
PA 0 0'5 6(Sý 16 Ke

A New Visual Query Language and Query
Optimization for Mobile GIS

Haifa Elsidani Elariss

A thesis submitted in partial fulfillment of the requirements of
Kingston University for the degree of Doctor of Philosophy

Faculty of Computing, Information Systems, and Mathematics
Kingston University

July 2008

Abstract
I

In recent years computer applications have been deployed to manage spatial data with
Geographic Information Systems (GIS) to store and analyze data related to domains

such as transportation and tourism. Recent developments have shown that there is an

urgent need to develop systems for mobile devices and particularly for Location

Based Services (LBS) such as proximity analysis that helps in finding the nearest

neighbors, for example, restaurant, and the facilities that are located within a circle

area around the user's location, known as a buffer area, for example, all restaurants

within 100 meters. The mobile market potential is across geographical and cultural
boundaries. Hence the visualization of queries becomes important especially that the

existing visual query languages have a number of limitations. They are not tailored for

mobile GIS and they do not support dynamic complex queries (DCQ) and visual

query formulation. Thus, the first aim of this research is to develop a new visual query
language (IVQL) for Mobile GIS that handles static and DCQ for proximity analysis.

IVQL is designed and implemented using smiley icons that visualize operators,

values, and objects. The evaluation results reveal that it has an expressive power,

easy-to-use user interface, easy query building, and a high user satisfaction.

There is also a need that new optimization strategies consider the scale of mobile user

queries. Existing query optimization strategies are based on the sharing and push-

down paradigms and they do not cover multiple-DCQ (MDCQ) for proximity

analysis. This leads to the second aim of this thesis which is to develop the query

melting processor (QMP) that is responsible for processing MDCQs. QMP is based

on the new Query Melting paradigm which consists of the sharing paradigm, query

optimization, and is implemented by a new strategy "Melting Ruler". Moreover, with

the increase in volume of cost sensitive mobile users, the need emerges to develop a

time cost optimizer for processing MDCQs. Thus, the third aim of the thesis is to

develop a new Decision Making Mechanism for time cost optimization (TCOP) and

prove its cost effectiveness. TCOP is based on the new paradigm "Sharing Global

Execution Plans by MDCQs with similar scenarios". The experimental evaluation

results, using a case study based on the map of Paris, proved that significant saving in

time can be achieNed by employing the newly developed strategies.

11

Table of Contents

Abstract 11

Table of Contents III

List of Figures viii

List of Tables xiv

List of Abbreviations xvi

Acknowledgments xix

I- Introduction I

1.1 - Geographic Information Systems (GIS) 1

1.2 - Visualization of Query Languages 3

1.3 - Query Optimization Strategies 5

1.4 - The Structure of the Thesis 6

2 -Visual Query Languages for GIS

2.1 - Introduction

2.2 - Visual Query Languages for Non-Spatial Databases 11

2.2.1 - Querying Object Databases 11

2.2.2 - Querying Link Analysis Databases 15

2.3 - Visual Query Languages for both Spatial and Non-spatial Databases 19

2.3.1 - Querying Spatial and Non-spatial Objects and Relations 20

2.3.2 - Querying Object-Relational Databases 23

2.4 - Visual Query Languages for Spatio-Temporal Databases 26

2.4.1 - Querying Spatial and Temporal Objects 26

2.4.2 - Querying Continuous Fields 30

2.4.3 - Exploring Spatio-Temporal Variations 34

III

2.5 - Summary 37

3- Query Optimization and GIS 38

3.1 - Introduction 38

3.2 - Query Optimization 40

3.3 - Query Optimization Strategies 42

3.3.1 - Sharing Paradigm in Query Optimization 42

3.3.2 - Push-Down Strategy in Query Optimization 45

3.3.3 - Sharing Paradigm and Push-Down Strategy in Query Optimization 47

3.4 - Transformation of Natural Language in Spatio-Temporal Queries 54

3.4.1 - Structure of the Model 55

3.4.2 - Categorizing Queries by Level of Detail 56

3.4.3 - Spatial Domain 57

3.4.4 - Temporal Domain 61

3.4.5 - Spatio-Temporal Domain 64

3.5 - Summary 66

Development and Evaluation of a new Visual Query Language 68

4.1 - Introduction 68

4.2 - Software Architecture 70

4.3 - IVQL Query Representation 71

4.3.1 - Themes, Objects, Locations and Instances 72

4.3.2 - Visual Representation of Operators and Queries 74

4.3.3 - Visual User Interface 76

4.4 - Mobile Query Processing 79

4.5 - The Evaluation of IVQL 81

4.5.1 - Method of Evaluation 83

4.5.1.1 - Icons Recognition and Representation (Expressive Power of

Icons) 84

4.5.1.2 - Ease of Use 84

4.5.1.3 - User Interface 86

4.5.1.4 - Query Building and Fonnulation Process 86

4.5.1.5 - Expressive Power of the Visual Query Language 87

4.5.2 - The Questions 87

iv

4.5.3 - The Subjects 93

4.5.4 - The Experiment 94

4.6 - Results and Discussion 95

4.6.1 - The Results of the Evaluation of the Smiley Icons 95

4.6.2 - The Results of the Evaluation of the Query Forinulation 106

4.6.3 - The Results of the Evaluation of the User Satisfaction 113

4.6.4 - Discussion 119

4.6.4.1 - Discussion of the Results of the Evaluation of the Smiley

Icons 119

4.6.4.2 - The Discussion of the Results of the Evaluation of the Query

Formulation 122

4.6.4.3 - The Discussion of the Results of the Evaluation of the User

Satisfaction 123

4.6.4.4 - The Improved Operators Icons 125

4.7 - Conclusion 126

5- Query Melting 129

5.1 - Introduction 129

5.2 - Commonality in GIS 130

5.2.1 - Commonality between Query Execution Plans of Static Operators 130

5.2.2 - Commonality in Query Execution Plans of Dynamic Operators 132

5.2.2.1 - Commonality in Query Execution Plans of Dynamic

Operators with One Predicate' 134

5.2.2.2 - Commonality in Query Execution Plans of Dynamic

Operators with Multi-Predicate 135

5.3 - Query Melting Paradigm 138

5.3.1 - The Components of the Query Melting Processor 140

5.3.2 - TCOP: Decision making Mechanism for Time Cost Optimization 144

5.4 - Mechanism of Execution Plan 146

5.4.1 - Templates of Operators 149

5.4.2 - Query Melting Process 152

5.5 - Conclusion 157

V

6- Design and Implementation 159

6.1 - Introduction 159

6.2 - Design of the Query Melting Processor 160

6.2.1 - The Use Case Diagram of the Query Melting Processor 160

6.2.2 - The Timeline Sequence Diagram of a Dynamic Complex Query 164

6.2.3 - The Architecture of the Query Melting Processor 167

6.3 - Implementation of the QMP 172

6.3.1 - User Interface 173

6.3.2 - Melting Queries Algorithms 175

6.3.2.1 - Algorithm of Melting the Templates of the Operators 175

6.3.2.2 - Algorithm for Melting Full Queries 177

6.3.2.3 - Algorithm for Melting the Values of the Queries 178

6.3.2.4 - Algorithm for Melting the Objects of the Queries 179

6.3.2.5 - Algorithm for Filling the Methods of the Remaining

Queries 181
6.3.2.6 - Algorithm for Generating the Global Evaluation Plans 184

6.4 - Theoretical Evaluation of the Query Melting Processor 186
6.5 - Summary and Conclusion 191

7- Case Study: Proximity Analysis for Multiple Dynamic Complex Queries

Using Paris Map 195

7.1 - Introduction 195

7.2 - Components of the System 197

7.2.1 - Query Fortnulation Using IVQL GUI 198

7.2.2 - The Parser 202

7.2.3 - The Query Melting Processor 202

7.2.4 - ArcGIS Objects 208

7.2.5 - Simulation of Mobile User XY Locations 210

7.2.6 - Plan Execution of the Global Evaluation Plans 211

7.2.7 - Result Map 212

7.3 - An Explicit Scenario 213

7.3.1 - IVQL User Interface 214

7.3.2 - The QMP With and Without the DECIDER 220

7.3.3 - The Result Maps 230

VI

7.4 - Experimental Evaluation 236

7.4.1 - Results and Analysis 237

7.4.2 - Cost of Processing Templates of Complex Queries 240

7.4.3 - Cumulative Time Cost of Processing Plans 245

7.4.4 - Decider Speed and Cost Effectiveness 248

7.4.5 - Results Discussion 251

7.5 - Conclusion 253

8- Conclusion and Future Work 255

8.1 - Conclusion 255

8.2 - Future Work 260

References 262

V 11

List of Figures

Figure 2.1 Example Schema 12

Figure 2.2 A Simple Query Showing Attribute Selection 12

Figure 2.3 Query showing the Use of the 'and' and 'or' operators 12

Figure 2.4 A Person Attributes and the Virtual hand 13

Figure 2.5 Age Operations 14

Figure 2.6 The Connections between a Set of People displayed as a Network 16

Figure 2.7 An Explorer Interface Chart in Course of Development 16

Figure 2.8 A Filter Pattern to display all People who telephoned David Jones 18

Figure 2.9 A Filter Pattern matching People involved In a Company owned by

David Charles 18

Figure 2.10 Example Schema, the Basic Spatial Representation of the Objects 20

Figure 2.11 An Aspatial Filter in a Simple Query Construct 21

Figure 2.12 (a) Non-Spatial Join Filter. (b) Spatial Join Filter. (c) Example Query of

a Spatial Join 22

Figure 2.13 The Visual Query Interface of GeoQA 24

Figure 2.14 Sample of the Object Types of the Queried Database 27

Figure 2.15 The Basic Elements of the Geometrical Shapes 27

Figure 2.16 The Target Basic Visual Element 27

Figure 2.17 The Anchor Visual Metaphor 27

Figure 2.18 Selection of the Operator Intersection 29

Figure 2.19 The Visual Representation of a Spatio-Temporal Query 29

Figure 2.20 The Geometaphor Icon Used to Represent the Rhone River 31

Figure 2.21 The Geometaphor Icon Used to Represent the Temperature 31

Figure 2.22 The Icon Used to Represent the Mathematical Function Minimum 31

Figure 2.23 The Application of the Intersection Aggregate Function 33

Figure 3.1 The Sliding Rule on Spatial Hierarchy 58

Figure 3.2 Sleep Mode versus Action Mode 61

Figure 3.3 Segmentation based on the MTE 62

Figure 4.1 The Software Architecture 71

Figure 4.2 Basic elements of the IVQL Visual User Interface 73

Vill

Figure 4.3 The Smiley Icon that Visualizes the FIND Command 74

Figure 4.4 The Icon that Represents the Command FIND THE SHORTEST Path 74

Figure 4.5 The Icon that Represents the Command FIND THE NEAREST 75

Figure 4.6 The Smiley Icon that Represents the Command FIND WITHIN

A DISTANCE 75

Figure 4.7 The Smiley Icon that depicts the 'and' Operator 76

Figure 4.8 The IVQL User Interface 77

Figure 4.9 The Smiley Icons Representing the Tourism Theme Elements with a

Formulated Visual Query 78

Figure 4.10 The Visual Query Processing 79

Figure 4.11 Find Nearest Golf Club and Display the Shortest Path 80

Figure 4.12 Find all Restaurants Within 500m 80

Figure 4.13 Find all Universities and all Schools Within 500m 80

Figure 4.14 Find the Shortest Path to a destination Address 80

Figure 4.15 Find Bus Stations Within 500m and train stations within 700m 80

Figure 4.16 Part I of the Questions 88

Figure 4.17 The Total Number of Correct Answers 96

Figure 4.18 The Number and Percentages of Icon Recognition 98

Figure 4.19 Histogram to Compare the Results of the Programmers Group versus

the Non-Programmers Group 99

Figure 4.20 Percentage of Correct and Wrong Answers of the Programmers, Non-

programmers, and Both Groups 100

Figure 4.21 The Average of Correct Answers to Query Formulation 108

Figure 4.22 Histogram to Compare the Results of the Programmers Group versus

the Non-Programmers Group 108

Figure 4.23 Percentage of Correct and Wrong Answers of the Programmers, Non-

programmers, and Both Groups 109

Figure 4.24 Percentage of Correct and Wrong Answers of the Programmers, Non-

programmers, and Both Groups III

Figure 4.25 t-test of Simple Queries and t-test of Complex Queries 112

Figure 4.26 The Average of Questionnaire Scores 115

Figure 4.27 Histogram to Compare the Results of the Programmers Group versus

the Non-Programmers Group 115

Figure 4.28 The Percentage of Mean Scores of the Questions of the Programmers,

ix

Non-Programmers, and Both Groups 116
Figure 4.29. t-test of all the Questions of the Questionnaire Used to Check for Mean

Difference of Programmers and Non-Programmers 119

Figure 4.30 The Old Not Easily Understood Operators 125

Figure 4.31 The Improved Operators 125

Figure 4.32 The New Operators 125

Figure 5.1 Query Evaluation Plan of a Static Query with One Operator 131

Figure 5.2 Query Evaluation Plan of Multiple Static Queries with One Operator 131

Figure 5.3 The Query Evaluation Plan of a Dynamic Query with One Operator 132

Figure 5.4 Common operators can be reused in Dynamic Queries with I Operator 133

Figure 5.5 Query Evaluation Plan of Multiple Dynamic Queries with I Operator 133

Figure 5.6 The Query Evaluation Plan of Every Time Instance of Multiple Dynamic

Queries with One Operator 134

Figure 5.7 The Global Query Evaluation Plan of Multiple Dynamic Queries with
One Operator 135

Figure 5.8 The Global Evaluation Plan of Operatorl 136

Figure 5.9 The Global Evaluation Plan of Operator2 136

Figure 5.10 The Global Evaluation Plan of Both Operators 137

Figure 5.11 The Architecture of the Components of the Query Melting Processor 142

Figure 5.12 The Queries for Time 0 before and after Query Melting Ruler 1 143

Figure 5.13 The Queries for Times I ... n before Query Melting Ruler 2 144

Figure 5.14 The Queries for Times I ... n after Query Melting Ruler 2 144

Figure 5.15 The Decision Tree of GEP based on Combination of Operators 145

Figure 5.16 The Actual Template of the Operator "Find k Nearest Facilities" 149

Figure 6.1 The Use Case Diagram of the Query Melting Processor 162

Figure 6.2 The Time Sequence Table of a Dynamic Complex Query 166

Figure 6.3 The Architecture of the Query Melting Processor 168

Figure 6.4 The User Interface of the Query Melting Processor 173

Figure 6.5 The User Interface of the Query Melting Processor before Melting 174

Figure 6.6 The User Interface of the Query Melting Processor after Melting 174

Figure 6.7 The Algorithm for Melting the Templates of the Operators 176

Figure 6.8 The Algorithm for Melting Full Queries (Values and Objects) 177

Figure 6.9 The Algorithm for Melting the Values of the Queries 179

Figure 6.10 The Algorithm for Melting the Objects of the Queries 180

x

Figure 6.11 The Algorithm for Filling the Functions that Remain Non-Melted in the

Queries 183
Figure 6.12 The Algorithm for Generating the Global Evaluation Plan 0 and the

Global Evaluation Plan I
... n 185

Figure 7.1 The Components of the Case Study 197

Figure 7.2 The Constructs of a Simple Query 198

Figure 7.3 The Constructs of a Complex Query 199

Figure 7.4(a) Some Snapshots of the IVQL Graphical User Interface 200

Figure 7.4(b) Some Snapshots of the IVQL Graphical User Interface 201

Figure 7.5 The Query Melting Processor Graphical User Interface at Start-Up 204

Figure 7.6 The Query Melting Processor Running without Displays 205

Figure 7.7 The Query Melting Processor before Melting 50 Queries of a user 206

Figure 7.8 The Query Melting Processor after Melting 50 Queries of a user 207

Figure 7.9 The ArcGIS Components that are Called ArcObjects 208

Figure 7.10 The ArcGIS Products 209

Figure 7.11 The Simulator User Interface 210

Figure 7.12 The Simulator while Generating Locations from the Map of Paris 211

Figure 7.13 The Map of Paris showing the Result of a Dynamic Complex Query 212

Figure 7.14(a) Query I of User 1 214

Figure 7.14(b) Queries 2,3, and 4 of User 1 215

Figure 7.14(c) The Text Queries of User 1 216

Figure 7.14(d) The Send Command of User 1 216

Figure 7.15(a) Query I of User 2 216

Figure 7.15(b) Queries 2,3, and 4 of User 2 217

Figure 7.15(c) Query 5 of User 2 218

Figure 7.15(d) The Text Queries of User 2 218

Figure 7.15(e) The Send Command of User 2 218

Figure 7.16(a) Queries 1,2, and 3 of User 3 219

Figure 7.16(b) The Text Queries of User 3 220

Figure 7.16(c) The Send Command of User 3 220

Figure 7.17 The Query Melting Processor with NO DECIDER before

Processing User I Queries 222

Figure 7.18 The Query Melting Processor with NO DECIDER after

Processing User I Queries 223

xi

Figure 7.19 The Query Melting Processor with NO DECIDER before

Processing User 2 Queries 224
Figure 7.20 The Query Melting Processor with NO DECIDER after

Processing User 2 Queries 225
Figure 7.21 The Query Melting Processor with NO DECIDER before

Processing User 3 Queries 226

Figure 7.22 The Query Melting Processor with NO DECIDER after
Processing User 3 Queries 227

Figure 7.23 The Query Melting Processor WITH DECIDER after
Processing User 3 Queries 229

Figure 7.24 The Map of Paris showing Hospitals, Restaurants, and Underground 230

Figure 7.25 The Map of Paris Zoomed In 231

Figure 7.26 The Map of Paris Zoomed In More 231

Figure 7.27 The Map of User I at Location 1 231

Figure 7.28 The Zoomed In Map of User I at Location 1 232

Figure 7.29 The Map of User I at Location 2 232

Figure 7.30 The Zoomed In Map of User I at Location 2 232

Figure 7.31 The Map of User 2 at Location 1 233

Figure 7.32 The Zoomed In Map of User 2 at Location 1 233

Figure 7.33 The Map of User 2 at Location 2 233

Figure 7.34 The Zoomed In Map of User 2 at Location 2 234

Figure 7.35 The Map of User 3 at Location 1 234

Figure 7.36 The Zoomed In Map of User 3 at Location 1 234

Figure 7.37 The Map of User 3 at Location 2 235

Figure 7.38 The Zoomed In Map of User 3 at Location 2 235

Figure 7.39 The More Zoomed In Map of User 3 at Location 2 235

Figure 7.40 The Cost of Processing Complex Queries with Similar Scenarios with Up

to 2 Operators of 2 Templates 241

Figure 7.41 The Cost of Processing Complex Queries with Similar Scenarios with Up

to 5 Operators of 5 Templates 242

Figure 7.42 The Cost of Processing Complex Queries with Similar Scenarios with Up

to 10 Operators of 10 Templates 242

Figure 7.43 The Total Cost of Melting Templates, Geiierating and Storing New Plans,

and Accessing Old Plans for 2 Templates for Complex Queries with

x1l

Similar Scenarios 244

Figure7.44 The Total Cost of Melting Templates, Generating and Storing New Plans,

and Accessing Old Plans for 5 Templates for Complex Queries with
Similar Scenarios 244

Figure 7.45 The Total Cost of Melting Templates, Generating and Storing New Plans,

and Accessing Old Plans for 10 Templates for Complex Queries with
Similar Scenarios 245

Figure 7.46 The Cumulative Cost of Processing Plans of 2 Templates 246

Figure 7.47 The Cumulative Cost of Processing Plans of 5 Templates 247

Figure 7.48 The Cumulative Cost of Processing Plans of 10 Templates 248

Figure 7.49 How Much Faster the Decider is for Each Case 249

Figure 7.50 The Reduction of the Time Cost of No Decider when Using Decider 250

Figure 7.51 The Cost of Melting All Templates Plans at Beginning of Execution 251

xill

List of Tables

Table 3.1 Workflow of the Query Reconstruction Process 65

Table 4.1 The Tasks used to Measure the Ease of Use of Query Languages 85

Table 4.2 Part 2 of the Questions 90

Table 4.3 Table of Numbered Icons supplied with Part 2 of Questions 91

Table 4.4 Part 3 of Questions 93

Table 4.5 The Grades of the Subjects Answers to the Icon Recognition Questions 96

Table 4.6 The Means of the Programmers, Non-programmers, and Both Groups 100

Table 4.7 The t Statistics of Each Icon Used for the Significant Differences of the

Means 103

Table 4.8 The Grades of the Subjects Answers to Query Formulation Questions 107

Table 4.9 The Means of the Programmers, Non-programmers, and Both Groups 109

Table 4.10 The t Statistics of Each Query Used for the Significant Differences of the

Means 110

Table 4.11 The Means of the Programmers, Non-programmers, and Both Groups III

Table 4.12 The t Statistics of Each Query Type 112

Table 4.13 The Grades of the Subjects Answers to the User Satisfaction

Questionnaire 114

Table 4.14 The Mean Scores of the Questions of the Programmers, Non-Programmers

and Both Groups 116

Table 4.15 The t Statistics of Each Question Used for the Significant Differences of

the Means 117

Table 5.1 The Icons Used as Operators to Formulate Dynamic Complex Queries 147

Table 5.2 The Icons Used as Objects to Formulate Dynamic Complex Queries 147

Table 5.3 A Dynamic Complex Query with 3 Predicates 148

Table 5.4 A Static Complex Query with 4 Predicates 148

Table 5.5 The Templates of the Static Operators 150

Table 5.6 The Templates of the Dynamic Operators 151

Table 5.7 Multiple Queries with One Static Operator before Query Melting 152

Table 5.8 Multiple Queries with One Static Operator during Query Melting 153

Table 5.9 Multiple Queries with One Static Operator after Query Melting 153

Table 5.10 Multiple Queries Nvith Multiple Static Operators before Query Melting 154

x1v

Table 5.11 Multiple Queries with Multiple Static Operators after Query Melting 154

Table 5.12 Multiple Queries with Multiple Dynamic Operators before Query

Melting 155

Table 5.13 Multiple Queries with Multiple Dynamic Operators during Query Melting

Ruler 1 156

Table 5.14 Multiple Queries with Multiple Dynamic Operators during Query Melting

Ruler 2 156

Table 5.15 Multiple Queries with Multiple Dynamic Operators after Query

Melting 157

Table 5.16 The Global Evaluation Plan for Time 0 and Global Evaluation Plan

for Times I ... n 157

Table 6.1 The Code of the Execution Rule of the Methods 171

Table 7.1 The Time Cost of Each Process for Complex Queries with Up to 2

Operators of 2 Templates 238

Table 7.2 The Time Cost of Each Process for Complex Queries with Up to 5

Operators of 5 Templates 239

Table 7.3 The Time Cost of Each Process for Complex Queries with Up to 10

Operators of 10 Templates 240

XV

List of Abbreviations

[DTL 60 IOG] Continuously, find the Time Left to reach the nearest gymnasium for

the next 60 minutes. Keep on supplying me with an updated result every 10 minutes.
The result includes the shortest path
[DTL 60 5 T] & [DNP 3 M] & [DW 200 M] Find the nearest theatre and its shortest

path. While I am on my way, keep on continuously supplying me with the 3 nearest

motels and their shortest paths that are within 200 meters (or ahead of me, e. g., in half

a circle buffer) until I reach the theatre or 60 minutes overlap. Update my map every 5

minutes
[SN I M] Find the Nearest I Motel

[SN I R] Find the Nearest I Restaurant

[SN I R] Find the Nearest I Restaurant

[SN 4 H] Find the Nearest 4 Hotels

[SN 4 H] Find the Nearest 4 Hotels

[SN 6 B] Find the Nearest 6 Bus Stations

[SN 6 B] Find the Nearest 6 Bus Stations

[SNP 5 M] Find the 5 Nearest Motels with their Shortest Paths

[SW 100 U] Find Within I 00m Universities

[SW 1000 R] Find all restaurants that are within 1000 meters from my location

[SW 300 U] & [SW 100 R] & [SN 5 H] & [SNP 4 S] & [SN 2 B] & [SDL 7 P] Find

the Underground Stations that are within 300 meters from me, the restaurants that are

within 100 meters, the 5 nearest hospitals, the 4 nearest schools with their paths, the 2

nearest Bus Stations, and the distance to reach the 7 nearest Police Office with their

paths

[SW 50 H] Find Within 50m Hotels

[SW 500 R] Find all restaurants that are within 500 meters from my location

[SW 70 S] Find Within 70m Schools

B Bus Station

CJP Clock-triggered Join Policy

CQ Complex Query

CRM Customer Relationship Management

CSE Common Sub-expression Elimination

XVI

DCQ Dynamic Complex Queries

DDL Dynamically Find the distance left to reach the nearest facility

DN Dynamically Find the nearest facilities

DNP Dynamically Find the nearest facilities and their shortest path
DP Dynamically Find the shortest path
DSS Decision Support Systems

DTL Dynamically Find the time left to reach the nearest facility

DW Dynamically Find the facilities that are within a buffer

EDVC Exploratory Database View Constructor

G Gymnasium

GEP Global Execution Plan

GIS Geographic Information Systems

GPS Global Positioning Systems

H Hospital

HC1 Human-Computer Interaction

HJP Hot Join Policy

UP Incremental Join Policy

IVQL Iconic visual query language

kNN k Nearest Neighbor

LBS Location Based Services

LVIS Un Language Visuel for Information Systems

M Motel

MDCQ Multiple Dynamic Complex Query

MIS Management Information Systems

MMS Multi-Media Messaging System

MSE Minimum Spatial Element

MTE Minimum Temporal Element

P Police Office

QMP Query Melting Processor

R Restaurant

S School

SDL Find the distance left to reach the nearest facility

SMS Short Messaging System

SN Find the nearest facilities

XVII

SNP Find the nearest facilities and their shortest path
SP Find the shortest path

STL Find the time left to reach the nearest facility

SW Find the facilities that are within a buffer

T Theatre

TCOP Time Cost Optimization

U Underground Tube / Metro

XVIII

Acknowledgements

I would like to extend my gratitude to my director of studies, Dr. Souheil Khaddaj, for

his continuous support and devoted cooperation throughout the course of this work.

His brilliant ideas and objective criticism significantly contributed to this work.

I would like to extend my deep thanks and appreciation to my family who granted me

extreme support and exceptional patience especially during the most difficult

moments. Their continuous reinforcement and encouragement allowed this work to be

completed.

xix

Chapter I- Introduction

1.1 Geographic Information Systems (GIS)

Geographic Information Systems (GIS) are computer-based tools mostly used to

handle the geo-features of the real world. They provide the capability to input, store,

manipulate, analyze, retrieve, transform, and display geographical data related to earth

surface and its events as well as to measure aspects of geographic phenomena and

processes. They play a major role in many domains such as urban and environmental

planning, transportation, utility mapping and tourism, and can be applied in different

fields such as Bio-informatics, Air traffic, Location Based Services (LBS),

Management Information Systems (MIS), Customer Relationship Management

(CRM), Decision Support Systems (DSS) and many others [Cle93, Nur06, Sch06].

There are three types of GIS, the spatial which is mainly concerned with the

properties of spatially referenced data such as the location, shape, and size of maps

and geographical areas, the temporal which handles the changes of geographical

objects over time such as cadastral data (owner, lot number, tax value), and the spatio-

temporal which manages the attributes and behavior of geographical objects over

time.

With the emergence of mobile technologies, the use of GIS Geo-data by mobile

devices becomes very common. Mobile GIS is the combination of systems which

include mobile devices, Global Positioning Systems (GPS), wireless communication,

and GIS software. Their applications can be used in several fields for several

purposes. In Field Worker Services, they are used by fire fighters, emergency

workers, inspectors, maintenance teams, and utility crews [FidO7, Nus04]. In tracking

systems, they provide the facility to track employees, children in the backyards, and

many other types of mobile users [Lad05, KimO7]. In road networks, they provide the

ability to organize public transportation [Rep06], query moving objects [Gut06],

guide tourists electronically [Bee07], and exploit photos by pedestrians [Bee06]. In

data mining, they play a major role in trajectory pattern recognition of moving users

[GiaO7, And07]. In Location Based Services, they are applied as functional-reminder

applications [Lud06], detector of identifiable areas [Rot06], locator of specific xveb

content [Tez06], and locator of users in Location based games rGus06, Ras06].

Mobile GIS are typically used in tourist and navigation systems for Proximity

Analysis which includes querying the k Nearest Neighbor (kNN), for example,

restaurant, and finding the facilities that are located within a circle area around the

user' s location, known as a buffer area, for example, all restaurants within 100 meters.
The existing Mobile GIS applications have textual or menu-driven environments. In a

textual environment, the user formulates his query through typing a text or writing an
SQL query. In the menu-driven environment, the user reads and selects items from

text menus. Both approaches do not provide a user friendly or easy-to-use

environment and in some applications they are aimed at expert users only. Thus, there

is an urgent need to develop a visual query language that provides the mobile user

with the facility to formulate a visual query using expressive icons. Moreover, the

existing mobile GIS applications allow the mobile user to send only one query, called

simple query, at a time to the GIS server. But, in many situations the user needs to

formulate many simple queries in order to achieve the result that he needs; this might

take the forin. of many maps each of which corresponds to a simple query. Hence, the

challenge arises to allow him to send multiple queries, called complex queries,

together at the same time in order to produce a single over-layered map that combines

the results of all the queries, therefore reducing the overheads significantly.

GIS spatio-temporal queries, both simple and complex, can be classified as either

static or dynamic. Static queries concern situations where a user enquires about

objects at a single time snapshot which is the current time, for example, find the

nearest hotel now. Dynamic queries, also referred to as Continuous queries, concern

situations where a user enquires about objects at every time interval during a certain

period of time, for example, a user trying to find the nearest hotel every five minutes

during the next hour as he/she is moving away from the airport in a taxi. The existing

visual query languages are oriented mainly toward desktops and not mobile devices

and handle static queries but not dynamic ones. Therefore, addressing these issues

requires a new visual language to deal with dynamic complex queries for Mobile GIS

which raises a number of challenges particularly with respect to query optimization

and processing.

2

Query Optimization, also known as Query Processing', includes a list of tasks that are
executed in a particular order for processing a simple query which form an execution
plan. The process starts by decomposing the query into many query fragments, then

eliminating common sub-expressions (CSE), reordering the tasks, and finally

executing the plan. Having a complex query made up of a number of simple queries

requires the Query Processor to execute a number of corresponding plans, combine
their result in one map, and send the result map to the mobile user. If one or more of
the simple queries are dynamic, the processor repeats the same steps for every new
time instance that corresponds to the current user location. These repetitions raise the

need to develop a Query Processor for Dynamic Complex Queries which aims to

eliminate all repetitions, share intermediate results, facilities, spatial areas, time
intervals, and generate one Global Execution Plan for each dynamic complex query.

Moreover, when examining dynamic complex queries of multiple users, it is realized

that similar complex queries might be formulated by multiple users making the query

processor repeat the same tasks again. In order to optimize the processor execution

time, the need arises to integrate a new decision making mechanism in the processor

that allows sharing previously generated Global Execution Plans.

1.2 Visualization of Query Languages

There are four types of Query Languages for GIS. The first type is the Text query
language where the user, typically a domain expert, has to formulate Structured Query

Language SQL-like queries. But SQL query languages possess complex textual

syntax, textual input and output, and the user might need to know the structure of the

database schema before writing a query [Djo96]. Since many GIS users are expected

to be non experts in the geographic domain, English language type queries were

designed to facilitate queries forinulations [KimO5, Yue05].

The second type is the Spati al- Query-by- sketch language [BlaOO, Ege97] where the

user fonnulates a query by drawing spatial configurations typically on a touch

sensitive screen. In order to enable exact and si ilar matches to be browsed through,

Tile term Query Optimization has been internationally defined as Query Processing aiming at
producing faster results, as elaborated in [And06, ELN106, Kan94, and Mok05a].

3

the user can reduce the similarity ranking in order to lower the accuracy threshold for

the result.

The third type is Menu-Driven where the user selects one item out of a list of choices
that are displayed in a list box and accordingly the query is formulated. A particular

case is the Query-by-object language (QBO) [Abd05a] that provides multiple user

steps based on menu-driven user interface for banking database queries. The menu-
driven query formulation is applied in M-commerce [Abd05b], spatial queries for

Relational Data Base Management Systems (RDBMS) and Web GIS [Abd05c], and

spatial queries for RDBMS and mobile GIS [Abd05d, Abd05a, and Abd06].

The fourth type is the Visual Query Language (VQL) where the user formulates a

query by selecting icons or metaphors. An icon is a pictorial representation of a
function or an object. In some visual query languages the user drags and drops the

selected icons to a special working area in order to validate the query before its

execution [Bon02, Pao04]. In all existing visual query languages, the user can
formulate static queries but not dynamic ones [AndOO, And02, And03a, And03b,

And04, And07, And99, MurOO, Mur98a, Mur98b, Mur98c, Sm104, and Smi05].

Different query languages have been used for mobile GIS applications and broadly

fall into two of the above categories namely textual and menu-driven environment.

However, they do not provide visual query formulation nor do they support dynamic

complex queries. Hence, the need arises to develop a visual query language for

Mobile GIS that provides the mobile user with the facility to formulate dynamic

complex queries. Moreover, there is also a need to deal with the globalization of

visual query languages in order to meet global and diversified demands. Globalization

refers to the production of products that are used worldwide. Thus, the need to

develop international user interfaces becomes a major issue in visual query languages.

Marcus, in his paper [Mar99], defines globalization in user-interface design and

demonstrates why globalization is vital to the success of computer-based

communication products. Hence, in this work the use of smiley icons is proposed in

order to build an iconic visual query language.

4

A smiley is a graphical representation that displays a smiley face to express emotions

and convey facial expressions such as, happy, sad or bored. Smiley icons can be

easily understood by all peoples in all countries worldwide because they are universal

signs that can be well transferred from one culture to another with a high level of

expressiveness. Pang, in his thesis [Pan02] uses them to express the operator's
feelings in a nonverbal interface for the McDrive system developed for the McDonald

chain. Since the elements of a GIS are mostly about functions and objects concerned

with real-life actions and facilities, each one of them may be expressed by a smiley
icon, and when combined together with operator icons, they can form a visual query
language.

1.3 Query Optimization Strategies

The proximity analysis queries are considered as spatio-temporal queries since they

involve both space and time and can be categorized into several types. The first type

is the static buffer operator queries which are used when a static user enquires about

static objects. The second is the static buffer operator queries which are used when a

static user enquires about moving objects. The third is the dynamic buffer operator

queries which are used when a moving user enquires about static objects. The forth is

the dynamic buffer operator queries which are used when a moving user enquires

about moving objects. The nearest neighbor operator kNN is used similarly to the

buffer operator thus the four types of queries consist of the static nearest operator on

static objects, static nearest operator on moving objects, dynamic nearest operator on

static objects, and dynamic nearest operator on moving objects.

To deal with the different types of queries, different query optimization strategies

have been considered in literature. For example, in [Laz02, Son0l] the results of

previous queries are cached and used to prune the space of subsequent queries.

Another example used by [Tao02] is to pre-compute the result of a query that has a

fixed trajectory using computational geometry for stationary objects. The last example

used in [Mok04b, XIoO5] is to incrementally evaluate a query in other words the

updates of the queries are evaluated only.

5

The optimizations of multi-user queries have been focused on a single operator [LI05,

Liu03, Mok04b, Mok05b, Mou05, Pap03, Pap04, Pap05, XioO5, Yiu05, and Yu05]

but the multi-user complex queries still need to be addressed. Elmongul in [Elm06]

raised the challenges in the processing of spatio-temporal queries and showed how

important it is to address them. He proposed an optimization strategy for query

processing based on the selectivity of each operator and the number of objects that are
located a certain area, then, accordingly the order of operators to be executed is

swapped. But, the expected increase in the number of users in large-scale mobile

systems requires the introduction of a new Decision Making Mechanism that is based

on Sharing the GEP (Global Execution Plan) across users since a high rate of

similarity between the queries scenarios is expected.

1.4 The Structure of the Thesis

Chapter 2 conducts a thorough investigation into existing visual query languages in

order to examine their user interface and query building process. The investigation

includes the specification of which aspects of VQL are evaluated, the determination

of evaluation method and the discovery of the type of queries that are handled. The

chapter concludes with a summary identifying the advantages as well as limitations of

the reviewed VQL and it identifies the need for a new visual query language for

mobile GIS.

Chapter 3 reviews query optimization strategies in GIS in order to determine their

various approaches and examine how they are applied in various domains. It

investigates the propagation ruler mechanism and the existing time cost optimization

strategies in order to specify how they are implemented with different type of queries.

The chapter concludes with a summary identifying the advantages and limitations of

the reviewed query optimization strategies and identifies the need for a new query

processing paradigm as well as a new decision making mechanism for time cost

optimization.

Chapter 4 proposes a new visual query language IVQL that addresses the challenges

that are discussed in chapter 2 and describes its design and implementation. It

6

elaborates the constructs of the language, describes its architecture and explains the
formulation of complex queries. It also describes the process of evaluation and

presents the evaluation results and analysis of the usability testing as well as the user

testing. The chapter summarizes the results that are reported and analyzed as related

to the user interface, query building process, and expressive power of the language.

Chapter 5 introduces the Query Melting paradigm which is based on the sharing

paradigm, query optimization, and cost optimization. It presents the commonalities

that exist between various execution plans of queries, introduces the query melting

paradigm, describes its components, introduces the new decision making mechanism

which is based on sharing Global Execution Plan approaches. It also explains the

templates of the operators and describes the mechanism of the Melting Ruler showing

how it results in Query Melting.

Chapter 6 describes the design and implementation of the proposed Query Melting

Processor. The architecture of the processor is presented using a variety of diagrams

such as the Use case Diagram which is used to visualize the activities and tasks of a

system showing at the same time the actor/actors associated with each activity and the

Time Sequence diagram that shows the life time of each activity in the system. The

implementation of the processor is elaborated by showing and explaining the

algorithms that are related to each phase of the processor and evaluates theoretically

the cost of Melting. The chapter concludes with a summary of the computational cost

of each of the algorithms.

Chapter 7 presents the integration of the proposed IVQL together with the new

optimization strategies namely, Query Melting paradigm, Query Optimization, and

cost optimization by means of sharing the global execution plans. It starts with a

description of the components of the system. It presents an explicit scenario for three

users only in order to show how the system works and conducts an experimental study

with the aim to evaluate the system using a case study based on a Tourist Mobile GIS

application using the map of Paris, and it presents the results and analysis of the

evaluation. The chapter concludes with a summary highlighting the results of the

experimental study and showing the significant cost effectiveness of the new

strategies.

7

Chapter 8 concludes the thesis by specifying the main contributions of the work in

both the visual query languages as well as query and cost optimization research areas.

It gives a summary of the work done as well as its evaluation results. It also outlines

possible research areas that can be carried out in future work with respect to the type

of queries, operators, and optimization strategies.

8

Chapter 2- Visual Query Languages for

GIS

2.1 Introduction

The emergence of visual query languages plays an important role in human-computer

interaction (HCI) that is concerned with the design, evaluation and implementation of

interactive computing systems for human use. HCI has moved beyond designing user

interfaces to support all human activities and facilitate the user experience through

designing systems that would make the user's work easy and efficient, by improving

the learning process, providing enjoyable and exciting entertainment, enhancing

communication and understanding, and supporting new forms of creativity and

expression.

A major aspect of HCI is usability which is an essential key quality factor in software

engineering. KhaddaJ in [Kha04] defines it as the ability of a product to be used for

the purpose chosen. In other words, usability reflects how much the system under
development conforms to the objectives that were set for it. According to him, one of

the most important features of a useful system is having an easy-to-use user interface.

Usability Testing forms the basis for evaluating systems and their user interfaces.

Pressman in his book [Pre05] defines it as a measure of how well a computer system
facilitates learning, enables users to be efficient and makes them satisfied with the

system. According to him, the aspects of the system that are evaluated in order to

measure its usability are how easy it is to learn, effective to use, and easy to remember

how to use.

The usability aspects that are usually evaluated in any regular query language are the

query writing and the ease of use, whereas, the usability aspects of visual query

languages depend on the user interface, query building process, expressive power of

the visual language, the proper representation of the Icons used, the icons recognition,

interpretation, comprehension and memorization, and the ease of use. Thus, in order

to evaluate those aspects quantitati,,, ely. user testing should be conducted where the

9

user's performance is tested, whereas to evaluate them qualitatively, user satisfaction

should be tested.

In order to evaluate the usability aspects of existing VQL a thorough investigation is

conducted in this chapter in order to summarize their advantages and limitations,

identify the aspects that are used in the usability testing, and determine the method

used for their evaluation: user testing or user satisfaction. The existing visual query
languages can be categorized as non-spatial such as Kaleidoquery [MurOO, Mur98a,

Mur98b, Mur98c] and Link Analysis [Sm105, Sm104], both spatial and non-spatial

such as Filter-Flow [Mor04, Mor02] and GeoQA [Sto06, Sto03a, Sto03b, StoOO,

Sto98], and spatio-temporal such as LVIS [Bon02, Bon0l, BonOO, Bon99],

PHENOMENA [Lau03, Lau07, Pao07, Pao04, Pao03], and VISUAL TOOLS

[And04, And03a, And03b, And02, AndOO].

The rest of the chapter explores each category of visual query languages. Section 2.2

is concerned with the non-spatial visual query languages which are related to object

databases but do not handle spatial queries such as Kaleidoquery for Querying Object

Databases and EDVC Interface for Link Analysis. Section 2.3 is concerned with both

spatial and non-spatial visual query languages which provide the capability to query

spatial and non-spatial databases such as Filter-Flow Query for Large Databases and
GeoQA for Object-relational GIS. Section 2.4 is concerned with spatio-temporal

visual query languages which provide the capability to query spatial and temporal

databases such as LVIS for Querying Spatio-temporal Databases,, PHENOMENA for

querying Continuous Fields, and Interactive Visual Tools to explore Spatio-temporal

Variations. For each of the listed visual query languages, the icons that are used are

described with their meaning, the user interface is presented, and the query

formulation process is explained. An investigation is done to determine which aspects

are used in the evaluation of the visual language such as expressive power of the

icons, the ease-of-use of the user interface, the ease of formulating a visual query,

which method of evaluation is conducted, and the evaluation results. Finally, section

2.5 concludes with a summary of the advantages and limitations of the reviewed

visual query languages.

10

2.2 Visual Query Languages for Non-spatial Databases

The existing visual query languages that deal with non-spatial databases are

concerned with retrieving objects that satisfy certain conditions and constraints based

on their attribute values. The objects could be a person, company, etc. and the

constraints could be older than 20 years, greater than 100, etc. An example of these

visual query languages is the Kaleidoquery [MurOO] which uses 3D graphical
interface to represent and depict a visual query in the forin of a filter-flow. Another

example is the EDVC [Smi04] which uses objects and links to represent and depict a

visual query in the form of a network.

2.2.1 Querying Object Databases

The first example of the visual query languages that deal with non-spatial databases is

the Kaleidoquery [Mur98a, MurOO] which was designed for object databases that

depicts the query as a filter flow. The query language is graph based and represents

the database schema as a starting point for querying the database. The user constructs

a query by selecting parts of the schema and combining them with query operators

and/or constraints that are placed on attributes of the schema parts therefore the user is

actually performing a query starting with a mass of information. Query operators and

constraints are used as filters letting through only the information that the user is
interested in. The output of the query can flow into other queries for further

refinement. This flow and the refinement of infonnation are also depicted while the

user is building the query.

The filter flow model takes the input composed of class instances and filters them by

the constraints that are placed on the attributes of the classes in order to produce the

output. The queries produced by the user are translated into the Object Database

Management Group (ODMG) standard Object Query Language (OQL) that can be

utilized in any ODMG compliant database as described in [Mur98b, Mur98c]. The

class instance (extent) name and the icon associated with the class of the extent are

used to visualize the extents and the classes, as shown in Figure ". 1.

0
Potý, Il

ý0

peopic

-]

Figure 2.1: Example Schema.

Simple queries can use any of the operators =, <, <=, >1 >= and like. The simple query

shown in Figure 2.2 represents a constraint that results in producing an output that

includes only persons who are aged less than 20. The OQL for this query is:

select p

from p in People

where p. age < 20

Figure 2.2: A Simple Query showing Attribute Selection.

To visualize the 'and' and 'or' relations of a query, the filter flow model described by

Shneiden-nan [Shn9l] was chosen. Figure 2.3 shows how the 'or' is visualized by the

extent instances flowing into each part of the 'or' query. It also shows how the 'and'

is visualized by the extent flowing through the query and are filtered through each

constraint in turn.

Figure 2.3: Query showing the Use of 'and' and 'or' operators.

12

Arithmetic operators can be applied to attributes in a class and complex arithmetic

expressions could be built using attributes from different classes. The user can also

visualize a query that navigates from one class to another related class and apply

constraints to the related class's attributes. The queries can use the 'for all' and
4exists' operators of OQL as well as aggregates such as 'count' and 'max' functions.

The user builds the query first then selects how the results are to be structured before

viewing the output. The results can be sorted using the operator order by that is

visualized by an upward pointing arrow 'T' for ascending and a downward pointing

arrow 'ý' for descending. In order to partition the results of a query, the 'group by'

operation can be applied to separate the results into distinct groups depending on the

conditions that they satisfy.

The Kaleidoscope, the 3D implementation of Kaleidoquery, was designed and

implemented to examine the impact of utilizing different forms of hardware ranging

from the standard monitors and desktop mice to head mounted displays, 3D mice and

auto- stereoscopic displays. The database schema is displayed as 3D icons composed

of the class name and its visualization. A virtual hand allows the user to navigate

through the environment and select a class extent or an attribute to apply a constraint,

as shown in Figures 2.4 and 2.5.

ciliploý cr: Companý
parentsý list, Person, '
dilldrewhag 1, Icrson:
JLICý lilt
%Mlý: ý11-111L,

/\pall iucnt ((Ii1

Figure 2.4: A Person Attributes and the Virtual Hand.

13

0
Companies

a(
ollipd1lic"

empimerCompan)
parems: II st I Person:
children-hap 1,11cron

, i, -, c Int
i 11h, 11 11 1

týPartnicnt

Figure 2.5: Age Operations.

To evaluate Kaleidoscope [Mur98b], OQL was used to compare the 'select'

statements with the visualized interface for building queries in Kaleidoquery. Two

subject groups were selected from students who hold university degrees and were

classified as programmers and non-programmers. Programmers correctly defined

significantly more relationship queries in Kaleidoquery. They showed higher

preference for attribute comparison in OQL and for data flows over 'and' and 'or' in

OQL. Non-programmers answered significantly more correct queries in Kaleidoquery

than OQL. They defined more correct queries with results selection and showed a

higher performance for the structuring aspects of Kaleidoquery. In general,

programmers perfon-ned better than non-programmers.

As a summary, Kaleidoquery, the visual query language that was developed in
[MurOO], has a powerful visual query builder but it is mainly aimed at object oriented

databases. However, some of the ideas could be modified to be used on relational

models; also perhaps additional visual operators to deal particularly with spatio-

temporal queries can be added as to extend the Kaleidoquery in the object oriented

mode. Therefore, any new extension should provide a visual depiction of the spatio-

temporal schema and its attributes using the same 3D environment that was used in

Kaleidoquery as it has proven to be easy to understand, more user-friendly, and more

efficient.

14

npan)

2.2.2 Querying Link Analysis Databases

The second example of the visual query languages that deal with non-spatial
databases is the Exploratory Database View Constructor (EDVC) [Sm104, Sm105]

which is a visual query interface especially designed to support Link Analysis that is

used to understand data collected in criminal or terrorist threat analysis and helps in

guiding the future course of an investigation. EDVC is based on the method of

visualizing the data in the form of a network that shows the connections and

relationships between the objects of interest such as people, locations and the

information about them, thus enabling the user to establish if objects are connected. It

uses rectangular icons to visualize objects such as people and locations, directional

lines to represent the connections and links between the objects, and icons and lines to

construct a query which is then either executed or saved for further refinement where

objects and links can be altered to supply more meaningful information.

When a visual query is ready for execution, it is converted from the User Interface

Classes to the Query Operation Classes that is independent from any data source. The

current implementation of EDVC is for the DBMS Sentences [Laz04]. The results of

the queries are produced in the form of a link chart to increase the comprehensibility

of the user. It produces also text notes that display information that are not stored in

the database but might be of significance in future investigations. They suggest to the

user some key points about the link chart results, such as 'The evidence suggests that

Henry and Jack is in fact the same person'. The investigator can visually detect if

people or objects are connected when investigating a particular serious crime,

atrocities or terrorist work. The objects could represent people, companies, hotels,

restaurants, banks, etc. and the lines relationships such as friend, sister, married to,

works at, frequents, invests in, manages, advises, employs, owned by, date of birth,

calls, owns, etc. Thus, the network of connections can be visualized by using a Link

Chart that is made up of icons representing nodes and arrows representing edges as

shown in Figure 2.6.

Iý

f f f
(Arisfilic

fricnd freqýmmls fl7ucnu ýl niam cd to

_AjKk(rd

0,! w frequentý fre4rent,

Pal, I r-lnn3

Figure 2.6: The Connections between a Set of People displayed as a Network.

To represent a network of connections within a database, the Binary-relational models
[Abr74, Mcg80] are used based on the concepts of entity type and relationship type.

Queries are constructed visually through building link charts, by adding to the

working area the objects to be queried along with the required links between them.

Objects displayed with a question mark, as shown in Figure 2.7, are used to inform

the user that these objects have one or more links in the database but these links are

not currently displayed in the chart, thus suggesting that further exploration from this

object might be useful. The user could carry out the exploration in a step-by-step

manner or by using the special facilities that the explorer provides.

Jame, un
MCKInly Dm le,

i,, i, H OTO

22 C)CIUbCF 1977

Figure 2.7: An Explorer Interface Chart in Course of Development.

16

The explorer provides six facilities, dealing with objects which can be added to the

chart, that the user can use to carry out an exploration of the data stored as listed

below:

1. Display information stored about an object: the explorer displays in a separate

window the values and objects linked to a specific object.
2. Display objects connected to an object: the explorer displays all the objects

that are connected to a specific object.
3. Display paths connecting two objects: the explorer displays all the paths

connecting two specific objects.

4. Display objects connected to a group of objects: the explorer displays all the

objects connected to two or more specific objects.

5. Display objects similar to an object: the explorer displays all the objects that

are similar to a specific object according to a given set of similarity conditions.
6. Display the common properties of two selected objects: the explorer displays

all the objects and values linked to two selected objects based on the fact that

their links have the same type and direction of link.

The explorer provides also a programming level interface that allows the user to build

special query operations and displays their results as a link chart. The user may

remove elements from the chart or reposition its elements for better clarity which can
be improved by rearranging elements in a circular or hierarchical fashion. The queries

are referred to as filter patterns which are mainly divided into two categories. The first

category consists of queries that filter the database objects and links and the results of

which are made up of objects and links are added to the chart displayed in the

explorer. The second category consists of queries that filter the objects and links that

are displayed in a specified link chart. This category is used to construct a sequence of

queries when further modifications and operations are needed to increase refinement

and comprehensibility. The Filter Pattern Constraints consist of five types.

1. Object Constraints: an object constraint matches an object or all the objects

that are instances of an object type.

Link Constraints: a link constraint matches two objects that are linked by

instances of a -.), iven link type. Figure 2.8 shows a link constraint that matches

17

instances of a specified link type to display all people who telephoned David

Jones.

pff- I

Figure 2.8: A Filter Pattern to display all People who telephoned David Jones.

3. Path Constraints: a path constraint matches connections between objects. It

produces all the paths connecting two objects. The produced paths may

include the shortest path.

4. Object Comparison Constraints: object comparison constraints connect two

object constraints. It specifies whether the objects matched by the constraints

should be identical or different as shown in Figure 2.9.

II
I, 0

4
Figure 2.9: A Filter Pattern matching People involved in a Company owned by

David Charles.

5. Excluded Constraints: a constraint may be excluded from the chart. When it is

excluded, all the objects, links or paths that were matched by the constraint

will be automatically removed from the chart.

