire cycle of erosion. Graded time refers to a short 

span of cyclic time when a dynamic eqUilibrium exists for a short period within 

components of the system or a small area within the system. Steady time span can 

occur when over, very brief periods, none of the variables associated with a system 

change. Here, the relationship between space and time scale is important because 

phenomenon that do not appear to show change over time at one scale can be 

observed to change over time significantly at another. Table 3.1 demonstrates the 

status of drainage basin variables as an example during decreasing duration time 

spans. Drainage basin variables are arranged in a hierarchical manner of increasing 

degrees of dependence and attempts to demonstrate the influence of differing time 

spans. The status of each variable is determined as independent, dependent or not 

relevant, based upon the variable under consideration. Thus, Schumm and Lichty 

(1965) proposed that depending on the time span involved, time may either be an 

extremely important variable or of little significance when attempting to understand 

and study landforms. 

4 ~------~-------i 
Steady Time 

" 
Cyclic Time Graded Time 

Figure 3.2: The changes in channel gradient during cyclic, graded and steady time 
(Schumm and Lichty, 1965). 

The concept of thresholds is closely related to that of scale, as they will vary 

significantly in both space and time. Bull (1980) regarded thresholds as a balance 
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between opposing tendencies. Campbell and Honsaker (1982) proposed that that the 

limits between eqUilibrium and disequilibrium within a system (e.g. periods of change 

and non-change) are defmed and determined by thresholds. Schumm (1973) divided 

geomorphic thresholds into two separate categories; intrinsic and extrinsic. Intrinsic 

thresholds are regarded as inherent to the system and may be exceeded due to the 

cumulative internal stresses and are not triggered by external events (e.g. pore-water 

pressure changes on a slope). Extrinsic thresholds however occur as a result of an 

increased force or stress arising from an external event outside of the system (e.g. 

seismic activity or flooding). The determination of thresholds is often difficult 

(Campbell and Honsaker, 1982) and will be influenced by the sensitivity of the 

system (the propensity of the landscape to change), implying instability in the system 

and the consequent possibility of sudden irreversible change taking place (Thomas, 

2001). 

Drainage Basin Variables 

1. Time 
2. Initial Relief 
3. Geology (lithology, structure) 
4. Climate 
5. Vegetation (type and density) 
6. Relief or volume of system 
above base level 
7. Hydrology (runoff and 
sediment yield per unit area 
within system) 
8. Drainage network morphology 
9. Hillslope morphology 
10. Hydrology (discharge of 
water and sediment from system) 

Status of variables during designated time 
spans 

Cyclic 
Independent 
Independent 
Independent 
Independent 
Dependent 
Dependent 

Dependent 

Dependent 
Dependent 
Dependent 

Graded 
Not relevant 
Not relevant 
Independent 
Independent 
Independent 
Independent 

Independent 

Dependent 
Dependent 
Dependent 

Steady 
Not relevant 
Not relevant 
Independent 
Independent 
Independent 
Independent 

Independent 

Independent 
Independent 
Dependent 

Table 3.1: The status of drainage basin variables during time spans of decreasing 
duration (Schumm and Lichty, 1965). 
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It is also important to acknowledge the time dependent nature of thresholds, threshold 

exceedance and system recovery, and the associated implications for system stability 

(Ritter et al., 1999). Some systems therefore may be able to handle instabilities up to a 

critical point, as they may not exceed threshold boundaries (low sensitivity landscape 

units). If the recovery time is sufficiently long then the system will remain in a state 

of equilibrium, indefinitely (transient). However, if a further disruptive event occurs 

before the system can fully recover then the internal resistance may not be able to 

oppose change and will develop a new equilibrium (inter-transient). Figure 3.3 

represents these concepts. 
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Figure 3.3: Geomorphological thresholds and reaction and relaxation. (A) Event 
causes system to react but completely recovers. (B) Event causes system to react and 
does not recover and reaches a new equilibrium. (C) Transient form where the system 
has sufficient time to recover from threshold events. (D) Inter-transient form where 
the system does not have sufficient time to fully recover from threshold events. 
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3.3 BADLAND AND SEMI-ARID GEOMORPHOLOGY 

The term 'badland' is commonly used to describe areas of densely gullied landscapes, 

where vegetation is sparse or absent and useless for agricultural purposes (Bryan and 

Yair, 1982). They usually develop as a consequence of contributing factors that 

include climate, geology and lithology, and lead to the development of a highly 

dissected and complex landscape. Extensive badlands occur globally and in 

susceptible areas such as Alberta, Canada. Hodges and Bryan (1982) highlight the 

role of overland flow and runoff in their development and in particular the importance 

of individual soil surfaces and lithology and their relationship to overland flow. 

Numerous investigations have been undertaken to better understand badland 

geomorphology, some of which are detailed in Table 3.2. 

Author Location Investigating 
Campbell and Alberta, Morphological change occurring in the 
Honsaker (1982); Canada badlands over a period of time. 
Campbell (1982; 1989) 

Imeson et al. (1982) Northeast The influence of physical and chemical 
Morocco aspects of soil properties in badland 

development. 

Drew (1982) Saskatchewan, Subsurface pipe erosion in the Big Muddy 
Canada badlands. 

Torri and Bryan (1997) Tuscany, Italy Badland evolution in Tuscany through 
micropiping processes. 

Sirvent et al. (1997) Ebro Basin, Rates of erosion in badland areas in the 
Northeast Monegros region, Spain. 
Spain 

Boardman et al. (2003) Great Karoo, Development of badlands and gullies and 
South Africa overall land degradation in an area within 

the Great Karoo. 
Table 3.2: Some studies investigating badland geomorphology and processes. 
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This thesis concentrates on environments in Southeast Spain (see Chapter Two) and in 

particular the Almeria province that has been the subject of numerous investigations 

due to the coverage of badland areas, where they occupy extensive areas of the 

landscape (Harvey and Calvo, 1989; Harvey et al., 2001; Spivey, 1997). Lopez

Bermudez and Romero-Diaz (1989) identified and mapped the locations of 

susceptible marls in Southeast Spain. Harvey and Calvo (1989) identified areas within 

the province that were total badlands, partial badlands and deeply dissected softrock 

areas that are potentially susceptible to badland development (Figure 3.4). Total 

badlands are those where entire drainage systems are eroded as are the divides 

between the gullies. Partial badlands in contrast still have the divides between gully 

systems intact. Due to the complex nature of the region a number of different 

processes occur independently or in combination, leading to the development of 

badland landscapes with differing morphological characteristics. As discussed 

previously in section 2.4.5, this contributes to the geomorphological sensitivity of the 

region, as the lithologies are highly susceptible to erosion due largely to their low 

erosional resistance and poor structure. 

Numerous investigations have highlighted the importance of pIpmg m the 

development of badlands within the region. However, this contrasts with other global 

regions where literature indicates that Hortonian processes dominate. Although 

numerous investigations have highlighted the importance of piping in the region, 

including Harvey (1982), Imeson and Verstraten (1985), Alexander et al. (1996), 

Calvo-Cases and Harvey (1996), Faulkner et al. (2000), Faulkner et al. (2003a) and 

Faulkner et al. (2003b), the extent to which the piping process occurs varies spatially. 

Faulkner et al. (2000) commented upon the variation in the dominant process 
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operating in three different badland sites. These and other papers concerned with the 

Almeria province are discussed in more detail in the following sub-section. 

Rio Almanzora 

~ Beti c and Sub-Beti C Ranges 

• Total badlands 

HIIII parti a 1 badl ands 

lID Deeply dissected soft rock areas 

..... scarp slope linear gullies 

Figure 3.4: The location of total badlands, partial badlands and dissected softrock 
areas susceptible to badland development (Harvey and Calvo, 1989). 

3.4 SOIL EROSION PROCESSES IN SOUTHEAST SPAIN 

Soil erosion processes occur in a number of different environments and are often 

highly complex. Soil erosion is simply the process of detachment of individual soil 

particles, their transport and subsequent deposition (Rosewell et al., 1991). Erosion 

can be split into three major categories; surface erosion, subsurface erosion and mass 

movements. Surface and subsurface erosion (piping) largely operate at the same 

spatial scales as one another, whereas mass movements tend to occur on a much larger 

scale. As a result mass movements have not been considered in this study. 
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3.4.1 Surface Erosion 

As mentioned previously, erosion is simply the detachment of soil particles and in its 

most common form operates at the soil surface. The principle controlling factor of 

surface erosion is overland flow derived from a precipitation event. It occurs once the 

infiltration capacity of the soil mass is exceeded during or after a prolonged 

precipitation event. Over time, overland flow becomes channelised and concentrated 

within small rills in the soil surface determined and controlled by factors such as slope 

angle, length and roughness (Stiegeler, 1979). However, sheet flow or wash precedes 

the development of rills and is simply the movement of water across a slope surface 

generated after the onset of precipitation. The term 'sheet' implies a smooth planar 

surface, however, the water is seldom of uniform depth due to the microtopography of 

the hillslope surface (Summerfield, 1991). The erosion potential of surface wash is 

largely a factor of the characteristics of the soil surface, vegetation cover, the slope 

gradient and the routing of water at the micro-level. 

There are two general bases for our understanding of gully and badland development. 

The first outlined by Horton (1933, 1945) and elaborated by Strahler (1958) relating 

gully and badland morphology to surface erosion, and the second involves subsurface 

erosion through piping (Harvey, 1982). Horton (1933) proposed that precipitation is 

partitioned so that one part infiltrates the soil and the other part goes rapidly as 

overland flow (Figure 3.5). The Horton hypothesis has been dominant as the 

traditional process responsible for gully erosion and development. Bryan and Yair 

(1982) highlighted the fact that the extremely high drainage densities of badland areas 

often are regarded as evidence of the dominance of overland flow. Ideal conditions for 

the generation of the Hortonian process are often found in arid and semi-arid regions, 
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where a bare soil is often present combined with the development of surface crusts 

(Ward and Robinson, 2000). Furthermore, a combination of sparse vegetation, steep 

slopes and surfaces with relatively low infiltration rates often associated with badland 

environments are often assumed to contribute to Hortonian overland flow (Bryan and 

Yair, 1982). 

Unsaturated 

Saturated 

Precipitation 

~erland~ 
~ -----
~ ~ 

Throughflow 

Figure 3.5: Simple representation of the Horton hypothesis (Adapted from Ward and 
Robinson, 2000). 

Rainsplash 

With respect to surface erosIOn, Chorley and Schumm (1984) highlighted the 

importance of combined processes In soil detachment and subsequent erosion. 

Rainsplash is an important element of surface erosion processes occurring in areas 

where vegetation cover is limited or not present at all (Summerfield, 1991). As 

numerous studies have shown (Morgan, 1978; Pedersen and Hasholt, 1995), 

rainsplash is a significant erosive agent moving soil particles both upslope and 

downslope. However, when combined with overland flow the combination of water 

on the slope plus raindrop impact an intermediate level of erosion occurs. The water 

present on the surface dissipates the energy of the falling raindrops and thus reduces 

their ability to dislodge particles from the soil mass, however the particles that are 
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removed from the soil are easily entrained and transported by the surface water. Evans 

(1980) suggested that the two processes operating together are more efficient at 

moving soil particles than when they occur independently. 

The effectiveness of rainsplash can be significantly reduced on clay materials where it 

can lead to particle compaction and surface sealing (Kuhn and Bryan, 2004). 

Therefore, rainsplash would seem to be a limited erosion process in badland 

environments as surface crusting makes material resistant to detachment (Bryan and 

Yair, 1982) yet contributes indirectly as compaction leads to surface sealing, a 

reduction in infiltration and a subsequent increase in overland flow. 

3.4.2 Subsurface Erosion (Piping) 

Subsurface erosion has received little literary attention until relatively recently (e.g. in 

Spain from the early 1980s). Subsurface erosion is known by different names in 

different places. European literature typically refers to piping, whereas Australian and 

New Zealand literature may refer to tunnelling (Boucher, 2002; Hosking, 1967). 

Piping is relatively common in semiarid environments (Parker and Higgins. 1990), 

where it is related to rilling and gullying and the development of badlands (Bryan and 

Yair, 1982). The process largely relies upon soil geochemistry factors, especially the 

amount of swelling clays present in sodic soils (soils containing high levels of 

exchangeable sodium) (Parker and Jenne, 1967) and topographic influences (See 

Chapter Two). If appropriate conditions suit, subsurface processes can seriously 

influence the shape of the landscape and can become the dominant operative erosive 

process. 
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Piping is a complex process and arises when substantial volumes of subsurface lateral 

throughflow pass through a dispersive subsoil (Crouch, 1976; Baillie et al., 1986). 

Piping is generally best developed in the presence of swelling clays, desiccation 

cracks, seasonal high rainfalls, differentially permeable layers of soil, steep hydraulic 

gradients along with a base level of erosion, and a suitable outlet (Jones, 1981). Tom 

et aJ. (1994) highlighted the dominance of pipe erosion over surface erosion processes 

in a study investigating the mechanisms of erosion in a badland area of Tuscany, Italy. 

They found that the materials were dispersive in nature: readily broken down on 

contact with water. Sediment rates were found to be higher near pipes as a result of 

physico-chemical slaking (disintegration of soil) and subsequent erosion. Subsurface 

erosion has also received much attention in the Dinosaur Park badlands of Alberta; De 

Boer and Campbell (1990), Bryan et aJ. (1984) and Campbell (1989) identified the 

importance of piping as an erosive process in the Albertan badlands and many 

subsequent studies have attempted to quantify it. Furthermore, Harvey (1982) and 

Lopez-Bermudez and Romero-Diaz (1989) investigated the role of piping in the 

development of badlands and gully systems in Southeast Spain. The studies 

recognised the importance of piping in the erosional development of some gully 

systems in the region. However, details relating to the physico-chemical processes 

involved have not always been fully documented due largely to a lack of 

understanding and confusion relating to the issue. When viewing a gully the 

assumption is often made that overland flow is the responsible process, however, 

detailed inspection of gully form can distinguish subtle differences that can be 

indicative of a collapsed pipe (e.g. the long profile is seldom uniform as would be 

expected from those developed through surface process alone). However, more recent 

research that takes into consideration soil science factors has revealed new insights 
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into the process and subsequently provides a more rounded understanding (Harvey, 

1982; Alexander and Calvo, 1990; Alexander et al., 1994; Sumner, 1995; Faulkner et 

al., 2000). 

Such is the sensitivity of a landscape to piping, dependent on local geo-chemical soil 

factors, that the nature and extent of pipes can be highly localised. The importance of 

site geochemical factors is highlighted by Faulkner et al. (2000) for the understanding 

of badland development in three areas in the Almeria province of Southeast Spain. 

The study concluded that physico-chemical properties of three different badland sites 

are a useful tool for characterising piping behaviour. The study revealed the 

importance of subsurface erosion in the development of the Mocatan badlands of 

Southeast Spain, and how the dominant erosive process differs in two other badland 

areas studied (Vera and Tabemas). It was observed that the clay content is likely to 

strongly influence the propensity for which subsurface processes may occur. This is 

further illustrated by Faulkner et al. (2003b) in Figure 3.6, showing the variation in 

materials with both high and low clay contents. The difference in process occurs as a 

direct result of the fact that whilst the dispersal of clays normally slakes and seals the 

subsurface horizons (Naidu et al., 1995), in soils with low clay percentages this may 

not occur. This is simply a result of the fact that the material will disperse, yet will not 

render the material impermeable, as there is too little clay to do so. Therefore, the soil 

mass will merely deflocculate (break down) and because the clay is the only binding 

agent this can cause the complete destruction of the soil structure (Alexander et al., 

1996). 
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Figure 3.6: Process dominance domains for the role of site regulators. Domain 
controls R: resculpting; 0: organic amendments; G: gypsum amendments (Faulkner et 
a/.,2003b). 

Figure 3.6 also highlights the importance of the relief ratio, which is an important 

controlling factor for understanding subsurface erosion. Where hydraulic gradients 

allow, large pipes can develop and subsequently collapse to form large gullies as 

discussed by Faulkner et al. (2000, 2003b). The point is visualised in Figure 3.7, 

emphasising the importance of landscape morphology for subsurface processes. In 

surfaces with convex morphologies with an infiltrating surface and a substantial 

hydraulic head, subsurface erosion can occur, particularly in materials of low-bulk 

density. Therefore, it is relatively commonplace to see subsurface erosion processes 

operating behind terrace walls and other similar features in landscapes where physico-

chemical situations suit. In the Mocatan badlands of Southeast Spain, the capture and 

rejuvenation of the Rio Aguas (see section 2.4.5) has led to the over-steepening of 

slopes, coupled with the susceptibility of the dispersive marls provides the ideal 

setting for subsurface erosion processes to operate. Figure 3.8 highlights the effects 

that piping can have on the landscape, creating a dense gully network in a slope face. 
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Figure 3.7: A simple diagram highlighting the plpmg potential m convex 
morphologies. 

Figure 3.8: The Mocatan badlands demonstrating extensive piping activity leading to 
the creation of an extensive gully system. 

Soil Dispersivity 

The discussion here highlights the importance of a range of soil characteristics with 

regards to the soil dispersion process. As a consequence, problem soils and associated 

clay dispersion cannot be distinguished simply in terms of a particular Exchangeable 

Sodium Percentage (ESP) value or Sodium Adsorption Ratio (SAR) value, and thus 

relationships are sought between various characteristics and are discussed here. 
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Soil chemistry can have a profound influence upon a soil's characteristics and 

behaviour when in contact with water, such as during a precipitation event or 

irrigation practices, and understanding soil chemistry is important for understanding 

piping. One such characteristic is the result of the presence of excess sodium as an 

exchangeable cation, and there are large areas of the world where soils are 

consequently adversely affected (Sumner, 1995). The primary processes responsible 

for the degradation of such soils are slaking and dispersion that can lead to both the 

physical and chemical break down of a soil (So and Woodhead, 1987). From a land

use perspective this is a most undesirable characteristic as it can lead to hardsetting 

surfaces, rapid surface ponding or runoff, severe erosion, cloddy cultivation surfaces, 

poor crop establishment and shallow water and root penetration (Powell et al., 1995). 

A number of factors however can influence and control the extent to which a soil may 

be dispersive. Dispersion occurs when sodium cations cannot satisfy the exchange 

complex, a characteristic usually found in soils lacking in magnesium and calcium, 

and the following discussion will attempt to aid the understanding of the various 

processes involved. 

It is well known and documented that the presence of some double-layer clay minerals 

are particularly sensitive to sodium on the exchange complex as it causes them to 

swell and disperse (Faulkner et al., 2000). The dispersion of clays in soils is strongly 

influenced by the nature of the exchangeable cations and the amount of electrolyte 

present (Quirk and Schofield, 1955; Shainberg et al., 1981). However, other factors 

can strongly influence soil dispersion and are consequently used to indicate the 

feature such as pH, ESP (Equation 1), exchangeable Ca:Mg ratio, bulk density 

(Powell et af., 1995) and soil organic matter (Churchman et al., 1995). In very 
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simplistic tenns, soil dispersion occurs in cohesive soils when the repulsive forces 

between clay particles exceed the attractive forces (Bell and Walker, 2000). This is 

the case when sodium is the prominent adsorbed ion (Brady and Weil, 1999). As 

previously stated, a number of soil characteristics can influence the soils ability to 

flocculate and thus render it more susceptible to the dispersion process. 

Prior to a full in-depth review of soil dispersion, it is important to understand how a 

sodic soil can be identified. The detennination of a soils Cation Exchange Capacity 

(CEC) (Equation 2) is seen as one of the most reliable methods of identifying sodic 

soils (Murphy, 1995). In addition to this, the ESP, is widely used as an indicator of a 

soils susceptibility to dispersion (Rycroft et aI., 2002). Further to the CEC and ESP, 

the SAR (Equation 3) has been used to infer the equilibrium relation between soluble 

and exchangeable cations (Richards, 1954). The SAR is simply the proportion of 

water soluble sodium to calcium and magnesium in the soil (Davis et aJ., 2003) and is 

often the parameter of choice when dealing with the sodicity of irrigation water or soil 

solution as the presence of salts can cause problems when detennining the sum of the 

cations as in the case for ESP (Sumner, 1995). 

ESP = (100 x ExchangeableNa) 

CEC 

CEC = L (ExchangeableCa + Mg + K + Na + AI) 

Na+ 
SAR = ----;:::==== 

Ca++ +MgH 

2 

(Equation I) 

(Equation 2) 

(Equation 3) 
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Through the use and determination of the parameters discussed above, a great deal of 

research has been undertaken in an attempt to more fully understand soil sodicity and 

the associated problems. Gerber and Harmse (1987) produced a chart for assisting the 

determination of dispersive potential using the CEC and ESP meq/lOO g clay (Figure 

3.9). The chart is recognised as one of the most reliable of the chemical methods used 

for assessing a soil's potential dispersivity (Bell and Walker, 2000). From Figure 3.9, 

soils with an ESP above 15%, the critical limit, are classified as dispersive; the extent 

to which is controlled by the CEC. Elges (1985) proposed a threshold of 10%, above 

which soils that have had their free salts leached are prone to dispersion. ESP values 

as low as 6% have been identified as critical (Northcote and Skene, 1972). However, 

15% is recognised as the standard level used for determining saline-sodic soils 

according to the USDA (Richards, 1959) who have carried out extensive work on the 

subject area. In practice obtaining a critical value above or below which a soil can be 

regarded as sodic is arbitrary, as a number of other factors have to be taken into 

consideration. 

20.0 

18.0 

~ 16.0 
a 

14.0 ~ u-
t:I.~ 12.0 s-
::l '" '88 10.0 

en -.!!g-
8.0 "is 

~-
6.0 ; 

~ 

'" &l 4.0 

2.0 

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 

Cation Exchange Capacity (meq/lOOg clay) 

Figure 3.9: Cation exchange capacity against exchangeable sodium percentage for 
soil dispersivity classification (Gerber and Harmse, 1987). Where: YD, very 
dispersive; HD, highly dispersive; D, dispersive; M, marginally dispersive; ND, non
dispersive; CD, completely non-dispersive. 
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Electrical Conductivity (EC) also has a strong influence on a soils dispersion. EC is 

based on the concept that the electrical current carried by a salt solution under 

standard conditions increases as the salt concentration of a solution increases, and is a 

common way to measure soil salinity (Sparks, 1995). Quirk and Schofield (1955) 

investigated the effect of electrolyte concentration on soil permeability following up 

on work undertaken by Christiansen (1947) who had found that water of low 

electrolyte content resulted in soil surface sealing. Quirk and Schofield (1955) 

highlighted the fact that the electrolyte concentration must be increased in soils with 

an increasing ESP in order to maintain their flocculation. This is represented in Figure 

3.10. A similar relationship highlighting the importance of electrolyte in the 

understanding of soil deflocculation was proposed by Kamphorst and Bolt (1976). 

Dispersed 

ESP 

EC 

Increase in: 
Mechanical Energy 
Negative Charge 
Smectite or Illite 
K and Mg 
Anion Adsorption 
Exposure of New Surfaces 

Decrease in: 
Pco2 
Organic Matter 
Positive Charge 
Sequioxides 
Kaolinite 
Salt from Weathering 

Figure 3.10: Factors affecting the 'threshold concentration' curve (Quirk and 
Schofield, 1955) adapted by Sumner (1995). 

Further influential factors include soil pH and organic matter, and as with those 

factors discussed above, a great deal of research has been undertaken so as to 

understand their role. Organic matter can influence the susceptibility of potentially 

dispersive clays, as organic carbon as well as root and microbial filaments can 
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contribute to the stabilisation of aggregates (Sumner, 1995). However, there is 

considerable disagreement concerning the effects of organic matter on the dispersion 

process in sodic soils. Loveland et 01. (1987) found that dispersion ratios were 

strongly inversely correlated with organic matter in sodic soils with relatively low 

ESP values, yet Gupta et al. (1984) found that organic additions actually increased the 

dispersion of soils at high SARs. 

A final characteristic of soils, the pH, can also have a profound influence upon soil 

processes. In soils possessing a high pH, the ability of organic matter to bind and 

assist in soil flocculation can be reduced, even to the extent where the organic matter 

begins to dissolve as in many saline-sodic soils. 

A great deal of work has been carried out since the recognition of sodic soils and the 

associated problems that they encompass. Nonetheless, the problem of defining what 

characteristics a sodic soil should possess has not yet been resolved satisfactorily so 

as to give a universally accepted definition (Sumner, 1995). The boundaries defining 

the dispersive nature of a soil are not entirely clear. It was stated earlier that a value of 

15% is the generally accepted ESP level above which soils are considered dispersive 

depending upon the level of electrolyte present. However, Rengasamy et al. (1984) 

identified slightly different boundaries, using the SAR and EC. A range of classes 

were distinguished relating to their relevant dispersive nature and can be seen in 

Figure 3.11. The boundaries were drawn after work was carried out on 138 samples of 

red-brown earths in Australia and, as can be seen from the graph, soils are potentially 

dispersive at extremely low SAR values, and the EC has to be relatively high so as to 

maintain flocculation. However, mechanical shaking was required for dispersion to 
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occur in class 2a soils. In soils with a relatively high EC level, SAR values above 3 

are identified as dispersive and do so without mechanical shaking spontaneously, 

therefore making the management of such conditions difficult. 
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Potentially Dispersive 
(Rengasamy Class 2a) 

0.1 
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10 
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Dispersive Soils 
(Rengasamy Class I) 

100 1000 

Figure 3.11: A classification scheme for the prediction of dispersive behaviour of 
red-brown earths (Rengasamy et al., 1984) adapted by Faulkner et al. (2000). 

3.5 SOIL EROSION MODELLING AND MAPPING TECHNIQUES 

In order to manage badland and semi-arid environments it is an advantage to be able 

to represent the spatial distribution of soil erosion. The ability to determine whether 

areas are at potential risk from erosion and to map these at an appropriate spatial scale 

is valuable. A number of soil erosion modelling methods and mapping techniques 

exist and have been widely used in a range of environments. As outlined in section 

2.3 the spatial extent of soil erosion has been determined using one of three main 

approaches, or a combination of them, process models, remote sensing and field based 

investigations. 
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3.5.1 Erosion Process Models 

Erosion process models are designed around independent variables or predictors that 

are believed to influence the extent to which erosion processes operate. They are 

either site specific (developed for a specific area/region), or generic and can be 

applied across a range of environments. This section will briefly outline some of the 

models in global use and some of studies where they have been applied. 

The most widely used erosion model applied over large areas is the Universal Soil 

Loss Equation (USLE) (USDA, 1978). The equation takes the form: 

A=RKLSCP 

where A: Average annual soil loss in tons per acre; 

R: Rainfall erosivity factor; 

K: Soil erodibility factor; 

L: Slope length; 

S: Slope; 

C: Cropping factor; 

P: Conservation practice factor. 

(Equation 4) 

The USLE has since been adapted to become the Revised Universal Soil Loss 

Equation (RUSLE) which contains several improvements to the original approach. 

The RUSLE uses the same basic factors as the USLE, but improvements have been 

made through the way of the computing of the soil erosion factors (Shi et al., 2004). 

Millward and Mersey (1999) modified the RUSLE further for use within a 

mountainous region in Mexico and to incorporate GIS. The research demonstrated the 
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potential of the approach in such environments as well as its wider applicability. 

However, the need for more research into the modelling requirements within different 

environments was recognised as a fundamental objective for future research. 

The US Department of Agriculture (USDA) also developed the Water Erosion 

Prediction Project (WEPP), a physically based model developed for the quantitative 

prediction of erosion in small to medium sized basins (Flanagan and Nearing, 1995; 

Nearing et al. 1989; Wright and Webster, 1991; Hairsine and Rose, 1992a, b). A 

number of investigations have been undertaken to evaluate the predictive ability of the 

model such as Savabi et al. (1995), Tiscareno-Lopez et al. (1995), Ghidley and 

Alberts (1996). Zhang et al. (1996b) and Soto and Diaz-Fierros (1998). The latter 

study found that in general the predictions showed reasonable agreement with the 

observed values in the study area. 

As with WEPP, the European Soil Erosion Model (EUROSEM) is process and event 

based, considering fundamental hydrologic and erosion processes (de la Rosa et al., 

1999). The model has a modular structure simulating erosion by using a water and 

sediment routing scheme and has been widely evaluated (Folly et al., 1999). Cai et al. 

(2005) used the model in the Three Gorges Dam area and highlighted its ability to 

simulate runoff but encountered problems in determining sediment concentration and 

soil loss in a single event. 

A number of further models exist and have been briefly summarised in Table 3.3. 
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Model 
TOPMODEL 

CREAMS 

ANSWERS 

EROSION-
2D/3D 

CORINE 

Summary Reference 
• Catchment Scale. Beven and Kirkby (1979) 
• Calculates hydrological processes in Beven et 0/,(1984) 

order to predict sediment yield. 
• Runoff only. 

• FieldIPlot scale. 
• Calculates runoff and chemical 

transport from agricultural systems. 

Knisel (1980) 

• Catchment scale. De Roo (1993) 
• Simulates hydrological processes 

during and after a rainfall event. 

• 2D - Slope scale. Schmidt et al. (1999) 
• 3D - Catchment scale. 
• Calculates rainfall induced soil 

erosion and deposition for single 
storm events. 

• Continental Scale - Mediterranean 
Region. 

• Based on a simplification of the 
USLE. 

• Determines erosion risk at a 1 km 
resolution. 

Briggs 
(1995) 

and Giordano 

LISEM • Catchment scale. De Roo et oZ. (1996) 
• Simulates the hydrology and 

sediment transport during and 
immediately after a rainfall event. 

Table 3.3: Summary of various soil erosion models. 

3.5.2 Mapping Techniques 

A contrasting approach to soil erosion modelling is to map soil erosion spatially, and 

a range of techniques and approaches exist. The spatial resolution and extent of 

mapping investigations can vary significantly, from very simplistic ground based 

surveys where erosion is physically mapped at relatively small scales, to more 

complex studies using remote sources such as remote sensing and aerial photography 

over more extensive scales. 
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Remote Sensing and Aerial Photography 

Remote sensing offers the ability to study phenomena at scales that would otherwise 

be impossible. Various sensors possess different spatial, temporal and spectral 

resolutions, and the associated advantages with such have led to its growth and 

development in erosion studies. 

Servenay and Prat (2003) explored the application of remotely sensed imagery and 

black and white aerial photography for the determination of erosion in Mexico. The 

study found that erosion in the region was strongly related to land use changes that 

had occurred, and that Spot satellite imagery allowed the discrimination between 

different types of erosion, which would not have been possible with black and white 

photography. Mettemicht and Zinck (1998) developed an erosion map for a small 

study area in Bolivia using the Synthetic Aperture Radar (SAR) JERS-I and Landsat 

TM imagery, and highlighted the benefits of the synergistic use of remotely sensed 

imagery. 

Pickup and Nelson (1984) mapped soil erosion status using Landsat MSS in an arid 

region of central Australia, and found that the methodology provided a quick and 

simple means of mapping erosion status and landscape instability. Finally, Singh et al. 

(In Press) analysed the use of the NOAAJA VHRR data for the calculation of 

environmental degradation in central Brazil. As erosive processes change both the 

physical and chemical properties of a soil, monitoring such changes through time help 

identify and analyse the processes. It was determined that using such data provides a 

useful means of calculating soil colour and vegetation indexes and thus is quite 

helpful for the determination of soil erosion. 
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Field Mapping 

The most traditional approach to mapping and assessing soil erosion is through field

based investigations. In comparison to remote sensing, field mapping has a range of 

advantages and disadvantages. The advantages are that they can provide levels of 

spatial resolution that would otherwise not be possible from remote sensing or 

photographic techniques, however, field mapping is very time consuming and may be 

intensive as outlined by Evans (1992). 

Field based assessments of erosion are variable. For example, erosion pins can be 

used to accurately measure soil loss from individual locations. Saynor et al. (2003) 

used erosion pins to determine the extent of soil loss at 49 different sites in a 

catchment in northern Australia, and Amaez and Larrea (1995) at 118 sampling points 

in La Rioja, Spain. Although such work provides very detailed investigations 

typically related to specific study sites, it may be difficult to infer erosion 

characteristics for wider areas. 

3.5.3 Synergistic Methods 

A synergistic methodology recognises that no one method may be entirely appropriate 

to provide information concerning erosion at a suitable scale and resolution. A 

synergistic methodology may incorporate two or more different approaches or 

techniques in an attempt to better understand and determine soil erosion. For example, 

de Jong et al. (1999) used the soil erosion model for the Mediterranean (SEMMED) 

to simulate soil loss in two experimental locations. The model incorporates the use of 

a OEM, Landsat TM remotely sensed imagery, a soil map and field data, and 

accurately produced erosion maps at the regional scale. The use of remote sensing 
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imagery to provide inputs for process models is relatively commonplace. 

Mongkolsawat et al. (1994) used Landsat TM data to provide a land use coverage to 

be used with the USLE in Thailand, and Lu et af. (2004) used imagery in combination 

with the RUSLE in Brazil. Haboudane et al. (2002) combined the use of remote 

sensing and DEMs to determine areas susceptible to erosion and degradation in the 

Guadelentin Basin, Southeast Spain. Floras and Sgouras (1999) mapped erosion in 

central Greece and incorporated field-based studies on individual plots, DEMs and 

Landsat data, and found the methodology successful. 

3.6 SOIL EROSION RISK, HAZARD AND POTENTIAL 

The application of soil erosion information to applied scenarios requires that we can 

determine soil erosion parameters that are meaningful to landscape managers. The 

application of soil erosion risk, hazard and potential are three such parameters that 

can be used. They are defined as follows: 

• Soil erosion risk is a product of probability and loss, and is the conventional 

method by which it is calculated (Bondi, 1985; Middleton, 1999; Smith, 2001). 

• A hazard is a naturally occurring or human-induced process with the potential to 

create loss, and risk is the actual exposure of something of human value to a 

hazard (Smith, 2001; Wright, 2003). 

• Soil erosion potential is the inherent risk of erosion irrespective of current land 

use or vegetation cover whereas actual risk is the risk of erosion under current 

conditions. This approach is supported by Ellis (1997), taking it a stage further 

proposing that if only physical factors are taken into account when modelling 

erosion then potential risk is close to the actual risk. However, if social factors are 

considered, then the output is one of soil erosion hazard. 
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A number of previous investigations have attempted to develop erosion risk models or 

erosion risk maps in order to better understand and determine the associated hazards 

with erosion processes. However, the definition of risk is highly contentious within 

both the physical and social sciences and therefore requires the basic outlining of their 

fundamental definitions. 

The end-users choice of parameter will be largely dependent on the questions asked; 

for example, a soil erosion hazard map may not provide the necessary information on 

which to base management decisions because social factors (e.g. risk) may be more 

important. 

3.7 CONCLUSIONS 

As outlined in the introduction to this chapter, a number of topics have been 

introduced and comprehensively discussed regarding the underpinnings of 

geomorphology as a science, largely based on spatial and temporal concepts. The soil 

erosion processes responsible for land degradation in the Almeria province of Spain 

have been documented, the numerous modelling approaches that have been developed 

have been reviewed, and a discussion attempting to clarify the common confusion 

between the terms soil erosion risk, hazard and potential used within this study has 

been clarified. 
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4 

Artificial Intelligence Classifiers 

4.1 INTRODUCTION 

This chapter will briefly introduce the concept of Artificial Intelligence (AI) and 

provide a comprehensive review of both Artificial Neural Networks (ANNs) and 

Decision Tree Classifiers (DTCs). The review will include the general theory behind 

the techniques, their respective advantages and disadvantages and their past and 

current uses. The chapter will draw to a close with a general overview of the two 

classifiers and some brief concluding remarks. 

With the vast improvements and developments of data sources and collection 

techniques over recent years, substantial amounts of geographical information 

covering extensive areas have become readily available for use by academics and 

commercial organisations. This information comes from various sources, such as 

remotely sensed satellite derived data, obtained through various sensors which detect 

radiation from the Earth for different parts of the electromagnetic spectrum (Heywood 

et al., 1998). Aerial photographic imagery is now also readily attained for many areas 

of the Earth's surface. Even imagery for those which are not covered, can be acquired 

relatively easily and cheaply. These data can now be stored, managed and 

manipulated readily with the development of technology and software applications. 

Coupled with this has been the development of Geographic Information Systems 

(GIS), for processing, analysing, and visual ising the growing amounts of digital 

spatial data (Goodchild et al., 1996). This has allowed scientific investigations to 
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proceed that were hitherto impossible over a relatively short period of time, and at a 

spatial scale of study that was previously unpractical. 

With the development of data sets and tools such as GIS it is relatively simple to 

integrate data from one or more sources and subsequently perform some form of 

statistical analysis or model application to describe landscape form and process. 

Landscape processes and responses, change, can be linear and/or non-linear. A linear 

response is one where for a graded and measured input (A) the landscape has an equal 

and proportionally graded output (8). A non-linear response is where a graded and 

measured input provokes a functional response that may not necessarily be linearly 

proportional; such that the response, at first sight, may appear to be somewhat random 

and unexplained (see Figure 4.1). 

A 

Linear 
A 

Non-Linear 

Figure 4.1: The contrasting responses between two different systems where; A is an 
input and 8 is an output, with a linear process on the left and a non-linear process on 
the right. 

Conventional statistical techniques tend to make prior assumptions with regards to the 

nature of the data, and tend to assume a linear response between inputs and outputs, 

and are coupled with parametric restrictions (Spellman, 1999). However, because 

many environmental processes are apparently non-linear, the use of linear 
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classification systems is inappropriate when attempting to fully describe landscape 

behaviour, and tend to perform poorly. 

In order to combat this, an approach that would allow the use of multi-source data sets 

in research activities concerned with investigating non-linear patterns and processes is 

required. This has largely been achieved in the form of machine learning techniques, a 

sub-discipline of AI, such as ANNs and DTCs. Machine learning implies that we use 

the 'machine' (computer) to process the input data in such a way as to determine the 

functional relationships that provide a set of observable outputs. These types of 

classifiers have a number of distinct advantages over more traditional counterparts, 

some of which have been outlined in Table 4.1. This chapter will introduce and 

comprehensively review both classification techniques. It will highlight their 

applicability in determining landscape change for use in this thesis and discuss their 

associated limitations. 
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Data Classifier 

Artificial Neural 
Networks 

Decision Tree 
Analysis 

Linear Regression 

Multiple Regression 

Discriminant 
Analysis 

Logistic Regression 

Cluster Analysis 

• 

• 
• 

• 
• 

• 

• 

• 

• 
• 
• 

• 
• 

• 

• 
• 

• 

Advantages 
Ability to weight significance of • 
variables. 
No prior assumptions. 
Ability to make supervised and • 
unsupervised classifications. 
Easily integrate multi-source data. • 
Ability to map non linear 
functions. • 
Each component within the 
structure of the network is • 
responsible for only one small part 
of the input-output mapping 
operation. 
Ability to recognise subtle patterns 
in training data that may be missed 
by conventional statistical 
analysis. 
Provide a simple representation for • 
propositional knowledge that can • 
be used for decision making and 
classification. 
Robust to errors. • 
Relatively easy to implement. 
Can assist in our understanding of 
various problems. 

Easy to implement. 
Highlights potential relationships 
between two variables. 
Reveal relationships between 
several independent and one 
dependent variable. 
Multivariate technique. 
Limited use of categorical 
dependent variables permitted. 
Categorical dependent variable can 
be used. 

• 

• 
• 

• 
• 
• 

• 
• Can be used as an unsupervised 

classification technique. 
• 

• Highlights potential relationships 
between two variables. 
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Disadvantages 
Neural networks are opaque and 
understanding the internal 
workings is complex. 
The identification of an 
appropriate architecture. 
The determination of the training 
algorithm to be used. 
Determining the optimum learning 
parameters for the algorithm. 
The identification of appropriate 
stopping conditions for the training 
process. 

Problems of over-fitting. 
In many domains, not all of the 
attribute data will be known for 
every example. 
When an attribute has a large 
number of possible values it may 
potentially be a problem 
(Multivalued attributes). 
Continuous valued attributes may 
also be a problem as they may 
contain a large or infinite set of 
values. 
Only incorporates two variables. 
Assumption of linearity. 

Assumes a normal distribution. 
Assumption of linearity. 

Assumption of linearity. 

Can only be used in cases of 
dichotomous dependent variable. 
Only incorporates two variables. 

Table 4.1: Advantages and disadvantages of various classification techniques. 
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4.2 ARTIFICIAL NEURAL NETWORKS (ANNs) 

4.2.1 Introduction 

54 

A neural network is a senes of connections linking individual nodes (neurons) 

composing input neurons, 'function determining' neurons, and output neurons (Figure 

4.2) A neural network can be conceptualised as an information-processing system that 

has certain performance characteristics in common with biological neural networks 

(Fausett, 1994; Campbell, 2002). They are a computational (statistical) mechanism 

that is able to represent and compute a "mapping" from one multivariate space of 

information to another, given a set of inputs and outputs but without necessarily 

knowing any details of their relationship (Goh, 1995; Yang et al., 2003). They have a 

number of distinct advantages over more traditional statistical techniques making 

them appealing for a wide range of operations, and have consequently been used in a 

variety of applications where traditional statistical methods are traditionally employed 

(e.g. maximum likelihood classifiers) (Warner and Misra, 1996). 

Input Layer 

ANNs attempt to imitate some of the functions of the mammalian brain. The first 

attempts to model the fundamental cell of the brain, the neuron, were made by 

McCulloch and Pitts (1943), who described a simple neural network. It was only from 

the mid- to late 1980s that the realisation of the abilities of neurocomputing came 
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about. Neural networks work on the same principle as the human brain, but on a much 

smaller and simple scale. They typically comprise a number of simple processing 

units, or neurons, linked by weighted connections, in specified layers (Tveter, 1998), 

collectively termed the architecture (Figure 4.2). 

The input layer simply accepts the input data, with one node representing each 

element (independent variables), in the case of Figure 4.2 there are five inputs, thus 

representing five independent variables. Perhaps the most popular network 

architecture in use today is that of the Multilayer Perceptron (MLP) (Hontoria et ai., 

In Press). In situations where neural networks have been implemented, it is usually to 

a large extent MLPs which have been used (Brown et al., 1998; Boyd et al., 2002; 

Spellman, 1999; Gong, 1996), usually as a result of their ability to model functions of 

almost arbitrary complexity, with the number of layers, and the number of units in 

each layer, determining the function complexity. In a MLP the input layer distributes 

the data to the nodes within the 'hidden' layer; in our example here there are three 

nodes. Here, the weighted sum of the inputs are computed, passed through a transfer 

function, and forwarded to the node(s) in the output layer (Brown et al., 1998). The 

transfer function enables the network to perform in a non-linear manner, using either a 

sigmoid or stepped function (see Figure 4.4) The node(s) in the output layer then 

calculate the sum of the incoming weighted values, passes them through a transfer 

function and generates a result. The nodes are arranged in a layered feed-forward 

topology, and the network has a simple interpretation as a form of input-output model, 

with the weights and thresholds (biases) the free parameters of the model. A 

'threshold' is the point that defines one decision outcome from another. 
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4.2.2 Activation Functions 

The basic operation of an artificial neuron involves a number of steps so as to 

compute an output signal to be passed on to the neurons in the next layer of the 

network. Each unit, node, receives signals from its input links and computes a new 

activation level (from the activation function) that it sends along each of its output 

links (German and Gahegan, 1996; Russell and Norvig, 1995). As can be seen in 

Figure 4.3 the process can be split into two components. Firstly, a linear component or 

input function, netj, calculates the weighted sum of the input values of that unit. This 

is followed by a transfer function, or activation function g, which simply transforms 

the net input to a neuron into its output value (Fausett, 1994). Different models are 

obtained by using different mathematical functions for g, some of which are 

illustrated in Figure 4.4. 
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Figure 4.3: The internal process of the activation unit (Russell and Norvig, 1995). 

A range of activation functions exist, and are explained briefly below. 

Linear Function: The application of a simple linear activation function will constrain 

the performance of a network and will not be able to learn non-linear patterns. 
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Step Function: The incorporation of the step function allows the hidden layers to learn 

in a non-linear manner, usually between the limits of 0 and 1. Working on a simple 

threshold concept. 

Sine Function: Similar to the step function, but operates between the limits of 1 and 

-1. In such cases where positive and negative values are produced the networks tend 

to be trained faster. 

Binary Sigmoid Function: Can be scales to have any range of values appropriate for a 

given problem. 

Bipolar Sigmoid Function: A type of binary sigmoid function, but with the specific 

limits of 1 and -1. 

The activation function is part of what determines the dynamic state of a neural 

network system, and the ability of the network to change the weights enables the 

system to adapt and change (McCord Nelson and Illingworth, 1991). Furthermore, it 

acts as a range limiter, allowing the discrimination of inputs if they are arranged 

within some appropriate range (McCord Nelson and Illingworth, 1991). Without these 

limits the input data could produce outputs at the extremes of the range and would 

create problems when determining one from another. A good example would be that 

of the binary sigmoid function seen in Figure 4.4 (c) where inputs of X<-l or x>+ 1 

would yield similar outputs in either the positive or negative direction. Therefore, 

X=lO would be very similar to X=100. 



Artificial Intelligence Classifiers 

.0, 

_ ... __ ._---_._---_._.. . .. _ .. _._-_ ... __ . __ .... _--.... 

----~-1 

(a) Sine function 

OJ = f(net j ) = {
+ 1 

-1 

0; 

(b) Step function 

0, ~ !(nel,) ~ {~ 

OJ 

net j ~t 

net j <t 

net, 

net. 

~---

neti 

(c) Binary sigmoid function 

1 
OJ = f(net j ) = -An t 1 +e e, 

(d) Bipolar sigmoid function 

2 
OJ =f(netj ) = An-I l+e- eli 

(e) Linear function 

OJ = f(net;) = net; 

.. 1>] 

~
1.1=1 

1<) 
0; 

::;;;..---.......• 
net. 

58 

(f) Binary sigmoid function for 
varying values of A. 

Figure 4.4: Common activation functions and their accompanying mathematical 
functions. 
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4.2.3 Training Methods and Algorithms 

Deciding whether or not to use an AI approach to describe landscape change 

behaviour is dependent on the questions the user (e.g. the landscape manager) is 

asking. For example, a small specific scale problem (e.g. a localised landslide failure) 

may be readily managed through quick and empirical field observations. However, 

more extensive areas and problems may render simple field/empirical relationships 

difficult, inefficient (e.g. non-linear) and/or unproductive. In these cases a neural 

network (AI) approach may be appropriate. The decision to use a neural network 

model should therefore be made on the basis of employing an appropriate tool for a 

task (Abrahart and White, 2001). The user must be satisfied that an ANN can 

outperform alternative methods in its use of resources (e.g. time, money and 

efficiency) and deemed relevant to a study. 

The user must carry out a number of vitally important steps before the model can be 

applied to a specific problem. Once the type of network has been chosen the 

architecture of the network must be selected. A great deal of literature has been 

written regarding the determination of an optimal network topology for a problem, 

such as the number of layers and neurons within each layer. Blum (1992) suggested 

that the number of hidden nodes should fall be between the number of input and 

output nodes. Moreover, Berry and Linoff (1997) proposed a general rule of thumb 

whereby the hidden nodes should be no more than twice that of the input layer, and 

Bourquin et al. (1997) applied Kolmogorov's theorem stating for n inputs a hidden 

layer of 2n + 1 nodes is sufficient. However, many studies have successfully used 

more hidden nodes than in the input and output layer. Unfortunately determining the 

optimal number of layers and the number of neurons within those layers is still largely 



Artificial Intelligence Classifiers 60 

believed to be a process of trial and error (Ghiassi and Saidane, 2005; Spellman, 

1999), problem specific (Wang et al., 1994) and of all the configuration issues has the 

fewest theoretical guidelines (Jarvis and Stuart, 1996). 

Once an architecture has been established, the network requires training. The ANN 

learning process can be grouped into two specific techniques, 'supervised' and 

'unsupervised'. An example of a supervised classification would be where 

information relating to dependent variables is available (e.g. an erosion map); an 

unsupervised classification however does not contain any knowledge of the dependent 

variable, and using the independent variables outputs are clustered into similar groups 

to one another. Supervised networks are presented with both dependent and 

independent variables. Unsupervised neural networks are essentially data classifiers 

(Openshaw and Openshaw, 1997) and are largely employed when there is no available 

training set on which the network could be trained. Maybe perhaps little is known 

about their functional relationships in the first place. Therefore, it is the job of the 

neural network to find results and relationships with little prior knowledge of the 

process in question. 

There are numerous training algorithms, all of which are used in conjunction with 

varying network types. The back-propagation neural network (BPNN) trained by the 

generalised delta rule (Rumelhart et al., 1986) (Equation 5) has been successfully 

utilised in many fields, especially for pattern recognition due to its learning ability 

(Dai and MacBeth, 1997). Back-propagation is probably the best known training 

algorithm for ANNs (Tveter, 1998) and comprises a number of distinct advantages 

and disadvantages over other training algorithms, such as Conjugate Gradient 
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Descent, Levenberg-Marquardt, Kohonen, and Probabilistic training algorithms. 

During the training of the ANN, the learning algorithm aims to estimate optimal 

values of the weights by minimising an error function, usually the sum of the squared 

error between the target and network predicted output (Wang et ai., 1994). 

The generalised delta rule commonly used to train back-propagation ANNs can be 

written as: 

(Equation 5) 

Where Dai and MacBeth (1997) state that 'I is the learning rate and a is the 

momentum rate. ~Wijk is the change of the weighted connection between nij (nij is the 

jth node in the ith layer) and ni+1 k. oij is the output of nij, and aik is the change in error 

as a function of the change in the network input to the ni+1 k. Finally, (n+ 1) indicates 

the (n+l)th step. 

Back-propagation works by simply back-propagating the error of an output based 

upon the actual, and a targeted output. The algorithm works in two distinct stages, a 

feed-forward phase, and a back-propagation phase. The performance of a BPNN 

trained by the generalised delta rule is influenced by such factors as the size and 

structure of the network as well as training parameters, such as the learning rate and 

momentum. Defining such parameters can be problematic and few rules actually exist. 

The convergence speed (iteration number) of the training procedure is dependent upon 

both the learning rate 'I, and the momentum rate a (Dai and MacBeth, 1997). The 

learning rate controls the amount by which weights are adjusted during training. The 

momentum on the other hand considers the weight changes associated with previous 
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learning steps and uses the knowledge to slow down ineffective oscillations (Salomon 

and van Hemmen, 1996). 

The difficult process of selecting both a learning rate and a momentum rate that will 

allow an ANN to perform at its optimum has been recognised in the literature, for 

example Dai and MacBeth (1997) and Maier and Dandy (1998). The goal is to 

identify both a learning and momentum rate that will allow the network to converge 

relatively quickly, and within some specified error threshold. The learning rate should 

be selected to be as large as possible so that the network reaches its error threshold 

quickly. However if it is too large, then the learning process may become unstable and 

oscillate (Pao, 1988) or in some cases the network may fail to converge at all (Maier 

and Dandy, 1998). The way to increase the learning rate without leading to oscillation 

is to use a momentum term, where step size is increased or decreased if error rates are 

reduced or increased respectively (McClelland and Rumelhart, 1988). This also needs 

to be relatively large so as to increase the speed of the algorithm when a number of 

consecutive steps are made in the right direction. However, as in the case of the 

learning rate, if the chosen value is too large then the network will not converge and 

too small a value would mean that the time taken to converge would be substantial. 

Dai and MacBeth (1997) found the learning parameters '1 and a were highly 

influential in relation to the speed of convergence when using a BPNN to pick seismic 

arrivals. A relationship was found between the iteration number and the two training 

parameters, and can be written as follows: 

(I-a) 
Iteration Number = INo X--'--~ 

- lOxq 
(Equation 6) 

where: a is the momentum term, " is the learning rate and INo is the iteration number. 
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Dai and MacBeth (1997) stated that the optimum value for 1'/ is likely to fall between 

0.6 and 0.7 and a between 0.8 and 0.9. McClelland and Rumelhart (1988) also 

reported in most of their simulations that a should be around 0.9 and 1'/ around 0.7. In 

reality however, these findings can only act as guides, as the ideal values for the two 

parameters are likely to be problem specific (Maier and Dandy, 1998,2001). 

4.2.4 Current Uses of Artificial Neural Networks 

The revival of interest in neural networks in the 1980s came largely as a result of the 

increasing awareness of their many abilities. This awareness however, was only in a 

very small number of research areas (e.g. in medical use), and even with the great 

advances in data collection sources, computing power and the networks themselves, 

their adoption has been limited. In the few cases where neural networks have been 

employed, the results have tended to be positive to such an extent that they have, in 

many circumstances, replaced the more traditional techniques (e.g. in remote sensing 

neural networks are widely preferred to more traditional classifiers when using 

spectral unmixing models (see Liu and Wu, 2005). These uses have ranged from 

simple pattern recognition, such as the automatic recognition of hand-written 

characters (see Le Cun et 01., 1990) to medical problems, where symptoms are 

identified and a diagnosis offered (see Anderson, 1986a;b). Refenes et 01. (1994) 

examined the use of an ANN as an alternative to classical statistical techniques for 

forecasting stock market activities. They found that even simple neural learning 

procedures such as the back-propagation algorithm far outperform current statistical 

techniques in forecasting accuracy terms. This comes as a result of the limitations of 

classical statistical techniques that reach their limitations in applications with non

linearities in the data set (Refenes et 01., 1994). These are just a small number of 
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examples where ANNs have provided promising advances in the understanding of 

highly complex processes. However, their adoption has been less noticeable in 

geography and related sub-disciplines, despite the attempts to promote their benefits 

by a small number of researchers (Openshaw and Openshaw, 1997). As a result, the 

possibility that ANNs may hold to geographical issues is immense, and this promise 

has only recently become apparent. 

