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ABSTRACT

Direct Numerical Simulation of Turbulent Flows over Complex

Geometries

by Jony Castagna

The aim of this work is to extend an existing CFD solver, named Shock/Boundary-

Layer Interaction (SBLI) code, to include a fully 3D curvilinear capability in order to

perform direct numerical simulation (DNS) of turbulent flows over complex geome-

tries. The SBLI code solves the compressible Navier-Stokes equations by the finite

difference method and uses the body-fitted curvilinear coordinate system approach to

treat complex geometries. The extended version of the code has been used to perform

a DNS of a channel flow with longitudinally ridged walls and a DNS of a turbulent

flow over an axisymmetric hill geometry. Validation and comparison with previous

experimental data and numerical results are also presented.

In the first part of the work, the Navier-Stokes equations are presented in a strong

conservation form and test validations of the code extension have been carried out

such as free stream flow preservation on a wavy grid and a laminar plane channel

flow on a skewed mesh. The free stream preservation test consists of a uniform flow

computation on a cosinusoidal mesh and the objective is to evaluate the velocity com-

ponents changes from their initial values due to the effect of a highly skewed mesh.

The maximum discrepancy found is around 10-16• For the laminar plane channel flow

simulation on a skewed mesh, the purpose is to verify the symmetrical propriety of

numerical errors obtained in the velocity components while the main flow direction

and the position of the walls are altered in rotation around the three physical coordi-

nates. The symmetry of the numerical error is found to be well preserved as expected.
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The second part of the work contains DNS of laminar and turbulent flows in a

channel with longitudinally ridged walls at different Reynolds numbers. The goal is

to investigate the effect of ridged walls on the turbulent flow behavior and to provide

quality DNS data for assessing other numerical simulations, such as Large Eddy Simu-

lation (LES) and Reynolds-Averaged Navier Stokes (RANS) modeling. Two Reynolds

numbers have been simulated (ReT = 150 and ReT = 360, based on a reference ve-

locity UT = J8/Pb(-dP/dx), the bulk density and the wall viscosity) on a domain

of 1.2511"8x 28 x 0.37511"8in the streamwise, wall normal and spanwise directions,

respectively. This domain is similar to the minimal flow unit for a turbulent plane

channel flow. Comparisons with previous experimental data and numerical prediction

have show good agreement for the ReT = 150 case and a similar flow dynamics for

the ReT = 360 case. In general, the effects of ridged walls on the turbulent flow, like

the reduction of the normal Reynolds stress peak values, seems to be smaller when

the Reynolds number increases.

The third part of this work describes the main simulation of this thesis. DNS of a

turbulent flow around an axisymmetric hill is carried out in order to investigate the

three-dimensional boundary-layer flow separation which occurs behind the hill. Dif-

ferent domain sizes and grid resolutions have been tested up to a maximum of about

54 million points. A methodology for generating inflow conditions has been imple-

mented and tested. Results are compared with previous experimental and numerical

studies. Due to a low Reynolds number used (Re6. = 500, only 5% of an experimental

simulation), the time averaged separation bubbles is much bigger and the flow seems

to have a laminarisation process due to a strong adverse pressure gradient presented.

A small recirculation bubble detected on the top of the hill seems to be the cause of

the earlier separation of the turbulent boundary layer and, then, the bigger separa-

tion observed. However, similar to the full Reynolds number experiment, same flow
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dynamics, consisting in the formation of a counter rotating vortex pair merging in

the streamwise current, have been captured well.

The final part of the work presents an extension of the single-block SBLI code

to a multiblock version. A pre-processor program has been developed in order to

simplify the treatment of the interface between different blocks and a description

of the algorithm is also given. As a demonstration study, DNS of a square jet in

a turbulent cross flow has been performed at two Reynolds numbers (Re8* = 1000

and Re,s* = 2000) and different jet to cross flow velocity ratios. Compared with the

available data, the results are in good agree, despite the lower Reynolds number used

(half of value simulated in the available data).

In conclusion, a fully 3D version of the SBLI code has been successfully derived

and tested for various flow configurations. The 3D curvilinear capability has also

been implemented and tested by simple, but not trivial, test cases. An option for

simplified treatment of Cartesian mesh has been implemented and tests have shown a

factor of 2 speedup in overall performance. Two main simulations have been carried

out and for the turbulent flow in a ridged channel, the results are in good agreement

with published data, while, for the flow over an axisymmetric hill case, simulation is

compared qualitatively well and the noticeable discrepancies are primarily due to a

reduced Reynolds number conditions. The code has also been successfully extended

to a multiblock version and demonstrated on a two-block domain for a jet in cross

flow case. Future works includes simulations of the hill problem at higher Reynolds

number and LES extension of the SBLI code to fully 3D curvilinear capability.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Computational Fluid Dynamics

Over the last few decades, Computational Fluid Dynamics (CFD) has become a pow-

erful tool for investigation of complex physical phenomena. Ranging from fundamen-

tal research to practical applications, CFD is successfully growing as an alternative

solution tool to the traditional theoretical and experimental approaches and, consid-

ering the increasing computer technology, great expectations are foreseen for the near

future. For example, the advance of parallel computing has given the opportunity to

explore very complex phenomena, like turbulence, in the smallest details. Moreover,

it is possible to simulate extreme flow conditions generally difficult to achieve in a

normal wind tunnel, for example: it is possible to reproduce the behavior of very hot

fluid, like plasma, or very high speed flows, typical of hypersonic flight conditions (see

Aluri et al., 2008). The increasing popularity of this new discipline of the science is

reflected in the increasing number of investigators and CFD codes developed around

the world.
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Chapter 1. Introduction

The CFD approach consists in solving the governing equations of fluid dynamics

by numerical simulations. This requires a discretization of the above equations in

space and in time, followed by an integration on a well defined computational domain.

However, the computational effort required to correctly solve the equations can be

very expensive. Some simplifications, based on different physical approaches, are

usually adopted.

When the level of detail required for the solution of the fluid dynamics problem

is not very important, that is we are mainly interested on the average values of the

flow field quantities (density, velocity, etc.), a common approach is the use of the

RANS equations. These equations are obtained by decomposing the flow quantities

into a time averaged (u) and a fluctuating component (u'), e.g. u = U + u', and

by time averaging the resulting equations. This approach reduce greatly the grid

requirements, but its main drawback is the loss of accuracy of the solution. Moreover,

the closure of the RANS equations requires the use of turbulent models which correlate

the Reynolds turbulent stresses to the velocity field. These models are often valid

only for specific flow problems and for a small range of Reynolds numbers.

A more accurate approach, which has become more popular in the last years, is

represented by the Large Eddy Simulation technique. Here the Navier-Stokes equa-

tions are filtered using a mathematical filter and the introduction of a subgrid model.

The level of detail of the simulation is higher than that in the RANS approach, but

also the computational effort is greater. The subgrid models are often valid for a wide

range of Reynolds numbers, but they can require a very high grid resolution for some

particular kind of flow, like in presence of boundary layer separation.

When a very high level of detail is required, the DNS is the ideal approach, since

the conservation equations are solved in the exact form without any approximation

or modeling. As presented in the next sections, the computational costs associated

with the DNS for a typical of real applications are still prohibitive today. However,
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Chapter 1. Introduction

DNS can be used as an ideal tool for the investigation of fluid dynamics problems at

low Reynolds numbers.

Whatever approach is used, the methods to discretize the fluid dynamics equa-

tions on the computational domain are several: finite element, finite volume, finite

difference and spectral methods. Each of them has advantages and disadvantages,

but finite difference and spectral methods are the most commonly used for direct

numerical simulations of turbulent flows, since they allow an easy implementation

of high-order, and hence low dissipative, schemes. Moreover, special attention needs

to be paid to the particular fluid dynamics conditions, for example: in case of in-

compressible flows a common issue is the decoupling of the pressure field from the

velocity field, solved by the use of a staggered grid (see Patankar, 1980 and Versteeg

and Malalasekera, 1995). On the other hand, in case of high compressible flows, where

shock waves can occur, shock capturing schemes are necessary in order to predict the

position and strength of the shock discontinuity with enough accuracy, meanwhile

retaining a smooth solution in the rest of the flow field. Many numerical schemes

have been developed in several ways, increasing the CFD knowledge and expanding

its application to a large number of different fields (multiphase flow, combustion,

etc.). A better introduction to CFD can be found in Anderson (1995) and Ferziger

and Peric, (2002).

1.1.2 Turbulence Challenges

Turbulence is an intrinsically three-dimensional phenomenon, unsteady and irregular

in space and time and it is governed by the same mass, momentum and energy con-

servation equations of the fluid flow. It plays a fundamental role in the understanding

of several effects like drag reduction, lift, boundary layer separation, etc.

Due to its intrinsic difficulty, a complete theory of the turbulence does not still

exist, although there has been a large number of researchers dedicated to this topic
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Chapter 1. Introduction

in the last century. The analytical solution of the Navier-Stokes equations in case

of a turbulent flow is possible only after some simplifications, like time average of

the physical variables, self similarity hypothesis, etc. (see Schlichting, 2000). Some

theories, as Kolmogorov's theory on isotropic turbulence (see Mathieu, 2000), have

helped our understanding in some aspects of the phenomenology. For example, from

Kolmogorov's theory it is possible to estimate the magnitude order of the largest and

smallest scale for a given Reynolds number. A lack of knowledge in wall-bounded

flows is still present and semi-empirical approaches, such as the law of the wall and

the log law, which have been the base for approximation models, can easily fail in

presence of separated flows or secondary flows.

Turbulence has well defined statistical proprieties. For example, in the turbulent

boundary layer over a flat plate experimental results prove that the statistical pro-

prieties are the same for all the experiments and some empirical statistical turbulent

models have been proposed to correctly reproduce the experimental data. Unfortu-

nately, if a separation occurs, like over a wing surface, the statistical results observed

are completely different from the flat plate and new models need to be implemented.

Today's turbulence challenge is to develop a general model which is valid for all kind

of flow and for all Reynolds number range.

1.1.3 DNS Challenges

Simulation of turbulent flows is a very difficult task, especially due to the wide range of

energy frequencies presented at a given Reynolds number. Figure 1.1 shows a typical

graph of the energy spectrum (energy E versus modes k) of an isotropic turbulent

flow: the energy is transferred from the largest structures (low frequencies) to the

smallest eddies (high frequencies) where the kinetic energy is dissipated by viscous

effects. To obtain the correct energy decay, it is essential to reproduce all the scales.

From Kolmogorov's theory (see Mathieu, 2000), an estimation of the smallest eddy

26



Chapter 1. Introduction

length presented in isotropic turbulence, called the Kolmogorov scale, is fJ = (~3)1/4,
where u is the kinematic viscosity of the fluid and f is the average rate of dissipation

per unit mass. From the same theory, e is estimated to be f ~ Urms
3[l, where Urms

is the root mean square of the velocity and 1 the largest scale, called the integral

scale. From t/ and 1 it is possible to estimate that the total number of computational

nodes necessary to correctly solve all the frequencies in the flow is N ~ Re9/4• For

practical applications with a Re ~ 106 the number of points required is N > 31X 1012,

which is much beyond of today's computer capability and, considering the Moore's

law on the trend of computing capability, the DNS will became a common practice

only after several decades from today. However, for fundamental research at low Re

numbers, the DNS approach is ideal, considering the high quality of well resolved

simulations, often even better than experimental results. Moreover, a big advantage

is the possibility to analyze all the flow properties in each point of the domain and

at each time step of the temporal integration.

As cited above, in DNS, contrarily to RANS and LES techniques, the original

form of the conservation equations is preserved. However, special attention needs

to be paid to the numerical schemes implemented. In fact, DNS requires very high

resolution even in the time coordinate and then it requires small time step in order

to guarantee an accurate solution. On the other hand, a long integration time can

significantly increase the inevitable numerical error due to the approximation of the

discretized equations. An unbounded growth of the error can compromise stability

of the solution. Many techniques have been employed in the last few years in order

to control the instability due to the numerical errors. A promising method is the

so called entropy splitting technique (Yee et al., 1999), based on the splitting of the

conservation equation by an entropy function. See Section 3.3 for further details.

DNS requires the use of high-order schemes and stable algorithms, but high-order

schemes are difficult to adapt to complex geometries. The challenge is to find a
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compromise between those two requirements in order to reduce the computational

costs.

I[
tilo....

Log (k)

Figure 1.1: Energy spectra for an isotropic turbulent flow.

1.1.4 Motivation

In the last few decades, high-order finite difference methods have become the preferred

technique for the direct numerical simulation of turbulent flows. In fact, spectral

methods, despite the high-order achievable, are difficult to adapt to complex geometry,

while the finite volume method is difficult to implement for orders higher than second.

However, most of the real applications occur in very complex geometries and the use

of finite difference methods to these systems is not trivial.

In this work, we have extended an existing code for quasi-3D curvilinear geometry

to fully 3D. The SBLI code was originally developed for curvilinear variation in the x-

y plane only, with a linear stretching feature in the z-direction. Since many practical

problems involve curvilinear meshes in all the three spatial directions, like for the flow

over a real wing or the separation behind a three-dimensional obstacle, the necessity of
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a fully 3D curvilinear version of the code is evident. However, this upgrading requires

a substantial change of the main subroutines of the SBLI code and validation test

cases are necessary. Laminar channel flows and free stream preservation on highly

distorted meshes have been considered as preliminary tests, but better validation can

be achieved by performing turbulent flow simulations.

Two main simulations have been carried out: a) a turbulent flow in a channel

with longitudinally ridged walls (hereafter named as ridged channel); b) a turbulent

flow over an axisymmetric hill.

In the first case, the geometry is still not fully curvilinear as the grid is only

stretched in the z-y plane. However, the results of the simulation can be compared

with the results obtained from the previous version of the code in order to verify the

preservation of the solution. Moreover, we are interested in the effect of the ridged

walls on the turbulent flow at different Reynolds numbers. Note that a large recir-

culation is present over the ridge, which is not captured by simple RANS turbulent

models like the k-e.

In the second case, the geometry includes spatial variation in all the three coor-

dinates. This represent a good test for the fully 3D version as it involves many of

the components of the metric relationship between curvilinear and orthogonal mesh.

The main physical interest is in the understanding of the three-dimensional boundary

layer separation mechanism which occurs behind the hill and the main challenge is

the localization of the region where the separation occurs. In fact, this region seems

to lie in a thin layer on the leeside of the hill and very high resolved simulations are

required. A DNS can provide not only a clear understanding of the mechanism in-

volved, but also numerical results which can be used for validations of new turbulent

models for RANS and LES techniques.

Finally, considering that most of the practical engineering applications involves

very complex geometries, a multiblock version of the code seems essential for future

29



Chapter 1. Introduction

users of the code. Contrary to finite volume based solvers, where unstructured meshes

can be used, finite difference based solvers require, in most of the cases, the use of

structured meshes. For complex geometries it is necessary to use multiblock struc-

tured meshes which require the development of a special grid generation software.

This is still an active field of today's CFD research.

1.2 Literature Review

In this section we give a brief review of the literature regarding the main topics of

the present work: the 3D formulation of the body-fitted coordinate method and the

3D boundary layer separation. An extended review on the turbulent flow in a ridged

channel and on the turbulent flow over an axisymmetric hill, which represent the

major applications of this work, can be found in the introduction section of Chapters

5 and 6, respectively. A special section is dedicated to the SBLI code with a brief

description of its main features and previous successful applications.

1.2.1 3D Curvilinear Formulation

The body-fitted coordinate method is probably the oldest method to solve the Navier-

Stokes equations in complex geometries (Anderson 1995). Extensive introduction on

this topic can be found in any text book of computational fluid dynamics (see An-

derson, 1995 and Ferziger and Peric, 2002. See also Chapter 2 of this thesis), while

a brief introduction is given here. The idea consists in the transformation from a

curvilinear generic physical domain (x, y, z) to an orthogonal regular computational

domain (~, 'f/, (), where the finite difference schemes can be easily applied. However,

as presented by Pulliam and Steger (1978), while the above procedure works well for

a 2D transformation, some problems occur in the 3D case if a finite difference central

scheme is applied. In fact, even the preservation of a simple free stream in a wavy
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grid can be compromised (see Section 4.1). For moving meshes the Geometric Con-

servation Law (GCL) has to be verified, while for static mesh some metric terms (Le.

8x/8~, 8y/8~, etc.) need to cancel each other. Pulliam and Steger (1978) suggested

a simple averaging procedure to preserve the free stream. However, while this ap-

proach works well for a second-order scheme, the extension to high-order formulation

is not trivial. Thomas and Lombard (1979) suggested a simpler approach based on

a conservative reformulation of the previous metric relationship, which can be easily

applied to high-order scheme as presented in Visbal and Gaitonde (2001, 2002). In

this work we have used a slightly different formulation based on the conservative hy-

perbolic form of the Navier-Stokes equations. The free stream is well preserved and

manipulations of the metric terms are not necessary.

1.2.2 3D Turbulent Boundary Layer Separation

Turbulent boundary layer separation occurs in many practical engineering applica-

tions like around a car profile, airplane wing surface, turbine blade junctions, etc.

The separation affects the drag around those objects and then the performance in

terms of speed of the car, airplane or turbine, and in term of the engine efficiency.

To understand why the separation occurs and how to control it is essential in order

to reduce the drag and gain on performance. The flow around a bluff body like a

cube or a hill shape, occurs with 3D flow separation and it can help to understand

the basic mechanism of the turbulent flow separation.

A good introduction on the boundary layer theory and boundary layer separation

can be found in any text book of turbulence (see Schlichting 2000 and White 1991

for example) .. Commonly, the term "separation" is intended as the entire process of

departure, breakaway or breakdown of the turbulent boundary layer (Simpson 1996),

which normally occurs in presence of strong adverse pressure gradients. However,

while for a bluff body the separation point is normally well defined (see Castro and
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Robins, 1977 and Coceal et al., 2006), in the presence of complex aerodynamic shapes,

like airplane wings or turbine blades, the separation point is often not even fix in

time and its identification represents a very hard task for today's aerodynamicists.

Simpson proposed a set of quantitative definitions for the separation point (Simpson

1996) based on the fraction of time that the flow moves downstream (')'pu). Four

points are identified (see Figure 1.2): incipient detachment (ID), where the backflow

occurs 1% of the time C'Ypu= 0.99); intermittent transitory detachment (lTD) where

the backflow occurs the 20% of the time bpu = 0.80); transitory detachment (TD)

where the backflow occurs the 50% of the time (')'pu = 0.50) and detachment (D)

where the time averaged wall shear stress is zero (Tw = 0). However, the separation

Turbulent boundary layer Detached flow

Figure 1.2: A flow model for the boundary layer separation criteria.

criteria above described are not always easy to identify. When the separation occurs

in a very thin layer, like behind a hill obstacle (see Simpson et al. 2002, Byun et

al. 2004 and Byun and Simpson 2006), very sophisticated equipments are required in

order to capture the correct flow field and topology.

As cited before, the dependency of the mean streamwise velocity from the wall

normal distance, for a fully developed turbulent flowon a flat plate, is described by the

law of the wall and the log law (u+ = y+ and u+ = log(y+) / k + b, respectively, where

u+ and y+ are the dimensionless mean velocity and wall normal distance, k = 0.41 is

the von Karman constant and b is an empirical constant normally found to be ~ 5.5).
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The effect of the adverse pressure gradient on the log law can be taken into account

with the following defect law, as proposed by Perry and Schofield (1973):

Ue
~ U = !2(TJ2) = 1- 0.4TJ~/2 - 0.6sin(7rTJ2/2) (1.1)

where U; is the edge velocity, TJ2= yiD. amd D. = (8dCs)(Ue/Us). Us is determined

by fitting the data of eqn. 1.1 and Us/UMP = 8(D./ L)I/2. L is the distance from the

wall to the maximum in the shear stress profile; UKtp is the maximum shear stress

and Cs is a universal constant found empirically to be 0.35.

However, even if the above correlation applies to a wide range of adverse pressure

gradients case, some restrictions (-PUVM > 1.5 and low curvature surface) apply.

Moreover, the log law and the defect law are valid upstream the ID point and ap-

proximatively valid upstream the lTD. A general equation valid for all the possible

cases is today not available.

1.2.3 The SBLI code

The SBLI code is a compressible Navier-Stakes equations solver based on the finite

difference methodology. It has been developed mainly by Dr. Yufeng Yao during his

post doctoral position at Southampton University under the supervision of Prof. Neil

D. Sandham. The code has been adopted by a large community of researchers spreads

between Southampton University, Kingston University and Queen Mary University

of London due to its large versatility and special features here briefly described (see

Chapter 3 for a detailed presentation).

The spatial discretizion is based on a fourth order central scheme coupled with a

conservative stable boundary scheme which satisfy the summation by part property

(see Garritsen and Olsson, 1996, Olsson 1995a, Olsson 1995b and Carpenter et al.,

1999). An entropy splitting approach (see Sandham and Vee, 2000) has been im-

plemented in order to improve the stability proprieties and non-reflecting boundary
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conditions, based on the work of Poinsot and Lele (1992), are applied at inlet and

outlet of the domain. The shock capturing is performed by a total variation dimin-

ishing (TVD) scheme based on the artificial compression method (ACM) described

in Vee et al. (1999). The solver can also be used for large eddy simulation, with the

following subgrid models: Smagorisky, dynamic Smagorinsky and Nagano models.

The MPI/Fortran library has been used for the parallelization of the code.

Successful works have been carried out with the SBLI code in the past years, here

is a brief resume. A numerical study of the Mach number effect on the compressible

wall bounded turbulence was carried out by Li (PhD thesis, 2003). Here, the DNS

of a turbulent channel at different grid resolutions has been carried out in order to

identify a set of compressibility parameters able to describe the effect of the intrinsic

compressibility on isothermal-wall channel flow. Moreover, in the same work an

oblique shock-boundary layer interaction at free stream Mach number Moo = 2 was

investigated. The capability of the code to deal with high Mach number supersonic

flows has been successfully tested in the PhD work of Narasimhan (2005), where the

investigation of the dynamics of turbulent spots in compressible flows up to Mach

6 were carried out. In the work of Sandham et al. (2003) large eddy simulations

of transonic flow over a bump were carried out and a new synthetic approach to

generate turbulent boundary layers was successfully implemented. DNS works on the

boundary layer separation over an airfoil profile have been recently carried out by

Jones at al. (2008) and Sandberg and Sandham (2008) with a similar version of the

SBLI code, but adapted to airfoil profiles. Considering the increasing number of users

and then the need for a standard reference and complete version, a recent work of

re-engineering of the code was presented in Yao et al. (2009).
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1.3 Objectives of the Present Study and Approach

The main goal of the present work is the extension of the SBLI code to fully 3D

curvilinear capability in order to perform direct numerical simulations of turbulent

flows over complex geometries. The extended version can be used to simulate flows

around bluff bodies, like irregular shapes, hills, etc. and then to study complex

phenomena like the three-dimensional boundary layer separation.

Two main simulations have been carried out: I) the DNS of a turbulent flow in a

ridged channel; II) the DNS of a turbulent flow over an axisymmetric hill. In both

cases the objectives are to validate the fully 3D curvilinear version of the code and,

at the same time, to study the flow dynamics of the two systems.

For the ridged channel, same flow conditions of previously published works have

been used and a comparison of the results is presented. The main interest is in the

effect of the ridge on the turbulent flow at different Reynolds numbers. Simulations
!

at Re; = 150 and He; = 360 have been carried out. Due to the compressible form

of the SBLI code, a Mach number Mel ~ 1.5 has been used in order to increase the

computational time step and, then, to reduce the computational cost. A sketch of

the ridged channel is given in Figure 1.3.

