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Abstract

In western countries at least one third of the population develops cancer.
The main cause of death in cancer patients is metastasis and there is no
effective treatment for this complication. The situation can be improved
by a better understanding of the cancer invasion process. In order to re-
veal new aspects of this dynamic process, a novel image-processing-based
direct viewing cancer-cell invasion assay was developed and used with
inverted wide-field microscopy. The combination of high-resolution 3D
image-processing approaches with a custom-made flow chamber system
enabled the quantification of the sarcoma-cell invasion process through a
monolayer of endothelial cells in vitro.

The image processing entailed the separation of positive cell signal from
background noise and blur, which are inherent in 3D wide-field microscopy.
The preparation and cell signal segmentation of wide-field images prior
to quantification featured stochastic as well as deterministic techniques.
The stochastic approach was based on a Gaussian Mixture Model to sep-
arate noise and background signal characteristics from positive cell signal
which performed well in conditions with high signal-to-noise ratios. The
deterministic segmentation approach was based on linear diffusion and
performed well despite low signal-to-noise ratios as it assessed the diffu-
sion rates of cell signal over multiple convolutions.

The image-processing-based assay included the definition of two new pa-
rameters to quantify the invasion: Relative Invasion (RI) and Opening
Rate of the Endothelial Monolayer (0 RE M). The first parameter RI
measured the invasion as the percentage of sarcoma cell signal below the
reconstructed monolayer surface. The second parameter OREM evalu-
ated the speed at which the sarcoma cells disassemble the monolayer in
their strive to exit the flow channel.

This assay was applied to metastatic rat sarcoma cells where the cells
invaded monolayers of rat endothelial cells. After adhesion, the sarcoma
cells initially invaded significantly faster under flow conditions compared



to situations without shear stress. Later, however, the rate of invasion
under flow decreased and the sarcoma cells without shear stress achieved
significantly higher levels of invasion. These observations thus revealed
the non-linear modulation of a tumour-cell invasion process by shear flow,
demonstrating that tumour cells can respond to flow by enhancement of
invasiveness in a similar way to white blood cells.

In summary, the newly developed direct viewing assay provides a quan-
titative image-processing-based approach to assessing cancer invasion dy-
namics, which should lead to a better understanding of the mechanisms
involved in cancer invasion and metastasis.
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2.1 Diagram of the metastatic cascade illustrating the importance
of active cell migration through the endothelium. A subset of
tumour cells leaves the primary tumour (A) and intravasates (B) into
the blood circulation system (C). Some of those cells adhere to the
vessel wall at a remote site and extravasate (D) into the surrounding
tissue. Proliferation occurs once the transmigration through the en-
dothelial cells is complete and forms the basis of a secondary tumour
metastasis (E). 6

2.2 Example of an XZ-projection of an acquired Point Spread
Function (PSF). A single point influences its neighbouring points in
a manner described by the PSF. The surrounding voxels are affected,
mainly in Z-direction but also in XY. This behaviour is due to asym-
metry of the optics. A black pixel in the image represents no influence
from the point source and white represents heavy influence. (a) XZ-
projection of an acquired PSF (b) XZ-projection of a wide-field image
stack ................................... 15

2.3 Fluorescence imaging system set-up. The fluorescence micro-
scope consists of a lamp and an excitation filter that only allows the
specific excitation wavelength to pass through to the dichroic mirror,
which has the ability to reflect a certain wavelength and be transparent
for another. This ability grants only the emitting light access through
the mirror while the exciting light is mirrored towards the specimen.
The objective lens focuses the light onto the specimen and the eyepiece
lens focuses the light towards the detector. 18
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2.4 Diagram illustrating the principles of confocal microscopy.
A light source emits light which travels through an aperture (light
source aperture). The light is reflected by a dichroic mirror onto the
specimen. The fluorescently labelled cells respond by emitting light
different from the excitation wavelength. A pinhole in front of the
detector blocks out-of-focus light and detects the in-focus. A confocal
microscope exhibits similar layout to a wide-field microscope with a
few exceptions. Two of those are the light source aperture and the
detector aperture which only allow in-focus light to progress through
the system. 20

2.5 Description of the EM algorithm. The algorithm alternates be-
tween the E-step and the M-step for some iterations. The average is
recalculated during every iteration and will eventually converge. In the
E-step, the probability N (Xi; ak, Sk) is calculated using Eq. 2.5 given
the parameters for a particular cluster. Repeat the E-step for all pixels
and every cluster. Then, using the M-step, recalculate new weights,
average and covariance for each cluster. Repeat the E-step and M-step
until the number of repetitions has been reached. 24

2.6 The eigenvalues of the corresponding Principal Components.
The eigenvalues represent the amount of variation contained in each
PC. The largest eigenvalue represents the first PC and, subsequently,
the first PC contains most of the variation in the image. Many PCs do
not contribute much to the information in the image and a reduction
can then be made by discarding PCs with little variation (Le. small
eigenvalues). Choosing the number of PCs is then the overall problem. 28

2.7 Linear interpolation between two points. Two known data points
are chosen (A and B). A line which runs through these points is fitted
to them. The value of the intermediate point C is obtained by finding
f(x) of the line at the position C. . . . . . . . . . . . . . . . . . . .. 31

3.1 The GlycoTech flow chamber system. The system consists of a
circular flow chamber (GlycoTech Corp., MD, USA) which we have
fitted into a stainless-steel enclosure to enhance stability and allow
ease of use. The bottom of the chamber is sealed by a 32 mm diameter
coverslip with a monolayer of rat brain endothelial cells (RBE4). . .. 34
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3.2 Schematic drawing of the open flow chamber. The custom-
made Nylon insert fits into a MatTek dish with a confluent monolayer
of endothelial cells (EC). The cells are exposed to the shear stress in
an oval aperture in the centre of the insert. This central aperture is
open and allows initial introduction of tumour cells (TC). The entire
flowchamber is presented in 3D (A) and as top-view/cross-section (B).
Detail view (C) depicts the vertical inlet tube, which is connected to
the central aperture by a channel cut into the base of the insert using
a milling machine. A symmetrical channel connects the opposite end
of the central aperture to the outlet tube. On the outside, the outlet
is connected to the inlet by flexible tubing going through a peristaltic
pump. Measurement units are in mm. 36

3.3 Flow chart of an image-acquisition protocol used with the Ex-
tended GlycoTech chamber. The protocol is designed to capture
cancer cells that adhere and settle down to the monolayer during flow
conditions. A list of predefined positions was stored in the Metamorph
acquisition system. The positions were visited consecutively and, for
each position, a single image of the DiO green channel was acquired.
A pause of five sec was ordained and a second image was obtained of
the same position. Both of these images were thresholded at inten-
sity level 1000 for 12-bit images. The AND operator applied to these
two captures resulted in a binary image suitable for detecting adherent
cancer cells. In the case of adherent cells, the binary image contains
segments of the stationary cell whilst a non-stationary cell produces
an empty image. A cell was considered as stationary if the number
of segmented pixels was > 0.2 % of the number of pixels in an image
(typically 696 x 520). 41

3.4 Graphical explanation of Relative Invasion (RI). Relative Inva-
sion can simplistically be described as the amount of tumour-cell signal
(shown in green) below the EC monolayer (in red) in relation to the
tumour-cell signal throughout the cell height. (a) An artificially and
intentionally created overlay depicted as a dotted line was added as a
replacement for missing EC values. (b) 3D rendering of the invasion. 43
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3.5 Flowchart of the calculations of Relative Invasion (RI). The

z-levels of the upper surface of a stack of endothelial monolayers were
estimated. Some of the regions were weakly labelled or were missing
cell signal and produced unreliable readings. The z-levels in these

areas were replaced by an artificially created overlay and the relative

invasion was then quantified as the amount of sarcoma cell signal below

the upper surface of the monolayer in relation to the total cell signal. 45

3.6 Illustration of the calculations of OREM. The minimum projec-

tion of monolayers (shown in red) at each time point was obtained to
provide evidence for early openings. The estimation of the opening

rate was performed in a predefined window, shown in green, of 4 x 4

J-tm (21x21 pixels) at a fixed location during the entire observation

period. The position of the window was selected where the opening

between 0-30 min was the largest. OREM was then calculated as the

difference in monolayer signal within the window between 0-30 min but

normalised over the observation period. A difference in cell signal can

be seen inside the window between the mentioned time points. The
normalisation, the predefined window size and the fixed location of the
window made the parameter comparable between experiments. The

intensity of the monolayers was adjusted for visualisation purposes. . 47

3.7 Flowchart of the steps to obtain OREM. OREM can be seen as a

measurement of how quickly the signal disappeared in a small defined,

fixed region, typically 4 x 4J-tm. The region (window) was applied to
the minimum projection of a monolayer stack. The normalised rate at

which the signal faded between 0 and 30 min constituted the parameter
oRE M. Because the rate is normalised using the maximum opening

over all time points it is possible to compare the rate between different

cells and experiments. .......................... 48
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3.8 Example of ellipses which defined Relative Spreading. The
area of an ellipse fitted to the segmented pixels was calculated for
each time point. This area was divided by the area of the reference
fit which was calculated as the area of the ellipse fitted to all the
segmented pixels over all time points. Relative spreading can thus
have a quantity > 1 because it was possible that the reference fit was
smaller due to a higher amount of segmented pixels. (a) An ellipse
fitted to the segmented pixels found at a single time point. (b) A
reference fit for a cell. 50

4.1 Examples of intensity curves of strongly and weakly labelled
areas. The intensities for two different <x,y> positions were plotted
as connected data points over z, The strongly labelled position ex-
hibited a sharp peak in intensity around the surface z-location. The
weakly labelled position portrayed high intensity values towards the
start and end of the curve and low in-between. The fluorescence in
this position was low and therefore most of the intensity values stem
from blur originating at its neighbours. The z-level of the minimum
intensity indicated where those were in focus and the z-level of the
maximum intensity indicated where most of those were out of focus
rather than the surface level. The visually estimated z-levels were
subjectively found by manually scanning through the image stack for
the z-levelwhich contained the sharpest region for each position. (a)
shows the intensity curve for a strongly labelled position. The z-level
of the maximum intensity was close to the visually estimated level (z
= 6 and 4 respectively). (b) shows the intensity curve for a weakly
labelled position. The manual surface estimation and the z-levelof the
maximum intensity were different (z = 6 and 19 respectively). This
was because of the interference of blur from neighbouring voxels. 54
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4.2 Examples of gradient curves obtained from a blurred stack.
The average gradient value using the Sobel operator was calculated for
each plane and plotted as connected data points. The maximum gra-
dient value indicated at which z-level the focus was located. A z-level
of 1 represents the top of the stack. The three figures together indicate
that the curve needed to be in a local context and filtered with an av-
erage filter in order to produce an accurate estimation. (a) represents
a gradient curve where each data point represents the average gradient
value for a plane. The in-focus plane was found at z=35 (maximum
gradient value) and the coverslip was found at the position where the
slope was steepest, indicated by the dashed line (z=38). (b) a raw
gradient curve without smoothing for a single pixel over z. Dotted line
represents the focus position at z=36. This curve did not undergo any
smoothing to remove noise. The peak at z-level = 31 was due to noise.
(c) a gradient curve filtered with an average kernel of 11x 11 pixels.
The noise was now suppressed and the accurate surface location was
revealed as the z-level where the gradient had its maximum at z=40.
Manual inspection confirmed this surface position. 57

4.3 Example of graphs with correlation values obtained from gra-
dient images acquired with a confocal and a wide-field micro-
scope. The correlation coefficient was calculated between two 11 x 11
pixel windows of consecutive z-planes, The Sobel gradient was calcu-
lated prior to obtaining the correlation values. (a) Correlation values
obtained from a confocal stack. The correlation between two windows
expressed a sharp peak at the in-focus position and low values towards
the sides. (b) Correlation values obtained from a confocal stack, con-
volved with a PSF to simulate wide-field conditions. The correlation
between two windows was believed to increase to a sharp peak at the
in-focus position, which was not the case. Instead, the high values were
contained in a broader spectrum of z-planes where the sharp peak was
smoothed by the blur. 59
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4.4 Example of segmentations of a minimum projection obtained
from a stack of an endothelial monolayer using thresholding.
The minimum projection emphasises the dark areas, which highlighted
areas with low intensity. (a) Minimum projection. Arrows indicate ex-
amples of regions with low intensity which may cause problems. (b)
Segmented result of (a) after applying the manually obtained thresh-
old. (c) Histogram of the minimum projection. Arrows indicate the
three different stages (modes) of brightness seen from left to right in
(a). Dashed lines represent the manually selected threshold used to
produce (b) and (d) respectively. (d) Segmented result after obtain-
ing a threshold using a standard method (Otsu [1]). 62

4.5 Histograms of a stack with no cells (only background noise)
obtained with a wide-field microscope. The noise in a micro-
scope is usually described as being Poisson distributed [2]. Because a
point in a wide-fieldsystem is influenced by every other point through
diffraction and interference, the Central Limit Theorem [3] approxi-
mates the distribution to a Gaussian distribution. The stack contained
520x696 pixels over 76 z-slices (although the histograms shown rep-
resent a volume of 11x11x11), with resolution 0.2xO.2xO.2/-lm/px.
Exposure time: 60 ms, binning 2x2. (a) The intensity distribution of
a sub-volume of the acquired noise. (b) The gradient distribution of
a sub-volume of the acquired noise. . . . . . . . . . . . . . . . . . .. 64

4.6 Histogram of a stack of size llxllxll pixels containing the
difference between the gradient values of a stack of a mono-
layer and a filtered version of itself. The gradient for each plane
was calculated (denoted by G in Eq. 4.2). An average filter of 11x 11
pixels was applied on a plane-by-plane basis to suppress the noise (G f

in Eq. 4.3). The difference between the two (G - Gf) is displayed as a
histogram which represents the noise plus some residual gradient sig-
nal. The histogram in (b) has a wider distribution because the residual
signal located in the upper segment of the histogram was stronger. (a)
Histogram of an unreliable area. (b) Histogram of signal (reliable area). 66
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4.7 Histogram with the two mixtures superimposed. The difference
was separated into two clusters using the EM algorithm [4]. A window
was classifiedas unreliable if the variance of the cluster with the lowest
mean was < the variance of the measured noise. (a) Histogram of an
unreliable region. (b) Histogram of a more reliable region. . . . . .. 68

4.8 Example of segmentation of unreliable regions in a mono-
layer using GMM. The segmentation was based on separating the
Gaussian-like noise from the signal. The noise was obtained by calcu-
lating the difference between the original intensity stack and a filtered
version of itself. The EM algorithm was applied on 11x 11x 11 pixel
substacks with two classes: signal and noise sourced from the differ-
ence. The variance of the separated noise (i.e. the variance of the
cluster with the lowest mean) is compared to the variance of an empty
stack containing noise only (reference sample). A region was classi-
fied as unreliable if the variance of the separated noise < variance
of the measured. The size of the original stack containing cell signal
was 520x696x101 voxelswith resolution 0.2xO.2xO.2JLm acquired five
hours into the experiment. a) Original in-focus plane. b) Segmented
result. The white areas represent unreliable regions and are superim-
posed on the in-focus plane. The white arrow indicates an invaded
area but correctly segmented as cell surface. This region was actually
covered but invading 'I'C forced the surface outside the in-focus plane. 69

4.9 Segmentation of endothelial monolayer using Principal Com-
ponents Analysis (PCA). Eigenimages of endothelial monolayer are
obtained through peA and the hypothesis is that cell signal values
are correlated and will therefore occupy the same range of pes. (a)
Minimum-intensity projection. (b) Eigenimage reconstructed by us-
ing the first 16 pes only representing 99.6% of the information. (c)
Segmented result of (b). The threshold was manually set to 0.25. (d)
Histogram of the eigenimage shown in (b). The dashed line represents
the subjectively and manually selected threshold of (b) to obtain the
segmented result in (c). Threshold was set to 0.25. 70

XVll



LIST OF FIGURES

4.10 Example of segmentation of a monolayer using PCA. The min-
imum projection was transformed into an eigenimage using the first 16
pes, representing 99.7% of the information. The cell signal would
occupy the first few pes because of its correlation and noise would
occupy latter pes. However, blur affected the distribution of inten-
sity values and caused the segmentation values to fail. The area in
the centre of (a) is an example of where certain regions were falsely
classified as reliable because the intensities were similar to cell signal.
(a) Minimum projection of a stack of endothelial monolayers. (b) The
eigenimage of (a) using the first 16 pes. (c) Segmented result of (b)
while applying the threshold of 0.25. Dashed line indicates a manu-
ally selected outline to represent the corresponding outline in (a). (d)
Histogram of the eigenimage. The threshold was subjectively chosen
to 0.25 which produced (c). 72

4.11 The convolved images after different numbers of iterations.
The image (696x520 pixels) is convolved with a Gaussian kernel of
a=0.5 a number of times. The image gets more diffused with the
number of iterations. The changes between 500 and 1000 iterations
are small, which is why 500 is considered to diffuse the information
enough to distinguish between the trustworthy and not reliable areas. 75

4.12 The segmented monolayer after convolution with a Gaussian
kernel iteratively. The minimum projection (696x520 pixels) of the
monolayer was convolved with a Gaussian kernel of 11x 11 pixels 500
times. The convolution revealed the trends and behaviour of each pixel
over the iterations. The image intensities will tend to reach the average
if the iterations reach infinity. A pixel is selected as background if its
diffusion rate is negative at any point in time. This implies that it is
less than the average. The number of iterations was subjectively chosen
to simulate infinity. (a) Minimum projection over z of a monolayer.
(b) Segmented result. 76
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4.13 Comparison of segmentations of a minimum projection of an
endothelial monolayer stack which PCA did not manage to
segment. The minimum projection over Zwas obtained from a stack
of endothelial cells. The minimum projection was convolved with a
Gaussian kernel 500 times and the rate at which the cell signal dif-
fused was investigated. Linear diffusion managed to segment the large
unreliable area in the centre, which peA did not. The successful seg-
mentation was due to the fact that the behaviour of the cell signals over
the iterations was used and not intensity itself. A segmentation using
Otsu [1]was included as a comparison and the segmentation performed
well due to the fairly uniform labelling. (a) Minimum projection (b)
Segmented result using Linear diffusion (c) Segmented result using
peA with 16 pes and the normalised eigenimage which was thresh-
olded at 0.25 (d) Segmented result using Otsu [1]. 77

4.14 Illustration of interpolation over a sarcoma-induced opening.
Sarcoma cells created openings within the monolayer in attempts to
exit the flow channel. These openings did not contain enough signal
to produce sufficient gradient values. RI measured the amount of
cell signal below the monolayer in relation to the total. In order to
prepare the surface for such a procedure, the opening was replaced
by an interpolated overlay. (a) A surface with an opening caused by
invading sarcoma cells. (b) The surface was restored by interpolating
over the opening. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 80

4.15 Illustration of the disadvantage of Inpainting in the context of
surface interpolation. The main concept of inpainting is to propa-
gate the gap with values from the boundary. The inpainting techniques
gave rise to unrealistic surface reconstructions due to the fact that they
inpaint in the direction of the gradient. The merging between the two
sides may create very sharp transitions, which is not a good represen-
tation of the endothelial monolayer. (a) Illustration of a gap induced
by a TC. (b) The inpainting algorithm tries to inpaint in the direction
of the gradient which may cause sharp transition when the two edges
of the surface merge. . . . . . . . . . . . . . . . . . . . . . . . . . " 86
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5.1 Example of a manual segmentation of a sarcoma cell. The
classification was made subjectively and the thresholds were set to
include the maximum amount of cell signal and minimise the out-of-
focus blur. (a) Maximum projections of raw intensity image stacks.
(b) The thresholded result. (c) Histogram of the maximum projection.
The dashed line indicates the chosen threshold (3200). 93

5.2 Example of a segmentation of a sarcoma cell using Otsu's
method. (a) Maximum projection of a raw intensity image stack.
(b) The thresholded result. (c) Histogram of the maximum projection.
The dashed line indicates the calculated threshold (1285). 95

5.3 Segmentation of a maximum projection of cells using linear
diffusion. The maximum projection image was convolved with a
Gaussian kernel for t iterations (in this case t was subjectively chosen
to 20). The projections over the t iterations containing the minimum
value of the diffusion rate for each < x, y > over the iterations were
obtained. All positive rates were discarded as those represented blur
and noise. For calculation purposes, though, the negative rates were
inverted. To find a threshold, a normalised histogram of the diffusion
rates was created and the normalised number of pixels below a thresh-
old was plotted against the normalised sum of diffusion rates above.
The threshold was selected where the number of pixels was greater
than the sum of diffusion rates which in practice represented the near-
est integer. The number of pixels below a diffusion rate (solid line)
starts at 0.5 because 50% of the values have a maximum diffusion rate
of zero (rounded to the nearest integer). (a) The maximum projection
of the diffusion rates after 20 iterations. (b) The segmented result
on the basis of thresholding diffusion rates. (c) A threshold for the
diffusion rates was found by plotting the normalised number of rates
below consecutive thresholds against the normalised sum of diffusion
rates above the potential threshold. The threshold was chosen at the
crossing of the two curves, where number of rates > the integrated sum
(see inset). The vertical dashed line indicates the selected threshold
which in practice is rounded to the nearest integer (in this instance a
value of 3). 101
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5.4 Convolutions of a maximum projection of an intensity image
obtained from a 3D wide-field stack representing a sarcoma
cell. The maximum projection image was convolved with a Gaussian
kernel of 11 x 11 pixels (2 x 2 J.Lm). Bright pixels in the maximum pro-
jection exhibited a higher diffusion rate compared to background/blur
with lower diffusion rate (represented as dark values) after n itera-
tions. However, a high number of iterations merged some features (see
100 iterations) into larger objects. This was an unwanted property
and 20 iterations were found to be suitable. Values are inverted for
visualisation purposes. Field size is 27 x 27 J.Lm. . . . . . . . . . . .. 102

5.5 Segmentation results of a maximum projection image contain-
ing a sarcoma cell based on linear diffusion and thresholding
for a selection of iterations. The maximum projection obtained
from a 3D stack of images was convolved with a Gaussian kernel of 11
x 11 pixels (2 x 2 J.Lm) n number of times (0'=0.5). The rate at which
each pixel diffused was investigated and formed the basis for segmen-
tation as cell signal values were different and diffused more quickly
than blur and background. The maximum rate for each <x.y > was
represented as intensity in an image. A threshold for this image was
selected at the intensity level where the normalised number of pixels
below a threshold candidate was greater than the normalised integrated
intensity above (see Fig. 5.3(c)). The segmentation results look similar
because the maximum values over the iterations are chosen which were
the same in each case. Therefore, 20 iterations were chosen. Each re-
sult was also filtered with a 5 x 5 median filter to remove noise. Field
size is 27 x 27 J.Lm. 103
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6.1 Procedure of the creation of a validation data set for the
maximum gradient. The validation of the maximum gradient fea-
tured a data set based on a confocal stack. A confocal stack of a
monolayer with fixed specimen was acquired with resolution <x.y,zc-

= 0.07xO.07xO.2 J.Lm/pixel.The resolution of this stack was adjusted
to match the resolution of a PSF (0.lxO.1xO.2). These were convolved
and the result was a new stack which resembled wide-field conditions.
The new convolved stack contained images with <0.33xO.33xO.2 >
J.Lm because the <x,y> resolution of the two stacks was decreased by
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Chapter 1

Introduction

1.1 The problem domain

The spread of cancerous cells to a remote site that form secondary tumours, metas-

tasis, is still the major problem for cancer patients since it is responsible for the

majority of their deaths [6]and cancer has become one of the most common diseases

in western countries. The process by which metastases form is referred to as the

metastatic cascade [7]. In many cases of cancer, the metastatic cascade involves tu-

mour cells spreading in the body through blood vessels. The metastatic cascade can

then be described as a sequence of necessary events [8]. In this metastatic cascade, the

tumour cells have to actively invade through endothelium twice (intravasation and

extravasation). The invasion is therefore a very important aspect of the metastatic

cascade [9].

Previously, the invasion has mostly been quantified subjectively by manual scoring

and some of these studies were limited to static observation of the end result. Devel-

oping a direct-viewing protocol for objective evaluation of invasion would therefore

provide additional insights.
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1.2 Aims

1.2 Aims

We decided to explore additional aspects of the extravasation process in vitro by

high-resolution 3D imaging combined with an image-processing-based quantitation

of its dynamics. The aim is to develop a novel direct viewing flow assay and apply it

to an investigation of metastatic rat sarcoma cells invading monolayers of rat brain

endothelial cells in vitro to objectively quantify the invasion in situations without

and with shear forces.