One research area that has realised this potential is remote sensing, where ANNs have 

been successfully used in numerous applications (Paola and Schowengerdt, 1993, 

1995; Luoto and Hjort, 2005). For example, ANNs have been used in both supervised 

and unsupervised classifications, including land cover classifications (Civco, 1993; 

Downey et al., 1992; Jarvis and Stuart, 1996), image inversion (Smith, 1993) 

estimating soil physical properties (Chang and Islam, 2000) and cloud classifications 

(Lee et al., 1990). This potential was largely recognised due to a networks ability to 

learn and classify data. In remote sensing, various sensors either on satellites or 

aircraft operate at relatively large spatial scales, producing vast amounts of data 

relating to the reflectance of various surfaces of the Earth. In more traditional 

techniques, the wavebands that were deemed the best for a given classification were 

used in a statistical analysis, such as regression, with the others being disregarded. 

However, ANNs have the ability to weight the significance of the independent 

variables used (Boyd et al., 2002), and thus allow the integration of all available 

wavebands. In theory this allows for better, more accurate analysis, without the added 

implications of choosing the correct wavebands to use. 
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F oody et al. (1995a; 1995b) recorded significantly higher classification accuracies 

when using an ANN classification than from the discriminant analysis when 

attempting to classify crop type on fields in Feltwell, in the UK. The outputs gained 

from the neural approach gave accuracies as high as 98 percent, but it was only during 

the use of non-nonnally distributed data that the differences between the two 

techniques became apparent as the neural approach continued to produce highly 

accurate outputs. 

Moreover, Boyd et al. (2002) tested a number of neural networks in comparison with 

regression analysis to estimate forest cover in the Pacific Northwest USA. It was 

found that the neural network approach was most attractive in this role as a result of 

the advantages they hold over more traditional techniques and not simply as a result 

of an improved accuracy. ANNs make no assumptions about the data, can easily 

integrate multi-source data and can weight the significance of the discriminating 

variables. Overall, ANNs have been used to classify remotely sensed data to 

accuracies that are generally comparable to or higher than those derived from 

conventional statistical classifications (Hepner et al., 1990; Medina and Vasquez, 

1991; Short, 1991). 

Other uses of neural networks in geographical fields have been extremely limited, 

despite the potential that they offer. As seen in the remote sensing applications, the 

advantages that they hold have been sufficient to warrant their wider applicability in 

the field of remote sensing. Boyd et al., (2002) detailed that one of the major 

attractions is that they offer a powerful means to analyse complex data sets without 

making assumptions about them, such as linearity's. A great deal of real-world 
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systems and processes are non-linear and thus, simple linear models fail to capture the 

essence of the underlying phenomenon (Spellman, 1999). 

ANNs are in principle capable of solving any non-linear classification problem, 

provided the network contains a sufficiently large number of free parameters (i.e. 

hidden units and/or connections) (Wu, 1997). Abrahart and White (2001) found this 

most beneficial in modelling sediment transfers, where it was apparent that the neural 

solution provided a tighter fit to the data with a pronounced reduction in outliers when 

compared to a multiple linear regression technique. The neurocomputing technique 

was also found to have further advantages for such an application. As described 

earlier, each component within the overall structure of the network is responsible for 

only one small part of the total input-output mapping operation. Therefore, each 

individual data input can have no more than a marginal influence with respect to the 

complete solution, thus allowing for substantial fault tolerance (Abrahart and White, 

2001). This consequently allows the model to generate reasonable results, even in 

cases of incomplete data, and/or data containing substantial 'noise'. This statement is 

supported by Gong (1996) who also found networks to be, to some extent, tolerant of 

noise when using them for geological mapping and Hepner et al. (1990) who were 

using a minimal training set for classification purposes. Furthermore, Skidmore et al. 

(1997) highlighted their ability to identify subtle patterns in input training data, many 

of which would be missed by conventional statistical analyses. This is the advantage 

of the training process, whereby the network actually learns and therefore does not 

require a prior knowledge of the functional relationships between the input and output 

variables primarily due to their non-linear abilities at handling complex data patterns 

(de la Rosa et al., 1999). Hence, any underlying relationships, no matter how small, 
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will have a good chance of being picked up and acknowledged by the network, thus 

allowing for the development of a model more closely representing the underlying 

patterns and processes being investigated. 

One area in which ANNs have only recently attracted attention in geographical and 

environmental analysis is looking at the activities involved in land degradation, 

especially that of soil erosion, and subsequently attempting to produce accurate, 

representative models. To date, this attention has at best been limited, and 

consequently while the suitability of ANNs for this type of application is still not fully 

understood, it appears promising. De la Rosa et al. (1999, 2000) used neural network 

applications in the development of a model to assess agricultural soil erosion, 

potential vulnerability, and the impacts upon crop productivity in Spain. In these 

studies ANNs along with DTCs were used to formulate, calibrate and perform a 

validation analysis on the ImpelERO model. Within this model, networks were 

applied to capture the interactions between the land and management qualities in 

order to produce one output, a vulnerability index to soil erosion (de la Rosa et al., 

1999). Variables such as runoff erosivity, relief hazard, soil erodibility, crop 

protection, tillage translocation and productivity influence were used for training 

purposes. The results of the first of the two studies were promising, and highlighted 

the ability of ANNs in recognising the main interrelationships of the input parameters, 

and subsequently could accurately reproduce the soil erosion vulnerability patterns 

that were observed in the field. The model was later applied to 20 selected benchmark 

sites in western Europe to quantify the soil erosion vulnerability under several crops, 

the impact of soil erosion on crop production and the optimum management strategies 

(de la Rosa et al., 2000). The model was found to give much more accurate results 
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than the CORINE model (see Chapter Three, section 3.5.1), but would require further 

studies if the model were to be put into practice over larger geographical areas 

because the model was developed and trained with regards to one specific 

geographical area and its specific characteristics, and these may differ in other areas. 

4.2.5 Accuracy of Artificial Neural Networks 

The accuracy of the output( s) of the neural network is dependent upon the input 

variables and the complexity of the questions being asked: The more complex the 

problem (e.g. landscape classifications over large geographical area encompassing 

many different land types or 'detailed' mapping at smaller scales) the less likely that 

the accuracy of the output will represent the 'real world'. This is clearly scale 

dependent and involves a trade-off between the goals and expectations of the analysis 

and exactly what the practical application of the analysis is. Some users may be 

willing to accept a lesser accuracy of output in order to minimise input complexities 

and provide required spatial coverage, whereas other users may demand higher 

accuracies that necessitate more detailed inputs and greater training. Therefore, 

acceptable accuracy is subjective and there is no one level at which the neural 

networks and decision trees can universally be said to be right or wrong; success must 

be measured specifically on a case-by-case basis. 

Ellis (1997, 2002) incorporated the use of multi-source data sets along with neural 

networks and GIS when investigating the application of machine learning techniques 

for erosion modelling. The studies identified the current inability of traditional 

mathematical erosion models when applied over complex regions and therefore 

investigated the usefulness of both neural networks and decision trees in the 
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modelling of areas prone to land degradation through the process of soil erosion. The 

study took place in an area of approximately 93km2 in New South Wales, Australia. 

The data inputs for the models were Landsat Thematic Mapper bands 1-7 for use as a 

surrogate for both vegetation cover and broad land management practices, a soil map, 

tree cover map and a DEM produced from I :25000 topographic maps. The output 

data used to train the models was obtained from a 1 :25000 soil erosion map of the 

area. It was found that even using only a 5 percent training set, the overall accuracy of 

the network ranged from 91 to 92 percent. In this case, although this may seem 

relatively high it was deemed poor as the networks classified only one or two 

prominent classes, largely ignoring the smaller classes, and thus obtaining high 

accuracy levels. 

Harris and Boardman (1990) applied an expert system approach for the prediction of 

soil erosion in the South Downs in Sussex, England. The expert system was trained 

using a total of 334 erosion events recorded during a six year monitoring exercise, and 

the results were comparable to those obtained using more traditional process-based 

models such as the USLE and CREAMS. In an extension of the research, Harris and 

Boardman (1998) increased the data set to 450 events and applied both an ANN and 

an expert system to the problem. The results indicated that although the accuracy of 

the AI techniques matched that of the process models, the accuracy of the expert 

system was not improved considerably with the addition of further data. 

4.2.6 Disadvantages of the Neural Network Approach 

As with any modelling technique the ANN approach has several drawbacks and 

related problems, some of which are relatively easy to overcome and others that tend 
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to be more challenging. One of the major problems is that the vast majority of those 

who could possibly apply neural networks to their research are unfamiliar with the 

technology and thus would not incorporate it into their work. Secondly, but not such a 

problem today, was the slow processing speeds and technological hindrances that 

made such an approach unappealing. However, the vast majority of the evidence 

against using neural networks comes as a result of their associated challenges for their 

meaningful application to real-world problems, rather than from the technique itself. 

There are a number of such points, but the main argument against using neural 

networks are frequently based on the premise that they are nothing more than black

box models which provide no scientific explanation or theoretical understanding of 

underlying fundamental processes of the real-world (Abrahart and White, 2001). 

Networks are often described as opaque; and it is not easy to look inside them so as to 

ascertain how they produce their results (Minsky, 1991). This is a distinct 

disadvantage of connectionist systems when taken in comparison with other more 

traditional, rule-oriented approaches to artificial intelligence (Alexander and Mozer, 

1999). Results gained through ANNs in any study can therefore only be validated 

statistically as the network output and the desired output can be compared in 

situations when the actual or true output is known. In order for the user to gain 

confidence in the technique, it is important to be able to obtain an understanding of 

the internal workings of the network and, of course, to make inferences into the 

processes or activities being studied. For example, an ANN may produce an accurate 

model representation of the real-word for a simple, small-scale problem, but be 

unsuitable (without development) when scaled-up to a larger, more geographically 

complex landscape. This is a well documented drawback within the literature, for 
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example Boyd et at. (2002) found opacity to be a problem when attempting to identify 

the relationship between remotely sensed data and the phenomenon of interest. There 

is a great deal of research written contributing to determining possible ways of 

countering the problem of opacity (see Alexander and Mozer, 1999; McMillan et at., 

1991 and Hinton, 1989). The solutions used are largely based on rule extraction 

techniques, approaches that provide visibility into a networks operation by casting its 

weights in the form of symbolic rules (Alexander and Mozer, 1999). Such methods 

involve the long and drawn out process of removing variables one by one so as to 

determine the influence of a given variable upon the workings of the network as a 

whole. 

A second concern when using neural networks is the identification of an appropriate 

architecture. The specification of an appropriate network topology is a key issue 

because it governs the capability of the network to provide an adequate approximation 

of the input-output relationships (Benediktsson et al., 1990; Hepner et al., 1990; Lee 

et al., 1990; Wang et al., 1994). However, there is no assurance that the optimum 

topology is identified and the network may therefore perform below its capabilities. 

Too small a network will be incapable of representing the desired function, yet too big 

and it will be able to memorise all of the examples by forming a large lookup table but 

is unable to generalise (Russell and Norvig, 1995). Therefore, a network with a large 

number of hidden nodes may perform well reclassifying the learning sample, but 

would perform less well when faced with new cases (Lees, 1996). Thus, it is critical 

to develop an architecture large enough to perform a given task, but small enough as 

to not hinder its ability to generalise (Hinton, 1990). 
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Capability not only depends upon the network structure but also on the learning 

algorithm that is used to determine the weights of the interconnections. There is a 

great deal written with regards to how to combat this problem in terms of rules and 

laws (see Wang et al., 1994). Many believe the network architecture is problem 

specific and extremely difficult to handle more efficiently than through a time

consuming process of trial and error (Lengelle and Denreux, 1996; Brown et al., 

1998). 

The final problems to be discussed here all concern the ANN training process. Before 

the training of a network is to take place, a sufficiently large sample needs to be 

obtained, which is also unbiased towards the population that it represents. Once again 

no laws as such exist, and the sample size is largely deduced by the user. It is vitally 

important that the sample used to train the network is representative of the population 

from which it has been taken, given the particular sensitivity of machine learning 

algorithms to unrepresentative learning samples (Lees, 1996). Various studies have 

incorporated data that has not been representative and have consequently had 

difficulties when using neural networks. Spellman (1999) for example used ANNs for 

the prediction of surface ozone concentrations in the UK. The results from the study 

revealed that although they predicted ozone concentrations more accurately than the 

conventional regression-based model, they tended to underestimate high air pollution 

episodes. This problem could be due to the fact that very poor air quality events are 

rare and as a result there are few examples in the training dataset (Spellman, 1999) 

and the model therefore performs poorly when predicting such events. Such a problem 

was also documented by Ellis (2002) when using machine learning techniques for 

erosion modelling. Although the model reached prediction accuracies as high as 92 
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percent, small classes were often poorly predicted. This was put down to the fact that 

such classes were not well represented in the training samples, and thus some form of 

stratified sampling would best be employed to enable the prediction of the under

represented classes. 

The choice of training algorithm is also vitally important in the training of a neural 

network. A great deal of literature has been written regarding the many various 

algorithms, their advantages and their drawbacks, where they have been successful 

and where they have not (see McCord Nelson and Illingworth, 1991; Russell and 

Norvig, 1995). However, some algorithms have added complications in that they 

require learning parameters to be set before they can begin to train a given network. A 

prime example of this is the back-propagation algorithm, which has been documented 

in some detail throughout this chapter. The learning parameters, such as the learning 

rate and the momentum will influence how the network learns. The learning 

procedure might be unstable and the weights of the back-propagation neural network 

may become trapped in a local minimum and fails to discover lower values from the 

global minimum. However, Rumelhart et al. (1986) discovered that very rarely did 

networks get stuck in poor local minima that were significantly worse than the global 

minimum, and was only encountered in networks possessing just enough connections 

to perform a task. It usually occurs when the momentum causes the algorithm to 

increase its speed if a number of consecutive steps change the weights in the right 

direction. As with the majority of these issues, a great deal of work has been 

concerned with identifying optimal values for these parameters (see Gorman and 

Sejnowski, 1988; Dowla et al., 1990; Fausett, 1994; Dai and MacBeth, 1997), yet it is 

largely a process of trial and error which is often time consuming and inconsistent. 
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Finally, it is important to determine at which point training should stop. The 

importance of a large enough sample size on which to train a network has been well 

emphasised here, but it can be the case that an ANN becomes over-trained. The 

traditional method of control involves the implementation of fixed stopping 

conditions based on out-of-sample performance (Bishop, 1995). These stopping 

conditions usually work on the premise of the associated errors within the network, 

and the user can specify an error level below which training will be suspended, or 

when the error fails to improve by a given amount over a given number of epochs. It 

is important that stopping conditions are set otherwise the predictive capabilities of 

the network will suffer and the performance will be poor. This point is further 

illustrated in Figure 4.5, where it is evident that at a given point the error level in the 

test data stops falling, and may even begin to rise. Thus at this point training should 

cease and over-training can be avoided. 
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Figure 4.S: Error in the training and test sets during training (Picton, 2000). 
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4.2.7 Summary 

In summary, ANNs have an enormous potential as a classification tool possessing a 

number of inherent advantages. However, as has been demonstrated within the 

previous sections of this chapter, they also have a series of shortfalls that may limit 

their applicability. Therefore, prior to implementing an ANN, the user must be 

satisfied that it is the most appropriate tool and be aware of all of the associated 

limitations. 

4.3 DECISION TREE CLASSIFIERS (DTCs) 

4.3.1 Introduction 

A Decision Tree Classifier (DTC) is an attempt to use a 'stratified' or 'layered' 

approach to the problem of distinguishing between different groups or classes 

(Mather, 2001). Friedl and Brodley (1997) defined DTCs as a classification process 

that subdivides a data set into smaller subsets through a series of questions or tests at 

each branch in the tree. This works through the simple partition of the space X of 

possible observations into sub-regions corresponding to the leaves, since each 

example will be classified by the label of the leaf that it finally reaches (Ripley, 1996). 

Figure 4.6 shows the workings of a very basic DTC. The tree can be separated into 

three principle components; firstly, the root node at the very top of the tree, followed 

by a number of internal nodes known as splits, and finally terminal nodes or leaves. 

Unlike ANNs, each node in a DTC may have two or more descendant nodes but only 

a single parent node from which they are grown (Friedl and Brodley, 1997). The 

process is considered to be a chain or union of basic decisions based on the results of 

a series of questions as opposed to a single, complex decision, making the 
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classification process more comprehensible (Pal and Mather, 2003; Safavian and 

Landgrebe, 1991). 

Root 

Split 

A c Leaf 

A B 
Figure 4.6: A decision tree classifier. Each box is a node at which tests (T) are 
applied to recursively split the data. A, Band C are classes assigned to each 
observation (Friedl and Brodley, 1997). 

4.3.2 Decision Tree Algorithms 

The main objectives of DTCs are; to correctly classify as much of the training sample 

as possible, to generalise beyond the training sample so that unseen samples could be 

classified with as high of an accuracy as possible and be easy to update and have as 

simple a structure as possible (Safavian and Landgrebe, 1991). In order to satisfy 

these general criteria, a number of steps have to be taken. Firstly, a DTC structure has 

to be selected. In the past this done manually, using spectral plots (Pal and Mather, 

2003), or by experts with substantial knowledge of the subject (Cawsey, 1998), 

however, recent developments have led to automatic design methods (e.g. the 

computer may create many decision trees and select the most appropriate for the 

classification task). Secondly, the choice of feature subsets to be used at each internal 

node has to be determined. Finally, the choice of the decision rule to be used within 
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the network at each node has to be selected. These choices should be made on the 

premise that each classification task is unique and therefore requires individual 

considerations when they are being developed. 

Constructing a DTC is simple when there is an exact partition of X, however, this is 

rarely the case, and the classes are found to overlap, often known as a noisy 

classification problem (Ripley, 1996). In order to account for this, there exist two 

possible strategies; stopping tree construction early, so monitoring its progress, and 

secondly pruning the tree after construction. Pruning simply involves the 

identification and removal of the least reliable nodes (Bradley and Lovell, 1995), thus 

reducing the complexity of the tree and making it more comprehensible (Pal and 

Mather, 2003). Ockham's razor insists upon economy or simplicity when choosing 

between different hypothesis to explain a fact (Rodriguez-Fermindez, 1999). It is 

therefore generally assumed, following Ockham's economy principle, that the simpler 

a DTC is, in terms of its structure, the more general its applicability will be, and thus 

its performance on unseen cases will be better than that of a more complex tree. It is 

commonly agreed that finding new ways to build smaller decision trees is a desirable 

goal (Berzal et a/., In Press), and pruning is one way in which decision trees can be 

drastically simplified. 

Most algorithms that have been developed for decision trees are variations of a core 

algorithm that employs a top-down, greedy search through the space of possible DTCs 

(Mitchell, 1997). Such algorithms have been used, and have been the centre of 

decision tree induction research for a number of years. Probably the most well-known 

is the ID3 algorithm (Quinlan, 1986) and its successor C4.5 (Quinlan, 1993). There 
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are a number of alternatives, such as the ACLS algorithm (Patterson and Niblett, 

1983) and the ASSISTANT algorithm (Kononenko et al., 1984), both of which are 

generalisations of the ID3 algorithm. 

There are two possible approaches to the induction task of creating a DTC. The first 

approach would be to generate all of the possible decision trees that correctly classify 

the training set and simply select the simplest one. This is a viable approach when the 

task is relatively simple, as the number of trees is indeed finite, but potentially very 

large. The ID3 in contrast, attempts to classify data when there are many attributes 

and the training set contains a number of objects, and thus computationally becomes 

more efficient. In general the ID3 has been found to construct simple decision trees, 

but the approach that it uses cannot guarantee that better trees have not been 

overlooked (Quinlan, 1986). 

The central choice in the ID3 algorithm is selecting which attribute to test at each 

node in the tree, as it is important to select the attribute that is most useful for 

classifying the data first (Mitchell, 1997), allowing for as small a tree as possible. The 

ID3 algorithm uses an information gain criterion, which can be interpreted as the 

decrease in conclusion uncertainty resulting from the last test at a given node 

(Pomorski and Perche, 200 I). This relatively simply process is known as information 

gain, which measures how well a given attribute separates the training examples 

according to their target classification (Mitchell, 1997). The process by which this 

. operation can be undertaken is known in information theory as entropy. This is simply 

a method of determining the purity or impurity of a collection of examples, or data 
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set. Therefore, given a collection S, which contains both positive and negative 

examples of a given target, the entropy of S relative to this boolean classification is: 

Entropy(S) == - p$ log2 p$ - Pe log2 Pe (Equation 7) 

where: p$ is the proportion of positive examples in Sand Pe is the proportion of 

negative examples in S. It is important to know that 0 log 0 is 0 here. 

It is often useful to use an example to illustrate this rule. Therefore, suppose S is a 

collection of 16 examples, of some boolean concept, 11 of which are positive, and 5 

are negative. The entropy of S relative to this boolean classification is therefore: 

Entropy(S) = - Pe log Pe 
Pe + Pe Pe + Pe 

Pe log Pe 
Pe + Pe Pe + Pe 

(Equation 8) 

For example, if there are a total of 16 classes, with a split of 11 and 5, then; 

11 11 5 5 
Entro'P.11J(S) = (11+ 5-) = --log ---log -

~ , 16 2 16 16 2 16 

= 0.896 

Therefore, the entropy is 0 if all of the members of S belong to the same class, or in 

other words it returns a low entropy value for subsets with high homogeneity 

(Kervahut and Potvin, 1996), and the entropy is 1 if the set contains an equal number 

of positive and negative examples. It is therefore likely to be the case (as in the 

example following Equation 8), that the entropy will fall somewhere between 0 and 1. 

The form of the entropy function can be seen in Figure 4.7 highlighting this point. 
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Figure 4.7: The entropy function relative to a boolean classification (Mitchell, 1997). 

The above discussion has been formed around a boolean classification, without 

regarding a classification with multiple values. In such circumstances, a target 

attribute that can take on c different values, has an entropy of S that can be defined as: 

c 

Entropy(S) == L - Pi log2 Pi 
(Equation 9) 

i=( 

where Pi is the proportion of S belonging to class i. Once calculated, the entropy can 

be used as a measure to determine the ability of any given attribute to correctly 

classify the training set. The ID3 system uses a simple rule whereby the attribute that 

gains the most information is selected (Quinlan, 1986). This measure is known as 

information gain, and is the expected reduction in entropy after a partition via a 

specific attribute has been made. ID3 examines all of the candidate parameters and 

chooses the one that maximises the gain (Pomorski and Perche, 2001), thus selecting 

the attribute for the root of the decision tree. This process would then be repeated time 

and again until a tree has been fully built from a given training set. The information 

gain can be written as: 
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Gain(S,A) == Entropy(S)- L lSI vllEntropy(sv) 
veValues(A) S 

(Equation 10) 

where Values(A) is the set of all possible values for the attribute A, and Sv is the subset 

of S for which attribute A has value v (i.e. S = {s E SIA(s) = v}). The equation is 

merely the entropy of the subset S, and the expected entropy after it has been 

partitioned by A. Gain (S, A) is therefore the information provided about the target 

function value, given the value of some other attribute A (Mitchell, 1997). 

Unfortunately, this approach has been found to be bias, as Kononenko et al. (1984) 

suggested, stating that the gain criterion tends to favour attributes with many values. 

There have been a few steps taken in order to prevent this undesirable effect, such as 

Kononenko et al. (1984), whose ASSISTANT algorithm took active steps to tackle 

this problem. It achieves this by ensuring that all tests only have two possible 

outcomes. This will not be discussed in detail here, but for a more comprehensive 

discussion see Konenenko et al. (1984) and Quinlan (1986). An alternative method 

however is the gain ratio criterion (Quinlan, 1986), which penalises attributes with 

numerous values by incorporating a split information, as follows 

Splitlnformation( S, A) == - t lSi I log IS; I 
i~1 lSf 2lSf 

(Equation 11) 

where Sl through Sc are the c subsets of examples from the partitioning of S by the c-

valued attribute A. We can therefore determine the gain ratio by using the following 

equation. 
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G . R . (S A) _ Gain(S,A) am atlO , = -----'--'----
SplitInformation( S, A) 

(Equation 12) 

The gain ratio criterion will therefore act against the natural bias and deter the 

selection of attributes with uniformly distributed values. Quinlan (1987) found that 

when all the attributes are binary, the gain ratio procedure found a considerably 

smaller decision tree than that produced otherwise. The C4.5 algorithm uses the same 

technique as ID3, but its main contribution consists of introducing continuous 

parameters (Quinlan, 1996). 

4.3.3 Decision Tree Structures 

DTCs algorithms can either have a uniform or heterogeneous set of algorithms to 

estimate the splits at the internal nodes (Friedl and Brodley, 1997). More traditional 

approaches tend to use homogeneous hypothesis spaces, such as Univariate Decision 

Trees (UDTs) and Multivariate Decision Trees (MDTs). A UDT is limited to testing a 

single feature (Swain and Hauska, 1969), whereas a MDT allows testing of multiple 

features at a node (Brodley and Utgoff, 1995). As each test in a UDT is based on a 

single independent variable, splits or thresholds can only be created at right angles to 

the axis that represents the selected variable (Pal and Mather, 2003). Therefore, as can 

be seen in Figure 4.8, the decision boundaries created for a UDT can only be parallel 

to either of the axis as only the outcome of a test applied to a single feature or 

independent variable at each internal node can be determined (Swain and Hauska, 

1969). 
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Figure 4.8: Axis-parallel decision boundaries of a Univariate Decision Tree (Adapted 
from Pal and Mather (2003». 

Unlike a UDT, a MDT is not restricted to splits of the instance space that are only at 

right angles to the features' axes (Brodley and Utgoff, 1995). The two are similar, yet 

the splitting test at each node in a MDT may be based on a number of independent 

variables (Friedl and Brodley, 1997). Breiman et ai. (1984) and Utgoff and Brodley 

(1990) suggest that UDTs may be limited in situations where data sets can only be 

split and thresholds identified using combinations of features (tests), as opposed to 

unions of single features, and that MDTs may be better employed. As can be seen in 

Figure 4.9, in such cases the feature space may be split through linear combinations of 

features, so as to correctly classify the training data. 

Figure 4.9: Decision boundaries for a multivariate decision tree classifier (Adapted 
from Pal and Mather (2003». 
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4.3.4 Current Uses of Decision Tree Classifiers 

Decision trees have a number of advantages over more traditional classification 

algorithms (Hansen et al., 1996), as well as their machine learning counterparts. This 

has made them an attractive tool for which they have been employed for a number of 

classification problems in a number of fields. To begin, they are strictly non

parametric and therefore do not require any assumptions regarding the distributions of 

the training data (independent variable) (Friedl and Brodley, 1997; Pal and Mather, 

2003). This advantage has been recognised within the remote sensing community and 

is of particular use when a single land cover type is represented by more than one 

cluster in the spectral space (DeFries and Cheung-Wai, 2000). The efficiency of 

DTCs, when compared to maximum likelihood methods has been attributed to the 

non-parametric nature that they possess (Borak and Strahler, 1999; McLachlan, 1992). 

A maximum likelihood classifier applies a single classification operator to an entire 

data set assuming that it is normally distributed, and thus performs poorly on non

normally distributed data. 

The opportunity that DTCs have developed has been taken on board in many remote 

sensing research areas, contributing largely to their rapid growth and development. 

For example, Yang et al. (2003) indicated that by using hyperspectral data as input, 

they could outperform logistic regression quite considerably when classifying 

agricultural plots (in Canada). In addition, Rogan et al. (2002) found decision trees 

outperformed a Maximum Likelihood Classification (MLC) approach by about 10 

percent in an investigation into various methods for monitoring multi-temporal 

vegetation change using Thematic Mapper imagery. Friedl and Brodley (1997) found 

that decision trees consistently classified to higher accuracies than either the Linear 
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Discriminant Function (LDF) or a MLC when used to produce land cover 

classifications. Goel et al. (2003) stated that DTC algorithms have potential in the 

classification of remotely sensed spectral data. 

Such an advantage can also be extrapolated into further areas of research, where more 

traditional statistical approaches tend to perform poorly, particularly when the entity 

being studied is believed to be non-linear. In such cases, the implementation of a 

decision tree can often reveal non-linear and hierarchical relationships between input 

variables and the dependent variable (DeFries and Cheung-Wai, 2000; Han and 

Kamber, 2001), as well as uncovering any structure in the data (Breiman et al., 1984; 

Safavian and Landgrebe, 1990; Sethi et al., 1990; Brown et al., 1993). Ellis (1997) 

evaluated the use of DTCs to model soil erosion and found them easy to interpret, 

offering the ability with which to better understand the relationship between variables. 

Unfortunately however, the implementation and use of DTCs for use within similar 

research areas has been extremely limited. However, DTCs have been used to 

determine soil properties in Australia (Henderson et al., 2005), predict and model 

pasture productivity in New Zealand (Zhang et al., 2005a, 2005b) and to determine 

vegetation distributions (Moore et al., 1991). 

Unlike other non-linear techniques, in particular ANNs, a decision tree is not a 'black

box' (Borak and Strahler, 1999) and the internal workings and theory (rules and 

boundaries) behind the classifier is open to view (Pal and Mather, 2003). This allows 

our understanding of certain non-linear entities to be furthered in cases where decision 

trees tend to classify well. This advantage can be seen in numerous studies and in 

numerous fields of research where such an approach has been employed. 
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In contrast to conventional single-stage classifiers where all of the sample data is 

tested against all of the classes (a very long drawn out process), a decision tree 

becomes more computationally efficient as it only tests a sample against certain 

subsets of classes, thus reducing unnecessary computations (Safavian and Landgrebe, 

1991). Decision trees can be trained relatively quickly and are rapid in execution 

(Gahegan and West, 1998; Fayed and Irani, 1992; Hampson and Volper, 1986). Other 

techniques, such as the ANN approach, take much longer to train and finally develop 

a classifier that can be used, as the method has to continually learn and adapt to the 

training data that it is presented with. The time taken to train a decision tree is 

therefore significantly faster than neural networks (Wierczorkowska, 2000). 

Furthermore, there are fewer parameters involved with creating and developing a tree, 

and the procedure is relatively straightforward in comparison to a neural network 

methodology. 

Another important advantage that DTCs possess in comparison to more traditional 

classification techniques, unlike parametrically based classifiers, is that they can 

function without difficulty on data of any statistical type, so the individual attribute 

dimensions can be a mixture of nominal, ordinal and quantitative data (Gahegan and 

West, 1998). This allows far greater freedom and a much wider range of applications 

for such a classifier. This is especially true in cases where more than one data set is 

considered to be the optimal approach for classifying any particular entity. 

In addition to those advantages already discussed, Friedl and Brodley (1997) also 

found decision trees to be very efficient and robust, and insensitive to noise, making 

them highly appealing for remote sensing applications. However, German et 01. 



Artificial Intelligence Classifiers 87 

(2002) found that they were noise intolerant, as they depend on the specified sets of 

data being available at each node for rule resolution. Nonetheless, in their comparison 

study of two bayesian classifiers (namely the minimum distance-to-mean (MDM) and 

the MLC, as well as a linear discrimination analysis (LDA) and an ANN), it was 

found that the decision tree offered the best all-round choice. 

4.3.5 Disadvantages of the Decision Tree Approach 

As with all classification techniques, decision trees possess a number of inherent 

disadvantages. A relatively large proportion of these problems are related to the fact 

that they learn from a training data set presented to them by the user. The 

characteristics of any data set used to train a supervised classifier has a considerable 

influence on the accuracy of the resulting classification (Campbell, 1981). To begin, a 

set of training data needs to be representative of the entity with which it is being used 

to study. If the training data however is not representative, the decision tree will not 

perform well when presented with new inputs. Furthermore, in a situation where a 

small data set is used, the tree may encounter the "Hughes phenomenon" (Hughes, 

1968), where the classification accuracy may decrease as the number of features 

increases for a constant training set size. Such a problem must therefore be 

considered, but training set size is problem specific, and therefore usually difficult to 

determine. 

It is often the case that the training data will possess noise of some description. The 

description of objects may include attributes based on measurements or subjective 

judgements, both of which may give rise to errors in the values of attributes, and some 

of the objects may even have been misclassified. Many of the branches of a DTC may 
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reflect chance occurrences in the training data set rather than portraying true 

underlying relationships (Kim and Koehler, 1995). Quinlan (1986) suggests that in 

order for a decision tree to handle noise, the algorithm must be able to; 

(i) work with inadequate attributes, because noise can cause a comprehensive set 

of attributes to appear inadequate. 

(ii) decide that testing further attributes will not improve the predictive accuracy 

of the decision tree. Therefore refraining from increasing the complexity of the 

decision tree to accommodate noise generated cases. 

A similar problem to that discussed above, is that of overfitting. As the training data 

examples are only samples of all possible instances, it is possible to add branches to a 

tree that would improve performance on the training set, whilst reducing the 

performance and limiting the general applicability of the tree on unseen cases 

(Mitchell, 1997). It is often the case that decision trees constructed from a collection 

of examples, although accurate and efficient, often suffer the disadvantage of 

excessive complexity and are therefore incomprehensible (Quinlan, 1987). In such 

cases, where the trees become complex and opaque, it is useful to attempt to simplify 

the classifier, usually through a pruning method. Quinlan (1987) investigated the use 

of four pruning methods to assist in the simplification of complex decision trees, and 

found that they all achieved a significant simplification, and often an actual increase 

in classification improvements on unseen cases. This finding is supported by the work 

of Pal and Mather (2003) who also found that although pruning increased the error on 

the classification of the training set, it reduced the tree size considerably (from 713 to 

231 nodes in this example), and was better at classifying on unseen examples. 
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Other problems with decision tree classifiers largely relate to the actual design and 

implementation process. Firstly, the user has to determine which type of decision tree 

would best classify a given problem. Once a tree has been grown, a post growth 

procedure such as pruning can then be adopted to simplify the tree and make it more 

comprehensible, but again which one to choose can be a difficult task. Finally, the 

number of training patterns has to be determined. This is very often determined by 

cost, as data acquisition in many instances can be expensive. The size of the training 

data set however is important, as the classifier accuracy will improve as the set size 

increases, but only up until a point. Again, such a scenario is problem specific and no 

general rules can be applied. 

4.3.6 Summary 

The usefulness and wide-scale applicability of DTCs for a number of research 

questions has been documented and discussed within section 4.3 of this chapter. 

DTCs as with other non-parametric classifiers, offer the ability to handle non-linear 

data sets and have frequently been shown to yield higher classification accuracies than 

MLCs (Rogan et aJ., 2002). Moreover, they have the ability to work with multi-source 

data-sets and provide useful and coherent outputs. Nevertheless, they are reliant upon 

training data and the growth and determination of an optimal tree is not 

straightforward. 

4.4 CONCLUSIONS 

This chapter has introduced the concept of machine learning and has documented and 

reviewed the two classification techniques to be used in this thesis. Both techniques 

have unique advantages and disadvantages which are highlighted and supported by 
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the considerable literature. Although both have broadly similar advantages over more 

traditional techniques, they have been compared and contrasted for a range of 

applications. Goel et al. (2003) for example proposed that although better results were 

gained using ANNs over DTCs, the formulation of precise rules using the latter 

approach was both an interesting and useful feature. Tu (1996) supported this 

suggesting that ANN s may be particularly useful when the primary goal is prediction. 

However, in situations where this is not the case and an important goal is to determine 

possible relationships between independent and dependent variables, other methods 

may better be employed. 

These are potentially innovative methods by which soil erosion can be classified and 

mapped using multi-source data sets. These techniques may offer the ability to better 

understand operative processes and assist in our all-round geomorphological 

knowledge. 

Prior to the employment of the machine learning techniques discussed here, the 

development and creation of a data set has to be fulfilled with which the classifiers 

can be trained. The following chapter, Chapter Five, will document and detail the 

building of the data set and provide a comprehensive methodology on which the thesis 

is built. 
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5 

Research Framework and Data Methods 

5.1 INTRODUCTION 

Previous chapters have considered the issues of soil erosion, modelling and mapping, 

and Artificial Intelligence (AI) methods to detennine landscape elements that are 

eroding or vulnerable to erosion. This is seen as valuable as an applied tool for 

landscape managers in order to aid landscape management decisions. This chapter 

provides descriptions of the research framework and the data methods used to meet 

the research aims and objectives outlined in Chapter One. A number of components 

are required to provide output types (as discussed in Chapter Four). The components 

(independent variables) that detennine the propensity for a landscape element to erode 

are reviewed along with their validation (why any particular component is needed; its 

validity to the output type) and how they have been calculated and collected. The 

chapter also discusses the sampling strategy used to provide a training data set for 

both the Artificial Neural Networks (ANNs) and Decision Tree Classifiers (DTCs), 

and the implementation of the data used in the training procedures. 

5.2 METHODOLOGICAL SETTING 

The use of AI techniques has been demonstrated in recent years with the fruition of a 

number of successful studies concerning a wide range of environmental issues (see 

Chapter Four). This has largely occurred as awareness has increased and the 

realisation that such techniques can be applied using low-cost data sets, but still 

provide useful and acceptable results. Furthennore, AI approaches can often handle 
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multi-source data sets and establish non-linear relationships that may otherwise go 

unseen between independent and dependent variables and/or undetected by more 

conventional classifiers. 

A primary aim of this study concerns the applicability of two AI techniques for the 

classification of erosion processes and their spatial extent in the semi-arid landscape 

of the Almeria province, Southeast Spain. To determine the applicability of AI 

techniques a number of classifications are undertaken using combinations of both 

dependent and independent variables of landscape erosion as training data. Different 

combinations of independent variables are used to determine landscape erosion. The 

methodology investigates what combinations of these are most influential in 

determining soil erosion with accuracy. This is valuable in a practical sense because 

the high costs associated with field sampling are frequently acknowledged. Lunetta et 

al. (1991) stressed the difficult balance in deciding what field data to choose between 

when sample data is expensive when obtaining a statistically valid data set. The 

search for methods and techniques that efficiently use low-cost training data as 

opposed to expensive field collected data is an important debate. An extensive array 

of data sources are now available that may offer potential replacements or substitutes 

for variables previously collected in the field. Such data sources have come to fruit 

largely as a result of the development of Geographical Information Systems (GIS) and 

associated technologies. There is no universal answer because different applications 

will have different spatial resolution requirements. For example, a locally-based, 

small scale study may still discover that field-collection and analysis is a more 

appropriate method (it may be cheaper and quicker), while an extensive regional 
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investigation may conclude that AI-based techniques provide a valuable alternative to 

exhaustive and expensive detailed field mapping. 

In order to provide a focus, a number of basic research questions are investigated. The 

questions are as follows: 

• How do ANNs and DTCs perform as classifiers of soil erosion for different levels 

of classification (e.g. simple (binary) classes to detailed (interval) classes)? 

• How do ANNs and DTCs compare with one another as classifiers of soil erosion 

and where appropriate how do they compare with a more traditional statistical 

technique (Discriminant Analysis)? 

• To what extent does the selection of independent variables influence classifier 

performance? 

• Can ANNs and DTCs further our current knowledge and understanding of soil 

erosion processes? 

• What are the physico-chemical relationships between various soil parameters and 

what is the applicability of the field sodicity meter developed by the Australian 

Co-operative Research Centre for Soil and Land Management? 

5.3 RESEARCH FRAMEWORK 

In order to meet the stated aims and objectives (Chapter One) and to answer the 

questions above (section 5.2), a solid research framework detailing rationale and 

justification for the major methodological steps undertaken is required. The sub

sections here will detail the development of the training data sets, the validation and 

justification of the dependent and independent variables and the sampling strategies 

used to collect the data. 
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5.3.1 Training Data Sets 

As outlined in Chapter Four, both ANNs and DTCs learn through the presentation of 

training data. It is therefore vitally important that the data set is representative (sample 

of landscape information attributes that adequately describe the population) (Friedl 

and Brodley, 1997; Lillesand and Kiefer, 2000) so as to allow the classifiers the best 

possible chance of accurately classifying unseen cases. Campbell (2002) and Hixson 

et al. (1980) suggest that the selection of an appropriate training data set may even be 

more important than the classifier used. 

To produce a supervised classification, both independent and dependent variables are 

required. The independent variables were derived through a range of sources and can 

be seen in Table 5.1. As outlined previously, independent variables were compiled 

from primary and secondary information sources. Primary sources were obtained in 

the field, and in some cases (e.g. geology) this field evidence is used to corroborate 

secondary (mapped) information. Secondary data sources are those that are 'remote' 

from the site (e.g. geology map). 

However, the dependent variable (estimate of erosion based on a visual scale) was 

compiled and determined through fieldwork alone because currently comprehensive 

soil erosion mapping does not exist for the area (at an appropriate resolution). If one 

had existed it may have provided the data set from which the dependent variable 

could have been derived. 
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5.3.2 Validation of Variables 

Independent and dependent variables must be individually validated to establish that 

(as suggested from established literature) they are important components of landscape 

change prior to soil erosion modelling (Le Bissonnais et al., 2001). Therefore, the 

justification for their inclusion will be made here based on prior knowledge of erosion 

processes. 

In this study nine independent variables and one dependent variable were chosen 

(Table 5.1). Of these, slope angle, aspect and vegetation cover (estimated and 

classified) can be derived in different ways. They are as follows: 

• Slope Angle: The angle of a slope influences its level of stability as well as 

controlling factors such as runoff velocity and the potential of soil detachment. It 

has thus been incorporated within numerous soil erosion models, including the 

Universal Soil Loss Equation (USLE), the Revised Universal Soil Loss Equation 

(RUSLE) and the Water Erosion Prediction Project (WEPP). Moreover Desmet 

and Govers (1996) and Mcgregor (1957) recognised the importance of slope in 

erosion processes. 

• Slope Aspect: Slope aspect strongly influences factors that will in turn limit or 

exacerbate erosional processes. The aspect will control soil moisture retention and 

will consequently control vegetation growth on that slope. Shrimali et al. (2001) 

incorporated slope aspect for the determination of erosion susceptible areas for a 

catchment in northern India. 

• Vegetation Cover: The extent of vegetation cover is a vitally important factor 

limiting erosional processes and subsequent land degradation (Cyr et al., 1995, 

Cerda, 1999). Plant roots will bind the underlying soil mass and the above ground 
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matter will protect the soil from raindrop impact and the detachment of soil 

particles from surface runoff. 

• Geology (Lithology): Vrieling et al. (2002) included lithology when developing a 

methodology for erosion risk mapping, as did Rafaelli et al. (2001) when 

developing an erosion process model for use within the a catchment in Argentina. 

• Sodicity: Sodic soils contain a higher than desirable amount of sodium attached to 

the clay particles, and when in contact with water tend to swell and disperse 

(Rengasamy and Bourne, 2001). Shainberg (1990) highlighted that sodic clay soil 

surfaces can be easily slaked leading to a reduction in surface infiltration rates as 

pore spaces become clogged with particles. However, in soils containing low clay 

percentages and organic content, infiltration rates may remain unaffected whilst 

the soil is destructured due to the loss of its only flocculating agent (Faulkner et 

al., 2000). Therefore, the determination of soil sodicity allows inferences to be 

made with regards to its potential erosion characteristics. Furthermore, the 

determination of soil sodicity at each site is useful as although lithology maps 

detail known soils sodicity can vary greatly over small distances. Lopez

Bermudez and Romero-Diaz (1989) discussed the extent of piping and badland 

development in Southeast Spain, and mapped the extent of marls associated with 

subsurface erosion. Unfortunately, the resolution of the map is too coarse to be 

used as a further independent variable here. For a more detailed discussion refer to 

section 3.4.2. 

• Plan and Profile Curvature: Plan and profile curvature refers to the curvature of 

the surface in the direction of the slope and perpendicular to the slope 

respectively. Profile curvature can assist in the identification of zones of erosion 
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and deposition, and plan curvature areas of convergent and divergent flow 

(Pallaris, 2000; Gallant and Wilson, 1996; Haboudane et al., 2002). 

• Flow Accumulation: Flow accumulation is an important variable as topography 

controls the accumulation of water and energy in the landscape (MacMillan et al., 

2004) and will thus exert controls on erosive processes. 

• Flow Length: Flow length refers to the calculated distance of flow upstream or 

downstream for any given cell. This parameter has also been used by Shrimali et 

al. (2001) in the aforementioned study. 

Source 
DEM Generated 
(Grid cells of 10 and 20m) 

Ground Survey 

Photographs 

Sodicity Meter 

Independent Variables 
Slope Angle 
Slope Aspect 
Plan Curvature 
Profile Curvature 
Flow Accumulation 
Flow Length 

Slope Angle 
Slope Aspect 
Vegetation Estimate 

Vegetation Classification 

Sodicity 

Geology Map Geology (Lithology) 

Dependent Variable 

Erosion 

Table S.l: The variables collected for the study and their sources. 

As detailed in Table 5.1 a range of independent variables were obtained from DEMs 

with grid cell sizes of 10 and 20 metres, providing a range of spatial attributes of 

hydrologic characters (Zhang et al., I 996a). Table 5.2 provides a brief description of 

the range of attributes acquired to assist in their validation. 
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Attribute 
Slope Angle 

Slope Aspect 

Plan Curvature 

Profile Curvature 

Description 
Slope identifies the maximum rate of change in value from 
each cell to its neighbours. 
Aspect identifies the down-slope direction of the maximum 
rate of change in value from each cell to its neighbours. 
Calculates the curvature of the surface perpendicular to the 
slope direction. 
Calculates the curvature of the surface in the direction of the 
slope. 

Flow Accumulation Creates a grid of accumulated flow to each cell, by 

Flow Length 

accumulating the weight for all cells that flow into each 
downslope cell. 
Calculates upstream or downstream distance along a flow 
path for each cell. 

Table 5.2: A brief description of the attributes calculated from the derived DEMs. 

5.4 SAMPLING STRATEGY 

The aim ofthe training stage (see Chapter Four) within supervised classifications is to 

derive a representative sample of characteristics for each class (Chen and Stow, 

2002). In order to achieve this, an appropriate sampling strategy is required to ensure 

that the sample is representative of the population of information for the study area. 

This has long proved a challenge in numerous investigations and has subsequently 

been discussed at great length. A number of difficulties still exist. Chapter Four 

discussed at length the problem of identifying appropriate training set sizes for any 

supervised classification technique and identified that only some general rules of 

thumb exist. For example, conventional probabilistic classifiers require large training 

sets, typically for each class in the region of 10 to 30 times the number of 

discriminating variables (Piper, 1992; Swain, 1978). Campbell (2002) suggests 

between 5 and 10 examples of each class during supervised classifications. Foody 

(1995) recognised the limitation with classifiers for remote sensing purposes, relevant 

here nonetheless, suggesting that obtaining extensive data sets is contrary to the 

overall goal of scaling-up from limited ground data, and furthermore they rarely exist 
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(Foody et al., I 995a). In this context this is an important point; if the number of 

individual training cases becomes too large the user may be better served by simply 

conducting a detailed field survey and dispensing with the AI approach altogether. 

Foody et al. (1995a; 1995b) and Chen and Stow (2002) discuss the issues relating to 

training set composition for use within supervised classifications. One of the most 

important factors is inter-class variations within the training set: equal numbers of 

each dependent variable may improve classification accuracy particularly in smaller 

classes. Thus it is important to be aware of the composition of the training set, the 

characteristics of which should be carefully outlined. Nevertheless, it is not always 

possible to determine the location of various classes spatially, as for example may be 

the case in remote sensing investigations, and it is therefore difficult to control 

training set composition. The problem is highlighted by Welsh et al. (1996) when 

modelling rare species (Leadbeater's Possum) and associated swamping effects. 

A range of spatial sampling strategies exist in order to meet this criteria, including 

random, stratified and random stratified sampling strategies (see Table 5.3). The use 

of a rigid sampling strategy was decided against. The reasons for this are listed and 

discussed below: 

(i) It is extremely expensive to spend long periods of time in the field (Chen and 

Stow, 2002). Therefore, data collection had to be relatively quick and efficient. 

(ii) Some areas within the study area have limited accessibility. For example, an 

extensive portion of the study area is inaccessible due to the existence of a 

gypsum quarry (see Figure 5.1). Furthermore, only a limited number of roads 

exist within the study area, and thus the majority of the sampling had to be 
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undertaken on foot~ and the extremely variable terrain made some locations 

impossible to reach and others potentially dangerous. 

(iii) The distribution of erosion processes varies spatially, and a sampling 

technique whereby predetennined sites are sampled disregards this. For 

example, subsurface processes may only be operating in certain locations and 

may be missed if sites are randomly selected prior to fieldwork. 

(iv) Areas of extreme erosion are less prominent than are areas showing no 

appreciable sign of erosion. The use of a rigid sampling strategy could 

therefore potentially miss or limit the number of cases incorporated into the 

training set relating to the less geographically extensive processes. 

(v) Training data sets are required to be representative of the entire population 

being sampled (see Chapter Four). Therefore, through site selection in the field 

it is possible to control the contents of the training set to some extent. For 

example, sites with limited vegetation cover, moderate vegetation cover and 

extensive vegetation cover would all be incorporated. This would be 

impossible to control using when predetennined locations are selected. 

Sampling Strategy 
Simple random sampling 

Stratified sampling 

Description 
Samples selected totally at random within the study 
area with no predetennined assumptions made. 

Samples collected systematically based upon some 
predetennined spatial framework such as a grid. 

Random stratified sampling Samples collected at random within some 
predetennined locations, such as a grid. 

Clustered sampling Samples taken around a number predetennined 
locations within the study area. 

Table 5.3: Common spatial sampling strategies. 
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As previously stated, the classifiers require data relating to as many of the field 

locations as possible accompanied by the range of different outputs (dependent 

variable). Prior to the extensive fieldwork season, the determination of a suitable 

measurement of the dependent variable (erosion) was required. This was achieved 

through a preliminary field excursion where the study area was covered extensively. 

This enabled the determination of different erosion processes as well as the extent to 

which they were seen to be operating upon the landscape. This enabled the 

construction of an erosion risk scale. The scale is discussed in more detail later. 

Fieldwork was undertaken during the months of September and October in 2003. The 

approach that was taken was as follows: 

(i) An area of 40 km2 (8 km x 5 km) was selected within the DEM within which 

sampling was to be concentrated. This can be seen in Figure 5.1. 

(ii) Using geology (lithology) as a primary variable, an extensive range of 

sampling points were visited located on different units within the study area. 

Of the independent variables geology is the only one that completely changes 

spatially. For example, slope angles of 45 degrees are likely to exist in 

numerous locations throughout the study area, however, geological units are 

specifically constrained. Thus, to develop a representative training set samples 

were required on the different units. 

(iii) As many sampling points were visited as possible within the specified 

fieldwork period. A total of 520 sites were sampled, the locations of which can 

be seen in Figure 5.1. 

(iv) Sites were chosen based upon their sampling viability. As previously 

discussed, extensive areas were not viable to visit either due to safety issues or 
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simple logistics. However, if a site was deemed viable and could be identified 

on the DEMs it was chosen and various data collection methods and 

techniques were subsequently employed to extract the required data. 

Figure 5.1: The 520 sampling locations draped onto aDEM of the study area (study 
area is enclosed within the red box, and yellow box is the approximate location of the 
gypsum quarry). 

5.5 ATTRIBUTE ACQUIREMENT 

Attribute acquirement concerns how the variables were collected (primary and 

secondary), and how they are extracted (e.g. DEMs). As indicated by Table 5.1, 

independent variables were acquired through field-based methods and two DEMs. 

The following sub-sections detail the methods through which each variable has been 

collected. 

5.5.1 Field Acquired Variables 

A number of independent variables along with the dependent variable erosion were 

measured and determined in the field. Sites were determined using the sampling 

strategy outlined in section 5.4, however, it was important to ensure that each site 
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fulfilled a range of simple criteria prior to its selection and inclusion within the 

training data. 

A description of how each variable was collected and/or measured is detailed below. 

• Slope Angle: Recorded using a compass clinometer to the nearest degree. The 

measurement was taken on any part of the slope that was deemed to be 

representative of the entire slope (i.e. not an extreme point). 

• Slope Aspect: Using a compass-clinometer a bearing of the predominant direction 

of the slope was recorded to the nearest degree ranging from. 1· to 360·. In cases 

where the study site was flat, and thus had no dominant aspect, a value of -1 was 

assigned. In such cases the slope angle was said to be O· (i.e. flat). 

• Vegetation Cover: The extent of vegetation cover at each site was estimated 

through simple visual inspection, providing an essentially subjective but 

nonetheless useful assessment. Vegetation coverage was deemed to involve only 

the extent of ground cover at or very near the soil surface. Tree canopies therefore 

do not accommodate the same extensive coverage, as would low-level scrub. The 

reason for this is twofold; firstly very few trees grow in the semi-arid conditions, 

and they usually have limited canopies with little leaf matter. Secondly, overland 

flow, a strong erosive force is constrained by vegetation cover at or very near the 

soil surface. 