EDVC not only focuses upon visualizing the query specifications but also on

visualization of the database query results. It shows the results of a query in the form

of a link chart which may also be modified to play the role of a new query. Elements

from the link chart may be removed or modified to increase comprehensibility and to

get a better clarity of infori-nation. EDVC is implemented using two groups of classes.

The first group is used to provide the User Interface and the second one to perform the

18

Query Operations. The data exchanged between the two groups is independent from

the data in the database. EDVC is developed using the DBMS Sentences where each
database is referred to as a profile that consists of many chapters to store metadata and
information about profiles changes. Each user is provided with a separate profile
hence, if many users are accessing the system, none of them can actually view nor

affect the other users changes made to the common data. Thus, EDVC provides each

investigator with the possibility of independently testing hypotheses.

The evaluation that was conducted in [Sm105] aimed at evaluating the ease of use of
EDVC visual user interface. Twenty subjects were chosen at random from different

educational background, ranging from early school leavers to postgraduates students.
All the subjects had experience of interacting with graphical user interfaces but had

no previous knowledge on using a database query language, a programming language,

or Link Analysis. Each subject filled in his personal information in a pre-evaluation

questionnaire. The query system was explained to each subject in two separate tutorial

sessions, one for the introduction of the explorer interface and the other for the

introduction of the filter pattern editor. Three aspects of usability were tested: query

writing, query reading and query comprehension, with the aim to measure how

proficient a subject is at forming queries. The results of the user evaluation indicate

that the visual interface provided by EDVC is well suited to supporting the users with
little or no experience with a conventional DBMS interface, the subjects were able to

form a useful class of queries and this was facilitated by the intuitive style of the

interaction provided in the explorer, the user interface for constructing path filters

needs to be improved, and a greater level of training needs to be provided.

2.3 Visual Query Languages for both Spatial and Non-spatial

Databases
The existing visual query languages that deal with both spatial and non-spatial

databases are concerned with retrieving objects that satisfy spatial conditions about

points, lines, and regions and have attribute values that satisfy conditions and

constraints. The spatial objects could be a building, road, or city and the non-spatial

could be any attribute with a certain value. An example of these visual query

languages is the Filter-Flow [Mor04] which uses a filter-flow to depict a query about

19

both spatial and non-spatial objects. Another example is the GeoQA [StoOO] which

uses an interactive map and a query composer to forinulate joins about both spatial

and non-spatial data.

2.3.1 Querying Spatial and Non-spatial Objects and Relations

The first example of the visual query languages that deal with both spatial and non-

spatial databases is the Filter-flow [Mor04, Mor02] which has an interface for large

spatial databases. The various types of queries are expressed by Basic Filters that are
fon-ned of icons each of which is used for a different type of spatial relations. The

different types of spatial and non-spatial constraints are expressed using a
diagrammatic technique utilizing a data flow metaphor, based on the filter flow

metaphor proposed by Young and Shneiderman [Shn93], that uses the metaphor of

the water flowing through a series of pipes and uses the layout of the pipes to indicate

the binary logic operators 'and' and 'or'.

The different relations that exist between spatial constraints are presented in a

hierarchical fashion. Filters are used to construct query diagrams between data input

and data output elements and the queries are visualized by a flow of information that

may be filtered or refined. The visual queries produced by the user are parsed and

translated to the extended SQL query language. Rectangular boxes are used to depict

and visualize the object classes. Each rectangle contains the name of the class and an

icon representing its spatial data type, whether point, line, polygon or any other

composite data type previously defined in the database. Figure 2.10 shows an example

schema and the icons used to depict the basic spatial representations.

[1 "

I-I\ fl j
(\ Road i

I

Figure 2.10: Example Schema, the Basic Spatial Representation of the Objects.

Simple queries are represented by simple filters that produce results based on non-

spatial conditions and they can use any of the operators =, <, <=9 >, >= and 'like'.

Spatial (unary) operators can be included in any query to produce results related to

20

area, volume, perimeter/boundary, etc. Non-spatIal (aspatIal) filters are used to

represent constraints over the stored attnbutes and the properties of the features.

Figure 2.11 shows an aspatial filter that depicts the query that results in producing an

output that includes all the roads with road type 'motorway'. The SQL for this query

is: 'Select All From Road Where Road. rtype='motorway ' '.

Rood

Am pt:
motom ar

oh

Figure 2.11: An Aspatial Filter in a Simple Query Construct.

The constraints are joined in series. The flow will pass through only when all the

multiple constraints are satisfied. The negation of constraints is depicted by a line

crossing any of aspatial or spatial filters. They may be applied on any or all of the

constraints, but they do not affect the order in which constraints appear. Join

operations are used to express a relationship between objects and spatial join

operations are used to express a spatial relationship between spatial objects in the

database. They are visualized by a rectangular box placed in spatial and aspatial
filters. Each join filter may be linked to many result boxes associated with every

joined object class. Figure 2.12 shows the join filters and an example of a spatial join

query which is to find all the motorway roads that cross counties with population

more than 50000. There are three types of spatial relationships: 1) Directional:

'North', 'South', 'East' and 'West', 2) Proximal: related to distances and the measure

of proximity, 'within a distance of x meters', and 3) Topological: 'Intersection',

, inclusion', 'adjacency', etc.

21

FA

Pý
(hi

rlý
mol(IM

foad. geonletrN
Wuniý "Coll)cllý

1c)

Figure 2.12: a) Non-Spatial Join Filter b) Spatial Join Filter c) Spatial Join

Query.

The evaluation that was conducted in [Mor04] aimed at evaluating the filter-flow

visual query language. The ArcView GIS interface was used to compare its query
building process with the filter-flow visual query formulation. Evaluation tests for

both the language and the interface have been designed to reflect and evaluate the

expressiveness of each. Two subject groups of users were selected and classified as

users with some experience of using GIS systems and users with no prior knowledge

of GIS. The results showed that the Filter-flow visual query language simplified the

learning process of the user, made the query expression process easier and proved to

make the query expression more readable.

As a summary, the Filter-flow visual query language that is described in [Mor02,

Mor04] may be used effectively to visualize queries associated with both spatial and

non-spatial databases through a powerful visual query builder. However, it is not

suitable for supporting spatio-temporal databases. Additional visual operators such as

start, finish, during, etc. to deal particularly with spatio-temporal queries can be

visually represented and added so as to extend the query power of the Filter-flow

visual query language. Therefore, any new extension should provide a visual

representation of the spatio-temporal relations and constraints using icons. It should

also provide a visual depiction of the query filtering process the way it was provided

iii the Filter-flow visual language.

22

2.3.2 Querying Object-Relational Databases
The second example of the visual query languages that deal with both spatial and non-

spatial databases is GeoQA [StoOO] which is a visual query and analysis tool that has

been developed as an integral component of the GinisNT, an Object-Oriented

geographic information system framework used for GIS applications development. It

has an interactive visual interface used for formulating and processing spatial, non-

spatial and combined queries, which provides the user with the capability of

performing spatial, thematic and statistic analysis, with graphical presentation of

query results for an easier spatial analysis of specific geographic situations. This may
be applied in GIS applications that are used for urban planning, natural resources

management, weather modelling, vehicle navigation, prevention of pollution and

natural disasters, etc. It is deployed on the GIS application GeoTT which is developed

for monitoring, maintaining, inventory managing, and analyzing the Telegraph-

Telephone cable network in the Republic of Serbia, Yugoslavia as described in

[Djo96, Sto98].

GeoQA graphical user interface is a WYSIWYG interface made up of icons, toolbars

and a panel in which maps are displayed each in a separate window and may be

moved, panned, and zoomed. It is supported with dialog boxes, forms, pop-up menus

and direct object manipulation. Two sets of Icons are displayed in toolbars based on

their function and representation. The first set contains icons representing all spatial

entities. The second set contains icons representing spatial relations (topological,

geometric and direction) and spatial operators (point, region, window). The user uses

the mouse and the icons to manipulate directly and interactively the maps and objects

that are visible on the screen. Dialog boxes and text input are used in formulating

spatial queries that include spatial relations.

The user is provided with a variety of query facilities such as point-query, region-

query, query composer, and SQL query builder, where a query can be saved for later

loading and refinement. The output result is displayed in a window in the panel with

or without the background map based on the user's choice. The GeoQA processor, the

Mediator [Sto99], is for the 00 front-end to RDBMSs, processes the non-spatial

queries, and uses geometric filters, spatial indexing (grid structure) and computational

23

geometry algorithms to process spatial queries. The GeoQA interface shown in Figure

2.13 is based on the use of geo-referenced continuous raster maps, displayed as a
background on the screen, that enable the user to move, pan and zoom in, as well as

easily get all infon-nation related to a referenced spatial as well as non-spatial object in

a map.

Slwrimt
Path

I-F I

Digtnwe
IT--1L I

GeoQA Vistial Query Appi-oach

hubi5ion htier ge C tion Aditc -cy

MOO GeoQA. Stojatomic"

Figure 2.13: The Visual Query Interface of GeoQA.

The spatial operations that can be performed through queries are of two types namely

the point-query and the region-query. The point-query is used to display a dialog box

that contains all the thematic properties of a certain spatial entity. The region-query is

used to mark by a specific color all the entities that are located in, adjacent to or

overlap a certain region. The spatial querying and analysis is used to perform complex

spatial queries that include spatial relations. Complex queries can also be fon-nulated

by two ways. The first is by using a specific GUI component called Query Composer

and the second one a combination of icons called Iconic Query Composition. In the

Query Composer, the query is fon-nulated by using icons, dialog boxes and text

interactively whereas in the Iconic Query Composition, the query is fonnulated by

using icons only. The user selects from the toolbars all the icons that represent the

elements needed to be defined and builds any query. The primary objects and the

reference objects can be selected from the spatial entity toolbar whereas the spatial

relations icons can be chosen from the spatial relations toolbar. After combining the

24

selected icons, the spatial query is shown on the screen in the form of a simple text.
The user can review the query for possible mistakes before executing it.

The thematic and combined querying is used to perform alphanumeric queries
through the SQL Query Builder which formulates the SQL 'WHERE' clause of a

query. Its dialog form contains list boxes and icons. The user can build a query by

choosing attributes (Fields) of spatial entities from list boxes, clicking on icons that

represent relational operators (<, >, =), then choosing values from the value list boxes.

To combine two or more conditions, the user can click on icons that represent logical

operators 'and', 'or', and 'not'. While the user builds a query, the corresponding SQL

'WHERE' clause is displayed in a text box allowing him to check for any errors or

mistakes, interactively, and make any necessary amendments before executing the

query. The SQL Query Builder also provides the user with a set of icons that represent

aggregate functions such as 'minimum', 'maximum', 'sum' and 'average' that are

used for statistical analysis and can be applied on any set of attribute values for

thematic querying and analysis.

As a summary and discussion, the GeoQA that is developed by [StoOO] is a visual

query and analysis tool developed as an integral component of the GinisNT object-

oriented GIS applications development framework. It is used for performing both

spatial and non-spatial queries as well as analyzing spatial, thematic and statistical
data. It provides the user with a user-friendly and ease-of-use visual interface and

enables fast query processing. The query results are graphically represented for easier

spatial analysis. GeoQA should be extended in the aim to cover the exploration of

spatio-temporal queries by including new temporal concepts and relations hence

making it a spatio-temporal query and analysis tool. A limitation is that no tests were

conducted to evaluate the visual query interface. Usability testing should be

conducted to determine whether the icons are understandable and convenient for users

who perform data analyses in various spatial and non-spatial domains.

25

2.4 Visual Query Languages for Spatio-Temporal Databases
The existing visual query languages that deal with spatio-temporal databases are

concerned with retrieving objects that satisfy spatial conditions about points, lines,

and regions and at the same time vary with time or satisfy a temporal constraint. The

spatial objects could be a building, road, or city and the non-spatial could be any

attribute with a certain value. An example of these visual query languages is the LVIS

[Bon02] which uses icons to represent objects and relations. Another example is the

PHENOMENA [Lau03] which uses icons to represent spatial objects and temporal

phenomena. The last example is the VISUAL TOOLS [And04] which use time-

control panels to specify the beginning and the end of a time interval and the query is

executed on an interactive map.

2.4.1 Querying Spatial and Temporal Objects
The first example of the visual query languages that deal with spatio-temporal
databases is LVIS [Bon02, BonOO, Bon99] which uses Geographic pictures to

represent spatial objects (object types) and Geometric shapes to represent relations

among them (operators). It uses Balloons and Anchors placed on a temporal axis to

describe spatio-temporal criteria. The user builds a visual query by selecting a

combination of the icons that represent the pictures, shapes, and temporal axis. The

temporal queries are built inside balloons which may be minimized in form of anchors
for better visualization of the query under development.

The interface of LVIS contains a working area where the user builds the visual

queries that can be validated then transferred to the query area either for execution or

further refined. The query is then translated to a pivot language that is independent

from the host query language of the target GIS platform and is compatible with the

standardized Spatial-SQL [IS0196] for spatial operators and with TSQL [Sno95] for

temporal operators. Then, the visual query is translated from the pivot language into

the GIS target language and the result of the query is displayed on a map. LVIS is an

extension of the CIGALES [Auf95, Lba97] which is a visual query language for

spatial databases where temporal aspects were not considered and the set of operators

is very limited. Some of the icons that are used to visualize object types are shown in

Figure 2.14.

26

71
Ar rm 9- a

Figure 2.14: Sample of the Object Types of the Queried Database.

The three spatial types that can be handled by LVIS are represented by geometric

shapes associated with each object of a query as shown in Figure 2.15.

/ 'rv tc 111,1; ,ýh, LýFII"-,

Li tie eir oble, i tilte

10
ýurfac tc oblet i iipc

Figure 2.15: The Basic Elements of the Geometrical Shapes.

The thematic criterion of an object is visualized using a text located under its icon. During

query building, a question mark is located above an object to show that this object is the

target of the query, as shown in Figure 2.16.

I argei meaning thal [he
querý looks liwr the oblecis of
tý N . ý4 r Rtsurl

Figure 2.16: The Target Basic Visual Element.

A balloon visual metaphor is used to represent temporal criteria. It contains the specification

related to a given object and can be viewed using a reduced representation called anchors.

Figure 2.17 shows the anchor visual metaphor.

--__--%
rcjirý, ýni. aion A

Ow a-, sociaied anchoi

jhd

Figure 2.17: The Anchor Visual Metaphor.

The temporal criteria of a query are represented by interval values located onto a linear axis

which is the main temporal object type that is handled by the model. If the period of an

27

interval is the null duration, another specific visual representation is used to express it and it is
called the Instant. LVIS interface uses visual representations to express the operators that
make up a query. The operators are classified according to their type: logical. spatial,
temporal or spatio-temporal. The logical operators 'and', 'or' and 'not' are represented by
icons. Other visual representations are used to express the spatial topological operators:
Cintersection', 'inclusion', 'adjacency', 'disjunction' and 'equality'. The temporal operators

of LVIS are either binary or unary and based on the definition given by Allen in
[A1183]: 'before', 6 equals', 'meets', 'overlaps', 'during', 'starts' and 'finishes'. The

Binary operators are used to compare two objects during time and the Unary operators

are used to compare one object vis-a-vis a reference period.

Spatio-temporal queries involve at the same time spatial and temporal queries. They

can also specify criteria such as the evolution of spatial properties and changes over

time. The visual representations of the six evolution operators are 'creation', 'split',

'merge', 'growth', 'diminution' and 'destruction'. LVIS converts the visual queries to

a textual language called a pivot language which is then translated into the host

language of any GIS platfon-n. There are three levels through which the queries have

to pass in order to be processed: the visual, textual and target languages. The

graphical interface of LVIS includes a set of icons representing the objects types as

well as the icons representing the operators. In order to build a query in the working

area, the user selects the object type icon which is then added to the working area,

then clicks on the operator icon which applies the operation on the selected object

types. For example, the effect of clicking on the intersection icon is shown in Figure

2.18. The user validates the query by clicking the Validate Icon. Then LVIS transfers

the query to the validation area in order to be either executed or modified by adding

further refinements such as applying new operators to the whole query or a sub-part of

the current query.

28

InchulorL

(D G-
T-mipv-; r. rtiral

cl)

Adjacency

C)O CD-

Path Distame

.E

S-

LVIS Visual Quei-y Appi, oach
? Object types

City River

(D

I ru tances

C) Ski
Resort

S aved Querie! s

V ahdat e

LNIS, Boulionme 20012

Figure 2.18: Selection of the Operator Intersection.

The evaluation that was conducted in [Bon02] aimed at evaluating the expressive

power of LVIS. In order to perform the evaluation tests, the marketed GIS Maplnfo

has been chosen as the target platform as in [BonO I]. A set of queries has been

defined for the testing process and they are classified as spatial, temporal and spatio-

temporal queries. An example of a spatio-temporal query used is shown in Figure

2.19: Which trucks did come into Paris before 6 p. m. and go out after 8 p. m.? Two

subject groups were chosen: persons working with GIS and persons who are non-

experts in geography. The results have shown that the icons of the language are well

accepted by the two populations.

Figure 2.19: The Visual Representation of a Spatio-Temporal Query.

29

As a summary, Bonhomme in [Bon02] developed LVIS which is a visual query
language based upon a query-by-example philosophy. LVIS is an extension of the

visual language Cigales and is devoted to spatio-temporal information systems. In
[BonOO, Bon02], it has been shown that the LVIS visual query interface has proven to
be effective in the sense that the recognition of its icons is effective to users especially
the ones without prior experience with GIS systems and spatio-temporal databases.

The results showed also that the subjects were able to recognize the relationship
between spatial objects very easily and the icons of the language are well accepted by

the two populations. However, these tests covered only spatial and logical operators.
They should be extended to the new visual metaphors of balloons and anchors in

order to test the recognition of the visual representation of spatio-temporal queries. A

limitation is that the tests were done on paper instead interactively where a subject is

working on the interface of the visual query language, trying, testing and evaluating in

a real-life experience, hence, making his sense of judgment better.

2.4.2 Querying Continuous Fields
The second example of the visual query languages that deal with spatio-temporal
databases is PHENOMENA as described in [Lau. 03, Pao03, and Pao041 which is used
for Continuous Fields. It manages both continuous fields and discrete objects in a

unifonn manner. Continuous fields represent real-world events and phenomena that

are related to the environment and its resources, such as temperature, pressure and

electromagnetism. Phenomena are measured by distinguishing what varies and how

smooth their variation is. Discrete objects represent points, lines or areas. In the visual

user interface of PHENOMENA, the user is provided with the capability to capture

some features of a scenario by selecting an area of interest and handling the events
involved. The user can select portions of continuous fields and then formulate queries

based on spatial conditions visually using a set of suitable metaphors called

geometaphors. When building a query, the user chooses first a continuous field that is

represented as geographic data and then a function that describes its behavior.

Combining continuous fields with spatial conditions provides the user with the

capability of querying those phenomena that vary in space, such as the temperature on

a region, the density of population in a city, the pollution in a nver, a surface

30

elevation or the point where the wind has the maximum power. Thus, PHENOMENA

is intended to be used by domain experts such as geologists, meteorologists,

archaeologists and sociologists.

The graphical user interface of PHENOMENA is made up of two areas. The area on
the left contains the icons that represent continuous fields such as temperature and the

icons that represent spatial objects such as river. The area on the right contains the

icons that represent the aggregate functions such as 'minimum'. The user drags and
drops the icons into the central tabbed panel in order to fon-nulate the query that

follows the SQL like Select-From-Where scheme. Once a query is forinulated, it can
be either executed or saved for later loading and refinement. PHENOMENA is used

to define an extension of the standard OpenGIS SQL that is meant to manage

continuous fields and to integrate them with discrete data. The icons that visualize the

geographical region Rhone River, Temperature, and the function 'minimum', are

shown in Figures 2.20,2.2 1, and 2.22.

Rhone

Figure 2.20: The Geometaphor Icon Used to Represent the Rhone River.

I
Figure 2.21: The Geometaphor Icon Used to Represent Temperature.

-%Il\

Figure 2.22: The Icon Used to Represent the Mathematical Function Minimum.

The features that are available have been grouped based on the following four

categories: continuous operators, spatio-continuous operators, aggregate functions and

31

derived attributes. Continuous operators are used to select subparts of continuous
fields, such as 'minimum point', 'maximum point', 'concave', and 'convex'. Spatio-

continuous operators are used to select subparts of continuous fields based on domain

conditions, such as 'interior', 'exterior', and 'boundary'. Aggregate functions are used
to derive a collection of values from a dataset, such as 'minimum', (6maximurn'.

cmean% 4sum9,4count', 'intersection', 'union', and 'difference'. Derived attributes are

used to extract important information using basic functions, such as 'surface',

I integral', 'area' and 'density'. Other spatial operators may also be included, such as
'touches', 'crosses" 'within', 'contains', 'overlaps', 'disjoint', 'distance', and
'equals'.

The visual user interface of PHENOMENA is made up of two areas. The area on the

left which is called the Geodictionary contains all the geometaphors that are used to

visualize spatial fields and continuous fields on which queries may be formulated.

The area on the right which is called the working area is the interactive area where the

queries are formulated. It is made up of two tabs, the Visualize tab is used for the

aggregate, spatial and intensity icons and the Condition tab is used for constructing

the WHERE clause of a query and constructing complex queries by applying logical

operators and combining atomic conditions. PHENOMENA is based on the tree

metaphor to allow users to construct combined queries by using the 'and' operator

which is represented by a line connecting two or more conditions, the 'or' operator

which is represented by branching the conditions and linking them by the LINK

button, and the 'not' operator which can be applied on a condition by selecting the

'not' button.

Figure 2.23 shows the 'Intersection' function to be applied on all the geometries that

resulted from the previously constructed conditions. The RUN button generates the

SELECT-FROM-WHERE clause and displays it in a box in order to allow the user to

verify the textual SQL query.

32

EE

Figure 2.23: The Application of the Intersection Aggregate Function.

As a summary and discussion, PHENOMENA that was developed by [Lau03,

Pao04], is a visual query language based upon a drag-and-drop philosophy, an

extension of the OpenGIS SQL, and devoted to spatio -continuous information

systems. Its major power underlies in the fact that it can manage continuous fields as

actual spatial data and provides the user with the capability to be able to manipulate
both continuous fields and discrete objects in a uniform manner. The same aggregate

functions such 'minimum' can be applied on geographic data such as The Dry Status

of Vegetation and on continuous fields such as Temperature. The results of both fields

are visualized as spatial fields.

The evaluation of PHENOMENA that was conducted in [Pao03] aimed at evaluating

the visual query interface which has proven to be effective in the sense that the

recognition of its icons is effective to users especially the ones without prior

experience. This task was made easy due to the usage of intuitive visual

representation of both the continuous fields as well as the conditions that are involved.

A major advantage is the use of geometries to select portions of continuous fields

based on some spatial conditions applied. However, nothing was mentioned about any

tests conducted in order to evaluate the assessment of subjects and the efficiency of

the visual query building. PHENOMENA can be enhanced to include temporal fields

operations. The time parameter should be considered in order to include real life

phenomena, such as the study of the temperature on Earth, the analysis of the

pollution, following guided tours, querying about a certain geographic area of interest

and exploiting activities.

33

2.4.3 Exploring Spatio-Temporal Variations

The third example of the visual query languages that deal with spatio-temporal
databases consists of several Interactive Visual Tools [And04] which are an extension

of the CommonGIS that is used to explore the analysis of spatial data. The early

visual tools that were developed in [And03b, AnA02, and And99] extended the
CommonGIS power to include only the visualization of spatial data analysis and

comparison. Those tools were limited in the sense that they tackled spatial data not

spatio-temporal data. The latest interactive visual tools support the exploration of

spatio-temporal data, i. e., the data that vary temporally while referring to spatial
locations as elaborated in [AndOO, AnA03a]. They provide the user with the possibility

to manage spatio-temporal data such as crime analysis in a certain geographic area

over a certain period of time. Different types of crimes can be analyzed such as,
burglary, vehicle burglary, violent crime, murder, property crime, etc. The tools

provide the user with the capability to explore the variations in the dataset and the

changes of thematic properties, i. e. values of attributes.

The tools include a variety of interfaces for output analysis such as animated thematic

maps (time-controlled maps), map series, dynamic transformations of the data, value
flow maps and time graphs. The interface environment provides the user with time-

control icons located in a time-control panel to specify the beginning and the end of a

certain period of time during which the changes have occurred on a spatial location.

The user can analyze the temporal changes that occurred on a specific spatial location

based on the type of analysis needed, such as the output that is produced as a set of

maps called map series used to compare many maps that are displayed serially in one

panel. These new tools have been added to the previously developed ones to extend

the power of CommonGIS in the aim to make it include the comparison and analysis

of spatio-temporal data. They can be used by exploratory analysts in the analysis of

thematic spatio-temporal data because they use time controls to allow the user to set

the starting and ending of a period of time as well as the time-moment at which any

analysis or map animation starts.

34

The first Interactive Visual Tool's interface is based on a time-control panel that

includes time controls to set the starting and ending of a period of time. The user can
set a moment in time that belongs to this period of time. Then, the tool will display

the data values and attributes that are related to the spatial location at this pre-set time

moment. This is called time-controlled thematic maps or time maps. The user can
display the data values of the previous and next years by clicking the back and forth

icons and he can also set the value of the step to the number of years he wants to skip

if he wants the output to display the data values at different time intervals. The same

time panel is also used for running map animation. The play icon displays

automatically the changes of the data values on the map taking into consideration the

step value. The delay value, which is like a waiting time between redrawn map

outputs, is used to control the speed of the animation and allows the user to have

enough time to look at the maps and their changing data values.

The second Interactive Visual Tool was developed to handle map series. The map

series are used to compare multiple data values distributions of the same attributes

that are related to the same spatial map but at different moments in time. The maps

are displayed serially one below the other in the same panel to provide the user with a

clearer view of the maps and allow him to evaluate local changes, i. e., how the

attribute values have changed from one moment to another at a given location. If the

user points the mouse cursor to an area on any of the maps displayed in the panel, a

popup menu displays the attribute values of all the time moments that are represented

in the whole panel. The third Interactive Visual Tool was developed to handle

dynamic data transformations (called transformers) used to replace the current

attribute values that are displayed on a map with transformed values, i. e. those that

reflect the differences between current attribute values and those of another time

moment, without the need to redraw the map displayed again. Different colors are

used to represent positive and negative differences for clarity purposes.

The fourth Interactive Visual Tool was developed to handle value flow maps which

can be used to explore the temporal vanation of attribute values (called behavior) at a

particular spatial location. It displays on each area of the map a small diagram called

value flow symbol which is made up of a honzontal axis that corresponds to the time

dimension and a vertical axis that corresponds to the values of the attributes at a

3-5

particular location and can be compared to the mean or median at each time moment.
The tool reflects on the maps the differences between the attribute values and mean of
their locations. The positive behaviors are displayed in red above the horizontal axis

and the negative ones in blue below the axis. The user can easily understand the

results and compare the areas results using colors.

The fifth Interactive Visual Tool was developed to handle time graphs that display all

the behaviors in one common coordinate system. The user can analyze and evaluate

more precisely the differences between two or more behaviors at any time moment on

a single time graph by selecting their locations. Thus, only the behaviors of the user-

selected locations are shown for an easier comparison. If the user wants to analyze

the general development trends of a certain area, he can also select to compare the

mean averages, i. e. the line that connects the years averages. The tool allows the user

to displays the average behaviors of many locations together on the same time graph

for comparison purposes.

As a summary and discussion, New Interactive Visual Tools have been designed and

implemented in [AndOO, And03a, and And04] using Java applets. Their main

advantage is that they are interactive which provides the user with an immediate

feedback and an online interaction while analyzing spatio-temporal data. When the

user clicks an icon or selects an option, the tools automatically update the data

representation on the maps that are displayed in the panel without the need to redraw

any of those maps. Another advantage is that they produce many maps serially one

under the other in the same panel for a better comparison and use different colors to

show positive and negative values. Hence, the tools provide the user with quick

reading, understanding, exploration and analyzing of spatio-temporal data. One

limitation is that no tests were conducted to evaluate them. Usability studies should be

conducted in order to determine whether these tools effectively support the tasks they

are designed for and whether they are understandable and convenient for users who

perforin data analyses in various spatio-temporal domains.

36

2.5 Summary

This chapter has presented a thorough investigation into existing visual query
languages and examined their user interfaces and query building processes. The

investigation also covered the specification of which aspects of visual query
languages are evaluated, the determination of evaluation method and the discovery of

the type of queries that are handled. The reviewed visual query languages have proved

to have significant contribution in the query language area. Although, they provide

very different user interfaces they all give the user the ability to formulate a query by

selecting icons or metaphors. In fact, a number of these languages allow the user to

drag and drop the selected icons to a special working area in order to validate the

query before its execution.

Moreover, the languages provides interfaces to a variety of systems and GIS

applications, some are based on object oriented concepts, others are purely spatial but

not temporal etc. which have impacted the design and the development of the user

interfaces. Some of the visual query languages have been tested in order to evaluate

the user interface and the user satisfaction while others have not. Finally, some of the

conducted tests were not adequate either because they have not covered different

usability aspects or the tests were not of interactive nature.

A common limitation to all the languages is that they are not tailored for Mobile GIS,

they do not provide complex query formulation, and they do not include dynamic

queries. Thus, there is a need for a new visual query language aimed at Mobile GIS,

and that can handle dynamic complex queries. This should take into account the

evaluation of the expressive power of the icons, the user interface and the query

building process. Moreover, a thorough usability testing should be conducted through

user testing and user satisfaction in order to measure its ease of use.

37

Chapter 3- Query Optimization and GIS

3.1 Introduction

In order to access the data of any type of databases, a query is formulated, executed,

and its results are reported to the user. The software component that is responsible for

the execution of a query is the Query Processor which is also commonly known as the

Query Optimizer. Its main purpose is to convert the query into low-level language and

execute it. Therefore, query optimization plays a major role in querying databases and

in fact it has been the point of interest of a lot of research [Liu03, Mou05, Pap03,

Son0l, Xio05, Yiu05, and Yu05]. With the emergence of Geographic Information

Systems query optimization undertook a major change because each GIS query

should be converted into an Execution Plan due to the nature of the data which is

spatially referenced and includes maps. Hence, each operator in GIS such as 'Find the

Nearest Facility' has a corresponding execution plan made up of a list of steps that

should be executed in a certain order to produce the necessary output.

GIS Simple query optimization which is responsible for processing simple queries

that are formulated with one operator only consists of converting the simple query

into its corresponding execution plan, and executing the plan. Whereas GIS complex

query optimization which is responsible for processing complex queries that are

formulated with many operators, consists of converting each operator into its

corresponding plan, and requires managing the multiple execution plans before

executing them. This is due to the fact that commonalities might exist between the

steps, which requires merging them and the sequence of steps might need to be re-

arranged in order to construct one global execution plan for the whole complex query.

Only then, the complex query optimizer can execute the global execution plan as

elaborated in [And06, Elm05, Elm06, Mok05a, and Mok05b].

In order to evaluate the query optimization strategies of existing query processors a

thorough investigation is conducted in this chapter which summarizes their

advantages and limitations, identifies the approaches that are used, and deten-nines the

methods used for their evaluation. The existingr query optimization strategies can be

38

categorized based on using the Sharing Paradigm [AndO 1, And02a, And02d, And02e,

And03, And06, Afe98], push-down Strategy [Elm05, Elm06], or both [Mok03,

Mok04a, Mok04c, Mok05a].

The rest of the chapter explores each category of query optimization strategies.
Section 3.2 explores the process undertaken in Query Optimization for the various

types of databases and queries. Section 3.3 introduces the sharing paradigm as well as

the push-down strategy. Section 3.3.1 is concerned with the multiple-client simple

query processors which are based on the sharing paradigm by: 1) sharing memory for

cashing input data, intermediate results, and query results, however they do not handle

multiple dynamic complex queries such as the GIS Runtime System, and 2) sharing of

the underlying space and object of interest for the type of queries that deal with

finding if an object is located inside an area, however they do not consider the type of

queries that deal with proximity analysis. Section 3.3.2 is concerned with the

proposed multiple-client multiple-predicate query processors which are based on the

push-down approach to provide the capability to swap or reshuffle the execution order

of operators in an execution plan such as the Data-to-Plan and Histograms for Data

Stream Management Systems. The proposed processors shows that building a uniform

adaptive query optimization framework is the key in addressing building a query

evaluation plan and determining the optimal plan by including: selectivity estimation,

cost estimation, adaptive query optimization model, and an extension of query

optimization to cover multiple multi-predicate spatio-temporal queries. They are

concerned with sharing sub-plans of multiple queries but do not suggest sharing

totally global execution plans by multiple similar dynamic complex queries. Section

3.3.3 is concerned with the continuous simple query processors which are based on

both the sharing paradigm as well as the push-down strategy by introducing a new

Shared Global Plan particularly implemented against the initial query execution plan,

but do not perform sharing by merging the operators and objects, and do not handle

sharing global execution plans by multiple complex queries with similar scenarios,

such as the Pervasive Location-Aware Computing Environments (PLACE) for Spatio-

temporal Streams. Section 3.4 is concerned with a ruler mechanism which provides

the capability to navigate through hierarchical change and its propagation such as

Navigating through Hierarchical Change Propagation in spatio-temporal queries but is

not applied in the query optimization of dynamic complex queries. Finally, section 3.5

39

concludes with a summary of the advantages and limitations of the reviewed query
optimization strategies.

3.2 Query Optimization

The main goal of query optimization is to minimize the cost of processing a group of

queries while constructing one global execution plan for all the queries. Multiple-

query optimization has been investigated by many researchers [Kan94, Par88, and
SeI88] at the algorithm low-level representation of the queries instead of analyzing

input at the query language level (command) to produce a global access plan. In order

to convert the queries into executable code, the queries should undertake the

following steps:

1. Decompose queries into high level primitive operations (e. g. Selection, Join,

and Projection).

2. Perform common sub-expression elimination (CSE).

3. Reorder the execution of queries (Push-Down) in order to minimize the

execution time.

4. Construct a global access plan.

5. Convert the queries into a low-level program (query translation).

The primary contribution of [Kan94] is that the query optimizer can recognize when

temporary relations that are used to hold intermediate results can be reused, induce

common sub-expressions which can be removed, perform common sub-expression

elimination (CSE) that was previously introduced and suggested by [Par88, SeI88],

and reordering the execution of queries in order to minimize the expected execution

time.

The steps that are listed earlier apply for relational databases. However, after a

thorough examination of GIS queries in general and Location-Based Services (LBS)

40

queries in particular, it is obvious that the same steps can be followed, particularly
since most GIS are based on relational databases. Moreover, processing LBS queries
has become of great importance due to the nature of LBS applications which include

requesting the nearest facility, navigating a street network path turn by turn. locating

people, receiving alerts such as a notification of sale on fuel or a warning about a

certain traffic jam, finding stolen phones, calling emergency services, advertising,

common profile matching (dating), automatic airport check-in, and paying to toll

collection watch.

Two types of queries exist in location-based applications [Elm06, Mok05a]. First, the

stationary queries also known as static queries, where the user issues a query about

objects around him based on his current XY location. The result consists of one map

that shows the objects with respect to his position at the current time instance. Second,

the continuous queries also known as dynamic queries, where the user issues a query

that should run for a certain period of time. The GIS server receives at every time

interval the new location of the user from a GPS system. The result consists of

multiple maps each representing the answer based on the new location of the user.

The dynamic query stops when the period of time expires, the user issues a

cancellation order, he reaches his destination, or gets disconnected. When a user is

disconnected, his unit automatically issues a message to the server informing it about

the interruption.

In order to build a global execution plan for GIS queries, the query optimization steps

identified earlier can be extended and applied on "multiple spatio-temporal

continuous multi-predicate queries" also known as "dynamic complex queries". The

queries are decomposed, common sub-expressions are eliminated, the execution of

queries is reordered, a global access plan is constructed, and the queries are translated

into low-level programming. Moreover, the execution of a set of queries requires

several "global execution plans" to be built. Only then, the query execution cost in

terms of resources can be assessed. This is normally based on execution cost [And06,

Elin06, Mok05a] which is the time it takes to be executed, the space it occupies in the

RAM cache memory, and the number of 1/0 operations it executes.

41

3.3 Query Optimization Strategies

A lot of research has been made at different levels of query processing and
optimization with the aim to produce cost effective results. At the level of common

sub-expression elimination (CSE), the sharing paradigm has been used as a means to

achieve scalability which is defined as the ability to handle faster a large number of

queries. Sharing can be applied on the input data in order to eliminate the 1/0

operations [And0l, And02a, And03], on intermediate query results in order to be re-

used by final results, on query results in order to be re-used by other similar queries,

on the underlying space where intersections of areas can be queried once, on query

operator in order to execute once multiple similar queries, and on the object of interest
[Mok03, Mok04a, Mok05a]. Whereas, at the level of re-ordering the execution of

operations, the push-down strategy has been applied as a means to optimize the

execution plan through swapping, reshuffling operations, or pushing them down in the

plan in the aim to achieve a faster retrieval of the results [Elm05, Elm06].

3.3.1 Sharing Paradigm in Query Optimization

The existing query optimization strategies that use the sharing paradigm are

concerned with processing multiple queries in data analysis applications. An example

is the Virtual Microscope Processor [And02c, And02d, And06, Afe98] which is based

on sharing data input to eliminate FO operations, intermediate results in RAM, and

query results to be used by other queries. It provides efficient processing of multiple-

client queries in data analysis applications such as data analysis, data exploration, and

visualization of large multi-dimensional and multi-resolution scientific datasets. Most

data analysis applications access a subset of the data stored in order to analyze it and

produce needed results. In a multi-user environment, many clients access the same

dataset and perform similar analysis on the data. Thus, the server needs to execute

simultaneously multiple queries in an efficient way in the aim to minimize latencies to

the clients.

The work involved the design and experimentation of a framework that examines

efficient strategies and runtime support for the execution of the queries [And06]. The

runtime system was designed for shared-memory multi -processors. It tackles queries

42

that are user-defined, allows the input data to be shared, and the query results to be

reused by other queries. It aimed at optimizing query processing by (1) maintaining

intermediate data structures generated by queries for inten-nediate results, (2) caching
input data in memory, and (3) providing support for multi-threaded execution where

each query is executed as a thread. Caching methods are used to store query results in

the memory in the aim to avoid the duplication of expensive methods computation,
hence, speed up the execution of queries [And02b, And03]. These results along with

input data can be used by other queries to produce new results. When caching is

implemented at the server side, multiple clients can share the query results.

The running system was implemented as a middleware on the Virtual Microscope

[Afe98] which is an application used for browsing digitized microscopy images. The

architecture of the framework consists of four major components namely Query

Server, Data Sources, Page Space Manager, and Data Store Manager. The Query

Server is responsible for planning and executing the queries that are received from

clients. It inquires about the available memory space from the Page Space Manager

and the Data Store Manager in order to better schedule the queries. The Data Sources

provides a flexible mechanism for storing datasets. Input Datasets are stored in the

memory in a page-based form. Retrieving data stored on a local disk in the form of

pages (chunks) is faster than retrieving single data items individually. Thus, the 1/0

overhead is reduced significantly as elaborated in [And02a].

The Page Space Manager as described in [And02b] controls the allocations and

manages the buffer space available for input data. It implements the replacement

policies that are specified by the server. Its main function is to keep track of 1/0

requests received from the multiple queries. It orders and merges them, thus

eliminates duplicate requests and minimizes the 1/0 overhead. The Data Store

Manager is responsible for caching input data and query results in order to be used

later by other queries. First, it stores for each user-defined query its semantic

information about intermediate data structures. Then, it provides dynamic storage

space for intermediate data structures that are generated as partial or final results of a

query. Its main function is to allocate the buffer space, assign a pointer to it, and

return the allocated buffer.

43

The experiment that was described in [And02c] was conducted on an 8-processor
Symmetric Multiprocessing (SMP) machine, running Linux Kernel version 2.4-3.

Each processor was a Pentium 111 550 MHz and the main memory had a4 GB

capacity. The emulator software, called Driver Program, was used to emulate the
behavior of multiple simultaneous clients. Two scenarios were considered in order to

examine the performance of the runtime system and for each scenario two executions

were done; each considered as a case making a total of 4 cases. In the first scenario,
16 clients were emulated each generating 16 queries about the same dataset. The

calculated value of the overlap index was large 70% reflecting a high overlap among

queries. In the second scenario, 8 clients were emulated each generating 16 queries

about disjoint datasets making a relatively small overlap index of 59%. Two

executions were done for each scenario. In the first one, the Data Store Manager was

ON, hence maintained intermediate results. In the second one, it was OFF, hence did

not maintain intermediate results. The execution time in seconds of each case was

recorded.

An evaluation of the perfon-nance was conducted in [And06] where a comparison of

the 4 cases results showed that a better performance was obtained when the Data

Store Manager maintained intermediate results. In the high overlap index case, the

execution time decreased by about 30% to 40%. In the low one, it decreased by about

18%. Results were also reported for varying the number of threads, e-g, for the cases

where the maximum number of queries allowed to execute concurrently varies from 2

to 16. The query execution time decreased as the number of threads increased. The

same was done but varying the size of the data storage in the RAM from 64 MB to

512 MB. The results showed that query evaluation time decreased as the size of the

data store manager cache increased. There was less PO overhead due to the fact that

the number of page requests decreased. The same was done by increasing the number

of queries to 1600. The execution time decreased by 38%. In summary, Andrade

[And03] developed a GIS runtime system for executing multiple query workloads

through using Shared Memory. The strategy was implemented by using inten-nediate

data structures and caching data in memory, with each query being executed as a

thread.

44

3.3.2 Push-Down Strategy in Query Optimization

The existing query optimization strategies that use the push-down approach are

concerned with processing execution plans where the order of execution of the

operators affects the execution time without affecting the output result of the query

such as having both the Selection and the Join operators in the same execution plan.
In some cases and depending on the data records, the execution of one the Selection

operator before the Join operator produces faster results than the execution of the Join

operator before the Selection operator, and vice versa [Mok04b, Mok04c, Mok05b].

The same applies to the 'SELECT' statement that includes the 'INSIDE' operator and

the 'WHERE' clause for spatio-temporal databases [Elm05]. The push-down strategy
is based on swapping operators in an execution plan in order to get faster results. A lot

of research work has recently focused on investigating means and criteria to

determine which operators to push-down with the aim to have cost effective execution

plans hence optimize query processing [Liu03, Mou05, Pap03, YiuO6, and Yu05].

An example of a query optimization strategy that is based on the push-down paradigm

is described in [Elm06] which raises a number of challenges concerning the

optimization of multiple predicate spatio-temporal queries. It is based on Spatio-

temporal Data Stream Management Systems (ST-DSMS) which handle mainly two

types of queries namely the snapshot spatio-temporal queries and the continuous

spatio-temporal queries. A snapshot query is usually evaluated (executed) on the fly

only once when it is submitted. Whereas, the continuous queries are repeatedly

evaluated and their answers are updated every time a new location update is reported
from the moving objects. Previous approaches to those challenges [Son0l, XioO5]

have addressed the moving queries that are made up of only a single predicate such as

a range predicate or a k-nearest-neighbor (kNN) predicate. However, they do not

consider the case where the queries are formed of many predicates.

Multiple-predicate continuous spatio-temporal queries play a role of great importance

because they cover a large variety of real-life applications. One example of such

queries is to continuously monitor the nearest hotels (a kNN predicate) ahead of the

user's way (a range predicate) while he is driving on a highway. Another example Is

to find in \\,, hich region of a continuously monitored city the number of suspects is

45

greater than the number of police officers. The impact of time and/or space, the
distribution of the objects and/or queries, and the existing spatio-temporal operators

raises many challenges. The first challenge is how to build a query evaluation plan to

answer multiple predicated continuous spatio-temporal queries. The second challenge

is to identify whether the evaluation plan is optimal with respect to the system

overhead or not.

Hence, the proposed idea in [Elm06] is building a uniform adaptive query

optimization framework that includes: selectivity estimation, cost estimation, adaptive

query optimization model, and an extension of query optimization to cover multiple

multi-predicate spatio-temporal queries. The selectivity estimation for evolving

spatio-temporal data takes into consideration some of their properties such as

periodicity and correlation. The Spatio-Temporal Histogram (ST-Histogram) in
[Elm05] was used to estimate the selectivity of a continuous spatio-temporal query

operator. ST-Histograms are grid based where the universe is uniformly divided into

disjoint cells. They are built by monitoring the actual selectivity of the outstanding

queries. The selectivity of the spatio-temporal operators is sent from the query

executer to the histogram manager periodically in form of statistics called feedbacks.

Queries are represented as spots of light that reflect the region's selectivity in each

grid cell where the intensity of the light is proportional to the fraction of the histogram

region illuminated by the query. When queries overlap, many light spots are directed

to the overlapped region. This results in a lighter intensity which means a better

accuracy in the selectivity estimate. ST-Histograms can accommodate the selectivity

of their corresponding single query operator. An extension was proposed in order to

accommodate multiple feedbacks especially the spatial relationship between queries.
A cuboid cost function was proposed to estimate the cost of a query which in turn

provides a framework for adaptive query processing. It is based on the following

factors:

1. Average lifetime of an input update in the query pipeline - this is the

execution time needed until it is reported to the user.

46

2. Average storage required as internal states per input update - this is the

amount of storage needed and the probability of getting stored.
3. Average selectivity of input updates - this is the ratio of the number of moving

objects whose location updates are forwarded to the query pipeline over the

total number of objects.

A data-to-plan grid was proposed in [Elm06] as a framework for an adaptive query

optimization model for continuous spatio-temporal queries. In order to prevent

executing the same query plan on all location updates, the data-to-plan grid directs

each location update to a relevant plan. Hence, the location updates are forwarded

only to the queries whose answer may be affected by them. A dynamic plan formation

mechanism is used to adapt to the changes that occur in the system parameters which

provides the facility to add, remove, or reshuffle the operators in the query evaluation

plan. An extension of query optimization to handle multiple multi-predicate spatio-

temporal queries was proposed. The idea is sharing common operators and sub-plans

between multiple queries. A query evaluation plan might be altered in order to allow

the sharing of an operator between multiple queries. In summary, Elmongui [Elm06]

raised the issue of optimizing the query plan of GIS continuous spatio-temporal query

processing and showed that building an adaptive query optimization framework is the

key in addressing the challenges that are related to them.

3.3.3 Sharing Paradigm and PushDown Strategy in Query

Optimization

The existing query optimization strategies that use the sharing paradigm as well as the

push-down strategy are concerned with processing scalable incremental spatio-

temporal queries. An example is the research directions outlined in [Mok04b,

Mok04c, Mok05a, Mok05b] which deals with the query processing of continuous

real-time spatio-temporal queries in a location-aware services environment.

Continuous queries are based on progressive data accumulation on the server. Their

results are produced at regular intervals or may be triggered when a certain event

occurs. Since these queries are issued by moving objects, any delay in the response

nilght lead to non-efficient results and obsolete answers. Hence, the need for query

47

optimization techniques emerges. The proposed idea in [Mok04a] is the usage of the

sharing paradigm as a means to achieve scalability which is defined as the ability to
handle faster a large number of spatio-temporal queries. The sharing concept is of
three types namely sharing the underlying space, the execution of multiple similar

queries (query operator), and sharing the objects of the same interest as explained in
[Mok03].

The first type of sharing as described in [Mok04a] is sharing the underlying space

which investigates the type of queries that are concerned with finding whether one or

more objects, such as one or more cars, are located inside a spatial area. All the

queries have the same object but different areas. The set relations that could exist
between the areas are namely the inclusion, intersection, and independence. The

inclusion applies where one area is completely included in another, is denoted by RI

(-- R2, and here the first query is considered as spatially contained in the second one.

The intersection applies where two or more areas have some parts in common, is

denoted by RI r) R2 : ýO, and the queries are considered as overlapping queries. The

independence applies where there exists no common areas between them, is denoted

by RI r-) R2 =0, and the queries are considered as non-overlapping queries. An

example of the spatially contained queries is where the first query is to find if a

certain vehicle is located in region RI and the second query is to find if the same

vehicle is located in region R2 where RI (-- R2.

An analysis was done as described in [Mok04a] to identify the sequence of evaluating

spatially contained range queries. Since the first query's region RI is totally included

in the second's R2 , it is obvious that executing each query alone will lead to searching

the same region RI twice, once for each query. It is optimal to search once the

common region RI and use the results for both queries. This is called sharing the

space. However, is searching or evaluating RI before R2 more efficient than

searching R2 before Rl? It was suggested that Cost Models should be developed in

the aim to decide upon the optimal sequence of evaluating spatialýy contained spatio-

temporal queries.

48

Thus, a plan was illustrated as a decision tree to visualize a cost model that reflects
the expected number of comparisons needed for every sequence of regions, RI then
R2, versus R2 then RI. The expected number of each sequence is calculated as the

product of the number of comparisons needed and the probability of finding an object

in the region, which, by assuming that the total area of the space that includes the

regions is 1, can be calculated as being equal to the area of the region. Each

alternative sequence or query plan has its own estimated cost based on the cost model.
The optimal sequence is the one with the lowest estimated cost. The challenge is to

generalize the idea to multiple spatially contained queries.

The same cost model can be used for the non-overlapping queries. The generalization

states that queries with larger regions or areas are evaluated first. It is obvious that this

is due to the fact that the probability that an object lies in a larger area is greater than

in smaller ones. The same cost model can be used for the overlapping queries along

with the generalization of the non-overlapping queries. The larger intersections are

evaluated before the smaller ones because the probability of locating an object inside

them is higher than in the latter. The decision tree here produces an output where the

result of evaluating a sequence of comparisons depends on the result of the evaluation

of the previous one. Hence, the challenge was to develop systematic or heuristic

methods that could build such decision trees for any number of queries in order to

achieve a scalable location-aware server.

Sharing the query operator is the second type of sharing as described in [Mok04b].

The type of queries, that were investigated, is concerned with continuously informing

the user about a group of objects that are located in different areas such as the number

of vehicles in a region and when the number of vehicles in another region exceeds a

certain limit. In the vehicle example, all the queries have the same underlying

structure hence they share the same Vehicles table, but they search various regions.

Thus, they have in common an SQL part hence they share the same following

operator:

SELECT VAD

FROM Vehicles V

WHERE V. IocationilUide Ri

49

Where, the spatial operator inside checks whether a point lies inside a region Ri or not.
In order to execute the common SQL part for N queries, the following initial

evaluation/execution plan is repeated N times: (1) read the Vehicles table and (2)

compare each vehicle location to the query region using a point-rectangle inclusion

test. In other words, the table Scan operation becomes an intensive FO operation. In

order to avoid these repetitions and optimize the query execution, a new Shared

Global Plan was implemented and evaluated, against the initial query execution plan,

where a Region table is created for the queries regions Region (RID, Extents) where
RID is the query identifier and the Extents is the rectangular query region. In the

suggested Shared Global Plan, the Vehicles table is read only once and joined with the

Region table based on the condition V. location inside R. extents. The output of the Join

is the set of tuples of the form (VID, location, RID) indicating that the vehicle VID is

inside the query region RID. In order to justify using the plan, it was necessary to find

whether or not the cost of the Join operation between the Vehicles table and the

Regions table was less than the cost of reading the entire Vehicles table N times.

Sharing the objects of the same interest is the third type of sharing as described in
[Mok04c]. The type of queries that were investigated is concerned with continuously
informing the user about the number of various specific types of objects that are

simultaneously located in a certain area such as the number of cars and the number of

trucks that are simultaneously located in a region. All the queries have the different

types of objects but the same areas. They also have in common the following SQL

part:

SELECT Count (V. ID)

FROM Vehicles V

WHERE V. type = type

AND V. 1ocation inside R

In order to apply the sharing concept, avoid repetitions, and optimize the query

execution, another new Shared Global Plan was implemented and evaluated in

[Xlo04], against the initial query execution plan, where a query Regioni table, similar

to the one explained above, is created for each of the specific objects of interest. The

push-down approach [Che02] was applied, where the Selection operator is pushed

below the Join operator in the execution/ c valuation plan. In other words, the Selection

50

is performed before joining. The Vehicles table is read only once using the 'SELECT'

operator that includes the 'WHEPE'/'OR' for a list of types. Each tuple is forwarded

to its corresponding Join operator, i-e, joined either with the Region] table or with
Region2 table, based on the conditions Vlocation inside Ri. extents. Thus, the Join

operation is executed and performed only between the proper query region and the

tuples that correspond to the particular objects of the same interest.

