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Abstract 
Genomic signal processing is a new area of research that combines genomics 

with digital signal processing methodologies for enhanced genetic data analysis. 
Microarray is a well known technology for the evaluation of thousands of gene 

expression profiles. By considering these profiles as digital signals, the power of DSP 

methods can be applied to produce robust and unsupervised clustering of microarray 

samples. This can be achieved by transferring expression profiles into spectral 

components which are interpreted as a measure of profile similarity. 

This thesis introduces enhanced signal processing algorithms for robust 

clustering of microarray gene expression samples. The main aim of the research is to 
design and validate novel genomic signal processing methodologies for microarray 
data analysis based on different DSP methods. More specifically, clustering 

algorithms based on Linear prediction coding, Wavelet decomposition and Fractal 

dimension methods combined with Vector quantisation algorithm are applied and 

compared on a set of test microarray datasets. These techniques take as an input 

microarray gene expression samples and produce predictive coefficients arrays 

associated to the microarray data that are quantised in discrete levels, and 

consequently used for sample clustering. 

A variety of standard microarray datasets are used in this work to validate the 

robustness of these methods compared to conventional methods. Two well known 

validation approaches, i. e. Silhouette and Davies Bouldin index methods, are applied 
to evaluate internally and externally the genomic signal processing clustering results. 

In conclusion, thr results demonstrate that genomic signal processing based 

methods outperform traditional methods by providing more clustering accuracy. 
Moreover, the study shows that the local features of the gene expression signals are 
better clustered using wavelets compared to the other DSP methods. 
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CHAPTER 1 

Introduction 

Microarray technologies provide powerful tools for gene expression analysis 
that allows the study of thousands of DNA sequences simultaneously to extract 
information about specific gene activities. Microarrays have become essential tools 
for studying live biological cells in life sciences research, enabling the observation of 

various biological processes [1]. 

Recent years have witnessed numerous application methods to analyse 

microarray gene expression datasets [2,3]. One of the important techniques associated 

with microarray analysis methods is clustering. Clustering is often used in microarray 
data to identify groups of samples/genes and then arranging the groups so that the 

closest groups are adjacent. Numerous microarray clustering techniques has been 

reported in the literature in recent years [4,5]. The recent advances in genomic signal 

processing (GSP) techniques allow the provision of new and robust clustering 
techniques for microarray data analysis with potentially superior and optimized gene 
clustering characteristics. 

The main objective of this thesis is to present, validate and provide comparative 

analysis of some of these GSP methods for enhanced microarray data clustering 

compared to existing methods. 

1.1- Motivation of the research 

1.1.1- Microarray technologies 

Recent advances in genetic information and microarray technologies enable 

rapid and effective analytical systems for genetic data [3]. A microarray consists of 

measurements of relative expression levels of mRNA species in a set of related 
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Chapter 1 Introduction 

biological samples. Parallel measurement of these expression levels result in data 

vectors that contain thousands of values called expression patterns. In general, 

microarray technologies make it possible to probe for all the genes of an entire 

genome using a single chip. They are powerful tools for extracting and interpreting 

simultaneous gene activities and relevant genomic information [6]. 

Analysis of microarray genetic data provides novel opportunities to broaden 

knowledge about various life phenomena and study many problems in biological and 

medical research allowing for example better understanding of genetically based 

diseases [7]. As shown in Figure (1.1) microarray data can be represented by an 

expression matrix whose rows represent the expression profiles (genes) and columns 
the expression signature patterns (samples) collected under a variety of conditions 
(e. g. different patients or time series). This makes microarray data characterized by 

high dimensionality of genes relative to low dimensionality of samples. Therefore, 

preprocessing is often applied to reduce the dimensionality and normalize the 

expression data prior to any further analysis. Expression microarrays usually provide 

two types of information. First, they can be used to catalogue genes which are 

expressed in a particular cell or tissue sample. Secondly, they can be used to study 
dynamic changes in gene expression over time. 

Microarray technologies have also the potential to contribute to new healthcare 

diagnoses. New tools based on genes and proteins could be developed to make 

predictions for individual patients instead of traditional clinical practices. For example 
in cancer research, microarray gene expression data are used to study the molecular 
differences of tumours [8]. This can improve cancer treatment, where the challenge is 

to design specific therapies which target pathogenetically distinct tumours, by using 

gene expression patterns to discriminate between carcinoma cells and normal cells. 
Similar arrays have been designed for Diabetes and obesity to find patterns of 
different gene expression in adipose tissue between obese and lean mice [9,10]. 

Moreover, there are numerous other disease platforms such as Cardiovascular, Colon, 

Ophthalmic diseases where microarrays have been applied. The analysis of 

microarray data usually requires specific statistical methods to perform clinical 

predictions, discovery of diagnostic classes, and selection of relevant genes or groups 

of genes that cause a given disease. 

2 



Chapter 1 Introduction 

Sample 1 Sample 2 

Gene 1 v» V12 

Gene 2 v21 v22 

Expression profile 

Gene g vgl Vg2 

Sample n 
vin 

V2n 

vgn 

b- Arrays GEM 

Figure 1.1 Matrix representations of microarray data 

1.1.2- Types and functionalities of microarrays 
There are several types of microarray technologies which have different 

functionality and outcomes [ 11 ]. A brief description of these types is introduced here 

as shown in Table (1-1) and each type discussed next. For completeness, further 

details on the different types can be found in [12]. In this thesis we focus on the first 

type (cDNA) due to their data availability. 
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Chapter 1 

Table 1-1 Summary of Microarray types and functionalities 

Introduction 

Microarrays Functions Applications 

1. Tracking gene expression. Analysis of gene expression 
2. Stages of disease progression. levels 

cDNA and 3. Key molecular mechanism. 
Olig 

Monitor an entire genome on a 4. Case of drug therapy and stage of 
single chip and determine the 

Microarray development response. 
level at which gene is 

5. Detection of gene expression 
expressed 

pattern and the difference. 

1. For molecular disease diagnosis. 
Comparative Genomic 

2. Implications for risk assessment of CGH Hybridization (CGH) 
gene flow and prognostic staging. 

Microarray Detect rate of chromosomal 3. Detect and map the tumour 
aberrations 

associated progression. 

Single Nucleotide 1. Tracking disease susceptibility. 

Polymorphism 2. Diagnosis for individual disease 
SNP 

Detect mutation or risk assessment. 
Microarray 

polymorphisms in gene 3. Exploratory of population genetics 

sequences of human. 

L cDNA and Oligonucleotide Microarrays 

These are "Expression chips" of microarray which allows to determine the level 

at which a certain gene is expressed. Two predominant types of DNA microarray 

technology are designed: high density oligonucleotide (Olig) as an absolute 

expression level and cDNA microarrays as relative to the expression levels of a 

suitably defined common reference sample. Each technology has specific 

consideration for measuring levels of gene expression as described next. Table (1-2) 

shows a comparison of the two types of microarray and their functionalities. The 

structure and preparation of these is shown in Figure (1.2). 
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Chapter 1 Introduction 

Table 1-2 Summary of the functionalities of the cDNA and Olig arrays 

cDNA Array Oligonucleotide Array 

Long sequences of synthesis Short sequences due to the limitation of 

the synthesis technology 

Spot unknown sequences of nucleotide Spot known sequences 

More flexible and variability in the system More reliable data 

Easier to analyze with appropriate 

experiment design 

More difficult to analyze 

Cheap Expensive 

Low density High density 

Relative value measurement Absolute value measurement 

There is a difference between each 
individual channel (dye) on the same array 

There is a difference between the 

overall mean of each individual array 

Type I: A probe of desired cDNA sequence (500-5,000 bases long) material is 

immobilized onto glass slides using robot spotting. Small quantities of DNA are 
deposited on the array in the form of spots. Traditionally this method is called DNA 

microarray and is widely considered as development tool. 

Type II: A printing sequence of oligonucleotide (20-80-mer oligos) representing each 

gene probe is synthesized in situ (on-chip) followed by on-chip immobilization using 
photolithographic techniques, and is similar to the technology used to build (VLSI) 

circuits used in fabrication of electronic components. Historically, this method is 

called DNA chips, and developed at Affymetrix Inc. under the GeneChip® trademark. 

To produce microarrays, the cDNA is derived from the mRNA of known genes 

of normal tissue conditions (1) and diseased tissue conditions (2). The two different 

conditions are extracted and labelled with two different fluorescent labels, a Green 

dye for cells at condition (1) and a Red dye for cells at condition (2), to visualise 

signals from the two samples. Both extracts are washed over the microarray. Then 

each is hybridized on a glass slide at a known position in the array. 

5 



Chapter 1 Introduction 

Figure 1.2 Schematic overview of Olig. and cDNA microarray [ 14] 

From a fluorescent microscope and image analysis tools based on the log 

(green/red), the fluorescence intensities and colours for each spot of mRNA 
hybridizing at each site are measured. The spot indicates relatively how much mRNA 

with the corresponding sequences is present in the original sample of cells. If the RNA 

from the sample in condition (1) is in abundance, the spot will be green, if the RNA 
from the sample in condition (2) is in abundance, it will be red. If both are equal, the 

spot will be yellow, while if neither is present it will not fluoresce and appear black. 

6 



Chanter 1 Introduction 

To obtain information about gene expression levels, these images should be 

analyzed, each spot on the array identified, its intensity measured and compared to the 

background. This is called image quantitation. To obtain the final gene expression 

matrix from spot quantitation, all the quantities related to some gene (either on the 

same array or on arrays measuring the same conditions in repeated experiments) have 

to be combined and the entire matrix has to be scaled to make different arrays 

comparable. If a gene is over expressed in a certain disease state, then more sample 

cDNA, as compared to control cDNA, will hybridize to the spot representing that 

expressed gene. In turn, the spot will fluoresce red with greater intensity than it will 
fluoresce green [ 13]. 

Microarray technology is a hybridisation-based process that has been exploited 
to generate a vast amount of data examining the gene expression pattern, genotyping, 

tissue and protein studies. 

ii. Comparative Genomic Hybridization microarrays: 
The Comparative Genomic Hybridization (CGH) is a process where 

fluorescently labelled patient and control whole-genomic DNA are hybridized to 

normal metaphase slides to look for either genomic gains and losses or a change in the 

number of copies of a particular gene involved in a disease state [12]. Figure (1.3) 

illustrates the CGH microarray technology. Differential hybridization signals allow 
the detection of unbalanced gains and losses of chromosomal material across the 

whole genome. In microarray CGH, large pieces of genomic DNA serve as the target 
DNA, and each spot of target DNA in the array has a known chromosomal location. 

The hybridization mixture will contain fluorescently labelled genomic DNA harvested 

from both normal tissue (control) and diseased tissue (sample). 

Therefore, if the number of copies of a particular target gene has increased, a 
large amount of sample DNA will hybridize to those spots on the microarray that 

represent the gene involved in that disease, whereas comparatively small amounts of 

control DNA will hybridize to those same spots. As a result, those spots containing the 
disease gene will fluoresce red with greater intensity than they will fluoresce green, 
indicating that the number of copies of the gene involved in the disease has gone up. 

7 



Chapter 1 Introduction 

Figure 1.3 Schematic overview of CGH microarray [15] 

W. SNP microarray 

These microarrays can be used to detect mutations or polymorphisms in a gene 

sequence. In this type, the target, or immobilized DNA is usually that of a single gene. 
Here, the target sequence placed on any given spot within the array will differ from 

that of other spots in the same microarray, by only one or a few specific nucleotides. 
A common type of mutations studied in this type of analysis is called a Single 

Nucleotide Polymorphism (SNP). It corresponds to a small genetic change or 

variation that can occur within a person's DNA sequence [ 16]. 

8 



Chapter 1 Introduction 

1.1.3- Microarray data representation 

As shown in Figure (1.1), the array is defined as a Gene Expression Matrix 

(GEM) and summarised by a matrix V=(vg, ) where cells vg� denotes expression level 

of genes, rows correspond to the different g genes (variable), and the columns 

represent n different mRNA expression samples (observation). The samples vary 

according to experimental conditions and physiological states. 

The GEM array can partition into rows R, or into columns C as shown: 

Vrow [ Rt R2 .... Rr..... Rg]T Vcoi=[Ci C2 .... Ck..... Cn] 

where, 
Rr-[ Vrl Vr2 

.... 
Vrk..... VrnjT Ck=[ Vik V2k 

.... 
Vrk..... VBk] 

where 1: 5 k : 5n and 1: 5 r g. The row vector R, corresponds to the expression levels of 

the r`h gene under n conditions. The column vector Ck corresponds to the expression 

levels of the g genes under the k1h condition. The row vector conditions (lxn) and the 

column vector genes (lxg) are defined to keep track of every condition and gene. 

The aim of clustering is that given a dissimilarity measure, n points are grouped 
into U clusters based on their similarity. The principle of clustering technique is to 

share similar functions of genes having similar expression profiles or functions across 

a dataset. 

When the expression samples belong to known classes (e. g., Leukaemia), the 
data for each observation consist of a gene expression profile V, =(v; 1, vi2, ..., v;, j and a 

class label y; , that is, of predictor variables v; and response y; . For U tumour classes, 
the class labels y, are defined to be integers ranging from 1 to U, and n� denotes the 

number of observations belonging to class u. These issues will be detailed in chapter2. 

There are two approaches associated with the clustering analysis of the GEM. 

The first is to compare expression profiles of genes by comparing the rows of the 

expression matrix, whereas the second approach is to compare expression profiles of 

samples by comparing the columns of the expression matrix. The comparison of either 

rows or columns can be used to determine the similarities or dissimilarities between 

9 



Chapter 1 Introduction 

the data pairs. If two rows (genes) are found to be similar then it can be said that the 

respective genes are co-regulated and have similar functions. By comparing columns 

(samples), one can determine which genes are differentially expressed and then study 

the affects of various compounds on this expression. In this work, we focus on sample 

clustering i. e. enhanced clustering for determining which genes are differentially 

expressed for specific diseases and target selected for this work. 

1.2- Genomic Signal Processing for microarray clustering 

Genomic Signal Processing (GSP) is an emerging engineering discipline that 

aims to analyse the profiles of genomic information in order to understand the 

structural and functional genomics using Digital Signal Processing (DSP) methods. It 

is concerned with the processing of genomic signals to gain biological knowledge and 

translate into system-based application [17,18]. In general, application of GSP is 

directed towards the simultaneous analysis of interaction among groups of gene 

samples and provides expression analysis system based clustering. 

As an emerging discipline, GSP integrates numerous DSP mathematical and 

computational methods with the global understanding of genomics through the 

construction of new genomic functional models. For microarray clustering, GSP 

methods have the potential to provide enhanced clustering methods compared to 

existing methods. This is due to the fact that the expression profiles can be transferred 

to a spectral component - that can be interpreted more easily as a measure of the 

similarity of expression profiles. 

Figure (1.4) shows the processing steps of GSP based microarray data 

clustering. These are summarized in the following steps: 

1. Dimension reduction. Since gene expression data are highly dimensional and 

contain short multivariate time series, it requires pre-processing to reduce the 

dimensionality of the gene expression variables. This can be achieved either 

statistically by selecting the most expressed genes or by specifying the number of 

genes in the profile. 

10 
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Microarray dataset 

2 

11111'U[l11L11UI1 

Dimension reduction 
& gene selection 

DSP method selection 

LPC DWD 

FD 

Similarity grouping 

1 
3 

C 
ýo 
ýý » Ü Co > 

4 
0 

" "" - 

ý6 -i,.. 

Clustering 

1 

I 
Estimation of 
coefficients 

Distortion measure and 
Vector quantisation 

I 

Statistical cluster quality 

measure algorithm 

Interpretation of the GSP Clustering results 

Figure 1.4 GSP based microarray clustering 

2. Clustering algorithm. It refers to the selection of relevant clustering algorithms 

that produce the best data clustering. Specifically for this work and for GSP 

clustering, the approach is divided into the following steps: 

(i)- DSP selection: In this, the specified DSP method is selected to translate the 

signal into a representation relevant to the vector of expression profile and to 

find the best predictive coefficients for the microarray model. This step will 

also determine the proximity measure relative to the similarity-quantified 

measurement between two vectors of the coefficients. 
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Chapter 1 Introduction 

(ii)- Vector quantisation allows the clustering of the resultant coefficients of the 

transformed data model into the relevant class partitions. This step will 
determine the distortion measure between vectors of coefficients to quantise 
into the closest groups. 

3. Cluster validation. In this step, the output from the clustering process is evaluated 

using a verification process based on specific criteria. While the clustering process 

requires no a priori knowledge, the results need some kind of evaluation. Statistical 

comparative approaches are used in most applications to benchmark microarray data 

clustering methods. 

4. Result interpretation. This final step transforms the cluster validation into a 

meaningful biological interpretation of the GSP clustering process. 

1.3- Objective of the research and thesis contribution 
The main aim of the research is to design and validate enhanced GSP clustering 

algorithms for microarray data analysis based on different DSP methods. In particular, 

the Linear Prediction coding (LPC) [19], Wavelet [20] and Fractal [21] methods are 

used as robust clustering algorithms and their comparative performance on different 

microarray datasets is presented. Well known different datasets are used in this work 

to validate the robustness of these methods compared to conventional methods. 

The specific aims of this research project and major contributions are 

summarized as follows: 

1. Extensive literature review and studies on different microarray clustering and 

analysis methods. 
2. Improvement, application and comparative performance analysis of three 

advanced DSP methods to microarray clustering. 

3. Comparative validation of these methods on different cDNA microarray dataset 

samples and performance analysis with existing clustering methods. 

4. Develop a new and specific MATLAB® tool programs that interpret the DSP 

methods for enhanced microarray clustering. 

12 



Chanter 1 Introduction 

1.4- Outline of the thesis 

The reminder of the thesis is outlined as shown below: 

Chapter 2 includes an extensive literature review of relevant work on 

microarray clustering methods. The chapter also outlines the 

GSP and spectral analysis methods for microarray clustering. 

Chapter 3 presents a detailed description of the Linear Predictive coding 
(LPC) and the general clustering design method. It also explains 

the Vector Quantisation (VQ) method used to predict the 

coefficient to estimate the similarity between samples to build 

the clustering model. 

Chapter 4 describes the application of discrete wavelet for microarray GSP 

clustering. 

Chapter 5 describes the application of fractals in microarray clustering. 

Chapter 6 presents comprehensive comparative analysis of these GSP 

methods to number of well-known disease test platforms. 

Chapter 7 concludes the work and addresses the possible future research 

directions in this area. 

13 



CHAPTER 
2 

Microarray data analysis 

In general, data mining is the process of discovering knowledge or hidden 

patterns in large datasets that have a meaningful and interesting view from a particular 
point. In the context of DNA microarray data, the result from extracting information 

can be to group together the genes that are tightly co-expressed over a range of 
different experiments, that is, to cluster samples with similar functionality [22]. It is 

well known that two main approaches of data mining have been used to analyse gene 

expression data either in a supervised or an unsupervised approach. Supervised 

methods are used when there is a prior knowledge of the number of groups and the 

primary characteristics of each group. In this case, a new aspect is classified 
depending on its characteristics in one or more predefined groups. The unsupervised 

method is about the organisation of a collection of unlabeled patterns (data vector) 
into clusters based on similarity, it assumes no prior knowledge of the data; the idea is 

to discover the intrinsic structure from data itself. The capability of hybridising these 
two methods is possible in which an unsupervised approach is followed by a 
supervised method. 

In this chapter we introduce these clustering methods as used in microarray data 

analysis. The detailed description of the signal processing methods for microarray 
gene expression relevant to this work with comprehensive literature review in this 

area is also presented. 
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Chapter 2 Microarray data analysis 

2.1- Review of microarray data analysis methods 
In recent years, numerous methods are applied to analyse microarray data from 

different perspectives and the methodology such as statistical, computational and 

machine-learning approaches. In this section we present an overview of the existing 

microarray data analysis methods with a brief description of the techniques used in 

microarray data analysis as shown in Figure (2.1). 

1- Normalisation: 

Generally the raw expression data after image analysis and quantification steps 

may be carried out with a preprocessing step involved with the data normalization, by 

which expression levels are made comparable. There are two basic normalization 

methods: Global per-chip normalization is a scaling that enforce the averages of the 

expression distributions (expression levels for all genes within an array) to have equal 

mean, and Local per-gene normalization which compares the results for a single gene 

across all the samples. The objective behind the normalization methods is that the 

amount of transcription is mainly similar across the samples, when the differentially 

expressed of the genes could be occurred. 

Recent work [23] compares three different normalization approaches, namely: 
Loess Regression (LR), Splines Smoothing (SS) and Wavelets Smoothing (WS). In 

addition, two other methods are also proposed, called Kernel Regression (KR) and 
Support Vector Regression (SVR). The results obtained from this work indicate that 

the SVR is the most robust and that the Kernel is the least effective normalization 
technique, while no practical differences were observed between Loess, Splines and 
Wavelets. Other similar work on normalisation methods are cited in [24]. 

2- Feature extraction: 

Microarray data are high dimensional complex data structures which consist of 

a large number of features (g Genes) and a small number of instances (n Samples), 

typically, g and n are in the order 10,000 and 100 respectively. Therefore advanced 

analysis methods are required to emphasize features hidden in the data array. 
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Microarray Experimental Design 
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Feature extraction, also known as dimension reduction, deals with the 

transformation of input raw data to provide more meaningful abstract and concise 
features for use by the pattern classifier. For instance, Principal Component Analysis 

(PCA) generates new features with optimal combinations of existing features. The 

optimality is in the sense that new features better account for the variation in the data. 

Other methods include Kernel PCA, multidimensional scaling (MDS) and Self 

Organizing Maps (SOM) [25]. 

3- Feature selection: 

These techniques are used to select a subset of input variables by eliminating 
features with little or no predictive information. Generally, they aim to select a 

manageable set of predictors that are likely to be related to the dependent variables of 
data with better discrimination ability. Feature selection in supervised learning is to 

find a feature subset that produces higher classification accuracy in the feature space. 
While feature selection in unsupervised learning, is to find a good subset of 

features that forms high quality of clusters for a given number of clusters. There are 

many advantages of feature selection such as easy visualization, understanding of data 

and defying the curse of dimensionality. There methods improve prediction 

performance, minimize the measurement storage requirement and time utilize for 

training. In general, there are two approaches to feature selection [26]: 

i. Filter methods: These methods attempt to estimate the merits of features from 

the data. They include ranking methods such as the ratio of Between Class 

Variance (BCV) to Within Class Variance (WCV), and statistical methods such 

as the Wilcoxon T-test for two classes or ANOVA (Kruskal-wallis test) for more 

than two classes [27]. In [28] a study was carried out to evaluate the efficiency of 

these methods. These studies have shown that the rank sum test is the most 

conservative method and suggested that the main distinction between filtering 

based gene selection and finding differentially expressed genes is that in gene 

selection there is no real concern regarding issues like multiple testing or false 

discovery rate as the aim is just to rank the genes. 
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ii. Wrapper methods: These methods estimate subsets of variables according to 

their predictive power. The method conducts a search for a good subset using the 
learning algorithm itself as part of the evaluation function. Therefore many smart 

algorithms for searching the gene subset space have been proposed. Among these 

are Branch-and-Bound-Search (BBS), Sequential Forward/Backward Selection 

(SFS/SBS), and Sequential Forward/Backward Floating Search 

(SFFS/SBFS)[26-29]. 

Since filter methods are based on processing the whole signal at once, they are 
faster than wrapper methods that depend on search and learning. Another argument is 

that some filters (e. g. those based on mutual information criteria) provide a generic 

selection of variables, not tuned by a given learning machine. Another compelling 
justification is that filtering can be used as a preprocessing step to reduce space 
dimensionality and overcome over fitting. 

Many feature Selection methods were implemented for microarray analysis to 

select individual genes as single variant analysis by applied statistical methods t-test 

and Wilcoxon rank-sum test that compute the correlation between individual genes 

and a class variation [8,30]. These studies show that the predictions based on an 
informative subset of genes are more accurate than those that are based on all genes. 
In another approach groups of genes were selected as multivariate analysis by applied 
PCA and Singular Value Decomposition (SVD) methods that merge the most relevant 

combination of gene expressions in a group [31 ]. 

4- Classification: 

Generally, the aim is to assigning data to a predefined set of categories or 

classes. These methods rely on a set of objects called training data. The classes to 

which these objects belong to are identified as dependent variables, and the set of 
variables describing different features of these objects is called independent variables 
that are used to build a predictive model. It can be used to predict the class of the 

objects for which class information is not known a priori. Since the classification is a 

supervised learning method that requires an explicit knowledge of the classes the 
different objects belong to, these classification methods can perform an effective 
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feature selection that leads to better prediction accuracy. Common classification 

methods used in gene expression data analyses originate from statistical and 

probability methods [32]. Among them, there are the Logistic Regression (LR) and 
Fisher Discriminant Analysis (FDA) methods that deal with the high dimensional 

nature of microarray data by initially reducing their dimension. Since these methods 

rely on linear functions, they are incapable to express nonlinear relationships in 

microarray data. Therefore, these difficulties cause inaccurate prediction result. 
Alternatively, classification algorithms are based on machine learning techniques, 

such as Support Vector Machine (SVM), Neural Network (NN), Naive Bayesian 

Network (BN) and k-Nearest Neighbour (k-NN), these are capable of accurate 

analysis of microarray data [33]. Other methods attempt to reduce the microarray 
dimension using a Partial Least Squares (PLS) followed by classification of the data 

using Quadratic Discriminant Analysis (QDA) [34]. 