To provide a less subjective view of vegetation coverage a number of photographs 

were taken at each site, attempting to incorporate the entire slope. The 

photographs provided the base for simple classifications to be undertaken in order 

to accurately calculate the vegetation cover as a percentage. However, a number 
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of practical issues arise from this method and have to be taken into consideration. 

The main concern is that such photographs will generally tend to lead to an over-

estimation in vegetation cover, as the image is oblique and will rarely be 

perpendicular to the slope surface, leading to the impression that more vegetation 

cover is present than may actually be the case (Figure 5.2). 

------
------ ------ ':'::::'::':::' - - - -

-$~--... ---------------

Figure 5.2: The potential over-estimation of vegetation cover when usmg 
photography. 

Using a simple supervised classification technique within ERDAS Imagine 8.6, a 

single photograph chosen for each site was classified using the maximum 

likelihood algorithm. The chosen image was deemed the optimum of all of those 

taken at a specific site (total of three), incorporating the entire slope and from the 

best possible angle (in relation to the point mentioned previously). The maximum 

likelihood classifier was chosen (it quantitatively evaluates both the variance and 

covariance of the category spectral response when classifying unknown pixels) 

(Lillesand and Kiefer, 2000). Furthermore, maximum likelihood classifiers have 

been used successfully in numerous remote sensing investigations where the 

assumption of normality is applicable to response patterns as is the case within 

this application. As in any supervised classification technique it is important to 

determine an appropriate training method so as to incorporate spectral response 
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patterns of each class to be classified, namely vegetation and non-vegetation. 

Through a small number of trial classifications it was determined that 20 different 

training points each consisting of five pixels for both vegetation and non

vegetation produced good results. The classifications were monitored using the 

histograms to monitor the normality of the spectral responses. 

• Geology (Lithology): With the aid of a number of different geology and lithology 

maps the geological unit on which each of the training sites was located was 

recorded. Previous field excursions allowed the visual identification of distinctive 

geologies, whilst those that were not so distinctive were classified using the maps. 

• Sodicity: The field sodicity meter was used to determine the potential of soil 

sodicity and its dispersive properties. The method involved collecting a subsurface 

soil sample at each site at a depth of 20 centimetres. This was done largely to 

avoid sampling surface crusts that may vary significantly and thus should be 

sampled separately (Richards, 1954). Each sample was tested using the field 

sodicity meter using the methodology detailed in section 7.2.1, and also in the 

laboratory with standard procedures for the determination of dispersive properties 

so as to provide a basis for the comparison of the results. 

• Erosion: The dependent variable erosion was determined at each site through the 

use of a simple soil erosion index. Prior field excursions were undertaken to 

develop the index, estimating the most extreme areas where various erosion 

processes operate and areas less affected by erosion. The index is a simple sliding 

scale ranging from 0, no appreciable erosion, to 8, severe subsurface gully erosion 

and can be seen in Figure 5.3 and Figure 5.4. The presence of surface wash was 

limited in the study area and was seen to be operating in combination with minor 

rill erosion when it did occur as runoff was concentrated into small channels, and 
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consequently they have been combined in Class 1. In addition to minor rilling two 

further classes, moderate and severe rill erosion were incorporated into the 

classification scheme. Rills were defined within the classification as being no 

deeper than around 30 centimetres. Erosion above 30 centimetres was defined as a 

gully. A number of definitions have been used in the literature to distinguish 

between rills and gullies (0ygarden, 2003). For example, Bocco (1991) stated that 

a depth of around 0.5 metres should differentiate between rills and gullies. 

Furthermore, the Food and Agriculture Organisation (FAO) (1965) defined gullies 

as channels whose depth and width do not allow normal tillage. However, the 

classification here used a 30-centimetre rule to distinguish between the two, and as 

long as it was implemented consistently it was felt that it would have little 

negative effect on the overall output. 

This approach is subjective and is dependent on the surveyor's interpretation. In 

defence, it can be stated that: 

(i) The surveyor must be "trained" and have a degree of expertise in the field 

that is sufficient to distinguish between classes. 

(ii) The "system" or "scheme" used to classify the landscape is implemented 

consistently. 

Through the field excursions, it was felt that slopes possessing gullies developed 

through the process of subsurface erosion were the most severely eroded slopes in the 

study area as opposed to those containing gullies developed through Hortonian 

processes. Moreover, gullies developed through piping were seen to range more in 
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terms of the extent to which they operate and as such are contained within three 

classes as opposed to the two classes dedicated to Hortonian gully erosion. 

Figure 5.3: The sliding scale classification for the dependent variable erosion. 

While developing the classification scheme, it was important to keep in mind the 

issues associated with training sets used within supervised classifications. The number 

of different classes was the main concern as it could severely limit the classifiers 

performance. It was important to produce a classification that was representative of 

the processes identified in the field as well as the extent to which they were seen to be 

operating. Too many classes would make it very difficult for the classifier to perform 

well as the class separability would be reduced due to underlying causal relationships 

becoming blurred or even lost. Thus, the classification scheme produced is a balance 

between too many classes, (reducing classifier accuracy), and too few classes 

(resulting in the loss of diversity and the able to be representative). 



Research Framework and Data Methods 

Class 0: No Appreciable Erosion: No visible 
evidence ofany significant soil erosion. 

Class I: Surface WashIMinor Rill Erosion: Limited 
evidence of wash processes and/or minor rill erosion .. 

Class 2: Moderate Rill Erosion: Well developed rill 
networks potentially limiting fanning activities. 

Class 3: Severe Rill Erosion: Extensively developed 
rill networks with potential to develop into gully. 
erosion. 

Class 5: Moderate Gully Erosion: Well developed 
gully(s) eroded through surface processes. 

Class 6: Minor Subsurface Gully Erosion: Small 
guJly(s) developed through subsurface processes. 
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Class 1: Moderate Subsurface Gully Erosion: Well 
developed gully network eroded through subsurface 
processes. 

Class 8: Severe Subsurface Gully Erosion: Very 
severe and well developed gully networks produced 
through subsurface processes. 

Class 4: Minor Gully Erosion: Small gully(s) developed 
through surface processes. 

Figure 5.4: Examples of the erosion classes attributed using the erosion classification 
scale. 
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Taking all of the above into consideration it was decided after the completion of the 

preliminary fieldwork to use a total of nine classes. The classes contained the entire 

range of processes that were seen to be operating in the region without over 

complicating the schedule. 

The independent variables were inputted into the classifiers as continuous data, as 

opposed to classed or grouped data where appropriate. Geology for example is 

naturally a classed data set, as is the field sodicity meter. However, the variables 

extracted from the DEMs and those collected in the field (slope, aspect and 

vegetation) are inherently continuous and have not been adapted or grouped into 

classes. The independent variable aspect however, is often grouped and manipulated 

into predetermined classed intervals, avoiding the potential confusion of using the 

data in a continuous format where the two extremities, namely 10 and 3600 are 

different but in reality very similar. Therefore, it might seem natural to group the data 

into simple classes, such as Northeast, Southeast, Southwest and Northwest. The 

reason for not taking this approach is twofold. Firstly, Brouwer (2002) suggested that 

continuous data should be used in preference of categorical data, as the latter will tend 

to cause a discontinuous relationship between independent variables and the 

dependent variable. Secondly, decision tree classifiers are naturally suited to either 

continuous or categorical inputs, and there is little supporting evidence to suggest that 

changing from one to another offers any potential benefit. Due to their non-linear 

capabilities, decision trees possess the ability to ask more than one question of an 

independent variable (see Chapter Four). Thus, even if a strong trend existed on 

slopes with aspects ranging from Northeast to Northwest (315 D to 45 D), it should be 

identified by asking two simple questions. Firstly, is the point of interest greater than 
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315°? If so, is it also less than 45°? ANNs also have this ability, however the method 

by which it undertakes the task is somewhat different, and in the interest of 

comparability and fairness, both classifiers used the same data sets. 

5.5.2 DEM Acquired Variables 

Two DEMs were developed for the study area produced by digiti sing contours from 

the Sorbas and Polopos 1 :25 000 topographic maps, with 10 and 20 metre grid-cell 

resolutions. The topographic maps were scanned and geocorrected using ERDAS 

Imagine 8.6, and then exported to ArcMap where the contours were digitised on

screen using height as the attribute for each. This work was carried out by the 

Landscape and Ecology Research Group at the University of Hertfordshire as part of 

an ongoing investigation into geomorphological processes in and around the Sorbas 

Basin. At the time of study this was the only DEM of an appropriate resolution 

encompassing the entire study area. 

The accuracy of a DEM and the variables derived from it is dependent upon the 

source of the elevation data, the methods by which the model is created, the structure 

of the elevation data, the vertical and horizontal resolution of the data and the 

topographic complexity of the landscape being modelled (Reuter et ai., 2006, 

Thompson et ai., 2001). Such issues are likely to heavily constrain DEM accuracy, 

and the DEMs developed for use within this investigation may suffer as a result. The 

topographic maps themselves are likely to contain some degree of error and this will 

be propagated further through the geocorrection process and the subsequent contour 

digitisation. Furthermore, the interpolation algorithm used will exert a strong 
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influence over the final DEM, and therefore the purpose of the DEM should be 

determined prior to algorithm selection. 

The contour spacing on the topographic maps is 10 metres and thus constrains the 

grid-cell sizes that can realistically be created. Moreover, the scale at which the 

erosive processes operate must also be taken into consideration. Generally, the grid 

cell size for the DEM developed from the digitised contours with 10 metre spacing 

should be 20 metres (Livingstone pers. com.). However, it is important to recognise 

the fact that the DEM is the strongest link to the real field environment attributes, and 

therefore should be used to its maximum potential, and although this may incorporate 

errors, a DEM with a grid cell size of 10 metres was developed. 

_+ '46.&11 

Figure 5.5: The DEM generated with grid cell size of 10 metres. 

The DEMs were created usmg the TOPOGRID command in ARCIINFO. The 

TOPOGRlD command is an interpolation method specifically designed for the 

creation of hydrologically correct DEMs (simulates natural movement of water over 

the surface). It is based on the ANUDEM programme developed by Hutchinson 

(1988; 1989) using a drainage enforcement algorithm and the DEMs generated can be 
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seen in Figures 5.5 and 5.6. The variables derived from the DEMs were acquired 

through the use of the GRID function in ARCIINFO; namely slope angle, aspect, plan 

and profile curvature, and flow length and flow accumulation (Figure 5.7). 

-+ 1·46.758 

Figure 5.6: The DEM generated with grid cell size of 20 metres. 

Each grid was developed and the data extracted for each of the 520 training set points 

using Hawth's Analysis Tools (Beyer, 2003), designed to perform spatial analysis 

functions largely for ecological applications. Nonetheless, the tools are simply 

extensions to ArcMap and allow the extraction of data from known location points, a 

useful function currently unavailable in ARCGIS. 

Resolution exerts a strong influence upon the quality of a DEM and the accuracy of 

the model. It is likely therefore that the two DEMs constructed with 10 and 20 metre 

grid cells will vary in terms of quality. As stated previously, the DEM is the strongest 

link to the real field environment when not incorporating the field collected data, and 

as such should be used to its maximum potential, and thus a finer resolution model 

was created. Previous studies have shown that as DEM resolution decreases, slope 

gradients decreased, particularly in areas of relatively steep slopes (Reuter et al., 
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2006; Thompson et al., 2001; Wolock and Price, 1994). Furthermore, Thieken et al. 

(1999) found that flow length and drainage density decreased as DEM resolution 

reduced. These findings are generally associated with the smoothing effect resulting 

from a reduction in DEM resolution, a consequence of the method by which slope 

angle and aspect are calculated. The slope angle and aspect of any given cell within a 

DEM is a function of itself and its eight neighbours. A detailed explanation of the 

calculation of slope angle is provided below and in Figure 5.7. 

1 2 3 

4 5 6 

7 8 9 

The equations used to calculate the slope angle of cell 5 are as follows: 

b = (z + 2z +z - z - 2z - z )l8D 
J •• f 4 1 

c = (z + 2z + z - z - 2z - z )l8D 
f J , 7 • • 

where: band care tan (slope) in the x and y directions respectively 

D is the grid point spacing 

Z is the elevation at the ith point 
I 

(NB The equations presented give the four diagonal neighbours 

1, 3,7 and 9, half the weight of the other four neighbours 2, 4, 6 and 8) . . 
tan(s/ope) = sqrt (b + c ) 

where: slope is the angle of slope in the steepest direction 

fan(aspect) = b1c 

where: aspect is the angle between the vertical and the direction of the 

steepest slope 

Figure 5.7: DEM calculation of slope angle (Adapted from Longley et al., 2001). 

As stated previously, when using a grid-based DEM the common approach is to use a 

moving 3x3 window to derive slope angle (Zhou and Liu, 2004). Figure 5.7 details 

the steps required for calculating the slope angle of cell 5. Such an approach is highly 

dependent upon the resolution of the DEM, or the grid cell spacing. For example, to 

measure slope at a 10 metre resolution, a landscape profile of 30 metres is required. 

This issue is further exacerbated by the 20 metre DEM where slope angle is measured 

over a distance of 60 metres, resulting in further smoothing of the landscape 

compared to that of the 10 metre elevation model. Therefore, as suggested by Longley 

et al. (2001), slope is a function of resolution. 
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5.6 DATA TRANSCRIPTION 

In this instance data transcription is the process of transferring information that has 

been acquired (section 5.5) into the AI classifiers. As with any supervised 

classification technique, both training and testing examples are required to both 

calibrate and validate the classifier (Muchoney and Strahler, 2002). The data set 

developed was thus split into two subsets, namely training and testing, using a ratio of 

3: 1, creating a training set of 390 cases and a test set comprising of 130 cases. Figure 

5.8 shows the range of different independent variables used within the classifications. 

The implementation of the data for each of the classification techniques is outlined in 

the following sub-sections. 

-(A) Slope ..... .... 

(C) Flow Accumulation - (D) Flow Length -.... .... 

(E) Plan Curvature - (F) Profile Curvature -
---

3km 

Figure 5.8: The attributes determined from the DEMs (10 metre cell size). 
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5.6.1 Data Transcription to Artificial Neural Networks 

Neural Network models were constructed using Version 4.0 of the TRAJAN Neural 

Network Simulator software (Trajan, 1999). The software allows for a number of 

networks with various structures to be created and trained using an assortment of 

algorithms. The programme also allows the incorporation of both continuous and 

discrete variables within the training and test data sets. 

As mentioned previously, the classifiers require both a training data set and a test data 

set. However, ANNs also require a verification data set. The verification set is used to 

track the training and ensure that the network is learning correctly and to avoid over

learning (see Chapter Four) (Sebastia et ai., 2003). Furthermore, the verification set is 

used to determine the network error and thus the best network prior to any testing. It 

is recommended by the TRAJAN software that a ratio of 2: 1 training to verification is 

used. Thus, the networks used within this research consisted of 260 training cases, 

130 verification cases and a further 130 test cases. 

Prior to the training of any neural network, a number of parameters and criteria have 

to be set. One of the most important considerations is the identification and 

implementation of an appropriate architecture as it governs the networks capability 

(Benediktsson et ai., 1990; Hepner et ai., 1990; Wang et ai., 1994; Fitzgerald and 

Bean, 2001). The type of network chosen for use here was a multilayer perceptron 

(MLP) consisting of an input layer, a hidden layer and an output layer. The number of 

hidden layers has been kept constant at one within all of the networks used within this 

research as many environmental applications have used only one layer (Ellis, 1997; 
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Dedecker et al., 2004; Tiira, 1999) and should allow enough flexibility to determine 

underlying non-linear patterns. 

The back-propagation training algorithm was chosen largely due to their extensive use 

in a range of classification problems. The training algorithm, devised independently 

by Robbins and Monro (1951), Rumelhart et al. (1986), Werbos (1994) and Parker 

(1985) has been used successfully with many network types and in particular 

multilayer perceptrons (MLPs) and has become the single most useful neural 

networking algorithm (Tveter, 1998). However, as outlined in Chapter Three, the 

back-propagation algorithm requires training parameters to be selected. The learning 

rate for the training of the networks was set at 0.6 and the momentum term at 0.8 

based upon prior knowledge identified in the literature. Dai and MacBeth (1997) 

identified that learning rate should be between 0.6 and 0.7 and the momentum should 

be between 0.8 and 0.9. In support of this McClelland and Rumelhart (1988) found a 

learning rate of 0.7 and momentum of 0.9 produced the optimum results within their 

research, however Tveter (1998) noted that it is likely to be problem specific. 

To ensure that the optimum network topology is achieved using only a single hidden 

layer, each classification was run using only one node up to a maximum of 25 nodes, 

a technique used by Leane et al. (2003), Malhotra and Malhotra (2003) and Moatar et 

al. (1999), to identify the ideal architecture for a given problem. A maximum of 25 

nodes in the hidden layer was chosen as Blum (1992) suggests the number should fall 

between the number of input and outputs, and Berry and Linoff (1997) proposed that 

there should be no more than twice that of the input layer. Furthermore, each 

classification was replicated 20 times as the outcome varies each time a network is 
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trained. In an investigation into the classification performance of ANNs, Sanchez et 

aZ. (1996) trained networks with varying topologies ten times with the same data, as 

did Gupta and Sexton (1999) when undertaking a comparison between neural network 

training algorithms. Thus, for any classification a total of 500 neural networks were 

built and trained. A single optimum network was chosen for each of the different 25 

network topologies chosen based upon the verification error. 

5.6.2 Data Transcription to Decision Tree Classifiers 

The decision tree growing software used was CART 5.0 (Brieman et ai., 1984; 

Salford Systems, 2004). The data mining software allows the incorporation of both 

continuous and categorical data for both the independent and dependent variables and 

consists of a range of splitting methods. CART 5.0 uses binary splits that divide each 

parent node into two child nodes by posing simple yes or no questions to the data. 

Other DTCs such as the CHAID programme allows multiple splits at each node, 

however this can lead to less accurate splits. 

The CART 5.0 programme requires the training set file and a test set file, 

incorporating 390 and 130 examples respectively. The programme works by growing 

the largest possible tree consisting of a number of terminal nodes. The tree is then 

pruned removing small sections that have little or no influence on the classification 

accuracy creating a number of smaller trees. The best tree is selected by testing for 

error rates of costs, achieved by using the test set to calculate the rate at which cases 

are misclassified. 
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5.6.3 Implementation of Independent and Dependent Variables 

To answer the questions posed in section 5.2 regarding the ability of ANNs and DTCs 

to classify soil erosion and the influence that different independent variables have 

upon levels of classification accuracy, a range of different classifications 

incorporating different combinations of dependent and independent variables are 

undertaken. Three broad classifications were run; a two class classification, three class 

classification and a further classification including all (nine) of the classes. For each 

of these, eight different sets of independent variables were used to train the classifiers, 

detailed in Table 5.4. The amalgamation of different classes for the two, three and 

nine class classifications can be seen in Figure 5.9, and a graphical representation of 

the different layers incorporated within a classification (independent and dependent 

variables) can be seen in Figure 5.10. 

Data Set 

10 MetreDEM 

20 MetreDEM 

Field Variables 

Field Variables and 
Classified Vegetation 
Field Variables and 10 
metre DEM 
Field Variables and 20 
metreDEM 
Field Variables, 10 
metre DEM and 
classified Vegetation 
Field Variables, 20 
metre DEM and 
classified Vegetation 

Independent Variables 

Table 5.4: The eIght dIfferent data sets and the mdependent variables that they 
contain. 
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Figure 5.9: The amalgamation of different erosion classes for use within different 
classifications. 

L7 

Slope Angle 
Slope Aspect 
Flow Length 

Flow Accllmulation 
Plan Curvature 

Profile Curvature 

Vegetation Estimate 
Vegetation Classification Independent Variables 

Sodicity Meter 
Value 

Geology 

Erosion Class Dependent Variable 

Figure 5.10: A simple diagrammatic representation of the independent and dependent 
variables. 
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5.7 ACCURACY ASSESSMENT 

The calculation of accuracy is vitally important when any type of classification has 

been undertaken. It is important to remember that errors are likely to be present in 

classifications and the maps they produce as they are simply generalisations of reality 

(Brown et al., 1999; Dicks and Lo, 1990). Thus, before their value can be determined 

it is important to question their ability to meet the needs and requirements of the 

intended application. 

The level of accuracy that is acceptable is highly subjective and dependent on the 

questions being asked. Consider two scenarios, firstly that of an individual landowner 

and secondly that of a regional or provincial government. It is unlikely that the level 

of accuracy acceptable at the regional scale (for the government) is sufficiently 

detailed for the individual landowner. Furthermore, the resolution of the product 

developed will dictate its wider applicability and usefulness. 

Numerous methods of accuracy assessment for classification procedures exist and 

have been discussed widely in the literature. However, the confusion matrix, 

otherwise known as the error matrix or the correlation matrix, is the standard form for 

representing site-specific error (Campbell, 2002) and thus currently at the core of 

accuracy assessment literature (Foody, 2002). An error matrix simply compares 

information from reference sites to information on predicted sites for a number of 

sampled areas (Congalton and Green, 1999). The overall accuracy of a classification 

is simply calculated through the sum of the major diagonal of the matrix divided by 

the total number of samples classified. An example of this can be seen in Table 5.5. 

An error matrix is an effective way to represent accuracy in that the accuracies of each 
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category are plainly described (Congalton, 199]), and thus provides an obvious 

foundation for accuracy assessment (Campbell, 2002; Canters, 1997). 

Ground Truth Data 
1 2 3 4 5 6 Total 

1 34 0 I 0 0 0 35 
2 2 35 I 2 2 I 43 
3 I 0 44 I 0 1 47 

Classified 4 5 I 4 40 2 0 52 
Image 5 8 II 0 7 45 1 72 

6 0 3 0 0 I 47 51 

Total 50 50 50 50 50 50 245 

Accuracy 0.8167 

Table 5.5: An example of a correlation (error) matrix. 

Ground Truth Data 
I 2 3 4 5 6 

1 0.68 0 0.02 0 0 0 
2 0.04 0.7 0.02 0.04 0.04 0.02 

Classified 3 0.02 0 0.88 0.02 0 0.02 

Image 4 0.1 0.02 0.08 0.8 0.04 0 
5 0.16 0.22 0 0.14 0.9 0.02 
6 0 0.06 0 0 0.02 0.94 
Total 1 I 1 I 1 1 

Table 5.6: The producer's accuracy. 

Ground Truth Data 
I 2 3 4 5 6 Total 

1 0.9714 0 0.0286 0 0 0 1 
2 0.0465 0.814 0.0233 0.0465 0.0465 0.0232 1 

Classified 3 0.0213 0 0.9362 0.0212 0 0.0212 1 

Image 4 0.0962 0.0192 0.0769 0.7692 0.0385 0 1 

5 0.1111 0.1528 0 0.0972 0.625 0.0138 I 
6 0 0.0588 0 0 0.0196 0.9215 1 

Table 5.7: The user's accuracy. 

The correlation matrix provides further valuable insights into classification 

performance in addition to overall accuracy. All of the non-diagonal elements within a 

matrix provide errors of commission and omission (Lillesand and Kiefer, 2000), 
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otherwise known as the producers and users accuracy. The producer's accuracy is a 

simple measure of omissions, indicating areas of a specific coverage that have been 

omitted from the classification. An example of the producer's accuracy can be seen in 

Table 5.6 derived from the correlation matrix in Table 5.5. In contrast, the user's 

accuracy determines the extent of commission errors, highlighting the probability of 

examples classified within a specific class actually belonging to that class in reality. 

Table 5.7 shows the user's accuracy derived from the error matrix in Table 5.5. 

In an attempt to further determine the usefulness of the AI approach to the 

classification of soil erosion it is compared to the more traditional statistical approach 

of Discriminant Analysis (DA). Discriminant analysis is a classification technique 

used to classify unknown cases from a training set rather like the ANNs and DTes 

previously discussed. It makes the assumption that the independent variables are 

normally distributed, encouraging the use of continuous variables rather than discrete 

variables (Blackard and Dean, 1999). Nonetheless, McLachlan (1992) supports the 

use of linear discriminant analysis in cases where the assumption may be violated and 

Blackard and Dean (1999) suggest that this is relatively common and has a limited 

affect on results. 

5.8 DEVELOPMENT OF AN EROSION RISK SCHEDULE 

An erosion risk schedule comprises a set of relatively simple rules, applies them to an 

erosion map and produces an erosion risk map. It would have been possible to 

produce an erosion risk map rather than one of actual soil erosion by simply replacing 

the erosion scale (Figure 5.3) with a risk scale. However, the approach taken here is 
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such that an erosion risk output is derived through the incorporation of the developed 

erosion map in combination with simple topographic variables. 

The risk schedules developed here are based upon the maps created for the two class 

and the nine class classifications and simply a logical progression from them as seen 

in Figure 5.11. 

The erosion risk schedule is based on a suite of logical geomorphological principles 

using current erosion as the basis for the determination of risk along with some basic 

topographical attributes and only concerns risk by association. As outlined in Chapter 

Three, risk can relate to actual or potential depending upon whether land use is taken 

into consideration or other potentially changeable variables such as vegetation cover. 

However, the map created here simply considers the current conditions and therefore 

is a classification of actual risk. 
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5.S.1 Methodology behind the Risk by Association Schedule 

The development of the risk schedule can be seen diagrammatically in Figure 5.11. 

The 10 metre DEM is used with the slope angle grid and an erosion map derived 

through the AI techniques. Through the use of the two topographical parameters it is 

possible to determine the concavity or convexity of a cell in relation to one of its eight 

neighbours. The DEM determines whether a cell is above or below an adjacent cell 

based on height, and the slope angle will allow the calculation of profile shape to be 

made. For example, if A is above an adjacent cell B and the slope angle is greater for 

cell A, then a concavity exists between the two cells A and B. Using concavities and 

convexities in relation to surrounding cells that may be eroding, some simple rules 

can be constructed producing a model for soil erosion risk by association. 

The risk for each cell is a function of its eight neighbouring cells. The basic rules vary 

slightly for the two class schedule and the nine class schedule, however, the general 

principles are the same for both. The models were developed using a combination of 

programmes including ArcMap, ArcInfo, and Idrisi. The models are simply developed 

via a series of simple logical steps gradually building into a complex grid. 

Risk by association only takes into consideration the perceived risk to any given slope 

posed by neighbouring slopes that under current conditions are eroding (according to 

the classification). It does not therefore determine the erosion risk for slopes as single 

entities as it is determining actual risk and the erosion map used is thus definitive. It 

is inherently difficult to quantitatively determine levels of risk, and the approach 

outlined here can be said to be semi-quantitative. The rules developed are simply 

outlined in Figure 5.12 whereby a single value is attributed to a given cell for each of 
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its eight neighbouring cells if they are currently eroding. If they are not eroding then 

the risk through association is zero and no value is assigned. Four possible scenarios 

exist for the two class risk schedule, labelled A, B, C and D, and eight scenarios for 

the nine class schedule A, B, C, D for both no erosion (0) and surface erosion (I) seen 

in Figure 5.11. A simple risk through association map is thus created by applying the 

relevant risk factor for each morphology and calculating the total for each individual 

cell, such that if a cell were adjacent to 3 eroding cells with risk factors of 2, 1 and 3 a 

value of 6 would be assigned to that cell. The following sub-section details the 

justification for the risk values chosen. 

5.8.2 Justification for Risk Values 

In order to detennine the level of erosion risk using a simple set of rules, a risk factor 

has to be attributed to each topographical morphology. Young and Mutchler (1969) 

found that erosion was less than half on concave slopes than on convex slopes under 

otherwise similar conditions, a finding supported further by Hadley and Toy (1977). 

This is largely a consequence of the fact that the steepest gradient is at the top of the 

profile, and reducing gradient as both the slope length and runoff increase. Moreover, 

Faulkner et al. (2003b) highlighted the potential of coupling on convex sites further 

increasing the potential risk through association. 

Scenario A in the two class schedule, seen in Figure 5.12 shows a convex morphology 

with erosion occurring on the flatter top section of the profile only. It could therefore 

be proposed that the eroding cell could potentially capture the cell below as it 

possesses a steeper gradient and would have a larger contributing area. Scenario C is 

in fact the reversal of A, and due to the potential risk posed by headward erosion or 
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undercutting at the slope base a risk factor of 3 is applied, as opposed to 2 for scenario 

A. The concave morphologies, scenarios Band D, are assigned values of 1 and 2 

respectively. As outlined previously such morphologies tend to reduce surface 

erosional processes, however risk through association is such that both scenarios 

could potential be at risk through runoff progression in Band headward erosion in D. 

The risk schedule, derived from the nine class erosion map, includes the same rules to 

account for the risk by association of surface erosion but also has some additional 

rules regarding the subsurface erosion process. Furthermore, the same risk values are 

attributed to slopes at risk from subsurface erosion regardless of whether they are 

currently not eroding or eroding under surface processes. The main issue to be 

confronted are discussed in Chapter Three and by Faulkner et al. (2003b) concerning 

subsurface erosion on convex morphologies. Pipes preferentially develop in convex 

slopes with an infiltrating surface and a potential outlet. Consequently the convex 

morphologies A and C have been allocated values of 5 and 4 respectively. Scenario A 

is at high risk from piping as the slope above it is eroding and may provide potential 

outlets. Scenario C may be at risk from headward erosion, undercutting and indeed 

piping if an adjacent slope is eroding under such a process. The risk associated with 

concave morphologies however is not as great, and as such have been attributed 

values of2 and 3 respectively. 
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5.8.3 Summary 

Risk through association is a very simple concept. The risk values assigned are 

inherently subjective and based on prior knowledge of the erosion processes 

operating. Nonetheless, relatively complex outputs can be achieved through the 

implementation of some simple rules in combination with only a limited number of 

input variables. Thus, in order to improve the risk by association map further 

variables could be incorporated such as vegetation cover and soil sodicity. 

5.9 CONCLUSIONS 

This chapter has outlined the research framework and data methods upon which the 

thesis is based, using a series of questions in an attempt to provide a focus and 

structure. A review of the training data sets has been undertaken, including the 

methods through which they were derived and the justification and validation of the 

different variables incorporated within them. The methods used to train and develop 

the different classifiers have been comprehensively outlined, as has the development 

of the risk by association schedule. In order to answer the question posed, regarding 

the physico-chemical relationships and the applicability of the field sodicity meter, a 

range of soil samples were collected and a number of laboratory analysis methods 

were undertaken. The methods, results and a detailed discussion relating to this can be 

seen in Chapter Seven, Field Investigations. 

The following chapter reviews and details the results obtained through the research 

framework and data methods outlined in this chapter, reporting the main findings and 

relating them to the research questions aforementioned. Following the documentation 

of the results in Chapter Six and the Field Investigations in Chapter Seven, the all-
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round implications are discussed in Chapter Eight and related to relevant literature 

where appropriate. 
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6 

Soil Erosion Classifications, Risk Schedules and Rule 
Extraction 

6.1 INTRODUCTION 

This chapter provides details of the results obtained from the implementation of the 

research framework outlined in Chapter Five. The results are documented with 

particular reference to the research questions stated in section 5.2 (fulfilling the stated 

aims and objectives detailed in Chapter One). The results of the soil erosion 

classifications are presented for both the artificial neural networks and the decision 

tree classifiers, followed by the classification results using discriminant analysis 

(DA). The classifications are compared and contrasted, with particular emphasis 

regarding the influences and effects that using different independent and dependent 

variables has upon classifier performance. The ability to extract rules or knowledge 

regarding the various processes from the ANNs and DTCs is reviewed, along with a 

discussion regarding neural network and decision tree topology. Finally, potential risk 

maps and erosion risk schedule maps for the study area are presented and discussed. 

6.2 SOIL EROSION CLASSIFICATIONS USING ARTIFICIAL NEURAL 
NETWORKS 

A total of 500 artificial neural networks were trained using the eight different 

independent variable data sets outlined in Table 5.4. Classifications were undertaken 

for a simple binary problem (two class), an intermediate three class problem, and a 

detailed (interval) nine class problem incorporating all of the erosion classes outlined 

in Figures 5.3 and 5.4. For each of the different classifications undertaken, a single 



Soil Erosion Classifications, Risk Schedules and Rule Extraction 132 

optimum or 'best' network is selected, based on their verification error (the root mean 

square (RMS) of the errors on each individual case). 

6.2.1 Two Class Classifications Using Artificial Neural Networks 

The two class classifications involved the amalgamation of all of the erosion classes 

into a single class (1), and the no appreciable erosion class (0), creating a basic binary 

output. Such a classification highlights the ability of the classifier to delineate 

between eroding cells, and those portraying no appreciable signs of erosion. 

The results obtained are summarised in Table 6.1, highlighting the overall accuracy, 

the verification error and the network topology for each of the eight different 

classifications trained using different data sets. The level of accuracy (see Chapter 

Five, section 5.7) ranged from 66.2 (3.s.f.) percent using the field collected variables 

to 75.4 percent for both the field collected data used in conjunction with the 10 metre 

DEM variables, and the data set using the same variables and in addition the classified 

vegetation data. Accuracy's of 77.7 percent were attained for the classifications 

trained with the field attributes, classified vegetation and the 10 metre DEM, and the 

field attributes and the 20 metre DEM, but these had slightly higher error rates than 

their counterparts documented in Table 6.1. 

Verification errors (RMS) ranged from 0.362 to 0.459, highlighting a general trend 

whereby classifications undertaken using primarily DEM independent variables 

suffered from an increased error rate compared to those that incorporated field 

collected variables. 
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Overall Verification Network 
Accuracy Error Topolo2Y 

DEM 10 metre 0.692308 0.4526253 6-21-1 

DEM20 metre 0.684615 0.459258 6-13-1 

Field collected 0.661538 0.3618585 5-22-1 

Field collected and DEM 10 metre 0.753846 0.3692149 9-18-1 

Field collected and DEM 20 metre 0.707692 0.3701 264 9-5-1 

Field collected and classified vegetation 0.669231 0.393828 1 5-6-1 

Field collected, classified vegetation and 0.753846 0.3930671 9-12-1 
DEM 10 metre 
Field collected, classified vegetation and 0.723077 0.3932958 9-3-1 
DEM20metre 

Table 6.1: Summary table of 'best' networks for two class classifications usmg 
ANNs. 

The correlation matrix for the optimum network identified for the two class 

classification can be seen in Table 6.2, trained using the field collected variables and 

the 10 metre DEM attributes. The users and producers accuracy in this classification 

can also be seen in the table, revealing valuable insights into the classification 

performance. It is evident from the results that only 60 percent of the areas which 

were not eroding have been successfully classified, in contrast to 83.5 percent of those 

that were eroding. This indicates a good classification for the latter. Moreover, 79.8 

percent of cells classified as eroding were actually seen to be doing so, compared with 

65.9 percent of the cells that were not eroding. 

Actual 
0 1 Total Overall 

Predicted 0 27 14 41 Accuracy 

1 18 71 89 
Total 45 85 130 

Producers Accuracy Users Accuracy 0.753846 

0 60% 0 65.9% 
1 83.5% 1 79.8% 

Table 6.2: CorrelatIOn matrIx for the two class ANN tramed using the field acquired 
attributes and the 10 metre DEM independent variables. 
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To better understand classifier performance when undertaking binary classifications, 

receiver operating characteristic (ROC) curves can be determined. Zweig and 

Campbell (1993) highlighted the ability and usefulness of ROC curves. These 

summarise the performance of a two class classifier across the range of thresholds by 

plotting the sensitivity (class two true positives) against one minus the specificity 

(class one false negatives). The true positive rate is defined as the number of positives 

correctly classified divided by the total number of positives. The false positive rate is 

the number of negatives incorrectly classified, and divided by the total number of 

negatives. The perfect classifier would therefore produce an ROC curve that hugs the 

left and top sides of the graph, and thus the total area under the graph would be one 

(perfect). The ROC curve is a useful tool for comparing different classifications as it 

takes into account the performance of the classifier across all possible thresholds. 

Figure 6.1 shows the ROC curve for the classification. The Area Under the Curve 

(AUC) is 0.88 indicating a relatively strong classifier, as a value of 1.0 would indicate 

a perfect classifier and a value of 0.5 a purely random classifier (Tseng-Chung and Li

Chiu, 2005). Pearce and Ferrier (2000) suggested that classifiers with AVC between 

0.5 and 0.7 are poor, between 0.7 and 0.9 are good, and above 0.9 are excellent. 
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Figure 6.1: ROC curve for the two class ANN classification trained using the field 
acquired attributes and the 10 metre DEM independent variables. 

Due to data constraints, erosion maps could not be created using the independent 

variables collected in the field as these were not known at every location within the 

study area. Therefore, erosion maps have been created using classifiers trained using 

the DEM data only (as this is known at every cell). Figure 6.2 shows the binary soil 

erosion map produced from the 10 metre DEM data draped on the topographical map 

in order to provide some spatial reference. 

Erosion maps can be seen for the ANNs trained using the 10 and 20 metre DEM data 

in Appendix Six (Figures A6.1 and A6.3), and draped over the topographical maps 

(Figures 6.2 and A6.4). Correlation matrices for each of the two class ANN 

classifications undertaken can be seen in Appendix Two, Tables A2.1 to A2.8 

inclusive. 
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(Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain). 
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6.2.2 Three Class Classifications Using Artificial Neural Networks 

In an attempt to determine the ability of neural networks to differentiate between areas 

of no appreciable erosion, rill erosion and gully erosion, classifications incorporating 

the three classes were undertaken (see Figure 5.9). The three rill erosion classes were 

amalgamated, as were the five gully classes, and incorporated into a classification 

with the 'no appreciable erosion ' class. Once again a range of different networks were 

trained using the different data sets, the results of which can be seen in Table 6.3. 

As was the case with the two class ANN classifications, the levels of overall accuracy 

appear to be highly influenced by the incorporation of the field collected independent 

variables. The networks trained using independent variables derived from the 

elevation models not only have the lowest overall accuracy but do so in accordance 

with the highest verification error of all eight classifications. 

Overall Verification Network 
Accuracy Error Topology 

DEM 10 metre 0.469231 0.4432813 6-13-3 

DEM20metre 0.546154 0.4377942 6- 16-3 

Field collected 0.569231 0.334454 5-13-3 

Field collected and DEM 10 metre 0.584615 0.3856856 9-21-3 

Field collected and DEM 20 metre 0.523077 0.3803771 9-23-3 

Field collected and classified vegetation 0.6 0.3502805 5-10-3 

Field collected, classified vegetation and 0.584615 0.4196299 9-10-3 
DEM 10 metre 
Field collected, classified vegetation and 0.576923 0.3868505 9-20-3 
DEM20 metre 

Table 6.3: Summary table of 'best' networks for three class clasSIfications using 
ANNs. 
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The matrices for both the classifications undertaken using the field acquired attributes, 

and the field acquired attributes used in combination with the classified vegetation can 

be seen in Tables 6.4 and 6.5 respectively. It becomes apparent that the overalI 

accuracy in both classifications suffers as a result of the particularly poor 

determination of rill erosion (class 1), when compared to the no erosion and gully 

erosion classes. The classification of rill erosion is poorer in the latter correlation 

matrix (Table 6.5), but has a better overall accuracy than that achieved using only the 

field acquired variables due to the improved classification of both other classes. 

Actual 
0 1 2 Total Overall 

Predicted 0 32 13 19 64 Accuracy 
1 4 4 1 9 
2 9 10 38 57 

Total 45 29 56 130 0.569231 
Producers Accuracy Users Accuracy 

0 71.1% 0 50% 
1 13 .8% 1 44.4% 

2 67.9% 2 67% 

Table 6.4: Correlation matrix for the three class ANN tramed usmg the field acqUlred 
attributes. 

Actual 
0 1 2 Total Overall 

Predicted 0 35 13 17 65 Accuracy 
1 I 2 0 3 
2 9 12 41 62 

Total 45 29 56 130 0.6 

Producers Accuracy Users Accuracy 
0 78% 0 53.8% 
1 6.9% 1 66.7% 

2 73.2% 2 66.1% 

Table 6.5: Correlation matrix for the three class ANN tramed usmg the field acqUIred 
attributes and the classified vegetation independent variable. 

The point is emphasised further through the determination and analysis of both the 

users and producers accuracy. The producers accuracy for rill erosion (class 1) within 

both of the aforementioned classifications highlights the large associated omission 
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errors. Of the 29 test samples, only four have been correctly classified for the field 

acquired attribute classification and only two for the field and classified vegetation 

classification. The misclassifications appear to have been shared by the other two 

classes relatively evenly. This is indicated by the similar users accuracies for each in 

both classifications. 

An interesting point to note that is evident in both classifications concerns the 

miscIassification of the 'no appreciable erosion' and 'gully erosion' classes; both 

networks appear to have difficulty in differentiating between the two in certain 

instances. For example, in the correlation matrix seen in Table 6.4, there are 45 cases 

of class 0 (no appreciable erosion), of which 32 have been correctly classified, yet of 

the remaining ten misclassified cases, nine have been attributed to class 3 (gully 

erosion) and only four to class 1 (rill erosion). 

Figure 6.3 emphasises the problem further, showing the three class erosion map 

produced from a neural network trained using the 10 metre DEM data. The 

classification highlights the ANNs inability to determine cases of rill erosion, as only 

a very limited number of cells in the study area have been attributed to the class. This 

is an issue more prominent in those networks trained only using the DEM data. The 

problem is evident to a lesser or greater degree throughout all of the three class 

classifications, the matrices of which can be seen in Appendix Two. 
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Figure 6.3: Classified erosion map drape derived from the ANN trained using 10 metre DEM variables for a three class classification 
(Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain). 
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6.2.3 Nine Class Classifications Using Artificial Neural Networks 

The final classification to be undertaken using neural networks involved all nine 

classes detailed in the erosion classification scheme (Figure 5.3). Using the same 

procedures and techniques as those used in the two and three class classifications, 

networks were once again trained using the eight different data sets, the results of 

which are detailed in Table 6.6. 

The overall performance of networks for the classification of all nine classes is much 

lower than those achieved in the two and three class classifications, with overall 

accuracies ranging from 30 to 39.2 percent. As with the classifications detailed in 

sections 6.2.1 and 6.2.2, the highest accuracies are produced in accordance with field 

acquired independent variables. Table 6.7, the correlation matrix for the network 

trained using the field collected variables and the classified vegetation, highlights the 

apparent inability in this instance of the neural network to differentiate between the 

different classes of erosion. 

Overall Verification Network 
Accuracy Error Topol~ 

DEM 10 metre 0.346154 0.2892779 6-5-9 

DEM20 metre 0.3 0.2840651 6-14-9 

Field collected 0.376923 0.2710848 5-8-9 

Field collected and DEM 10 metre 0.392308 0.2727597 9-3-9 

Field collected and DEM 20 metre 0.361538 0.2751743 9-3-9 

Field collected and classified vegetation 0.392308 0.2708853 5-3-9 

Field collected, classified vegetation and 0.392308 0.2803297 9-2-9 
DEM 10 metre 
Field collected, classified vegetation and 0.361538 0.2717551 9-14-9 
DEM 20 metre 

Table 6.6: Summary table of 'best' networks for nme class classifications usmg 
ANNs. 
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Of the nine classes incorporated in the classification, the network was only able to 

attribute unseen examples to three of the classes, namely 'no appreciable erosion', 

'moderate gully erosion' or 'minor subsurface gully erosion'. As a consequence, the 

overall accuracy is particularly poor, as are both the producers and users accuracies. 

This problem appears to have been replicated in some form throughout all of the nine 

class classifications undertaken using the ANNs, whereby all of the unknown test 

cases have been incorrectly classified into two or three classes. This problem may be 

attributed to a swamping effect in the training data whereby the number of training 

cases of class 0 (no appreciable erosion), exceeded those in the other eight classes 

subsequently causing the network to learn such examples well whilst neglecting less 

affluent classes. 

Actual 
0 1 2 3 4 5 6 7 8 Total Overall 

0 38 10 3 4 3 9 3 3 0 73 Accuracy 
1 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 

Predicted 4 0 0 0 0 0 0 0 0 0 0 0.392308 

5 3 I 0 0 0 0 2 0 0 6 
6 4 6 2 3 4 9 13 6 4 51 
7 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accura~ 

0 84.4% 0 52.1% 
1 - 1 -
2 - 2 -
3 - 3 -
4 - 4 -
5 - 5 -
6 72.2% 6 25.5% 

7 - 7 -
8 - 8 -

Table 6.7: CorrelatlOn matrIx for the nme class ANN tramed using the field acqUIred 
attributes and the classified vegetation independent variable. 



Soil Erosion Classifications, Risk Schedules and Rule Extraction 143 

The potential swamping effect can be seen in Figure 6.4, the classified erosion map 

derived using the 20 metre data set. The vast majority of the study area has been 

classified as not eroding to any appreciable extent, however, this classification has 

incorporated five other classes, although they are relatively infrequent except for the 

'moderate subsurface gully erosion' class. Moreover, the classified map produced for 

the 10 metre classification has not been shown as the network classified every cell in 

the image as being in the same class, 'no appreciable erosion'. 
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Figure 6.4: Classified erosion map drape derived from the ANN trained using 20 metre DEM variables for a nine class classification 
(Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain). 
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6.3 soa EROSION CLASSIFICATIONS USING DECISION TREE 
CLASSIFIERS 

As with the neural networks, decision trees were grown for each of the three different 

classifications using the eight training sets. Unlike the ANNs however, only a single 

tree is grown for each classification problem as the optimum solution for any given 

problem is found every time and thus there is no need for replications to be made. The 

CART 5.0 decision tree software grows the largest possible decision tree and 

recursively prunes backwards developing a set of trees ranging in size. A suitable tree 

can be selected from the set based either upon the number of terminal nodes or the 

cross-validated relative cost (error), and in order to provide a consistent methodology 

the latter option was preferred. Figure 6.5 shows an error curve used to determine the 

optimum tree based on the relative cost (misclassifications), and in this example it is 

the tree containing 16 terminal nodes. 

10 20 30 

Number of Nodes 

40 50 

Figure 6.5: An example of an error curve used to determine the optimum DTC. 

6.3.1 Two Class Classifications Using Decision Tree Classifiers 

60 

Table 6.8 provides a summary of the results obtained for the binary classification 

incorporating ' erosion ' and 'no appreciable erosion '. It is evident that accuracies are 

generally lower for the decision trees trained using only variables acquired from 

elevation models. Moreover, the relative cost for these classifications is also 

considerably higher than for the other classifications, with the 20 metre OEM 



Soil Erosion Classifications, Risk Schedules and Rule Extraction 146 

classification performing particularly poorly. However, accuracies exceeded 77 

percent in two of the eight classifications, but the trees with the lowest errors were 

those grown only from the field acquired variables and the same data used in 

combination with the 10 metre DEM variables. 

Overall Relative Cost Terminal Nodes 
Accuracy 

DEM 10 metre 0.676923 0.682 +/- 0.088 6 

DEM20metre 0.569231 0.899 +/- 0.091 11 

Field collected 0.761538 0.480 +/- 0.079 12 

Field collected and DEM 10 metre 0.761538 0.480 +/- 0.079 16 

Field collected and DEM 20 metre 0.738462 0.505 +/- 0.079 10 

Field collected and classified vegetation 0.776923 0.550 +/- 0.081 2 

Field collected, classified vegetation and 0.746154 0.535 +/- 0.082 15 
DEM 10 metre 
Field collected, classified vegetation and 0.776923 0.550 +/- 0.081 2 
DEM20metre 

Table 6.8: Summary table of decision trees grown for two class classifications using 
DTCs. 

Actual 
0 1 Total Overall 

Predicted 0 34 20 54 Accuracy 
I 11 65 76 

Total 45 85 130 0.761538 
Producers Accuracy Users Accuracy 

0 75.6% 0 63% 
1 76.5% 1 85.5% 

Table 6.9: Correlation matrIx for DTCs tramed usmg the field acqUIred independent 
variables. 

Table 6.9 details the correlation matrix produced for the tree grown using only the 

field acquired variables, as this is the optimum tree grown for the problem. The 

producers accuracy for both classes exceed 75 percent with the users accuracy 

exceeding 85 percent for the 'erosion' class. However, a high omission rate regarding 
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the ' no appreciable erosion' class culminates in a relatively low users accuracy of 63 

percent. All of the correlation matrices for the DTCs can be seen in Appendix Two. 

As with the neural networks, ROC curves can be detennined for the decision trees 

trained for a binary classification. Figure 6.6 shows the rate of true positives plotted 

against the rate of false positives. The AUC is 0.86 indicating a good classification 

perfonnance according to Pearce and Ferrier (2000), with good separation of the 

frequency curves. 

ROC Curve 
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Figure 6.6: ROC curve for the two class DTC classification trained using the field 
acquired independent variables. 

The decision tree developed for this classification problem can be seen in Figure 6.7 

detailing the various rules developed through the training stage. The implications 

associated with the grown tree will be discussed in detail later, however, the classified 

map derived from the DTC grown using the 10 metre DEM data can be seen in 

Figures 6.8. 
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6.3.2 Three Class Classifications Using Decision Tree Classifiers 

The details of the decision tree classifiers grown for the three class classification 

problem are outlined in Table 6.10. The 'optimum' or 'best' tree was that trained 

using the field collected variables used in association with the classified vegetation 

independent variable. The overall accuracy produced from this classification was in 

excess of 63 percent, and also had the lowest relative cost. The tree possessed 14 

terminal nodes, and the architecture can be seen in detail in Figure 6.9 detailing the 

rules governing the splits. 

As with the previous classifications, the weakest classifications appear to have been 

derived using the training data sets provided by the digital elevation models, 

culminating in both the lowest overall accuracies and the highest errors. 

Overall Relative Cost Terminal Nodes 
Accuracy 

DEM 10 metre 0.5 0.826 +/- 0.064 5 

DEM20metre 0.515385 0.798 +/- 0.064 19 

Field collected 0.569231 0.691 +/- 0.068 4 

Field collected and DEM 10 metre 0.607692 0.653 +/- 0.066 16 

Field collected and DEM 20 metre 0.607692 0.660 +/- 0.065 17 

Field collected and classified vegetation 0.630769 0.597 +/- 0.065 14 

Field collected, classified vegetation and 0.623077 0.608 +/- 0.065 12 
DEM 10 metre 
Field collected, classified vegetation and 0.623077 0.608 +/- 0.065 12 
DEM20 metre 

Table 6.10: Summary table of 'best' tree for three class claSSIficatIOns using DTCs. 

The correlation matrix for the DTC trained using the field acquired attributes and 

classified vegetation variable can be seen in Table 6.11. It is evident that the decision 

tree performs reasonably well at classifying two of the three classes, namely 'no 
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appreciable erosion' and 'gully erosion', producing relatively high producers and 

users accuracies. However, the decision tree appears to perform poorly when 

classifying class 1, 'rill erosion'. Only 11 of the actual 29 cases have been correctly 

attributed, culminating in a producers accuracy of 37.9 percent. Moreover, a high 

error of commission due to misclassifications has also led to a low users accuracy. 

Actual 
0 1 2 Total Overall 

Predicted 0 35 9 13 57 Accuracy 
1 7 11 9 27 
2 3 7 36 46 0.630769 

Total 45 29 56 130 
Producers Accuracy Users Accuracy 

0 77.8% 0 61.4% 
1 37.9% 1 40.7% 

2 64.3% 2 78.3% 

Table 6.11: Correlation matrix for the three class DTC trained using the field 
acquired attributes and the classified vegetation independent variable. 

The classifications derived from the decision trees trained with the 10 metre DEM 

variables for the three class classification can be seen in Figure 6.10. 
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6.3.3 Nine Class Classifications Using Decision Tree Classifiers 

The overall accuracies achieved for the nine class classifications using decision trees 

ranged from 13.1 to 29.2 percent, and occurred in combination with high error rates. 

Of the eight different training sets used, only four produced overall accuracies that 

exceeded 25 percent. A further four of the decision trees grown possessed fewer 

terminal nodes than the eight dependent variable erosion classes indicating the 

apparent inability of the trees to distinguish between and separate different levels of 

erosIOn. 

Overall Relative Cost Terminal Nodes 
Accuracy 

OEM 10 metre 0.223077 0.889 +/-0.020 10 

OEM 20 metre 0.130769 0.867 +/- 0.047 20 

Field collected 0.292308 0.801 +/- 0.051 31 

Field collected and OEM 10 metre 0.238462 0.826 +/- 0.039 6 

Field collected and OEM 20 metre 0.269231 0.858 +/- 0.043 51 

Field collected and classified vegetation 0.253846 0.844 +/- 0.036 6 

Field collected, classified vegetation and 0.238462 0.826 +/- 0.039 6 
OEM 10 metre 
Field collected, classified vegetation and 0.292308 0.845 +/- 0.033 5 
DEM20 metre 

Table 6.12: Summary table of 'best' networks for mne class claSSIfications using 
DTCs. 

Table 6.12 summarises the decision trees grown from the different training sets. 

Continuing the apparent trend outlined in the majority of the two and three class 

classifications, the DTCs grown using the DEM training data not only produced the 

lowest overall accuracy but also did so in combination with the highest relative cost. 