This has led to the consideration of the following: (1) to develop a cost model to

compare applying the push-down approach versus not applying it, (2) to study the

difference between using two separate Region tables against using one Region table

followed by a Selection operator, (3) to implement the selectivity estimation to check

the cost of having a separate table for each object type, and (4) to explore having one

table per group of object type instead of one table per type. The push-down in

[MA04c, Mok05b] is pushing down the Selection operator in the global execution

plan in order to be executed before the Join operator. Similar queries are grouped in a

query table. Then, the moving objects are joined with the moving queries by using a

spatial Join algorithm but without any indexing structure. Moreover, an incremental

paradigm was introduced in [Mok04a] to apply the sharing approach. The incremental

evaluation was achieved by reporting only the updates that occurred on the previous

answer of queries. The input is either from the Selection result or from the Join result.

Its output is either Positive updates which report the addition of a new object to the

previous answer or negative updates which report its removal.

Three different joining policies introduced in [XioO4] namely Clock-triggered Join

Policy (CJP), Incremental Join Policy (UP), and Hot Join Policy (HJP), were used in

[Mok05a]. The Clock-triggered Join Policy (CJP) is mainly introduced for

comparison purposes. In order to save on the continuous re-evaluation of all the

spatio-temporal queries, the spatial Join is reevaluated every T seconds by joining all

the records in the objects table with all the records of the quenes table. Having large T

values may lead to outdated results to the user, whereas, having smaller T values may

lead to an excessive number of computations. Thus, the one minute T interval was

used as per [Kol99, XioO4]. The major drawback of this policy was that at every

evaluation, all the objects are joined to all the queries even if they did not change their

location since the last T interval of time. The Incremental Join Policy (IJP) is mainly

51

used to avoid the drawbacks of the UP policy. It does not execute the spatial Join for

the objects and queries that did not change their location since the last T interval of

time

The Hot Join Policy (HJP) enhances the UP policy. At each evaluation time, the

objects and queries are identified as hot if their movements affect the query answer

and as cold if their movement has no effect at all. To do so, each query is assigned a

unique No-Action Region in such a way that an object or a query can move inside this

region without affecting the query answer. When an object or query moves out of the

former calculated No-Action region, it is identified as hot, otherwise, cold. A

prototype database engine called Pervasive Location-Aware Computing

Environments (PLACE) was developed for spatio-temporal streams as described in

[Mok04a] and used to implement the query processing and optimization algorithms.

The hardware used was an Intel Pentium IV CPU 2.4 GHz with 512 MB RAM

running under the Windows XP operating system. The software Network-Based

Generator of Moving Objects [B602, Mok05b] was used to generate randomly a set

of 100K moving objects and 100K moving quenes, based on an input map and its

street network. The RAM buffers were not used in order not to affect the experimental

results.

The results of the evaluation of the push-down approach, as reported in [Mok04c,

Mok05b], showed that the size of the complete answer (number of records) remained

constant for any percentage of moving objects. Moreover, it was orders of magnitude

of the size of the answer returned by the push-down approach. The three joining

policies were implemented and their performance was experimentally evaluated.

Their VO cost was calculated as the number of Input/Output operations executed.

Whereas, their CPU cost was calculated as the time consumed and spent by objects

and queries in the RAM memory. An execution cycle was defined as the process of

executing all the queries. Ten execution cycles were implemented varying the

percentage of moving queries from I% to 10% respectively.

The results, as reported in [Mok05a], showed that for "moving queries on stationary

objects" and "stationary queries on moving objects", the CJP policy had a constant

number of VO regardless of the percentage of moving queries. This was due to the

52

fact that the whole table of quenes was joined with the whole table of objects e'very
time a cycle was executed. The UP policy had a number of 1/0 that was significantly

smaller than CJP. The same applied to the HJP policy when compared to UP. Also,

the CPU cost of the CJP was two orders of magnitude higher than the other two. The

IN policy had a much lower CPU cost than CJP. The FIR policy had a lower CPU

cost than UP. The differences in the cost results were due to the fact that each

consecutive policy avoided more and more the Join operation.

And finally, the results, as reported in [Mok05b], showed that for "moving queries on

moving objects", the 1/0 and CPU costs had similar values to the above two types, but

with a larger cost difference. This was due to the fact that most moving entities

avoided joining costs. It was concluded that for any type of query, the HJP policy

outperformed the UP which in turn outperformed the CJP. The incremental evaluation

paradigm was implemented and its performance was experimentally evaluated for the

64moving queries and moving objects". The server buffered the updates received and

evaluated them every 5 seconds. The results showed that the size of the complete

query answer (number of records) was orders of magnitude of the size of the worst

incremental answer [Mok04c]. While varying the percentage of the moving objects
from 0% to 10%, it increased up to seven times that of the incremental answer.

As a summary, the approach that is presented in [Mok03, Mok04a, Mok04b, Mok04c,

Mok05a, and Mok05b] is based on the sharing paradigm as a means to achieve

scalability. It extends the push-down approach which is executing the Selection before

the Join operation, to include the continuous spatio-temporal queries. The incremental

approach was introduced which produces the updates in the results instead of re-

executing the whole query again. The results of the experiments showed a significant

decrease in the 1/0 and CPU costs. However, the work addresses only the cases of

multiple simple queries where there is only a single query per user therefore it would

be a challenge to address multiple complex queries where there are multiple queries

per user. Moreover, it introduced a new Shared Global Plan particularly implemented

against the initial query execution plan, but does not perform sharing by merging the

operators and objects, and does not handle sharing global execution plans by multiple

complex queries with similar scenarios.

53

3.4 Transformation of Natural Language Spatio-Temporal Queries

Since GIS are mainly concerned with real world features, its objects can be di"'ided

into three categories namely spatial entities, temporal entities, and spatio-temporal

entities. The spatial entities represent geographical objects and have properties and

attributes that describe how the objects are located in space. The temporal entities

represent time and may be divided into time intervals which are periods of time with a
beginning and an ending or time instances which are time snapshots of a specific
time. The spatio-temporal entities represent how geographical objects change over

time based on their attributes and behaviors which describe how the objects are
located in space at a specific time instance. The spatial domain of a geographical

object is described using properties such as size, color, shape, location in space, etc.

and the relation between objects is described using topological attributes such as
inside, intersect, overlap, etc. The temporal domain is described as a distance in time

using a time-point or time-interval and the relation between time distances is

described using temporal operators such as before, after, overlap, start at, end at, etc.

The spatio-temporal domain represents geographical phenomena and describes how a

geographical object changes over time.

One form of spatio-temporal queries is the natural language queries where the user

asks a question about the change evolution of a particular area or city over a certain

period of time such as "How has changed Orono from 1984 until 19967 This query is

about a spatial domain which is the state of Orono and a temporal time interval which

is between 1984 and 1996 inclusive. However, the Orono state is made up of towns,

roads, lakes, etc. which in turn are made up of buildings, etc., which in turn are made

up of rooms, etc. In order to process this query the query processor should first

examine the hierarchical propagation and decomposition of the spatial domain, reach

to its atomic element (the smallest element), re-compose the query according to the

semantics that are defined in the query language, and execute it. The same should be

done for the temporal domain. In fact the process of decomposing and re-composing a

query is called transformation. After the transfon-nation process, the query becomes

"Do all the rooms of Orono exist and none was changed for every day from 1984 till

19967

54

The existing query optimization approaches that use the transformation strategy are
concerned with processing spatio-temporal queries in detecting changes. An example
is the Hierarchical Change Propagation in spatio-temporal queries which is descnbed
by Mountrakis et A in [MouOO]. There are three levels of change in spatio-temporal
queries, the verification of the existence of an entity, the identification of a change of
an entity, and the detailed description of this change. To describe how these three
levels of change are propagated, a new dynamic classification scheme and its

interaction with a spatio-temporal model were introduced. A tree-based hierarchy was

used to represent the spatial as well as the temporal domains.

A transformation function can be applied between these levels in order to provide the

user with the possibility to navigate through the tree hierarchy levels. The two

functions that the user can manipulate are the Minimum Spatial Element (MSE) and

the Minimum Temporal Element (MTE). They assist the user navigation in multiple

spatio-temporal granularities. A sliding rule paradigm was also employed in order to

support the navigation process through multi-resolution data. The approach is novel in

the sense that it incorporates the concept of granularity in the query process of a

spatio-temporal model.

3.4.1 Structure of the Model
A short presentation of the proposed spatiotemporal model is hereby introduced. The

structure of the model is designed in a way to accommodate queries of different levels

of details. Accordingly, change is decomposed in two levels: entity and object. The

model consists of a Geographical Identity Register, a Change Indexing Register, and

a number of Child Databases. At the top level of the structure, the Geographic

Identity, Database (GID) is used to store the information about the existence through

time of every geographic feature. An abstract representation joined with a lifespan, as

described in [CH87], is stored without any explicit spatio-temporal information. The

geographic feature is treated as an entity at this level. At the middle level, the Change

Indexing Register (CIR) is responsible for the continuous communication and updates

between parent and children as well as the consistency in their corresponding records.

This register provides the essential multi -dimensional indexing mechanism, as

described in [Lan921, which handles the flags to all the attnbutes of the child

55

databases that have been modified. At the lowest level, the child databases are used
to store or express the actual characteristics of change of an object. There is a
parent/child relation between the GID and the child databases.

The child databases are selected based on many criteria that aim at providing
independence between them in order to assure minimal redundancy, and completeness

in order to assure their adequate description of all the essential aspects of change.
Each child database corresponds to a specific dimension of change. Three

independent components of change have been considered, which leads to generating
three child databases. The first is a Geometric child database which contains

information about the outline such as the edges of an image or an area, the second a
Positional one which describes the position of the object such as X, Y, Z coordinates

and orientation information, and the third is a Thematic one which describes the use

of the object such as identifying a building as being residential.

3.4.2 Categorizing Queries by Level of Detail
The structure presented above is based on three levels of detail that are hereby

analyzed. A hierarchical structure was introduced to categorize the spatio-temporal

queries based on three levels of detail. The first level is the Existence of Entity in

which a qualitative Boolean query can be performed to check whether an object exists

or not. The query is applied and executed on the parent database, the GID. The object

is treated as an entity with no further spatio-temporal attributes. This type of query is

referred to as identity based query, as described in [HorOO], which is Boolean in

nature (single-source query). The second level is the Existence of an Object's Change

in which a YES/NO query can be performed to check whether a change of a specific

object exists or not. The query is applied and executed on the Change Indexing

Register (CIR) without the need to access any of the child databases. This query is

differential in nature (at least 2 sources are needed). The third level is the

Characteristics of Object's Change in which a detailed query can be performed to

retrieve a complete description of all the attributes of the object that changed. Only

the modified attributes of each database are accessed and returned. The query is also

differential in nature.

56

3.4.3 Spatial Domain

The aim is to introduce a tree-based hierarchy of classes and provide applications of

propagation of change in queries at the spatial domain. In order to be able to detect

changes in the spatial domain, a hierarchical structure was used to categorize classes
based on the class containment relationships such as part/whole or

container/contained relations as described in [Art96]. A tree-based structure of entities
in the spatial domain was used in order to introduce these relationships as constraints

to activate change propagation. The tree structure is dynamic in the sense that new
levels can be added up or inserted between existing ones such as inserting counties
between the state and road levels, or adding new instances to an existing level such as

adding a forest class at the same level as the road level.

Moreover, any branch of the tree can be moved within the hierarchy without

affecting the performance of the approach for example a road can be moved under a

town. This is due to the fact that the sliding rule approach focuses on the relative

arrangement of entities without considering the absolute distances between successive

nodes. The resolution reference that is established to measure the change in the spatial
domain is the Minimum Spatial Element (MSE) which expresses the spatial resolution

of a recorded change. The MSE can be assigned either an absolute or a relative value.
An example of assigning an absolute value would be when the MSE of a building is a

cube of I in xImxI in, any change larger than this unit is considered as a change in

the spatial object. An example of assigning a relative value would be when the MSE

of a building is a wing, room, or brick. The advantage of the MSE relies in the

flexibility that it provides when it is assigned a relative value. When the user

considers a building to be a MSE of a town, a propagation process of change

resolution is automatically triggered because the object types (classes) are being

chosen differently. The MSE functions are projected in the tree structure that is shown

in Figure 3.1 similarly to a sliding rule.

57

S

So L
,?,

State

Fmad Lake Town

41 Pavernent 40 Lane BuAding Gym

0 Stone Asphalt Roorci--]

40 Brick

as

bs

Sliding Rule(So, a,, b,) Ia Spatial Class -+Spatial RelatiOnship I

Figure 3.1: The Sliding Rule on Spatial Hierarchy.

The sliding rule has mainly three parameters. The first parameter is So which specifies

the original position of the rule and reflects the relationship between the spatial extent

of the query and its corresponding class. The second and the third parameters are as

and b, which specify the distance in number of nodes for the two MSE functions. The

MSE functions exist between classes and the containment relationships exist between

objects. Conceptual conflicts can be avoided by combining class level and object

level. For example, an object Memorial_Gym can have a part/whole relation with the

object Orono-town, but there is no MSE relation between their classes Class_Gym

and Class-Town. Another example would be that the Class-building can be a MSE

for the Class_Town class, but the object My_House does not have a spatial

relationship with any of the two objects classified as towns, simply because the

building is located in another state.

During a query process, there is an interaction between the levels of details of the

query and their implicit classification. The query is first decomposed into three

parameters and second transfon-ned into a range of resolutions. The three parameters

are resolution, spatial extent. and temporal extent as shown below:

Query [Level ofDetail, Spatial Extent, and Temporal Extent].

To elaborate more on the query process, the following query is to be analyzed and

classified to show the difference between the three levels of details: "How has Orono

changed last year? " The level of detail is 3, the spatial extent is "Orono", and the

temporal extent is "last year". In general, the level of detail is assigned the value one

when the query refers to a question of existence of an entity. The query is processed

without using the MSE function or the tree structure. In the other cases where the

level of detail might be equal to two or three, the system automatically moves down

one class in the hierarchy and moves up one level of detail. The above described

propagation rules can be better illustrated by using the following example. Having a
database that contains 2 towns, 450 buildings, 5400 rooms, and 4 gyms, the user may
define the following at the class level through the sliding rule:

Class-Building = MSE (Class_Town)

Class-Room = MSE (Class_Building)

He may define the following at the object level to ensure that the spatial relationships
between the objects exist from time t, until timet2:

Boardman_Hall = Part_of (Orono_Town, tI, t2)

GIS-LAB = Part_of (Boardman_Hall, ti, t2)

The following hierarchy represents the above defined MSE classification:

A) Class-Town

B) Class_Building

C) Class_Room

59

The Classjown is assigned the letter A, Class
-

Building B, and Class-Room C.
based on the class hierarchy defined above. When a query is performed at the spatial
domain, the letter inherited from the class hierarchy (A, B, or C) is assigned to a code
followed by a number representing one of the three levels of detail (1,2, or 3). For

example, if the query is "Did the town of Orono exist in 192 1 ? ", the generated code is
Al which is made up of the letter A that stands for the first class in the hierarchy

Classjown and the number I that stands for the first level of detail namely the

Existence of Entity.

This level I query is addressed without using the MSE classification. If the query is
"Has the town of Orono change during the past 4 years? " the generated code is A2.

By applying the propagation rule, the letter A is converted into B, meaning that the

query has been transferred to all the objects of the building class, and the number 2 is

converted into I, to compensate for change at the spatial level. Accordingly, the above

query is rephrased and produces a new query which is "Do all the buildings of Orono

exist and none was added for the past 4 years? " The way the classes have been

defined above shows that the Class_Building class is the only one of interest to the

user and that the class of the buildings is the only MSE for the class of the towns. If

more details are needed about a town, a new set of MSE functions should replace the

above ones and be declared as follows:

Class-Room=MSE (Class-Town)

Class_Gym=MSE (Class-Town)

This declaration is most convenient for the queries that belong to the level 3 type such

as "How has the town of Orono changed from 1988 until 19967 The same approach

is followed by applying the propagation rule. The A3 code is converted into B2. After

a second application of the propagation formula, the B2 code is converted to C1. The

resulting query is now "Do all the rooms of Orono exist and none was added from

1988 until 1996""

60

3.4.4 Temporal Domain
The aim here is to provide applications of propagation of change in queries at the
temporal domain. To represent the temporal domain, the continuous time model of the

reality is projected to the snapshot time model while still keeping track of the

relationship that this projection is establishing. Every time interval is actually

partitioned in one, two, or three sectors depending on the change fon-nat. Each sector
(segment) corresponds to a state which could be either the sleep mode or the action

mode. Figure 3.2 shows the two different modes on a single time scale, where the

time instants TI and TI+dtI are respectively the beginning and the end of the time

interval, and Tla and Tlb are respectively the beginning and the end of the Action

Mode.

Tl Tla Tlb

Figure 3.2: Sleep Mode versus Action Mode.

Tl+dtl

The action mode is an interval called "black box", has the label "action", and does not

include any temporal infon-nation about the behavior of change. It can be discrete,

continuous, periodic, or of any other form. The segmentation function is reapplied n

times until a predefined interval acting as a threshold is reached. This predefined time

interval expresses the minimum duration of change. Hence, it is defined as the

Minimum Temporal Element (MTE). Figure 3.3 shows the segmentation based on

MTE.

61

Contuiumis

I

I

II

Tn+chn

Figure 3.3: Segmentation based on MTE.

The continuous model of the reality is projected on the system snapshot model which

in turn is back-projected to the continuous time line trying to reconstruct the object's

temporal behavior. Sequential sleep or action intervals are joined together in order to

reconstruct the new time line. The steps that take place during this phase are first the

segmentation of the continuous model, identification, and reconstruction. A multi-

resolution time line is employed with a coarser resolution where no change appears

and a finer where there are changes detected. When a new time snapshot Tnew IS to be

added and it has been found that it belongs in the time interval (Ti, Ti+l), then if

(Ti+ I -Ti) < MTE the above process is reapplied locally.

The concept of the Minimum Temporal Element is similar to the concept of MSE in

the fact that it can have an absolute value or a relative value. The user uses the

absolute value when he wants to establish a scaling factor in the temporal domain

such as using inforniation in a cadastre: MTE (Building)=l month. In case he needs a
11

6

more detailed description such as detecting the progress of building under
construction, he should use a smaller time interval: MTE (Building) =1 day. The use

of a relative value is implemented in order to have a categorization of time in classes.
The temporal relationship at the class level is a part/whole relationship. Time is

considered as a linear function which means that there is no need to have a relation at
the object level because this relation is inherited from the class level. The temporal

hierarchy is applied in order to associate the temporal extension of each query to a

specific temporal class. The rule that is applied is to assign the most detailed class.
The temporal class of the query "How has Orono changed from 1988 to 1996? " is

addressed at the year class whereas the class of the query "How has Orono changed
from 11/06/1988 to 09/07/1996? " is addressed at the day class which means that the

associated class is the most detailed one.

The queries that belong to the temporal domain are mainly divided into two types

namely the point-based and the interval-based queries as can be easily understood in

the description given by [BetOO, Bet97, and Sha98]. The point-based queries assign a

timestamp during the query formulation such as "Did the car exist at 21: 30 on

11/09/1999? " The detail level of this query is I which means that it addresses the

change of the level of existence of an entity and that single-source type information

can provide an answer to the query. The other two levels of queries are concerned

with the existence of an object's change and the characteristics of such a change.

They are differential which means that at least two sources are required so no

timestamp can be assigned. This is why they are treated exclusively as interval-based

which means that a certain duration of time has to be examined in order to get a valid

answer. Since there is no continuous infori-nation in the model, every interval has to

be projected in a discrete model. The same propagation rule that is applied in the

spatial domain is also applied in the temporal one and can be better illustrated by

using the following example where the user may define the following MTE functions:

Class-Month = MTE (Class_Year)

Class_Day = MTE (Class_Montli)

63

If the query is "How has Orono changed in 1984? " it is transformed into "Did Orono

change from January 1984 until December 1984? " The interval is converted to the

units of the MTE through the MTE function. After reapplying the rule, the query is
transformed into "Did Orono exist from 1/1/1984 until 12/31/1984? " which is now at
the query level one. Another transfon-nation is also conducted here in order to project
the interval (1/l/1984-12/31/1984) to the snapshot model. A segmentation process is

applied based on the temporal class Class_Day to which the temporal extension
belongs. The temporal class is used as an MTE for the interval. The final fonn of the

query is "Did Orono exist every day from 1/1/1984 until 12/31/1984? " which is a
level one, point-based query.

3.4.5 Spatio-Temporal Domain
The objective is to provide applications of propagation of change at the spatio-

temporal domain. Combining the MSE and the MTE functions allows the queries at

the spatio-temporal domain to be introduced and addressed in the system. Table 3.1

shows the whole process that the system follows based on the functions introduced

below:

64

Level of Detail MSE MTE

1) Existence of Entity

2) Existence of Object's Change

3) Characteristics of Object's Change

A) Class-Town

B) Class-Building

C) Class-Room

A) Class-Year

B) Class-Month

C) Class-Day

How has the town of Orono changed from 1984 until Input Query
1996?

Level of Detail = "How has changed" Step 1
Spatial Extent = "Orono"

Decomposition
Temporal Extent = "from 1984 until 1996"

Level of Detail =3
Step 2

Spatial Class = Class Town
Translation -

Temporal Class = Class-Year

Level of Detail =2
Step 3

Spatial Class = Class Building
Propagation

Temporal Class Class_Month

Level of Detail I
Step 4

Spatial Class = Class Room
Propagation (2) -

Temporal Class Class-Day

Level of Detail I

Step 5 Spatial Class = Class-Room

Snapshot Projection MTE = Class-Day

Temporal Class Class-Day

Level of Detail "Does it exist"

Step 6 Spatial Extent = "Rooms of Orono"

Recomposition and MTE = "Every Day"

Reconstruction Temporal Extent = "from 1/1/1984 until 12/31/1996"

Do all the rooms of Orono exist and none was added for
Output Query

every day from 1/1/1984 until 12/31/1996?

Table 3.1: Workflow of the Query Reconstruction Process

65

As a conclusion, the use of a dynamic classification scheme was presented by

Moutrakis in [MouOO] with the aim to describe change and its propagation in spatio-
temporal queries. Three levels of detail called levels of change have been identified

namely existence of entity, existence of object's change, and characteristics of

object's change. A minimum spatial element (MSE) has been introduced in the aim to

act as a threshold to avoid the return of redundant information in the spatial domain

and a similar one called minimum temporal element (NITE) for the temporal domain.

The dependence of the model architecture with the levels of detail in a query has been

discussed. The functions that could be defined under the model architecture with the

presence of a dynamic hierarchical classification have been elaborated using

examples.

Moreover, the sliding rule approach was used In order to apply the two minimum

element functions to data that are structured hierarchically and a propagation function

was defined as being responsible for specifying the initial position of the rule that

related a certain query to specific classes of the data hierarchy. Therefore, the distance

between the classes in the minimum element functions was measured by the number

of nodes between them and two zoom-in parameters were introduced to express these

distances. The user may navigate through different representations in the resolution
domain through defining his semantic hierarchies. Examples have been presented in

order to elaborate the navigation process.

3.5 Summary

In this chapter various optimization strategies have been reviewed. The Sharing

Paradigm approaches the multiple single predicate queries by using sharing memory

for caching input data, intermediate results, and query results. However it does not

deal with multiple queries with multiple predicates. It discusses sharing of the

underlying space and object of interest for the type of queries that deal with finding if

an object is located inside an area. However, it does not consider the type of queries

that deal with proximity analysis. It shows how a new Shared Global Plan can be

implemented against the initial execution plan. However, it does not perform sharing

by merging the operators and objects, and does not handle sharing global execution

plans by multiple complex queries xvith similar scenarios. The push-down strategy

66

approaches re-ordering the operators of an execution plan based on the Selectivity of
each operator according to a histogram, discusses how the updates in queries are

executed instead of re-executing the whole queries several times through building a

uniform adaptive query optimization framework based on selectivity estimation and

cost estimation, and proposes sharing sub-plans. However it does not propose sharing
Global Execution Plans for complex queries that have similar scenarios. The Sliding

Ruler Paradigm incorporates the concept of granularity in the query process of a

spatio-temporal model. However it does not deal with the elimination of the functions

that are common to several execution plans.

In order to address the limitations of the existing strategies and aproaches a new

visual query language optimization framework is needed, which is proposed in

chapter 5. The new query optimizer should be developed for multiple dynamic

complex queries and it is based on the Query Melting paradigm through common sub-

expression elimination and sharing objects of interest, spatial areas, time intervals,

underlying space, inten-nediate results, and Global Evaluation Plans. It applies the

sliding ruler mechanism during the common sub-expression elimination phase. The

query optimizer and the sliding ruler are both presented in Chapter 5.

67

Chapter 4- Development and Evaluation of

a new Visual Query Language

4.1 Introduction

With the increase in volume of non-expert mobile GIS users of proximity analysis and
the need to formulate dynamic complex queries, new types of visual query languages

specifically designed for the small screens of mobile devices are required. Thus, in
this chapter a new iconic visual query language (IVQL) is presented which aims to

provide the facility to handle dynamic complex queries, to allow a simple visual query
formulation with an icon based user friendly interface and to be extensible in the

sense that many extra icons can be added to it at any time and under any category.
lVQL user interface is the front-end of the system where the visual queries are

processed. The query processor main job is to read the queries, parse them into

multiple simple ones, decompose them, optimize their functions and methods,

generate their global execution plan, then execute it, produce the result of the query

on a single map, and return it back to the end user for example in the form of a multi-

media messaging system (MMS).

In order to facilitate the formulation of a query and not over-burden the mobile user

with multiple formats for different types of quenes, one standard format is adopted

which is composed of the following constructs: 1) an operator that represents the task

of the query such as Find Nearest Neighbor, Find Within a Buffer, and Find the Time

Left to Reach a Destination, 2) a value that represents the number of objects to find,

or the life time of a dynamic query, i. e., how long the dynamic query is supposed to

keep running, and 3) an object that represents the facility or object that the query

should search for such as Restaurant, Hospital, and Airport. 1VQL is based on smiley

icons that are used to visualize operators, values, objects, and on themes that are used

to classify each group of icons according to their category such as Entertainment,

Transportation, and Tourism. The formulation process of a simple visual query is a

procedure of selecting the icons of the operator, value, theme that displays the icons

of the objects that belong to this category, and the object. The formulation of a

68

complex query consists of formulating multiple simple queries separated by the 'and'

operator hence the user is supposed to select the 'and' icon between them. The new
visual query language is described in [Els06a] with its architecture, components and

query constructs.

In order to evaluate IVQL, different aspects of usability are taken into account, thus
the method of evaluation covers the evaluation of the expressive power of the icons,

the user interface and the query building process, through usability testing which is

used to measure the ease of use through user testing and user satisfaction. The

evaluation is implemented using a prototype of IVQL User Interface, and its results

are analyzed and discussed. The evaluation is introduced in [Els06b] detailing all the

aspects to be evaluated as well as the method of evaluation related to each one of
them.

This chapter starts by presenting the software architecture of the system where the

visual queries that are initiated by IVQL are processed. The major components of the

system are the lVQL user interface which forms the front end of the system, the IVQL

query processor which reads the queries, parses them into multiple simple ones,
decomposes them, optimizes their functions and methods, generates their global

execution plan, then executes it, and the Geodatabase where the global execution plan

is executed in order to produce the result of the query on a single map that is later

returned back to the end user. In section 4.3 the elements of IVQL are discussed.

Since the smiley icons are the core of the language they are used to visualize

operators, values, themes and objects which are shown on the toolbars of the interface

where the queries are formulated and verified/modified before being executed.

Section 4.4 is concerned with the constructs of the language that are explained

showing how a simple query is visually represented and how multiple simple queries

can be concatenated or joined in order to form a complex query. Section 4.5 is

concerned with the evaluation of IVQL where a prototype of IVQL is designed,

implemented, and evaluated. Section 4.6 is concerned with the results of the

evaluation and discussion of the results which include the evaluations of the smiley

icons and the query formulation process. Finally, section 4.7 elaborates the

conclusions that are drawn.

69

4.2 Software Architecture

The system consists of a number of components each of which plays an important role

in processing the initiated visual queries starti I ing from the query formulation and

ending with the resulting map. The IVQL user interface forms the front end of the

software. It is installed on the target mobile device where the user can formulate the

visual query that is translated into a text query called the Pivot Language where each

icon is replaced by its name, sent to the GIS server and saved in a file for later

processing. The query processor, which is implemented as a middleware between the

text query and the Geodatabase, processes each visual query separately. First, the

query processor reads the query. If it is a simple one, it determines which operator is

used to formulate it and accordingly considers its corresponding template execution

plan. If it is a complex one, it parses it into multiple simple ones, associates each

simple query with the template that corresponds to its operator, perfon-ris some tasks

to optimize the queries, re-arranges the functions and methods, and generates a global

execution plan for the whole complex query.

Second, it executes the execution plan, whether it is the template execution plan of a

simple query or the global execution plan of a complex one, through using the Object

Components which must be loaded into the development environment. Some of the

components are the ArcObject Geodatabase which is used for handling workspaces,
datasets, and feature classes, the ArcObject Controls which allow the developer to

insert controls in their forms, the control MapControl which is used to add a map to

the form and later zoom in, zoom out, and pan it, the ArcObject Carto which is used

to handle Layers and add layers to maps, the ArcObject NetworkAnalyst which is

used to make closest facility layers, add incidents, add facilities, set the parameters

such as the number of facilities to find, the impedance attribute (Meters,..), show the

path, travel directions, etc., and the ArcObject AnalysisTool which is used to handle a

variety of tools such as the Buffer that draws a buffer circle around the user location

and the Clip that finds facilities in the buffer area.

Third, it receives the result of the execution of each function/method which is

perfornied on the underlying spatial data such as maps which are stored in the File-

Based Spatial Data and organized by the RDBMS, and overlays it on the same single

70

map. Finally, the query processor sends the resulting map to the user. The Spatial

Data Manager Environment (SDE) is a spatial data application server that has

client/server architecture with software components used to perform fast spatial

operations on very large data sets in order to rapidly serve GIS data to a large number

of users while maintaining simplified data management. The Geodatabase which

contains the File-Based Spatial Data and the RDBMS is managed by the SDE and its

model provides users with the ability to add behavior, properties, rules, and

relationships to their data. The software architecture is shown in Figure 4.1.

End-user IVQL Pivot language
User interface p"I Text-queries

The result map IVQL query
processor

Object Components

SDE (Spatial Data Manager Environment)

Geodatabase

File-Based RDBMS
Spatial data

Figure 4.1: The Software Architecture.

4.3 IVQL Query Representation

IVQL has a global query representation based on smiley icons that are usually

intended for users from different countries with different cultures and languages since

they are text free and expected to have a high level of expressiveness. A smiley Icon

is a pictorial graphical icon that may express feelings such as happy, sad, angry, etc.,

71

represent activities such as running, swimming, etc., objects such as airplane, car, etc.,
and places such as London Bridge, Pyramids, etc. Since GIS are mostly concerned
with the real world maps, most of their features can be represented by smiley icons.

Such a query representation can be adopted in many Location Based Services

applications which are mainly concerned with finding facilities such as restaurants,
hotels, theatres, hospitals, etc. It is particularly suitable for Proximity Analysis

applications which are concerned with finding the nearest facilities to the user and the
facilities that are located within a certain buffer area from the user. These facilities

can be queried using the proper smiley icons that represent the operator, and which

specifies what to find (nearest or within) and the facility to find. Thus, smiley icons

seem to be suitable for building queries easily and in a user friendly manner while

expressing a real life sentence in natural language. Some of the smiley icons that were

used in this project have been borrowed from the askjeeves. com web site that granted

the university the permission to use them. These icons are animated (. gif files).

However, since the current version of J2ME development environment of mobile

applications does not support gif files, they were converted to png files which made

them static pictures.

4.3.1 Themes, Objects, Locations and Instances

lVQL can be applied to a variety of real life applications such as tourism, emergency,
fire departments, police departments, customer relationship management (CRM),

management infori-nation systems (MIS), etc. The tourism application is hereby taken

as an example in order to be able to elaborate the elements of the visual query
language. In IVQL, there are four types of icons. The first type is the Theme which

represents a category, a type, or a group of objects such as, entertainment,

transportation and tourism. The second type is the Operator which represents what the

function is supposed to find such as Find Nearest Neighbor and Within a Buffer. The

third type is the Value which represents the number of objects to find or the time

interval of a dynamic query. The fourth type is the Objects which represents a
location such as restaurant, hospital and hotel. Figure 4.2 shows the smiley icons of

the three themes along with the objects that belong to each of them.

72

ýFNTERTAINHFN

4W
Casiro Night Club M1161c Beach

park ing Forest Jarouzv

Zh

QNb
Massage Health Club Bicycle Playground

lot

*W . 4y

Skiing Ice-skating Jet ski snow E)rW

J_!
_

Wind Surfing Jet ski Fishing Surfmg

ý),

o ;0

Tennis BasketbaR Football Crolf club

,
'400

C-Al

Baseball Pichic

[TRA

Am
7; Bus TrýRallmad Tg-)Metro Tý

f-l-L
.1

Boat Auport

4PIP
Restaurant Hotel Bar Airport

h&k"
-, %

Attractions Gas Fun Park Zoo

Uraversity School HospitalfDoctor Pharmacy

4C

Ambulance Tourist groups Post office Bank

-10

40 *

14
Q

in

Shopping Miiseurn Mcr,, ws Toilets

Tpleplinne ATM

Figure 4.2: Basic Elements of the IVQLVisual User Interface.

73

4.3.2 Visual Representation of Operators and Queries

The queries can be formulated using the smiley icons by casual and non-expert users

who have no prior knowledge of GIS information systems and query languages to
databases. These icons can be easily read and understood which makes them the basis

of an iconic visual query language, which does not use any text. No text is used in the

language. Thus, it can be considered as an important step towards the globalization of
languages. The use of smiley icons makes the process of formulating a query easier.
The operators that are used in the IVQL visual query language represent and depict

actions and instructions selected by the user in order to find the shortest path between

two locations, the nearest neighbor, or all locations of a certain type within a certain
distance. The difference between the icons used in I-VQL and the one reviewed in the

literature is in the purpose for which the icon is used. In [MurOO] the icons are used to

represent the logical operators such as equals, less than, and so on. In [Smi04, Sm105]

a line is used to represent the association operation. Whereas, the operators icons that

are used in [[Lau03, Pao03, and Bon02] depict the topological operators such as

intersection, union, and overlap. The smiley icon in Figure 4.3 is used in 1VQL to

depict the command: FIND.

0"
Figure 4.3: The Smiley Icon that Visualizes the FIND Command.

Figure 4.4 shows the icon that represents the command: FIND THE SHORTEST

PA TH.

I. -1
Figure 4.4: The Icon that Represents the Command: FIND THE SHORTEST

PATH.

Tofind the nearest location of a certain type such as, find the nearest hospital or find

the nearest restaurant, the user clicks the icon shown in Figure 4.5.

74

0

Figure 4.5: The Icon that Represents the Command FIND THE NEAREST.

In order to find all locations of a certain type such as restaurants or hotels, that are
located within a certain distance from the user's current location, the user clicks the

smiley icon shown in Figure 4.6. A list box is displayed containing numerical values.
This list box allows the user to choose and select the distance in meters within which
he wants to find all locations of a certain type.

,72

Figure 4.6: The Smiley Icon that Represents the Command FIND WITHIN A

DISTANCE.

The constructs that form a Simple Query are an operator, a value, and an object. The

operator specifies what the user wants to find such as the nearest, within a buffer, the

time left, etc. as explained earlier. The value represents the number of objects to find,

the distance, or the time duration. The object is the facility to search for such as hotel.

The difference between the object icons in IVQL and the ones reviewed in the

literature is in the form, IVQL does not use text at all. In LVIS [Bon02] the objects

are listed in a list-box in text and in both LA [Smi05] and PHENOMENA [Lau03] the

objects are represented by an icon with a text under it. The value icon used in IVQL

may have different meanings based on the operator that it is being used with. When

inserted in a buffer query such as Within 100 Hotel the value represents the distance

of 100 meters. When inserted in the query Nearest 100 hotel it represents the number

100. When inserted in a dynamic query such as 'NearestAndTimeLeftToNearest' 100

Hotel, it represents the interval of time 100 minutes.

The dynamic query means find the nearest hotel and keep on informing me about the

time still left to reach it for the next 100 minutes. In case the user wants to build

complex queries that include a combination of simple queries, the joining command

and' may be used. The user formulates the first simple query, clicks the 'and'

operator icon, then formulates the second simple query. If more than two simple

queries need to be formulated, the user follows the same steps explained above and

75

clicks the 'and' operator between every two simple queries. The size of the query, in

terms of the number of characters, depends on the used technology, for example is the

short messaging system is used on mobile devices, the maximum number of

characters that an SMS message can contain is 256. So, mobile users can not build

complex queries that are made up of more than 256 characters unless the multi-media

message system (MMS) is used. Figure 4.7 shows the depiction of the 'and' operator.

2ý
Figure 4.7: The Smiley Icon that depicts the 'and' Operator.

4.3.3 Visual User Interface

IVQL provides the user with two major toolbars, one horizontal and one vertical. It

has a middle area where objects are displayed and a query formulation area at the

bottom of the interface. Each toolbar displays a set of expressive smiley icons that are

easily understood by any user. The horizontal toolbar contains the smiley icons that

represent proximity relations and operations that should be applied on icons displayed

in the vertical toolbar. The vertical toolbar displays icons that represent themes and

spatial object types. The middle area displays the theme objects on which the spatial

operation is to be applied. The query formulation is done first by selecting a smiley

icon from the horizontal toolbar. The icon is automatically moved to the query

fon-nulation area which appears at the bottom of the interface. Second, the user selects

a theme of interest from the vertical toolbar. A group of all objects that belong to the

selected theme are displayed in the middle area of the interface. Finally, the user

selects the object needed. The selected object is then moved to the query formulation

area. The user interface of IVQL is shown in Figure 4.8. The difference between the

query fon-nulation area in IVQL and the visual query languages reviewed in the

literature comes in its form and its content. Kaleidoquery in [MurOO] and Filter-Flow

in [Mor04] depict the query as a filter flow in a screen-size area. LA in [Sm104]

depicts it as a network in a screen-size area too. Whereas in IVQL and the rest of the

reviewed query languages such as GeoQA in [StoOO], LVIS in [Bon02],

PHENOMENA in [Lau03], and VISAL TOOLS in [And07], the query is in the form

76

of a list of consecutive icons shown in a small query formulation area at the bottom of
the screen.

ENTER SOURCE I YOUR LOCATION ADDRIESS:

- rm

E NTER TH ED ESTINATION ADDRESS:

010,

LT". S. w ... 10.1

Figure 4.8: The IVQL User Interface.

The first two rows of the lVQL user interface are used to allow the user to text input

the source and destination addresses. He can input his current location and input the

address of the destination then query the shortest path between these two locations by

selecting the "SHORTEST PATH" icon. In the first row, the location of the user

could be automatically determined by a GPS, LBS (Location Based Services),

RADAR, etc. So, there will be no need to include the Text Input of the user's
location. The same applies to the second row. With the possibility of having an open-

line connection, the user can query a list of hospitals and get back an output showing

their locations on the map as well as a list box that includes the name and address of

each hospital. In such a case, the user can select the hospital from the list box and use

it as an input to the destination and then ask for the shortest path. Hence, there will be

no need to Text input the destination. To fon-nulate complex queries, the user selects

the 'and' icon and repeats the steps explained above. Figure 4.9 shows the IVQL user

interface where the query: FIND WITHIN 500M ALL RESTAURANTS is

fon-nulated.

77

ENTER SOURCE I YOUR LOCATION ADDRESS:

ENMER THE DESTINATION ADDRESS:

tso 4w - Aj.. L LF2, 16

ýFWD

0

Figure 4.9: The Smiley Icons Representing the Tourism Theme Elements with a

Formulated Visual Query.

lVQL is an extensible visual query language. Each of the sets of icons, that represent

operators, themes, and objects, can be extended to include as many icons as the user

defines and for any type of application. This is implemented by providing as many

pages of icons as needed by the user. If the area of a panel is not enough to display all

the icons, the icon "more" appears as the last icon in the list to inform the user

that there are more icons that could be displayed. The user selects it and a new list of

the next group of icons is displayed in the panel. The advantage of IVQL over the

visual query languages reviewed in the literature is that IVQL is a generic visual

query language that can be applied in any field. Whereas, each of the reviewed visual

query languages is developed for a particular application, for example, Kaleidoquery

iii [MurOO] and LA in [Sm105] are developed for non-spatial queries, Filter-flow in

[Mor04] and GeoQA in [StoOO] for spatial and non-spatial, and LVIS in [Bon02],

PHENOMENA in [Lau03], and VISUAL TOOLS in [And07] for spatio-temporal

queries. Moreover, IVQL is extensible as elaborated earlier whereas none of the

reviewed visual query languages provides extensibility.

78

4.4 Mobile Query Processing

In this section the query processing will be demonstrated using SMS and MMS on

mobile devices. Thus, after building a query, the user clicks the FIND icon in order to

instruct IVQL to process it. 1VQL converts or translates the smiley icons visual query

into normal text. To do so, each visual icon has been assigned a TEXT name, such as

0
l< (00 ', ý

%

nearest

ewithin

restaurant.

lVQL uses the icon name to formulate the Text Query for example 'nearest

restaurant'. The Text query is displayed as an SMS message in the SMS environment

of the mobile device. The user chooses the 'send' option and inputs the phone number
that is assigned to the GIS server by any provider. The sent SMS message is received
by the GIS server and saved in a special file sequentially. The query interpreter that is

installed on the GIS server processes the SMS messages sequentially using the FIFO

philosophy. Each message processed is first translated into a query plan and then

executed on the GIS database. The resulting map of the query is sent to the user as an
MMS message to the user. Figure 4.10 shows the structure of IVQL environment and
the process through which a smiley icon query undertakes in order to be executed.

GIs s

SMS File

b. GIs

INTERTRETER
DATABASE

- Read SMS
-Corrvert to SQL

QueryGIS
NIS MMS result map to Fp-rlotsiuý Nbbile

IVQL
User interface

Path

4bý

Figure 4.10: The Visual Query Processing.

79

The lVQL user interface is implemented for mobile phones by using the J2ME

platform installed on the Symblan Operating System. The lVQL query interpreter is
implemented on the server computer to query the spatio-temporal database such as the
ArcGIS- IVQL is expected to have a high level of cost effectiveness, with potentially

a large number of launched queries. Figure 4.11 represents the query: Find the nearest

golf club and display the shortest path between my location and the golf club found.

Figure 4.11: Find Nearest Golf Club and Display the Shortest Path.

Figure 4.12 represents the query: Find all restaurants within 500m. This query

expresses a sentence in natural language.

500m

Figure 4.12: Find all Restaurants Within 500m.

Figure 4.13 represents the query: Find all universities and schools within 500m. This

query is equivalent to a sentence in ten-ns of information content.

ler. - aK 1,, 00

ýi
ce, 500m 500m

Figure 4.13: Find all Universities and all Schools Within 500m.

Figure 4.14 represents the query: Find the shortest path from my location to a specific

address destination address.
11

Destination address

Figure 4.14: Find the Shortest Path to a Destination Address.

Figure 4.15 represents the query: Find all bus stations within 500m and all train

stations within 700m. The iconic query has an expressive power.

rä7,1-< ý UWý-9'

700

Figure 4.15: Find Bus Stations Within 500m and Train Stations Within 700m.

80

4.5 The Evaluation of IVQL

The term usability is used during the design and implementation of a soft, ""are system
and its user interface, to reflect how much the system under development is easy to
learn, effective to use, easy to remember how to use and provides an enjoyable

experience. It fon-ns the basis for evaluating the systems and provides a framework for

this evaluation. Pressman in his book [Pre05] defines usability as a measure of how

well a computer system facilitates leaming, enables them to be efficient and makes
them satisfied with the system. Moreover, usability is a major aspect of human-

computer interaction (HCI) that is concerned with the design, evaluation and

implementation of interactive computing systems for human use. HCI has moved
beyond designing user interfaces to support all human activities and facilitate the user

experience through designing user interfaces and systems that would make his work

efficient, improve his learning, provide him with enjoyable and exciting

entertainment, enhance his communication and understanding, and support him with

new forms of creativity and expression.

With the increase of the use of communication technology, more application areas,

more technologies and more issues are considered when designing user interfaces and

computing systems. Hence, to insure that a system or a user interface is best designed

and developed, the user has been involved in usability testing as a feedback through

the iteration of the following cycles 'de sign-te st-rede sign' which are major phases of

the design process model. The iterative design is a continuous process that examines

prototypes of new systems to check that the designers understand the user's

requirements. In order to achieve this model easily, two processes are being used, the

first is to build interactive prototypes that can be easily communicated and assessed,

and the second one is to evaluate what is being built throughout the process. A

prototype is a small scale model or a piece of software with limited functionality and

capability written in the target language and used for system evaluation and as a

feedback in the design phase. Designers are supported in choosing between

alternatives based on the user's opinion.

81

The aspects that are usually considered in any regular query language evaluation
include the query writing as implemented in [Smi05] and the ease of use as
implemented in both [murOO] and [Moi-04]. Whereas, to evaluate a visual query
language, more aspects are to be included such as the user interface, query building

process, expressive power of the visual language, the proper representation of the
icons used, the icons recognition, interpretation, comprehension and memorization,

and the ease of use as implemented in [Bon02]. Before performing an evaluation, the

proper form of evaluation strategy should be chosen as it normally dictates the form

of the results that will be obtained. There are two main types of evaluation. The first

type is the formative evaluation that is done at different phases of the development to

check that the system meets the user's needs. The second type is the summative

evaluation that is done once after the development of the system in order to assess the

quality of the finished product. Both types of evaluation rely on a combination of

techniques such as user's observation, interviews, questionnaires and user testing.

Two paradigms are actually mostly used to implement the usability testing, the first

one is the user testing and the second one is the user satisfaction [Kha04, Pre05].

In the user testing paradigm, the user's performance is tested in order to check that the

system is usable for the tasks that it has been developed to achieve. It is also used to

evaluate how well tasks are performed or to compare a prototype to an existing

product. The focus is on the number of correct or wrong answers given by the user as

well as the time taken by the user to complete a certain task. Then, a thorough study is

done to examine the type of errors encountered while the user was completing the task

in order to explain and elaborate why the errors took place. The user testing provides

quantitative data on the user's performance. In the user satisfaction paradigm, the user

answers a questionnaire made up of questions that reveal his opinion about a certain

aspect of the system. The questions could be of many types such as Yes/No questions,

check-boxes for many opinions, Likert rating scale, or open-ended responses. The

user's satisfaction is used to evaluate the user interface of the system, the ease of

formulating a visual query, the clarity of the icons and the system information, the

ease of learning and memorization, the system capabilities, the consistency of the

language constructs and the level of difficulty of the visual query language. The user

i ion. satisfaction provides qualitative data on the user's opini

82

The data analysis is performed on both the quantitative and the qualitative results

once the results of the usability testing are recorded. The results of the user testing

may be presented in the form of summative results to show the time taken by subjects
to complete a certain task, the number of errors made per task, the type of errors made

per task, the number of error made per unit of time, number of users who made a

particular error, and the number of users who completed a task successfully. The

results of the questionnaires may be presented clearly using many forms such as

tables, percentages, graphs, and simple statistics including the mean, the mode, and

the standard deviation. The advantage of the evaluation that is implemented in this

work over the evaluations implemented in the review of literature is that all the

aspects of usability of IVQL are evaluated whereas in each of the other reviewed

evaluations one aspect of usability only is evaluated such as query writing in [Sm105],

user interface in [Mor04], and expressiveness of icons and language in [Bon02].

4.5.1 Method of Evaluation

To evaluate IVQL, its user interface, the visual query fon-nulation, the expressive

power of the language and its ease of use, it is necessary:

I- To identify the types of tasks to be perfonued by the user such as icons

recognition and representation (expressive power of icons) , the ease of use,

the user interface, the query building and formulation process, and the

expressive power of the visual query language.

2- To list the aspects that will be measured such as user testing and user

satisfaction, and how they are going to be measured such as using scoring and

Likert scale.

3- To implement the evaluation and describe its phases such as the subjects and

the experiment.

4- To analyze the results.

83

4.5.1.1 Icons Recognition and Representation (Expressive Power of

Icons)

To evaluate the expressive power of icons or metaphors, many attributes are used

such as icon recognition, ease of use of icons, query formulation constructs,
interpretability, comprehension, memory and preference. The attributes icon

recognition and representation have been chosen to evaluate the icons that are being

used in IVQL since they have proven to reflect the clarity of icons as shown in LVIS

[Bon02]. The user testing and the user satisfaction have been both chosen to evaluate

the expressive power of the smiley icons. In the user testing method, the user is

provided with a list of 30 smiley icons that are supposed to be evaluated. Next to each

smiley icon, the user is also provided with an empty rectangle in which he is supposed

to write the description that he thinks is best represented by the smiley icon. In the

user satisfaction method, the user is provided with a questionnaire made up of 5

Likert scale questions through which he is supposed to reflect his level of satisfaction

regarding some attributes of the icons such as the use of icons throughout the system,

the operator icons relation to the tasks that they are intended for, the position of the

icons on the screen, reading the icons and the icons representing the error messages.

4.5.1.2 Ease of Use

The main purpose of evaluating the ease of use is to reflect and measure how easy it is

for the user to write, read, interpret, comprehend, and memorize queries as well as his

ability to solve problems related to query formulation. Table 4.1, taken from Reisner

in [Re18l], shows a list of some of the most important tasks that can be used to

measure the ease of use of a visual query language. The query writing task was

chosen for use in the evaluation of IVQL, similarly to the work done in [Sm104,

SmithO5], as it reflects the most clearly how well and easy it is to learn the visual

query language. It also provides the proper data about how proficient a user is at

building and formulating the visual queries. The user testing has been chosen to

evaluate the ease of use of IVQL similarly to the work done in [BonOO, Bon0l, and

Bon02]. In this method, the user is given a list of 15 questions written in English and

a table that contains a list of the 40 smiley icons that are used to formulate the queries.

814

Each icon has been uniquely numbered sequentially. Next to each question, the user is

also provided with an empty rectangle in which he is supposed to write the list of the
icon numbers that he wants to use in order to formulate his answer query. The

questions have been prepared in a way to cover all levels of query formulation

difficulty levels namely, the simple queries and the complex queries that include the

cand' operator to combine two or more simple queries.

Task Description

Query writing Users are given a question stated in natural language
and are required to write a query in the given query
language.

Query reading Users are given a query in the query language and
are asked to write a translation into the natural
language.

Query interpretation Users are given a query in the query language and a
printed database with the data filled in. They are asked
to find the data asked for by the query.

Question comprehension Users are given a natural language question and a
printed database and are asked to find the data asked
for.

Memorization Users are asked to memorize and reproduce a
database.

Problem solving Users are given a problem and a database and are
asked to generate questions in natural language that
would solve the problem. The questions should be
answerable from the database.

Table 4.1: Tasks Used to Measure the Ease of Use of Query Languages.

85

4.5.1.3 User Interface

The main objectives of evaluating a user interface are first to reflect and identify the
best smiley icons on which to base the design, second to check and ensure that the
final user interface is consistent, and finally to improve the usability of the system

under development. The user satisfaction method has been chosen to evaluate the user

interface of IVQL. It is important to note here that none of the reviewed visual query
languages used the user satisfaction in their evaluations of the usability aspects. Thus,
it can be considered as an advantage of the IVQL evaluation over the others. In IVQL

user satisfaction evaluation, the user is provided with a questionnaire made up of 7

Likert scale questions through which he is supposed to reflect his level of satisfaction

regarding the difficulty of reading the smiley icons on the screen, how well the

information is organized on the screen, whether the sequence of screens is confusing

or not, the position of messages, the error messages, and whether the design aspects

are suitable for all levels of users or not.