A comprehensive evaluation of classification methods for cancer diagnosis 

based on microarray gene expression is presented in [35]. This study concludes that 

MultiCategory (MC-SVM) methods are the most effective classifiers in performing 

accurate cancer diagnosis in comparison with other machine learning methods like k- 

NN or NN. The gene selection techniques in these methods could significantly 
improve the classification performance of both MC-SVMs and other non-SVM 
learning algorithms, and that ensemble classifiers generally did not improve 

performance of the best non-ensemble models. An alternative method called 
Penalized Logistic Regression (PLR) was proposed [36] to deal with the common 

weakness of SVM: given a tumour sample, SVM only predicts a cancer class label but 
does not provide any estimate of the underlying probability for the microarray cancer 
diagnosis cases. 

Moreover, a combined method based on Independent Component Analysis 

(ICA) and Regularized Regression models for analysing gene expression data was 

presented in [37]. The gain of the approach could make full use of the high order 

statistical information contained in the gene expression data, then implement 

regularized regression models to handle the situation of large numbers of correlated 

predictor variables. The experimental results showed that the method is efficient and 

practical in comparison with other methods. 
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Other classification methods based on spectral component analysis were also 

investigated. An autoregressive technique was used to evaluate the potential 

regulatory relationship between genes with dominant spectral components [38]. This 

technique summarizes the essential features of an expression pattern by means of an 

estimated frequency spectrum. Specifically, the pattern is decomposed into a set of 
damped sinusoids of different frequencies so that each sinusoid can be considered 

separately during the analysis. Hence, this method allows the flexibility of ignoring 

irrelevant frequency components that may otherwise be too overwhelming. 

5- Visualization: 

The visualization module includes the ability to visualize and drill down 

interactively into the details of the resultant data. A graphical representation refers to 

the visual interpretation of complex relationships in multidimensional data [39]. In 

[39], two main components were used: "intrinsic visualisation" (graphical drawing) to 

combine object relationships to spatial distances by sighting similarity object closed 

together, and "extrinsic visualisation" (visual form). In [40] visualization techniques 

were applied in the time series modelling framework together with graphical models 

to built a three dimensional prototype to demonstrate the visualization effect of the 

modelling results. 

6- Genetic Regulatory network: 

The goal of these techniques is to generate gene networks from microarray data 

using network modelling method. It is used for observing the interrelationship 

mechanisms between genes within a genetic regulatory system, which activates 

specific group of genes by particular signals and regulates a common biological 

process. For example the group members may regulate each others transcriptions. 

Such groups are called genetic regulatory systems [41 ]. Network modelling is used for 

observing the interrelationship between genes within a genetic regulatory system. 
Particularly, a Bayesian Network (BN) is a probabilistic model which illustrates the 

multivariate probability distribution for a set of variables [41]. It is used to find the 

network structure and the corresponding model parameters which describe best the 

probability distribution for which the dataset is drawn in a graphical representation. 
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Implementation of BN in microarray is to reveal relationships between various genes, 
by extracting the information about their dependencies and independencies of the 

encoded set of variables of the dataset and visualizing this relationship by a network 

structure, which is interpreted as a genetic network. Combined with other experiments 

such a resulting network may be a basis to reveal new functions of genes and their 

proteins. 

Other researchers proposed a quantitative method for determining functional 

interactions in cellular signalling and gene networks [42]. In this method a mechanical 
level is applied within a "modular" framework, which dramatically decreases the 

number of variables to be assumed. The method was based on a mathematical 
derivation that demonstrates how the topology and strength of network connections 

can be retrieved from experimentally measured network responses to successive 

perturbations of all modules. The network analysis could reveal functional 

interactions even when the components of the system were not all known. Under these 

circumstances, some connections retrieved by the analysis were not direct but 

correspond to the interaction routes through unidentified elements. The method was 

tested and illustrated using computer-generated responses of a modelled Mitogen- 

Activated protein kinas cascade and gene network. 

Recently, a gene regulatory model was proposed based on generated Threshold 

Logic (TL) rules when a given gene interaction graph is presented [43]. The rule 

generation method is fairly simple and depends on the given gene interaction data and 

any additional biological data. An important feature of this model is that it is 

adaptable and consistent with biological data. Threshold logic has long been known as 
an alternative to Boolean Logic which had been used to model Gene Regulatory 

Networks (GRNs). It was demonstrated that the new TL-GRN could model inter- 

cellular and intra-cellular gene regulation. The advantage of this model was that it 

could be used to generate accurate rules with limited data. These rules required few 

parameters to estimate and were simple to determine. Another advantage was that the 

resulting gene networks can be simulated in hardware efficiently by using Differential 

Current-Mode Logic (DCML) gates. 
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7- Clustering: 

This is the most relevant part to the work of this thesis. Commonly, cluster 

analysis is a well known approach to discover meaningful set of subgroups that are 

more similar to one another than to members of other clusters. A detailed presentation 

of the clustering analysis is given next. In general, clustering methods depend on 

altered definition of best possible criteria and type of similarity measure to a critical 

diagnosis. Clustering is also closely related to the techniques used to create the 

codebooks used in vector quantisation, a technique to be discussed next. 

2.2- Clustering analysis 

In this section we describe the general principle of clustering and the relevant 

processing blocks to the work in this thesis. Basically there are two parameters to 

define a cluster, the similarity measure between objects and the subsequent grouping 

of objects into clusters associated to the outcome similarities. Cluster tightness is 

defined by the minimum distance of objects within group variance, whereas, well 

separated cluster separation is represented by the maximum distance between group 

variance. 

Clustering 
Algorithms 

Data 
representation 

Pattern 
proximity 

Cluster 
Validation 

Interpretation and 
Biological 
Knowledge 

Figure 2.2 General microarray clustering process 
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Pattern clustering methods used in microarray analysis consist of four steps as 
illustrated in Figure (2.2) [3]: 

1. Data Representation. It refers to number of patterns, features, and desired 

clustering methods used. 

2. Pattern Proximity. It defines a distance and similarity measurement method 

suitable with the selected representation or model utilized. 

3. Clustering Algorithm. It aims to group the represented or modelled data 

according to the similarity previously defined. It is referred as pattern grouping. 

4. Cluster Validation. It either validates or scores clustering results. 

Next we describe each of these clustering steps. 

2.2.1- Microarray data representation 

The modelling of data patterns may involve two feature based steps, i. e. 
"selection" and "extraction", which describe or signify most elements about a datum. 

Clustering methods used either or both of those features in their analysis. Feature 

selection is used to identify the most significant elements of the original features in 

data patterns whilst feature extraction is the transformations of the data input features 

to produce new relevant data features. 

Sampled data can be represented as a vector of data in a space: each datum is 

represented as a point in an n-dimensional space corresponding to the n-attributes of 
the datum. Principal Component Analysis is a common statistical technique that 

constructs a new coordinate system to achieve feature extraction [44]. Independent 

Component analysis (ICA) is a technique that takes into consideration higher order 

statistical properties of the data. Unlike PCA, it does not depend on orthogonal bases 

to find the bases that represent the data. Other representations methods are based on 
transformation and discretisation approaches [3]. In transformation-based 

representations, the initial data is transformed from its original domain such as time to 

another domain such as frequency, while in the discretisation-based representations, 
initial data with real-valued elements are translated to discretised elements. 
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Moreover, mathematical model can describe the data model by relations that 

determine how the system varies from one state forwards to next state depending on 

the current or other relevant values of the same variable. Statistical models allow the 

characterisation of a system or variable based upon its statistical parameters such as 

mode, median, mean, variance, regression coefficients, least-squares fit to some 

mathematical equation. Examples of statistical models are autoregressive and 

generative models [45]. In the autoregressive model, the built model depends on the 

statistical properties of the past behaviour of variables, whilst the generative model 

supposes that the data is generated by some primary probability distribution. 

2.2.2- Microarray data Proximity 
Similarity measurement is referred as the likeness, or identicality of two objects. 

Referring to the GEM represented in Figure (1.1), assuming that n is the total number 

of samples V prepared for clustering process, a vi EV; i=1, ..., n is represented by a 
feature vector of samples in g dimensions as vvi = (vgl, vg2, ... , vgi 1; i=1, ..., n 

The samples are represented conventionally as multidimensional vectors, with a 
dimension presenting a single feature either quantitative or qualitative description of 

the object. In order to be able to assess the similarity, a quantitative measure of 
likeness has to be utilised to create a proximity distance matrix. It is a common 

practice to use distance or correlation metrics to quantify such likeness. 

Given a dataset X= (xl, x2, ..., xn} representing the object which is described by a 
d-dimensional feature vector, the distance matrix Md; sr (di) represents how close two 

objects are. It is defined in Eq. (2.1): 
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Where d,, =d(x,, x) with respect to some distance function, while the similarity 

measure is how similar are the objects. Similarity matrix MS�� (s, j) is defined in 
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Where s;; =S(x;, x; ) with respect to similarity measure between two objects and by 

definition S;; =1 

The suitability and performance of a similarity measure for a specific 

comparison depends on the nature of the objects to be compared. When using model- 
based clustering techniques the complete data is fitted to a model and there is no 
direct comparison between data points. Therefore, the clusters are implicit in the 

model structure. For microarray gene expression analysis, there are different methods 

used to measure the distance and quantify the likeness between samples. They are 

summarised next. 

i. Distance functions 

In general, clustering techniques require some measure of similarity or distance 

between (x) vector and (y) vector. A scalar function, d(x, y), is a distance function of 
the pairs of vector if it satisfies the following axioms requirements of a distance 

measure[3]: 

Nonnegativity d(x, y) >0 

Reflexivity d(x, y) =0 if x=y, 

Symmetry d(x, y)= d(y, x) 

Triangle in equality d(x, y) < d(x, z)+ d(z, y) for any z 

There is a variety of different measures of inter-observation distances and inter- 

cluster distances which can be used as criteria when merging nearest clusters into 
broader groups. It is useful to summarize several commonly used distances [3]. 

1- Euclidean distance 

It is the most common distance function. It is defined as the distance de(x, y) 

measured along a straight line between two points (x, y) in the data-space as 

shown in Eq (2.3): 

de(X, y) = En lýXi - yiý2 (2.3) 
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2- City block or Manhattan distance 

It is defined as the rectilinear route measured parallel to the axes as shown 
in Eq. (2.4): 

dc(x, y) = Zi=1Ixi - Yi I (2.4) 

3- Minkowski distance 

Obviously, both Euclidean distance and City block distance are special 

cases of the Minkowski measure [3], Where m=2 for Euclidean and m=1 for 

City block to. The value of m depends on the amount of emphasis placed on the 
larger differences Ixi- yil 

dm(x, y) = (Z 1Ixi -YiIm)1/m (2.5) 

While other distance methods are: 

Mahalanobis distance is used to normalise based on a covariance matrix to make 
the distance metric scale-invariant. Chebyshev distance is used to measure distance 

assuming only the most significant dimension is relevant. 

ii. Similarity functions 

In general, the similarity measures how similar two objects are, whilst objects 

which are similar share a low distance. Similarities also have some properties when 

representing two points (data objects x and y): 

Nonnegativity 0< S(x, y)<_l 

Max. Similarity S(x, y) =1 if Xy, 

Symmetry S(x, y)= S(y, x) 

General Approach for Combining Similarities is as follows [25]: 

1. For K'" object attribute, compute a similarity, Sk in the range [0,1] 

2. Define an indicator variable, ök, for the kr" attribute as follows: 

ak = 1, if the K'" attribute is a binary asymmetric attribute and both objects 
have a value of 0, or if one of the objects has a missing values for 

the K'" attribute. 

Otherwise, bk = 0, 
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3. Compute the overall similarity between the two objects using the following 

formula: 

(X, y) ` 
Eknlaksk 

ýk=1 sk (2.6) 

Correlation and covariance measures are statistical concepts used to measure either 
the association of the relationship between two random variables or measure the 

mutual relation of the outcomes of the process at time instants The most usual 

measure is expressed by Pearson's correlation coefficient p(x, y), defined in Eq 2.7, it 

reflects the difference between the elements x and y to be compared relative to the 

standard deviation: 

P(x, y) = 
En 1(X, _. 

E; ̀_1(Xi-X)2 E; ̀_1(Yi-y)2 
(2.7) 

d (x, y) =1-p (x, y) (2.8) 

The Pearson's correlation coefficient has been suggested as a metric as shown in 

Eq. 2.6 which focuses on whether the coordinate of two vectors change in the same 

way. Moreover it can identify statistically significant gene expression clusters and 
helps identifying genes that regulate each other or have similar cellular function [45]. 

Furthermore, the not centred correlation coefficient was found to conform well to the 
intuitive biological notion of what it means for two genes to have similar expression. 

The covariance sequence is the mean-removed cross-correlation sequence, it is a 

measure of the scatter, or the dispersion, of the random process around the mean 

value, i. e. how much the deviation of two variables match. It is defined as: 

Cxy(m) =E {(xn+m ` hx)(Yn - µY)} (2.9) 

Where x� and yn are stationary random processes, p represent means, and E is the 

expected value operator representing the sum. 

Pearson's correlation coefficient has been used to measure the similarity of a potential 

regulatory relationship of the two genes expressional [46,50]. 

iii. Probability 

Similarity can be obtained by the highest probability of sampled data fits in the 

available models. Bayes theorem is fundamental to engineering pattern classification 

27 



Chapter 2 Microarray data analysis 

solutions to data mining problems [32]. It relates the conditional probabilities between 

two stochastic variables. The posterior probability, which is the probability of a given 

element belonging to a particular model, can be calculated from the prior probability 

and the likelihood. 

Let events {Cj, C2,.... Ck) from a partition of the space S such that the Prior 

Probability distribution P(C1)>O for all i and let D be any event such that P(D)>O 

represents evidence of prior probability for all i. Bayes theorem is a rule for 

computing and updating the posterior probability of events C; given D from prior 

probability P(C; ) and the conditional probability P(D/C1) of D given each event Cl. 

The computation of the likelihood of event D given C;, is given as: 

P(C`/ pl = 
P(D/Ct)P(Ci) 

J P(D) (a. lo) 

The updated probability can then be used for comparison to compute the 

similarity measurement obtaining how close the data fits the model. 

The procedure of the probability method is naturally divided into two phases. 
Firstly the algorithm learns from samples with known class membership representing 

as training session or defines as a prior knowledge. Secondly a predict rule is 

established to classify new samples in a test session. Several papers have used this 

probability to assess the similarity of genes in a variety of statistical models [47,48]. 

iv. Mutual Information (MI) 

It is an information theory measure. It provides a general measurement for 
dependencies in the data with such properties as positive, negative, and nonlinear 

correlations, in order to identify genes that share inputs to which they respond 
differently [49]. The dependence criteria perform better than metric methods, and are 

a more generalized measure of correlation, which provides advantages in gene 

expression analysis [50]. Other information theory measures, such as entropy-based 

measure have also been used in the clustering of microarray gene expression [51 ]. 

The information present in microarray gene expression can be quantified using 
Shannon entropy H. It can be calculated from the probabilities P of occurrences of 
individual or combined events. Given two random variables x, y, then H is calculated 

as follows: 
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H(x) =-z Px log Px 

H(y) = -EPylogPy (2.11) 

H(x, y) =-E Px, y log Px, y 

Mutual information M is defined as the sum of individual entropies subtracted from 

the entropy of the co-occurrence as follows, 

M(x, y) = H(x) + H(y) - H(x, y) (2.12) 

Application of MI measure requires the expression patterns to be represented by 

discrete random variables; therefore M between two expression patterns can be 

expressed as follows: 

M(X, Y) =EtEPc logpi. i >> pipj 
(2.13) 

Where P; =P(X=x; ) and P; =P(Y=y; ) are the probability distribution functions. Usually 

M is non-negative and equal zero if and only if X and Y are statistically independent; 

this signifies that X contains no information about Y and vice versa. It means that the 

patterns do not follow any kind of dependence, which is impracticable in correlation 

or distance measure as represent by Eq. (2.14). Further advantages are: it is a 

generalized measure of statistical dependence in the data, and reasonably immune 

against missing data and outliers [52]. 

d(x, y) = Ei wi M{ui # vi} (2.14) 

v. Spectral Distortion 

It is a signal processing approach used to calculate the distortion between the 

pair of spectral vector of data in array. The concept of pattern comparison is measured 
based on the similarity distance. Spectral distortion measure method provides a 

similarity distortion measure between vectors of gene expression data. This 

effectively works by finding the similarity between waveform shapes. Further details 

on the spectral distortion methods are described in the next section. 
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2.2.3- Microarray clustering algorithms 

2.2.3.1- Conventional microarray clustering methods 

In recent years extensive work has been carried out in this area. A brief 

summary of the most efficient methods are given in [33]. For completeness a brief 

description of these methods is presented next 

i. Hierarchical techniques 

Hierarchical clustering (HC) constructs appropriate tree structures between 

samples, typically accomplished with smaller data samples size. These iterative 

methods are based on degree of similarity by either forwards merging smaller clusters 
into larger ones based on bottom-up approach called agglomerative, or backwards by 

splitting larger clusters based on top-down approach which is called divisive. 

Agglomerative hierarchical methods 

Graph methods 

Single-link 

Complete link 

Group average 

Geometric methods 
Weighted group average 

Hierarchical methods µ(Cj U Cj) Similarity between C; and C; 

Centrold, uses the average 
distance between all airs of 

IC1lu(Co) +I CII µ(CJ) 2 Iµ(C )- µ(C ýI p IC1I + ICiI j j 
objects in cluster i and clusters 

Median, uses the Euclidean 

distance between the centroids µ(C) + µ(Cj) Il(Cj) _ µ(CI)I2 
of the two clusters 

Z 

Ward, uses the incremental ICjlµ(C1)+IC/IM(CI) IC, IIC/I x Iµ(Cj) 
- µ(CJ)I sum of squares ICJ +I CII ICiI + ICjI 

*where µ(C) denotes the centre of cluster C 

Figure 2.3 Hierarchical clustering methods [52-54] 
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The final result of the algorithm is a tree of clusters called a dendrogram, which 

shows how the clusters are interrelated. By cutting the dendrogram at a desired level a 

clustering of the data items, disjoint groups are obtained. Hierarchical agglomerative 

cluster analysis is the strategy that is the most commonly used for microarray data 

analysis [52-54]. Figure (2.3) describes the methods required to determine which 

groups should be combined or separated. The main reasons for this approach are its 

use of a simple technique with a small number of samples to produce high accuracy 

and the visual results which have a clear structure instead of divisive hierarchical 

approach. 

H. Partitioning-Optimisation techniques 

These techniques are different from hierarchical techniques in that they allow 

relocation of the elements; they allow poor initial partitions to be corrected at a later 

stage. A centroid or a cluster representative can represent each cluster; this is some 

sort of summary description of all the objects involved in a cluster. 

These techniques can be considered as attempts to partition the dataset in a way 

that optimises some predefined criterion. In this category, K-mean is a commonly 

used algorithm; its criterion function is described as follows: 

E_ ýqt=1 EXeci d(x, mi) (2.15) 

where m, is the centre of cluster C� while d(x, m; ) is the Euclidean distance between a 

point x and m,. Thus, the criterion function E attempts to minimize the distance of 

each point from the centre of the cluster to which the point belongs. Most of the 

techniques have three distinctive steps: initialisation of clusters, allocation of elements 

to initialised clusters and reallocation of some or all of the elements to other clusters 

once the initial segmentation has been completed. Fuzzy c-means and k-means are 

other common partitioning optimisation techniques which have been used for gene 

expressions [55]. Large datasets can be processed with K-means clustering, unlike 
hierarchical, because K-means does not require prior computation of a proximity 

matrix of distances and similarities, but it is sensitive to outliers. 

W. Model-Based techniques 

These clustering algorithms can be developed based on a statistical probability 

model, such as the finite mixture model for probability densities. A likelihood (or 
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posterior probability) derived from this model is used as the criterion to be optimised. 

The model is usually used to represent the type of constraints and geometric 

properties of the covariance matrices [56]. The type of model has to be specified 

according to the objectives of the cluster analysis and the properties of the dataset. 

The structure of the chosen model can usually be selected by model selection 
techniques. The parameters are estimated based on modelling the distribution of 

samples in dataset. There has been a considerable amount of research involving the 

model based technique. They include models that have been used for gene expression 

using Hidden Markov Models [57], and mixed-effects models with B-splines [58]. 

Another approach based on modelling the distribution of the gene expression profile 

of test sample as a finite mixture of an unknown number of distributions, with each 

mixture component characterizing the gene expression levels within a class, assumes 
that each class has a multivariate normal density with diagonal variance-covariance 

matrix [58] 

iv. Grid-Based techniques 

The approach of these techniques begins with dividing the space into a finite 

number of cells. Cells that have more than a predefined number of elements are 

treated as dense and the dense cells are connected to form the clusters. In general, a 

typical algorithm for this method consists of the following steps: 

1. Creating the grid structure, this means partitioning the data space into a 
finite number of cells. 

2. Calculating the cell density for each cell. 

3. Sorting of the cells according to their densities. 

4. Identifying cluster centres. 

5. Traversal of neighbour cells. 

The most representative techniques are: STatistical INformation Grid-based 

method STING [59] and WaveCluster [60]. The WaveCluster is based on signal 

processing techniques (wavelet transformation) to convert the spatial data into 

frequency domain efficiently to discover clusters with arbitrary shape. It handles 

outliers by being insensitive to order of input. It initially summarizes the data by 
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imposing a multidimensional grid structure onto the data space. Each grid cell 

summarizes the information of a group of points that map into the cell. Then it uses a 

wavelet transformation to transform the original feature space: convolution with an 

appropriate function results in a transformed space where the natural clusters in the 

data become distinguishable. Thus, the clusters can be identified by finding the dense 

regions in the transformed domain. A-priori knowledge about the exact number of 

clusters is not required. 

v. Density-Based techniques 

These methods are capable of finding arbitrarily shaped clusters, where clusters 

are defined as dense regions separated by low-density regions. Density is usually 
defined as the number of objects in a particular neighbourhood of data objects. The 

main idea is to classify a data object as one of the "cores" of a cluster if it has more 

neighbours than a predefined threshold within a predefined neighbourhood. Clusters 

are formed by connecting neighbouring "core" objects and those "non-core" objects 

which are either within the threshold boundaries of clusters or become outliers. 
Common representatives of these techniques are Density Based Special Clustering of 
Applications with Noise (DBSCAN) [61] and Ordering Points to Identify the 

Clustering Structure (OPTICS) [62]. The difficulty of these approaches is that it is 

hard to choose the parameter values, such as the density threshold. The works [63,64] 

present some density- based clustering techniques for gene expression. 

A. Graph-based techniques 

The graph-based approach first constructs a graph and then applies a clustering 

algorithm to partition the graph. Each element of the collection to be clustered is 

associated to a vertex on a graph. An edge from each element to every other is built, 

and a weight representing the extent to which the elements are similar is associated to 

this edge. Finally edges in the graph are cut to form a good set of connected 

components. Each of these will be a cluster. Graph-based techniques are widely used 
in microarray gene expressions. CLuster Identification via Connectivity Kernels 

CLICK [65]. These approaches include Enhanced Cluster Affinity Search Technique 

(E-CAST) where a dynamic threshold is computed at the beginning value of each new 

cluster [66]. 
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vii. Topographic-based techniques 

The topographic clustering algorithms simultaneously identify subgroups of 

similar data and preserve information about the relationships between the subgroups 

[67]. These are associated with positions in the output space such that their relative 

closeness reflects the similarity of the data they contain. The most representative 

algorithm is the self-organising map (SOM). In the classical SOM, a set of nodes is 

arranged in a geometric pattern, typically 2-dimensional lattice. Each node is 

associated with a weight vector with the same dimension as the input space. The 

purpose of SOM is to find a good mapping from the high dimensional input space to 

the 2-D representation of the nodes. One way to use SOM for clustering is to regard 

the objects in the input space represented by the same node as grouped into a cluster. 
Because of the topographic properties of the clustering, the SOM is commonly used in 

gene expression analysis [68]. Hybrid approaches have been proposed where the 

different techniques are combined. For example, grid-based or density-based 

techniques can be used for cluster initialisation in partitioning-optimisation 

techniques, and topographic-based and model-based techniques can follow a 

hierarchical clustering scheme. 

2.2.3.2- Comparison of clustering techniques 

In this section we present a comparative summary of the clustering methods 

used in microarray analysis. Table (2-1) shows a comprehensive comparison of 

unsupervised clustering analysis techniques used for microarray gene expression and the 

respective advantages and disadvantages of each method. From this analysis, it can be 

seen that the choice of method depends on the specific application domain. 