The trees trained using the field derived independent variables, and the field derived 

independent variables used in combination with the classified vegetation produced the 
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highest overall accuracy. However, the latter of the two classifications possessed a 

larger error. Table 6.13 is the correlation matrix for the DTC trained using the field 

derived training data set. The decision tree grown for this classification can be seen in 

Figure 6.11. 

Actual 
0 1 2 3 4 5 6 7 8 Total Overall 

0 19 2 0 2 1 2 1 0 0 27 Accuracy 
1 0 4 1 2 1 3 3 1 0 15 
2 15 4 I 1 0 2 0 0 0 23 
3 2 0 0 0 0 2 0 0 0 4 

Predicted 4 5 1 0 0 3 0 4 2 0 15 0.292308 

5 2 4 3 2 0 4 3 1 0 19 
6 0 0 0 0 1 I 2 1 0 5 
7 I 2 0 0 1 2 4 2 1 13 
8 I 0 0 0 0 2 1 2 3 9 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accuracy 

0 42.2% 0 70.4% 

1 23.5% 1 26.7% 

2 20% 2 4.3% 

3 - 3 -
4 42.9% 4 20% 

5 22.2% 5 21.1% 

6 11.1% 6 40% 

7 22.2% 7 15.4% 

8 75% 8 33.3% 

Table 6.13: Correlation matrIX for the nme class DTC tramed usmg the field acquired 
independent variables. 

The high misclassification rates are reflected in the low producers and users 

accuracies seen in Table 6.13. The only exceptions were the producers accuracy for 

the 'severe subsurface gully erosion' class and the users accuracy for the 'no 

appreciable erosion' class. 'Severe rill erosion', class 3, is the only class not to be 

attributed a single correct case and thus no users or producers accuracies have been 

calculated. The erosion map produced for the nine class classifications based on the 

10 metre resolution DEM data can be seen in Figures 6.12. 
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Figure 6.11: The decision tree grown for the nine class classification using the field acquired independent variables. 
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Figure 6.12: Classified erosion map drape derived from the DTC trained using 10 metre DEM variables for a nine class classification 
(Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain). 
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6.4 SOIL EROSION CLASSIFICATIONS USING DISCRIMINANT 
ANALYSIS 

Discriminant Analysis (DA) classifications were undertaken usmg the StatistiXL 

statistical add-in for Microsoft Excel. Using the same training data splits as those used 

in the ANN and DTC classifications, 390 training examples and 130 test examples, 

DA classifications were trained in order to provide an comparative traditional 

statistical and linear baseline from which the AI approaches can be analysed. DA was 

selected over other techniques as it is multivariate and allows the limited use of 

categorical variables, unlike many of its counterparts, a important aspect required to 

allow direct contrasts and comparisons to be made between the different techniques 

(see Table 4.1). 

6.4.1 Two Class Classifications Using Discriminant Analysis 

Using discriminant analysis eight classifications were undertaken using the same 

training sets as those used for the training of the Artificial Neural Networks and 

Decision Tree Classifiers. Overall accuracies ranged from 63.1 percent up to a 

maximum of 78.5 percent depending on the training set used within the classification 

(Table 6.14). Unlike the classifications undertaken using the AI techniques, where the 

optimal solution was determined based upon some validation error or cost function, 

DA provides a single solution and its associated overall accuracy. 

Discriminant analysis performance is highly variable depending upon the training data 

used. The DA possessing the optimum performance was that trained using the field, 

classified vegetation and 10 metre DEM independent variables. The correlation matrix 

for this classification can be seen in Table 6.15. The producers accuracy for both 

classes exceed 75 percent and the users accuracy for class 1 'erosion' exceeds 88 
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percent. However, due to the high commissions error the users accuracy for the 'no 

appreciable erosion' class is only 64.2 percent as a further 17 examples of 'no 

appreciable erosion' were classified as currently eroding. 

Overall 
Accuracy 

DEM 10 metre 0.630769 

DEM20 metre 0.676923 

Field collected 0.769231 

Field collected and DEM 10 metre 0.769231 

Field collected and DEM 20 metre 0.753846 

Field collected and classified vegetation 0.769231 

Field collected, classified vegetation and 0.784615 
DEM 10 metre 
Field collected, classified vegetation and 0.769231 
DEM20metre 

Table 6.14: Summary table of the two class classifications using discriminant 
analysis. 

Actual 
0 1 Total Overall 

Predicted 0 34 17 53 Accuracy 
1 11 68 77 

Total 45 85 130 0.784615 
Producers Accuracy Users Accuracy 

0 75.6% 0 64.2% 
1 80% 1 88.3% 

Table 6.15: Correlation matrix for the two class DA USIng the field acquired 
independent variables. 

All of the correlation matrices relating to the DA classifications can be seen in Figures 

A2.49 to A2.72 inclusive in Appendix Two. The erosion map produced for the 

discriminant analysis using the 10 metre resolution DEM training data can be seen in 

Figure 6.13. 



o 750 1,500 3,000 _ _ Meters 

Figure 6.13: Classified erosion map drape derived from the DA trained using 10 metre DEM variables for a two class classification 
(Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain). 
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6.4.2 Three Class Classifications Using Discriminant Analysis 

Table 6.16 details the overall accuracies using DA for the three class classifications. 

The DA based on the training data sets derived solely from the digital elevation 

models produced the weakest classifiers, and the strongest used the field-acquired 

data in combination with the 10 metre resolution DEM data. The correlation matrix 

produced from this classification can be seen in Table 6.17. 

Large errors of omISSIOn and commISSIOn result in the discriminant analysis 

classification, with reasonably low producers and users accuracy's, using the field 

collected independent variables in combination with the DEM data with 10 metre 

spatial resolution. The matrix highlights the fact that omission errors occur in the 'no 

appreciable erosion' class and the 'rill erosion' class, and substantial commission 

errors are apparent in the 'rill erosion' class. 

Overall 
Accuracy 

DEM 10 metre 0.523077 

DEM20metre 0.523077 

Field collected 0.6 

Field collected and DEM 10 metre 0.615385 

Field collected and DEM 20 metre 0.592308 

Field collected and classified vegetation 0.523077 

Field collected, classified vegetation and 0.6 
DEM 10 metre 
Field collected, classified vegetation and 0.607692 
DEM20 metre 

Table 6.16: Summary table of the three class classifications usmg discriminant 
analysis. 



Soil Erosion Classifications, Risk Schedules and Rule Extraction 162 

Actual 
0 1 2 Total Overall 

Predicted 0 26 4 8 38 Accuracy 
1 11 12 8 31 
2 8 11 42 61 

Total 45 29 56 130 0.615385 

Producers Accuracy Users Accuracy 
0 57.8% 0 68.4% 
1 41.4% 1 38.7% 

2 75% 2 68.9% 

Table 6.17: Correlation matrix for three class DA using the field acqUlred and 10 
metre DEM independent variables. 

Figure 6.14 shows the erosion map produced for the classification incorporating ' no 

appreciable erosion', 'rill erosion' and 'gully erosion', using the independent 

variables extracted from the 10 metre elevation model. 
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Figure 6.14: Classified erosion map drape derived from a DA trained using the 10 metre DEM variables for a three class classification 
(Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain). 
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6.4.3 Nine Class Classifications Using Discriminant Analysis 

The summary table for the classifications using all nine erosion classes highlights the 

low overall accuracies of all of the eight different DA classifications (Table 6.18). The 

maximum overall accuracy attained was 27.7 percent. These were obtained for the 

classifications which were trained using the field collected variables accompanied by 

the coarser 20 metre DEM data and that trained using the field variables, 20 metre 

DEM variables and classified vegetation. The correlation matrix for both 

classifications can be seen in Tables 6.19 and 6.20 respectively. 

Overall 
AccuraIT 

OEM 10 metre 0.2 

OEM 20 metre 0.253846 

Field collected 0.2 

Field collected and OEM 10 metre 0.215385 

Field collected and OEM 20 metre 0.276923 

Field collected and classified vegetation 0.261538 

Field collected, classified vegetation and 0.2 
OEM 10 metre 
Field collected, classified vegetation and 0.276923 
OEM 20 metre 

Table 6.18: Summary table of the mne class classifications usmg discriminant 
analysis. 
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Actual 
0 1 2 3 4 5 6 7 8 Total OveralJ 

0 18 2 1 0 1 2 2 0 0 26 Accuracy 
1 8 4 2 I 0 0 0 1 0 16 
2 6 4 0 2 1 3 2 2 0 20 
3 7 0 0 0 1 2 1 1 0 12 

Predicted 4 0 0 0 2 2 0 1 1 0 6 0.276923 

5 4 2 1 2 1 4 1 0 0 15 
6 0 3 1 0 0 4 4 0 0 12 
7 2 2 0 0 1 2 3 3 3 16 
8 0 0 0 0 0 1 4 1 1 7 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accuracy 

0 40% 0 69.2 
1 23.5% 1 25% 

2 - 2 -
3 - 3 -
4 28.6% 4 33.3% 
5 22.2% 5 26.7% 
6 22.2% 6 33.3% 
7 33.3% 7 18.8% 
8 25% 8 14.3% 

Table 6.19: Correlation matrix for DA using the field acquired and 20 metre DEM 
independent variables. 

Actual 
0 1 2 3 4 5 6 7 8 Total Overall 

0 19 2 2 0 1 3 1 0 0 28 Accuracy 

1 8 3 1 0 0 0 1 1 0 14 
2 4 3 0 2 0 2 2 3 0 16 
3 6 0 0 0 1 2 0 0 0 9 

Predicted 4 0 2 0 2 I 0 1 I I 8 0.276923 

5 5 2 1 2 1 4 1 0 0 16 
6 0 3 1 1 1 4 6 1 0 17 
7 1 2 0 0 2 2 3 2 2 14 
8 2 0 0 0 0 1 3 1 I 8 

Total 45 17 5 7 7 18 18 9 4 130 
Producers AccuracJ'_ Users Accuracy 

0 42.2% 0 67.9% 
1 17.6% I 21.4% 

2 - 2 -
3 - 3 -
4 14.3% 4 12.5% 

5 22.2% 5 25% 

6 33.3% 6 35.3% 

7 22.2% 7 14.3% 

8 25% 8 12.5% 

Table 6.20: Correlation matrIx for DA usmg the field acqUIred, 10 metre DEM 
independent variables and classified vegetation. 

Finally, the erosion map produced by the DA classification technique trained using 

the 10 metre DEM independent variables can be seen in Figure 6.15. 
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Figure 6.15: Classified erosion map drape derived from the DA trained using 10 metre DEM variables for a nine class classification 
(Topographic map reproduced from the 1:25000 National Geographical Institute of Spain), 
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6.5 COMPARISON OF CLASSIFICATION TECHNIQUES 

The presentation of the results in for all of the classifications undertaken using ANNs, 

DTCs and DA allows for contrasts and comparisons to be made between the different 

techniques (sections 6.2, 6.3 and 6.4). An important aim outlined in Chapter One is to 

better understand and determine the usefulness and applicability of AI techniques for 

the spatial mapping of erosion processes. In order to fulfil this aim, a detailed analysis 

of the results is required, and this has been undertaken within the following sub

sections. 

As expected, the overall accuracy of the classifications deteriorates as the complexity 

of the task increases. The best results are achieved for the two class classifications, 

followed by the three class and then the nine class classifications. Although this 

general trend is readily identifiable throughout the results obtained and presented in 

the previous sections of this chapter, the classification technique and the data set used 

to train the classifier does influence overall performance. 

6.5.1 Comparison of Techniques for Two Class Classifications 

The first point of interest concerning the two class classifications is the significantly 

reduced overall accuracies achieved using the digital elevation model training data for 

both the DTCs and DA. However, the ANN classifications do not appear to improve 

drastically through the incorporation of the field acquired variables, but do outperform 

both the DTCs and DA using both resolutions of training data provided by the 

elevation models. The DTCs and DA by contrast do appear to improve with the 

incorporation of the independent variables collected in the field. Neither of these two 

techniques appears to greatly outperform the other in any of the eight models 
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produced, however, they both tend to produce improved results over the neural 

networks. 
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Figure 6.16: Overall accuracies achieved for the two class classifications. 

As discussed previously, only classified erosion maps can be produced for each of the 

classifications based upon the varying resolution DEM data, as other independent 

variables incorporated within other data sets are not known throughout the entire 

study area. Nonetheless, comparing and contrasting the maps produced from these 

classifications provides important inferences into the potential strengths and 

weaknesses of each method and the associated advantages and disadvantages of the 

different techniques. Some of the developed erosion maps have been shown in the 

previous sections of this chapter, and the remainder can be seen in Appendix Six. In 

addition, a Digital Versatile Disk (DVD) is located on the inside of the rear cover of 

this thesis containing all of the erosion maps in PDP format for more detailed 

inspection. 
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Figure 6.16 incorporates the overall accuracies for each of the three classification 

techniques using all eight training data sets. It appears that in terms of overall 

accuracy, the ANN classifications are not highly variable across the range of training 

data sets. This is particularly evident in the classifications using the remotely obtained 

data from the DEMs. On both occasions ANNs produce the best classification of all 

three methods in terms of overall accuracy, yet do not appear to drastically improve 

with the incorporation of the independent variables collected in the field. However, 

the potential problems associated with these classifications are highlighted in the 

erosion maps produced from the 10 and 20 metre DEM data (Figures 6.2 and A6.3). It 

is readily evident that the two erosion maps have classified the vast majority of the 

cells within the study area as currently eroding, as opposed to showing no appreciable 

signs of erosion. The correlation matrices for the two neural networks from which the 

maps have been produced highlight the fact that of the 130 test cases presented, 113 

were classified as eroding in the 10 metre DEM network (Table A2.1) and 122 in the 

20 metre DEM network (Table A2.2), implying their apparent inability to distinguish 

between the two classes. However, the ROC curves for the classifications reflect the 

poor performances with AUC values of 0.67 for the higher resolution data and 0.63 

for the more coarse resolution data, indicating poor classification performances based 

on the parameters set out by Pearce and Ferrier (2000). 

In contrast, the DTCs and DA do not appear to suffer from the same inability to 

separate the two classes for the 10 and 20 metre DEM classifications, and although 

they produce lower overall accuracies in both cases they may in fact be better 

classifiers. Both the DTCs and DA erosion maps produced from the 10 and 20 metre 

training sets are extremely similar, and in strong contrast to those of the ANNs. As 
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outlined previously, the neural network solutions appear to classifY the vast majority 

of the study area as eroding with limited patches showing no appreciable erosion. 

Thus, although the ANNs in fact appear to produce superior results using the DEM 

training data, the OTCs and DA may actually be better employed. It is important to 

bear in mind the simple fact that if every case in the test set were classified as eroding 

then the overall accuracy would exceed 65 percent. Furthermore, the area under the 

ROC curve for the decision tree OEM classifications reflect far superior classifiers 

with values of 0.74, using the 10 metre variables, and 0.76 for the 20 metre variables. 

Unfortunately the receiver operating characteristics cannot be calculated using the DA 

technique within the StatistiXL software, however, the similarities between the two 

methods can be seen visually through the classified erosion maps (Figures A6.11 and 

A6.23). It is however clear that the OTCs have classified more of the study area as 

eroding than the DA for both OEM classifications, a point further emphasised within 

the correlation matrices. Within the test data set, 45 cases of 'no appreciable erosion' 

exist along with 85 'erosion' cases, making up the total of 130 cases. Within the DA 

classifications 15 and 17 of these were misclassified as eroding for the 10 and 20 

metre OEM classifications respectively (Tables A2.49 and A2.50), compared with 18 

and 23 for the OTCs (Tables A2.25 and A2.26), indicating the tendency for the latter 

method to potentially classify more of the 'no appreciable erosion' cells as eroding. 

As indicated in Figure 6.16, OTCs and DA appear to outperform the ANNs for the 

two class classifications in terms of overall accuracy (with the exception of the 

previously discussed OEM classifications). Moreover, the comparison of the different 

ROC curves derived from the classifications tends to support the superiority of the 

decision trees for the two class classifications in the majority of cases. All eight 
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classifications undertaken using DTCs, possessed ROC curves where the Ave 

exceeded 0.7, three of which exceeded 0.9, indicating excellent classifiers. Table 6.21 

details the AUC statistics derived from the respective ROC curve for each of the eight 

different two class classifications for both ANNs and DTCs. The statistics are 

comparable to one another implying little variation between the two techniques for all 

of the classifications trained incorporating the independent field variables. The best 

classifier based on the ROC curves was the decision tree trained using the field 

acquired variables with the classified vegetation and the 10 metre DEM data, with 92 

percent of the area under the curve. Figure 6.17 shows both the ANN and DTC ROC 

curves for the classifications emphasising the strong performance of both, but In 

particular the excellent decision tree classifier produced for the two class problem. 

Area Under ROC Curve 
ANN DTC 

DEM 10 metre 0.67 0.74 

DEM 20 metre 0.63 0.76 

Field collected 0.88 0.86 

Field collected and DEM 10 metre 0.88 0.91 

Field collected and DEM 20 metre 0.88 0.91 

Field collected and classified vegetation 0.88 0.77 

Field collected, classified vegetation and 0.88 0.92 
DEM 10 metre 
Field collected, classified vegetation and 0.84 0.77 
DEM 20 metre 

Table 6.21: Area under curve companson table for the ANNs and DTCs for the two 
class classifications. 
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Figure 6.17: ROC curves for both the ANN and DTC classifications trained using the 
field acquired independent variables, classified vegetation and the 10 metre DEM 
attributes. 

6.5.2 Comparison of Techniques for Three Class Classifications 

Of the different classification techniques, DTes and DA produced better results for 

the three class classification and, as with the two class problem, appear to outperform 

the neural networks. The overall accuracies achieved through each of the three 

different techniques can be readily compared and contrasted with one another in 

Figure 6.18. It is clear that the weakest classifiers were produced from the two digital 

elevation model training sets of differing resolutions. The maps produced from these 

classifications can, as with the two class classifications assist in the understanding and 

analysis of different classifier perfonnances ad highlight advantages and potential 

shortfalls associated with the different techniques. 
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The foremost point of interest associated with the three class classification maps 

concerns the neural networks. The maps derived from the ANN 10 and 20 metre DEM 

classifications (Figures A6.5 and A6.7), highlight the extreme bias towards the 'no 

appreciable erosion' and ' gully erosion' classes, at the expense of the ' rill erosion' 

class. As discussed previously in section 6.5.1 , the ANNs overall performance tend to 

suffer, largely as a consequence of not classifying any reasonable number of cases for 

one of the erosion groups, possibly due to the learning procedure and the training set 

used. The training set comprises a total of 390 cases, of which 152 are 'no appreciable 

erosion' , 66 are ' rill erosion' and 172 are 'gully erosion'. As can be seen in Figures 

A6.5 and A6.7, rill erosion is virtually unclassified, with a total of 10 cells attributed 

in the 10 metre DEM classification and none in the 20 metre classification. This 

problem is not evident in the DEM classifications for either the nTCs (Figures A6.15 

and A6.17) or the DA (Figures A6.27 and A6.29) which classify significant portions 

of the study area as eroding through rilling. Table 6.22 documents the composition of 
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the training set along with the composition of the erosion maps produced (10 and 20 

metre) to aid in the determination of any possible detrimental influences caused by the 

training data. 

Class 1 2 3 
Training Data Set Composition Cases 152 66 172 

0/0 39 16.9 44.1 
Class 1 2 3 

10 MetreDEM 242103 10 561937 
Artificial Neural Networks % 30.11 0.0012 69.88 

20 MetreDEM 49828 0 151347 
% 24.8 0 75 .2 

Class 1 2 3 
10 MetreDEM 281296 158354 364400 

Decision Tree Classifiers % 34.98 19.69 45 .32 
20 MetreDEM 58232 59433 83510 

% 28 .95 29.54 41.51 
Class 1 2 3 

10 MetreDEM 411303 140622 252125 
Discriminant Analysis % 51.15 17.49 31 .36 

20 MetreDEM 71853 69703 59619 
% 35.72 34.65 29.63 

. . 
Table 6.22: ComposItIOn of eroSIOn maps for all three techmques for the DEM 
classifications using each of the three class classifications. 

The results outlined in Table 6.22 emphasise a distinct weakness associated with the 

neural network technique in comparison with the DTCs and DA. The rill erosion class 

makes up the smallest group of the three within the training data set and it would 

appear that this has a significant impact upon neural network performance, signifying 

the potential swamping effect that may be a causal factor. In both classifications 

undertaken using the DEM training sets, not only do the ANNs appear to ignore the 

'rill erosion' class but also classify the majority of the study area as 'gully erosion' , 

the largest group in the training set. This suggests that their performance is strongly 

influenced by the training set composition. In contrast, neither the DTCs or DA 

appear to be constrained in such a manner, and do have a far more even spread of 

classified classes. As discussed previously, the overall accuracy results may appear 

somewhat misleading as the ANN classification trained with the coarser of the two 
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DEM data sets appear to outperform both of the other two techniques. It is evident 

that it fails to classify a single case out of a total of 201175 cells as eroding through 

rill processes, and as with the two class classifications, produces superior overall 

accuracies compared with DA or DTCs. This is achieved by classifying cases in the 

test set in the most prominent classes, resulting in high errors of omission and 

commission. 

A similar trend is also evident within the six classifications developed with the 

independent variables collected in the field. Through examination of the correlation 

matrices, it is apparent that the neural networks perform poorly for the three class 

problem. The overall accuracies suffer as a result of the minor inclusion of rill erosion 

cases. 

6.5.3 Comparison of Techniques for Nine Class Classifications 

All of the classifiers trained and produced for the nine class classification problem 

performed poorly irrespective of the data set used to train them. A neural network 

containing three hidden nodes produced the best overall accuracy classification, 39.2 

percent. Figure 6.19 shows the overall accuracies attained by the ANNs, DTCs and 

DA, highlighting the poor performances associated with each. Of the three methods, 

the neural networks produce the highest overall accuracies, followed by the DTCs in 

the majority of the cases with the DA being the weakest. However, as with the two 

and three class classifications, the overall accuracies produced from the ANNs are 

somewhat misleading because they tend to classify the vast majority of unknown 

cases into one or two erosion classes. 



Soil Erosion Classifications, Risk Schedules and Rule Extraction 

CII 

50 

45 
40 

35 

i' 30 

1: 25 

~ 20 
Q. 

15 

10 

5 

o 
OEM 10m OEM 20m Field 

Overall Accuracies 

Field and Field and Field and 
OEM 10m OEM 20m classffied 

veg 

Field . Field . 
classffied classified 
veg and vag and 

OEM 10m OEM 20m 

. ANN 

.OTC 
OOA 

Figure 6.19: Overall accuracies achieved for the nine class classifications. 
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The problem is further highlighted through the erosion maps produced from the DEM 

classifications. The map produced from the ANN 10 metre DEM classification has 

not been shown as every cell was classified in the same class, namely 'no appreciable 

erosion'. Figure 6.4, the erosion map for the 20 metre DEM classification, shows the 

same problem but to a lesser extent whereby the vast majority of the coverage is 

classified as 'no appreciable erosion', and only six of the eight classes have had cases 

attributed to them. Table 6.23 contains the composition of the training data set and the 

number of cells that have been classified within each class for both the 10 and 20 

metre DEM classifications for each of the three different techniques. 
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Training Class 0 1 2 3 4 5 6 7 8 
Data Set Cases 152 44 12 12 22 54 59 27 8 
Composition % 38.97 11.28 3.08 3.08 5.64 13.85 15.13 6.92 2.05 

Class 1 2 3 4 5 6 7 8 9 
Artificial 10 804050 0 0 0 0 0 0 0 0 
Neural Metre 
Networks OEM 

% 100 0 0 0 0 0 0 0 0 
20 83732 104901 19 0 0 5 1611 1896 9011 

Metre 
OEM 

% 41.621 52.144 0.009 0.000 0.000 0.002 0.801 0.942 4.479 
Class 1 2 3 4 5 6 7 8 9 

Decision 10 239639 139580 76487 5740 76346 77354 57372 67789 63743 
Tree Metre 
Classifiers OEM 

% 29.80 17.36 9.51 0.71 9.50 9.62 7.14 8.43 7.93 
20 38831 46163 16351 2097 19850 19812 19936 29183 8952 

Metre 
OEM 

% 19.30 22.95 8.13 1.04 9.87 9.85 9.91 14.51 4.45 
Class 1 2 3 4 5 6 7 8 9 

Discriminant 10 317146 74105 35255 59551 30919 10309 29068 34069 120840 
Analysis Metre 7 

OEM 
% 39.44 9.22 4.38 7.41 3.85 12.82 3.62 4.24 15.03 
20 43314 49382 8186 23274 6613 27653 14532 10606 17615 

Metre 
OEM 

% 21.53 24.55 4.07 11 .57 3.29 13.75 7.22 5.27 8.76 

Table 6.23: Composition of erOSIOn maps for all three techniques for the DEM 
classifications for the nine class classifications. 

Through analysis and interpretation of the results outlined in Table 6.23, it would 

appear that the composition of the training data set exerts strong influences upon the 

neural network classifications undertaken for the nine class problem, as evident in the 

cases of those trained using the elevation model data. It is clearly evident that the 

ANNs attribute the vast majority of the unknown cases in the study area to the largest 

constituent classes within the training set. The same effect is not as pronounced in 

either the DA classifications or the DTCs, however it is impossible to comment 

extensively upon these results as the actual or ground truth of every cell within the 

study area is unknown. Thus, it may in fact be the case that certain classes are 

inherently less prominent than others irrespective of the composition of the training 
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set. Nonetheless, the figures presented in Table 6.23 are such that it is readily apparent 

that the neural networks appear to be strongly influenced by the training process to 

such an extent that some classes have no cases attributed to them. For example, class 

six, 'minor subsurface gully erosion', of which the training data comprises nearly 14 

percent, had no cells attributed within the 10 metre classification and only five in the 

20 metre classification. 

With the incorporation of the independent variables collected in the field within the 

training process, it is clear that all three classification methods produced improved 

results. The ANNs achieved higher overall accuracies than either the DTCs or the DA 

in any of the eight classifications. However, the analysis of the correlation matrices 

further emphasises the potential swamping effect associated in particular with the 

neural networks. The correlation matrix for the optimum neural network trained for 

the nine class problem seen in section 6.2.3 (Table 6.7) grouped all 130 test cases into 

only three of the possible eight erosion classes. Likewise, none of the other seven 

classifications attributed unknown test cases to all nine classes and in the worst 

instance only a single erosion class was used in the 10 metre DEM classification, up 

to a maximum of five (20 metre DEM classification). 

In contrast to the ANNs, the DTCs and DA techniques do not appear to suffer from 

the same swamping problems. In both instances, either the majority of classes have 

been attributed unknown cases or all of them have, particularly in the DA 

classifications. 
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6.6 THE SELECTION AND INFLUENCE OF INDEPENDENT VARIABLES 
ON CLASSIFIER PERFORMANCE 

An extensive array of independent and dependent variables have been used in 

combination with one another so as to aid the understanding of their influence and 

effect upon classification outputs. An important aim set out in Chapter One concerned 

the issue of selecting appropriate dependent and in particular independent variables 

for such classification problems, in order to provide some insights into the cost-

benefits associated with different techniques. 

Overall accuracy and classifier performance is variable between those classifications 

using only independent variables extracted from the two digital elevation models and 

those incorporating the field collected variables within the training stage. This general 

trend is evident throughout each classification problem, namely two class, three class 

and nine class classifications. However, to fulfil the stated aim it is important to 

determine the extent to which the trend holds and the importance and influence of 

individual independent variables as opposed to the overall data set. 

Discussed in Chapter Four, ANNs and DTCs can determine the usefulness and 

applicability of individual predictors and weight them accordingly, so that 

independent variables, believed to have little significance upon classifier performance, 

can largely be ignored, in contrast to those that may be heavily weighted due to their 

perceived value. Thus, through the analysis of such weightings, proposals and 

suggestions can be forwarded to assist and aid future research. 
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6.6.1 Independent Variables Extracted from Digital Elevation Models 

A total of six independent variables were derived from the two DEMs, including slope 

angle, aspect, flow length and accumulation, and plan and profile curvature (see Table 

5.1). Sensitivity analysis can be carried out to determine the contribution of each 

independent variable to the dependent variable in a neural network. They have been 

used extensively in studies where neural networks have been applied, in an attempt to 

better understand the neural solution identified (Park and Chung, In Press; Pastor-

Barcenas et al., 2005; Olden and Jackson, 2002; Jaiswal et al., 2005). Table 6.24 and 

6.25 detail the sensitivity analysis for the neural network trained for the two class 

classification using the 10 metre and 20 metre resolution data respectively. Each 

variable is given a rank and an error value for both the training and verification stages. 

The rank is the most important variable with regards to overall network performance 

(1 being the most important), and the error is the error rate that would occur if the 

variable were not included in the model. 

Slope Aspect Flow Flow Plan Proftle 
Angle Length Accumulation Curvature Curvature 

Train Rank 1 2 4 6 5 3 
Error 0.5095 0.4971 0.4858 0.4831 0.4846 0.4910 

Verify Rank I 2 4 3 6 5 
Error 0.4678 0.4609 0.4571 0.4592 0.4560 0.4570 

Table 6.24: Sensitivity analYSIS for the ANN tramed usmg the 10 metre DEM data set 
for the two class classification. 

Slope Aspect Flow Flow Plan Profile 
Angle Length Accumulation Curvature Curvature 

Train Rank 1 6 2 5 4 3 
Error 0.4978 0.4825 0.4892 0.4843 0.4844 0.4844 

Verify Rank 2 5 1 4 3 6 
Error 0.4630 0.4594 0.4682 0.4594 0.4619 0.4593 

.. 
Table 6.25: SensitIVIty analYSIS for the ANN tramed usmg the 20 metre DEM data set 
for the two class classification. 



Soil Erosion Classifications, Risk Schedules and Rule Extraction 181 

It can be concluded from the sensitivity analysis that slope angle would appear to be 

the most important independent variable derived from the elevation models for the 

neural network classifications. Of the other five variables, the importance varies 

between both training and verification data sets as well as between the different 

resolutions, yet the margin of error between them is extremely small and in some 

instances is negligible. Nonetheless, the analysis does show that all six of the inputs in 

the networks assist, to some degree, in the classification process. 

The variable importance can be calculated for the DTCs, producing a scored index 

based upon the contribution of each independent variable, taking into account its role 

as a primary splitter and as a surrogate to any of the primary splitters in a tree (Salford 

Systems, 2004). The most important variable is assigned a value of 100, whilst a 

value of zero indicates that the variable played no role in the analysis. The variable 

importance index however, concerns all trees grown during a classification procedure, 

not just the tree selected. Therefore, caution must be exercised when analysing the 

results. Unlike ANNs however, DTCs are explicit in their topology and through 

viewing the tree itself inferences can be made regarding the individual influence of 

various independent variables. 

Variable 
Importance 

Aspect 100 
Flow Length 82.17 
Slope Angle 73.07 
Profile Curvature 15.34 
Flow Accumulation 3.87 
Plan Curvature 3.58 

Table 6.26: Variable Importance for the DTC tramed using the 10 metre DEM data 
set for the two class classification. 
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Variable 
Importance 

Flow Length 100 
Flow Accumulation 81.70 
Slope Angle 75.34 
Aspect 35.08 
Profile Curvature 25.71 
Plan Curvature 3.38 

Table 6.27: Vanable Importance for the DTC tramed using the 20 metre DEM data 
set for the two class classification. 

Table 6.26 and 6.27 are the variable importance values for the two class problem 

using the two DEM data sets. The weakest predictor appears to be plan curvature, 

adding little to the overall performance in either of the classifications, and flow length 

can be seen to be an extremely useful predictor. Through visual analysis of tree 

structure, it is apparent that in the 10 metre DEM classification only slope angle, 

aspect and flow length are used as predictors, and slope angle, flow length, flow 

accumulation, aspect and profile curvature are used in the 20 metre DEM 

classification. In both cases, slope angle is the root node indicating its high entropy 

factor, but flow length and aspect provide a number of data splits. 

The ANN and DTC classifications undertaken for the three class problem suggest, 

through the sensitivity analysis and variable importance, that the most influential 

independent variables are slope angle, aspect and flow accumulation. The neural 

network sensitivity analysis for both DEM resolutions can be seen in Appendix Five, 

Tables AS.9 and AS.10, which indicate that the least influential variables are flow 

accumulation, plan and profile curvature. For the same classifications, the decision 

trees also highlight flow length, slope angle and aspect as the most important 

independent variables, with the exception of the 20 metre classification whereby flow 

accumulation was in fact an important contributor as shown in Tables AS.33 and 

AS.34. These findings are reinforced by the sensitivity analysis for the neural 
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networks trained for the nine class classification (Tables AS.17 and AS.I8). However, 

the variable importance analysis for the 10 metre decision tree trained to classify all 

nine classes inverts the trend, with flow accumulation, plan curvature and profile 

curvature being the most significant variables (Table AS.41). Nonetheless, the 20 

metre classification appears to comply with the overall trend with flow length being 

the most influential variable and plan and profile curvatures being the least influential 

(Table A5.42). 

6.6.2 Independent Variables Acquired from the Field 

The advantages of using digital elevation model (DEM) data for the study of various 

geographical phenomena are well documented and understood. The advantages of 

DEMs are based largely on a combination of cost and time issues. Therefore, their 

incorporation within numerous investigations has been extensive, with varied degrees 

of success. To determine the ability of such data sets within this work and beyond, it 

is important to provide a comparison. Therefore, as outlined in Chapter Five, a range 

of independent variables were collected in the field and used to train the various 

classifiers. The following discussion details the apparent ability of each of the field 

collected independent variables as predictors of soil erosion. 

The sensitivity analysis undertaken for the three neural network classifications, two 

class, three class and nine class, can be seen in Tables 6.28, 6.29 and 6.30 

respectively. Taking all of the classifications into account using field data, geology 

would seem to be the variable that exerts the strongest controls on the network 

performances followed by the slope angle. The remaining three independent variables, 

aspect, estimated vegetation cover and sodicity meter, have inconsistent levels of 
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influence throughout the three classifications, revealing no significant underlying 

patterns. Interestingly the DTCs support these findings, and in all three cases slope 

angle is ranked as the most important. Geology is the second most important in two 

out the three classifications (Tables 6.31, 6.32 and 6.33). Of the less important 

variables, aspect, estimated vegetation and the results of the sodicity meter, the latter 

is the weakest. In the three class classification the sodicity meter has no influence 

whatsoever upon the decision tree construction. 

Slope Angle Aspect Estimated Field Geology 
Vegetation Sodicity 

Meter 
Train Rank 5 4 3 2 1 

Error 0.3857 0.4078 0.4103 0.4163 0.4283 
Verify Rank 1 4 5 3 2 

Error 0.4208 0.3823 0.3799 0.3840 0.4202 .. 
Table 6.28: Sensltlvlty analysls for the ANN tramed using the field acquired data set 
for the two class classification. 

Slope Angle Aspect Estimated Field Geology 
Vegetation Sodicity 

Meter 
Train Rank 3 2 5 4 1 

Error 0.3932 0.3950 0.3851 0.3911 0.4083 
Verify Rank 2 5 4 3 1 

Error 0.3782 0.3416 0.3587 0.3632 0.3965 

Table 6.29: Sensitivity analysis for the ANN trained using the field acquired data set 
for the three class classification. 

Slope Angle Aspect Estimated Field Geology 
Vegetation Sodicity 

Meter 
Train Rank 1 4 3 5 2 

Error 0.2766 0.2744 0.2763 0.2723 0.2766 
Verify Rank 1 3 4 5 2 

Error 0.2845 0.2797 0.2741 0.2738 0.2825 

Table 6.30: Sensitivity analysis for the ANN trained using the field acquired data set 
for the nine class classification. 
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Variable 
Importance 

Slope Angle 100 
Geolo2Y 59.61 
Aspect 58.89 
Estimated Vegetation 40.53 
Sodicity Meter 32.56 

Table 6.31: Variable importance for the DTe trained using the field acquired data set 
for the two class classification. 

Variable 
Importance 

Slope Angle 100 
Geolo2Y 69.2 
Estimated Vegetation 57.21 
Aspect 44.22 
Sodicity Meter 0 

Table 6.32: Variable importance for the DTC trained using the field acquired data set 
for the three class classification. 

Variable 
Importance 

Slope Angle 100 
Aspect 75.38 
Estimated Vegetation 63.39 
Sodicity Meter 60.20 
Geolo2Y 54.80 

Table 6.33: Variable importance for the DTC trained using the field acquired data set 
for the nine class classification. 

Table 6.34 details the sensitivity analysis for the two class problem incorporating the 

classified vegetation independent variable within the network. The results are highly 

comparable to those using the estimated vegetation, with slope angle and geology 

being the most important predictors and sodicity being the least important. This trend 

holds for both the three and nine class classifications undertaken using the same 

training data. The classified vegetation variable therefore does not appear to have a 

significantly increased role in the class separation process within any of the 

classifications. However, it is important to highlight the fact that all three 

classifications incorporating the field variables and the classified vegetation have 

increased overall accuracies to those using the basic estimated vegetation. 
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Slope Angle Aspect Classified Field Geology 
Vegetation Sodicity 

Meter 
Train Rank 1 3 4 5 2 

Error 0.4377 0.4101 0.3998 0.3927 0.4195 
Verify Rank 1 4 3 5 2 

Error 0.4537 0.3992 0.4185 0.3963 0.4210 

Table 6.34: Sensitivity analysis for the ANN trained using the field acquired data set 
and classified vegetation for the two class classification. 

The decision tree classifications rank the slope angle as the most important variable in 

all three problems. The classified vegetation however is one of the lesser important 

variables in the two and three class problems, attaining importance values of 0.67 and 

58.1 respectively. Nonetheless, as can be seen in Table 6.35, the classified vegetation 

variable was ranked third in the list of importance. 

Variable 
Importance 

Slope An21e 100.00 
Aspect 69.22 
Classified Ve2etation 65.19 
Sodicity Meter 61.69 
Geology 56.12 

Table 6.35: Variable lmportance for the DTC tramed using the field acquired data set 
for the nine class classification. 

6.6.3 Comparison of Field and DEM derived Independent Variables 

Artificial neural networks and decision tree classifiers were also trained using a 

combination of both field collected independent variables and those extracted from 

DEMs. The results of the sensitivity analysis for the network trained using the field 

data and the 10 metre DEM variables are shown in Table 6.36. The sensitivity 

analysis for the other classifications are not shown here because a strong trend exists 

throughout the networks trained for all three problems using both the field data in 

combination with the 10 and 20 metre DEM independent variables. Generally 
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throughout all of these classifications the four predicting variables extracted from the 

DEMs are ranked lowest out of the nine. Thus, the five variables determined through 

fieldwork were deemed the most important with geology and slope angle being the 

most influential. The trend is apparent throughout all of the classifications, with the 

exact rank for each variable changing slightly but not significantly. It is interesting to 

point out that the error is higher for the field variables in contrast to the DEM 

variables, indicating that the former has a far more important role in the network. 

Slope Aspect Est. Field Geology Flow Flow Plan 
Angle Veg. Sodicity Length Ace. Curv. 

Meter 
Train Rank 2 3 4 5 1 9 7 8 

Error 0.4266 0.4184 0.4138 0.4135 0.4493 0.3760 0.3784 0.3769 
Verify Rank 1 3 2 5 4 6 9 8 

Error 0.4546 0.4070 0.4074 0.3991 0.3996 0.3989 0.3942 0.3949 

Table 6.36: SenSItivity analysis for the ANN trained using the field acquired data set 
and the 10 metre DEM variables for the two class classification. 

The decision trees grown for the classification problems using the combined data sets 

also appear to rank the field variables as more important than those of the DEM. The 

slope angle is generally ranked as the most important and the plan and profile 

curvatures as the least useful. A typical example of the variable importance for these 

classifications can be seen in Table 6.37, which indicates once again that the remotely 

collected DEM variables provide less assistance for the classification procedure when 

using decision trees. 

Variable 
Importance 

Slope A021e 100 

Geolo2Y 80.58 

Aspect 60.89 

Estimated Ve2etation 53.61 

Sodicity Meter 51.15 

Flow Leo2fb 34.53 

Flow Accumulation 10.4 

Profile Curvature 8.7 
Plan Curvature 1.64 

Table 6.37: Variable importance for the DTC trained using the field acquired data set 
and the 10 metre DEM variables for the three class classification. 

Profile 
Curv. 

6 
0.3808 

7 
0.3968 
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Finally, the training data set comprising of field collected variables, classified 

vegetation cover and those extracted from the DEMs produced neural networks and 

decision trees with similar results to those using the estimated vegetation cover. In 

addition, the variable importance and sensitivity also varies little from those 

classifications, whereby the field collected data is generally ranked as more useful 

independent variables than are those attained from the elevation models. The general 

point is illustrated through Tables 6.38 and 6.39, the sensitivity analysis and the 

variable importance using the field data, classified vegetation and the 10 metre DEM 

variables for the three class problem. 

Slope Aspect Class. Field Geology Flow Flow Plan 
Angle Veg. Sodicity Length Acc. Curv. 

Meter 
Train Rank 2 3 4 5 1 7 9 8 

Error 0.3847 0.3824 0.3691 0.3568 0.3875 0.3422 0.3405 0.3406 

Verify Rank 2 3 9 4 1 7 6 5 

Error 0.4405 0.4301 0.4198 0.4241 0.4428 0.4199 0.4204 0.4219 

Table 6.38: Sensitivity analysis for the ANN trained using the field acquired data set, 
classified vegetation and the 10 metre DEM variables for the three class classification. 

Variable 
Importance 

Slope Angle 100 
Geology 96.17 
Aspect 65.03 
Estimated Ve2etation 63.56 
Sodicity Meter 61.15 
Flow Length 36.17 
Flow Accumulation 18.22 
Profile Curvature 10.4 
Plan Curvature 6.42 

Table 6.39: SensitiVIty analYSIS for the DTC trained using the field acquired data set, 
classified vegetation and the 10 metre DEM variables for the three class classification. 

Prome 
Curv. 

6 
0.3433 

8 
0.4198 
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6.6.4 Summary 

In general, it is apparent throughout the many classifications that the independent 

variables measured in the field are more useful than those derived from the DEMs. 

Both the variable importance rankings and the sensitivity analysis clearly show this to 

be the case, to a lesser or greater degree, depending upon the classification in 

question. This is further supported through the use of the ROC curves created from 

the two class problems and seen in Figures 6.20 and 6.21 for the ANNs and the DTCs 

respectively. 

ANN ROC Curves 
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Figure 6.20: ROC curves derived from each of the eight ANN two class 
classifications. 

The ROC curves derived from the neural networks highlight the distinct improvement 

in the classifiers that incorporate the field data in their training, developing weak 

classifiers into good classifiers as suggested by Pearce and Ferrier (2000). A similar 

trend exists within the DTCs grown. However, in this instance good classifiers have 

been transformed into excellent ones through the incorporation of the field variables. 
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Figure 6.21: ROC curves derived from each of the eight DTC two class 
classifications. 

In summary the overall accuracies for the classifications indicate generally improved 

performances when incorporating the field data sets into the training set as opposed to 

purely using those variables from the DEMs. This generalisation holds true for the 

ANNs, DTCs and DA techniques. However, the extent to which it operates varies 

from one classification to another. 
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6.7 RULE EXTRACTION USING RESPONSE SURFACES AND SPLITTING 
CRITERIA 

An advantage of using ANNs and DTCs is that they work inductively, formulating 

rules, parameters and thresholds based on the training data they receive. Therefore, an 

opportunity exists to remove and review knowledge from the classifiers, and 

determine the ability of such techniques to produce informative rules relating to the 

processes. However, as discussed in Chapter Four, it is not easy to view the internal 

workings of artificial neural networks due to their black-box nature. Decision trees are 

perhaps more straightforward in their interpretation as the splitting rules are stated at 

each individual node. Response surfaces offer the ability to visualise the behaviour of 

a network by plotting two variables against one another whilst holding all others 

equal. The technique allows the user to view potential thresholds identified within the 

training data by the networks. 

6.7.1 Artificial Neural Network Response Surfaces 

Figure 6.22 provides response surfaces for the two class classification trained using 

the 10 metre DEM data in combination with the field acquired variables. The first 

surface plots slope angle against estimated vegetation (A), and the second plots slope 

angle against flow length (B). Response surface A demonstrates the increased slope 

angle required to cause erosion as the vegetation cover increases, up until a specific 

point beyond which the angle of the trend appears to invert, with cells possessing 

lower slope angles and increased vegetation cover eroding. The second surface, 

plotting slope angle against flow length, shows a linear relationship whereby an 

increasing slope angle is required to cause erosion as the flow length decreases. 
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o 1 01 

Figure 6.22: Response surface for (A) slope angle against estimated vegetation and 
(B) slope angle against flow length, for the two class classification using the ANN 
trained with the field variables and 10 metre DEM variables (Note: z-axis is erosion 
where I = no appreciable erosion and 2 = erosion). 

The response surfaces derived from the three class classifications emphasise the 

apparent difficulty the ANNs have distinguishing between rill erosion and the two 

other classes with a single threshold boundary. This can be seen in both response 

surfaces shown in Figure 6.23. The surfaces do highlight the non-linear capabilities of 

ANNs. The first of the two surfaces plots slope angle against estimated vegetation 

cover (A). As may be expected, an increase in vegetation cover limits and restricts the 

onset of erosion even as slope angle increases. However, even slopes possessing 

maximum vegetation cover (100 percent), are vulnerable to erosion on relatively steep 

slopes. The second response surface possesses a highly non-linear form, incorporating 

the field sodicity meter data and slope angle (B). The response surface implies that 

even on very low angled slopes, if sodicity levels are significantly high then 

subsurface erosion may occur. It is important however to stress the limitations 
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associated with such graphs, largely as they only incorporate two variables whilst 

holding all others equal. 

Figure 6.23: Response surface for (A) slope angle against estimated vegetation and 
(B) slope angle against sodicity, for the three class classification using the ANN 
trained with the field and 10 metre DEM variables (Note: z-axis is erosion where 1 = 

no appreciable erosion, 2 = rill erosion and 3 = gully erosion). 

Two further response surfaces have been generated, seen in Figure 6.24 for a network 

trained for the nine class classification. As with the those produced for the three class 

problem, the response surfaces demonstrate the neural networks extremely poor class 

separation. The graphs have been produced for the ANN trained using the field and 

classified vegetation independent variables. Each contain two threshold boundaries to 

distinguish between three erosion classes. The two relationships plotted between slope 

and aspect (A), and slope and classified vegetation (B), were the only variables to 

portray a relationship. Of the other independent variables no threshold boundaries 

existed, that is to say that a single class existed in the z-axis across the entire decision 

region. 
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Figure 6.24: Response surface for (A) slope angle against slope aspect and (B) slope 
angle against classified vegetation, for the nine class classification using the ANN 
trained with the field variables and classified vegetation (Note: z-axis is erosion where 
o = no appreciable erosion and 7 = minor subsurface gully erosion). 

6.7.2 Decision Tree Classifier Splitting Criteria 

The concept of entropy has been discussed in Chapter Four (section 4.3.2), where the 

data split offering the maximum knowledge gain is the root node, and usually the 

most important variable. In contrast to ANNs, DTCs produce easily interpretable rules 

with explicit structures. Splitting criteria is a simple parameter on which to extract 

rules and theories that the decision trees may have discovered existing within the 

training data. 

The decision trees grown for the two and three class classifications with training data 

that incorporates the field acquired independent variables all contain slope angle as 

the root node (see Appendix Two). A common split value of 19 appears to provide the 

maximum knowledge gain. Slopes with angles equal to or below 19 degrees therefore 

have been classified as non-eroding regardless of other factors, however, above this 
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further questions are generally asked depending upon the tree in question. The most 

common questions relate to vegetation cover, geology and sodicity. Figure 6.25 gives 

an example of the some of the rules extracted from the two class problem trained 

using the field derived data only. 

RULE 1 
IF Slope> 19 AND 
Estimated Vegetation Cover> 55 AND 
Sodicity Meter ~ 5.5 AND 
Slope> 43 THEN 

Terminal Node 11 = Erosion 

RULE 2 
IF Slope> 19 AND 
Estimated Vegetation Cover ~ 55 AND 
Geology = Gypsum AND 
Aspect> 185 THEN 

Terminal Node 6 = Erosion 

Figure 6.25: Some of the rules extracted from the DTC grown for the two class 
classification using field acquired independent variables. 

The majority of trees grown using the field acquired data found the slope angle to be 

the most important variable with a threshold value of 19 degrees assigned. The trees 

generally split the data such that a value of 19 or less resulted in 'no appreciable 

erosion' and above 19 further questions would be posed. It is not so easy to determine 

such simple premises as the tree progresses down to its terminal nodes as these rules 

are based upon a number of previous questions that have been answered. The rules 

determining the splits are useful and can reveal important insights into the soil erosion 

phenomenon. For example, as with the slope angle, estimated vegetation in excess of 

55 percent or equal to or less than 55 percent has been identified as a general split 

criteria in many of the trees. 
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Figure 6.26 demonstrates the non-linear abilities of DTCs, detailing the rules 

produced from the tree grown for a binary classification using the 10 metre DEM 

independent variables. The two graphs detail the recursive partitioning of the data by 

the decision tree and simply assist in the visualisation of the decision boundaries 

identified. The first two rules are outlined in the first of the two graphs (top), which 

determining the majority of the feature space. However, a second graph is required 

(bottom) to further differentiate between examples plotted in this region. 
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IF Slope <= 14.5 AND 
Flow Length <= 563 AND 
Aspect> 269.5 THEN 
Terminal Node 4 = No Appreciable Erosion 

Rule 4 
IF Slope <= 14.5 AND 
Flow Length <= 563 AND 
Aspect <= 269.5 AND 
Aspect> 209.5 THEN 
Terminal Node 3 = Erosion 

RuleS 
IF Slope <= 14.5 AND 
Flow Length <= 563 AND 
Aspect <= 269.5 AND 
Aspect <= 209.5 AND 
Flow Length > 145 THEN 
Terminal Node 2 = No Appreciable Erosion 

Rule 6 
IF Slope <= 14.5 AND 
Flow Length <= 563 AND 
Aspect <= 269.5 AND 
Aspect <= 209.5 AND 
Flow Length <= 145 THEN 
Terminal Node 1 = Erosion 

Figure 6.26: The splitting criteria detennined by the DTC trained using the 10 metre 
DEM data set. 
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Figure 6.27 details some of the rules extracted from a tree grown for a three class 

classification, using both the 10 metre DEM data as well as the field collected data. 

The trees grown using data incorporating the field attributes, portray subtle 

differences with one another. These trees largely consist of the same rules. However, 

it is not so easy to extract simple rules or patterns within the training data from the 

trees grown for the nine class classifications. The main reason for this is that due to 

the increased complexity of the problem. The trees grown are generally larger and far 

more complicated. Even in circumstances where they are relatively small, they do not 

distinguish between the classes well and extracting knowledge from them would 

provide little relevant information. 

RULE 1 
IF Slope:::: 19 THEN 

Terminal Node 1 = No Appreciable Erosion 

RULE 2 
IF Slope> 19 AND 
Geology = Gypsum THEN 

Terminal Node 2 = Rill Erosion 

RULE 3 
IF Slope> 19 AND 
Geology i= Gypsum AND 
Estimated Vegetation Cover> 55 AND 
Sodicity Meter:::: 5.5 AND 
Flow Length:::: 42 THEN 

Terminal Node 8 = Gully Erosion 

Figure 6.27: Some of the rules extracted from the DTC grown for the three class 
classification using field acquired and 10 metre DEM independent variables. 
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6.8 THE DETERMINATION OF OPTIMAL ARTIFICIAL NEURAL 
NETWORK ARCHITECTURES AND A REVIEW OF DECISION TREE 
TOPOLOGIES 

The difficulties associated with the determination of optimum ANN topologies have 

been outlined in Chapter Four (section 4.2.3). This is a problem not encountered 

through the use of DTCs. In order to improve the understanding of such issues, neural 

networks were trained using a single hidden layer comprising a single node up to a 

maximum of25 nodes (see Chapter Five). This is largely a process of trial and error, 

as suggested by Spellman (1999), and a method employed by Chen et al. (2002), 

Plumb (2002), Maier and Dandy (1998), laiswal et al. (2005) and Hussain et al. 

(1991). 

The general trend that overall accuracy increases in accordance with a reduced error 

rate as the network topology becomes more complex (i.e. as the number of hidden 

nodes increases) would be expected until some specific point. However, results 

suggest that the identification of ideal network architectures is a difficult task. Error 

versus accuracy graphs can be seen in Appendix Four (Figures A4.1 to A4.24) for 

each of the neural networks trained for the two, three and nine class classifications. 

Close inspection of the graphs reveals a number of interesting points, particularly 

when considering each of the three classifications individually (two, three and nine 

classes). 