1.3 Contribution

Objective evaluation of the cancer-cell invasion has attracted little interest, partly

because wide-field microscopy introduces blur, which degrades the information in the

images. Confocal images require extensive monitoring periods which may harm the

dynamic events of invasion. This thesis devises two new quantitative parameters, Rel-

ative Invasion (RI) and the Opening Rate of the Endothelial Monolayer (0 RE M),

to objectively assess the invasion, which required novel image-processing procedures.

The first parameter, RI, was defined as the percentage of sarcoma cell signal below

the monolayer. This procedure consisted of the restoration of the endothelial mono-

layer surface from a stack of wide-field images. In brief, the z-location of the surface

was first determined. Certain surface regions contained unreliable cell signal readings,

because of blur introduced by wide-field microscopy, and needed to be constructed

with interpolated values in order to estimate RI correctly. It also included segmenta-

tion of sarcoma cell signal in the projection image by investigating the diffusion rates

over multiple convolutions. The second parameter OREM was defined as the speed

at which the sarcoma cells open the monolayer at early stages of the experiments.

The system was successfully applied and our approach revealed a novel aspect of
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1.4 Thesis overview

the invasion process, namely its non-linear modulation by the shear flow, similarly to

white blood cells.

1.4 Thesis overview

The remaining parts of the thesis are organised as follows:

Chapter 2 contains background information and related work. It explores the cur-

rent use of flow chambers, how invasion has previously been quantified and some

related image-processing techniques.

Chapter 3 contains descriptions of the experimental set-up used for the experi-

ments which include the new Open flowchamber and the corresponding acquisition

technique. It also defines the quantitative parameters.

Chapter 4 contains descriptions of the surface reconstruction which is divided into

three sections: surface estimation, identification of unreliable regions of endothelial

monolayers and interpolation over these regions.

Chapter 5 contains descriptions of the segmentation of sarcoma cells and explores

histogram-based segmentation and segmentation based on Linear diffusion.

Chapter 6 contains Validation of image-processing procedures and the quantita-

tive parameters with their statistical significance.

Chapter 7 contains biological results of the findings.
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1.4 Thesis overview

Chapter 8 contains a discussion on the possible implications of the findings, conclu-

sions and future work.

4



Chapter 2

Background

2.1 Cancer-cell invasion

Cancer is one of our most common diseases. Discovering tumours at an early stage

significantly increases the chances of survival and the fate of the patient is more

successful [1OJ. Early detection helps in the prevention of metastasis, which is one

of the key elements in successful treatment. Metastases occur when cancer cells

detach from the primary tumour, penetrate the blood vessel wall and enter the blood

system. The cells are then circulated until some attach to a vessel wall, invade the

tissue and start multiplying to form a new tumour [8J (see fig. 2.1). However, not

every cell that manages to invade creates a new tumour. Most cells die during the

circulation process and do not survive and transmigrate [11J[12J[9J. Only those that

proliferate will create a secondary tumour and it is therefore important to understand

the properties of the metastatic cascade.

Cell motility is thought to be involved in the invasion step of metastasis. Motility

can be seen as sequential steps of pseudopodia extensions, adhesion, intracellular

contraction and intracellular retraction (rear release) [13Jwhere the cell scans the
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2.1 Cancer-cell invasion

Figure 2.1: Diagram of the metastatic cascade illustrating the importance
of active cell migration through the endothelium. A subset of tumour cells
leaves the primary tumour (A) and intravasates (B) into the blood circulation system
(C). Some of those cells adhere to the vessel wall at a remote site and extravasate (D)
into the surrounding tissue. Proliferation occurs once the transmigration through the
endothelial cells is complete and forms the basis of a secondary tumour metastasis
(E).

surroundings with its pseudopodia and adheres to the endothelium, contracts its

body towards the leading edge and finally releases its rear end to complete the motion.

The invasive characteristics are influenced by different stimuli linked to motility and

a number of factors have been identified as being responsible. These can be grouped

as autocrine motility factors, extracellular matrix proteins and host-secreted growth

factors [14]. These cause a tumour cell to direct itself towards e.g. a chemical gradient

or towards the source from where the factor originated.

In order to study motility and invasion in vitro, a number of chambers have been

developed during the years and can be arranged into two groups with two subgroups

each as seen in Table 2.1. Some of them are used to study the influence of chemotaxis

in relation to migration in vitro [15] [17] [18].
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2.1 Cancer-cell invasion

Static Flow
Boyden chamber [15] Dong [16]

Chemotaxis Zigmond chamber [17]
Dunn chamber [18]

Cell behaviour Coverslip Parallel-plate [19] [20] [21]
MatTek dish Side-view [22]

Glycotech (Glycotech,MD,USA)

Table 2.1: Table of the different kinds of chambers. Chambers exist to examine
chemotaxis and cell behaviour with or without flow.

Chambers have been used to study how cells react to certain chemical agents.

Agents either attract or repel cells. The cells that are attracted to the agent move

towards it and this behaviour can be assessed using a Boyden chamber [15]. A Boyden

chamber consists of two compartments, separated by a microporous filter. One agent

occupies the lower compartment and the cells, combined with another solution, are

located in the upper compartment. The cells then travel towards the lower section

through the filter. The distances the cells have travelled inside the filter reveals their

attraction. The holes within the filter are so tiny that the cells can only enter it by

choice and not by e.g. gravity. This will ensure that the cells deliberately move toward

the chemical substance. The filter is then post-examined manually using a microscope

to evaluate the invasion. An advantage with this approach is that the experiment and

evaluation are easy to perform and simple to assess, and there are few variables to

take into consideration. However, it does not allow for direct viewing. Solutions have

been devised to solve this problem. The Zigmond chamber [17] is one which tries

to implement a direct viewing approach. It is made of glass or plexi-glass with two

rectangular compartments separated by a bridge with height Irnm. The two wells are

filled with two different solutions. The cells are grown on a separate coverslip which is

mounted over the wells and the bridge with the cells" upside down" , facing the agents.

The coverslip is held in place by two spring clips at each end. This set-up allows for a
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2.1 Cancer-cell invasion

gradient to be formed over the bridge to which the cells can react. Since the chamber

is transparent - unlike the Boyden chamber - the cell behaviour can be monitored

during its course. The material of which the chamber is made also has good optical

properties which is important to obtain meaningful images. One negative aspect of

this invention is that there is no fixed distance between the bridge and the coverslip

where the cells reside. The springs which hold the coverslip may introduce different

forces between experiments, causing the chamber to have different distances between

the bridge and the coverslip and this may affect the result. It is thus difficult to

repeat the experiments with identical settings. A Dunn chamber [18]overcomes this

problem by modifying a commercially manufactured counting chamber. A counting

chamber consists of a round well, centred on the coverslip with a fine grid net at its

bottom, which allows the experimenter to visually count the number of cells on the

coverslip. The modification consists of drilling a second, inner well. The inner well

contains one chemoattractant and the outer another, preferably weaker, agent. The

coverslip is positioned over the wells and sealed with wax, leaving a small opening

by the outer section. The gap is used to suck out the medium contained in the outer

well and replaces it with whatever solution is required. The opening is lastly sealed

as well. This set-up assures a fixed gradient over the bridge and there is no excessive

leak of fluid from one compartment to the other. The Dunn chamber is also made

of thin glass which makes it suitable for a wide range of applications in microscopy.

However, it does not facilitate flow experiments. The Dong chamber [16]seems to be

the first instance in which chemotaxis and shear forces are taken into consideration.

Dong et al developed a modified Boyden chamber to study the influence of shear

stress on the invasion process. It allows for easy assembling using six screws and the

top plate features an inlet and an outlet to admit cells to flow through the window

of the gasket, above a monolayer of endothelial cells. The monolayer was grown on
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2.1 Cancer-cell invasion

the top side of the filter and exposed to TC interaction and the flow. The wells

below the filter were filled with a chemoattractant solution. The bottom side of the

filter was then post-imaged for migrated cells. This set-up utilises the advantages

of a Boyden chamber as well as a conventional parallel-plate flowchamber to assess

the influence of chemoattractants on cell behaviour in conjunction with flow. Even

though it provides options for flow, it lacks visual inspection. The chamber only

allows for post-examination of the filter and there is no indication of cell behaviour

during the course of the experiments.

The parallel-plate flow chamber has now become the mainstream tool to assess

cell-cell interactions. The scheme was first proposed by Hochmuth [19] and later

devised by Lawrence et at [20]where a vacuum was used to ensure a fixed height

between the coverslip and the bottom of the chamber. The chambers consist of

two parallel plates where, for example, ECs are cultured on the top plate and the

bottom plate holds a gasket to - when vacuum is applied - ensure a distinct height

of the chamber. These are used to record the cell behaviour during the experiment

(direct viewing) while exposed to flow. New proposals also include the Glycotech

flow chamber (Glycotech, MD, USA) which is circular and smaller than previous

chambers. A disadvantage though is that these do not facilitate a way of directly

injecting the cells. Cells have to circulate through the tubing, which may allow the

cells to adhere and cluster inside the tubing. This is also time consuming. The

time it takes for the cells to travel from the injection point through the tubing and

into the chamber can be considerable. A comparison of flowchambers can be found

in [23]. Recent developments also include side-view chambers which allow for axial

instead of lateral investigation [22] [24]. Two rectangular coverslips were adjusted

so that the surface had a 45° slope on each side of the flow channel. The coverslips

were coated with a reflective substance. The light source originated above one of the
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2.1 Cancer-cell invasion

mirrors which directed the light through the side of the specimen. The objective lens

was located below the mirror on the opposite side. This opens up new possibilities

to study how the interactions between the cells occur axially which is relevant in

invasion studies. The optical properties could possibly be a problem since mirrors do

not reflect all light. This may also affect the signal-to-noise ratio and produce noisy

images.

TCs interact with endothelial cells and release chemoattractants [25]which con-

tain valuable clues to the adhesion [26] [27] and invasion [28] and are thought to

be involved in these steps [29] [30] [31] . It was previously discovered that leukocytes

can open endothelial cell (EC) junctions through chemotactic stimuli and invade the

tissue in static conditions [32]. This coincides with static results where images from

Scanning electron Micrographs clearly show that tumour cells induce" holes" among

ECs [33]and eventually form secondary tumour colonies [34]. Some studies suggest

that signalling pathways are involved in the retraction and that the process is TC-

initiated [35]. Adhering and extravasating tumour cells tend to cause EC opening

and retraction [34]which typically culminates within 1 hour but can still be ongo-

ing, with declining intensity, for up to 24 hours after initial adherence [36]. In vivo

experiments also support these results [37].

Cancer cells propel through the barrier once the endothelial junctions are disas-

sembled [38]. The mechanism by which the tumour cells open EC is not yet fully

understood. In some studies, neutrophils are thought to assist tumour cells in their

strive to extravasate during flow [39], either by chemotaxis [40] or motivated by

shear forces [41]. Among shear, shear rate expresses higher importance than shear

stress as the neutrophil-facilitated contact with EC tends to increase during former

conditions [42].

In certain situations, TCs have the ability to completely and permanently damage
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2.2 Assessment of cancer-cell invasion

the connections between the individual endothelial cells, which will eventually cause

apoptosis [43] [44]. Nevertheless, the layout of the endothelium is highly dynamic

and enables restoration capacities among EC (without apoptosis) once extravasation

is completed [45]. This suggests a dual response to invasion where the duplex is not

fully understood.

2.2 Assessment of cancer-cell invasion

One path to understanding metastasis is to quantify the invasion process. Li et al

[46] incorporate a Boyden chamber coupled with a radioactive labelling technique

to measure invasion. Transwell chambers form a dual compartment chamber with

confluent monolayer of endothelial cells grown on a filter as separation. Tumour

cells then travel from the top compartment towards the bottom and the invasion is

measured as the ratio of radioactivity in the lower compartment related to the total.

This circumvents the labour-intensive procedure of visually counting the invaded cells.

However, it does not facilitate direct viewing, which makes the visual monitoring of

the cells during the experiment impossible. The radioactive labelling may also prove

to be toxic to the cells and may alter the cell function if the experiments are performed

over extensive periods.

The 3D trajectories of the nucleus of invading cells have also been investigated

where cells invaded a layer of collagen gel [47]. Image stacks were obtained from an

inverted fluorescence microscope every hour, providing a 4D dataset which was used

for analysis. The centroid of each cell is located manually in each (full) projection

(XY, XZ and YZ) and stored together with the time information in a data file which

provided the voxel centroid over time. This was repeated for every cell and time point

and provides evidence for a significant difference in their migration kinetics (Le. non-
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invasive cells migrated less) in 3D which was not evident in 2D. The method, however,

is labour-intensive and only tracked the centroid. An automatic way of tracking cells

from 3D stacks was also developed [48]where 3D stacks of gel consisting of a mixture

of collagen and matrigel were obtained as a tiled series. The cells were automatically

segmented and their 3D trajectories were calculated based on a nearest-neighbour

algorithm. The nearest-neighbour window was divided into 12 regions forming the

basis of a 13-state Markov chain representing eight axial states, four lateral states and

one stationary state. The movement of the cells was then classified according to their

movement in the window relative to the previous frame. All of these solutions give

a good indication of the direction of the cell movement (in 3D) but no information

about the invasion as such. It provides information about cell journey and movement

but not the amount of invasion.

A recent study has revealed tumour-cell behaviour related to the breakdown of

endothelial cell junctions under flow, featuring a parallel-plate flow chamber [49].

Morphology of tumour cells was assessed manually and axial and lateral spreading

were quantified by using fluorescence microscopy. Measuring the spreading axially

and laterally aided numeric analysis of the elongation. This facilitates an estimate

of the activity as the cells spread both axially and laterally under shear stress. Hart

et al [50] present a way of quantifying the metastasis and investigate the different

steps involved under static conditions. A mat rigel invasion chamber hosts the par-

ticipating specimen (Bone marrow endothelial cells (BMEC) and prostate cell line

(PC-3)) and provides an opportunity to objectively explore the cooperation between

the cell types. The progression was also monitored every 30 min for 10 hours using a

confocal microscope (LSM51O). The images captured revealed that during the time

course, TCs pseudopodia reached toward the coverslip and pressed in, under the en-

dothelial layer, and the entire body had extravasated after 3.5 hours. This implies
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2.2 Assessment of cancer-cell invasion

that the interaction between the two sides is an ongoing process. The invasion is

slower than for monocytes and this may be due to the fact that TCs are larger than

monocytes (higher resolution images are used to capture monocytes) [51] and can

not slip through the junctions as easily. It therefore has to extend its filopodia into

the endothelium and cause a retraction. The complete journey, including adherence

to endothelium, invasion and migration through junctions, is measured to about 4

hours [50]. Quantitative analysis of invasion is of interest to many biologists and an

efficient and reliable experimental set-up as well as analysis techniques are important

to produce statistically legitimate studies.

In order to contribute to a potential improvement of the current understanding,

this project studies metastasising sarcomas in an inbred rat model [52]where the

metastasising cells have to invade through the endothelial monolayer during flow

conditions in vitro. Furthermore, it would be of great interest to study the dynamics

of the invasion process in a direct viewing approach. This thesis describes a new

invasion assay in vitro consisting of a new flowchamber and novel image analysis to

provide measurements of the invasion dynamics.
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2.3 Imaging modalities in microscopy

2.3 Imaging modalities in microscopy

A light microscope is invaluable when investigating living species such as cells. Light

microscopy makes it possible to explore the behaviour of the cells in vitro without

causing harm or damage. An example of a description of a simple light microscope can

be seen in Fig. 2.3. The cells are exposed to a set of light beams, which highlights their

features. A light source illuminates the specimen and the resulting light is collected

at the eyepiece to form the actual image. In a light microscope, both visible light and

ultraviolet light can be used to visualise the specimen and the resolution is governed

by refraction [53], diffraction [54] and the Point Spread Function [55]. An overview

of common live cell imaging/microscopy techniques can be found in [56] [57] [58].
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2.3 Imaging modalities in microscopy

2.3.1 Point Spread Function

The image formation in a microscope can be described as a convolution process

according to Eq. 2.1. The observed stack 0 is formed when it is convolved with

the unknown light-spreading function (i.e. the PSF) which describes how the light is

spread throughout the specimen. Fig. 2.2shows a projection of an acquired PSF. The

basic principle of convolution is that the PSF is shifted so that its centre is located

at each 3D point and the contribution from each shifted PSF is integrated. The

observed image 0 and the PSF (Eq. 2.1 ) are acquired data and S is the unblurred

image. All 3D wide-field microscopy images contain light which originates from the

rest of the cell and degrades the image.

z

x
(a)

Top

x Right

(b)

Figure 2.2: Example of an XZ-projection of an acquired Point Spread Func-
tion (PSF). A single point influences its neighbouring points in a manner described
by the PSF. The surrounding voxels are affected, mainly in Z-direction but also in
XY. This behaviour is due to asymmetry of the optics. A black pixel in the image
represents no influence from the point source and white represents heavy influence.
(a) XZ-projection of an acquired PSF (b) XZ-projection of a wide-field image stack
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2.3 Imaging modalities in microscopy

Blur prohibits a user from examining the focal plane accurately. The information

about the degradation process can be obtained from a 3D image stack of a point

source, which usually consists of a fluorescent bead. Images of the bead are obtained

at several focal planes, below, at and above the in-focus plane and form the (PSF).

O(x, y, z) = S(x, y, z) 0 PSF(x, y, z) (2.1)

A PSF can be obtained both theoretically and experimentally. Software (e.g.

Huygens, Scientific Volume Imaging, Netherlands) is used to obtain a PSF theoret-

ically which usually requires knowledge of the numerical aperture of the objective

lens, wavelength of the emitted light, the dimensions of the PSF, size of a pixel and

distance between the z-planes. An experimental PSF is acquired by capturing stacks

of fluorescent beads. The beads are placed onto a dish or a coverslip which is then im-

aged. It is advisable to use a smaller number of beads compared to a larger number,

as unwanted clusters are likely to form which will cause the light emitted from the

clustered beads to interfere with the emission of light from the neighbouring beads.

Beads were selected based on the separation from its neighbours to minimise the

interference from other sources than itself. The size of the beads should be 1/3 of

1.22,\\N A which is 0.41,\ \N A [59]. In our case where the N A = 1.4 and green

fluorescence (500 nm) was used, the size of the bead should be 0.15J.tm. A common

approach is to acquire several stacks and average them to reduce noise.

2.3.2 Wide-field Fluorescent Microscopy

Wide-field fluorescence microscopy is one of the most important tools in cell exami-

nation. It gives the ability to visualise the fundamental structures that exist within

the cell in their natural hydrated environment. Figure 2.3 shows the design of a light
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2.3 Imaging modalities in microscopy

microscope. The light emitted by the lamp is passed through the system, reflected

by the specimen and recorded by the sensor. The collector lens collects the light

produced by the lamp and focuses it on the dichroic mirror while the objective lens

assembles the reactive light (which reacted with the specimen). The dichroic mir-

ror is a semi-transparent mirror which selectively pass a range of wavelengths. This

allows only the fluorescent light to reach the eyepiece. As an extra precaution, a

barrier filter is installed to make sure the correct wavelength is used in the imaging.

The microscope can be divided into three sub-systems with respect to how the light

travels according to the list below [60].

1. Light source - collector lens - excitation filter and

dichroic mirror

2. Objective lens - specimen - objective

lens - dichroic mirror

3. Barrier filter - eyepiece lens -

sensor

The aim of the first sub-system is to focus the light on the specimen. The light

usually originates from a mercury lamp or a xenon lamp and emits UV-light. It is of

importance that the specimens are uniformly illuminated in order to avoid shadows

in the images. The objective lens assembles all light and focuses it onto the cells.

The light will react with fluorophores in the specimen and produce a resulting set of

light waves. The incoming and outgoing rays of the objective lens will be of different

wavelengths and therefore the outgoing light is able to pass through the dichroic mir-

ror. The eyepiece lens makes the light visible to the eye or the sensor which digitises
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Sensor

Emission
Light

Barrier
Filter

Dichroic
Mirror

Figure 2.3: Fluorescence imaging system set-up. The fluorescence microscope
consists of a lamp and an excitation filter that only allows the specific excitation
wavelength to pass through to the dichroic mirror, which has the ability to reflect
a certain wavelength and be transparent for another. This ability grants only the
emitting light access through the mirror while the exciting light is mirrored towards
the specimen. The objective lens focuses the light onto the specimen and the eyepiece
lens focuses the light towards the detector.
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2.3 Imaging modalities in microscopy

the image. The sensor is usually a CCD-camera.

Each lens is characterised by

27rNA
a=--

A
(2.2)

where NA is the numerical aperture of the lens and A is the wavelength of the

light. Every lens has a cut-off frequency which determines the maximum frequency

that can be resolved by a lens and is defined by

47rNA
wc=2a= --

A
(2.3)

The cut-off of high-frequency components can mathematically be described as

convolution. The fact that a lens cannot collect all the light available (due to its

limited size) together with the cut-off frequency makes a microscope a band-limited

system.
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2.3 Imaging modalities in microscopy

2.3.3 Confocal microscopy

Confocal microscopy was invented in the 1970s and it is thought to provide an in-

termediate resolution between wide-field and electron microscopy. It provides higher

resolution than a wide-field but still with the possibility to study living specimens.

Confocal microscopy also provides optical sectioning which reduces the out-of-focus

information normally present in the wide-field technique, leading to reduced con-

trast [61]. Images obtained with confocal microscopy are clear and sharp immediately

after the acquisition without the need for any post-processing.

The set-up of a confocal microscopy can be viewed in Fig. 2.4. Since the exact

source

Dichroic

Objective
lens

Figure 2.4: Diagram illustrating the principles of confocal microscopy. A
light source emits light which travels through an aperture (light source aperture).
The light is reflected by a dichroic mirror onto the specimen. The fluorescently
labelled cells respond by emitting light different from the excitation wavelength. A
pinhole in front of the detector blocks out-of-focus light and detects the in-focus.
A confocal microscope exhibits similar layout to a wide-field microscope with a few
exceptions. Two of those are the light source aperture and the detector aperture
which only allow in-focus light to progress through the system.

location of each scan is known, we can then obtain a 3D representation of the specimen

using the fluorescence intensity level for each voxel < x, y, z ». The specimen is then
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2.3 Imaging modalities in microscopy

scanned line by line, plane by plane, until the defined range has been covered. The

term confocal stems from the fact that the image of the light source aperture and the

image of the detection aperture have the same focus.

One conclusion that can be drawn from Fig. 2.4 is that a point illuminated by

a point light source will be equally illuminated on the detector side (considering

optimal conditions) [62]. To minimise the effects of diffraction, small apertures are

positioned at the light source and the detector and are the main differences compared

to wide-field fluorescence. The detection aperture must be positioned so that only

light that coincides with the focal plane travels through to the light detection device,

hence achieving confocal conditions. The light emitted from areas not in focus will

bounce off on the side of the aperture allowing light from the specific voxel to be

received. Although the size of the light source aperture can be relatively small due

to the high energy of the laser (hence representing a point source), the size of the

detector aperture may be larger in order to capture enough light from weakly labelled

specimens. A large aperture may introduce blur in a similar fashion to wide-field

provided that the aperture is large enough. The distribution of the light is then

dependent on the lens. A confocal microscope will introduce a small amount of blur

due to the fact that an infinitely small aperture is impossible to produce. This turns

the image-generation process into a convolution process. Therefore, some out-of-

focus information is unavoidable but the quality is far better than wide-field. The

sectioning property of the confocal technique is an important aspect. Due to the

directed emitting light from the light source and the detection aperture, only the light

from the imaged voxel will reach the detection device. In wide-field microscopy the

in-focus plane will be imaged sharply and the other planes will be blurred, as all light

will reach the detector. The drawback with the confocal technique is that it requires

a long time to acquire, an image as each voxel in the specimen has to be imaged.
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2.4 Image-processing techniques

It is also fluorescence-intensive as each < x, y > is exposed to light multiple times

when acquiring optical sections. Long monitoring periods with multiple acquisition

are therefore in some cases prohibited. This makes the technique useful for high-

resolution images, acquisition of fixed specimens or specimens with slow movement.

2.4 Image-processing techniques

An image stack acquired with a wide-field microscope contains blur which interferes

with the cell signal. As a result, the cell signal is not readily available without manual

intervention. Manual involvement may allow variations between experiments due to

the subjective nature of those estimations. Instead, we would like to obtain an objec-

tive, computer-generated measurement of the invasion which requires computerised

segmentation and estimation of the cell signal.

The following sections describe techniques used to segment cell signal.