In general, the following issues should be considered when selecting any clustering 

algorithm: 

1. All clustering methods usually return a clustering result no matter how much 
information the data actually contains, therefore there is only need to obtain 
list of units in the selected clusters. 

2. Clustering alone is only for exploratory, visualization and hypothesis 

generating tool and not a biological proof. 

3. Accuracy and precision that reflect how the results are close to the true values 
besides the detection of the sensitivity. 
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Table 2-1 Comparison of different of microarray clustering methods 

Method/ type Characteristic Advantage Disadvantage 

Hierarchical Cluster using agglomerative ¢ Intuitive algorithm and ¢ Common tree is susceptible 
Straight forward. to outliers. Clustering/ or divisive approach, uses a ¢ No explicit criterion. ¢ Unreadable when tree is 

dissimilarity matrix to ¢ Do not need to estimate large 
number of clusters. ¢ Doesn't give discrete 

merge data successively to ¢ The number of clusters can clusters, need to define 

construct the tree or be found from the clusters with cutoffs. 
dendrogram. ¢ Get different clustering for 

dendogram D Deterministic partitions. different experiment sets. 
¢ Computationally slow. 

K-mean/ It is non-Hierarchical that ¢ Minimize sum of squares, as ¢ Unstructured nature of it 
simplified Gaussian mixture tends to proceed in a Local 

identifies clusters by model. minimum. 
minimizing the overall ¢ Computationally fast. ¢ Does not allow scattered 

¢ It can identify coregulated genes. 
within cluster variance. It genes where some prior ¢ Random partitions. K- 

partitions the data points knowledge can be used to means may produce 
predict the appropriate different partitions into k disjoint subsets based number of clusters K. depending on the 

on a distance measure 
initialization. 

¢ The number of clusters has 
between instances. to be given in advance 

SOM/ It provides a mapping from ¢ Clusters are interpreted on 2D ¢ The algorithm is based on 
geometry (more heuristic. 

multidimensional input interpretable). ¢ Solutions are sub-optimal 
space to a two-dimensional ¢ Can preserve the topology. due to 2D geometry 

¢ Local order and local restriction. 
output space while clustering structures shown ¢ The size of the map needs 
processing topological on the map display are as to be carefully decided, 

dependable a possible. ¢ Do not provide an accurate 
relations closely. ¢ Useful for large data amount. layout when displaying 

¢ Strong visualization global structure. 
capability. 

PCA/ It reduces the data with high ¢ Reduce the dimensionality of ¢ Difficult to visualise 
the data to summarise the nonlinear structures 

dimensionality by most important parts whilst consisting of arbitrarily 

performing a covariance simultaneously filtering out shaped clusters or curved 
noise. manifolds. 

analysis between factors, it ¢ It based procedure in ¢ Improper for large datasets. 

can also allow a visual prediction accuracy. 
¢ Orthogonal transform, second 

inspection of the order statistics. 
relationship between them. 

ICA/ It is a statistical method, to ¢ Non orthogonal transform, ¢ Sign magnitude problem 
high order statistics, related and hard to select proper decompose given to the projection pursuit. ICA. 

multivariate data into a ¢ The reduced model is based ¢ Sensitive to modes whose 
on the occurrence of common influences on the genes linear sum of statistically motifs in the genes promoter follow `superGaussian' 

independent components. sequences. distribution with large tails 
and a pronounced peak in 
the middle. 

EM/ They detect clusters in ¢ Maximize the overall ¢ Does not compute actual 
probability or likelihood of assignments of observations 

observations and assign the data, given the (final) to clusters 
those observations to the clusters 

¢ Can be applied to both 
clusters continuous and categorical 

variables 
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2.2.4- Microarray cluster validation measures 

In order to evaluate the spectral clustering approaches, validation methods 

assess whether the clustering algorithm with the specified parameters such as number 

of clusters, similarity measure, model, etc., can identify the underlying patterns of the 

analysed dataset. Several cluster quality or validity measures have been proposed in 

the literature [69]. Cluster validity measures quality of a clustering relative to clusters 

created either by other clustering algorithms, or by the same algorithms using 
different parameter values. The validity measure should reflect the quality of the 

clusters based on the objectives of the clustering algorithm [69,70]. 

Table 2-2 Cluster Validation Measures 

Relation Type Description 

Dmin(CL, Cj) = minlp; - pj l Min distance between all pair of 
Minimum based 

Where pi E C1 and pj E Cj Distance 
objects drawn from the two 

clusters 

Dmean(Ci, Cj) = Imi - miI 
Where m; and mj are centriods of C; 

and C; 

Davg (Ci, Cj) =1 
ninl 

F. F IPi 
- Pj 

Where pi E Ci and pj E Cj, and n, 

and nj are numbers of samples in 

clusters Ci and C; 

Mean based Distance between the means of the 

Distance two clusters 

The average of the distance 

Group-average between all pairs of individuals 

Based Distance that are made up of one individual 

from each cluster 

In general, based on a distance measure d between samples, it is possible to 

define a distance measure D between clusters (set of samples). These measures are an 

essential part in estimating the quality of a clustering process, and therefore they are 

part of clustering algorithms. The validation method is based on cluster compactness 
(in term of intra cluster variance) and density between clusters (in term of inter cluster 
density). Inter cluster density evaluates the average density in the region among 

clusters in relation to the internal density of the clusters, while intra cluster variance 

measures the average scattering of clusters. Therefore, a good clustering method will 
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have an intra density which is much higher than its inter density. Table (2-2) 

illustrates the widely used measures definitions for minimum distance between 

clusters (C; 
, 

C3). However, for clustering measure the well established method 

depends on the basic measure definitions. 

Typically, a cluster quality measure is a statistical measure that quantifies the 

performance quality of the clustering results. In this thesis we used two methods to 

measure the clustering quality performance of the implemented algorithm which are: 
Davies-Bouldin index and Silhouette width [71] as it has been widely recognised as 

the best validation method. In that work [71] both methods use data samples and 

cluster centroids determined from GSP cluster algorithm in the quality measure. 
These indices are described next: 

1. Davies-Bouldin (DB) index, 

In this index, the clustering result obtained from GSP clustering algorithm 
divides the dataset into N clusters is represented as: C=(Cl, C2....... CN), the DB 

method calculates an index value to each cluster C; as follows: 

DBi = maxj=l,.. N, i#j DBij (2.16) 

{sc(Cf)+sc(C j)} DBýj = 
cd(Ci, Cj) 

(2.17) 

where, sc(C; ) represents average distance of samples (belonging to C; cluster) to 

centre of C; cluster and cd(C;, C) represents the distance between the centres of the C; 

and Cj clusters. The value of DB index and clustering quality are considered as 
directly proportional. The DB index is the average value of all clusters as follows: 

DB =N ýN 1 DBi (2.18) 

2. Silhouette Width (SW) index, 

The index exploits the inherent features of clusters to assess the validity of 

results and select the optimal partitioning for the data under concern. The definition of 
the (SW) index is based on compactness and separation of the clusters taking also into 

account density. 
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To determine the average of SW, the SW value of each samples in microarray 
data as SW; using Eq. (2.19). Then the average SW for each cluster is computed. 
Finally, the overall average SW for all samples is calculated as shown in Eq. (2.19) 

SWi - 
sc(i)-sd(i) 

max {sc(i), sd(i)} 
(2.19) 

where sc(i) is the average distance between the sample i to other samples in the same 

cluster (intracluster distance) and sd(i) is the average distance between the sample i 

and other samples which are nearest neighbour cluster to the ith samples cluster 
(intercluster distance). 

ASW(c) =N ZN 1 SWi (2.20) 

The average of Silhouette score for SW, " class C across all genes reflects the overall 

quality of the clustering result as illustrated in Eq. (2.19). A larger averaged silhouette 

width indicates a better overall quality of the clustering result. If the value of ASW is 

close to 1 it means the sample is in an appropriate cluster. If it is close to 0 it means 
the sample could also belong to the nearest cluster to the i`h samples cluster, if it is 

close to -1 it means this sample is not in an appropriate cluster. 

2.3- Spectral technique for microarray data analysis 
The previous section has outlined some of the advantages and disadvantages of 

existing statistical based clustering methods. However, in recent years there has been 

a new focus on the application of digital signal processing methods for enhanced 

analysis of microarray gene expression data. It is well known that microarray data 

have the capability to be represented by samples sequence of spectral vectors, with the 

spectral difference or spectral distortion between the pair of the spectra measured for 

the purpose of pattern comparisons and speech recognition [72]. As we have already 
discussed in the previous sections, there are two ways for the analysis of a microarray 

gene expression matrix: either the analysis of expression profiles of genes by 

comparing the rows of the expression matrix; or the analysis of expression profiles of 

samples by comparing the columns of the expression matrix. Either comparison can 
be used to determine the similarities or dissimilarities between data pairs. If two rows 
(genes) are found to be similar then it can be said that the respective genes are co- 
regulated and have similar functions. By comparing columns (samples), one can 
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determine which genes are differentially expressed and then study the effects of 

various traits on this expression. As discussed earlier, we focus on the latter approach. 

Spectral clustering is a relatively recent approach which is applied to find similarity of 

spectral data vectors in a matrix through clustering analysis. This becomes, in effect, a 
dimensional reduction of the space, selected parts of which may be clustered 

thereafter [73]. A popular application is image segmentation where different regions 

of the image may be treated separately. In data mining, the technique has also been 

applied to the division of data available on the datasets. Spectral methods are 

attractive because they make less severe assumptions on the shape of the clusters than 

partitioning algorithms and can be very fast, depending on the similarity matrix [74]. 

Spectral analysis studies have been used in several bioinformatics applications, 

among them, a spectral component analysis of time-series microarray data has been 

implemented for the identification of genes that are subjected to common 

transcriptional regulation [38]. Based on the motivation that the most commonly used 

approach to determine if the two genes have a potential regulatory relationship is to 

measure their expressional similarity using the Pearson correlation coefficient, but 

recognizing that this approach has many limitations. The authors instead proposed an 

Autoregressive (AR)-based technique. They used the well-known AR modelling 

technique to characterize temporal gene expression data from the Spellman's a- 

synchronized yeast cell-cycle experiment. Time-series expression profiles were 

decomposed into spectral components and correlations between profiles computed. 
They reported log ratios of the test sample expression over control sample expression 

level measurement. 

A microarray dataset contains a set of gene expression values. These values can 
be represented as a vector, where the indices identify the spatial location of the dataset 

in the gene expression scene [75]. A set of gene expression samples may then be 

considered as a set of spectral reflectance vectors, one for each spatial location. The 

objective of the spectral clustering analysis is to group together spectral reflectance 

vectors with similar spectral pattern independent of the vector value. The spectral 

clustering analysis is used in this work as an unsupervised vector quantisation (VQ) 

algorithm to reduce the large set of spectral features to small number of feature 

prototypes based on the measurement of the difference between pair of sample vectors 
in terms of spectral distortion amount [76]. 
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In particular, we use a combined approach of unsupervised VQ as part of the 

different enhanced genomic signal processing methods used in this work. The details 

of these methods will be further explained in the next section. 

2.4- Distortion measure based clustering 
For spectral clustering analysis of microarray, we use spectral distortion 

measure to compute the similarity or dissimilarity measure between two data vectors 
based on various types of distances and distortion measures. Spectral distortion or 
distance measures are non-negative numerical quantities that map two variables, 

possibly valued vectors, to a scalar that indicates the degree of difference or 
dissimilarity between two variables of vectors. 

In digital signal processing and communication system, the measurement is 

evaluated by how good the reconstructed signal is compared to the original signal. 
Good can be interpreted differently including computational, complexity and memory 

allocated size. Hence, there are a number of distortion measures developed for various 

purposes to extract the objective difference between the two signals. Several 

distortion measure methods have been proposed in pattern recognitions and speech 

recognition. Details on these methods are detailed in [77] 

Spectral distortion is a distortion measure used widely in speech coding 

application. This measure has the following advantages: Firstly, the distortion 

measure may select a model from a codebook that is good in term of its distortion 

measure where the codebook design is toward a clustering method. Secondly, the 

distortion measure may reject models with a high distortion which are subjectively 

good. Consequently, in some instances the matrix of pairwise similarities or distances 

between the objects to be clustered is replaced by a distortion measure between a data 

point and a class centroid as in vector quantisation methods, where the aim is to find a 

relatively small number of classes with high interclass similarity or low interclass 

distortion and good interclass separation. Consequently, spectral distortion will be 

used in this work 

In microarray gene expression data clustering, there are various measures of 

similarity such as Euclidean distance and correlation between the vectors of 

expression levels. The advantage associated with correlation method is it captures 

similarity in shape without emphasis on the altitude of the two series of measurements 
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and being sensitive to outliers. For example, when measuring two different gene 

expression samples that are fluctuating around the same average value, these samples 

may be very similar in terms of Euclidean distance (distance close to 0), however 

dissimilar in terms of correlation (correlation close to 0) 

However, Genome signal are characterized with distinguished features such as 

patterns in the time-frequency domain. In the GSP clustering the parameters 

prediction analysis is used to represent the spectrum of the genome signal. It has the 

ability to quantify fragile spectral structure information in the dataset and to provide 

efficient approximation to the exact spectrum. 

In order to cluster the microarray gene expression data samples into several 

groups, the Vector quantisation based distortion measure with LBG algorithm was 

used to produces clustering process due to the ability to consider many spectral factors 

as dimension of gene expression samples vector. 

2.5- Distortion measure for VQ of microarray spectrum 
Vector quantisation (VQ) is the most straightforward method based on block 

coding to cluster a set of data in a space using parameter vectors, providing the class 

directory with labelling of segments [78]. The application of VQ in the microarray 

clustering process has two main advantages: first it allows capturing meaningful 

classes in the microarray gene expression data samples, represented by their sample 

centres, and also it makes subsequent classification decisions robust to the inherent 

noise within the gene data samples. In VQ a number of gene data samples are grouped 

together into a target vector and this entire vector is coded. This means that there is a 

set of code vectors or representation vectors, which form a codebook. The target 

vector is compared with all code vectors in the codebook by means of a certain 
distortion measure. The code vector which has the smallest distortion with respect to 

the target vector is the winning code vector. The VQ algorithm can be stated as 
follows: given a vector of data source xp with its statistical characteristics and a set 

number of codewords yl which correspond to the centroids (average vector) of the 

clusters, estimate the distortion measure and then find a codebook index and a 

partition segment of quantised data as shown in Figure (2.4). 
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The principle of VQ is to map P-dimensional input vectors x=[xj...., xp] by 

finite set of L code words called codebook: Y= {v; ,1<i 
L). To design a codebook, 

the P-dimensional space is partitioned into L cells {Ci, 1<i< L), and all cells are 

quantised, which is the process of assignment one of the code-vectors y, to each x 

belonging to cell C;, q(Yp)=yi, if xpC Ci: 

The average quantisation error between input data source and their reproduction 

codeword is called the distortion of the vector quantiser. The computation procedure 

of codebook involves allocating a collection of vectors into centroids. The major 

concern for a vector quantiser codebook design is the trade-off between distortion and 

rate. Once the number of quantisation levels is defined, the rate is set. Then the focus 

is on data quantisation as a means of removing noise from data. The centres of the 

groups of data corresponding to different quantisation levels should be selected so that 

distortion is minimized. Depending on a squared-error distortion measure, the mean 

distortion d, � can be given by Eq (2.21). 

d"' 
PL 

EP=1I Xp - q(xp) 12 (2.21) 

There are two criteria which satisfy the distortion measure processes used in 

quantisation process: 
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a- Nearest Neighbour criteria 

The state of this criterion depends on the encoding area C; that should 

contain all object vectors that are closer to y;; than any other codevectors. It 

satisfies the following relation: 

Ci = 
{xldm(x. Yi) 5 dm(x. Yj) ; Vjl (2.22) 

b- Centroid criteria 

The state of this criterion depends on the codevector y;; that should be 

the average of all object vectors that are in encoding area C;. It satisfies the 

following relation: 

yi = cent(ci) = arg mint' E (d�i(x, y)Ix E c1) (2.23) 

Figure (2.5) shows the procedure of the VQ algorithm. The design of codebooks is 

usually accomplished by an iterative algorithm called the Lloyd algorithm. The 

algorithm was designed as a clustering technique to generate a set of representative 

vectors of the source data and optimizes the codebook using the distortion measured 

method [78]. 

In this work, we use VQ in microarray data space, i. e. a vector z which 

represents a vector of gene expressions sample is mapped to a code vector qof 

expressions in microarray. The algorithm starts with the preliminary codebook and 

refines it iteratively. The process continues until no significant further improvement is 

possible. Implementation of VQ in clustering microarray gene expression samples is 

as follows: 

I- Select the expression vector q, � that is nearest to a vector z, with distortion 

measure d, �, if the distortion is small enough the algorithm terminates, as 
defined in the following 

dm(Z, 9m) = arg mini (dm(Z, 9i)) (2.24) 

2- Assign the resultant microarray codebook Cq as cluster label to the data 

grouped in q. 

Finally, once the codebook has been defined, model coefficient vectors of x are 

extracted, compared to all codewords of C and mapped to a single codeword that 

represents the different genes mapped on the tested microarray data. 
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2.6- Conclusion 

In this chapter we have explained the clustering methods used in microarray 
data analysis, together with extensive literature review and studies on different 

microarray clustering and analysis methods. The description of the DSP methods and 

spectral technique for microarray gene expression with comprehensive literature 

review is presented. From these, it is concluded that GSP methods have the ability to 

present meaningful information in time and frequency domain from the data 

especially for unsupervised clustering. The selected DSP methods are selected to 

translate the spectrum of the genome signal to a vector of prediction parameters, and 

then vector quantisation is used to produce clustering process. In the next chapter we 
introduce one of DSP spectral method which is LPC to predict the vector of prediction 

parameters and discuss applications of the method to microarray dataset. 
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Linear Predictive Coding for 

microarray clustering 

The origin of Linear predictive coding (LPC) comes from the field of speech 

processing where a particular value in a signal can be predicted by a linear function of 

the past values of the signal. LPC is a time series algorithm, which is also known as 

autoregressive analysis. It has had significant applications in many areas other than 

the speech analysis field. 

The underlying motivation for using Linear predictive analysis for microarray 

clustering is that it provides a decomposition of the gene expression data samples and 

predicts future values of the input sample based on past samples. The main objective 
is to represent a gene expression data sample with a set of coefficients to obtain a 

predictive gene expression signal with better computational efficiency. 

In this chapter the LPC approach for extracting a spectral feature of microarray 

gene expression coefficients is presented. The chapter outlines the characteristics of 
the microarray gene sample signals and describes the details of the LPC coefficients. 
Transformation from the predictive LPC coefficients to the line spectral frequencies 

has been implemented and then the VQ approach is applied to measure the spectral 
distortion and compute the dissimilarity or similarity between spectral analysis 

vectors of the gene samples to produce the relevant index of quantisation for 

clustering purpose. 
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3.1- Characteristics of microarray gene samples 
In order to investigate the consistency of microarray clustering response based 

on LPC method, we first examine the microarray gene expression pattern locally as a 

signal to understand the time series correlation of the gene expression data. 

Periodicity is a common phenomenon in biology where periodic processes occur 

at all levels of biological organization with a cyclic series such as Hormones, 

Proteins[79]. Figure (3.1) shows typical profile of the gene expression sample signal 

of the Leukaemia dataset [8] used in this work. Practically, the gene expression data 

contains rich information based on a set of a finite number of expression value at a 

time t that can be represented as a vector (vd t) with d-dimensions. Therefore, the gene 

expression of a set of samples can be represented by the following expression data 

vector: Gerp={Vd. g}(d=/..,., g)(r=,,..., �). Gene expression signal levels show that the variation 

of the gene expression signal profile involves excitation signals at specific samples. In 

many circumstances processing gene expression in time series will produce a range of 
frequencies that will allow finding targets that are expressed periodically with specific 

correlations both between genes and samples. These data characteristics can be 

analysed further in the frequency domain using different DSP methods. 
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Figure 3.1 Gene Expression levels G,, = [vd, J(d=39) (r=i,..., 72 for Leukaemia dataset, 
where d is number of genes and t is sample index 
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Figure (3.2-a, b) shows the results of analysis applied to the gene expression 

signal s[n/ between two samples (sample 6& 9), each with a selection of 

g=125genes. This test shows that the returned vector shown in Figure (3.2-c) 

indicates the cross correlation of that specific range of oscillation in expression value. 
The cross-correlation indicates similarity between two samples sequences. The large 

peak of amplitude highlights this similarity and indicates a good match over the full 

length of the sample. 
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In this thesis, we apply the principle of LPC to extract the spectral features of 

microarray data for enhanced clustering. The computation is based on the principle 

that the estimated value of a particular microarray value s[n] at position or time n, 
denoted as s[n], can be calculated as a linear combination of the past p samples. 

3.2- Background theory of LPC Analysis 

The following section describes the concept of the LPC algorithm and how it 

can be applied to microarray spectral analysis. In general LPC is a parametric 

encoding method which is suitable to deal with non linear signal which is a common 

property in speech signal and image data [76]. The basic concept behind LPC analysis 

is that each expression sample is approximated as a combination of past samples. Eq. 

(3.1) defines the LPC principle where the value of the present output can be predicted 

approximately by a linear combination ofp past samples. 

9[n] = Ep_laj s[n -J] (3.1) 

Where s[n] is the predicted value of the p`h sample, aj are the linear prediction 

coefficients or predictor coefficients and p called the predictor order of LPC analysis. 

LPC method requires a parameter which identifies the number of coefficients aj that 

are required to represent accurately the p'h sample - LPC order (1=1, ..., p} - by its 

weighted past value. A set of coefficients has to be found so that the error signal e[n] 
is as close as possible to zero in order to make the model response stable. 

Figure (3.3) shows an example of LPC analysis with order p=33 applied to the 

selected g=125 gene expression. It also illustrates the estimated gene sample signals 

and the difference between the original and estimate signals to identify the prediction 

error signal. 

The goal of the LPC analysis is to find the best prediction coefficients aj so that the 

predicted sample is a good approximation of the original sample. This optimization 

process is performed by minimizing the energy of the prediction error. The prediction 

error e[n] between the observed sample and the predicted value is defined in Eq. (3.2). 

e[n] = s[n] - i[n] 

e[n] = s[n] - ý1=1 aj s[n - j] (3.2) 
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Figure 3.23 LPC test analysis to sample number 23 with p=33, g=125 and MSE=0.145 

This involves choosing aj to minimize the mean energy, E, in the error signal over a 

window of data samples, as follows: 

E= En eZ[n] 

E= lEn [s [n] - Ep=1al S[n -lý, 
Z} 

(3.3) 

The values of uj that minimize E are found by setting all derivatives equal to zero for 

(j=1,2,..., p) as follows [76]: 

sa; (s [n] - 
Zjl=1 aj s[n -lj)2 =0 

Thus, Zp 
1 s[n] s[n - i] = Y-j_1 aj s[n - j]s[n - i] (3.4) 

Eq. (3.4) is the required formula for estimating the predictor coefficients aj. j {l, 
... p} 

applied to obtain the predictive coefficients aj of the predictive model. 

3.3- Linear Predictor coefficients 
In the following sections we describe briefly the different methods that are used 

to determine the LPC coefficients, further details on this topic can be found in modem 
DSP text books [80]. The autocorrelation and covariance methods are two of the most 

common and efficient linear predictive spectral estimation techniques. Both methods 

choose the LP coefficients aj in such a way that the residual energy is minimized. In 

both methods the classical least square technique is used for such purpose. However, 

1.0 
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their main difference lies in the placement of the analysis window. The work in this 

thesis is based on the covariance method which has the following property: since it 

windows the error signal instead of the original signal, it prevents introducing 

distortion into the spectral estimation procedures. This is achieved by convolution of 

the original time sample signal with the frequency response of the window. 

3.3.1- Autocorrelation method 

This method is performed with a time window operation on the original signal 

as follows: 

x[n] = s[n]w[n] (3.5) 

Generally, when a window is employed it is assumed the signal sequence s[n] is 

zero outside the analysis frame. Therefore, it limits the input data signal to finite 

interval 0 <_ n <_ N -1. The energy in the residual signal becomes: 

E= En ez [nl = 
{2: 

n 
[X[nl 

- 2: p_1 aj x[n - Il 121 (3.6) 

Eq. (3.6) is solved by differentiating the energy with respect to aj , j=1,2, ... p, and 

then equalling the result to zero, ää 
=0, The resulting equation becomes; 

En x[n] x[n - i] = E; 
=1 a/ En x[n - j]x[n - i] i=1,2,..., p (3.7) 

The autocorrelation function of the time limited signals x[n] is defined as: 

R(i) = EN=-i x[n] x[n - i] (3.8) 

By substituting the autocorrelation function Eq. (3.8) into Eq. (3.7), the following 

system of equations is obtained: 

R(i) = E1_1 al R(i -1) (3.9) 

Where R(i) is the autocorrelation of s[n]. aj is a predictive coefficient with a vector of 
length p, R(i-j) is a matrix of size pxp. These p equations are known as the Yule- 

Walker (Y-W) equations for Autoregressive (AR) models [80]. It can be explicitly 

stated as: 

R a=r (3.10) 
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While the expressed of the system equation sets could be represented in normal matrix 

form as follows: 

R(0) R(1) R(2) ... R(p - 1) al r(1) 
R(1) R(O) R(1) ... R(p - 2) a2 

- 
r(2) 

R(p - 1) R(p - 2) R(p - 3) ... R(0) ap r(p) 

a=[a,, az, .... a. JT where T indicates the transpose of a vector (or matrix). 