4.5.1.4 Query Building and Formulation Process

The main purpose of evaluating the query building and formulation process of IVQL

is to reflect and measure how easy it is for the user to build and formulate queries

using the smiley iconic visual query language. The selection of icons in the proper

order and the process of building the queries both have been chosen for use in the

evaluation of lVQL as they both provide the proper data about how proficient a user

is at building and formulating the visual queries. The user satisfaction has been

chosen to evaluate the query building and formulation process of IVQL. In this

method, the user is provided with a questionnaire made up of 9 Likert scale questions

through which he is supposed to reflect his level of satisfaction regarding the query

building and formulation such as the selection of the operators, the selection of the

categories, the selection of objects, building simple queries, the clarity of queries, the

legibility of queries, remembering the language queries and its constructs, the

sequence used to build the queries, and using the 'and' operator to add more queries.

86

4.5.1.5 Expressive Power of the Visual Query Language

The main purpose of evaluating the expressive power of the visual query language of
IVQL is to reflect and measure how easy it is for the user to learn to operate the

system and to perform tasks in a straightforward way in order to build and formulate

visual queries. The ease of learning process and the visual language memorization

aspects have been chosen for use in the evaluation of IVQL as they both provide the

proper data about how powerful the visual query language is in expressing queries.
The user satisfaction has been chosen to evaluate the query building and fon-nulation

process of IVQL- In this method, the user is provided with a questionnaire made up of
4 Likert scale questions through which he is supposed to reflect his level of

satisfaction regarding the learning of the system and perfonning query building and

formulation such as learning to operate the system, exploring new features by trial and

error, remembering names and use of icons and operators, and performing tasks in a

straightforward manner.

4.5.2 The Questions

Figure 4.16 shows that Part I of the test questions consists of a list of thirty icons that

the subject is supposed to recognize and interpret. In the space provided to the right of

each icon, he is supposed to write the name, place, or object that he thinks is best

represented by the icon. This part is aimed at testing the user performance and hence

leading to the measurement of the expressive power of the icons and their recognition.

This aspect has been measured by scoring and counting the correct answers of the

subject. All of the three types of icons were included namely operators, categories,

and objects.

87

[eART 1: In fhe space provided below, wxilke tjle nayne Ciminic mpresenliatixm) of
wimt you Odmk each ican rep memenlis. Tab]a 1

kon Namm kon Namie

'Ac

-

1101

]

- ---- I

P. & " I' -.
Iw

ki-4
Figure 4.16: Part I of the Questions.

88

Table 4.2 shows that Part 2 of the test questions are mainly written in order to

measure the ease of use of the visual query language through measuring the visual

query writing task of the subjects. User testing is being used for this purpose. The

answers of the subjects are scored and the number of correct answers is counted.
Also, the errors in the answers of the subjects are recorded in order to analyze the type

of errors committed and figure out the reason behind committing these errors. This

part of questions consists of a list of fifteen queries questions written in English to be

rewritten using the visual query language IVQL prototype. The subjects are also

provided with a table containing forty smiley icons in its cells as shown in Table 4.3.

Each icon has a unique identifier that will be used by the subjects to refer to the icons

while answering the visual query writing. The answer of each question consists of a
list of the icon identifiers that are used to build the visual query. These questions have

been designed in a way to cover various levels of difficulty in visually formulating a

query varying from simple to complex. Questions I to 8 are the simple queries

questions and 9 to 15 the complex queries, noting that a query is considered complex
if it includes the 'and' operator to combine two or more simple queries.

89

PART 2: Write the "iconic visual queries" that are used to answer the following
questions. Each answer should be made up of a list of icon numbers that are used
to formulate the queries. Each icon has been assigned a number in Table 2.

kon numbers that
Question are used to

formulate the
query

I. Find the nearest casino.
2. Find the nearest hotel.
3. Find the nearest restaurant.
4. Find the nearest telephone cabinet.
5. Find all the bus stations that are located within 600

meters from my current location.
6. Find all the bars that are located within 200 meters

from my current location.
7. Find all the golf clubs that are located within 400

meters from my current location.
8. Find all the toilets that are located within 100 meters

from my current location.
9. Find all the banks that are located within 300 meters

from my current location and all the train stations
that are located within 500 meters from my current
location.

10. Find all the tennis courts that are located within 300
meters from my current location and all the
gymnasiums that are located within 500 meters from
my current location.

11. Find all the metro stations that are located within 300
meters from my current location and all the
monuments that are located within 400 meters from
my current location.

12. Find all the post offices that are located within 300
meters from my current location and all the gas
stations that are located within 500 meters from my
current location.

13. Find the nearest taxi and the nearest hospital.
14. Find the nearest museum and all the restaurants that

are located within 300 meters from my current
location.

15. Find all the parks, children grounds, zoos, and picnic
areas that are within 800 meters from my current
location.

Table 4.2: Part 2 of the Questions.

90

Table 2: Numbered 1corg 0

Table 4.3: Table of Numbered Icons supplied with Part 2 of Questions.

Table 4.4 shows that Part 3 of the test questions consists of a list of twenty five

questionnaires using the Likert scale to measure the user satisfaction with many

different aspects of the visual query language. Each group of questions is aimed at

measuring a specific task. The questions I to 3 are used to get the subject's overall

reaction on the software starting with level of difficulty, excellence, and satisfaction.

The questions 4 to 6 are used to evaluate the user interface of the visual query

language. They get the subject's opinion about the ease of reading icons on the screen,

clarity in organizing the infori-nation, and the clarity in the sequence of screens. The

questions 7 to 10 measure the consistency of the use of icons throughout the system,

the relation between the operator icons and the tasks that they are supposed to

perfon-n, and the consistency of the messages that are displayed on the screen. The

questions II to 14 measure the expressive power of the visual query language by
Cý I

91

reflecting the subject's opinion about leaming to operate the system, exploring new
features by trial and error, remembering names and use of icons and operators, and

perfon-ning tasks in a straightforward manner. The ques tions 15 to 25 measure the

query building and formulation process through reflecting the subj ect's opinion about

the level of difficulty in the sele ction of the operators, the sele ction of the categories,

the selection of objects, building simple queries , the clarity of queries, the legibility of

queries, remembering the langu age queries and its constructs , the sequence used to

build the queries, and using the ' and' operator to add more queries.

PART 3: Please rate your satisfaction with the User Interface and Query
buildin.
OVERALL REACTION TO 1 2 3 4 5 6 7
THE SOFTWARE

1. poor excellent

2. difficult easy

3. not satisfying satisfviniz

SCREEN(USER 1 2 3 4 5 6 7
INTERFACE)
4. Reading icons on the hard easy

screen
5. Organization of confusing very clear

information
6. Sequence of screens confusing very clear

ICONS AND SYSTEM 1 2 3 4 5 6 7
INFORMATION

7. Use of icons throughout inconsistent[: consistent
system

8. Operator icons related to never C always
task

9. Position of messages on inconsistent C consistent
screen

10. Error messages unhelpful helpful

LEARNING 1 2 3 4 5 6 7

11. Leaming to operate the difficult easy

system
12. Exploring new features by difficult easy

trial and error
13. Remembering names and difficult easy

use of icons

9

14. Performing tasks is never r: JE r: r: r: r: r: always
straightforward

SYSTEM CAPABILITIES 1 2 3 4 5 6 7
15. Correcting your mistakes difficult easy
16. Design aspects are suitable never always for all levels of users
QUERY BUILDING AND
LA NGUAGE 1 2 3 4 5 6 7
CONSTRUCTS
17. Selection of the operators difficult C easy
18. Selection of categories difficult C easy
19. Selection of objects difficult C easy
20. Building simple queries difficult c easy
21. Clarity of queries unclear clear
22. Legibility of queries illegible r: legible

23. Rem embering the language difficult easy
i queries

24. Sequence used to build the difficult easy
queries

25. Using & (AND) to add difficult easy
more queries

1 2 3 4 5 6 7
Table 4.4: Part 3 of Questions.

4.5.3 The Subjects

The subjects who have been selected to undertake the experiment are 56

undergraduate university students divided into two 28-subject groups classified as

programmers and non-programmers. The programmers group is made up of those

students who have a good background in computer science and are familiar with

computers, programming languages, databases and query languages such as SQL, and

geographic infori-nation systems. The non-programmers group is made up of those

students who are from a non-computer science background, e. g., students still in their

sophomore class coming from a variety of majors such as arts, science, business, etc,

and who are currently taking their first introductory computer course. The age of all

the subjects varies between 18 years and 221 years.

93

4.5.4 The Experiment

A pilot study, known as a pre-test session, is a small trial of the main testing process

with the main purpose to make sure that the implementation of the evaluation testing
is reliable. It infon-ris the evaluators if the procedure can be conducted and that the

questionnaires and test items work appropriately. A pilot study has been conducted

with 6 non-programmer subjects in order to verify the evaluation technique, the test

questions and the questionnaires. No difficulties were faced which proves that the

tests are conductible and there will be no need to redo any evaluation testing due to

unforeseen gaps. The form of the experiment used in the testing is the controlled

experiment in which there are two subject groups, the first is the control group and the

second is experimental group.

The main objective of having two different subject groups is the possibility to

compare testing results analysis between the two groups on top of providing the

ability to analyze the testing results of each subject group separately and
independently. Johnson in [Joh98] states that the minimum number of subjects

required to form a group in a controlled experiment is six and that the more subjects

included in each of the groups the better and more considerable the testing results. As

mentioned above, the number of subjects that was decided to include in each of the

two subject groups is 28 making a total number of 56 subjects taking into

consideration the aim of reaching better testing results.

The testing session of each subject group was conducted in a classroom equipped with

30 desktop computers making one computer available for each subject. A teacher's

desktop computer connected to an LCD projector was also provided for the tester. The

NetBeans version 5.0 Software was installed on all computers with the J2NIE

Mobility Pack and the Wireless Toolkit. The emulator DefaultColorPhone was used to

emtilate the prototype of the fVQL user interface on all the computers. Each session

started with a small introduction of the purpose of the evaluation, a quick overview of

the research under implementation, and a presentation of the IVQL user interface. A

sample simple query formulation was demonstrated using the LCD projector as a

training session. Each subject was then provided with the test questions and the

questionnaires that were color photocopied. Some free time, betweeii
-5 to 10 minutes,

94

was given to allow the subjects to test and try on their own, using the prototype of
IVQL and its query formulation. Then, their answers were written on the questions
sheet after having used the IVQL prototype emulation for query building. Each

session lasted around 2 hours.

4.6 Results and Discussion

The evaluation data have been collected from the answers provided by the subjects to

each type of questions. Quantitative as well as qualitative data are being used to

produce the necessary statistical results. Results are reported according to the three

categories namely the smiley icons, the query formulation, and the user satisfaction

questionnaire.

4.6.1 The Results of the Evaluation of the Smiley Icons

The answers of the subjects are graded based on a classification scheme that uses the

letter C to represent the correct answers and the letter W to represent the wrong

answers. An answer is considered correct when a subject has written the proper name

of the object that an icon is supposed to represent. Close answers are considered

correct even if a subject uses a different wording such as hotel, motel, etc. This

qualitative scheme is used to produce the histogram charts that need nominal data.

The same answers are also graded based on a quantitative scale in order to produce

other statistical results. The correct answers are given the score 100 and the wrong

ones 0. The data collected about the smiley icons are shown in Table 4.5 where each

row corresponds to one subject and each column corresponds to one icon. The column

entitled U contains the name of the university that the subject belongs to and the one

entitled P contains either the letter P for Programmer or the letter N for Non-

Programmer.

95

Aiiswets of the56 Subjects tothe 30 lcoiis
C=Coi rect and VVWAona

vv
I-

: i: C

IC IAI C'

:c if:, 'I

Vo

. 1: C 1: VV

IV vv

-:..... 1 0

VV VV
VV lie

.......... 0
-i

I- ! 0- -Iý: I: I:

.. ---:
I-. : I-

0: : i-, . 1: - 1:: * I-, : 1:: i 0-: - I- .-: -

.
..... -: l-,

....
.

........... 'A' 1: 1: 1: 1- I_: I-, I- I- I- I- I-

iI
.
1w.

W-W--: I- : I-
-

1ý
-

..............

:. o 0
------- --------- :, -:

I-;,
-

...........

....
1: 1: 1: llý I- vv ý

'A' Al
Výy A'

1-: V6, vV ow A V61 6 .;.. 1 :1

VV
;. ý .1w rý ; -r? . 11. i

ý. 0. Z.. i..:.
.0- .171 1 17 V T I" i

...... '** . .:........... - % -
0: W I- I vv C: w

vv C vv . vv vv 'IV
........... C. VV I- VV jCC.

.

1: W I-' vv l-, J: " 1: 1: 0ý I VV W 1: C W WWC, C, 'A' C, tN
'A' IN WW 'AT VV VV WW1:: "1 IJV 0-ý W VV I_: IN fjý 'A'

.
w w

.................. 'Af 1: 1-- 1-- 1-- 1- 1- 1- 1- 1- 1:. 1: ý I:.
. VV IN 'AT Výl Al

IN C, :C vv vv
.

"iv In In -: -: -: -: -
0..

. .. Q..
W. 4. ..?.

I..
. '. - ... I

v%, vv I/V
.

0: IN VV C, ... In 1: 'A' 1: 1 1ý 1: .11: 1: :11: 0: 1: IIV
IN IJV fjý

Table 4.5: The Grades of the Subjects Answers to the Icon Recognition

Questions

The collected data is represented visually using a graphical chart namely the

histogram bar chart. The histogram in Figure 4.17 shows for each icon the total

number of correct answers and its respective value as converted to a score over 100.

96

Q

2 6 0 100 1M

F,

+,

t9

3 "' 95
15

3

&
5

. =. -4 # ý o cr 3 - ý
100 56

CA 40 40 1 CCJ 5F Wý

lo

. -40ý . -

P

,
-

m ,

1' 96 st
-

1 3 8 -5 . 9 0

it

56

M Pe roe ryt out of 100

-IPJ
L, Wý

9S
ý

5: 3
r: 4 ?

ýI

20

21 96 u

ý3 F, F"O

Y
.0

C4;.

Q6 54

ý 29

-
9r% &

F -- F M- I x Jr q, , Figure 4.17: The Total Number of Correct Answers.

The icons that are recognized easily are the ones with the higher grades whereas the

ones recognized with difficulty with the lower grades. Hence, the level of the ease of

icon recognition can be divided into the following scale:

Excellent recognition: a grade greater than or equal to 90

Very Good recognition: a grade between 80 and 89

Good recognition: a grade between 70 and 79

Average recognition: a grade between 60 and 69

* Bad recognition: a grade below 60

Figure 4.18 shows the number and percentage of icons as distributed over the icon

recognition levels.

97

Number of Icons Recognized

20
18
16
14
12
10
8
6
4
2
0

b ib 6

rd cjg ýop ýý ýý<l

En Number of Icons
Recognized

Percentages of Icon Recognition

7%

27%

%

Excellent

Very Good
Good

Average

Bad

Figure 4.18: The Number and Percentages of Icon Recognition.

Nineteen icons representing 63% of the total icons have an excellent recognition,

eight icons representing 27% have a very good recognition, one icon representing 3%

has a good recognition and two icons representing 6.67% have a bad recognition. The

total average of all the icons scores is 90/100. It can be concluded that in general the

smiley icons are very easily recognized and can be used to visualize and represent

objects, places, or locations. The two icons that are badly recognized are the ones

numbered respectively 20 and 24 in the histogram shown in Figure 4.16. The first

icon is supposed to represent a taxi company. The wrong answers supplied by the

suýjects show that the icon can be easily confused with other objects such as

Limozine, amusement, celebration, delivery, and rent a Limozine. The second icon is

supposed to represent a metro station. The close answers that are considered correct

98

o/.

include many names such as the tube and the underground station. The wrong answers

supplied by the subjects show that the icon can be easily confused with other objects

such as fast diesel, taxi, and train. The only icon that has a good recognition level is

the one numbered 17 in the histogram shown in Figure 4.16. It is supposed to

represent a public telephone. The wrong answers supplied by the subjects show that

the icon can be easily confused with other objects such as mobile station, mobile

store, mobile operator, operators, mobile shop, and mobile. In order to compare the

scores of the two groups, the programmers versus the non-programmers, a histogram

is used. Figure 4.19 shows for each icon the total number of correct answers and its

respective value as converted to a score over 100. The results of the programmers

group appear in blue and those of the non-programmers group in red.

Figure 4.19: Histogram to Compare the Results of the Programmers Group

versus the Non-Programmers Group.

99

The mean of the icons scores for each of the programmers group, non-programmers

group, and both groups are respectively 93,88, and 90 out of 100 as shown in Table

4.6 and Figure 4.20.

Average Means Programmers Non-Programmers Both Groups
of Icons (28) (28) (56)

Average of Correct
Answers 26 25 51
Percentage
out of 100 93 88 90

Table 4.6: The Means of the Programmers, Non-programmers, and Both

Groups.

Figure 4.20: Percentage of Correct and Wrong Answers of the Programmers,

Non-programmers, and Both Groups.

Hypothesis Testing [Blu03] is a procedure based on sample evidence and probability

theory to determine whether the hypothesis is a reasonable statement. To test if there

is a significant difference between the mean averages of the two groups, the

programmers and the non-programmers, the null hypothesis HO is stated assuming that

the means are equal. The alternate hypothesis HI indicates that there is a difference:

HO : p, ---,: p2 Where p, is the mean of the programmers and P2 the non-programmers
HI: p, #_ p2

A t-test is used to calculate a t-stat value which determines whether the null

1ýipothesis should be rejected or not. If the result shows that the means are different,

100

another null hypothesis HO is stated assuming that the mean of the programmers is less

than or equal to the mean of the non-programmers. Another t-stat is calculated to
determine whether the new null hypothesis should be rejected or not.

HO yj : ýý P2

Wherey, is the mean of the programmers and/42 the non-programmers H, p, > P2

The Mest is derived directly from the standard method used to estimate significance

of a deviation from the mean in a student-t distribution, and is intended for use where

the number of samples is small and the number of subject in at least one group is less

than thirty. The independent samples t-test is used to compare one aspect between two

subject groups. From the t-test, two values are obtained namely the t and the p values.
The t statistic measures the difference between the two variables means, with the p

value defining the significance of the t statistic. If the p value is 0.05, then given that

the null hypothesis is true there is a 5% chance that the observed result - or a result

more extreme than this - would occur by random chance. Values of p less than or

equal to 0.05 indicate a significant result when the word significant means outside the

95% range of the null hypothesis.

When the samples are considered small, both of their variances unknown but

presumed equal, then the appropriate test statistic is the student t statistic. The t

statistic is defined as follows:

XI-X2

whereý
s+

n, n2

X, is
_

the
_

mean
_

of
_

first
_

group

X, is
-

the
_

mean
_

of
_

sec ond
_

group

-
fi

-
group nl is

_
the

-
number of

_
participants

_
in irst

2 ýf
participants

group n is
_the

number o in sec ond
S2x

+

+SSl,
SAO, Cl

n, +n, -2
S is Xi the s tan dard deviation o) f first

_ group
S is

X1 the s tan dard deviation o - ýf _ group sec ond

101

Since the number of participants in each group is 28 (n, = n2 = 28) both n] and n,
could be replaced by n= 28. A simple substitution of n in the formula results in

producing the following equivalent formula:

X1
-X2

whe
s XI X2

n

X is the mean o I--_ ýf _first_ group
X2 is

-
the

_
mean

_
of

_
sec ond

_
group

n_is_the_number o in each f
participants group

S XIX2

X,
+S

X2

2n-2
Sx, is

_
the

_s
tan dard

-
deviation o

_f _first_
group

S is the s tan dard deviation o X2 ---_ ýf
-

sec ond
_

group

The t-test of the current work has been calculated using the Microsoft Excel 2003

Data Analysis Tools to compare the mean scores of the two groups with respect to

each icon separately where the following values are considered:

* the confidence level is 95%,

* the significance level is 5%,

* alpha a is equal to 0.05,

* the degrees of freedom df is 54 which is the number of subjects less the number of

groups,

*f critical for one-tail is 1.673565, and

I critical for two-tail is 2.004879.

The results of the statistics are shown in Table 4.7.

102

icon

P mean
score

NP mean
score t Statistics p-valueltail p-value2tails

1 100.00 96.43 1.000 0.161 0.322
2 96.43 78.57 2.060 0.022 0.044
3 92.86 96.43 -0.585 0.281 0.561
4 89.29 82.14 0.754 0.227 0.454
51 89.29 85.71 0.397 0.346 0.693
6 89.29 71.43 1.695 0.048 0.096
7 92.86 89.29 0.461 0.323 0.647
8 100.00 100.00
9 100.00 100.00

10 96.43 100.00 -1.000 0.161 0.322
11 85.71 96.43 -1.406 0.083 0.166
12 100.00 92.86 1.441 0.078 0.155
13 85.71 92.86 -0.854 0.198 0.397
14 92.86 82.14 1.206 0.116 0.233
15 100.00 100.00
16 92.86 78.57 1.532 0.066 0.131
17 60.71 57.14 0.267 0.395 0.791
18 96.43 92.86 0.585 0.281 0.561
19 89.29 100.00 -1.800 0.039 0.077
20 71.43 39.29 2.510 0.008 0.015
21 96.43 96.43 0.000 0.500 1.000
22 100.00 96.43 1.000 0.161 0.322
23 92.86 85.71 0.854 0.198 0.397
24 82.14 64.29 1.513 0.068 0.136
25 100.00 100.00
26 96.43 100.00 -1.000 0.161 0.322
27 92.86 92.86 0.000 0.500 1.000
28 100.00 92.86 1.441 0.078 0.155
29 96.43 96.43 0.000 0.500 1.000
30 100.00 82.14 2.423 0.009 0.019

Table 4.7: The t Statistics of Each Icon Used for the Significant Differences of the

Means.

The I statistic of each icon is compared to the t criticalfor two-tail which is 2.004879.

If the I statistic is less than 2.004879, it can be concluded that there is no significant

difference between the means of the programmers sample group and the non-

prograrni-ners. For example, the t statistic of the first icon is I which is less than

2.004879. Hence, it can be reported that there is no significant difference between the

means of the programmers and the non-programmers with respect to recognizing the

first icon. The green t statistic values in Table 4.3 show that twenty seven out of thirty

icons were recognized at the same level by the subjects of both groups.

103

If the t statistic is greater than 2.004879, it can be concluded that there is a significant
difference between the means of the programmers sample group and the non-

programmers. In such a case, the t statistic is compared to the t criticalfor one tail

which is 1.673565. If it is greater, it can be concluded that the programmers sample

group performed better than the non-programmers, and vice-versa. For example, the t

statistic of the second icon which is 2.060 is also greater than 1.673565. Hence, it can
be reported that the programmers sample subject performed better than the non-

programmers, with t=2.060 and p=0.022. The programmers are able to recognize the

second icon at a higher level of recognition than the non-programmers. There is a
2.2% chance that this result occurred by random chance.

The yellow t statistic values in Table 4.3 show that only three icons out of thirty

reflect a significance difference between the means of the sample groups. The first

one is the icon number 2 (Hotel) with t=2.060 and p=0.022. The second one is icon

number 20 (Taxi) with t=2.510 and p=0.008. The third one is icon number 30 (Ice

Skating) with t=2.423 and p=0.009. In the three cases, it can be reported that at a 5%

level of significance, the programmers were able to recognize the icons better than the

non-programmers with ap value less than or equal to 0.022. An important question is

raised here: do the meanings of these three icons offer any explanation as to why this

might be? Their meanings probably do not offer any explanation. Moreover, if there is

a 5% = Y2
0 chance of a "False Positive", in the 30 icons this should happen on the

average
30

=I
Y2 times. The probability of it happening:

20

never
30!

(0.05)0(1 -
0.05)30

= 0.214
O! x3O!

once =
30!

= (0.05)(1 - 0.05)" = 0.339
M29!

30!)2(l twice= -- (0.05 - 0.05)" = 0.299
2! x28!

From the above probabilities, the following probabilities can be obtained. The

probability of having:

0 P(at least one "False Positive") =I-0.214 = 78.6%

0 P(at least two "False Positive") =I-0.339 = 44.70

0 P(at least three "False Positive") =I-0.299 = 19%

104

Hence, with respect to the likelihood of false-positives, it can be concluded that given
the 95% criterion, one would expect 1.5 "False Positives" amongst the 30 independent

icons (0-05 x 30). Since it was found that the probability of having at least three

"False Positives" is 19%, there may not, therefore, be anything particularly significant

about the icons 2 (Hotel), 20 (Taxi), and 30 (Ice Skating); they may simply be random

anomalies.

The Mest has also been applied to compare the overall mean scores of the two groups

with respect to all the icons together. The results show that the t statistic is equal to

1.503 and the t critical is 2.001717. Hence, there is no significant difference between

the means. In general, it can be reported that the smiley icons are very easily

recognized by both sample groups and that there is no significant mean difference

between the programmers and the non-programmers sample groups with respect to

the icons recognition. However, a thorough investigation of the results shows that

there are 23 cases where a difference was observed. 17 cases showed the

programmers ahead of the non-programmers and 6 cases only showed the

programmers ahead of the non-programmers. It can be said that 74% (1 Y23) of the

times when there was a difference, the programmers performed better than the non-

programmers. Given the null-hypothesis there is a 50% chance that programmers

perform better than the non-programmers and 50% the other way around. By using

the Beta distribution, the following values can be calculated:

Mean = 0.5 x 23 = 11.5

Standard deviation= ,,,
r23(0.5)(I

- 0.5) = 2.39

9 Approximate Gaussian Z criterion for 95% confidence = 11.5 + (1.96 x 2.39)

= 16.18. So, it generally fails the 95% confidence.

17-11.5
0 Z= -2.301 2.39

The value corresponding to z in the z-table is 0.489

o p-value = 0.5 - 0.489 =1. l/o

105

So, it can be said that based on the I-tail test, only 1.1% of this result occurred by

chance and that there is a significant (albeit small) bias towards the programmers,
though not especially important. Hence, it can be concluded that there is some

evidence for thinking that the programmers perform better than the non-programmers.

4.6.2 The Results of the Evaluation of the Query Formulation

The answers of the subjects are graded based on a classification scheme that uses the

letter C to represent the correct answers and the letter W to represent the wrong

answers. An answer is considered correct when a subject has written the correct

sequence of the icon numbers that are used to fon-nulate a query. The same answers

are also graded based on a quantitative scale in order to produce statistical results. The

correct answers are given the score 100 and the wrong ones 0. The data collected

about the query formulation are shown in Table 4.8 where each row corresponds to

one subject and each column corresponds to one query. As before, the column entitled

U contains the name of the university that the subject belongs to and the one entitled P

contains either the letter P for Programmer or the letter N for Non-Programmer.

106

Aiiswei s of the 56 Subjects to the 15 Oueries
C=Cottect and W=V%ong

The collected data is represented visually using a graphical chart namely the

histogram bar chart. The histogram in Figure 4.21 shows for each query the total

minber of correct answers and its respective value as converted to a score over 100.

107

Table 4.8: The Grades of the Subjects Answers to Query Formulation Questions.

120

CD 100
0

80
0

60 0
0 -0 40
0 20

0
1 13 15

Query Number

Amerage of
Answers to
Queries

Figure 4.21: The Average of Correct Answers to Query Formulation.

The total average of all the queries scores is 85.71 out of 100. It can be concluded that

in general the visual queries are very easily formulated. In order to compare the

queries scores of the two groups, the programmers versus the non-programmers, a

histogram is used. Figure 4.22 shows for each query the total number of correct

answers and its respective value as converted to a score over 100. The results of the

programmers group appear in blue and those of the non-programmers group in red.

120

100

80

60

m 40
0

20

0

* Programmers
* Non-Programmers

Figure 4.22: Histogram to Compare the Results of the Programmers Group

versus the Non-Programmers Group.

108

Average of Answers to Queries

23456789 10 11 12 13 14 15

Query Number

The mean of the queries scores for each of the programmers group, non-programmers

group, and both groups are respectively 86.9,84.52, and 85.71 out of 100 as shown in

Table 4.9 and Figure 4.23.

Average Means Programmers Non-Programmers Both Groups
of Queries (28) (28) (56)

Average of Correct
Answers 24.33 23.67 48
Percentage
out of 100 86.9 84.52 85.71

Table 4.9: The Means of the Programmers, Non-programmers, and Both

Groups.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

0
10

CO
z ej \IQ

00;

Subject Group

m% Wrong Queries

% Correct Queries

Figure 4.23: Percentage of Correct and Wrong Answers of the Programmers,

Non-programmers, and Both Groups.

To get more statistical analysis about the mean averages and in order to check if there

is a significant difference between the mean averages of the two groups P and NP, the

Mest statistic is used. The independent samples t-test has been applied to compare the

inean scores of the two groups with respect to each query separately then to the

overall mean scores of all queries together. In the first case, the same confidence

level, alpha, degrees of freedom, and t critical values that are used for the icons are

considered for the queries. The results of the statistics are shown in Table 4.10.

101)

score score t Statistics p-value2tails
1 100.00 96.43 1.000 0.322
2 100.00 92.86 1.441 0.155
3 100.00 96.43 1.000 0.322
4 96.43 92.86 0.585 0.561
5 96.43 96.43 0.000 1.000
6 89.29 96.43 -1.029 0.308
7 96.43 96.43 0.000 1.000
8 92.86 96.43 -0.585 0.561
9 75.00 85.71 -1.000 0.322

10 85.71 89.29 -0.397 0.693
11 82.14 71.43 0.940 0.351
12 82.14 82.14 0.000 1.000
13 78.57 64.29 1.177 0.244
14 78.57 67.86 0.896 0.374
15 50.00 42.86 0.528 0.600

Table 4.10: The t Statistics of Each Query Used for the Significant Differences of

the Means.

The t statistic of each query is compared to the t critical for two-tail which is

2.004879. If the t statistic is less than 2.004879, it can be concluded that there is no

significant difference between the means of the programmers sample group and the

non-programmers. For example, the t statistic of the first query is I which is less than

2.004879. Hence, it can be reported that there is no significant difference between the

means of the programmers and the non-programmers with respect to answering

correctly the query fon-nulation of the first query. The green t statistic values in Table

4.6 show that all the fifteen queries were forinulated by the subjects of both groups

with no significant means difference. It is worth noting that the programmers

perforined better than the non-programmers in the first 5 simple queries and the last 5

complex queries whereas the non-programmers performed better than the

programmers in the intennediate ones.

The Mest has also been applied to compare the overall mean scores of the two groups

with respect to all the queries together. The results show that the t statistic is equal to

0.440 and the t critical is 2.048407. Hence, there is no significant difference between

the means. In general, it can be reported that there is no significant difference between

the means of the programmers and the non-programmers sample groups with respect

to the query forniulation. The queries that are evaluated are divided into two

I . 1tierics are categories namely the simple queries and the complex ones. The simple c

110

the ones numbered from I to 8 and the complex ones from 9 to 15. The average score

of each category is calculated. The mean of the simple queries scores for each of the

programmers group, non-programmers group, and both groups are respectively 96.43,

95.54, and 95.98 out of 100. The mean of the complex queries scores for each of the

programmers group, non-programmers group, and both groups are respect'vely 76.02,

71.94, and 73.98 out of 100 as shown in Table 4.11 and Figures 4.24.

Average Means of Programmers Non-Programmers Both Groups
Simple vs. Complex (28) (28) (56)

Percentage of
Simple Queries 96.43 95.54 95.98
Percentage of
Complex Queries 76.02 71.94 73.98

Table 4.11: The Means of the Programmers, Non-programmers, and Both

Groups.

100
90
80
70
60
50
40
30
2C
ic

c

E I E :3

cm
c 0 Z

E
co L-

0

0 0) 0 4- 0 co

m% Simple Queries

M Complex Queries

Figure 4.24: Percentage of Correct and Wrong Answers of the Programmers,

Non-programmers, and Both Groups.

To get more statistical analysis about the mean averages of the simple queries the

independent samples t-lest has been applied to compare the mean scores of the two

groups. Another independent samples t-test has also been applied to check if there is a

nlean difference between the programmers and the non-programmers at the 95%

coiifidence level and 5% significance level. The results of the statistics are shown in

Figure 4.25.

t-Test: Two-Sample Assumi ual Variances
S1-8
Non-

Mean
Variance
Observations
Pooled Variance
Hypothesized Mean
Difference
df

t Stat
P(T<=t) one-tail
t Critical one-tail
P(T<=t) two-tail
t Critical two-tail

96.25
15.07142857

8
8.5

0

14

0.685994341
0.25195975

1.761310115
0.503919499
2.144786681

95.25
1.928571429

8

nl+n2-2=8+8-2
<2.14 so accept
Ho

t-Test: Two-Sample Assuming Equal Variances
COMPLEX QUERIES 9-15

Non-
Programmers

Mean 76.14285714
Variance 144.4761905
Observations 7
Pooled Variance 197.8095238
Hypothesized Mean
Difference 0
df 12

t Stat 0.570077156
P(T<=t) one-tail 0.289571251
t Critical one-tail 1.782287548
P(T<=t) two-tail 0.579142503
t Critical two-tail 2.178812827

71.85714286
251.1428571

7

nl+n2-2=7+7-2
<2.17 so accept
Ho

Figure 4.25: I-test of Simple Queries and t-test of Complex Queries.

The results of the above two t-tests are summarized in Table 4.12.

Query Ty e
P mean
score

NP mean
score t Statistics p-value2tails

Simple 1-8 96.250 95.250 0.686 0.504
Complex 9-15 76.143 71.857 0.570 0.579

Table 4.12: The t Statistics of Each Query Type.

The t statistic of the simple queries is compared to the t criticalfor two-tail which is

. 144786681. The t statistic is less than 2.144786681, thus can be decided not to

rýject the hypothesis Ho which states that the two means are equal. The Hypothesized

Mean Difference is 0. There is no significant difference between the means of the

programmers sample group and the non-programmers with respect to simple queries.

112

The I statistic of the complex queries is compared to the t criticalfor two-tail which is
2.178812827. The t statistic is less than 2.178812827, thus it can be decided not to

reject the hypothesis Ho which states that the two means are equal. The Hypothesized

Mean Difference is 0. There is no significant difference between the means of the

programmers sample group and the non-programmers with respect to the complex

queries.

4.6.3 The Results of the Evaluation of the User Satisfaction

The evaluation of the user satisfaction has been conducted using a questionnaire made

up of twenty five questions that are scored by means of a 7-point Likert scale. The

answer 7 reflects the highest user satisfaction and the answer I reflects the lowest.

The data collected about the user satisfaction questionnaire are shown in Table 4.13

where each row corresponds to one subject and each column corresponds to one

question. As before, the column entitled U contains the name of the university that the

subject belongs to and the one entitled P contains either the letter P for Programmer or

the letter N for Non-Programmer.

113

Answers of the 56 Subjects to the Otiestionnafte
25 Ouestions,, 7-i)oiivt Likett Scale

lz, 13 14
.. - 1, -ý-.: ..:.. -,

913-M
...........

P77ý7'6 m: 7ý7ý7 13
...: 't-1: &.: _I -

..:; > el > * :;. e. Z;. *':?,:; *e.: 4 Pý7-7 *- 7«6
b. *. ti :ib: i, i-, 't: i. 1: k: 1: i. i: 9. i: 4:

..............

i: i. 3: ii: 5
.............

ID 15
:..

p*
ID «U ej- :: tw . :D: --P :. i 4

6............. : 0
:..

..: :;. p 5: 5ý6»t
.............. 4 b : : ::; -4 14 : A. - f4 ý ", -, 7: 1"F, :A: ": 1.:, : t' *''-' .-. i... 9: i: i. 6- 15 :t». a:.: i: A-i-

................ ZU p7
.............. eD .. pý ? 0.0.1..:. 11... ., v. : *w*ý>, «-, >-ä4-1>-m m 1.. > ". ýh m* ý> . 54 a4

«!.............
......... ,

!.. 4
....

4
..... 0 :

.....
:

...... 0 0 : !..: 00C............ HP 15 :5777 93,7 7
.............

............
........................

* :............ '15
...........

:
-i: H* f4 -6-7ý7'6-6--': ID ': 15 ": b- : :D. j. :D:: 6: 6: ID : OD :

............ 777 H ? 4.:
.77

:i: 777777 31H

... : Z) - :D:::) :i

77S. 6
........... 77

.:,: 0. :. l.. :. w WIJ. ".

6

I..:. I..:. W.

34:: IJ pý C% «54,5' -. 6426ý6 05 1-j :D r-. 75
i.. h. «? *

............

, 1-ID tD - #. > ::: >D ::: ID » ..
ýtýZ: - ý #D :.: t: i: ä: i-a: ID : ID -.

............. 0 5 e 0. 0
LI ýP'6A-5: A: A6554ý6

.............

. �*> f4 ý71 5- 1; - :; ý6* f-; -i'z:, -6: :D: b
.

ID : t' :. j: -D : Z. : t-

.................. ý--e.::. e : e-, « -LI f4 A 5, .34 .3: 1
ý>. : -0 4: t.,: 4: A. m- ID : "bý- «:: «* 1-T*:: *fj". ýý .-: - ZD --D -n- f2

................. -w
.......

15 t% t%

.: --Z. :): ID :-:: 13 :'
.............

N5 55 7»3*6: A: -: 75, ý77776 51 UD
. 0. -0- . ý..

--.
:.. .4..... .. *. %ý ;. 4. %v ý4. e. A. e

e": «*c
--. -. j. ä. ID ý. Z'. :A:,. a: i: Z, Z* :t-. At9

x 14
............. 0 > e:...........

: 0

4W

w. +

'4"" ""Ip.
b

'-W' . 0. .:: .0. --
I: h:

ý

14.

-. 0

ID
" """. �"+.

. ":;

Table 4.13: The Grades of the Subjects Answers to the User Satisfaction

Questionnaire.

The collected data is represented visually using a graphical chart namely the

histogram bar chart. The histogram in Figure 4.26 shows for each question the mean

of the answers and its respective value as converted to a score over 100.

114

6.6
6.4

0
ý; 6.2
06
CD

5.8
cn 5.6 t

5.4
5.2

5

Question Number

Mean of Questionnaire

Mean of
Questionnaire

Figure 4.26: The Average of Questionnaire Scores.

The aspect of the visual query language and its user interface are reflected by the

scores submitted by the subjects on each question. The score 7 means that the subject

had the best and highest preference and satisfaction whereas the score I means that

the subject had the worst and lowest preference and satisfaction. The highest the score

is the better the aspect is. The mean scores of the two subject group are compared to

check if the is a significant mean difference. Figure 4.27 shows the mean scores of

each question of the questionnaire for the programmers sample group in blue and the

non-programmers in red.

7

6
0

-6. a

0

Question Number

Programmers
Non-Programmers

Figure 4.27: Histogram to Compare the Results of the Programmers Group

versus the Non-Programmers Group.

115

13579 11 13 15 17 19 21 23 25

13579 11 13 15 17 19 21 23 25

The mean of the questions scores for each of the programmers group, non-

programmers group, and both groups are respectively 90.4,85.9, and 88.1 out of 100

as shown in Table 4.14 and Figure 4.28.

Average Means of
Questionnaire

Programmers
(28)

Non-Programmers
(28)

Both Groups
(56)

Averaqe out of 7 6.33 6.01 6.17
Averaqe out of 100 90.4 85.9 88.1

Table 4.14: The Mean Scores of the Questions of the Programmers, Non-

Programmers, and Both Groups.

out of 100

91

90
89

88

87

86
85

84

83

% out of 100

Figure 4.28: The Percentage of Mean Scores of the Questions of the

Programmers, Non-Programmers, and Both Groups.

To get more statistical analysis about the mean averages and in order to check if there

is a significant difference between the mean averages of the two groups P and NP, the

Mest statistic is used. The independent samples t-test has been applied to compare the

mean scores of the two groups with respect to each question separately then to the

overall mean scores of all queries together. In the first case, the same confidence

level, alpha, degrees of freedom, and t critical values that are used for the icons are

considered for the questionnaire. The t statistic of each question is compared to the t

criticalfibi- two-fail which is 2.004879. If the t statistic is less than 2.004879, it can be

concluded that there is no significant difference between the means of the

programmers sample group and the non -programmers. For example, the t statistic of

116

P rog Non-Prog Both

the first question is 1.721 which is less than 2.004879. Hence, it can be reported that
there is no significant difference between the means of the programmers and the non-

programmers with respect to their user satisfaction of the aspect of the first question.
The green t statistic values in Table 4.15 show that twenty three out of twenty five

aspects of the visual query language and its user interface are found of the same level

of user satisfaction by the subjects of both groups.

Question

P mean
score

NP mean
score

t
Statistics

p-
valueltail

p-
value2tails

1 6.357 5.964 1.721 0.045 0.091
2 6.071 5.821 0.903 0.185 0.371
3 6.357 6.036 1.284 0.102 0.205
4 5.786 5.321 1.370 0.088 0.176
5 6.071 _ 5.786 0.875 0.193 0.385
6 6.321 5.786 2.027 0.024 0.048
7 6.143 5.679 1.627 0.055 0.109
8 5.857 5.179 1.627 0.055 0.110
9 6.407 6.107 1.133 0.131 0.262

10 6.214 5.964 0.743 0.230 0.461
11 6.500 6.500 0.000 0.500 1.000
12 6.536 6.071 2.299 0.013 0.025
13 6.464 6.357 0.563 0.288 0.576
14 6.464 6.107 1.486 0.071 0.143
15 6.036 5.857 0.481 0.316 0.633
16 6.357 5.821 1.834 0.036 0.072
17 6.571 6.179 1.777 0.041 0.081
18 6.607 6.357 1.160 0.126 0.251
19 6.321 6.143 0.597 0.276 0.553
20 6.571 6.393 0.972 0.168 0.336
21 6.393 6.214 0.850 0.200 0.399
22 6.464 6.036 1.668 0.051 0.101
23 6.607 6.393 0.991 0.163 0.326
24 6.464 6.107 1.316 0.097 0.194
25 6.321 6.071 0.810 0.211 0.421

Table 4.15: The t Statistics of Each Question Used for the Significant Differences

of the Means.

If the t statistic is greater than 2.004879, it can be concluded that there is a significant

difference between the means of the programmers sample group and the non-

programmers. In such a case, the t statistic is compared to the t criticalfor one tall

which is 1.673565. If it is greater, it can be concluded that the programmers sample

group perfon-ned better than the non -programmers, and vice-versa. For example, the t

statistic of the twelfth question which is 2.299 is also greater than 1.673565. Hence, it

117

can be reported that the programmers sample subject performed better than the non-

programmers, with t=2.299 and p=0.013. The programmers have a higher user

satisfaction than the non-programmers. There is a 1.3% chance that this result

occurred by random chance.

The yellow t statistic values in Table 4.15 show that only two questions out of twenty

five reflect a significance difference between the means of the sample groups. The

first one is the question number 6 with t=2.027 and p=0.024. The second one is the

question number 12 with t=2.299 and p=0.0 13. In both cases, it can be reported that at

a 5% level of significance, the programmers have a higher user satisfaction with

respect to the aspects of questions 6 and 12.

The t-test has also been applied to compare the overall mean scores of the two groups

with respect to all the questions together. The results show that the t statistic is equal

to 4.152027 and the t critical is 2.010635. The t statistic is greater than the t critical
for two tails. The hypothesis is rejected. The means of the two groups are not equal.

In such a case, the one tail statistic is used instead of the two tails. The t stat is greater

than the t critical one tail which is 1.677224. The hypothesis that "programmers mean

is less than or equal to the non-programmers mean" is also rejected. The programmers

mean is greater than the non-programmers mean in all 25 questions. It is concluded

that programmers have a higher user satisfaction with respect to the visual query

language and its user interface. Moreover, it is clearly noted that the programmers

performed better than the non-programmers in 24 questions where a difference in the

results is observed. If the null hypothesis is true, which means that there is a 50%

chance of programmers performing better than non-programmers, then the probability

of this happening by random chance is (0.5)24 ýý 6X 108 or around I chance in 17

1111111on. Hence, it can be concluded that there is therefore a stron indication that the 9

programmers perform better than the non-programmers though the magnitude of this

difference is small. The t-test result is shown in Figure 4.29.

118

t-Test- Two-Sample Assuming Equal Variances
USER SATISFACTION QUESTIONNAIRE - ALL QUESTIONS

Non-

Mean 6.34
Variance 0.051666667
Observations 25
Pooled Variance 0.076116667
Hypothesized Mean
Difference 0
df 48

t Stat 4.152026685
P(T<=t) one-tail 6.71434E-05
t Critical one-tail 1.677224197
P(T<=t) two-tail 0.000134287
t Critical two-tail 2.010634722

6.016
0.100566667

25

>2.10 &>1.677
so P>NP

Figure 4.29.: t-test of all the Questions of the Questionnaire Used to Check for

Mean Difference of Programmers and Non-Programmers.

4.6.4 Discussion

The user testing and the user satisfaction have been both chosen in order to evaluate

the expressive power of the smiley icons, their level of recognition, the ease of use,

the user interface, the query building and fon-nulation, and the expressive power of the

lVQL language. The results of the analysis show that the subjects found that the

smiley icons have a good expressive power, a high level of recognition, and are easy

to use. They also found that the user interface is very good, the query building and
fonnulation easy, and that the IVQL language has a very good expressive power.

4.6.4.1 Discussion of the Results of the Evaluation of the Smiley Icons

The user testing reported the results about the expressive power of each icon. The

attributes smiley icon recognition as well as smiley icon representation are used to

reflect the clarity of each icon. The level of recognition is 93% which means that all

the subýjects were able to identify and recognize easily the majority of the icons. Two

icons only proved to be recognized with difficulty or badly recognized namely the

taxi and the rnetro icons. It is suggested to either change the icons or amend their

119

picture in a way to make them vi I isualize better the objects that they are supposed to

represent.

A Mest analysis has been done for each icon separately in order to check if there is a

significant difference between the level of recognition of the programmers group and

that of the non-programmers group. It can be reported that at a 5% level of

significance, there is no significant difference between the means of the programmers

and the non-programmers with respect to recognizing twenty seven icons out of thirty.

The three icons that visualize respectively a hotel, taxi, and ice skating show a

significant difference in the results. It can be reported that at a 5% significance level,

the programmers were able to recognize the icons better than the non-programmers.
However, since it was found that the probability of having at least three "False

Positives" is 19%, there may not, therefore, be anything particularly significant about

the icons 2 (Hotel), 20 (Taxi), and 30 (Ice Skating); they may simply be random

anomalies.

The overall mean scores of the two subject groups, the programmers and the non-

programmers, are respectively 93 and 88. The t-test has also been used to compare the

mean scores of the two subject groups. The results show that at a 5% level of

significance, there is no significant difference between overall means of the

programmers and the non-programmers sample groups. Hence, it can be concluded

that the smiley icons are very easily recognized by both sample groups and that there

is no significant difference between their levels of recognition. However, it can also

be said that based on the 1 -tail test, only 1.1% of this result occurred by chance and

that there is a significant (albeit small) bias towards the programmers, though not

especially important. Hence, it can be concluded that there is some evidence for

thinking that the programmers perform better than the non-programmers.

The user satisfaction questions 7 to 10 reported the results about the icons. They

measure the level of consistency of the use of icons throughout the system, the

relation between the operator icons and the tasks that they are supposed to perforin,

and the consistency of the messages that are displayed on the screen. On the average,

all the subjects found that the use of the icons throughout the system was 84%

consistent with a mean score of 5.91 7. The programmers group found it 88%

120

consistent whereas the non-programmers group found it 81% consistent. The t-test

analysis can report that at the 5% level of s1gn1ficance, there is no significant
difference between the means of the programmers and the non-programmers groups.
It can be concluded that both subject groups had the same level of user satisfaction

about the use of icons throughout the system.

On the average, all the subjects found that the operator icons are 79% related to the

tasks that they are supposed to perform with a mean score of 5.52/7. The

programmers group found them 84% related whereas the non-programmers group
found them 74% related. The Mest analysis can report that at the 5% level of

significance, there is no significant difference between the means of the programmers

and the non-programmers groups. It can be concluded that both subject groups had the

same level of user satisfaction about the operator icons being related to the tasks that

they are supposed to perform. On the average, all the subjects found that the position

of the messages on the screen was 89% consistent with a mean score of 5.91/7. The

programmers group found it 92% consistent whereas the non-programmers group

found it 87% consistent. The Mest analysis can report that at the 5% level of

significance, there is no significant difference between the means of the programmers

and the non-programmers groups. It can be concluded that both subject groups had the

same level of user satisfaction about the position of the messages on the screen.

On the average, all the subjects found that the error messages and error prevention

were 87% helpful with a mean score of 6.09/7. The programmers group found them

89% helpful whereas the non-programmers group found them 85% helpful. The t-test

analysis can report that at the 5% level of significance, there is no significant

difference between the means of the programmers and the non-programmers groups.

It can be concluded that both subject groups had the same level of user satisfaction

about the error messages and error prevention. Hence, it can be concluded that the

Smiley icons are used easily by both sample groups and that there is no significant

difference between their levels of user satisfaction. A comparison between IVQL

icons evaluation with the ones conducted in the reviewed visual query languages

shows that the work done in [Bon02] evaluated the expressive power of the language

by user testing whereas it is done in IVQL by user satisfaction. The results that are

reported in [Bon02] show that the icons have a 65% expressive power whereas the

121

IVQL evaluation results show that the icons have a 90% expressive power, hence,

reflecting a higher expressive power in favour of the IVQL icons.

4.6.4.2 The Discussion of the Results of the Evaluation of the Query

Formulation

The user testing has been chosen in order to evaluate the ease of use of the 1VQL

language. The ease of use is determined through measuring the visual query writing
task of the subjects. Questions I to 8 cover the simple queries formulation whereas

questions 9 to 15 cover the complex queries formulation noting that a query is

considered complex if it includes one or more 'and' operator to combine two or more

simple queries. The total average of all the queries scores is 85.71 out of 100. It can
be concluded that in general, the visual queries are very easily formulated using the

IVQL visual query language. The t-test analysis that is used for each query leads to

the fact that there is no significant difference between the means of the programmers

and the non-programmers with respect to answering correctly each of the query
formulation questions. In other words, both groups subjects answered each query with
the same level of achievement, either both groups having high scores or both having

low ones.

It can be reported that there is no significant difference between the overall average

means of the programmers and the non-programmers with respect to answering

correctly all the query formulation questions. It can be noted that both programmers

and non-programmers performed better on the simple query formulation questions

than on the complex query formulation. This is normally expected since it is due to

the fact that complex queries are more difficult to write and formulate than simple

ones. The t-test analysis can report that at the 5% level of significance, there is no

significant difference between the means of the programmers and the non-

programmers groups with respect to answering the simple query fon-nulation

questions. It can be concluded that both subject groups had the same level of

performance in formulating simple queries.

I -) -)

The t-test analysis can report that at the 5% level of significance, there is no

significant difference between the means of the programmers and the non-

programmers groups with respect to answering the complex query formulation

questions. It can be concluded that both subject groups had the same level of

performance in forinulating complex queries. The evaluation of the query building

and formulation shows that people from different backgrounds like programmers and

non-programmers are expected to perform the same when using the IVQL visual

query language. They do not need to have any programming experience in order to be

able to use easily IVQL to formulate queries or understand its visual language.

However, it is worth noting that the programmers performed better than the non-

programmers in the first 5 simple queries as well as the last 5 complex queries,

whereas the non-programmers performed better than the programmers in the

intermediate ones.

When comparing the results of the evaluation of IVQL query formulation with the

ones reviewed in the literature it can be noted that in IVQL the programmers

performed in general as good as the non-programmers. This fact proves that IVQL is

equally understood by people from different backgrounds. In the evaluation done in
[MurOO] the programmers performed better than the non-programmers due to the fact

that the visual query resembles a lot the form of an SQL statement. In the one done in
[Bon02] GIS users performed better than non-GIS users due to the fact the GIS users
have a good background in querying GIS applications. Hence it can be concluded that

the query formulation in IVQL can be more easily understood by the generic public

than the ones that are reviewed in the literature.

4.6.4.3 The Discussion of the Results of the Evaluation of the User

Satisfaction

The user satisfaction has been chosen in order to evaluate the user interface, the query

forinulation, and the expressive power of the lVQL language. The user interface is

evaluated by the questions 1-6 and 15-16. The subjects reported that they found the

software 88% excellent, 85% easy, and 89% satisfying. They found that reading

icoi-is on the screen was 790-0 easy, that the organization of infonnation was 85%

123

clear, and that the sequence of screens was 86% clear. The t-test analysis of each
aspect can report that at the 5% level of significance, there is no significant difference

between the means of programmers and the non-programmers groups except for the

sequence of screens where the programmers found it clearer than the non-

programmers. Hence, it can be concluded that both groups have the same level of

satisfaction about the user interface.