2.4.1 Gaussian Mixture Models

Consider a set of scattered multidimensional data points (x., X2, ... ,xn) which form

m clusters. We can define a multivariate Gaussian model such that

m

P =LWkPk(Xi),

k=l

i: 1,2, ... ,n (2.4a)

(2.4b)

where Wk is the weight (Le. prior or mixing coefficients), the sum of the weights

of all clusters has to be = 1 (Eq, 2.4b), Pk is the probability of cluster k and P

is the mixture model. The general multidimensional case of the probability where
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the point Xi belongs to the cluster k, given the average ak and covariance Sk, is

defined in Eq. 2.5 [63J where the parameters (Xi - akf SkI (Xi - ak) represent a

matrix multiplication and I s, I the determinant of s;

(2.5)

This gives the probability that a point is drawn from a d-dimensional Gaussian

distribution with mean ak and covariance Sk. The task is to estimate the weight w,

average a and covariance S for each cluster. The E-M algorithm performs such a task

in which these values are estimated. The principle is described in Fig. 2.5.

So each pixel contributes to each mixture with a different amount defined by d. By

alternating between the E-step and the M-step a fixed number of times, the estimates

will approach the true value. The M-step is practically realised by the iterations. The

more iterations, the closer the estimate will be to the true value. The run time for

the algorithm depends on the expected accuracy of the result and more iterations

obviously give greater accuracy.

The EM algorithm needs to be initialised by given starting values for the weight,

average and covariance. This can be achieved by kmeans algorithm [64Jor any other

clustering algorithm. The goal is to minimise the sum of squared distances within

each cluster. kmeans initialises the centres randomly. The distance from each point

to each cluster centre is then obtained and the point is assigned to the cluster to

which it is closest. This step is repeated until no data points are changing cluster

or a predefined number of iterations has been reached. The output from kmeans is

fed into EM which utilises this as its starting point. If these estimates are incorrect

or badly chosen, EM will take extensive time to converge. It may also converge to a
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E-step: Calculate the contribution of point Xi to the gaussian
mixture component k

dik = ~kN (Xi; ak, Sk)
2:j=l WjN(Xi; aj, Sj)

M-step: Calculate a new weight w, average a and covariance S
for each mixture component k

(2.6)

Figure 2.5: Description of the EM algorithm. The algorithm
alternates between the E-step and the M-step for some iterations.
The average is recalculated during every iteration and will eventu-
ally converge. In the E-step, the probability N (Xi; ak, Sk) is cal-
culated using Eq. 2.5 given the parameters for a particular cluster.
Repeat the E-step for all pixels and every cluster. Then, using the
M-step, recalculate new weights, average and covariance for each
cluster. Repeat the E-step and M-step until the number of repeti-
tions has been reached.

local minimum instead of the global.

The probabilities that a point belongs to cluster 1 and cluster 2 are obtained

according to E-step - Fig. 2.5. This is repeated for every point. The parameters of

each cluster within the mixture are then updated using the M-Step. The algorithm

alternates between these two steps until a certain number of iterations have occurred

or the difference in likelihood between the current step and the previous step has

reached a certain value. The likelihood function is defined according to Eq. 2.7 [65].

(2.7)
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Often the log-likelihood is used, which is the log of the likelihood function in

Eq.2.7.

A disadvantage with EM is that the number of clusters has to be known. This

property usually comes naturally since the clusters often represent a physical event.

However, if such an event does not exist, selecting the number of clusters can be some-

what difficult [66] although the likelihood can be utilised to estimate an appropriate

number by maximising the Bayesian information criterion (BIe) [67]. Advantages

are that each point is given probabilities of belonging to a particular cluster and the

statistics of the cluster can be used to estimate missing data points. GMM can also

be used in classification where the distribution of the objects are known. The distri-

bution from the unknown object (e.g the mean) is compared with the distribution of

a known object and a match is made if the value is within the known distribution [68].

25



2.4 Image-processing techniques

2.4.2 Principal Components Analysis

Principal Components Analysis (PCA) is a common technique for dimensional re-

duction. The main concept is to reduce the dimensionality of a matrix while still

maintaining as much of the variation as possible. This is achieved by transforming

the existing data into a new set of variables, Principal Components (PC), so that

the first few components represent most of the variation in the original dataset. The

transformation turns a set of correlated vectors into a new set of uncorrelated vec-

tors (PCs) and this approach can reveal structures in the data that are not obvious

without transformation.

The transformation can be written in mathematical terms as

z=Y[x (2.8)

where x is the original data to be transformed and z is the output after transformation

determined by PCA, Le. the Principal Components (PCs); v" is a transposed version

of the matrix Y where the nth column represents the nth eigenvector of the covariance

matrix of the original data x.

If A is an m x n matrix with m observations in n variables then the PCs are

found by using the scatter matrix. The observed covariance matrix C (a.k.a. scatter

matrix) is defined in Eq. 2.9 [69].

(2.9)

A common approach to obtain the eigenvectors and eigenvalues is to apply Singu-

lar Value Decomposition (SVD). The decomposition produces three additional vari-
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ables according to Eq. 2.10.

[U, S, V] = 8vd(C) (2.10)

The contents of these are such that the columns of V represent the eigenvectors

and the diagonal values of S are the eigenvalues, i.e.

811

A = diag(S) =

8mm

The reduction of the original matrix is then performed according to Eq. 2.8.

Details of the transformation can be found in [70]. In the case of multidimen-

sional data, the pes can be multiplied by the columns of the original data [71]and

each eigenvector can therefore be applied to the columns of the image forming an

eigenimage such that

i :i = 1,2·· ·n, k:k=1,2···m (2.11)

and i represents the ith column in the image and k the kth eigenvector. The original

image is recovered if all eigenimages are added together. If the eigenvectors were

ordered in ascending order according to their eigenvalue, the vector with the highest

eigenvalue represents the first principal component; the second highest represents

the second component etc. The eigenvalue describes the amount of variation within

the dataset (Le. the variance) so that the vector with maximum variance is in the

first dimension, second largest variance is in the second dimension etc. The dataset

can then be reduced by retaining only the vectors with the corresponding p largest

eigenvalues. The amount of information retained can be viewed by plotting the
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eigenvalues for each PC as seen in Fig. 2.6 and is drastically decreased with a higher

number of PCs.
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Figure 2.6: The eigenvalues of the corresponding Principal Components.
The eigenvalues represent the amount of variation contained in each PC. The largest
eigenvalue represents the first PC and, subsequently, the first PC contains most of
the variation in the image. Many PCs do not contribute much to the information in
the image and a reduction can then be made by discarding PCs with little variation
(Le. small eigenvalues). Choosing the number of PCs is then the overall problem.
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2.4.3 Linear diffusion

Signals, or images, are viewed differently depending on the current scale or resolution.

For example, an image of a building within a city offers plenty of detail compared

to the satellite image. On the other hand, a satellite image over the city provides

a good overview but very little detail. The two images provide levels within a scale

space where the transition between the two explores the lifetime of certain features.

The behaviour of signal over multiple scales is subject to variations depending on

the strength of the local structures and is the major property of scale space filtering.

The main purpose is to produce a compound of derived signals such that the fine

detail decreases with decreasing scale. The behaviour of a signal over multiple scales

was first defined in one dimension [72] and later in two dimensions [73] and can be

viewed as a diffusion where the signal is diffused over the scales. Representing the

signal over multiple scales segments coarse and fine details such that the coarse details

remain over the scales longer and fine details will fade quicker. This is realised in

mathematical terms by convolution between the signal and a kernel. High values are

diffused towards lower values where they eventually reach the average signal value.

The general form of the diffusion equation is formulated as

al
an = DI).I (x, n) (2.12)

where D controls the blurring at each iteration nand 1).1 the intensity result at

each iteration. For linear diffusion, D is constant. Witkin [72]described the Gaussian

kernel as the preferable choice because of its symmetry and decreasing values away

from the average. In terms of images, the process could be defined as

F{x) ® G{h, 0") (2.13)
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where F(t) is the original image, G(t, a) is a Gaussian kernel with standard

deviation a and @ represents convolution. This implies that the Gaussian function

acts as a weighting function where values close to the mean are given a high score

and values further away a lower score.

2.4.4 Numerical interpolation

The cancer cells introduce openings in the monolayer in their strive to exit the flow

channel. These openings introduce false readings when the surface is reconstructed

and need to be addressed. In this case, interpolation nodes around the opening must

be chosen as representative descriptions of the shape of the surface.

Numerical interpolation is the process by which intermediate values are estimated,

and given known values. It estimates values in relation to its surroundings. The

technique is based on fitting polynomial curves to the data points and the simplest

form of interpolation is the linear interpolation. With linear interpolation, a linear

equation was used to predict the values in-between two nodes as shown in Fig. 2.7.

The interpolation function MUST go through the nodes exactly.

The interpolation function can be any polynomial that seems to fit the function

values and the most common is a cubic polynomial. Multidimensional interpolation is

performed by interpolating one dimension at a time with the result from the previous

iteration as input to the current, as explained in the pseudo code below.

Y = multidimensional matrix;
for p = 1 TO num of dimensions
Y = interplD(Y,p);
end
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- original curve
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Figure 2.7: Linear interpolation between two points. Two known data points
are chosen (A and B). A line which runs through these points is fitted to them. The
value of the intermediate point C is obtained by finding f( x) of the line at the position
C.
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Chapter 3

Direct viewing flow chamber

system

A common method for in vitro experiments in conjunction with flow is to use a

flow chamber system which consists of a chamber and some kind of mechanism to

generate the shear forces. The following chapter explores the GlycoTech flowchamber

and the newly devised Open chamber together with their corresponding acquisition

procedures. It also includes the devised definitions of the quantitative units of invasion

applied to the results given by the experiments.

3.1 GlycoTech flow chamber system

The circular flow chamber was purchased from GlycoTech Corp., MD, USA. The set-

up consisted of the chamber, a rubber gasket and flexible tubing where the gasket

was positioned on top of a coverslip with a confluent monolayer of endothelial cells.

The gap between the chamber and the gasket/coverslip was sealed with vacuum and

grease to form a tightly closed system according to the manufacturer. However, this
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3.1 GlycoTech flow chamber system

solution did not perform well for our purposes as leakage was a common problem.

Assembling the system was also time-consuming due to the combination of vacuum

and grease. Instead we developed a metal enclosure which enclosed the system as

shown in Fig. 3.1. The enclosure was gently secured with three metal screws which

restrained the chamber from leakage. The chamber was then ready for installation

on the microscope stage.

One problem we faced was air bubbles. The assembling of the chamber did not

always create an air-free environment as the union between the gasket/coverslip and

the chamber made it possible for air to remain inside the chamber. The effect of these

could be seen in the field of view of the microscope as large blobs floating around.

These could potentially affect the measurements and the optical properties. The

introduction of the sarcoma cells was also problematic as described in section 3.3.1.

This led to the development of the Open chamber.
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-Custom
designed metal
enclosure
secured with 3
screws.,

-Glycotech
chamber
Silicon--~t- gasket

32 mm diameter coverslip

(a) Cross-section of the flow chamber sys-
tem. The metal enclosure stops the cham-
ber from leaking and keeps it in place and
is secured with three screws.

(b) Photograph of the extended chamber po-
sitioned in the stage.

Figure 3.1: The GlycoTech flow chamber system. The system consists of a
circular flow chamber (GlycoTech Corp., MD, USA) which we have fitted into a
stainless-steel enclosure to enhance stability and allow ease of use. The bottom of
the chamber is sealed by a 32 mm diameter coverslipwith a monolayer of rat brain
endothelial cells (RBE4).
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Table 3.1: Parameters and values used in estimating the shear stress for
experiments used with the open chamber.

Notation Parameter Value
e viscosity 0.653 mN s m2

d distance travelled 50/lm
t observation time 277 ms
h height above surface 8/lm
P shear stress 14.7 dyn cm 2

3.2 The open chamber

We developed a custom-made flowchamber for the direct viewing assay. The chamber

design incorporated a 35 mm glass-bottom MatTek dish (MatTek Corp., MA, USA)

as shown in Fig. 3.2. For calibration, the shear force P in the flow chamber was

calculated using Eq, 3.1 where the dynamic viscosity of the culture medium e was

taken to be 0.653 mN s m2. A particle flowing through the chamber, at the height h

of 8 tut: above surface, was used to measure the flow speed by determining its travel

distance d of 50 /lm over the observation time t of 277 ms. The shear force P was

calculated to be 14.7 dynes cm-2. This fairly high shear force was chosen to give us a

good contrast between no flow and flow conditions, while still lying within the range

used in previous studies, such as [49].

d
P=e-t- h (3.1)

The set-up comprised of a Nikon TE2000 inverted microscope (63x 1.4 NA) fit-

ted with a scientific cooled CCD camera (Cascade-II, Photometries) and a motorised

stage (MS2000, ASI) to record about 20-30 suitable fields with a monolayer of en-

dothelial cells, capturing red fluorescence images. The flow is then started and the
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A B 34.00

23.00
Insert 10.00

dish

Figure 3.2: Schematic drawing of the open flow chamber. The custom-made
Nylon insert fits into a MatTek dish with a confluent monolayer of endothelial cells
(EC). The cells are exposed to the shear stress in an oval aperture in the centre of the
insert. This central aperture is open and allows initial introduction of tumour cells
(TC). The entire flow chamber is presented in 3D (A) and as top-view/cross-section
(B). Detail view (C) depicts the vertical inlet tube, which is connected to the central
aperture by a channel cut into the base of the insert using a milling machine. A
symmetrical channel connects the opposite end of the central aperture to the outlet
tube. On the outside, the outlet is connected to the inlet by flexible tubing going
through a peristaltic pump. Measurement units are in mm.

system revisits each position at regular intervals acquiring both red (monolayer) and

green (tumour cells) fluorescence stacks (excitation lambda = 540 nm and 488 nm

respectively, resolution 0.2 x 0.2 x 1 p,m).
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3.3 Microscopy and image acquisition

3.3 Microscopy and image acquisition

3.3.1 Experimental set-up with the GlycoTech chamber sys-

tem

During the course of experiments, we optimised and automated the set-up to be able

to analyse the invasion from different aspects. This evolutionary procedure led to

five different methods describing the regulation of the flow and the set-up of the

microscope using the circular GlycoTech flow chamber. The first-born method used

gravity to control the flow. This approach was desirable as it allows a quick change in

flow rate by changing the height of the syringe where TCs were held before entering

the chamber. The sarcoma cells easily formed clusters and with this method TCs were

constantly moving and prohibited from adhering to the connecting tubing between

the syringe and the chamber.

In this way the amount of cells used in each experiment and the number of cells

passing through the chamber would still be high. Although a high flow rate could

quickly be established, the time between the cells entering the system via the syringe

and entering the chamber through the tubing was still a factor, as extensive time

was needed for the sarcoma cells to enter the chamber. Despite the fact that the

flow rate was easily manipulated with this method, the flow rate had to be moderate

in order to prevent endothelial cells from being washed away. A drawback was that

there was no accurate measurement of the flow which was therefore arbitrary. It was

also difficult to make the sarcoma cells adhere onto the monolayer because of the

disturbing flow. This problem was solved by attaching a clamp to the outlet. The

clamp opened the possibility to position the cells onto the monolayer within its field

of view to a desirable area (i.e confluent monolayer) and record its adherence. One
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3.3 Microscopy and image acquisition

disadvantage that occurred was, again, related to the time the cells had to travel

from the syringe to the chamber. The delay made it difficult to fully know when the

cells had entered the chamber. The live mode in the microscope made it possible

to occasionally catch them flowing through but the performance was not accurate.

Without precise measurement of the flowrate it was also impossible to calculate the

duration of this process. Reducing the waiting time was a priority and one option was

to inject the cells into the chamber before assembling it. This reduced the waiting

time and the cell could be observed immediately. However, the first 15 minutes of

the adherence process was obsolete due to the delay between injection and actually

viewing them in the microscope. The acquisition began after the adherence. This

meant that introducing the sarcoma cells as close to the chamber as possible would

seem to be ideal. Using a T-piece connected to the flow loop would open for such

an arrangement with medium flowing through the loop. A separate tubing with a

separate syringe was prepared containing medium and cancer cells. The new wire

contained three sections of liquid: Two with medium and one with the actual cells

situated between the two regions, allowing visual assessment of the entry in to the

chamber. The syringe was attached to the inlet to allow the solution to be propelled

through the T-piece. This opened for a high concentration of cells injected very close

to the chamber. Care had to be taken not to use force when driving the cells into

the chamber due to sensitivity of the endothelial cells as they were easily washed off.

In an attempt to control the flowrate, a peristaltic pump was used as it provided

a mechanism to automatically control the flow. TCs were located in a container

connected to the pump and chamber with flexible tubing where one section was

attached to the pump with cells ready to be transported into the chamber. The other

section acted as an outlet from the chamber and carried TCs that did not adhere to

the monolayer back to the container. The advantage of a peristaltic pump is that
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3.3 Microscopy and image acquisition

it can reuse the medium together with the cells, which allows for long periods of

monitoring. The peristaltic function also imitates the pulsation of the heart, which

may have an effect on the TC invasion.

In another set-up TCs were stored in a syringe before use. The syringe was

positioned horizontally on the tray of a syringe pump. The syringe was connected

to the inlet of the chamber via flexible tubing and the outlet from the chamber was

discharged in a container. The syringe pump was set to maintain a certain flow rate

during the experiment. It also offeredthe option to set a series of predefined programs

such as a gradually increasing rate for a period of time. However, this set-up did not

facilitate any recycling of cells. In contrast, they were not exposed to mechanical

forces as applied by the peristaltic pump, which may result in cell damage or cell

death. Also, since this was a closed system, environmental factors such as viruses

were also eliminated. Cells attaching to the syringe wall was also a problem even

though the syringe pump rotated the tray to avoid cells becoming stationary.

To automatically detect whether a sarcoma cell actually had adhered while using

any of the protocols described, an extension to the acquisition system was developed

(see Fig. 3.3). Before the time-lapse acquisition started, we searched manually in

the chamber for areas with confluent monolayers. Once a confluent area was found,

its position was marked in a list in the Metamorph acquisition system (Molecular

Devices Corporation, U.S.A.). Around 80 different positions were needed. The flow

was introduced and the system then visited each position consecutively and, for

each position, a single DioGreen image was acquired. A pause of five seconds was

ordained and another single DioGreen image was captured of the same position.

Applying a global threshold (set to 1000 for a 12-bit range) for both images aided

the segmentation and the AND operator was employed to form a joint image. If the

resulting area was above a certain size (typically 0.2% of the number of pixels in the
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3.3 Microscopy and image acquisition

image), it was concluded that a cell actually had adhered and a stack was captured.

Two single images (with the AND operator applied respectively) were obtained to

include only stationary sarcoma cells and to avoid cells just flowing through and

accidentally coinciding with the acquisition. Hopefully the sarcoma cells would adhere

at one of these positions. We pre-scanned the chamber for up to 200 confluent areas

of monolayer and marked these in a list in the Metamorph acquisition system before

the flow was introduced.

All of these set-ups to introduce the sarcoma cells into the chamber share some

common problems. One is that it is difficult to determine when TCs enter the cham-

ber. TCs have to travel through the tubing in order to reach the chamber. This

timing could be calculated by investigating the flow rate and the volume of the tubing

and then estimating the time the cells required to travel into the chamber. The en-

trance time was needed in order to start the acquisition correctly, preventing the cells

(mainly ECs) from bleaching and stopping toxins released by the labelling. However,

the calculated time would only be a rough guide and scanning through the chamber

for cells still had to take place. It was also common that TCs, while travelling in-

side the tubing, attached to the tubing wall. This resulted in a low number of cells

actually completing the journey. A solution was to increase the flow rate, but TCs

might then have traversed through the chamber without any chance of interacting

with the monolayer. This approach also altered the value of the shear stress that the

experiments were designed for. Both set-ups have problems in terms of allowing TCs

to adhere to the monolayer and knowing the time of this event. The flow created a

difficult environment for this task. One option would be to stop the flow for a short

period to allow TCs to initiate this process. However, some of the cells are still inside

the tubing and will adhere to the wall when the rate decreases. The distribution of

TCs inside the tubing will also affect the number of cells that will actually adhere
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Figure 3.3: Flow chart of an image-acquisition protocol used with the Ex-
tended GlycoTech chamber. The protocol is designed to capture cancer cells that
adhere and settle down to the monolayer during flow conditions. A list of predefined
positions was stored in the Metamorph acquisition system. The positions were vis-
ited consecutively and, for each position, a single image of the DiO green channel was
acquired. A pause of five sec was ordained and a second image was obtained of the
same position. Both of these images were thresholded at intensity level 1000 for 12-bit
images. The AND operator applied to these two captures resulted in a binary image
suitable for detecting adherent cancer cells. In the case of adherent cells, the binary
image contains segments of the stationary cell whilst a non-stationary cell produces
an empty image. A cell was considered as stationary if the number of segmented
pixels was > 0.2 % of the number of pixels in an image (typically 696 x 520).

and invade when the flow rate drops. These issues led to the development of the open

chamber described in section 3.2.

3.3.2 Acquisition with the Open chamber

The custom-made flow chamber with labelled endothelial monolayer was connected

to a peristaltic pump by flexible tubing to form a circulation system. The chamber
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was secured into a 35 mm culture dish stage insert and placed onto the microscope

stage within a 37°C temperature-controlled enclosure. Since the endothelial cells may

change shape and compromise confluency when flow is started for the first time, shear

flow was applied for an interval of 15 min before choosing 20 confluent observation

fields based on visual inspection of the labelled endothelial cells. The fields were

selected for subsequent multi-field recording in the Metamorph (Universal Imaging

Corp, USA) software for acquisition of images using a 60x 1.45 NA lens on a Nikon

TE2000 inverted wide-field microscope, equipped with a scientific cooled CCD camera

(Cascade-Il, Photometries) and a motorised stage (MS2000, ASI). After the field

selection which took about 5 min, the acquisition was started and each field was

revisited every 15 min, acquiring image z stacks of both the sarcoma cells and the

endothelial cells. Stacks of 21 images were acquired with 1 J.Lm z-step using binning

2 which provided a 0.2 J.L x 0.2 J.Lm x 1 J.Lm voxel (volume-element) size. Binning

refers to the process by which the image size is decreased in relation to the number

of binned pixels. Binning 2 (i.e 2x2) increases the sensitivity of the camera and

reduces the image size by a factor of 4 [58]. The wavelength of the excitation light

alternated between the z stacks using 488 nm for imaging of the sarcoma cells labelled

with green fluorescence, and 540 nm for imaging of the endothelial cells labelled with

orange fluorescence. The suspended labelled sarcoma cells were introduced into the

central aperture of the chamber immediately after the first acquisition time point.

The peristaltic pump was then switched on at the second time point, and left to

constantly circulate medium. Image stacks were acquired every 15 min for 90 min at

each field. Control experiments without flow were performed in MatTek dishes using

identical imaging configuration. Paired experiments without flow and with flow were

repeated three times for metastatic sarcoma cells T15. Non-metastatic cells K2 were

assessed twice under conditions without flow.
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3.4 Quantitative measurements

We devised two new measurement parameters which describe the dynamics. The

first parameter, Relative Invasion (RI), measures the amount of invasion, i.e the

penetration of the monolayer by the cancer cell while the second parameter, Opening

Rate of the Endothelial Monolayer (OREM), measures the dynamics of the opening

rate of the endothelial monolayer before enduring invasion.

3.4.1 Relative Invasion (RI)

A manual preselection of tumour cells was needed to avoid clusters of cells and in-

terfering debris. A maximum projection of each time point projected the movement

and spreading of TCs and indicated a region of interest. The criteria for selection

of TCs was that the signal ought to be fairly strong and not too close to other cells

which could cause conflict. An area of typically 20 x 20 /-Lmenclosing TC was used

for processing. A graphical explanation is shown in Fig. 3.4.

(a) (b)

Figure 3.4: Graphical explanation of Relative Invasion (RI). Relative Invasion
can simplistically be described as the amount of tumour-cell signal (shown in green)
below the EC monolayer (in red) in relation to the tumour-cell signal throughout the
cell height. (a) An artificially and intentionally created overlay depicted as a dotted
line was added as a replacement for missing EC values. (b) 3D rendering of the
invasion.

RI is defined as the ratio of the volume of the invading cancer cell underneath the

upper surface of the monolayer relative to the total volume. Fig. 3.4 helps visualise
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the parameter. More formally,

RI = _<_X.:.::.,Y_>_EO~I=--- _

L Proje(x,y)
<x,y>EOc

with (3.2a)

ProjI(X, y) = Max~~~'Y) (I(x, y, z)), Projc(x, y) = Max~r:l (I(x, y, z))

(3.2b)

where Of is a set of N positions <x,y> of an invading sarcoma cell with signal

in the z-projection below the upper endothelial monolayer surface U(x,y) and Oe

is a set of N positions <x.y> with signal in the z-projection of the whole image

stack. I(x,y,z) denotes the signal of a 3D volume element (voxel) in the image stack.

Table 3.2 summarises the notation.