For the hill case, due to the high Reynolds numbers of the experiments, no pre-

vious direct numerical simulations have been carried out. The goal is to investigate

the three-dimensional boundary layer separation which occurs behind the hill and to

provide DNS data to use as benchmark for RANS and LES turbulent models. How-

ever, some simplifications were necessary: firstly, the Reynolds number is only 5%

of the experimental one (ReH ~ 130000). Secondly, as for the ridged channel case,

we have used a Mach number at centerline Moo=0.6 (based on bulk density and wall

viscosity) in order to reduce the computational cost. A sketch of the axisymmetric

hill is given in Figure 1.4.

A multiblock version of the SBLI code has been also proposed. The objective is to
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allow the simulation of turbulent flow over very complex geometries like jets in cross

flow, cavity problems, etc. A two block test case has been performed as demonstration

purposes. It consist in a subsonic jet in a turbulent cross flow at different Reynolds

numbers and different jet to cross flow velocity ratios. A comparison with previous

experimental and numerical works is presented.

The main steps of the present work are summarized in the following points:

• Review of the previous works on the fully 3D curvilinear form of the Navier-

Stokes equations and comparison with previous quasi-3D version of the SBLI

code.

• Rewriting of all the equations for compressible flow in the fully 3D curvilinear

form and implementation into the code.

• Code validation tests, like laminar flow in a plane channel and free stream

preservation in highly distorted meshes.

• DNS of a turbulent flow in a ridged channel and comparison with previous

experimental and numerical works.

• DNS of a flow over an axisymmetric hill and investigation on the mechanism of

the three-dimensional boundary layer separation.

• Extension to multiblock version and DNS of a jet in cross flow as demonstration

test case.

1.4 Outline of Thesis

In this chapter we have given a brief introduction on the CFD, on the turbulence

challenges and on the DNS technique. The main objectives of this work and a brief
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Figure 1.3: Sketch of the ridged channel.

main
flow

Figure 1.4: Sketch of the hill system.

literature review have also been presented. In the rest of the thesis, the chapters are

organized as follows: Chapter 2 is dedicated to the governing equations implemented

into the SBLI code and to the mathematical manipulations used to obtain the fully 3D

curvilinear formulation. The numerical methods applied to those equations are given

in Chapter 3, while Chapter 4 concerns itself with the code validation tests carried out

for the fully 3D curvilinear version. In Chapter 5 the results obtained from the DNS

of a turbulent flow in a ridged channel are presented, while Chapter 6 is dedicated to

a turbulent flow over an axisymmetric hill. Chapter 7 concerns about the extension

of the present code to a multiblock version. The DNS of a jet in a turbulent cross

flow has been performed as demonstration test case. Finally, the main findings and

results are summarized in Chapter 8. In Appendices A-D the details on the governing

equations, non reflecting boundary conditions and inlet conditions for generating a

turbulent boundary layer are given.
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Governing Equations

In this chapter we present the equations of the fluid dynamics and how these equations

are rewritten in the fully 3D curvilinear form. Section 2.1 presents the dimensional

form of the equations and the procedure to obtain the non-dimensional form. This

operation gives two main advantages: a) to identify a'set of dimensionless variables

which describe the fluid flow physics; b) to obtain values around the unity. Section 2.2

gives the hyperbolic form of the fluid dynamics equations necessary to apply the body-

fitted coordinate method and, then, to simulate flows around complex geometries.

The main mathematical manipulations are here given (see Appendixes Band C for

more details) and a comparison with the previous quasi-3D version of the code is

presented. A brief summary in Section 2.3 closes this chapter.

2.1 3D Navier-Stokes Equations in Cartesian Co-

ordinates

The equations solved in the SBLI code are the 3D compressible Navier-Stokes equa-

tions of the fluid dynamics. The perfect gas law equation closes the number of equa-

tions and number of independent variables problem (six equations for six variables).
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Moreover, a Newtonian fluid is assumed and, then, the correlation between stress and

velocity is well defined. Constant parameters are used for the thermal proprieties

(like the thermal conductivity k, the heat capacity Gp, etc.), while the viscosity p, is

assumed to be a function of the temperature (e.g. the power law p,* = T*O.76for the

air).

2.1.1 Dimensional Equations

In the following, the asterisk superscript * indicates dimensional variables. Constant

proprieties do not have the asterisk because their non-dimensional values is unitary.

The 3D compressible fluid dynamics equations in Cartesian coordinates and in differ-

ential dimensional form are:

continuity
8p* 8(p*ui)
8t* + 8x~ = 0,, (2.1)

momentum
8(p*ui) 8(p*u;uj + p*8ij) 8rtj_

8t* + 8x*: - 8x*: - 0,
J J

(2.2)

energy

(2.3)

where, for i, j = 1,2,3, we obtain the spatial coordinates (x*, y*, z*), the velocity

components (u*, v*, w*) and the thermal flux terms (q;, q;, q;). The density p* and

the pressure p* are linked by the equation of state for a perfect gas:

p* = p*RT*, (2.4)

where R is the universal gas constant. For a Newtonian fluid, the stress components
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rtj are linked to velocity field by:

(2.5)

where J-L*is the viscosity, 8ij is the Kronecker's index and k = 1,2,3. For the transport

of thermal conductivity energy we assume valid the Fourier's law:

et-q; = -k-a*'Xi
(2.6)

Finally, the total energy E;ot is linked to internal energy e" and to kinematic energy

by:

E* *( * + 1 * *)tot = P e "2Ui Ui , (2.7)

Another useful equation is the definition of Mach number for a perfect gas:

M = U*/V,RT*, (2.8)

where , is the specific heat ratio, or adiabatic index, and U* is the norma of the

vector velocity:

U* = IIu:ll, (2.9)

Note: as the Mach number M is already a non-dimensional quantity like the specific

heat ratio" the asterisk is not used for this variable.
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2.1.2 Derivation of Dimensionless Equations

The non-dimensional form of the above equations helps to reduce the number of

variables of a generic physical phenomenon. It is based on the Buckingham IT-theorem

(see any good text book of fluid dynamics, like Denn, 1980) that states that the

number n of physical variables can be reduced to k = n - m, where m is the number

of independent fundamental physical quantities. In order to recognize the typical

dimensionless groups, it is necessary to define some reference values. In our case, we

define the following dimensionless quantity where the pedis" r" indicates the reference

conditions:

p*
P= -;,

Pr

p*
p= *U*2'p; r

T*
T= T*'

r

e*
e = U*2'

r

t* ru:
t = .§l_ = b*r,

U* rr

(2.10)

It is possible now to transform the eqns. (2.1)-(2.3) in the dimensionless form. After

several manipulations (details are given in Appendix A), we obtain:

(2.11)

8(pUi) + 8(PUiUj +pbij) _ 8Tij = 0,
8t 8xj 8xj

(2.12)

(2.13)

41



Chapter 2. Governing Equations

The dimensionless groups are included in the stress tensor term tij and in the flux

term qias following:

(2.14)

and

11 J-L erqi=--- -,Re Pr M2(! - 1) aXi (2.15)

where the Reynolds (Re), Mach (M) and Prandtl (Pr) number are defined as:

iu:s:Re = Pr rUr
* 'J-Lr

M= u;
V,RT; , (2.16)

The choice of the reference values depend on the flow system that wewant to simulate.

For example, in a channel case it is convenient to take as reference the values at wall,

like the wall temperature Tw, in case of isothermal walls, and the friction velocity

(u;) in case of turbulent flow:

u' = J 1f' =
T Pb w

J-L:V (ail* )
Pb ay* w '

(2.17)

where the overbar indicates the Reynolds averaged value. Half height of the channel

(h) is usually used as characteristic length and the bulk density (defined as Pb =

Ij(2h) J~!:p*dy*, where the tilde indicates the Favre averaged value) is taken as the

reference density. For the isothermal walls the viscosity at wall is also constant and

can be taken as reference (J-L~).

In a boundary layer flow the reference quantities are usually the free stream values

indicated with a "00" pedis: u~, p~, J-L~ and T~. As reference length is normally
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chosen the displacement boundary layer thickness at the inlet of the system (o:n).

2.2 3D Navier-Stokes Equations in Curvilinear Co-

ordinates

The use of body-fitted curvilinear method needs of a hyperbolic form of the fluid

dynamics equations (see Anderson, 1995). In particular, eqns. (2.1)-(2.3) can be

rewritten as:

oU of OC oH _ 0
ot + ox + oy + oz - , (2.18)

where:

p

{YU

U= pv

pW

Etot,

(2.19)

{YU

(2.20)F=
puu + P - Txx

PUV - Txy

PUW - Txz

(Etot + p)u + qx - TxxU - TxyV - TxzW
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pv

ptn» - Tyx

G= PVV + p - Tyy (2.21)

pvw - Tyz

(Etot + p)v + qy - TyxU - TyyV - TyzW

pw

PWU - Tzx

H= PWV - Tzy (2.22)

PWW +p - Tzz

(Etot + p)w + qz - TzxU - TzyV - TzzW

The method consists in the transformation from a generic physical domain (x, y, z)

to an orthogonal computational domain (~, 'T/, () where the points are equidistant and

compact differential schemes can be easier applied. This transformation is expressed

by the relationships between the physical and the computational coordinates:

~=~(x,y,z),

'T/ = 'T/(x, y, z),

( = ((x, y, z).

(2.23)

The eqn. (2.18) can be transformed in the computational domain with the following

manipulation:

oU+oF~+8F~+8Fo(+8G8~+8G8",+8G8(m ~& ~& ~& ~~ ~~ ~~
+8H 8~ + 8H 8", + 8H 8( = O. (2.24)

8~ 8z 8", 8z o( Bz
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Then, it is necessary to find the relationships between the derivatives of the compu-

tational coordinates (o~/ ax, 01]/ax, 0(/ ax, etc.) and the derivatives of the physical

coordinates (ox/o~, oy/o~, oz/o~, etc.), called direct metrics and inverse metrics, re-

spectively. The equations (2.23), or direct transformations, are written in differential

form:

o~ o~ o~
d~ = ox dx + ay dy + oz dz,

01] 01] 01]
d1]= ox dx + ay dy + oz dz,

o( o( o(
d( = ox dx + ay dy + oz dz,

(2.25)

or in matrix form:

o~ o~ o~-
ax ay oz

d~ dx

d1]
01] 01] 01]

dy- ax ay oz
d( dz

o( o( o(
ax ay oz

(2.26)

Same manipulation can be done for the inverse metrics using the inverse transforma-

tions:

x = x(~, 1], (),

y = y(~, 1], (),

z = z(~, 1], (),

(2.27)
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to have:

AX ax axdx = o~d~ + a",d",+ o(d(,

(2.28)

or in matrix form:

ax ax ax-o~ a", o(
dx d~
dy ay ay ay d", (2.29)- o~ a", o(
dz d(

oz oz oz
-o~ a", o(

By comparing the eqn. (2.26) with the eqn. (2.29), we have:

o~ o~ o~ ax ax ax -1

- -ax ay oz o~ a", o(

a", a", a", ay ay ay
(2.30)- -ax ay oz o~ a", o(

o( o( o( oz oz oz
- - -ax ay. oz o~ a", o(

Then, we can write the relationship between the two metrics using the inverse formula
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of a matrix. The matrix on the right hand side of eqn. (2.30) is called Jacobian matrix

and its determinant is indicated with J:

ax ax ax
a~ ari a(

J=
ay ay ay (2.31)-a~ a1] a(

az az az-a~ a1] a(

Finally, the relationship between the two metrics are:

a~ _ 1 (axaz aX8z)-_-_ ----- ,ay J a1]a( a( a1]
81] 1 (ax Bz ax az)ay = J a~ a( - a( a~ ,
a( = _l_ (axaz _ axaz),
ay J a~ 81] a1]8~

8~ 1 (ax ay ax ay)az - J a1]a( - a( 81] ,

a1] 1 (ax ay ax ay)az = - J a~ a( - a( a~ ,
8( _ 1 (axay aX8y)
az - J aE"a1]- 8"8~

(2.32)

After several mathematical manipulations (details are given in Appendix B), it is

possible to rewrite the eqn. (2.24) in terms of the computational domain:

(2.33)

where:

U1 - JU,

47



Chapter 2. Governing Equations

FI - (JFO~ JGo~ JHo~)ox + ay + oz'

GI - (JF
Ory

JG
ory

JHOry)ox + ay + oz'

The eqn. (2.33) is the equation solved in the SBLI code in the computational domain

(~,n, C). In the previous version of the SBLI code (see Sandham et al., 2003), only

geometries with a linear stretching in the z-coordinate were possible to solve. This is

equivalent to pose equal zero the following values of the Jacobian matrix:

ox _ ay _ Bz _ oz _ 0
oC - oC - o~ - ory - .

This leads to a simplification of the metrics relationships as:

o~
ax

lay
Jory'

o~ lax
ay =- Jory'

ory lax
ay - J o(

(2.34)

and

~; ~O.
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A complete review of all the subroutines where the metric quantities are involved

has been necessary. In the Appendix C are presented the mathematical manipulations

and the new nomenclature used in the equations for the fully-3D curvilinear version

of the code.

2.3 Summary

The dimensional and non-dimensional equations solved by the SBLI code are pre-

sented. Details about the reference values used in the channel and boundary layer

flow are given and a presentation of the body-fitted coordinate method, accomplished

with details of equations derivation, has been presented. All the equations are now

ready to be discretized with the numerical method presented in the next chapter.
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Numerical Methods

In this chapter we describe the numerical methods used to solve the fluid dynamics

equations presented in Chapter 2. Some descriptions of the numerical features of

the SBLI code, like the TVD scheme and LES models (see Narasimhan 2005 and

Sandham et al. 2003), are here omitted because, even if updated to the fully 3D

curvilinear status, they have not been fully tested.

Section 3.1 describes the spatial discretization operator with an introduction on

the stable treatment of the boundary conditions. Then, it follows the description of

the time marching scheme (Section 3.2) and the relationship of stability between the

time step and the CFL number. The entropy splitting method is introduced in Section

3.3 with a brief explanation of the energy estimation concept. The treatment of the

boundary conditions by the characteristic form of the N-S equations is presented in

Section 3.4. The integral condition is also defined. Section 3.5 concludes this chapter,

where the filtering schemes used in presence of non smooth meshes is described.
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3.1 Spatial Discretization

A fourth-order central scheme has been used for the spatial approximation of the

derivatives terms. The first and second derivative operators for the internal and

periodic boundary points, are:

i' - -Im+2 + 81m+! - 8/m-l + Im-2
m - . 12~h ' (3.1)

I~ = - Im+2 + 161m+! - 301m + 161m-l - Im-2
12~h2 (3.2)

where ~h is the grid spacing.

In the presence of non periodic conditions (like a no slip wall boundary), the

scheme use a one-side formula which is consistent with the central scheme. More-

over, the scheme needs to be conservative, in order to respect the fluid dynamics

principles, and give a stable solution. A scheme proposed by Carpenter et al. (1999)

satisfies these requirements and a first-derivative operator for the combined interior

and boundary scheme is given by:

D.... 1 p-lQ ....
U = ~h u, (3.3)

where U= [uo, ... ,UNY. The values of the matrix P and Q for a fourth order scheme
are:

- (216b+2160a-21251 81b+675a+415 -(72b+720a+445) ~(108b+756a+4211
12960 540 1440 1296

81b±675a±415 - (4104b+324()Oa+ 112251 183Gb± 14580a±1295 -!216b+2160a+6551
540 4320 2160 4320

-!72b+72Oa+4451 1836b±14580a±7295 !4104b+32400a+127851 81b±675a±335
1440 2160 4320 540

p=
-(108b+756a+4211 -(216b+2160a+655) 81b±675a±335 -(216b+2160a-120851

1296 4320 540 12960
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-1 - (864b+6480a +305) (216h+1620a+725) - (864b+6480a+3335)
""2 4320 540 4320

864b±6480a±305 0 - (864b+6480a+2315) (108b+810a+415)
4320 1440 270

-(216b+1620a+725) 864b±6480a+2315 0 -(864b+6480a+785) -1
540 1440 4320 12

Q= (864b+6480a+3335) -(108b+810a+415) 864b±6480a+785 2 -1
4320 270 4320 0 '3" 12

n -2 0 i -1
""3 12

where a and b are coefficients with following value:

-(2117J295369 - 1166427)
a = ____;----25-4-8-8-----'-'

b = 66195V53J5573 - 35909375)
101952 '

(3.4)

(3.5)

and the dots indicate continuation of previous entries along the matrix diagonal. The

values of the matrix first derivative operator Dis:

-1.833 3.0 -1.5 0.3334

-0.3763 -0.3225 0.7194 0.0394 -0.0658 0.0057
1D=- 0.1134 -0.7913 0.1972 0.5214 -0.0367 -0.0041Ah

0.0093 -0.1219 -0.7278 0.0451 -0.6521 -0.0820

-0.0833 0.6667 0 -0.6667 0.0833

and the second derivative operator D":
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35 26 19 14 11
23 -3 2 -3 12

11 5 1 1 1
12 -3 2 3 -12

" 1
-1.. 4 _Q 4 1

D = (~h)2
12 3 2 3 -12

3.2 Time Marching Scheme

A third-order compact storage Runge-Kutta scheme is implemented in the SBLI code

in order to integrate the fluid dynamics equations in the time (see Wray, 1986 and

Spalart, 1991). The method require two storage locations UA and UB, updated as

following:

I) Step one

UB=UA,

U1=UA + a11~tf(UA' tn),

U1=UB + a21~tf(UA' tn).

II) Step two:

t1=tn + a11~t,

Ul=U1 + a12~tf(U1, t~),

U~=U1 + a22~tf(U1, t~).

III) Step three:

t2=tn + (a12+ a21)~t,

U~=U~ + a13~tf(Ul, t;),

U~=U~ + a23~tf(Ul, t;).
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IV) Step four:

tn+! =t« + i).t,

UA=U~,

UB=U~,

where alj and a2j are constants for the three sub time step (j = 1,2,3):

alj = (2/3,5/12,3/5), a2j = (1/4,3/20,3/5). (3.6)

In general, the stability limit imposes the following relationship between the time step

and the CFL number:

(3.7)

where the maximum CFL value is fixed by the time-advance method, which for the

RK3 is v'3. The value of b for a plane channel is:

b =M +1:1+~ +h fiE +412 (_'Y_),
i).x i).y i).z Y p RePr (3.8)

where

h= 1 1 1
(i).X)2 + (i).y)2 + (i).Z)2' (3.9)

1 1 1 2 2 2
12= +--+--+ + + .(i).X)2 (i).y)2 (i).Z)2 i).xi).y i).xi).z i).yi).z

(3.10)

For flows considered incompressible (M < 0.3) the time step become very small and

an expensive computational time is normally required. This is a typical inconvenient

of solvers for compressible fluids used to simulate flows at very low Mach number.

For the boundary layer flow the following formula is adopted:
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CFL
fl.t = fl. fl.'c+ Jl

(3.11)

where

fl.c = 11"v'T (_1 + _1 + J_) ,
M fl.x fl.y fl.z (3.12)

fl. 11"2 Jl [1 1 1 1
Jl = (-y _ I)M2RePrp (fl.X)2 + (fl.y)2 + (fl.Z)2 .

This formula is obtained by assuming periodic conditions in all the direction and

solving a Fourier transformed convection-diffusion equation model.

3.3 Entropy Splitting

Turbulent flow simulation requires long integration time which normally can indefi-

nitely increase the numerical error causing the instability of the solution. As presented

in Vee et al. (1999), the application of the energy estimation method to the Euler

equations (see the work of Harten, 1983, Olsson, 1995 part I and part II and Ger-

ritsen and Olsson, 1996) can be applied to the Navier-Stokes equations in order to

stabilize the solution of long time integration problems: The basic idea consists of a

transformation of the equations in a symmetric form by an adapted variable wand

then splitting, by a splitting parameter /3, in a conservative portion and in another

non-conservative portion, both in symmetric form. Then, the summation by parts

propriety can be applied to each portion in order to estimate an upper bound to the

energy growth. This will guarantee the stability of the algorithm.

The procedure can be explained considering the ID-convective equation:
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Ut + Ix = 0, (3.13)

where the variable of derivation has been indicated with the pedis. Applying the

chain rule with the above mentioned variable w we obtain:

Ut + Ix = UwWt + Iwwx = 0, (3.14)

where the Jacobian of Iw is symmetric, Uw is symmetric and positive defined and

u( w) and I( w) are homogeneous functions of w, i.e.:

U(Ow) Of3u(w),

I (Ow ) - Of3I (w ) , O,f3ESR

(3.15)

(3.16)

Moreover, they satisfy the Euler's differential equation:

Iww - f31·

(3.17)

(3.18)

Uww - f3u,

We apply now the canonical splitting to the transformed derivative flux vector Iwwx:

(1+ f3)Ut = f3lx + f3lwwx,

f3 1
Iwwx = 1+ f3lx + f3 + 1/wwx = 0,

(3.19)

(3.20)
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and, applying the scalar product between wand each term of the previous equa-

tion, we have:

(1+ fJ)(w, Ut) = fJ(w, Ix) + fJ(w, Iwwx). (3.21)

Using the integration by parts theorem:

(3.22)

The above equation can be rewritten using the propriety defined byeqns. (3.15-3.18):

and, if we substitute in eqn. (3.13), we have:

We can demonstrate that this last equation is equal to an estimate of the energy:

!(w, uww) = (Wt, uw)+(w, (uww)t) = (Ut, w)+fJ(w, Ut) = (l+fJ)(w, Ut) = _wT Iwwl~.

(3.25)

We conclude that the split form give an estimate of the energy growth bounded

between the boundary condition in a and b.
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Applied to the Navier-Stokes equations, the entropy splitting form can be written

as:

Ut+ f3! 1o:+Gy +Hz) + f3: 1(FwWx +GwWy +HwWz) = ~e (F: +G~ +H~),
(3.26)

with f3=I -1 and

The upper triangular part of the symmetric matrices Fw, Gw and Hw are given by

1Fw=-Pt

1Gw=-Pt

u[c1Etot + (C2 - l)p]

U2[C3 - ~(Etot +p)]
uv[c1Etot + (C2 - 2)p]

(3.28)

v[c1Etot + (C2 - l)p]

uv[c1Etot + (C2 - 2)p]

V2[C3 - ~(Etot + p)]

CIPUVW

(3.29)
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1Hw=-Pt

W(ClPU2 - p) CIPUVW U(CIPW2 - p) uw[clEtot + (C2 - 2)p]

W(CIPV2 - p) V(CIPW2 - p) vw[clEtot + (C2 - 2)p]

W(CIPW2 - 3p) W2[C3 - ~(Etot + p)]

(3.30)

where

(3.31)

(3.32)

(3.33)

(3.34)

clE'tot [( )e; 2] p2 [( (3) 2]C4 = _- +p 2 C2 - 1 - - q + - C2 1+ - ,
P P P

(3.35)

(3.36)

PV, G" and HV are the viscous and heat conduction terms, with

PV=

o p,!!..e. _p,!!..e.
ax ax

p, au p,(aU _ ~~)
ax ax 3 aXl

- p, av + p, au (3.37)ax ay ,
p,aw p, au

ax az
p,aA BIax

'Txy

'Txz

+ + p aT
U'Txx + V'Txy W'Txz (,,),-I)PrM2 ax

59



Chapter 3. Numerical Methods

0 J-L!l.e. -J-L!l.e.ay ay
7yx J-Lau J-Lavay ax

GV= 7yy - J-Lav + J-L(av - ~ fu!L ) (3.38)ay ay 3 aXl ,

7yz J-Law J-Lavay az
aT J-LaA B2U7yx + "Tw + W7yz + (-y-I)PrM2 ay ay

0 J-L!l.e. -J-L!l.e.az az
7zx J-Lau J-Lawaz ax

HV= 7zy - J-Lav + J-Law (3.39)az ay ,

7zz J-Law J-L(aw - ~ fu!L )az az 3 aXl
aT J-LaA B3U7zx + V7zy + W7zz + (-y-I)PrM2 az az

where A = 'Y/Pr(Etot/p - ~UiUi) + ~UiUi' BI = J-Lu(8u/8x - ~8uz/8xl) + J-Lv8u8y +
J-Lw8u8z, B2 = J-Lu(8v/8x) + J-Lv(8v/8y - ~8uz/8xz) + J-Lw8v8z, B3 = J-Lu(8w/8x) +
J-Lv(8w/8y) + J-Lw(8w/8z - ~8uz/8xz).