The query building and formulation is evaluated by the questions 17-25. The subjects

reported that they found the selection of the operators 91% easy, the selection of

categories 93% easy, the selection of objects 89% easy, building simple queries 93%

easy, the queries 90% clear, the queries 89% legible, remembering the language

queries 93% easy, the sequence used to build the queries 90% easy, and using the

'and' operator to formulate complex queries 89% easy. The Mest analysis of each

aspect can report that at the 5% level of significance, there is no significant difference

between the means of programmers and the non-programmers groups. Hence, it can
be concluded that both groups have the same level of satisfaction about the query

building and formulation.

The expressive power of IVQL is evaluated by the questions 11-14. the subjects

reported that they found the learning to operate the system 93% easy, exploring new
features by trial and error 90% easy, remembering the names and the use of icons

92% easy, and performing tasks is 90% straightforward. The Mest analysis of each

aspect can report that at the 5% level of significance, there is no significant difference

between the means of programmers and the non-programmers groups except for the

exploring new features by trial and error where the programmers found it easier than

the non-programmers. Hence, it can be concluded that both groups have the same

level of satisfaction about the expressive power of the IVQL language. However, it is

clearly noted that the programmers performed better than the non-programmers in 24

questions where a difference in the results is observed. If the null hypothesis is true,

NN, hich means that there is a 50% chance of programmers performing better than non-

programmers, then the probability of this happening by random chance is (0.5)24 z6

x 108 or around I chance in 17 million. Hence, it can be concluded that there is

therefore a strong indication that the programmers perfon-n better than the non-

1 '14

programmers though the magnitude of this difference is small. Moreover. it is

important to note that none of the reviewed visual query languages have used the user

satisfaction in order to evaluate the aspects that are evaluated in IVQL. This fact

might be considered as an advantage of the evaluation of IVQL over the others.

4.6.4.4 The Improved Operators Icons

Some of the subjects commented that the operators shown in Figure 4.30 namely,
Nearest Neighbor with Path and Within Buffer, were not so easily understood.

(J

w Figure 4.30: The Old Not Easily Understood Operators.

The operators have been reviewed and changed based upon their suggestions to

become as shown in Figure 4.3 1. The same subjects reported their satisfaction about

the new ones.

0 (0 T- obeim
Figure 4.31: The Improved Operators.

Accordingly, new operators have been designed to visualize static and dynamic

proximity operators as shown in Figure 4.32.

10 Tio m 7 --0

W,

Figure 4.32: The New Operators.

125

4.7 Conclusion

This chapter presented a new visual query language for Mob1le GIS which addresses

many limitations of previous visual query languages. It also presented the software

architecture which can process any visual query. The proposed language is based on

smiley icons that cover operators, values, themes, and objects, which were extensively

evaluated. The methods of evaluation were discussed and the evaluations which are
based on questionnaires were carried out. The obtained results have been very

encouraging. The user testing and the user satisfaction have been both chosen in order

to evaluate the expressive power of the smiley icons, their level of recognition, the

ease of use, the user interface, the query building and formulation, and the expressive

power of the IVQL. They proved that the advantage of the evaluation implemented in

this work over the evaluations implemented in the review of literature was that all the

aspects of usability of IVQL were evaluated whereas in each of the other reviewed

evaluations one aspect of usability only was evaluated such as query writing in

[Sm105], user interface in [Mor04], and expressiveness of icons and language in
[Bon021.

All the subjects were able to identify and recognize easily the majority of the icons

without significant difference between the programmers and the non-programmers

groups. Most of the subjects found that the use of the icons throughout the system

were consistent, the operator icons were related to the tasks that they were supposed

to perform. The visual queries were found very easy to formulate using the IVQL.

Subjects were also able to answer correctly each of the query fon-nulation questions of
both simple queries and complex queries. With respect to the user interface, the

subjects found the software excellent, easy, and satisfying. They reported that reading

icons on the screen was easy, the organization of information clear, and the sequence

of screens clear. A comparison between IVQL icons evaluation with the ones

conducted in the reviewed visual query languages showed that other work evaluated

the expressive power of the language by user testing whereas it was done in lVQL by

user satisfaction. The results that were reported by other work showed that their icons

had a 65% expressive power whereas the IVQL evaluation results showed that the

icons had a 90% expressive power, hence, reflecting a higher expressive power in

favour of the IVQL icons.

126

With respect to the query building and fon-nulation, the subjects found all the aspects

easy namely, the selection of the operators, the selection of categories, the selection of

objects, building simple queries, formulating the queries, understanding the queries,

remembering the language queries, the sequence used to build the queries, and using

the 'and' operator to formulate complex queries. With respect to the expressive power

of IVQL, the subjects found that the following aspects were easy namely the leaming

to operate the system and remembering icons. The subjects understood quickly the

smiley icons, user interface, query building and fon-nulation, and proved to be

satisfied with the aspects of the expressive power of the language. They also found

that the user interface is very good, the query building and formulation easy, and that

the IVQL language has a very good expressive power. The results of the analysis

show that the subjects found that the smiley icons have a good expressive power, a

high level of recognition, and are easy to use. They show that people from different

backgrounds like programmers and non-programmers are expected to perform the

same when using the lVQL visual query language. They do not need to have any

programming experience in order to be able to use easily IVQL to formulate queries

or understand its visual language.

When comparing the results of the evaluation of IVQL query formulation with the

ones reviewed in the literature it was noted that in IVQL the programmers performed

in general as good as the non-programmers. This fact proved that IVQL is equally

understood by people from different backgrounds. In the evaluation done other work

the programmers performed better than the non-programmers due to the fact that the

visual query resembled a lot the form of an SQL statement or GIS users performed

better than non-GIS users due to the fact the GIS users had a good background in

querying GIS applications. Hence it was concluded that the query formulation in

1VQL could be more easily understood by the generic public than the ones that were

reviewed in the literature. Moreover, it was important to note that none of the

reviewed visual query languages used the user satisfaction in order to evaluate the

aspects that were evaluated in IVQL. This fact was considered as an advantage of the

evaluation of IVQL over the others.

127

As a summary, the prototype of an iconic visual query language was designed and

implemented with the aim to address the challenge of having a visual dynamic

complex query language for Mobile GIS. It was constructed and evaluated taking into

consideration all the advantages and limitations of the reviewed visual query

languages.

128

Chapter 5- Query Melting

5.1 Introduction

In order to efficiently process multiple dynamic complex queries for proximity

analysis, which are fon-nulated by multi-users who are accessing the GIS server

simultaneously, the existing query optimization strategies were critically analyzed in
Chapter 3 which concluded with the need to develop new strategies. On one hand, this

can be achieved by a thorough examination of the execution plans of the GIS

operators with the aim to determine the existence of commonalities between their

functions, steps, processes, and objects, as well as to specify which functions can be

swapped or re-ordered. On the other hand, an investigation is needed to determine

how the common functions are eliminated and the other ones re-ordered, hence to be

able to employ a new Melting Ruler Mechanism that is responsible for sharing spatial

areas of various queries, temporal intervals, objects of interest, and operator templates

functions. Moreover, it is necessary to determine the possible combinations of n
Operator Templates that can be used to formulate a complex query, where each

combination is considered as a scenario, and to investigate the time cost where

inultiple users formulate similar scenarios, hence to be able to develop a new Decision

Making Mechanism (TCOP) that is responsible for sharing Global Execution Plans

(GEP) and resulting in time cost optimization.

The rest of the chapter explores the commonalities that exist between the GIS

operators, defines the Query Melting Paradigm, identifies the components of the

Query Melting Processor, and elaborates the Melting Ruler Mechanism. Section 5.2

introduces the concept of commonalities in GIS such as commonalities between the

execution plans of static operators, dynamic operators with one-predicate, and

dynamic operators with multiple predicate respectively, with the aim to determine

which can be shared and how sharing can be applied. Section 5.3 introduces the query

melting paradigm and elaborates how it includes the sharing paradigm, push-down

approach, traditional query optimization steps, and sharing GEP paradigm. Section

5.3.1 presents the components of the query melting processor and explains how each

Component operates in order to apply the melting ruler mechanism. Section 5.3.2

119

introduces the decision making mechanism of TCOP and explains how it operates in
order to employ the sharing GEP paradigm. Section 5.4 introduces the icons that

represent the operators, values, and objects in the dynamic complex queries that will
be used in the rest of the chapter. Section 5.4.1 explains how each GIS operator can
be translated into an execution plan, called Template, and shows examples. Section

5.4.2 describes the query melting process of various combinations of complex queries

and shows how they are converted into a global execution plan. Finally, some

concluding remarks are presented in section 5.5.

5.2 Commonality in GIS

A thorough examination of different GIS and LBS applications shows that they have

in common some functionalities, operations, and objects in execution plans. A

predicate is the operator used by the user while formulating a query such as Find

Within a buffer, Find the k Nearest Facilities (kNN), Find the Time Left to reach the

nearest facility, etc. There are two types of operators namely the static and the

dynamic. Each operator is decomposed as per its own query evaluation plan which is

made up of a list of functions/operations that are to be executed in the proper

sequence.

5.2.1 Commonality in Query Execution Plans of Static Operators
The simple form of a query evaluation plan is a simple plan of an operator. Figure 5.1

shows the query evaluation plan of an operator, where each dot represents a function

and the execution is done in the top down direction. Multiple queries could be

formulated for different facilities such as find the nearest 3 bookstores, find the

nearest 5 schools, and find the nearest 7 coffee shops. The same evaluation plan but

for different objects has to be repeatedly executed for each of the queries Q1, Q2 ... Qn

as shown in Figure 5.2(a). Some of the functions that are executed for Q, can be

reused for Q2 ... Q, They are called common functions or common operations.
Instead of repeating n times the same execution plan, a new global evaluation plan

can be fon-nulated and built. Figure 5.2(b) shows that some functions (black and white

dots) can be executed only once while others (blue and red dots) are to be repeated for

each query. The common functions that can be reused are in fact deleted from the

global eN, aluation plan, hence, they are melted. "I I

130

Top Down

Figure 5.1: Query Evaluation Plan of a Static Query with One Operator.

Common Qn

(a) n Executions of Same Plan (b) The Execution Plan Showing That

The Common Operations Can Be Reused.

Figure 5.2: Query Evaluation Plan of Multiple Static Queries with One

Operator.

131

5.2.2 Commonality in Query Execution Plans of Dynamic Operators

A dynamic query launches a continuous query that lives a certain penod of time such

as starting now and for the next 30 minutes, inform me about the time left to reach the

nearest restaurant, updating me every 2 minutes based on my new locations. Figure

5.3 shows that at every new XY location update time instance tj the same evaluation

plan is repeated.

Figure 5.3: The Query Evaluation Plan of a Dynamic Query with One Operator.

The functions, methods, or parameters that remain Invariable for some or all time

instances can be reused by consequent executions such as the black and white dots

that are marked with an arrow in Figure 5.4. They are executed only once at to and are

deleted /melted from their t'th plan. Those that vary at any new time instance should be

executed such as the blue and red dots as shown in Figure 5.5. The Query Evaluation

Plan in Figure 5.5(a) is represented in Figure 5.5(b) showing the Common Operations

that can be melted.

132

to

da da M

Figure 5.4: Common operators can be reused in Dynamic Queries with 1

Operator.

Common ti

(a) (b)

Figure 5.5: Query Evaluation Plan of Multiple Dynamic Queries with 1

Operator.

133

5.2.2.1 Commonality in Query Execution Plans of Dynamic
Operators with One Predicate

The user issues many dynamic queries such as keep me infon-ned of the time left to

reach the nearest restaurant for the next hour, and keep me infon-ned of the time left to

reach the nearest theatre for the next 30 minutes. Each of these two queries is updated
by the new XY location of the user at every new time instance. This change can be

executed only once at the beginning of a new time interval. Then, it is reused by the

rest of the queries throughout it. The repetitions are melted. The blue dots marked

with arrows in Figure 5.6 represent functions that are executed for every new time

instance and then can be shared by multiple queries. The red ones are executed for

every query at every time instance.

Time 0

QI Q2... Qn

Time,,

Q2 Qn

Figure 5.6: The Query Evaluation Plan of Every Time Instance of Multiple

Dynamic Queries with One Operator.

Figure 5.7 shows how the black and white dots are melted to be executed only once

tI or all the continuous queries and the blue ones at the beginning of each time instance.

Tile red are not melted so executed at each time instance of each query.

134

Time 0 Time 1 ... Time,,

QI Ei

Figure 5.7: The Global Query Evaluation Plan of Multiple Dynamic Queries

with One Operator.

5.2.2.2 Commonality in Query

Operators with Multi-Predicates

Execution Plans of Dynamic

When multiple dynamic complex queries are fon-nulated with multiple operators the

global evaluation plan of each operator might include functions that can be reused by

other global evaluation plans. Figures 5.8 and 5.9 show the two plans of the two

different operators Operator I and Operator2.

1i

OPERATOR1

Time Time I Time,,

Qi] Qn H'l

Figure 5.8: The Global Evaluation Plan of Operatorl.

OPERATOR 2

Time 0 Time I ... Time,,

Ql Q 1:
1

Figure 5.9: The Global Evaluation Plan of Operator2.

136

The dots marked with arrows in Figure 5.9 are the same as in Operatorl plan so they

can be melted. The red dots of Operator2 are appended to those of Operatorl's

because they can not be melted as shown in Figure 5.10.

OPERATOR I and OPERATOR 2

Time Time I ... Time.

Figure 5.10: The Global Evaluation Plan of Both Operators.

In this global execution plan there are 3 categories of operators:

Those that are executed once at the beginning and are later reused by all the

consequent execution plans whether by operators (static or continuous), single

or multiple predicates (operators), or within one continuous query.

Those that are executed at every new time instant then reused by other plans

until a new time instance gets into the picture and starts.

* Those that are executed for each query no matter what the type of query Is.

137

11 12 11 12 11 12

Qnl Qn2 Qn] Qn2 Qnl Qn2
IN] I

rý

IN] 01

5.3 Query Melting Paradigm

The Query Melting Paradigm (QMP) is a generic optimized framework for GIS. It

aims at building the optimal global evaluation plan for GIS spatio-temporal dynamic

complex queiries. Its main objective is to produce the most cost effective query
processing in terms of execution time and memory storage, thus, minimizing the

queries execution time cost. It is based on a combination of the Shanng paradigm,
Query Optimization, and Time Cost Optimization. The usage of the term "Melting" is

coined especially for this project and is not a commonly known term. It is used to

conceptualize and describe the fact that queries could be totally or partially eliminated

resulting in sharing areas, time intervals, and objects of interest. Hence, to "Melt"

means to eliminated repetitions and use common results of the operations that were

executed by other queries.

The Sharing paradigm that was investigated in the review of literature of query

optimization strategies [And06, Mok05a] is done by sharing the cache memory

whereas here it is applied differently and is used at the low-level of processing, e. g., at

the programming or coding level. It performs common sub-expression elimination

CSE, that was discussed in [Kan94, MAW], by eliminating all the repetitions of the

same process in different plans. It allows sharing the object of interest between

multiple simple queries by reading the object once and using it for many queries. In

the work done by [And03] the object of interest was shared between multiple users

each using one operator only in non dynamic queries, whereas it is applied here to

share it between multiple simple queries with multiple operators that belong to the

current dynamic complex query. When two queries share the same spatial area or

when an area is included in another, the QMP uses the shared area for multiple

queries. This is done by drawing the buffer of an area only once and using it multiple

times to clip or find the objects of multiple simple queries similarly to the work done

in [And02a, And02b] but for multiple simple queries that belong to the same dynamic

complex query instead of multiple users queries using one operator only.

Moreover, the QMP allows sharing an interval of time if it is included or equal to the

interval of another query. This is a newly introduced sharing that was not addressed

by any previously reviewed paper. Also, shanng the intermediate results is done

138

through using the same underlying space (map) for all the queries of the same user.
This is done through executing the plan of each user as a thread. The same was

implemented in [And02c, And02d, and And02e] but for multiple users using one

operator in non dynamic queries. When one or more operations of a query are melted,
the query is partially melted. When all the operations of a query are melted, the whole

query is fully melted. Query Melting results in a smaller number of operations to

execute, hence, saving execution time, producing faster results, and leading to cost

effectiveness.

The Query Optimization that was applied by [Kan94, AndO 1, Elm06, and Mok06] is

performed through converting the queries into a list of executable operations. The

queries are decomposed, common sub-expressions are eliminated, the execution of

queries is reordered, a global access plan is constructed, and the queries are translated
into low-level programming. The Query Optimization is here extended to include

"multi-tiser spatio-temporal multi-predicate dynamic complex queries". Finally, The

Time Cost Optimization (TCOP) that is responsible for handling the multi-users
dynamic complex queries at the GIS server side in order to manage the ones that have

similar scenarios, aims at sharing a previously melted plan instead of generating a

new one for each query. The work done in [ELM06] proposes sharing sub-plans

whereas here TCOP which is the new decision making mechanism implements

sharing all the plans. In order to minimize the execution time of the processor TCOP

is implemented using two different methods of processing. The first is "With No

Decider TCOP" where the complex queries templates are melted for each complex

query. The second is "With Decider TCOP" where the templates are melted once per

scenario and stored in memory for later retrieval by similar consequent scenarios. The

decision making mechanism that proves to be cost effective is employed.

Query Melting is implemented using the Query Melting Processor QMP which plays

the role of an interpreter, optimizer and processor. It is a middleware software system

located on the server. Its major function is to input user queries, optimize them based

on the Query Melting Paradigm, generate global execution plan and execute it,

produce the resulting maps, and send the output to the user. It is mainly concerned

\\'ith GIS and location-based services where mobile users issue spatio-temporal

139

dynamic complex queries to a mobile GIS server via wireless channels and GPS

systems.

5.3.1 The Components of the Query Melting Processor

The Query Melting Processor consists of a number of components as shown In Figure

5.11. The architecture shows the three major steps that dynamic complex queries have

to pass through in order to produce a query global evaluation plan. The Preprocessor

takes as an input the dynamic complex query, parses it into multiple simple queries,

groups them by category, and finally sorts them, in the aim to apply the first stage of
Query Optimization as described in [And0l, Elm06, and Mok03]. It reads the

operators templates along with their costs. The cost of a function is its estimated or

expected execution time, and the total cost of the functions represents the cost of the

operator. The new Decision Making Mechanism TCOP, which implements the new

paradigm "sharing previously generated plans" instead of sharing only sub-plans as

suggested by [ELM06], checks if the queries scenario has already been previously

generated, if it has the queries are routed to use it, otherwise the QMP proceeds as
follows. Each simple query is decomposed according to its operator template. Two-

dimensional arrays are used to store the decompositions and their relative costs.

The idea of using a Sliding ruler in [MouOO] that was used to navigate through a

propagation hierarchy tree is applied here to melt the repetitions that exist in multiple

plans. First, the Query Melting Ruler I melts the templates functions that are shared

among multiple simple queries of the same operator and among different operators in

the aim to implement common sub-expression elimination, sharing sub-plans, and

sharing the underlying space (map). Sharing functions was implemented in [Mok05a,

Mok05b] for multiple users using one operator only whereas it is implemented here

for multiple users multiple operators multiple simple queries per operator. Sharing

sub-plans was suggested by [Elm06] whereas here sharing the whole plan is being

implemented. Sharing the underlying space (map) was implemented by [Mok04a,

Mok04, b, and Mok04c] for multiple users dynamic queries with one operator whereas

it is implemented here for multiple users dynamic queries with multiple operators and

illultiple simple queries per operator. The Query Melting Ruler I works on a two-

140

dimensional plane, and its output is the Initial Evaluation Plan for Time 0 of the whole
dynamic complex query.

Second, the Query Melting Ruler 2 is responsible for implementing sharing the space
and areas, sharing the time intervals, and sharing the object of interest. Sharing the

space and areas occurs when multiple queries share the same spatial area or when an

area is included in another. The Query Melting Ruler 2 draws the buffer of an area

only once and uses it multiple times to clip or find the objects of other multiple simple

queries similarly to the work done in [And02a, And02b] but for multiple simple

queries that belong to the same dynamic complex query instead of non dynamic

multiple users queries using one operator only. Sharing the interval of time is a new

sharing paradigm hereby introduced because it was not considered in the previous

work that was reviewed in the literature of the query optimization strategies. The

Query Melting Ruler 2 allows sharing an interval of time if it is included or equal to

the interval of other multiple queries. Finally, sharing the object of interest allows

sharing the object of interest between multiple simple queries by reading the object

table once and using it for many queries. In the work done by [And03] the object of

interest was shared between multiple users each using one operator only in non
dynamic queries, whereas it is applied here to share it between multiple simple

queries with multiple operators that belong to the current dynamic complex query.

The Query Melting Ruler 2 works on the same two-dimensional plane as the Query

Melting Ruler 1, and its output is the Final Global Evaluation Plan for Times I ... n of

the whole dynamic complex query.

141

Dynamic Complex
Query

Operators Templates
and Costs

PreProcessor
Parsing, Grouping & Sorting Queries
TCOP: Redirect Queries to GEP of Similar Ones
Decomposition of Queries and Filling Arrays

Meltint! Ruler 1
Melting Two-Dim Array Operator Templates
Building Initial Evaluation Plan for Time 0

Initial Evaluation Plan
for Time 0

Meltine Ruler 2
Melting Queries, Values, Objects, Methods
Appending Values and Objects to Methods
Building Final Fvaluation Plan for Times

Final Global
Evaluation Plan for

Times I ... n

Figure 5.11: The Architecture of the Components of the Query Melting

Processor.

142

Common Qn

Figure 5.12: The Queries for Time 0 before and after Query Melting Ruler 1.

Figure 5.12 shows an example of the melting ruler mechanism. It operates like a

sliding ruler, in the top-down direction, melting each level's functions and it tackles

the commonalities discussed in section 5.2. As shown in the figure, in step 1, it starts

at the first level, in step 2 it tackles the second level, and so on until all the levels are

melted. The Query Melting Ruler 2 melts the functions that are shared among the

Initial Evaluation Plan of Time 0 and the consequent time instances evaluation plan. It

works on a multi -dimensional level. Its output is the Final Evaluation Plan that is

applied for all the consequent time instances; Times I ... n. Figures 5.13 and 5.14 show

the queries before and after the query melting ruler 2 process. It operates like the

Query Melting Ruler 1, in the top-down direction, melting each level's functions but

between the plan of Time 0 and the plan of Times I ... n. As shown in the figure, in step

1, it starts at the first level, in step 2 it tackles the second level, and so on until all the

levels are melted. Both the Initial Evaluation Plan and the Final Evaluation Plan are

optimized during the Melting Rulers processes. Their result consists of a list of

ordered and organized functions that are to be executed. When the execution of all the

functions is done, the resulting map is the output of the dynamic complex query.

143

Figure 5.13: The Queries for Times I ... n before Query Melting Ruler 2.

Figure 5.14: The Queries for Times I ... n after Query Melting Ruler 2.

5.3.2 TCOP: Decision Making Mechanism for Time Cost

Optimization

Iii order to employ the new query optimization paradigm, Sharing GEP, which allows

multiple users with similar query scenarios to share global execution plans of the

melted templates of the operators, a decision making mechanism of time cost

optimization TCOP is applied as part of the pre-processor. The major difference

between TCOP and the work reviewed in the literature is that Elmongul in [Elm06]

suggests sharing sub-plans only whereas TCOP allows sharing whole plans by

multiple dynamic complex queries with similar scenarios. The main aim of the

mechanism is to manage the similarities in the query scenarios, analyze them, and

accordingly route the dynamic complex query either to a previously generated GEP of

a similar query or to the query melting processor for processing and generating a new

GEP for it. In other words, TCOP mechanism plays the role of a Decider, in terms of

144

whether a dynamic complex query should be processed or a previously generate

templates GEP should be reused. It operates based on the idea of a decision tree that

represents all the possible combinations of the elements of the set of operators and for

each combination assigns the GEP number (GEPI, GEP2, GEP3, etc., and GEPn) to

the leaf There are 2 n_I combinations when using n operators, each combination

corresponding to a dynamic complex query scenario. Figure 5.15 shows an example

of the decision tree of 4 operators, all combinations, and their corresponding 16 GEP

represented as leaf boxes.

Dedslop Tree
of

Is Glob8l Executlop P130S ýGEPý
b3sd on U'e:

Combip8tioA of Oper6tors
Yes No

Is
OpV

used in Qjeý?

Yes No

Is
ONglor I

uRd in ýM?

ýes No

Is Opemor 3 Is Is Is

used in Qup7 0ý2V 3 Optor 3 ONgtor 3
usd in Qp? M in Qupý uRd in ý

imm iii No imi

ýes No Yes No Yes No Yes No

I. 11 ! Mnmpw

Is Is Is Is Is
ýMtor 4 ýeq[or 4 Opegioi 4 Oýelor 4 Opemtor 4 Optor 4 Opmtor 4 C%gtor 4

M in *7 M in Queý' in Queq7 uRd in W Liz in Qry) in ýei, 11 Qr) ir Qp)

ýes No ýes No Yes No ýes No Yes No ýes No Yes No Yes

5p 1Fi No GS
GRI GRI GF G94 IGF i GF, GF8 GF 9 GR 16 GR 11 li

ýýý #ý fiammi kii. ý. - -- -z- _L- -

Figure 5.15: The Decision Tree of GEP based on Combination of Operators.

1

145

For each new dynamic complex query, the Decider starts by detennining the list of
operators used, proceeds with an examination of the similarities between the scenano
of the current dynamic complex query and the scenario of the previously generated
GEP, by checking if the first level operator of the decision tree is used in the current
query, if yes it proceeds to the second level left side of the tree node, otherwise to the

right side. This operation is repeated recursively until the leaf of the tree is reached

which contains either a number (between I and 2 '-1) which means that a similar

scenario of operators has been formulated earlier hence the current query should use
their templates GEP or the value 0 which means that this scenario has never been

formulated before, hence the templates of the current query should be melted, a new

melted templates plan should be generated, stored in memory for later retrieval, and
finally the leaf is assigned the plan number. At this point, the job of the Decider ends

and the query melting processor proceeds with decomposing the queries, melting

them, and generating the Global Evaluation Plan.

5.4 Mechanism of Execution Plan

Before describing the mechanisms of the execution plans, in the next few sections, we

are describing some abbreviation for the representation of the icons of the IVQL

which represent basically operators, values, and objects. Also we are showing some

examples of simple as well as complex visual queries. The smiley icons that represent

operators are listed in Table 5.1 along with their abbreviation and explanation. Any

one icon can be selected first by the user when formulating a visual query. The first

six operators are used for static queries, i. e. they ask about objects at the current Time

0 only. The next six operators are used for dynamic queries, i. e. they launch a

continuous query that lives n minutes. Every m minutes, they update the user with the

iiew results of the queries based on his new location that is received through the GPS

and satellite systems. Table 5.2 shows some of the icons that represent objects and

facilities such as restaurant, motel, hospital, underground tube, and gymnasium.

146

Icon Abbreviation Explanation

SW Find the facilities that are within a certain buffer

2 SN Find the k nearest facilities kNN

3
7 SP Find the shortest path

4 SNP Find the k nearest facilities and their shortest paths

5 STL Find the time left to reach the k nearest facilities

6 ? SDL Find the distance left to reach the k nearest facilities

7
DW Continuously find the facilities that are within a certain buffer on my way

8
7.

qý .0

DN Continuously find the k nearest facilities kNN on my way

9 DP Continuously find the shortest path on my way

10
DNP Continuously find the k nearest facilities and their shortest paths on my way

For the next n minutes, keep on updating me continuously every m minutes DTL
with the time left to reach the k nearest facilities with t paths

12 DDL
For the next n minutes, keep on updating me continuously every m minutes

0 with the distance left to reach the k nearest facilities

Table 5.1: The Icons Used as Operators to Formulate Dynamic Complex

Queries.

Icon Abbreviation Explanation

R Restaurant

M Motel

3 f'. . gp.. Qtý,. H Hospital

4 U Tube // Metro

I
ý- -- -F

I

G
I

Gymnasium
I

Table 5.2: The Icons Used as Objects to Formulate Dynamic Complex Queries.

147

The AND operator
00

is used to combine multi In into a complex one. iple simple que 'es

Some examples of simple queries are:

[SN I M] find nearest I motel

[SNP 5 M] find 5 nearest motels with their shortest paths
[SW 500 R] find all restaurants that are within 500 meters from my location

[SW 1000 R] find all restaurants that are within 1000 meters from my location

[DTL 60 1 OG] continuously, find the Time Left to reach the nearest gymnasium for

the next 60 minutes. Keep on supplying me with an updated result every
10 minutes. The result includes the shortest path.

An example of a dynamic complex query is shown in Table 5.3 summarizing a

number of queries as follows. Find the nearest theatre and its shortest path. While I

am on my way, keep on continuously supplying me with the 3 nearest motels and

their shortest paths that are within 200 meters (or ahead of me, e. g., in half a circle

buffer) until I reach the theatre or 60 minutes overlap. Update my map every 5

minutes.

[DTL 60 5 T] I[DNP 3M]I [DW 200 M]

Table 5.3: A Dynamic Complex Query with 3 Predicates.

Table 5.4 shows another example of a complex query which is made up of six simple

queries as follows. Find the Underground Stations that are within 300 meters from

me, the restaurants that are within 100 meters, the 5 nearest hospitals, the 4 nearest

schools with their paths, the 2 nearest Bus Stations, and the distance to reach the 7

nearest Police Office with their paths.

[SW 300 U]j [SW 100 R] [SN 5H [SNP 4 S] [SN 2 B] [SDL 7 P]

Table 5.4: A Static Complex Query with 4 Predicates.

148

5.4.1 Templates of Operators

Each operator is decomposed into a set of steps according to the operator's template.
Figure 5.16 shows the actual template of the operator "Find the k Nearest Facilities".

IVQL User
Visual language Interface

Layer

Pivot language Query:

Text uery
MobileNo Xcoord Ycoord nearest Restaurant

-MakeClosestFacilityLayer
Internal

"D: \Path\ParisNet" "Closest Facility" Meters Layers

-AddLocations -
na 'Closest Facility' Facilities

"D: \Path\Restaurants. shp" ; Attr_Meters;
MATCH_TO_CLOSEST

GIS CreateFeaturesFromTextFile "xy. txt" . "L. shp"
Query -AddLocations na'Closest Facility' Incidents

Language "L. shp" -

Solve na'Closest Facilltv'

Figure 5.16: The Actual Template of the Operator "Find k Nearest Facilities".

The first step is to create a new layer used for finding the nearest objects. The second

step is to add the facilities from the database table. The third is to add the XY location

of the user as an incident. Finally, issue the command Solve that finds the nearest

object. As can be seen in the Internal Layers of Figure 5.16, the Commands of each

step are too long therefore, they will be abbreviated hereafter. The templates of some

of the static operators are shown in Table 5.5 where each static operator is perforined

once only for Time 0. The steps of each operator are executed in the order In which

they appear in the template following the top-down direction. The steps that appear

enipty mean that at this particular stage, there are no steps to do. Usually, the stages

are reserved for the dynamic operator preparations such as create a new watcher and a

new timer, etc. The MakeLayer function creates a new closest facility layer that Is

used to find the nearest olýjects. The ReadXY function reads the XY location of the

149

user. The AddXYIncident function adds the user's location as an incident to the layer.
The Path is set to YES so as to produce the shortest path and set to No if no path is
required. The NFacilities is the number of facilities needed to look for. The
Impedance is set to Meters, Pedestrian-Time, or Drive-Time according to each

operator which shows the result of the path either in meters, walking time, or drive

time. The AddFacilities function specifies the object database table from which the
facilities are selected such as restaurants, motels, etc. The Solve function finds the

nearest facilities based on the previous parameters. The AddToMap and SendMap

functions add the results to the map and send it to the user. The DrawBuffer draws a

circle around the XY location of the user and the ClipBufFac finds the facilities that

are located in this buffer.

STATIC OPERATORS T EMPLATES

7
? 00

10 10

0

co--ý

ep
Step 2
Step 3 r-vl a keL a -., -e r Ma ke Layer rJ a keL a -,,, -er Make Laye r
Step 4 Re ad'ý ea d'* A., Y F Re a Sk, Pad', Y e R ad.
Step 5 'd e fit Ad d), YInci Ad d'ýý Y1 ncident Ad d,,, YIna cl e nt Add" A, YIncide fit
Step 6 P at h =Ye s Path=Ye s Path =Ye s Path=[Jo D ra Liff er
Step 7 1JFa cii lit ies=1 1,1 FacII Itl e s= 1 11 FaaI it le s IIFacII it 1es CIIF, 6 LIf Fac
: 31 ep0 _ fiip@ cl ance =T I fil P e-, L-I a 11 c e. = r,.. l Im ped ance=I'l Impedan ce
S-1 ep9 . L'kddFa c 11 itle s . 4dd Facil itl es , 4d dFa ci I itle. s AcIcIF ac ilitic-s
St ep 10 solve So1,.,, e So V. e S0 I'v' E?

-lep 11 ., 'Ad dT o IJ a p. A Ad dTo [J ap , 4d dT o I'd ap AddT of, lap Ad dTo1J ap
St e 11 e 14 Sendf,, la ýSendf, lap , --, e n cl [,. I aF send f, lap Se nc. 1 1,1 aF Lg

-

Table 5.5: The Templates of the Static Operators.

The ternplates of some of the dynamic operators are shown in Table 5.6. Each of the

dynamic operators has two templates. The first is applied for Time 0 when the query is

launched and the second is applied for each of the consequent time instances Times

I n. The NewWatcher waits for new XY Locations to arrive then launches triggers

to read the data and continue execution accordingly. The NewTimer launches the

query life time which triggers a timer that lasts as long as required by the user. The

KilIQuerylfX is used to ten-ninate the query if it is expired, the user reaches his

150

destination, the user issues a cancellation order, or he gets disconnected. The rest of
the functions operate the same as the static operators.

u

cr,

0
LLJ n

m
a

F--

10
f

Ll Z-ý
- l) M LA. 77: ý

LLJ n -cr.

!ý 2! a, 70 Q1 =

- - cif I M (-) <I cr) ! ýý I

c 15 - a) 11 U)

CD
-T-- Qj

L) ,T t--
C. I.
M La -

-CD
a) Lj-

LID ct)
CC

cr,
Q-

Ll- 7?
(:

2

CD c- - C L) LL
13)

- - ,

t- rr, k-)
M c:)

ro

- - -
(1) . k-) (1) LL- w ý- -T ,

cc-,
70

:c
M

cl-
LL-

-C3 -1: 3 Qý

C5

U- F- -T-

w I. --
rD

C. c
-c,

-: 1
cc

la-
Ll; -01

<
C:)

cf)
-173

:c
Q)

(r)
0

-E) CL) CU LJL

C) Zu 9) ey)

LU
F -- C

cr Z3

.
,

cl)
cQj

LL-
C)

c LL l, Of -T
(r,

cl- -

11 co
-n 1, q, co LL

ch

Z5 (n

cr
j_j
T

CD
,

7M

a) Ice -c-, 1-: 1
m

L. L
L

co
'C3

-ý(IQ) 7)

a
1 15 -7:

. -

-L- c) 'D T
W

Zj- C. 1

-

ol

-

Li
cl) ý.

2ý
LL tý 'm

.
E cý

I
ý-

,,
'L,

1 - Lil - ý Li -r-3 (0
NI.: cri

To C3 Co
c:
UJ

- - _ý Cc < CL - - < if-) -: E (f)

11;
CL

Q) ý 11 CA
- a)

11
vi

(L. a)

L-L
r M 1-j
c" ý, j Cl) LL- F-

cr, LIL -cJ -. -t 73 c:
m CL)

c ý
-tz m LL- -C: 3 o

co
-,:;
-: f

U)
u) j

t

(A

.
ýý : j, (P

c En LJ

I --- - , -" (10 - M
ý7- a)

-ý-:
-C3 OD . -. -M

11
-c

- fu 'I) L 2
LL- -0 73 -C3 c 0

Co CL) -b (13 U- - - E -C3 C:) -C3 (L)

cý ý C'4
f-, "ILI r- CID Cy-) -

L)L
I,. '

LIL
CL,

L24
11)

L14
(IL,

L-L
(L'

L-A-
C',

Ll- LJL
w

f-l-
(L'

L2-
'D

Ll-

jýj '. ý) ri)
1 I

tf-)
- 'jr) Mn cy) 7) LZ

ýA Z-

IJ

E
ci

151

5.4.2 Query Melting Process
The Query Melting process is performed by the preprocessor and the query melting

rulers. The preprocessor groups the simple queries by category (operator), sorts them,

creates an array for each query according to the template of its operator. If an element

of the template ends with a star *, the corresponding elements in the arrays are filled

with objects of the query such as AddFacilities* leads to AddRestaurant,

Addl-lospital, etc. as shown in Step 9 of Table 5.7. If an element ends with two starts
**I the corresponding elements are increasingly numbered starting with I such as
Solve" leads to Solvel, Solve2, and so on as shown in SteplO of Table 5.7. If an

element ends with ***, the corresponding elements are increased by I for every new

time instance such as ReadXY*** leads ReadXYl for Time 0 and ReadXY2 for

Times I ... n as shown in Step 4 of Table 5.12. Using ** at the end of an element

means that this particular element is repeated and executed for each simple query

whether static or dynamic, whether for Time 0 or Times I ... n. Using *** means that

this element is executed at every new time instance only. This reflects an update in the

user XY location. Table 5.7 shows the arrays of four queries with the same static

operator STL which is to find the time left to reach the nearest object. The objects of

the query are respectively Restaurant, Hospital, Motel, and Gym. The preprocessor
filled the array of each query according to the STIL template shown in yellow.

MULTIPLE QUERIES WITH ONE STATIC OPERATOR
BEFORE QUERY MELTING

STL
(2)

?

R E, --'- T 4, (i PA tJT HO SPITAL r, -IOTEL GYM
Step 1
Step 2
Step 32 Ma keL a -,. er MaVeL aý er f, -I a kc-La ýer Ma keL a%, er Ma ke L a,, -e r
Step 4 Re ad ý, Y R ead ý, Y Re ad ý, Y Read -Y R cm ad,,, Y
Step E, Ad cl, -ý YI n ci de nt ý Lld ý, Yl nc ident ki d -, YIn ci de nt Add. ý, Yl nc ideni kl d ., Yl n ci d c- nt
Step 6 Pa th =Y es path=Ye s Path =Yes Path=Ye s Path =Yes
Step I I lFacilities=1 tIF aýi I -itics; =I r Fa cilities=l IlFacilities=1 tlFacilities=1
Step l lniFedance=T mpedance=T Im ped ancc-T I mpeda nce=T Impedance=T
Step. st Al dra -cilities, ; ýLld Re StSU rant kd dH ospital Add Motel
Step 1 C, -Sc 1. e --ol. el So 1. e2 Sol. e3 e4
, tep 11 AddTo[Jap" AddTcMa p1 Ad dTo Map2 AddTol, lap 3 AddTol. la p

Step 12 Se nd[viap Sen dMap Se ndr, l ap Send4lap Se ndr. 1 ap

ýtep 13

Table 5.7: Multiple Queries with One Static Operator before Query Melting.

152

MULTIPLE QUERIES I ONE STATIC OPERATOR
BEFORE QUERY MELTING

STL
?

- 00 - .., J; ý 0 . ";: -ý 0
TENIPLATE HO SP I TI-.,

- : --ter 1
r

Ster
Step

- Ste 4'd T77 nc 71 t Y Jent nt ster Path =Yes Path=Yes Pa th =Yes Rath =Ye s Path=Yes
SC t erý t IF a cilities=1 I Facilities= I t IF a ci I it ir--s=1 Iý Facilities= I JFa ci I it es=1
I- Sler '6 Impedance=T mredance=T limpedancc-T Impedance=T Im ped ance=T
sler, " AddFacilifies' 4. ddReStaLirant -ýddHcspltal 4dd Motel Ad dG, r-ý
'ler 1C Sol'.. P-" ýo I, el So I-e2 S0e3 -So I.. e4
. -lep 11 AddToflap" 4ddTof, lapl , ýdffcf, lar, 2 ; ocl dTcý,, l s. r, 3 4d dTo Map .4
Step 12 Sendflap - en dMar, Sendf, l ar Sen d [J Se ndl, l sp
Step 13

Table 5.8: Multiple Queries with One Static Operator during Query Melting.

The Melting Ruler follows the top down direction starting with Step I then Step 2,

and so on. It eliminates all the repetitions of an element. Table 5.8 shows the melting

ruler in Step 3 where MakeLayer is repeated four times. The ruler keeps the first

occurrence and eliminates the rest as shown in Table 5.9, thus melting the

unnecessary functions. The ruler slides down to each of the next rows in turn and

melts the repetitions. The result of the Melting Ruler is a list of functions that are to

be executed. This list is in fact the Global Evaluation Plan as shown in Table 5.9.

MULTIPLE QUERIES WITH ONE STATIC OPERATOR
AFTER QUERY MELTING

S TL

? ? ? ?

TEMPLATE F\Eý_-T4. UFZA1JT HOSPITAL 1,10TEL GY1,1
Slel. 1
Step 2
Step 3 MakeLayer f, -lakeLa)cr
Stepý Read,, Y RcadXY
St@F -) Add A, Yincident 4dccl. ý. ýIncidei7t

- StE-F 6 Path=Yes Pat h= Ye s
7 HFacilifies=l flFacilities-1

'SteF 0 Impeclance=T mpeclance=T
Step Si AddFacilites' 4ý, IdRe- 15-taLl rant AddHospital -c-IJI'lctel Ad dG, n-,
Ster 10 So P. e" Sol% e So L, e Sol'. e So ý- c-
Stel- 11 AddTofJap- klclTof, lalc AddTol'Jap gddTol, lap Acl clT

. Dler 12 Sendf,, Iap Sc
Sler 131

GLOBAL
EVALUATION

PL AN
MakeLayer
Reacl. k. Y
Ad ck. YIn cid ent
Ta th =Y es
ý ýFa cilitic-s=l
Im ped ance=T
-ýOdReSta Llf ant
So J.. c-
, 4d dT cMaF.
Ad dH c sp it aI
So I-, e
Ad dTc f, lar,
, %j d ["I ctc I
So 1. c-
; -J dTo NI ap
Ad dG
So Le
Ad dT o NI ap
Sendr. lap

Table 5.9: Multiple Queries with One Static Operator after Query Melting.

153

The query melting process is applied on all combinations of multiple queries such as
with one static operator, multiple static operators, one dynamic operator, multiple
dynamic operators, multiple static and multiple dynamic operators. Table 5.10 shows
two static operators STL and SDL before query melting and Table 5.11 shows them

after query melting with their corresponding Global Evaluation Plan. The repetitions
that are melted by the ruler belong to the SDL MOTEL query. They are MakeLayer,

ReadXY, AddXYlncident, Path=Yes, NFacilities= I, and SendMap.

MULTIPLE QUERIES WITH MULTIPLE STATlC OPERATORS
BEFORE QUERY MELTING

STL
AND
SDL

TEMPLATE REST, 41JR401T TEMPLATE 1,10T
'Step 1
Step 2
'lep Makka-ver MakeLa-er Makkavr Ma ke La-er
Slep ReadAY P. ea cl ý, "y
SteP M dA Yln cid e nt ýddL'ýlncidenl Add'. 11YIncident 4ddX'ylncidenl
step l Path=Yes Path=Yes Pat h=Yes Path=Yes
Step 7 IIF@cilities=l hFacilities=1 IlFacilities=l hFacilities=1
step ') Impedance=T Impeclance=T Impedance. =m lnipedance=M
Step, 9 MdFacilities^ 4ddRestaLlrani AddFacilities' ý'dcjr'loled
, lep 11" So k e- ol. C-1 Sol-o" Sol. c-2
, ter, 11 AddToNlap- AcIdToMap-1 Adffo[Jar- AddTo - ap2

q Lýie 2 Sendfvlap 'Sendf, Aar SendlOsp Sen df, lar
13

Table 5.10: Multiple Queries with Multiple Static Operators before Query

Melting.

MULTIPLE QUERIES WITH MULTIPLE STATIC OPERATOR
AFTER QUERY MELTING

STL
AND
SDL

I

-. -.! .,
ý *

TEMPLATE TEMPLATE ýJCJEL
Step 1
Step. 2
Step3 rl a keL ave r f,, Iq ke La -ý er ldakeL a ve r
Step, 4 Read. ý, Y R ead ., 'T Re ad -,),
Step Adcfý YIncident ; -ýkdd , Yl ncident Add ý. Ylncident
Step 6- Path=Yes Path=yes Palh=Yes
Step7 t Fa cilities=l ýýF acilities= 1 1 JFa cililles=l
, -, tep ") Impedance=T ii-ipedance=T lnipedance=M Impeclance=IJ
Step 9 AddFacilities* ..

'dd RC'StKi rant AddFacilifies' -*dd Mote I
ý- tep 1 cl -':, o Le'' ý-OL e S&. e" ý-- a 1, e
ý'tep 11 Ad dTo Map AddTcý, la p AddT oldap -4. dc]Tor, la p

S, tep 12 Se ndIJ ap en Jr. 1 a SendWE

, Step 13 1 1

GLOBAL
EVALUATION

PLAN
fdakeLa,

' er
Re ad XY

, 4dd., Incident
Path=Yes
t]F, q-clllties=l
Impedance=T
AdClReStaUrant
S C) I-, e

_A-ddTcMar, Impedance. =f, -l
Addf, lotel
Solve

jAddT cllap
ISE? ndf, lap

Table 5.11: Multiple Queries with Multiple Static Operators after Query

Melting.

154

Table 5.12 shows multiple dynamic operators before query melting. The query DTL
RESTAURANT is to continuously find the time left to reach the nearest restaurant.
The query DNP 3 RESTAURANT is to continuously find the 3 nearest restaurants

with their corresponding shortest paths while the user is moving. Both queries live

and run for a period of time and watch for each new XY location updates of the user

in order to reproduce accordingly the new results for him. The template of each
dynamic query contains one plan for Time 0 and another one for Times I ... n. The

preprocessor fills that array in the same way discussed earlier.

MULT'IPLE QUERIES WITH MULTIPLE DYNAMIC OPERATORS
BEFORE QUERY MELTING

DTL
AND
DNP !i ý0 - -

TEMPLATE RESTAURANT T ELI PLATE 3 RE STA U PA 1JT
Time 0 Times 1 ... 11 Time 0 Times 1 ... 11 T ime 0 Times 1 ... n Time 0 Times I ... n

SteF Ij He,,,, 'v'-., atcher tjc... 'A" a tc h c- tJe%%. '. '-., atcher 1Je%-, '. '-. -'atcher
cur ý 2j tle,. Jimer Je,.,. -Tin-i ei HeýJinier Ile-Tinicr
blep 3 [Jake La-., -e r 1,1akel-ayer Makel-a -. 1-er [Ja ke La -, -er
""t @F4 Re ad x y- ReadAY... Pe Y1 Read ý, Y2 -ýe adý, Y" pea d. Aý Re ad ý', Yl Rea d ý-, Y2
Step ;J AMA, Yl ncid... Add, Yincid- 4d cl, Yin cid 1 Add ý, ýInciiJ2 ý-d cl, -ý Y1 n ci d' - Addoý Yln cid "' 4d d ý, Vncid1 d, YIn ci d
Step rI P at h ='Y'e s Path=Yes Path=)'es Path=Ye s Path =`i'e s Path=Yes Path =Ye s Path =Yes

,.
1 St PF' 11Facilities=1 I'lFacilities=1 IlFacilities=1 uacilities=1 1.1facilities=' IIfaciI it ie S=' tIfaciIities =3 tJfaciIities

S-1 ep8 1m re cl an ce =T Impedance=T In-iredance=T Impecance=T Impedance=l. "I Impeclance=IJ 1n-ircd@nce=l'J ILLedaricc-M
Step S' AddFacilities' _ AddFacilities' 4oldRestautant AddRestaurant Ad dFnilitie s' Addl'a cilifies' 2<1d RE? stau rant AcdR esta Lira nt

-; t@F 11.1 Sol. e" Sol, e- ol. el Soi, e2 Sol, e-
- -.

-ol. e" Sol. e' '-ýo 1. e4
5SI Prl1 Ad dT o Ma F Ad clT o I-Ja p- 4,1 cT o IJ ar1 4HdTo1,1 ap2 4d IT a 1,11 F 'ýJJT of,, Iqr. 4kd, ITc1, la r3 ýýl IToMa 1-4

1 1,4 ep 12 I 'Sendfvlap 'Se nd[Ja p Se ncl fJap Sen dUap , --, e n dlvl ar Send r0ap Senclvlal: '-, e ndUaF
I Step 13 j KillQ uer-jf KillQue ry1f A 1, '111 Q1 Ll er ý4 fk KillQUe rýdfX Kill Qu erljfý, KdI IQ LIG F, 'IfA K111QUe rý-lf KllQL1 erylfX

Table 5.12: Multiple Queries with Multiple Dynamic Operators before Query

Melting.

The Melting Ruler I tackles Plans 0 of all the queries. Plan 0 of DTL

RESTAURANT iis melted with Plan 0 of DNP 3 RESTAURANT. The melted

elements of the query DNP 3 RESTAURANT are NewWatcher, NewTimer,

MakeLayer, ReadXYI, AddXYlncident, Path=Yes, AddRestaurant, SendMap, and

KillQueryIfX. Figure 5.13 shows the melted functions in red under the column

entitled Time 0 of the DNP operator. The Melting Ruler 2 tackles Plans I ... n of all the

queries. Plan I
... n of DTL RESTAURANT is melted with Plan I ... n of DNP 3

RESTAURANT. The melted elements of the query DNP 3 RESTAURANT are

ReadXY2, AddXYlncid, Path=Yes, AddRestaurant, SendMap, and KilIQuerylfX.

Figure 5.14 shows the melted functions in blue under the column entitled Times I
... 17

of the DNP operator.

155

MULTIPLE QUERIES WITH MULTIPLE DYNAMIC OPERATORS
QUERY MELTING RULER 1

DTL
AND
DNP

?

Lv-. 06 0 T
-2- TE I'd PLATE RESTAURANT TEMPLATE 3 RE SýAIJRANT

TimeO Times 1 ... n Time 0 Times l... n Time 0 T knes 1... n Time 0 Times 1 ... n step 1 týe.. 'A'a tc her t Je, -. c her
Step 2 11 e,, -. jT imer I le ýJ irn @r I le, ý Time r
Step 3 MaýeLayer [JakpLayer Makel-a , er 3-ýe_q,
St ep R Pad), Y' Read,, Y- Readl, Y1 Read , Y2 Read., Y- Readýý. Y... ac 1ý Y2

Addý, Ylncid**' Add - 'y1ncid-)'In cid 1 AddXVncid2 Addýý YInc7id''' Add, - Yincid"' Acc --. '-, ncic1
, ter Path=Yes Fa th =Ye s Path =YP S Path=Yes Pa th =Ye s Path=Yes =atn=Yes -; th=, y, eS

Step 7 HlFacilties=l hFacilities=1 kFacihties=1 `ýFaci Fit_ies--l I ffacilities=" I lfablifies=' ý, faý ii ties=J I ifacilive s=3
Step 8 Impedance =T Impeda nce=T ImFeciance=T I ripe dan ce=T Irn ped ance=IJ I mpedan ce =M I 11-IF cda nce=fý'l Im ped ance=f, l
St 9 AddF acilities' Ad dFacilities' AdcR eSta Urant Ad dR c- -, I au ra rt Ad dFaccilitie s' AddFa cilities' dRe sta Lira ni
Step 10 Sol. e- Sol. e" Scl. eI -'ý, c I-e2 Sol, e Sc1. c, * Sol, e3 SO 1. @4
St 9p 11 AddT otylap " Ad dTolvia p Aý. ddTcf, la 1 4: 1 dToMac2 Ad JTc 11 a l: AdJTo1,1 ap .4ddTcf, Iap3 4J dTc1,1 -1

ster 12 Send[Jap j SendMap Send1,1 ap SendMap :: ý- ndMap SendMap E 'Se nd1,1 a
I Step 13 KiIlQL1erylfx j KiIIQuerylfX I K, I 10 uer,,, ý fX I KIIIQ L1 e r, ý f' I'MOLieryU

_ -KillQuer-ff,
m v, 11-yer Ifi, I

Ruler 1: Melting Tirne o Plans of all the Queries

Table 5.13: Multiple Queries with Multiple Dynamic Operators during Query

Melting Ruler 1.