U(x,y) the upper surface of the endothelial I
monolayer

Of a set of N positions <x,y> where the in-
vading sarcoma cell is present in the z-
projection

Oe a set of N positions <x,y> with signal
in the z-projection of the entire image
stack.

I(x,y,z) the image intensity of green fluorescence
in a voxel. A z value of 1 corresponds to
the coverslip surface

Table 3.2: Notation used in the equations for RI.

The procedure for obtaining RI is described in Fig. 3.5. The surface of the
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Obtain maximum
projections over z

above and below the
monola er surface

Figure 3.5: Flowchart of the calculations of Relative Invasion (RI). The z-
levels of the upper surface of a stack of endothelial monolayers were estimated. Some
of the regions were weakly labelled or were missing cell signal and produced unreliable
readings. The z-levels in these areas were replaced by an artificially created overlay
and the relative invasion was then quantified as the amount of sarcoma cell signal
below the upper surface of the monolayer in relation to the total cell signal.

monolayer U(x, y) was first established and represented as a depth map. Some of

the areas contained unreliable values due to the influence from neighbouring voxels.

An artificial overlay based on the surroundings was created to replace the unreliable

values with new values. Finally, the mitochondria of the sarcoma cells were segmented

(ProjI(x, y), Projc(x, y)) which enabled the quantitation.
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3.4.2 Opening Rate of the Endothelial Monolayer

A tumour cell tries to disassemble the connection between the endothelial cells once

it has adhered. TC induced an opening, large enough for the cell to propel through.

The speed of this event is the basis for the Opening Rate of the Endothelial Monolayer

OREM. To prepare the data for measurement, a minimum projection over z of each

time point was obtained and loaded into ImageJ (NIH Image, Bethesda, USA) as

images after each other. Each position produced one file (with n time points) and

was observed to disclose areas of interest. Once an opening was found, the area of

4 x 4 /-Lm was selected, centred at the location where the initial opening appeared to be

the largest. OREM was measured during invasion by quantifying the fluorescence

signal of the endothelial cells in 4 /-Lm x 4 /-Lm areas where invasion commenced.

Fig. 3.6 depicts the fixed window and the corresponding change in the monolayer

over time. The size 4 x 4 was determined to be - in our experience - the average

size of the initial opening. The location of an area was selected manually for each

cell and remained the same over time. Once the positions were found and recorded,

the procedure was automated in Matlab. A flowchart of the procedure is found in

Fig. 3.7. The signal was measured from the minimum projection of the image z-

stacks of monolayer cells for each time point. The sarcoma cell-induced opening

in the monolayer resulted in a decrease of signal values over time in the selected

areas of the minimum-projection images. However, the procedure included multiple

acquisitions which introduce photo-bleaching. The effect of photo-bleaching is a rapid

decrease in cell signal and, in the worst scenario, the cell signal is eliminated. The

photo-bleaching in these experiments was limited because of short exposure time and

therefore did not have a serious impact.

The intensity of the projection images I was normalised (Eq. 3.3a ) over the
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Figure 3.6: Illustration of the calculations of OREM. The minimum projection
of monolayers (shown in red) at each time point was obtained to provide evidence
for early openings. The estimation of the opening rate was performed in a predefined
window, shown in green, of 4x4 tut: (21x21 pixels) at a fixed location during the
entire observation period. The position of the window was selected where the opening
between 0-30 min was the largest. OREM was then calculated as the difference
in monolayer signal within the window between 0-30 min but normalised over the
observation period. A difference in cell signal can be seen inside the window between
the mentioned time points. The normalisation, the predefined window size and the
fixed location of the window made the parameter comparable between experiments.
The intensity of the monolayers was adjusted for visualisation purposes.

monitoring period of 90 min and thus comparable between repeated experiments. The

intensity was then automatically monitored over the time points and the normalised

rate at which the intensity decreased revealed the speed of the opening (see Fig.3.7).

I(t) - min(I)
Inorm = (I) . (I)max - mzn (3.3a)

(3.3b)
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Stacks of endothelial
Monolayer at
o and 30 min

Within the window,
calculate the normalised

difference between
the two time points

Figure 3.7: Flowchart of the steps to obtain OREM. OREM can be seen as a
measurement of how quickly the signal disappeared in a small defined, fixed region,
typically 4 x 4J.tm. The region (window) was applied to the minimum projection of
a monolayer stack. The normalised rate at which the signal faded between 0 and
30 min constituted the parameter OREM. Because the rate is normalised using the
maximum opening over all time points it is possible to compare the rate between
different cells and experiments.
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3.4.3 Relative spreading

A tumour cell may also spread laterally while exposed to shear. In order to assess

this property, we developed Relative Spreading (RES) which quantified the relative

spreading below the monolayer surface. The spreading was estimated by calculating

the area of an ellipse fitted to the segmented points. Firstly, a reference fit (see

Fig. 3.8) was obtained which utilised the segmented point in a projection of all time

points (see Fig. 3.8). This meant that all the segmented pixels over all time points

for a particular cell formed a set on which the fitting was applied. The area of the

reference fit was divided by the area found in each time point, which created a relative

unit comparable between different cells.

The implementation utilised Matlab's vitelline function [5] and the spreading was

defined as the area of the ellipse. The relative spreading was more formally defined

as

RES = Atp
Are!

(3.4)

where Are! symbolises the area of the reference fit and Atp the area of a fitted

ellipse at a single time point. An example of a reference fit and a fit from an individual

time point is shown in Fig. 3.8.
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(a) (b)

Figure 3.8: Example of ellipses which defined Relative Spreading. The area
of an ellipse fitted to the segmented pixels was calculated for each time point. This
area was divided by the area of the reference fit which was calculated as the area of
the ellipse fitted to all the segmented pixels over all time points. Relative spreading
can thus have a quantity> 1 because it was possible that the reference fit was smaller
due to a higher amount of segmented pixels. (a) An ellipse fitted to the segmented
pixels found at a single time point. (b) A reference fit for a cell.
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Chapter 4

Surface reconstruction of

endothelial monolayers

TCs have an ability to invade into monolayers of endothelial cells and the proposed

method to quantify this behaviour was defined as Relative Invasion (RI) according to

Eq. 3.2a. This property required the location of the upper surface U(x, y) (Eq. 3.2b)

of the monolayer plus the location of the sarcoma cell signal. In order to achieve

this, the upper surface was reconstructed from a 3D stack and represented as a 2D

depth map. However, some values in the depth map could not be trusted, because

TCs induce openings in the monolayer which leave areas with no or little cell signal.

These regions needed to be identified in order to create a covering so that RI could

be estimated. This chapter describes methods for finding the upper surface U(x, y),

identification of invaded regions and the interpolation over these regions.
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4.1 Finding the upper surface

Research has been conducted through the years to investigate cancer metastasis and

the interaction between cancer cells and endothelium. Sarcoma cells have a good

ability to penetrate the endothelium and metastasise [74]. A key role in investigating

this behaviour was to look at the EC surface as it could contain vital clues to the

migration. The approach to estimate the EC surface denoted as U(x, y) in Eq. 3.2a

stems from the field of geography where, for example, the ocean floor is represented

as a depth map [75]. The techniques to acquire the depth values may differ but the

principles are similar. The following sections explore ways to recover depth values

from a blurred stack of images.

4.1.1 Maximum intensity

A fluorescently labelled cell emits light when excited to a certain wavelength. The

strength of the signal at each z-level indicates the position of the cell within the vol-

ume. A strong signal (i.e. a peak in light from fluorescence molecules) indicates at

which z-plane the cell is located. This could be utilised in terms of finding the local

position of a cell surface over z. In order to achieve this, the z-level that contained

the highest intensity was found for every < x, y > position. Fig 4.1 shows examples

of intensity curves. One of them (Fig. 4.1(a)) stems from a strongly labelled region of

the cell which results in a sharp peak around the z-levelwhere the surface is located.

On the other hand, a weakly labelled region (Fig. 4.1(b)) has high intensity values

toward the start- and endpoints of the curve and a minimum in-between. This be-

haviour is influenced by its neighbouring voxels. Each voxel emits fluorescence light

in every direction which affects the neighbouring voxels. The maximum interference

is when a voxel is out of focus and the minimum is when it is in focus. Because a
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weakly labelled region emits little light of its own, most of its light originates from

its neighbours. Therefore, the z-level of the minimum intensity value in Fig. 4.1(b)

indicates the surface location of its neighbours and the high intensity values indicate

where those are out of focus rather than the surface position.

Using the z-level of the maximum intensity value as an indication of the surface

position works well with strongly labelled cells where the intensity plot over z contains

a major peak. Problems arise when the cell labelling is less defined and the cell signal

is influenced by its neighbours. The z-level of the maximum intensity value in those

situations represents a region where the neighbours are out of focus. A solution to

this problem would be to have a levelled surface and uniform cell labelling. This is

unfortunately not practically feasible because the cells are not uniform and some cells

will absorb more of the fluorescence than others.
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Figure 4.1: Examples of intensity curves of strongly and weakly labelled
areas. The intensities for two different <x.y> positions were plotted as connected
data points over z, The strongly labelled position exhibited a sharp peak in intensity
around the surface z-location, The weakly labelled position portrayed high intensity
values towards the start and end of the curve and low in-between. The fluorescence
in this position was low and therefore most of the intensity values stem from blur
originating at its neighbours. The z-level of the minimum intensity indicated where
those were in focus and the z-level of the maximum intensity indicated where most of
those were out of focus rather than the surface level. The visually estimated z-levels
were subjectively found by manually scanning through the image stack for the z-level
which contained the sharpest region for each position. (a) shows the intensity curve
for a strongly labelled position. The z-level of the maximum intensity was close to
the visually estimated level (z = 6 and 4 respectively). (b) shows the intensity curve
for a weakly labelled position. The manual surface estimation and the z-level of the
maximum intensity were different (z = 6 and 19 respectively). This was because of
the interference of blur from neighbouring voxels.
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4.1.2 Maximum gradient

The image acquisition introduced blur and noise, which made accurate evaluation of

the cell interaction difficult. We are interested in the EC surface fluorescence signal

and thus we introduced a surface detection technique which described the upper of

the EC and aided accurate measurement and visualisation of its exterior properties.

The proposed method to restore the EC surface was based on the gradient and

uses the principles of autofocus. A z-stack of ECs is acquired in a top-to-bottom

fashion and the Sobel gradient was calculated plane-by-plane. An average filter of

11x 11 pixels was applied on each plane separately.

The average gradient value for each plane produced a curve which could be used

to determine the in-focus z-plane, In addition to identifying the surface location,

we were also able to determine the location of the coverslip by investigating the z-

plane where the slope of the gradient curve was steepest. The cell was located above

the coverslip and any information below was therefore redundant. This helped to

reduce the complexity of the calculations. A typical mean gradient curve is shown in

Fig. 4.2(a).

Identifying the location of the surface using mean values of the gradient over z

was a new approach designed to estimate the z-position of the endothelial surface.

A natural approach would be to use the maximum value which, by inspecting the

global gradient, seemed to be a good choice. The image was in focus where the

gradient had its maximum. However, the larger the averaging area was, the smaller

the interference from the noise. On the other hand, if no filtering was used, the

locality would be sustained but then influenced by noise as seen in Fig. 4.2(b) and

Fig. 4.2(c). Therefore, a balance was needed in order to keep the localisation and

still suppress the noise.
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The selection of an average kernel of 11x 11 pixels was made and used in the

calculation of RI. Fig. 4.2(b) and Fig. 4.2(c) showed that noise could influence the

estimation of the surface levels and these errors could be prevented by applying an

average filter.

The amount of smoothing highly depends on the data set. The image quality of a

data set can easily vary between experiments and may influence the specific decisions

initially made concerning the kernel size. Smoothing each plane within the stack

with an 11x 11 pixel kernel and then finding the maximum gradient value over z for

each pixel to locate the monolayer surface was used successfully in these experiments.

Chapter 6.2 evaluates the accuracy of the estimation in detail.
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Figure 4.2: Examples of gradient curves obtained from a blurred stack. The
average gradient value using the Sobel operator was calculated for each plane and
plotted as connected data points. The maximum gradient value indicated at which
z-level the focus was located. A z-levelof 1 represents the top of the stack. The three
figures together indicate that the curve needed to be in a local context and filtered
with an average filter in order to produce an accurate estimation. (a) represents a
gradient curve where each data point represents the average gradient value for a plane.
The in-focus plane was found at z=35 (maximum gradient value) and the coverslip
was found at the position where the slope was steepest, indicated by the dashed line
(z=38). (b) a raw gradient curve without smoothing for a single pixel over z. Dotted
line represents the focus position at z=36. This curve did not undergo any smoothing
to remove noise. The peak at z-level = 31 was due to noise. (c) a gradient curve
filtered with an average kernel of 11x 11 pixels. The noise was now suppressed and
the accurate surface location was revealed as the z-level where the gradient had its
maximum at z=40. Manual inspection confirmed this surface position.

57



4.1 Finding the upper surface

4.1.3 Correlation

The maximum gradient estimated the local surface position axially. As an alternative,

the correlation coefficient between two consecutive windows was deployed axially in

a similar fashion. The correlation coefficient is defined in Eq. 4.1 and in the 2D case,

correlation coefficient r represents the strength and linear relationship between two

matrices A and B.

(4.1)

In order to make an estimation of the surface, the correlation coefficient was

calculated on the gradient image between two windows of the same < x, y > position

but on consecutive z-planes. In this application, a positive factor indicated that both

windows had an increasing gradient relative to their respective window average. The

theory was that the gradient was stable in the focal plane and that this would be

expressed as a high correlation between two consecutive z-planes with a peak at the

assumed focal plane. The coefficient expressed a low value in the presence of noise

due to the randomness of it. As the calculations progress over the z-planes, the

slices became sharper and thus increased gradient values also resulted in an increased

coefficient.

However, for a blurred stack, the values did not display a dominant peak because

of the blurring, which stretched the information out over neighbouring planes. This

resulted in a range of z-slices with high correlation values as seen in Fig 4.3. The

depth map, which was the result of the calculations, contained a very wide range of

values which did not produce reliable results. Therefore, the correlation coefficient

did not provide a unique location of the in-focus position.
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Figure 4.3: Example of graphs with correlation values obtained from gra-
dient images acquired with a confocal and a wide-field microscope. The
correlation coefficientwas calculated between two 11 x 11 pixel windows of consec-
utive z-planes. The Sobel gradient was calculated prior to obtaining the correlation
values. (a) Correlation values obtained from a confocal stack. The correlation be-
tween two windows expressed a sharp peak at the in-focus position and low values
towards the sides. (b) Correlation values obtained from a confocal stack, convolved
with a PSF to simulate wide-field conditions. The correlation between two windows
was believed to increase to a sharp peak at the in-focus position, which was not the
case. Instead, the high values were contained in a broader spectrum of z-planes where
the sharp peak was smoothed by the blur.

4.2 Identification of unreliable monolayer regions

Identification of openings in the endothelial monolayer is an important step in the

surface reconstruction and the quantification of cancer-cell invasion. The surface

reconstruction is based on the location of the maximum gradient value of the mono-

layer. However, in some instances, these readings are false and contain misleading

values especially in the invaded areas with no signal. The purpose of the identifi-

cation was to locate regions where such events occur. These regions were usually

characterised by low signal intensities due to a poorly labelled surface or openings

with no cell surface. During such instances, the intensity in the current voxel was

influenced by neighbouring voxels being high. Some of the problems are shown in
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4.2 Identification of unreliable monolayer regions

Fig. 4.4. The areas indicated with arrows were examples of dark regions with little

cell signal, where the gradient might be unreliable. The identification process was

aimed at establishing a method to find these positions and to exclude their gradi-

ent values from the surface estimation. Identification of areas with low signal would

consist of true openings with no cell signal but also areas with very weak labelling,

influenced by blur. Applying the maximum gradient approach on those areas would

create a surface that was not truthful and resulted in a level of invasion that may

not exist. Identification of unreliable regions solved this problem by excluding any

doubtful areas but only worked with sets that were thought to contain cell signal.

Segmenting these areas using the histogram seemed to be a good choice since weakly

labelled areas were dark and cell signal was bright. In order to explore this, Otsu's

segmentation algorithm was applied on a minimum projection image of EC together

in order to evaluate histogram-based segmentation.

The manual segmentation seen in Fig. 4.4 was based on the corresponding his-

togram which exhibits three modes representing the shift in brightness from left to

right in Fig. 4.4(a). The manual threshold was not selected at any of these modes but

rather before the first peak. The reason was that some of the intensity values located

on the edges of the cells were somewhat darker than the intensities representing the

first mode. Otsu's method, for example, tries to maximise the within-class variance

of each group and the selected threshold was located to the right of the first peak

as seen in Fig. 4.4(d). Applying Otsu technique would require that the two groups

were fairly well separated. This criterion could not always be met, because the cell

labelling procedure did not always deliver an image where the cell signal was very

different from the background.

Approaches exist, mainly in Magnetic Resonance Imaging (MRI), to identify cer-

tain regions, for example in the brain. This could be translated into the identification
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4.2 Identification of unreliable monolayer regions

of reliable and unreliable regions among EC monolayers. The unreliable areas would

consist of openings mainly introduced by TCs but also areas the monolayer did not

cover. However, the approaches in MRI assume some kind of prior knowledge of

shape [76] or appearance [77] of the regions and require a training set which will be

used as reference examples and specify an average set of shape or appearance. To

identify certain features, the new image with unknown features acquired at different

times and of different subjects is then compared with the training set, and there is a

match if the new, acquired image is similar to those in the training set. It would be

adequate if this could be applied to unreliable regions but this idea is not applicable

in cancer-cell invasion due to the fact that the monolayer is highly dynamic and can

easily change shape and appearance between fields of view. Also, TCs invade the

monolayer in pseudo-random fashion in the sense that the shape of the opening and

the method by which they invade changes with the individual TCs. For example,

white blood cells have been shown to exhibit different modes of invasion such as

transcellular (through cells) [78] and paracellular (cell junctions) [79] and it can be

assumed that TCs have similar behaviour [80].
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(a) (b)

150 200 250 300 350 400
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Figure 4.4: Example of segmentations of a minimum projection obtained
from a stack of an endothelial monolayer using thresholding. The minimum
projection emphasises the dark areas, which highlighted areas with low intensity.
(a) Minimum projection. Arrows indicate examples of regions with low intensity
which may cause problems. (b) Segmented result of (a) after applying the manually
obtained threshold. (c) Histogram of the minimum projection. Arrows indicate the
three different stages (modes) of brightness seen from left to right in (a). Dashed lines
represent the manually selected threshold used to produce (b) and (d) respectively.
(d) Segmented result after obtaining a threshold using a standard method (Otsu [1]).
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4.2 Identification of unreliable monolayer regions

So far, no study has addressed the identification of invaded regions with low signal

among endothelial monolayers, partly because objective evaluation of invasion has not

yet attracted interest. Some of the problems arising in segmenting invaded areas are

the fact that the ECs and TCs are living cells which create a dynamic environment

where each cell acts as an individual. No two invaded areas will appear the same. The

intensities in each stack are also dependent on the performance of the cell labelling

which varies from stack to stack (even within the same experiment). The aim of this

section is to address problems related to segmentation of invaded areas and show

possible solutions. Details are in the following sub-sections.

Firstly, a Gaussian Mixture Model was applied in order to describe the mixture of

noise and cell signal. It was thought that invaded areas mainly consisted of noise and

segmentation of these would be possible if the noise distribution could be identified.

Secondly, cell signal values were assumed to be correlated. Utilising Principal

Components Analysis (PCA) allowed these to be extracted from the uncorrelated

values.

Thirdly, an approach based on Linear Diffusion was applied where the rate of

change in intensity over consecutive convolutions was investigated.

4.2.1 Gaussian Mixture Model

Noise is a frequent source of errors in microscope images. In fact, it is inevitable due

to noise such as electronic noise and photon noise [2]. This can cause an image to

contain artifacts and be a source of false measurements. It is therefore important to

handle the noise in a correct manner. The noise in a wide- field microscope system

is usually Poisson distributed [2]. A Poisson distribution can then be turned into a

Gaussian distribution via the Central Limit Theorem.

The Central Limit Theorem states that values from any distribution can be ap-
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4.2 Identification of unreliable monolayer regions

proximated with a Gaussian distribution provided there are enough samples [3]. The

noise distribution from a wide-field microscope, shown in Fig. 4.5, displayed a Gaus-

sian shape. Unreliable areas were believed to contain noise plus some signal which

could be modelled with a gaussian mixture. A stack with no cells, containing noise

only, was used to estimate the distribution parameters of the noise.

200~----~----~----~

~150
c
~ 100
0"
~
LL

II. .
180 190

Intensity
(a)

200 40
Gradient
(b)

80

Figure 4.5: Histograms of a stack with no cells (only background noise)
obtained with a wide-field microscope. The noise in a microscope is usually
described as being Poisson distributed [2]. Because a point in a wide-field system is
influenced by every other point through diffraction and interference, the Central Limit
Theorem [3] approximates the distribution to a Gaussian distribution. The stack
contained 520x 696 pixels over 76 z-slices (although the histograms shown represent
a volume of llxllxll), with resolution 0.2xO.2xO.2ILm/px. Exposure time: 60 ms,
binning 2x2. (a) The intensity distribution of a sub-volume of the acquired noise.
(b) The gradient distribution of a sub-volume of the acquired noise.

Invading cancer cells disassemble endothelial cell junctions in their strive to ex-

travasate through the monolayer. The points of invasion are characterised by low

signal values and noise because TCs created holes which decreased the endothe-

lial cell signal. A microscopic image with no cell content generally contains noise

and forms the basis for the cell signal segmentation using Gaussian Mixture Models

(GMM). A cell stack consisted of three types of signal: cell signal, blur and back-

ground noise. The blur exhibited smooth characteristics and was suppressed by a
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4.2 Identification of unreliable monolayer regions

high-pass filter. The result after high-pass filtering could be described by a mixture

of two Gaussians: signal and background noise. The distributios from the two groups

would overlap each other in different measures depending on the strength of the sig-

nal (see Fig. 4.7). The Expectation-Maximisation algorithm is a method to estimate

parameters of mixtures of Gaussians [81], i.e. the parameters of each distributions

within the mixture. The parameters of the noise part of the distribution would then

be compared to the parameters of a measured, acquired stack consisting of noise only.

The endothelial layer usually occupied a very small number of slices inside the

stack and, therefore, noise and out-of-focus blur would dominate the distribution.

To limit the effect of blur and prevent it from completely dominating, only the 10

z-levels (out of 101 in total) above the coverslip were considered. The pre-processing

step consisted first of filtering each plane of the stack with a high-pass kernel (i.e.

gradient). This removed blur derived from out-of-focus information which had smooth

characteristics. The gradient suppressed the intensities of blur which allowed the

signal with higher frequencies to stand out. The blur thus showed low gradient

values compared to signal. A gradient stack can then be described as

(4.2)

where G is the gradient values, Gs represent signal part and N the noise part. The

gradient was filtered subsequently with an average kernel to suppress the noise such

that

(4.3)

where G is the gradient, h is an average kernel, Gf the filtered version of the gra-

dient and ® represents convolution. It could now be assumed that the noise was

mainly suppressed and the only remaining values were signal and therefore Gf ~ Gs.
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4.2 Identification of unreliable monolayer regions

Subtracting Eq. 4.3 from Eq. 4.2 and assuming that Eq. 4.3 only contained signal

resulted in some noise plus residual signal as shown in Eq 4.4

G - Gf = Gs + N - G, = N + P (4.4)

where p is the residual signal. Fig. 4.6 shows examples of how the noise and residuals

in Eq. 4.4 changed between areas with signal and unreliable monolayer regions.

The average filter of 11 x 11 pixels was deployed on a plane-by-plane basis to

suppress the noise and the difference between the original gradient G and the filtered

version (G f) of the same stack was also made plane-by-plane. The next task was to

separate the noise from the residual signal and compare the noise distribution with

the measured noise. The measured noise was obtained by acquiring an empty stack

with no cells.
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Figure 4.6: Histogram of a stack of size 11 x 11 x 11 pixels containing the
difference between the gradient values of a stack of a monolayer and a
filtered version of itself. The gradient for each plane was calculated (denoted by
G in Eq. 4.2). An average filter of 11 x 11 pixels was applied on a plane-by-plane
basis to suppress the noise (Gf in Eq. 4.3). The difference between the two (G - Gf)
is displayed as a histogram which represents the noise plus some residual gradient
signal. The histogram in (b) has a wider distribution because the residual signal
located in the upper segment of the histogram was stronger. (a) Histogram of an
unreliable area. (b) Histogram of signal (reliable area).