3.4 Characteristic Non-Reflecting Boundary Con-

ditions

To properly simulate the incoming and outgoing fluid flow at the inlet/outlet of the

domain, the characteristic non-reflecting boundary conditions method, based on the

work of Poinsot and Lele (1992) and Strikwerda (1977), has been used. The idea is

based on the characteristic form of the Euler equations, extended to the Navier-Stokes

equations, where the incoming waves external to the computational domain are set

equal zero. Considering the eqn. (2.18) in a compact form:

Ut + Fx + Gy + Hz = r.h.s. (3.40)
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and introducing the non-conservative variables U=[p, u, v, w,pp'Y]T and V=[p, u, v, w,p]T,

we obtain, using the chain rule:

-1 A -1 A - -1 -Ut+ RT LTSVx + RT MTSVy + RT NTSYz = r.h.s., (3.41)

where
1 0 0 0 0

u p 0 0 0
au (3.42)R=-A = v 0 p 0 0au

w 0 0 p 0
La pu pv pw 'Y-l

with a = c2/ (, - 1) + (u2 + v2 + w2) /2 and c the speed of sound. Moreover:

1 -1 0 -1 0 (u - c) [~ - pc~]2c2 C2 C2
-1 0 0 02~C u[1E-c2~]2pc dx dx

T-1= 0 0 1 0 0 LTSVx = udv (3.43)dx

0 0 0 1 0 udwdx
0 .i, 0 0 0 (u + c) [~ + pc~~]p'Y

1 0 -1 0 -1 (v - c) [~ - pc~~]2c2 C2 C2

0 1 0 0 0 Vdu
dy

1'-1 = -1 0 0 02~C M1'SVy = v [112- C2~] (3.44)2pc dy dy

0 0 0 1 0 vdwdy
0 0 .l.. 0 0 (v + c) [~+ pc~~]p'Y

61



Chapter 3. Numerical Methods

2!2 00 ~} -!
C2 (w - c) [~ - pc~~]

Wdu
dz

(3.45)
o 100 0

wdv
dz

-! 0 0 O! w [!!:P.. - c2!iE.]
2pc 2pc dz dz

o 0 0 .i, 0 (w + c) [!!:P.. + pcdW]p~ dz dz

with S = BU/BV, T = (BF/BU)-!, T = (BC/BUt! and T = (BH/BUt!·

o 0 1 0 0

The non-reflective nature of the boundary condition is based on the sign of the

eigenvalue of the diagonal matrix L, M and N presented in eqns. (3.43)-(3.45) which

represent the characteristic ingoing and outgoing into and from the domain. At the

inlet, if the eigenvalue is positive (incoming wave) then the characteristic is set to

zero, while if negative is left as is. Similar rule applies for the outlet boundary.

A good way to maintain the value of the initial flow at the inlet of the domain

(usually located at x = 0) is to filter the outgoing waves by an integral method, that

is: o-» = U" + ft;+l (BF/ Bx)dt, where F is the flux vector normal to the inlet.

This condition is particulary efficient in applications where the inlet is quite far away

from the obstacle, which can form ingoing waves (like a hill or a bluff body). If the

distance is not large enough, the inlet condition can be drastically changed and an

extrapolation of the pressure field can be a preferred solution. In this case, the value

of the pressure at the inlet is found with the following one side formula:

(3.46)

where Pi, for i = 1 - 3, is pressure in the first, second and third point, respectively.

3.5 Filtering Scheme

In applications where non-smooth meshes are involved, like in presence of an abrupt

change of slope or a sudden mesh coarsening, spurious oscillations can be generated
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filter order ao al a2 a3

4th Q+~ 1 -1 +~ 08 4 2 +af 8 4

6th l!+~ 15 + 170</ -3+~ _!_-~
16 8 32 16 16 8 32 16

Table 3.1: Coefficients for 4th- and 6th-order filtering scheme

and the correctness and stability of the whole simulation be inhibit. In these cases

a filtering operation can be an easy solution of the problem without to drastically

change the flow field of the unfiltered solution. The filter operator is the same defined

in Visbal and Gaitonde (2001) and (2002):

(3.47)

where ¢ is the filtered quantities and <p the unfiltered one. The coefficients for fourth

and sixth-order schemes are presented in table 3.1. The value of the parameter

-0.5 ~ af ~ 0.5 controls the dissipation of the filter: at higher values correspond

less dissipation and viceversa. For af = 0 the scheme became explicit and some

advantages are obtained: a) the matrix of the unknown filtered quantities is not

tridiagonal and then a faster solution can be applied; b) if the computational domain

is divided between more processors, an implicit scheme require a parallel tridiago-

nal solver which implies complicate communications between the processors. In the

current version of the code the extreme terms of the tridiagonal matrix (¢O-1 and

¢N+d are considered known and equal to the unfiltered values (¢O-1 = <PO-l and
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3.6 Summary

A description of the numerical methods implemented in the SBLI code has been

given. The spatial derivative and temporal integration schemes have been described

and a short introduction on the entropy splitting concept is also presented with an

example on the ID convective equation. The use of the entropy splitting associated

to the special treatment of the boundary conditions gives a stable and conservative

algorithm. Special attention has been also given to the treatment of the inflow/outflow

conditions by use of characteristic non-reflecting boundary conditions. Finally, a filter

operator used for non smooth meshes has been described and implemented into the

code which is now ready to be tested as shown in the next chapter.
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Code Validation

Some numerical experiments have been carried out in order to validate the SBLI code

with fully 3D curvilinear capability. These tests may not have a practical application,

due to their simplified flow conditions, but they are often used as benchmark cases.

Section 4.1 presents results on a free stream flow preservation on a wavy mesh. A

different formulation of the inviscid terms of eqn. (2.33) is here proposed in order

to avoid numerical errors commonly encountered in the fully 3D curvilinear formu-

lation. A laminar flow in a plane channel with large grid distortions is presented

in Section 4.2. The purpose is to verify the symmetrical propriety of the numerical

errors obtained in the velocity components while the main flow direction and position

of the walls are changed rotationally around the three physical coordinates. Finally,

Section 4.4 presents the pre-compiler program used to simplify the r.h.s subroutine

when flows in non curvilinear geometries are investigated.

4.1 Free Stream Preservation on a Wavy Grid

This test was proposed by Visbal and Gaitonde (2002) and it consists in the preser-

vation of a uniform free stream flow on a wavy grid. Because no external forces are
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applied on the fluid, the initial flow field should be preserved in the time and in the

space, whatever is the mesh used to discretize the domain. An eventual departure

from their initial value of the velocity components indicate an error in the imple-

mentation of the fully 3D curvilinear form. The mesh, presented in Figure 4.1, is

described by the following formula as:

(4.1)

(4.2)

(4.3)

where x, y, z are the x, y, z-coordinates of a uniform mesh, respectively (e.g. x =

(i - l)~x, etc., where i is the grid index and ~x the grid spacing in the x-direction)

and Ai and ui, are, respectively, the amplitude and the frequency of the sinusoidal

wave function, respectively.

As pointed out by Pulliam and Steger (1978), when a derivative operator of central

scheme is applied with a 3D body-fitted curvilinear coordinate system, an error can

occur due to the non cancelation of the following terms:

(4.4)

I, = ; (J~) + ~ (J:) +%( (J~;)= (to), + (1)0). + ((ok,

66

(4.5)



Chapter 4. Code Validation

Figure 4.1: Wavy mesh used for the free stream preservation test.

8 ( 8~) 8 ( ihj) 8 ( 8C) • • • (4.6)13 = a~ J az + aTJ J az + a( J az = (~z)~ + (TJz)TJ+ ((z),.

where

A Ja~ A JaTJ A a(
(4.7)~x - TJx= ax' (x = J ax'ax'

A Ja~ A JaTJ A a(
(4.8)~y - TJy= ay' (y = J ay'ay'

Ja~ A JaTJ A a(
(4.9)~z - az' TJz= az' (z = J az·

Pulliam and Steger proposed an averaging procedure in order to guarantee the free

stream preservation, but that approach is difficult to extend to high-order formulation.

Thomas and Lombard (1978) suggested the following conservative form for the metric

terms:

~x = YTJz, - y,zTJ = (YTJz), - (y,z)TJ'

~y = zTJx, - z,xTJ = (ZTJx), - (z,x)TJ'

67



Chapter 4. Code Validation

etc, ... (4.10)

It easy to verify that the above formulation satisfy the metric cancelation when a

central scheme is applied. The method is easy to apply to high-order scheme and good

results are obtained as shown in Visbal and Gaitonde (2002). However, a different

but much simpler reformulation has been here introduced. The idea is to solve, for

the inviscid terms, the eqn. B.l without the changing form described in Appendix

B . The same equation can be obtained expanding the derivative operator applied to

the inviscid terms presented in Appendix C, if the II, 12 and 13 terms are zero. For

example, the ~-derivatives of the x-momentum equation will be computed as:

a [ a~l a [ a~l a [ a~la~ (puu + p) Jax + a~ (puv) Jay + a~ (puw) J az =

a a~ a a~ a a~a~ [(puu +p)] Jax + a~ [(puv)] Jay + a~ [(puw)] Jaz· (4.11)

Following this approach we force the cancelation of 11-13 terms and the free stream

preservation can be guaranteed even without the continuity and second derivability

conditions that are necessary for the mathematical manipulations presented in Ap-

pendix B (these conditions are necessary to apply the Schwartz's theorem on the cross

derivatives which simplifies the equations reported in Appendix B).

The free stream preservation test has been carried out with the following compu-

tational values: Lx = Ly = L, = 4, Ax = Ay = Az = 1 and Wx = Wy = ui; = 1/4 for

a mesh of Nx = Ny = Nz = 21 points; Re = 500, M = 1, u = 1, v = w = 0 as flow

conditions. After 100 iteration at a computational time step of 10-4 the departure

from the initial value has been found around 10-16•
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4.2 Laminar Flow in a Plane Channel with large

grid distortions

In the previous free stream preservation test all the metric terms were different from

zero. However, due to the uniform value of the velocity field applied, many of those

terms were multiplied by the null value of the velocity derivatives. A laminar flow in

a plane channel with large grid distortions contains, at least, non-zero velocity deriva-

tives in the wall normal direction. The mesh is stretched with a tangent hyperbolic

function in the direction of the walls and with a cosinusoidal function, similar to the

free stream case, in the other directions (see Figure 4.2).

-O.51:-+-++++---l-1-+-+-+++--I--+---l---l

-1_~1 tti-O~.5~~O~ttO~.5~~L
x

(a) x - y plane at z = -1 (b) x - z plane at y = 0

Figure 4.2: Plane channel with large grid distortions.

The analytical solution is the well known parabolic Poiseuille profile, but here same

difference from the theoretical values are quite evident due to the high distortions and

coarse mesh resolution. However, these numerical errors are the key of our test: on a

coarse and distorted mesh the numerical derivatives can be quite different from the

correct analytical value and a relatively large error is introduced into the simulation.

Due to the laminar nature of the flows (if the error does not grow up to have an

unstable condition), by alternating the directions of the flow and the position of the
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walls, same results should be obtained. Because of the three-dimensional nature of

the code, three pair of numerical errors are expected for a total of six tests. Table

4.1 gives the test conditions and maximum error in each direction. The simulations

are carried out at Re = 20 and M = 0.1 with a fix time step of dt = 0.01 and for 100

iterations. The dimensions of the plane channel are Lx=Ly=Lz=2, while 17 points in

each direction have been used. Periodicity is applied except on the wall side and the

flow is driven by a constant pressure gradient of Bp/ox = -1. The entropy splitting

was switched off using an entropy factor (3 = 1 X 1010 to avoid loss of mass. In each

Test wall in x wall in y wall in z _!!l!. _!!l!. _!!l!. Ipulmax Ipvlmax Ipwlmaxax ay az
lA yes no no 0 1 0 0.0216936 9.1340434 0.0040708

IB yes no no 0 0 1 0.0216936 0.0040708 9.1340434

IIA no yes no 1 0 0 9.1340434 0.0216936 0.0040708

lIB no yes no 0 0 1 0.0040708 0.0216936 9.1340434

IlIA no no yes 1 0 0 9.1340434 0.0040708 0.0216936

IIIB no no yes 0 1 0 0.0040708 9.1340434 0.0216936

Table 4.1: Plane channel test cases and results

test cases, the grid parameters defined in eqns. (4.1-4.3) are Ax=Ay=Az=1.5 and

wx=wy=wz=1.5. The results are presented in Table 4.1 in maximum absolute value

of the velocity components. As expected, alternating the x-direction with y, y with z

and z with x we obtain the same pair of numerical errors for the velocities swapping

u with v, v with wand w with u.
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4.3 Pulse ID

The following test consists of a density pulse signal moving across an interface with

different grid density (see Figure 4.3a). The pulse is defined as:

1
(4.12)p - 1+ ee1n(2) ("'_;0)2 ,

u - 1, (4.13)

v - w=O, (4.14)

where e = 10 and XQ = 4. The number of points is Nx x Ny x Nz = 47 x 7 x 7

in the streamwise, normal and spanwise directions, respectively, while the physical

dimensions are L; x Ly x Lz = 20 x 1 x 1 with the grid interface at x=4. Without

any filter, after a computational of T = 10 time units the flow solution presents some

spurious oscillations in correspondence of the sudden coarsening point (see Figure

4.3b). Explicit and implicit sixth order filters (with at = 0) are applied and compared

with the unfiltered solution and among them. The filtered solution presents only a

small oscillation around x = 8 and the amplitude of the pulse is better preserved than

in the unfiltered solution. The explicit filter gives a result very close to the implicit

one just after the interface, but slightly different further downstream. Same results

have been found in the work of Visbal and Gaitonde (2001).
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Figure 4.3: Results for pulse ID test case: comparison between unfiltered solution

and response obtained with different filtering schemes.
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4.4 Optimization of r.h.s.

For simple geometries, where no stretching or curvilinearity is applied in all the

directions, many terms of the r.h.s. subroutine are zero. However, a normal compiler

will still consider these terms and the operations between one or more null quantities

will require the same computational time of a normal operation. The code can be

remarkably speed up if a pre-compiler is able to detect the non zero terms present

in the r.h.s. and generate a new file containing the simplified subroutine by omitting

those" zero" terms. For example, we consider the following line of the code:

Jac(l,l)*( wx(i,j,k,18)*(c43*(wx(i,j,k, 8)*Jacodet(l,l)

+wx(i,j,k, 9)*Jacodet(2,l)

+wx(i,j,k,lO)* Jacodet(3, I))))

if the term" Jacodet(l,l) " is equal zero the previous expression become:

Jac(l,l)*( wx(i,j,k,18)*(

+wx(i,j,k, 9)*Jacodet(2,l)

+wx(i,j,k,lO)* Jacodet(3, I)))

Obvious the permanent zero terms are only those linked to the grid transforma-

tion, nothing can be pre-decided about the velocity field as it can be zero just for

some instants. After the reading of the geometric coordinates, it is possible to eval-

uate which terms, like" Jac(l,l)", "Jacodet(l,l)", etc., are zero or unitary in the

full domain. A cyclic simplification of the different quantities, considering all the

mathematical operations, brings to a complete simplification of the r.h.s. subroutine.

Figure 4.4 shows a flow-chart illustrating of the pre-compiler program.
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In order to verify the correctness and the performance of the pre-compiler program,

simulations of a laminar flow in a plane channel with different meshing arrangement

have been carried out. Four tests cases are considered:

I) fully orthogonal mesh: 8x/8~ = 8y/8rt = 8z/8( =I- 0, 1 and

8x/8rt=8x/8( =8y/8~=8y/8( =8z/8~=8z/8rt=0;

II) curvilinear in x-direction mesh: 8x/8~=8y/8rt=8z/8( =I- 0,1 ,8x/8rt=8x/8( =I-

0, 1 and8y/8~=8y/8( =8z/8~=8z/8rt=0;

III) curvilinear in y-direction mesh: 8x / 8~=8y / 8rt=8z / 8( =I- 0, 1 ,8x / 8rt=8x / 8( =0

,8y/8~=8y/8( =I- 0, 1 and8z/8~=8z/8rt=0;

IV) curvilinear in z-direction mesh: 8x/8~=8y/8rt=8z/8( =I- 0,1 ,8x/8rt=8x/8(=0

,8y/8~=8y/8(=0 and8z/8~=8z/8rt =I- 0, 1;

Table 4.2 presents the results obtained: in the best case (from full 3D to orthog-

onal) the computational time associated with the r.h.s. subroutine (main cost of the

computation) is shortened by a factor of four and a total performance of about a

factor of two is achieved. In the other cases the improvement is around 20%, how-

ever, this can be a significatively saving of AUs for very large job. Obvious, in all

the test cases the correctness of the results has been verified successfully. Finally,

the performance also depends on the number of points used in each direction (from

here the difference of the results obtained between cases II), III) and IV), which are

similar).
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Test time r.h.s. time r.h.s. speedup time step time step speedup

case full 3D simplified r.h.s full 3D simplified time step

[s] [s] [slit] [slit]

I 56.76 14.17 4 0.094 0.049 1.92

II 34.1 28.68 1.19 0.034 0.028 1.21

III 33.29 30.05 1.11 0.033 0.030 1.1

IV 37.13 30.39 1.22 0.037 0.030 1.23

Table 4.2: Performance of the SBLI code with pre-compiler for different test cases: a

maximum speed up of a factor ~2 is obtained for fully orthogonal mesh (test I).

75



Chapter 4. Code Validation

find Jacobian
terms equal 0

...--~ do i=1: number of
terms equal 0 (N)

no

no

Figure 4.4: Flow chart of pre-compiler program.
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Turbulent Flow in a Ridged

Channel

In this chapter we are going to use the fully 3D curvilinear code to simulate a 3D

turbulent flow of interest. The system is a ridged channel and it presents a stretching

in the z-y plane which was possible to simulate with the previous version of the SBLI

code only with an inversion of the z axis with the x axis.

Section 5.1 gives an introduction on the turbulent flow in a ridged channel and

its practical applications. Section 5.2 gives details on the computational domain and

fluid flow conditions; boundary and initial conditions are also given. Section 5.3

presents the results obtained for a laminar flow: this case does not have practical

interest, but it is useful in order to check that geometry, mesh and other generic

flow conditions are well set up. Section 5.4 presents the results from the turbulent

flow simulations carried out at ReT = 150 and the comparisons with previous ex-

perimental and numerical published data (Nezu and Nakagawa (1984), hereafter also

indicated as NN; Kawamura and Sumori (1999), KS; Falcomer and Armenio (2002),

FA). Differences have been pointed out and discussed. In the successive Section 5.5

the results obtained at an intermediate Reynold number ReT = 360 are presented. A
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comparison with the LES of Falcomer and Armenio (2002) performed at ReT = 580

is presented. Finally, Section 5.6 contain a summary of this chapter.

5.1 Introduction and Previous Works

A ridged channel consists of a channel with longitudinally ridged walls along the

streamwise direction of the fluid flow (see Figure 5.1). The fluid is primarily moving

in parallel to direction of the ridged walls, but if the Reynolds number is sufficiently

high, a pair of large recirculations perpendicular to the main flow can be observed.

The intensity of the recirculations can be measured by the streamwise vorticity, while

the effect of the ridged walls on the fluid-surface drag coefficient between fluid and

surface can be quantified by the the friction velocity along the spanwise direction.

If we consider only half of the channel, this system has practical interest, for

example, in the understanding of sediment deposition along rivers. The so called

sand ribbon effect consists of the sediment of the sand concentrated on the bed of a

straight river due to the large recirculation of the water in the spanwise direction.

The shape of these sediments can be represented by the longitudinally ridged walls.

Due to the negligible effect of gravity on the main and the large recirculation flows, a

simulation of a full channel without free surface can be a good approximation of the

physical effects presented in a river (see Naot and Rodi, 1982).

Experiments on the ridged channel have been carried out by Nezu and Nakawaga

(1984). Here a closed air conduit with ridged walls decided on the bottom and the top

of the channel was used to investigate the turbulent structures of the secondary flows.

Although the difference with an open channel geometry, from the preliminary water

flow tests of Naot and Rodi (1982) it seems that the effect of the free surface is not

an essential cause of cellular secondary currents, but it only promotes their intensity

near the free surface. Based on this observation, Nezu and Nakawaga measured the
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intensity of the secondary recirculation by hot wire anemometer and concluded that

the intensity of the recirculation is only 5% of the main streamwise current. They also

suggested that the profile of the streamwise velocity along the wall vertical direction

can be sufficiently well represented by the log law even above the inclined walls. From

this assumption they estimated the wall primary stress, or friction velocity, along the

spanwise direction. In the work of Kawamura and Sumori, DNS at low Reynolds

number (ReT=150) has been carried out. Numerically studies have been successively

performed by Kawamura and Sumori (1999) and Falcomer and Armenio (2002). In

this kind of flow, the failure of a isotropic model is clearly due to the equality of the

normal Reynolds stresses. As addressed by Speziale (1984), is the imbalance of these

stresses the cause of the large recirculation. Compared with experiments, this value

is only one quarter of the actual experimental value (ReT = 580). However, good

agreement has been found, especially in the mean profile and streamwise vorticity

values, while major differences are observed in the friction velocity. Falcomer and

Armenio performed a LES at same low Reynolds number of Kawamura and Sumori

and a LES at same experimental value. The results agree in both cases with the

previous published data and additional information have been provided on the co-

herent structures over the ridged walls. Different from the experiments, in the LES

some additional recirculation have been captured close to the ridge corners and the

ridge foot. Moreover, the primary wall stress agrees with the experimental one if it

is calculated using the same log law suggested by Nezu and Nakawaga.

Similar configuration to the ridged channel flow can be found in Falcomer and

Armenio (2004), Hayashi et al. (2003) and in Salinas et al. (2004) where the effect

of the ridged walls on the heat transfer has been investigated.

In this work, simulations of laminar and turbulent flows have been carried out

using the fully 3D curvilinear version of the code. Results have been compared with

the previous DNS and LES cited data. Moreover, simulation at an intermediate
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ReT = 360 has been carried out in order to better understand the effect of the

ridged walls on the turbulence, like the variation of the mean streamwise profile, the

reduction of the Reynolds stresses intensity and the effect on the coherent structures.

Figure 5.1: Scheme of a ridged channel and dimensions based on the reference length

6 = H/2, where H is the height of the channel.