(3.11) 

The matrix R in Eq. (3.11), which is often called the autocorrelation matrix, has the 

following properties: it is symmetrical, has a Toeplitz structure, and all the elements 

along a given diagonal are equal. Therefore, Eq. (3.7) can be solved using 

computationally efficient recursive procedures, such as the Levinson-Durbin's (LD) 

algorithm [81 ] which is the most widely used. Figure (3.4) shows the structure 

algorithm of the recursive process of the Levinson Durbin recursion method. The 

coefficients ki, 1: 5 ii are computed as a by-product of the LD algorithm. They are 

known as Reflection Coefficients. They can alternatively represent predictor 

coefficients. 

Input: Predictor order P, Autocorrelation coefficients R(0), 
...., R (p) 

Output: LP coefficients a; =a,...... a,, 
Eo=R(0) 
For i=1 top do 

_ 
R(0-Ek at-i(k)R(i-k) ki 

E, -1 
a; =k; 
Forj=1 to i-1 do 

ai(k) = ai-, (k) - kiai-i(i - k) 
End 
Ei = (1 - k? )Ei-l 

End 

Figure 3.4 Levinson Durbin recursion algorithm [81 ] 
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3.3.2- Covariance method 

This method determines the predictor coefficients by windowing the error signal 

e[n] rather than windowing the original signal, in order to consider all-pole signal 

modelling. The method is based on minimizing the forward prediction error in the 

least squares sense. As a result the error in the residual signal becomes: 

E= Ene2 [n] w[n] 

= En [ s[n] - Ek=1 ak s[n - k]]2w[n] (3.12) 

Where the error is minimized over a finite interval of size N as defined by the 

rectangular window function w[n]. 

After minimizing and differentiating Eq. (3.12) with respect to ak, we obtain: 

ZN-1 s[n] s[n - il = EP-1 ak En=ö s[n - k] s[n - i] i=1,2.... p (3.13) 

It can be noticed that the terms of the form EN- Is s[n - k] s[n - i] are those of the 

short term covariance of s[n]. 
Finally, the covariance function of s[n] is defined by: 

C(i, 0) = ): k=1 akC(k, i) (3.14) 

Where, C(k, i) = ýn=ö s[n - k] s[n - i] and C(i, 0) = En=ö s[n - i] s[n] 

Substituting the covariance function Eq. (3.14), into Eq. (3.13), the obtained system of 

equations can be explicitly stated by enumerating the equations for each value of j as: 

C a= c (3.15) 

While the expanded structure of the system of equations can be represented in normal 

matrix form as follows: 

C(1,1) C(1,2) C(1,3) ... C(1, p) ai c(1) 
C(2,1) C(2,2) C(2,3) ... C(2, p) a2 c(2) 

C(p, 1) C(p, 2) C(p, 3) ... C(p, p) ap c(P) 

(3.16) 

Evidently the covariance matrix in Eq. (3.16) is also symmetrical about the main 
diagonal since Eq (3.14) illustrates that C(k, i)=C(i, k). However, it does not have a 
Toeplitz structure. Though, it can be solved by using the well known Cholesky 

decomposition method [80]. Figure (3.5) shows the structure algorithm of the 

Cholesky decomposition method [81]. Amongst the characteristic of the covariance 
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method, it has improved resolution for short data records (more accurate estimates), 

and is able to extract frequencies from data showing periodicity. 

Input: Predictor order P, Covariance coefficients C(1)... C(p) 
Output: LP coefficients a, =a,.... ap 
Fork=] top-1 do 

C(k, k)=sgrt(C(k, k)) 
C(k+l. p, k)=C(k+1. p, k)/C(k, k) 
For j =K+1 top do 

C(j, k+1)=C6, k+1)- C(j, l: k)T. C(k+1,1: k) 

end 
end 
a(p, p) =sgrt(C(P"P)) 

Figure 3.5 Cholesky decomposition algorithm [81] 

The methodology for obtaining LPC coefficients of microarray gene data 

samples using covariance method involves calculating the following quantities in 

reference to Eq. 3.12 and 3.15: 

  aj A vector of coefficients in 2-Dimension: row of length equal to the 

length of gene expression data samples, for example Luke microarray dataset 

has dimension of 7192 gene by 72 samples and therefore the length of 

coefficient vector is equal 72, and column of length equal to p+l which 
depends on the order of LPC model. 

 E The error signal associated to the predictive samples as shown in 

Eq. (3.12). 

3.3.3- Improved LPC coefficients analysis 
It is well known that the resultant LPC coefficients a; are not suitable for coding 

and have sensitive quantisation properties that are not compatible for microarray 

clustering prosess. Furthermore, stability checks are complicated. Direct quantisation 

of the a; coefficients is not advisable because small changes due to the quantisation 

error can cause the filter on the synthesis side to become unstable and produce large 
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spectral errors. Thus other better quality methods of quantising the prediction 

coefficients with high efficiency have been formulated [82]. These include the 

reflection coefficients (RC) or partial autocorrelation coefficients, arc-sine reflection 

coefficients (ASRC) and log area ratios (LAR). Since it has been shown in the 

literature [77,83] the line spectral frequency (LSF) representation is one of the best 

methods, this approach is used in this work and is detailed in the next section. 

3.3.3.1- Line Spectral Frequency Transform 

Line spectral frequency (LSF) is derived from LPC and has been introduced by 

Itakura [84] as an alternative representation to the LPC parameters in the frequency 

domain; it is also known as Line Spectrum Pair (LSP) representation. Whereas LPC 

parameters have a large dynamic range of values that causes inaccurate quantisation, 

line spectral frequencies have a well behaved dynamic range. Therefore, if 

interpolation is done in the LSF domain, it is easier to guarantee the stability of the 

resulting synthesis filter. 

The LSF representation has a number of properties making it desirable for 

quantisation, such as a bounded range, a sequential ordering of the parameters and a 

simple check for the filter stability [83]. The LSF parameters also exhibit the 

distortion independence property, which means that any change in an LSF parameter 

will not produce any global effect, it will only affect the frequency spectrum close to 

it. Thus, the LSF parameters at higher frequencies can be represented with fewer 

quantise levels. Besides that, clustering of LSFs based on characterizing a frequency 

of a given spectrum of data depends on the closeness of the corresponding LSFs. 

Consequently, due to the spectrum sensitivity of LSFs, which are localized, the 

individual LSFs can be quantised independently without significant loss of 

quantisation distortion from one spectral region to another. Therefore, LSF parameters 

are more practical for quantisation than LPC coefficients. 

In order to define the LSF, let's assume the transfer function H(z) of LP model is: 

H (z) =1 A(z) 

Where the H(z) is referred to as an all-pole model and filter A(z) is known as the 
inverse filter of H(z), defined as 
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A(Z) =1- Ek=1 ak Z-k (3.17) 

And A(z)=1+ai z-1 +..... + a, z° is the inverse filter polynomial where p is the 

predictor order and a; is the i'1' predictor coefficient of the filter. It is used to construct 

two polynomials formed from A(z) and its time reversed system function A(z'): 

P(z) = A(z) + z-(p+l) A(z-1) 

Q(z) = A(z) - z-(p+l) A(z-1) 

Factoring the above equation, we get: 

P(Z) = (1 - Z-1) flk=2,4,.. 
p(1 -2 COS Wk Z-1 + Z-2) 

Q(Z) = (1 + Z-1) flk=1,3,.. 
p-1(1 -2 COS Wk Z-1 + Z-2) 

(3.18) 

(3.19) 

where (Wk)kp=i, are called the LSP parameters. By using these two polynomials in Eq. 

(3.18), the zeros of A(z) are mapped onto the unit circle. If A(z) is a minimum-phase 

system, it means that all roots of P(z) and Q(z) lie inside the unit circle and interlace 

with each other. Therefore, the transformation from LPC coefficients to the LSF 

parameters is reversible and A(z) can be obtained from Eq. (3.19) as follows: 

A(z) =2 [P(z) + Q(z)J (3.20) 

The roots of P(z) and Q(z) can be expressed in teens of angular frequencies CO which 

are located between 0 and a known as LSF. The equivalent to the frequency response 
function form is: 

A(ei"') =z [P(ejW )+ Q(e'"")l 

It is shown that the LSFs are the phases of the zeros of P(z) and Q(z), i. e. the LSFs are 
the zeros of P(e'' ) and Q(e'w). Therefore, if a pair of LSFs is very close at wo, 
P(dw')+Q(e/') will be very close to zero resulting in a peak around wo in the amplitude 
frequency response curve. On the contrary, if two LSFs are far from each other, the 

amplitude frequency response curve will be located around the two LSFs[84]. 

LSFs can be denoted by: (11,12,13. .... /p)T and its parameters satisfy the following 

ordering property: 0=wo<wl<w2<... <wp+1 =jr. Thus, the stability of LPC can be 

ensured by quantising the LPC information in LSF domain. 
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Since the LSF representation is a frequency domain representation, it can be 

used to exploit certain properties of the gene expression data samples. The magnitude 

of the power spectrum depends on the spacing of the LSF parameters. Closely 

positioned LSF parameters correspond to the peaks of the spectrum, and widely 

positioned LSF parameters correspond to the spectrum valleys. Since the power 

spectrum information is more important to the gene expression samples, finer 

quantisation of the LSF parameters in these regions is desired. This can be achieved 
by finer quantisation of closely positioned LSF parameters. 

3.3.3.2- Vector Quantisation of LSF coefficients 

In this section we describe the vector quantisation issues of the LSF 

transformation used in the clustering approach. The different components of LSF 

parameter vectors have different spectral significances. Hence the vector quantisation 
VQ method is used to allocate different spectral values to individual components. 

In principle, the VQ process uses a `nearest neighbour' approach in the 

computational process, i. e. the vector z under consideration is mapped to the code 

vector q, � ,C is the cluster to which the vector is classified, and d is a suitable 

minimum distortion measure between the vectors, if 

C= arg mini (d (z, qi)) (3.21) 

The distance df between consecutive LSF vectors can be calculated according to the 
following expression: 

df (LF1, LFk) = Ef=1[wß (l fib -l fkj)]Z and w; = P(lf, ") (3.22) 

where LF; and LFk are vectors of LSFs, tfij is the I" frequency of LF; and wj is the 

power spectral distortion measure. However, generally the gain-normalized log 

spectral distortion is used since it is widely accepted as a quality measure of coded 

speech spectra. It evaluates the similarity of two auto-regressive envelopes. It is 

expressed in the frequency domain by the following equation [76]: 

d(z, qt) =f n(log PZ(w) - log Pyi(w)) 2 
zn 

(3.23) 

where P(w) is the auto-regressive envelope that is defined as: 
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P(W) _1 
I1+ýk=lake-jwkl2 

(3.24) 

The design of codebooks is usually accomplished by an iterative algorithm 

called the Lloyd algorithm as described earlier in chapter 2 (Section 2.5). This 

algorithm generates a set of representative vectors of the source data and optimizes 

the codebook using the distortion measure method. Finally, once the codebook has 

been defined, LPC coefficient vectors of s are extracted, compared to all codewords of 

C and mapped to a single codeword that represents the different genes mapped on the 

tested microarray data. The structure of the encoder LPC-VQ is shown in Figure (3.6). 

The input data is x, the p" order predictor parameters are ap and the VQ parameters 

are ä. The distortion inherent in the model is d(x, ap), and the resulting distortion from 

quantising ap is d(ap, a). The overall distortion is d(x, a)=d(x, ap)+d(ap+ a) 

Input data x 

-ýI 
LPC 

computation 

ap VQ 
Parameter 

Quantisation 

R 

i----º 

4-- d(x, ad d(apä) 

d(x, ä) 
14 

Figure 3.6 Scheme of distortion measure used in the LPC-VQ analysis 

3.4- Microarray LPC (miLPC) clustering analysis 

In this section, we introduce the LPC microarray clustering method (miLPC) for 

clustering microarray gene expression samples. A block diagram of miLPC clustering 
is shown in Figure (3.7). Microarray gene expression samples are the input to the 

system and a clustering decision is obtained from the system output, miLPC has the 

following processing blocks: 

a- Microarray Normalization 

If one considers a gene expression profile, denoted by the vector, 
V=[v', v2, v3, ... v"J, measured for n samples, rescaling is an essential preprocessing 

step. It is commonly done by replacing every expression level v' in V by: 
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Figure 3.7 miLPC clustering method 
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v= 
_M (3.25) 
a 

Where µ is the average expression level of the gene expression profile, which is 

given by: 

µ=12: in =i n1v 

and o, is the standard deviation given by: 

U= 
nl ll 

1: i 
1(Vi - µ)2 

(3.26) 

(3.27) 

This is performed for every gene expression profile in the dataset. This process results 
in a collection of expression profiles all having an average of zero and a standard 

deviation of one. Figure (3.8) shows the gene expression level output from a sample 

microarray dataset at original value and normalized value with statistical calculation. 
Commonly, normalization should be applied using genes whose expression levels 

remain constant and cover the whole dynamic range of the sample in dataset. 

However, in a microarray, usually there is no prior knowledge about which genes 

show differential expression levels and which genes do not. 

b- Microarray Feature Selection 

The most common gene selection approach is so-called gene ranking. It is a 

univariate analysis approach in the sense that each gene is evaluated individually with 

respect to a certain criterion that represents class discrimination ability. It is based on 

the absolute value of the score introduced by Golub [8]. Procedures of gene selection 

are based on computed rank value of each gene g, which are identified by ranking 

them according to their signal-to-noise (S/N) ratio. S/N is defined as: 

SIN (v) - 
vv 

(3.28) 

Where µ, i� µ, 2� and Q,;, a, 2, denote respectively the means and standard deviations of 

two classes. Top-ranked genes are those with the largest values of S/N(v). The score 

which is calculated for all genes individually and genes with the best scores are 

selected after sorting them is explained in chapter 6. 
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c- miLPC coefficients prediction 

The aim of the miLPC method introduced in this thesis is to estimate the best 

prediction coefficients aj over n gene expressions data sample and set the order p of 

the predictor required (usually n»p), so that the predicted expression sample is a 

good approximation of the original expression sample. This optimization process to 

calculate the predictor coefficients is performed by minimizing the mean energy in the 

expression variation over N expression samples of the microarray dataset by least- 

squares minimization method. As explained in section (3.3.2) the covariance method 

used the gene expression variation Av(g) instead of the gene expression individually 

v(g), where AV(g) {V(g) - V'tg)} is the difference between the original expressions 

v(gj and the predicted at specific time, it avoids the distortion introduced into the 

spectral estimation procedure as time windowing corresponds to convolving the 

original gene expression short-time with the frequency response of the window The 

computation is based on the principle that the estimated value of a particular gene 

expression data in microarray at time t, denoted as V '(,, g) {x e t}, can be predicted 

approximately by linear combination of the past p gene expressions data. Figure (3.9) 

shows the predictor diagram of the gene predictor coefficients generation model, 

while Figure (3.10) demonstrates the response of the gene prediction coefficients at 

order p=34 for test samples of 23 using g=125 genes. 

º'(g. iý LPC Model v(J) 
a(I) 

V(g. r) 

V(g, n) 

LPC Model v(, ) 

LPC Model v(. ) 

a(�. �) 
N 

a(n. P ) 

ý -ý 

Gene Predictor 

Model Coefficients 

Figure 3.9 Scheme of miLPC coefficient estimation 
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Figure 3.10 miLPC coefficient estimation (p=34) to expression sample 23 

1. Transformation of Coefficient prediction 

The process of direct quantisation of the coefficients aj is not advisable because 

of their relatively large dynamic range and possible filter instability problem as 

explained earlier in Section 3.3.3. In this work we chose the Line Spectral Frequency 

(LSF) representation to produce Gene Expression Spectral Frequency (GESF), 

because it has been shown to be a particularly efficient for quantisation of 
information[83]. It also does not distort the spectrum, varies smoothly in time and 

offers a better coding in relation to spectral peaks. These GESF coefficients are used 

subsequently to determine distortion between samples. Figure (3.11) shows the GESF 

transformation of the response demonstrated in Figure (3.10) concerning the 

prediction expression sample 23 estimated based on prediction order p=34 
3 

I 

2. D 

21 

1 5. 

I 

0 10 70 30 40 50 e0 TO 

Gene spectrun frequency (Hz) 
L- so 100 

Figure 3.11 GESF concern ing the prediction expression sample 23 with respect to 

prediction order p=34 
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2. Vector quantisation and clustering of miLPC Coefficients 

Clustering based on vector quantisation is performed to miLPC coefficients in 

microarray gene expression samples. Vector quantisation (VQ) is used to convert a 
feature vector set into a small set of distinct vectors. The distinct vectors are called 

code vectors and the set of code vectors that best represents the training set is called 

the codebook. Since there is only a finite number of code vectors, the process of 

choosing the best representation of a given feature vector is equivalent to quantising 

the vector and leads to a certain level of quantisation error. This error decreases as the 

size of the codebook increases. The procedure starts with selected initial centres and 

next, all the objects are classified into the appropriate clusters using a minimum 
distance function. A distortion measure for the current cluster arrangement (e. g., Mean 

Square Error) is calculated and each cluster centre is updated to be the average value 

of the feature vectors corresponding to objects within the cluster. At this stage, the 

objects are regrouped, new centres are calculated, and the distortion measure is 

updated. The process of clustering and updating centres and distortion is repeated 

until the normalized change in distortion is below some threshold in the iteration. 

Figure (3.12) describes the algorithm of miLPC gene sample clustering. The VQ 

codebook can be used as a model in pattern recognition as explained earlier. The key 

point of VQ modelling is to derive an optimal codebook which is commonly achieved 
by using a clustering technique. 

Input: Predictor coeff order p, Gene Expression data vx, g , 
x: Size of Gene expression samples, g: Gene Number 

Output: GESF coefficients GS,,.,. ATE: Average test error 
Processing: 

I-Computing the gene expression predictive coefficients {a. } 
2-Compute average test error, ATE: 
3-Translate coefficients {ap) to Gene Expression Spectral Frequency (GESF) 
4-Drive codebook based on VQ method 
5-The codebook explore the sample label of the computing clustering of micrarray 

End 

Figure 3.12 miLPC gene sample clustering algorithm 
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3.5- Performance analysis of miLPC 

In this section we describe the performance analysis of the miLPC method and 

application on test data. 

3.5.1- rniLPC evaluation criteria 

In order to apply the miLPC method on sample microarray data, some basic 

parameters must be chosen. Variation of these parameters causes varying 

performance. To obtain useful results with linear prediction and to apply it 

successfully, it is necessary to understand the relationship and the effect of the 

changes in parameters on the clustering process. The main influencing parameter 

effects on LPC analysis performance is based on the chosen order p of the linear 

predictive which attempts to be able to achieve reasonable model. The goal of this 

experiment is to study the prediction order with reasonable computation that gives 

minimum error between the original gene sample signal and the prediction signal. 
Figure (3.13) shows the comparative results achieved by several order selections 

implemented to calculate the Mean Square Error (MSE) of the predictive coefficients 

with respect to genes involved in the process. 
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Figure 3.13 MSE of mi1. PC analyses with different order (p) and selected genes 

The amount of error by which the predictive signal differs from the original 

sample variations is illustrated in Figure (3.14). We will refer here to the TMSE as the 

average value of the MSE for a given set of samples. For example, the TMSE=1.1 for 

the results shown in the same figure. 
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The preliminary tests show that the best order p selected is dependent on the 

Minimum residual error of the LPC predictive analysis, from Figure (3.13), it shows 

that a threshold level of error which is equal Th=0.907 gives accurate clustering 

analysis. The total error estimated pertaining to each sample in the microarray is 

shown in Figure (3.14), while the overall average error is equal to TMSE=1.1. Further 

experimental result and discussion present in chapter 6. 
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Figure3.14 Total MSE estimated pertaining to each sample in the leukaemia microarray 
dataset using LPC predictive analysis p=33, g=125, TMSE=1.1 

3.5.2- Quantisation evaluation criteria 

To obtain the best results of Vector quantisation method, it is necessary to 

understand the relationship and the effect of the changes in parameters on the 

clustering process. The most important parameter affecting the VQ analysis 

performance is based on the chosen value of the quantisation level which represents 

number of classes in cluster. 

The VQ procedure considered as a gradient descent procedure for the 

approximation of a best quantised level relative to the partition region which is 

determined by minimizing the distortion measure. The number of iterations required 

to achieve reasonable model is dependent on the dimensionality of the microarray 
feature, and the attributes of the coefficients distribution estimated. 

In this work, we set this quantisation level equal to two, which represent the 

number of clusters in microarray. Figure (3.15) shows the clustering result between 
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two classes in Leukaemia microarray. It shows there is an error in sample 36 where it 

should be lie in class 1 segment when we used g=125 genes and LPC order p=33 that 

will obtain MSE=2.6. VQ allows different cell shapes, like hexagons, to fill the region 

of expression samples, the set of Voronoi regions partition the entire space of 

clustering is shown in Figure (3.16). It illustrates the two classes clustering of 

microarray samples as represented in Figure (3.15). 
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3.6- Conclusion 

In this chapter we have explained the LPC approach in data clustering and described 

the characteristic of the microarray gene expression pattern as a signal. We introduced 

a new method, the miLPC, that modifies the standard LPC approach with VQ tailored 

for enhanced microarray clustering. miLPC implies a transformation from the 

predictive LPC coefficients to the GESF and then the VQ approach is applied to 

measure the spectral distortion and compute the dissimilarity or similarity between 

spectral analysis vectors of the gene samples to produce the relevant index of 

quantisation for clustering purpose. Performance analysis of the miLPC method and 

application on test data set has also been discussed. In the next chapter we introduce 

another DSP spectral method, the DWD, to predict the vector of prediction parameters 

and discuss applications of that method to microarray dataset. 
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CHAPTER 4 

Wavelet for microarray clustering 

Discrete Wavelet Decomposition (DWD) is a well-known technique in the 

digital signal processing area and is used extensively in biomedical signal processing. 

In general, the wavelet technique divides up data, functions, or operators into different 

frequency components and then deals with each component with a resolution matched 

to its scale. 

In this chapter the application of DWD to microarray sample clustering is 

explained. The chapter outlines the basic DWD characteristics of the microarray gene 

sample signals and illustrates different wavelet families and their application in the 

clustering process. The VQ approach is applied to measure spectral distortion and to 

compute the dissimilarity or similarity between spectral analysis vectors of gene 

samples to produce the index of quantisation in respect to the clustering of the 

microarray samples. 

4.1- Properties of Wavelets 

In this section, we highlight the relevant properties of wavelets in microarray 

gene expression analysis [20]. In general, a wavelet allows to obtain a view of a signal 

at different resolutions which differ by a factor of two, and to encode the difference of 
information between different resolutions as orthogonal wavelet coefficients. Each 

coefficient is computed with a single scalar product of the signal and the wavelet. A 

wavelet transformation converts data from an original domain to a wavelet domain by 

expanding the raw data in an orthonormal basis. Each wavelet basis contains an 
infinite number of wavelets that are generated by dilation and translation of a scaling 
function (father wavelet) and the wavelet function (mother wavelet). An inverse 
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wavelet transformation converts data back from the wavelet domain to the original 
domain. Wavelets have significant properties for genomic expression data analysis 

such as [85]: 

¢ Minimize computation complexity of transformation with linear time and 

space complexity in addition to the symmetry of scaling, in concerning the 

variation involved with expression data samples 

> Vanishing moments reflect the oscillatory nature of wavelets which could 

characterize differences or details in the genome data samples profile. They 

can lead to de-noising and dimensionality reduction. 

> The multi resolution decomposition structure of scaling and wide variety 

of basis functions, leads to hierarchical representations and manipulates 

expression samples as objects. 

> De-correlated Coefficients of the expression model that gave their ability 

to reduce temporal correlation smaller than other in a process 

4.2- Application of DWD in gene expression 

The underlying motivation for the DWD analysis of microarray clustering is 

that a set of wavelet bases can represent accurately the localized features contained in 

microarray data without losing other features. 

In this thesis, multilevel wavelet decomposition is performed to represent gene 

profile into approximations and details to extract the spectral features of microarray 
data for enhanced clustering. Furthermore, the method is used to characterise multiple 

expression sample positions and their length scale. 

Wavelets are groups of mathematical equations which can be applied on data 

that have variable frequency components, allowing the study of each of these 

components into their scales fields [86]. In this application, DWD allows the 

decomposition of an input signal as expression samples onto a set of basis functions 

and its analysis it by transforming it to time-frequency domain. 
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4.2.1- Wavelet background 

Wavelet analysis has the capability of extracting many useful aspects in data 

like trends, breakdown points, discontinuities in higher derivatives, and self-similarity. 
It allows a sample series to be viewed in different multiple resolutions by 

decomposing data at different frequencies of decompose data without significant 

degradation unlike traditional statistical techniques [87]. 