The two class classifications generally indicate that the optimum number of nodes in 

the hidden layer is case specific. Throughout the eight classifications, the verification 

error appears to reach a significant low threshold, beyond which oscillation tends to 

occur. However, it may be the case that a lower error threshold is identified beyond 
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this point. Figures 6.28 and 6.29 show the error versus accuracy graphs produced for 

the ANNs trained using the field acquired independent variables, and the field 

acquired and 10 metre DEM independent variables respectively. In both cases it is 

possible to identify the point at which verification error rapidly decreases, and 

subsequently oscillates around this level. The graphs also highlight the fact that 

overall accuracy tends to vary with little evidence of any trend or pattern as the 

number of hidden nodes increases. It is worthwhile mentioning that the networks 

presented with data collected in the field, the 10 metre DEM data, or a combination of 

the two, tend to reach a more distinguishable optimisation point. 
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Figure 6.28: Error versus accuracy graph for the ANNs trained using the field 
acquired independent variables (two class). 

The error versus accuracy graphs derived for the three class neural network 

classifications also tend to indicate that the number of nodes in the hidden layer 

produces highly variable error and accuracy rates. The verification error rate within all 

of the classifications, with the exception of those trained with only the DEM data, 

tends to rapidly reduce as the networks become more complex. However, there is little 

evidence within the graphs revealing any distinct patterns regarding overall accuracy, 

and thus optimum topology is largely dictated (at least in these classifications) by the 
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verification error. The networks that used training data incorporating the data 

collected in the field, tend to show more distinctively where the optimum topology 

appears to lie. Figures 6.30 and 6.31 for example, clearly show the optimum network 

architecture. 
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Figure 6.29: Error versus accuracy graph for the ANNs trained using the field 
acquired and 10 metre DEM independent variables (two class). 
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Figure 6.30: Error versus accuracy graph for the ANNs trained using the field 
acquired independent variables (three class). 
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Figure 6.31: Error versus accuracy graph for the ANNs trained using the field 
acquired independent variables and classified vegetation (three class). 

The optimum network topology for the most complex classification which 

incorporates all nine erosion classes, should also be determined by verification error 

as overall accuracy is highly variable. The majority of the networks tend to reach their 

lowest verification error with relatively small architectures, largely consisting of less 

than ten hidden nodes. Verification error beyond this point tends to generally increase 

in most of the classifications, highlighted in Figures 6.32 and 6.33. 
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Figure 6.32: Error versus accuracy graph for the ANNs trained using the 10 metre 
DEM independent variables (nine class). 
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Figure 6.33: Error versus accuracy graph for the ANNs trained usmg the field 
acquired independent variables (nine class). 

As suggested previously, DTCs tend not to suffer from the same architecture issues as 

ANNs. Nonetheless, examination of tree structure in relation to error (relative cost) 

can reveal interesting insights into the tree growth procedure and overall classifier 

ability. As discussed in Chapter Five (section 5.6.2), extensive decision trees are 

grown and subsequently pruned through the removal of terminal nodes, thereby 

ensuring that the optimum tree is found and not overlooked. 

Graphs plotting the relative cost against the number of terminal nodes within a tree 

can be seen for all classifications in Appendix Four, Figures A4.25 to A4.48 

inclusive. The relative cost or error would be expected to decrease as the number of 

terminal nodes in the decision tree increases or as the tree becomes more complex. 

However, this should begin to plateau at some specific point, and in some instances 

may begin to rise as the generalisation ability of the tree is exceeded. 

Such a trend is clearly distinguishable within the error curves plotted for the various 

classifications. Optimum tree topologies are readily identifiable, however, few 
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apparent trends or patterns are evident. For example, Figures 6.34 and 6.35 show the 

error curves for the two class classification trees grown using the field acquired data 

and the field acquired data with classified vegetation respectively. The trees are 

trained using largely similar data sets but the architecture for the tree grown 

incorporating classified vegetation is far simpler. 

ErTorCurve 

Figure 6.34: Relative cost and terminal nodes for the field acquired independent 
variables (two class). 
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Figure 6.35: Relative cost and terminal nodes for the field acquired independent 
variables and classified vegetation (two class). 

The number of terminal nodes within the trees grown for the three class classification 

also appears highly variable and ranges from four in the tree grown using the field 

data only to 19 in that trained using the 20 metre DEM data. The more complex nine 

class problem produced a range ofDTCs that were grown significantly larger than any 

involved in the aforementioned classifications. For example, using the field collected 

data and the field collected data and 20 metre DEM variables, trees incorporated 31 

and 51 terminal nodes respectively. 
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6.9 EROSION RISK SCHEDULES AND POTENTIAL 

As outlined in Chapter Five, it is important to develop and produce outputs (maps) 

that are meaningful and useful to landscape managers. The importance or value of 

current erosion maps (actual) to people or organisations at a range of levels to assist 

and aid decision-making is understood. However, varying assortments of erosion risk 

maps can be developed to complement the actual erosion maps. 

The following sub sections present the various erosion risk maps developed through a 

range of different methods. The methods include: 

• Erosion probability maps constructed through decision tree growth. 

• Erosion risk by association maps produced through the implementation of the 

methodology detailed in section 5.8. 

6.9.1 Erosion Probability Maps 

The different decision trees grown each classify the training data by recursively 

partitioning the example cases into smaller subsets until a terminal node (leaf) is 

reached. Due to the nature of decision tree structure - in particular the data split at 

each terminal node - it is possible to produce erosion probability maps as opposed to 

actual or classified erosion maps. For example, if a data set presented to a decision 

tree is split in such a way that terminal node X contains 100 examples, 90 of which are 

attributed to class A and the remainder to class B, the probability of unknown cases at 

the same node actually belonging to class A and class B is 90 percent and 10 percent 

respectively. 
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Using this simple concept, erosion probability maps have been produced from trees 

grown using the two, three and nine class classifications. As with the erosion maps 

however, risk maps have only been produced from the trees trained using either the 10 

metre or 20 metre DEM data as this is available for every cell within the study area, 

whereas the field collected data are not. 

Figure 6.36 is the erosion probability map produced using the DTC trained using 10 

metre DEM data for the binary classification. According to the erosion map, white 

areas are currently eroding, and the coloured areas relate to cells that are at present not 

eroding but may be in reality. For example, based on the training data, blue areas on 

the map have a 33 percent chance of eroding. Figure 6.37 shows an erosion risk map 

detailing the potential for gully erosion produced from the tree trained using the 20 

metre DEM data. The probabilities range from zero, to a maximum of 50 percent. 

Such maps can be perceived as erosion risk maps: highlighting erosion potential in a 

quantitative manner. Similar maps have been constructed based upon various trees 

grown using either resolution DEM data, and can be seen in Appendix Six (Figures 

A6.35 to A6.41 inclusive) and on the DVD attached (DTCRiskmaps). 
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Figure 6.36: Erosion probability map drape produced from the DTC trained with the 10 metre DEM variables for a two class 
classification (Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain), 

C/J o 
::.: 
tr1 
:3 
Vl 
O· 
::s 
n 
~ 
Vl 

9i 
(') 

e 
O· 
::s 
~Vl 

~ 
Vl 
~ 
C/J g. 
(II 

0. 
s:: cr 
Vl 

§ 
0. 

~ cr 
tr1 
X 

~ 
~ ... ' g 

N 
o 
0\ 



N _ 

+","..r~_. __ 
~ ......... .....: 

o 750 1,500 3,000 _ _ Meters 

Potential Gully Erosion 

ter13 

<VALUE> 
043% 
_ 20% 
_ 0% 

. l _ _ 10% 

~l .· _ 50% 
." ' _ 7% 

023% 
_28% 

.. _ 36% 

_ 37% 

Figure 6.37: Gully erosion probability map drape produced from the DTC trained with the 20 metre DEM variables for a three class 
classification (Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain). 
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6.9.2 Erosion Risk by Association Maps 

Erosion risk created as a result of neighbouring or adjacent slopes (cells) eroding has 

been calculated using the methodology detailed in Chapter Five (section 5.8). Risk by 

association is simply a function of current soil erosion processes and the 

topographical nature of the landscape. Using the rules presented in Figure 5.12, risk 

maps have been created incorporating different degrees of complexity. Figure 6.38 is 

the risk by association map developed using a two class classification, where all 

erosion classes (see Figure 5.3) are amalgamated into a single class and the risk 

calculated using the stated rules. 

However, Figures 6.39 and 6.40 show the risk by association maps for the more 

complex three class schedule, incorporating no appreciable erosion, surface, and 

subsurface erosion. A nine class classification map was used, and the appropriate 

classes amalgamated to create a new three class map (no appreciable erosion, surface 

erosion and subsurface erosion). It is important to note that a map produced from a 

three class classification could not be used. While these did differentiate between 

rilling and gullying they did not differentiate between surface and subsurface 

processes. Figure 6.39 shows the risk associated with surface erosion and Figure 6.40 

shows the risk associated with subsurface erosion. The total risk by association maps 

shown in Figures 6.41 and 6.42 are simply the summation of Figures 6.39 and 6.40. 
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Figure 6.38: Risk by association map drape produced from the DTC trained with the 10 metre DEM variables for a two 
class classification (Topographic map reproduced from the 1:25000 National Geographical Institute of Spain). 
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Figure 6.40: Risk by association map drape of subsurface erosion produced from the DTC trained with the 10 metre DEM 
variables for a nine class classification (Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain), 
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Figure 6.41: Risk by association map drape of surface and subsurface erosion produced from the DTC trained with the 10 metre DEM 
variables for a nine class classification (Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain). 
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6.10 CONCLUSIONS 

The results obtained and collated throughout the course of the study and the 

implementation of the research methodology have been presented in the various 

sections of this chapter. The data has been presented in such a way so as to allow the 

implications associated with the aims and objectives set out in the introduction to be 

comprehensible. 

The implications, regarding the results obtained and the data presented, have not been 

discussed here as a comprehensive discussion is undertaken in Chapter Eight. The 

following chapter documents the data collected and results obtained from the field 

investigations and contains a discussion relating solely to the findings. The discussion 

chapter concerns the results presented here as well as those from Chapter Seven and 

highlights potential causes or reasons for the findings. The data is discussed in 

relation to both current and previous literature in an attempt to provide a better all

round understanding of the issues and culminates in the conclusions in Chapter Nine. 



Field Investigations 215 

7 

Field Investigations 

7.1 INTRODUCTION 

Soil sodicity can have major impacts upon soil structure which affects soil 

permeability and infiltration (Sparks, 1995), and can lead to a number of undesirable 

physical properties (see Chapter Three). This can include poor soil structure, the 

breakdown of soil aggregates, surface crusting and the consequent reduction of 

infiltration rates (Rengasamy et al., 1984). The determination of soil sodicity is an 

important factor along with other soil characteristics in the estimation of dispersivity 

potential. However, such analysis can be particularly time consuming and reliant upon 

laboratory facilities. Consequently it has long been desirable to produce or formulate a 

method by which soil dispersivity and sodicity can be readily measured or estimated 

in the field and which reduces the need for extensive laboratory analysis. 

The Co-operative Research Centre for Soil and Land Management in Australia 

designed and produced a sodicity meter. The meter provides a method by which water 

turbidity can be measured to provide a useful indication of soil sodicity whilst in the 

field. However, to determine the usefulness and applicability of the meter it is 

important to validate it using traditional laboratory based techniques. This chapter 

explores potential relationships between a range of laboratory techniques and the field 

sodicity meter and attempts to better understand the chemical and physical processes 

involved in soil dispersion. The following sections detail the methods by which this 
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was achieved, presents the results and discusses the wider implications of the 

findings. 

7.2 FIELD AND LABORATORY METHODS 

Shallow subsurface soil samples were collected and analysed at each of the 520 sites 

visited in the field. Ideally each of the samples would be transported for laboratory 

testing to provide a more comprehensive analysis. This was impractical because soils 

should not be transported across international borders (Spain to the UK in this case) 

and thus a smaller subsection of the samples were collected. Fifty-five samples were 

chosen from the total of 520 training sites, with particular emphasis on the dispersive 

marls. The chosen samples were collected in and around the Mocatan catchment as 

the local lithologies, the TRU and MRU (see Chapter Two) appear heavily piped and 

provides a good location for the testing of the sodicity meter. 

All soil samples were collected from the subsurface at a depth of 20 centimetres, 

which was sufficiently deep to avoid the thick, hard-setting crusts present at some 

sites. Ideally surface samples would also have been collected and analysed to assist in 

the determination of variations between surface and subsurface soils. However, 

analysing such a large number of samples during the fieldwork period would have 

been impractical due to time constraints. Samples to be further analysed in the 

laboratory were chosen at random (using computer generated random numbers), in 

order to compile a set of data that would allow unbiased comparisons to be made 

between results obtained using the field and laboratory procedures. The following 

sub-sections detail the methods used within this study. 
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7.2.1 Field Sodicity Meter 

Soil samples at each site were tested for sodicity using a simple field sodicity meter. 

The sodicity meter used in this study has been developed by the Australian Co-

operative Research Centre for Soil and Land Management (CRCSLM), and calibrated 

using a total of sixty Alfisols and Vertisols from South Australia and Victoria 

(Rengasamy pers. com). The meter measures water turbidity, and is a plastic tube with 

a white disc at one end and a scale running down its length from non-so die to highly 

sod ie, and can be seen in Figure 7.1. The sodicity meter works on the simple premise 

that the clays present in sodic soils swell and if there is a sufficient excess of sodium 

then detlocculation will occur when mixed with water. Thus, the level of turbidity 

within the water increases, as the clays become suspended as a direct result of 

detlocculation. 

Figure 7.1: The field sodicity meter designed by the Australian Co-operative 
Research Centre for Soil and Land Management. 
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The use of such an inexpensive meter has been recognised within this research, as it 

allows the characterisation of sodic soils relatively quickly and easily in the field 

environment, thus reducing the need for extensive laboratory analysis. However, it is 

important to determine the relationship between the sodicity meter observations and 

standard sodicity measurements. In order to assist in the determination of a 

relationship, the original scale was adapted to incorporate a wider range of values. 

This was achieved by taking the scale of non-sodic, sodic and highly sodic and 

substituting it for a scale of 0 to 14, where 0 is non-sodic and 14 highly sodic. 

The field method for using the meter is as follows: 

1. Weigh approximately lOOg of soil into a clean 600 ml glass jar. 

2. Add 500 ml of rainwater or distilled water to the jar to give a 1:5 ratio of soil to 

water. Bottled drinking water used here as it was not possible to obtain distilled water 

and the local drinking water may contain gypsum, influencing the electrical 

conductivity and thus potentially skewing the results. 

3. Gently pour this water down the side of the jar without disturbing the soil at the 

bottom. Invert the jar slowly once and then return to its original position allowing to 

stand for 4 hours. 

4. Lower the meter with the white disc at the bottom of the plastic tube into the 

suspension, until the disc is no longer visible (when viewed from above). 

5. Place a moistened finger over the top of the tube and remove the meter from the 

suspension, with a level of liquid in the tube. Read the level against the coloured 

scale. 
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7.2.2 Laboratory Methods 

A number of soil analysis methods were undertaken on the samples that were 

collected and returned from the field. These tests included pH, Electrical Conductivity 

(EC), Exchangeable Sodium Percentage (ESP), Cation Exchange Capacity (CEC), 

Sodium Adsorption Ratio (SAR) and organic matter content. The following section 

details the soil analysis methods used and the procedures undertaken. All of the 

samples were prepared by air-drying for three days, disaggregated and passed through 

a 2mm sieve. 

Soil pH and Electrical Conductivity (EC) 

The following procedure was carried out on the soil samples in order to determine 

both the pH level and EC: 

1. Weigh out 15 g <2mm soil into a small glass beaker. 

2. Add 30 ml of de-ionised water to create a 1:2 soil to water ratio. 

3. Stir each sample intermittently and leave to stand for thirty minutes. 

4. Using a pre-calibrated pH and EC meter determine the pH and conductivity 

values. 

Cation Exchange Capacity (CEC) 

CEC of the soils was determined by using a standard method (Bower et al., 1952). 

1. Weigh 4 g of soil into a 50 ml centrifuge tube. 

2. Using a measuring cylinder, add 33 ml of 1M sodium acetate solution to the 

centrifuge tube. Seal the tube and shake for 10 minutes on a shaker. 

3. Centrifuge and decant the supernatant. 
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4. Treat the sample with 2 additional 33 ml aliquots of sodium acetate solution. Each 

time re-suspend the sample before putting on to the shaker, and discarding the 

supernatant after each centrifuge. 

5. Suspend the sample in 33 ml ethanol and shake for 5 minutes. 

6. Centrifuge and discard the supernatant. Repeat this washing procedure another 

two times, re-suspending the sample each time before adding the ethanol. 

7. Add 33 ml of 1M ammonium acetate and shake for 10 minutes. 

8. Centrifuge and decant the supernatant into a 100 ml volumetric flask. 

9. Repeat the extraction procedure twice more, and carefully make the contents of 

the flask to the 100ml mark with de-ionised water. 

10. Determine the Na content of the solution in the flask by flame emISSIon 

spectrometry. This solution usually requires dilution before analysis. Typically a 

10 times dilution should bring down the Na concentration to the readable level on 

the flame photometer. That is 10 ml solution diluted to 100 ml. This dilution must 

be taken into account when making subsequent calculations. 

Exchangeable Sodium (ES) 

The procedure for calculating the exchangeable Na of the soil samples is as follows: 

1. Weigh 4 g of soil into a 50 ml centrifuge tube. 

2. Using a measuring cylinder, add 33 ml of de-ionised water. 

3. Shake for 10 minutes on a shaker. 

4. Centrifuge and discard the supernatant, removing the water soluble Na. 

5. Add 33 ml of 1M ammonium acetate. Re-suspend the sample and shake for 10 

minutes. 

6. Centrifuge and decant the supernatant into a 100 ml volumetric flask. 
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7. Treat the sample with 2 additional aliquots of ammonium acetate solution. Each 

time re-suspending, shaking and centrifuging the sample. Make the volume up to 

100 ml with de-ionised water. 

It is important to note here that the samples are treated with de-ionised water to begin, 

to remove any water soluble sodium that may otherwise skew the results. Once the 

exchangeable sodium had been determined it was used to calculate the Exchangeable 

Sodium Percentage (ESP) and the Exchangeable Sodium Ratio (ESR) using Equations 

13 and 14 respectively. 

ESP= ES xlOO 
CEC 

ESR= __ ES __ 
CEC-ES 

Sodium Adsorption Ratio (SAR) 

(Equation 13) 

(Equation 14) 

The SAR is calculated using the Equation determined by Richards (1954) based on 

the relationship between the ESR and the SAR (r = 0.923, r2 = 0.852, n = 59), and is 

as follows: 

SAR = ESR+0.0126 
0.01475 

Determination o/Soil Organic Matter (SOM) 

(Equation 15) 

In order to determine the percentage of soil organic matter (SaM) present in each soil 

sample the following loss-on-ignition (LOI) procedure was followed (Avery and 

Bascomb, 1987). 

1. Weigh a clearly labelled porcelain crucible. 
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2. Weigh out approximately 5 g <2mm air-dried soil directly into a crucible. Record 

the weight of the crucible plus the soil. 

3. Place the crucible containing soil in an oven at 105°C and leave for 16 hours (or 

overnight). 

4. Remove the crucible from the oven using long-handled tongs and place in a 

dessicator to cool. Record the oven-dry weight of the soil and place in a muffle 

furnace at 850°C for one hour. 

5. Remove the crucible and place in a dessicator to cool. Re-weigh the crucible plus 

soil sample and calculate the percentage weight loss using Equation 16. 

LOJ = furnace - weight _loss xl 00 
oven _ dry _ weight 

7.3 RESULTS AND DISCUSSION 

(Equation 16) 

The results obtained from these various methods allow a number of inferences to be 

made regarding the soil characteristics as well as the determination of any 

relationships that may exist between the different soil properties. 

7.3.1 Analysis of Laboratory Results 

Using the data detailed in Table 7.1, the results obtained from the laboratory analysis 

and field sodicity meter, a number of relationships have been examined to determine 

their strength (see Appendix One Tables Al.1, A1.2 and A1.3 for detailed data). The 

data determined within this study was analysed with reference to domains proposed 

by Gerber and Harmse (1987) and Rengasamy et al. (1984) to determine their 

dispersive potential and is discussed with reference to the wider literature concerning 

the subject area. Finally, the relationships between the field sodicity meter and the 

various laboratory determined variables is explored. 



Field Investigations 223 

SAMPLE pH EC (JiS em-I) CEC ESP SAR LOI SOIL SODICITY 
(emollkg) % % ORGANIC METER 

MATTER 0/. 
1 8.05 4420 13.342 13.330 11.282 3.915 2.361 0 
2 8.61 8220 10.472 10.487 8.797 3.805 2.293 0 
3 6.02 90 9.744 1.696 2.024 3.599 2.165 9 
4 8.18 310 8.462 4.030 3.702 4.159 2.512 9 
5 5.99 10580 14.239 2.540 2.621 4.183 2.527 0 
6 7.38 500 13.657 44.676 55.603 4.208 2.542 0 
7 7.98 6330 9.710 18.577 16.322 3.521 2.118 0 
8 8.12 2620 12.691 9.742 8.172 3.984 2.404 0 
9 6.08 240 8.659 3.919 3.620 4.390 2.655 10 

10 8.11 80 7.104 2.320 2.465 4.896 2.969 9 
11 8.78 1310 7.721 22.230 20.233 3.717 2.239 9 
12 7.98 1280 17.401 5.528 4.821 4.250 2.569 0 
13 7.97 1650 14.387 4.723 4.215 4.027 2.431 0 
14 8.19 90 9.704 1.740 2.055 4.042 2.440 9 
15 7.96 11820 9.691 20.037 17.843 3.956 2.386 0 
16 8.03 130 13.855 0.555 1.233 6.996 4.269 9 
17 8.35 90 7.715 2.159 2.350 6.596 4.021 8 
18 7.74 120 9.693 1.300 1.747 5.010 3.039 9 
19 8.05 110 6.796 2.433 2.545 4.474 2.707 9 
20 7.56 12070 22.838 14.786 12.618 3.337 2.004 0 
21 7.88 360 13.733 1.227 1.696 3.931 2.371 8 
22 8.35 4060 15.288 18.293 16.033 3.635 2.188 0 
23 7.99 9460 7.623 25.319 23.839 3.309 1.986 0 
24 8.36 490 13.653 5.950 5.143 3.295 1.978 2 
25 5.99 9560 16.807 2.149 2.343 3.891 2.346 0 
26 7.78 160 5.424 2.380 2.507 5.068 3.075 2 
27 8.00 110 8.214 1.635 1.981 4.787 2.901 9 
28 8.3 110 8.454 0.937 1.496 4.774 2.893 8 
29 8.8 7600 15.027 6.584 5.633 3.800 2.290 0 
30 8.3 90 7.601 1.602 1.958 4.714 2.856 8 
31 8 19240 16.864 13.323 11.275 3.870 2.333 0 
32 8.2 200 10.970 1.857 2.137 4.418 2.672 9 
33 8.1 110 12.212 0.716 1.343 4.839 2.933 9 
34 7.7 780 11.821 0.722 1.347 5.986 3.643 9 
35 7.8 1560 8.873 5.630 4.899 2.015 1.185 6 
36 8.4 550 12.299 4.352 3.939 4.865 2.949 12 
37 8 110 8.126 1.471 1.866 4.518 2.734 8 
38 7.7 170 14.408 0.827 1.420 5.912 3.597 8 
39 7.5 140 14.246 0.921 1.484 7.107 4.337 8 
40 5.8 260 13.355 0.638 1.290 4.585 2.776 5 
41 8.1 140 8.458 1.390 1.810 6.510 3.968 8 
42 7.6 160 11.392 2.800 2.807 6.001 3.652 9 
43 7.5 150 13.335 1.206 1.682 6.257 3.811 8 
44 8.4 120 9.551 1.698 2.025 5.354 3.252 7 
45 8.7 100 7.094 2.499 2.592 4.919 2.983 9 
46 7.6 70 5.559 1.570 1.936 4.669 2.828 8 
47 7.7 490 14.141 1.442 1.846 4.815 2.918 9 
48 8.4 3120 25.099 13.406 11.351 3.317 1.991 0 
49 8.1 4830 21.437 14.072 11.957 2.778 1.657 0 
50 8.3 160 23.111 0.516 1.206 2.866 1.712 7 
51 8.3 100 17.328 0.932 1.492 2.014 1.184 9 
52 8.5 180 20.979 1.284 1.736 4.014 2.422 10 
53 7 4390 17.558 12.015 10.112 4.342 2.625 1 
54 7.9 120 11.309 1.077 1.592 4.603 2.787 8 
55 7.9 170 14.264 0.881 1.457 5.893 3.585 9 

Table 7.1: Results obtamed from the laboratory analysIs and the field sodicity meter. 
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Of the 55 soil samples analysed, only six had ESP values in excess of 15 percent: the 

recognised level above which soils are classed as sodic. This does not solely 

determine the soils dispersivity as other factors are also important but it is an 

important indicator in the understanding of the deflocculation process. The 

relationship identified by Gerber and Harmse (1987) between the ESP and CEC has 

been discussed in Chapter Three, and the results obtained have been plotted on the 

dispersivity classification graph in Figure 7.2. Based on the parameters and domains 

set out by Gerber and Harmse (1987), the majority of the samples analysed fall within 

the 'non-dispersive' and completely 'non-dispersive' categories. Nonetheless, it is 

evident that a relatively small number of the samples fall within the dispersive and 

highly dispersive categories. However, using the domains set by Rengasamy et al. 

(1984) based upon soil EC and SAR, the vast majority of the samples are either 

dispersive (class 1) or potentially dispersive (class 2a and 2b). This is due largely to 

the fact that the EC is not sufficiently high to ensure the flocculation of the samples, 

and thus, in samples where the SAR exceeds 3 the soil is dispersive, and below 3 

potentially dispersive (Figure 3.11). 

As can be seen from Figure 7.2, the majority of the samples appeared to be eroding 

through subsurface processes in the field (yellow points) and surface processes (blue 

points) and only a small number were not eroding under any visible process (orange 

points), based upon the field classifications used within this study (see Figures 5.3 and 

5.4). As would be expected, the soils that are not eroding in the field plot within the 

'completely non-dispersive' and 'non-dispersive' fields within the diagram. However, 

as stated previously a large number of the samples, including ones that have eroded 

through piping, also plot within these classes implying some confusion with the 
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classification scheme. Three samples plot within the dispersive and highly dispersive 

classes that were eroding, but through surface processes. 
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Figure 7.2: The laboratory results for CEC and ESP plotted on the dispersivity 
classification graph identified by Gerber and Harrnse (1987). Where: VD, very 
dispersive; HD, highly dispersive; D, dispersive; MD, marginally dispersive; ND, 
non-dispersive and CD, completely non-dispersive (NB. 3 samples have not been 
plotted as their ESP was in excess of 20 percent, thus exceeding the range of the 
graph). 

Typical sodic soils have a pH in excess of 8.5, as well as an ESP above 15 percent 

(Brady and Weil, 2002; Sparks, 1995; Mzezewa et al., 2003). However, Naidu et al. 

(1995) highlighted that soils with ESPs as low as 5 can display sodic soil 

characteristics in situations whereby associated variables such as EC and organic 

matter suit. The samples analysed in this study have pH values between 7.5 and 8.5, 

with a small number both exceeding this and others below. Figure 7.3 shows the 

relationship between ESP and pH. As can be seen, the relationship is weak (r = 0.09, 

~ = 0.01), however, there is a general trend where an increased pH value coincides 
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with an increased ESP. This is generally expected due to the fact that an increase in 

sodium will render a soil more alkaline and thus increase the pH level. Nonetheless, 

soil mineralogy and buffering capacity will exert strong controls on the level of pH. 

While the general trend can be seen to increase, a number of samples cluster about the 

x-axis at a range of pH levels and thus would appear to reduce the level of correlation 

between the two parameters. Mzezewa et al. (2003) found whilst identifying sodic 

soils in Zimbabwe for reclamation and improvement strategies, that observed high pH 

values were generally associated with high ESP values. However, the difficulty 

associated with using pH to indicate the presence and extent of sodium within a soil 

was highlighted by Fireman and Wadleigh (1951). It was recognised that soil pH can 

be influenced by numerous other factors, including adsorbed cations, soil-to-water 

ratio, texture, carbon-dioxide pressure, insoluble carbonates, gypsum, soluble salts, 

organic matter and the type of clay mineral. However, it is a useful indicator as 

McBride (1994) suggested that; with all other things equal clays with a given sodicity 

became more dispersible as pH increased. 

Faulkner et al. (2000) and Alexander et al. (1999) identified relationships between pH 

and SAR for three badland sites, Vera, Tabemas and Mocatan. A strong relationship 

was found where r = 0.89 (n = 10) at the Mocatan site, and r = 0.82 (n = 12) at the 

Vera site. However, it was determined that 'signatures' exist for each site and 

significantly vary. Generally, the Mocatan samples had SAR values well in excess of 

those from Vera producing a different relationship between the two parameters. The 

ESP and SAR ranges obtained here are generally comparable to the Vera data set and 

not the Mocatan site where SAR values reached a maximum around 400. This may be 

due to the fact that Faulkner et al. (2000) sampled in and around pipe systems and on 
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recently cleared locations on the TRU (see Section 2.4), known to be highly sodie and 

discussed in detail in section 2.4. Furthermore, Faulkner et al. (2003a) identified a 

series of different relationships between SAR and pH for a single gully in the Vera 

badlands. The study identified significant variations between surface and subsurface 

SARs, and differences in the relationship between SAR and pH at the base, middle 

and top of the slope. It was concluded that the high level of complexity suggested by 

the spatial variation identified within the results, made it difficult to formulate simple 

conclusions. 
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Figure 7.3: The relationship between ESP and pH. 

Figure 7.4 shows the relationship between ESP and EC. A wide range of values exist 

for both the parameters, but the majority of the samples analysed had low levels of 

exchangeable sodium in combination with low ECs. A general trend of increasing 

ESP with Ee can be seen as indicated by an r2 value of 0.56. Faulkner et al. (2000) 
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and Alexander et al. (1999) identified a strong log-transformed relationship between 

SAR and EC (r = 0.75) for the three different badland sites combined. The Mocatan 

badlands in particular had a significant relationship (r = 0.71, n = 14), and all except 

one sample plotted in the 'dispersive' domain determined by Rengasamy et al. (1984). 

Imeson et al. (1982) also identified dispersive soil types in Morocco based upon the 

relationship between ESP and EC, and SAR and EC, both studies highlighting the 

usefulness of the parameters. 

ESP vs EC 

50 

45 • 
40 

35 
y = O.1401x°.4925 

~ 30 R2 = 0.5609 
15 
E 25 • CJ 
D. • rn 20 • w • • 

15 •• • • • 10 

• 5 
• • 

0 
0 5000 10000 15000 20000 25000 

EC ~s cm·1 

Figure 7.4: The relationship between ESP and EC using the power function. 

The relationship between SAR and EC can be seen in Figure 7.5, plotted on log-

transformed axes. It was found that the EC could account for 54 percent of the 

variability found in the SAR values (r2 = 0.54). As outlined previously, nearly all 

samples tested are classified as dispersive or potentially dispersive based on the 
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domains outlined by Rengasamy et al. (1984). High levels of electrolyte concentration 

removes the tendency for clay minerals to swell and disperse (Kamphorst and Bolt, 

1978; Walker, 1997; Sparks, 1995) and thus enhancing and promoting flocculation. 

Even at levels of ESP as low as 5, accompanying low levels of electrolyte can make 

the soil structure weak and increase the risk of erosion (Qadir and Schubert, 2002). 
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Figure 7.5: The relationship between SAR and Ee plotted on log transformed axes 
using the power function. 

Organic matter content in the 55 soils analysed ranged from 2.01 to 7.11 percent, with 

a mean of 4.45 and a standard deviation of 1.1 using the LOI method to approximate 

organic content. Using a relationship, identified by Hooda (1992), between loss-on-

ignition and soil organic matter based on 43 soil samples from various locations 

within the UK, actual values of organic matter have been estimated. The relationship 

for calculating soil organic matter (SOM) can be seen in Equation 17 and possesses an 

~ value of 0.96. This has been used as a correction factor as the LOI method 
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overestimates organic content (Marx et aJ., 1999) as soils containing appreciable 

quantities of clay lose 'structural' water, and CaC03 loses C02 to form calcium oxide 

at temperatures around 770°C (Rowell, 1994). 

SOM = -0.0622+(0.619xLOl) (Equation 17) 

The correction factor has been applied to all of the LOI results and can be seen, along 

with all of the other results obtained, for each of the 55 samples in Table 7.1. Whilst 

often at the same time, organic matter can both suppress swelling and enhance 

dispersion (Churchman et aJ., 1995; Oades, 1984), it is generally agreed that it is 

useful for counteracting the unfavourable effects of exchangeable sodium in soils 

(Richards, 1954). It has been proposed that some organic compounds, especially low 

molecular weight humic substances, can destabilise soil aggregates (D' Acqui et al., 

1999), and these organic anions increase the negative charge of mineral colloids, 

thereby increasing the density of the diffuse layer of cations thus promoting 

dispersion (Oades, 1984). Nonetheless, low levels of soil organic matter (around 3 

percent or below), may indicate a potential problem for sodic soils as it is a useful 

flocculating agent binding aggregates (Singer and Le Bissonnais, 1998). 

A number of the samples analysed, after the LOI correction factor has been applied, 

have low SOM contents (below 3 percent). The maximum SOM was 4.34 percent and 

the minimum 1.18 percent, with a mean of 2.69 and a standard deviation of 0.68. 

These values suggest that a number of the samples therefore may be poorly structured 

and weakly aggregated. Not only may these soils be susceptible to de flocculation 

when other variables suit, but they will also be susceptible to surface erosion 

processes. 
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As highlighted in Figure 7.2, the majority of the samples appeared to be eroding 

through subsurface processes. However, according to the parameters set by Gerber 

and Harmse (1987), only a small number of the samples were dispersive or 

moderately dispersive. The soil organic content appears to be relatively low in the 

majority of the samples, with only 12 of the 55 samples actually having in excess of 3 

percent SOM. The EC of the samples does not appear to be considerably high and 

soils with low ECs and low soil organic contents will have light textures, and may not 

maintain flocculation when wet. 

Rengasamy et al. (1984) found that dispersion may occur even in soils at very low 

SARs and that may be evident in some cases here. Faulkner et al. (2000) highlighted 

the susceptibility of the Mocatan badlands to subsurface processes as a result of the 

inherent deflocculation of the sensitive lithological units. It is clearly evident 

however, that the results obtained here vary somewhat from those presented by 

Faulkner et al. (2000). The most distinguishable variation being that the SAR values 

appear much lower in this investigation. The importance of the landscape morphology 

may go some way to explaining the subsurface processes that are evidently operating 

on soils but which may not appear highly susceptible. Pipes preferentially develop 

where large hydraulic gradients exist (see Figure 3.7), such as behind terrace walls. 

The Mocatan badlands offer the ideal setting for these processes, and it was proposed 

by Faulkner et al. (2000) that in soils with low clay contents deflocculation may not 

cause the reduction of hydraulic conductivity as not all pore spaces are filled, and thus 

erosion can continue unabated. Usually dispersion will lead to the movement of clay 

particles into a region of 0.1-0.5 mm depth where they clog conducting pores 

(Mamedov et al., 2002). 
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Table 7.2 gives details including the slope angle and aspect and estimated vegetation 

cover regarding the location from which each sample was collected. Furthermore, the 

process and level of erosion, if any, is given based on the erosion scale presented in 

Chapter Five (see Figure 5.3), and finally the sodicity meter readings are also given. 

The Table has been produced in an attempt to better understand the influence and 

controls that the surrounding physical features may have upon the erosion processes 

and the relationship with the soil physico-chemical parameters. 

It becomes readily apparent that topography is strongly influential with regards to the 

extent of erosion processes (through visual inspection of Table 7.2). For example, 14 

of the 55 samples were documented as eroding in classes 7 and 8, severe subsurface 

gully erosion. The majority of the slope angles associated with these classes are in 

excess of 40 degrees, and by and large, the steepest slopes of all the samples. The 

aspect of these 14 sites varies, as does the extent of vegetation cover. In addition to 

this, almost all of the sites that do not appear to be eroding under any visible process 

are flat and have varying degrees of vegetation cover. Therefore it appears that 

topography, and indeed the slope angle, is highly influential in controlling the extent 

of erosion. This may offer a potential explanation as to why so many of the soils 

appeared to be dispersive in the field, yet do not display drastically high ESP values 

or other critical soil parameters in the laboratory. In environments such as Mocatan, 

where topography allows steep hydraulic gradients to exist, it is possible to suggest 

that even soils containing relatively low levels of exchangeable sodium may have 

weak soil structures leading to deflocculation and extensive pipe development, thus 

contributing to its highly distinctive morphology described by Faulkner et al. (2000). 
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SAMPLE SLOPE SLOPE VEGETATION EROSION SODICITY 
ANGLE (0) ASPECTJ'1 COVER % (SCALE) METER 

1 45 360 60 8 0 
2 50 340 10 7 0 
3 18 30 60 6 9 
4 0 -1 20 0 9 
5 44 20 10 7 0 
6 40 270 10 8 0 
7 38 200 10 6 0 
8 52 40 70 6 0 
9 36 120 40 5 10 

10 0 -1 10 0 9 
11 38 90 40 6 9 
12 40 120 30 6 0 
13 34 50 30 6 0 
14 12 10 80 5 9 
15 50 340 30 7 0 
16 30 20 60 4 9 
17 42 230 30 6 8 
18 30 340 80 6 9 
19 0 -1 50 5 9 
20 38 180 30 6 0 
21 50 20 90 4 8 
22 46 180 40 5 0 
23 46 320 50 7 0 
24 40 30 30 6 2 
25 46 330 10 8 0 
26 0 -1 80 5 2 
27 34 200 30 7 9 
28 20 30 60 6 8 
29 38 180 10 8 0 
30 34 160 50 6 8 
31 38 220 20 6 0 
32 0 -1 40 5 9 
33 34 260 40 7 9 
34 28 240 40 5 9 
35 38 100 50 5 6 
36 30 60 60 6 12 
37 40 40 50 6 8 
38 0 -1 0 0 8 
39 40 270 50 7 8 
40 40 290 30 7 5 
41 42 360 70 4 8 
42 0 -1 10 5 9 
43 10 360 70 0 8 
44 80 100 10 4 7 
45 34 260 30 5 9 
46 20 20 60 5 8 
47 0 -1 10 0 9 
48 30 300 30 5 0 
49 38 10 40 7 0 
50 0 -1 70 0 7 
51 28 340 50 7 9 
52 0 -1 20 0 10 
53 12 360 60 5 1 
54 26 300 70 6 8 
55 0 -1 20 0 9 

Table 7.2: Slope angle, aspect and vegetatIon cover values for each of the 55 sites 
sampled along with the erosion and sodicity meter values (N.B. -1 is flat). 
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7.3.2 The Relationship between the Laboratory Analysis and the Field Sodicity 
Meter Readings 

An important additional aIm of the field and laboratory investigations was to 

determine the relationship between the field sodicity meter and actual measured 

sodicity parameters. The relationship between ESP values and the sodicity meter 

measurements can be seen in Figure 7.6, and it is evident that there is no discernable 

positive correlation between the two parameters (quite the opposite). Soils with high 

ESP values, in many cases, have been classified as 'non-sodic' with the field meter, 

and soils with low ESPs have in some circumstances been classed as 'sodic' and 

'highly sodic'. However, a strong relationship between the two variables is not 

necessarily expected, as ESP is not individually responsible for the deflocculation of 

soils as other factors will also exert influences. Nonetheless, it would be expected that 

some general trend would exist if indeed the field sodicity meter could correctly 

classify varying levels of soil sodicity. A relationship between ESP and the sodicity 

meter (Figure 7.6) where r = -0.61, suggests that the meter is actually working 

inversely, thus higher ESP values are being classified in the lower sodicity ranges. 

Using relationships identified by commentators in the literature, such as Gerber and 

Harmse (1987) and Rengasamy et al. (1984) to identify the dispersive nature of any 

given soil, provides a useful baseline from which the sodicity meter can be compared. 

The correlation between the field sodicity meter and soil dispersivity based on Gerber 

and Harmse' s (1987) deflocculation categories can be seen in Figure 7.7. It is evident 

that no relationship exists between the field and laboratory methods, and in fact a 

negative correlation can be discerned where an increase in dispersivity class is 

associated with a decrease in sodicity. 
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The sodicity meter works on the simple premise that clay minerals present in sodie 

soils swell on contact with water, thus causing the deflocculation of the soil. 

Therefore, measuring the turbidity of the water after a soil sample has been 

suspended, and then left to stand for a given period of time, should provide a general 

indication of the level of sodicity. However, when a soil sample is mixed with water, 

the settling rates of different particles will vary. For instance, when using the 

hydrometer method to determine particle size analysis larger particles will settle first. 

Sand and silt will settle prior to clay particles which may take in excess of 8 hours. 

Hence, the method used to determine the level of sodicity for a given sample using the 

field meter may be responsible for the apparent poor contradictions. 

Outlined in section 7.2.1, the field sodicity meter method requires the sample to stand 

for 4 hours before the measurement is taken. Clay particles therefore would still be 

suspended after only 4 hours in soils containing only very small amounts of 

exchangeable sodium where the soil aggregates are still flocculated, creating a large 

degree of error associated with the meter. In order to counter this, the method instructs 

that the water is gently poured down the side of the jar and should be inverted gently 

once only. This in theory minimises the mechanical breakdown of the soil aggregates 

and only spontaneously dispersible clays should deflocculate. However, considerable 

discrepancies may occur as some flocculated clays will still be suspended even with 

minimal shaking and there is also the risk that the sample is not sufficiently mixed 

creating the potential scenario whereby clays that may disperse do not do so as they 

have not made contact with the water. 
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7.4 SUMMARY 

The swelling and dispersion of sodic soils is an important process in the 

understanding of soil erosion and degradation in the Almeria province, Southeast 

Spain. An extensive array of soil physico-chemical parameters have been documented 

as playing an important role in the deflocculation process. Many of the parameters 

which have been determined in this study, using a range of samples, provide a useful 

insight into the erosional processes operating. A number of relationships, largely 

based on those identified in the extensive literature regarding sodic soils and their 

associated problems and implications, have been explored within this chapter. 

Furthermore, the 55 samples analysed have been classified using two well-known and 

reliable dispersivity classification domains to determine the level of agreement 

between them and the field observations. Finally, the extent of relation between the 

field sodicity meter and the laboratory analysis has been tested in order to determine 

its usefulness and applicability for future research. 

A number of weak relationships were identified between the different variables, such 

as ESP and pH, where a general increase in pH was associated with an increase in the 

ESP. ESP and SAR produced an r2 value when correlated against EC of 0.56 and 0.54 

respectively, and it must be noted here that SAR was determined from ESP, thus 

similar correlations will occur. The relationships identified in this study are not as 

strong as some that have been documented in the literature, such as Faulkner et al. 

(2000), however, there are some general trends and the results have enabled a 

valuable insight into the chemistry of the soils. Furthermore, it has provided a reliable 

baseline from which the field sodicity meter can be accurately assessed. 
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It is evident that the majority of the samples analysed here plot in the completely non

dispersive domain identified by Gerber and Harmse (1987) (Figure 7.2). However, 

some of those plotted within that domain were seen to be eroding through subsurface 

processes, indicating some disagreement. Using the domains set by Rengasamy et al. 

(1984), all samples plot within the 'dispersive' or 'potentially dispersive' classes. The 

variability between different classification domains is therefore highlighted and 

indicates the complexity involved in classifying levels of dispersivity and the 

subsequent caution that should be exercised when using them. Such classification 

schemes fail to take into consideration all associated physical or chemical variables, 

and they do not account for field conditions such as slope angle, vegetation cover or 

landscape morphology. Such parameters have been shown to influence the 

susceptibility of a soil to the swelling and deflocculation processes and therefore 

require consideration when attempting to understand subsurface or pipe erosion, and 

at best such parameters should only be used as broad guidelines. Although ESP and 

SAR levels do not appear to be extremely high it is clearly evident that subsurface 

processes are operating extensively. Faulkner et al. (2000) and Faulkner et al. (2003b) 

suggested that the soils in and around Mocatan, developed in the Gochar Formation 

(see section 2.4) are low in clay content. As a consequence the deflocculation of clays 

may not cause a reduction in hydraulic conductivity as would normally occur when 

clays slake and pore spaces become clogged (Naidu et al., 1995; Irvine and Reid, 

2001). Rather, infiltration rates continue unaffected and the clay fraction becomes 

dispersed leading to the extensive development of subsurface pipes. The apparent 

susceptibility of the material to erode is further enhanced as a result of the landscape 

morphology, the associated hydraulic gradients in the region, and to a lesser extent, 
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the degree of vegetation cover, particularly in locations such as Mocatan documented 

previously by Faulkner et al. (2000) (see section 2.4.5). 

An objective of this research was to detennine and quantify the relationship between 

the laboratory analysis of the samples and the field sodicity meter. The results 

presented in this chapter have highlighted the poor relationship identified between the 

field meter and ESP as well as with the classification scheme of Gerber and Hannse 

(1987). The results suggest that the methodology by which the meter works may 

indeed be responsible, at least in part, for the poor correlations with standard sodicity 

methods. As suggested previously the method may overestimate sodicity levels as 

flocculated clays may still be suspended after 4 hours, and it may underestimate 

sodicity levels as the sample may not be fully mixed with water thus inhibiting the 

dispersion process. 

The use of such field meters should therefore be undertaken with appropriate caution 

and awareness of the associated implications, especially those associated with the 

methodology. In such cases where field analysis is required, it may be better to use an 

ion-specific electrode field meter which can accurately predict exchangeable sodium 

(Irvine and Reid, 2001), in combination with electrical field EC and pH meters that 

can accurately, quickly and easily measure such parameters. 

Furthennore, it is important to be aware of potential limitations and associated 

problems incorporated within the field investigations undertaken within this study. 

Only a relatively small number of samples have been analysed, all of which have been 

collected and sampled at the same depth, 20cm. It would have been useful to collect 
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surface samples and compare and contrast them to the subsurface ones, as Faulkner et 

al. (2000) identified significant variations between the two using SAR. In addition, 

Faulkner et al. (2000) and Alexander et al. (1999) identified site signatures for three 

different badland locations in Almeria, and Faulkner et al. (2003a) highlighted 

significant variations in sample geochemistry within a single gully in Vera. However, 

this study has incorporated all samples together and it would therefore be expected to 

decrease the level of correlation identified within the aforementioned studies. 

7.5 CONCLUSIONS 

This chapter has fulfilled the objectives that were set out initially, exploring the 

physico-chemical relationships between various parameters and providing a critique 

of the sodicity meter. It has provided a valuable insight into the operative erosional 

processes and the caution that should be exercised when using field meters as a means 

of assessing levels of sodicity. The following chapter provides a comprehensive 

discussion of all of the results obtained throughout this study with reference to the 

wider literature where appropriate. 
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8 

Discussion 

8.1 INTRODUCTION 

This chapter provides an in-depth discussion relating to the results provided from the 

soil erosion classifications in Chapter Six and the Field Investigations in Chapter 

Seven. The chapter discusses the results and makes particular reference to the stated 

aims and objectives set out in Chapter One. 

At the conclusion of this chapter the advantages and disadvantages of employing the 

two AI techniques for the mapping of soil erosion processes will be better understood. 

The chapter will explore the influence of the dependent and independent variables 

(sections 8.2 and 8.3 respectively), the ability of these classifiers to further current 

understanding of soil erosion processes and identify possible rules or thresholds of 

erosion processes (section 8.4). This is followed by an assessment of the erosion 

classification accuracies (section 8.5) and a discussion of the overall performance of 

the classifications (section 8.6). Finally, a summary is provided in section 8.7. This 

will allow conclusions to be drawn in Chapter Nine and highlight opportunities for 

further research. 

8.2 THE DEPENDENT VARIABLE 

The dependent variable throughout is 'erosion'. A number of issues relating to the 

dependent variable are worthy of discussion. The following sub-sections describe; the 

effects associated with the number of classes within the dependent variable (section 
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8.2.1), the influence of training set composition (section 8.2.2), and the interpretation 

ofthe classified soil erosion maps in section 8.2.3. 

8.2.1 The Effects of the Number of Classes Incorporated into the Dependent 
Variable 

The number of erosion classes incorporated within a classification affects classifier 

performance, and exerts influences over a range of further issues that will in tum be 

discussed in the following sub-sections. The varying degrees of complexity are 

outlined in Figure 5.9, indicating the amalgamation of the different classes 

culminating in the dependent variables for the two, three and nine class 

classifications. As expected, the overall accuracy achieved through the vanous 

classification techniques varies according to the complexity of the problem. 

Overall accuracies reduce, as the classification problem becomes more complex. The 

extent to which this occurs is important, particularly in relation to practical 

applications. It may not be important to some practitioners that the classifier has not 

distinguished between every type of erosion and as long as it has distinguished 

between certain critical classes the 'product' may satisfactorily serve their particular 

purpose. For example, it may be important for one practitioner that the classifier can 

distinguish between all nine classes, as they require a very detailed output. However, 

another user may simply require knowledge relating to areas that are currently eroding 

and not eroding. Therefore, it is important to determine the extent to which classifiers 

can accurately predict unknown test cases, and the associated misclassifications. 

Tables 8.1 and 8.2 provide accuracy results derived from the various classification 

techniques, based upon the three class and nine class classifications respectively. The 
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results indicate that, particularly in the three class DTCs, the accuracies obtained 

actually exceed those produced specifically for the two class problem (Table 8.1). 

Thus, from a practical point of view, it may appear logical to produce a three class 

classification and simply degrade the classification if the practitioner simply requires 

knowledge relating to the presence or absence of erosion. However, such an 

assumption may incorporate significant implications. 

ANNs DTCs DA 
10 Metre OEM 56.2% 66.9% 65.4% 

20 Metre OEM 66.9% 68.5% 68.5% 

Field Variables 65.4% 77.7"10 75.4% 

Field Variables and 10 metre OEM 65.4% 76.9% 76.2% 

Field Variables and 20 metre OEM 71.5% 75.4% 74.6% 

Field Variables and Classified 69.2% 75.4% 65.4% 
Vegetation 
Field Variables, 10 metre OEM 68.5% 75.4% 76.2% 
and classified Vegetation 
Field Variables, 20 metre OEM 63 .1% 75.4% 74.6% 
and classified Vegetation 

Table 8.1: Accuracy of a two class claSSIficatIOn mterpreted from the three class 
correlation matrices. (Values in blue indicate a superior overall accuracy to those 
produced from the corresponding two class classifications). 

ANNs DTCs DA 
2 Class 3 Class 2 Class 3 Class 2 Class 3 Class 

10 Metre OEM 34.6% 34.6% 67.7% 46.2% 67.7% 41.5% 

20 Metre OEM 39.2% 36.9% 65.4% 41.5% 70% 48.5% 

Field Variables 71.5% 61.5% 73 .8% 55.4% 73.8% 51.5% 

Field Variables and 10 metre DEM 70% 57.7% 73 .1% 53.8% 73.8% 53 .1% 

Field Variables and 20 metre OEM 69.2% 59.2% 73.8% 57.7% 73 .1% 52.3% 

Field Variables and Classified 67.7% 58.5% 78.5% 57.7% 76.9% 56.2% 
Vegetation 
Field Variables, 10 metre OEM 70.8% 56.9% 73.1% 53 .8% 73.8% 51.5% 
and classified Vegetation 
Field Variables, 20 metre OEM 57.7% 53 .8% 69.2% 55.4% 73 .1% 51.5% 
and classified Vegetation 

Table 8.2: Accuracy of a two and three class claSSIficatIOn mterpreted from the rune 
class correlation matrices. (Values in blue indicate a superior overall accuracy to those 
produced from the corresponding two or three class classifications, and those in red 
indicate the same overall accuracy). 
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Similar scenarios occur when interpreting the correlation matrices produced for the 

nine class classifications. Table 8.2 details the accuracies derived through the 

interpretation of the nine class classifications for each of the three techniques applied 

to the two and three class problems. The table highlights a number of cases whereby a 

classifier produced for the most complex classification outperforms, or reaches the 

same level of accuracy, as those produced specifically for either the two or three class 

problem. Interestingly however, only the neural networks have produced a classifier 

trained for the nine class classification which actually distinguishes between 'no 

appreciable erosion', 'rill erosion' and 'gully erosion' better than does its three class 

classification counterpart. The likely cause for this is a swamping effect during the 

training procedure, that produces in erroneous misclassifications into one or two 

classes, resulting in significant commission errors. This problem is discussed fully 

sub-section 8.2.2. 

It is likely to be the case that in the decision trees and discriminant analysis the 

training undertaken for a nine class classification causes the classifier to identify 

subtle underlying relationships required to distinguish between classes. In the less 

complex classification problems the DTCs and DA can generalise more by ignoring 

or overlooking less obvious patterns or trends located in the training data. However, 

this does not necessarily imply that by training with an increased number of classes in 

the dependent variable, an improved classifier will be identified for a less complex 

task. Due to the increased complexities involved, the classifier has to search more 

extensively for rules or parameters and, in the case of the decision trees, results in 

more splits (nodes) which subsequently increases the size of the tree. Consequently, 

this will lead to higher error rates and decreased generalisation abilities beyond the 
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training data. Therefore, although it may appear cost-effective and time-efficient to 

produce a more detailed classification and simply decrease the associated 

complexities as required, it is likely that higher error rates will be encountered, 

combined with a reduction in the applicability of the classifier. 