5.2 Domain, Grid and Computational Conditions

Figures 5.2a and 5.2b shows the computational domain and a typical grid for the

ridged channel, respectively. Choosing as reference length half height of the channel

(6 = H/2), the dimensions of the domain for the different test cases are shown in

Table 5.1 (test cases A and B are referred to laminar flow, while I, II and III to

turbulent flow). In the experiments of Nezu and Nakagawa (1984), a wider domain

has been used (4.56) due to the confinement of the fluid. A main requirement for the

correct simulation of a fluid flow system is to have a domain large enough to contain

the maximum turbulent flow structure. In a plane channel flow this is around three

times the height of the channel (66). However, the dimensions chosen here (1.257r6)

are similar to those of Kawamura and Sumori (1999) which satisfy the" minimal flow

unit" conditions suggested by Jimenez (2006) for a plane channel flow. To confirm,
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a two point correlation analysis has been carried out. For the streamwise direction,

the two point normalized correlation is defined as:

R _ u'(xo + r, Yo, zo)u'(xo, Yo, zo)
11- ,

(u'(xo, Yo, ZO))2
(5.1)

where u' is the fluctuation of the velocity. The overbar indicates the time average

and r is the distance from the reference point of coordinates xo, Yo, Zo (here chosen

at the inlet of the domain). A similar definition is used for the correlations in the

vertical and spanwise directions, R22 and R33, respectively.

Yk::.
z

(a) Domain

,..__.,
r,

(b) 11esh in the z-y
plane

Figure 5.2: Scheme and grid of ridged channel.

Figures 5.3 and 5.4 show the two point correlation for the test case I in the streamwise

and the spanwise directions at two different vertical locations (the centerline and close

to the wall, y+ = 19). Along the streamwise direction, whatever is the distance from

the wall, half domain is wide enough for the decay of vertical and streamwise velocity

correlations. Differently, the streamwise component needs a longer domain. Similar

situation is found in the spanwise direction: all the correlations decay nearly to zero

in half spanwise length, apart from the streamwise velocity at the centerline which
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achieves only the 50% of the decay. Similar discrepancies are also found in the work

of Li (2003), where similar computational dimensions have been used (Lx = 38,Ly =

28, L, = 1.58). A possible explanation seems to be the presence of the" acoustic

resonance" effect, as explained in the work of Coleman et al. (1995). However, in

both directions, the results at y+=19 are better than centerline values. This is quite

obvious if we consider that at center channel the flow structures are bigger than close

to wall.

Test Case ReT Lx Ly Lz Tl T2 T3

A 2 1.251T8 28 0.3751T8 0.268 0.528 0.1258

B 2 3.128 28 2.68 0.788 1.048 0.1258

I & II 150 1.251T8 28 0.3751T8 0.268 0.528 0.1258

III 360 1.251T8 28 0.3751T8 0.268 0.528 0.1258

Table 5.1: Dimensions for ridged channel simulations.
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Figure 5.3: Two point correlation for test case I along z-direction at different y+

locations.
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Figure 5.4: Two point correlation for test case I along z-direction at different y+

locations.

The mesh is uniform in the streamwise and spanwise directions, while a hyper-

bolic tangent stretching is applied along the vertical direction. Table 5.2 gives the

computational parameters of the different tests and the grid resolution. Test II will

be the reference test, hereafter indicated as present DNS.

Test Case ReT Nx Ny s. Ntot l:::.x+ l:::.y+ l:::.z+

A 2 7 49 37 12691 1.31 0.02-0.12 0.065

B 2 7 49 61 20923 1.04 0.02-0.12 0.09

I 150 13 49 37 23569 49.06 1.73-10.34 4.91

II 150 49 49 37 88837 12.27 1.73-10.34 4.91

III 360 113 129 70 1020390 12.62 0.74-11.67 6.14

Table 5.2: Computational parameters for ridged channel simulations.

The Reynolds number ReT is based on the friction velocity defined as uTp -
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:b (-~), on the wall temperature Tw (and then the wall viscosity vw), the bulk

density Pb, defined in section 2.2, and the above chosen reference length 15:

(5.2)

The usual friction velocity u; = & = ~ ~u I could not be used in this caseV Pb Pb Y w

due to the presence of the ridge. However, an averaged value along the spanwise

direction can be used (ur) =' {F::}= ~ at} I instead of it, where the () indicatesV Pb Pb Y w

the averaged value in the spanwise direction. The difference between Re; and the

Reynolds number based on (ur) (hereafter indicated as Re(r}) is quite small. For

example, at Re; = 150 correspond a value of Re(r} ~ 140.

Periodic conditions are applied in the x and z directions, while no-slip conditions

are applied at the top and bottom walls. Moreover, the flow is driven by a constant

pressure gradient op/ ox = -1.

The turbulent flow simulations have been carried out at a Mach numbers, based

on the friction velocity urp, of M = 0.1. The corresponding centerline Mach number

is ~ 1.8 and the hypothesis of incompressibility need to be verified a posteriori.

Lower values of the Mach number require a smaller time step (which increases the

computational effort) and, then, they have been not considered.

In the laminar flow simulation the entropy splitting has been switched off by

setting the entropy factor f3 = 4 X 1010, while, in the turbulent flow simulation, a

good stability has been provided by setting f3 = 4 following the work of a plane

channel DNS (see Li, 2003).

For the turbulent flow, a mean turbulent profile, obtained by the law of the wall

and the log law, has been used as initial conditions. Moreover, in order to artificially

introduce the turbulent flow, some perturbations are added on to the mean profile

(see Li, 2003). The perturbations need to be correlated and here are described by the
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following equations:

u' = ALx Leos ((2N - 1),8xx + N ~ 1) sin ((2N - l}rry)

xsin ((2N - 1),8zz + O.4(N - 1)), N = 1,3 (5.3)

v' = -A L sin ((2N - 1),8xx + N ~ 1) (1 + cos ((2N - 1)7rY))

x sin ((2N - 1),8zz + O.4(N - 1)) , N = 1,3 (5.4)

w' = - ~i; LSin ((2N - 1),8xx + N ~ 1) sin ((2N -1)7rY)

xcos ((2N - 1),8zz + O.4(N - 1)), N = 1,3 (5.5)

where ,8x = 27r/ Lx and ,8z = 27r/ Lz. The value of the coefficient A is chosen equal to

10% of the centerline velocity in order to guarantee a convergence to fully developed

turbulent flow after ~ 156/urp time units, as it occurs for the plane channel case

presented in the work of Li (2003). As in the work of Kawamura and Sumori (1999),
i

the results are presented in four chosen locations: ridge center (z/6 = 0, i); ridge

corner (z/6 = 0.13, ii); ridge foot (z/6 = 0.26, iii); trough center (z/6 = 0.6, iv).

The computational costs for the simulations here presented are summarized in

Table 5.3.

Test Case Ntot Proce; Procsy Procs, Procsc; time [h] Cost [AUs]

A 12691 1 8 4 32 0.2 29

B 20923 1 8 4 32 2 302

I 23569 1 8 4 32 6 873

II 88837 4 4 2 32 18 2799

III 1020390 4 4 2 32 124 19074

Table 5.3: Computational costs for ridged channel simulations
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5.3 Laminar Flow Results

We present in this section the results for a laminar flow in a ridged channel. This

has been carried out in order to check that geometry, mesh and other generic flow

conditions are well set up and also in order to have a qualitative idea of the fluid flow

behavior. A profile similar to the analytical solution for steady state plane channel

is expected in each z - y cross section. However, due to the geometry of the system,

there are some small differences. Figure 5.5 shows a typical contour plot of streamwise

laminar velocity for a ridged channel. Ifwe apply theN-S equations to an infinitesimal

element in the bulk of the system we find that, mathematically, the only difference

with the plane channel is in the non-zero second derivative of streamwise velocity

82uj8z2. The streamwise momentum equation is:

o _ 8p 1 82u 1 82u
- - 8x - Re 8y2 - Re 8z2 ' (5.6)

(note the presence of partial derivatives instead of total derivatives). We expect,

Figure 5.5: Typical contour levels line in a laminar channel flow.

then, that far from the ridge the flow converges to the plane channel solution. This

is confirmed by test case B, where, as shown in tables 5.1, a wider domain has been

used. The simulations have been carried out at Re = 2 and M = 0.1 and a zero

velocity field has been used as initial condition.
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In Figures 5.6 (a-b) are shown the steady state results obtained after 10 time

units (the convergence of the instantaneous flow has been checked and achieved) and

compared with the theoretical profile for plane channel on the position (i) and (iv)

previously defined. As expected, the solution for a larger domain show a smaller effect

of the ridge on the flow. Finally, Figures 5.7 (a-b) show the non zero value of the

second derivative of the streamwise velocity (82u/8z2) along the vertical direction for

both test cases.

(a) Comparison at z/8=O (i) (b) Comparison at z/8=O.6 (iv)

Figure 5.6: Streamwise velocity in a laminar ridged channel case at different spanwise

locations.

--- TeatA
----.---- TeatB

--- TeatA
----e---- TeatB

(a) Comparison at z/8=O (i) (b) Comparison at z/8=O.6 (iv)

Figure 5.7: Second derivative of streamwise velocity 82u/8z2 at different spanwise

locations.
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5.4 Turbulent Flow Results at ReT = 150

The statistics data have been collected after 40J/ urp time units and for successively

160J/urp time units until statistical convergence is achieved. Moreover, considering

the homogeneity and periodicity along the streamwise direction, data have been also

averaged in this direction. The results are presented in six subsections: mean stream-

wise velocity, large recirculation, vorticity and friction velocity, turbulent intensity,

coherent structures and budget of the mean streamwise momentum.

5.4.1 Mean Streamwise Velocity

All the quantities are averaged using the Favre averaged (or density-weighted average)

definition. The contour plot of the streamwise velocity it normalized by umax is

represented in Figure 5.8a, while Figure 5.8b shows a comparison with Kawamura

and Sumori (1999) data. Results from two simulations are very close: the shape

of the contours follows the shape of the ridge with a progressive tendency to plane

channel flow on the middle of the ridge and on the extremes of the domain. However,

at position (i) the large recirculations interact with each other and their global effect

is to pull up the fluid flow. Same thing occurs at location (iv), where the effect is

to push the fluid towards the wall. On the middle of the ridge, at y / J ~ 7, the

fluid has achieved the 95% of the maximum velocity, while, on the trough center

the same intensity is achieved at y / J ~ 6. In both cases a deviation from the log

wall is obtained and can be better observed in Figure 5.9, where u+ = u/ur versus

y+ = (y - Ywall)Urp/Vw is plotted, where Y - Ywall is the vertical distance from the

wall surface. If we consider the values at the trough center, where the flow is more

similar toa plane channel flow and, then, to the law of the wall and log wall, the

Mach number does not seem to have an effect on the mean profile. This is in agree

with our hypothesis of incompressibility discussed in the section 5.2.
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Figure 5.8: Contour plot of mean streamwise velocity and comparison with the nu-

merical work of Kawamura and Sumori (1999).
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Figure 5.9: Mean streamwise velocity: deviation from theoretical profile (law of the

wall and log law) at ReT = 150.
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5.4.2 Large Recirculation

A vector plot of vertical and spanwise velocities is given in Figure 5.10. The center

of the recirculation is about z/8 = ±0.27 and y/8 = 0.31, very close to previous

works (z/8 = ±0.25 and y/8 = 0.33 in Kawamura and Sumori (1999)). Moreover,

in the middle of the ridge and on the extremes of the domain the large recirculation

is still presents. Similar behavior is observed in Kawamura and Sumori (1999) and

Falcomer and Armenio (2002) results shown in Figure 5.11. In Figures 5.12a and

5.12b are plotted the intensity of the vertical and spanwise velocities along the vertical

coordinate at different spanwise locations for present DNS.

y/01 r-------------,

0.8 _.-

z/o

Figure 5.10: Large recirculation for present DNS represented by the vector plot of

vertical and spanwise mean velocities.
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Figure 5.11: Large recirculation of previous numerical works visualized by the vector

plot and streamline of vertical and spanwise velocity.
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Figure 5.12: Vertical and spanwise mean velocities in the ridged channel along the

vertical direction and at different spanwise locations.
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5.4.3 Vorticity and Friction Velocity

Two important parameters for the ridged channel flow are the streamwise vorticity

(wx = 8iiJ/8y - 8iJ/8z) and the friction velocity UT along the spanwise direction.

Contour lines of normalized vorticity wx6/Umax are shown in Figure 5.13. At the center

of the recirculation the value of wx6/umax = 0.34. Compared with the experiments of

Nezu and Nakagawa (1984) (see Figure 5.15, case 1) the vorticity values here found

are overestimated of about 70%, but are qualitatively similar. However, the intensity

value found are similar to those of Kawamura and Sumori (1999) and Falcomer and

Armenio (2002) results (see Figures 5.14a and 5.14b). The discrepancies can be due

to an experimental measurement considering the low intensity of the vertical and

spanwise velocities.

y/8
1~------------~

Figure 5.13: Contour plot of normalized streamwise vorticity (wx = 8iiJ/8y - 8iJ/8z)

for half ridged channel in the present DNS. The negative regions which appear near

the wall are not depicted for clear representation of the streamwise vorticity.

The friction velocity UT, normalized by the (UT) averaged friction velocity defined in
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Figure 5.14: Contour plot of normalized streamwise vorticity obtained in the work of

Kawamura and Sumori (1999).

section 5.2, is plotted in Figure 5.16. In the same figure are shown the value obtained

in the previous numerical works: the shape of the friction velocity is similar but the

maximum and minimum value in the location i, ii, iii, iv are slightly different (the

maximum peak in the ridge corners is around the 13% higher than in Kawamura

and Sumori (1999) and 6% higher than Falcomer and Armenio (2002) results. On the

extreme of the domain the present DNS is around the 4.5% higher than that obtained

by Kawamura and Sumori (1999) and Falcomer and Armenio (2002)).
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Figure 5.15: Contour plot of normalized streamwise vorticity obtained in the experi-

mental work of Nezu and Nakagawa (1984).
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Figure 5.16: Friction velocity for present DNS along the spanwise direction. The

values are compared with the work of Kawamura and Sumori (1999) and Falcomer

and Armenio (2002).
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5.4.4 Turbulent Intensity Quantities

Figures 5.17 (a-d) show the Urms values normalized by the maximum mean streamwise

velocity umax for the present DNS, Kawamura and Sumori (1999) and a turbulent

plane channel flow simulation obtained at the Reynolds number, based on the friction

velocity UT! of 150. The dimensions of the plane channel are similar to those of

the ridged channel (see Kawamura and Sumori, 1999). As usually, the values are

plotted at the four spanwise location (i, ii, iii and iv). The comparison presents

some discrepancies: in the present DNS the values are overestimated and the effect

of the ridge, compared to the plane channel, seems to reduce the turbulent intensity

by only 10% - 30%, while in Kawamura and Sumori (1999) the reduction range is

about 20% - 50%. Moreover, in the bulk of the channel the values are slightly higher

(0.05 and 0.04, respectively for the present DNS and Kawamura and Sumori (1999)).

For the Vrms and Wrms values, as shown in Figures 5.18 (a-d) and 5.19 (a-d) respec-

tively, good agreement is found, except for the bulk region where a small difference

is noted.

Finally, Figures 5.20 (a-b) show the Reynolds shear stresses -u'v' and -u'w' for

present DNS. The value found here are nearly twice larger than that of Kawamura

and Sumori (1999) (Figures 5.20, c-d}, but qualitatively similar.
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Figure 5.17: Turbulence intensities values Urms normalized by the maximum stream-

wise velocity umax at different spanwise locations for present DNS. The data are

compared with plane channel results obtained at ReT = 140.
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Figure 5.18: Thrbulence intensities values vrms/umax at different spanwise locations

for present DNS.
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Figure 5.19: Turbulence intensities values wrms/umax at different spanwise locations

for present DNS.
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Figure 5.20: Reynolds shear stresses at different spanwise locations for present DNS

and for the numerical work of Kawamura and Sumori (1999).
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5.4.5 Coherent Structures

A good method to visualize the coherent structures presented in a turbulent flow is

the .\2 criteria of Jeong and Hussain (1995). It is based on the second eigenvalue

.\2 of the sum of the square of the symmetric tensor Sij and anti-symmetric tensor

nij = (1/2)(oudOXj - OUj/OXi) components of the gradient of the velocity field.

Figure 5.21 shows the coherent structures for the ridged channel at .\2 = 100 and

colored by the pressure field. The structures are similar to those found in a plane

channel flow at same Reynolds number, however Falcomer and Armenio pointed out

that the effect of the ridged seems to be an alignment of the structures along the

longitudinally walls. The secondary recirculation does not seem to have an effect on

the coherent structures. In Figure 5.22 the structures appear quite long and thick and

partially tilted as seen in a turbulent plane channel. The length of a single structure

is around 400 wall units, while the total length of a chain constituted overlapping

more structures is around 1000 wall units. Figure 5.23 shows the structure in the

x - y plane.

y

~ z

Figure 5.21: Coherent structures in the ridged channel for present DNS obtained with

the criteria of second eigenvalue .\2 of the sum of the square of the symmetric tensor

Sij and anti-symmetric tensor nij = (1/2)(oudOXj - OUj/OXi) components of the

gradient of the velocity field. The structures are shown for the values of .\2 = 100.
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zh-x
Figure 5.22: Coherent structures at ),2 = 100 in the x - z plane. The effect of the

ridged seems to consists in an alignment of the structures along the ridged itself.

yh-x

Figure 5.23: Coherent structures at ),2 = 100 in the x - y plane.
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5.4.6 Budget of Mean Streamwise Momentum Equation

For a fully developed turbulent flow, individual terms in the Reynolds averaged mo-

mentum equation in each direction has to be balanced. The streamwise mean mo-

mentum equation for a fully developed turbulent channel flow is:

o = _ fJp + a (pUv) + a (pUw)
ax ay az

..._"_.,,

> Pre Conv

1 (aTXY aTXZ) [a(pu-;;;;II) - a(pu";;;II)].+ -R -!l- + -!l- + !ly !lze vy oz v v~----------------~
(5.7)

Vise Tl+T2

The first, second, third and final term of eqn. (5.7) are the pressure gradient, the con-

vective term, the viscous term and the Reynolds shear stresses variation, respectively.

Positive quantities accelerate the fluid (gain), while negative quantities decelerate it

(loss). For a steady turbulent channel the budget of the averaged equation has to

be zero. In Figures 5.24a-b and 5.25a-b are shown the budgets for the streamwise

momentum of the ridged channel along the vertical direction.

In the middle of the ridge (i), near the wall the fluid is accelerated by the pressure

gradient term and the two turbulent quantities, while the convection term decelerates

it. At the trough center (iv), the convection and the turbulent terms are balanced

by the viscosity term that decelerates the fluid. In both case, far from the wall,

the pressure gradient is balanced by the Reynolds shear stress Tl, which, as already

found by Kawamura and Sumori (1999), looks to playa fundamental role in the mean

flow field. The absolute maximum imbalance found is around 7% of the biggest term.

At the ridge corner (ii) and ridge foot (iii) the budgets are not satisfactory: the

imbalance are, respectively, around the 60% and 25% of the maximum values. The

cause can be the lack of resolution in the vertical direction considering that only 5

points are used within the sublayer region.
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Figure 5.24: Budget of the streamwise momentum equation at location i and ii. The

graph shows also the convective, pressure, viscous and turbulent stress terms.
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Figure 5.25: Budget of the streamwise momentum equation at location iii and iv.

The graph shows also the convective, pressure, viscous and turbulent stress terms.
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5.5 Turbulent Flow Results at ReT = 360

Measurements of Nezu and Nakagawa have been numerically carried out at ReT = 580.

A direct numerical simulation at this Reynolds number is computationally too expen-

sive; however, in order to better understand the effect of the ridge on the turbulence,

a simulation at an intermediate value of ReT = 360 has been performed.

Table 5.2 shows the grid parameters used here. Grid and scheme are similar to

those shown in Figure 5.2a and Figure 5.2b. As in the low Reynolds number case,

the grid is uniform in x and z directions and a tangent hyperbolic stretching in the

vertical direction is applied. The grid resolution in the streamwise and spanwise

direction are 6x+ = 12.62 and 6z+ = 6.14, respectively and the first point in the

vertical direction is about y+ = 0.74 with a total of 10 points within the viscous

sublayer.

The two point correlations at the centerline are shown in Figure 5.26a and 5.26b:

the streamwise velocity correlation is around 0.4 on half a domain (as in the low

Reynolds case), while the vertical and spanwise velocities are approaching to zero.

Figure 5.27a and Figure 5.27b show the two point correlation close to the wall at a

distance of y+ = 45 over the ridge: all the values approach to zero.
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Figure 5.26: The two point correlation along streamwise and spanwise direction for

ReT = 360 test case at the centerline.
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Figure 5.27: Two point correlation along streamwise and spanwise direction ReT =

360 test case at y+ = 45.
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5.5.1 Mean Streamwise, Vorticity and Friction Velocity

Figure 5.28a shows the contours of the mean streamwise velocity u normalized by

the umax• The lines on the middle of the ridge have a stronger deflection than the

corresponding low Reynolds case (see Figure 5.28b), Le. a more intensive recirculation

is present and the pull-up effect on the streamwise velocity is stronger. However, the

mean streamwise velocity along the vertical direction seems now to be closer to the

law of the wall and the log wall (see Figure 5.29). This means that the effect of the

ridge is less influent at higher Reynolds number. Also in this case, the Mach number

does not seem to have an effect on the mean profile.

Figure 5.30a and Figure 5.30b show the vector and streamline plot of the vertical

and spanwise velocities. The center of the recirculation is close to the experimental

results of Nezu and Nakagawa (1984): z/8 = ±0.24 and y/8 = 0.28. At the foot

of the ridge it is possible to observe a small recirculation which was not captured in

the experimental data. The intensity of the vertical and spanwise velocities in this

additional recirculation seems to be very small if compared to the large recirculation

(see Figures 5.32a and 5.32b). In the experimental results, this recirculation has not

been captured probably due to the absence of measurement points in that location

or the low intensity of the velocities. This can explain the failure of the experimental

test into capture it. Similar additional recirculations have been captured by Falcomer

and Armenio (2002) in their LES: one in the same position of the present DNS and

another close to the upper corner of the ridge (see Figure 5.31).

The maximum intensity of the primary large recirculation is wx8/umax = 0.49,

while for the small one the maximum intensity is wx8/umax = 0.30 at z/8 = ±0.32

and y/8 = 0.049.

Finally, Figure 5.33 shows the friction velocity compared with the low Re case.

The maximum values and the values at the extremes of the domain are close to each

other, but at the ridge foot the minimum value, at ReT = 360, is about 20% lower.
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Figure 5.28: Contour plot of mean streamwise velocity normalized by the maximum

value and compared with the ReT = 150 case.
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Figure 5.30: Contour plot and streamline of vertical and spanwise velocity showing

the large recirculation at ReT = 360. A small additional recirculation is captured at

the foot ridge corner.
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Figure 5.31: Streamline of vertical and spanwise velocity in the work of Falcomer

and Armenio (2002) at ReT = 580. The figure show the large recirculation and two

additional small recirculations are captured at the upper and foot ridge corner.
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Figure 5.32: Mean vertical and spanwise velocities in the ridged channel along the

y-coordinates and at ReT = 360. The values are normalized by the maximum stream-

wise velocity umax and are presented at different spanwise locations.
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Figure 5.33: Friction velocity in the ridged channel along the spanwise direction and

at ReT = 360. The values are normalized by the average friction velocity (UT) and

compared with the ReT = 150 case.
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5.5.2 Turbulent Intensities, Coherent Structures and Budget

In Figures 5.34, 5.35 and 5.36 are shown the root mean square values normalized

by umax at the four spanwise locations previously defined. The results are similar

to plane channel equivalent to ReT = 150 ridged channel, here indicated by the dot

symbol. This means that at higher Reynolds number the effect of the ridged walls is

less influent than at low Reynolds numbers. However, some differences are found: in

the ridged channel the pick value of the Urms looks shifted towards the wall. A lighter

similar effect is noted in the Wrms values but not in the vrms. Moreover, the Urms, at

the ridge foot, is reduced by 20%. A smaller reduction is observed in the vertical and

spanwise turbulence intensities. Figure 5.37 gives the Reynolds shear stresses -u'v'

and -u'w'.
In Figure 5.38 are shown the coherent structures for fully developed flow (t =

1208/UT) at )..2 = 700 and colored by the pressure field. The structures look aligned

to the ridged walls, as better shown in Figure 5.39. The averaged length of each

structure is around 250 wall unit, while a chain obtained overlapping the structures

is around 800 wall unit. These values agree the corresponding data from Falcomer

and Armenio (2002). From Figure 5.40 it is possible to observe the inclination of the

structures, similar to those found in a plane channel (see Jeong et al., 1997). Also in

this case, the secondary recirculation does not seem to have an effect on the coherent

structures.