The breakdown process of a samples signal onto a set of basis functions is 

achieved by dilations, contractions, scaling, and shifting. This partition provides 

resolution optimality in both time and frequency domains and does not require a 

stationary signal. It is based on two major sub operations: scaling which captures the 

gene expression samples information by successive low pass/ high pass filtering and 
down sampling, whilst the translation sub operation captures the information at 
different locations. It decomposes expression samples data into several groups of 

coefficients which contain information regarding the sampled signal at different 

scales. Coarse scale coefficients capture gross and global features of the signal while 

fine scale coefficients contain local detail. 

Since microarray data represent the activity of genes across different samples, 

expression of a gene may display a specific range of frequencies [88]. Therefore, 

wavelet decomposition is a method that can be applied to convert spatial expression 

samples data into the frequency domain. The method has high degree of spatial 
localization, but the degree of concentration depends on the frequency content of the 

wavelet function [60]. Since high frequency wavelets are narrower than lower 

frequency ones, wavelets can be seen as a set of adaptive base functions. 

The basic DWD algorithm is shown in Figure (4.1). The method starts by 

applying recursively two convolution functions, a low and high pass filters on the 

given data signal S. Each function produces an output stream that is half the length of 
the original input in a specific resolution level. As a result, two sets of coefficients are 

calculated: the cA(n) coefficients are generated by the low pass filter and the cD(n) 

coefficients are produced by the high pass filter. 
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Figure 4.1 Wavelet decomposition analysis 

Concerning wavelet analysis for gene expression data, a gene expression profile 

can be represented as a sum of wavelets at different time shifts and scales using 
DWD. The DWD is capable of extracting the local features by separating the 

components of gene expression profiles in both time and scale. In DWD, a time 

varying function f (t) E L2(R) can be expressed in terms of s(t) and 0(t). The 

mathematical formulation can be summarized as follows: 

fi. j(t) = Enao(n)s(t - n) +EnEj=idj(n) On. j (4.1) 

Where L2(R) is the function space and s(t), Oj j (t), ao and dj represent the scaling 

function, wavelet function, scaling coefficients (approximation coefficients) at scale 0, 

and detail coefficients at scale j respectively. The variable n is the translation 

coefficient for the localization of gene expression data. The scales denote the different 

(low to high) scale bands. i/i ,j 
(t) is the wavelet basis functions defined by i and j 

parameters. They are derived from (contracted) and shifted versions of a function 

i1. j (t), called mother wavelet, defined as 

ip, j(t) = 2m/21p(2mt - n) (4.2) 

Eq. (4.2) is used to obtain an orthonormal wavelet basis. Parameter m stretches the 

mother wavelet leading to either a narrower or broader new function. Parameter n 

translates the mother wavelet along t space. Therefore, all the basis functions yr;. (t) 

have the same profile, but dilated and translated according to parameters m and n 
respectively [87]. 
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The first step of the wavelet decomposition procedure, produces two sets of 

coefficients: approximation coefficients (scaling coefficients) a,, and detail 

coefficients (wavelet coefficients) d,. These coefficients are computed by convolving 
the signal with the low-pass filter for approximation, and with the high-pass filter for 

detail. The convolved coefficients are down sampled by keeping the even indexed 

elements. Then the approximation coefficients a, are split into two parts by using the 

same algorithm and are replaced by a2 and d2, and so on. This decomposition process 
is repeated until the required level is reached. 

As shown in Figure (4.1) a coarser approximation of microarray samples S can 
be calculated by iteratively convoluting with the low pass filter hh and down sampling 

the signal by two. Therefore, a set of discrete approximations Sj, 1 <j<z (where z is the 

maximum possible scale) is produced. gj denotes the difference between Sj and Sj_, and 
is called the detail signal at the scale j. The wavelet representation of discrete 

microarray gene expression samples S can therefore be computed by successively 
decomposing So into aj and dj. This representation provides information about 

microarray gene expression sample approximation coefficients and detail coefficients 

at different scales. Detail and approximation at level j are expressed respectively by 

Eq. (4.3) and Eq. (4.4) as follows: 

Dj+1(n) = Ec aj (t) 9(2n - t) (4.3) 

Aj+1(n) = Et aj(t) h(2n - t) (4.4) 

where h(2n-t) and g(2n-t) are the low-pass filters and high-pass filters. The coefficient 

vectors are produced by down sampling and are only half the length of signal or the 

coefficient vector at the previous level. Conversely, approximations and details are 
constructed inverting the decomposition step by inserting zeros and convolving the 

approximation and detail coefficients with the reconstruction filters. 

The inverse discrete wavelet transform is given by the reconstruction formula: 

S(t) = LEj fiJ(t) /', j (t) 

And similarly for the recombination steps: 

aj_1(n) = ýc aj(t) h(2n - t) +Et dj(t) g(2n - t) 

Then aj_1 = Haj + Gdj 

(4.5) 

(4.6) 
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The main concept of this decomposition is to start from a scale-oriented 
decomposition, and then to analyse the obtained signals on frequency subbands. Using 

these decomposition coefficients, microarray data clustering can be achieved by 

measuring similarities between datasets using the vector quantisation method. 

4.2.2- Wavelet processing blocks 

The basic DWD comprises four processing steps: 

1. Wavelet decomposition: The samples series from the original dataset are 
decomposed using a series of wavelets. The convolution between the samples 

signal (the starting segment) and the filters G and H are calculated as shown 
in Eqs. (4.3 & 4.4). Then, the samples series is shifted one data point to the 
left and the previous calculation is repeated. This is done until the whole 

signal is covered. From this shifting we obtain a set of coefficients that 

represent how the wavelet function matches the signal in time. 

2. Coefficient selection: Both sets of coefficients are obtained by the 

convolution of the signal with the filters G and H. In this work we have 

chosen Daubechies wavelets, which are, according to investigation [87], the 
best wavelets for this application. 

3. Signal reconstruction: The individual series are reconstructed using the 

estimated coefficients. Reconstruction is done with convolution of the detail 

signals and the last approximation with the inverse filters. The reconstruction 

procedure is started from the last approximation, where the signal is shifted 

one data point to the left and the previous calculation is repeated until 

reaching the last coefficient choose the detail level from which we do the 

reconstruction. 

4. Evaluation: Error between each predictive reconstruction and the original 

signal is calculated. The closest reconstruction is selected. Individual 

reconstructed time series create the `filtered' dataset. 

In this case the signal S can be described in terms of the wavelet it was 
transformed with using the cDlevel and cAlevel coefficients. The inverse transform 
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(reconstruction) can take place by using those coefficients and the original wavelet. 
Figure (4.2) shows the plot of the original signal, the coefficients and the 

reconstruction, after a level three transform (and the inverse transform for the 

reconstruction) 

Figure 4.2 Representation of DWD levels 

4.2.3- Vector Quantisation of DWD 

Similar to miLPC method, the DWD is combined with the VQ for the clustering 

purpose. The use of vector quantisation in this process is two-fold: first it captures 

meaningful classes in the data, represented by their centers, and second it makes 

subsequent cluster decisions more robust to the inherent noise within the data[76]. 

The detail of the VQ method is described earlier in chapters (2 & 3). 

4.3- Microarray DWD (miDWD) analysis 
In this section, we briefly present some earlier work on the use of the DWD 

microarray clustering method (miDWD) for clustering microarray gene expression 

samples. The potential of wavelets is described in the work [20]. They introduced 

analysis based on wavelet transform for identification of microarray features and 

exploration of their relationship with phenotypic outcomes. The method allows 
decomposing gene signal into components on different length scales, even when the 

genome is severely distorted, providing a convenient basis for exploring their 
behaviour. The expression signal given by genes in clustered order could be 

implemented with wavelet transformed. In the work reported in [90], a hybrid analysis 
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method to find significant genes based on wavelet analysis and Genetic algorithm 
(GA) was introduced. Multilevel wavelet decomposition was performed to reduce the 
dimensionality of microarray features by breaking gene profile into approximations 

and details coefficients. Approximation coefficients were reconstructed to build the 

approximation. Genetic algorithm is further implemented to select the optimal 
features from approximation coefficients. The method achieved accurate results in 

comparison with other statistical methods only when 15 GA at 2nd level of wavelet 
decomposition is used. The work [86] presents a wavelet-based approach to perform 

cluster analysis on multidimensional datasets in comparison with other statistical 

methods such as, classical K-means, hierarchical clustering and the aforementioned 
Similarity based Clustering, SCM. Furthermore, systematic determination of cluster 
boundaries based on the ratio of with-in class variance and between-class variance is 

introduced in [911. Moreover, in order to reduce the noise content in the expression 
data, they used discrete wavelet transform with a threshold value before the clustering 

procedure to smooth the noise. They tested three different types of mother wavelet 
functions: Daubechies wavelets, Haar mother wavelet and Symlet mother wavelet. 
They showed that Daubechies wavelets are the most appropriate and the data 

enhancement by wavelet transforms yielded better results for time series data which 
has periodicity. 

The multi-resolution property of wavelet transforms inspires researchers to 

consider algorithms that could identify clusters at different scales. WaveCluster is a 
multi-resolution clustering approach for very large spatial databases that provides 

stable and efficient clustering [60]. Recent work [89] applied wavelet feature 

extraction based on multilevel wavelet decomposition analysis for microarray dataset. 

In this thesis we present the miDWD method for gene sample clustering. This 

method is a powerful tool in the data clustering since it outperforms any unsupervised 

method. The main concept of miDWD is to represent the expression signal as a set of 

wavelet bases, which would allow to detecting the localized features, which could not 
be detected by statistical methods. Wavelets tend to be irregular, asymmetric and are 
capable of revealing aspects of data that other analysis techniques disregard. They 
include aspects like trends (approximation coefficients) and discontinuities in higher 

derivatives (detail coefficients). The analysis of the higher frequency coefficients 

allows detecting localized features. The higher is the number of correlated coefficients 
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between the localized sections of two samples, the more similarity the sections have. 

The difference between cancer tissue samples and normal tissue samples can be 

measured using wavelet basis based on compactness and characteristic of wavelet 
function. The wavelet detail coefficients at different levels disclose the fully statistical 
information contained in the gene expression vector's derivatives. The preliminary 

results suggest that the detail coefficients at the second and third levels are perfect to 

characterize the features of microarray data for some microarrays. 

The goal of the miDWD method is to start from scale-oriented decomposition, 

and then to analyses the obtained signals on frequency subbands. Using these 

decomposition coefficients, microarray data clustering can be achieved by measuring 

similarities between datasets using the vector quantisation method in order to obtain 

precise discrimination between features of microarray samples and perform robust 

clustering. 

Like the miLPC method, miDWD followed the same procedure. First, we 

applied standard statistical normalization method to normalize microarray data. Then, 

we selected specific number of genes with the highest expression values. Then these 

data are processed using DWD algorithmic. Finally, clustering was achieved by 

performing vector quantisation. 

4.4- Performance analysis of miDWD 

In this section we describe the performance analysis of the miDWD method and 
its application on test data. 

4.4.1- miDWD evaluation criteria 

In order to apply the miDWD method on sample microarray data, some basic 

parameters must be chosen. However, the variation of these parameters causes 

variation in performance. Therefore, to obtain useful results with DWD and to apply it 

successfully, it is necessary to understand the relationship and the effect of the 

changes in parameters on the clustering process. The main influencing parameter is 

the chosen level of decomposition which attempts to produce a reasonable model. The 

goal of the following experiment is to study the relationship between the prediction 

order and the error either between the original gene sample signal and the reverse 
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prediction signal or in clustering. Figure (4.3) shows wavelet based on db2 clustering 

errors achieved by different levels (Lv) with respect to the number of selected genes 
(g). Results in chapter 6 show that proper clustering of leukaemia dataset can be 

achieved if the minimum average error, which is estimated using MSE, is below 0.98. 

Therefore, DWD level2 may be suitable for robust clustering if the number of genes is 

high enough. 
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Figure 4.3 Wavelet clustering 

Further analyses illustrated in Figure (4.4) show the effectiveness of wavelet 

type and number of taps in the mother wavelet on the MSE of the reverse prediction 

signal. It shows that the best frequency resolution of the wavelet filter is obtained with 

the db2 decomposition level that performs accurate clustering using g=100 and Lv=2. 

The preliminary test as demonstrated in Figure (4.5) introduces the amount of 

error by which the wavelet reconstruction signal differs from the original signal 

concerning leukaemia dataset for selected g=75 genes involved when using db2 with 
decomposition level A-2. Since the estimated error MSE= 1.03 is greater than the 
0.98 threshold, that causes clustering errors. Here, one sample, i. e. sample 35, is 

incorrectly classified. 
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Figure 4.4 Wavelet analysis concerning leukaemia dataset for selected g=100 genes 
involved when using different type of wavelet with Lv=2 
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Figure 4.5 Wavelet analysis error signal concerning leukaemia dataset for selected 
g=75genes, level Lv=2 

4.4.2- Quantisation evaluation criteria 

The main influencing parameter effects on VQ analysis performance is based on 
the chosen value of the quantisation level which represents number of classes in 

cluster. In this work, the quantisation level set to two according to the microarray 
dataset specification. 
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Figure (4.6) shows the clustering result between two classes in Leukemia 

microarray. It shows there is an error in sample 35 where it should lie in class 1 

segment; here we used g=75 genes with DWD Lv=2 which resulted in MSE= 1.03. 

Figure (4.7) shows the Voronoi regions which partition the entire space of clustering 

as represented in Figure (4.6) 
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Figure 4.6 Wavelet clustering leukaemia dataset 

Figure 4.7 Voronoi Wavelet clustering for leukaemia dataset 
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4.5- Conclusion 

In this chapter we have explained the DWD approach in data clustering. The chapter 

outlined the basic DWD characteristic of the microarray gene sample signals and 
illustrated different wavelet families. The wavelet technique was amalgamated with 

the VQ approach to provide the combined wavelet and VQ approach suitable for 

microarray clustering. We introduce the ( miDWD ) method designed for microarray 

clustering that is based on the estimates of the decomposition of wavelet coefficients 

to the gene expression samples combined VQ approach to measure the spectral 

distortion and compute the dissimilarity or similarity between spectral analysis 

vectors of the gene samples to produce the relevant index of quantisation for 

clustering purpose. Performance analysis of the miDWD method and application on 

test data set has been discussed. In the next chapter we introduce another DSP method 

which is Fractal Dimension to clustering the gene expression samples and discuss 

applications of the method to microarray dataset. 
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CHAPTER S 

Fractals for microarray clustering 

Fractal Dimension (FD) are widely used to analyze a large variety of data 

patterns, most prominent amongst them is clustering of high dimensionality of a data 

space that embeds large different scales. The concept of fractals is mostly associated 

with geometrical objects satisfying two conditions, i. e. self-similarity and fractional 

dimensionality. Modelling and data mining by fractal analysis comprise methods to 

allocate a fractal dimension and fractal features to a signal or dataset in wide spectrum 

areas. Fractal based methods have been applied in different data mining approaches 

[921. 

In this chapter we use fractal clustering in such a way that the gene expression 

sample points in the same cluster are more self- affine among themselves than to data 

points in other clusters. We study a sample of a specific microarray dataset and 

describe how this concept is used in microarray clustering. 

5.1- Application of FD in gene expression sample signal 

Fractal analysis is an effective scientific paradigm that has been used 

successfully in many areas including biomedical and biological sciences. It has been 

established as a useful method in quantifying the complexity of dynamical data and 

signals [93]. 

The determination of fractal dimension might be suitable method for the 

characterisation of microarray dataset analysis by a scaling exponent that measures 

the similarity of gene expression samples as a signal. It can be considered as a relative 

measure of the number of basic building blocks that form a genes sample pattern. In 

most situations, it is required to use a set with an invariant measure characterised by a 
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whole spectrum of scaling exponents, instead of a single number of expression. Such 

a method is called multi-fractal. For instance, it can be used to measure signals in 

variation domain with different structural conditions dependent on the gradient 

occurrence in signal division. From this perspective, this occurrence is a gene 

expression sample feature that shifts the levels in a sample variation towards a 

composite of condition behaviour. Consequently, within FD the expression variations 

are linked with the changes in the expression sample signal, providing a 

computational means that tracks the existence of a fracture. However the FD method 
does not aim to identify the fractal characteristics of the expression signal vibrations 
but to identify the variations in their samples. In order to perform that, it evaluates the 

changes in the samples structural directly on the vibration signal by estimating its FD 

within a sample window across different gene profiles. As a result, the approach 

estimates the FD without requiring the reconstruction of the multidimensional phase 

space [94], resulting in a fast and efficient way of clustering the gene expression 

samples based on the depth of fracture in the sample signal. The work in this thesis is 

based on using the concepts of FD to clusters gene expression samples in such a way 

that the samples in the same cluster are more self-affine among themselves than to 

other clusters. 

The fractal concepts of self-similarity and scaling invariance have been applied 

to many biological systems, from branching patterns of bronchial and circulatory 

vessels, to cardiac rhythms, to the geometry of shells and trees [95], and Local scaling 

and multifractal spectrum analyses of DNA sequences[96]. 

5.2- Fractal dimension analysis methods 

The applications of FD in biomedical and signal processing include two types of 

approaches: (i) time domain where the original signal is considered as geometric and 
(ii) phase space domain which estimates the FD in state-space domain [97]. FD has 

many characteristics and different methods exist such as Hausdorff dimension, box 

dimension, information dimension and correlation dimension [94,98]. These are 

summarized in Table (5-1). Clustering using FD is a type of grid-based clustering, 

where the data space is divided in cells by a grid. Some of the well known techniques 

that use grid-based clustering are STING [59], WaveCluster[60] and Hierarchical grid 

clustering[99]. 
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Table 5-1 Fractal methods 

Fractal for microarrav clustering 

Method description Expression 

Hausdorff " Dataset is covered by cells s, with variable 
diameter r1, all r, <r 

dimension 
. The collection of covering sets s, with rii(r) = infs, g(ri)d 

diameter less than or equal to r, which 
minimizes the sum 

" d-dimensional Hausdorff measure: rd - lien rH (r) " For every dataset PH is infinite if d is less 
than some critical value DH, and 0 if d is 
greater than DH 

" The critical value DH is the Hausdorff 
dimension of the dataset 

Box " Hausdorff dimension is not easy to 
calculate dimension 

. Box-Counting DB dimension is an upper DB = limy-. 
o 

log(v(r)) 

bound of Hausdorff dimension, does not 
log(1/r) 

usually differ from it: 

" v(r) - is the number of the boxes of size r 
needed to cover the dataset 

" Although Box-Counting dimension is 
easier to calculate than Hausdorff 
dimension, the algorithmic complexity 
grows exponentially with the set 
dimensionality => can be used only for 
low-dimensional datasets 

" Correlation dimension is computationally 
more feasible fractal dimension measure 

" Correlation dimension is an lower bound of 
the Box-Counting dimension 

Correlation " Let x,, X2, X!, 
... , 

xN be data points Cm(r) 

dimension " Correlation integral can be defined as: 
i i d lim 2NN 

= '(IX 
j 

1(x) s n icator function: , N-. ooN(N - 1) I=1 j=i+1 
1(x)=1, ifxistrue, 

-xil<r) I(x) = 0, otherwise. 
" Where C(r) is number of points having Dr = limr--iog(C-(r)) o 

smaller distance that a given distance r log(r) 

5.2.1- Self-similar and Fractal developments 

The idea of a fractal from a mathematical perspective is that, fractals are 

embodiments of iterations of nonlinear equations, commonly building a feedback 

loop. It is principally associated with geometrical objects satisfying two properties 
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arranged as: self-similarity (means that an object is composed of small subunits on 

multiple levels that resemble the structure of the whole object) and fractional 

dimensionality (means that this condition requirement distinguishes fractals from 

Euclidean objects). Fractals are objects which have a structure of self-scaling: 

elements of the entire can be made to fit the whole by shifting and extending. FD is a 

measure of the self similar point set of the signals and has multiple definitions in 

general, their value is usually a non-integer, fractional number, and hence this 

dimension is referred to as fractal [100). 

Considering morphological analysis, fractal features represent the morphology 

of the signals, which consists of a set of operators that transform signals according to 

specific characterizations. This morphological representation can be picked up and 

used by several applications based on fractal theory/morphological analysis [94]. 

Following this brief analysis, the application of morphological/fractal analysis is 

taken into consideration for the gene expression analysis in this work. Fractals are 

objects which possess a form of self-scaling: Parts of the whole can be made to fit the 

whole in some way or another by shifting and stretching. Fractals features represent 

the morphology of the signals in some way or the other. This utility of 
fractal/morphological analysis is a source of motivation to consider it as a useful tool 
for feature extraction since clustering of gene expression sample is all about 

extracting features and clustering the signals based on these features. Some of the 

features based on fractal analysis are described next: 

1. FRACTAL DIMENSIONS. These represent a measure of the self similarity of 
the signals. A number of dimensions have been defined in this field. These include: 

Regularisation Dimension: This is derived as follows: initially 

computes smoother versions of the original signal, obtained 
through convolutions with a kernel. If the original signal is 
fractal, therefore its graph has infinite length, while all 

regularized versions have finite length. Moreover if the 

smoothing parameter tends to 0 then the smoothened version 
tends to the original signal, and its length will be likely to 
infinity[ 101 ]. 
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Box Dimension: or the box-counting dimension which is the 

relation between the number and the size of the objects as 
follows: 

N(s) - (; Ld) when s -ý 0 (s. 1 ) 

Where N(s) is the number of objects, s is the scale and D is the 

fractal dimension. This technique is used to estimate the scaling 

properties of a set by covering the set with boxes of size s and 

counting the number of boxes containing at least one pixel 

representing the object is given as [102]: 

D= -lims. 
Iog(N(s)) 

(5.2) log(s) 

The estimated value of N(s) is approximated by varying the 

origin of the grid until the smallest number is found. By means of 

Eq (5.2), the box-counting dimension D can be determined as the 

negative slope of log N(s) versus log(s), measured over a range of 
box widths. 

2. HOLDER FUNCTIONS/EXPONENTS. These are used to assess the continuity 

and differentiability of a function for measure the degree of regularity of the 

signals/functions [103]. Some examples include: 

Point-wise Holder Functions: The point-wise Holder exponents, 

which characterizes the regularity of the measure/function under 

consideration. 

The local Holder exponent: It characterizes the regularity of the 

function around any given point. 

The long range dependence parameter: This one describes power 
law behaviour of the Fourier power spectrum near the zero 
frequencies. 
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3. ONE DIMENSIONAL MULTIFRACTAL SPECTRA. In this feature, the 

spectra provide information as to which singularities occur in a signal, and which 

are the dominant; a spectrum is a one dimensional curve, where the abscissa 

represents the Holder exponents present in the signal, and the ordinates are related 

to amount of points where will the encounter given singularity. There are two types 

of these spectra [ 103]: 

The Legendre spectrum: This is based on the Legendre transform of 

a signal. It may be the Discrete Wavelet Transform based 

Legendre spectrum or a CWT based Legendre spectrum. 

The large deviation spectrum: this spectrum yield statistical 
information related to the probability of finding a point with a 

given holder exponent in the signal. More precisely, it measures 

how this probability behaves with the change in resolution. 

In general, the concept of a method for the estimation of the generalized fractal 

dimensions is by embedding the dataset in an n-dimensional grid which is seen as a 

partition step, and then computing the frequency with which data points fall into the i- 

th cell in the grid [92]. The length of the contour of a fractal signal in the plane is 

proportional to r 0, where r is the size of the grid used to measure the contour length 

and D is the fractal dimension. The sequence of test and steps is as follow: 

i. Capture a subset of the signal and rescale it to the same size of the original, 

using the similar magnification feature for both its width and height. 

ii. Compare the statistical properties of the rescaled signal with the original 

signal taking into consideration the magnification factors. 

To formulate those into mathematical terms which enable calculation of self- 

similar process in data series time-dependent condition, the following equation must 
be satisfied: 

y(t) aaY(ä) (5.3) 

A self-similar process y(t) with a parameter a has the identical probability 

distribution as a properly resealed process [a°` y(t/a)], i. e., a time data series which has 

been rescaled on the x-axis by a factor a(t--ºt/a) and on the y-axis by a factor of 
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(aa)(y-ºaa y). The exponent (a) is called the self-similarity parameter. 

From Eq. (5.3) the self-similarity parameter a can be calculated by the 

following relation, where My (self similar pieces) and Mx (scaled down) are the 

appropriate magnification factors along the directions, 

Fractal Dimension (FD) a=ýM 
X 

Therefore, 

Fractal Dimension (FD) = 
log (number of self similar pieces) 

log (magnification factor) 

(5.4) 

For the finite datasets, we assume it is statistically self-similar on a given range 

of scales (rmp,, rmat) on which the self similarity assumption holds. To measure the FD, 

we use the slope of the correlation integral for a dataset which could be defined as 

C(r) = No. of pairs within distance r or less 

Intuitively, the correlation FD indicates the growth rate of the number of pairs 

(No. of neighbours within a distance r) in the distance as follows: 

No. of pairs (Sr) a r' 

Therefore, the FD could be used as a measure of the spread of the data and 
hence the intrinsic dimension of the dataset which is defined as the real number of 
dimensions in which the points can be embedded while keeping the distance among 

them. The embedded dimensionality of dataset might be representing as the number of 

attributes of the dataset that reflects its address space. 