MULTIPLE QUERIES WITH MULTIPLE DYNAMIC OPERATORS
QUERY MELTING RULER 2

DTL
AND
DNP

TEMPLATE RESTAURANT TEMPLATE ') RE STAU RA IIJIT
Time 0 Times 1 ... 11 Time 0 Times I ... 11 Time 0 T irnes 1 ... n Time 0 Times I ... n

Step 2 He., %. 7imer He.. 'Jimer
Slep 3 MakelLayer MakelLaver [JakeLa ver
Slep 4 R ead,,, Y" R ea d-. Y' pczadý'Yl Read ý Y2 Rea d-, ý Y"' Re adX Y... R. Gazk Y2
Step 5 Addx Ylncid'*^ Add. ý. Ancid- ý. ' 'I., Y In c id 1 4d cl ý YI ncI cl 2 ki d, ý Yl n ci d Add, ý YIn cid <1 J, Y 111 cl d 2,
S1 @F6 Path=Yes Path=Yes Path=Yes Pat II='y'c S Path =Ye s Path=Yes Pa th =Y 6S
5ter ' HlFacillies=l II Fac ilitie s= 1 rJFacMties=1 'Facilities=1 lffacilibes=' I if a cilit ie s=' flfacdities=3 I if a, -- ý ,,, e- -- -
ý`t @Fu Inipedance=T Irnpedance=T ImF ed ancc=T I nI F, eJarce=T IniFeclance=IJ Impe Jan ce =IJ ýmredance II I-, rian- t-
SI ep9 AddF acilifies' AddFacilities' -LIdR e-, ta LH ant Add Re,: ýtau I ant Ad dFac ditie s' 4ddFa cilifies' A&ReStKlrant
S: 1 cp 10 Sol-. e" Sot, e" Sol. e1 Sol. e2 ý01' e"

-Sol.
e ý, cl. e3 týc.

AddT Alai: '' Ad dT ofda r kIdT oldap 1 AddTol`, la p2 Ad dTo Map 4ýJdT oldap Add ToMa p3 ': ýZl D
I

Send Map Se nd Ma p : ýend l, 1aF IS end1,1 ac Se nd ld ap ýýend(, Iap I Se II'l IJ ap
KillQUer, lb, KINQUe rylf. -,

_1"11
Q LIer j KIIIQUe ryiflý' KillQu erylf K Ill Q Ljer. jfk, KIlQuer, If

Ruler 2: Melting Times 1 ... n Plans of all the Queries

Table 5.14: Multiple Queries with Multiple Dynamic Operators during Query

Melting Ruler 2.

Figure 5.15 shows the multiple queries with multiple operators after being melted. All

the melted elements have been removed from their corresponding simple query plans.

The execution of the remaining ones is enough to answer correctly the dynamic

complex query. The remaining ftinctions are cleaned from the temporary digits that

were appended at their end during the query melting process. Then, they are filled in

I ies two new arrays, the first one consists of the Plan 0 of all the melted simple quer'

156

and the second the Plan I
... n. The resulting arrays are in fact the Global Evaluation

Plan of Time 0 and the Global Evaluation Plan of Times I ... n as shown in Table 5.16.

MULTIPLE QUERIES WITH MUL"nPLE DYNAMIC OPERATORS
AFTER QUERY MELTING

DTL
AND
DNP ?

I
TEMPLATE RE STA URANT TELIPLATE 3 RE STAIJ RANT

Time 0 Times 1... n T ime 0 Times 1 ... n Time 0 T imes 1 ... n Time 0 Times I ... n
tIe,., at ch er tJeý,., tc he r t Ie%-. her

S1 2 tIP, ,,,. T i me r He
. 'Jim er I Jp,: % Tinier

step 3 Make La ye r Ma keL a ,er MakelLa%-er

'c; t er -1
Read ý Y- Rea d, -, Y- Read, Y1 Rea d'A Y2 Read, 'I.... Read- Y",

'-'t eP5 Addý, Ylncid*'^ Add,, 'Tlncid" Add ý, YIn cid 1 Add X Y1 ncid2 4&. ý YIncid"' Addk, YIncid"'
Stpp 6 Path=Yes Pa th =Ye s Path=Yes Path=Yes Pa th =)' eS Path=Yes

C;
ýtep

7 11IFacilities=1 111'acilifies=1 - t lFa cilitiec rI Facilities=1 l' lfacilities=' Ifa c1litte S=' I Ifac htiesq=3 f1facilibes=3
step 2 Impe clan ce =T I rnr ecla nce=T In) red ance=T I mpedan ce=T In-, Fed ance=IJ IrnFe Jan ce =4J I mpeca nce=f,, l Im peclance=M

tep 11 SI A. ddF acilifies' Ad dFacilities' lfý. JdReSta Want Add ReSt@L1 rant 4J dFacilitie s' 4. ddFa cilities'
St P, p1C, Sol-, e" So ý' e" 0 1. e1 Sol. e2 SO 1. e S 01" e o 1. e3 So 1% e4
'St ep 11 AddT oIJ ap Ad dT of4a p AddTolvlar 1 AdclToMap2 Ad dT o I`J ap 4,. dJTof, 1ap ýý: IdTof, lap3 AdclToMapl

St eF 12 Send Map Se ndMa p Sendf, lap Sen dMap Sendf, al- Send 1,12F

Sl3 S1 Pr 11,010 LjerýIfA K 1110LIe rvlfý, KiIIQ LlPf%lfl, K, II 10 Lie r-14 f dfý, hlIQUer', ['1110 Ller-. Jfý

Table 5.15: Multiple Queries with Multiple Dynamic Operators after Query

Melting.

GLOBAL
EVALUATION

PLAN TO
rJe tc her
[Je.., -... Tin)er
r-, lakeLsver
Re ad ký Y
AddXYln cid
Palh=Yes
r JFqcilities=l
I mpe dan ce =T

. 4ddRestauirant
"o1, ý e
AddT or,, iap
r Jf a cilitie S=3
1 in pedan ce =rJ
Sol" e
AddT of, lap
Send f -1

e r--. d fý7ý K il 10 Uý57

GLOBAL
EVALUATION
PLAN Tl... Tn

ReadXY
Add. XYlncid
Path=Yes
HFacjlftie. s=l
Impedance=T
Add ReStaUrant

AddToMap
Nfa cilities=3
Impe. dan ce =I, vl
Solv e
AddTor-Ja
iendMap

KilIQ Lle rýIfX

Table 5.16: The Global Evaluation Plan for Time 0 and Global Evaluation Plan

for Times I n.

5.5 Conclusion
Iii this chapter we presented a thorough Investigation Into GIS operators that are

related to proximity analysis and examined the commonalities between their

execution plans and determined which common parts can be shared and which ones

re-ordered. The investigation covered all types of operators namely the static

operators, dynamic operators with one-predicate, and dynamic operators with multiple

predicates. The investigated execution plans have proved to have significant

157

commonalities hence the sharing paradigm was employed in processing them. We
introduced the new Query Melting paradigm which includes the shanng paradigm that

was implemented in [And06, Mok05a] for non dynamic multiple users simple
operator queries but extended it in this work to include dynamic multiple users
multiple operators with multiple simple quenes per operator queries, push-down

approach that was implemented by [EImO6] to swap the Select and join operators but

was extended in this work to reorganize all the operations in a global execution plan,
traditional query optimization as described in [Kan94], and finally the new paradigm

sharing the global execution plans (GEP) instead of sharing only sub-plans as

suggested in [Elm061-

However , in order to employ query melting efficiently, the Query Melting Processor

(QMP) for dynamic complex queries has been presented, its components described,

and its process elaborated. QMP employs the new melting ruler mechanism that acts
like a sliding ruler to allow sharing the functions of various templates, input data,

intermediate results, underlying space maps, spatial areas, time intervals, objects of

interest, and query results. The mechanism of the melting ruler was detailed using the

templates of the operators as examples.

Finally, a new query optimization paradigm, called Sharing Global Execution Plans

(GEP), has been introduced, which alms at sharing totally a previously generated GEP

by multiple users who formulate similar scenarios of queries. However, in order to

manage properly the similarities in the query scenarios, a new Decision Making

Mechanism called time cost optimizer (TCOP) has also been introduced with the aim

to optimize the time cost. The function of TCOP was explained as being to examine

the operators used in the fon-nulation of the dynamic complex queries, check for

similarities between the current scenario of queries and previously formulated ones,

and either redirect the query to a previously generated GEP or send it to the query

processor that will construct for it a new GEP and store it in memory for later retrieval

by other consequent similar scenario queries.

158

Chapter 6- Design and Implementation

6.1 Introduction

The design and implementation of the Query Melting Processor play a major role in
the life cycle of the system especially since QMP Is Implemented as a middleware on

a GIS server and is responsible for processing a large-scale of dynamic complex

queries in a multi-user environment. At the design stage, the system architecture is

presented using a variety of diagrams such as the Use Case Diagram and the Time

Sequence Table. The Use case Diagram is used to visualize the activities and tasks of

a system showing at the same time the actor/actors associated with each activity. Each

actor could be a person or a component in a system. The Time Sequence Table shows

the life time of each activity as well as the time sequence in which the processes are

executed. The implementation stage involves the actual development of the system. It

shows and discusses the programming language with its environment, the algorithm

of each process, and the schema of each table. It also describes the relation and

association between the elements of the system. Moreover, in order to evaluate and

prove the cost effectiveness of the Query Melting Processor a theoretical evaluation is

conducted in order to determine 1) the cost and profit of each phase which reflects

either a time saving meaning that it is cost effective or a time loss meaning that it is

not cost effective and 2) the memory space that is occupied by each process of the

Query Melting Processor (QMP) as well as by the Decision Making Mechanism

(TCOP). Moreover, an experimental evaluation using a case study based on the map

of Paris will be carried out (Chapter 7), in order to evaluate and prove that significant

saving in time can be achieved by employing the newly developed strategies.

This chapter proceeds with presenting the design of the Query Melting Processor

using a number of diagrams, elaborates the Implementation of the Processor by

showing the user interface, the algorithm of each process that is concerned with the

melting process, the evaluation of the speed of each algorithm using the Big-Oh

notation to determine the running time, and concludes with a summary of the query

process. Section 6.2 is concerned with the Design of the Query Melting Processor

using a number of diagrams such as the Time Sequence Diagram and the Use Case

159

Diagram in order to show which actor is associated with which activity. They also
present the Architecture of the Query Melting Processor showing the input tables with
their attributes, the variables, fields, or arrays that are stored in the memory, the

processes or procedures that are executed, and the output of the processor. Section 6.3

presents the implementation of the Query Melting Processor starting with a
description of the environment of the implementation and the User Interface of the
Query Melting Processor. It is mainly concerned with the implementation algorithms

of the processes of the Query Melting Processor where each process algorithm is

presented and its computational cost is estimated using the Big-Oh notation. In

section 6.4 a theoretical evaluation is done in to order to quantify the computation

cost and the memory space of the Query Melting Processor as well as the time cost

optimizer in terms of profit and loss. Finally, section 6.5 concludes with a summary of

the design and implementation of the query melting processor that is based on the

query melting paradigm, query optimization, and time cost optimization. The query

melting paradigm includes sharing the functions, objects, spatial areas, time intervals.
The query optimization includes decomposition of the queries, common sub-

expression elimination, generation of global execution plan, and evaluation of the

plan. The time cost optimization is performed through sharing the global execution

plans.

6.2 Design of the Query Melting Processor

The design of the Query Melting Processor is done using an object-oriented visual

modelling tool (SmartDraw). Each diagram visualizes a specific model that is related

to a specific process of the query processing.

6.2.1 The Use Case of the Query Melting Processor

The Use Case Diagram is used to visualize the activities and tasks of a system

showing at the same time the actor/actors of each activity. Each actor could be a

person or a component in a system. The person could be a user, client, employee,

officer, manager, etc., and the component could be a processor, a ruler, etc. The actors

that are going to use the system appear always to the left side of the activities whereas

the internal actors of the company or system appear to the right side. Each of the

activities is represented by an oval and they are all listed sequentially in a rectangle.

160

To show that an actor is associated with a task, a link connects the actor to that

particular task. The Query Melting Processor consists of a number of activities or
tasks as shown in Figure 6.1. The first activity Read Templates is executed by the pre-

processor that reads the templates of the operators from a data file and assigns them in

arrays. The next activity Formulate Dynamic Query is perforined by the mobile user

when he launched a query. In the next one, the pre-processor takes as an input the

dynamic complex query, parses it into multiple simple queries, groups them by

category, and finally sorts them, in the aim to apply the first stage of Query

Optimization as described in [And0l, Elm06, and Mok03]. In the next task, the new
Decision Making Mechanism TCOP, which implements the new paradigm "sharing

previously generated plans" instead of sharing only sub-plans as suggested by

[ELM06], checks if the queries scenario has already been previously generated, if it

has the queries are routed to use it, otherwise the QMP proceeds with the next task.

The main aim of the mechanism is to manage the similarities in the query scenarios,

analyze them, and accordingly route the dynamic complex query either to a

previously generated GEP of a similar query or to the query melting processor for

processing and generating a new GEP for it.

In the next three tasks, the idea of using a Sliding ruler in [MouOO] that was used to

navigate through a propagation hierarchy tree is applied here to melt the repetitions

that exist in multiple plans. First, the Query Melting Ruler I melts the templates

functions that are shared among multiple simple queries of the same operator and

among different operators in the aim to implement common sub-expression

elimination, sharing sub-plans, and sharing the underlying space (map). Sharing

functions was implemented in [Mok05a, Mok05b] for multiple users using one

operator only whereas it is implemented here for multiple users multiple operators

multiple simple queries per operator. Sharing sub-plans was suggested by [Elm06]

whereas here sharing the whole plan is being implemented. Sharing the underlying

space (map) was implemented by [Mok04a, Mok04, b, and Mok04c] for multiple users

dynamic queries with one operator whereas it is implemented here for multiple users

dynamic queries with multiple operators and multiple simple queries per operator.

161

Use Case of The Query Melting Processor

Mobile
User

Associations

Actor

Read Templates

Formulate Dynamic Complex
Query (DCQ)

Parse DCQ:
1- Read

2- Decompose
3- Sort

Check in Decision Tree if Scenario
exists. Route DCQ to Previously

Generated Plans

Melt Templates:
1- Share Functions/ Operations

2- Common Sub-expression
Elimination (CSE)
3- Share Sub-plans

4- Share Underlying Space (Map)

Melt Values:
1- Share space and areas
2- Share Time Intervals

Melt Objects:
Share Objects

I- Generate Global Evaluation
Plans Plan 0 and Plan I ... n by

Phase No. to Re-order Functions
2- Store Plans in RAM

3- Update Decision Tree with
Scenario Number

Execute PlanO for Time 0 or
Plan 1 ... n for Times 1 ... n

Result Map

Keep Query Alive for Next XY
Location Update:

1- Share the Intermediate
Results

2- Share the Underlying

use case
Space (Map)

Figure 6.1: The Use Case of the Query Melting Processor.

Pre-
ocessor

Time Cost Optimizer (TCOP)

Melting Ruler I

M Melting Ruler 2 elti

Evaluator

162

Second, the Query Melting Ruler 2 is responsible for implementing sharing the space
and areas, sharing the time intervals, and sharing the object of interest. Sharing the

space and areas occurs when multiple queries share the same spatial area or when an

area is included in another. The Query Melting Ruler 2 draws the buffer of an area

only once and uses it multiple times to clip or find the objects of other multiple simple

queries similarly to the work done in [And02a, And02b] but for multiple simple

queries that belong to the same dynamic complex query instead of non dynamic

multiple users queries using one operator only. Sharing the interval of time is a new

sharing paradigm hereby introduced because it was not considered in the previous

work that was reviewed in the literature of the query optimization strategies. The

Query Melting Ruler 2 allows sharing an interval of time if it is included or equal to

the interval of other multiple queries. Finally, sharing the object of interest allows

sharing the object of interest between multiple simple queries by reading the object

table once and using it for many queries. In the work done by [And03] the object of

interest was shared between multiple users each using one operator only in non

dynamic queries, whereas it is applied here to share it between multiple simple

queries with multiple operators that belong to the current dynamic complex query.

The next task is responsible for Generating the Plans, both the Global Execution Plan

0 and the Global Execution Plan I ... n. During this task, the push-down strategy that is

discussed in the review of literature in [ELM06] is employed. It was used to swap

only the Select and Join operators, whereas in this work it is applied to re-order

properly all the operations after Melting them in the aim to organize them in the

proper sequence. Each group of operations belongs to a phase such as first phase,

second, etc. This means that the operators of the first phase should be executed before

the operators of the second and so on. The global execution plans are generated

according to the sequence of these phases. The generated plans are stored in RAM

and the Decision Tree is updated with the scenario number for later retrieval by

successive dynamic complex queries with similar scenarios. The next task is

perfon-ned by the Plan Evaluator that is responsible for executing the global execution

plan functions sequentially by following the order in which they appear. In the next

task, the query melting processor sends the map that contains the results of the query

to the mobile user.

163

Finally, in the last task, the query melting processor keeps the query of each user alive
as a thread and waits for the next mobile user XY location update. Here the processor
is actually implementing sharing the intermediate results that was presented in the

review of literature. However, the implementation in [And06] was limited to multiple-

users non dynamic one operator queries whereas it is implemented in this work for

multiple-users dynamic complex queries. The processor also employs sharing the

underlying space (map) by keeping the map in the thread to be re-used by new time

instances of the mobile user. The main difference is that it was used in [Mok05a,

Mok05b] for multiple-users dynamic one operator queries whereas it is implemented

in this work for multiple users dynamic multiple operators multiple simple queries per

operator queries.

6.2.2 The Timeline Sequence Diagram of a Dynamic Complex Query

The Time Sequence Diagram shows the order in time of each task or activity

including the user. Each task is shown in a box in the first row. The diagram

visualizes how long each task lasts by specifying the beginning and the end of its time

interval using vertical bars. Moreover, it indicates the input and output of each task.

The right arrows could represent the output of a task or launching the next task. The

left arrows show when the result is returned to the user.

The diagram is read for each user time interval from left to right following the right

arrows and down following the blue bars. The left arrows indicate that the result map

is sent back to the user. A user might have many labelled bars, Time 0, Time 1, and

Time n, each of which specifying the time interval when the user is active. A user is

considered active when he launches a dynamic complex query or his XY location is

updated.

Figure 6.21 shows the Time Sequence Diagram of a Dynamic Complex Query. At

Time 0, the user launches a dynamic complex query which is received by the Query

Watcher and sent to the Query Parser. The Query Parser decomposes the dynamic

complex query into multiple simple queries. The Query melting task reads the simple

queries and fetches their corresponding Operators Templates. It melts the simple

164

queries an their functions. Then it generates the Global Evaluation Plan 0 that is to
be executed only once for Time 0 of the user, and the Global Evaluation Plan I ... n,
that is to be executed at every new time instance that reports a change in the user XY

location. It submits the current XY location of the user at Time 0 to the Global

Evaluation Plan 0 and evaluates it. The resulting map is returned to the user at the end

of the GEPO execution.

The activities of the processor are executed only once when the user launches the

dynamic complex query at Time 0. Afterwards, for each new Time Instance or when a

change in the user's XY location is reported to the server and hence to the processor,

only the GEP I
... n is evaluated. At Time 1, when the XY Watcher receives a new

user XY location, it submits the new location coordinates to the Global Evaluation

Plan I ... n, evaluates it, and returns a new map with the new results to the mobile user.

The same is repeated for new time instances until the user gets disconnected, stops the

query or the life time of the query expires.

165

0

I

I

U

U

U

.

.

GEP 1... ýn

Figure 6.2: The Time Sequence Table of a Dynamic Complex Query.

166

-F -T. --- jr -------- --I - -- - --

6.2.3 The Architecture of the Query Melting Processor.
The Architecture Diagram of a processor shows the input tables ývith their attributes,
the variables, fields, or arrays that are stored in the memory, the processes or

procedures that are executed, and the output of the class.

Figure 6.3 shows the architecture diagram of the query melting processor. It shows
the input tables namely the Queries Table and the Templates Table, the multi-
dimensional array that is stored in the memory, the processes or procedures that are

responsible for melting the queries, and the two generated execution plans namely the

Global Evaluation Plan 0 and the Global Evaluation Plan I ... n.

The input table Queries supplies the processor with the multiple simple queries where

each record represents a simple query. The attribute ID represents the user mobile unit

number and the rest of the attributes correspond to the components of the Query

Language. As discussed earlier, a simple query has three components namely the

Operator, Value, and Object. The Operator specifies the type of query such as to find

the nearest facility (SN) and to find facilities within a certain buffer (SWB). The

Value represents the number of facilities to find or the distance of the buffer. The

Object represents which facilities to find.

The input table Templates supplies the processor with the functions that are to be

executed for each Operator. Each Template has many tuples. The IDI attribute

represents the template number, Operator represents the operator that the template

belongs to or is associated with, Phase specifies during which phase a method is to be

executed, Step contains the step number of the function, Function contains the name

of the method to be executed, and Code attribute represents the status of a method for

example the code "#" means that this method should be repeated at every new time

instance.

167

Quenes_Temp I ates 1

Melting Ruler 1

Melt Templateso

Melting Ruler 2

Melt Values Objectso

Fill Array Queries

Fill Array Querieso

Global Execution
Plan 0 Generator

Generate P 0()

Global
Execution

I

Plan 01

Global Execution
Plan 1 ... n Generator

Generate P 1()

Global
Execution

Figure 6.3: The Architecture of the Query Melting Processor.

168

Multi-Dimensional
Array

1 Dim per Operato
- Rows for Steps

Columns for Queric

The Multi -Dimensional Array that is located in the memory is made up of three
dimensions. The first dimension which is the rows corresponds to the Step numbers
and contains the name of the methods. The second dimension which is the columns
corresponds to the templates and the simple queries. The templates are assigned in

column number 0 and the queries are assigned in the rest of the columns starting by

column number I and so on. The third dimension represents the Operators. Each

operator has one plan or dimension of its own.

The Melting Ruler I MeItTemplateso process is responsible for melting the templates.

The methods that belong to the templates are scanned through from the first template

to the last one considering each step at a time. When the same method is found in

many consecutive templates, it is enough to execute it once only for the first one. In

such a case the method is kept in the first template and deleted from all the subsequent

ones. This procedure eliminates common methods between templates which results in

melted templates that are repetition free. The Melting Ruler 2 Melt Values Objects 0

process is responsible for melting whole queries if they are totally included in each

others, static queries in their corresponding dynamic ones, melting values, and

melting objects.

Simple queries are considered as totally included in other queries when they have the

same operator, the same object, but different values. For example, the first query

could be to find the nearest 3 restaurants and the second query to find the nearest 5

restaurants. The first query is totally included in the second one, hence, should be

fully melted. Another example would be when the first query is to find the restaurants

within 500 meters and the second one to find the restaurants within 300 meters. Both

queries have the same operator and the same object, but different values. The second

query is considered as totally included in the first one, hence, should be fully melted.

A static query produces a result to the user related to his current position at the current

time such as to find the nearest 3 restaurants. The query is executed only once at Time

0. On the other hand, a dynamic query is launched for a certain period of time. It

supplies the user with the result related to his current position and time and keeps on

supplying him with updated results based on his new location at every new time

instance. If both the static query and the dynamic query have the same operator and

169

the same object, the static query is considered as a particular case of the dynamic one.
Hence, the static one should be fully melted because it is totally included in the
dynamic one. For example, the static query could be to find the nearest 4 hotels now

and the dynamic one to find the nearest 4 hotels for the next hour supplying the result

every 2 minutes. Finding the 4 hotels now is in fact the same as the first answer of the
dynamic query at Time 0 related to the current location of the user.

Melting values occurs when many consecutive simple queries have the same value.
For example, three consecutive simple queries could be respectively to find the

nearest 3 hotels, to find the nearest 3 restaurants, and to find the nearest 3 universities.
The value 3 could be set once only for the first query and reused by the subsequent

ones. In such a case, the values of the second and the third simple queries are melted.

Thus, the repetitions of the same value are removed. Melting objects occurs when

many consecutive simple queries have the same object even when they have different

operators. For example, two consecutive simple queries could be respectively to find

the nearest 3 hotels with their corresponding shortest paths and to launch a dynamic

query for one hour to find the time left to reach the 5 nearest hotels. The object hotels

could be set once only for the first query and reused by the second query. In such a

case, the object of the second query is melted. Thus, the repetition of the same object

is removed.

The Fill Array Queries process, FiIlArrayQuerieso, is responsible for building the

plan by filling the steps of each query with the methods that remain not melted. This

procedure takes into consideration the code of each method that was input from the

Templates table. Each code represents the type of the method in terms of execution

rule. Some methods should be executed only once for all the queries, others at every

new time instance, etc. The codes are shown in Table 6.1.

170

Code Execution Rule

Should be repeated for every simple query

% Should be filled by the Value of the simple query

Should be filled by the Object of the simple query

No code Should be changed for every new operator

Should be repeated only once for all the queries

Should be repeated at every new Time Instance

Table 6.1: The Code of the Execution Rule of the Methods.

The code "*" means that this particular method is supposed to be executed for every

simple query. Thus, for every simple query, the element in the array that corresponds

with the step number is assigned and filled with the method name. The code "%"

means that the name of this particular method is supposed to be appended with the

Value of the query and then assigned to the array element that corresponds to the step

number of the method. The code "? " means that the name of this particular method is

supposed to be appended with the Object of the query and then assigned to the array

element that corresponds to the step number of the method. The empty code "" means

that this particular function is supposed to be executed for every new operator. Thus,

the first query of every operator is assigned and filled with the method name. The

code "/" means that this particular method is supposed to be executed only once for

all the queries. Thus, only the first query of the first operator template is assigned and

filled with the method name. The code "#" means that this particular method is

supposed to be executed for every new time instance. Thus, the first query of the first

operator of both plans Plan 0 and Plan I ... n are assigned and filled with the method

name.

171

While filling the queries array, the process FillArrayQuerieso is actually filling only
the non melted methods, non melted values, non melted objects, and non melted
queries. After filling them, the multi dimensional array ends up having for each

simple query a list of the methods that are necessary to be executed in order to

produce the output of the query.

The Generate Plans process, Generateplanso, is responsible for generating the Global

Evaluation Plans for the complex query. It generates the Global Evaluation Plan 0

only when all the simple queries are of the static type. However, it generates two

plans namely the Global Evaluation Plan 0 and the Global Evaluation Plan I ... n,

when the complex query is formed of either dynamic simple queries or a combination

of static and dynamic queries.

The attribute Phase in the operator template table specifies for each method the phase

number during which it is supposed to be executed. For each phase, the columns of

each query methods are appended one after the other at the end of a new list. The

same is repeated for Time 0 and Time I ... n. The resulting two lists of methods are the

Global Execution Plan 0 and the Global Evaluation Plan I ... n each of which is made

up of a list of functions or methods that are to be executed.

6.3 Implementation of the QMP

The QMP is implemented using the Microsoft Visual Basic NET running under the

Microsoft Windows XP. The VB. NET programming language is a component of the

Microsoft Visual Studio 2005 which is an object-oriented programming environment.
The underlying Geographic Information System is the ESRI ArcMap and ArcView

version 9.2 which are products of the ESRI ArcGIS Software that offers software and

technology for desktop mapping, online maps, GIS data, and products [ESR]. The

ArcMap allows users to access its objects, controls, and toolboxes. The underlying

nI experimental environment consists of a 1.8 GHz Intel Cent ino Duo PC with I GB

RAM main memory running Microsoft Windows XP Home Edition Version 2002

Service Pack 2.

172

6.3.1 User Interface

The User Interface of QMP is divided into sections as shown in Figures 6.4,6.5, and
6.6. Each Operator such as "Time Left" and "Distance Left" has its own section that

is made up of two boxes, the first for the dynamic queries and the second for static

queries. Each box contains six columns, the first for the template and the next for

queries. Each row corresponds to the method/function. The two long list boxes to the

right are the global evaluation plans. A START/STOP is used to start and stop the

processor. After processing a complex query, the execution time is displayed in the

box called Cost of QMP that is located under the Start/Stop Button. The execution

time is expressed in nanoseconds and seconds. During execution, the queries are
displayed in their boxes after each procedure.

-1=2

Figure 6.4: The User Interface of the Query Melting Processor.

Time LA Distance Left
Dynaink Dynamic Oyna Dynamic

Q. e, v. - Querv Tewn- -I em. rVr---I -3 454 Plat. 1* elate 1.4 5

Global Global
Fwaluatim Nal-tion

pl.. 0 plan I....

Dynamk
ode-rest Ath path.

DVnamx Dynanix
nearest WIN

Dy, um, (
Querv

Querv ITern- QuerV Tem

I

F,
4 - ----- 'rV4

.
I.............

Plat, 134...... 2' 4 p1mbe I

Within Bulk, Mw

DYn k DYnan*

START 45

ýr-r,

"1 -2 345

Coll of Ql-F,

luaggg" Tmein nanoseconds C' 100) and 0

I -- -- -i
]a z- -f) % 12 2-- jq! "ý is j Ld A" (3

11
.- Q1 IP. Q. WV meftft P'..

Distonce Left

173

-12 ?

T. me Left DrFtance Left
DynamK Dynam DYn2mlC Dynamic

-- Querv i i qu QUM� Quetv i........... i4...........

ý LTI.

mte
plaTe 44

r '", I Glob.,
Evaluation Ivalluat.

PUn 0 Plan 1-0

F. F! C, FýCA F-Ce FýCc FICC F.: E Fý C, FAC. F. C. - F4Cý F. 'C: FýC, F.: 1 Fo: F F.: C F.: - 11 Fý: F., F.: - F.: F.:

fkarest kM with P. thl! u-nest kNN

Dynamic Dynamic Dynamic F Dynarrk
Q--, v

T7 77
_:

7
. Qu. m.. T- -Qu-ry--

plate .1434 34 1-

:E

p L", FACý Z: F Z, F-:, Fý :1 Fý :-F, F_ P_ : P_ :; F-'ý - 11- 1- C F_ __ f

F-_;

J

WOO MAL"

I D" 1C Dynamic

START
il*' 23

ý --Z-, ý F_-_

ý, V, r, E: 05,

I Wwbm TWm mm Pam Eý, C5.1. CV CE=., CrIF, C61 C 11 C61. CP. - CS ceý

111C *1 "Ll
CI

tqb-ý I ") LJ . 1', (3 -. 0 %wdV. 4AppK. t,.) qt ..
11

.ý Qlip-. Q-Y Melting
V. M Cý ,-t%1 -3 -

Figure 6.6: The User Interface of the Query Melting Processor after Melting.

174

Figure 6.5: The User Interface of the Query Melting Processor before Melting.

6.3.2 Melting Queries Algorithms
An algorithm is a description of a procedure using a computable set of steps and

showing the sequence of instructions for completing a task in order to achieve a
desired result. The algorithms of the procedures that are included in the query melting

processor are detailed below where each procedure is presented, its algorithm

explained, and its computational cost calculated and quantified.

6.3.2.1 Algorithm for Melting the Templates of the Operators
The algorithm of the Melting the Templates of the Operators is presented to show
how it implements the sharing paradigm that is investigated in the review of literature

of query optimization strategies. The work done in [And06, Mok05a] is implemented
by sharing the cache memory whereas here it is applied differently and is used at the

low-level of processing, e. g., at the programming or coding level. It performs

common sub-expression elimination CSE, that is discussed in [Kan94, Mok03], by

eliminating all the repetitions of the same process in different plans.

The templates of the operators are melted by eliminating the functions that are

repeated more than once in consecutive templates. The process tackles each step at a

time starting from the first step until the last one. The functions of each row which

corresponds to a step are tackled in reverse order starting by the last template until the

first. The function of the current template is compared to the function of the previous

one, and if they are equal the function of the current template is eliminated then the

procedure proceeds with the previous template considering its function to be the

current one in order to compare it to its previous function. This process is done

recursively until all the repetitions are eliminated. If the functions that are compared

are not equal the procedure leaves the second function as it is, considers the previous

function as the current one, and compares it to its previous functions. This process is

done recursively until the first template is reached. Figure 6.7 shows the algorithm of

melting the templates of the operators.

175

//Algorithm of MeItTemplateso

Maximum = maximum number of steps in templates

For (each step s in first operator template steps running s from I to Maximum)

For (each template t in templates processed in reverse order from last

template to second template)

For (each previous template tp in templates processed in reverse order
from template -I to first template)

If (function in step s of template t equals function in step s of template tp)

Remove function in step s of template t

Proceed with next template t

Figure 6.7: The Algorithm for Melting the Templates of the Operators.

The Computational complexity of an algorithm is used to measure how the cost of

computation grows as a function of the size of the input. Theoretical analysis

considers the computation cost to be the running time in terms of the input size. It

allows us to evaluate the speed of an algorithm independently of hardware and

software environment. The analysis of an algorithm determines the running time in

Big-Oh notation. The Big-Oh notation indicates an approximation to the number of

steps taken by the algorithm. It gives or indicates an upper bound on the growth rate

of a function, and it is also used to rank multiple functions according to their growth

rate.

For example, an algorithm that scans through all the elements of a matrix of size

Columns x Rows, has the computational complexity O(Columns x Rows). This means

that the number of steps taken to traverse a matrix of size Columns x Rows grows

proportionately to the product of the number of columns and the number of rows. In

other words, traversing a matrix of size 4x5 takes about twice as much as a matrix of

size 2x5.

The cornputational cost of the above algorithm is O(Ns x (Nt-1)), where Ns is the

number of steps and Nt is the number of templates. The steps correspond to the row

index numbers of each template. The templates occupy the first column of each plan

that is columns with index 0. All the steps of the first template are processed. The

176

computational cost of processing Ns steps is O(Ns). For each step, the rest Nt-I

templates that are numbered from two to the last one are processed in reverse order.
The computational cost of processing Nt-I templates is O(Nt-1). Thus, the

computational cost of both these dimensions is O(Ns x (Nt-1)).

6.3.2.2 Algorithm for Melting Full Queries
The queries that are totally included in other queries are fully melted by eliminating

their values and their objects as well. For each template, the queries that are

associated with it are by turn compared to their next queries. If the queries have the

same object, their values are compared. The query that has a value less than or equal
to the value of the next one is completely eliminated. This process is repeated until all
the templates are scanned. Figure 6.8 shows the algorithm of fully melting the

included queries.

// Algorithm to Melt Full Queries

For (each template t in templates)

For (each query q that is associated with template t of templates)

Current = current query
For (each next query q processed from query +I to last query)

If (object of current query equals object of next query)

If (value of current query is less than or

equals to value of next query)

fully melt current query

Remove value of current query

Remove object of current query

Figure 6.8: The Algorithm for Melting Full Queries (Values and Objects).

177

qk -1
The computational cost of the above algorithm is O(Nt x Nqtj xY n), where A-t is

n=1

the number of templates, Nqti is the number of queries of template i, and qk is the

query number (the k th query). The queries correspond to the columns index numbers
that are associated with each of the templates. They occupy the columns numbered
from one to q of each plan that represents a template. The sum of the number of

queries is in fact equal to the total number of queries. Each query q that is associated

with template t is compared to all its subsequent queries that are also associated with
the same template t. Hence, the computation cost of the inner loop in the algorithm is
*- 1) +... +3 +2 + 1.

6.3.2.3 Algorithm for Melting the Values of the Queries
The algorithm of the Melting the Values of the Queries is presented to show how it

implements the sharing paradigm that is investigated in the review of literature of

query optimization strategies. The work done in [And06, Mok05a] is implemented by

sharing the space and areas. In this work, when two queries share the same spatial

area or when an area is included in another one, Melting their Values uses the shared

area for multiple queries. This is done by drawing the buffer of an area only once and

using it multiple times to clip or find the objects of multiple simple queries similarly

to the work done in [And02a, And02b] but for multiple simple queries that belong to

the same dynamic complex query instead of multiple users queries using one operator

only. Moreover, the algorithm allows sharing an interval of time if it is included or

equal to the interval of another query. This is a newly introduced sharing that is not

addressed by any previously reviewed paper.

The values of the queries are melted if they are the same for consecutive queries. In

this case, the first occurrence of the value is kept unchanged and the next occurrences

are melted by being eliminated. This process tackles all the values of all the queries of

all the templates. However, the queries are processed independently from the template

number. The queries are scanned in order from the first query to the last one. The

procedure considers the first value of the first query as the previous value. It starts

comparing the values from the second and so on considering the second value as the

current value. If the value of the current query is equal to that of the previous one, it is

178

eliminated and the next value of the next query is considered as the current value. If

the value of the current query is not equal to that of the previous one, the previous
value is kept unchanged and the current value is considered as the new previous
value. The process continues until all the values of all the queries are examined.
Figure 6.9 shows the algorithm of melting the values of the queries.

//Algorithm to Melt Values

Previous = value of first query q of queries

For (each query q of queries processed from second query to last query)
If (value in query q of queries equals previous)

I

Else

Remove value of query q of queries

Previous = value of query q

Figure 6.9: The Algorithm for Melting the Values of the Queries.

The computational cost of the above algorithm is O(Nq-1), where Nq is the total

number of queries. All the queries are processed starting from the first one until the

last one.

6.3.2.4 Algorithm for Melting the Objects of the Queries

The algorithm of the Melting the Templates of the Operator is presented to show how

it implements the sharing paradigm that is investigated in the review of literature of

query optimization strategies. The work done in [And06, Mok05a] is implemented by

sharing the object of interest. The algorithm allows sharing the object of interest

between multiple simple queries by reading the object once and using it for many

queries. In the work done by [And03] the object of interest is shared by multiple

users each using one operator only in non dynamic queries, whereas it is applied here

179

to share it between multiple simple queries with multiple operators that belong to the

current dynamic complex query.

The objects of the queries are melted If they are the same for consecutive queries. In

this case, the first occurrence of the object is kept unchanged and the next occurrences

are melted by being eliminated. This process tackles all the objects of all the queries

of all the templates. However, the queries are processed independently from the

template number. The queries are scanned in order from the first query to the last one.
The procedure considers the first object of the first query as the previous object. It

starts comparing the objects from the second and so on considering the second object

as the current object. If the object of the current query is equal to that of the previous

one , it is eliminated and the next object of the next query is considered as the current

object. If the object of the current query is not equal to that of the previous one, the

previous object is kept unchanged and the current object is considered as the new

previous object. The process continues until all the objects of all the queries are

examined. Figure 6.10 shows the algorithm of melting the objects of the queries.

//Algorithm to Melt Objects

Previous = object of first query q of queries

For (each query q of queries processed from second query to last query)

If (object in query q of queries equals previous)

Else

Remove object of query q of queries

Previous = object of query q

Figure 6.10: The Algorithm for Melting the Objects of the Queries.

180

The computational cost of the above algorithm is O(Nq-1), where Nq is the total

number of queries. All the queries are processed starting from the first one until the
last one.

6.3.2.5 Algorithm for Filling the Methods of the Remaining Queries

The functions that remain not melted are assigned in the cells of their corresponding

remaining queries. The procedure tackles each step at a time from the first step until
the last one. For each step, the code associated with the functions determines whether
the function is supposed to be repeated for each query, for each new time instance, for

each new operator, or once only for all the queries. It also specifies whether the

ftinction's name is supposed to be appended with the value or the object of the query.
The procedure checks the code of each template step and accordingly fills the cell that

corresponds to the query cell in the array. When the code specifies that a function is

supposed to be repeated for all the queries, the procedure fills all the queries cells with

the name of the function. When it specifies that a function is supposed to be repeated
for every new time instance, the procedure fills the method name in two cells only.

The first cell is the one that corresponds to the cell of the first query of the template.

This cell is related to the plan 0. The second cell is the element numbered 0 in the

array and is related to the plan I ... n.

When the code specifies that a function is supposed to be repeated only once for all

the queries, the cell of the first query of the first template only is filled with method

name. If it specifies that a function is supposed to be repeated for each new template,

the procedure fills the cells of the first queries of each template with its corresponding

inethod name. In the case where the method name is supposed to be appended with

the value of the query, the process takes the value from the query and appends it to

method name before filling it in the corresponding cell. Finally, if the code specifies

that the method name is supposed to be appended with the object of the query, the

process takes the object from the query and appends it to method name before filling

it in the corresponding cell.

181

This process is repeated until all the remaining functions of all the steps of all the
templates are properly filled in the cells of all their corresponding queries. Figure 6.11

shows the algorithm of filling the functions in their corresponding query cells.

//Algorithm of FillArrayQuerieso

Maximum = maximum number of steps in templates

For (each step s in first operator template steps running s from I to Maximum)

For (each query q in queries)

If (code of template t of query q equals repeat the same function

for all queries of all templates

Function of query q of PlanO = function of template t

Function of query q of Plan1toN = function of

template t

If (code of template t of query q equals append the function

name with the value of the query q

Function of query q of PlanO function of template t

+ value of query q

Function of query q of Plan1toN = function of

template t+ value of query q

If (code of template t of query q equals append the function

name with the object of the query q

Function of query q of PlanO function of template t

+ object of query q

Function of query q of Plan1toN = function of

template t+ object of query q

182

If (code of template t of query q equals) and (first query of
template t) for first query of template t for PlanO and Plan I toN

to change for every new operator

Function of query q of PlanO = function of template t

Function of query q of Plan1toN = function of
template t

If (code of template t of query q equals "/") and (first query of first

template) // for PlanO of first query of first operator only

Function of query q of PlanO = function of template t

If (code of template t of query q equals "#") and (first query of first

template)// for PlanO & Plan I toN first query of first operator

to repeat for every new time instance

Function of query q of PlanO = function of template t

Function of query q of Plan1toN = function of

template t

Figure 6.11: The Algorithm for Filling the Functions that Remain Non-Melted in

the Queries.

The computational cost of the above algorithm is O(Ns x Nq), where Ns is the

number of steps and Nq is the number of queries. The steps correspond to the row

index numbers of each template. The queries correspond to the columns of each plan.

All the queries are processed for all the steps. The computational cost of processing

Ns steps is O(Ns) and processing Nq queries is O(Nq). Thus, the computational cost of

both these dimensions is O(Ns x NO.

183

6.3.2.6 Algorithm for Generating the Global Evaluation Plans
The algorithm of Generating the Plans is used to show both Global Execution Plan 0

and Global Execution Plan I
... n are generated and show how it implements the push-

down strategy that is discussed in the review of literature in [ELM06]. The push-down

strategy was used to swap only the Select and Join operators, whereas in this work it

is applied to re-order properly all the operations after Melting them in the aim to

organize them in the proper sequence. Each group of operations belongs to a phase

such as first phase, second, etc. This means that the operators of the first phase should
be executed before the operators of the second and so on. The algorithm generates the

plans according to the sequence of these phases.

The procedure that generates the two global evaluation plans collects all the

remaining non empty methods/functions that are in the array. Then, it generates a new

single dimensional array for each global evaluation plan made up of the list of
functions that are to be executed. Each function is supposed to be executed during a

particular phase. The methods that belong to each phase are collected from the array

according to the increasing order of their step number that is related to that specific

phase. In other words, the methods included in the columns of the queries are scanned

sequentially by phase and by step. Then they are appended at the end of their

corresponding Global Evaluation Plan. Figure 6.12 shows the algorithm of generating

the Global Evaluation Plan 0 and the Global Evaluation Plan I ... n.

184

//Algonthm of Generateplanso

PlanO = empty list for Plan 0

Plan I toN = empty list for Plan I toN

For (each phase p of phases)

For (each template t of templates)

For (each query q in queries associated with template t)

For (each step s in steps of phase p)
// Plan 0

Add function of step s of query q to the end of PlanO

// Plan I ... n
If (first template and first query)

Add function of step s of query qO to the

end of Plan1toN

Else

Add function of step s of query q to the

end of Plan1toN

Figure 6.12: The Algorithm for Generating the Global Evaluation Plan 0 and the

Global Evaluation Plan I n.

The computational cost of the above algorithm is O(Nq x Ns). All the multi-

dimensional array elements are traversed. For each template all the queries are

processed. For each query all the steps are processed. The computational cost of

is O(Nq) and Ns steps is O(Ns). Thus, the computational processing all the queries Nq iI

cost of processing all the dimensions is O(Nq x Ns). The phase number does not

at ItI ect the running time of the algorithm because it is used only to control the sequence

iii which the global evaluation plans are generated.

185

6.4 Theoretical Evaluation of the Query Melting Processor
In order to evaluate the efficiency and cost effectiveness of the Query Melting
Processor, the major factors that are taken into consideration are the execution time

cost, memory space used to store the necessary arrays, and the extra 1/0 operations of
the templates along with their respective execution time costs. The Execution Time of
multiple static queries with multiple operators before query melting is defined as
follows:

ETQN, S) (op) x ýQor
OPCOP

SESýp

where

9 ETCjunction is the Execution Time Cost of the strategy N (No Melting) on the

type S which is Static queries.
" OP

1-1 sent
is the set of operators that are included in the queries.

" Qop is the set of queries with a particular operator.

" Sop is the set ofsteps orfunctions of a particular operator.

" t, (op) is the execution time of a step orfunction of a particular operator.

The total cost is equal to the summation of all the costs of the operators that are sent

where the cost of each operator is the summation of all its functions costs multiplied

by the number of queries of that particular operator. The Execution Time of multiple

dynamic queries with multiple operators before query melting is defined as follows:

ETC(N, D) =II t' (op) x+ Iti IXI It, (op) X ýQ'p

opcop""' SESPIallo OPEOI!,,,,, SESpla), j
. 11

where

9 ETC. /unction is the Execution Time Cost of the strategy N (No Melting) on the

ope D which is Dynamic queries.

pl,, o is the set ofsteps orfunctions of a particular operator at Time 0. S

Splan]

... ,
is the set (? f steps or. /unctions of a particular operator at Times I n.

o tj is a time instance.

186

Since this is a continuous query, two plans are considered namely Plan 0 for Time 0

and Plan I
... n for Times I

... n. The total cost is equal to the sum of Plan O's cost and
the Plan I

... n cost multiplied by the number of instances. The number of instances

represents the number of XY Location updates of the user. The cost of each plan is

calculated the same way as for static queries. The Execution Time of multiple static

queries with multiple operators after query melting is defined as follows:

ETC(M, S) = 1: ts
s E: GEP

where

9 ETC function is the Execution Time Cost of the strategy M (Melting) on the

type S which is Static queries.

9 GEP is the set of steps orfunctions of the Global Execution Plan.

The total cost is equal to the summation of all the steps functions costs that belong to

the Global Evaluation Plan. The Execution Time of multiple dynamic queries with

multiple operators after query melting is defined as follows:

ETC(M, D)= I]t, +Itilx J: t,
sEGEPO sE=GEP, ,

where

9 ETC function is the Execution Time Cost of the strategy M (Melting) on the

type D which is Dynamic queries.

GEPo is the set ofsteps orfunctions of the Global Execution Planfor Time 0.

GEP,
... n is the set of steps orfunctions of the Global Execution Planfor Times

I

The total cost is equal to the sum of GEPo cost and GEPi
... n cost multiplied by the

number of instances. The cost of each GEP plan is calculated the same way as for

static queries. The profit of applying the strategy QM is equal to the total execution

time saved or decreased. It is measured as the difference between the execution time

before melting and the execution time after melting. The profit of Query Melting

Static queries is:

187

PROFIT(M, S) = ETQN, S) - ETC(M, S)

The profit of Query Melting Dynamic queries is:

PROFIT(M, D) = ETQN, D) - ETC(M, D)

The time to execute the PreProcessor, Query Melting Ruler 1, and Query Melting
Ruler2 is considered as a loss and is deducted from the profit of the strategy. The 1/0

cost is also deducted from the profit. It is the time to read the Functions Cost table

once only before Query Melting plus the time to write the updated Functions Cost

table once after Query Melting. The net profit of the strategy is calculated as follows:

NETPROFIT(M, D) = PROFIT(MID)- tPr
eP - tRulerl - tRuler2 - tRe

ad - tWrife

where

* NETPROFIT function is the Net Execution Time Cost of the strategy M

(Melting) on the type D which is Dynamic queries.
" tPreP is the execution time of the PreProcessor.

" TRulerl is the execution time of the Query Melting Ruler 1.

" tRule)-2 is the execution time of the Query Melting Ruler 2.

" tRead is the execution time to read the Functions Cost table before Query

Melting.

* Tit-,. j, is the execution time to update the Functions Cost table after Query

Melting.

A positive value of NETPROFIT means that Query Melting is cost effective. A

negative value means that the cost of processing Query Melting is greater than the

cost saved. Thus, Query Melting is not cost effective. The greater is the value of

NETPROFIT, the lower is the total execution time, and the more cost effective is the

Melting Process.

For the evaluation of the Query Melting Processor (QMP) and the Decision making

Mechanism (TCOP), the 'time" quality characteristic is quantified and cost is

estimated using the Big-Oh notation NvIuch reflects how the cost of computation

188

grows as a function the input size by considering the computation cost to be the

running time in terms of the size, thus indicating an approximation to the number of

steps taken by a process. Therefore, the computational cost of Melting the Templates

is O(Ns x (Nt-1)) where Ns is the number of steps, Nt is the number of templates and
the steps correspond to the row index numbers of each template. Since the

computational cost of processing Ns steps is O(Ns) where for each step the rest Nt-I

templates that are numbered from two to the last one are processed in reverse order

and since the computational cost of processing Nt-I templates is O(Nt-1), thus the

computational cost of both these dimensions is O(Ns x (Nt-1)). The same method of

calculation applies to the other processes, so the computational cost of Melting Full

qk-I

Queries is O(Nt x Nqti x n), where Nqti is the number of queries of template i,
n=1

and qk is the query number (the k th query). The queries correspond to the columns

index numbers that are associated with each of the templates, occupy the columns

numbered from one to q of each plan that represents a template, and each query q that

is associated with template t is compared to all its subsequent queries that are also

associated with the same template t. Hence, the computation cost of the inner loop in

the algorithm is (qk- 1) +... +3 +2 + 1.

Moreover, the computational cost of Melting the Values is O(Nq-1) where all the

queries are processed starting from the first one until the last one, Melting the Objects

is O(Nq-1) where all the queries are processed starting from the first one until the last

one, Filling and Appending the Methods with Values and Objects is O(Ns x Nq)

where all the queries are processed for all the steps, and Generating the Global

Execution Plans is O(Nq x Ns) where all the multi-dimensional array elements are

traversed where for each template all the queries are processed and for each query all

the steps are processed. Hence, it can be concluded that the total time cost of the

Query Melting Processor is the sum of the time costs of all its processes and can be

calculated as follows:
qk-I

O(QA, fp) = O(Ns x (Nt-1))+ O(Nt x Nqti x I: n)+ O(Nq-])+ O(Nq-l)+ O(Ns x, Vq)
n=l

O(Ns x Nq)

189

The computational cost of the Decision Making Mechanism (TCOP) is 0(, N't) because

the number of levels of the decision tree is in fact equal to the number of templates,

which means that t comparisons are to be executed in order to detennine which
scenario is used by the complex query. In the case where a new plan is to be stored

while TCOP is activated, the computational cost is equal to O(Nm) where Nm is the

number of functions/methods in the new plan, whereas in the case where an old plan
is to be accessed, the computational cost is equal to O(Om) where Om is the number

of functions/methods in the old plan. Hence the total cost of processing a new plan is

equal to O(Nt) + O(Nm) and the total cost of processing an old plan is equal to O(Nt)

+ O(Om). The second quality characteristic that is quantified in order to evaluation

the efficiency of the Query Melting Processor is the cost of the memory space that is

occupied. Two types of arrays are used during the melting process. The first one is the

Cost Array that contains for each function its name and cost. The name might be

maximum 20 Bytes and the cost which is an integer number occupies 2 or 4 Bytes

depending on the system. The space needed for each function is 24 Bytes which is

considered minimal and not significant at all. The second one is the arrays that store

the templates of the operators and the functions of the queries. Since the name of each

function does not exceed 20 characters and each character occupies 2 Bytes in RAM

(some systems I Byte) the name occupies maximum 40 Bytes. The total space

occupied in the RAM is 40B/Function/Operator. In other words, it is equal to the

product of the number of operators, the number of functions of each operator, and 40

Bytes, which is quantified as Space Cost = 40 Bytes x Number of Functions x

Number of Operators. Assuming that there are 10 templates of operators, 17 functions

per operator, and 10 queries per operator, the space occupied is 40 Bx 17 x 10

68000 Bytes. Hence, the space cost 68 KB is considered minimal.

On top of the memory space that is occupied by the Query Melting Processor (QMP),

the Decision Making Mechanism (TCOP) occupies space for the decision tree and the

structure array that is used to store the old plans. First, the tree is made up of t levels

each corresponding to an operator template and including 2' elements making a total

t

number of elements Since each element stores the operator's name which is

made up of 4 characters and each character occupies 2 Bytes, therefore, the size of the

190

I
decision tree can be estimated as 1: 2' x8 Bytes. Second, the structure array is made

i=l
up of (2'-1) rows each corresponding to a plan that contains only the
functions/methods that remain non-melted, where each function name is made up of

maximum 20 characters and occupies 40 Bytes. Hence the size of the structure array

is equal to ((2t- 1) x 40 Bytes x Number of Functions left x Number of Operators).