Finally, Figure 5.41 and Figure 5.42 show the budget balance for the streamwise

momentum equation. Similar to the low Reynolds case, the right hand side quantities

11 d i C di §!E_ '. 8(8 8(puw) .are co ecte III rour terms: pressure gra lent - 8x' convective 8J!_ + 8z _,_VISCOUS

(
8- 8 ) 8(- "") 8(- " ")term _l_. ~ + Txz and Reynolds shear stress variation - pu v - pu w. OnRe 8y 8z 8y 8z

the ridge center (i) the viscous term is balanced by the variation of the first Reynolds

shear stress T1, while the convective terms are balanced by the second Reynolds

shear stress T2. Same situations occurs at the extreme of the domain (iv), but the
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convective and T2 quantities are here much smaller. As expected, on the ridge corner

(ii) and ridge foot (iii) the budget is better than low Reynolds case due to the higher

resolution used (here 10 points within the sublayer region, while only 5 points in

the low Reynolds case). The imbalance is only around the 10% of the maximum

quantities. It is interesting to note that while on the corner ridge (ii) the convective

term decelerates the flow, at the corner foot the convection accelerates it. Same

behaviour is noted in the T2 term.
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Figure 5.34: Turbulence intensities for the streamwise velocity at ReT = 360 and

normalized by the maximum mean streamwise value. The data are compared with

the plane channel case at ReT = 150.
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Figure 5.35: Turbulence intensities for the vertical velocity at Re; = 360 and nor-
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plane channel case at Re; = 150.
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Figure 5.36: Turbulence intensities for the spanwise velocity at Re; = 360 and nor-
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plane channel case at Re; = 150.
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Figure 5.37: Reynolds shear stresses for the ridged channel at Re; = 360.
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Figure 5.38: Coherent structures at ReT = 360 visualized using the criteria of second

eigenvalue A2 of the sum of the square of the symmetric tensor Sij and anti-symmetric

tensor nij = (1/2)(8ud8Xj-8Uj/8xi) components of the gradient of the velocity field.

The structures are shown for the value of A2 = 800 and colored using the pressure

values.
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Figure 5.39: Coherent structures with A2 = 800 in the x - z plane and colored using

the pressure values.
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Figure 5.40: Coherent structures with ).2 = 800 in the x - y plane and colored using

the pressure values.
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Figure 5.41: Budget balance for the ridged channel at ReT = 360 and at the center

ridge and trough channel.
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Figure 5.42: Budget balance for the ridged channel at ReT = 360 and at the upper

and foot ridge corner.
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5.6 Summary

In this Chapter we presented the simulation of a turbulent flow in a ridged channel at

two different Reynolds numbers, 150 and 360. At Reynolds number ReT = 150 results

agree well with previous numerical and experimental works. Some differences in the

friction velocity and Reynolds stresses are found. Budgets analysis is satisfactory at

the extreme of the domain (iv) and on the middle channel (i), but not at the ridge

foot (iii) and upper corner (ii) probably due to a lack of resolution in that region.

At Reynolds number ReT = 360 the flow behavior is qualitatively in good agreement

with the experimental data provided by Nezu and Nakagawa (1984) and the LES

of Falcomer and Armenio (2002). A small additional recirculation is captured at

the ridge foot similar to those observed by Falcomer and Armenio. Budget analysis

is satisfactory in location (i) and (iv) and nearly satisfactory in (ii) and (iii). A

complete set of data are now available at low and intermediate Reynolds numbers.

Finally, the kind of geometry presented in this chapter is stretched only in a bi-

dimensional plane and more general cases need to be considered in order to further

validate the fully 3D version of the code. In the next Chapter a validation study on

a more generic three-dimensional shape will be presented.
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Chapter 6

Turbulent Flow Over an

Axisymmetric Hill

We present in this chapter the main simulation of the thesis work. The goals are to

further validate the new version of the SBLI code and to study the 3D boundary layer

separation mechanism which occurs behind an axisymmetric hilL An introduction to

previous experimental and numerical studies is given in Section 6.1, while details on

the geometry, grid resolution and boundary conditions are given in Section 6.2. A

complete Section 6.3 is dedicated to the inflow condition generation and implementa-

tion in particular. The results are presented in two parts: Section 6.4 gives the results

from a coarse grid simulation, while Section 6.5 contains the results obtained from

a fine grid simulation. Details on the mean velocity profiles, turbulence quantities,

coherent structures and laminarisation issues are analyzed and discussed. Finally,

Section 6.6 gives the summary.
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Chapter 6. Turbulent Flow Over an Axisymmetric Hill

6.1 Introduction

Previous experimental investigation of a boundary layer flow over an axisymmetric

hill has been carried out by Ishihara et al. (1999). The obstacle had a cosine-squared

cross section and the ratio between the approaching boundary layer thickness 8 and

the hill height H was 9 and the Reynolds number 1.1 x 104, based on the free stream

quantities. Although little has been presented on the flowseparation and the near wall

turbulence structures, it was clear that, while the flow accelerated over the top and

around the side of the hill, flow separation and reattachment occurred on the leeside

of the hill. A further study has been presented by Simpson et al. (2002) where

the mean surface pressure, oil-flowvisualizations and three-velocity-component laser-

Doppler velocimeter measurements were presented. The ratio between the incoming

turbulent boundary layer thickness and the hill height (8/H = 1/2) was much smaller

than that of Ishihara et al. (1999). In Simpson experiment, complex vortical flow

separations occurred on the leeside of the hill and merged into two larger streamwise

vortices downstream. Precise measurements of the mean velocities, the turbulence

Reynolds stresses, the triple products and the skin friction in the near wall region

were presented. In particular, the flow topology obtained by the oil-flowvisualization

suggested the presence of multiple flow separation and re-attachment points occurring

over a large area on the leeside of the hill.

The first numerical study of the Simpson hill flow has been performed by Patel

et al. (2003) using a large eddy simulation technique. The mean surface pressure,,

flow visualization and mean velocity profiles were presented and compared with the

experiments of Simpson et al. (2002). The agreement was generally good, but some

differences were observed in the flow topology detected over the hill. In another study

of Wang et al. (2004), five turbulence models were used: the Craft-Launder-Suga cu-

bic eddy-viscosity model (Craft et al., 1996); the Apsley and Leschziner (1998) cubic

eddy-viscosity model (AL-€); the Wallin and Johansson (2000) explicit algebraic stress
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model (WJ-w); the Abe-Jang-Leschziner quadratic eddy-viscosity model (2003)(AJL-

w); and the Speziale-Sarkar-Gatski Reynolds-stress-transport model (Speziale et al.,

1991). Both a periodic 2D hill and a single 3D hills have been investigated in or-

der to examine whether the predicted performance in three-dimensional conditions

related to that in two-dimensional case. It was found that 2D hill geometry differ-

ent separation behavior was predicted by different turbulent models and, for the 3D

hill, none of them was able to capture the flow topology observed by Simpson et al

(2002). In fact, only a single vortex pair associated with a single separation line on

the leeward side of the hill were detected. Similar conclusions were made in in the

work of Temmerman et al. (2004) where a second-moment-closure RANS modeling

was presented. In a recent experimental work of Byun et al. (2004), measurement

results for two different hill heights H=8 (small bump) and H=28 (large bump) were

presented. While the flow topology for the large bump was still quite similar to that

suggested by Simpson et al. (2002) a single vortex pair was found for the small bump

configuration, in consistency to previous numerical investigations. Further studies of

Byun et al. (2006) using a three-dimensional fiber-optic Laser Doppler Velocimeter

(LDV), have shown a similar flow topology to that predicted by numerical simula-

tion, even for the H=28 case (large bump), indicating the difference with previous

experimental work being attributed to the effect of gravity on the oil-flow mixture.

Numerical investigations using RANS, LES and detached eddy simulation (DES) have

been carried out by Persson et al. (2006). The results have shown that while the

RANS fails to predict several important flow features, both LES and DES are clearly

capable of reproducing the correct flow separation pattern. However, to produce the

correct predictions, the near-wall grid resolution must be increased substantially and

in particular in the spanwise direction. Moreover, they found that the pressure field

is sensitive to the location of the inlet and the DES model is even more sensitive to

the inlet boundary condition on the eddy viscosity profile. A large eddy simulation
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combined with a zonal near-wall approximation has been presented by Tessicini et al.
,

(2007). In their zonal scheme, the state of the near-wall layer of the flow is described

by the parabolized Navier-Stokes equations solved on a sub-grid embedded within

a global LES mesh. The wall shear stress found from the solution of the boundary

layer equations is used in the LES domain as a wall boundary condition. Satisfactory

results (same flow topology and mean quantities of experimental data) are achieved

using a very fine grid (up to 9.6 million points), while the simulation completely fails

to capture the separation process on a coarse grid (1.5 million points). A visualization

of the structures of flow separation behind the hill was given in Patel et al. (2007)

by LES. Streamwise, wall normal and spanwise vorticity iso-surfaces in combination

with pressure gradient iso-surfaces were used to visualize the flow structure and they

concluded that the separation and re-attachment processes are strongly controlled by

the three-dimensional pressure gradient caused by the body shape and size. How-

ever, they revealed a flow topology slightly different from that proposed by previous

researchers; the authors suggested that the difference observed might be due to a low

accuracy of the experimental devices employed. Finally, in a recent paper of Sinisa

(2008), a study on the grid resolution and the inlet boundary conditions has been

carried out using LES. Although a total of 15 million points were used, the resolution

in the near-wall region which is important for LES is still not sufficiently fine. Two

different inlet conditions have been used: a mean experimental profile and a time-

dependent boundary conditions produced with a precursor channel flow DNS at a

lower Reynolds number. It was found that no significant improvement was obtained

using the time-dependent inlet conditions.

In this work, a direct numerical simulation over an axisymmetric hill has been

performed. To the author knowledge no previous simulation has been carried out

with this approach because of the intensive computational cost involved. However,

some simplifications have to be assumed: a lower Reynolds number of ReH=6500
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(i.e. 5% of the experimental conditions); Mach number Moo=0.6 in order to reduce

the computational cost; periodic boundary conditions in the spanwise direction and

inflow conditions generated by a precursor turbulent boundary layer simulation on a

smaller domain.

6.2 Computational Domain and Flow Conditions

In Figure 6.1 is presented a sketch of the physical domain with the origin of the

axis chosen at the center of the hill. The hill's shape is exactly the same of the

experimental model used by Simpson et al. (2002), which is defined as:

~ = -(3 [Jo(A)Io (r~) _ Io(A)Jo (r~)] , (6.1)

where {3=1/6.048, A=3.1926 and a=2H is the radius of the circular base of the hill.

Jo is the Bessel function of first kind and 10 the modified Bessel functions of first kind,

respectively. The incoming boundary layer thickness 6 is about half height of the hill

and at Reo.=500 the ratio between the boundary layer thickness 6 and the boundary

layer displacement thickness 6* is about 6/6*=6.34. Choosing 6* as reference length,

we have H=136*.

Lx

Figure 6.1: Sketch of the hill physical domain.
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Characteristic non-reflecting boundary conditions are applied at the top and the

outlet of the domain, while the periodic boundary conditions are applied in the span-

wise direction. Two different inlet boundary conditions have been tested: a) results

from a precursor turbulent boundary layer fed into the domain (hereafter indicated

as inflow of kind A); b) a turbulent boundary layer flow generated by a synthetic

approach embedded in the simulation (hereafter indicated as inflow kind B). Four

main simulations have been then carried out: (I) a coarse grid resolution with inflow

condition of kind A; (11) a coarse grid resolution with inflow condition of kind B;

(I 11) a fine grid resolution with inflow condition of kind A; (IV) a fine grid resolution

with inflow condition of kind B. The intentions of tests 1 and 11 were to verify the

adequacy of the domain chosen and to validate the inflow condition of kind A.

The dimensions of the physical flow domains used are presented in Table 6.1 in

comparison with some previous works. Streamwise and normal lengths are similar to

that in the work of Wang et al. (2004) and Tessicini et al. (2007), while the length is

slightly shorter in the spanwise dimension for tests 1,11 and I I I in order to reduce the

computational cost. Uniform streamwise and spanwise grid spacing are used, while

a hyperbolic sinusoidal stretching is applied in the wall-normal direction. The coarse

grid simulations are under-resolved by a factor of 4 in both streamwise and spanwise

directions and the first grid point is just above the sublayer region. In the tests I I I

and IV a proper DNS resolution is achieved, at least on the top of the hill (see Table

6.2) where nine points are located in the sublayer (y+ = 10). The estimations of the

resolution are based on the prescribed inflow profile.
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Test Case Lx Ly Lz d·a~

I 16H 3.205H 8.6H 4.4H

II 20H 3.205H 8.6H 4.4H

III 16H 3.205H 8.6H 4.4H

IV 20H 3.205H lOH 8.4H

Patel et al. (2003) 9.5H 3.205H 6H 3.4H

Wang et al. (2004) 16H 3.205H 11.67H 4.4H

Persson et al. (2007) 12H 3.205H 10H 3.4H

Tessicini et al. (2007) 16H 3.205H 11.67H 4.4H

(a) d; is distance from the inlet to the hill axis center.

Table 6.1: Dimensions of present and previous numerical works. H is the height of

the hill.

Test Case Nx n, s, ~x+ ~Y~in ~Y~ax ~z+

I 121 71 121 48.69 11.26 28.7 26.22

II 161 71 121 45.64 1.06 25.37 26.22

III 481 161 481 12.17 1.06 25.37 6.55

IV 601 161 561 12.17 1.06 25.37 6.52

Table 6.2: Grid resolution of test cases presented.
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6.3 Inflow Boundary Condition

6.3.1 Inflow Generation Methodology

As previously cited, two different kinds of inflow generation methods have been used,

namely kind A, consisting in a precursor boundary layer developed on a minimal do-

main, and kind B, based on the digital filter idea of Klein et al. (2003), successively

improved by Xie and Castro (2008) and later adapted to compressible flow by Touber

and Sandham (2008). In kind B, the turbulent boundary layer properties (both mean

velocity profile and Reynolds stress) are prescribed, along with artificially generated

random numbers as white noise. A filter procedure is then used to retain the appro-

priate flow field values to reproduce the desirable turbulence correlations for given

conditions. The advantage of this approach comparing to the synthetic method used

by Sandham et al. (2003) is the elimination of spurious low frequencies in the outer

region of the boundary layer, which can interfere with the flow separation process

presented at the leeside of the hill. Details on the digital filter parameters can be

found in the Appendix D and in Touber and Sandham (2008).

Kind A method consists in a precursor flat plate turbulent boundary layer simula-

tion on a domain smaller than the hill domain. The instantaneous flow field obtained

near the exit plane is saved in a time sequence of data slice and then fed into the large

hill domain by time and space interpolations (see Figure 6.2). Periodic conditions are

applied in the spanwise direction, where the length is large enough to contain all

the turbulent scales of motion at a given Reynolds number. Non-reflecting boundary

conditions are applied on the top and at the outlet of the domain, while the inlet

condition is generated using a digital filter technique similar to inlet condition kind

B.
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-+

precursor
boundary layer hill system

Figure 6.2: Sketch of the interface precursor boundary layer hill system. The instan-

taneous flow field obtained near the exit plane is saved in a time sequence of data

slice and then fed into the large hill domain by time and space interpolations.

6.3.2 Results of a Precursor Turbulent Boundary Layer

The precursor boundary layer simulation has a domain of 508*, 108* and 88* in the

streamwise (x), the wall normal (y) and the spanwise (z) directions, where the 8*

is the inlet displacement thickness of the boundary layer. A grid of 119 x 61 x 71

points is used, uniformly distributed in the x and z directions and stretched in the y

direction with a hyperbolic sinusoidal function. Based on the inflow conditions, the

estimated grid resolutions are b.x+= 11.09, b.z+= 6.24 and the first point in the wall

normal direction is about b.yt = 0.99 with a total of 10 points in the viscous sublayer

region.

The precursor simulation starts with a uniform flow field and after an initial

transient stage of about 100 time units (Le. two through-flows), statistical samples

are collected for every 100 time units until statistic convergence is achieved. This

normally takes about 400 time units (Le. 8 through-flows). The mean velocity u+,

the turbulence intensities (urms, Vrms, Wrms) and the Reynolds stress (u'v') variations

are shown in Figures 6.3 and 6.4, respectively, where 8 is the boundary layer thickness

and the variables are normalized by the friction velocity UT' The results are compared

with the benchmark DNS data of Spalart (1988) at the same Reynolds number (Re8 =
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500). It can be seen that the overall agreements are good to very good, with slightly

over-prediction in the wake region of the mean velocity profile and the streamwise

turbulence intensity urms• The simulation results at x/b* ~45 are saved at every

5-iteration intervals.

5

I
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Figure 6.3: Mean streamwise velocity u+ at x/b*=45 for the precursor boundary layer.

The data are compared with the DNS work of Spalart (1988) and the theoretical values

of the law of the wall and log law.

6.4 Turbulent Flow Over the Hill: Coarse Grid

Results

For both test cases I and I I, after initial transient runs of about 300 time units,

statistics data are collected for further 900 time units. Figure 6.5 gives the compar-

ison of the separation bubble boundary lines. It can be seen that results from two

tests agree well and small wiggles observed near the reattachment region are likely

associated with the coarse grid resolution. This confirms that the feed-in technique

works well and the same method will be used for the fine grid test IV described later.
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Figure 6.4: Turbulence intensities at xI8*=45 for the precursor boundary layer. The

data are normalized by the friction velocity UT and compared with the DNS work of

Spalart (1988).

Figure 6.6 shows the contours of the pressure coefficient Gp (defined as Gp =

(PI,s - Pr,s)/(Pt,s - Pr,s), where PI,s, Pr,s and Pt,s are the local, reference and total static

pressure, respectively) on the wall surface. It can be seen that the Gp increases at the

windward of the hill and decreases at the lee-side of the hill. Downstream in the wake

region, the pressure recovers. The predicted minimum Gp happens around the top

of the hill and, after about x] H = 2, it increases again with higher value in central

area downstream of the hill. These features are in qualitatively good agreement with

those observed by Simpson et al. (2002) in the high-Re experiments (see Figure 6.7).

The lee-side flow separation bubble can be seen in Figure 6.8, where the stream-

lines illustrate the flow re-circulation at the mid-plane z = O. In this plane, the flow

separation starts about x] H = 0.5 with a small closed bubble, followed by a more

dominant large bubble with its center at about x IH = 2, y IH = 0.5. The flow reat-

taches at about x] H = 2.75. In the high-Re experiment, a small recirculation zone

enclosing a very thin and elongated strip attached to the lee-side of the hill was ob-

served. In comparison, the predicted bubble size is much larger, and this is probably
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Figure 6.5: Separation bubble region: comparison between test case I (straight line),

where the inlet is generated using a precursor boundary layer, and I I (dashed line),

where the inlet is generated using a synthetic approach embedded in the simulation.

due to Reynolds number effects.
Figure 6.9 illustrates the three-dimensional flow separations with the counter ro-

tating vortex pair (CRVP) being captured on the lee-side of the hill. The topology

analysis of flow separation and reattachment is also shown in this Figure, where two

saddle points (SI and S2) are identified at x] H=0.52, and x] H=2.8, at the mid-plane

of z] H=O, along with two nodal (foci) separation points (Nsl and Ns2) at z] H=1.31,

zIH=±0.8 (Le. the center of vortex core at the hill surface); two further nodal (foci)

separation points (Ns3 and Ns4) at x] H=0.34, z] H=±0.61 , and two further saddle

points (S3 and S4) at xIH=0.34, zIH=±O.72. In the high-Re experiment, only one

pair of nodal and saddle separation points were identified. Here, two pairs of nodal

and saddle separation points are captured in the low-Re simulation. The topology

satisfies the well-known rule (Hunt et al., 2006) as

(6.2)

where Nand S are the number of nodal and saddle points, respectively.
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Figure 6.6: Contours of pressure coefficient on the wall surface for the hill case. The

circle of radius 2H indicates the location of the hill.
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Figure 6.7: Pressure coefficient contours for the hill case from the experiment of

Simpson et al. (2002). The circle of radius 2H indicates the location of the hill.
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Figure 6.8: Streamlines of streamwise and vertical mean velocities for the hill case in

the central plane (z=O).
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Figure 6.9: Flow topologies for the hill case (coarse grid) in the near wall at y+=11.26.

The circle of radius 2H indicates the location of the hill.
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6.5 Turbulent Flow Over the Hill: Fine Grid Re-

sults

The simulation on a fine grid (test IV) are presented with the following key results as:

(a) mean profiles, (b) flow topology, (c) comparison with test case III, (d) turbulence

intensity, (d) instantaneous flow field and coherent structures and (e) assessment of

laminarisation.

6.5.1 Statistics of Mean Flow

After initial transient stage of 300 time units, statistical data are collected for a time

period of 800 time units, with the convergence being verified and confirmed.

Figure 6.10 shows the computed mean surface pressure coefficient Gp defined as

above for the coarse grid case. Similar to results on the coarse grid, the pressure

::I: 0
N

Level Cp
16 0.45
15 0.4
14 0.35
13 0.3
12 0.25
11 0.2
10 0.15
9 0.1
8 0.05
7 0
8 -0.05
5 -0.1
4 -0.16
3 -0.2
2 -0.26
1 -0.3

-1

-2

Figure 6.10: Mean surface pressure coefficient Gp for the hill case (fine grid) in the

x _ z plane. The four circle of diameter 0.5, 1, 1.5 and 2 indicates different levels of

the hill height.
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increases before approaching the hill and decreases over the crest of the hill. However,

the pressure seems recovering downstream much later and two low pressure points

can be identified on the leeward side at x IH = 1.56 and zIH = ±O.74. Moreover,

there is a slightly higher pressure area just after the top of the hill which, as explained

later, promote the fluid flow back toward the hill center and against the streamwise

incoming current. From Figure 6.11, we can see that the pressure coefficient has a

maximum value around 0.5 just before the hill (xIH=-2), it decreases to a minimum

value around -0.3 just before the top of the hill. A value similar to the inlet it is

only recovered at x] D = 4.14. The small increment of pressure just after the crest

is also here clearly shown. On the same figure are shown the experimental data of

Simpson et al. (2002): the separation is smaller and a stronger depression is shown.

0.5

o e - e- - -()- -()- - e -0

-0.5

c.o

test case IV
__ -0- - - Simpson et al. (2002)

-1

-5 o xlH
5 10

Figure 6.11: Gp along streamwise direction at a middle plane z = 0 compared with

the experiment of Simpson et al. (2002).

The separation bubble is shown in Figure 6.12 with a vector plot of the velocity

components. The dashed line refers to the test case (III) while the solid line to the

test case (IV): the two lines are very close and this is a further validation of the inflow
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methodology of kind B.