5.2.2- Self-similar Fractal to Integrated dataset series 

The fluctuation involved in an integrated data series as a signal is a fundamental 

step in self-similarity fractal series analysis. Discrete data series are defined to be self- 

affine if their power-spectral density scales. Self-affine data series are where the 

power-spectral density scales as a power of the frequency. They appear in a wide 

variety of environments; examples in biomedical engineering include cardiac rhythms 

and gait dynamics [93]. Stochastic data series are characterized by a statistical 
distribution of values and by their persistence. Persistence is the degree to which 

values in a time series are internally correlated and can be classified in terms of range, 
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short or long, and strength, weak or strong. Self-affine data series are scale invariant, 

thus always exhibit long-range persistence. Here, we quantify synthetic self-affine 

data series with varying degrees of long-range persistence strength and put them into 

the context of gene expression samples. 

In the analyzing of data series, the calculation concerning Eq. (5.2) should always 

be performed using the following procedure: 

1-the data series is divided into subsets of independent same size windows. In 

order to achieve more reliable estimation of the characteristic fluctuation at the 

window size, an average over all individual values of s obtained from these 

subsets should be processed. 

2- Then repeat these calculations, not just for two window sizes, but for many 
different window sizes. The exponent a is estimated by fitting a line on the 

log-log plot of s versus n across the relevant range of scales. 

5.2.3- Fractal of multi-dimensional data space 

The dataset with multi-dimensional space characteristics is represented with 

columns as attributes (features) and rows as different data objects. Those datasets with 

numerical attributes are common in microarray datasets. It will be described as 

follow: the embedding dimension E of a microarray dataset is the dimension of its 

address space which represents the number of attributes of the dataset and the intrinsic 

dimension D is the dimension of the spatial object represented by the dataset, 

regardless of the space where it is embedded. 

The Fractal datasets are characterized by their fractal dimensions. By 

embedding the dataset in an E-dimensional grid whose cells have sides of size r, the 

frequency of data points falling into the i-th cell can be calculated by: 

.... 
109(L C: t) 

PV= log(r) (5.5) 

Where, r is the grid size, C., is the number of objects in the i-th cell under grid 

size r. Eq. (5.5) represent the correlation fractal dimension which measures the 

probability that two points chosen at random will be within a certain distance of each 

other. Changes in the correlation dimension mean changes in the distribution of points 
in the dataset. Here the use of correlation fractal dimension as the intrinsic dimension 
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of a dataset is to identify the correlated attributes and discard those uncorrelated. The 

sum of occupancy can be defined as 

S(r) C? t (5.6) 

The fractal dimension of the dataset is the derivative of log(S(r)) with respect to 

the logarithm of the grid size. When assuming self-similar datasets, an expectation of 

the derivative results in a constant value. Thus, the correlation fractal dimension of a 

dataset can be obtained by plotting S(r) for different values of the grid size r, and 

calculating the slope of the resulting line. 

5.2.4- Box-counting approach to Computing FD 

This section presents the uses of box-counting algorithm to compute the fractal 

dimension of any given set of points in any E-dimensional space as shown in 

Figure(5.1). 

Input: GEM dataset V (g rows, with n columns) 
Output: Fractal Dimension FD 
Begin 

i=O 

set r=grid-size 
C; = element part count in the i-th grid. 
S(r) =E Ci 
repeat r 

end; 
Plot the curve of log(r) and log(S(r)) 
Compute the slope of the curve which is equal to FD 

Figure 5.1 Fractal dimension FD of a dataset V using box-count approach 

A kind of multi-level grid structure to store the object count in different grids 

under different level (grid size) was used in the work [104]. The structure is easily 

built when considering each level has a size half of the size of the previous level, that 

is, the grid sizes are sequenced as (r=1,1/2,1/4,1/8, etc. ). Each level of the structure 

corresponds to a different size so the depth of the structure is equal to the number of 

points in the resulting plot. Since the structure is created in main memory, the depth of 

the structure is limited by the amount of main memory available. 
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5.3- miFD clustering analysis 
Clustering microarray data in a D-dimensional space using fractal dimension 

method can be achieved using the box-counting and correlation fractal dimension 

algorithm [98]. The basic concept can be illustrated as a composition of multi 

resolution levels describing, for a given object, structures having a self-similarity on 

varying scales of magnification (101]. The method starts by partitioning the structure 

of the signal data space dimension into pieces of equal size in grid of the 

magnification factor size c. Then, counting number of pieces that contain at least bit 

information of the original will occur. The process is repeated by iterative 

partitioning. The feature selection procedure based on correlation fractal dimension 

has been used to overcome the problems that are associated with higher dimensional 

datasets and are useful especially when the feature vector size is large[ 106]. 

If one defines N(e) as the number of self-similar cells occupied by points in the 

dataset, the plotting of N(e) versus the reciprocal size (c) in a double-logarithmic 

diagram produces a graph called the box-counting plot. This plot yields a set of points 

on a line that exhibit a linear correlation. The slope of the best-fitting straight line to 

the plot represents the fractal box-counting dimension of the signal. Consequently FD 

can be calculated by taking the limit of the quotient of the log of the change in object 

size divided by the log of the change in the measurement scale, as the measurement 

scale approaches zero. The negative value of the slope of that plot is called Hausdorff 

fractal dimension as described in Eq. (5.7) for fractal dimension D: 

log(N(e) 
D=- limF .o log(e) 

(5.7) 

In practice, the spatial aggregation of the samples that produces a cluster, is 

specified by the correlation dimension D, as defined in Eq. (5.8). Distance measures 
have been estimated based on changes in the correlation dimension D,. in the 

distribution of samples in the dataset. Let C(r) be the correlation functions of pairs of 
data samples within distance r, then 

Iog(C(r) 
Dr = limrýp 

log(r) (5.8) 

Therefore, the correlation dimension can be used to identify data clustering. 
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They are represented by a set of boxes that records the samples set. If f represents the 

number of clusters found in the initialization step, the data partition is 

C1=(C! 1, Cl2,.., Clf), where Cl, is the composite of the set of boxes that represents 

cluster i. The method can compute the FD for each cluster, then detecting the minimal 
fractal to generate group of clusters. 

5.4- Performance analysis of miFD 

In order to perform the microarray FD analysis, some basic parameters must be 

carefully chosen since their variation causes varying performance. To obtain useful 

results with FD and to apply it successfully, it is necessary to understand the 

relationship and the effect of the changes in parameters on the clustering process. The 

main influencing parameter effects on FD analysis performance are based on the 

chosen level of partition and grid resolution which attempts to provide a reasonable 

model of the data. 

Significantly, it is important to take into consideration how to make boxes that 

cover the whole signal without any dislocation. The occurrence of any miss boxing 

causes some occupying failures of the signal, therefore the calculated box-counting 

dimension affects the accuracy. Alternatively, since the number of boxes affects on the 

estimation of dimension, how the signal is boxed changes the value of the dimension. 

Consequently the efficiency of the box covering and the covering style can play a role 
in the value of miss-computation of the box-counting dimension and affect on 

clustering results. 

The miFD method consists of the following steps: 

1- From the microarray dataset, select the genes expression sample data and 

represent it as a signal. 

2- The variation in the signal is recorded according to a sample interval, 

concerning the starting, ending, minimum and maximum values. 

3- Perform regularization of the sample signal into unit square. 

4- Choose a sequence of rk s as a mesh grid, each rk unit scale of a grid as 

squares with length r. 
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5- Count the number of grid squares Nrk, which intersects with signal. It is 

very significant to care about the covering of the whole signal without any 
dislocation, because the number of boxes affects the estimation of FD and, 
therefore, performance of the analysis. 

6- Plot log Nrk vs -log and find the slope of regression line. The slope is the 
fractal dimension of F. 
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Figure 5.2 Evaluation of box counting fractal dimension for Leukaemia dataset 

Figure (5.2a) shows the sample one in Leukaemia microarray dataset with 

g =100genes involved, while the next Figure (5.2b) illustrates the covering of sample 

signal with grid of boxes with size T. 

In order to make accurate measurement, different box sizes were used. 

Figure(5.3) shows the variation of the number of boxes according to changing box 

sizes, in addition the regression line that represents the linear relationship between log 

number of boxes value and the log of box size is plotted. Then we compute the 

regression equation: [ v=1. Ix+. 54 ]. The slope of this regression line (i. e. 1.1) 

represents the box counting fractal dimension. The value of R represents the 

performance quality or regression. 

i 
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Estimated fractal dimension = 1.089292 
I- -- --- 

0 

y=1.1"x + 0.54 
R=0.964 

O 

- --I _J 00511522.5 3 3.5 4 4.5 

log of box size (tk) 

Figure 5.3 Calculation of Fractal dimension from regression line plot for sample one of 
leukaemia dataset 

It is observed from the computation of fractal dimension Figure (5.4) that the 

number of boxes reaches a saturation value from where there is no further change 

even when the box size increases. Therefore, the best choice for the value of the 

fractal dimension corresponds to the last point before saturation. 
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Figure 5.4 Plot of log of box size versus the log of the number of boxes for sample one 
of leukaemia dataset 
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Once a fractal dimension has been estimated for each sample, we perform 

cluster based correlation between these dimensions. Figure (5.5) shows clustering 

samples in dataset using g=100 genes, where the dimension threshold is 0.875. It 

reveals the result of two classes clustering of the microarray samples is accurately. 

The complexity of the miFD approach is dominated by the calculation of the FD 

for the total signal area covered by the grid array elements, i. e. square boxes elements 

which are obtained using the standard box counting dimension as based on Eq. (5.7). 

An inspection concerning the sufficient number of boxes covering the curve in the 

area surrounding the expression signal is achieved through an iteration process. The 

reduction of the number of boxes object to expression signal induces errors which are 

correlated to how the signal fluctuates. As a result, the FD algorithm counting the 

number of boxes required to cover the curve relatively with box sizes and then 

establish log-log plot. 
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Figure 5.5 Clustering samples of leukaemia dataset 
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5.5- Conclusion 

In this chapter we have explained the FD approach in data clustering. The chapter 

outlined the basic FD characteristic of the microarray gene sample signals and 
illustrated different fractal methods. We introduced the miFD method to estimate the 

fractal dimension of the gene expression samples and then the correlation between 

these dimensions is applied to produce the relevant index of clustering. Performance 

analysis of the miFD method and application on test data set has been discussed. In 

the next chapter we apply the three DSP methods to different microarray datasets in 

order to validate the GSP clustering abilities. 
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CHAPTER 6 

Performance analysis of GSP methods 

In the previous chapters we have introduced three GSP methods for microarray 
data clustering. In this chapter, we first provide an overview of the characteristics of the 

microarray gene expression test datasets that we used in this work. We then apply the 
GSP methods to these microarray datasets to validate their clustering abilities. Finally, 

we will provide a comparative performance study between the proposed GSP methods. 

6.1- Microarray test data types 
In this section we describe the characteristics of the microarray datasets that we 

use in this work as summarised in Table (6-1). Each dataset is composed of two subsets 

namely training and test sets. However, since GSP methods do not depend on any form 

of training, we combine both sets to produce a unique test sets. These dataset are 

selected as they are considered as benchmark datasets for relevant microarray data 

clustering studies. The following is a brief description of each of these datasets and the 

clustering tasks they require. 

1-Acute leukaemia dataset (Golub et al., 1999) [81 

This dataset contains measurements corresponding to Acute Myeloid Leukaemia 

(AML) and Acute Lymphoblastic Leukaemia (ALL) samples from bone marrow and 
peripheral blood. The training set consists of 38 bone marrow samples obtained from 

adult acute leukaemia patients. 11 suffer from AML and 27 from ALL. The test set 
consists of 34 patients, 14 suffer from AML and 20 from ALL. Therefore, the total 

number of samples is 72 and the number of gene expression levels in the microarray is 
7129. The goal is to classify 47 patients as being ALL and 25 as AML. 
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2- Colon cancer dataset (Alon et al., 1999) [1061 

This dataset contains measurements corresponding to Colon Adenocarcinoma and 

normal colon tissues which were collected from patients. The training set consists of 40 

colon tissues, 14 are normal and 26 are tumour samples. The test set consists of 22 

tissues, 8 are normal and 14 are tumour samples. Therefore, the total number of samples 
is 62 and the number of gene expression levels is 2000. The goal here is to classify 40 

tissues as being cancerous and 22 as normal. 

3- Hepatocellular carcinoma dataset (Iizuka et at., 2003) [1071 

This dataset contains measurements corresponding to Hepatocellular carcinoma 

tissues. The training set consists of 33 Hepatocellular carcinoma tissues, 12 suffer from 

early intrahepatic recurrence and 21 do not. The test set consists of 27 Hepatocellular 

carcinoma tissues, 8 suffer from early intrahepatic recurrence and 19 do not. Therefore 

the total number of samples is 60 and the number of gene expression levels is 7129. 

The goal is to classify 20 tissues as being suffer from early intrahepatic recurrence and 
40 do not. 

4- Prostate cancer dataset (Singh et at., 2002). [1081 

This dataset contains measurements derived from patients with prostate tumours 

and non-tumour prostate samples. The training set consists of 102 prostate tissues, 50 

are normal and 52 are tumour samples. The test set consists of 34 tissues, 9 are normal 

and 25 are tumour samples. Therefore the total number of samples is 136 and the 

number of gene expression levels is 12600. The goal is to classify 77 tissues as being 

tumour and 59 as normal. 

5- High-grade glioma dataset (Nutt et al., 2003) [109] 

This dataset contains measurements corresponding to High-grade glioma derived 

from different group of patients. The training set consists of 21 gliomas with classic 
histology, 14 are glioblastomas and 7 are anaplastic oligodendrogliomas. The test set 

consists of 29 gliomas with non-classic histology, 14 are glioblastomas and 15 are 

anaplastic oligodendrogliomas. Therefore, the total number of samples is 50 and the 

number of gene expression levels is 12625. The goal is to classify samples as 28 

glioblastomas and 22 as anaplastic oligodendrogliomas. 
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Table 6-1 Summary of the tested microarray datasets 

Training set Test set Total 
e of t No of 

Study 
yp . Iota no. of Goal 

disease genes Total Classl Class2 
1 

ClassI Class2 
samples 

Golub, 11 27 14 20 47 ALL 
leukaemia 7129 38 34 72 

1999[8) AML ALL AML ALL 25 AML 

Alone. 14 26 8 14 40 tumour 
Colon 2000 40 22 62 

1999[ 106) normal tumour normal tumour 22 normal 

lizuka, llepato- 12 21 8 19 20 sick 
7129 33 27 60 

2003)107) cellular sick healthy sick healthy 40 healthy 

Singh, 52 50 25 9 77 tumour 
Prostate 12600 102 34 136 

2002[108) tumour normal tumour normal 59 normal 

Nutt, 14 7 14 15 28 glio 
Gliomas 12625 21 29 50 

2003[I09) glio oligo glio oligo 22 oligo 

A comparison performance has been made between well known state-of-art 

clustering approaches as summarised in Table (6-2). It shows the description of their 

methods with minimum number of genes used to satisfy the clustering. These methods 

are based on a variety of techniques dealing with dimensionality reduction and 

production of distance and similarity measures. They include statistical, deterministic, 

probabilistic and computational methods. 

Since most classification and clustering methods require a predefined gene sample 

similarity or distance metric, their performance rely on how well that metric reflects the 

real relationship among samples. These metrics, which are data-dependent, include 

Euclidean distance, Manhattan distance, and Pearson-correlation. However, in practice, 

it is desirable to estimate the metric adaptively based on input data that depends on the 

local features of the gene sample data. 

99 



Chapter 6 Performance analysis of GSP methods 

Table 6-2 Summary of microarray clustering studies 

Study Dataset Techniques Generation procedure No. of genes 

Golub. T-statistics for gene selection 
Leukaemia T-test 50 

1999(81 Weighting voting for classification 

Alone. Correlation for gene selection 
Colon T-way 500 

1999(107) Deterministic annealing algorithm for clustering 

Classification using either 
lizuka, 

Ilepatocllular FLC, SVM Fisher Linear Classifier or 12 
2003[1071 

Support Vector Machine 50 

Singh. 
Prostate kNN K-Nearest Neighbour clustering 5 

2002[108] 

Nutt. 
Gliomas kNN K-Nearest Neighbour clustering 19 

2003(1091 

Tibshirani, Class prediction using Prediction Analysis of Microarrays - Leukaemia PAM 21 
2002(1101 statistical technique using nearest shrunken centroid 

Classification using either 
Leukaemia, 6 

Mukkamala, MARS. LGP, Linear Genetic Programs or Multivariate Regression 
Prostate and 27 

2005 [1111 CART, RF Splines or Classification & Regression Tress or random Colon 53 forest 

Dimension reduction using Partial Least Square 
Nguyen. leukaemia, and 

PLSLD Classification using Logistic Discrimination and quadratic 25 
2002(112] Colon 

discriminant analysis 

Dimension reduction using Kernel Principal Component 
Liu, Leukaemia, and 

KPCA Analysis 150 
2005(113] Colon 

Classification with logistic regression (discrimination). 

Jong. Leukaemia, and Preprocessing using support vector classifiers 

2003(114) Colon 
FJC 

Clustering using Find and Join Clusters method. 
50 & 200 

Chanda, Leukaemia, and Preprocessing using entropy and con-elation measure 
Two-way 287 & 294 

2006(115] Colon Clustering based on fuzzy C-means 

Furey, leukacmia, and 
SVM Classification using Support Vector Machine 2,5 & 10 

2000(116] Colon 

Ding, Leukaemia, and Minimum redundancy - maximum relevance (MRMR) 
MRMR 60 

2004(117) Colon feature selection 

Huerta, Leukaemia, and Preprocessing using Genetic Algorithm Classification 25 &10 
GA/SVM 

2006(118] Colon using Support Vector Machine 

Leukaemia, 
Regularizing gene expression data using Independent 

Huang, Colon, 
P-ICR Component analysis Classification using Penalized 20 

2006(119] Glioma and discriminant method 
Hepatocellular 
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6.2- Preprocessing 

Preprocessing is the initial step of preparing microarray datasets for their analysis. 
Its main concerns is gene selection as described earlier in chapter 3, section 3.4. A 

microarray dataset consists of a set of experiments, which generate gene expression 

profiles measured under several conditions or from different patients. Usually, it 

contains a considerable number of genes which are irrelevant to the clinical process. 

Therefore, it is required to pre-process microarray data prior to its analysis. The 

expression values of gene profiles often demonstrate little variation over the different 

experiments and show seemingly random and meaningless profiles. Another problem 

with microarray datasets is that they regularly contain highly unreliable expression 

profiles with a considerable number of missing values that affect accuracy. If such 
datasets were passed to the clustering algorithms, the quality of the clustering results 

could significantly degrade. A solution that has been proposed is to combine 

normalisation with feature selection, i. e. at least a fraction of the undesired genes are 

removed from the data because they do not satisfy one or possibly more criteria such a 

threshold of one standard deviation of the expression values in a profile. 

The normalisation step produces a collection of expression profiles which have an 

average of zero and a standard deviation of one. The results are often represented by 

Boxplot that allow visualization of the normalisation performance, as shown in 

Figure(6.1) with samples (1-30) of the Leukaemia dataset. Boxplot is useful for 

revealing the centre, the spread, the distribution of the data and the presence of outliers. 
They consist of a rectangular box and whisker plot for each sample of the 

microarray[3]. The box has lines at the lower quartile, median, and upper quartile 

values. The whiskers are lines extending from each end of the box to show the extent of 
the rest of the data. Therefore, the figure shows the corresponding statistical distribution 

of gene expression variance level after normalisation. While most gene expression 

values are inside the box, values outside the box may reveal potential gene outliers. For 

example, the median for sample 6 is (0.05) while it is (0.146) for sample 9. This sample 
has more potential outliers as expressed by the variance. 
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Figure 6.1 Boxplot analysis for the Leukaemia dataset. 

After the statistical normalisation process, gene selection is based on gene 

expression ranking in the microarray dataset. Figure (6.2a) shows a sample of the 

distribution rank score relative to the differential gene expression activity, under 

expressed genes have negative values, whereas over expressed ones have positive 

values. In Figure (6.2b), genes are ranked to find the top genes located in the under and 

over expression regions. The histogram in Figure (6.2c) shows the normal distribution 

of the statistical expression values plotted against the number of genes. It shows a 

normal distribution, which is the type of distribution generally found in microarray data 

analysis. 

The top 10 genes, according to their statistical score, are listed in Table (6-3). In 

this analysis, only genes which show distinct expression values between samples are 

truly relevant for sample classification. This is a way to reduce the dimensionality of 

microarray. 
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Table 6.3 Highly expression genes in Leukaemia dataset 

Statistical value Gene index Gene probe 

-8.8127 4847 X95735 at 

-7.843 4196 X 17042 at 

-7.319 3252 U46499 at 

-7.263 2020 M55150 at 

-6.975 6041 L09209 s at 

-6.939 2111 M62762 at 

-6.932 1834 M23197 at 

-6.656 1745 M16038 at 

-6.589 1829 M22960 at 

-6.329 6005 M32304 sat 

The same procedure is applied to normalise all the other datasets and find the 

highly expression genes. Detailed results with further statistical information on other 

datasets can be found in appendix A. 

6.3- Application of miLPC clustering 

This section presents the results obtained from applying the LPC approach, 

explained in chapter 3, on the selected datasets. The application of the method is 

performed with multiple runs to achieve the analysis using different LPC orders with 

different numbers of genes to detect the best MSE value according to the estimated gene 

expression coefficients model. Then vector quantisation is applied to cluster the 

predictive coefficients. Moreover an exploration of different combination of parameters 

that affect clustering performance is presented. 

6.3.1- miLPC on Leukaemia dataset 

The pre processing step selects the genes that will be processed using the miLPC 

method. Then the LPC algorithm estimates the best prediction coefficients over these 

genes. In order to test the estimated coefficients of the gene signal, a reconstruction 

process is performed to re-establish the gene signal and then compare it with the 
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original signal through calculation of the MSE value. The minimum value detects the 

best prediction coefficients for a given gene signal. Figure (6.3a) illustrates the 

performance of the algorithm in estimating the reconstruction gene signal for sample 23, 

involved g=125 genes with LPC orderp=34. The estimated MSE for this reconstruction 

as shown in Figure (6.3b) is (0.13) which represent the minimum MSE value relative to 

other samples in the microarray, whereas the total MSE for all samples is TMSE=0.86 

as shown in Figure (6.3c). Figure (6.4) shows a spectrum of MSE for predictive 

coefficients based on multiple runs according to different numbers of involved genes 

with respect to multiple values of LPC order. By passing the estimated coefficients to 

vector quantisation, the clustering is accomplished to group those coefficients. 

Figure(6.4a) demonstrates the MSE to different LPC order for specific number of genes 
including the average (Avg) that represented by dotted line. Note that the MSE value is 

influenced by the LPC order, it appears to be inversely related to the model order due to 

the prediction order p has the greatest influence on the complexity of coefficients 

calculation that comes from increasing the linear combination of previous samples taken 

from combinations of the enhanced digital filter stages. Considering this higher model 

order appears to be advantageous, because the difference between the original 

expression signal and the final results will be smaller. Accordingly there is possible 

range of LPC order values could result given accurate clustering, the figure shows that a 

minimum MSE identified as (Th =0.907) can separate the classes with accurate cluster 

which is below the average line. On the other hand Figure (6.4b) demonstrates the MSE 

to different number of genes for specific number of LPC order including the average 
(Avg) that represented by dotted line. Note that the MSE value also influenced by the 

specific number of genes involved. However in many cases a considerable range of 

genes are differentially expressed, this sense is due to a relatively small variation in 

expression have considerable noise that affected on the coefficients value. 

Figure (6.5) gives the graphical representation of clustering error of different 

value of gene number with respect to different LPC orders. It shows the minimum 

number of samples that are not clustered accurately, while obtained accurate clustering 

when involved range of genes g=[75-125} processing with LPC order p=(34,35). 
Figure (6.6) shows voronoi diagram to the result of two classes clustering of the 

microarray samples. 
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On the subject of the computational aspects of the miLPC approach, the calculation 

of the LPC spectral distortion measure mostly engages in the computations of the LPC 

covariance algorithm enhanced with line spectral frequency. Therefore, truncation errors 

and the associated filter behaviour might have considerable impact on accuracy. 

The experimental results and comparisons of model prediction have shown the 

performance of the miLPC approach. The model is mathematically reasonable 

concerning the flow of calculation in computing the framework of LPC embedded with 
VQ. This feature is very efficient for real-time implementation and comparison of gene 

sample signals. 
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The same procedure is applied to the other datasets to achieve their clustering. 