8.2.2 The Influence of Training Data Set Composition on Classifier Performance 

It would appear that the composition of the training data exerts considerable influence 

over a number of the trained classifiers and lead to potentially poor and often 

misleading results. The issue is related to inter-class variability; the difference in the 

number of training examples presented to the classifier for each class of the dependent 

variable. 

Table 8.3 details the number of examples comprised within the training set for the 

two, three and nine class classifications. It is evident that the training data possesses 

inter-class variabilities within each of the different classifications, particularly in the 

more detailed nine class problem. Unfortunately, this is to a large extent unavoidable 

due to the unknown distribution of erosion processes and the opportunistic method 

with which sampling was undertaken. This significantly reduces the ability to control 

the composition of the training data as the erosion processes occurring at the sites are 

unknown prior to data recording. 

In the case of the two class classifications, where the model attempts to distinguish 

between cells that are either showing 'no appreciable erosion' or 'erosion', the 

training data consisted of 152 and 238 cases respectively. With the exception of the 

two ANNs trained with the DEM data, the reasonable large number of cases 
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representing each class resulted in the development of classifiers that did not appear to 

suffer as a consequence of training set composition. The classified erosion maps 

produced from these classifications can be seen in Figures 6.2 (10 metre) and A6.3 

(20 metre), show a strong bias towards the erosion class which is particularly evident 

in the latter where the vast majority of the cells within the map are classified as 

eroding. However, it is worthwhile highlighting the fact that the networks used to 

derive the maps produced poor overall accuracies when compared to other training 

sets, higher error rates and worst ROC curves. 

Class 2 Class 3 Class 9 Class 
Cases Percentage Cases Percentage Cases Percentage 

0 152 39% 152 39% 152 39% 
1 40 10.3 % 
2 68 17.4 % 16 4.1 % 
3 12 3.1 % 
4 238 61 % 22 5.6% 
5 54 13.8 % 
6 170 43.6% 59 15.1 % 
7 27 6.9% 
8 8 2.1 % 

.. 
Table 8.3: ComposItion of the trammg data set. 

A similar problem is evident throughout all eight neural networks trained for the three 

class classification as the two most prominent classes in the training data, namely 'no 

appreciable erosion' and 'gully erosion', comprise a total of 82.6 percent of the entire 

data set. This appears to generally encourage the allocation of unknown cases 

presented to the networks into one of these two classes, at the expense of the 'rill 

erosion' class. Evidence of this can be seen in the error matrices constructed for the 

classifications and is supported further by the erosion maps produced from the 10 and 

20 metre DEM training data (Figures 6.3 and A6.7 respectively). The matrices 

possess extensive commission errors as a number of unknown cases of 'rill erosion' 
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have been attributed to either the 'no appreciable erosion' class or the 'gully erosion' 

class - a problem that not only leads to poor overall prediction and performance but 

also to misleading and ambiguous results. However, this problem does not appear to 

be replicated in either the decision trees or the discriminant analysis classifications. 

As highlighted by Table 8.3, the inter-class variability is most extreme in the training 

data used within the nine class classifications, where the training data composition 

varies from 2.1 percent in the case of 'extreme subsurface gully erosion' up to 39 

percent in the 'no appreciable erosion class'. Such variation appeared to negatively 

influence the neural networks ability to classify unknown examples into classes that 

were less well represented in the training data. This is highlighted in the correlation 

matrices. The problem was evident in the respective decision trees and discriminant 

analysis, yet it did not occur to the same degree. The matrices confirm that in the 

majority of the classifications undertaken using the decision trees or discriminant 

analysis, unknown cases in the test data set were attributed to every class, and only in 

a small number of cases were classes missed or ignored. Moreover, in some cases 

where this occurred it was in fact the most prominent class 'no appreciable erosion' 

that was missed, indicating perhaps the difficulty in distinguishing between classes, 

rather than training set composition. 

Some authors have expressed the problem of training set composition and the issues 

involved particularly when undertaking any classification involving environmental 

phenomenon. Foody et al. (1995a, 1995b) and Foody and Mathur (2004) highlighted 

the potential effects associated with inter-class variability's, and made the point that if 

a class were more abundant in the training stage, it generally encouraged the 
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allocation to that class incurring significant commission errors, supporting the 

findings outlined here. Furthermore, rourenq et al. (1999) and Manel et al. (1999) 

found that when the composition of the training set was uneven in a simple binary 

classification, neural networks struggled to reach acceptable levels of accuracy and 

delivered better predictions for the largest occurring class. This can lead to substantial 

commission errors and subsequent misleading results. For example, within this study 

the ANNs produced superior overall accuracies for the nine class classifications 

compared to both the orcs and DA. However, the networks tended to simply assign 

all unknown test cases into one or two classes, and are in fact particularly poor 

classifiers. 

The difficulties associated with the production and development of training sets are 

numerous and are largely concerned with issues relating to cost. When studying 

physical and environmental phenomena, the problems are further increased as the 

variable of interest does not generally occur evenly and its presence or absence is 

often unknown. A similar problem has been discussed by Welsh et al. (1996) when 

modelling the abundance of rare species in south-eastern Australia. If the training data 

collected here were to be evened out in an attempt to counter such problems 

information would be lost by reducing the number of cases associated with the largest 

class in the training set (Tourenq et al., 1999). Furthermore, Ellis (1997) found that 

creating proportionally selected training sets simply led to the over-prediction of 

smaller classes and further reduced overall accuracies. Nonetheless, the problems 

associated with misleading results, particularly in the case of the ANNs, can have 

serious negative implications. The misclassification of severely eroding cells in the 
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field into the class of 'no appreciable erosion', could have detrimental consequences if 

such a method were employed as a land management tool. 

Taking the discussion into account regarding the composition of the training set, it is 

important to consider the means by which the classifiers are tested or at least be aware 

of the limitations involved. For example, it is possible to propose that a classifier 

(ANN, DTC or DA) is capable of attributing unknown cases to each of the dependent 

variable classes but has simply not received such examples within the test set. This 

leads to the conclusion that inter-class variability within training data has significant 

detrimental affects upon classifier performance. Nevertheless, the erosion maps 

developed for the classifications undertaken using the neural networks provide further 

evidence to support the findings outlined in the matrices. The 10 and 20 metre DEMs 

contain a significantly increased number of cells, compared with the test set. 

Therefore, if a classifier possessed the ability to allocate unknown cases to a particular 

class, it is likely to identify them within such data sets. However, through visual 

inspection of the maps and the percentage of cells classified for each class for the 

three and nine class classifications, detailed in Tables 6.22 and 6.23 respectively, the 

networks do not appear to possess the ability to classify the less prominent classes. 

Nonetheless, it must not be forgotten that the networks trained using the DEM data 

sets produced the lowest overall accuracies, possessed the highest error rates and 

occurred in combination with the lowest AVC statistic for their respective ROC 

curve. 

In summary, the training set composition exerts a significant influence over ANN 

performance, leading to the allocation of unknown cases into the most affluent classes 
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within the data set. This results in significant commission errors and misleading 

overall performance statistics. However, the influence of training set composition can 

be assessed through simple visual inspection of decision tree topology. Once a tree 

has been grown, its ability or inability to allocate unknown cases into various classes 

is determined by the explicit tree structure which allows the user to highlight any 

potential weakness and, if desired, an appropriate alternative tree may be selected 

prior to any classification. 

8.2.3 Interpretation of Classified Soil Erosion Maps 

Definitions of soil erosion risk, hazard and potential have been provided in Chapter 

Three (section 3.6). The classifications undertaken in this thesis incorporate the 

dependent variable 'erosion' that has been derived through ground surveys where 

current or actual erosion processes were recorded. The maps produced from the 

various classifications attempt to replicate the processes operating on the ground, and 

are considered to be erosion maps. As stated in this thesis, the 'acceptable' level of 

overall accuracy varies depending upon the practitioners requirements; be that the 

individual landowner (farmer) at the micro-scale, to local, and national government at 

the meso and macro-scales. The level of acceptable accuracy is likely to change 

significantly between these users and determining this level is highly subjective with 

few guidelines detailing such parameters. 

Taking these issues into consideration, the soil erosion maps developed and produced 

through the various classifications may be better interpreted as maps of 'potential' 

erosion, rather than 'actual' erosion. The maps could be considered to infer soil 

erosion risk. Actual risk and potential risk are closely related and the maps can be 
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treated as either because the independent variables are all physical parameters (see 

section 3.6 for a fuller discussion). 

A distinct advantage of incorporating supervised classifiers, such as ANNs and DTes, 

is that they learn through the presentation of training cases, where both the 

independent and dependent variables are known. Therefore, when presented with an 

unknown case, the classifier attempts to identify similar scenarios within the training 

data set, based upon the independent variables, and will assign the case to the 

appropriate predetermined class. In reality, this means that the neural network or 

decision tree may assign an unknown case to the incorrect class (where the correct 

class would be what is actually occurring on the ground at the present moment in time 

or the 'truth '). This would imply that there is some level of error present within the 

classification. However, it does suggest that the classifier has identified some 

similarities between the unknown case and the data presented to it within the training 

stage. A similar approach was incorporated by Ermini et al. (2005), Yesilnacar and 

Topal (2005) and Gomez and Kavzoglu (2005), where ANNs were used to produce 

landslide susceptibility maps for the northern Apennines, Italy, the Hendek region, 

Turkey, and the Jabonosa River Basin in Venezuela respectively. 

The importance associated with the development and production of soil erosion maps 

has been stressed throughout this thesis. Nevertheless, it is likely that maps describing 

soil erosion risk will provide an invaluable tool for environmental managers and 

policy makers, assisting in the identification of areas where intervention should be 

sought (Haboudane et al., 2002; Shrestha et al., 2004). In theory, the only method by 

which such maps could be validated is to adopt a "wait and see" approach (Ermini et 
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al., 2005). Unlike conventional approaches to risk or susceptibility mapping, the 

approach used here is based upon the classifier's 'experience' or 'recognition' of 

erosion processes within the study area, as opposed to rules or laws. 

8.3 THE SELECTION AND INFLUENCE OF INDEPENDENT VARIABLES 

An integral aim associated with the work undertaken within the thesis is to better 

understand and determine the issues relating to independent variable selection and 

their ability to define different soil erosion processes. The costs associated with 

obtaining large training sets are widely documented (see Foody and Mathur, 2004; 

Foody, 2002; Muchoney and Strahler, 2002; Jackson and Landgrebe, 2001; Buckheim 

and Lillesand, 1989). Through the use of remotely obtained independent variables 

(e.g. DEMs), such costs can be significantly reduced. However, the issues related to 

cost-benefit and trade-offs are highly complex and involve a number of parameters 

that require careful consideration. 

The primary issue to be addressed concerns the identification of the end-user, as this 

will determine the specification of the end product. Once this has been achieved, it is 

possible to state the appropriate level of accuracy that is required, the monetary funds 

available for the research, and relevant time scales needed for research. At this point 

the appropriate trade-offs can be sought, between accuracy and resources, along with 

the identification of the best possible approach. 

The following discussion concerns; the role of the different independent variables 

incorporated into the various classifications, the implications of the field sodicity 

meter and the overall performance ofthe different data sets. 
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8.3.1 Independent Variables and their roles within the Classifications 

Prior to the development and construction of training data sets, it was necessary to 

identify through the literature, independent variables that are believed to influence and 

determine soil erosion processes (see section 5.3.2). Independent variables were 

subsequently identified and collected through either field techniques or remote 

sources. Within the different classifications, it would be expected that different 

variables appear more influential or important than others, as the information they 

provide assists in the discrimination between various dependent variable classes. 

The digital elevation model data sets comprised a total of six independent variables 

(see Tables 5.1 and 5.2). Within the ANN classifications the most important 

predicting variable for the training procedure is slope angle and this supports the view 

that it is in general the most influential factor in soil erosion (Faulkner et al., 2003b; 

Nearing et al., 1991), and increasing it positively increases soil erodibility (Cerda and 

Garcia-Fayos, 1997). Of the six networks trained using the OEM data only that 

produced for the three class classification calibrated with the 20 metre data did not 

rank slope angle as the most important variable and instead ranked flow length ahead 

of it. Flow length was particularly useful for the three class and nine class 

classifications, where it was important to distinguish between varying types of 

erosion. The sensitivity analysis therefore tends to support the wider literature 

whereby gully erosion is strongly controlled by the angle of the slope and the 

contributing area (Martinez-Casasnovas et al., 2004; Desmet et ai., 1999). 

As the contributing area is a strong controlling factor it would seem reasonable to 

assume that flow accumulation would also rank highly. However, it was discovered 
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that this is not the case and flow accumulation has little influence on the networks 

perfonnance. This is highlighted by the small change in verification error if flow 

accumulation were to be left out. It may be the case that where two independent 

variables offer very similar infonnation, namely flow length and flow accumulation, 

one of them will be dismissed and largely ignored in favour of the other. Of the three 

remaining variables, aspect is most useful for classifying erosion, followed by profile 

and finally plan curvature. 

The variable importance data produced for the decision trees trained with the DEM 

data indicate that flow length is one of the most important independent variable 

throughout the two, three and nine class classifications. However, individual tree 

topology provides valuable insights into the ability of different variables to 

differentiate between the various dependent variable classes. Within the two class 

classifications, slope angle provides the root node and the maximum entropy (see 

Chapter Four) for both the 10 and 20 metre resolutions. 

When attempting to distinguish between three classes using the DEM training sets, 

slope angle was replaced with flow length as the root node in both trees. This would 

suggest that flow length could be interpreted as a surrogate of erosive potential or 

flow accumulation, an obvious parameter by which rill and gully erosion may be 

delineated. Nevertheless, slope angle was the second most important splitting variable 

in both trees, followed by slope aspect. Interestingly, flow accumulation provided the 

highest entropy within the nine class classification when a tree was grown from the 10 

metre DEM data. As in the case of the neural networks, this may suggest that flow 
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length and accumulation provide very similar data, as they could both be seen as a 

surrogate for erosion potential. 

The neural networks and decision trees, trained usmg the field collected data, 

generally support the wider literature with regards to the dominant factors controlling 

soil erosion. As in the case with the DEM data, slope angle featured highly in both the 

sensitivity analysis and within individual tree topologies within each of the three 

classifications (two, three and nine classes). This would not only support the wider 

literature concerning the issue, but also emphasise a point made in section 7.3.1 where 

slope angle appeared highly influential in subsurface processes, even in soils 

containing low levels of exchangeable sodium. 

Geology is also highly ranked throughout the classifications, and this is likely to be 

attributed in part, to the relatively poor performance associated with the field sodicity 

meter (see Chapter Seven). The independent variable geology provides the classifier 

with data associated with the lithological units that are susceptible to deflocculation 

processes, and may provide a surrogate in place of the meter. This point is discussed 

in sub-section 8.2.3. 

Finally, the perceived importance of the independent variables of vegetation cover 

and field aspect varied throughout the classifications. Throughout the sensitivity 

analyses the two variables were closely ranked, and their role within the decision trees 

was also varied. This would suggest that neither of the variables offers significantly 

improved data over the other, and slope aspect is perhaps a good surrogate for 

vegetation cover. Nevertheless, all of the neural networks trained with both variables 
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incorporated them within the final trained network and, in some of the decision trees, 

both variables provided splits. This implies that each of the variables may provide 

subtlety improved splitting criteria over the other. 

In summary, it might have been expected that different independent variables are 

useful for distinguishing between sites of no appreciable erosion and erosion, or 

indeed different types of erosion. However, the results indicate that within the neural 

networks all of the independent variables in each classification provide some means 

of detennining between dependent variable classes. Moreover, the sensitivity analysis 

shows that the importance of individual variables changes little between the three 

different classification problems. A similar trend is evident using the decision trees, 

whereby slope angle appears to be the most important variable, containing the highest 

entropy in most trees, and it is not apparent that any variables are particularly useful at 

splitting the data when varying levels of complexity are involved. 

8.3.2 Implications of the Field Sodicity Meter as an Independent Variable 

An objective stated in the introduction to the thesis concerned the detennination of the 

usefulness and applicability of the field sodicity meter developed by the Co-operative 

Research Centre for Soil and Land Management in Adelaide, Australia. As described 

in Chapter Seven, a range of laboratory techniques were undertaken in addition to the 

work carried out in the field in order to ascertain the extent of the relationship 

between the meter and laboratory based sodicity measurements. In addition various 

physico-chemical relationships were also explored. 
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The discussion in the previous chapter highlighted the apparent limitations associated 

with the sodicity meter. There is little evidence within the results to suggest that any 

discernible relationship exists between the results gained through the meter and those 

derived through more conventional laboratory techniques. A range of proposals were 

considered to account for the disparities. These included; particle size which may 

influence turbidity and settling rates, differing soil textures, and general flaws 

associated with the methodology (see sections 7.3.2 and 7.4). Taking these findings 

into account, it is important to determine the meter's role within the various neural 

networks and decision tree classifiers. 

The results obtained through the sensitivity analysis tend to indicate that the sodicity 

meter is a relatively poor predicating variable of soil erosion. The sensitivity analysis 

generally ranks the sodicity meter as one of the least influential variables of the five 

field acquired predictors when the data set is used to train a network. However, it 

tends to outperform the DEM data when used in combination in most cases. 

Furthermore, the meter does appear to present at least some useful information to the 

network, as its removal from each of the networks that it has been used, leads to a 

subsequent increase in verification error based upon the sensitivity analyses. 

The variable importance statistics relating to the DTCs show the meter to have a 

marginal influence upon classifier performance in some cases but none in others. As 

outlined previously, the variable importance statistics relate to every tree grown 

irrespective of the one chosen. Therefore, it is important to inspect the individual tree, 

in order to determine the ability of individual variables to assist in class separation. 

The sodicity meter is incorporated within the trees grown for the binary classification 
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in four of the six trained with data sets incorporating the variable. Interestingly, the 

sodicity meter appears to split the data in contradicting ways. For example, in the two 

class classification trained using only field acquired variables (Figure A3.3), nodes 10 

and 11 use the same splitting criteria (::; 0.5 and> 0.5). In the former node, data is 

split in such a way that the outcome is 'no appreciable erosion' and 'erosion' 

respectively, as may be expected. In contrast, node 11 splits it such that low levels of 

dispersion (according to the mater), leads to 'erosion' and higher levels 'no 

appreciable erosion'. 

As discussed in Chapters Two and Three, subsurface erosion is strongly controlled by 

various physico-chemical relationships. The independent variable geology provides a 

generalised surrogate for such parameters, as sensitive lithologies have been 

highlighted in the literature (TRU and MRU) (see Alexander et al., 1996; Spivey, 

1997; Faulkner et al., 2000, 2003b). The majority of both the ANN and DTC 

classifications indicate that geology provides superior data than that provided by the 

sodicity meter. However, the spatial heterogeneity of soil physico-chemical properties 

has been highlighted in Chapter Seven and by Corwin and Lesch (2005), Corwin et al. 

(2003) and Homey (2005). Ardahanlioglu et al. (2003) also demonstrated that the 

spatial distribution of ESP, EC and pH are highly spatially variable, particularly in 

sodic soils (Samra et al., 1988). Thus, geology is not an ideal surrogate for an 

accurate sodicity meter. This may provide an explanation for the apparent inability of 

the classifiers to distinguish between various erosion classes and in particular within 

the three and nine class classifications. 
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As highlighted in Chapter Seven, Irvine and Reid (2001) proposed the benefit of using 

a sodium-specific electrode meter for accurately measuring the Exchangeable Sodium 

Percentage (ESP) in the field. Furthermore, Nuttall et al. (2003) demonstrated that an 

ion-specific electrode could accurately predict soil sodicity through ESP. These 

approaches, like the sodicity meter, are site specific. Therefore, although it is possible 

to produce a classification using such variables, it is not possible to incorporate them 

within the production of a map. As such, further investigations may assess the ability 

of extensive mapping techniques, including remote sensing, as it offers the ability to 

work at extensive spatial and spectral scales. Remote sensing has been used 

successfully for the identification and mapping of saline soils (see Goossens and Van 

Ranst, 1998; Farifteh et al., In Press; T6th et al., 1991), and the technique may lend 

itself to the identification of sodic soils. 

8.3.3 Overall Performance of the Various Training Sets 

The end-user and the purpose of the developed 'product' largely dictates the accuracy 

level required for a tool such as an erosion map. This inherently incorporates issues 

relating to cost and time, and the following discussion attempts to review such issues 

in relation to the results presented in Chapter Six. 

It could be argued that three different end products have been produced through the 

implementation of the research methods outlined in Chapter Five. These comprise a 

two class, three class and nine class soil erosion map. Acceptable levels of accuracy, 

or error will, undoubtedly, vary between the different products. This reiterates the 

difficulty associated with their identification. Nevertheless, it is important to examine 

the performance of the classifiers trained using the various independent variables to 
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improve the understanding of the potential issues involved in cost-benefits and trade

offs between the more expensive field collected data, and the less expensive DEM 

extracted data. 

The results achieved through the AI approaches for the two class classification 

suggest that the digital elevation model data alone fails to provide adequate definable 

boundaries within the training set provided and specifically between 'no appreciable 

erosion' and 'erosion'. The limited ability of both the neural networks and decision 

trees trained with the data is readily apparent when comparing the overall accuracies 

with those achieved in the majority of the other classifications, where field collected 

variables were incorporated. This is by no means surprising and would be expected to 

occur to a certain degree, as the DEM data is simply a grid-based generalisation of the 

'real' landscape. Nevertheless, the issue is further compounded within both the ANNs 

and DTCs when the classifiers trained with the DEM data not only produce the lowest 

overall accuracies, but do so in combination with the highest error rates and the lowest 

AVC values identified from the ROC curves. 

These results outlined above regarding the two class classifications are largely 

replicated in the neural networks and decision trees trained for the more complex 

three class and nine class classifications. The DEMs produce the lowest overall 

accuracy's and the highest error rates, compared to the classifiers trained with field 

acquired data. The results suggest that the independent variables acquired in the field 

provide improved data and subsequently enhance classifier performance. However, to 

understand the complexities of these findings fully, an in-depth discussion is required. 
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Although the independent variables collected through field methods would appear to 

provide improved training data, the results indicate that the variables extracted from 

the DEM, or at least some of them, assist in the classifications. Thus, if the decision 

were made to use the more expensive approach - obtain data from the field - it would 

make economic sense to assess the potentially enhanced classifier performance that 

may occur if the cheaper DEM data were included. Such improvements however, 

appear to be case specific, and involve potential areas of concern. For example, the 

networks and trees trained with data from both the field and the DEM, appear in some 

cases, to produce higher error rates compared to those trained using only the field 

data. This is a somewhat surprising and unforeseen anomaly, as the two AI techniques 

offer the ability to remove or, at least limit, the influence of, variables that appear to 

reduce classifier performance (see Chapter Four). Therefore, the presentation of the 

DEM data to the classifiers trained with field data should, in the worst case, obtain the 

same level of error (no improvement). The reasons for the apparent increase in error 

rates are not therefore readily explicable. 

The method by which neural networks determine the importance of individual 

independent variables within the TRAJAN software is by means of a sensitivity 

analysis. This technique assesses the relative contribution of each independent 

variable by successively testing the network with each input excluded. Therefore, if a 

variable is excluded and the verification error subsequently increases, it is reasonable 

to assume that the missing variable provides some useful information enhancing 

network performance, and is thus reinstated. Although the assumptions made by this 

technique are reasonable, it does possess certain limitations (Abrahart et ai., 1999) 

which may in part explain such findings. These may include: 
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• Sensitivity analysis is a post-training procedure, and can only be assessed on 

completion of neural network training. Therefore, although the internal weights 

will have been altered automatically by the network, giving less weighting to less 

important variables, sensitivity analysis has no effect on the overall network 

unless it has identified an independent variable that when removed leads to a 

reduction in verification error. 

• Only individual variables are removed, and the influence assessed, as opposed to 

the extraction of two or three variables. This means that the network may overlook 

or miss the optimum set of training variables. 

• Neural networks will reach different solutions each time they are trained, even 

when using identical parameters (i.e. training data, architecture, momentum and 

learning rate). Therefore, the optimum network produced may differ from that 

produced at an alternative moment in time. 

In contrast to sensitivity analysis, the decision tree software, CART, grows the largest 

tree possible with the optimum separation and performance on the training data. 

However, such trees (as stressed in Chapter Four) possess little generalisation ability 

beyond the training data, and thus a technique of recursively pruning the tree until an 

optimum error point is reached is implemented. However, this method would appear 

to lead to problems, such as those encountered here. The initial objective is for a tree 

to be grown that classifies as many of the training set cases correctly, irrespective of 

error rates. The tree uses as many of the independent variables as required, even if the 

information they may offer is minimal. From this point the tree is cut-back (pruned), 

removing terminal nodes and sections of the tree that overfit the data. However, the 

resultant tree, although possessing the smallest relative cost (error) of all grown trees, 
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has in fact been subject to bias as a result of the initial growth process. It may 

therefore, include variables that have little more than a marginal influence on overall 

performance. 

In an attempt to determine the potential benefit of incorporating detailed vegetation 

cover classifications as independent variables, rather than estimations made in the 

field, the AI techniques were trained with data sets incorporating the information 

derived through ground-based photography (see section 5.5). However, the results 

achieved through the various classifications suggest that the determination of the 

potential benefits is not as straightforward as might be expected. Using the neural 

network classification approach, the field acquired training set incorporating the 

classified vegetation produced higher overall accuracies, compared to the training set 

using the estimated vegetation cover, but did so in combination with larger rates of 

error. Nevertheless, the optimal networks using the classified vegetation did appear to 

be smaller in size, and are likely therefore to have more generalisation ability beyond 

the training data. This trend was seen throughout the two, three and nine class 

classifications, also occurring in the classifications where DEM data was used in 

combination. However, in a number cases where the DEM data was incorporated, the 

verification error increased, further highlighting the points made previously. While 

the sensitivity analysis statistics show a marginal increase in the influence of the 

classified vegetation variable over the estimated vegetation variable, it is important to 

be aware that the error values are not directly comparable as the overall verification 

error rates are network specific. 
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The decision trees trained using the field data and the classified vegetation however, 

have to be viewed with caution as a result of their composition. For example, the tree 

produced for the simple two class classification only incorporates the independent 

variable slope angle and disregards the classified vegetation, producing a marginally 

better tree in terms of overall accuracy than that produced using the estimated 

vegetation (see Figure A3.6). Furthermore, as noted with the neural networks, the 

trees trained with the classified vegetation and the DEM data often possess higher 

error rates than those that only use the field and classified vegetation data alone. 

Therefore there is little evidence to suggest, using the overall accuracy's, error rates 

and the ROC curves where appropriate, that the incorporation of the classified 

vegetation as an independent variable offers significant benefits to classifier 

performance in comparison to the estimated vegetation. Although the inclusion of the 

classified vegetation has produced trees and networks that may have better 

generalisation abilities beyond the training data (i.e. smaller architectures), the time, 

and subsequent indirect costs associated with its production suggest that they may 

outweigh the potential benefits. 

The independent variables compiled within the different training data sets have a 

strong influence upon the performance of the classifiers. The results tend to suggest 

that the independent variables extracted from the DEMs do not provide the same 

quality data as that incorporated within the field collected data. This is signified by the 

increased error rates produced from the classifications, reduced overall accuracies and 

the ROC curves where appropriate. Furthermore, the results indicate that the finer 

resolution DEM data outperforms the coarser 20 metre data. As outlined in Chapter 
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Five, the generation of a DEM derived through the digitisation of contours with 10 

metre spacing is 20 metres. However, a point made then and emphasised further now 

is that the DEM is the closest link to the landscape when the field data is not used. 

Thus, it is vitally important to use the data set to its maximum potential and results 

indicate that the 10 metre DEM provides the classifiers with better independent 

variable information than does the 20 metre DEM. This may also reflect potential 

problems associated with mixed pixels. As the size of the cell increases, it is likely 

that more than one erosive process may be operating. Therefore, the results may not 

necessarily indicate that the 10 metre data provides superior data to that provided by 

the 20 metre DEM, but may involve issues relating to process scale and mixed pixels. 

Figure 8.1 consists of seven graphs comparing the slope angle and aspect data 

measured in the field with that extracted from the 10 metre and 20 metre DEMs, and 

also comparisons between the two DEMs. The graphs clearly show that the finer 

resolution DEM bears a stronger resemblance to the field collected slope angle and 

aspect than the 20 metre resolution model. However, the relationships do not appear 

to be particularly strong, supporting the fact that the classifications using field data 

outperformed those using the elevation model data. 

The comparisons highlight some important scale issues associated with DEMs, some 

of which have been discussed by Reuter et al. (2006) and Thompson et al. (2001). 

The 20 metre DEM is a generalisation of the finer resolution 10 metre DEM, and as 

such lower slope gradients are produced due to the smoothing effect. Decreasing the 

horizontal resolution of a DEM will have similar implications on all of the other 

extracted variables such as aspect and profile curvature, and may therefore go some 
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way to explaining the reduced classifier perfonnances when incorporating such data 

sets. This issue is clearly evident in Figure 8.1c where the 10 and 20 metre DEM 

slope angles are plotted against one another. The data points generally sit closer to the 

x-axis than the y-axis, inferring that slope angles are further underestimated in the 20 

metre DEM due to the smoothing effect outlined in Chapter Five. Furthennore, it is 

likely that the smoothing effect also reduces the overall correlation of the slope data in 

Figures 8.1 a and 8.1 b. However, it does not appear to effect the relationships of the 

aspect data to the same degree, and this comes as a result of the fact that it will not 

influence the direction of a slope. It is therefore important to be aware of such scale 

issues and the implications associated with using such data sets. 

The graphs detailing the relationships of the various aspect data measurements also 

highlight a point worthy of mention. Firstly, Figures 8.1e and 8.lf contain a 

significant number of outliers, in particular along the y-axis. This has occurred as a 

result of the fact that flat areas were assigned a slope value of -1 (no slope) and an 

aspect value of -1 (no aspect). Secondly, the issue associated with circular data is 

responsible for the two significant data clusters in the top-left and bottom-right of the 

graphs, particularly evident in Figure 8.1g. Due to the inherent circular nature of 

aspect data, it is possible that slopes that are general north facing will possess 

significantly different aspects. For example, a slope with an aspect of 350· is similar 

to a slope with an aspect of 10·, as the difference is merely 20·, however the 

numerical difference is actually 340. The two data clusters are instances where the 10 

and 20 metre DEMs have attributed an aspect value either side of 360°. Figure 8.ld 

shows the elevation of the 10 metre DEM against that of the 20 metre DEM. The 
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graph demonstrates a strong relationship between the two models and does not exhibit 

the same trends as those seen in Figures 8.1c or 8.1g. 
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(a) Field slope plotted against the 10 Metre OEM slope 

(b) Field slope plotted against the 20 Metre OEM slope 

(c) 10 metre OEM slope plotted against the 20 Metre OEM slope 

(d) 10 metre OEM elevation plotted against the 20 Metre OEM elevation 

(e) Field aspect plotted against the 10 Metre OEM aspect 

(f) Field aspect plotted against the 20 Metre OEM aspect 

(g) 10 Metre OEM aspect plotted against the 20 metre OEM aspect 

Figure 8.1: Comparison between slope and aspect measurements collected in the field 
(520 points) and those extracted from the 10 and 20 metre DEMs. Slope angles and 
aspect are in degrees, and elevation is in metres (NB the red line is the 1: 1, and the 
DEM against DEM plots are for the same 520 points). 

Taking these issues into account, it is likely that DEM quality will influence classifier 

performance. However, it is important to remember the non-linear capabilities 

associated with the two AI techniques incorporated within this study (see Chapter 

Four). In particular, the issue associated with aspect data, caused by its circular nature, 
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should not inhibit the classifiers ability to discriminate between various classes. That 

is to say that the AI techniques possess the ability to overcome this problem. An 

important consideration however, is that in order to give the classifiers the best 

opportunity to learn from the training set, data that resembles most closely that of the 

real world should be incorporated. 

In summary, the cost-benefit complexities associated with the identification of 

appropriate levels of accuracy will determine the independent variables to be used 

within the classifications. As stated previously, if the decision were made to utilise 

expensive field collected data, then it may make sense to also incorporate the cheaper 

DEM acquired data. However, this comes with associated limitations that the user has 

to be aware of, such as potential increases in error. As a consequence, the best 

approach may be to undertake some preliminary classifications in order to aid the 

decisions regarding the optimum cost-benefit. For example, if the DEM data were 

used, it may be beneficial to incorporate geology from a map, as this is likely to 

significantly improve classifier performance. However, it is important to determine 

whether an erosion map, or an erosion risk map (as they may be interpreted), is going 

to be used individually or in association with other sources. The maps produced here 

are indicative; that is to say that they provide information relating to potential areas of 

concern, and are by no means definitive. Therefore, it is likely that such maps are to 

be used in combination with other methods, techniques or data sets, to formulate and 

implement appropriate management strategies. It is crucial to identify the optimum 

outputs (benefits) in association with a range of different inputs (cost), and these are 

likely to be case specific. 
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8.4 THE USE OF ARTIFICIAL INTELLIGENCE TECHNIQUES FOR 
KNOWLEDGE GAIN AND RULE EXTRACTION 

One of the aims outlined in Chapter One was to determine the ability of artificial 

neural networks and decision tree classifiers to operate as inductive tools. A distinct 

advantage of inductive learning algorithms is their ability to generate interesting rules 

and parameters (Bobbin and Recknagel, 2001). This reveals underlying patterns and 

process and furthers current knowledge and understanding (Bui et al., In Press). The 

following sub-sections discuss the potential of each classification technique to provide 

this information. 

8.4.1 Knowledge Extraction through Decision Tree Classifiers 

Due to their explicit nature, decision tree classifiers are easy to interpret in terms of 

knowledge gain and rule extraction. Due to the number of trees grown for the two, 

three and nine class classifications, it is not possible to discuss at length the various 

rules or data splits identified. Nevertheless, a number of rules are consistently used to 

split the training data, implying the existence of some general underlying patterns. 

Slope angle is generally attributed as the root node containing the maximum 

knowledge gain. Using the field acquired data, the decision trees identify a threshold 

of 19 degrees from both the two and three class classifications. Examples below this 

threshold are assigned as 'no appreciable erosion' by the trees. The same 

classifications undertaken using the DEM data identifies a threshold at 14.5 degrees. 

These values are slightly larger than that identified by Kosmas et al. (2000), where 

slopes in excess of 13 degrees were seen to be eroding significantly, in a semi-arid 

environment in Greece. 
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A number of trees have identified a threshold for vegetation cover, again within the 

two and three class classifications. A number of trees split the data at 55 percent, and 

this would support work undertaken by L6pez-Bermudez et al. (1998) in Murcia, 

where vegetation covers in excess of 50 percent provided significant protection 

against erosion. Also, Thomes (1990) identified that erosion increased rapidly when 

vegetation cover was below 30 percent. However, the trees trained with the classified 

vegetation cover tend to split the data at 73.05 percent. The increase between the 

estimated and classified vegetation is likely to occur as a result of the potential over

estimation associated with the latter, highlighted in Figure 5.2. 

It is important to be aware that further splits are often required before a terminal node 

is reached and the splitting criteria discussed above are not definitive decisions. 

Nevertheless, tree structures are such that it is relatively straightforward to develop 

and construct simple, openly interpretable diagrams such as that seen in Figure 6.30. 

Such methods could be employed to assign values to process dominance domains, 

such as that outlined by Faulkner et al. (2003b) (Figure 3.6). Furthermore, rules and 

thresholds identified through such techniques could be incorporated within simple risk 

schedules, where a layered GIS approach is adopted, such as Faulkner et al. (2003b). 

8.4.2 Knowledge Extraction through Artificial Neural Networks 

The difficulties associated with extracting data from ANNs, and their 'black-box' 

nature has been discussed at length in Chapter Four. However, through the use of 

response surfaces, it is possible to visualise the behaviour of an artificial neural 

network. 
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The network trained with the field acquired variables for the two class classifications 

suggest that slopes of any angle will erode if vegetation cover is sparse (below 6 

percent) (Figure 8.2a). However, as vegetation cover increases, soil erosion decreases 

('erosion' to 'no appreciable erosion') in a non-linear manner. Nevertheless, even 

with 100 percent vegetation cover, erosion occurs on slopes in excess of 

approximately 45 degrees. Figure 8.2c shows the response surface for the classified 

vegetation and slope angle, and a similar trend can be seen to exist. Slopes at low 

angles with no vegetation cover show 'no appreciable erosion'. A largely linear trend 

can be seen with an increase in vegetation cover controlling erosion as slope angle 

increases up until a specific point. Beyond which erosion occurs irrespective of 

vegetation. As with the previous example, this occurs at around 45 degrees. Finally, 

Figure 8.2b shows the relationship between slope angle and aspect. As might be 

expected, slopes with south facing aspects are more prone to erosion than those facing 

north (e.g. decreased relative vegetation cover). 

Unfortunately, sensitivity analysis does not allow the user to fully determine and 

understand the role of individual variables. It also fails to acknowledge the entire 

network and, whilst viewing two variables, all others are held constant. Furthermore, 

sensitivity analysis is unable to be used when categorical variables are employed, such 

as geology in this work. 
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Figure 8.2: Response surfaces detailing the relationships between slope angle, 
vegetation cover and aspect for the two class classifications. 

8.4.3 Summary 

An important aim associated with the work undertaken here, relates to the ability of 

neural networks and decision trees to enhance our current understanding of soil 

erosion processes in the Almeria province. The ability of inductive learning 

techniques for knowledge discovery has been recognised in various applications, and 

has been proposed as a means of generating explicit knowledge in an understandable 

structure, that is potentially useful to a user/practitioner and also provides new and 

interesting concepts (Bradley et ai., 1998; Kusiak et at., 2006). The two AI 

approaches adopted here provide very different means by which knowledge discovery 

can be fulfilled, and if the central aim of any research concerns the determination of 
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rules and thresholds, it is important to be aware of the implications associated with 

each approach. The knowledge extracted through such techniques is only as good as 

the data used to train the classifier (Bologna, 2004). If inadequate data is used to 

formulate rules in an inductive manner, then erroneous knowledge will be extracted 

which would comprise substantial error levels. Furthermore, the user must take into 

account the overall performance of the classifier, and be aware of potential 

shortcomings. 

In summary, the decision tree classifiers offer the more straightforward and easily 

comprehensible rule extraction, through simple explicit splitting criteria. Furthermore, 

when non-numeric or categorical data are incorporated within the classifications, the 

difficulties associated with extracting knowledge from neural networks have been 

highlighted. Mak and Munakata (2002) provide further support for this issue; 

suggesting that when categorical data are involved, neural networks should be 

avoided, if the aim of the work is rule extraction. In addition, issues associated with 

training time should also be considered as should the possibility of adopting a 

combined approach to data mining (Mak and Munakata, 2002; Hashemi et al., 1998). 

8.5 ACCURACY ASSESSMENTS OF THE CLASSIFIED SOIL EROSION 
MAPS 

An important point to be raised for discussion involves to the determination of 

accuracy and the methods by which it is assessed. The issues related to accuracy 

assessment have been briefly outlined in section 5.7, where the correlation matrix was 

introduced. However, to understand and appreciate the potential drawbacks and 

limitations associated with the classifications undertaken, it is important to be fully 

aware of a range of important issues. 
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Largely as a result of the growth in remote sensing investigations, a great deal of 

literature has been written on the subject of accuracy assessment (see Foody, 2002; 

Congalton, 1991; Congalton et al., 1983; Hord and Brooner, 1976; Story and 

Congalton, 1986; van Genderen and Lock, 1977; Ginevan, 1979; Hay, 1979; 

Stehman, 2000). The literature describes; issues relating to sampling strategies, 

acceptable levels of accuracy, errors, and sample size, all of which will affect the 

confidence levels which the end-user can place in the final product. 

These considerations would have little impetus on accuracy assessment if time and 

cost issues were irrelevant. As discussed previously however, a range of cost-benefit 

issues apply when undertaking a study, and undoubtedly exert influences upon the 

accuracy assessment itself. 

An important issue of concern related to the work undertaken here relates to the 

number of samples incorporated within the test set. A total of 130 cases were 

presented to each of the trained classifiers and the results detailed in correlation 

matrices. The number of cases attributed to each of the dependent variable classes is 

reduced as the classifications become more complex except in the case of the 'no 

appreciable erosion' class, as this was included within each classification. Table 8.4 

details the number of examples comprised in the test set for each of the three 

classifications. 
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Class 2 Class 3 Class 9 Class 
Cases Cases Cases 

0 45 45 45 
1 17 
2 29 5 
3 7 
4 85 7 
5 56 18 
6 18 
7 9 
8 4 .. 
Table 8.4: ComposItion of the test data set. 

The majority of the literature written regarding accuracy assessment has been 

undertaken with remote sensing applications in mind. This is largely a result of the 

fact that classifications have traditionally been carried out in few other research areas. 

Consequently, it is important to be aware of factors that should be taken into 

consideration and discussed. Within the extensive array ofliterature a range of general 

'rules of thumb' and 'best practices' have been proposed. However, the methods by 

which remote sensing classifications are carried out are not necessarily replicable in 

other applications where classifications have been undertaken. For example, the 

determination of the dependent variable is often derived through sources that are 

remote to the subject(s) of interest, including maps and aerial photography. This 

allows both the identification and collection of an extensive number of training and 

testing examples relatively easily and in a time-efficient manner, and few 

complications arise regarding classes with low spatial coverages and/or limited 

accessibility. This not only holds true for remote sensing investigations, but any 

classification whereby an existing source can be used to determine the dependent and 

independent variables. However when this is not the case and field data collection 

methods have to be employed, serious time and cost issues require consideration. It is 

extremely expensive to spend extensive periods of time in the field and as such, cost-
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benefit decisions have to be made. Once again, these issues come back to the end-user 

specifications and the expectation placed upon the end-product. 

Van Genderen and Lock (1977) produced a table detailing the probability of obtaining 

no errors in samples of varying sizes, reproduced here in Table 8.5. The table is based 

on the binomial expansion (p + q/, where q = 1 - p. By using this approach it is 

possible to determine the range of the true errors based upon the 95 percent 

confidence limits. The table is divided into two by a stepped line, indicating the 

minimum sample size required to statistically validate an acceptable level of accuracy. 

The value documented above the line is the probability of obtaining an error free 

sample, which is low even when true errors are present in appreciable numbers. 

However, below the line, there is a high probability that the acquired results were 

achieved using a method that was relatively error free (van Genderen and Lock, 

1977). For example, if an acceptable level of accuracy were identified as 80 percent, 

then 15 samples per class would be required to be confident of the accuracy of the 

output. 

q 
0.99 
0.95 
0.90 
0.85 
0.80 

5 10 

0.70 0.1681 0.0282 

0.60 Q.2ill 
0.50 0.0313 

15 

0.2059 

0.0874 

0.0352 

20 

0.0388 

25 

0.0172 

30 

0.2146 

0.0424 

35 

0.0250 

40 

0.0148 

45 50 60 

0.0461 

0.0087 0.0052 0.0461 

Table 8.S: Probability of scoring no errors in various size samples from a population 
with a range of real error proportions, where q is the specified interpretation accuracy 
and X is the sample size (N.B. the stepped line indicates approximate 0.05 level of 
probability) (van Genderen and Lock, 1977). 

It is important therefore, to acknowledge the limitations associated with the 

determination of accuracy levels derived within this study. It is also important to 



Discussion 277 

highlight the differences in the methods by which test data is collected here, and that 

often used in remote sensing investigations, as this may influence overall 

performance. 

A variety of errors exist and can be encountered when undertaking any classification. 

These can have profound effects on classification results and should be carefully 

considered when assessing classifier performance. Foody (2002) considered the 

accuracy of the dependent variable, and potential errors in the source from which it 

has been determined. For example, all maps possess an inherent degree of error and it 

is often the case that any disagreement between the map and the classified output is 

assumed to indicate error in the latter (Fitzgerald and Lees, 1994). Furthermore, to 

avoid potential confusion and indirectly improve classifier performance, sampling is 

often carried out in large homogeneous areas in order to avoid mixed pixels (Foody, 

2002; Richards, 1996; Foody and Arora, 1996). Consequently, classifier performance 

is likely to be overestimated and exaggerated. 

Unlike many remote sensing land cover classifications, the dependent variable within 

this work varies significantly over short distances; a slope showing little erosion may 

be adjacent to one that it heavily eroded. Moreover, all of the training and testing sites 

were individually visited and ground truthed, ensuring that little bias occurred in the 

determination of the dependent variable, other than that inherent in the classification 

scheme (Figure 5.3). In some instances, a similar problem to that of mixed pixels in 

remote sensing occurred, whereby more than one erosion process was seen to be 

operating on a slope. Unfortunately, this is unavoidable, and the dominant erosive 
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process was attributed in such cases. Nevertheless, these could potentially lead to 

errors in the final classifications. 

Classification accuracy is an important consideration, and the potential errors 

involved must be acknowledged. The number of test cases varies from the two, three 

and nine class classifications, inhibiting the confidence that can be placed in the 

recorded accuracies of the final outputs. However, each of the 130 test sites were 

visited and the errors associated with the data should therefore be minimal. Thus, the 

quality of the test set may be superior to that used in many remote sensing 

investigations, even if the number of examples is comparably small in some instances. 

In summary, the determination of an acceptable level of accuracy is user-defined, and 

the manner in which it is recorded varies. At present, no standard method exists by 

which accuracy should be determined or indeed reported (Foody, 2002). It is 

generally agreed however, that the correlation matrix offers the most comprehensive 

way in which results can be presented but a range of further techniques and statistics 

exist. For example, ROC curves present an ideal tool to analyse the ability of a 

classifier to determine between two classes and requires no test data as the graph is 

developed through the separability of the training data. 

8.6 OVERALL PERFORMANCE OF THE AI APPROACH AND A 
TRADITIONAL CLASSIFICATION METHOD 

An integral research aim proposed in Chapter One was to evaluate and compare the 

performance of artificial neural networks and decision trees as soil erosion classifiers. 

The classifiers were selected based on their perceived abilities detailed in the 

literature (see Chapter Four), and in particular the advantages that they hold over 
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more conventional classification techniques. In order to explore such advantages, a 

detailed research question was posed in section 5.2, proposing that the AI approaches 

were compared to a traditional method, Discriminant Analysis (DA). 

The extensive array of classifications undertaken and results obtained tend to suggest 

that ANNs and DTCs possess varying abilities for the classification of soil erosion 

processes. It is fair to say that both techniques applied to the two class classification 

performed reasonably well. The best neural network classified 75.4 percent of the test 

set correctly and the best decision tree 77.7 percent. Furthermore, the networks and 

decision trees obtained Aue statistics of 88 percent and 92 percent respectively, 

implying a good classification for the former and an excellent classification for the 

latter according to Pearce and Ferrier (2000). However, the results derived through the 

discriminant analysis are not only comparable to those achieved through the AI 

techniques but obtain an overall accuracy of 78.5 percent in one of the classifications, 

which actually exceeds them. This would suggest therefore, that the same level of 

distinction between sites that are currently eroding in the field and sites that show no 

appreciable erosion can be achieved using a linear technique. Unfortunately however, 

ROC curves cannot be extracted through the DA approach limiting the extent to 

which comparisons can be made. Nevertheless, a point worthy of mention is the fact 

that two of the eight decision trees grown for the two class classification are linear, 

splitting the data based only on the slope angle (Figures A3.6 and A3.8). 

The classification results produced for the three class classification also tend to 

suggest that the discriminant analysis method is superior to the ANNs and comparable 

to the DTCs. The neural networks appear to produce the weakest classifiers of the 
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three techniques. As discussed previously in section 8.2.2, this is likely to occur as a 

result of training set composition and occurs to a greater degree in the nine class 

classifications. In contrast to the neural networks, decision trees and discriminant 

analysis do not appear to assign unknown test cases to the most prominent classes in 

the training set. This leads to highly misleading results, and appears to be a serious 

weakness associated with ANNs. 

As detailed in Chapter Four, ANNs and DTCs have often been found to outperform 

traditional statistical classifiers such as DA. Due to the non-linear capabilities 

associated with neural networks and decision trees, it would be expected that they 

would either perform to comparable levels as the discriminant analysis classifications 

or exceed them. However, the results outlined in Chapter Six show that the DA 

performs to comparable levels as the AI techniques and even outperforms them in 

some instances. It is important to bear in mind the issues previously discussed in 

section 8.2.2 regarding training set composition and the influence that this has upon 

the ANN classifications in the three and nine class problems. As discussed previously, 

the decision tree classifiers produced linear solutions within some of the two class 

classifications. In such instances the comparable performance from DA would be 

expected. However, this is not the case within the three or nine class classifications. 

Back et al. (1996) found a similar problem whereby DA occasionally produced 

superior results compared with neural network for predicting bankruptcy. Altman et 

al. (1994) found DA performed as well as an ANN approach for distinguishing 

between strong and weak industrial organisations in Italy. 
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These findings may suggest that the classification problem is linear and, non-linear 

classifiers over-complicate the task. However, both AI techniques possess the ability 

to work in a linear manner and, a linearly discernible relationship should not be a 

limiting factor (i.e. should be able to classify irrespective of linearities and/or non

linearities). Moreover, through the visual analysis of scatter-plots derived from the 

various independent variables, it is evident that the problem is largely non-linear. 

Therefore, it is possible to suggest that it may occur as a result of limitations 

associated with the training data. The data may not provide a sufficient number of 

examples to delineate between classes in the non-linear manner required. 

Furthermore, the training parameters may limit classifier performance and the 

orthogonal splits used by the univariate decision trees in the classifications may result 

in more splitting criteria as more questions are required. 

A number of factors may influence the performance associated with the various 

classifications (ANNs, DTCs). These may include the following. 

• Limitations associated with the training data. 

Composition of training data appears to cause significant bias within the neural 

networks, leading to reduced overall accuracies in the three class classification, 

and spuriously increased accuracies in the nine class classifications when 

compared with the other two techniques. Furthermore, the training and test data 

sets are relatively small. However, due to temporal constraints and the extreme 

topographic nature of the landscape, this is largely unavoidable. Similar issues 

may be encountered when employing alternative practical applications (e.g. 

mapping). 
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• Limitations associated with the independent variables. 

The independent variables identified within the literature may not be able to 

adequately provide the information required by the classifiers to determine 

between the various classes within the dependent variable. Furthermore, errors 

may be present within the inputs. 

• Errors present within the dependent variable. 

The dependent variable may contain errors that lead to confusion within the 

various classifiers and consequently result in misclassifications. These errors may 

be inherent in the erosion classification scheme implemented and occur largely as 

a result of scale. When employing grid based or raster analysis, as is the case here, 

it is assumed that each cell or pixel is occupied by a single homogeneous class 

(Campbell, 2002). However, as is often the case in remote sensing investigations, 

mixed pixels exist, producing composite signatures particularly when high 

variation occurs over very short distances (Campbell, 2002; Mather, 2001). 

Therefore, when hard classifiers are used, such as ANNs, DTCs and DA, mixed 

pixels may cause confusion. Due to the scale of investigation, it is likely that more 

than one erosion process may be operating on any individual slope and, 

irrespective of the consistency with which the schedule is applied, hard classifiers 

such as those used here may become confused. Furthermore, due to the inherent 

subjectivity of the erosion scale used to determine the dependent variable in the 

field, errors may be incorporated into the classifications. Coupled with the 

previous point, error propagation will potentially limit classifier performance 

further. However, there is no alternative and it highlights the value of trained 

investigators (e.g. geomorphologists) working in close association with planners. 
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• Training methods and parameters associated with the classifiers. 

A valid factor that may limit the ability of the AI classifiers is the training 

methods employed and various associated parameters incorporated within them. 

Both ANNs and DTCs require the selection of a training algorithm and it is 

possible that those used here, although based on previous studies undertaken and 

detailed in the literature, do not provide the best solutions for the given problem. 

Furthermore, the use of the back-propagation algorithm for the training of the 

neural networks requires that both momentum and learning-rate terms are set. As 

with the choice of algorithm, these were based on previous studies and it is likely 

that alternative settings would have produced in different results. This point is 

emphasised by Jarvis and Stuart (1996). Neural network architecture will result in 

varying classification performance. Networks were trained with a single hidden 

layer comprising a single node, up to a maximum of 25 nodes. Again, this is likely 

to be problem specific and more hidden nodes, or indeed hidden layers, may have 

been led to improved network performance (see Maier and Dandy, 1998). 

• Test data 

There may be a number of factors involved in the apparent misclassifications, 

resulting in the interpreted risk map. These would involve the previously outlined 

issues regarding errors inherent in the independent and dependent variables, the 

ability of the independent variables to discriminate between different erosion 

processes, and classifier parameters. Furthermore, temporal issues may be 

important, where cells may be classified as eroding under a specified condition or 

extent, but may not be seen to be doing so at present, although they might do so 

over the course of time. 
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Taking the aforementioned points into consideration it may be possible to suggest 

where enhancements may be made to the AI approach documented within this study, 

consequently improving classifier performance. For example, the findings presented 

and discussed in Chapter Seven highlight the limitations associated with using the 

sodicity meter as an independent variable. Therefore, if an improved method by which 

sodicity can be accurately measured were used, or laboratory analysis were carried out 

on every sample, then overall classifier performance may be improved. Furthermore, 

training data could comprise of variables known to influence sodicity rather than 

attempt to assign a given level of sodicity based on some pre-requisite knowledge, the 

difficulties of which have been discussed extensively in the previous chapter. For 

example, training data could include variables such as soil pH, EC, ESP, CEC and 

organic content, thus allowing the classifier to identify potentially dispersive soils. A 

number of issues have been highlighted associated with DEM quality, and it may be 

possible to increase the classifier performance through incorporating improved DEM 

data. However, it is important to remember that the resolution of an elevation model 

has to represent the scale of the subject of interest, that of erosion in this instance. 