66



4.2 Identification of unreliable monolayer regions

Fig. 4.8 shows the histograms with the two distributions superimposed. The E-M

algorithm implemented in Matlab [4]was deployed in order to separate the noise and

the cell signal. The 11x 11x 11 pixel window of the difference stack was reorganised

into one dimension before applying E-M. The number of z-slices was limited to 10

above the coverslip due to the fact that the surface is very thin in comparison to the

entire range of the stack. If the full range was included, the noise would always be

dominant and separation between the two classes would be impossible.

A region was classified as unreliable if the variance of the noise part was less

than the variance of the measured noise. The choice of threshold was selected to

u2 Le. the variance of the class with the lowest mean had to be < variance of the

measured noise. The reasoning behind the choice of variance in favour of standard

deviation is that the difference stack was calculated in the presence of monolayers.

The out-of-focus signal would then increase the standard deviation as it added high

values to the histogram. Instead, if the variance is used, the effect is limited since

the thresholds are squared, bringing the values into similar range. An example of

segmentation using GMM is shown in Fig. 4.8.

One of the problems with this method is that the sensitivity to disturbances in

cell signal is high. The performance of the labelling technique is crucial for this ap-

proach. An example of excellent surface definition is found in Fig. 4.8. The details of

the surface are well exposed and little excess fluorescence is present. However, if the

fluorescence molecules would not adhere thoroughly at the intended positions inside

the cell, the amount of fluorescence noise would increase and change the intensity dis-

tribution. The consequences would be that the threshold changes depending on the

fluorescence, noise which limits the applicability of the method to single experiments.

During long-term experiments, the intensity of the laser causes the fluorescent sub-

stance to decrease. As a result, the intensity also changes (a.k.a. photo bleaching).
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Figure 4.7: Histogram with the two mixtures superimposed. The difference
was separated into two clusters using the EM algorithm [4J. A window was classified
as unreliable if the variance of the cluster with the lowest mean was < the variance
of the measured noise. (a) Histogram of an unreliable region. (b) Histogram of a
more reliable region.

The bleaching is dependent on the intensity of the laser and the length of exposure.

The surface labelling (see section 7.1.2), however, produced extended photostability

and excellent surface definition during prolonged exposure.

The identification of unreliable regions using GMM was based on the EM al-

gorithm which was applied for every (x, y) over the range of 10 z-slices above the

coverslip (11x 11x 10 values). It works well for stacks of images which are acquired

with long exposure time and short distance between the z-planes, However, for more

noisy image stacks, typically caused by faster acquisition, the noise would be over-

represented and all areas classified as unreliable.

4.2.2 Principal Components Analysis

Principal Components Analysis is a common technique in image analysis and this ap-

proach has previously been applied to image compression, where regions with similar

characteristics (based on the histogram) share the same principal components. For
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(a) (b)

Figure 4.8: Example of segmentation of unreliable regions in a monolayer
using GMM. The segmentation was based on separating the Gaussian-like noise
from the signal. The noise was obtained by calculating the difference between the
original intensity stack and a filtered version of itself. The EM algorithm was applied
on 11x 11x 11 pixel substacks with two classes: signal and noise sourced from the
difference. The variance of the separated noise (i.e. the variance of the cluster with
the lowest mean) is compared to the variance of an empty stack containing noise
only (reference sample). A region was classified as unreliable if the variance of the
separated noise < variance of the measured. The size of the original stack containing
cell signal was 520x696xlOl voxels with resolution O.2xO.2xO.2p,m acquired five
hours into the experiment. a) Original in-focus plane. b) Segmented result. The
white areas represent unreliable regions and are superimposed on the in-focus plane.
The white arrow indicates an invaded area but correctly segmented as cell surface.
This region was actually covered but invading TC forced the surface outside the
in-focus plane.

example, Taur et al [82] applied it to the coding of medical images and suggested

that signal intensities from the same kind of regions in the image are likely to be in

the same intensity range. These regions can be classified and each group will share

the same Principal Components (PCs) and can therefore be reused. Sychra et al [83]

had similar ideas and investigated the noise found in MRI images, deriving a noise

suppression scheme where the noise and signal were separated by different PCs. The

noise could be reduced by using only a subset of the PCs.

The segmentation of unreliable regions in EC stacks proposed here is derived

from these theories. It is assumed that similar regions share similar characteristics

69



4.2 Identification of unreliable monolayer regions

and it was shown that the noise in these microscopic images has Gaussian shape

(see section 4.2.1). The cell signals are somewhat correlated, unlike noise, which is

random, and cell signal values would occupy the first few pes while noise populates

latter pes. An example of an eigenimage plus manual segmentation of the eigenimage

is shown in Fig. 4.9.
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Figure 4.9: Segmentation of endothelial monolayer using Principal Compo-
nents Analysis (peA). Eigenimages of endothelial monolayer are obtained through
peA and the hypothesis is that cell signal values are correlated and will therefore
occupy the same range of pes. (a) Minimum-intensity projection. (b) Eigenimage
reconstructed by using the first 16 pes only representing 99.6% of the information.
(c) Segmented result of (b). The threshold was manually set to 0.25. (d) Histogram
of the eigenimage shown in (b). The dashed line represents the subjectively and
manually selected threshold of (b) to obtain the segmented result in (c). Threshold
was set to 0.25.

Pedersen et al used this fact to separate objects in positron emission tomography
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images [84]which used radioactive labelling where the objects of interest were con-

tained in separate PCs. The images were corrupted by noise and PCA revealed that

the objects of interest could be separated from the noise by retaining the first few

PCs. This approach is also used in another study for initialisation of the kmeans algo-

rithm to distinguish cancer and non-cancerous tissues using microscopy with infrared

light [85]. The eigenvalues from the first few PCs contained most significant signals

and formed clusters that - together with manual inspection of the tissue - represented

the two classes which provided classification of cancerous tissues. This approach uses

Raman spectroscopy which, in essence, investigates the energy levels a sample re-

turns when exposed to e.g. infrared light. Malignant tissues responded differently

compared to surrounding tissue and formed clusters which aided a segmentation.

In terms of segmenting unreliable regions, the scenario was different as the wide-

field stacks were dependent on fluorescent light and not energy levels of the respective

tissue. It shares some common properties though with images from other acquisition

techniques in that signal values are dominant. PCA separates the correlated and

uncorrelated values regardless of image modality. However, most approaches only

separate the information and do not segment the eigenimages into binary classes.

An introduction to statistical methods for microscopy can be found here [86].

One of the major problems with segmenting monolayer images was weakly labelled

areas due to poor attachment of fluorescent molecules which give rise to lower intensity

values. Segmenting these using the histogram does not work due to overlapping areas

between the groups, but PCA has been shown to address this issue. This approach

targets this issue because signal values are correlated and PCA groups correlated

values into the first few PCs. The more correlation there is, the better segmentation

[83]. One can question, though, the quality of these readings in terms of gradient

values and surface estimation. The purpose of segmenting the monolayer was to
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(a) (b)
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Figure 4.10: Example of segmentation of a monolayer using peA. The min-
imum projection was transformed into an eigenimage using the first 16 pes, repre-
senting 99.7% of the information. The cell signal would occupy the first few pes
because of its correlation and noise would occupy latter pes. However, blur affected
the distribution of intensity values and caused the segmentation values to fail. The
area in the centre of (a) is an example of where certain regions were falsely classified
as reliable because the intensities were similar to cell signal. (a) Minimum projec-
tion of a stack of endothelial monolayers. (b) The eigenimage of (a) using the first
16 pes. (c) Segmented result of (b) while applying the threshold of 0.25. Dashed
line indicates a manually selected outline to represent the corresponding outline in
(a). (d) Histogram of the eigenimage. The threshold was subjectively chosen to 0.25
which produced (c).
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highlight regions which might give false gradient readings. Cell signals with low

intensities are influenced by the blur from neighbouring voxels. Therefore, using the

first PC only might reveal more of the cell but would also give more false readings.

The selection of threshold among the values in the eigenimage is also a problem.

Fig. 4.10 shows segmentation where a threshold was selected manually. The process

of automatically obtaining one is difficult because of the lack of features. Investigation

of the histogram did not reveal any clues to separation as the histogram was fairly

uniform, with no obvious peaks. Also, the histogram of the eigenimage changes

depending on how well-defined the surface of the monolayer is. Variation in the level

of cell labelling within a single experiment, and between different experiments, can

result in large variation to histogram distributions.

Segmentation of endothelial monolayers utilised Principal Components Analysis.

This technique facilitated a separation between the reliable and unreliable regions

because reliable areas were more correlated. However, the evaluation did not function

well for some images because the intensity values were not consistent between the

experiments. Images with less blur seemed to provide better performance than images

where blur was evident.
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4.2.3 Linear Diffusion

Linear diffusion is an approach where the behaviour of signal is investigated over

multiple scales. The scales are often referred to as the results after consecutive

convolutions. The behaviour is then defined as how the signal changes between

each convolution. The result after infinite numbers of convolutions is the average

value of the signal/image [72]. Unreliable regions were believed to be predominantly

darker than the average value and therefore exhibit a positive diffusion rate over an

infinite number of convolutions. The investigation of the sign of the diffusion rate

over infinite convolutions forms the basis for monolayer segmentation.

A stack of endothelial cells mostly contained a confluent area of cells, quite op-

posite to the cancer-cells stacks where background is dominant. We tried to identify

areas where the maximum gradient was not reliable enough to estimate the depth of

the surface. The questionable regions were predominantly dark with respect to the

average value of the stack, due to lack of signal. Therefore, the minimum projection

would highlight these properties.

The minimum projection was thus convolvedconsecutively with a 11x 11 pixel (2

x 2 J..tm) Gaussian kernel with standard deviation a = 0.5 as described in Eq, (4.5).

A fairly large n (n = 500) was chosen to simulate the approach to infinity (n ~ (0)

where intensities tend to approach the average intensity as Fig. 4.11.

I (x, n) = I (x, n - 1)0 G (x, u) n » 0, x E (x,y) (4.5)

This revealed how each pixel is diffused over n. We assumed that dark areas with

respect to the image average were unreliable intensity information and bright pixels

with respect to the image average were reliable. The diffusion rate (Le. the difference

between two consecutive iterations) would then increase with n for dark areas as the
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convolved results converge towards the average [72]. The opposite applies to signal

areas which would have a negative diffusion rate.

Minimum projection of
an endothelial stack

100 iterations

20 iterations

500 iterations

50 iterations

1000 iterations
Figure 4.11: The convolved images after different numbers of iterations. The
image (696x520 pixels) is convolved with a Gaussian kernel of 0"=0.5 a number of
times. The image gets more diffused with the number of iterations. The changes
between 500 and 1000 iterations are small, which is why 500 is considered to diffuse
the information enough to distinguish between the trustworthy and not reliable areas.

The investigation of the sign of the diffusion rate provided evidence for the sep-

aration of signal and background with noise as described above. The collection of

segmented points needed to be robust against noise where sufficient excess of noise

was removed. In order to facilitate robust and stable segmentation of monolayers,

pixels which, at any point in the scale space, exhibited a positive diffusion rate were

classified as background. This approach was needed as the local average in scale

space changed between the iterations. Fig. 4.12 shows an example of a segmented

75



4.2 Identification of unreliable monolayer regions

monolayer.

(a) (b)

Figure 4.12: The segmented monolayer after convolution with a Gaussian
kernel iteratively. The minimum projection (696x520 pixels) of the monolayer was
convolved with a Gaussian kernel of 11x 11 pixels 500 times. The convolution revealed
the trends and behaviour of each pixel over the iterations. The image intensities
will tend to reach the average if the iterations reach infinity. A pixel is selected as
background if its diffusion rate is negative at any point in time. This implies that it is
less than the average. The number of iterations was subjectively chosen to simulate
infinity. (a) Minimum projection over z of a monolayer. (b) Segmented result.

Applying linear diffusion to segment regions in monolayer was a stable and ro-

bust approach which provided good separation between the two classes. It targeted

difficult features which histogram-based segmentation did not manage to separate.

For example, a histogram-based approach needs the intensity to be fairly uniform

throughout the group as each feature must belong to the same intensity range. Dif-

fusion investigated the behaviour of the intensity over the number of convolutions

such that the intensity value itself was not of immediate importance. The approach

over-segmented the monolayer purposely because that ensured that the remaining

regions were reliable.
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(a) (b)
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Figure 4.13: Comparison of segmentations of a minimum projection of an
endothelial monolayer stack which PCA did not manage to segment. The
minimum projection over Z was obtained from a stack of endothelial cells. The min-
imum projection was convolved with a Gaussian kernel 500 times and the rate at
which the cell signal diffused was investigated. Linear diffusionmanaged to segment
the large unreliable area in the centre, which peA did not. The successful segmen-
tation was due to the fact that the behaviour of the cell signals over the iterations
was used and not intensity itself. A segmentation using Otsu [1]was included as a
comparison and the segmentation performed well due to the fairly uniform labelling.
(a) Minimum projection (b) Segmented result using Linear diffusion (c) Segmented
result using peA with 16 pes and the normalised eigenimagewhich was thresholded
at 0.25 (d) Segmented result using Otsu [1].
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Separation between reliable and unreliable regions of monolayer was an important

step in the analysis of cancer-cell invasion. It featured three different approaches, each

of which had its function and purpose. The proposal to investigate the behaviour of

noise functioned well in situations where the stacks of images were acquired with a

long exposure time, i.e. the noise was less prominent. However, the performance was

less impressive in situations where noise was more present.

The second approach was based on correlation where reliable regions were thought to

be correlated. The minimum projection of a monolayer was transformed using Princi-

pal Components Analysis. A threshold for the components was found and the images

were inversely transformed. Finding a threshold for the components was generally

difficult because of the variation between the data sets. The amount of information

retained in each component varied due to the variation in cell labelling.

Linear diffusion was finally suggested as a third proposition. A minimum projec-

tion was convolved consecutively with a Gaussian kernel and the sign of the difference

between iterations was investigated. A positive difference indicated unreliable regions

and a negative was assumed to be reliable. This path facilitated segmentation of im-

ages, which previously suggested proposals did not manage to complete. The advan-

tage with Linear diffusion was that the threshold was based on the local properties

of the image rather than a global threshold decided by external factors such as noise

distribution. A comparison between two of the techniques can be found in Fig. 4.13.

It was then evident that Linear diffusion was superior due to its dependence on the

individual images whilst selecting a threshold.
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4.3 Surface interpolation

Many interpolation techniques exist for medical imaging, such as nearest neighbour,

polynomial or splines [87]. Some advocate that high-order splines are the most suit-

able image interpolation technique in this field because of their low error rate in both

quantitative and qualitative studies [88]. Splines are a good example of where the

local information is retained at the same time as the local cues add information to

its global shape. Because a polynomial is fitted between each node, its result is more

accurate than a regular polynomial interpolation where the best overall fitting is ob-

tained between the interpolated and the true values. Regular interpolation suffers

from some misfitting due to the fact that the aim is to find the best global match,

which results in increased error. Splines share common problems with other interpo-

lation approaches in the sense that they aim for the interpolant to go through the

nodes exactly, which increases the sensitivity to noise and artifacts. This may cause

awkward shapes of the surface because the splines are determined by the neighbour-

hood, and nodes not in a similar level to their neighbours can result in unrealistic

shapes. Other approaches estimate surfaces from irregularly spaced points where a

kind of triangulation is used to approximate the surface [89] (Le. explicit surfaces).

Explicit surfaces are based on some geometric representation (e.g. triangles) which

makes them easy to deform but hard to fit. Implicit surfaces, which represent the

surface as weighted distance functions, have also attracted some interest [90]. These

are easy to fit because they only fit a weighted distance function between the points.

However, deformations of these shapes are difficult because they do not contain any

geometrical information which can easily be used to recalculate the new structure.

Recent advances combine explicit and implicit surface representation to reconstruct

a surface which seems to provide a more accurate result than the individual repre-
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sentations respectively [91].

(a)

(b)

Figure 4.14: Illustration of interpolation over a sarcoma-induced opening.
Sarcoma cells created openings within the monolayer in attempts to exit the flow
channel. These openings did not contain enough signal to produce sufficient gradient
values. RI measured the amount of cell signal below the monolayer in relation to the
total. In order to prepare the surface for such a procedure, the opening was replaced
by an interpolated overlay. (a) A surface with an opening caused by invading sarcoma
cells. (b) The surface was restored by interpolating over the opening.

The Relative Invasion quantity captured the percentage of cell signal below the

monolayer. Sarcoma cells interrupted the monolayer surface in their strive to exit

the flow channel and these regions did not contain well-defined structures. Because

of this, the surface values in these regions could not be trusted. In order to handle

this situation, the regions needed to be identified and reconstructed by creating an

artificial overlay which could be used in the absence of reliable readings. This ap-

proach enabled the quantification of the invasion by measuring the cell signal below

the reconstructed monolayer surface in comparison to the entire signal.

The first section (4.3.1) describes an approach to fit a function to the data. The
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4.3 Surface interpolation

second section explains the use of digital image inpainting to restore the unreliable

regions. A third approach utilises Radial Basis Function Interpolation to create an

estimate for the surface restoration.

4.3.1 Least-squares fitting

If data are collected from an experiment, there is no information about what be-

haviour (Le. mathematically) these values exhibit. There is no description in terms

of a polynomial that fits these values. To estimate parameters of a function which

match the data, we would fit a line to the data that minimises the errors between

the line and the points. The choice of polynomials depends on the spreading of the

data. Most commonly in one-dimensional problems a line (regression line) is fitted to

the data. The problem is most easily approached by setting up a linear system and

solving for k and m as described in equation 4.6 where k is the slope of the line and

m is the translation parameter.

y(x)=kx+m (4.6a)

Yo Xo 1

1

[

ko

mo
(4.6b)

Yl

Yn Xn 1

Once the parameters are found, the function is evaluated at the unknown data

points. This produces an approximation that minimises the error between the fitted

line and the data points.

This can be extended to a multidimensional case by using the equation for a plane
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in a linear 2D case or e.g. a parabola in a non-linear case. The linear system is set

up in the same fashion as for a one-dimensional case.

In terms of surface interpolation, only the two-dimensional case is considered as

the surface is represented as a 2D depth map. The main purpose was to place a lid

over the created opening and then measure the amount of cell above and below the

surface according to Eq. 3.2a. The first attempt considered a plane that was fitted

to the edges of the opening. The edges acted as nodes and contributed to the fitting.

This technique performed well if all edges around the opening were of roughly the

same height. The surface would fit nicely on top of the opening. However, problems

occurred if one side was lower than the opposite because there would be an area where

the plane was much higher than the actual surface. A plane is not locally flexible

and cannot deform according to its surrounding nodes. Because the openings do not

always have a rigid shape, the result may be a space between the fitted plane and

the actual surface which may affect the quantified migration. Measuring RI in this

fashion is not ideal as the parts of the cell would falsely appear to have migrated.

Other interpolants have related problems.
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4.3.2 Image inpainting

Image inpainting is a technique aimed at restoring damaged images which may contain

e.g. cracks or loose paint due to age-related or mistreatment issues. Bertalmio

et al pioneered digital image inpainting by developing algorithms to automate this

task [92]. The tasks can range from repairing scratches to erasing entire objects

and the objective is to adjust the destructed sections so that the previous state is

invisible. The authors conclude four universal keys obtained from manual inpainting

techniques [93] [94] [95]:

• The global picture determines how to fill in the gap

• The structure of the area surrounding the gap is continued into it

• The different regions inside the gap are filled with colours which match those

of the boundary

• The small details are painted, e.g. bright spots on a dark background

This implies that the restoration process must take the entire picture into account,

but also the information around the border. The purpose of the work is to restore

the gap so it becomes invisible in conjunction with the rest of the art. Therefore it

is reasonable to suggest that information on the borders provides the basis for values

used for propagation into the gap. The algorithm the authors suggest propagates

information into the gap in the direction of the isophotes (contour line) because

lines arriving at the boundary should continue into the gap. The direction of the

incoming line is found by rotating the gradient 90° which reveals the direction in

which an edge is travelling. The value of the Laplacian is an image smoothness

measure and is inpainted as the new value for each coordinate. The Laplacian is

chosen to produce a smooth estimate. A new set of coordinates which describes
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the gap is computed and the process is re-iterated until the difference between two

iterations is zero. A summation of their techniques can be found in [96]. This

approach provides reasonable results which are also pleasing to the eye. However,

visual investigation of the results showed that only the structures were successfully

restored and the algorithm has problems with correcting the texture of large regions.

The approach suggested by Bertalmio et al was extended to provide improve-

ments regarding large regions. Previously, filling in large regions could introduce

blurring due to the diffusion process [97]and the texture was missing. Criminisi et

al [97]targeted this issue by combining the approaches from image inpainting and

texture synthesis and used a block-based approach. The method is semi-automatic

and requires input of the window size (which is suggested to be a little bit larger

than the smallest texture element) and the region in which the inpainting will take

place. The area to be filled is outlined manually and should preferably be selected

to be tight around the object to maximise the input from the source region. It then

searches for patches (blocks) that best match the border according to a patch priority

derived from the product of intensity similarities and the direction of the isophote

(gradient). The information from the best patch is copied into the block which is

to be filled. The patch priorities consist of a confidence term and a data term. The

confidence term measures how certain the values within the patch are and the data

term ensures that the linear structures (e.g. edges) are propagated first. The con-

fidence term consists of the pixels in a patch that have already been filled divided

by the patch area. The pixels which belong to the source region are set to 1 and 0

for the fill region. The data term is the dot product of the normal to the contour

and the gradient of the pixel rotated 90°. For each pixel that lies on the border, the

confidence term is calculated and the patch with highest confidence is selected so that

the sum of the squared intensity values is minimised. This is repeated until all pixels
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are filled. The confidence values are recalculated after each iteration. The original

values from the source region are inserted into the new position inside the hole which

avoids dilution of the values. This approach handles the problem of blurring since

there is no smoothing involved. However, it gives preference to line structures as the

search looks for values similar to those at the edge.

Bertalmio et at also extended their work to incorporate a combination of structure

and texture [98]where structure and texture were separated, reconstructed individu-

ally and then assembled into a reconstructed image. The algorithm comprised three

steps: image decomposition, structure inpainting and texture synthesis. The image

was decomposed into structure and texture by applying a framework derived in [99].

Using this approach the structure elements could be separated and reconstructed as

described earlier [92]. The texture synthesis procedure defined a small n x n template

with known pixel values outside the empty region n but in its neighbourhood. The

image is then scanned for another window in the image with the smallest sum of the

squared difference. The pixel value located in the missing area is replaced by the

corresponding pixel value in the selected window. The two reconstructed images are

added to form the final restored image.

Restoration and object removal in video sequences have also been of interest

because a video sequence can be seen as a series of still images which can be inpainted.

However, the temporal information as well as the spatial information needs to be

incorporated because of the correlation between sequential images. An extension to

still-image inpainting explores these opportunities [100]. This includes the removal

of moving objects where background and foreground were handled separately. The

background is extracted by investigating the optical flow and all stationary pixels

throughout the sequence are classified as background. The stationary pixels are filled

III through the temporal information and are taken into account using a priority
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term, derived from [97]. A copy and paste operation is performed for the patch with

highest priority nearest to the unknown pixel. This is performed throughout the

entire sequence and each frame has a hole with equal size and position. A similar

approach is suggested for moving objects so that the information from moving pixels

within the patch with highest priority is copied into the new location. The stationary

pixels within the patch at the new location are set to zero. This is repeated until all

the pixels within the unknown region are of zero priority.

z z

x x
(a) (b)

Figure 4.15: Illustration of the disadvantage of Inpainting in the context of
surface interpolation. The main concept of inpainting is to propagate the gap with
values from the boundary. The inpainting techniques gave rise to unrealistic surface
reconstructions due to the fact that they inpaint in the direction of the gradient. The
merging between the two sides may create very sharp transitions, which is not a good
representation of the endothelial monolayer. (a) Illustration of a gap induced by a
'I'C. (b) The inpainting algorithm tries to inpaint in the direction of the gradient
which may cause sharp transition when the two edges of the surface merge.

All these approaches share the same principles and therefore also the same prob-

lems. In terms of depth maps and surface reconstruction the values are similar and

seem fairly easy to recover. The depth map had no texture to account for because

of the nature of the maps but structure is also the important component. The depth

map itself does not contain any texture. However, restoring the values accurately

is of importance. Photographs contain a wide range of intensity values and express

a dynamic behaviour. The tone and the colour can vary within the image and cre-

ate, for example sharp edges. They also have details which need to be accurately
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restored. A depth map is simpler in its construction because it lacks these character-

istics. A depth map is an image without any of the difficulties a photograph exhibits.

Therefore inpainting seems to be a suitable technique for restoring missing values.