Detailed results with further information on other datasets can be found in appendix. 

6.3.2- Discussion 

The performance analysis of miLPC approach on tested microarray datasets to 

clustering the gene expression samples is summarised in Table (6-4). It illustrates the 

clustering error percentages related to the number of non clustering samples, minimum 

number of genes that satisfy the clustering operation, together with LPC order, and also 

shows the LPC predictive error value based on MSE computation between the estimated 

and the original expression sample. 

From the table, a discussion is specified on the following main conclusions that 

can be derived from this study: 

i- The effect of the non symmetrical and multi feature microarray characteristic: 

Each microarray has specific features and different number of gene expression 

levels. Within this case the method has sensitivity and specificity for individual 

clustering analysis of samples. In this case, the use of normalization and 
dimensionality reduction allow obtaining a common scale for analysis. 
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ii- The role of method parameter, i. e, the LPC order: Since the microarray has 

different dimensionality sample size, different order of LPC is required in the 

analysis. Concerning the LPC method the complexity of computation increases 

proportionally with order increase. One limitation of LPC method is its 

inability in dealing with signal transition periods: this is highlighted in our 

experiments where higher peak expressions are not evaluated properly in the 

reconstructed signal, see Figure (6.3a). 

Table 6-4 Performance summary of miLPC on tested data. 

of No. of Total no. of Samples non Accuracy Min no. LPC Predictive Study y disease genes samples 
Goal 

clustering % of genes order error 

47 ALL 
Golub Leukaemia 7129 72 0 100% 75 34 0.838 25 AML 

40 tumour 
Alone Colon 2000 62 3 95% 100 32 2.97 

22 normal 

lizuka llu c 7129 60 sick 20 
14 76% 125 29 0.528 lar e healthy 40 

Singh Prostate 12600 136 
77 tumour 14 90% 125 28 0.92 59 normal 

Nutt Gliomas 12625 50 
28 glio 5 90% 90% 75 26 1.47 
22 oligo 

A comparative performance of the miLPC approach with other well known state- 

of-art clustering approaches as summarised in Table (6-11) shows, that despite its 

limitations, the miLPC approach outperformed all the other methods in all the tested 

datasets. 

6.4- Application of miDWD clustering 

This section presents the results obtained from applying the DWD approach as 

explained in chapter 4 on the selected microarrays datasets. The application of the 

method is performed with multiple runs to achieve the analysis using different values of 

DWD levels with different numbers of gene involved to detect the best MSE value in 

the estimated gene expression wavelet coefficients model. Then vector quantisation is 

applied to achieve the clustering of the predictive wavelet coefficients. Moreover an 

exploration of different combination of parameters that affect on clustering performance 

for each dataset will be introduced. 
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6.4.1- miDWD on Leukaemia dataset 

Following the pre processing step for selecting number of gene from Leukaemia 

dataset, the miDWD algorithm estimates the best prediction coefficients over these 

genes. In order to test the estimated coefficients of the gene signal, a reconstruction 

process is performed to re-establish the gene signal and then compare it with the 

original signal through calculation of the MSE value. The miDWD method is started 

from scale-oriented decomposition, and then to analyse the obtained signals on 

frequency subbands to estimate the coefficients model. Using these decomposition 

coefficients, microarray data clustering can be achieved by measuring similarities 

between coefficients model using the vector quantisation method. Figure (6.7) illustrates 

the performance of the miDWD algorithm in estimating the reconstruction gene signal 

using two levels of Daubechies Wavelet D2 and involved g=100 genes. 
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Figure 6.7 MSE estimation for each sample using Iv=2 and g=100 of miDWD application 

on leukaemia dataset 

The total estimated MSE for this reconstruction to all samples is (0.986), which 

will cause to separate the classes with accurate cluster. Figure (6.8) shows a spectrum of 

MSE for predictive coefficients based on multiple run according to different number of 

involved genes with respect to multiple values of DWD levels. By passing the estimated 
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coefficients to vector quantisation, the clustering is accomplished to group those 

coefficients. Figure (6.8a) demonstrates the MSE to different DWD levels for specific 

number of genes including the average (Avg) that represented by dotted line. Note that 

the MSE value influenced by the DWD levels as increasing the level of wavelet causes 

to proportionally increasing MSE value due to the weakness happened in the 

partitioning of expression signals and by the way increasing the noise. Considering this 

lower level appears to be advantageous, because the difference between the original 

expression signal and the final results will be smaller. Accordingly there is possible 

range of DWD level values could result given accurate clustering, the figure shows that 

a minimum MSE identified as (Th =0.986) can separate the classes with accurate cluster 

which is below the average line. On the other hand Figure (6.8b) demonstrates the MSE 

to different number of genes for specific number of levels including the average (Avg) 

that represented by dotted line. Note that the MSE value also influenced by the specific 

number of involved genes. However increasing the dimensionality of data represented 
by increasing number of genes, it has improved the effectiveness of clustering. 

Figure (6.9) represents the graphical representation of clustering error with respect 

to different number of genes and multiple DWD levels. It shows the number of samples 

that are not clustered accurately, while obtained accurate clustering when involved 

range of genes g={100-300} processing with DWD level lv=(2,3). Figure (6.10) shows 
Voronoi diagram to the result of two classes clustering accurately of the microarray 

samples. 

On the subject of the computational aspects of the miDWD approach, the calculation 

of the DWD spectral distortion measure mostly engages in the computations of the 
DWD algorithm in partitioning the expression signal as data space into different 

frequency sub-bands. This partitioning reduces the number of data objects in expression 

signal while inducing small errors due to fluctuation of expression. The high frequency 

regions of the signal related to the regions of the expression signal behaviour where 
there is a quick change in the expression distribution. The low frequency regions of the 

signal related to the part of the features where the expression content is concentrated. As 

a result, simultaneous information on both the frequencies partition and the spatial 
distribution of these frequencies transformed as wavelet coefficients. 
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levels on leukaemia dataset 

figure 6.10 Voronoi clustering of two for Leukaemia dataset using 1v=2, g=100 

The experimental results and comparisons of model prediction have shown the 

performance of the GSP methods. The miDWD method can be implemented easily and 

especially concerning the now of calculations in computing the DWD framework 

embedded with the VQ method. This feature is very efficient for real-time 

implementation compared to LPC method. This method is a powerful tool in the data 

clustering since it outperforms any unsupervised method. 
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6.4.2- Discussion 

The performance analyses of miDWD approach on tested microarray datasets to 

clustering the gene expression samples is summarised in Table (6-5). It illustrates the 

clustering error percentages related to the number of non clustering samples, minimum 

number of genes that satisfy the clustering operation, together with number of DWD 

level, and also shows the DWD predictive error value based on MSE computation 

between the estimated and the original expression sample. 

Table 6-5 Performance summary of miDWD on tested data. 

Type of No. of Total no, of l G Samples non Accuracy Min no. DWD Predictive Stud Study 
disease genes samples oa clustering % of genes level error 

47 ALL 
Golub leukaemia 7129 72 0 100% 100 2 0.956 

25 AML 

40 tumour 
Alone Colon 2000 62 2 97% 25 3 3.7 

22 normal 

lizuka l 7129 60 
20 sick 7 90% 50 8 4.2 

ular cel 40 healthy 

77 tumour 
Singh Prostate 12600 136 8 94% 175 6 3.42 

59 normal 

28 glio 
Nutt Gliomas 12625 50 4 92% 92% 50 9 1.3 22 oligo 

From the table, a discussion is specified on the following main conclusions that 

can be derived from this study: 

i- The effect of different expression features of microarray required different level of 

partitions in the DWD method. 

ii- The role of method parameters which represented by DWD level. Since the 

microarray has different size, therefore different level of DWD performed in the 

analysis. The complexity of partitioning signals in DWD method affect on 

computation, and that will increase proportionally with the raising of levels. 

iii-Concluding that wavelet based on filters could be useful for reconstructing signal 

without loss the original spatial features, due to small value of predictive error. 

iv- The wavelets provide a proper estimation of coefficients model for the analyses 

of a variety of expression levels, hence to obtain best quantisation. 
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In most cases, the miDWD methods provided the finest ratios of clustering against 

other traditional clustering process. Generally, most classification and clustering 

methods have required a predefined gene sample similarity or distance metric, while 

their achievement performance rely on how well that metric reflect the real relationship 

among samples. In addition, the traditional methods required extensive preprocessing 

and denoising as the microarray data are sensitive to noise. The powerful of miDWD 
has its potential to analyse the genomic dataset in global fashion hence the effect of 
local noises can be slightly negligible comparatively and therefore it causes suitability 
for analysing genomic signals in the area of dimension reduction and classification 

problems. 

6.5- Application of miFD clustering 

This section presents the results obtained from applying the FD approach 

explained earlier in chapter 5 on the selected microarrays. The application is performed 

with multiple runs to achieve the analysis using different values of FD level with 
different number of gene involved to detect the optimum value with less fractal in 

estimated gene expression signal. Moreover an exploration of different combination of 

parameters that affect on clustering performance for each dataset will be introduced. 

6.5.1- miFD on Leukaemia dataset 

Following to the pre processing step for selecting number of gene from 

Leukaemia dataset, the miFD algorithm will begins. Fractals dimensions considered as 

an indicator for an infinite set of points in the microarray to test the distribution of 

expression samples data without require an assumption of an average density. It 

computed from the expressions vector of microarray sample and the scale beyond which 

the fractal dimension is close to the physical dimension of the sample. It identified the 

scale of several degrees of expression fluctuation complexity and then finds the cluster 

of distribution sample points based on computed scales. 

The results for fractals dimension and the performance of these based on multiple 

run concerning different number of involved genes is shown in Figure (6.11). Iteration 

is used to calculate the box counting dimension data, box sizes and box numbers in 
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order to find the best regression equation satisfied by the model. The figure illustrates 

that at g=100 genes obtain minimum value of average FD equal to FD=0.192 which 

provide accurate clustering. It presents an observation that the lowest average fractal 

dimension provides the lower clustering error with respect to number of genes involved. 

Figure (6.12) shows the Logarithmic plots to the local representation of the sample 9 

between box number and box sizes were used to compute the regression line equation 

which is [y=0.0132x+5.7], therefore the slope of this regression line provides the box 

counting dimension. It may perhaps identify as coefficients and explore from the 

formula which is equal to (0.0132). It is more likely to establish significant fractal 

correlation dimension to the coefficients, based on the possibility that correlation 

dimension has its own range in the boundaries of fractal dimension. Therefore it derived 

from the correlation integral which is a cumulative correlation function that measures 

the fraction of points in the two dimensional space. 
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Figure 6.1 1 Performance analyses of miFD method of Leukaemia dataset 

In order to find the cluster, the process to compute the nearest distance based on 

the average between the boundary points is considered as a barrier level which is equal 

to ß=0.8755. Figure (6.13) shows clustering samples in dataset using g=100 genes, 
Note that the perfect value of barrier level is due to the fact that the accurate calculation 
depends on the variation in the complexity comes from large number of iterations that 

are required until convergence. It shows the result of two classes clustering of the 

microarray samples accurately. 
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Figure 6.13 miFD clustering of Leukaemia dataset using g=100, where ß=0.8755 

The complication of the miFD approach is dominated by the computing aspects of 

the calculation of the FD for the total area covered by the grid array elements that will 

converge to the measure of the curve, i. e. for square boxes elements is to obtain the 

standard box counting dimension as based on Eq. 5.7. An inspection concerning the 

sufficient number of boxes covering the curve in the area surrounding the expression 

signal is achieved through the iteration process. In the course of reduces the number of 
boxes object to expression signal, it inducing small errors due to fluctuation of 

expression. As a result, the FD algorithm counting the number of boxes required to 

cover the curve relatively with box sizes and then establish log-log plot. The slope of a 
linear fit to the plotted curve approximates to the fractal dimension. 
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Figure 6.12 Local representation of sample 9 of Leukaemia dataset 
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6.5.2- Discussion 

The performance analyses of miFD approach on tested microarray datasets for 

clustering the gene expression samples is summarised in Table (6-6). These results 
illustrate the clustering error percentages related to the number of non clustering 

samples, minimum number of genes that satisfy the clustering operation, together with 

the value of FD threshold cluster barrier level. 

Table 6-6 Comparative summary of miFD on tested data. 

St d of No. of Total no. Goal Samples non Accuracy Min no, u y y disease genes of samples clustering % of genes 
47 ALL 

Golub Leukaemia 7129 72 0 100% 100 0.87 
25 AML 

40 tumour 
Alone Colon 2000 62 1 98% 75 0.55 

22 normal 

lizuka Hepato- 7129 60 
20 sick 5 92% 100 0.20 

cellular 40 healthy 

77 tumour 
Singh Prostate 12600 136 9 93% 100 0.92 

normal 59 

Nutt Gliomas 12625 50 
28 glio 3 94% 100 0.56 
22 oligo 

To assess the performance pertaining to fractal dimension estimation as described 

in Table (6-6), a discussion in the following is specifying the effects that can be derived 

from the study: 

i- The fluctuation of the different expression amplitude required different values 

concerning number of boxes and its resolution size to estimate the fractals. 

ii- It is noted that due to large data points, the fractal dimension based on box 

counting acts effectively. Since it require large number of data points to 

estimate the fractal values. 

iii- The fractal dimension is evaluated by itself through the correlation dimension 

approach by best fitting the log-log plot curve. The accuracy of the 

determination is affected by the finite size of the dataset. The linearity of the 

curve reveals the self similarity of the expression at successive scales. 

iv- As a results presented so far, it is likely that the FD approach achieves efficient 

performance regarding its ability to provide a proper estimation of fractals 

model for the analyses of a variety of expression levels. 
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Accordingly, the miFD method in most cases, produce efficient ratios of 

clustering, i. e. corresponding to 92% as a minimum clustering error. Generally, FD 

assessment is a best indicator of the spread of the data that can be used as indicator for 

the quantity of hidden information in the dataset. Noticing that uses the FD to measure 

of the physical complexity of different expression levels with the same calculation 

amount. During the calculation and over the linear range of log-log plot, the fractal 

dimension can describe the roughness of the expression level. 

The power of miFD is its potential to analyse the genomic expression data in 

large-scale mode hence the effect of local noises can be slightly insignificant 

comparatively due to the linearity of the log and therefore it causes suitability for 

analysing genomic signals in the area of dimension reduction and classification 

problems. The miFD approach in most cases provided better clustering against other 

traditional clustering process which have require a predefined gene sample similarity. 

While miFD approach rely on generating a grid that dividend gene signal into smaller 

parts that will reflect the real relationship among samples parts. The strength of miFD is 

its potential in analysing the genomic dataset in comprehensive mode because the 

formula of their correlation dimensions are concerning to the smaller parts of gene 

signal behaviour that causes any minor change in the signal, varies the complete fractal 

dimension value. Hence this approach is suitable for analysing genomic signals in the 

areas where there are classification problems. It is recognized that the box-counting 

dimension calculation seems to give the best result because it covers the whole gene 

signal in dataset. Using boxes of the small size causes that the coverage is precisely 

occupied more parts without losses information there. 

6.6- Cluster validation methods 
Cluster validation process aims at evaluation of the approaches by satisfying the 

clustering target of genomic data. There are two validation methods of the clustering 

results: internally, by evaluating the quality of a clustering result based on statistical 

properties that can also be used for selecting the best clustering result when comparing 
different clustering methods, and externally, by comparing the level of agreement of a 

clustering result with an external partition. 
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In this section, well-known internal and external validation methods, respectively 
Silhouette index and Rand index are used to evaluate the genomic signal processing 

clustering approaches. 

6.6.1- Silhouette index 

This method is applied to test the performance of GSP clustering on the selected 
datasets. To measure the global goodness of clustering using the Silhouette index, two 

parameters are required to be calculated. They are the Silhouette Width range, which is 

between I and -1, and the Average Silhouette Width (ASPP). If the value of the Average 

Silhouette Width is greater than 0.5 it indicates that clusters achieved a reasonable 

partition of the data. However, if its value is lower than 0.2, it expresses that the data do 

not exhibit cluster structure. 

6.6.1.1- miLPC approach 

Evaluating the miLPC approach for use in clustering genomic data samples is 

carried out on the selected microarray datasets. Concerning the Leukaemia dataset, 

Figure (6.14a) shows the silhouette values for each cluster group, ranking them in 
decreasing order to allow rapid visualization and assessment of cluster structures. Figure 

(6.14b) presents the value silhouette index for each sample. 
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Figure 6.14 Silhouette plot to Leukaemia dataset 

From the observation of Figure (6.14a) we see silhouette width values are 

generally positive. There is only one exception (sample 21) which has a small negative 

value, although it is in the range of silhouette width. Since the global silhouette index 

that represented the average value of silhouette width value is equal to (ASW=0.49), this 

indicates that the formed clusters are suitably to recover all the samples in the dataset. 

Figure (6.15) shows the dendrogram of the distribution of cluster hierarchical procedure 
in a tree diagram. It contains structural of organisational information associated to the 

samples similarity. 
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Figure 6.15 Dendrogram plot to Leukaemia dataset ! ftn 
122 



Chanter 6 Performance analysis of GSP methods 

Evaluation of the miLPC approach on other datasets is illustrated in appendix. 
Figures show the silhouette plot index values for each cluster to visualise and assess the 

cluster structure for other datasets. Comparison between Global silhouettes indexes to 

the datasets is illustrated Table (6-7). It shows that the average width is greater than 0.5 

for some datasets that indicates a reasonable partition of the data samples, while others 

has value of less than 0.2 would indicate the data do not exhibit cluster structure. 

Table 6-7 Global silhouette index to each tested datasets using miLPC 

Dataset miLPC ASW 

Leukaemia 0.49 

Colon 0.58 

Hepatocellular 0.145 

Prostate 0.35 

Gliomas 0.27 

6.6.1.2- miDWD approach 
Evaluating the miDWD approach for use in clustering genomic data samples is 

carried out on the selected microarray datasets. Concerning the Leukemia dataset, 

Figure (6.16a) shows the silhouette values for each cluster group, ranking them in 

decreasing order to allow rapid visualization and assessment of cluster structures. 

Figure(6.16b) presents the value silhouette index for each sample. From Figure (6.16a) 

notice that most samples have suitable silhouette width value in the case of the clusters 

and all are positive, while the global silhouette index that represented the average value 

of silhouette width value is equal to (0.63). This indicates that the clustering is properly 

recovered all the samples in the dataset. 
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Figure 6.16 Silhouette plot to Leukaemia dataset 

I 

Evaluation of the miDWD approach on other datasets is illustrated in appendix. 
Figures show the silhouette plot index values for each cluster to visualise and assess the 

cluster structure for other datasets. Comparison between Global silhouettes indexes to 

the datasets is illustrated Table (6-8). It shows that the average width is greater than 0.5 

for some datasets that indicates a reasonable partition of the data samples, while 
Hepatocellular dataset has value of 0.34 would indicate that the clustering process based 

on miDWD approach is almost has proper structure than the previous miLPC approach. 
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Table 6-8 Global silhouette index to each tested datasets using miDWD 

Dataset miDWD ASW 

Leukaemia 0.63 

Colon 0.64 

Hepatocellular 0.34 

Prostate 0.46 

Gliomas 0.485 

6.6.1.3- miF'I) approach 

Evaluating the miFD approach for use in clustering genomic data samples is 

carried out on the selected microarray datasets. Concerning the Leukaemia dataset, 

Figure (6.17a) shows the silhouette values for each cluster group, ranking them in 

decreasing order to allow rapid visualization and assessment of cluster structures. Figure 

(6.17b) presents the value silhouette index for each sample. From Figure (6.16a) notice 
that most samples have suitable silhouette width value in the case of the clusters and all 

are positive, while the global silhouette index that represented the average value of 

silhouette width value is equal to (0.91). This indicates that the clustering is properly 

recovered all the samples in the dataset. 

a- Silhouette rank plot to Leukaemia dataset. 
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Figure 6.17 Silhouette plot to Leukaemia dataset 

Evaluation of the miFD approach on other datasets is illustrated in appendix. 

Figures show the silhouette plot index values for each cluster to visualise and assess the 

cluster structure for other datasets. Comparison between Global silhouettes indexes to 

the datasets is illustrated Table (6-9). It shows that the average width is greater than 0.5 

for all datasets that indicates a reasonable partition of the data samples. It would 

indicate that the clustering process based on miFD approach is almost has proper 

structure than others approaches. 

Table 6-9 Global silhouette index to each tested datasets using miFD 

Dataset miFD ASNti' 

t_rukacmia 

Colon 

ticpatoccllular 

Prostate 

Gliomas 

0.91 

0.87 

0.74 

0.69 

0.78 
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6.6.1.4- Discussion 

The c%aluation of GSP approaches based on silhouette index of experimental 

results are summarise in Table (6-10). It provides a comparison performance of the 

proposod method in clustering the gene expression samples in the microarray. It shows 

that miDWD and miFD approaches outperform miLPC approache and other well known 

state-of-art clustering approaches. Figure (6.18) shows the AS W performance summary 

of GSP on tested data. 
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Figure 6.18 ASW analysis to (ISP for tested microarray dataset 

6.6.2- I)a%ics-Bouldin (UB) index 

this method is based on the maximization of the distances between clusters 

while minimizing the distances within a cluster itself. A DB-index is determined as a 
function of the ratio of the sum of the distances within a cluster to the distance between 

clusters: the smaller the DB- index, the greater the quality of the achieved clustering. 

Figure (6.19) shows the D13-indices for all tested datasets. It shows that miFD 

consistently achieves significantly better results than the other approaches. 
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Figure 6.19 DB analyses of GSP techniques for all tested microarray datasets 
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6.7- Conclusion 

In this section, a complete comparison performance is presented between the 

experimental results obtained from analysing the selected datasets using the proposed 

GSP approaches. These are also compared with other well known state-of-art clustering 

approaches and summarised in Table (6-11). These results show the performance of the 

proposed methods in clustering the microarray gene expression samples. It can be seen, 

first, that the three techniques outperform the existing state of the art methods. Second, 

the miDWD and miFD methods outperform the miLPC method. Finally, cluster 

evaluation suggests that miFD is the best method for microarray data clustering. 

Table 6-11 Comparative summary of GSP methods on tested data. 

Method Author Leukaemia Colon Hepatocellular Prostate Gliomas 

T -test Golub, 1999[8] 85% 

T-test Alone, 1999[ 106] 87% 

FLC lizuka, 2003[107] 93% 

kNN Singh, 2002 [108] 90% 

kNN Nutt, 2003 [109] 86% 

PAM Tibhirani, 2002[l 10] 95% 83% 59% 67% 

MARS Mukkamala, 2005 [I 11] 85% 80% 92% 

CART Mukkamala, 2005 [III] 92% 95% 96% 

LOP Mukkamala, 2005 [111] 95% 85% 96% 

RF Mukkamala, 2005 [111] 100% 90% 88% 

PLSLD Nguyen, 2002[112] 97% 92% 

KPCA Liu, 2005[113] 97% 100% 

FJC Jong, 2003[114] 91% 54% 

Two-way Chanda, 2006[115] 96% 88% 

SVM Furey, 2000[116] 94% 90% 

MRMR Ding, 2004[117] 100% 94% 

GA/SVM Huerta, 2006[118] 100% 99% 

P-ICR Huang, 2006[119] 95% 86% 62% 74% 

miLPC 100% 95% 76% 90% 90% 

mIDWD 100% 97% 90% 94% 92% 

mIFD 100% 98% 92% 93% 94% 
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CHAPTER % 

Conclusion and Future work 

In this chapter we present the conclusion of this work and outline some of the 

limitations of this study and suggestions for future work in this evolving area. 

7.1- Conclusions 

In this thesis we have presented three GSP approaches for enhanced microarray 

data clustering. These are linear predictive coding, wavelet and Fractal methods. The 

first three chapters presented the details of these methods with last chapter describing 

the performance analysis of these methods. The aim of the work was also to provide a 

comprehensive description for the most common traditional clustering approaches 

compared with GSP approaches for clustering gene expression samples. 

In summary, the contribution of the thesis are summarised as following: 

1. Comprehensive and Review of microarray data clustering 

A comprehensive study was carried out to understand the traditional and current 

clustering procedures by searching and studying extensively. It starts from statistical 

view framework, estimation and prediction algorithms in biological orientation and 

advances in digital communication and signal processing approaches that finds how can 
it adapted in genomic region and other sources cited in the thesis. 

A comprehensive review on state of art of genomic clustering approaches was 

performed. This review involved studying past and existing research methods, and 

examined their advantages and shortcomings. From these, we selected the three GSP 

methods for the study 

130 



Chapter 7 Conclusion and Future work 

2. Design of a GSP clustering and toolbox 

Three clustering approaches based on advanced digital signal processing methods 
(LPC, DWD and FD) combined with vector quantisation algorithm is presented. A GSP 
based toolbox for application in microarray data samples using these methods was 
designed and implemented (miLPC, miDWD and miFD). These can read the data from 

any microarray gene expression samples and produce a predictive coefficients array 

relative to the microarray data that can be quantised in discrete levels, and consequently 

represents the clustering output. The other operations such as pre-processing the 

microarray data and normalization are also embedded in this toolbox. The design of the 

toolbox was based on MATLABT"' that can provide easy usage and procedures to 

modify. 