A close up figure on the upstream hill foot (Le. Figure 6.13 a) shows a small

recirculation region not being observed on a coarse grid simulation. This recirculation

modifies the friction velocity profile along the streamwise direction and then affects

the values of the normalized mean and turbulence intensity data. A close up on the

leeward side of the hill (see Figure 6.13 b) also shows small secondary re-circulation

bubble embedded inside a large primary re-circulation bubble. This bubble, although

very small in size, seems to have some considerable influence on the flow separation

behavior. In fact, this bubble, though not presented in the coarse grid simulation

probably due to the lower resolution (around 8 points are presented in the fine grid

test cases, while only 2 points in the coarse grid test cases), seems to push up the fluid

flow coming from the top of the hill, causing an earlier separation of the boundary

layer than that in the coarse grid case. The little increment of pressure above observed

might be linked to the presence of this small bubble.

-0.5

-2 -1 o xlH 1 2 3 4

Figure 6.12: Separation bubble region: comparison between test case I I I (straight

line) and IV (dashed line).

The mean streamwise velocity profile u+ along the wall normal direction y+ is

shown in Figure 6.14. The boundary layer thickness is about 8 = 6.348* at the inlet

plane (x / H =-8.4 for test IV and x / H =-4.4 for test I I I). As cited above, different
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-0.2 -2.5 -1.5 o xlH 0.5

(a) Upstream hill foot (b) Lee-ward side of the hill

Figure 6.13: Secondary recirculation regions detected for the hill case on fine grid.

from the coarse grid, the presence of the small separation bubble at the foot of the

windward of the hill at x] H = -2 causes the significant reduction of the friction

velocity at x] H = -3 by almost half of the inflow value. Hence the mean velocity

in the wall unit has been doubled at the edge of the boundary layer. At x] H = -1,

the friction velocity recovers and increases, leading to a lower u+ value there. Figure

6.15 presents the friction velocity normalized by the reference velocity Uoo along the

streamwise direction. Where a negative value of aul ay is encountered, the friction

velocity is set to zero. This happens just before the hill foot x IH=-2 where the

separation bubble is found and on on the leeside of the hill where the main separation

occurs. At x IH = -1, the friction velocity recovers and increases, leading to a lower

u+ value there.

From Figure 6.16 to Figure 6.21 are presented the mean velocities values along the

spanwise direction normalized by the reference velocity Uoo at four different locations:

i) xIH=-2, upstream of the hill foot; ii) xIH=O, the top of the hill; iii) xIH=2,

downstream hill foot and iv) x] H=4.14, the "mean" reattachment point.
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Figure 6.14: Mean streamwise velocity u+ along the vertical direction at different

streamwise locations. The value refer to the middle plane (z = 0) and are compared

with the law of the wall and log law. '
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::::J
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::::J

Figure 6.15: Friction velocity along the streamwise direction. The values are normal-

ized by the free stream velocity and the negative quantities have been cut off.
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Figure 6.16: Mean streamwise velocity along the vertical direction for the hill case at

(a) x] H=-2 and (b) x] H=O at several spanwise locations.

2

1.5

2.5

xs,
1.

o.

o 0.11

a/uao
o 0.11iJ/u ..

(a) (b)

Figure 6.17: Mean streamwise velocity along the vertical direction for the hill case at

(a) x IH =2 and (b) x IH =4.14 at several spanwise locations.
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Figure 6.18: Mean wall-normal velocity along the vertical direction for the hill case

at (a) xIH=-2 and (b) xIH=O at several spanwise locations.
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Figure 6.19: Mean wall-normal velocity along the vertical direction for the hill case

at (a) x] H=2 and (b) x] H=4.14 at several spanwise locations.

142



Chapter 6. Turbulent Flow Over an Axisymmetric Hill

o.

o

21H"O
zlH .0.11
21H .1
zlH = 1.11
21H=2
21H = 2.5

zIH .. O
IIH .. 0.5
21H .. 1
21H_1.5
21H .. 2
zIH=2.11

::z:::
~

1.

.
D

D

o 0.1 0.2

W/U..,
o 0.2 0.4

W/U..,

(a) (b)

Figure 6.20: Mean spanwise velocity along the vertical direction for the hill case at

(a) x] H=-2 and (b) x] H=O at several spanwise locations.
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Figure 6.21: Mean spanwise velocity along the vertical direction for the hill case at

(a) x IH =2 and (b) x IH =4.14 at several spanwise locations.
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6.5.2 Flow Topology

Figure 6.22 gives the streamlines from the fine grid simulation. Comparing to that of

coarse grid, the separation bubble increases in size. The flow separation starts earlier

at the crest of the hill and reattaches later at x] H=4.14. The re-circulation center

is at x IH = 2.35, y IH = 1.06. The center of the small recirculation bubble which

4

-2 o 4

Figure 6.22: Streamline for the hill case of normal and vertical velocity at the middle

plane (z = 0) from fine grid simulation.

appears on the leeside of the hill is at x] H=0.63 and yl H=0.81. The flow topology

analysis has identified four saddle points (see Figure 6.23) 8b 82, 83 and 84 along the

mid-plane (z=O) at x] H=-2.4, x] H=-0.072, x] H=0.93 and z] H=4.25, respectively,

and four nodal separation points (two of attachment and two of separation) Nal,

Na2 at mid-plane and x] H=-1.6, x] H=0.17, and Nsl and Ns2 at x] H=1.53 and

zIH=±0.7, respectively. As in the coarse grid case, the rule presented in eqn. 6.2 is

satisfied.

The three-dimensional flow separation is well visualized from the streamline pat-

terns in the near wall region as seen in Figure 6.24: the flow circulate around the

hill and then it converge in a counter-rotating vortex pair (CRVP) with successively
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merging in the mean downstream current. An arbitrary mean velocity streamline

is presented in Figure 6.25 and colored with the spanwise velocity. Following the

streamline gives an idea of the 3D recirculation path: starting from point 1, the flow

circulates around the hill until point 2 and then moves back towards the top (point

3) where it recirculates again on the leeside toward the bottom of the hill (point 4)

and then merge with the streamwise current like in point 5.

3

2 1;.-----
1 ~======--
o~~~~~~~~~
-1

-2~-----

-3
saddle pelnts (5",52) saddle points (53,54)

4~~~-4~~~-2~~~O~~~~~~4~~~6~~~8~~

nodal foci) separation polnts (Ns1,Ns2)

Figure 6.23: Flow topologies for the hill case fine grid in the near wall at y+=1.06.

Figure 6.24: Skin friction lines on the hill surface from fine grid simulation.
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Figure 6.25: Arbitrary mean velocity streamline colored by the spanwise velocity.
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6.5.3 Turbulence Intensity

Figures 6.26-6.29 gives the RMS turbulent intensities and the Reynolds stress (nor-

malized by the friction velocity UT and averaged in the spanwise direction) at four

successively streamwise locations: i) inlet (x IH =-8.4); ii) inlet for test I I I (x IH =-

4.4); iii) reattachment point (xl H=4.14) and outlet of the domain x] H=11.6. At

the inlet the predictions are in good agreement with the DNS of Spalart (1988), but

downstream are slightly different from test case I I I, consistent with that seen in

Figure 6.14. The reason for this is probably due to the rapid decrease of the friction

velocity, as a result of the presence of a small separation bubble at x] H = -2. At

the reattachment point, the values are much larger than that of inflow. The peak

value for the Urms quantities is not close to wall, probably due to the strong turbu-

lence activity behind the hill due to the counter rotating vortex pair merging into

the freestream. Finally, the RMS values at the exit of the domain are similar in

magnitude to the incoming boundary layer, but the thickness of the boundary layer

is much larger (nearly twice, Le. equal to the hill's height).
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Figure 6.26: Turbulence intensity and Reynolds shear stress at x IH =-8.4 along the

vertical direction. The values are compared with the DNS work of Spalart (1988),

normalized by the friction velocity UT and averaged in the spanwise direction.
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Figure 6.27: Turbulence intensity and Reynolds shear stress at x / H=-4.4 along the

vertical direction. The values are compared with the DNS work of Spalart (1988),

normalized by the friction velocity UT and averaged in the spanwise direction.
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Figure 6.28: Turbulence intensity and Reynolds shear stress at x] H=4.14 along the

vertical direction. The values are compared with the DNS work of Spalart (1988),

normalized by the friction velocity UT and averaged in the spanwise direction.

o 0 0 Spalart u<nns>
o - - - - :-...... 0 '" Spalart Y<nns>

1· ,. - v v v v -v""'"V-v--'- - - - -Q v Spalart w<nns>
~v v A '" '" '" A V v'" ._..:: .~ _
v '" ~ ~ '" Z x "--0.- ::-- _ _ <> Spalart u'y'

-iT '" 'l..,. ·0----_

o :'0:' 0 0 o:~_v_:-=~~}:::...~:-~~~-=.~:....:.~:....:.=:..::;::..::~=-:==-~-:_=-.~~

I. oo ---'-'-'-'O'-'-~'-'-'-'-'-'-'-
\ o <> oc <> ~.4· <>

-1 ',._. _ --
o 0.2

---u .....
Y.....
w.....
u'y'

0.4 0.6 0.8

Figure 6.29: Turbulence intensity and Reynolds shear stress at z] H=11.6 along the

vertical direction. The values are compared with the DNS work of Spalart (1988),

normalized by the friction velocity UT and averaged in the spanwise direction.
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6.5.4 Instantaneous Flow Field and Coherent Structures

An instantaneous of the streamwise velocity at a middle plane of the spanwise di-

rection (z / H=0) is shown in Figure 6.30. It is evident that the flow separates just

behind the hill. The streamline visualization (Figure 6.31 and Figure 6.32) clearly

shows multiple separation and reattachment points on the lee side with abrupt ter-

minations which suggest instantaneous stagnation points. The red circle has radius

2H and indicate the position of the hill.
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Figure 6.30: Mean streamwise velocity in the x-y plane for the hill case fine grid

(z = 0) at T = 11006*/uoo.

Figure 6.31: Streamline in the x-y plane (z = 0) for the hill case fine grid at T =

11006*/ Uoo.

Figure 6.33 gives the fine grid flow structures of the same previous instantaneous

flow field illustrated with the iso-surfaces of the second invariants criteria (see section

5.4) at the value of A2 = 0.035. Similarly, Figure 6.34 shows the coarse grid flow
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Figure 6.32: Streamline in the x-y plane (z = 0) for the hill case fine grid at T =

11006*/ Uoo.

structures at the same value of '\2 = 0.035. The effect of the hill seems to consist in

a stretching of the structures along the streamwise direction. Considering Figure ??,

after the hill the fluid is "pulled" in the streamwise direction by the freestream and

upstream from the recirculation flow. Moreover, for the fine grid, it can be seen that

the flow structures occurs in a larger area in the lee-side of the hill (consistent with

larger separation bubble), but over the top of the hill they seem not presented. This

indicates the flow may be partly re-larninarized in that region. For the coarse grid,

the flow structures still exist around the crest of the hill.
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Figure 6.33: Flow structures for the hill grid visualized using the criteria of second

eigenvalue .\2 of the sum of the square of the symmetric tensor Sij and anti-symmetric

tensor nij = (1/2)(8:Ui/8Xj-8:Uj/8xi) components of the gradient of the velocity field.

The structures are shown for the value of .\2=0.035 from the fine grid simulation (test

IV).
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Figure 6.34: Flow structures for the hill case at .\2=0.035 from the coarse grid simu-

lation (test 11).
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6.5.5 Re-Iaminarisation Issue

Due to a low Reynolds number used in the simulation and the strong favorable pres-

sure gradient at the windward of the hill, re-laminarisation may occur. In a previous

study by Sandham et al. (2003) for a turbulent flow over a bump geometry, the flow

re-laminarisation issue has been studied by using a criteria on related to a general

acceleration parameter (Jones and Launder, 1972) as

K= ~aue
U2 axe

(6.3)

where the 'e' represents the boundary layer edge and the criterion for flow lam-

inarisation occurs roughly at K > 3 X 10-6. For the present hill simulation, the K

variation is evaluated at the top boundary of the domain (Le. y = 3.205H). The

results shown in Figure 6.35) confirm that the K value has indeed exceeded the given

laminarisation criterion. It is assumed that the flow laminarisation contributes to the

larger separation bubble seen in Figure 6.12. From Figures 6.36 to 6.38 are shown

the turbulent intensities on the windward side of the hill obtained without averaging

the results in the spanwise direction. The values are reduced moving towards the hill

confirming the laminarisation process.
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Figure 6.35: Laminarisation parameter K variations along the streamwise location

and middle plane (z = 0) at y = 3.205H.
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Figure 6.36: Turbulent intensities for the hill case fine grid at x] H = -1.5. The

values are not normalized.
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Figure 6.37: Turbulent intensities for the hill case fine grid at x IH = -1. The values

are not normalized.
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Figure 6.38: Turbulent intensities for the hill case fine grid at x] H = -0.5. The

values are not normalized.
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6.6 Summary

Direct numerical simulation of a turbulent flow over an axisymmetric hill shape is

performed. The simulation considers a low Reynolds number 500, which is about

1/20 of the experimental condition. Despite this difference, simulations are still able

to capture the dynamic flow behavior and the key flow topologies in the separation

region, in good qualitative agreement with the high-Re test. However, the predicted

flow separation bubble at present low-Re seems much larger in size compared to that

observed in the high-Re experiment. The simulation also reveals a small separation at

the windward of the hill near the foot and a secondary separation bubble embedded

inside a primary large bubble at the lee-side of the hill. It is found that flow laminar-

isation occurs in the vicinity of the crest of the hill. Consequently, this will alter the

flow development and contribute to the earlier flow separation and the larger bubble.

These findings are useful for future experimental validation study at low Reynolds

number.
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Chapter 7

Extension to Multiblock Code

In this Chapter we describe the extension of the full 3D SBLI code to a multiblock

version. After a brief introduction on the advantages to deal complex geometries

with more blocks (Section 7.1), details on the general structure of the new algorithm

are given in Section 7.2. Then, a demonstration study (Section 7.3) is followed where

results on a direct numerical simulation of a jet in a turbulent cross floware presented.

Section 7.4 contains a summary on the main features of the new multiblock SBLI code.

7.1 Advantages of a Multiblock Version

Many practical engineering problems occurs in complex geometries like engine com-

bustion chamber, turbine blade, wing-body junction, etc. However, the body-fitted

coordinate technique requires the use of structured mesh and some relatively simple

geometries, like a jet in a cross flow system or a flow over a 2D square, normally

require more than one block (see Figures 7.1a and 7.1b). Moreover, the meshes of

different blocks need to satisfy the continuity at the interface between them. This

makes complicated the grid generation and it explains the reason of the widely used

finite volume methodology (where different meshes structured and unstructured can
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be applied) in today's commercial CFD software. However, as previously discussed

in Chapter 1 of the thesis, the drawback of the finite volume method is the difficulty

of its implementation for high-order numerical schemes. Moreover, the matching con-

dition at the interface seems a good requirement but not absolutely necessary. In

fact, the meshes from different blocks can also be just overlapped each other at the

interface (these are commonly known as the Chimera grids) and the values at the dif-

ferent points can be found by an interpolation operation. This, obviously, introduce

some disturbances and oscillations, and then some filtering scheme must be applied

or some appropriate high-order interpolation schemes can be implemented. In this

case, the drawback will be in a more intensive computational effort. Finally, the grid

where the overlapping is obtained without any interpolation points can be an ideal

solution for many kinds of geometry domains. However, the difficulty is to find an

analytical function which satisfies two or more geometry domains at the same time.

A multiblock solver, based on the finite difference methodology, seems to be an

ideal approach to study turbulent flows over complex geometries, provided the use of

high-order schemes. The grid matching across the interfaces can be handled by using

a global mapping for all the blocks. For example, polynomial functions can be used

for the entire domain ensuring the continuity of the derivatives across the interfaces.

The use of a global mapping for all the blocks will also simplify the interface issues

presented in next section.

7.2 Structure of the Algorithm

When two or more blocks are used, it is necessary to resolve the interface issues be-

tween them, Le. the information swap between the blocks. For example, we consider

the case of a jet in a cross flow (Figure 7.1a) with a better local representation shown

in Figure 7.2. It shows that block 1 and block 2 have a common interface layer at
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Figure 7.1: Examples of multiblock geometries.

y = 0 in parallel to the x - z plane. Similar to the single block version of the code, the

interface between two blocks can be considered like the interface between two pro-

cessors when the parallel computing is involved. However, it is necessary to properly

define the starting and finishing locations of the interfaces in terms of physical and

computational coordinates. This operation can be done manually when the number

of interfaces is small (1-4), but the definition process could become difficult if more

blocks are involved. Moreover, for the same physical geometry, each grid resolution

will have different bounds, making the use of the code not quite user friendly. The

above problems can be addressed using a pre-processor program, where the geometry

of the system and all the interfaces and block communication issues can be defined

automatically, if a global mapping for all the blocks is employed. For example, in the

jet in a cross flow case, each halo point of block 1 (marked with an empty black circle)

is going to match its x, y, z coordinates with the corresponding points coordinates of

block 2. Similar operation can be done for the halo points of block 2 presented in

block 1 (marked with a red filled circle).

Considering that each block can be divided in more processors, the general steps

of the pre-processor can be described as follows:
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interface block 1

~ IIIIIII!I!I!!!IIII!!IIIIIIIII
block 2

Figure 7.2: Interface points for the jet in cross flow system. The black circles indicate

the halo points of block 1 presented in block 2, while the red filled circles indicate the

halo points of block 2 presented in block 1.

1. The physical x, y, z coordinates values of each point of the domain are used for

all blocks.

2. The boundary conditions for each block are assigned. The possible conditions

are: "integral", "characteristic" , "periodic" , "interface" and" wall". Each block

has six surfaces and the above conditions can be applied to each of these surfaces.

3. For each processor in a block, the pre-processor finds the relative physical and

computational information: e.g. the number of points in each direction, indexes

in the processor matrix, etc.

4. For each processor, each halo point of each processor belonging to a surface

defined as "interface" is matched with the internal points of another processors.

This operation defines the physical and computational bounds of the interfaces.

Moreover, each block will be assigned with a set of six boundary conditions,

one for each side. If only one processor is defined in a block, these boundary

conditions are coincident with the block boundary conditions. If more than one

processor is used in a block, the pre-processor will find the most appropriate

boundary conditions considering the presence of interfaces between blocks. For
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wall
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wall

/
wall
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Figure 7.3: Boundary conditions after splitting between two processors.

example, we consider a 2D block with the following boundary conditions (see

Figure 7.3):

• left side: integral

• right side: characteristic

• bottom side: wall

• upper side: wall

Suppose now to divide the block with two processors along the x direction. The

new boundary conditions for each processor will be:

for processor 1)

• left side: integral

• right side: contiguous

• bottom side: wall

• upper side: wall
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for processor 2)

• left side: contiguous

• right side: characteristic

• bottom side: wall

• upper side: wall

The new label "contiguous" indicates the absence of a physical boundary and

the presence of an adjacent processor.

If an interface is present, the pre-processor will define a new type of interface

over the range of overlapped halo points between the adjacent blocks. For

example, in the case of the jet in a cross flow described above, if one processor

is used for each block then the boundary conditions will be (see Figure 7.4):

processor 1)

• left side: integral

• right side: characteristic

• bottom side: interface-mix

• upper side: wall

processor 2)

• left side: integral

• right side: characteristic

• bottom side: wall

• upper side: interface-full

162



Chapter 7. Extension to Multiblock Code

wall

integral

-.L- ~..._'

<,
interface_mix

characteristic

interface full

wall wall

1 block, 1 processor

1block, 1 processor
integral

Figure 7.4: Boundary conditions for the jet in a cross flow system.

The "interface-mix" condition indicates the presence of some halo points (but

not all) in another block (block 2 in this case), while the condition "interface-

full" indicates that all the halo points are in the other block (block 1 in this

case). This difference is necessary in order to speed up the derivative calculation

across the interface. Ideally, each processor should have an "interface-full" if an

interface occurs.

5. Mesh data are saved in the mesh files, while all the information about number

of processors, blocks, partitioning, interface bounds, etc. are saved in the file

called 'locate.dat'.

For very large job the pre-processor program can require huge amount of memory

and computational time. A parallel version of the preprocessor will be an ideal

solution to these cases.
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7.3 Demonstration: DNS of a Jet in a Cross Flow

In order to demonstrate the multiblock version of the code, a direct numerical sim-

ulation of a jet in a cross flow (here after JICF) has been carried out. Moreover,

this kind of flow configuration has many practical applications like cooling film for

turbine blade, fuel injection in combustion chamber, dispersion of polluting in the

atmosphere, etc. High fidelity numerical simulation can be useful to understand the

mixing mechanism which occurs downstream the jet orifice.

7.3.1 Review of Previous Works

The JICF have been investigated experimentally and numerically by many researchers,

however here we mainly reference to two studies: Ajersch et al. (1997) and Sau et al.

(2004). In the former, detailed measurements and numerical simulations of multiple

jets in a cross flow are presented. The CFD code used is a RANS solver based on

the k - e model corrected with a special near-wall treatment. The Reynolds number,

based on the jet diameter and freestream quantities, was 4700~The jet to cross flow

velocity ratios examined were 0.5, 1.0 and 1.5. Good agreement has been found be-

tween experiments and simulations for the nonuniform mean flow at the jet exit plane,

while the velocities and stresses on the jet centerline downstream of the orifice are

less well predicted. In the second work, simulations were performed for two moderate

values of the Reynolds number 225 and 300, based on the jet width and the average

cross flow inlet velocity, and for two different values of the jet to cross flow velocity

ratio, 2.5 and 3.4.

In both cases, from a physical point of view, a counter rotating vortex pair is

observed for a sufficiently high jet to cross flow momentum ratio (R = }jIVe,) and a

backflow region is present just downstream of the jet. Three momentum ratio were

examined: 0.5, 1.0 and 1.5 at a jet Reynolds number approximately 4700.
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Some interesting physical flow phenomena have been found in the work of Sau et
al. (2004), where a direct numerical simulation of a square jet in a laminar cross flow

has been carried out. Moreover, an upstream horse-shoe vortex system is detected,

which is the results of the interaction between the incoming channel floor shear layer

and the transverse jet. Two moderate Reynolds numbers, 225 and 300, (based on

the jet width and the average cross-flow inlet velocity), have been simulated for two

different jet to cross flow velocity ratios, 2.5 and 3.5.

7.3.2 Domain, Grid and Flow Conditions

A sketch of the system can be seen in Figure 7.1a. Two different Reynolds numbers

have been tested (Reo. = 1000 and Reo. = 2000, based on the inlet boundary layer

displacement thickness bin and the free stream propriety of the cross flow) for two

different jet inflow profiles (a fully developed and a constant velocity profile) and

three different jet to cross flow velocity ratios (0.5, 1.0 and 1.5). Tables 7.1 and 7.2

give the dimensions, the number of points and grid resolutions for all the tests cases.

We consider a subsonic flow at Moo = 0.6.