Nevertheless, inpainting can produce incorrect results due to the fundamental prin-

ciple of the technique. The values in a depth map represent, obviously, depth. The

depth in this application is the location of the surface of the endothelial monolayer

within a z-stack. The principle of inpainting is that it replaces values in the direction

of the isophotes (contour lines). This is a valid assumption for photographs as the

intensity values have to merge gently over the gap in order to produce a smooth

output. Among endothelial cells, the occurrence of unlevelled junctions, especially

in sarcoma-induced opening of the monolayer, are common and one side may have a

positive slope and the other side a negative slope as illustrated in Fig 4.15(a). Be-

cause inpainting follows the direction of the isophote, the negative slope tries to reach

the coverslip and the positive aims for the top of the stack. The merging of these

two sides causes an unrealistic reconstruction of the monolayer which can be seen in

Fig. 4.15(b). Inpainting works very well for photographs and has a valid scientific

approach but is not suitable for reconstruction of a depth map of endothelial cells.

87



4.3 Surface interpolation

4.3.3 Radial basis function for surface interpolation

Reconstructing data from incomplete meshes of scattered data points is a common

task and many problems are redefined to fit into this framework. For example, esti-

mating 3D objects from range data is seen as an interpolation of irregularly spaced

data points [101] [102] because the shapes of these objects are most commonly ir-

regular and are not suitable for e.g. polynomial interpolation. The spacing within

the object may also be irregular due to the non-linear acquisition of the data points.

Polynomial interpolation, though, often requires that the data points lie on some kind

of grid which limits the underlying type of data the interpolation can handle.

However, RBF interpolation is usually considered for data points < 2000 [103]

because of the computation time and memory space required for larger sizes. Some

argue that compactly supported RBFs are the preferred choice because of their finite

size and limited area [104]. An RBF with compact support uses a finite mapping

function which generates a sparse matrix with only partially filled cells. In contrast,

a global RBF - which the RBF implementation in Matlab uses [105]- creates a dense

matrix with values in every cell. A compactly supported RBF requires knowledge

of the radius of the support where the mapping function is defined, which limits the

values included in the interpolation and the values outside the radius are zero. In

terms of monolayer interpolation, the assumption is that the opening in the mono-

layer is of finite radius, which cannot be guaranteed because the shape varies with

the individual cells. In such situations, an RBF with global support is the preferred

choice even though it limits the interpolation nodes and increases computation time

because it does not impose any limits on the size of the region. A short formal de-

scription derived from [106] [103] [107] of the technique is given here. Readers are

referred elsewhere for more details [108] [109].
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Let f : jRd ---t jR be a function containing real values in d dimensions and s : jRd ---t

jR be the function approximation of [, f (Xi) : i = {I, 2, ... n} are the known values at

a distinct set of points, {Xi: i = 1,2 ... ,n} in jRd. f is called nodes of interpolation

and represents the function values at the obtained data points. A traditional Radial

Basis Function is given by

n

s(x) = Pm(x) + L '\i¢(11 X - Xi II),
i==l

(4.7)

where Pm is a low degree polynomial, II X - Xi II the Euclidian norm and ¢ a

mapping function from jRd ---t R s is now our radial basis function consisting of values

from the radially symmetric function ¢( II ... II) plus a polynomial. Typical choices

for ¢ are Linear ¢(r) = r, thin-plate spline ¢(r) = r2logr, Gaussian ¢(r) = e-ar

and multiquadratic ¢(r) = J(r2 + c2). a and c are constants. We also say that

s(Xj) = f(xj), V 1 ~ j ~ n with side conditions

n

L,\j(Xj) = 0
j==l

(4.8)

for all polynomials q at no more than d dimensions, i.e. the basis function runs

through the nodes exactly. The side condition is an optional requirement and only

applies to linear and thin-plane spline and to assure a unique solution to the equation.

It is then possible to set up a linear system defined by

(4.9)
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1 Xn Yn

1 Xl YI

i::;2.

The coefficients A and c can then be used to evaluate the RBF for arbitrary points.

The definition of how the Relative Invasion was measured was defined in sec-

tion 3.4. Openings along the monolayer provided false measurements related to the

depth which caused the measurement to fail. Tackling this problem was achieved by

interpolating over the identified regions and intentionally creating a local, artificial

overlay. To achieve this we treated our depth map as scattered data points because

the vertices were not equally spaced around the boundary due to irregular shapes

of the unreliable regions. Radial Basis Functions (RBF) interpolation is a technique

with this aim in mind [106]. An RBF interpolation in the general case is defined in

Eq. 4.7 where 4>(11 X-Xi II) represents a univariate function and X-Xi the Euclidean

distance between two vector points. The sign of the distance is not of importance

as the function 4> is radially symmetric (hence Radial Basis Function) and gives the

same value regardless of the sign. The distance is multiplied by some weights, A which

are obtained by fitting the function to some known data points. The weights which

are a result of the fitting will then be used to calculate the interpolation value at the

unknown data points. This approach is suitable for interpolation of noisy data as

the least-squares solution decreases the influence of the noisy point. It interpolates

and extrapolates over an area in an averaging sense by solving a linear system of

equations which makes it robust to outliers and noise. The distance between each

coordinate to every other coordinate is translated from Rd dimensions to R using the

mapping function 4>. The translated distance is multiplied with a common parameter

A for which we are trying to solve.

90



4.3 Surface interpolation

Because A is calculated using a least-square solution, A is an optimal representa-

tion of the existing surface values. Using A to obtain the interpolated values ensures

that these integrate well. Most least-square solutions such as fitting a plane to the

data points create a static interpolation that can not adapt to local changes. The

RBF interpolation is different in this sense as it has the ability to adapt to local

data determined by the radially symmetric distance function <p. Data points far away

from the interpolation node have a low impact (Le. low <p value) and values in the

local area have high influence. This creates a surface that is sensitive to its local

environment as well as the global scope.

The RBF implementation in Matlab [105] was used in these experiments. The

outputs from the segmentation of unreliable regions were used as a mask and mul-

tiplied with the depth map obtained with the maximum gradient (see sec 4.1.2).

The depth map was smoothed with a 5x5 median filter to remove salt-and-pepper

noise. The multiplication resulted in a depth map (call it S) with depth values from

reliable regions and NaNs in unreliable positions. A Gaussian weighting function

was selected as a mapping function as it retained local features. Points with short

distances received high function values for <p and points with long distances received

low function values. This emphasised points close to the evaluation point. The linear

system was first set up and solved with the known coordinates obtained from the

depth map S to retrieve some common parameters, (in this instance A). These com-

mon parameters were then used to evaluate the RBF at the unknown coordinates.

The results were depth values at the unreliable coordinates. We used every 10th value

of the depth map in each dimension to reduce the complexity.
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Chapter 5

Image segmentation of sarcoma

cells

Image segmentation is often referred to as dividing images into groups which share

similar characteristics. Characteristics could be intensity or colour and indicate that

it forms an entity. One of the most common methods of segmentation is based on the

histogram. If an image has bright objects on a dark background, the histogram will

contain one peak for low intensity values and another peak for the high intensities

with a considerably lower area in-between. The threshold is then chosen to be in

the lower area and intensities below the threshold are classified as belonging to one

class and the values above to another class. Estimating the threshold can either be

done automatically or manually by inspecting the output while setting the threshold

to a certain value. Segmenting these images is of importance to remove out-of-focus

information which otherwise portrays a sarcoma-cell presence which does not reflect

the true values.

Chen et al [110]segment the nucleus of cells from single confocal images by using

Otsu's method and then watershed to separate cells close to each other. Objects are
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Figure 5.1: Example of a manual segmentation of a sarcoma cell. The classi-
fication was made subjectively and the thresholds were set to include the maximum
amount of cell signal and minimise the out-of-focus blur. (a) Maximum projections
of raw intensity image stacks. (b) The thresholded result. (c) Histogram of the
maximum projection. The dashed line indicates the chosen threshold (3200).

then either deleted or merged depending on their size and shape. This approach does

not take into account any volumetric information and, because of that, blur is not

evident as in fluorescence images.

A TC cell image contains two classes: background/blur and cell signal. These

have different characteristics although the intensity values of blur are very similar

to those of signal. Examples of a manual segmentation of a maximum projection of

a TC can be seen in Fig. 5.1. Background is predominantly darker than the others

and contains noise generated from the camera, sampling noise etc. These are shown

to have a Gaussian distribution (see Fig. 4.5). This assumption is altered when blur

is present. Intensity values of blur are positioned in the range between signal and

background and have a large variation, which is dependent on the strength of the

signal. However, the highest intensity of blur will never be greater than the highest

intensity of signal. Because blur does not contain any structures or any physically

meaningful information, it displays predominantly a smooth structure. Cell signal

values however, because of the punctate staining, display high intensities in relation

to their surroundings. The segmentation of sarcoma cells excludes the areas where

93



5.1 Histogram-based segmentation

blur is present and only includes sections with cell content.

The following chapter explores two areas of segmenting tumour cells: an applica-

tion of a known histogram-based approach and a new diffusion-based variant.

5.1 Histogram-based segmentation

Otsu [1]developed a method for determining a threshold value in an image automat-

ically. It is based on the histogram and tries to minimise the intraclass variance, i,e

minimise the variance of the two classes. In terms of cell imaging, the two classes

would represent cell signal and blur jbackground noise. The threshold is chosen as

the intensity where the combined variance for the two classes has its minimum. This

is realised by adding the variances of the two classes together for each threshold and

then choosing as threshold the intensity which produces the minimum variance. It

is a fast and easy-to-implement algorithm as long as the grey levels are small (Le.

~ 256). An example of cell segmentation can be seen in Fig. 5.2. Otsu's approach

assumes though that the illumination within the two classes is uniform and does not

change from object to object. This could cause issues in terms of cell segmentation

where the intensity can easily vary between cells and also within the cell itself. This

is caused by the fact that the fluorescence molecules (whose response to light is rep-

resented in an image as intensities) do not necessarily adhere uniformly throughout

the cell. The molecules will attach to the membrane at different locations and not

spread evenly. Clusters of molecules will also alter the histogram as the integrated

intensity of the group appears as a higher intensity value than it is supposed to be.

Lower values which actually belong to the cell will then be treated as background

and cause a misclassification. This may be acceptable if those areas are few and do

not form an integral part of the cell.
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A histogram of a fluorescence image of a cell was neither uniformly nor normally

distributed as Fig. 5.1 explains. This was due to the fact that the cell signal occupied

a minor fraction of the image area. Also, the labelling of the cell in this instance was

focused on the mitochondria (because mitochondria generally provide stable labelling)

which only revealed a fraction of the cell itself. These features created an image with

predominantly dark values and caused the histogram to be skewed. Applying Otsu's

method to a skewed histogram with a long tail forces the threshold to approach the

central intensity of the histogram. The minimisation of the intra-variance increases

the threshold in an attempt to compensate for the large tail. For segmenting the

entire cell this approach may very well be applicable (see Fig. 5.2(c)). However,

such a procedure is not valid because it does not exclude the blur within the cell.

Segmenting the entire cell body would then give the blur more emphasis than it

deserves and cause false readings.
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Figure 5.2: Example of a segmentation of a sarcoma cell using Otsu's
method. (a) Maximum projection of a raw intensity image stack. (b) The thresh-
olded result. (c) Histogram of the maximum projection. The dashed line indicates
the calculated threshold (1285).
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5.2 Diffusion-based segmentation

Linear diffusion is a process which describes how values diffuse with time and this

idea has been applied to images. For microscopy, it can be used to separate out-of-

focus light from true signal. Linear diffusion is seen as a convolution process where an

image is convolved with a Gaussian kernel [73]. At an infinite number of iterations,

the resulting image will converge towards the average value and any object present

will disappear at some point. Background and noise, which are more in range with

the average values of the image, will converge faster than cell signal which expresses

a higher intensity. This facilitates a method of analysing diffusion rates of signal and

background.

Baradez et al [111]describe a multi-scale method for finding a threshold in strong

unimodal histograms. The image convolution is performed by arranging the image

into a one-dimensional vector and iteratively halving the size of the 1 x n matrix,

reorganise it to a 2 x ~ matrix and averaging over the columns until a single element

remains. This has the advantage that it converges very fast and is computationally

efficient. The negative aspect is that it works on a global scope where locality is lost

and there is no reference to where the different diffusions belong. Another aspect

is that the method is particularly designed for unimodal histograms. It assumes

that a majority of the relevant information is located around the major peak. In a

scenario where the mitochondria is labelled, the information in the upper segment

of the histogram with very low frequencies contains the important information. The

multi-scale approach assumes - because of the unimodality - that all values in the

histogram greater than the first intensity with zero frequency are also zero which

cannot be guaranteed with a wide-field image.
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The following section describes a new cell segmentation method based on Linear

diffusion.

5.2.1 Linear diffusion applied to tumour cells

The maximum projection of each TC stack was convolved with a Gaussian kernel of

11 x 11 pixels (2 x 2 /-Lm) with 0' = 0.5 for 20 iterations and a common threshold

was obtained. The threshold was then applied to convolved versions of maximum

projections, containing pixels above and below the surface, separately. Signal areas

possess negative diffusion rates when converging towards the average of the image

and therefore only pixels with negative diffusion rates were considered (although

inverted to positive for calculation and representation purposes). The number of

iterations was subjectively chosen to 20 which proved to provide enough information

to distinguish between blur and signal. This segmented the blur and background from

the signal as described in section 5.2. The threshold for diffusion rates was calculated

automatically by investigating the diffusion rate after n iterations (see section 5.2.2

for details). Briefly, the diffusion rates were represented as an image and the intensity

corresponded to the diffusion rates. The relative diffusion rate was plotted against the

relative number of diffusion rates and the crossing of the two indicated the threshold.

This retained the highest intensities and discarded the low intensities which aided

an accurate segmentation.

The objects inside the convolved images alter its shape dynamically over the

iterations [112] and subsequently the diffusion rates. This means that every object

changes but there would eventually exist a level of degradation where the objects are

smooth and the diffusion is low. Background areas reach this level quicker than cell

signal because of the similarities in intensities the background possesses.

Our approach, however, maintained the locality of each diffusion and the rate
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of change indicated the content of each pixel, which aided the segmentation. The

penalty was the number of iterations, where our approach had longer convergence

compared to Baradez [111]but was still the preferable option as location was crucial.

5.2.2 Thresholding diffusion rates

The diffusion rates were obtained using the method described in section 5.2.1 and were

represented as an image. The out-of-focus rates were different from rates of signal

areas in such a way that out-of-focus had low rates. The segmentation algorithm was

applied to separate the two groups. The method to segment these areas was inspired

by the SURE procedure [113]and found a balance between the integrated number of

pixels below a diffusion rate and the sum of the diffusion rates above. The method

is explained more formally in Eq. 5.1

threshold(t; x) ~ argmin (#{Xi ~i ~ t} > {I:Ii: i > t}) (5.1)

where (a) represents the normalised number of diffusion rates below the threshold

t and (b) is the normalised sum of the diffusion rates above t. This is repeated for

every t. # represents cardinality, Le. number of elements in a set. Both quantities are

normalised respectively. From an implementation point of view, Eq. 5.1 could be seen

as two curves (see Fig. 5.3(c)), normalised respectively, which are plotted against each

other and the threshold is equal to the index where both curves cross. This procedure

found a trade-off between the number of diffusion rates and the strength of them,

which highlighted the punctate staining of the mitochondria. The equation might be

subject to a data-scaling factor. For instance, the size of the image decreases but the

size of the cells stays the same. One of the prerequisites is that the background is

dominant. The threshold would change slightly if the number of background pixels
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decreased and the segmentation would fail if the maximum projection contained cell

signal only. However, this was not an issue because the TC images contained very

few cells with a large background.

The normalisation is an important property. The values in the histograms needed

to be normalised respectively as this will ensure that both features are in the range of

0-1. The total intensity then corresponds to zero number of pixels below a diffusion

rate. Finding the crossing between the two curves emphasised high diffusion rates

in combination with a high number of them. The procedure can be summarised as

follows:

1. Ensure the levels in the diffused projection are integers.

2. Create cumulative histograms of the diffused projection for both the intensity

level and the corresponding number of pixels.

3. Normalise the values of the two histograms respectively. This creates two vec-

tors in the range of 0-1.

4. Choose as threshold the first index where the integrated number of pixels below

t is greater than the integrated intensity above.

The prior knowledge about the maximum projection was that the cell signal was

generally brighter than blur/noise and it was in minority within the image. Many

diffusion rates with low values generated a low integrated sum of diffusion rates. On

the other hand, cell signal consisted of high diffusion rates but very few in number.

The two curves approached each other as the threshold candidate increased so the

majority of the blur (i.e. high quantities and low integrated value) would then have

been discarded. Locating the crossing was a solution which segmented the cell signal.
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It is preferable to find a threshold for the diffusion rates rather than an intensity

threshold of the maximum projection. Thresholding the histogram in terms of inten-

sity excluded cell signal with low intensity. Obtaining the diffusion rates and then

using this information to segment the pixels into two different classes captured this

event independent of the intensity value. The important feature was that the cell

signal was brighter than its surroundings. This made the segmentation independent

of the intensity value itself. As such, even weakly labelled cells would be segmented

correctly even though the intensity of the punctate staining might vary. Thresholding

the diffusion rates ensured that weakly labelled areas were also segmented.
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Figure 5.3: Segmentation of a maximum projection of cells using linear dif-
fusion. The maximum projection image was convolvedwith a Gaussian kernel for t
iterations (in this case t was subjectively chosen to 20). The projections over the t
iterations containing the minimum value of the diffusion rate for each < x, y > over
the iterations were obtained. All positive rates were discarded as those represented
blur and noise. For calculation purposes, though, the negative rates were inverted.
To find a threshold, a normalised histogram of the diffusion rates was created and the
normalised number of pixels below a threshold was plotted against the normalised
sum of diffusion rates above. The threshold was selected where the number of pixels
was greater than the sum of diffusion rates which in practice represented the nearest
integer. The number of pixels below a diffusion rate (solid line) starts at 0.5 because
50% of the values have a maximum diffusion rate of zero (rounded to the nearest
integer). (a) The maximum projection of the diffusion rates after 20 iterations. (b)
The segmented result on the basis of thresholding diffusion rates. (c) A threshold
for the diffusion rates was found by plotting the normalised number of rates below
consecutive thresholds against the nor~ed sum of diffusion rates above the po-
tential threshold. The threshold was chosen at the crossing of the two curves, where
number of rates> the integrated sum (see inset). The vertical dashed line indicates
the selected threshold which in practice is rounded to the nearest integer (in this
instance a value of 3).



5.2 Diffusion-based segmentation

of an intensity stack

100 iterations

20 iterations

200 iterations

50 iterations

500 iterations

Figure 5.4: Convolutions of a maximum projection of an intensity image
obtained from a 3D wide-field stack representing a sarcoma cell. The max-
imum projection image was convolved with a Gaussian kernel of 11 x 11 pixels (2
x 2 /-lm). Bright pixels in the maximum projection exhibited a higher diffusion rate
compared to background/blur with lower diffusion rate (represented as dark values)
after n iterations. However, a high number of iterations merged some features (see
100 iterations) into larger objects. This was an unwanted property and 20 iterations
were found to be suitable. Values are inverted for visualisation purposes. Field size
is 27 x 27/-lm.
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5.2 Diffusion-based segmentation

maximum projection
of an intensity stack

100 iterations

20 iterations

200 iterations

50 iterations

500 iterations

Figure 5.5: Segmentation results of a maximum projection image containing
a sarcoma cell based on linear diffusion and thresholding for a selection
of iterations. The maximum projection obtained from a 3D stack of images was
convolvedwith a Gaussian kernel of 11 x 11 pixels (2 x 2 /Lm) n number of times
(0'=0.5). The rate at which each pixel diffused was investigated and formed the
basis for segmentation as cell signal values were different and diffused more quickly
than blur and background. The maximum rate for each <x,y> was represented as
intensity in an image. A threshold for this image was selected at the intensity level
where the normalised number of pixels below a threshold candidate was greater than
the normalised integrated intensity above (see Fig. 5.3(c)). The segmentation results
look similar because the maximum values over the iterations are chosen which were
the same in each case. Therefore, 20 iterations were chosen. Each result was also
filtered with a 5 x 5 median filter to remove noise. Field size is 27 x 27 us».
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5.2 Diffusion-based segmentation

The number of iterations was subjectively chosen to 20. The number of iterations

needed to be high enough so that cell signal stabilised to a low value where the max-

imum diffusion rate differentiated between the two groups. Choosing the maximum

diffusion rate over 20 iterations highlighted the fact that cell signal diffused slower

than unreliable regions. Fig. 5.4 evaluates the number of iterations. The figure shows

the segmentation after a different number of convolutions and 20 iterations showed to

be satisfactory. The fact that all iterations showed very similar segmentation results

was due to the fact that the maximum projections were used. The values were dif-

fused over the iterations and therefore approaching lower rates until they stabilised.

The maximum values would then be the same after 20 iterations as after 500 and it

was then concluded that 20 iterations were adequate. Fig. 5.5 shows that the seg-

mentation results after n iterations and 20 iterations produce similar results as after

500 iterations. Iterations above 20 were therefore considered unnecessary.

This chapter described a new approach to segmenting tumour cells from a stack of

images acquired with a wide-field microscope. The mitochondria appeared as small

bright elements which were significantly different from their surroundings. The rate

at which these elements were diffused formed the basis for the segmentation. A high

rate indicated cell signal. The segmentation was made independent of the intensity

value because it utilised the diffusion rate. This was necessary because cell signal

could in some areas be similar to non cell signal in other areas. Investigating the

diffusion rate provided a reliable segmentation.
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Chapter 6

Validation of image-processing

procedures

Validation of the different approaches is an important step in the process of verifying

that a technique actually is accurate. Evaluation in many cases utilises some kind of

truth, particularly data sets where the true data is provided. For example, to estimate

the position of humans in images, wireless markers can be placed at different locations

on the subject's body and the marker's local position is captured along with the image

sequence [114]. The data captured from the markers form a true estimation of the

position, which can be used for evaluation.

The validation procedure described in this chapter validated the recovery of the

upper surface using maximum gradient, surface interpolation with RBFs, tumour-

cell segmentation with Linear diffusion and Relative Invasion. This was achieved

by using confocal stacks for reference. Artificially generated image stacks designed

to represent the signal of the cell mitochondria were also created and subsequently

convolved with a PSF to simulate wide-field conditions.

This chapter validates the correctness of the suggested methods and describes
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6.1 Validation data set

how the validation data was obtained and used.

6.1 Validation data set

In our scenario, true values are not available due to the nature of the wide-field

acquisition technique. The wide-field microscope uses a large pinhole which intro-

duces blur in the stack of images and true surface z-levels are therefore difficult to

obtain. To validate the techniques applied to wide-field images, a ground truth or

true value based on a confocal stack and stacks with artificially created mitochondria

was generated. A confocal microscope provides optical sectioning which reduces the

out-of-focus information normally present in the wide-field technique [61]. There-

fore, fluorescence signals obtained with a confocal microscope originated from their

respective z-levels only and could form a ground truth for the evaluation.

A laser scanning confocal microscope LSM 510 (Carl Zeiss MicroImaging GmbH,

Jena, Germany) with 63x 1.4 NA lens for imaging cells fixed with 4% paraformalde-

hyde solution was used in order to complement the dynamic studies. The fixed cells

were imaged in their fixed solid state to provide a test bed for the surface reconstruc-

tion. Because the confocal microscope reduces the out-of-focus light to a minimum,

the captured intensity in the confocal stack could be assumed to originate from the

surface only. Therefore the axial position of the maximum gradient corresponded to

the surface and the confocal stack was then used as reference or ground truth.

The acquired confocal stack was subsequently convolved with a PSF representing

the set-up used in the dynamic experiments and resulted in a new stack with wide-field

properties. Fig. 6.1 explains the procedure. The PSF was constructed by acquiring

a 3D image stack (0.1 xO.1xO.2 /Lm/pixel) of a small fluorescence bead of size 175nm

using identical equipment as in the dynamic studies. Three stacks of acquired beads
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6.1 Validation data set

were processed in Huygens (Scientific Volume Imaging, Netherlands) to output one

3D stack which described the Point Spread Function.

The confocal stack with fixed specimen was acquired with resolution <x.y,zc-

= 0.07xO.07xO.2 j.lm/pixel. It was adjusted to <0.lxO.lxO.2> j.lm/pixel to have

the same resolution as the PSF. These two were convolved but scaled further to

<0.33xO.33xO.2> j.lm/pixel prior to convolution in order to reduce computation

time. The convolved result with resolution <0.33xO.33xO.2> j.lm/pixel now resem-

bled a stack acquired with a wide-field microscope. The maximum gradient and

corresponding depth maps were calculated for the confocal and the convolved result.

The surface reconstruction was confirmed by locating the surface manually in a set

of wide-field stacks of monolayers. The result was then compared to the interpolation

results.