6.5 Summary and Conclusion

The design and implementation of the Query Melting Processor were presented In this

chapter. The main job of the processor is to receive dynamic complex queries from

the mobile user, decompose them, melt queries either fully or partially, and build an

optimized Global Evaluation Plan. The design of the Query Melting Processor is done

using a number of visual diagrams each of which visualizing a specific model that is

related to a specific activity of query processing. The Use case Diagram is used to

visualize the activities and tasks of a system showing at the same time the actor/actors

associated with each activity. Each actor could be a person or a component in a

system. The Time Sequence Table Diagram shows the order in time of each task or

activity including the user. The diagram visualizes how long each task lasts by

specifying the beginning and the end of its time interval. It also shows when the result

map is returned to the user. The Architecture of the Query Melting Processor Diagram

shows the input tables with their attributes, the variables, fields, or arrays that are

stored in the memory, the processes or procedures that are executed, and the output of

the processor.

The algorithms of each activity have been presented to show how they implement

their related purpose. The Melting Ruler I algorithm show the Sharing paradigm that

was investigated in the review of literature of query optimization strategies [And06,

Mok05a] was done by sharing the cache memory whereas here it was applied

differently and was used at the low-level of processing, e. g., at the programming or

coding level. It performed common sub-expression elimination CSE, that was

discussed in [Kan94, MAW], by eliminating all the repetitions of the same process in

different plans. The algorithm of the Query Melting Ruler 2 showed how it allowed

sharing the object of interest between multiple simple queries by reading the object

191

once and using it for many queries. In the work done by [And03] the object of interest

was shared between multiple users each using one operator only in non dynamic

queries, whereas it was applied here to share it between multiple simple queries with
multiple operators that belong to the current dynamic complex query. The algorithm
showed also how sharing areas was implemented. When two queries share the same
spatial area or when an area is included in another, the QMP uses the shared area for

multiple queries. This was done by drawing the buffer of an area only once and using
it multiple times to clip or find the objects of multiple simple queries similarly to the

work done in [And02a, And02b] but for multiple simple queries that belong to the

same dynamic complex query instead of multiple users queries using one operator

only.

Moreover, the algorithm showed how it allowed sharing an interval of time if it is
included or equal to the interval of another query. This is a newly introduced sharing

that was not addressed by any previously reviewed paper. Finally, It showed how

sharing the intermediate result was done through using the same underlying space
(map) for all the queries of the same user. This was done through executing the plan

of each user as a thread. The same was implemented in [And02c, And02d, and
And02e] but for multiple users using one operator in non dynamic queries. Moreover,

the Query Optimization was here extended to include "multi-user spatio-temporal

multi-predicate dynamic complex queries". The algorithm of Generating the Plans is

used to show both Global Execution Plan 0 and Global Execution Plan I ... n are

generated and show how it implements the push-down strategy that is discussed in the

review of literature in [ELM06]. The push-down strategy was used to swap only the

Select and Join operators, whereas in this work it is applied to re-order properly all

the operations after Melting them in the aim to organize them in the proper sequence.

Each group of operations belongs to a phase such as first phase, second, etc. This

means that the operators of the first phase should be executed before the operators of

the second and so on. The algorithm generates the plans according to the sequence of

these phases. On the other hand, the Time Cost Optimization (TCOP) that was

responsible for handling the multi-users dynamic complex queries at the GIS server

side in order to manage the ones that had similar scenarios, aimed at sharing a

ing a new one for each query. The work previously melted plan instead of generati

192

done in [ELM06] proposed sharing sub-plans whereas here TCOP which was the new
decision making mechanism implemented sharing all the plans.

The QMP is implemented using the Microsoft Visual Basic NET running under the
Microsoft Windows XP. The underlying Geographic Information System is the ESRI
ArcMap and ArcView version 9.1 which are products of the ESRI ArcGIS Software.
The implementation algorithms of the processes of the Query Melting Processor were

presented and the computational cost estimated using the Big-Oh notation. The

templates of the operators are melted by eliminating the functions that are repeated

more than once in consecutive templates. The computational cost of the algorithm is

O(Ns x (Nt-1)), where Ns is the number of steps and Nt is the number of templates.
The queries that are totally included in other queries are fully melted by eliminating
their values and their objects as well in order to delete them. The computational cost

qk-I

of the algorithm is O(Nt x Nqti x I: n) where Nt is the number of templates, Nqti is
n=1

the number of queries of template i, and qk is the query number (the k th query). The

sum of the number of queries is in fact equal to the total number of queries. The

values of the queries are melted if they are the same for consecutive queries. In this

case, the first occurrence of the value is kept unchanged and the next occurrences are

melted by being eliminated. The computational cost of the algorithm is O(Nq-1),

where Nq is the total number of queries. Similarly, the objects of the queries are

melted if they are the same for consecutive queries. The computational cost is also

O(Nq- 1).

The functions that remain not melted are assigned in the cells of their corresponding

remaining queries. For each step, the code associated with the functions determines

whether the function is supposed to be repeated for each query, for each new time

instance, for each new operator, or once only for all the queries. It also specifies

whether the function's name is supposed to be appended with the value or the object

of the query. The computational cost of the algorithm is O(Ns x Nq). The procedure

that generates the two global evaluation plans collects all the remaining non empty

methods/functions that are in the array. Then, it generates a new single dimensional

array for each global evaluation plan made up of the list of functions that are to be

executed. The computational cost of the algorithm is O(Nq x Vs). Fnially, in order to

193

evaluate and prove the cost effectiveness of the Query Melting Processor a theoretical

evaluation has been conducted and was able to quantify the cost and profit of each

phase. The results of the evaluation concluded with a net profit value which reflects

either a time saving meaning that it is cost effective or a time loss meaning that it is

not.
As a conclusion, the query process is designed and implemented based on the query

melting paradigm, query optimization, time cost optimization. The query melting

paradigm includes sharing the functions, objects, spatial areas, time intervals. The

query optimization includes decomposition of the queries, common sub-expression

elimination, generation of global execution plan, and evaluation of the plan. The time

cost optimization is performed through sharing the global execution plans.

194

Chapter 7- Case Study: Proximity Analysis

for Multiple Dynamic Complex Queries

Using Paris Map

7.1 Introduction

This chapter presents the integration of the proposed Iconic Visual Query Language

(IVQL) together with the new optimization strategies namely, Query Melting

paradigm, Query Optimization, and Cost Optimization. Its emphasis is to explore the

Query Melting Processor on the k-Nearest-Neighbours (kNN) as well as Buffer

queries in the context of dynamic complex queries. Its main aim is to give an

experimental evaluation of the system, using a case study which aimed at a Tourist

Mobile GIS application using the map of Paris. The user formulates the complex

query which is sent to the geographic information system ArcGIS server. The query is

processed and its result map is sent back to the user.

The major objectives are:

* To apply the lVQL user interface to formulate dynamic complex quenes

* To apply the Query Melting paradigm through the following tasks:

o CSE: Common Sub-expressions Elimination

0 Sharing objects of interest

0 Sharing spatial areas

0 Sharing Time

0 Sharing the underlying space (Map) as an intermediate result

0 To apply Query Optimization

0 To optimize the time cost of the processor

195

The IVQL is implemented using a mobile phone emulator in order to allow the visual
query fon-nulation of multiple dynamic complex queries. The Query Melting
Processor which is responsible for the Query Melting Paradigm and the Query
Optimization is implemented in VB. NET using the Microsoft Visual Studio 2005 API

and the Desktop GIS ArcGIS version 9.2 components that are called ArcObjects. It

performs common sub-expression elimination CSE by eliminating all the repetitions
of the same process in different plans. It allows sharing object of interest between

multiple queries by setting the object once and using it for many queries. When two

queries share the same spatial area or when an area is included in another, the QMP

uses the shared area for multiple queries. It allows sharing an interval of time if it is

included or equal to the interval of another query with the same object of interest.
Sharing the intermediate results is done through using the same underlying space
(map) for all the queries of the same user. This is done through executing the plan of

each user as a thread.

The Query Optimization is also achieved by the system through decomposing the

dynamic complex queries, eliminating the sub-expressions, generating the Global

Evaluation Plan, and evaluating the plan. The last objective is Cost Optimization

which is to optimize the time cost of the processor. This is achieved through an

experimental evaluation of the time cost of the Query Melting Processor. Two

methods of processing are compared. The first is "With No Decider" where the

complex queries templates are melted for each complex query. The second is "With

Decider" where the templates are melted once per scenario and stored in memory for

later retrieval by similar consequent scenarios. A comparison between the time costs

of the two processing methods is enough to conclude which of them is cost effective.

The chapter is divided into four major sections. The components of the system are

explained in section 7.2, an explicit scenano for three users only Is presented in order

to show how the system works, the experimental evaluation is detailed in section 7.3,

and the summary with the conclusion are presented in section 7.4.

196

7.2 Components of the System

All the components of the case study are shown in Figure 7.1. The Emulator of IVQL

is used to formulate dynamic complex queries. The parser receives the complex

queries and converts them into multiple simple queries.

The Components of the system
Simulator

XY Coordinates
on Paris Map

ArcGIS 9.2

Emulator of IVQL

Parser
OUERY MELTING PROCESSOR

, With Decider:
A- If New Scenario: 1-Melt Templates

2- Store Melted Templates in RAM
3- Generate GEP

B- If Old Scenario: 1- Use previously Melted Templates
2- Generate GEP

ýWithout Decider:
I- Melt Templates
2- Generate GEP

197

PAGE

NUMBERING

AS ORIGINAL

ý %w jpv-ý- jr

Complex Query

Simple Query 1 Simple Query 2

Operator Value Object Operator Value

Find " "-L
100 Restaurant

ý'oReach

WithinBuffer Nearest

10 m
..

'a wo
,. (n

I OTTW-

Object

1 Motel

1

Figure 7.3: The Constructs of a Complex Query.

The IVQL graphical user interface is used to formulate simple and complex visual

queries using the emulator as shown in Figures 7.4(a) and 7.4(b). They are

automatically translated to regular complex queries. The user mobile number and his

current XY Location are concatenated with the complex query. The resulting text is

sent as a tuple of a single-tuple table to a file folder for processing. A Watcher

informs the Parser about the arrival of any file in due time.

199

IVQL

Big 6ýýA MR >

OK

1.

Pl.

41 L-L. ý' ,c L-OLJI- 1- 11,

7mn jIw

IVO L

1234

--ý,
5 10 50 lau

200 400 aß 000

11100 1500 2000 5000

OK

4.

LJ L1LLj ±
LL! J

LJ
8t.

IVQL
P6 " .- -'
: ýý- OEM &A MA

oýt

OK

All
All Il- I
i,

"15 Im b

Figure 7.4(a): Some Snapshots of the IVQL Graphical User Interface.

200

- .-- ý-m . -,.

da
,
NQL

Em 1A >
, A. Kj la
0%6

OK

Ls J

ol 7

,I IVOL

Cgo- ma IA
I-J3

GOD

OK OK

I101 L-10-1 i

- 7m I, stm . 9ý I

ý, 7- 1-

IVQL

BC

2

3

4

OK

Figure 7.4(b): Some Snapshots of the IX`QL Graphical User Interface.

101

All the operators and objects that were explained in chapter 5 are used to formulate

complex queries called data files hereafter. The data files are generated varying the

number of complex queries respectively from 1,2,5,10,20,50, to 100. For each data

file, other data files are also generated varying the number of operators respectively
from 255, to 10.

7.2.2 The Parser

The Parser is invoked by the Watcher once a new complex query is created in the file

folder. It converts the complex query into multiple simple queries and assigns their

value in special arrays in the memory.

7.2.3 The Query Melting Processor

At the beginning of its execution, the Query Melting Processor reads the Templates of

the operators that are included in the system. Each template has an evaluation plan for

one query based on its operator. Moreover, the number of templates determines the

number of possible scenarios a complex query could have. If t is the number of

templates then the number of possible scenarios is 2'- 1. For example, suppose that

the templates of Nearest and Buffer operators are included. The possible scenarios

that can be produced are Nearest alone, Buffer alone, and both Nearest and Buffer,

with each scenario being assigned a code. The Query Melting Processor reads the

simple queries of each user at a time. The combination of their operators is converted

to the code of the scenario.

If the Decider is not activated, it melts the templates, decomposes the queries, melts

them, and generates the Global Evaluation Plan. If it is, it checks if the combination of

the operators that are included has been previously used. In other words it checks if

the scenario code has been processed before. If yes, it uses the plan that was

previously generated. Otherwise, it melts the templates, generates a new Melted

Templates Plan, and stores it in memory for later retrieval. Then, it proceeds with

decomposing the queries, melting them, and generating the Global Evaluation Plan.

202

While melting the templates, the processor is in fact performing common sub-

expression elimination CSE. It examines the functions of the templates and eliminates

any repetition that does not affect the result of the complex query. For example, the
"make closest facility layer" method is repeated in all the templates concerned with

proximity analysis. The processor keeps the first occurrence of the method and

eliminates all subsequent occurrences.

While melting the queries, the processor is also performing sharing object of interest.

When two or more consecutive queries have the same object of interest, the processor
keeps its first occurrence and eliminates all subsequent occurrences. It is enough to

find the object of interest once and use it more than one time. For example, if the first

query is to find the nearest hotel and the second the time left to the nearest 3 hotels,

setting the hotel is done once and used to produce the results of the two queries.

It is also performing the sharing of spatial area. For example, if the first query is to

find restaurants within 200 meters and the second within 100 meters, the processor

eliminates completely the second query because it is totally included in the first. The

same occurs for sharing the time interval. For example, if the first query is to find the

nearest hotel for the next hour and the second for the next 2 hours the processor

eliminates completely the first query as it totally time included in the second.

By using the Decider in the processor, the Cost Optimization is achieved. An

experimental evaluation is carried out in order to evaluate the cost effectiveness of

using the Decider. In the experiment, the queries are processed on the fly so as to

avoid any 1/0 overhead. The Melted Template Plans are stored in RAM but not on

secondary storage media. Also, a special version is implemented in order to allow the

activation of the Decider. Two buttons are used. The first is named "Process with No

Decider" and the second "Process with Decider". In order to get more accurate

results, all the functions that display data in ListBoxes are disabled to eliminate their

time cost effect. Figures 7.5 to 7.8 show snapshots of the user interface while the

processor is running.

203

p

1.19

.2 il
rm-

4-.

I
. 4-
0

'3

In

dM

4-m
N.

CL
(M

ch 9.0 Zm

00 u

5 1.

10

iE rZ

'2 Q
ty

204

c

Lid

3.20

I

0

41i
n

rM

-

,cA

-C-

f2
3:

"D
c 1-

CD

40 *Z 7

00 W

205

-
V

L

i In

to

!u1 40 1, -
Ali 'I kt

t, . ':. LL 61 4 .. -,

Ii

Ul ul, w U,
41

11

! Ln .., .0,

CY
M

4 -n
Ln in

4-0
2

E (')10 E2
mmq

c 60

c

71

0 1...,

-C cl

c (A

0

ý7

LL 0
.Ii Ll 51

411

Ily, 40 In a fj.
C. .?

mEE

40

4A
'A
V, "

4) u qj

0n in

206

6

U Vi 4

Ln

.2 Ll

411

.
1)

V, L

...................

7

cr

(j
.i: LL Uý <

LL ,

u
-f

i!

LL kn <

tL U, I I
Lg[
w

tj

LL ul

40

en LL ui .1

LL ul

LL

LL A

LL

Ln Lk ul f

Ul t

fn LL ul -1

LL Ul -t

LL al

40 ;., j
LL

kn
Li

!:: 4
",.

ý

ul I

LL '/1 4

tu
LL ul .1

LL
U. LL Ul

Aj
01

a ul

E CY

Iv

Aj

hn

'0' ., j , LL

LL

LL
'. LL

LL

LL

LL

LL

LL

,h
11

LL

LL

u

iL Ul

LL Ui

Ll

71

07

c12
r.

U-

cn

Ln L13 ki

CL co 14-0

CY
CY

ul
4 ox-

LL
c

0U
M

W 10

cl
CJ

0
0

0 b

c

E

9Y

666
E E

, I'- -0 ; ý t, ý &

,
41 it

Vit V,
it

00 o2
C.,

1
Q

x k)
-4,

7.2.4 ArcGIS Objects

The underlying Geographic Information System is the ESRI ArcMap and ArcVie%V

version 9.2 which are products of the ESRI ArcGIS Software that offers software and

technology for desktop mapping, online maps, GIS data, and products [ESR]. The

ArcMap allows users to access its objects, controls, and toolboxes. They products are

used to build a complete GIS in the areas of geo-processing and map visualization by

single users or multiple users on desktops or servers and are based on a common
library called ArcObjects which consists of shared GIS software components. The

wide variety of these programmable components allows developers to use them with

standard programming frameworks. Before starting to program an application, the

ArcGIS objects and controls must be loaded into the development environment.

Figure 7.9 shows how the ArcObjects can be used.

ArcObjects: ARCGIS Components

Components

Data

ArcGIS 9.2
DBMS

208

The ArcObject Geodatabase is used for handling workspaces, datasets, and feature

classes. The ArcObject Controls allow the developer to insert controls in their forms.

The control MapControl is used to add a map to the form and later zoom in, zoom out,

and pan it. The ArcObject Carto is used to handle Layers and add layers to maps. The

ArcObject NetworkAnalyst is used to make closest facility layers, add incidents, add
facilities, set the parameters such as the number of facilities to find, the impedance

attribute (Meters,..), show the path, travel directions, etc. The ArcObject AnalysisTool

is used to handle a variety of tools such as the Buffer that draws a buffer circle around

the user location and the Clip that finds facilities in the buffer area.

7.2.5 Simulation of Mobile User XY Locations

A simulator is used to play the role of a satellite streamer that supplies the locations of

a mobile phone user who is on the move. The user interface of the simulator is shown
in Figure 7.11.

Virtua I Mode Ir

Repeat How Many Times
r 00

Res*lve every:
Tins F- c rj n ds

L

Start Close

Figure 7.11: The Simulator User Interface.

The first input value specifies the number of locations to be generated for each mobile

user. The second input value specifies the interval of time between two locations. The

simulator launches or invokes a timer and at every new time interval it generates

random XY coordinates taken from the map of Paris. The output of the simulator is a

text file that contains for each user multiple records each of which representing a new

location. Each record includes the mobile number, date, time, speed, X coordinate,

and Y coordinate. The simulator during execution is shown in Figure 7.12 using the

map of Paris to generate the random locations.

210

7.2.6 Plan Execution of the Global Evaluation Plans

The Plan Evaluator is responsible for executing the Global Evaluation Plan of each
dynamic complex query. It processes the methods sequentially by calling the

corresponding private functions. Each private function uses the ArcObjects to execute

the command on the map and the ArcGIS database. If the complex query is made up

of static operators only the job is terminated after displaying the map. If it contains

one or more dynamic operators it processes the plan and displays the result map for

every location received by the streamer.

The Plan Evaluator processes the complex queries as a Multithreading task where a

thread is created for each user. Thus, the Plan Evaluator is in fact performing Sharing

the Underlying space (map) and inten-nediate results. The Paris map remains active in

the thread of the user as an inten-nediate result, with all the queries and their results

are shown on it.

211

Figure 7.12: The Simulator while Generating Locations from the Map of Paris.

7.2.7 Result Map

The result of processing the plan is the map of Pans showing the output of the

dynamic complex query based on the location of the mobile user at a particular time

instance. The result map is supposed to be sent to the mobile user as a ping file (. png)

through Multimedia Messaging Service (MMS). But since an emulator is used for the

purpose of experimentation in order to facilitate the implementation the map is

displayed within the current implementation environment. Figure 7.13 shows an

example result map of Paris including the output of the dynamic complex query.

212

Figure 7.13: The Map of Paris showing the Result of a Dynamic Complex Query.

7.3 An Explicit Scenario

The explicit scenario goes through the user interface of IVQL, the Query Melting

Processor (QMP), and the result map in action with the aim to show how the system

works. The scenario is about three mobile users where each user formulates one

dynamic complex query (DCQ), the QMP processes each DCQ, and the result map of

each user is displayed. The QMP is executed twice to process the three DCQ, once

without the time cost optimizer (NO DECIDER) and once with the time cost

optimizer (WITH DECIDER), with the purpose to show that processing the three

DCQ with the time cost optimizer is faster and more cost effective than without it.
The difference between the two strategies is that in the first one the templates are

melted for each DCQ whereas in the second one the multiple DCQ that have similar

scenarios, formulated using the same operators, share the same melted plan.

In order to consider all the possible combinations, user I formulates his DCQ which is

made up of 4 simple queries using the two operators NPD (Find Nearest with Path

Dynamically) and WBD (Find Within-Buffer Dynamically), where the first 2 simple

queries use the NPD operator and the other 2 simple queries use the WBD operator.
User 2 formulates his DCQ which is made up of 5 simple queries using the three

operators NPD, WBD, and WBS (Find Within-Buffer), where the first 2 simple

queries use the NPD operator, the next 2 the WBD, and the last one the WBS. User 3

formulates his DCQ which is made up of 3 simple queries using the two operators
NPD and WBD, where the first simple query uses the NPD operator and the other 2

simple queries use the WBD operator. Both user I and user 3 use the same operators
NPD and WBD, hence, it can be said that they have similar scenarios. When the QMP

is executed with NO DECIDER , it melts the templates of each user operators.
Whereas with WITH DECIDER, it melts the templates of the user I operators and

stores them in RAM because they use a new scenario, does the same for user 2, and

uses the stored Melted Template Plan of user I for user 3 instead of melting user 3

templates because user 3 has the same scenario as user 1. This is how the new Sharing

Plans paradigm is implemented and why the new time cost optimizer is cost effectivel

because it is saving the time to melt the templates of similar scenario DCQ.

213

7.3.1 IVQL User Interface

The DCQ of user I is to dynamically find the nearest 4 restaurants and 4

undergrounds (Metro stations), and dynamically find within 2000 m all undergrounds

and hospitals. The mobile phone GPS system is set to update the GIS server with the

user location every 5 minutes. Figures 7.14(a) and 7.14(b) show the IVQL user

interface of each simple query of user 1. The "AND" operator is selected between the

simple queries in order to formulate the complex one. After the complex query is

formulated, it is shown in text only in this work in order to check and validate that the

queries are properly translated as shown in Figure 7.14(c). When the user selects the

"Send" command, the complex query is sent to a special folder where a listener

launches the pre-processor as shown in Figure 7.14(d). The DCQ of user 2 is to

dynamically find the nearest 3 restaurants and 2 hospitals, dynamically find within

1000 in all hospitals and undergrounds, and based on my location now find within

1000 m all restaurants. Figures 7.15(a) - 7.15(e) show the IVQL user interface of

each simple query of user 2. The DCQ of user 3 is to dynamically find the nearest 2

hospitals, dynamically find within 2000 m all restaurants, and dynamically find within

1000 m all undergrounds. Figures 7.16(a), 7.16(b), and 7.16(c) show the IVQL user

interface of each simple query of user 3.

>

OK OK

Lo.

OL

0 3rd Edl

214

Figure 7.14(a): Query I of User 1.

IVQL

--: ILJ la

OK ON

dUt
L4, 71

C& I" WN pj- A

<1 I

AJ0 [01 S60 3rd Uw(1RUere

Figure 7.14(b): Queries 2,3, and 4 of User 1.

215

0 -)j4l,
a .II- '' 11 1

u5cr 1 oueryý.. J.

Figure 7.14(c): The Text Queries of User 1.

OL, @ry
N PDA, restau rant
Ouery
NPDAunderground
Ouery
WBD2000, underground
Ouery
WBD, 2000, hospital

Query
NPDArestaurant
Query
N PDA, u nderg round
Query :
WBD2000, underground
Query
WBD2000, hospital
Your request has been sent

wt

Figure 7.14(d): The SEND command of User 1.

>

OK OK

Lf- L
\1-1/ C

1ý 1 10,

Figure 7.15(a): Query 1 of User 2.

9 .. Aft . �*l. th* -

NO TMI; H04P

216

OK OK

ut,
ird Edl... .

.1 User 2 query

0 -, ýý"- "'.. , ". .-ýI

< '. cLýL"
w -- r

OK OK

At,

UL 1-Iie_i 1111 1
Lib IM , In -'-

0 3rd Fä User 2 Q, &, i

Figure 7.15(b): Queries 2,3, and 4 of User 2.

14 j$0

217

BA--- 'i 'ý, 6; 44 PM

NJ : xi -V. la Filiifio-3; ý -Edi.
. IJ User 2 %mme...

Figure 7.15(c): Query 5 of User 2.

NPD, 3, restaurant
OL, erv
NPD2, hospital
QuerN
WBD, 1000, hospital
Ouerv
WBD. 1000. underground
QLerý
WBS, 1000, restau rant
YoLji reQUeSt has bee, i sen:

EXit

C

JOIJ L-1

ýJ 0 FOS60 3rd Edl... '4 Uw 2 -@)d 6

Figure 7.15(e): The SEND Command of User 2.

0 . -.

-, -) ý 4:)

NPDJ, restaurant
OLIEIN
NPD, 2. hospital
QLerv
WBD, 1000, hospital
QLery
WBD. 1000, underground
Ouerý
WOS, 1000, resta u rant
Send Exit

iird-idi... 'I User 2

Figure 7.15(d): The Text Queries of User 2.

C p. t. M). Thfli 1

218

RAýý mN 0ý 6: 49 PM

I start ', I

ý<,
-'., .

". 5

tA týoý

'Zo I" 69W ej 0

OK OK

0 3rd Edl... ,V User 2 Send

;, DoD L;.

OK CK

LIE JC

OK OK

Lsj L- 10
-, ý,,, --Lj L-0 J

-, 10 1 I-j

Fl'jS-60 Edl... 'J User 3 quere

Figure 7.16(a): Queries 1,2, and 3 of User 3.

219

NPD2, hospital
QtjprV
WBD2000, restaurant
Ouerv
WBD, 1000, underground
Your request has been sent

Exit

C J_D

R-AS60 -3rd Edl... V Usor 3 -ext...

Figure 7.16(c): The SEND Command of User 3.

7.3.2 The QMP With and Without the DECIDER

Once a text complex query is received in the folder of queries, a special listener

launches the pre-processor that reads it and parses it into multiple simple queries. The

attributes of each simple query are the user number, X location, Y location, date, time,)
speed, the operator, the value, and the object. The time cost optimizer (TCOP) checks

if the scenario has been previously generated. If it has, TCOP routes the complex

query to the previously generated plan instead of generating a new one. Otherwise it

proceeds with melting the templates.

The first execution of the QMP is done with NO DECIDER where the queries are

melted for each one of the tree users. Figure 7.17 shows the QMP interface running

before melting the queries of user 1. Each list-box contains one operator's template in

11 stmfý 'It J'0 111 SSO 3rd ER., I Um
3

220

Figure 7.16(b): The Text Queries of User 3.

the first column and the simple queries in the rest. Since user I uses the operators
NPD and WBD, the fifth and ninth list-boxes are occupied. The fifth contains both

queries 4 restaurant and 4 underground, and the ninth 2000 underground and 2000
hospital. Figure 7.18 shows the same after melting the queries. The first six functions

of the template of the operator NPD have been eliminated because they already exist

in the template of the operator ATLD that occupies the first list-box. The functions

NF=4 and IMP=M appear in the first query (4 restaurant) but not in the second one (4

underground) because it is enough to apply it to the first, use it for the second, and

save the time of re-executing it for the second. The function FAC which means
AddFacility is appended with the object restaurant in the first query and the object

underground in the second because the objects are different. Otherwise, the same

object would have been read once and used in both queries.

Figure 7.17 shows the template of the WBD operator before melting in the ninth list-

box. After melting, Figure 7.18 shows that the functions of rows 1,2,4,12, and 13

have been melted. The function DB which means DrawBuffer contains the value 2000

in the first query only (2000 underground) however it has been melted in the second

query (2000 hospital) due to the fact that one buffer can be drawn and used to find

undergrounds then hospitals instead of drawing a buffer for finding undergrounds

then another buffer for finding hospitals. The functions that remain in the list-boxes

are included the global execution plan GEN and GEP I ... n, as shown in the two right

most list-boxes, one user after the other. The same is done for the queries of user 2 in

the ninth list-box the buffer 1000 is drawn once and used to find the objects hospital

and underground as shown in Figures 7.19 and 7.20. However, the functions that

appear in the tenth list-box which correspond to the query WBS 1000 restaurants, are

included in the PlanO but not in the Plan I ... n because it is a static query which means

that user 2 wants the result at this current time instance only as shown in the two right

most list-boxes. The same also is done for the quenes of user 3 as shown in Figures

7.21 and 7.22.

221

X1

I
LO ry I to 913 u ý: " ý, u Aý ý': '" ")

: 1, '? -f cl Ll rn
661

ti

77 _71 III r-7d--l 71 FT IT-1 "1 I

IL
fu LL lil .1 , 1-

Ln

. loll

., 2.

Lj it
LL

LL WW

47

I, U- I,
eýa",. L. L "I , ",

47

LL.

LM

IN
;M

..

LL
it

ILI

to
it LL CN LL W

-F] F47

Ln

ol

lu

LL

Wl

RAW"

u tu

uj
I-I. 1ý L) () I .,,

U 8 19 1-4 . rl

ul

44
(A

41-1

C
z

CL 6,

-1 'I
4J

222

Mil FT- I

XI

ß 8, MI

40

,i M)

LU
xI

Ij
-, 1-0 co (a EID ea 00 ED

-f C) Ij 1) 4 ol
im LL ,I :-,

j

." : -. ýL, 3. -- (5 Tj . LL

Ln

cr
M

fig

if j 0;

FN
004
lu

in
9L4

6n

W LL

E
m

mi ul

uj W

I

CL

ýv . 1ý
, W-. A.

LL U,
CY

4 41 -1
L

;. Tw

LL. W

223

49

I

r-i -w. I. 02: I -t .. (T.. w ", i
-3

"U LL
m . 0ý I)-", tL . 1. U

II -;
N LL :e

LL
wj

I Ln ,,
I %n

U;

v

it .ý 11 r- 11
ý ') it ,-w r2 a LL lil C;,

--j

EE

gz

ICU al

71

cy

LL i't x,,
L-.

LH

LL ". -ý ýIýX 11 aj

Ln

E

rv

Z-y r

ki ul LL .1wZ

224

XI

I

uj

Uu ED .L o'; in cc LL Ull
I

ly
o tL NO

Ln

L-L
LL (), J-l Ij 1 01) (1 Ij t C) II

LL

Ln c

z

N
41
2

13
ci,

LL

--i -iý

7

-f x LL ut

I o
w

di
v
I

LL

rE-Fl 7iF

LL

- -'. u

Ln U-1

LL

lu
E - C Y rn

rv

LL. LL .1

I

I
I

4

N
r,)

-3

0

0

I
. r. . X, ,ý (u 4)

000 : -: iý. ý,,
V, 00

C'

(. J)

--i --ýl
C)

w

LL

LL

0

©

910
;. 0

0 Z

CY

12- ci
Z

-0 w

3: (U

"L

t
m

225

IA

V
40

Ln

Ln

4)

Ln II

Rri I

t. -1,0 .. LL CAL AL i 0. ED In 00 e ce ,
01.4

1 `1 ,-.. i,, 11 1) co cl
1)

Ln

Wj

i I"

cr
0i V) ! en

It h
it LL

V, Cl LL I'l 1 61

Vj

ff in

m

rv

CL

ou
(Y

H it It. It E tj

P. 4

In

M: 4.4

cy f. 0 11) 0

i 72 *I=

CL It "I'

_`6
It

U- W -4 u LL Ul 1.1

17

77

E

ý'6

to 0 C,

1 11 ;. ý, ;,) -4-t;

11 U- Ul
L-X

226

XI

re u I a n gn co e
LL.

P):)
Ln

-T 7ý

O Fl U !

LL

-51

-TTl

.0:
en

LL Ui

FM I

LL

... -. ;ý
-'ý ý7 -'. LL ., ýZ.. "

LL W

Ln

fn

In

-4 LL

tý
ID
u

I

cký

N

Ill
T)

f0
'4
0

xx

4, C)

l)I

II-

uj

uj L) --i

,0

0

lww
rn
64
cu

(D
N.

:1 959

0
z

7- =
CY

0 10.0
0

z

CY

II
.-

t
m

227

The second execution of the QMP is done WITH DECIDER where the queries of the
first two users are melted similarly to QMP with NO DECIDER because they have

each one a new scenario. Whereas, since the queries of user 3 have the same scenario

as user I's. the TCOP uses the previously generated plan of the melted templates of

user I instead of melting the templates of user 3. The result of the second execution is

the same as the first one with respect to the QMP interface, elements in list-boxes, and

the generated global execution plans PlanO and Planl ... n. The only difference is that

executing the QMP with the DECIDER produces faster results as shown in lower left

list-box of the interface. The time taken by the NO DECIDER is 68.75 ns as shown in

the lower left list-box of Figure 7.22 and by the WITH DECIDER 31.25 ns as shown

in the lower left list-box of Figure 7.23. It is clear that the time saved is significant,

however, an experimental study is carried on in section 7.4 in order to prove that the

new TCOP time cost optimizer strategy is cost effective by implementing the new

Sharing Previously Generated Plans paradigm.

228

XI

-'
I;

I

i
V
E

1 In

CY

2-1 a
>Z Läd

4

L?
Ld

T Lu
e

LL
-1 011U,

I efI '00

CY
I en

f. 4 r4d

fy
LL W LL M

C) Ln I Ln I r, Vi cc
Is ýj I

!, t 1,0 ::
LL

w W

E Rl fa M

L
'y

o
tv U-

MU
CY

W. 2 ; 11 LL L" -

-TT 1 771
ut

I

v CY ;. o

ILJ
-1-21

CY
WN 'o

'

6 0
S

;, ý 1 "0 -
eq

' E 00,
n

L

m

ce I

01 iý

Lk l' s �,
.-Q,

"H
iI)

-riLe,

'ii

U. -. -l

0
Z; ID
u

t
m

229

7.3.3 The Result Maps

The map of Paris is used to show the results of the queries. It contains the

underground stations (Metro) shown in blue, some of the restaurants shown in red,
and some of the hospitals shown in black as shown in Figure 7.24. The map can be

zoomed in to see a more detailed map as shown in Figures 7.25 and 7.26, zoomed out
to see a more general one, and panned which means that the user can move the map in

any direction he wants. For each user two XY locations have been considered, the

result maps of each user show the map at each of his locations both non-nal and

zoomed in. Figure 7.27 shows the result of userl at location I showing the nearest 4

restaurants in red with their paths, the nearest 4 undergrounds with their paths in blue,

and the 200 m buffer in pink including the hospitals and undergrounds. Figure 7.28

shows the same results but zoomed in. Figure 7.29 shows the results at his location 2

and Figure 7.30 the same results but zoomed in. Figure 7.31 shows the result of user 2

at location I showing the nearest 3 restaurants in red with their paths, the nearest 2

hospitals with their paths in black, and the 1000 m buffer in mauve including the

hospitals and undergrounds. Figure 7.32 shows the same results but zoomed in. Figure

7.33 shows the results at his location 2 and Figure 7.34 the same results but zoomed

in. Figure 7.35 shows the result of user 3 at location I showing the nearest 2 hospitals

with their paths in black, the 2000 m buffer in light green including the restaurants

and the 1000 m buffer in light pink including the undergrounds. Figure 7.3 6 shows the

same results but zoomed in. Figure 7.37 shows the results at his location 2 and Figure

7.38 the same results but zoomed in.

.

-T -' --

cl
cl

:
:

-..

c

Figure 7.24: The Map of Paris showing Hospitals, Restaurants, and

Underground.

230

ca

low, In

I' cl N

i
Figure 7.25: The Map of Paris Zoomed In.

// /
/1

Figure 7.26: The Map of Paris Zoomed In More.

Figure 7.27: The Map of Userl at Location 1.

a

Figure 7.28: The Zoomed In Map of User I at Location 1.

/' - '091,12 , Cýr- ý; ý, -

:
Figure 7.29: The Map of User 1 at Location 2.

13
K3

- Cf

Figure 7.30: The Zoomed In Map of User I at Location 2.

232

Mw 13

/ ý-- - , go, Am I 7: ýtq-1-- -- -,

Figure 7.31: The Map of User 2 at Location 1.

Figure 7.32: The Zoomed In Map of User 2 at Location 1.

A, -
/

I II
4i /\

Figure 7.33: The Map of User 2 at Location 2.

233

//V

7/-
Figure 7.34: The Zoomed In Map of User 2 at Location 2.

OLIL

14

Figure 7.35: The Map of User 3 at Location 1.

rk

0

Figure 7.36: The Zoomed In Map of User 3 at Location 1.

234

um

lb Iff

Figure 7.37: The Map of User 3 at Location 2.

_71w

Figure 7.38: The Zoomed In Map of User 3 at Location 2.

o

Figure 7.39: The More Zoomed In Map of User 3 at Location 2.

235

7.4 Experimental Evaluation

The main purpose of the experimental evaluation is to study the execution time cost

effectiveness of the Query Melting Processor (QMP). This can be achieved by

comparing the execution time cost of using the Decider to the execution time cost of

not using the Decider with the QMP. The results are analysed and conclusions are

drawn accordingly.

In order to produce the most efficient results, all the operators, operator templates

referred to as templates, and objects that were explained earlier are used to formulate

complex queries called data files hereafter. The operators that are implemented are

Find the nearest facilities (SN), Find the facilities that are within a buffer (SW), Find

the nearest facilities and their shortest path (SNP), Find the time left to reach the

nearest facility (STL), Find the distance left to reach the nearest facility (SDL), Find

the shortest path (SP), Dynamically Find the nearest facilities (DN), Dynamically

Find the facilities that are within a buffer (DW), Dynamically Find the nearest
facilities and their shortest path (DNP), Dynamically Find the time left to reach the

nearest facility (DTL), Dynamically Find the distance left to reach the nearest facility

(DDL), and Dynamically Find the shortest path (DP). Each of the listed operators has

a corresponding Execution Plan that is called Operator Template or simply Template.

A complex query can be formulated with one or more operators of the set of templates

that are implemented. For example, suppose that the set of templates is ISN, SWJ, the

possible scenarios that could be formulated by a complex query consist of the subsets

of the templates set which are all the possible combinations: I SNJ, f SWJ, and I SN,

SWJ. It can be said here that a complex query is made up of up to 2 templates. The

number of scenarios of a set of templates is equal to 2t-I where t is the number of

templates. For example, when employing 2,5, or 10 templates the number of

scenarios or plans is respectively 3,3 1, and 1023.

Moreover, the complex query could contain multiple simple queries of the same

operator. One example of a complex query made up of 3 simple queries using one

operator is SNIR (Nearest I Restaurant), SN4H (Nearest 4 Hotels), and SN6B

(Nearest 6 Bus Stations). Another example of a complex query made up of 6 simple

queries using 2 operators is SNIR (Nearest I Restaurant), SN4H (Nearest 4 Hotels),

236

SN6B (Nearest 6 Bus Stations), SWJOOU (Within 100m Universities), SW50H

(Within 50m Hotels, and SW70S (Within 70m Schools). The data files of the

experiment are generated varying the number of complex queries respectively from 1,

21 5,10,20,50, to 100. For each data file, other data files are also generated varying

the number of templates respectively from 2,5, to 10. An example of a data file

consists of 100 complex queries each of which is formulated with 7 operators that

belong to the set of 10 templates, where each operator is used to fon-nulate 5 simple

queries making a total of (7 x 5) 35 simple queries per complex query and a total of

(100x 7x 5) 3500 simple queries which are processed sequentially. The Query

Melting Processor is executed for each data file twice, the first time using the Decider

and the second without using it and the time cost of each execution is recorded. The

experimental results are reported using a comparison between the time costs of the

two methods with the aim to conclude which of them is cost effective. Moreover, in

order to insure getting the most accurate results all the tasks and applications of the

computer are stopped and the network connections are disabled.

7.4.1 Results and Analysis

Quantitative data are being used in order to produce the necessary statistical results.

The 'quality characteristic' execution time cost is quantified and measured by the

number of nanoseconds. Three processes costs are taken into consideration. The first

one is when the processor is executed without using the Decider which reflects the

cost of Melting the Templates. The second and third ones are when the processor is

executed using the Decider. The second is the cost of Generating a New Melted

Templates Plan and Storing it in the RAM. The third is the cost of Accessing a

Previously Generated Melted Templates Plan referred to as Old Plans hereunder.

Table 7.1 shows the time cost of processing complex queries (CQ) that are formulated

with up to two operators of two templates varying the number of CQs from 1,2,10,

20,50, to 100. The cost, in nanoseconds, of the Melting Templates process 16, cost of

Generating and Storing a New Plan process 24, and cost of Accessing an Old Plan

process 4.8, have the same values across the number of CQs- This means that the

number of CQs does not affect the execution time of each process and that their

values are independent. The Total Cost of Melting the Templates is equal to the

number of CQs multiplied by the Processing Time of Melting the Template of each

237

CQ because each CQ takes the same time to be processed. The Total Cost of
Generating and Storing a New Plan is 24 ns per CQ for the first 3 CQs and proceeds

with 72 ns for the rest since there are always 3 new plans to generate for the first 3

CQs only and the rest would access old plans, hence the 72 ns is continuously the cost

of generating the 3 plans of the 3 different scenarios. The Total Cost of Accessing the
Old Plan of the first CQ is 0 ns since at this point there are no old plans generated yet
to be accessed. The same applies when the number of complex queries is 2 and 3.

Whereas, starting from 4 complex queries and for the rest of them, the Total Cost of
Accessing Old Plans is equal to (the number of complex queries less 3) multiplied by

the Processing Time of Accessing the Old Plan of each CQ. Finally, the Cumulative

Cost is equal to the sum of the Total Cost of Generating and Storing New Plans and

the Total Cost of Accessing Old Plans. The table shows that the Cumulative Cost of
'With Decider' has higher values than the Total Cost of Melting Templates of 'No

Decider' in the first 5 rows, whereas it becomes less for the rest of the rows.
Therefore and after the breakeven point, the time cost of 'With Decider' is less than

the time cost of the 'No Decider'

Complex Queries with Up to 2 Operators of 2 Templates (3 Plans)
No Decider With Decider
Cost of Melting Cost of Generating and Cost of Accessing an Templates in Storing a New Plan Old Plan Nanoseconds

Processing Processing Total Cost
Number Time of a Total Cost Time of a of Cost of Total Cost

of Single of Melting Single Generating Accessing of Cumulative
Complex Complex Templates Complex and a Single Accessing Cost
Queries Query Query Storing Plan Old Plans

New Plans
1 16 16 24 24 4.8 0 24
2 16 32 24 48 4.8 0 48
3 16 48 24 72 4.8 0 72
4 16 64 24 72 4.8 4.8 76.8
5 16 80 24 72 4.8 9.6 81.6
10 16 160 24 72 4.8 33.6 105.6
20 16 320 24 72 4.8 81.6 153.6
50 16 800 24 72 4.8 225.6

4
297.6

100 16 1600 24 72 4.8 4656 537.6

Table 7.1: The Time Cost of Each Process for Complex Queries with Up to 2

Operators of 2 Templates.

238

Table 7.2 shows similar results to the previous one but for complex queries that are

formulated with up to five operators of 5 templates. The time costs of the processes

Melting Templates, Generating and Storing a New Plan, and Accessing an Old Plan

are respectively 32,48, and 12.5 nanoseconds.

Complex Queries with Up to 5 Operators of 5 Templates (31 Plans)
No Decider With Decider
Cost of Melting Cost of Generating and Cost of Accessing an Templates in Storing a New Plan Old Plan Nanoseconds

Processing Processing Total Cost
Number Time of a Total Cost Time of a of Cost of Total Cost

of Single of Melting Single Generating Accessing of Cumulative
Complex Complex Templates Complex and a Single Accessing Cost
Queries Query Query Storing Plan Old Plans

New Plans
1 32 32 48 48 12.5 0 48
2 32 64 48 96 12.5 0 96
3 32 96 48 144 12.5 0 144
4 32 128 48 192 12.5 0 192
5 32 160 48 240 12.5 0 240
10 32 320 48 480 12.5 0 480
20 32 640 48 960 12.5 0 960
30 32 960 48 1440 12.5 0 1440
31 32 992 48 1488 12.5 0 1488
32 32 1024 48 1488 12.5 12.5 1500.5
33 32 1056 48 1488 12.5 25 1513
50 32 1600 48 1488 12.5 237.5 1725.5
100 32 3200 48 1488 1 12.5 862.5 1 2350.5

Table 7.2: The Time Cost of Each Process for Complex Queries with Up to 5

Operators of 5 Templates.

Table 7.3 shows similar results to the previous one but for complex queries that are

forinulated with up to ten operators of 10 templates. The time costs of the processes

Melting Templates, Generating and Storing a New Plan, and Accessing an Old Plan

are respectively 47,79, and 19.1 nanoseconds. It is clear that varying the number of

ternplates affects the time cost of the three processes. The more templates there are to

melt the higher the time cost.

239

Complex Queries with Up to 10 Operators of 10 Templates (1023
Plans)

No Decider With Decider
Cost of Melting Cost of Generating and Cost of Accessing an Templates in Storing a New Plan Old Plan Nanoseconds

Processing Processing Total Cost
Number Time of a Total Cost Time of a of Cost of Total Cost

of Single of Melting Single Generating Accessing of Cumulative
Complex Complex Templates Complex and a Single Accessing Cost
Queries Query Query Storing Plan Old Plans

New Plans
1 47 47 79 79 19.1 0 79
2 47 94 79 158 19.1 0 158
3 47_ 141 79 237 19.1 0 237
4 47_ 188 79 316 19.1 0 316
5 47 235 79 395 19.1 0 395
10 470 79 790 19.1 0 790
50 47 2350 79 3950 19.1 0 3950
100 47 4700 79 7900 19.1 0 7900

1000 47 47000 79 79000 19.1 0 79000
1022 47 48034 79 80738 19.1 0 80738
1023 47 48081 79 80817 19.1 0 80817
1024 47 48128 79 80817 19.1 19.1 80836.1
1025 47 48175 79 80817 19.1 38.2 80855.2
2000 47 94000 79 80817 19.1 18660.7 99477.7
3000 47 141000 79 80817 19.1 37760.7 118577.7
4000 47 188000 79 80817 19.1 56860.7 137677.7
5000 47 235000 1 79 1 80817 19.1 75960.7 156777.7

Table 7.3: The Time Cost of Each Process for Complex Queries with Up to 10

Operators of 10 Templates.

7.4.2 Cost of Processing Templates of Complex Queries

The line chart in Figure 7.40 shows the cost of processing the templates of multiple

CQs that have the same scenario when a CQ is fon-nulated up to 2 operators of 2

templates. The X-axis is labelled with the I" access, 2 nd access, and n Ih access,

representing respectively the I" CQ, 2 nd CQ, and nth CQ. The first line shows the cost

of generating and storing a new plan for the new scenario when the "With Decider" is

employed, and the second line shows the cost of Melting the Templates when the "No

Decider" is employed. The Y-axis is the time cost in nanoseconds. With respect to the

Access of the I" CQ with a new scenario and while using the "With Decider"

method, the cost is 24 nanoseconds to generate and store a new plan for the templates.

From the second CQ (Access) and on, the cost is reduced to 4.8 nanoseconds due to

240

the fact that the Plan of the first CQ is used by the second one instead of processing

the second CQ templates again. The same applies for CQ numbered 3 and on. With 2

templates, there are 22_I scenarios and plans, so the same cost applies to the 3

scenarios no matter what the number of operators of the complex query is. While

using the "No Decider" method, the cost of Melting the templates of the up to 2

operators of 2 templates is 16 nanoseconds no matter which CQ number it is and no

matter the number of operators of the complex query.

Cost of Melting 2 Operators vs Accessing Old Plans

30

25

20

15

10

5

0

* With Decider

-, No Decider

Figure 7.40: The Cost of Processing Complex Queries with Similar Scenarios

with Up to 2 Operators of 2 Templates.

Similar results are obtained for 5 templates. With the Decider, it takes 48 nanoseconds

to generate and store a new plan for the templates of the first CQ that uses any

particular scenario of up to 5 operators of 5 templates and 12.5 nanoseconds to

process the templates of the following CQs that are using the same scenario. Without

the Decider, any CQ templates are melted in 32 nanoseconds. Figure 7.41 shows the

cost of each CQ with and without the Decider.

241

lst Access 2nd Access 3rd Access nth Access

Cost of Melting 5 Operators vs Accessing Old Plans

60

50

40

30

20

10

0

s With Decider

--a- No Decider

Figure 7.41: The Cost of Processing Complex Queries with Similar Scenarios

with Up to 5 Operators of 5 Templates.

Similar results are obtained for 10 templates. With the Decider, it takes 79

nanoseconds to generate and store a new plan for the templates of the first CQ that

uses any particular scenario of up to 10 operators of 10 templates and 19.1

nanoseconds to process the templates of the following CQs that are using the same

scenario. Without the Decider, any CQ templates are melted in 47 nanoseconds.

Figure 7.42 shows the cost of each CQ with and without the Decider.

Cost of Melting 10 Operators vs Accessing Old Plans

90
80
70
60
50
40
30
20

lo
0

With Decider

No Decider

Figure 7.42: The Cost of Processing Complex Queries with Similar Scenarios

with Up to 10 Operators of 10 Templates.

242

lst Access 2nd Access 3rd Access nth Access

lst Access 2nd Access 3rd Access nth Access

The results that are obtained about the Total Cost of each process are visualized using

a line chart showing the values of each process for a number of CQs. Figure 7.43 is

concerned with the complex queries that have similar scenarios and are formulated

with the operators of 2 templates. The first line shows the Total Cost of Melting the

Templates, which is equal to the product of the number of CQ and the Time Cost of
Melting each Template. The line keeps on incrementing continuously at a constant

rate reflecting the fact that the more CQs the higher the Total Cost. The second line

shows the Total Cost of Generating and Storing a New Plan, which is equal to the

number of complex queries multiplied by the value 24 ns when the number of

complex queries is less than or equal to 3, then remains constant 72 ns for the rest

since there are continuously 3 new plans to generate. The third line shows the Total

Cost of Accessing Old Plans, which starts with the value 0 ns when the number of

queries less than or equal to 3 since at this point there are no old plans generated yet

to be accessed, then for the rest of the CQs increases at a constant rate based on the

product of (the number of CQs less the number of plans 3) and the Time Cost of
Accessing their Old Plans. The two lines that represent the Total Cost of Melting

Templates and Total Cost of Accessing Old Plans reflect the fact that Accessing Old

Plans is faster than Melting Templates. Similar results are visualized for complex

queries with similar scenarios using 5 templates as shown in Figure 7.44 and using 10

templates as shown in Figure 7.45.

243

Total Cost of Melting Templates, Generating New Plans, and
Accessing Old Plans for 2 Templates

120

100

80

60

c
o 40

20

0

Total Cost of Wlting Templates
Total Cost of Generating and Storing New Plans
Total Cost of Accessing Old Plans

Figure 7.43: The Total Cost of Melting Templates, Generating and Storing New

Plans, and Accessing Old Plans for 2 Templates for Complex Queries with
Similar Scenarios.