Reo· Lx Ly Lz n, Ny Nz ~x+ ~y+ ~z+

1000 22.73 9.47 16 221 81 151 1.03 - 21.06 0.99 -15.86 0.99 -10.27

2000 18.35 4.96 8 401 91 251 1.12 - 20.48 1.12 - 28.16 1.12 - 6.48

Table 7.1: Cross flow domain parameters

The periodic conditions are applied in the spanwise direction, so the simulation is

similar to a series of parallel jets. However, because we are interested in only one

single jet flow dynamics, we have chosen a domain wider enough to avoid interactions

in the spanwise direction. The inflow cross flow profile is provided by a precursor
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Rea* Lx Ly Lz Nx s, Nz ~x+ ~y+ ~z+

1000 1 1 1 41 31 31 1.03 - 21.06 0.99 - 15.86 0.99 - 10.27

2000 1 1-5a 1 81 41 51 1.12 - 20.48 1.12 - 28.16 1.12 - 6.48

a for constant jet inlet profile

Table 7.2: Jet domain parameters

turbulent boundary layer similar to that in the hill case (see section 6.2) and the inlet

pressure field is obtained by an extrapolation condition. Characteristic non-reflecting

boundary conditions are applied at the outflow and at the top of the domain (e.g.

block 1). For the jet inflow (Le. block 2) two different profiles have been used: a)

similar to the work of Sau et al. (2004), a fully developed axial inlet velocity (White,

1991) described as:

48
v(x, z), = Q7r3{3(x, z) (7.1)

where

Q _ 1_ 192 ~ tanh(~)
7r5 . L..J i5

t=1,3,5, ...

(7.2)

{3(x, z) - f: (_I)(i-l)/2 (1_ cosh [(2h - 1)~])COS\;X~)
i=1,3,5... cosh(~) 'l

(7.3)

7ri
~(i) - 2d

(7.4)

b) a constant profile.

Due to the presence of the jet, a non uniform mesh has been adopted in all

directions: in the streamwise direction a cubic function is used on the left and the

right sides of the jet while a fifth-order polynomial function has been used for the

jet center region (see Figure 7.5 a). This guarantees the continuity of the first and
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the second derivatives across the whole domain. Similar stretching function has been

applied in the spanwise direction, but the extremes of the domain are stretched with a

fifth-order polynomial function in order to guarantee the continuity of the derivatives

considering that periodic conditions are applied in this direction. A cubic function

stretching is applied in the normal direction (see Figure 7.5 b).

11111111111111111111111
jet inlet

x

(a) Fifth order polynomial function

y

1)

third order

(b) Cubic function

Figure 7.5: Fifth and cubic function for mesh stretching in the jet in cross flow system

along the streamwise and normal directions.
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7.3.3 Results

In the following are presented some of the results from the different tests cases cited

above. A comparison with the experimental results of Ajersch et al. (1997) is pre-

sented, but no details on the flow dynamic and topology are here given.

The data have been collected after a transient time of 100 time units: initially run

50 time units without the jet block, in order to fully develop the turbulent flow from

the inlet, and then run another 50 time units with the jet block turned on. After

the transient time, the data are collected for further successive 200 time units until

statistical convergence is achieved.

Figures 7.6a and 7.6b show the instantaneous flow field of the normal velocity

after 200 time units for the Re8. = 1000 test case with fully developed mean jet

profile at the inlet and a jet to cross flow velocity ratio equals to 1.5. Streamlines are

also represented. The jet penetration is around 2 jet exit diameters in the normal

direction. A backflow region is detected downstream of the jet exit, while the horse-

shoe vortex system, or recirculation zone, is captured upstream of the jet exit. Figure

7.7 and Figure 7.8 are shown the statistics data in the x - z plane at different y-

locations. It is noted that the formation of a counter rotating vortex pair behind

the jet exit which increases while moving away from the wall to a maximum around

y+ = 16.23 and then disappears in the streamwise current. The flow topology is

similar to those presented in the work of Sau et al. (2004) and Ajersch et al. (1997).

Finally, Figures 7.9-7.13 show the results at Re8. = 1000 for the mean velocities

U, v and wand for the mean shear stress u'v' and turbulence kinetic energy k at

different streamwise locations, compared with the results from the work of Ajersch

et al. (1997). Data are plotted at a cross x - y plane at z = 0 and normalized by

the free-stream velocity uoo. General good agreements are showed for the streamwise

and the spanwise velocities, while the normal velocity profile has some incongruence

especially at the jet exit. This is probably due to the different jet profile used. The
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discrepancies are also found in the turbulence kinetic energy and also in the shear

stress profiles.
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Figure 7.6: Instantaneous normal velocity and streamlines in the middle plane (z = 0)

for the jet in cross flow after 200 time units.
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Figure 7.7: Mean normal velocity and streamlines in the middle plane (z = 0) for the

jet in cross flow.
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Figure 7.8: Mean normal velocity and streamlines in the middle plane (z = 0) for the

jet in cross flow.
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7.4 Summary

A multi block version of the code has been developed and described. The main mod-

ification is the implementation of a pre-processor program which generates the mesh

and automatically finds all the information for each block. The new version of the

code has been successfully tested for a jet in a cross flow system at different Reynolds

numbers and different jet to cross flow velocity ratios (R), with representation results

here presented for Res- = 1000 and R = 1. However, further validation could be

carried out for different systems and flow conditions.
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Conclusions and Future Works

The SBLI code has been successfully extended to have fully 3D curvilinear capability.

Validation tests and direct numerical simulations of turbulent flows in a ridged channel

and over an axisymmetric hill have been performed. Moreover, a multiblock version

of the code is developed and results from a direct numerical simulation of a jet in a

cross flow are presented. In this Chapter we will summarize the main findings of the

thesis and provide suggestions on possible future works.

8.1 Conclusions

8.1.1 Extension to Fully 3D Curvilinear Geometries

Following a different formulation than Visbal and Gaitonde (2001) for the inviscid

terms of the Navier-Stokes equation, a fully 3D version of the SBLI code has been

successfully developed and tested for different cases with the following main findings:

• preservation on a wavy grid has been proven with an error of 1 x 10-16 (same

order of the machine-precision);

• the errors found in a laminar channel flow on a highly distorted grid are pre-
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served when the flow direction and the position of the walls are altered along

each direction;

• a pre-compiler program has been developed in order to simplify the r.h.s. sub-

routine in the presence of non curvilinear geometries.

8.1.2 Turbulent Flow in a Ridged Channel

DNS of a turbulent flow in a ridged channel has been carried out at two Reynolds

numbers: ReT = 150 and ReT = 360. The data have been compared with previous

numerical and experimental results and the following are the main findings:

• at a low Reynolds number (ReT = 150), the mean quantities agrees fairly well

with previous studies and two large recirculations are observed in the transverse

plane. The primary wall stress agrees as well;

• the turbulence intensity at the extreme locations of the domain is in better

agreement with that from turbulent plane channel flow than that presented by

Kawamura and Sumori (1999) and FA;

• at a medium Reynolds number (ReT = 360) the effect of the ridge on the stream-

wise flow is stronger at the ridge center and weaker at the extreme locations.

Consistently with this, at the extreme locations the turbulence intensity is ap-

proaching to the plane channel flow. Moreover, a small secondary recirculation

has been captured at the ridge foot areas;

• differently from the FA work where additional small recirculations seems not to

affect the main flow, here a variation in the streamwise velocity profile is ob-

served. This seems consistent with other findings, considering that the stream-

wise velocity has low intensity in this region where the recirculation occurs and
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then the value of the secondary recirculation, even if small as well, is "large"

enough to affect the streamwise velocity profile.

8.1.3 Turbulent Flow over an Axisymmetric Hill

DNS of a turbulent flow over an axisymmetric hill at Re8* = 500 has been carried

out. This is the main simulation of this thesis work with the following findings:

• on a coarse grid, simulation gives results in good qualitatively agreement with

experimental data obtained at a high Reynolds number. The flow accelerates

over and around the hill of it and then it separates on the leeside. A counter

rotating vortex pair merging in the free stream flow has been detected. The

flow topology analysis shows three saddle separation points on the middle plane

(z/ H = 0) and three nodal separation points on the leeside. A small (clockwise)

recirculation bubble embedded inside the main recirculation has been detected

just after the top of the hilL However, considering the findings from a fine grid

simulation, we only retain the coarse grid results "apparently correct";

• on a fine grid, the main separation bubble detected is larger than that from

a coarse grid simulation. The effect is due to the presence of a small (anti-

clockwise) recirculation bubble closer to the top of the hill which pushes up

the incoming streamwise flow and causes an earlier separation of the boundary

layer. The reason is probably due to an improved grid resolution which allows

to correctly resolve the complex separation which occurs on the leeside. The

flow topology analysis shows the presence of four separation saddle points and

four nodal points (two of attachment and two foci of separation);

• the coherent structures analysis shows the disappearance of finer flow structures

over the hilL A laminarisation effect is suggested and also confirmed by the high

laminarisation parameter evaluated in this region;
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• a small recirculation bubble has been detected at the foot upstream of the hill.

Its presence modifies the local friction velocity value with a drastic reduction

and thus leads to a high value of the turbulence intensities;

• a new inflow generation method, based on a precursor boundary layer simu-

lation, has been successfully tested. The main advantage is the reduction of

the computational domain and thus the costs. The new method, based on a

spanwise duplication of the precursor boundary layer simulation, gives similar

separation behavior behind the hill on the coarse resolution and reasonable good

results on the fine grid.

8.1.4 Extension to Multiblock Version

A new multiblock version of the SBLI code has been presented. The main feature is

the implementation of a pre-processor program which defines all the computational

parameters for a given system (e.g. the number of points, blocks, indexes, etc.)

and automatically finds the computational bounds of each interface between adjacent

blocks. The multiblock version has been tested for a jet in a cross flow system at

different flow conditions. Satisfactory results have been achieved in comparison with

available experimental data.

8.2 Future Work

The new fully 3D curvilinear and multiblock version of the SBLI code is still in its

early development stage. It is possible that ion depth bugs and incompleteness still

remains and more validation tests and applications are desiderable to make the code

more robust. Thus, the following tasks are suggested:

• LES module needs to be tested and possible expanded to include other subgrid
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models;

• TVD scheme for shock capturing needs to be tested;

• further optimization of the version;

• MPI-IO implementation and scalability test at large scale and on different High

Performance Computing (HPC) platforms.

Concerning the three-dimensional boundary layer separation of the hill problem,

the laminarisation at a low Reynolds number has made a drastic change of the flow

topology and makes a comparison with a high Reynolds number very difficult. Then,

the following points are suggested for future investigation:

• a DNS at a higher Reynolds number (for example Res- = 1000) should be high

enough to avoid the flow laminarisation which unfortunately occurs at a lower

Re» = 500;

• LES at same Reynolds number used in the experimental study should be able

to capture the main of the features presented, provided that a high resolved

LES can be carried out at reasonable affordable cost;

• the effect of different hill height or ratio 8/H can considerably improve in the

understanding of the three-dimensional flow separation mechanism;

• new RANS models can be implemented, tested and compared with the present

DNS.
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Dimensionless N-S Equations and

Other Useful Equations

A.I Derivation of Dimensionless N-S Equations

We present here the mathematical procedures to obtain the dimensionless NS equa-

tions based on the dimensional eqns, (2.1)-(2.3) and the reference parameters pre-

sented in eqn. (2.10).

By substituting the correspondent dimensional variables, we have

Continuity equation

or

(A.l)
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Momentum equation

The first step is to derive the dimensionless form of the stress term as

where

By substituting these in the momentum equations we obtain

or

Because

where the Reynolds number is defined as
*U*"'*Re = Pr rUr•
jj;

We now define
-r .. _ rlj _ _!!:_ (aUi + aUj _ ~ aUk "'..)
,t] - R - R a a 3 a Ut] ,e e Xj Xi Xk
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and find dimensional form of the

8(PUi) + 8(PUiUj + p8ij) _ 81ij = 0
at 8xj 8xj'

(A.2)

Energy equation

As before, we perform the dimensionless of the following terms

q~= _kT: 8T.
t 8* 8x·r t

By substituting them into the energy equation, we have

The coefficient in the last terms can be simplified as

8* U*2 //* 1__ r_ *_r_ _ rrr __
P*U*3J..lr 8*2 _ p*U*8* _ Re'
r r r r r r

and
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If we rewrite the U;2 in this way

and we substituting in the precedent equation, we have

1 k J.1T; 1 1 J.1
Re J.1*CpM2(! - I)T; = Re Pr M2(! - 1)'

where
1 k

Pr = J.1*Cp•

Now, posing
11 J.1 er

qi = - Re Pr M2 (!- 1) aXi'

the final dimensional form of the energy equation is

(A.3)
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A.2 Others Useful Formulas

In following are presented some others useful formulas obtained for perfect gas and

used in the code:

T

that is correct because:

then

T T TT* T*R T*C e*r v
(, - I),M2 = (, _ 1), -yr;t;; = -(,---1-'-)U-fl-';-2 = t:U;2 = -U-;-2 = -Ur-*2= e.

Moreover:
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N-S Equations in 3D Fully

Curvilinear Coordinates

In this Appendix we give the mathematical manipulations to obtain the eqn. (2.33).

We start from the general form of transformation of eqn. (2.18):

oo of of. of A'" of oc ec of. ea a'" ea o; en of. en A'" on oC
at + of. ox + a'" ox + oC ox + of. ay + a'" ay + oC ay + of. oz + a'" oz + oC oz = O. (B.1)

If we multiply each terms by Jcobian quantity J defined in section 2.2, we have

We can rewrite the first derivative term in the x-direction of F as:
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Similarly we can rewrite all other terms in this way and we substitute them in eqn.

(B.l) we have

au a ( ae) a ( ae) a ( a",) a ( a",) a ( a( ) a ( a()J-+- JF- -F- J- +- JF- -F- J- +- JF- -F- J- +at ae ax ae ax a", ax a", ax a( ax a( ax

a ( ae) a ( ae) a ( a",) a ( a",) a ( a() a ( a()+_ JG- -G- J- +- JG- -G- J- +- JG- -G- J- +ae ay ae ay a", ay a", ay a( ay a( ay
+~ (JHae)_H~ (Jae)+~ (JHa"')-H~ (Ja",)+~ (JHa()-H~ (Ja() = o.ae az ae az a", Bz a", az a( Bz a( az

Now we want to simplify this equation. If we combine all the terms with common F,

we have:

-F [~ (J~!)+ ~ (J~;)+ ;, (J~~)].
We can prove that the quantity in the bracket is equivalent to zero by using the

metrics eqn. (2.32):

a2y az ay a2z a2y az ay a2z
aT}a~a( + ary8[tft - 8[tftary - 8(~

a2y az ay a2z a2y az ay a2z
- a~aT)a( - a~ a( aT}+8(8rj ~ + a( a~aT}...___,,_......

a2y az ay a2z a2y az ay a2z
+NJK.ary + a~ aT}a( -a:;;8(~ - aryNJK. ....___,,_......

The sum of the term with same underline has equal zero if the function are continuous

second-order derivable (Schwartz's theorem on the cross derivatives). Same can be

done for the G and H terms. Then, we can rewrite the final eqn. (B.l) as
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or, similar to the eqn. (2.33) as

aUI aFI aGI aHI - 0 (B.3)
at + a~ + aTl + a( - ,

where

U1 - JU, (BA)

FI - (JF:! + JG: + JH:;), (B.5)

G1 - (JF:>JG: +JH~)' (B.6)

HI - (JF:; + JG:~+ JH::). (B.7)
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Appendix C

Nomenclature used in the Full 3D

Version of the SBLI Code

In the following we present the equations used in the SBLI code divided in: inviscid

terms, viscous momentum terms, heat conductive terms and viscous energetic terms.

For the viscous momentum terms we have used this nomenclature:
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C.l Nomenclature used for the Jacobian Terms

The inverse of the matrix presents in the eqn. (2.29) is indicates as

JaC21 Jac22 Jac23

a~ a~ a~ ax ax ax -1

Bz'
- acax ay a~ a", Jac31 Jac32 Jac33

a", a", a", ay ay ay
- az' - ac - ax ax axax ay a~ a",

a~ a", ac'
ac ac ac az az az
ax ay az' a~ a", ac' ay ay ay

- aca~ a",

az az az
-a~ a", ac

where:
ax ax ax
a~ a", ac

J=
ay ay ay (C.1)a~ a", ac

az az az- -a~ a", ac
and

JaC13 = (ax ay _ ax ay)aT]a( a( aT] ,
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The value of J . JaCij is denoted as Jacodeto,

Referring to eqn. B.3, we define:

e ( [)~) [) ( [)~)
Al1=[)~ JF[)x' A12=[)~ JG[)y ,

For heat conductive terms, we change Aij with Eij•

The terms:

where i = 1,2,3 give ~i = t.». ( and Xi = X, y, z, are denoted as reSijk in the code.

For example:
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C.2 Inviscid (Convective) Terms in Curvilinear Co-

ordinates

In the code the inviscid terms are developed in this way:

e-derivative

continuity

~ [(PU)J~!] + :~ [(PV) J:] + ~ [(PW)J~:] ~
a
ae (p * temp),

x-momentum

a [ ae] a [ ae] a [ ae]ae (puu +p) J ax + ae (puv) J ay + ae (puw) J az =

a ( ae)ae pu * temp +pJ ax '

y-momentum

~ [(PVU)J~!] + :~ [(PVV +P)J:] + :~ [(PVW) J~:]~
:~ (pv, temp +PJ:),

z-momentum

a [ ae] a [ ae] a [ ae]ae (pwu) J ax + ae (pwv) J ay + ae (pww +p) J az =

:~ (pw * temp +PJ~;),
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energy

a [ ae] a [ ae] a [ ae]ae (EtotU + pu) J ax + ae (EtotV + pv) J ay + ae (EtotW + pw) J az =

aae [(Etot + p) * temp]

where
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ry-derivative

continuity

~ [(PU)J:] + :ry [(PV)J:] + :ry [(PW)J:] =

a
ary (p * temp) ,

x-momentum

a [ aryl a [ aryl a [ aryl_ (puu +p) J- + - (puv) J- + - (puw) J- =ary ax ary ay ary az

a ( ary)ary pu * temp + pJ ax '

y-momentum

a [ aryl a [ aryl a [ arylary (pvu) J ax + ary (pvv + p) J ay + ary (pvw) J az =

a ( ary)ary pv * temp +pJ ay ,

z-momentum

a [ aryl a [ aryl a [ arylary (pwu) J ax + ary (pwv) J ay + ary (pww + p) J az =

a ( ary)ary pw * temp + pJ az '

energy

a [ aryl a [ aryl a [ arylary (EtotU +pu) J ax + ary (EtotV +pv) J ay + ary (EtotW + pw) J az =

a
ary[(Etot + p) * temp]
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where
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( -derivative

continuity

x-momentum

;, [(PUU+P)J~~] +; [(PUV)J~~] +;, [(PUW)J~:] =

;, (pu * temp+ PJ~~),
y-momentum

;, [(PUU)J~~]+ ;, [(PUV+p)J~] + ;, [(PUW)J::] =

a ( . a()
a( pv * temp + pJ ay ,

z-momentum

;, [(PWU) J~~] + ; [(PWV) J~] + ;, [(PWW +p)J::] =

;, (pw * temp +PJ~:),
energy
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where

( o; o; a()temp = uJ- + vJ- + wJ- .ax ay az

However, this form has been successively changed in the more conservative form for

fully 3D curvilinear meshes as explained in section 4.1.

C.3 Viscous (Diffusion) Terms of x-Momentum Equa-

tion

We calculate each viscous term of NS equation of x-momentum equation

x-Momentum terms

a ( ae)Au = ae TxxJax =

aTxx (Jae) ~ (Jae) =ae ax +Txxae ax
~ [_1!:_ (i au _ ~ (av + aw))] (Jae) + [_1!:_ (i au _ ~ (av + aw))] ~ (Jae)ae Re 3 ax 3 ay az ax Re 3 ax 3 ay az ae ax'

A

By defining a new parameter IL'as
I ILIL=-,Re

and

we have

A = aIL' [(i au _ ~ (av + aw))] +IL'~ [(i au _ ~ (av + aw))].ae 3ax 3 ay az ae 3ax 3 ay az
Al Al
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Al = ~ (aua~ + au a",+ aua,)_~ [(ava~ + ava", + ava,) + (awa~ + awa", + awa,)].
3 a~ax a",ax a, ax 3 a~ay a",ay a, ay o~ az 0", az a( az
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x-Momentum terms

!_ [_l!_ (av + au)] (Jae) + [_l!_ (av + au)] !_ (Jae)ae Re ax ay ay Re ax ay ae ay·
A

If we indicate with
I J.LJ.L= -,Re

and

we have
aJ.L' [(av au)] I a [(av au)]

A = ae ax + ay +J.Lae ax + ay .
Al Al

aAl [a2Vae av a (ae) a (av) af! av a (af!) a (av) oc av a (a()]ae = ae ax + ae ae ax + ae af! ax + af! ae ax + ae a( ax + a( ae ax

[
a2u ae au a (ae) a (au) af! au a (af!) a (au) a( au a (a()]

+ ae ay + ae ae ay + ae af! ay + af! ae ay + ae a( ay + a( ae ay .
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x-Momentum terms

a ( ae)AI3 = ae JTxz az =

aTxz ( ae) a (Jae)ae J az + Txzae az =

~ [_!!_ (aw + au)] (Jae) + [_!!_ (aw + au)] ~ (Jae)ae Re ax az az Re ax az ae az'
A

If we indicate with

and
Al = Txz/ 11',

we have all' [(aw au)] ,a [(aw au)]A = ae ax + 8z +11 ae ax + 8z .
Al Al

aAl [a2Wae Bu: a (ae) a (aw) aT] aw a (aT]) a (aw) a( aw a (a()]8f = ae ax + ae ae ax + ae aT] ax + aT]ae ax + ae a( ax + a( ae ax

[
a2u ae au a (ae) a (au) aT] au a (aT]) a (au) a( au a (a()]

+ ae az + ae ae az + ae aT] az + aT]ae az + ae a( az + a( ae az .
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x-Momentum terms

~ [_f!_ (i8U _ ~ (8V + 8W))] (J817)+[_f!_ (i8U _ ~ (8V + 8W))] ~ (J817)817 Re 3 8x 3 8y 8 z 8x Re 3 8x 3 8y 8 z 817 8x'
A

If we indicate with , J-L
J-L= Re'

and
Al = Txx/ J-L',

we have

A = 8J-L'[(i 8u _ ~ (8V + 8W))] +J-L'~ [(i 8u _ ~ (8V + 8W))].817 38x 3 8y 8z 817 38x 3 8y 8z
Al Al

Al = ~ (OUO~ + au Or]+ ouo')_~ [(OVO~ + ovor] + ovo')+ (OWO~ + OwOr]+ Owa')]
3 O~ax or]ox 0, ox 3 O~oy or]oy a' oy o~ OZ or] OZ ~, OZ .
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x-Momentum terms

A

If we indicate with
, J1

J1 = Re'

and

we have

aAl [a (av) a~ av a (a~) a2v 131] av a (131]) a (av) a( av a (a()]131]= 131] a~ ax + a~ 131] ax + 131]2ax + 131]131] ax + 131] a( ax + a( 131] ax

[
a (au) a~ au a (a~) a2u 131] au a (131]) a (au) o: au a (a()]

+ 131] a~ ay + a~ 131] ay + 131]2ay + 131]131] ay + 131] a( ay + a( 131] ay .
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x-Momentum terms

~ [_!!:_ (aw + au)] (Jart) + [_!!:_ (aw + au)] ~ (Jart)art Re ax az az Re ax az art az·
A

If we indicate with
I ILIL = Re'

and

we have
A = aIL' [(aw + au)] + '~ [(aw + au)].art ax az ILart ax az

Al Al

oAl [0 (av) ae av 0 (ae) a2va"l av 0 (a"l) a (av) oc av a (ac)]a"l = a"l ae az + ae a"l az + a"l2oz + a"l0"1 az + a"l ac az + ac a"l az

[
a (aw) oe aw 0 (ae) a2wa"l aw a (a"l) a (aw) ac aw a (ac)]

+ a"l ae ay + ae a"l ay + a"l2ay + 0"1 a"l ay + a"l ac ay + ac 0"1 ay .
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x-Momentum terms

~ [tie (~~-H~+~))](J~:)+[;e (~: -H: +~:))]:,(J~:).
A

If we indicate with

and

we have

A = aJ-L'[(iau _ ~ (av + aw))] + '~[(iau _ ~ (av + aw))].a( 3ax 3 ay az J-La( 3ax 3 ay az
Al Al

Al = i (8U 8e + 8u 81]+ 8u 8() _~ [(8V 8e + 8v 81]+ 8v 8() + (8W 8e + 8w 81]+ 8w 8()] .
3 8e 8x 81]8x 8( 8x 3 8e 8y 81]8y 8( 8y 8e 8z 81]8z 8( 8z

8AI 4 [8 (8U) 8e 8u 8 (8e) 8 (8U) 81] 8u 8 (81]) 8
2
u 8( 8u 8 (8()]

8( = 3 8( 8e 8x + 8e 8( 8x + 8( 81] 8x + 81]8( 8x + 8(2 8x + 8( 8( 8x

2 [8 (8V) 8e 8v 8 (8e) 8 (8V) 81] 8v 8 (81]) 8
2
v 8( 8v 8 (8()]

- 3 8( 8e 8y + 8e 8( 8y + 8( 81] 8y + 81]8( 8y + 8(2 8y + 8( 8( 8y

2 [8 (8W) 8e 8w 8 (8e) 8 (8W) 81] 8w 8 (81]) 8
2
w 8( 8w 8 (8()]-3 8( 8e 8z + 8e 8( 8z + 8( 81] 8z + 81]8( 8z + 8(2 8z + 8( 8( 8z .
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x-Momentum terms

!_ [_!!_ (av + au)] (Ja() + [_!!_ (av + au)] !_ (Ja()a( Re ax ay ay Re ax ay a( ay·
A

If we indicate with

and

we have

Al

aAl [a (av) a~ av a (a~) a (av) ary av a (ary) a2vac av a (ac)]ac = ac a~ ax + ae ac ax + ac ary ax + aryac ax + ac2 ax + ac ac ax

[
a (au) ae au a (ae) a (au) ary au a (ary) a2u ec au a (ac)]

+ ac a~ ay + a~ ac ay + ac ary ay + aryac ay + ac2 ay + ac ac ay .