The tumour-cell segmentation was validated by creating a test stack which simu-

lated cells acquired with the wide-field microscope.

To simulate mitochondria as closely as possible, random numbers of bright boxes

of size 4x4x12 pixels (1.6x1.6x2.4j.lm) were inserted artificially into empty stacks

(80x80x76 pixels at resolution 0.4x0.4xO.2j.lm/pixel) at random (but normally dis-

tributed) positions. The size of the objects was determined by investigating a wide-

field stack containing TCs and a representative size for mitochondria was concluded.

The normally distributed positions ensured that the boxes had the possibility of form-

ing clusters, similar to mitochondria. These were further convolved with a PSF with

matching resolution to replicate wide-field conditions. Both stacks were normalised

between 0-1 prior to convolution so that the intensity values of the convolved result

would not be excessively high. Fig. 6.2 shows a diagram of the creation process.

Manual inspection of wide-field stacks suggested that the intensity for mitochondria

was around 100 for an 8-bit stack. Therefore, the stacks were normalised again in
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6.1 Validation data set

Figure 6.1: Procedure of the creation of a validation data set for the
maximum gradient. The validation of the maximum gradient featured a data set
based on a confocal stack. A confocal stack of a monolayer with fixed specimen
was acquired with resolution <x,y,z> = 0.07xO.07xO.2 p,m/pixel. The resolution
of this stack was adjusted to match the resolution of a PSF (0.lxO.1xO.2). These
were convolved and the result was a new stack which resembled wide-field conditions.
The new convolved stack contained images with <0.33xO.33xO.2 > p,m because the
<x.y > resolution of the two stacks was decreased by 1/3 prior to convolution to
reduce computation time. The maximum gradient was applied on both the adjusted
and the blurred confocal stack where the confocal acted as a reference sample, i.e.
ground truth. The depth maps obtained as a result were then compared.

that range after the convolution.

In order to achieve more realistic conditions, samples were obtained from a se-

quence of z-planes acquired with a wide-field microscope without cells to represent

noise. The noise was added to the original and the convolved after the convolution.

Manual inspection of wide-field stacks suggested that the intensity distribution for
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6.2 Validation of the recovery of the upper surface using maximum
gradient

noise should have a mean of 5 for an 8-bit stack. Therefore, the distribution was

adjusted to fit this situation prior to addition. The segmentation was then performed

on these 8-bit stacks. A minimum of three boxes per stack was generated and inserted

into the empty stack. In total, 29 pairs were created and used in the evaluation.

To validate the calculation of the Relative Invasion (RI) parameter, 12 cells (six

from flow and six from control experiments) were selected randomly. For each cell

ellipses were drawn manually around the outline at each z-plane throughout the cell

height. The areas of the ellipses were integrated over the z-stack to approximate cell

volume. Relative invasion volume was calculated as the volume underneath the upper

surface of the endothelial cells divided by the entire cell volume.

6.2 Validation of the recovery of the upper surface

using maximum gradient

A stack of images obtained with a wide-field microscope introduce blur which alters

the estimated surface z-levels. In order to assess the accuracy of the surface recovery

the validity of the depth map produced by the surface reconstruction needed to be

addressed.

The surface of the blurred confocal stack was estimated by locating the axial

position of the gradient for each < x, y > (see Fig. 6.4) as described in section 4.1.2

and compared to a surface map reconstructed from the maximum intensity values in

the original confocal stack (see Fig. 6.3). The stack was convolved with a smoothing

kernel with an llxll on a plane-by-plane basis to decrease noise. Table 6.1 evaluates

the error between different sizes and shows that and 11x 11 gave a higher error than

19x 19 but the smaller size was selected because the difference in error was tiny. The

average error for llxll was 3.16 z-levels (O.63J.Lm). A rendering of the two stacks
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6.2 Validation of the recovery of the upper surface using maximum
gradient

Add noise
(~=5.a=2.9)

Remove non-signal
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normalised PSF

Obtain binary mask
(Linear diffusion)

Figure 6.2: Flow chart of the construction of the sarcoma-cell validation
data set. Boxes of size 4x4x12 pixels with intensity of 1 were inserted into an empty
stack at random <x,y> positions. This stack was convolved with a normalised PSF
where the convolved result simulated wide-field conditions. The number of boxes
in each stack was selected randomly but the minimum number of boxes was set to
three. Noise at randomly selected locations was sampled from a stack acquired with
a wide-field microscope containing no cells. The noise was added to the original stack
with binary boxes and to the convolved stack after the convolution procedure (2a
and 2b). The stacks were normalised between 0-100 so that a comparison could be
made. Manual inspection of stacks with sarcoma cells suggested the intensity for cell
signal should have a value of around 100. The segmentation procedure was applied to
the maximum projections of the wide-field stacks and produced a binary mask. The
binary mask (marked 3) was multiplied with the maximum projection of the intensity
(marked 2b). The maximum projection of the stack with binary boxes (marked with
1) was multiplied with the maximum projection of the same stack but with noise
added (marked 2a). This ensured that non-signal values were excluded. Correlation
was then calculated on the remaining signal values.

can be seen in Fig. 6.7. Fig. 6.5 shows the corresponding error map. The error is seen

to be large at areas with high edges which is caused by influence from neighbouring

edges. Fig. 6.6 also shows a profile plot over z of the centre y-position and the values
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6.2 Validation of the recovery of the upper surface using maximum
gradient
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Figure 6.3: Reconstructed surface using maximum gradient from a stack
obtained with confocal microscopy containing a monolayer of endothelial
cells. The surface of the monolayer was reconstructed by finding the z-position of
the maximum axial gradient for each < x, y >. The image stack contained image
planes of 73x73 iui: at 50 different z-Ievels (0.33xO.33xO.2 uu: /pixel). The white
border line indicates the border of the sarcoma cell.

seem to correlate well (Spearman r=0.86, p-value <0.0001)

Kernel size (pixels) Error (avg z-levels) Error (avg f.Lm)
llxll
19x19
25x25

3.16
3.14
3.28

0.63
0.62
0.65

Table 6.1: Average error of surface estimation using maximum gradient
with different average kernels. A confocal stack was blurred with a PSF obtained
with a wide-fieldmicroscope. Each plane in the blurred stack was filtered with a 2D
average kernel to smooth out noise. The depth map consisted of the z-location of the
maximum gradient value for each <x,y>. The depth map from the blurred stack was
compared with the depth map from the original confocal depth map and the error
shows that smoothing did not have a direct impact.
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6.2 Validation of the recovery of the upper surface using maximum
gradient

15
--.
E
::t..._..

10 Q)
>Q)
Q)
o
{g

5 :::J
Cl)

Figure 6.4: Reconstructed surface using maximum gradient from an inten-
tionally blurred confocal stack containing a monolayer of endothelial cells.
A stack acquired with confocal microscopy was blurred with an acquired PSF. The
surface of the monolayer was reconstructed by finding the z-position of the maximum
axial gradient for each < x, y ». The image stack of the source contained image
planes of 73x73 J.Lm at 50 different z-levels (0.33xO.33xO.2 J.Lm /pixel). The white
border line indicates the border of the sarcoma cell.
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6.2 Validation of the recovery of the upper surface using maximum
gradient
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Figure 6.5: Error map of depth values obtained with the maximum gradient
technique between a confocal stack and a convolved version of itself. A
stack acquired with confocal microscopy was blurred with a measured PSF to enable
wide-field properties. The maximum gradient was applied in both instances and the
error is displayed as a map. Manual assessment determined the thickness of the
monolayer to 8 z-levels (1.6 /-lm). Mean value of absolute difference: 3.16 slices (0.63
/-lm), standard deviation: 4.4 (0.63±0.88 /-lm). Manual assessment determined the
thickness of the monolayer to 8 z-levels (1.6 /-lm).
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6.2 Validation of the recovery of the upper surface using maximum
gradient
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Figure 6.6: Graph of depth values of a cross-section obtained from a stack.
A confocal stack was convolvedwith a PSF to simulate a wide-field acquisition and
depth values were obtained using the maximum gradient over z. The units are in
relation to the coverslip. (a) Depth values are plotted over a cross-section. Dashed
line indicates values from the confocal stack and solid line represents the convolved
version where the values from the confocal stack then acted as a reference. The two
versions seem to correlate well (Spearman correlation, r=0.86, p-value < 0.0001).
(b) Image of the in-focus plane of the confocal stack. The white line in the centre
indicates the location of the cross-section. (c) shows a profile plot of the same position
but both stacks have been smoothed with an 11x 11 prior to obtaining the maximum
gradient.
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6.2 Validation of the recovery of the upper surface using maximum
gradient
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Figure 6.7: Surface rendering of confocal stacks restored using the maxi-
mum gradient. The maximum gradient technique applied for each <x,y> over z to
produce depth values. The depth values are presented as a 3D surface volume and
both seem to agreewell. The imageswere rendered usingVolocity (Improvision,UK).
(a) The original confocalsurface rendering. (b) Surface rendering from a restoration
of a blurred confocal stack.
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6.2 Validation of the recovery of the upper surface using maximum
gradient

(a) (b)

Figure 6.8: Colocalised rendered images of a confocal stack and its blurred
counterpart. Surface values obtained using the maximum gradient from a confocal
stack and the corresponding blurred stack were loaded into volume-rendering software
and colocalised images were created. Yellow indicates areas where the depth values
from the confocal and the blurred version were exactly the same. Green represents
areas where the confocal surface values were higher and red represents areas where
surface values obtained from the blurred stack were higher. The surfaces represent
±3 z-Ievels around the estimated value. The values are not always identical because
the surface values fluctuate (see Fig. 6.6). Images rendered using Imaris. (a) Top
view. (b) Bottom view.
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6.3 Validation of surface interpolation

6.3 Validation of surface interpolation

The surface interpolation was made using RBFs. A manual inspection of the data

set was made in order to validate the assumptions and we estimated the surface

of a number of selective stacks of monolayer at two time points. The stacks were

selected so that the set of the ECs comprised images with good contrast around the

surface z-levels. The average surface levels were found by inspecting the intensity

stack manually for its in-focus position in an <x,y> region of lOlxlOl to 155x155

pixels (20x20 to 31x31 J.Lm) where TCs reside. The window size varied depending

on the size of the TC. The z-values were then compared to the average surface values

within the corresponding windows of the depth map and the values were similar

(Spearman correlation, r=O.95, p-value-cu.O'l). Table 6.2 presents the comparison of

surface levels using manual and automatic location of the upper surface of three cells

at two time points which were representative for the experiments.
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6.3 Validation of surface interpolation

avg z-levels
Cell no Time (min) Manual automatic
s2c 30 5 5

90 3 3
s3c 30 4 5

90 3 3
s4c 30 5 5

90 3 4
s6f 30 14 14

90 15 15
s12f 30 15 16

90 17 16
s16f 30 16 16

90 16 15

Table 6.2: Comparison of the surface interpolation technique with manual
estimation. The surface interpolation technique was compared to manual estimation
in order to test its accuracy. The manual values was obtained by inspecting selective
intensity stacks manually for their in-focus position in the region where the invading
cells resided and the interpolation was based on RBFs. These two correlated well
(Spearman r=0.95, p-value-cfl.Ol.). The values represent average surface values and
a z-plane of 1 is top of stack.
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6.4 Validation of tumour-cell image segmentation

6.4 Validation of tumour-cell image segmentation

To evaluate the accuracy of the semi-automatic tumour-cell segmentation, a com-

parison was made between a reference stack (ground truth) and a convolved version

of the same stack. Random numbers of bright boxes of size 4x4x12 pixels were

inserted into binary stacks at random positions. The sizes of the objects were deter-

mined by investigating a wide-field stack containing TCs and a representative size for

mitochondria was concluded. These stacks were convolved with a PSF to replicate

wide-field conditions as described in section 6.1 and noise was added. This resulted

in two image stacks where the original, created prior to convolution, was used as

a reference sample to evaluate the segmentation performed on the convolved stack.

Noise from an empty stack with no cells, acquired with a wide-field microscope, was

added to both stacks after the convolution.

The segmentation procedure was performed on maximum projections of the con-

volved stacks using Linear diffusion as described previously (section 5.2.1). The

segmentation resulted in a binary image which - when multiplied with the maximum-

intensity projection - acted as a mask to mask out non-signal values. The maximum

projection of the binary stack acted as a mask to remove non-signal values. Examples

of maximum projections and masks can be seen in Fig. 6.9.

The Gaussian kernel used in the Linear diffusion process was adjusted to a size

a little bit bigger than the simulated mitochondria and set to 7x7 pixels during

the validation process. This value was different compared to the kernel size used

to segment real wide-field images in chapter 5. The creation of the validation data

set was time consuming and the <x,y> resolution was therefore decreased to reduce

computation time. The kernel size needed to be adjusted accordingly so that all

processing was performed at the same resolution.
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6.4 Validation of tumour-cell image segmentation

Intensity of original Intensity of blurred

(a)

Mask of original
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Mask of blurred
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Figure 6.9: Examples of maximum-projection images and their respective
masks. Boxes were inserted into an empty stack to mimic mitochondria and form
some kind of ground truth. This stack was convolved with a PSF to resemble sar-
coma cells obtained with a wide-field microscope. The segmentation was applied
on maximum-projection images of the convolved version and resulted in a binary
mask. The mask related to the original stack was given by the maximum projection
of the stack prior to convolution. The two binary masks were multiplied with their
maximum-intensity projections respectively. The correlation between the sum of the
intensities before and after convolution was calculated as well as the correlation be-
tween the number of segmented pixels in the masks. Noise was added to both stacks
after the convolution. (a) Maximum-intensity projection of the original stack with
added noise. (b) Maximum-intensity projection of the convolved stack with added
noise. (c) The binary mask of the original. This is also the maximum projection prior
to convolution. (d) The binary mask produced by the segmentation of the maximum
projection of the convolved stack.

120



6.4 Validation of tumour-cell image segmentation

The correlation coefficient was calculated on two parameters - the number of

segmented pixels and the intensity of the segmented pixels - by evaluating 29 pairs of

image stacks. The number of segmented pixels in the original image was compared

to the number of segmented pixels in the convolved image as well as the intensity

of the segmented pixels respectively. The result is shown in Table 6.3 and suggested

that the segmentation was significant.

Number of segmented pixels Sum of intensity

No Original Convolved No Original Convolved

1 54 54 1 4578 5923

2 34 31 2 2581 3747

3 36 43 3 3459 3974

4 42 37 4 3035 4631

5 45 43 5 3681 4932

6 54 60 6 4885 5947

7 45 49 7 4075 4970

8 54 55 8 4648 5960

9 36 38 9 3165 3947

10 54 54 10 4578 5923

11 34 31 11 2581 3747

12 45 43 12 3681 4932

13 54 60 13 4885 5947

14 45 49 14 4075 4970

15 54 55 15 4648 5960

16 36 38 16 3165 3947

17 54 54 17 4578 5923

18 34 31 18 2581 3747
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6.4 Validation of tumour-cell image segmentation

19 36 43 19 3459 3974

20 42 37 20 3035 4631

21 45 43 21 3681 4932

22 54 60 22 4885 5947

23 45 49 23 4075 4970

24 54 55 24 4648 5960

25 36 38 25 3165 3947

26 54 54 26 4578 5923

27 34 31 27 2581 3747

28 36 43 28 3459 3974

29 42 37 29 3035 4631

r = 0.9151, r = 0.9375,
p-value< 0.001 p-value< 0.001

Table 6.3a) Table 6.3b)
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6.4 Validation of tumour-cell image segmentation

Table 6.3: Results obtained from the validation

of tumour-cell segmentation. Boxes of size 4x4x12

were inserted at random <x.y> positions into an empty

stack. This stack was convolved further with a PSF

where the convolved result simulated wide-field condi-

tions. The TC segmentation was applied on the maxi-

mum projection of the convolved which produced a bi-

nary image (i.e. a mask). The mask was multiplied

with the maximum-intensity projection of the convolved

stack in order to remove non-signal values. The mask of

the original was obtained by using the maximum pro-

jection of the binary stack with boxes created in the

first instance. This was multiplied by the stack ob-

tained prior to convolution. This meant a stack with

noise plus some cell signal values. The results after mul-

tiplication were compared. The number of segmented

pixels (6.3a) in the original maximum projections corre-

lated well against the number of segmented pixels in the

convolvedversion (r=O.91). Similarly, the sum of the in-

tensities of the maximum projections (6.3b) before and

after convolution also showed good correlation (r=O.93).

Fig.6.10(a) , Fig.6.10(b) show example images on which

the sum of the intensities in each image was correlated

and Fig.6.1O(c) and Fig.6.10(d) show examples of seg-

mented images where the number of segmented pixels

were correlated.
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6.4 Validation of tumour-cell image segmentation

The shape and position of the segmented boxes were slightly altered, evident from

Fig. 6.10, which was caused by the asymmetric shape of the PSF but still correlated

well. For information about PSFs and image degradation, McNally et al [59] is a

good starting point.
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6.4 Validation of tumour-cell image segmentation

Max intensity Max intensity
projection of original projection of blurred

(a)
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Figure 6.10: Example of a segmentation result of the validation of tumour-
cell segmentation. Boxes of size (4x4x12) were inserted into an empty stack
at random <x,y> positions. This stack was convolved with a PSF obtained from a
wide-field microscope which used the same equipment as the actual experiments. The
resulting stack was segmented using Linear diffusion (section 5.2.1). The segmented
image acted as a mask and was multiplied with the maximum projection of the
convolved stack to remove out-of-focus blur. To evaluate the result of the removal ,
the correlation coefficient between the intensity of the original unconvolved maximum
projection and the intensity of this new image was compared. The segmentation
procedure slightly altered the location of the boxes due to the asymmetric shape of
the PSF. However, the intensities and the number of segmented pixels in the original
maximum projection and the convolved seemed to correlate well (see Table 6.3).(a)
shows the maximum projection of the original image (i.e. the reference) prior to
convolution. (b) Maximum projection of the convolved stack. (c) Segmented result.
(d) The boundary of the original boxes (green) superimposed on the segmented result.
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6.5 Validation of Relative Invasion parameter

6.5 Validation of Relative Invasion parameter

To verify that the automatic measurement of RI was accurate we analysed six cells at

two time points, in total12 measurements manually where we fitted ellipses to the cell

data of each plane in the stack. Ghodsnia et al [49] previously used a similar method

to quantify the invasion. The image stacks were first inspected visually using ImageJ

(NIH, USA) to locate the coverslip and the upper surface of the monolayer. The

desired region was examined for the z-level that was sharpest which, represented the

surface of the monolayer. The top of the sarcoma cell was determined by investigating

where the cell signal faded. An ellipse was fitted manually to the outline of the

sarcoma cell (an example is shown in Fig. 6.11) at each z-level and the area of each

ellipse was calculated respectively. The sum of these areas represented the volume of

the cell. To determine RI manually, the volume below the surface divided by the entire

volume was used as measurement. The comparison between manual and automatic

measurements is shown in Table 6.4 and the measurements seem to correlate well

(Pearson r=0.89, p-value<0.005).

Figure 6.11: Example of manual fitting of an ellipse to the intensity in a
z-plane of a TC stack. An ellipse was fitted manually to the intensity of each
z-plane. The area of each z-plane represented the volume of a cell which was used to
quantify the invasion and as a validation of the RI. The manual RI was quantified
as the volume below the surface in relation to the entire cell volume.

126



6.5 Validation of Relative Invasion parameter

RI
Cell id Time (min) Manual Our method
s2c 30 0.27 0.28

90 0.51 0.52
s3c 30 0.46 0.44

90 0.52 0.65
s4c 30 0 0

90 0.82 0.71
s6f 30 0.50 0.53

90 0.41 0.52
s12f 30 0.52 0.46

90 0.52 0.63
s16f 30 0.25 0.27

90 0.64 0.54

Table 6.4: Comparison of semi-automatic estimation of RI with manual
estimation. RI was compared to manual estimation in order to test its accuracy.
The manual values were obtained by inspecting selective intensity stacks for cell
signal and monolayer surface manually and the number of slices a TC covered above
and below the surface was calculated and shown to correlate well (Pearson r=0.89,
p-value<0.005) .
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Chapter 7

Experimental results

Our direct viewing assay used a flow chamber with a custom-made Nylon insert

fitting tightly into a 35 mm glass-bottom MatTek dish as shown in Fig. 3.2. Such

a design allowed for convenient cell culturing of the monolayer and assembly of the

chamber. The glass-bottom dish enabled the specimen to be viewed in high-resolution

fluorescence microscopy. The chamber comprised an inlet and outlet, a flow channel

and an aperture in the centre to allow for easy introduction of sarcoma cells in

suspension. The inlet and outlet were connected to a peristaltic pump to provide

shear flow in the chamber.

We have used OREM and RI to investigate the modulation of cancer-cell invasion

under flow. Lymphocytes express increased invasiveness during exposure to flow [115]

and it was believed that TCs would have similar behaviour. To evaluate this, we

conducted two types of experiments: one where cells did not experience the shear

forces and one in which the flowwas present. The invasiveness was quantified by two

parameters, OREM and RI, which combined provided evidence for flow-mediated

invasion of TCs. OREM targeted the initial opening of the monolayers and RI

quantified the TC invasion. We also conducted statistical measurements on these
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parameters to support the quantitative studies.

7.1 Experimental set-up

7.1.1 Cell culture

Our direct viewing assay required two cell types: sarcoma cells in suspension and

endothelial cells that formed confluent monolayers. Sarcoma cells, T15 and K2, were

derived from inbred rats [52]. The sarcoma cells were maintained in MEM with Hanks

salts supplemented with 10%bovine serum (SML, Germany), 0.09% sodium bicarbon-

ate, 0.12 gil Na-pyruvate (Sigma) and 1 mM glutamine, at 37°C with 5% C02 using

vented 25 crrr' tissue culture flasks. Cells were detached from flasks by brief expo-

sure to trypsin-versene solution (1:5) and suspended in 37°C phenol red-free medium

prior to recording. Cells were not used beyond passage 14. Rat brain endothelial

cells RBE4 were obtained as a kind gift from Professor Joan Abbott, Centre for Neu-

roscience Research, GKT School of Biomedical Sciences, King's College London, UK.

Stock RBE4 cells were cultured in vented 25 cm? collagen-coated BD BioCoat flasks

(Becton Dickinson Labware, Two Oak Park, Bedford, UK) with medium contain-

ing 45% Hams F 10 (GibcoBRL), 45% a MEM (GibcoBRL), 10% foetal calf serum

(Sigma), 1mM Glutamax-1 (Invitrogen), 1 ng ml-I bFGF (Boeringer) and 100 mg

ml-I Geneticin (Sigma) and then seeded at a concentration of 2 x 104 on 35 mm glass-

bottom culture dishes pre-coated with type I collagen (MatTek Corp., MA, USA).

Confluence was reached after five days of incubation at 37°C with 5% C02. Early ex-

perimentation suggested that higher seeding densities lead to confluence in a shorter

time period (e.g. two to three days), but the resulting layer did not remain intact

under flow. A period of five days was established as being a suitable time period for

strong cell adherence under flow conditions.
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7.1 Experimental set-up

7.1.2 Cell labelling

The sarcoma cells were labelled with 10 p.M green Vybrant DiO solution (Invitrogen,

USA). The supplied solution was diluted in 2 ml of the culture medium then placed

into a nearly confluent flask with approximately 2 x 106 sarcoma cells, which were

subsequently incubated for 15 min at 37°C. The cells were then washed with pre-

warmed medium and trypsinised. The sarcoma cells were then suspended in phenol

red-free medium ready to be introduced into the flow chamber. The endothelial cells

were labelled by a new protocol we developed using CellTracker Orange CMTMR

(Invitrogen Ltd). Fig. 7.1 is an example of a monolayer labelled according to the new

procedure.

Figure 7.1: Example of an image of an endothelial monolayer at the in-focus
position of a stack labelled with the described technique. The described
procedure for surface labelling provided excellent surface definition and prolonged
photostabili ty.

In order to assess the invasion by sarcoma cells, the surface membrane of the

endothelial cells needed to be labelled uniformly and specifically without significant

internalisation and cross-leakage to the invading sarcoma cells for long time peri-

ods. In order to meet these requirements, we developed a new labelling procedure

for a commercially available cell dye, CellTracker Orange CMTMR (Invitrogen Ltd).

The labelling reagent was diluted to a 100 p,M concentration in high-quality DMSO
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7.1 Experimental set-up

(Sigma), aliquoted into 100 pl units and kept at -20°C for at least 2 weeks before

use. For labelling, 30 p,lof the prepared reagent was evenly spread over the adherent

monolayer of endothelial cells in a MatTek dish with 2 ml of culture medium and

mixed using a pipette. The adherent cells were then incubated for 5 min at 4°C and

subsequently washed twice with pre-warmed medium and incubated for another 15

min at 37°C. This technique provided prolonged photostability and excellent defini-

tion of the endothelial cell monolayer surface.