3. Comparative performance analysis 
The thesis also presents a comparative performance analysis of the three GSP 

methods of clustering microarray on different microarray datasets from the literature. 

Two well known validation methods (Silhouette and Davies- Bouldin index) have been 

used to evaluate the GSP clustering results. Internally, to evaluate the quality of a 

clustering result, and externally, by imitating the level of agreement of a clustering 

result with an external partition. In conclusion, the miDWD and miFD outperformed all 
the test datasets with more clustering accuracy compared to other methods. However, 

the local features of the gene expression signals were better clustered using the miDWD 

method compared to the miFD. 

7.2- Limitation and future works 

The area of GSP is considered as an emerging field of modem genomic analysis. 
In this section we outline some of the limitations of each GSP method presented and 

propose some future research directions and work in this evolving area. 

7.2.1- Limitation of the study 

1. Statistical methods 

The traditional statistical methods had the capability of detecting the variation in a 

variety of datasets under a variety of conditions. The amount of variation in gene 

expression samples in the dataset, as well as the period sometimes cannot affect the 
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detection, when they are within reasonable limits of expression. Very low or very high 

expressions are difficult to detect, especially in cases where the sampling is inadequate. 

Within those limits these methods also has high sensitivity and specificity for individual 

clustering of correlated samples. This results causes to the disadvantage of aggregation 

of the dominant frequencies in the dataset and the approximation in predictions. 

However, the GSP methods presented are able to detect the variation in the datasets. 

This can happen when the frequencies of expression samples are distinct enough and the 

datasets have a high signal to noise ratio. 

2. Microarray LPC method 

The LPC analysis methods were introduced and explained in chapter3. Further 

investigation of vector quantisation to LPC coefficients strength and accuracy for 

microarray clustering were performed as well. LPC coefficients are used to provide a 

representation of the spectral gene sample signals. Thus efficient representation of LPC 

parameters is main issue in the coding analysis. The most often used is line spectral 

frequencies which have two characteristics that make the coefficients willing to efficient 

quantisation: their ordering which relates to the stability condition and their localization. 

The key point of VQ modelling is to derive a codebook which is commonly achieved by 

using a clustering technique. From VQ notion, the quantiser has an equivalent reference 

codebook which minimizes the overall distortion, it is determined by first encoding the 

source vector into their corresponding partition regions and then taking the centroid of 

all the source vectors assigned to each particular region to achieved the clustering 

process. 

Concerning to the tested datasets, the miLPC approach is able to predict results 

that arc comparable with the originally identified genes sample. Thin method is affected 

by the signal to noise ratio in the analysis of gene samples. The amount of noise in the 

microarray data affects both the ability of the analysis to calculate the predictive 

coefficient and lowers the sensitivity of the methods. However, one disadvantage of 

linear prediction coding is that it requires a large amount of computations for analyzing 

the data in relative with increasing the order of coding. While the second disadvantage 

of the LPC spectral in the analysis (gene sample signal with a prevalent partial 

structure) is that it will tend to cover the spectrum of gene signal as tightly as possible, 

and will under certain conditions descend down to the level of residual noise in the gap 
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between two partials. This will happen whenever the space between partials is large, as 
in highly gene expression, and when the order is high. 

3. Microarray DWD method 

The main idea behind the application of DWD approaches was to represent gene 

profile into a set of orthonormal wavelet basis functions in a time-frequency domain to 

extract the spectral features of microarray data in order to enhance clustering. This 

method has the ability to remove the random data as a noise from the microarray data 

itself. This happen because the gene expression profile produced by different 

technologies were contaminated with errors. Furthermore, wavelet allows the 

decomposition of input gene sample signal at different scales and levels of detail, which 

might be achieved improvement in the quality through the applications. DWD is also 

good localization both in time and spatial frequency, since wavelet analysis combines 

the concept of scale into the wavelet equations, therefore it is appropriate to resolve the 

sample transient of gene expression data. Then choosing the number of scales is 

important issues as the computation of the mother wavelet will start from high 

frequencies and proceed towards low frequencies. While increasing the value of scale, 

the wavelet will dilate. From the observation, lower scales (high frequencies) have 

better scale resolution which corresponds to low frequency resolution, and hence small- 

scale wavelet coefficients are fundamental to encode that information. From the results 
in this thesis, it is noticeable that wavelets are better suited to the analysis of different 

gene expression signals in small basis functions or wavelet filters while use of large 

basis produced distortion error. We also need to emphasize that DWD is not translation 

invariant. Therefore, the proper performance is the ability or need to select wavelet 

basis functions for particular applications. Hence further work can be done in these 

areas. 

4. Microarray FD method 
Clustering based on the usage of the fractal dimension was presented. The 

algorithm address the problem of discovering clusters of points according to the effect 

they have on the FD of the clusters. Each vector of points in the dataset can be mapped 

to a local representation consisting of a density coefficient and a dimensionality 

coefficient. Mathematically, fractal dimension is used to give a dimension of the 
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statistical measure of the geometry of a cloud of points and can be assigned to any 

arbitrary dataset 

A limitation of this partitioning scheme, however, is the use of range size. Many 

regions of a given expression signals are too complex to be partitioned into boxes 

square, because the variations in signal may not possess corresponding size domain box 

blocks that closely match the regions. However, further limitation come from the 

difficulty that there is multi different combination of expression level which results in 

the same displacement and solved by applying two-dimensional vectors of analysis, 

which is probably required further study in the future 

7.2.2- Future work 

There are several issues that could be studied further in this area and to evaluate 
further the potential use of the methods presented: 

1. A need for an optimal criterion while searching for the optimal-evaluation- 

environment in all the proposed methods. These include for example a 

suitable learning approach to optimise the choice of the quantisation level in 

VQ selection procedures. 

2. Prediction are limited to a fixed dimension (the fractal dimension calculated 

using GP algorithm), this need further investigation and future work. 

3. Symmetrical environments while searching for an optimal evaluation 

environment - poor results near sharp areas of the system's behaviour. These 

issues are especially important in the miDWD and miFD methods. In the 

miFD method, the requirement of optimal grid resolution is important in 

clustering analysis. 

4. Further testing on larger microarray datasets and disease types. 

5. Selection of other advanced GSP and digital communications methods 

currently applied in other domains. For example, adding adaptation 

mechanisms to the presented methods. 
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Appendix A 

Application of GSP methods 
for clustering microarray 

In this appendix we present and discuss the application of GSP methods for 

clustering further microarrav datasets. 

A. 1- Preprocessing 

1 he sank procedure for normalisation described in section 6.2 is applied to 

normalise the other datasets and find the top genes expression. Figure (a. 1) shows the 

result when applied to Colon dataset, while Table (a-1) list the top 10`h highly 

expression genes. 

Figure a. l I )i>trihutum of gene expression for Colon dataset 

Table a-I f lighly expression genes in Colon dataset 

Statistical value Gene index Gene Probe 
11) 3 887126 

-5.64 1423 J02854 

-5.63 249 M63391 

-5.32 377 Z50753 

-5.00 49 T61661 

-4.97 66 T71025 

-4.95 245 M76378 

-4.90 267 M76378 

4.82 14 H20709 

-4.72 765 M76378 
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Consequently. normalisation process of Hepatocellular dataset is shown in 

Figurc(a. 2) and the results concerning list of the top 10`h highly expression genes is 

shown in Table (a-2). 

Figure a. 2 Distribution of gene expression for Hepatocellular dataset 

Table a-2 llighly expression genes in Hepatocellular dataset 

Statistical -'slue Gene index Gene Probe 
1806 U22431 

3.75 5280 AF008445 

3.77 2686 X 16663 

3.81 5956 U 19495 

3.83 3213 D28915 

3.95 5429 X03 100 

4.01 1831 X51345 

4.05 5718 Y 10032 

4.11 6150 AB000409 

4.26 336 U20734 

4.87 6585 1.36033 

Normalisation process of Prostate dataset is shown in Figure (a. 3) and the results 

concerning list of the top I Oh highly c \prcs: ion genes is shown in Table (a-3) 
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Figure a. 3 Distnhuuon otgenc cxpression for Prostate dataset 



Table a-3 Highly expression genes in Prostate dataset 

Statistical value Gene index Gene Probe 
-10.37 3017 39939 at 

-9.47 9112 38044 at 

-9.41 5307 38028 at 

-9.35 12264 39315 at 

-8.96 5272 31444 s at 

-8.64 10204 32076 at 

-8.45 9361 32206 at 

-8.43 2034 1598_g-at 

-8.39 11263 32780 at 

-8.33 6475 556 sat 

Normalisation process of Gliomas dataset is shown in Figure (a. 4) and the results 

concerning list of the top 10`h highly expression genes is shown in Table (a-4) 
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Figure a. 4 Distribution of gene expression for Gliomas dataset 

Table a-4 Highly expression genes in Gliomas dataset 

Statistical value Gene index Gene Probe 

-6.60786 10605 630 at 

-6.05365 6697 31 600 s at 

-5.93784 4920 38421 at 

-5.74179 1841 267 at 

-5.66961 1876 40581 at 

-5.66905 8740 35163 at 

-5.38224 12471 446 at 

-5.27635 2604 631_g_at 

-5.17945 5811 32183 at 

-4.93865 3344 39691 at 
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A. 2- Application of miLPC 

1- Colon dataset 

figure (a. 5) shows a spectrum of MSE for predictive coefficients based on 

multiple runs according to different numbers of involved genes with respect to multiple 

values of LPC order. By passing the estimated coefficients to vector quantisation, the 

clustering is accomplished to group those coefficients. Figure (a. 5a) demonstrates the 

MSE to different LPC order for specific number of genes. Note that the MSE value is 

influenced by the LPC order, it appears to be inversely related to the model order due to 

the prediction order p has the greatest influence on the complexity of coefficients 

calculation that comes from increasing the linear combination of previous samples taken 

from combinations of the enhanced digital filter stages. Considering this higher model 

order appears to be advantageous, because the difference between the original 

expression signal and the final results will be smaller. Accordingly there is possible 

range of LPC order values could result given accurate clustering, the figure shows that a 

minimum MSE identified as (Th =2.97) can separate the classes with best cluster which 

is below the average line. On the other hand Figure (a. 5b) demonstrates the MSE to 

different number of genes for specific number of LPC order. Note that the MSE value 

also influenced by the specific number of genes involve. However in many cases a 

considerable range of genes are differentially expressed, this sense is due to a relatively 

small variation in expression have considerable noise that affected on the coefficients. 
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Figure a. 5 niiLPC analyses with respect to different number of genes and LPC 

orders for Colon dataset 

Figure (a. 6) represents the graphical representation of clustering error of different 

value of gene number with respect to different LPC orders. It shows the minimum 

number of samples that are not clustered accurately, when g=100 genes processing with 
LPC order p={32.3411. Figure (a. 7) shows Voronoi diagram to the result of two classes 

clustering of the microarray samples. 
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Figure a. 7 Two class clustering of microarray samples for Colon dataset 

2- Ilepatocellular dataset 

"I'he result of the analysis concerning Hepatocellular dataset is shown in Figure(a. 8) 

demonstrate the miLPC performance analyses with respect to different number of gene 

and multiple LPC order. It shows that the minimum MSE identified as (T11=0.528) can 

separate the classes with best cluster. Figure (a. 9) demonstrates clustering error with 

respect to ditlcrent number of genes and multiple LPC order. Figure (a. 10) shows the 

result of two classes clustering of the microarray samples with accuracy 76%. It is 

clear to highlight that there are 14 samples unclassified out of 60 samples in the 

microarray known as {6,18,19,22,23,28,30,35,36,38,43,52,54,60}. 
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Figure a. 8 miLPC analyses with respect to different number of gene and LPC orders 
for Hepatocellular dataset 

., 

-100 
-1_`5 

-130 

-: 00 

-: ý 
-: -ý 

,ý 

a- MSE of different LPC order 

-, -i . .,.... 
ý. ýý _ 

'ýý., 

i 

1== 
6 

Figure a. 9 Clustering error with respect to different number of gene and LPC orders 
for Hepatocellular dataset 



Applications of GSP for clustering microarra) Appendix A 

ý 
r 

04 

o3S 

03 

0 

:0z 

0 t5 

I 

M 
1- 4- 

0 
++ +0 

0 Classl 
+ Class2 

0 

at +0 ° 
0ý 
++000 

0+-öpp0 
+p 

o0 
p+ eO p° 

pp00 
0 00 

0 
+0 

01 015 02 025 03 035 04 
Class I Distance 

n .. 
lb 

a- Clustering of two classes 

b- Voronol clustering of two classes 

Figure a. 10 Two class clustering of microarray samples for Hepatocellular dataset 

3- Prostate dataset 

The result of the analysis concerning Prostate cancer dataset is shown in 

Figure(a. l 1) demonstrate the miLPC performance analyses with respect to different 

number of gene and multiple LPC order. It shows that the minimum MSE identified as 

(Th : 0.92) can separate the classes with accurate cluster. Figure (a. 12) demonstrates 

clustering error with respect to different number of genes and multiple LPC order. 

Figure (a. 13) shows the result of two classes clustering of the microarray samples with 

accuracy 90%. It is clear to highlight that there are 14 samples unclassified out of 136 

samples in the microarray known as 132,47,53,54,59,61,62,64,68,80,81,84,92,95 }. 
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Figure a. II miLPC analyses with respect to different number of gene and LPC orders 
for Prostate dataset 
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Figure a. 12 Clustering error with respect to ditlcrent number of gene and LPC orders 
for Prostate dataset 
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b- Voronoi clustering of two classes 

Figure a. 13 Two class clustering of microarray samples for Prostate dataset 

4- IIigh-grade p-lioma dataset 

[he result of the analysis concerning high-grade glioma dataset is shown in 

Figure(a. 14) demonstrate the miLPC performance analyses with respect to different 

number of gene and multiple LPC order. It shows that the minimum MSE identified as 

(Th =1.47) can separate the classes with accurate cluster. Figure (a. 15) demonstrates 

clustering error with respect to different number of genes and multiple LPC order. 

Figure (a. 16) shows the result of two classes clustering of the microarray samples with 

accuracy 90%. It is clear to highlight that there are 5 samples unclassified out of 50 

samples in the microarray known as 1 12,18,22,28,35 }. 



Applications of GSP for clustering microarrati" Appendix A 

Ne. Ot{ýýe 

--: 5 

-4 

-100 

-1: 5 

-150 

-1'3 

-: 00 ZZA 

- : 
5o 

300 

......... M! 

-711-11 

LPC -4- 

7 

Lh' ada 

-6 

-10 

- IS 

-t6 

- 17 

16 

-16 

-t 

--21 

-]1 

-77 

-25 

-26 

TI 
20 
21 
30 
31 

- 22 
33 

9 

,ý . ý. ýý ,ý 
,,,,,,.. a ... ý. 

3, 
35 

...... fýý 

ýTý1 ý) 

b- MSE of different number of gene 

Figure a. 14 miLPC analyses with respect to different number of gene and LPC orders 
for high-grade glioma dataset 
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Figure a. 16 Two class clustering of microarray samples for high-grade glioma dataset 

A. 3- Application of rniDWD 

1- Colon dataset 

i-he result of the analysis concerning Colon dataset after applying miDWD 

algorithm is illustrated. The miDWW'D performance analyses with respect to different 

number of genes and multiple DWD levels is demonstrated in Figure (a. 17). it shows 

that the minimum MSE identified as (Th -=3.7) can separate the classes with accurate 

cluster. Figure (a. 18) shows clustering error of difTerent number of genes with respect to 

different DWD levels. Figure (a. 19) shows the result of two classes clustering of the 

microarray samples accurately with accuracy 97%. it is clear to highlight that there are 

two samples unclassified out of 62 samples in the microarray known as 116,511 which 

are particularly difficult to classify since they have weak expression levels. 
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Figure a. 19 Two class clustering of microarray samples for Colon dataset 

2- Ileaatocellular dataset 

The miDWD performance analyses concerning Hepatocellular dataset with 

respect to different number of genes and multiple DWD levels is demonstrate in 

Figurc(a. 20). It shows that the minimum MSE identified as (Th=4.2) can separate the 

classes with accurate cluster. Figure (a. 2 I) shows clustering error of different number of 

genes with respect to different DWD levels. Figure (a. 22) shows the result of two 

classes clustering of the microarray samples accurately with accuracy 90%. It is clear to 

highlight that there are seven samples unclassified out of 60 samples in the microarray 

known as 16,12,18,19,22,23,60} which are particularly difficult to classify since 

they have weak expression levels. 
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Figure a. 22 Two class clustering of microarray samples for Hepatocellular dataset 

3- Prostate dataset 

The m1DWD performance analyses concerning Prostate cancer dataset with 

respect to different number of genes and multiple DWD levels demonstrate in 

Figure(a. 23). It shows that the minimum MSE identified as (Tit=3.42) can separate the 

classes with accurate cluster. Figure (a. 24) shows clustering error of different number of 

genes with respect to different DWD levels. Figure (a. 25) shows the result of two 

classes clustering of the microarray samples accurately with accuracy 94%. It is clear to 

highlight that there are eight samples unclassified out of 136 samples in the microarray 
known as 132,33,47,57,68,81,84,92) which are particularly difficult to classify 

since they have weak expression levels. 
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Figure a. 25 Two class clustering of microarray samples for Prostate dataset 

4- I1igh-grade elioma dataset 

Jhe miDWD performance analyses concerning High-grade glioma dataset with 

respect to different number of genes and multiple DWD levels demonstrate in 

Figurc(a. 26). It shows that the minimum MSE identified as (T11=1.3) can separate the 

classes with accurate cluster. Figure (a. 27) shows clustering error of different number of 

genes with respect to different DWD levels. Figure (a. 28) shows the result of two 

classes clustering of the microarray samples accurately with accuracy 92%. It is clear to 

highlight that there are four samples unclassified out of 50 samples in the microarray 
known as 112,22,28,35} which are particularly difficult to classify since they have 

weak expression levels. 

+ 
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A. 3- Application of miFD 
I- Colon dataset 

The miED performance analysis for Colon dataset based on multiple run 

concerning different number of involved genes is shown in Figure (a. 29). It presents an 

observation that the lowest average fractal dimension demonstrated with 75 genes 
involved which give the lower clustering error. Figure (a. 30) plots the local 

representation of the sample 9. logarithmic values of box number and box sizes were 
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used to compute the regression equation as [ y=--3.3x+2.7 ], therefore the slope of this 

regression line provides the box counting dimension. It may perhaps identify as a 

coefficient and explore from the formula which is equal to (-3.3). It is more likely to 

establish significant fractal correlation dimension to the coefficient, based on the 

possibility that correlation dimension has its own range in the boundaries of fractal 

dimension. Therefore it derived from the correlation integral which is a cumulative 

correlation function that measures the fraction of points in the two dimensional space. 

Figure (a. 31) shows the result of two classes clustering of the microarray samples 

accurately with accuracy 98%. It is clear to highlight that there is one sample identified 

as 51 unclassified out of 62 samples in the microarray which are particularly difficult to 

classify since they have weak expression levels. 
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70 

2- Ileaatocellular dataset 

The nuFD performance analysis for Hepatocellular dataset based on multiple run 

concerning different number of involved genes is shown in Figure (a. 32). It presents 

an observation that the lowest average fractal dimension demonstrated with 100 

genes involved which give the lower clustering error. Figure (a. 33) plots the local 

representation of the sample 9. Logarithmic values of box number and box sizes 

were used to compute the regression equation as [ y=-0.15x+0.29], therefore the 

slope of this regression line provides the box counting dimension. It may perhaps 
identify as a coefficient and explore from the formula which is equal to (-0.15). It is 

more likely to establish significant fractal correlation dimension to the coefficient, 
based on the possibility that correlation dimension has its own range in the 

boundaries of fractal dimension. Therefore it derived from the correlation integral 

which is a cumulative correlation function that measures the fraction of points in the 

two dimensional space. Figure (a. 34) shows the result of two classes clustering of 
the microarray samples accurately with accuracy 92%. It is clear to highlight that 

there are five samples unclassified out of 60 samples in the microarray known as {6, 

18,19,22,23} which are particularly difficult to classify since they have weak 

expression levels. 
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3- Prostate dataset 

The miFD performance analysis for Prostate dataset based on multiple run 

concerning different number of involved genes is shown in Figure (a. 35). It 

presents an observation that the lowest average fractal dimension demonstrated 

with 100 genes involved which give the lower clustering error. Figure (a. 36) 

plots the local representation of the sample 9. Logarithmic values of box number 

and box sizes were used to compute the regression equation as [ y=0. I7x+0.56], 

therefore the slope of this regression line provides the box counting dimension. 

It may perhaps identify as a coefficient and explore from the formula which is 

equal to (0.17). It is more likely to establish significant fractal correlation 

dimension to the coefficient, based on the possibility that correlation dimension 

has its own range in the boundaries of fractal dimension. Therefore it derived 

from the correlation integral which is a cumulative correlation function that 

measures the fraction of points in the two dimensional space. Figure (a. 37) 

shows the result of two classes clustering of the microarray samples accurately 

with accuracy 93%. It is clear to highlight that there are nine samples 

unclassified out of 136 samples in the microarray known as 132,47,57,59,68, 

81,84,92.95} which are particularly difficult to classify since they have weak 

expression levels. 
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140 

4- Muh-grade glioma dataset 

the milFi) performance analysis for High-grade gliorna dataset based on multiple 

run concerning different number of involved genes is shown in Figure (a. 38). It presents 

an observation that the lowest average fractal dimension demonstrated with 100 genes 

involved which give the lower clustering error. Figure (a. 39) plots the local 

representation of the sample 9. Logarithmic values of box number and box sizes were 

used to compute the regression equation as [ y=-2. lx+1.4], therefore the slope of this 

regression line provides the box counting dimension. It may perhaps identify as a 

coefficient and explore from the formula which is equal to (-2.1). It is more likely to 

establish significant fractal correlation dimension to the coefficient, based on the 

possibility that correlation dimension has its own range in the boundaries of fractal 

dimension. Therefore it derived from the correlation integral which is a cumulative 

correlation function that measures the fraction of points in the two dimensional space. 
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Figure (a. 40) shows the result of two classes clustering of the microarray samples 

accurately with accuracy 94°'o. It is clear to highlight that there are three samples 

unclassified out of 136 samples in the microarray known as 112,28,351 which are 

particularly difficult to classify since they have weak expression levels. 
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A. 4- Cluster validation methods 

A. 4.1- Silhouette index 

A. 4.1.1- Validation of miLPC approach 

The evaluation of mil-PC approach to other datasets is illustrated as follows. 

Figures (a. 41-44) show the silhouette plot index values for each cluster that can 

visualise and assess the cluster structure for other datasets. Comparison between Global 

silhouette indexes to the datasets is illustrated in table (6-7). It shows that the average 

width is greater than 0.5 for some datasets that indicates a reasonable partition of the 

data samples, while others has value of less than 0.2 would indicate the data do not 

exhibit cluster structure. 
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Figure a. 41 Silhouette plot to Colon dataset 
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A. 4.1.2- Validation of miDWD approach 

The results related to the analyses concerning miDWD to other datasets is 

illustrated as follows. Figures (a. 45-48) show the silhouette plot index values for each 

cluster that can visualise and assess the cluster structure for other datasets, while 

comparison between Global silhouette indexes to the datasets is illustrated in table (a. 5). 

It shows that the average width is greater than 0.5 for some datasets that indicates a 

reasonable partition of the data samples, while Hepatocellular dataset has value of 0.34 

would indicate that the clustering process based on miDWD approach is almost has 

proper structure than the previous miLPC approach. 
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Table a. 5 Global silhouette index to each tested datasets 

Dataset miDWD ASW 

Leukaemia 0.63 

Colon 0.64 

Hepatocellular 0.34 

Prostate 0.46 

Gliomas 0.485 

JpjýclldLI 

A. 4.1.3- Validation of miFD approach 

the analyses of mil I) results to other selected datasets are illustrated as follows. 

Figures (a. 49-52) show the silhouette plot index to visualise and assess the cluster 

structure for those datasets. Comparison between Global silhouette indexes to the 

datasets is illustrated in table (a. 6). It shows that the average width is greater than 0.5 

for all datascts that indicates a reasonable partition of the data samples. It would 

indicate that the clustering process based on miFD approach is almost has proper 

structure than others approaches. 
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a- Silhouette rank plot to Colon dataset. 
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A. 4.2- Davies-Bouldin (DB) index Validation, 

Table (a. 7) shows the DB-index as a result of the evaluation process to the tested 

datasets. While Figure (a. 54) present DB analysis. It shows that rniFD achieve promise 

result in relative to other approaches. 

Table a. 6 DB comparison performance summary of the GSP approaches 

Dataset miLPC DB miDWD DB miFD DB 

Leukemia 0.865 0.574 0.292 

Colon 0.605 0.553 0.359 

Hepato-cellular 2.14 1.03 0.366 

Prostate 1.214 0.885 0.538 

Gliomas 1.119 0.706 T O. 36 