Therefore, it is not as straightforward as simply increasing DEM resolution. That is 

not to say that an improved method of DEM creation could not be employed for 

future studies. The number of training examples could also be increased and thereby 

present the classifiers with more examples from which to learn. The extent to which 

this may enhance classifier performance is unclear. However it is important to be 

aware that although it is reasonable to assume that by increasing the knowledge base 

from which the classifiers learn will lead to an increase in overall accuracy, Harris and 

Boardman (1998) found little improvement in levels of accuracy when increasing the 

number of training examples from 334 to 450 when classifying soil erosion. The 
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reasons proposed for this apparent anomaly were twofold. Firstly, the new data may 

have introduced more noise to the classifier and therefore limiting its effect, and 

secondly the classifier may have reached its optimum level of performance. Either 

way, this example highlights the difficulties associated with identifying potential 

areas of improvement when using AI techniques. It is impossible to know for certain, 

yet it may be the case that little is achieved through significant improvements to the 

quality and quantity of training data. 

8.7 SUMMARY 

The methods described in this thesis have widespread practical applications for 

determining actual and/or potential erosion. Applying these methods requires careful 

consideration. Perhaps the most important issues for practitioners to determine relate 

to time scales, from project design to implementation, and associated resource 

requirements ( cost). If a high-resolution investigation is required for a relatively small 

area, it may be better to undertake a detailed approach with a fieldwork based bias. In 

contrast, if knowledge of an extensive area is needed (e.g. regional scale) then 

alternative approaches may be appropriate. 

Through the implementation of the research framework detailed in Chapter Five, the 

thesis has evaluated the applicability of two AI approaches to soil erosion mapping 

and risk assessment. It is possible therefore to state that decision tree classifiers offer 

the better approach of the two AI methods employed and, possess distinct advantages 

over discriminant analysis. As discussed previously, the applicability of an approach 

is vitally important and needs to be time efficient. In comparison to ANNs, decision 

trees require fewer parameters to be set prior to training. Furthermore, they perform 
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poorly when inter-class variabilities are present. Figure 8.3 outlines the required steps 

undertaken in the development of both an ANN and DTC classifier. 

DTCs simply require the modeller to select the training algorithm. In contrast, ANNs 

trained using the back-propagation algorithm require that both momentum and 

learning rate parameters are set. Furthermore, network topology has to be chosen. As 

discussed in Chapter Four, this is largely a process of trial and error (Ghiassi and 

Saidane, 2005; Spellman, 1999), although some general guidelines have been 

proposed (see Blum, 1992; Berry and Linoff, 1997 and Bourquin et al., 1997). This is 

undoubtedly a time consuming process, with little insurance that the optimum 

network has been identified. The results of the classifications carried out in this study 

tend to suggest that the proposed guidelines offer little assistance in terms of optimal 

architecture, and the 'best' network is indeed case specific (see section 6.8). 

Nevertheless, the graphs indicate that the verification error relating to the networks 

trained using the field acquired variables does reduce drastically up to some specific 

point, beyond which oscillation may occur. Furthermore, in the majority of the these 

networks, results indicate that a minimum of five nodes are required in the hidden 

layer, as error rates appear to reduce significantly up to this point. Overall accuracies 

on the other hand reveal little in relation to potential patterns or trends. 

In contrast, decision tree classifiers determine their own topology based upon relative 

cost. Therefore, the implications associated with employing neural networks require 

more consideration than that of DTCs. In practical terms, it is likely that for any given 

problem a trial and error procedure is required to ensure that a suitable network has 
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been identified. Even then the learning process may produce a relatively poor 

network. 

, , 
, , 
, , 
, , 
, 
, 

Figure 8.3: The procedures required for the development ofthe two AI techniques. 

While the implementation of DTCs allows the construction of erosion probability 

maps, such as those detailed in 6.9.1 , artificial neural networks are not as viewable in 

terms of classifications and misclassifications associated with the training data. 

Therefore, the production of such maps would be a far more complicated time

consuming process. Decision tree classifiers are also more efficient with training data. 

By using cross validation, as opposed to having a specific validation data set as is the 

case in the neural networks, each example presented to the tree is employed for 

training. 
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Section 8.2.3 discussed the concept of interpreting the classified soil erosion maps as 

'potential' erosion maps, inferring erosion risk. This approach has been adopted 

elsewhere and may present a vitally important management tool assisting in the 

implementation of appropriate policies and strategies. An erosion risk-by-association 

methodology has also been presented; the maps from which can be seen in section 

6.9.2, Appendix 6 and on the accompanying DVD. The methodology outlined can be 

applied elsewhere and has the ability to highlight potentially susceptible locations 

based upon some simple topographical and process based rules. 

The soil erosion maps presented within this thesis are indicative rather than definitive: 

they highlight susceptible areas where management strategies should be targeted and 

resources directed. It is suggested therefore, that the method presented be used to 

supplement and support alternative approaches and techniques. 

The difficulties associated with determining between different erosion processes, and 

the degree to which they are operating, has been highlighted. Several factors have 

been proposed that may be responsible for the difficulties associated with 

discriminating between classes. However, even in the best case scenario; with good 

quality training data, optimum training parameters and useful independent variables, 

the differentiation between dependent variable classes will be small. As outlined by 

Foody (2002) and Felix and Binney (1989), classification errors often occur between 

highly similar classes. Moreover, attempts to classify on the basis of discrete classes 

may exacerbate the issue. 
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The method presented within the thesis is only viable if it is easier to obtain the 

required variables than it is to physically map soil erosion. Nevertheless, the 

advantages associated with employing classification techniques include; the 

determination of rules, particularly in the case of DTCs, potential non-linear 

capabilities and, the ability to interpret classifications as 'risk' rather than 'actual' 

erosion. 

8.8 CONCLUSIONS 

This chapter has discussed, with reference to the aims and objectives, the results 

obtained through the implementation of the analytical framework and research 

methods set out in Chapter Five. With reference to the wider literature, the discussion 

has evaluated and compared the performance of the two AI techniques for soil erosion 

mapping, determined the influences associated with the independent and dependent 

variables and assessed the ability of ANN s and DTCs to inductively formulate useful 

rules and thresholds. 

The following chapter summarises the main findings and highlights avenues where 

future research may focus. This is followed by some concluding comments drawing 

the thesis to a conclusion. 
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9 

Conclusion 

9.1 INTRODUCTION 

The methodology presented in this thesis provides an alternative approach to the more 

traditional techniques employed for soil erosion mapping. Through the realisation of 

the potential benefits offered by Artificial Intelligence techniques, soil erosion maps 

and risk maps have been produced. These maps have a range of applications at 

varying spatial scales, with value to practitioners ranging from the individual 

landowner, to local and regional levels of government. 

The thesis evaluates and compares two AI techniques for the mapping of soil erosion 

processes in Almeria province, Southeast Spain. The approach aims to evaluate and 

compare the performance of the artificial neural networks and decision tree classifiers 

when trained, using readily available and low-cost data sets (e.g. digital elevation 

models), and additionally, more expensive field collected data. Furthermore, their 

ability to enhance our current understanding of soil erosion processes and how the 

selection of dependent and independent variables influence classifier performance has 

been assessed. 

The following sections of this chapter summarise the main findings with reference to 

the stated aims outlined in Chapter One. As a result, it is possible to highlight 

potential avenues for future research, particularly in light of limitations and 

shortcomings associated with the approach employed here. 
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9.2 SUMMARY OF THE MAIN FINDINGS 

Several key findings, principally relating to the aims set out in this thesis, are 

identified. 

• The composition of the training data set appears to detrimentally affect the 

performance of the artificial neural networks in a number of the classifications. 

The training data set comprises an uneven number of examples for each class 

within the dependent variable due largely to the opportunistic methods by which 

sampling was undertaken in the field. The variations were at their most extreme 

within the three and nine class classifications and, led to extensive commission 

errors and misleading results. In contrast, neither the decision trees nor the 

discriminate analysis classifiers appear susceptible to this problem. 

• The inclusion of independent variables extracted from the digital elevation models 

into the field acquired training set often led to an increased verification error or 

relative cost in the neural network and decision tree classifications respectively. 

An attractive advantage often used for promoting the wider implementation of the 

ANNs and DTCs, is their ability to determine the importance of individual 

independent variables, and ignore those that detrimentally affect classifier 

performance (see Chapter Four). However, results indicate that error rates often 

increase when field acquired data is incorporated along with DEM data, as 

opposed to when the field data is used to train the classifier alone. 

• Soil erosion maps produced from the classifications may be better interpreted as 

'potential' erosion maps that infer soil erosion risk. The supervised AI techniques 
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employed here learn through the presentation of training cases, where the 

independent and dependent variables are known. The classifier assigns unknown 

cases based upon its learning experience. Thus, misclassifications or the 

difference between actual and the predicted erosion, can be interpreted as erosion 

risk. 

• Discriminant analysis classifies soil erosion to comparable levels of accuracies as 

both AI techniques. DA consistently outperforms the neural networks in the three 

and nine class classifications because the linear technique does not appear to 

suffer as a result of training set composition and associated inter-class variability. 

• Classifier performance is strongly controlled by the dependent and independent 

variables. As may be expected, classifier performance generally reduces as the 

complexity of the problem increases. The independent variables acquired in the 

field provided superior data to that extracted through either of the digital elevation 

models. In addition, the classifiers trained using variables extracted from the 

higher resolution digital elevation model proved superior to those trained using 

the coarser model. This is evident throughout the two, three and nine class 

classifications. 

• A number of weak relationships were identified between various soil 

characteristics measured under laboratory conditions. The trends generally follow 

those identified by Faulkner et 01. (2000) and Alexander et 01. (1999). However, 

the Sodium Adsorption Ratios within these investigations tend to exceed those 

measured here. The likely causal factor is that samples were collected primarily 
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from the Mocatan badland site, in and around pipe entrances that appear highly 

dispersible. In contrast, samples collected for use within this study were located 

on slopes containing varying degrees of erosion, on the TRU and MRU (see 

Chapter Two). 

• The difficulties associated with the determination and identification of dispersive 

soils has become readily evident. Although various dispersivity indices exist (e.g. 

Gerber and Harmse (1987) (Figure 3.9) and Rengasamy et al. (1984) (Figure 

3.11», it is difficult to classify or group soils into de flocculation classes. The 

results highlight the issue of conflicting boundaries identified by different authors 

producing different indices. Sites that were seen to be eroding in the field did not 

appear to be 'at risk', based primarily upon the laboratory findings. Due to the fact 

that soil dispersion is a highly complex process, involving a range of different 

chemical (e.g. pH, ESP, CEC, organic content etc.) and physical (e.g. slope angle) 

variables, it is important to consider all soil characteristics without basing 

presumptions upon one or two variables. 

• There is no discernible relationship between the field sodicity meter and soil 

characteristics calculated through extensive laboratory work. Possible reasons for 

this include: 

(i) The method 

It is possible that the method itself may be flawed. To avoid the 

mechanical breakdown of the soil structure through shaking, the method 

advises that the jar (comprised of a 1:5 soil to water ratio) is inverted 

slowly once. The sample may not be sufficiently mixed and thus limit the 
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potential dispersion process. In addition, the mixture is allowed to settle 

for four hours, but it may take in excess of eight hours for clay particles 

that are still flocculated to settle. 

(U) Soils may vary from those on which the meter has been calibrated 

The meter has been designed and produced in Australia, and it may be the 

case that the soils on which it has been calibrated vary in some way to 

those with which it has been applied here. 

• A number of limitations were identified. Consideration of these limitations has 

been a valuable lesson in determining the applicability of these approaches to 

practical applications. 

9.3 FUTURE RESEARCH 

Through the course of this work, a range of potential research avenues have been 

identified. These are outlined below. 

• The interpretation of the classified erosion maps as erosion 'risk' maps can be 

explored further. The inclusion of land-use as an additional independent variable 

would provide an important social aspect to the models that will enhance their 

applicability. This will also allow the determination and assessment of landscape 

responses to various land-use changes. The trained classifiers offer the ability to 

run various scenarios based purely on physical parameters. For example, if a 

landscape manager required information concerning erosion under varying 

degrees of vegetation cover, it would be very easy to run a range of simple 
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scenarios. If land-use were incorporated, it would be possible to determine the 

impact that any change may have. 

• Potential advantages of using classification ensemble approaches can be assessed. 

Various classification ensemble methods exist and, have been proven to improve 

classification accuracy (Gislason et al., In Press). Such methods include boosting 

and bagging. Boosting involves the aggregation of models through voting 

(McBratney et al., 2003) and the re-training of poorly classified samples. In 

contrast, bagging involves training many classifiers using bootstrapping methods 

where subsets of the training data are created to further enhance classifier 

performance (Gislason et al., In Press; Lawrence et al., 2004). 

• Soil physico-chemical relationships can be explored further. The findings 

described in Chapter Seven highlight the complex relationships between various 

soil characteristics and in particular the inability and conflicting nature of the 

dispersivity classifications set out by Gerber and Harmse (1987) and Rengasamy 

et al. (1984). Furthermore, a method by which soil sodicity can be measured 

quickly and accurately is required and will provide a valuable means of producing 

a more rapid assessment of erosion risk in highly dispersive landscapes. 

9.4 CONCLUDING COMMENTS 

This thesis presents an alternative method by which soil erosion processes can be 

mapped, and the extent to which they are operating determined. Furthermore, the 

ability of such methods to contribute to current knowledge regarding soil erosion 
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processes has been explored, as have the predictive abilities of different data sets and 

the influence of the number of classes in the dependent variable. 

Mapping soil erosion processes remains a global challenge to geomorphologists. The 

methodology presented within this thesis provides an alternative approach to mapping 

soil erosion and highlighting susceptible areas where intervention should be 

prioritised. However, it is important to be aware of the associated limitations and in 

particular the dependence of such techniques upon good quality training data. 

Nevertheless, decision tree classifiers present a useful tool that does not appear to 

suffer as a consequence of inter-class variations in the data, which is often 

unavoidable when studying environmental phenomena. 

In conclusion, the method presented for mapping actual soil erosion may be used to 

determine potential erosion. Both outputs provide valuable tools for landscape 

managers and may provide an alternative method by which intervention and resources 

may be directed. 
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Appendix 1 - Detailed Laboratory Analysis 

Sample CEC Sample Deflection Calibration Curve Calculation Per Kg Soil CEC 
Number Weight (g) Reading Equation cmollkg 

1 4.0074 27 y=2.1143x+l 12.3 3068.6 13.342 
2 4.0018 23 y=2.3714x+0.1429 9.64 2408.6 10.472 
3 4.0099 20 y=2.1143x+1 8.99 2241.1 9.744 
4 4.0006 21 y=2.62x+0.6 7.79 1946.3 8.462 
5 4.0083 29 v=2.1257x+l .0952 13.1 3275 14.239 
6 4.0083 30 y=2.3714x+0.1429 12.6 3141 .1 13.657 
7 3.9993 24 y=2.62x+0.6 8.93 2233.2 9.710 
8 4.0139 26 y=2.1257x+l .0952 11 .7 2918.9 12.691 
9 3.9932 18 y=2.1257x+l .0952 7.95 1991 .5 8.659 

10 4.0036 15 y=2.1257x+l .0952 6.54 1633.8 7.104 
11 4.003 17 y=2.3714x+0.1429 7.11 1775.8 7.721 
12 4.018 35 y=2.1143x+l 16.1 4002.2 17.401 
13 4.0021 29 y=2.1143x+l 13.2 3309.1 14.387 
14 4.0015 24 y=2.62x+0.6 8.93 2232 9.704 
15 4.007 24 y=2.62x+0.6 8.93 2228.9 9.691 
16 4.0074 28 y=2.1143x+l 12.8 3186.7 13.855 
17 4.0059 17 y=2.3714x+0.1429 7.11 1774.5 7.715 
18 4.0062 24 v=2.62x+0.6 8.93 2229.4 9.693 
19 4.0049 17 y=2.62x+0.6 6.26 1563 6.796 
20 4.0026 50 y=2.3714x+O.1429 21 5252.7 22.838 
21 4.0071 28 y=2.1257x+ 1.0952 12.7 3158.6 13.733 
22 4.001 31 y=2.1257x+l .0952 14.1 3516.2 15.288 
23 4.0057 19 y=2.62x+0.6 7.02 1753.2 7.623 
24 4.0095 30 v=2.3714x+0.1429 12.6 3140.2 13.653 
25 4.0044 34 y=2.1257x+l .0952 15.5 3865.6 16.807 
26 4 .008 12 y=2.3714x+0.1429 5 1247.5 5.424 
27 4.0057 17 y=2.1143x+l 7.57 1889.2 8.214 
28 4.0044 21 y=2.62x+0.6 7.79 1944.4 8.454 
29 4.0088 33 y=2.3714x+0.1429 13.9 3456.3 15.027 
30 4.0106 16 y=2.1257x+l .0952 7.01 1748.3 7.601 
31 4.007 37 y=2.3714x+0.1429 15.5 3878.8 16.864 
32 3.9936 27 y=2.62x+0.6 10.1 2523.1 10.970 
33 4.0039 25 y:..2 .1257x+l .0952 11 .2 2808.7 12.212 
34 4.0012 24 y=2.1143x+l 10.9 2718.8 11 .821 
35 4.0023 22 y=2.62x+0.6 8.17 2040.8 8.873 
36 4.0036 27 y=2.3714x+0.1429 11 .3 2828.8 12.299 
37 4.0032 17 y=2.1257x+l .0952 7.48 1869 8.126 
38 3.9962 29 y=2.1143x+l 13.2 3313.9 14.408 
39 4.0065 29 y=2.1257x+l .0952 13.1 3276.5 14.246 
40 4.0036 27 y=2.1143x+l 12.3 3071 .5 13.355 
41 4.0023 21 y=2.62x+0.6 7.79 1945.4 8.458 
42 4.0004 25 y=2.3714x+0.1429 10.5 2620.2 11 .392 
43 4.0095 27 y=2.1143x+l 12.3 3067 13.335 
44 4.0036 21 y=2.3714x+0.1429 8.8 2196.8 9.551 
45 4.0092 15 y=2.1257x+l .0952 6.54 1631 .6 7.094 
46 4 14 y=2.62x+0.6 5.11 1278.6 5.559 
47 4.0008 31 y=2.3714x+0.1429 13 3252.4 14.141 
48 4.0147 50 y=2.1143x+l 23.2 5772.7 25.099 
49 3.9983 43 y=2.1257x+l .0952 19.7 4930.4 21 .437 
50 4 .004 46 y=2.1143x+l 21 .3 5315.6 23.111 
51 4.0021 35 y=2.1257x+1 .0952 15.9 3985.4 17.328 
52 4.0189 42 y=2.1143x+ 1 19.4 4825.1 20.979 
53 4.0075 43 y=2.62x+0.6 16.2 4038.2 17.558 
54 4.0004 23 y=2.1143x+1 10.4 2601 .1 11.309 
55 4.0022 35 y=2.62x+O.6 13.1 3280.6 14.264 

Table A1.I: DetaIled CatIon Exchange CapacIty laboratory results. 
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Sample ESP Sample ESP Calibration Deflection Calculation Per Kg ESP ESP 
Number Weight Igl Curve Equation Reading Soil cmollka cmollka 

1 4.089 v = 2.3242x + 1.1246 40 16.72635746 409 1.7785 0.500 
2 4 Y = 2.3611x + 2.1451 26 10.10329931 253 1.0982 0.308 
3 4 .1006 Y = 2.5229x + 2.0683 6 1.55840501 38 0.1652 0.046 
4 4 .0078 v = 2.5229x + 2.0683 10 3.143882041 78.4 0.3411 0.095 

5 4 v = 2.3611x + 2.1451 10 3.326796832 83.2 0.3616 0.100 

6 4.0046 v = 2.273x + 1.2628 129 56.19762429 1403 6.1014 1.690 

7 4 .0062 Y = 2.5229x + 2.0683 44 16.6204368 415 1.8038 0.498 

8 4 v = 2.3611x + 2.1451 29 11 .37389352 284 1.2363 0.341 

9 4.0281 v = 2.5229x + 2.0683 10 3.143882041 78 0.3393 0.093 

10 4.11 11 v = 2.5229x + 2.0683 6 1.55840501 37.9 0.1648 0.045 

11 4.0095 v - 2.5229x + 2.0683 42 15.82769828 395 1.7163 0.469 

12 4 .1084 Y = 2.5229x + 2.0683 25 9.089420905 221 0.9619 0.262 

13 4.0404 Y = 2.5229x + 2.0683 18 6.314836101 156 0.6795 0.185 

14 4.01 18 v = 2.5229x + 2.0683 6 1.55840501 38.8 0.1689 0.046 

15 4.018 v = 2.5558x + 2.1368 48 17.94475311 447 1.9418 0.525 
16 4.0002 Y = 2.5502x + 0.1945 2 0.707983688 17.7 0.077 0.021 
17 4.0674 v = 2.5229x + 2.0683 6 1.55840501 38.3 0.1666 0.045 
18 4.0098 v = 2.5229x + 2.0683 5 1.162035753 29 0.126 0.034 
19 4.0983 v = 2.5229x + 2.0683 6 1.55840501 38 0.1653 0.044 
20 4.007 y = 2.273x + 1.2628 72 31.12063352 777 3.3768 0.900 
21 4.0226 y = 2.5229x + 2.0683 6 1.55840501 38.7 0.1684 0.045 
22 4.0117 Y = 2.5502x + 0.1945 66 25.80405458 643 2.7966 0.742 
23 4.0121 Y = 2.5229x + 2.0683 47 17.80954457 444 1.93 0.511 
24 4.0164 Y = 2.5229x + 2.0683 21 7.503943874 187 0.8123 0.214 
25 4.004 Y = 2.3611x + 2.1451 10 3.326796832 83.1 0.3612 0.095 
26 4 .0552 Y = 2.273x + 1.2628 4 1.204223493 29.7 0.1291 0.032 
27 4.0053 Y = 2.3242x + 1.1246 4 1.237156871 30.9 0.1343 0.033 
28 4 v = 2.5558x + 2.1368 4 0.72900853 18.2 0.0792 0.020 
29 4.0676 Y = 2.3611x + 2.1451 24 9.2562365 228 0.9894 0.245 
30 4 v = 2.5558x + 2.1368 5 1.120275452 28 0.1218 0.030 
31 4.0039 Y = 2.3611x + 2.1451 51 20.69158443 517 2.2469 0.553 
32 4.0215 Y = 2.5502x + 0.1945 5 1.884362011 46.9 0.2037 0.050 
33 4.0132 Y = 2.3242x + 1.1246 3 0.806901299 20.1 0.0874 0.021 
34 4.0017 Y = 2.3611x + 2.1451 4 0.785608403 19.6 0.0854 0.021 
35 4.0014 v = 2.3611x + 2.1451 13 4.597391047 115 0.4995 0.121 
36 4.0789 Y - 2.5502x + 0.1945 13 5.021370873 123 0.5352 0.130 
37 4.0018 Y = 2.5502x + 0.1945 3 1.100109795 27.5 0.1195 0.029 
38 4.0119 Y = 2.5502x + 0.1945 3 1.100109795 27.4 0.1192 0.029 
39 4.0073 Y = 2.3611x + 2.1451 5 1.209139808 30.2 0.1312 0.031 
40 4 .008 v = 2.3611x + 2.1451 4 0.785608403 19.6 0.0852 0.020 
41 4.0677 v = 2.5502x + 0.1945 3 1.100109795 27 0.1176 0.028 
42 4.0398 Y = 2.273x + 1.2628 8 2.964012319 73.4 0.319 0.075 
43 4.0339 Y = 2.5502x + 0.1945 4 1.492235903 37 0.1608 0.038 
44 4.0012 Y = 2.5502x + 0.1945 4 1.492235903 37.3 0.1622 0.038 
45 4.0048 Y = 2.3611x + 2.1451 6 1.632671213 40.8 0.1773 0.042 
46 4.0185 Y = 2.3242x + 1.1246 3 0.806901299 20.1 0.0873 0.020 
47 4 .019 Y = 2.5502x + 0.1945 5 1.884362011 46.9 0.2039 0.047 
48 4.0436 Y = 2.5502x + 0.1945 80 31 .29382009 774 3.3648 0.770 
49 4.0017 Y = 2.5502x + 0.1945 71 27.76468512 694 3.0166 0.686 
50 4.0136 y = 2.5502x + 0.1945 3 1.100109795 27.4 0.1192 0.027 
51 4.0164 Y = 2.5502x + 0.1945 4 1.492235903 37.2 0.1615 0.037 
52 4.0031 v = 2.3611x + 2.1451 8 2.479734022 61 .9 0.2693 0.061 
53 4.0252 Y = 2.5502x + 0.1945 50 19.53003686 485 2.1095 0.475 
54 4 Y = 2.5558x + 2.1368 5 1.120275452 28 0.1218 0.027 
55 4 .0219 Y = 2.5229x + 2.0683 5 1.162035753 28.9 0.1256 0.028 

Table A1.2: DetaIled Exchangeable SodIUm Percentage laboratory results. 
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Sample Number ESR (ES/(CEC - ESll SAR y = ..0.0126 + O.01475x 
1 0.153805891 11.28175535 
2 0.117153463 8.796844956 
3 0.01725073 2.023778337 
4 0.041997469 3.701523337 
5 0.026056793 2.620799534 
6 0.80754033 55.60273426 
7 0.228156557 16.32247846 
8 0.107931315 8.171614554 
9 0.040788866 3.619584158 

10 0.023752268 2.464560518 
11 0.285839167 20.23316389 
12 0.058513706 4.821268203 
13 0.049573202 4.215132318 
14 0.017712274 2.055069444 
15 0.250578128 17.84258494 
16 0.005585035 1.232883718 
17 0.022068121 2.350381062 
18 0.01317035 1.747142362 
19 0.024935745 2.544796275 
20 0.173515328 12.61798837 
21 0.012417539 1.696104338 
22 0.22388799 16.0330841 
23 0.33902491 23.83897698 
24 0.063261598 5.143159185 
25 0.021965889 2.343450087 
26 0.024384385 2.507415956 
27 0.01662165 1.981128786 
28 0.009461741 1.495711259 
29 0.070479799 5.632528732 
30 0.016280342 1.957989285 
31 0.15371329 11 .27547728 
32 0.018922537 2.137121154 
33 0.007210242 1.343067235 
34 0.007273409 1.347349747 
35 0.059657078 4.898784952 
36 0.045498714 3.93889588 
37 0.014927836 1.866293987 
38 0.008343538 1.419900878 
39 0.009294602 1.484379828 
40 0.006422479 1.289659578 
41 0.014097681 1.810012247 
42 0.028807941 2.807318047 
43 0.0122086 1.681938973 
44 0.017269705 2.025064717 
45 0.025627274 2.591679592 
46 0.015954649 1.935908392 
47 0.014626796 1.84588449 
48 0.154820517 11 .3505435 
49 0.163767635 11 .9571278 
50 0.005183168 1.205638533 
51 0.009410158 1.492214107 
52 0.013004995 1.735931889 
53 0.13655765 10.11238304 
54 0.010884632 1.592178474 
55 0.008885291 1.456629888 

Table Al.3: DetermmatlOn of SodIUm AdsorptIon RatIO from Exchangeable Sodium 
Ratio. 
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Appendix 2 - Correlation Matrices 

Correlation Matrices Produced for the Artificial Neural Networks 

Two Class Classifications 

Actual 
0 1 Total Overall 

Predicted 0 11 6 17 Accuracy 
1 34 79 113 

Total 45 85 130 0.692308 
Producers Accuracy Users Accuracy 

0 24.4% 0 64.7% 
1 92.9% 1 69.9% 

Table A2.1: CorrelatIOn matrIx for 10 metre DEM mdependent vanables. 

Actual 
0 1 Total Overall 

Predicted 0 6 2 8 Accuracy 
1 39 83 122 

Total 45 85 130 0.684615 
Producers Accuracy Users Accuracy 

0 13.3% 0 75% 
1 97.6% 1 68% 

Table A2.2: CorrelatIOn matrIx for 20 metre DEM independent varIables. 

Actual 
0 1 Total Overall 

Predicted 0 28 27 55 Accuracy 
1 17 58 75 

Total 45 85 130 0.661538 
Producers Accuracy Users Accuracy 

0 62.2% 0 50.9% 
1 74.1% 1 77.3% 

Table A2.3: CorrelatIOn matrtx for field collected mdependent variables. 



Appendices 332 

Actual 
0 1 Total Overall 

Predicted 0 27 14 41 Accuracy 
1 18 71 89 

Total 45 85 130 
Producers Accuracy Users Accuracy 0.753846 

0 60% 0 65.9% 
1 83.5% 1 79.8% 

Table A2.4: CorrelatlOn matrIX for field collected and the 10 metre DEM independent 
variables. 

Actual 
0 1 Total Overall 

Predicted 0 30 23 53 Accuracy 
1 15 62 77 

Total 45 85 130 0.707692 
Producers Accuracy Users Accuracy 

0 66.6% 0 56.6% 
1 72.9% 1 80.5% 

Table A2.5: CorrelatIOn matrIX for field collected and 20 metre DEM independent 
variables. 

Actual 
0 1 Total Overall 

Predicted 0 34 32 66 Accuracy 
1 11 53 64 

Total 45 85 130 0.669231 
Producers Accuracy Users Accuracy 

0 75.6% 0 51.5% 
1 62.4% 1 82.8% 

Table A2.6: CorrelatlOn matrIx for field collected and classified vegetation 
independent variables. 

Actual 
0 1 Total Overall 

Predicted 0 28 15 43 Accuracy 
1 17 70 87 

Total 45 85 130 0.753846 
Producers Accuracy Users Accuracy 

0 62.2% 0 65.1% 
1 82.4% 1 80.5% 

Table A2.7: Correlation matrIX for field collected, classIfied vegetation and 10 metre 
DEM independent variables. 
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Actual 
0 1 Total Overall 

Predicted 0 25 16 41 Accuracy 
1 20 69 89 

Total 45 85 130 0.723077 
Producers Accuracy_ Users Accuracy 

0 55.6% 0 61% 
1 81.2% 1 77.5% 

Table A2.8: Correlation matrix for field collected, classified vegetation and 20 metre 
DEM independent variables. 

Three Class Cia sijications 

Actual 
0 1 2 Total Overall 

Predicted 0 34 15 31 80 Accuracy 
1 0 0 0 0 
2 11 12 27 50 

Total 45 29 56 130 0.469231 
Producers Accuracy Users Accuracy 

0 75.6% 0 42.5% 
1 - 1 -
2 48.2% 2 54% 

Table A2.9: CorrelatIOn matrIx for 10 metre DEM independent variables. 

Actual 
0 1 2 Total Overall 

Predicted 0 18 11 5 34 Accuracy 
1 0 0 0 0 
2 27 16 53 96 

Total 45 29 56 130 0.546154 
Producers Accuracy Users Accuracy 

0 40% 0 52.9% 
1 - 1 -
2 94.6% 2 55.2% 

Table A2.10: CorrelatIon matrIx for 20 metre DEM independent variables. 
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Actual 
0 1 2 Total Overall 

Predicted 0 32 13 19 64 Accuracy 
1 4 4 1 9 
2 9 10 38 57 

Total 45 29 56 130 0.569231 
Producers Accuracy Users Accuracy 

0 71.1% 0 50% 
1 13.8% 1 44.4% 

2 67.9% 2 66.7% 
Table A2.11: Correlation matrix for field collected independent variables. 

Actual 
0 1 2 Total Overall 

Predicted 0 34 15 19 68 Accuracy 
1 4 4 1 9 
2 7 8 38 53 

Total 45 29 56 130 0.584615 
Producers Accuracy Users Accuracy 

0 75.6% 0 50% 
1 13.8% 1 44.4% 
2 67.9% 2 71.7% 

Table A2.12: CorrelatIon matrIx for field collected and the 10 metre DEM 
independent variables. 

Actual 
0 1 2 Total Overall 

Predicted 0 12 2 2 16 Accuracy 
1 0 0 0 0 
2 33 25 56 114 

Total 45 29 56 130 0.523077 
Producers Accuracy Users Accuracy 

0 26.7% 0 75% 
1 - 1 -
2 100% 2 49.1% 

Table A2.13: CorrelatIon matrIx for field collected and the 20 metre DEM 
independent variables. 
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Actual 
0 1 2 Total Overall 

Predicted 0 35 13 17 65 Accuracy 
1 1 2 0 3 
2 9 12 41 62 

Total 45 29 56 130 0.6 
Producers Accuracy Users Accuracy 

0 77.8% 0 53.8% 
1 6.9% 1 66.7% 

2 73.2% 2 66.1% 

Table A2.14: Correlation matrix for field collected and claSSified vegetatlOn 
independent variables. 

Actual 
0 1 2 Total Overall 

Predicted 0 32 11 17 60 Accuracy 
1 6 4 1 11 
2 7 12 40 59 

Total 45 29 56 130 0.584615 
Producers Accuracy Users Accuracy 

0 71.1% 0 53.3% 
1 13.8% 1 36.4% 

2 71.4% 2 67.8% 

Table A2.15: CorrelatlOn matrix for field collected, claSSIfied vegetatlOn and 10 
metre DEM independent variables. 

Actual 
0 1 2 Total Overall 

Predicted 0 36 18 21 75 Accuracy 
1 3 2 0 5 
2 6 7 37 50 

Total 45 29 56 130 0.576923 
Producers Accuracy Users Accuracy 

0 80% 0 48% 
1 6.9% 1 40% 

2 66.1% 2 74% 
Table A2.16: CorrelatIOn matnx for field collected, classified vegetation and 20 
metre DEM independent variables. 
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Nine CLa s CLassifications 

Actual 
0 1 2 3 4 5 6 7 8 Total OveraU 

0 45 17 5 7 7 18 18 9 4 130 Accuracy 
1 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 

Predicted 4 0 0 0 0 0 0 0 0 0 0 0.346154 

5 0 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accuracy 

0 100% 0 34.6% 
1 - 1 -
2 - 2 -
3 - 3 -
4 - 4 -
5 - 5 -
6 - 6 -
7 - 7 -
8 - 8 -

Table A2.17: CorrelatIOn matrix for 10 metre DEM mdependent varIables. 

Actual 
0 1 2 3 4 5 6 7 8 Total Overall 

0 37 15 3 7 6 18 15 6 I 108 Accuracy 
J 0 1 0 0 0 0 0 0 0 1 
2 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 

Predicted 4 0 0 0 0 0 0 0 0 0 0 0.3 

5 6 0 2 0 0 0 1 1 1 11 
6 0 0 0 0 0 0 0 1 1 2 
7 2 1 0 0 1 0 2 1 1 8 
8 0 0 0 0 0 0 0 0 0 0 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accuracy 

0 82.2% 0 34.3% 
1 5.8% 1 100% 

2 - 2 -
3 - 3 -
4 - 4 -
5 - 5 -
6 - 6 -
7 11.1 % 7 12.5% 
8 - 8 -

Table A2.18: CorrelatIOn matrix for 20 metre DEM mdependent varIables. 
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Actual 
0 1 2 3 4 5 6 7 8 Total Overall 

0 32 7 2 3 2 6 3 1 0 56 Accuracy 
1 5 3 1 1 1 0 0 0 0 11 
2 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 

Predicted 4 0 0 0 0 0 0 0 0 0 0 0.376923 

5 1 0 0 1 1 1 2 1 0 7 
6 7 7 2 2 3 11 13 7 4 56 
7 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accuracy 

0 71.1% 0 57.1% 
1 17.6% 1 27.3% 

2 - 2 -
3 - 3 -
4 - 4 -
5 5.6% 5 14.3% 

6 72.2% 6 23.2% 

7 - 7 -
8 - 8 -

Table A2.19: CorrelatIon matrIx for field collected mdependent varIables. 

Actual 
0 ] 2 3 4 5 6 7 8 Total Overall 

0 33 9 2 2 2 7 4 1 0 60 Accuracy 
1 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 

Predicted 4 0 0 0 0 0 0 0 0 0 0 0.361538 

5 4 I 1 0 2 1 1 1 0 11 
6 8 7 2 5 3 10 13 7 4 59 
7 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accurag_ 

0 73.3% 0 55% 

1 - 1 -
2 - 2 -
3 - 3 -
4 - 4 -
5 5.6% 5 9.1% 

6 72.2% 6 22% 

7 - 7 -
8 - 8 -

Table A2.20: CorrelatIOn matrIx for field collected and the 10 metre DEM 
independent variables. 
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Actual 
0 1 2 3 4 5 6 7 8 Total Overall 

0 35 10 2 1 4 6 4 2 0 64 Accuracy 
1 2 1 1 0 0 0 0 0 0 4 
2 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 

Predicted 4 0 0 0 0 0 0 0 0 0 0 0.369231 

5 8 6 2 6 3 12 14 7 4 62 
6 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accuracy 

0 77.8% 0 54.7% 
1 5.9% 1 25% 

2 - 2 -
3 - 3 -
4 - 4 -
5 66.7% 5 19.4% 

6 - 6 -
7 - 7 -
8 - 8 -

Table A2.21: Correlatton matrIx for field collected and the 20 metre DEM 
independent variables. 

Actual 
0 1 2 3 4 5 6 7 8 Total Overall 

0 38 10 3 4 3 9 3 3 0 73 Accuracy 
1 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 

Predicted 4 0 0 0 0 0 0 0 0 0 0 0.392308 

5 3 1 0 0 0 0 2 0 0 6 
6 4 6 2 3 4 9 13 6 4 51 
7 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accuracy 

0 84.4% 0 52.1% 

1 - 1 -
2 - 2 -
3 - 3 -
4 - 4 -
5 - 5 -
6 72.2% 6 25.5% 

7 - 7 -
8 - 8 -

Table A2.22: CorrelatlOn matrIx for field collected and classIfied vegetatlOn 
independent variables. 
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Actual 
0 1 2 3 4 5 6 7 8 Total Overall 

0 37 8 2 4 3 7 2 4 0 67 Accuracy 
1 2 J 1 0 0 2 3 0 0 9 
2 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 

Predicted 4 0 0 0 0 0 0 0 0 0 0 0.392308 

5 0 0 0 0 0 0 0 0 0 0 
6 6 8 2 3 4 9 13 5 4 54 
7 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accuracy 

0 82.2% 0 55.2% 
1 5.9% 1 11.1% 

2 - 2 -
3 - 3 -
4 - 4 -
5 - 5 -
6 72.2% 6 24.1% 

7 - 7 -
8 - 8 -

Table A2.23: CorrelatIOn matnx for field collected, classIfied vegetatIon and 10 
metre DEM independent variables. 

Actual 
0 1 2 3 4 5 6 7 8 Total Overall 

0 31 10 3 6 3 10 5 3 1 72 Accuracy 
1 5 3 I I 0 0 0 0 0 10 
2 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 

Predicted 4 0 0 0 0 0 0 0 0 0 0 0.361538 

5 0 0 0 0 0 0 0 0 0 0 
6 9 4 J 0 4 8 13 6 3 48 
7 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accuracy 

0 68.9% 0 43.1% 

1 17.6% 1 30% 

2 - 2 -
3 - 3 -
4 - 4 -
5 - 5 -
6 72.2% 6 6.3% 

7 - 7 -
8 - 8 -

Table A2.24: CorrelatIOn matrIx for field collected, classified vegetatIOn and 20 
metre DEM independent variables. 
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Correlation Matrices Produced for the Decision Tree Classifiers 

Two Class Classifications 

Actual 
0 1 Total Overall 

Predicted 0 27 24 51 Accuracy 
1 18 61 79 

Total 45 85 130 
Producers Accuracy Users Accuracy 0.676923 

0 60% 0 52.9% 
1 7l.8% 1 77.2% 

Table A2.25: Correlation matrix for 10 metre DEM independent variables. 

Actual 
0 1 Total Overall 

Predicted 0 22 33 55 Accuracy 
1 23 52 75 

Total 45 85 130 
Producers Accuracy Users Accuracy 0.569231 

0 48.9% 0 40% 
1 6l.2% 1 69.3% 

Table A2.26: CorrelatIon matrIx for 20 metre DEM mdependent vanables. 

Actual 
0 1 Total Overall 

Predicted 0 34 20 54 Accuracy 
1 11 65 76 

Total 45 85 130 
Producers Accuracy Users Accuracy 0.761538 

0 75.6% 0 63% 
1 76.5% 1 85.5% 

Table A2.27: CorrelatIOn matrIx for field collected mdependent vanables. 

Actual 
0 1 Total Overall 

Predicted 0 34 20 54 Accuracy 
1 11 65 76 

Total 45 85 130 
Producers Accuracy Users Accuracy 0.761538 

0 60% 0 65.9% 
1 83.5% 1 79.8% 

Table A2.28: CorrelatIon matrIx for field collected and the 10 metre DEM 
independent variables. 
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Actual 
0 1 Total Overall 

Predicted 0 35 24 59 Accuracy 
1 10 61 71 

Total 45 85 130 
Producers Accuracy Users Accuracy 0.738462 

0 77.8% 0 59.3% 
1 71.8% 1 85.9% 

Table A2.29: Correlation matnx for field collected and the 20 metre DEM 
independent variables. 

Actual 
0 1 Total Overall 

Predicted 0 25 9 34 Accuracy 
1 20 76 96 

Total 45 85 130 
Producers Accuracy Users Accuracy 0.776923 

0 55.6% 0 73.5% 
1 72.9% 1 79.2% 

Table A2.30: CorrelatIOn matrIx for field collected and classified vegetation 
independent variables. 

Actual 
0 1 Total Overall 

Predicted 0 31 19 50 Accuracy 
1 14 66 80 

Total 45 85 130 
Producers Accuracy Users Accuracy 0.746154 

0 68.9% 0 62% 
1 77.6% 1 82.5% 

Table A2.31: CorrelatIOn matrIx for field collected, claSSIfied vegetation and 10 
metre DEM independent variables. 

Actual 
0 1 Total Overall 

Predicted 0 25 9 34 Accuracy 
1 20 76 96 

Total 45 85 130 
Producers Accuracy Users Accuracy 0.776923 

0 55.6% 0 73.5% 
1 72.9% 1 79.2% 

Table A2.32: CorrelatIon matnx for field collected, claSSified vegetation and 20 
metre DEM independent variables. 
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Three Class Classifications 

Actual 
0 1 2 Total Overall 

Predicted 0 18 4 12 34 Accuracy 
1 8 7 6 21 
2 19 16 40 75 

Total 45 29 56 130 0.5 

Producers Accuracy Users Accuracy 
0 40% 0 52.9% 

1 24.1% 1 33.3% 

2 71.4% 2 53.3% 

Table A2.33: Correlation matrix for 10 metre DEM independent varIables. 

Actual 
0 1 2 Total Overall 

Predicted 0 18 5 9 32 Accuracy 
1 11 8 8 27 
2 16 14 41 71 

Total 45 29 56 130 0.515385 
Producers Accuracy Users Accuracy 

0 40% 0 56.3% 
1 27.6% 1 29.6% 

2 73.2% 2 57.7% 

Table A2.34: CorrelatIOn matrIx for 20 metre DEM mdependent variables. 

Actual 
0 1 2 Total Overall 

Predicted 0 25 4 5 34 Accuracy 
1 9 11 15 35 
2 11 12 38 61 

Total 45 29 56 130 0.569231 
Producers Accuracy Users Accuracy 

0 55.6% 0 73.5% 
1 37.9% 1 31.4% 
2 67.9% 2 62.3% 

Table A2.35: CorrelatIon matrtx for field collected independent variables. 
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Actual 
0 1 2 Total Overa)) 

Predicted 0 27 6 6 39 Accuracy 
1 9 10 10 29 
2 9 11 42 62 

Total 45 29 56 130 0.607692 
Producers Accuracy Users Accuracy 

0 60% 0 69.2% 
1 34.5% 1 34.5% 
2 75% 2 67.7% 

Table A2.36: Correlation matrix for field collected and the 10 metre DEM 
independent variables. 

Actual 
0 1 2 Total Overall 

Predicted 0 28 7 8 43 Accuracy 
1 7 9 8 24 
2 10 11 42 63 

Total 45 29 56 130 0.607692 
Producers Accuracy Users Accuracy 

0 62.2% 0 65.1% 
1 31% 1 37.5% 

2 75% 2 66.7% 

Table A2.37: CorrelatIOn matrIx for field collected and the 20 metre DEM 
independent variables. 

Actual 
0 1 2 Total Overa)) 

Predicted 0 35 9 13 57 Accuracy 

1 7 11 9 27 
2 3 7 36 46 

Total 45 29 56 130 0.630769 

Producers Accuracy Users Accuracy 

0 77.8% 0 61.4% 

1 37.9% 1 40.7% 

2 64.3% 2 78.3% 

Table Al.38: CorrelatIOn matrix for field collected and classlfied vegetatIOn 
independent variables. 
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Actual 
0 1 2 Total Overall 

Predicted 0 34 9 12 55 Accuracy 
1 8 11 10 29 
2 3 7 36 46 

Total 45 29 56 130 0.623077 
Producers Accuracy Users Accuracy 

0 75.6% 0 61.8% 
1 37.9% 1 37.9% 
2 64.3% 2 78.3% 

Table A2.39: CorrelatIOn matrIx for field collected, classIfied vegetation and 10 
metre DEM independent variables. 

Actual 
0 1 2 Total Overall 

Predicted 0 34 9 12 55 Accuracy 
1 9 11 10 30 
2 2 7 36 45 

Total 45 29 56 130 0.623077 
Producers Accuracy Users Accuracy 

0 75.6% 0 61.8% 
1 37.9% 1 36.7% 

2 64.3% 2 80% 

Table A2.40: CorrelatIon matrIx for field collected, classIfied vegetatIOn and 20 
metre DEM independent variables. 
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Nine Class Classifications 

Actual 
0 1 2 3 4 5 6 7 8 Total Overall 

0 15 2 1 1 1 2 1 4 0 27 Accuracy 
1 0 0 0 0 0 0 0 0 0 0 
2 5 1 0 0 1 1 0 2 0 10 
3 0 0 0 0 0 0 0 0 0 0 

Predicted 4 3 3 0 1 0 4 1 0 0 12 0.223077 

5 6 3 1 2 3 6 8 1 0 30 
6 7 3 0 1 1 2 4 1 0 19 
7 0 0 0 0 0 0 0 0 0 0 
8 9 5 3 2 1 3 4 1 4 32 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accuracy 

0 33.3% 0 55.6% 
1 - 1 -
2 - 2 -
3 - 3 -
4 - 4 -
5 33.3% 5 20% 

6 22.2% 6 21.1% 

7 - 7 -
8 100% 8 12.5% 

Table A2.4I: CorrelatIOn matnx for 10 metre DEM mdependent vanables. 

Actual 
0 1 2 3 4 5 6 7 8 Total Overall 

0 0 0 0 0 0 0 0 0 0 0 Accuracy 
1 12 2 0 2 0 2 1 2 0 21 
2 J I 5 4 1 1 0 5 2 1 30 
3 0 0 0 0 0 2 0 0 0 2 

Predicted 4 3 2 0 I 1 3 2 1 0 13 0.130769 
5 0 0 0 0 0 0 0 0 0 0 
6 12 2 1 3 2 6 7 1 0 34 
7 4 3 0 0 1 5 1 1 1 16 
8 3 3 0 0 2 0 2 2 2 14 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accuracy 

0 - 0 -
1 11.8% 1 9.5% 

2 80% 2 13.3% 

3 - 3 7.7% 

4 14.3% 4 -
5 - 5 -
6 38.9% 6 20.6% 

7 11.1% 7 6.3% 
8 50% 8 14.3% 

Table A2.42: CorrelatIOn matrlx for 20 metre DEM mdependent vanables. 
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Actual 
0 1 2 3 4 5 6 7 8 Total OveraU 

0 19 2 0 2 1 2 1 0 0 27 Accuracy 
1 0 4 1 2 1 3 3 1 0 15 
2 15 4 1 1 0 2 0 0 0 23 
3 2 0 0 0 0 2 0 0 0 4 

Predicted 4 5 1 0 0 3 0 4 2 0 15 0.292308 

5 2 4 3 2 0 4 3 1 0 19 
6 0 0 0 0 1 1 2 1 0 5 
7 1 2 0 0 1 2 4 2 1 13 
8 1 0 0 0 0 2 1 2 3 9 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accuracy 

0 42.2% 0 70.4% 
1 23.5% 1 26.7% 

2 20% 2 4.3% 

3 - 3 -
4 42.9% 4 20% 

5 22.2% 5 21.1% 

6 11.1% 6 40% 

7 22.2% 7 15.4% 

8 75% 8 33.3% 

Table A2.43: CorrelatlOn matrIx for field collected mdependent vanables. 

Actual 
0 1 2 3 4 5 6 7 8 Total Overall 

0 16 2 0 0 1 3 0 0 0 22 Accuracy 
1 14 7 3 2 1 4 1 1 0 33 
2 6 5 1 3 1 2 3 1 0 22 

3 8 1 I 2 1 3 3 2 0 21 
Predicted 4 0 0 0 0 1 2 4 1 0 8 0.238462 

5 0 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 
8 1 2 0 0 2 4 7 4 4 24 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracv Users Accuracv 

0 35.6% 0 72.7% 

1 41.2% 1 21.2% 

2 20% 2 4.5% 

3 28.6% 3 9.5% 

4 14.3% 4 12.5% 

5 - 5 -
6 - 6 -
7 - 7 -
8 100% 8 16.7% 

Table A2.44: CorrelatlOn matrIx for field collected and the 10 metre DEM 
independent variables. 
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Actual 
0 1 2 3 4 5 6 7 8 Total Overall 

0 18 3 0 1 1 1 1 0 0 25 Accuracy 
1 12 4 4 3 1 1 3 1 0 29 
2 5 2 0 I 0 3 0 1 0 12 
3 1 1 0 0 0 0 0 1 0 3 

Predicted 4 1 0 1 0 1 3 4 1 0 11 0.269231 

5 0 2 0 1 2 2 1 2 0 10 
6 2 0 0 I 1 4 5 1 0 14 
7 6 5 0 0 I 3 3 2 1 21 
8 0 0 0 0 0 1 I 0 3 5 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accuracy 

0 40% 0 72% 
1 23.5% 1 13.8% 

2 - 2 -
3 - 3 -
4 14.3% 4 9.1% 

5 11.L% 5 20% 

6 27.8% 6 35.7% 

7 22.2% 7 9.5% 

8 75% 8 60% 

Table A2.4S: CorrelatIOn matnx for field collected and the 20 metre DEM 
independent variables. 

Actual 
0 1 2 3 4 5 6 7 8 Total Overall 

0 21 2 0 0 0 2 0 0 0 25 Accuracy 
1 13 5 3 3 1 4 3 3 0 35 
2 6 5 1 3 1 2 3 1 0 22 
3 4 3 1 1 2 4 1 0 0 16 

Predicted 4 0 0 0 0 1 2 4 1 0 8 0.253846 

5 0 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 
8 1 2 0 0 2 4 7 4 4 24 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accuracy 

0 46.7% 0 84% 

1 29.4% 1 14.3% 

2 20% 2 4.5% 

3 14.3% 3 6.3% 

4 14.3% 4 12.5% 

5 - 5 -
6 - 6 -
7 - 7 -
8 100% 8 16.7% 

Table A2.46: CorrelatIOn matrIX for field collected and classIfied vegetatIOn 
independent variables. 
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Actual 
0 1 2 3 4 5 6 7 8 Total Overall 

0 16 2 0 0 1 3 0 0 0 22 Accuracy 
1 14 7 3 2 1 4 1 1 0 33 
2 6 5 1 3 1 2 3 1 0 22 
3 8 I 1 2 1 3 3 2 0 21 

Predicted 4 0 0 0 0 1 2 4 1 0 8 0.238462 

5 0 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 
8 1 2 0 0 2 4 7 4 4 24 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accuracy 

0 35.6% 0 72.7% 
1 41.2% 1 21.2% 

2 20% 2 4.5% 

3 28.6% 3 9.5% 

4 14.3% 4 12.5% 

5 - 5 -
6 - 6 -
7 - 7 -
8 100% 8 16.7% 

Table A2.47: CorrelatIOn matrIx for field collected, classIfied vegetatIOn and 10 
metre DEM independent variables. 