Total Cost of Melting Templates, Generating New Plans, and
Accessing Old Plans for 5 Templates

1800

1600

1400
'a

1200

1000

800

600

400

200

0
13579 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Number of Complex Queries

Total Cost of WIting Templates

Total Cost of Generating and Storing New Plans

Total Cost of Accessing Old Plans

Figure 7.44: The Total Cost of Melting Templates, Generating and Storing New

Plans, and Accessing Old Plans for 5 Templates for Complex Queries with

Similar Scenarios.

244

23456

Number of Complex Queries

Total Cost of Melting Templates, Generating New Plans, and
Accessing Old Plans for 10 Templates

100000

90000

80000
in

70000

60000

50000

40000

30000

20000

10000

Number of Complex Queries

Total Cost of Wlting Templates

Total Cost of Generating and Storing New Plans
Total Cost of Accessing Old Plans

Figure 7.45: The Total Cost of Melting Templates, Generating and Storing New

Plans, and Accessing Old Plans for 10 Templates for Complex Queries with

Similar Scenarios.

7.4.3 Cumulative Time Cost of Processing Plans

Assuming that the probability of choosing a certain scenario is equally distributed

over the 3 plans (when processing 2 templates), where each plan corresponds to a

scenario, that are all the possible combinations that can be formulated with one or

more of the operators that belong to a set of 2 templates, the first 3 CQs should use

different scenarios, in other words, each new CQ is using a new scenario. The total

cost of processing the templates of the first 3 CQs is 72 nanoseconds (3 x 24) with the

Decider for generating and storing their new plans and 48 nanoseconds (3 x 16)

without the decider for Melting their Templates. It is higher with the Decider than

without it. After the 3 rd CQ, all the possible scenarios would have been used.

Therefore, starting from the 4 th CQ-; the scenarios must be similar to one of the

previous 3. Hence, there would be no need to process again the scenarios that are

imi ious ones that have already been processed and it would be enough to s ilar to previ I

access the previously generated plans. Therefore, the cost of processing the templates

245

0--
1 130 259 388 517 646 775 904 1033 1162 1291 1420 1549 1678 1807 1936

of the 4 th CQ becomes 4.8 nanoseconds per CQ with the Decider for accessing old

plans whereas it remains 16 without the Decider. The cumulative costs of both

methods are visually represented in the line chart of Figure 7.46. The dark line shows

the With Decider method and the light one the No Decider method.

The "No Decider" line increments at the same degree (slope) which means that all the

CQs produce results at the same speed. Whereas, the "With Decider" line has a higher

cumulative cost than the "No Decider" line for the first 3 CQs because they use new

scenarios and require generating and storing a new plan for each in 24 ns. After that

and starting from the 4th CQ and on, the cumulative cost increases by 4.8 ns for each

new CQ, which is the cost of accessing an old plan, reflected by a lower increase
degree line (slower slope). The two lines intersect at the breakeven point which is the

CQ number 5 which means that at this point both methods almost have the same

cumulative cost. After that and starting from the 6 th CQ and on, the cumulative cost of

processing the templates with the Decider becomes lower than without it. Therefore, it

can be concluded that employing the Decider is cost effective after processing the first

5 complex queries. Moreover, for each complex query that has a similar scenario to a

previously processed one, the Decider results in a reduction of 70% of the time cost,

which means that the decider is 3.33 times faster.

Cumulative Time Cost of 2 Templates

140

120

100

80

60

40

20

0

Number of Dynamic Complex Queries Using Up to 2 Operators

* With Decider

* No Decider

Figure 7.46: The Cumulative Cost of Processing Plans of 2 Templates.

Similar results are obtained for the total cost of processing plans of 5 templates.

Assuming that the probability of choosing a certain scenario Is equally distributed

246

1

over the 31 plans that are all the possible combinations that can be fonned with the 5

templates, the first 31 CQs should use different scenarios. The total cost of processing

the templates of the first 31 CQs is 1488 nanoseconds (31 x 48) with the Decider for

generating and storing their new plans and 992 nanoseconds (31 x 32) without the
decider for Melting their Templates. It is higher with the Decider than without it.
After that , it

becomes 12.5 nanoseconds per CQ with the Decider for Accessing Old

Plans and remains 32 without the Decider. The cumulative costs of both methods are

visually represented in the line chart of Figure 7.47. The dark line shows the With

Decider method and the light one the No Decider method. The two lines intersect at
the breakeven point which is the CQ number 56. After that, the total cost of

processing the templates with the Decider becomes lower than without it. However,

all the CQs produce results at the same speed without the Decider. Therefore, it can
be concluded that employing the Decider is cost effective after processing the first 57

complex queries. Moreover, for each complex query that has a similar scenario to a

previously processed one, the Decider results in a reduction of 61% of the time cost,

which means that the decider is 2.57 times faster.

Cumulative Time Cost of 5 Templates

4500
4000
3500

0 3000
2500

0 , -- 2000 m z 1500
1000

E
P 500

0

Number of Dynamic Complex Queries Using Up to 5 Operators

s With Decider

,,, No Decider

Figure 7.47: The Cumulative Cost of Processing Plans of 5 Templates.

Similar results are obtained for the total cost of processing plans of 10 templates.

Assuming that the probability of choosing a certain scenario is equally distributed

over the 1023 plans that are the possible combinations that can be forined with the 10

templates, the first 1023 CQs should use different scenarios. The total cost of

247

1 31 62 93 124

processing the templates of the first 1023 CQs is 80817 nanoseconds (1023 x 79) with

the Decider for generating and storing their new plans and 48081 nanoseconds

(1023x 47) without the decider for Melting their Templates. It is higher with the

Decider than without it. After that, it becomes 19.1 nanoseconds per CQ with the

Decider for Accessing Old Plans and remains 47 without the Decider. The cumulative

costs of both methods are visually represented in the line chart of Figure 7.48. The

dark line shows the With Decider method and the light one the No Decider method.
The two lines intersect at the breakeven point which is the CQ number 2196. After

that, the total cost of processing the templates with the Decider becomes lower than

without it. However, all the CQs produce results at the same speed without the

Decider. Therefore
, it can be concluded that employing the Decider is cost effective

after processing the first 2196 complex queries. Moreover, for each complex query

that has a similar scenario to a previously processed one, the Decider results in a

reduction of 60% of the time cost, which means that the decider is 2.5 times faster.

Cumulative Time Cost of 10 Templates

200000
180000
160000
140000
120000
100000
80000
60000
40000
20000

0

Number of Dynamic Complex Queries Using Up to 10 Operators

With Decider
No Decider

Figure 7.48: The Cumulative Cost of Processing Plans of 10 Templates.

7.4.4 Decider Speed and Cost Effectiveness

It can be concluded from the previous results that for each complex query that has a

similar scenario to a previously processed one, the Decider results in a reduction of

70%, 61%, and 60% of the time cost, which means that employing the decider is 3.33,

2.57, and 2.5 times faster, when the number of templates is 2,5, and 10 respectively.

It can also be concluded that on the average, the Decider is 2.8 times faster than

248

1 1023 2046 3069 4092

without it. The bar chart in Figure 7.49 is used to visualize how fast the Decider is in
each of the cases.

5 Templates

2 Templates

0 0.5 1 1.5 2 2.5 3 3.5

Number of Times Faster

Figure 7.49: How Much Faster the Decider is for Each Case.

Moreover, the bar chart in Figure 7.50 is used to show the reduction in the time cost

in each of the cases. The light bars represent the time cost of the No Decider method

for Melting Templates and the dark bars represent the time cost of the With Decider

method for Accessing the Previously Melted Templates. With respect to the CQs that

have similar scenarios to previously processed scenarios, the time cost of Melting

Templates is replaced by the time cost of Accessing previously Melted Templates. In

the case where the number of templates is respectively 2,5 and 10 the time cost of

Melting Templates is reduced from respectively 16,32, and 47 to respectively 4.8,

12.5, and 19.1 nanoseconds which is the time cost of Accessing previously Melted

Plans. The Decider results in a reduction of 70%, 61%, and 60% in the time cost of

without it in the case where the number of templates is respectively 2,5, and 10. On

the average, the Decider results in a reduction of 64% of the time cost of without it.

The cost of melting all the templates at the beginning of execution is equal to 72 (24

ns x3 plans), 1488 (48 ns x 31 plans), and 80817 (79 ns x 1023 plans) nanoseconds

in the case were the number of templates is respectively 2,5, and 10.

249

Time Cost Comparison Between "Melting Templates" and
"Accessing Previously Melted Templates"

50

45

40

35

30

Time in
25

Nanoseconds

20

15

10

5

0
Up to 2 Operators per Up to 5 Operators per Up to 10 Operators per

Dynamic Complex Dynamic Complex Dynamic Complex
Query Query Query

Number of Templates

Melting Templates m Accessing Pre\Aously Melted Templates

Figure 7.50: The Reduction of the Time Cost of No Decider when Using Decider.

Finally, the area chart in Figure 7.51 visualizes the costs of melting all the templates

plans once at the beginning of execution of the Decider. By doing so, it is guaranteed

that all the invoked dynamic complex queries produce the fastest results, i. e., the most

time cost optimized results, by eliminating their time cost of generating and storing a

new plan and accessing previously generated plans of melted templates.

250

Cost of Wlting All Templates at Beginning of Execution

90000

80000

70000

60000

0
U 50000 CD
0
0
C
M

z

40000

E

30000

20000

10000

0
2 Templates 5 Templates 10 Templates

Number of Templates

m Cýýt of Meltincl All Templates at Beginnina of Executinn

Figure 7.51: The Cost of Melting All Templates Plans at Beginning of Execution.

7.4.5 Results Discussion

After having analyzed the results of the experimental studies, a discussion of the

analysis leads to draw conclusions and reach an evaluation of the whole system. The

cost of the Melting Templates process, cost of Generating and Storing a New Plan

process, and cost of Accessing an Old Plan process, have the same values across the

number of complex queries (CQ) that varied from 1,2,5,10,20,50, to 100. This

means that the number of CQs does not affect the execution time of any of these

processes. Their values are independent of the number of CQs. It is clear that varying

the number of templates affects the time cost of the three processes. The more

templates there are to melt the higher the time cost. This is an obvious fact to consider

in the case where extra templates are added to the existing ones.

251

With the Decider, it takes 24,48, and 79 nanoseconds to generate and store a new
plan for the templates of the first CQ that uses any particular scenario of up to

respectively 2,5, and 10 templates and respectively 4.8,12.5, and 19.1 nanoseconds
to access a previously generated plan of the templates of the successive CQs that are
using the same scenario. Without the Decider, any CQ templates are melted in 16,32,

and 47 nanoseconds. It is concluded that for any CQ except the first one that uses a

new particular scenario the time cost is much lower with the Decider. More generally,
the first 2' -1 CQs that use a new particular scenario produce slower results than the

rest of the CQs. The total cost of processing the templates of the first 3,3 1, and 1023

CQs is respectively 72,1488, and 80817 nanoseconds with the Decider (generating

and storing new plans) and 48,992, and 48081 nanoseconds without the decider

(Melting Templates). It is higher with the Decider than without it. After that, it

becomes 4.8,12.5, and 19.1 nanoseconds per CQ with the Decider (accessing old

plans) and remains respectively 16,32, and 47 without the Decider. The cumulative

cost lines that represent the two methods "With Decider" and "With No Decider"

intersect at the breakeven point which is the CQ number 5,56, and 2196. After that,

the cumulative cost of processing the templates with the Decider becomes lower than

without it. However, all the CQs produce results at the same speed without the

Decider.

The Decider is 3.33,2.57, and 2.5 times faster than without it in the case where the

number of templates is respectively 2,5, and 10. On the average, it is 2.8 times faster

than without it. In the case where the number of templates is respectively 2,5 and 10

the time cost is reduced from respectively 16,32, and 47 to respectively 4.8,12.5, and

19.1 nanoseconds. It is concluded that the Decider results in a reduction of

respectively 70%, 61%, and 60% in the time cost of without it. On the average, it

results in a reduction of 64% of the time cost of without it. The cost of melting all the

templates at the beginning of execution is equal to 72 (24 ns x3 plans), 1488 (48 ns x

31 plans), and 80817 (79 ns x 1023 plans) nanoseconds in the case were the number

of templates is respectively 2,5, and 10. In order to be fair to everybody especially

the first complex queries that use a particular scenano, it is suggested to melt the

templates of all the plans at the beginning of the execution of the Query Melting

Processor. Thereby, it is guaranteed that all the complex queries produce results at the

same optimize time cost.

252

7.5 Conclusion

This chapter provides an integration of the IVQL, Query Melting paradigm, Query
Optimization, and Time Cost Optimization. Its emphasis is to explore the Query
Melting Processor on the Proximity Analysis (k-Nearest-Neighbours and Buffer)

queries in the context of dynamic complex queries. It is implemented using a Tourist
Application for mobile users using the map of Paris. The user formulates the complex
query which is sent to the geographic information system ArcGIS server. The query is
processed and its result map is sent back to the user.

The implementation of the system achieved the aims that were set for the case study.
The first aim is the implementation of the IVQL using a mobile phone emulator in

order to allow the visual query formulation of dynamic complex quenes. The second

aim is the Query Melting Paradigm which is implemented using the Query Melting

Processor. QMP performs common sub-expression elimination CSE by eliminating all

the repetitions of the same process in different plans. This task is performed by

melting the templates. It allows sharing object of interest between multiple queries by

setting the object once and using it for many queries. When two queries share the

same spatial area or when an area is included in another, the QMP uses the shared

area for multiple queries. It allows sharing an interval of time if it is included or equal

to the interval of another query with the same object of interest. The previous three

tasks are performed by melting the values and objects of the queries. Sharing the

intermediate results is done through using the same underlying space (map) for all the

queries of the same user. This is done through executing the plan of each user as a

thread which is perfon-ned by the Plan Executor.

The third aim Query Optimization is achieved through decomposing the dynamic

complex queries, eliminating the sub-expressions, generating the Global Evaluation

Plan, and evaluating the plan. The last aim of this case study is Time Cost

Optimization. It is to investigate and analyze the time cost of the Query Meltuig

Processor. Two methods of processing were compared. The first is "With No

Decider" where the complex queries templates are melted for each complex query.

The second is "With Decider" where the templates are melted once per scenario and

253

stored in RAM for later retrieval by similar successive scenarios. A comparison
between the time costs of the two processing methods is done in order to conclude
which of them is cost effective.

In order to be able to achieve the purpose of the case study, an explicit scenario, using
three users, was presented to show the user interface and query melting in action in

order to show how the system works and an experimental evaluation was carried out
to evaluate the cost effectiveness of the system. The experimental quantitative results

were reported and analyzed using tables, line charts, bar charts, and area charts. A

comparison between the time costs of the two methods is studied with the aim to

conclude which of them is cost effective. The analysis of the results of the

experimental study leads to a number of significant conclusions. The number of

complex queries does not affect the execution time of any of the processes and their

values are independent of the number of complex queries. Also, the more templates

there are to melt the higher the time cost. For any complex query except the first one

that uses a new scenario the time cost is much lower with the Decider. More

generally, the first (2t -1) complex queries that use a new particular scenario produce

slower results than the successive complex queries. However, all the complex queries

produce results at the same speed without the Decider.

The Decider is 3.33,2.57, and 2.5 times faster than without it in the case where the

number of templates is respectively 2,5, and 10, and on average it is 2.8 times faster

than without it. It results in a significant reduction of respectively 70%, 61%, and

60% in the time cost of without it, and on average it results in a significant reduction

of 64% of the time cost of without it. In order to get efficient results it is suggested to

melt the templates of all the plans at the beginning of the execution of the Query

Melting Processor. Thereby, it is guaranteed that all the complex queries produce

results at the same optimized time cost. As a final conclusion, it can be said that the

Decider has proven to be significantly cost effective.

254

Chapter 8- Conclusions and Future Work

8.1 Conclusion

The primary aims and contributions of this thesis are the design, implementation, and

evaluation of a new visual query language and novel query optimization strategies for

Mobile GIS. The work which was carried out to achieve these aims, as well as the

results of the work, was reported in the previous chapters of this thesis. In this section

the achievements and conclusions which have been previously drawn will be

summarized.

The research began by a thorough investigation into existing visual query languages

in order to examine their user interface and query building process. The investigation

started by discussing and comparing the specification of which aspects of VQL were

evaluated, determining the evaluation method, discovering the type of queries that

were handled, and their advantages as well as deficiencies with respect to current

Mobile GIS requirements. It also highlighted a suitable query formulation process,

user interface, and evaluation method for the implementation of the proposed visual

query language.

Similarly, the thesis has investigated existing query optimization strategies in GIS in

order to determine their various approaches and examine how they are applied in

various domains. The investigation started by discussing and comparing the

approaches of query execution, sharing common aspects, evaluation method, and their

advantages as well as deficiencies with respect to current dynamic complex queries.

Moreover, it investigated a suitable propagation ruler mechanism and the existing

time cost optimization strategies in order to specify how they are implemented with

different type of queries. Also, the thesis highlighted a suitable paradigm for the

implementation of the Query processor as well as a suitable decision making

mechanism for the time cost optimization.

255

The identified deficiencies of the visual query languages have been addressed in this
thesis by developing the Iconic Visual Query Language (IVQL) which is able to
handle visually dynamic complex queries for Mobile GIS. The proposed IVQL is
based on using smiley icons to represent operators, values, themes, and objects. The
language constructs, architecture and query formulation process have been explained

and the efficiency of the user interface and query formulation have been demonstrated

in the implementation and evaluation of the language. Both the user testing and the

user satisfaction have been chosen in order to evaluate the expressive power of the

smiley icons, their level of recognition, the ease of use, the user interface, the query
building and formulation, and the expressive power of the IVQL. The results showed

that the subjects understood quickly the smiley icons, user interface, query building

and formulation, and proved to be satisfied with the aspects of the expressive power

of the language. They also found that the user interface was very good, the query
building and formulation easy, and that the lVQL language had a very good

expressive power. The advantage of the evaluation implemented in this work over the

evaluations implemented in the review of literature was that all the aspects of

usability of IVQL were evaluated whereas in each of the other reviewed evaluations

one aspect of usability only was evaluated such as query writing, user interface, and

expressiveness of icons and language.

The results of the analysis showed that the subjects found that the smiley icons had a

good expressive power, a high level of recognition, and are easy to use. They showed

that people from different backgrounds like programmers and non-programmers are

expected to perform the same when using the IVQL visual query language. They do

not need to have any programming experience in order to be able to use easily IVQL

to formulate queries or understand its visual language. It is important to note at this

point that as a result of the testing some icons were completely changed and improved

according to the suggestions proposed by the subjects who undertook the evaluation.

It was found also that the icons 2 (Hotel), 20 (Taxi), and 30 (Ice Skating) were better

recognized by programmers than by non-programmers. However, the results showed

they may simply be random anomalies. Finally, the results proved that there is some

evidence for thinking that the programmers perform better than the non-programmers.

A comparison between IVQL icons evaluation with the ones coi-iducted in the

reviewed visual query languages showed that other work evaluated the expressive

256

power of the language by user testing whereas it was done in IVQL by user
satisfaction. The results that were reported by other work showed that their icons had

a 65% expressive power whereas the IVQL evaluation results showed that the icons
had a 90% expressive power, hence, reflecting a higher expressive power in favour of
the IVQL icons.

With respect to the query formulation, it was noted that the programmers performed
better than the non-programmers in the first 5 simple queries and the last 5 complex

queries whereas the non-programmers performed better than the programmers in the

intermediate ones. Moreover, it was clearly noted that the programmers performed
better than the non-programmers in 24 questions of the user satisfaction where a
difference in the results was observed, with the probability of this happening by

random chance is around I chance in 17 million. Hence, it was concluded that there is

therefore a strong indication that the programmers perform better than the non-

programmers though the magnitude of this difference is small. When comparing the

results of the evaluation of IVQL query formulation with the ones reviewed in the

literature it was noted that in IVQL the programmers performed in general as good as

the non-programmers. This fact proved that IVQL is equally understood by people

from different backgrounds. In the evaluation done other work the programmers

performed better than the non-programmers due to the fact that the visual query

resembled a lot the fon-n of an SQL statement or GIS users performed better than non-

GIS users due to the fact the GIS users had a good background in querying GIS

applications. Hence it was concluded that the query formulation in IVQL could be

more easily understood by the generic public than the ones that were reviewed in the

literature. Moreover , it was important to note that none of the reviewed visual query

languages used the user satisfaction in order to evaluate the aspects that were

evaluated in IVQL. This fact was considered as an advantage of the evaluation of

lVQL over the others.

Moreover, the novel aspects of the developed query optimization strategies have been

demonstrated in the implementation of the Query Melting Processor that handles

dynamic complex queries for proximity analysis. This started with an in-depth

investigation of the GIS operators and their corresponding execution plans in order to

determine the commonalities between them, which common parts could be shared and

257

which ones re-ordered. The investigation covered all types of operators namely the
static operators, dynamic operators with one-predicate, and dynamic operators with
multiple predicates. The investigated execution plans have proved to have significant
commonalities hence the sharing paradigm was employed in processing them. The

proposed Query Melting paradigm is based on the sharing paradigm, push-down

approach, traditional query optimization, sharing the global execution plans (GEP),

and a new melting ruler mechanism that acts like a sliding ruler to allow sharing the
functions of various templates, input data, intermediate results, underlying space

maps, spatial areas, time intervals, objects of interest, and query results. The

deficiency of the sharing sub-plans strategy has been addressed in this thesis using a

new query optimization paradigm, called Sharing Global Execution Plans (GEP),

based on sharing totally a previously generated GEP by multiple users who formulate

similar scenarios of queries, where a new Decision Making Mechanism called time

cost optimizer (TCOP) has been employed to optimize the time cost.

The design, implementation, and theoretical evaluation of the new Query Melting

Processor were carried out using the query melting paradigm, query optimization, and

time cost optimization. The query melting paradigm includes sharing the functions,

objects, spatial areas, and time intervals, the query optimization includes

decomposition of the queries, common sub-expression elimination, generation of

global execution plan, and evaluation of the plan, and the time cost optimization is

performed through sharing the global execution plans. The design of the Query

Melting Processor was done using a number of visual diagrams such as the Use case

Diagram used to visualize the activities and tasks of a system showing at the same

time the actor/actors associated with each activity and the Time Sequence Table

Diagram showing the order as well as the duration in time of each task or activity

including the user, and the Architecture of the Query Melting Processor Diagram

illustrating the input tables with their attributes, the variables, fields, or arrays that are

stored in the memory, the processes or procedures that are executed, and the output of

the processor. The algorithm of each process of the Query Melting Processor has been

presented and the computational cost estimated using the Big-Oh notation. Similarly,

the cost effectiveness of QMP has been evaluated and proved by conducting a

theoretical evaluation that was able to quantify the cost and profit of each phase.

258

Finally, a case study involving proximity analysis multiple dynamic complex quenies
was experimentally evaluated using an integration of the IVQL, Query Melting
Paradigm, and Time Cost Optimization strategy. The implementation involved a
Tourist Application for mobile users using the map of Pans. The prototype of the

visual language that was installed on a mobile phone emulator to generate the queries
that are sent to the ArcGIS server has proven the effectiveness of the complex queries
formulation. The query is processed by the QMP that generates an optimized global

execution plan, executes it, and sent the resulting map to the user. An explicit scenario

was presented using three users in order to show how the system works. The

experimental evaluation was conducted to evaluate the time cost of the QMP as well

as the new introduced approach, sharing global evaluation plan, based on the new
decision making mechanism (TCOP). The developed system was able to prove the

concept of optimizing the global evaluation plan and the time cost optimization

strategy.

The implementation of the system has achieved the aims that were set for the case

study namely, the implementation of the IVQL using a mobile phone emulator in

order to allow the visual query fon-nulation of dynamic complex queries, and the

Query Melting Paradigm implemented using the Query Melting Processor to perform

common sub-expression elimination to allow sharing object of interest between

multiple queries, sharing common spatial areas, and sharing an interval of time. The

previous three tasks have been performed by melting the values and objects of the

queries, using the same underlying space (map) for all the queries of the same user.

Moreover, the experimental evaluation has demonstrated that the Time Cost

Optimization strategy proved to have significant cost effectiveness by conducting a

comparison between the two methods "With No Decider" where the complex queries

templates are melted for each complex query and "With Decider" where the templates

are melted once per scenario and stored in RAM for later retrieval by similar

successive scenarios. The analysis of the results have shown that the first complex

query that uses a new scenario has a lower time cost with the Decider, more generally,

the first (21' - 1) complex queries that use a new particular scenario produce slower

results than the successi\'e complex queries. However, all the complex queries

produce results at the same speed \N,, Ithout the Decider. Finally, it was concluded the

iiew paradium sharing global execution plans by employing the new decision making

'159

mechanism strategy has proven to be significantly cost effective because it Is faster
than without it and results in a significant reduction in the time cost of processing the
dynamic complex queries that use similar scenarios.

8.2 Future Work

In this section we give suggestions about how the work presented in this thesis can be

carried out further. The future work which can presently be seen in this field may be

classified into a number of categories.

The first category for future research is related to the fact that the current

implementation IVQL does not support the queries that are based on previous queries

results, such as to find the nearest hotel to the nearest restaurant to the nearest

university. This can be achieved by using some kind of connector icons which can be

investigated and integrated into IVQL. The connector should be studied and analyzed

starting with connecting two simple queries, then three, and so on. Many different

connector icons might be proposed in order to cover all possible combinations of

operators in the queries. For example, making a simple query about the nearest hotel

followed by another query about all theatres located within 500 meters from the hotel

would produce automatically all theatres next to the nearest hotel. An example of a

new connector that might be used for such an operation is a 'Filter' Operator that

connects two or more simple queries instead of the 'and' operator. Simple queries

that are connected with the 'and' operator produce the union of the results of all the

queries on one single map, whereas the ones that are connected with the 'Filter'

operator produce the results of the first simple query, apply the second simple query

on the results of the first one, and so on until all the simple queries are executed.

Hence, the results that are produced on the map actually represent the last simple

query applied on the results of its previous ones.

The second category is related to the extension of IVQL. As was seen in the

evaluation of the language a number of icons have been redesigned which has clearly

demonstrated how easy to extend and re-adapt the language. Extending lVQL can be

considered in future work by designing and adding new icons based on new themes,

categories, and ftinctionalities which can be easily integrated. Moreover, although

260

IVQL has been designed with mobile devices in mind it can also be applied to
palmtops, laptops, desktops etc.

The third category is related to the optimization strategies. The experimental
evaluation of the case study has indicated the possibility of generating all the global
evaluation plans at the beginning of the execution of the query melting processor

which can be considered in future work. An experimental evaluation could be carried

out to compare it with the existing Decider based approach in order to identify which

of them is cost effective in ten-ns of time and memory space. Also, a number of other

potential combinations of the strategies might be worthwhile.

Finally, the research area that can be contributing to future work is the application and

integration of Data Mining techniques. This gives the system the ability to suggest to

the user of the mobile device extra answers to his queries, based on the patterns of

previous queries. For example, when a mobile user formulates a query to find the

nearest theatre, the system would automatically suggest to him the nearest restaurant

to that theatre. Some investigations should be carried out in order to determine the

factors that should be included in the processor to make it handle Query processing

and Data Mining.

261

References

[Abd05a] Abd Rahman S., Bhalla S., and Hashimoto T., Query-By-Object

Interface for Information Requirement Elicitation in M-Commerce,

Proceedings of the Seventh EEEE International Conference on E-
Commerce Technology, CEC, 2005.

[Abd05b] Abd Rahman S., Bhalla S., and Hashimoto T., Query-By-Object

Interface for Dynamic Access and Information Requirement

Elicitation, Proceedings of the Fourth International Conference on
Mobile Business, 2005.

[Abd05c] Abd Rahman S., and Bhalla S., Spatial QBE Interface for Web GIS,

Proceedings of the Fifth International Conference on Computer and
Information Technology, CIT, 2005

[Abd05d] Abd Rahman S., and Bhalla S., Supporting Spatial Data Queries for

Mobile Services, Proceedings of the 2005 EEEE International

Conference on Web Intelligence, WI, 2005.

[Abd06] Abd Rahman S., and Bhalla S., A Mobile Device User Level Interface

for Dynamic Access to Spatial Data, Proceedings of the Sixth EEEE

International Conference on Computer and Information Technology,

CIT, 2006.

[Abr74] Abrial J. R., Data Semantics, In J. W. Klimbie & K. L. Koffeman

(Eds.), Data Base Management (pp. 1-59). North-Holland & American

Elsevier Publishing Companies.

[Afe98] Afework A., Beynon M. D., Bustamante F., Demarzo A.. Ferreira R..

Miller R., Silberman M., Saltz J., Sussman A., and Tsang H., Digital

262

Dynamic Telepathology - The Virtual Microscope, In AMIA 98,

American Medical Informatics Association, November 1998.

[AI183] Allen J. F., Maintaining knowledge about Temporal Intervals,

Communications of the ACM, Vol. 26, no 11, pp 832-843.

[AndOO] Andrienko N., Andrienko G., and Gatalsky P., Visualization of Spatio-

Temporal Information in the Internet, In Proceedings of the I I'h

International Workshop on Database and Expert Systems Applications

(DEXA'00), IEEE Press, 2000.

[AndO I Andrade H., Kurc T., Sussman A., and Saltz J., Efficient Execution of

Multiple Query Workloads in Data Analysis Applications. Proceedings

of SC2001, Denver, USA.

[And02] Andrienko N., and Andrienko G., Interactive Visual Tools for Spatial

Mutlicriteria Decision Making, In M. De Marsico, S. Levialdi, E.

Panizzi (Eds.). In Proceedings of the Working Conference on

Advanced Visual Interfaces, AVI 2002, Trento, Italy, May 22-24,

2002, ACM press, 2002, pp. 129-132.

[And02a] Andrade H., Kurc T., Sussman A., Borovikov E., and Saltz J., On

Cache Replacement Policies for Servicing Mixed Data Intensive Query

Workloads, Proceedings of the 2d Workshop on Caching, Coherence,

and Consistency, held in conjunction with the 16 th ACM International

Conference on Supercomputing, 2002.

[And02b] Andrade H., Kurc T., Sussman A., and Saltz J., Scheduling Multiple

Data Visualization Query Workloads on a Shared Memory Machine,

Proceedings of the 2002 International Parallel and Distributed

Processing 2002.

[And02c] Andrade H., Kurc T., Sussman A., and Saltz J., Multiple Query

Optimization for Data Analysis Applications on Clusters of SMPs. In

263

Proceedings of the 2 nd International Symposium on Cluster Computing

and the Grid, 2002.

[And02d] Andrade H., Kurc: T., Sussman A., and Saltz J., Active Proxy-G:

Optimizing the Query Execution Process in the Grid, Proceedings of

the 2002 ACM/IEEE Supercomputing Conference, 2002.

[And02e] Andrade H., Kurc T., Sussman A., and Saltz J..) Processing Large-Scale

Multi-dimensional Data in Parallel and Distributed Environments,

Parallel Computing, 28(5), 827-859,2002.

[And03] Andrade H., Aryangat S., Kurc T., Slatz J., and Sussman A., Efficient

Execution of Multi-Query Data Analysis Batches Using Compiler

Optimization Strategies, Proceedings of the 16 th International

Workshop on Languages and Compilers for Parallel Computing,

LCPC, 2003.

[And03a] Andrienko N., and Andrienko G., Tools for Visual Comparison of

Spatial Development Scenarios, In Proceedings of the Seventh

International Conference on Information Visualization (IV'03), IEEE

Press, 2003.

[And03b] Andrienko N., and Andrienko G., Informed Spatial Decisions through

Coordinated Views, Information Visualization, 2(4), 2003, pp. 270-285.

[And04] Andrienko N., and Andnenko G., Interactive Visual Tools to Explore

Spatio-Temporal Variation, In Proceedings of ACM AVI'04,

Advanced Visual Interfaces, May 25-28,2004. Gallipoly (LE), Italy.

[And06] Andrade H., Kurc T., Sussman A., and Beomseok N., Data

Management and Query - Multiple Range Query Optimization with

Distributed Cache Indexing, SIGNIOD Conference. 2006.

164

[And07] Andrienko G., Andrienko N., and Wrobel S., Visual Analytics tools for

Analysis of Movement Data, In Proceedings of ACM SIGKDD

Explorations Newsletter, Vol. (9) 2, ACM.

[And99] Andrienko N., and Andrienko G., Interactive Maps for Visual Data

Exploration, International Journal of Geographical Information

Science, Vol. 13 (4), 1999, pp. 355-374.

[Art96] Artale A., Franconi E., Guarino N., and Pazzi L., Part Whole Relations

in Object Centered Systems: An Overview, Data and Knowledge

Engineering (DKE) Journal, North Holland, Elsevier, 1996, pp. 347-

383.

[Auf'95] Aufaure M. A., A High-Level Interface Language for GIS, Journal of

Visual Languages and Computing, Academic Press, Vol. 6, n'2, pp
167-182.

[Bee06] Beeharee A., and Steed A., A Natural Wayfinding Exploiting Photos in

Pedestrian Navigation Systems, In Proceedings on Human-computer

Interaction with Mobile Devices and Services, MobileHCI'06.

[Bee07] Beeharee A., and Steed A., Exploiting Real World Knowledge in

Ubiquitous Applications, Personal and Ubiquitous Computing.

[BetOO] Bettini C., Wang X., and Jajodia S., Temporal Semantic Assumptions

and their Use in Databases, Proceedings of the IEEE Transactions on

Knowledge and Data Engineenng, 2000.

[Bet97] Bettim C., Wang X., and Jajodia S., An Architecture for Supporting

Interoperability among the Temporal Databases, Temporal Databases,

Dastuhl., 1997, pp. 36-55.

[BlaOOI Blaser A., and Egenhofer M., A Visual Tool for querying geographic

databases, in AVI 2000, ACM Press, Palerino, Italy, 211 -2) 16,2000.

265

[Blu03] Blueman A., Elementary Statistics, second edition, McGraw Hill,

2003.

[BonOO] Bonhomme C., Trepied C., and Aufaure M. A., Metaphors for Visual

Querying Spatio-Temporal Databases, In: Advances in Visual

Information Systems, edited by R. Laurini, Proceedings of the 4 th

International Conference on Visual Information Systems. Springer

Verlag, Lecture Notes in Computer Science, pp. 140-153.

[BonO I Bonhomme C., and Aufaure M. A., Tests psycho-cognitifs de

metaphors visuelles pour un language d'interrogation de Systemes

d'Information Geographique, Revue d'Interaction Homme-Machine

(FIHM), Vol. 3- n'2-

[Bon02] Bonhomme C., and Aufaure M. A., Mixing Icons, Geometric Shapes

and Temporal Axis to Propose a Visual Tool for Querying Spatio-

Temporal Databases, Advanced Visual Interfaces (AVI'2002), Trento,

Italy.

[Bon99] Bonhomme C., Trepied C., Aufaure M. A. and Laurim R., A Visual

Language for Querying Spatio-Temporal Databases, In Proceedings of

ACM GIS'99,7 th ACM Symposium on Advances in Geographic

Information Systems, November 5-6,1999. Kansas City, USA.

[B602] Brinkhoff T., A Framework for Generating Network-Based Moving

Objects. Geolnformatica, 6(2).

[Che02] Chen J., DeWitt D. J., and Naughton J. F., Design and Evaluation of

Alternative Selection Placement Strategies in Optimizing Continuous

Queries. Proceedings of ICDE, San Jose, CA.

[Cle93] Clementini E., De Felice P., and Oosterom P., A small set of fon-nal

topological relationships for end-user interaction, Proceedings of

266

Advances in Spatial Databases, 3 rd Intemational Symposium, Spnnger-

Verlag, Singapore, 1993,277-295.

[CI187] Clifford J., and Croker A., The Historical relational data model

(HRDM) and algebra based on Lifespans, In Proceedings of the 3 rd

IEEE International Conference on Data Engineering, 1987, pp. 528-

537.

[Djo96] Djordjevic-Kajan S., Functions and contents of digital maps in process

of building GIS in Serbia PTT. Proceedings in GIS/LIS, Budapest,

Hungary, June 10-14,1996, GIS/LIS Editions, 82-91.

[Ege97] Egenhofer M., Query processing in special query by sketch, Journal of

Visual Languages and Computing, Vol. 8(4): 403-424,1997.

[Elm05] Elmongul H., Mokbel M., and Aref W., Spatio-temporal Histograms.

Proceedings of SSTD, 2005.

[Elm06] Elmongui H., Ouzzani M., and Aref W., Challenges in Spatio-temporal

Stream Query Optimization. Proceedings of MobiDE 2006, Chicago.

[Els06a] Elsidani Elariss H., Khaddaj S., and Haraty R., Towards a New Visual

Query Language for GIS. IASTED Databases and Applications 2006,

195-202, Austria 2006.

[Els06b] Elsidani Elariss H., Khaddaj S., and Haraty R., An Evaluation of a

Visual Query Language for Information Systems. ICEIS (5) 2006,5 1-

58, Paphos 2006.

[ESR] www. esriuk. com, last visited Nov. 2008.

[FidO7] Fidel R., Scholl H., Liu S., and Unsworth K., Mobile Government

Fieldwork: A Preliminary Study of Technological, Organizational, and

Social Challenges, Proceedings of the 8 th annual International

267

Conference on Digital Government Research Conference: Bridging

Disciplines and Domains, DGO'07, May 2007.

[Gia07] Gianotti F., Nanni M., Pinelli F., and Pedreschi D., Trajectory Pattern

Mining, In Proceedings of the 13 th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD'07.

[Gus06] Gustafsson A., Bichard J., Brunnberg L., Juhlin 0., and Combetto M.,

Believable Environments: Generating Interactive Storytelling in Vast

Location-based Pervasive Games, Proceedings of the2006 ACM

SIGCHI International Conference on Advances in Computer

Entertainment Technology, ACE'06.

[Gut06] Guting H., De Almeida T., and Ding Z., Modelling and Querying

Moving Objects in Networks, VLDB Journal - The International

Journal on Very Large Databases, Vol. (15) 2.

[HorOO] Hornsby K., and Egenhofer M., Identity based change: a foundation for

spatio temporal knowledge representation, International Journal of
Geographical Information Science, 14(3), 2000.

[IS01961 ISO/IEC JTCI/SC21/NI0441, SQL Multimedia and Application

Packages, Part 3: Spatial, p. 172.

[Joh98] Johnson P., Usability and Mobility; Interactions on the Move. EPSRC

workshop on Healthcare Infonnatics, Abbingdon.

[Kan94] Kang M., Dietz H., and Bhargava B., Multiple-Query Optimization at

A Igorithm- Level. Proceedings of SSDI 1994, Data & Knowledge

Engineering 14,57-75.
C_ý -

[Kha04] Khaddaj S., and Horgan G., The Evaluation of SofhN, are Quality

Factors in Very Large Inforination Systems, Electronic Journal of

Infori-nation Systems EN'aluation, Volume 7 Issue 1,2004.

268

[KimO5] Kim P., Gargi U., and Jain R., Event-Based Multi-Media Chronicling

Systems, CARPE, 2005, Singapore.

[KimO7] Kim S., Diverdi S., Chang J., Kang T., Iltis R., and Hollerer T.,

Implicit 3D Modelling and Tracking for Anywhere Augmentation,

VRST 2007, Newport Beach, California, November 5-7,2007.

[Kol99] Kollios G., Gunopulos D., and Tsotras V. J., On Indexing Mobile

Objects, Proceedings of PODS.

[Lad05] Ladd A., Bekris K., Rudys A., Kavraki L., and Wallach D., Robotics-

Based Location Sensing Using Wireless Ethernet, Proceedings of the

8 th ACM International Conference on Mobile Computing and

Networking, MOBICOM, Sep. 2002, Atlanta, GA.

[Lan92] Langran G., Time in Geographic Information Systems, London, Taylor

and Francis 1992.

[Lau03] Laurini P., Paolino L..) Sebillo M., Tortora G., and Vitiello G.,

Phenomena -A Visual Query Language for Continuous Fields, In

Proceedings of ACMGIS 2003 on Association for Computing

Machinery, New Orleans, Louisiana, USA 2003.

[Lau07] Laurim R., and Servigne S., Visual Access to City Websites: A

challenge for PDA's GUI, Journal of Visual Languages and

Computing, 18(3), 339-355,2007.

[Laz02] Lazaridis K., Porkaew K., and Mehrotra S., Dynamic Queries over

Mobile Objects, In EDBT, 2002.

[Laz04] LazYsOft Sentences, Retrieved January 5.2004:

www. laKys sentences. htm

269

[Lba97] Lbath A. ý Aufrane-Portier M. A., and Launni R., Using a Visual

Design and Query Language for the in GIS Customization,

VISUAL'97,2 nd International Conference on Visual Information

Systems, San Diego, USA.

[Li05] Li H., Lu H., Huang B., and Huang Z., Two Ellipse-Based Pruning

Methods for Group Nearest Neighbour Queries, ACM-GIS, 2005.

[LiuO3] Liu X., and Ferhatosmanoglu H. Efficient k-NN Search on Streaming

Data Series, SSTD, 2003.

[Lud06] Ludford P., Franlowski D., Reily K., WAilms K., and Terveen L.,

Because I carry my Cell Phone anyway: Functional Location-based

Reminder Applications, Proceedings of the SIGCHI Conference on
Human Factors in Computing, CHY06.

[Mar99] Marcus A., Globalization of user-interface design for the Web,

Proceedings 5 Ih Conference on Human Factors and the Web: The

Future of Web Applications, Gaithersburg, Maryland, USA, 1999.

[Mcg80] McGregor D. R., and Malone R. J., the FACT Database System,

Proceedings of Symposium on Database Systems.

[Mok03] Mokbel M. F., Aref W. G., Hambrush S. E., and Prabhakar S., Towards

Scalable Location-Aware Services: Requirements and Reseach Issues.

In Proceedings of the ACM Symposium on Advances in Geographical

Infon-nation Systems, ACM GIS.

[Mok04a] Mokbel M. F., Xiong X., Aref W. G., Hambrush S. E., and Prabhakar S.,

Hammad M., ,
PLACE: A Query Processor for Handling Real-Time

Spatio-temporal Data Streams. In Proceedings of the VLDB.

270

[Mok04b] Mokbel M. F., Xiong X., and Aref W. G.. SINA: Scalable Incremental
Processing of Continuous Queries In Spatio-temporal Databases. In
Proceedings of the SIGNIOD.

[Mok04c] Mokbel M. F., Continuous Query Processing in Spatio-temporal
Databases. In Proceedings of the ICDE/EDBT PhD Workshop.

[Mok05a] Mokbel M. F., Xiong X., Hammad M., and Aref W. G., Continuous

Query Processing of Spatio-temporal Data Streams in PLACE

GeoInformatica, 9(4), 343-365,2005.

[Mok05b] Mokbel M. F., and Aref W. G., GPAC: Generic and Progressive

Processing of Mobile Queries over Mobile Data. In Proceedings of the

MDM, Aya Napa, Cyprus.

[Mor02] Morris A. J., Abdelmoty A. I., Tudhope D. S., and ElGeresy B. A.,

Design and Implementation of a Visual Query Language for Large

Spatial Databases, Proceedings of the Sixth International Conference

on Information Visualisation (IV'02).

[Mor04] A. J. Morris A. J. 9 A. 1. Abdelmoty A. I., D. S. Tudhope D. S., and B.

A. ElGeresy B. A., A Filter-flow Visual Query Language and Interface

for Spatial Databases., Geolnformatica Vol. 8(2), p. 107-14 1.

[MOUOO] Mountrakis G., Agouris P., and Stefamd's A., Navigating through

Hierarchical Change Propagation in Spatio Temporal Queries,

Proceedings of the IEEE International Conference on Data

Engineering, 2000.

[Mou05] Mountrakis G., Agouris P., and Stefaniclis A., Similanty Leaming in

GIS: An Overview of Definitions, Prerequisites and Challenges,

Spatial Databases 2005 pp. 294 - 32 1.

271

[MurOO] Murray N. S., Paton N. W., and Goble C. A.. Kaleidoquery: A Flow-
based Visual Language and its evaluation, Journal of Visual Query
Languages and Computing Vol. II No. 2,2000.

[Mur98a] Murray N. S., Paton N. W., and Goble C. A., Kaleidoquery: A Visual
Query Language for Object Databases, In Proceedings of Advanced

Visual Interfaces, L'Aquila, Italy, 25-27, May 1998.

[Mur98b] Murray N. S., Paton N. W., and Goble C. A., Kaleidoscape: 3D

Environment for Querying ODMG Compliant Databases. In Yannis

loannidis and Wolfgang Klas, editors, Proceedings of Visual Databases

4, pp. 85-101, Chapman & Hall, London, 1998.

[Mur98c] Murray N. S., Paton N. W., Paton, and Goble C. A., A Framework for

Describing Visual Interfaces to Databases, Journal of Visual

Languages and Computing, vol. 9(4), pp. 429-256, August 1998.

[Nur06] Nurminen A., M-LOMA: A Mobile 3d City Map, Proceedings of the

Eleventh International Conference on 3d Web Technology, Web3D,

2006.

[Nus04] Nusser S., Goodchild M., Clark K., and Miller L., Geospatial

Information in Complex Mobile Field Settings, Proceedings of the

2004 Annual Conference on Digital Government Research, DGO, May

2004.

[Pan02] Pang Y., Multimodal McDrive System, Master Thesis, Delft

University of Technology, 2002.

[Pao03] Paolino L., Pittarello F., Sebillo M., Tortora G., and Vitiello G.,

WebMGISQL -A 3D Visual Environment for GIS Querying. In

Proceedings of International Conference on Visual Language and

Computing (VLC 2003), Miami, Florida, USA. 2003. pp. 294-299.

272

[Pao04] Paolino L., and Laurini R., Dealing with Geographic Continuous
Fields - the Way to a Visual GIS Environment, In Proceedings of
ACM AVI'04, Advanced Visual Interfaces. May 25-28,2004.
Gallipoly (LE), Italy.

[Pao07] Paolino L., Del Fatto V..) and Pitarello F., A Usability-Driven
Approach to the Development of a 3D Web-GIS Environment, Journal

of Visual Languages and Computing, 18(3), 280-314,2007.

[Pap03] Papadias D., Zhang J., Mamoulis N., and Tao Y., Query Processing in

Spatial Network Databases, VLDB, 2003.

[Pap04] Papadias D., Shen Q., Tao Y., and Mouratidis K., Group Nearest

Neighbour Queries, ICDE, 2004.

[Pap05] Papadias D., Tao Y., Mouraticlis K., and Hui C. K., Aggregate Nearest

Neighbour Queries in Spatial Databases, TODS, 30(2), 2005.

[Par88] Park J., Segev A., Using Common Subexpressions to Optimize

Multiple Queries. In Proceedings of the Conference on Data

Engineering 1988.

[Pre05] Pressman, Software Engineering. Sixth Edition, Mc Graw Hill, 2005.

[Ras06] Rashid 0., Mullins I., Coulton P., and Edwards R., Extending

Cyberspace: Location Based Games Using Cellular Phones, Computers

in Entertainment, CIE Vol. (4) 1.

[ReI8 I Reisner P., Formal Grammar and Human Factors Design of an

Interactive Graphics System. IEEE Transactions on Software

Engineering, SE-7(2), 229-240

173

[Rep06] Repenning A., and loannidou A.. Mobility Agents- Guiding and
Tracking Public Transportation Users, Proceedings of the Working
Conference on Advanced Visual Interfaces, AVI'06.

[Rot06] Roth j., Detecting Identifiable Areas in Mobile Environments,
Proceedings of the 2006 ACM Symposium on Applied Computing.
SAC'06.

[Sch06] Schultz C., Guesgen H., and Amor R., Computer Human Interaction

Issues When Integrating Qualitative Spatial Reasoning into

Geographic Information Systems, CHINZ, 2006

[SeI88] Sellis T., Multiple-Query Optimization. ACM Transactions on
Database systems, 13(l), 1988.

[Sha98] Shahar Y., and Cheng C., Model Based Visualization of Temporal

Abstraction, Fifth International Workshop on Temporal Representation

and Reasoning (TIME 1998), Sanibel Island, Flonda, 1998, pp. 11-20.

[Shn9 I Schneiderman Ben, Visual user interfaces for information exploration.

In Proceedings of the 54 th Annual Meeting of the American Society for

Information Science, pages 379-384, Medford, NJ, 1991, Learned

Information Incorporation.

[Shn93] Young D., and Schneiderman B., A Graphical Filter/Flow

Representation of Boolean Queries: A Prototype Implementation and

Evaluation. Journal of the American Society for Information Science,

44(6), pages 379-384,1993.

[Sm104] Smith M. N. Enhancing Database Interface Support for Link Analysis.,

PhD Thesis, Birkbeck College, University of London, Submitted

November 2003.

274

[Smi05] Smith M., King. P., A Database Interface for Link Analysis. Journal of
Database Management, Idea Group Publishing, Vol. 16, n'l, pp 60-74.
Jan-March 2005.

[Sno95] Snodgrass R. (Ed.). The TSQL2 Temporal Query Language, Kluwer
Academic Publishers.

[SonO I Song Z., and Roussopoulos N., K-Nearest Neighbour Search for
Moving Query Point, In SSTD, 2001.

[Sto00] Stojanovic Z., DjordJevic-KaJan Slobodanka, and Stojanovic D.,

Visual Query and Analysis Tool of the Object-Relational GIS

Framework, In Proceedings of ACM AVI'00, Advanced Visual

Interfaces, CIKM 2000, McLean, VA USA.

[St098] Stojanovic Z., Djordjevic-Kajan S., and Stojanovic D., Query language

in Telecom GIS, GISPIaNET'98 Conference, 7-11, September 1998,

Lisbon, Portugal.

[St099] Stoimenov L., Stoimenov A. Mitrovic,, Mitrovic D. and DjordJevic-

KaJan S., Bridging objects and relations: a Mediator for an 00 front-

end to RDBMSs, Information and software technology 41(2), pp. 57-

66.

[Sto03a] Stojanovic Z., Dahanayake A. N. W., and Sol H., Methodology

Evaluation Framework for Component-Based System Development,

Journal of Database Management, 14(l), 1-26,2003.

[Sto03b] Stojanovic Z., Dahanayake A. N. W., and Sol H., Methodology

Evaluation Framework for Component-Based System Development,

Advanced Topics in Database Research, Vol. 2,213-246,2003.

275

[Sto06] Stojanovic D., Book Reviews: Web Service-Onented Project

Development from Different Perspectives, IEEE Distributed Systems

Online 7(2): 2006.

[Tao02] Tao Y., Papadias D., and Shen Q., Continuous Nearest Neighbor

Search,, In VLDB, 2002.

[Tez06] Tezuka T., Kurashima T., and Tanaka K., Toward Integration of Web

Search with a Geographic Information System, Proceedings of the 15 th

International Conference on World Wide Web, WWW'06.

[Xlo04] Xiong X., Mokbel M. F., Aref W. G., Hambirush S. E., and Prabhakar S.,

Scalable Spatio-temporal Continuous Query Processing for Location-

Aware Services. In Proceedings of the International Conference on

Scientific and Statistical Database Management, SSDBM.

[Xio05] Xiong X., Mokbel M. F., and Aref W. G., Scalable Processing of

Continuous K-Nearest Neighbor Queries in Spatio-temporal

Databases, In ICDE, 2005.

[Ylu05] Ylu M. L., Marnoulis N., and Papadias D., Aggregate Nearest

Neighbour Queries in Road Networks, TKDE, 17(6), 2005.

[Yiu06] Yiu M. L., Mamoulis N., Papadias D., and Tao Y., Reverse Nearest

Neighbors in Large Graphs, IEEE Transactions on Knowledge and

Data Engineering, TKDE, 18(4), 540 - 553,2006.

[Yu05] Yu X., Pu K. Q., and Koudas N., Monitoring K-Nearest Neighbour

Queries Over Moving Objects, ICDE, 2005.

[Yue05] Yue W., Mu S., Wang H., and Wang G., TGH: A Case Study of

Designing Natural Interaction for Mobile Guide Systems, MobileHCL

Austria 2005.

276