208



Appendix C. Nomenclature used in the Full 3D Version of the SBLI Code

x-Momentum terms

A

If we indicate with

and

we have

Al

8A! [8 (8W) 8~ 8w 8 (8~) 8 (8W) 81J 8w 8 (81J) 8
2
w 8( 8w 8 (8()]

8( = 8( 8~ 8x + 8~8( 8x + 8( 81J 8x + 81J8( 8x + 8(28x + 8( 8( 8x

[
8 (8U) 8~ 8u 8 (8~) 8 (8U) 81J 8u 8 (81J) 8

2
u 8( 8u 8 (8()]

+ 8( 8~ ~z + 8~8( 8z + 8( 81J 8z + 81J8( 8z + 8(28z + 8( 8( 8z .
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C.4 Viscous (Diffusion) Termsofy-Momentum Equa-

tion

We rewrite each viscous term of NS equation of y-momentum equation

y-Momentum terms

~ [~ (av + au)] (Ja~) + [~ (av + au)] ~ (Ja~)a~ Re ax ay ax Re ax ay a~ ax'
A

If we indicate with

and

we have

Al

Al = [(avae + avary + av ac) + (au ae + au ary+ au ac)]ae ax aryax ac ax ae ay aryay ac ay .

aAI [a2Vae av a (ae) a (av) ary av a (ary) a (av) ac av a (ac)]. ae = ae ax + ae ae ax + ae ary ax + aryae ax + ae ac ax + ac ae ax

[
a2u ae au a (ae) a (au) ary au a (ary) a (au) oc au a (a,)]

+ ae _ay + ae ae ay + ae ary ay + aryae ay + ae ac ay + ac ae ay .
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y-Momentum terms

~ [J!:_ (i av _ ~ (au + aw))] (Ja~) + [J!:_ (i av _ ~ (au + aw))] ~ (Ja~)a~ Re 3ay 3 ax az ay Re 3ay 3 ax az a~ ay'
A

If we indicate with

and

we have

Al

Al = ~ (av ae + avary + av a() _~ [(au ae + au ary+ au a() + (aw ae + awary + aw a()] .
3 ae ay aryay a( ay 3 ae ax aryax a( ax ae Bz aryBz a( az
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y-Momentum terms

_?_ [_!!_ (av + aw)] (Ja~) + [_!!_ (av + aw)] _?_ (Ja~)a~ Re az ay az Re Bz ay a~ az·
A

If we indicate with

and

we have

Al

Al = [(avat; + avary + av a() + (aw at; + awary + awa()]at; az aryaz a( az at; ay ary ay a( ay .
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y-Momentum terms

A

If we indicate with
1-£' - _!!_- Re'

and
Al = Tyx/I-£',

we have
A = EJI-£' [(EJV + EJU)] + 'i_ [(EJV + EJU)].EJr] EJx EJy 1-£ EJr] EJx EJy

Al Al

Al = [(av a~ + ava"., + av a() + (au a~ + au a".,+ au a()]a~ ax a".,ax a( ax a~ ay a".,ay a( ay .

aAI [a (av) a~ av a (a~) a2va"., av a (a".,) a (av) ec av a (a()]a"., = a"., a( ax + a~ a"., ax + a".,2ax + a".,a"., ax + a"., a( ax + a( a"., ax

[
a (au) a~ au a (a~) a2u a"., au a (a".,) a (au) a( au a (a()]

+ a"., a( ay + a~ a"., ay + a".,2ay + a".,a"., ay + a"., a( ay + a( a"., ay .
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y-Momentum terms

_?_ [_!!:_ (~BV _ ~ (BU + BW))] (JBry)+[_!!:_ (~BV _ ~ (BU + BW))] _?_ (JBry)Bry Re 3 By 3 Bx Bz By Re 3 By 3 Bx Bz Bry By'
A

If we indicate with

and

we have

A = Bp,' [(~ Bv _ ~ (BU + BW))] +p,' _?_ [(~ Bv _ ~(BU + BW))].Bry 3 By 3 Bx Bz Bry 3 By 3 Bx Bz
Al Al

Al = ~ (av ae + avaT! + av a() _~ [(au ae + au aT!+ au a() + (aw ae + awaT! + aw a()] .
3 ae ay aT!ay a( ay 3 ae ax aT!ax a( ax ae Bz aT!Bz a( az
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y-Momentum terms

A23 = :~ (Jr.,~~)=
OTyz (JorJ) + T z~ (JorJ) =orJ OZ y orJ oz

~[f.(~+~)] (J~~)+[~e (: +:;)] :~(J:).
A

If we indicate with

and

we have

Il- E.- Re'

Al = Tyzl/1,',

A = all' [(ov + ow)] +11' ~ [(ov + ow)].OrJ oz ay OrJ oz ay
Al Al

Al = [(aVae + ava'f/ + av a() + (OW ae + awa'f/ + awa()]ae az a'f/Bz a( az ae ay a'f/ ay a( ay .

aAI [a (av) ae av a (ae) a2va'f/ av a (a'f/) a (av) ec av a (a()]a'f/ = a'f/ ae az + ae a'f/ az + a'f/2az + a'f/a'f/ az + a'f/ a( az + a( a'f/ az

[
a (aw) ae aw a (ae) a2wa'f/ aw a (a'f/) a (ow) a( ow a (a()]

+ a'f/ ae ay + ae a'f/ ay + a'f/2ay + a'f/ a'f/ ay + a'f/ a( ay + a( a'f/ ay .
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y-Momentum terms

~ [J!_ (av + au)] (Ja,) + [J!_ (av + au)] ~ (Ja,)a, Re ax ay ax Re ax ay a, ax'
A

If we indicate with

and

we have

Al

aA! [a (av) a~ av a (a~) a (av) a1J av a (a1J) a2va( av a (a()1a( = a( a~ ax + a~ a( ax + a( a1J ax + a1Ja( ax + a(2 ax + a( a( ax

[
a (au) a~ au a (a~) a (au) a1J au a (a1J) a2u o; au a (a()1

+ a( a~ ay + a~ a( ay + a( a1J ay + a1Ja( ay + a(2 ay + a( a( ay .
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v-Momentum terms

~ [_1!:_ (ioV _ ~ (au + ow))] (JO()+[_1!:_ (ioV _ ~ (au + ow))] ~ (JO()o( Re 3ay 3 ox az ay Re 3 ay 3 ox az o( ay'
A

If we indicate with

and

we have

A = 01-£' [(i OV _ ~ (au + ow))] + '~[(i ov _ ~ (au + ow))].o( 3ay 3 ox az 1-£ o( 3 ay 3 ox az
Al Al

Al = ~ (8V 8~ + 8v 8ry+ 8v 8() _~ [(8U 8~ + 8u 8ry+ 8u 8() + (8W 8~ + 8w 8ry+ 8w 8()] .
3 8~8y 8ry8y 8( 8y 3 8~8x 8ryBx 8( 8x 8~ Bz 8ryBz 8( 8z

8AI 4 [8 (8V) 8~ 8v 8 (8~) 8 (8V) 8ry 8v 8 (8ry) 8
2
v 8( 8v 8 (8()]

8( = 3 8( 8~ 8y + 8~8( 8y + 8( 8ry 8y + 8ry8( 8y + 8(2 8y + 8( 8( 8y

2 [8 (8U) 8~ 8u 8 (8~) 8 (8U) 8ry 8u 8 (8ry) 8
2
u 8( 8u 8 (8()]

- 3 8( 8~ 8x + 8~8( 8x + 8( 8ry 8x + 8ry8( 8x + 8(2 8x + 8( 8( 8x

2 [8 (8W) 8~ 8w 8 (8~) 8 (8W) 8ry 8w 8 (8ry) 8
2
w 8( 8w 8 (8()]-3 8( 8~ 8z + 8~ 8( 8z + 8( 8ry 8z + 8ry8( 8z + 8(2 8z + 8( 8( 8z .
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y-Momentum terms

A

If we indicate with , t.tt.t =-,Re
and

Al = Tyz/t.t',

we have
ot.t' [(OV ow)] ,0 [(OV ow)]A = 8( 8z + ay +t.t o( 8z + ay .

Al Al

8A! [8 (8V) 8~ 8v 8 (8~) 8 (8V) 8'f} 8v 8 (8'f}) 8
2
v 8( 8v 8 (8()]

8( = 8( 8~ 8z + 8~8( 8z + 8( 8'f} 8z + 8'f}8( 8z + 8(28z + 8(8( 8z

[
8 (8W) 8~ 8w 8 (8~) 8 (8W) 8'f} 8w 8 (8'f}) 8

2
w 8( 8w 8 (8()]

+ 8( 8~ 8y + 8~8( 8y + 8( 8'f} 8y + 8'f}8( 8y + 8(28y + 8( 8( 8y .
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C.5 Viscous (Diffusion) Termsof z-Momentum Equa-

tion

We rewrite each viscous term of NS equation of z-momentum equation

z-Momentum terms

If we indicate with , J.lJ.l = Re'

and
Al = Tzx/J.t',

we have
aJ.l' [(aw au)] , a [(aw au)]A = ae ax + 8z +J.l ae ax + 8z .

Al Al

Al = [(ow ae + ow 0'11+ ow ac) + (au ae + au 0'11+ au a()]ae ax 0'11ax aC ax ae az 0'11az aC az .

aAI [a2Wae ow a (ae) a (ow) 0'11 ow a (0'11) a (ow) aC ow a (aC)]ae = ae ax + ae ae ax + ae 0'11 ax + 0'11ae ax + ae aC ax + aC ae ax

[
a2U ae au a (ae) a (au) 0'11 au a (0'11) a (au) o; au a (aC)]

+ ae az + ae ae az + ae 0'11 az + 0'11ae az + ae aC az + aC ae az
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z-Momentum terms

~ [_!!_ (av + aw)] (Ja~) + [_!!_ (av + aw)] ~ (Ja~)a~ Re az ay ay Re Bz ay a~ ay'
A

If we indicate with

and

we have all [(av aw)] ,a [(av aw)]A = ~ 8z + ay +p, a~ 8z + ay .
Al Al
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z-Momentum terms

~ [_!!:_ (i ow _ ~ (au + ov))] (Jo~) + [_!!:_ (i ow _ ~ (au + ov))] ~ (Jo~)o~ Re 3 oz 3 ox ay oz Re 3 oz 3 ox ay o~ oz'
A

If we indicate with
,i - _!!:_

- Re'

and
Al = Tzz/p,',

we have

A = op,' [(i ow _ ~ (au + ov))] +p,'~ [(i ow _ ~ (au + ov))].o~ 3 oz 3 ox ay o~ 3 oz 3 ox ay
Al Al

Al _ i (aw ae + awa11 + aw a() _~ [(au ae + au a11+ au a() + (av ae + ava11 + ava()1
- 3 ae az a11az a( az 3 ae ax a11ax a( ax ae ay a11ay a( ay .
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z-Momentum terms

If we indicate with

and
Al = Tzx/,l,

we have
A = aJ-L'[(aw + au)] + ,i_ [(aw + au)].ary ax az J-Lary ax az

Al Al

Al = [(awae + awaT) + aw a() + (au ae + auaT) + au a()]ae ax aT)ax a( ax ae az aT)az a( az .
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z-Momentum terms

~ [te (~+~)] (J:) +[;e (: +~;)] :ry (J:).
A

If we indicate with

and

we have
A = 8J-L'[(8V + 8W)] +J-L'~ [(8V + 8W)] .

8ry 8z 8y 8ry 8z 8y

8Al [8 (8V) 8~ 8v 8 (8~) 82v 81] 8v 8 (81]) 8 (8V) 8( 8v 8 (8()]
81] = 81] 8~ 8z + 8~ 81] 8z + 81]28z + 81]81] 8z + 81] 8( 8z + 8( 81] 8z

[
8 (8W) 8~ 8w 8 (8~) 82w 81] 8w 8 (81]) 8 (8W) 8( 8w 8 (8()]

+ 81] 8~ 8y + 8~ 81] 8y + 81]28y + 81]81] 8y + 81] 8( 8y + 8( 81] 8y .
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z-Momentum terms

~ [fe (~~ - ~(~+~))) (J:;)+[;e (~~~- ~(: +:))) ~ (J:).
A

If we indicate with

and

we have

A = 8J-L'[(~ 8w _ ~ (8U + 8V))) +J-L'i_ [(~8w _ ~ (8U + 8V))) .
8TJ 3 8z 3 8x 8y 8TJ 3 8z 3 8x 8y

Al Al

Al = ~ (8W 8~ + 8w 811+ 8w 8() _~ [(8U 8~ + 8u 811+ 8u 8() + (8V 8~ + 8v 811+ 8v 8()1.
3 8~ 8z 8118z 8( 8z 3 8~ 8x 8118x 8( 8x 8~ 8y 8118y 8( 8y

8AI 4 [8 (8W) 8~ 8w 8 (8~) 82w 811 8w 8 (811) 8 (8W) 8( 8w 8(8()]
811 = 3 811 8~ 8z + 8~ 811 8z + 81128z + 811811 8z + 811 8( 8z + 8( 811 8z

2 [8 (8U) 8~ Bu 8 (8~) 82u 811 8u 8 (811) 8 (8U) 8( 8u 8 (8()]
- 3 811 8~ 8x + 8~ 811 8x + 81128x + 811811 8x + 811 8( 8x + 8( 811 8x

2 [8 (8V) 8~ 8v 8 (8~) 82v 811 8v 8 (811) 8 (8V) 8( 8v 8 (8()]
-3 811 8~ 8y + 8~ 811 8y + 81128y + 811811 8y + 811 8( 8y + 8( 811 8y .
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z-Momentum terms

A

If we indicate with

and

we have

Al

Al = ((OW ae + awa"7 + ow a() + (au ae + au8"7 + au a()]ae ox 0"7ox a( ox ae az 0"7az a( az .

aAI (0 (ow) ae ow a (ae) a (ow) 0"7 ow a (0"7) a2wa( ow a (a()]a( = a( ae ox + ae a( ox + a( 0"7 ox + 0"7a( ox + 0(2 ox + a( a( ox

[
0 (au) ae au a (ae) a (au) 0"7 au a (0"7) a2u a( au a (a()]

+ a( ae az + ae a( az + a( 0"7 az + 0"7a( az + 0(2 az + a( a( az .

225



Appendix C. Nomenclature used in the Full 3D Version of the SBLI Code

z-Momentum terms

~ [_l!_ (av + aw)] (Ja() + [_l!_ (av + aw)] ~ (Ja(). a( Re az ay ay Re az ay a( ay'
A

If we indicate with

and

we have

Al
Al = [(avae + avaT} + ava() + (aw ae + awaT} + awa()1ae az aT}Bz a( az ae ay aT}ay a( ay .

aAI [a (av) ae av a (ae) a (av) aT} av a (aT}) a2va( B» a (a()]a( = a( ae az + ae a( az + a( aT} az + a1/a( az + a(2 az + a( a( az

[
a (aw) ae aw a (ae) a (aw) aT} aw a (aT}) a2wa( tn» a (a()]+ a( ae ay + ae a( ay + a( aT} ay + aT}a( ay + a(2 ay + a( a( ay .
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z-Momentum terms

~(t.(~~-~(~+~))] (J~:)+(;e(~~:- ~(~:+~))] :, (J~:).
A

If we indicate with
,i - _!!_- Re'

and
Al = Tzz/Jl,

we have

A = all ((iaw _ ~ (au + av))] + '~((iaw _ ~ (au + av))].a( 3 az 3 ox ay f.J, a( 3 az 3 ox ay
Al Al

Al _ ~ (aw ae + awa"1 + aw a() _~ [(au ae + au a"1+ au a() + (av ae + av a"1+ ava()]
- 3 ae Bz a"1Bz a( az 3 ae ox 0"1ax a( ax ae ay a"1ay a( ay .
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C.6 Heat Conductivity Terms in the Energy Equa-

tions

We rewrite each term of heat conductivity in energy equation

conductivity energy terms

where:

Then, we have: "OT _ ,,(aT a~ et art aT ac)
J.1 ax - J.1 a~ ax + artax + ac ax '

and

~ ( "aT) = aP." (aT ae + aT a17+ aT a() +ae p. ax ae ae ax a17ax a( ax
" [a2T ae et a (ae) a (aT) a17 er a (a17) a (aT) o; et a (a()]

p. ae ax + ae ae ax + ae a17 ax + a17ae ax + ae a( ax + a( ae ax .
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conductive energy terms

~~(J:) +qy:~(J:) =

:~(~"~~)(J~!)+ (~":) :~ (J:),
where:

,l' = J.LRePrM2(-y -1)·

Then, we have: .et _ ,,(aT a~ er a17 er a()
J.L ay - J.L a~ ay + a17ay + a( ay ,

and
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conductive energy terms

a ( a~)E13 = a~ qzJ az =

aqz ( a~) a ( a~)a~ J az + qza~ J az =

~ ( "aT) (Ja~) ("aT) ~ (Ja~)a~ f..£ az az + f..£ az a~ az'
where:

" f..£
f..£ = RePr M2("( - 1)'

Then, we have: "aT _ ,,(aT a~ et ary et ac)
f..£ az - f..£ a~ az + aryaz + ac az '

and

~ ( "aT) = aJ.L"(aT ae + aT a", + aT a() +ae J.Laz ae ae az a", az a( az
" [a2T ae er a (ae) a (aT) a", er a (a",) a (aT) o; et a (a()]J.L ae az + ae ae az + ae a", az + a", ae az + ae a( az + a( ae az .
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conductive energy terms

where:
" JL

JL = RePrM2(-y -1)'

Then, we have:
.et _ ,,(aT a~ et a11 et a()

JL ax - JL a~ ax + a11ax + a( ax '
and
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conductive energy terms

!_ (J-t"aT) (JaT}) + (J-t"aT) !_ (JaT}) ,aT} ay ay ay aT} ay
where:

" J-t
J-t = RePrM2({ -1)'

Then, we have: .er _ ,,(aT a~ et aT} et ac)
J-t ay - J-t a~ ay + aT}ay + ac ay ,

and

a (,,8T) aJ.L"(aT ae 8T ary 8T ac)ary J.L ay = ary ae ay + ary ay + aC ay +
" [a (aT) ae er a (ae) a2T ary et a (ary) a (aT) ac er a (ac)]J.L ary ae ay + ae ary ay + ary2 ay + ary ary ay + ary aC ay + aC ary ay .
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conductive energy terms

where:

Then, we have: .er _ ,,(aT ae er afJ et a,)
Jl az - Jl ae az + afJ az + a, az '

and
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conductive energy terms

where:

Then, we have: .er _ ,,(aT a~ aT al} aT a()
J.1 ax - J.1 a~ ax + al}ax + a( ax '

and
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conductive energy terms

where:
" J1

J1 = RePrM2(r - 1)'

Then, we have: .er _ ,,(aT ae er a'fl et a()
J1 ay - J1 ae ay + a'fl ay + a( ay ,

and

~ ( "aT) = aJ.L"(aT ae + aT a"1+ aT a() +a( J.Lay a( ae ay a"1ay a( ay
" [a (aT) ae er a (ae) a (aT) a"1 er a (a"1) a2T o; et a (a()]J.L a( ae ay + ae a( ay + a( a( ay + a"1a( ay + a(2 ay + a( a( ay .

235



Appendix C. Nomenclature used in the Full 3D Version of the SBLI Code

conductive energy terms

where:
" J.L

J.L = RePrM2(f - 1)"

Then, we have: .er _ ,,(aT ae et a1] et a()
J.L az - J.L ae az + a1]az + a( az '

and
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C.7 Viscous Diffusion Terms of Energy Equation

For the energy equation we have the following ~-derivative terms

We have already rewritten the derivative of the stress tensor terms as presented is

C.3, CA and C.5.

The other two terms are:
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For 7J-derivativewe have
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And for , derivative
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Appendix D

Digital Filter Method

Here we describe the digital filter method for generating the inflow conditions applied

in Chapter 6. Considering a general point at the inflow plane of the domain (O,y,z).
As originally proposed by Lund et al. (1998), the single point time correlation can

be expressed as:

[

u(O, y, z, t) 1 [ u(O, y, z) 1 [JRll
u(O,y,z,t) = u(O,y,z) + R2dJRll

_ u(O,y,z,t) u(O,y,z) °
where Rij, for i,j=1,2,3, are the prescribed Reynolds stresses and p'U,pv,pw are the

filtered fields which contain the enforced two-point spatial correlation functions as

well as the prescribed streamwise correlation that we want to match. The above field

is linked to discrete filter operator FN(rk) = Vk as following:

old (-"~t) V (-"~t)Pk = Vk e 2T + Vk 1- e -T- , (D.2)

where tlt is the time step and T is the Lagrangian time scale (T = Ix/U in the present

calculations, where U and Ix are the prescribed inlet mean streamwise velocity profile

and integral length scale, respectively).

The following table gives the parameter values used for generalizing the inflow
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condition:

velocity component u v w

t, in 8* units 10 4 4

NFl! = 2Iy/~Y 35a-65b 45a - 85b 30a - 40b

NFz = 2Iz/~z 15 15 30

a Y ~ Ylim, where Ylim=l 6*

by> Ylim, where Ylim=l 6*

where Iy and Iy are the integral length scales in the wall normal and spanwise direc-

tions, respectively. NFl! and N Fz are the number of points for the wall normal and the

spanwise correlation lengths, respectively. ~Y and ~ are the grid spacing in normal

and spanwise directions, respectively, while 8* is the boundary layer displacement

thickness. More details can be found in Touber and Sandham (2008).
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