Actual 
0 1 2 3 4 5 6 7 8 Total Overall 

0 30 9 3 2 2 7 1 1 0 55 Accuracy 
1 0 0 0 0 0 0 0 0 0 0 
2 6 5 1 3 1 2 3 1 0 22 
3 8 1 1 2 1 3 3 2 0 21 

Predicted 4 0 0 0 0 1 2 4 1 0 8 0.292308 

5 0 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 
8 1 2 0 0 2 4 7 4 4 24 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accuracy 

0 66.7% 0 54.5% 

1 - 1 -
2 20% 2 4.5% 

3 28.6% 3 9.5% 

4 14.3% 4 12.5% 

5 - 5 -
6 - 6 -
7 - 7 -
8 100% 8 16.7% 

Table A2.4S: CorrelatIOn matrIx for field collected, classIfied vegetatIOn and 20 
metre DEM independent variables. 
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Correlation Matrices Produced for the Discriminant Analysis Classifiers 

Two Class Classifications 

Actual 
0 1 Total Overall 

Predicted 0 30 33 63 Accuracy 
1 15 52 67 

Total 45 85 130 0.630769 
Producers Accuracy Users Accuracy 

0 66.7% 0 47.6% 
1 61.2% 1 77.6% 

Table A2.49: Correlation matnx for 10 metre DEM mdependent variables. 

Actual 
0 1 Total Overall 

Predicted 0 28 25 53 Accuracy 
1 17 60 77 

Total 45 85 130 0.676923 
Producers Accuracy Users Accuracy 

0 62.2% 0 52.8% 
1 70.6% 1 77.9% 

Table A2.50: Correlation matrIx for 20 metre DEM mdependent vanables. 

Actual 
0 1 Total Overall 

Predicted 0 33 18 51 Accuracy 
1 12 67 79 

Total 45 85 130 0.769231 
Producers Accuracy Users Accuracy 

0 73.3% 0 64.7% 
1 78.8% 1 84.8% 

Table A2.51: CorrelatIon matnx for field collected mdependent vanables. 

Actual 
0 1 Total Overall 

Predicted 0 33 18 51 Accuracy 
1 12 67 79 

Total 45 85 130 
Producers Accuracy Users Accuracy 0.769231 

0 73.3% 0 64.7% 
1 78.8% 1 84.8% 

Table A2.52: Correlation matrIx for field collected and the 10 metre DEM 
independent variables. 
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Actual 
0 1 Total Overall 

Predicted 0 33 18 51 Accuracy 
1 12 67 79 

Total 45 85 130 0.769231 
Producer~ Accuracy Users Accuracy 

0 73.3% 0 64.7% 
1 78.8% 1 84.8% 

Table A2.53: Correlation matrIX for field collected and 20 metre DEM independent 
variables. 

Actual 
0 1 Total Overall 

Predicted 0 34 19 53 Accuracy 
1 11 66 77 

Total 45 85 130 0.769231 
Producers Accuracy Users Accuracy 

0 75.5% 0 64.2% 
1 77.6% 1 85.7% 

Table A2.54: CorrelatIOn matnx for field collected and classIfied vegetation 
independent variables. 

Actual 
0 1 Total Overall 

Predicted 0 34 17 51 Accuracy 
1 11 68 79 

Total 45 85 130 0.784615 
Producers Accuracy Users Accuracy 

0 75.6% 0 66.7% 
1 80% 1 86.1% 

Table A2.55: CorrelatIOn matnx for field collected, classIfied vegetation and 10 
metre DEM independent variables. 

Actual 
0 1 Total Overall 

Predicted 0 34 19 53 Accuracy 
1 11 66 77 

Total 45 85 130 0.769231 
Producers Accuracy Users Accuracy 

0 75.5% 0 64.2% 
1 77.6% 1 85.7% 

Table A2.56: CorrelatIOn matrix for field collected, claSSIfied vegetation and 20 
metre DEM independent variables. 
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Three Class Classifications 

Actual 
0 1 2 Total Overall 

Predicted 0 27 8 19 54 Accuracy 
1 8 7 5 20 
2 10 12 34 56 

Total 45 29 56 130 0.523077 
Producers Accuracy Users Accuracy 

0 60% 0 50% 
1 24.1% 1 35% 

2 60.7% 2 60.7% 
Table A2.57: CorrelatIOn matnx for 10 metre DEM independent variables. 

Actual 
0 1 2 Total Overall 

Predicted 0 20 5 11 36 Accuracy 
1 14 9 8 31 
2 11 13 39 63 

Total 45 29 56 130 0.523077 
Producers Accuracy Users Accuracy 

0 44.4% 0 55.6% 
1 31% 1 29% 

2 69.6% 2 61.9% 

Table A2.58: CorrelatIOn matrIx for 20 metre DEM mdependent vanables. 

Actual 
0 1 2 Total Overall 

Predicted 0 25 4 8 37 Accuracy 
1 12 10 7 29 
2 8 13 43 64 

Total 45 29 56 130 0.6 

Producers Accuracy Users Accuracy 
0 55.6% 0 67.6% 
1 34.5% 1 34.5% 

2 76.8% 2 67.2% 

Table A2.59: CorrelatIon matrIx for field collected mdependent varIables. 



Appendices 352 

Actual 
0 1 2 Total Overall 

Predicted 0 26 4 8 38 Accuracy 
1 11 12 8 31 
2 8 11 42 61 

Total 45 29 56 130 0.615385 
Producers Accuracy Users Accuracy 

0 57.8% 0 68.4% 
1 41.4% 1 38.7% 

2 75% 2 68.9% 
Table A2.60: CorrelatIon matrIx for field collected and the 10 metre DEM 
independent variables. 

Actual 
0 1 2 Total Overall 

Predicted 0 25 5 8 38 Accuracy 
1 11 10 8 29 
2 9 12 42 63 

Total 45 29 56 130 0.592308 
Producers Accuracy Users Accuracy 

0 55.6% 0 65.8% 
1 34.5% 1 34.5% 

2 75% 2 66.7% 
Table A2.61: CorrelatIOn matrIX for field collected and the 20 metre DEM 
independent variables. 

Actual 
0 1 2 Total Overall 

Predicted 0 27 8 19 54 Accuracy 
1 8 7 5 20 
2 10 12 34 56 

Total 45 29 56 130 0.523077 
Producers Accuracy Users Accuracy 

0 60% 0 50% 
1 24.1% 1 35% 
2 60.7% 2 60.7% 

Table A2.62: CorrelatIon matrIx for field collected and classified vegetation 
independent variables. 
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Actual 
0 1 2 Total Overall 

Predicted 0 27 4 9 40 Accuracy 
1 12 9 7 28 
2 6 14 42 62 

Total 45 29 56 130 0.6 
Producers Accuracy Users Accuracy 

0 60% 0 67.5% 
1 31% 1 32.1% 

2 75% 2 67.7% 
Table A2.63: CorrelatIOn matrIx for field collected, claSSIfied vegetatIOn and 10 
metre DEM independent variables. 

Actual 
0 1 2 Total Overall 

Predicted 0 26 6 8 40 Accuracy 
1 11 10 7 28 
2 8 11 43 62 

Total 45 29 56 130 0.607692 
Producers Accuracy Users Accuracy 

0 57.8% 0 65% 
1 34.5% 1 35.7% 

2 76.8% 2 69.4% 
Table A2.64: CorrelatIOn matrix for field collected, classified vegetation and 20 
metre DEM independent variables. 
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Nine Class Classifications 

Actual 
0 1 2 3 4 5 6 7 8 Total Overall 

0 19 4 0 0 3 5 3 1 0 35 Accuracy 

1 1 1 1 2 0 0 2 2 0 9 
2 3 0 0 0 0 0 1 1 1 6 
3 2 1 0 0 0 3 2 2 0 10 

Predicted 4 0 0 0 1 0 0 0 0 0 1 0.2 

5 10 1 1 2 1 4 5 1 0 25 
6 2 1 0 0 0 1 0 0 1 5 
7 3 3 0 1 1 3 2 0 0 13 
8 5 6 3 1 2 2 3 2 2 26 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accuracy 

0 42.2% 0 54.3% 

1 5.9% 1 11.1% 

2 - 2 -
3 - 3 -
4 - 4 -
5 22.2% 5 16% 

6 - 6 -
7 - 7 -
8 50% 8 7.7% 

Table A2.65: CorrelatlOn matrix for 10 metre DEM mdependent vanables. 

Actual 
0 1 2 3 4 5 6 7 8 Total Overall 

0 14 1 1 3 1 1 1 0 0 22 Accuracy 
1 12 3 1 1 0 1 0 2 0 20 
2 1 2 1 0 0 0 0 2 0 6 
3 5 1 I 1 1 4 3 1 1 18 

Predicted 4 0 0 0 0 0 0 0 0 0 0 0.253846 

5 6 4 0 1 1 7 7 1 0 27 
6 4 4 1 1 3 5 4 1 0 23 
7 2 2 0 0 1 0 2 1 1 9 
8 1 0 0 0 0 0 1 1 2 5 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accuracy 

0 31.1% 0 63.6% 
1 17.6% 1 15% 

2 20% 2 16.7% 

3 14.3% 3 5.6% 

4 - 4 -
5 38.9% 5 25.9% 
6 22.2% 6 17.4% 
7 11.1% 7 11.1% 
8 50% 8 40% 

Table A2.66: CorrelatlOn matrix for 20 metre DEM independent variables. 
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Actual 
0 1 2 3 4 5 6 7 8 Total Overall 

0 18 2 1 0 1 2 1 0 0 25 Accuracy 
1 6 2 1 1 0 1 2 1 0 14 
2 7 5 0 3 1 2 1 2 0 21 
3 7 0 0 0 1 2 1 1 0 12 

Predicted 4 0 2 1 0 2 4 2 1 1 13 0.2 

5 5 3 2 2 1 1 1 1 0 16 
6 0 2 0 0 1 2 0 0 0 5 
7 1 1 0 1 0 1 6 2 2 14 
8 1 0 0 0 0 3 4 1 1 10 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accuracy 

0 40% 0 72% 
1 11.8% 1 14.3% 

2 - 2 -
3 - 3 -

4 28.6% 4 15.4% 

5 5.6% 5 6.3% 

6 - 6 -
7 22.2% 7 14.3% 

8 25% 8 10% 

Table A2.67: CorrelatIOn matr1x for field collected mdependent vanables. 

Actual 
0 1 2 3 4 5 6 7 8 Total Overall 

0 18 1 1 0 1 2 1 1 0 25 Accuracy 
1 6 3 1 1 0 1 2 1 0 15 
2 9 5 0 3 1 5 2 1 0 26 
3 4 1 0 0 0 1 0 0 0 6 

Predicted 4 0 0 0 1 1 0 1 1 0 4 0.215385 

5 6 3 2 2 2 2 2 0 0 19 
6 0 2 1 0 1 1 0 0 0 5 
7 1 2 0 0 1 3 4 3 3 17 
8 1 0 0 0 0 3 6 2 1 13 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accuracy 

0 40% 0 72% 
1 17.6% 1 20% 

2 - 2 -
3 - 3 -
4 14.3% 4 25% 

5 11.1% 5 10.5% 

6 - 6 -
7 33.3% 7 17.6% 
8 25% 8 7.7% 

Table A2.68: CorrelatIOn matnx for field collected and the 10 metre DEM 
independent variables. 
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Actual 
0 1 2 3 4 5 6 7 8 Total Overall 

0 18 2 I 0 1 2 2 0 0 26 Accuracy 
1 8 4 2 I 0 0 0 I 0 16 
2 6 4 0 2 1 3 2 2 0 20 
3 7 0 0 0 1 2 1 1 0 12 

Predicted 4 0 0 0 2 2 0 1 1 0 6 0.276923 

5 4 2 1 2 1 4 1 0 0 15 
6 0 3 I 0 0 4 4 0 0 12 
7 2 2 0 0 1 2 3 3 3 16 
8 0 0 0 0 0 1 4 1 1 7 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accuracy 

0 40% 0 69.2% 
1 23.5% 1 25% 

2 - 2 -
3 - 3 -
4 28.6% 4 33.3% 

5 22.2% 5 26.7% 

6 22.2% 6 33.3% 

7 33.3% 7 18.8% 

8 25% 8 14.3% 

Table A2.69: Correlation matrIX for field collected and the 20 metre DEM 
independent variables. 

Actual 
0 1 2 3 4 5 6 7 8 Total Overall 

0 21 2 2 0 1 0 1 0 0 27 Accuracy 
1 5 2 0 0 0 1 2 1 0 11 
2 6 4 0 4 0 1 0 3 0 18 
3 7 0 0 0 1 2 1 0 0 11 

Predicted 4 0 5 0 1 1 3 3 1 1 15 0.261538 

5 3 3 2 1 1 5 0 0 0 15 
6 0 0 1 0 2 1 3 1 0 8 
7 1 1 0 1 1 2 5 1 2 14 
8 2 0 0 0 0 3 3 2 1 11 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accura~ 

0 46.7% 0 77.8% 
1 11.8% 1 18.2% 

2 - 2 -
3 - 3 -
4 14.3% 4 6.7% 
5 27.8% 5 33.3% 
6 16.7% 6 37.5% 
7 11.1% 7 7.1% 
8 25% 8 9.1% 

Table A2.70: CorrelatIOn matrlx for field collected and classified vegetation 
independent variables. 
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Actual 
0 1 2 3 4 5 6 7 8 Total Overall 

0 20 I 2 0 I 3 1 1 0 29 Accuracy 
1 6 1 0 0 0 1 2 1 0 11 
2 8 5 0 4 1 2 1 2 0 23 
3 4 1 0 0 0 3 1 0 0 9 

Predicted 4 0 0 0 1 0 0 2 1 0 4 0.2 

5 5 6 2 2 2 3 3 I 0 24 
6 0 1 1 0 2 0 0 0 0 4 
7 1 2 0 0 1 3 3 1 3 14 
8 1 0 0 0 0 3 5 2 1 12 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accuracy 

0 44.4% 0 69% 
1 5.9% 1 9.1% 

2 - 2 -
3 - 3 -
4 - 4 -
5 16.7% 5 12.5% 

6 - 6 -
7 11.1% 7 7.1% 

8 25% 8 8.3% 

Table A2. 71: CorrelatlOn matrIx for field collected, claSSIfied vegetatIOn and 10 
metre DEM independent variables. 

Actual 
0 1 2 3 4 5 6 7 8 Total Overall 

0 19 2 2 0 1 3 1 0 0 28 Accuracy 
1 8 3 1 0 0 0 1 1 0 14 
2 4 3 0 2 0 2 2 3 0 16 
3 6 0 0 0 1 2 0 0 0 9 

Predicted 4 0 2 0 2 1 0 1 1 1 8 0.276923 

5 5 2 I 2 1 4 1 0 0 16 
6 0 3 1 1 1 4 6 1 0 17 
7 1 2 0 0 2 2 3 2 2 14 
8 2 0 0 0 0 1 3 1 1 8 

Total 45 17 5 7 7 18 18 9 4 130 
Producers Accuracy Users Accuraq 

0 42.2% 0 67.9% 
1 17.6% 1 2l.4% 
2 - 2 -
3 - 3 -
4 14.3% 4 12.5% 
5 22.2% 5 25% 
6 33.3% 6 35.3% 
7 22.2% 7 14.3% 
8 25% 8 12.5% 

Table A2.72: CorrelatlOn matrIx for field collected, claSSIfied vegetatIon and 20 
metre DEM independent variables. 
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Figure A3.19: The decision tree grown for the nine class classification using the field acquired independent variables. 
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Figure A3.20: The decision tree grown for the nine class classification using the field acquired and 10 metre DEM 
independent variables. 
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Figure A3.22 : The decision tree grown for the nine class classification using the field acquired independent variables and 
classified vegetation. 
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Figure A3.23: The decision tree grown for the nine class classification using the field acquired, classified vegetation and 10 
metre DEM independent variables. 
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Figure A3.24: The decision tree grown for the nine class classification using the field acquired, classified vegetation and 20 
metre DEM independent variables. 
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Appendix 4 - eural Network Architectures, Errors and 
Accuracy and Deci ion Tree Relative Cost and Topology 

ARTIFI lAL TWORKS 

Error ver u Accuracy Graph for the Two Class Classifications 

0.462 

0.46 

15 0.458 
t: 
~ 0.456 
o 
"" ~ 0.454 
CD 
> 0.452 

0.45 

Error Vs Accuracy 

0.448 ,t l ; t ;, ,;,. ; , t ; + 

3 5 7 9 11 13 15 17 19 

Number of Hidden Nodes 

76% 

74% 

72% 

70% ;I-
>-
0 

68% ~ 

66% ] 

64% 

62% 

~ 60% 

21 23 25 

Figure A4.l: 10m tre Mind p nd nt ariables. 

0.465 

0.464 

0.463 

g 0.462 
UJ 
c 0.461 
o 

"+> 
~ 0.46 

CD 0.459 
> 

0.458 

0.457 

0.456 

Error Vs Accuracy 

3 5 7 9 11 13 15 17 19 21 23 25 

umber of Hidden Nodes 

71% 

70% 

69% 
;I-

68% ij' 
~ 

67% § 
« 

66% 

65% 

64% 

Figure A4.2: 20 m tr 0 Mind p nd nt variables. 

--- Error 

~Accuracy 

- Error 

- Accuracy 



Appendice 

----
error Vs Accuracy 

0.4 76% 

0.395 74% 
0.39 

:; 0.385 72% 
t: 0.38 "# 

UJ 
c 0.375 

70% ~ 
0 E 
"" 0.37 ~ 68% g 
!§ 0.365 « 

CD 
> 0.36 

66% 

0.355 64% 
0.35 

0.345 t-+4-t 62% 

3 5 7 9 11 13 15 17 19 21 23 25 

Number of Hidden Nodes 

Figure A4.3: Field a quir d ind p nd nt ariables. 

0.44 

0.43 

0.42 

g 0.41 

UJ 0.4 

g 0.39 

"" !'l 0.38 
1<= 
.~ 0.37 

> 0.36 

0.35 

0.34 

0.33 

Error Vs Accuracy 

3 5 7 9 11 13 15 17 19 21 

Number of Hidden Nodes 

80% 

70% 

60% 

50% "# 
>. 
0 

40% E 
:> 

30% ~ 
20% 

10% 

0% 

25 

- Error 

- Accuracy 

- Error 

- Accuracy 

Figure A4.4: Fi ld a quired and 10 metre OEM independent variables. 

error Vs Accuracy 

0.405 80% 

0.4 
78% 

76% 
0.395 

74% 

g 0.39 

0.385 
72% *-

UJ 70% ~ c - Error co 
0 0.38 
"" 68% :; - Accuracy 
!'l 0.375 66% ~ !§ 
CD 0.37 > 64% 

0.365 62% 

0.36 60% 

0.355 I t • . ... + t t -+ + 58% 

3 5 7 9 11 13 15 17 19 21 23 25 

Number of Hidden Nod s 

Figure 4.5: Id a uir dan M independent variables. 

383 



Appendice 

0.425 

0.42 

0.415 
(; 0.41 t: 
w 
co 
0 

0.405 

"" rl 0 .4 
!E 

0.395 ., 
> 

0.39 

0.385 

0.38 

Error Vs Accuracy 

3 5 7 9 11 13 15 17 19 21 23 25 

Number of Hidden Nodes 

78% 

76% 

74% 

72% ;!. 

70"'- ?:-.,. ~ - Error 

68% § - Accuracy 

66% « 
64% 

62% 

60% 

Figure A4.6: Fi Id a quir d ind p ndent ariables and classified vegetation. 

0.43 

0.42 

g 0.41 
w 
co 

..g 0.4 

'" ·0 

~ 0.39 
> 

0.38 

Error Vs Accuracy 

0.37 .. t -t" ~. + 
3 5 7 9 11 13 15 17 19 21 23 25 

umber of Hidden Nodes 

80% 

78% 

76% 
;!. 

74% 1) 
!! 

72% § 
« 

70% 

68% 

66% 

- Error 

- Accuracy 

384 

Figure 4.7: Fi Id a uir d ind 
D EM indep ndent ariable . 

nd nt ariables, c1assi fied vegetation and 10 metre 

Error Vs Accuracy 

0.415 78% 

0.41 76% 

g 0.405 74% ;!. 

w >-
co 

(.) - Error 
0 0.4 72% !! 

"" :l - Accuracy 
rl g 
"" 70% « 'co 0.395 ., 
> 

0.39 68% 

0 .385 t j j j • j + t + 66% 
3 5 7 9 11 13 15 17 19 21 23 25 

umber of Hidden Nod s 

Figure A4.8: i Id a quir d ind 
D M i ndepend nt ria I 

nd nt ariable , classified vegetation and 20 metre 



Appendice 

Error ver u ccurac raph for the Three Cia s Classifications 
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Error versus Accuracy Graphs for the Nine Class Classifications 
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Figure A4.17: 10 metr DEM independent variables. 
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Figure A4.18: 20 metre DEM independent variables. 
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Figure A4.20: Field acquired and 10 metre OEM independent variables. 
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Figure A4.21: Field acquired and 20 metre DEM independent variables. 
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Figure A4.22: Field acqujred independent variables and classified vegetation. 



Appendices 

Error Vs Accuracy 

0.286 50% 

0.285 45% 

0.284 

(; 40% 
t:: 0.283 If. uJ 
c:; ~ - Error .2 0.282 35% 
13 § - Accuracy 
"" ·c 0.281 <{ 
QI 30% > 

0.28 
25% 

0.279 

0.278 20% 

3 5 7 9 11 13 15 17 19 21 23 25 

Number of Hidden Nodes 

Figure A4.23: Field acquired independent variables, classified vegetation and 10 
metre DEM independent variables. 

Error Vs Accuracy 

0.28 45% 

0.278 40% 

g 0.276 
35% If. uJ 

c >-

B 0.274 
~ - Error 

rl 300A> 
§ - Accuracy 

'"' ·c « ., 
0.272 > 

25% 
0.27 

0.268 20% 

3 5 7 9 11 13 15 17 19 21 23 25 

Number of Hidden Nodes 
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DEC] ION TREE CLA SIFIERS 

Relative Cost Graph for the Two Class Classifications 
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Figure A4.25: Relati e cost and terminal nodes for the 10 metre DEM independent 
variables . 
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Figure A4.26: Relative cost and terminal nodes for the 20 metre DEM independent 

variables. 

Error Curve 

~. • ~ 0.

70

1 CD 0.60 
> :j 0.50 

~ 0.4O~----~-----r-----+------~----+-----~-----+----~ 

o 10 20 30 40 

Number of Nodes 

Figure A4.27: Re lative cost and terminal nodes for the field acquired independent 
variable . 
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Figure A4.28: Relative co t and terminal nodes for the field acquired and 10 metre 
D M independent variable . 
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Figure A4.29: Relati e cost and terminal nodes for the field acquired and 20 metre 
OEM independent ariable . 

Q) 0.70 
> 
~ 0.60 _____ ". 

~0'80~ 

~ -0.50 +1 ---+-----1---+---+----+-- -+---+------< 

o 10 20 30 40 50 

Number of Nodes 

'Figure A4.30: Relative cost and terminal nodes for the field acquired independent 
variables and c1as ified vegetation. 
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Figure A4.31: Relative co t and terminal nodes for the field acquired independent 
variables, cIa si ned vegetation and 10 metre DEM independent variables. 
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Figure A4.32: Relative co t and terminal nodes for the field acquired independent 
variable , c1as i ned vegetation and 10 metre DEM independent variables. 
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Relative Cost Graph for the Three Class Classifications 
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Figure A4.33: Relative cost and terminal nodes for the 10 metre DEM independent 
variables. 
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Figure A4.34: Relative cost and tenninal nodes for the 20 metre DEM independent 
variables. 
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Figure A4.35: Relative co t and terminal nodes for the field acquired independent 
variables. 
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Figure A4.36: Relati e cost and terminal nodes for the field acquired and 10 metre 
D M independent variables. 
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Figure A4.37: Relative cost and terminal nodes for the field acquired and 20 metre 
DEM independent variables. 
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Figure A4.38: Relative cost and terminal nodes for the field acquired independent 
variables and classified vegetation. 
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Figure A4.39: Relative co t and terminal nodes for the field acquired independent 
variables, classified vegetation and 10 metre DEM independent variables. 
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Figure A4.40: Relative cost and terminal nodes for the field acquired independent 
variables, classified vegetation and 20 metre DEM independent variables. 
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Relative Cost Graphs for the Nine Class Classifications 
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Figure A4.41: Relative cost and tenninal nodes for the 10 metre DEM independent 
variables. 
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Figure A4.42: Relati ve co t and tenninal nodes for the 20 metre DEM independent 
variables. 
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Figure A4.43: Relati ve co t and tenninal nodes for the field acquired independent 
variabl es. 
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Figure A4.44: R lative cost and tenninal nodes for the field acquired and 10 metre 
DEM independent ariables. 
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Figure A4.4S: Relati e cost and tenninal nodes for the field acquired and 20 metre 
OEM independent variables. 
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Figure A4.46: Relative co t and tenninal nodes for the field acquired independent 
varjables and classified vegetation. 
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Figure A4.47: Relati ve co t and tenninal nodes for the field acquired independent 
vari abl es, classi fied vegetation and] 0 metre DEM independent variables. 
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Figure A4.48: Relati ve co t and tenninal nodes for the field acquired independent 
vari ables, classified eg tation and 20 metre DEM independent variables. 
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Appendix 5 - Sensitivity Analysis and Variable Importance 

Artificial eural etwork ensitivity Analysis 

Slope Aspect Flow Flow Plan ProftIe 
Angle Length Accumulation Curvature Curvature 

Train Rank I 2 4 6 5 3 

Error 0.5095 0.4971 OA858 OA831 OA846 OA910 

Verify Rank I 2 4 3 6 5 

Error 0.4678 0.4609 OA571 OA592 OA560 0.4570 

Table AS.l: Sen iti i anal ty y I for the ANN trained usin g the 10 metre DEM data 
set for the two cia cIa ification. 

Slope Aspect Flow Flow Plan Profile 
Angle Length Accumulation Curvature Curvature 

Train Rank 1 6 2 5 4 3 

Error 0.4978 0.4825 OA892 OA843 OA844 OA844 

Verify Rank 2 5 1 4 3 6 

Error 0.4630 0.4594 OA682 OA594 OA619 OA593 

T ble AS.2: Sen itivit a anal y y I for the ANN trained usin g the 20 metre DEM data 
set for the two cIa cia sification. 

Slope Angle Aspect Estimated Field Geology 
Vegetation Sodicity 

Meter 

Train Rank 5 4 3 2 1 

Error 0.3857 0.4078 OAI03 0.4163 0.4283 

Verify Rallk I 4 5 3 2 

Error OA208 0.3823 0.3799 0.3840 OA202 

Tab Ie AS.3: Sen iti anal it y y I for the ANN trained usin g the field ac q uired data set 
for the two cia cIa i fication. 

Slope A pect Est. Field Geology Flow Flow Plan ProfiJe 
Angle Veg. Sodicity Length Acc. Curv. Curv. 

Meter 

Train Rallk 2 3 4 5 1 9 7 8 6 

Error 0.4266 0.4184 OAI38 0.4135 OA493 0.3760 0.3784 0.3769 0.3808 

Verify Ran" I 3 2 5 4 6 9 8 7 

Error 0.4546 0.4070 OA074 0.3991 0.3996 0.3989 0.3942 0.3949 0.3968 

Table AS.4: Sen iti it analysi for the ANN trained usin the field ac uired data set y g q 
and the 10 metre DEM variable for the two class classification. 
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Slope A pect Est. Field Geology Flow Flow Plan 
Angle Veg. Sodicity Length Acc. Curv. 

Meter 
Train Rallk I 4 3 5 2 7 8 6 

Error 0.4350 0.4134 0.4177 0.4086 0.4214 0.3721 0.3679 0.3724 

Verify Rank 3 9 2 5 I 4 8 6 

Error 0.4382 0.3703 0.4459 0.3899 0.4492 0.3979 0.3765 0.3889 

Table AS.S: Sen iti ity analysIs for the ANN trained using the field acquired data set 
and the 20 metre DEM variables for the two class classification. 

Slope Angle Aspect Classified Field Geology 
Vegetation Sodicity 

Meter 

Train Rank I 3 4 5 2 

Error 0.4377 0.4101 0.3998 0.3927 0.4 1 95 

Verify Rank I 4 3 5 2 

Error 0.4537 0.3992 0.4185 0.3963 0.4210 

Table AS.6: Sen iti 1 analysis for the ANN trained usin ty g the field ac q uired and 
classified vegetation data set for the two class classification. 

Slope Aspect Class. Field Geology Flow Flow Plan 
Angle Veg. Sodicity Length Acc. Curv. 

Meter 

Train Rallk I 4 3 6 2 5 9 7 

Error 0.4379 0.3615 0.3865 0.3389 0.4176 0.3508 0.3231 0.3291 

Verify Rank I 2 3 5 4 6 9 7 

Error 0.4753 0.4600 0.4503 0.4159 0.4461 0.4028 0.3931 0.3994 

Table AS.7: Sen itivi anal sis for the ANN trained usin the field ac uired data se ty y g q t, 
classified vegetation and the 10 metre DEM variables for the two class classification. 

Slope Aspect Class. Field Geology Flow Flow Plan 
Angle Veg. Sodicity Length Ace. Curv. 

Meter 

Train Rank I 2 3 4 5 6 7 9 

Error 0.4448 0.4392 0.4203 0.4157 0.4146 0.4053 0.4042 OA037 

Verify Rank 2 4 3 9 1 8 7 6 

Error 0.4303 0.4023 0.41 S4 0.3940 0.4325 0.3941 0.3943 0.3955 

Table AS.S: Sen iti it anal is for the ANN trained usin the field ac uired data set y y g q 
classified vegetation and the 20 metre DEM variables for the two class classification. 

Profile 
Curv. 

9 
0.3677 

7 
0.3832 

Profile 
Curv. 

8 
0.3266 

8 
0.3935 

Profile 
Curv. 

8 
0.4040 

5 
0.3958 
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Slope Aspect Flow Flow Plan Profile 
Angle Length Accumulation Curvature Curvature 

Train Rank I 3 2 5 6 4 

Error 0.4578 0.4470 0.4511 0.4445 0.4439 0.4458 

Verify Rank I 3 2 6 5 4 

Error 0.4527 0.4477 0.4492 0.4433 0.4442 0.4473 

Table AS.9: Sen iti i anal ty y I for the ANN trained usin g the 10 metre DEM data 
set for the three cIa cIa ification. 

Slope Aspect Flow Flow Plan Profile 
ogle Length Accu m ulation Curvature Curvature 

Train Rank 2 3 I 4 6 5 

Error 0.4458 0.4400 0.4544 0.4389 0.4383 0.4386 

Verify Rank 2 3 I 5 4 6 

Error 0.4489 0.4398 0.4494 0.4379 0.4386 0.4378 

Table AS.tO: Sen itivi anal sis for the ANN trained usin ty y g the 20 metre DEM data 
set for the thr e cIa cIa ification. 

Slope Angle Aspect Estimated Field Geology 
Vegetation Sodicity 

Meter 

Train Rank 3 2 5 4 I 
, 

Error 0.3932 0.3950 0.3851 0.3911 0.4083 

Verify Ra"k 2 5 4 3 I 

Error 0.3782 0.3416 0.3587 0.3632 0.3965 

Table AS.ll: Sen itivi ty analysis for the ANN trained usin g the field ac q uired data 
set for the three cIa cIa ification. 

Slope Apect Est Field Geology Flow Flow Plan Profile 
Angle Veg. Sodicity Length Acc. Curv. Corvo 

Meter 

Train Rank 2 5 4 3 I 6 8 9 7 
Error 0.3859 0.3636 0.3648 0.3832 0.4182 0.3453 0.3350 0.3348 0.3385 

Verify Rank 2 5 4 3 I 7 8 9 6 

Error 0.4163 0.3921 0.4110 0.4155 0.4216 0.3898 0.3859 0.3856 0.3902 

Table AS.12: Sen itivi anal sis for the ANN trained usin the field ac uired data ty y g q 
set and the 10 metre DEM variables for the three class classification. 

Slope Aspect Est. Field Geology Flow Flow Plan Profile 
ngle Veg. Sodicity Length Acc. Curv. Curv. 

Meter 
Train Rank I 2 4 5 3 9 6 7 8 

Error 0.3891 0.3803 0.3738 0.3645 0.3757 0.3514 0.3528 0.3526 0.3520 

Verify Rank 5 4 2 3 I 6 8 7 9 

Error 0.3878 0.3928 0.4010 0.3987 0.4208 0.3829 0.3804 0.3806 0.3804 

Table AS.13: Sensitivi analy i for the ANN trained usin the field ac uired data ty g q 
set and the 20 metre DEM variables for the three class classification. 
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Slope Angle A pect Classified Field Geology 
Vegetation Sodicity 

Meter 
Train RanI.. 2 5 3 4 I 

Error 0.4028 0.3743 0.3954 0.3796 0.4161 

Verify Rank 1 5 4 3 2 

Error 0.3984 0.3568 0.3625 0.3705 0.3798 

Table AS.14: Sen iti i anal is for the ANN trained usin ty y g the field ac q uired and 
cIa ified egetation data et for the three class classification. 

Slope spect Class. Field Geology Flow Flow Plan 
ogle Veg. Sodicity Length Acc. Curv. 

Meter 
Train Rank 2 3 4 5 1 7 9 8 

Error 0.3847 0.3824 0.3691 0.3568 0.3875 0.3422 0.3405 0.3406 

Verify Raltk 2 3 9 4 1 7 6 5 

Error 0.4405 0.4301 0.4198 0.4241 0.4428 0.4199 0.4204 0.4219 

Table AS.IS: Sen iti i analy i for the ANN trained usin the field ac uired data ty g q 
set, clas ified 
clas ification. 

egetation and the 10 metre DEM variables for the three class 

Slope A pect Class. Field Geology Flow Flow Plan 
ogle Veg. Sodicity Length Acc. Curv. 

Meter 

Train Rank 2 5 4 3 I 6 8 7 

Error 0.3811 0.3699 0.3734 0.3762 0.4025 0.3685 0.3530 0.3532 

Verify Rank 2 5 3 4 1 6 7 8 

Error 0.4081 0.3956 0.4044 0.3988 0.4127 0.3924 0.3879 0.3877 

Table AS.I6: Sen itivit anal I for the ANN trained usin the field ac uired data y y g q 
set, cia ified vegetation and the 20 metre DEM variables for the three class 
clas ification. 

Slope A pect Flow Flow Plan Profile 
ogle Length Accumulation Curvature Curvature 

Train Rank 1 3 2 5 6 4 

Error 0.2926 0.2913 0.2917 0.2906 0.2904 0.2911 

Verify Rank 1 2 3 5 6 4 

Error 0.2943 0.2919 0.2917 0.2895 0.2893 0.2897 

Table AS.17: Sen iti it anal y y I for the ANN trained usin g the 10 metre DEM data 
et for the nine cia cIa ification. 

Profile 
Curv. 

6 

0.3433 
8 

0.4198 

Proftle 
Curv. 

9 
0.3519 

9 
0.3870 
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Slope A pect Flow Flow 
Angle Length Accumulation 

Train Rank I 3 2 6 

Error 0.2920 0.2892 0.2907 0.2852 

Verify Rank 4 3 1 6 

Error 0.2847 0.2849 0.2872 0.2842 

Table AS.IS: Sen iti i anal si ty Y 
set for the nine cia cIa sification. 

for the ANN trained usin g 

Slope Angle Aspect Estimated 
Vegetation 

Train Rank I 4 3 

Error 0.2766 0.2744 0.2763 

Verify Rank I 3 4 

Error 0.2845 0.2797 0.2741 

401 

Plan Profile 
Curvature Curvature 

4 5 
0.2874 0.2853 

2 5 
0.2863 0.2843 

the 20 metre DEM data 

Field Geology 
Sodicity 
Meter 

5 2 
0.2723 0.2766 

5 2 
0.2738 0.2825 

Table AS.19: Sen iti i anal ty Y sis for the ANN trained usin g the field ac q uired data 
set for the nine clas cia sification. 

Slope Aspect Est Field Geology Flow Flow Plan 
Angle Veg. Sodicity Length Acc. Curv. 

Meter 

Train Rank 1 4 3 5 2 8 9 7 

Error 0.2856 0.2821 0.2837 0.2787 0.2851 0.2776 0.2773 0.2777 

Verify Rank I 2 3 5 4 6 7 9 

Error 0.2884 0.2852 0.2766 0.2737 0.2760 0.2732 0.2732 0.2728 

Table AS.20: en itivity ana lYSIS for the ANN tramed usmg the field acquired data 
set and the 10 metre DEM variables for the nine class classification. 

Slope Aspect Est Field Geology Flow Flow Plan 
Angle Veg. Sodicity Length Ace. Curv. 

Meter 
Train Rank 2 3 4 7 I 5 9 6 

Error 0.2786 0.2771 0.2766 0.2686 0.2814 0.2728 0.2685 0.2687 

Verify Rank 2 I 3 5 4 6 7 9 

Error 0.2851 0.2865 0.2844 0.2768 0.2798 0.2762 0.2759 0.2755 

Table AS.21: Sen iti i anal I for the ANN trained usin the field ac uired data ty Y g q 
set and the 20 metre D M variables for the nine class classification. 

Slope Angle Aspect Classified Field Geology 
Vegetation Sodicity 

Meter 
Train Rank I 4 3 5 2 

Error 0.2879 0.2773 0.28 12 0.2748 0.2825 

Verify Rank 2 4 3 5 1 

Error 0.2789 0.2755 0.2782 0.2709 0.2803 

Table AS.22: Sen itivity analy is for the ANN trained usin the field ac g q uired and 
classified vegetation data et for the nine class classification. 

Profile 
Curv. 

6 
0.2784 

8 
0.2730 

Profile 
Curv. 

8 
0.2686 

8 
0.2757 
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Slope A pect Cia s. Field Geology Flow Flow Plan 
Angle Veg. Sodicity Length Acc. Curv. 

Meter 
Train Rank I 4 3 6 2 7 5 9 

Error 0.2852 0.2752 0.2777 0.2716 0.2806 0.2716 0.2718 0.2713 

Verify Rank 2 4 3 7 I 5 9 6 

Error 0.289 1 0.2821 0.2864 0.2812 0.2896 0.28 19 0.2805 0.2818 

Table A5.23: Sen iti i anal is for the ANN trained usin the field ac uired data ty y g q 
set, cIa ified 
classification. 

egetation and the 10 metre DEM variables for the nine class 

Slope A pect Class. Field Geology Flow Flow Plan 
ngle Veg. Sodicity Length Ace. Curv. 

Meter 
Train Rank 3 2 5 4 I 6 8 7 

Error 0.2733 0.2742 0.2687 0.2721 0.2788 0.2643 0.2624 0.2627 

Verify Rallk 4 3 5 2 I 6 7 9 
Error 0.2769 0.2775 0.2764 0.2778 0.2780 0.2732 0.2722 0.2720 

Table A5.24: Sen iti i anal sis for the ANN trained usin the field ac uired data ty y g q 
set, cia ified 
classification. 

egetation and the 20 metre DEM variables for the nine class 

Decision Tree Cia sifiers Variable Importance 

Variable 
Importance 

Aspect 100 

Flow Len2th 82.17 

Slope Angle 73.07 

Profile Curvature 15.34 

Flow Accumulation 3.87 

Plan Curvature 3.58 

Table A5.25: Vanable Importance for the DTC tramed using the 10 metre DEM data 
set for the two cia s cia ification. 

Variable 
Importance 

Flow Len2th 100 

Flow Accumulation 81.70 

Slope Angle 75.34 

Aspect 35.08 

Profile Curvature 25.71 

Plan Curvature 3.38 

Table A5.26: Vartable Importance for the DTC tramed using the 20 metre DEM data 
set for the two cla classification. 

Profile 
Curv. 

8 
0.2713 

8 
0.2808 

Profile 
Curv. 

9 
0.2621 

8 
0.2722 
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Variable 
Importance 

Slope Anele 100 
Geolo2Y 59.61 
Aspect 58.89 
Estimated Vegetation 40.53 
Sodicity Meter 32.56 

Table A5.27: Variable Importance for the DTe trained using the field acquired data 
set for the two cia clas ification. 

Variable 
Importance 

Slope Angle 100 
Aspect 65.11 
Geolo2Y 63.23 
Flow LenJ!tb 44.98 
Estimated Vegetation 42.9 
Sodicity Meter 33.17 
Profile Curvature 5.59 
Plan Curvature 4.93 
Flow Accumulation 2.57 

Table A5.28: Variable importance for the DTe tramed using the field acquired data 
set and the 10 metre DEM variables for the two class classification. 

Variable 
Importance 

Slope Angle 100 
Geology 67.5 
Aspect 54.42 

Estimated Veeetation 47.29 
Sodicity Meter 32 
FlowLeo~tb 28.15 
Flow Accumulation 20.49 
Profile Curvature 5.01 
Plan Curvature 0 

Table A5.29: Vanable Importance for the DTe tramed using the field acquired data 
set and the 20 metre DEM variables for the two class classification. 

Variable 
Importance 

Slope Anele 100 
Aspect 51.583 
Geolo2Y 3.048 
Classified Vegetation 0.671 
Sodicity Meter 0 

Table A5.30: Variable Importance for the DTe trained using the field acquired data 
set and cIa sified vegetation for the two class classification. 
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Variable 
Importance 

Slope An21e 100 
Aspect 82 
Classified Veeetation 66.326 
Flow Lengtb 43.069 
Geolo2Y 39.680 
Sodicity Meter 20.289 
Plao Curvature 15.519 
Flow Accumulation 8.833 
Profile Curvature 0 

Table AS.31: Vanable Importance for the DTC tramed using the field acquired data 
set, classified egetation and 10 metre DEM data set for the two class classification. 

Variable 
Importance 

Slope Angle 100 
Aspect 51.583 
Geolo2Y 3.048 
Classified Vegetation 0.671 
Flow Accumulation 0.192 
Flow Lenl!tb 0.003 
Sodicity Meter 0 
Plao Curvature 0 
Profile Curvature 0 

Table AS.32: Vanable Importance for the DTC tramed using the field acquired data 
set, classified egetation and 20 metre DEM data set for the two class classification. 

Variable 
Importance 

Flow Lenl!th 100 
Slope Angle 95.85 
Aspect 45.67 
Profile Curvature 36.87 

Flow Accumulation 27.84 
Plan Curvature 19.02 

Table A5.33: Vanable Importance for the DTC tramed using the 10 metre DEM data 
set for the three cla classification. 

Variable 
Importance 

Flow Len2fb 100 
Flow Accumulation 78.4 
Slope Angle 60.35 
Aspect 24.23 
Profile Curvature 15.64 
Plan Curvature 9.48 

Table A5.34: Variable Importance for the DTC trained using the 20 metre DEM data 
set for the three class clas ification. 
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Variable 
Importance 

Slope Anr!le 100 
Geololn' 69.2 
Estimated Veeetation 57.21 
Aspect 44.22 
Sodicity Meter 0 

Table AS.3S: Variable importance for the DTC trained using the field acquired data 
set for the three cIa classification. 

Variable 
Importance 

Slope Angle 100 
Geology 80.58 
Aspect 60.89 
Estimated Vegetation 53.61 
Sodicity Meter 51.15 
Flow Length 34.53 
Flow Accumulation lOA 
ProfiJe Curvature 8.7 
Plan Curvature 1.64 

Table AS.36: Variable Importance for the DTC tramed using the field acquired data 
set and the 10 metre DEM variables for the three class classification. 

Variable 
Importance 

Slope Angle 100 

Geolo2Y 75.16 
Aspect 59.61 
Estimated Vegetation 55.02 
Flow Length 49.2 
Sodicity Meter 45.9 
Flow Accumulation 13.53 
Plan Curvature 6.85 
ProfiJe Curvature 3.05 

Table AS.37: Variable Importance for the DTC tramed using the field acquired data 
set and the 20 metre DEM variables for the three class classification. 

Variable 
Importance 

Slope Angle 100 
Aspect 84.304 
Geology 61.233 
Classified Vegetation 58.099 
Sodicity Meter 53.274 

Table A5.38: Variable importance for the DTC trained using the field acquired data 
set and cia ified egetation for the three class classification. 
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Variable 
Importance 

Slope Anele 100 
Geolo2)' 96.17 
Aspect 65.03 
Classified Vegetation 63.56 
Sodicity Meter 6 I. I 5 
Flow Lens;h 36.17 
Flow Accumulation 18.22 
ProfiJe Curvature 10.4 
Plan Curvature 6.42 

Table A5.39: Variable Importance for the DTC trained using the field acquired data 
set, classified eg tation and 10 metre DEM data set for the three class classification. 

Variable 
Importance 

Slope Angle 100 
Aspect 96.167 
Classified Veeetation 65.025 
Geolo2)' 63.560 
Sodicity Meter 59.862 
Flow Leneth 56.978 
Proflle Curvature 18.233 
Flow Accumulation 16.533 
Plan Curvature 7.858 

Table A5.40: Variable importance for the DTC tramed using the field acquired data 
set, cIa ified egetation and 20 metre DEM data set for the three class classification. 

Variable 
Importance 

Flow Accumulation 100 
Profile Curvature 55.69 
Plan Curvature 41.48 

Slope Anele 32.61 
Aspect 26.36 
Flow Length 13.67 

Table A5.41: Vanable Importance for the DTC tramed using the 10 metre DEM data 
et for the nine cIa cIa ification. 

Variable 
Importance 

Flow Length 100 
Flow Accumulation 92.51 
Aspect 81.3 
Slope Angle 73.1 
Profile Curvature 23.3 
Plan Curvature 14 

Table A5.42: Vanable Importance for the DTC trained using the 20 metre DEM data 
set for the nine cIa cia ification. 
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Variable 
Importance 

Slope Angle 100 
Aspect 75.376 
Estimated Vegetation 63.689 
Sodicity Meter 60.20 
Geology 54.797 

Table A5.43: Variable Importance for the DTC tramed using the field acquired data 
set for the nine cia cia ification. 

Variable 
Importance 

Flow Accumulation 100 
Slope Angle 95.079 
Estimated Vegetation 72.411 
Aspect 53.27 
Geoloey 42.678 
Profile Curvature 41.033 
Plan Curvature 31.096 
Flow Length 29.936 
Sodicity Meter 29.756 

Table A5.44: VarIable Importance for the OTC tramed using the field acquired data 
set and the 10 metre OEM variables for the nine class classification. 

Variable 
Importance 

Slope Angle 100 

Flow Length 86.86 

Aspect 72.12 
Estimated Vegetation 67.13 
Flow Accumulation 63.80 

Sodicity Meter 58.74 

Geoloey 54.92 
Profile Curvature 9.73 

Plan Curvature 6.43 

Table A5.45: Vanable Importance for the DTC tramed using the field acquired data 
set and the 20 metre OEM variables for the nine class classification. 

Variable 
Importance 

Slope Angle 100.00 
Classified Vegetation 69.22 
Sodicity Meter 65.19 
Geology 61.69 
Aspect 56.12 

Table A5.46: VarIable Importance for the DTC tramed using the field acquired data 
set and c1as ified egetation for the nine class classification. 
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Variable 
Importance 

Flow Accumulation 100 
Slope Angle 95.079 
Sodicity Meter 68.993 
Aspect 53.270 
Classified Vee:etation 50.519 
Geology 42.678 
Profile Curvature 41.033 
Plan Curvature 31.096 
Flow Length 29.936 

Table AS.47: Variable Importance for the DTC tramed using the field acquired data 
set, clas ified egetation and 10 metre DEM data set for the nine class classification. 

Variable 
Importance 

Slope AnJ!le 100 
Sodicity Meter 67.721 

Flow Length 65.845 

Geoloe:y 65.782 

Classified VeJ!etation 60.593 

Aspect 45.909 

Flow Accumulation 41.127 

Profile Curvature 16.035 

Plan Curvature 0 

Table AS.48: Vanable Importance for the DTC tramed using the field acquired data 
set, classified vegetation and 20 metre DEM data set for the nine class classification. 
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Figure A6.2: Classified erosion map drape derived from the ANN trained using 10 metre DEM variables for a two class classification 
(Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain) . 
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Figure A6.3: Classified erosion map derived from the ANN trained using 20 metre DEM variables for a two class classification. 
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(Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain). 
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Figure A6.5: Classified erosion map derived from the ANN trained using 10 metre DEM variables for a three class classification, 
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Figure A6.6: Classified erosion map drape derived from the ANN trained using 10 metre DEM variables for a three class classification 
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Figure A6.10: Classified erosion map drape derived from the ANN trained using 20 metre DEM variables for a nine class classification 
(Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain). 
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Figure A6.11: Classified erosion map derived from the DTC trained using 10 metre OEM variables for a two class classification, 
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Figure A6.12: Classified erosion map drape derived from the DTC trained using 10 metre OEM variables for a two class classification 
(Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain) , 
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Figure A6.13: Classified erosion map derived from the OTC trained using 20 metre OEM variables for a two class classification. 
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Figure A6.14: Classified erosion map drape derived from the DTC trained using 20 metre DEM variables for a two class classification 
(Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain). 
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Figure A6.15: Classified erosion map derived from the DTC trained using 10 metre DEM variables for a three class classification. 
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Figure A6.16: Classified erosion map drape derived from the DTC trained using 10 metre DEM variables for a three class classification 
(Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain), 
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Figure A6.17: Classified erosion map derived from the DTC trained using 20 metre DEM variables for a three class classification. 
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Figure A6.18: Classified erosion map drape derived from the DTC trained using 20 metre DEM variables for a three class classification 
(Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain). 
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Figure A6.19: Classified erosion map derived from the DTC trained using 10 metre OEM variables for a nine class classification, 
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Figure A6.20: Classified erosion map drape derived from the DTC trained using 10 metre DEM variables for a nine class classification 
(Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain). 
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Figure A6.21: Classified erosion map derived from the DTC trained using 20 metre DEM variables for a nine class classification. 
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Figure A6.22: Classified erosion map drape derived from the DTC trained using 20 metre DEM variables for a nine class classification 
(Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain). 
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Figure A6.23: Classified erosion map derived from the OA trained using 10 metre OEM variables for a two class classification. 
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Figure A6.24: Classified erosion map drape derived from the DA trained using 10 metre DEM variables for a two class classification 
(Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain), 
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Figure A6.25: Classified erosion map derived from the DA trained using 20 metre DEM variables for a two class classification, 
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Figure A6.26: Classified erosion map drape derived from the DA trained using 20 metre DEM variables for a two class classification 
(Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain). 
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Figure A6.27: Classified erosion map derived from the DA trained using 10 metre OEM variables for a three class classification. 
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Figure A6.28: Classified erosion map drape derived from the DA trained using 10 metre DEM variables for a three class classification 
(Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain). 
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Figure A6.29: Classified erosion map derived from the OA trained using 20 metre OEM variables for a three class classification, 

>-
"0 
"0 

~ 
V.l 
-..] 



~ 

'I 

+ 

,..;,1 

o 750 1,500 3,000 
_ _ Meters 

~~~.c::~ 
.J. .. ",:,_ w " I _ 

Erosion 
_ No A91><ecoa* Erooion 

o. D fUl Eroeion 

Gully Erooion 

Figure A6.30: Classified erosion map drape derived from the DA trained using 20 metre DEM variables for a three class classification 
(Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain). 
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Figure A6.31: Classified erosion map derived from the DA trained using 10 metre DEM variables for a nine class classification. 
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Figure A6.32: Classified erosion map drape derived from the DA trained using 10 metre DEM variables for a nine class classification 
(Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain), 
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Figure A6.33: Classified erosion map derived from the OA trained using 20 metre OEM variables for a nine class classification, 
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Figure A6.34: Classified erosion map drape derived from the DA trained using 20 metre DEM variables for a three class classification 
(Topographic map reproduced from the I :25000 National Geographical Institute of Spain). 
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Figure A6.35: Erosion probability map produced from the DTC trained with the 10 metre DEM variables for a two class classification. 
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Figure A6.36: Erosion probability map drape produced from the DTe trained with the 10 metre DEM variables for a two class 
classification (Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain), 
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Figure A6.37: Erosion probability map produced from the OTC trained with the 10 metre OEM variables for a three class 
classification, 
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Figure A6.38: Erosion probability map drape produced from the DTC trained with the 10 metre DEM variables for a three class 
classification (Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain). 
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Figure A6.39: Erosion probability map produced from the DTC trained with the 20 metre DEM variables for a three class 
classification. 
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Figure A6.40: Erosion probability map drape produced from the DTC trained with the 20 metre DEM variables for a three class 
classification (Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain). 
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Figure A6.41: Erosion probability map produced from the OTC trained with the 20 metre OEM variables for a nine class classification. 
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Figure A6.42: Risk by association map produced from the DTC trained with the 10 metre DEM variables for a two class classification. 
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F igure A6.42: Risk by association map drape produced from the DTC trained with the 10 metre DEM variables for a two class 
classification (Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain). 
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Figure A6.43: Risk by association map produced from the DTC trained with the 10 metre DEM variables for a three class 
classification. 
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Figure A6.44: Risk by association map drape produced from the DTe trained with the 10 metre OEM variables for a three class 
classification (Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain). 
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Figure A6.45: Risk by association map of subsurface erosion produced from the DTC trained with the 10 metre DEM variables for a 
nine class classification, 
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Figure A6.46: Risk by association map drape of subsurface erosion produced from the DTC trained with the 10 metre DEM variables 
for a nine class classification (Topographic map reproduced from the 1 :25000 National Geographical Institute of Spain). 
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