131



7.2 Results

7.2 Results

7.2.1 Novel flowchamber assay with image-processing-based

quantitation

We devised two new imaging-based parameters to quantify the invasion process us-

ing z-stacks of images of labelled cells in the flow chamber acquired by time-lapse

fluorescence microscopy. The first parameter, RI, measured the penetration of the

monolayer of endothelial cells by a sarcoma cell. The RI parameter was calculated

as the ratio of the sum of the projected signal of an invading sarcoma cell below the

upper monolayer surface over the total projection signal in the stack of sarcoma-cell

images.

The second parameter, OREM, quantified the change in the fluorescent signal

of the endothelial cells in a 4 tut:x 4 p,m area where invasion occurred. In this

area, the signal was measured from the minimum projection of the image z-stacks of

endothelial cells for each time point. The decreasing intensity was normalised over

the monitoring period and thus comparable with other experiments.
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7.2.2 Metastatic sarcoma cells invade the monolayer of en-

dothelial cells by creating openings between endothe-

lial cells while non-metastatic sarcoma cells do not

The newly developed invasion assay was used to study the invasion of metastatic rat

sarcoma cells T15 into monolayers of rat brain endothelial cells over a time period of

90 min. We observed the sarcoma cells invading the monolayer by inducing openings

between the endothelial cells from as early as 15 min after initial adherence to the

monolayer. The invading sarcoma cells extended underneath the surface of the mono-

layer Fig. 7.5 a. An example of a 3D-reconstruction of an adhering sarcoma cell and

an invading sarcoma cell interacting with a monolayer of endothelial cells is shown in

Fig. 7.5 b and Fig. 7.5 c. Sarcoma cells were also observed to have almost completely

invaded underneath the surface of the monolayer as shown in the 3D-rendering of

confocal images in Fig. 7.2.

In addition we applied the invasion assay to compare the invasion potential of

another sarcoma cell population K2. It was previously reported from in vivo ex-

periments that the T15 sarcoma cells have a significantly higher metastatic potential

compared to the non-metastatic K2 sarcoma cells [74]. Using our direct viewing inva-

sion assay, we observed that there was no invasion into the monolayer of endothelial

cells by the non-metastatic K2 sarcoma cells in two experiments without flow.
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Figure 7.2: Images of a sarcoma cell invading a monolayer of endothelial
cells without flow where the sarcoma cell had invaded almost completely
underneath the surface of the monolayer. The images present renderings of a z-
stack of images (fieldsize 73{Lmx73{Lm)acquired from 50 z-levelsat 0.2 ust: separation
by a laser-scanning confocal microscope LSM 510 (Carl Zeiss MicroImaging GmbH,
Jena, Germany). Endothelial cells labelled with CellTracker Orange CMTMR were
imaged using a 543 nm line of a HeNe laser and are represented in red, and the
sarcoma cell labelled with green DiO was imaged using a 488 nm line of an Argon
laser and is represented in green. (A) Shows the isosurface rendering of the sarcoma
cell. (B) presents the maximum-intensity projection of the endothelial monolayer
where the individual cells and openings between them can be identified. (C) and (D)
show the top view and the bottom view of combined isosurfaces. The images were
rendered using Imaris (Bitplane AG, Switzerland).
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Figure 7.3: Histograms of sarcoma-cell induced Opening Rate of the En-
dothelial Monolayer (OREM) between 0 and 30 min in conditions without
and with flow. The control cells without shear flow showed a decreasing trend of
the number of cellswith increasing opening rate (Pearson correlation P value < 0.01).
The sarcoma cells exposed to flowshowed an increasing trend of the number of cells
with increasing opening rate with the exception of a small subset of late-responding
cells which did not exhibit any activity during this initial period. The statistical
significance of the difference between the two groups is presented in Table 7.1. The
total number of evaluated cells was 104without flowand 112 under flow.
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7.2.3 Non-linear invasion response to shear flow
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Figure 7.4: Relative Invasion (RI) of invading sarcoma cells without and
with shear flow plotted over a 90 min observation period. RI measures the
ratio of the volume of an invading sarcoma cell below the upper monolayer surface and
the total volume of the sarcoma cell. RI values are plotted as data points connected by
solid lines (no shear flow) and dashed lines (flow with shear stress). Control sarcoma
cells without shear flow exhibited lower invasion in the first 45 min compared to
sarcoma cells exposed to shear flow. The significant difference of the invasion rate
at this early stage is described in Table 7.1. Later on, the situation reversed and
the control cells showed a significantly higher level of invasion in comparison to the
sarcoma cells exposed to shear flow. Graph represents data from nine control cells
without flow and 13 cells under flow conditions. Error bars represent standard errors
of the mean.

To quantitatively assess the invasion process, we calculated RI values for the

invading sarcoma cells. Fig. 7.4shows a graph of RI values plotted as connected data

points for control experiments and flow experiments with shear stress over gO-min

observation period. Sarcoma cells without shear flow exhibited lower mean invasion

in the first 30 min compared to sarcoma cells exposed to shear flow. After 30 min, the

situation changed and the sarcoma cells without flow eventually showed significantly

higher levels of invasion in comparison to the sarcoma cells exposed to shear flow.

Mean ± standard error values of RI at gO-min time point were 0.6226 ± 0.0408 (N

136



7.2 Results

= 9) for no flow and 0.4430 ±0.0432 (N = 13) for flow conditions (Mann-Whitney P-

value y, 0.014). This indicated that shear flow stimulated the sarcoma-cell invasion

in the early stages but the sarcoma cells could not sustain this activity over long

periods. The level of invasion significantly decreased during prolonged exposure to

shear flow in comparison with the control situation without flow.

To assess whether shear flow influenced significantly the initial part of the invasion

process, i.e. the opening of monolayers, the OREM parameter was calculated for the

time interval between 0 and 30 min after the acquisition began. Sarcoma cells exposed

to shear flowexpressed overall higher OREM compared to sarcoma cells without shear

flow. The incidence of sarcoma cells with high (~ 0.5) and low (::; 0.5) OREM values

are shown in Table 7.1. In the three paired experiments, the incidence of sarcoma

cells with high OREM was significantly increased under shear flow (Chi2 P-value ::;

0.005) compared to a situation without flow.

The standard error was calculated as

SEM = _!!__
Vii (7.1)

where a is the standard deviation and n is the number of sarcoma cells.

The segmentation algorithm using Linear diffusion segmented the parts of the

TC which were brighter with respect to its neighbours as described previously (see

section 5.2.1). Fig. 7.7 shows graphs of the number of segmented pixels above and

below the surface in two different situations: one used as a control experiment without

shear flow and the other with applied shear forces. The number of segmented pixels

varies between the two experiments and is much lower in the control experiment.

This is caused by the quality of the labelling being different. In one situation, labelled

flow in Fig. 7.7, the mitochondria was well labelled which produced good separation
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Table 7.1: The incidences of sarcoma cells with high (>= 0.5) and low «
0.5) Opening Rates of the Endothelial Monolayer (OREM) under con-
ditions without and with shear flow from three paired experiments. The
OREM values were calculated from data acquired at 0 and 30 min time points in the
experiments using a total number of 104 cells without flow and 112 cells with flow. In
each of the three paired experiments, the incidence of sarcoma cells with high OREM
was significantly higher under shear flow (X2 p-value < 0.01).

OREM value < 0.5 >=0.5
Experiment no 1 2 3 1 2 3

Control incidence 24 29 26 6 9 10
Flow incidence 19 18 13 21 21 20

between the labelled areas, resulting in more pixels classified as part of the cell. The

increasing trend in numbers over time reflected the increase in invasion. However,

counting the absolute number of segmented pixels is not an accurate measurement

of invasion since it is influenced by the performance of the labelling technique. It is

therefore heavily biased and thus not comparable between different experiments.

We also investigated the spreading of the sarcoma cells. Chothard-Ghodsnia et

al [49]assessed the spreading by manually fitting an ellipse around the outline of the

cell. In their study, TCs experienced increased axial spreading when exposed to flow.

This can be explained by the shear forces pressing on to the cell. A sarcoma cell

mostly exhibited a round or elongated shape which made an ellipse well suited. This

approach was adopted with some modifications. An ellipse was fitted [5]automatically

to each of the maximum projections above and below the surface of the monolayer.

The parameters given from the fitting which described the ellipse were used to

assess the spreading. The average number of segmented pixels (Fig. 7.7 ) could also be

interpreted in terms of spreading. Because the TC signal represented mitochondria, a

small number of segmented pixels would then represent a cell with a tight boundary.

As the cell spread the mitochondria were separated from their neighbours and resulted
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in cell signal with a higher number of segmented pixels. The rate of spreading was

lower in situations without flow compared to shear experiments and the spreading

above the monolayer in conditions with flow was higher initially compared to below

but later on reached similar levels. A similar trend was found in Fig. 7.6. This can be

explained by the shear forces pressing on the upper parts of the cell which squeezed

the cell towards the surface. This event is particularly evident in the beginning

because the cell is fairly upright. The decline in speed of this event occurred when

TCs were flat and close to the monolayer as TCs reached their minimum height. The

spreading in control experiments, however, showed a steady increase both above and

below the upper surface and may be related to the stress-free environment the control

experiments provided.

However, the absolute values cannot be compared in terms of spreading due to

variation in the performance of the cell labelling between the cells.

The relative spreading (RES) below the monolayer was also investigated to ad-

dress this problem. The fitted ellipse below the monolayer was compared to an ellipse

fitted to all segmented pixels in all time points (see Fig. 3.8). The spreading followed

in principle the pattern of RI. During the first 75 min, cells exposed to flowexhibited

a higher mean spreading below the monolayer compared to situations without flow.

This can possibly be related to the increased invasiveness flowhad on TCs where TCs

try to exit the flow channel (see Fig. 7.8). Experiments without flow showed a steady

increase throughout the observation period. Such situations provide the invading

cells with a stable environment in which they can invade uninterrupted. With shear

forces, however, the environment is uncomfortable and the cells consume energy in

their strive to escape these conditions. The rate of spreading above the monolayer

was also higher with shear compared to situations without, which would indicate that

shear forces pressed on to the TCs and created unpleasant surroundings which they
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were ready to avoid. The decrease in spreading between 75 and 90 min (see Fig. 7.8)

could possibly be explained by lack of energy. RI also expressed a decrease in a

similar manner. The cell labelling technique with prolonged photostability used the

mitochondria as a carrier of the fluorescence. However, mitochondria are important

in the production of cell energy within the cell [116]. Early experimental set-ups

included long periods of fluorescent excitation and for these samples, invasion was

rarely seen. This may have been caused by interference in energy production by the

labelling/fluorescence emission. Later experiments with shorter periods of fluores-

cence excitation showed more invasion, possibly explained by less interference and

increased energy levels.

The control experiments without flow express a steady increase III spreading,

similar to the invasion of control cells (see Fig. 7.8 and Fig. 7.4).

Some may argue that the invasion parameter RI actually reflects lateral spread-

ing above the monolayer, i.e. the quantity of RI does not show invasion but actually

spreading. This would be caused by the TCs spreading to be very thin and because of

the limited z-resolution, the signal lands on the "incorrect" side of the monolayer sur-

face occupying z-levels below the monolayer. An increased spreading also increased

the amount of visible mitochondria which could then be mistaken for an increased

invasion. To investigate this, we compared Fig. 7.8 and Fig. 7.4 which showed that

Relative Spreading (RES) also has a non-linear behaviour under flow conditions.

However, the cross-over occurred much later in time compared to RI and the spread-

ing was therefore not related to the invasion. The morphology between the two types

of experiments was also compared to determine the spreading patterns and found

that cells in both experiments exhibited similar shape. (see Fig. 7.9).
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B

c
Figure 7.5: Images illustrating sarcoma cells invading monolayers of en-
dothelial cells. Endothelial cells labelled with CellTracker Orange CMTMR, using
the protocol described in 7.1.2, are represented in red and sarcoma cells labelled with
Vybrant DiO solution are represented in green. The Vybrant DiO dye produces punc-
tate staining throughout the cytosol. (A) presents images from a time-lapse recording
of a sarcoma cell invading a monolayer of endothelial cells. Images of the endothelial
cells show minimum z-projections and images of the sarcoma cell show maximum
z-projections of optical sections obtained between the surface of the monolayer and
the substrate. The invasion was monitored over 90 min and the sarcoma cell was
found to partially extend under the monolayer after 30 min. Scale bar represents
5 iut». (B) and (C) show 3D-reconstructions, at early and late stages of invasion
respectively, of an adhering sarcoma cell (left) and an invading sarcoma cell (right)
interacting with a monolayer of endothelial cells. The raw data were acquired as
stacks of wide-field images. The surface of the endothelial cells was reconstructed by
locating the in-focus level at each <x.y > position. The images of the sarcoma cells
were processed by high-pass filtering and soft thresholded to reduce out-of-focus blur.
The images were pre-processed by custom-developed software in MATLAB and the
resulting data were presented using Volot:i1tN(Improvision Inc) .
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Figure 7.6: Average area of the fitted ellipses above and below the mono-
layer. Ellipses were fitted to the segmented pixels above and below the monolayer
in MATLAB [5]and the area of these was computed. The experiments without flow
expressed a higher rate of spreading both above and below the monolayer in the ear-
lier stages. After a while, the situation reversed and the cells exposed to flowcould
not sustain the pace of spreading. Note that the actual area cannot be compared
because the performance of the labelling technique may vary between cells.
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Figure 7.7: Average number of segmented pixels of a sarcoma cell over a
90-min time period. The numbers of segmented pixels from the two experimental
situations (control and flow) are different. Situations with flow have a higher amount
compared to control. The amount of labelling substances attached to the mitochon-
dria was different and therefore produced different segmentation results. The error
bars represent the standard errors of the mean (Eq. 7.1).
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Figure 7.8: Relative spreading of sarcoma cells below the monolayer without
and with flow. Ellipses were fitted to the segmented projections above and below
the surface. A reference fit was obtained for each cell so that different cells could
be compared. The reference samples for a cell which formed the underlying data
comprised the entire set of segmented pixels in all time points and resulted in an
image with every segmented pixel during the entire observation period for a cell.
An ellipse was fitted to this set and acted as a reference. The fitted ellipse of the
segmented pixels for each time point was then divided by the reference. One detail
to note is that the Relative Spreading may have a value > 1 because the area of the
reference ellipse can be smaller than the area of each time point. Error bars represent
standard error of the mean.
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Figure 7.9: Ratio of major Iminor axis below the monolayer. The spreading of
cells, described by the major and minor axis, was investigated below the monolayer
surface. An ellipse was fitted to all segmented pixels for a cell during all time points
and used as a reference. The major or the minor axis for each individual cell was
divided by the respective axis of the reference fit (xl xre! ,y/ Yre!) in two experimental
situations to depict the shape changes that may have occurred. A value of one
indicates that the shape of the reference fit and the individual cells are the same.
The value at the first acquisition time point (0 min) is zero because sarcoma cells
were introduced after the first acquisition time point. The spreading patterns in
control and flow experiments were similar. Error bars represent standard error of the
mean.
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Chapter 8

Conclusion and future work

8.1 Summary of achievements

In this project, a novel direct viewing flow assay was developed and applied to an in-

vestigation of metastatic rat sarcoma cells invading monolayers of rat brain endothe-

lial cells in vitro and two new parameters were devised, Relative Invasion RI and

Opening Rate of the Endothelial Monolayer OREM, to quantify the invasion. The

novel shear flow assay with a newly developed flow chamber provided a set-up where

the cancer cell invasion in vitro could be assessed objectively and semi-automatically

by measuring the sarcoma-cell signal during the invasion process. This assay com-

prised a custom-made flow chamber, specially developed cell labelling and image-

processing-based quantitation of cell invasion. This assay was applied to metastatic

sarcoma cells derived from an inbred rat model where the cells invaded monolayers of

rat endothelial cells. This approach required new techniques to restore the monolayer

surface as well as segmentation of tumour cells.

The areas where the invasion took place usually incorporated confluent monolay-

ers but tumour cells disrupted the confluence on their path to exit the flow chan-
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nel by pushing the endothelial cells aside. The cell signal of the monolayer inside

the void that occurred as a result produced unreliable monolayer readings which

were influenced by neighbouring out-of-focus information. The invaded areas needed

to be identified and replaced by interpolated values in order to calculate the Rela-

tive Invasion correctly. The identification of unreliable regions investigated the rate

of convergence during iterative convolutions which was based on Linear diffusion.

The segmentation utilised this property and explored the fact that unreliable regions

would exhibit a positive diffusion rate during iterations. The diffusion process over-

segmented the monolayer slightly because the diffusion explores the changes related

to neighbouring pixels. The sign of the change varies depending on the behaviour of

the neighbourhood.

The surface interpolation replaced the unreliable values in invaded areas with

values from a Radial Basis Function (RBF) interpolation. The interpolation solves

a linear system where the distance from each point to every other point is weighted

by the RB F. The RB F is a radially symmetric function and acts as a weighting

function to the distance between the points. The result of the weighting function

is that points close to each other have a higher impact on the interpolation value

than values far away. This allows the interpolated surface to acquire a non-linear

shape, similar to that of a monolayer surface. From the reconstruction, the cell signal

values above and below the reconstructed surface were used to calculate the Relative

Invasion.

The Relative Invasion was quantified as the percentage of cancer-cell signal below

the monolayer and OREM as the rate at which tumour cells open the monolayer

between 0 and 30 min into the experiment. The sarcoma cells exposed to shear flow

expressed a significantly higher rate of invasion after the first contact with the en-

dothelial monolayer compared with sarcoma cells not exposed to shear flow. However,
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after 30 min the sarcoma cells with no shear forces exhibited higher levels of invasion,

eventually achieving significant differences. This non-linear response to shear flow

has not been reported previously.

8.2 Discussion

The system described in this thesis provided an improvement to manual assessment of

cancer-cell invasion in vitro because of its objective assessment. In previous studies,

the effect of shear flow on the invasion process was quantified by means of counting

and/or manual quantification of the cells that had invaded in transwell [16] [39] or

parallel-plate chambers [49]. In static experiments, the invasion has been quantified

manually by visualising the cell volume from confocal stacks and providing each in-

dividual cell with a score [50]. Our flow chamber invasion assay allowed the analysis

of invading tumour cells in high-resolution 3D wide-field microscopy using image-

processing-based quantitation. The analysis was validated by inspecting the image

stacks and calculating the cell volume manually. The assessment of the invasion pro-

cess under flow conditions was made right from the moment shear flow was applied.

The endothelial cell surface reconstruction enabled the quantitation of the levels of

invasion from the signal of the invading sarcoma cells at consecutive time points. The

sarcoma cells invaded the endothelial monolayer by opening gaps between endothelial

cells. Our observations were also evaluated through our second measurement param-

eter, the Opening Rate of the Endothelial Monolayer. The evaluation of the two

image-processing-based parameters in combination revealed the non-linear invasion

response of sarcoma cells to shear stress.

Dong et al. [39]reported a decreasing number of invading tumour cells exposed to

shear forces in relation to situations with no shear using transwell assays while count-
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ing the cells that had invaded. Although a reduction of invasion with our sarcoma

cells at later time points was observed, the results described here showed that the flow

can stimulate the metastatic sarcoma cells to higher rates of invasion in a similar way

to white blood cells, such as neutrophilleucocytes [117]and lymphocytes [115]. This

observation can be explained by shear stress initially activating signalling pathways,

which induce changes in cell motile behaviour. This proposed hypothesis is sup-

ported by some reports. Chotard-Ghodsnia et al. [49] used time-lapse fluorescence

microscopy to manually classify and measure the cell behaviour under shear forces

and concluded that the extent of tumour-cell spreading was increased by shear flow

in a similar way to leukocytes, which increased pseudopodia activity while exposed

to flow [118]. Changes in endothelial polarisation and migration in response to shear

stress were also described by Wojciak-Stothard et al. [119]. In addition, esophageal

tumour cells expressed a similar behaviour where shear forces increased the lamel-

lipodia activity compared to no shear [120]. Furthermore, the authors reported an

increase in the invasiveness of these tumour cells using a Boyden chamber assay after

cells had been pre-exposed to shear flow. In their study, cells were not exposed to

shear flow during the invasion process. Signalling pathway activation by mechanical

forces was also reported by Bershadsky et al. [121]who found induction of DNA syn-

thesis as a consequence. Our assay showed that the higher rate of the invasion process

is not sustained under flow, which indicates that the shear-stress-activated signalling

may be transient. The fact that the cells under control conditions without flow even-

tually achieve higher invasion might be explained by a gradual accumulation of more

proteolytic enzymes in their local microenviroment than under flow conditions. This

is a plausible explanation since proteolytic activity was shown to be increased in the

metastatic cells T15 compared to the non-metastatic cells K2 [122] and has been

shown to playa general role in invasion and metastasis [123] [124]. Also, the type
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of endothelial cells that interact with the tumour cells may also play a part in the

invasion. It is, for example, known that some tumour cells metastasise to certain

organs. The capillary endothelial cells show heterogeneity in different organs which

may attract different types of metastasing cells. This may be depending on the type

of adhesion molecules that the endothelial cells express [125].

The time of the initiation of the invasion observed was similar to that of previous

studies in related processes. Peng et al. [35] reported that human melanoma cells

begin the opening of gaps in the endothelial monolayer after 45 min and Lewalle et

al. [33] observed the invasion through the opening of gaps between endothelial cells

after 30 min. Experiments in vivo show that rat colon carcinoma cells adhere 15 min

after intravenous injection [126].

It has been reported that lymphocytes can use a transcellular route in order to

extravasate [127]and this phenomenon is linked to certain proteins. Carman et al [78]

explain that adhesion molecules are involved in the migration of e.g. monocytes across

ECs and act as a guide for the invasive cells. If the assumption can be made that TCs

have similar behaviour, these events would occur. However, transcellular invasion was

not observed.

8.3 Future work

The work in this thesis sets the ground and offers paths for exploring new areas.

The effect of shear forces on lymphocytes [115],leukocytes [128]and neutrophils [117]

have been examined in previous studies and provided evidence that flow alters the

invasion rate. The highest invasion occurred during continuous, steady flow and a

decline for monocytes was clearly observed at the point of switch between no flow and

flow. Similar paths regarding sarcoma cells could be explored. Additional permu-
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tat ions could be added such as different pulsating flow strengths of different lengths

and rate to explore these properties further. The invasion of e.g. lymphocytes is,

in some sense, insensitive to the magnitude of the shear but, rather, the presence

of shear acts as the main activator for the increase [115]. Investigating this further

would reveal any similarities.

The system described here would benefit from an automatic instead of a semi-

automatic assessment. That includes automatically locating the tumour cells in an

image stack and then segmenting it in 3D. This would eliminate the user-guided com-

ponent of selecting the cells manually, which would increase the speed of the analysis.

It also allows for a more accurate estimation of the invasion since the analysis would

be performed in three dimensions. Problems that then would arise are accurate seg-

mentation of closely located cells, reducing blur within the cell volume so that RI

can be estimated and segmenting weakly labelled cells. The cells - in some instances

- settle close to each other and interfere. Determining which part belongs to which

cell needs to be solved. This would also be an issue with weakly labelled cells. This

would allow for high-content screening of invading cells.

It would also be an advantage to segment the individual cells of the monolayer.

This would allow for a more detailed study of the interaction with sarcoma cells. The

benefits are that more analysis parameters of the cell behaviour can be obtained.

Invading cells are known to push the endothelial cells aside in their strive to exit the

flow channel. Segmenting individual endothelial cells would easily explain if sarcoma

cells target specific parts of the monolayer or if the invasion pattern changes due

to e.g. treatments. One complication includes locating the individual cells as the

borders between them are weakly defined. Segmenting individual endothelial cells
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would add an extra component to the analysis and allow for more details about the

invasion process to be explored.

8.4 Final words

The quantitative image-processing flowassay described a development of a novel di-

rect viewing flowassay on the basis of live cell imaging and new quantitative image-

analysis techniques. This assay enabled measurements of the invasion of individual

sarcoma cells into monolayers of endothelial cells exposed to shear flow. It was found

that cells from a non-metastatic population were not able to invade into the en-

dothelial monolayer. Experiments with the metastatic cells showed that shear forces

significantly increased the initial sarcoma-induced invasion into the monolayers of

endothelial cells. The invasion of sarcoma cells under flow conditions expressed a

non-linear behaviour whereby the rate of invasion increased initially but later de-

creased over time compared to a situation without shear. This system showed that

metastatic cancer cells can be stimulated to enhance extravasation by shear flow in

a similar way to white blood cells. With this system it is possible to investigate the

invasion behaviour of metastatic cells in response to treatments.
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