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Abstract 

An increase of violence in public spaces has prompted the introduc- 
tion of more sophisticated technology to improve the safety and se- 
curity of very crowded environments. Research disciplines such as 
civil engineering and sociology, have studied the crowd phenomenon 
for years, employing human visual observation to estimate the char- 
acteristics of a crowd. Computer vision researchers have increasingly 
been involved in the study and development of research methods for 
the automatic analysis of the crowd phenomenon. Until recently, most 
existing methods in computer vision have been focussed on extracting 
a limited number of features in controlled environments, with limited 
clutter and numbers of people. The main goal of this thesis is to ad- 
vance the state of the art in computer vision methods for use in very 
crowded and cluttered environments. One of the aims is to devise a 
method that in the near future would be of help in other disciplines 
such as socio-dynamics and computer animation, where models of 
crowded scenes are built manually on painstaking visual observation. 
A series of novel methods is presented here that can learn crowd dy- 
namics automatically by extracting different crowd information from 
real world crowded scenes and modelling crowd dynamics using com- 
puter vision. The developed methods include an individual behaviour 
classifier, a scene cluttering level estimator, two people counting schemes 
based on colour modelling and tracking, two algorithm for measuring 
crowd motion by matching local descriptors, and two dynamics mod- 
elling methods - one based on statistical techniques and the other 
one based on a neural network. The proposed information extract- 
ing methods are able to gather both macro information, which rep- 
resents the properties of the whole crowd, and micro information, 
which is different from individual (location) to individual (location). 
The statistically-based dynamics modelling models the scene implic- 
itly. Furthermore, a method for discovering the main path of the 
crowded scene is developed based on it. Self-Organizing _Map (SOTNI) 
is chosen in the neural network approach of modelling dynamics; the 
resulting SOTXIs are proven to be able to capture the main dynamic,, -, ) 
of the crowded scene. 
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Chapter 1 

Introduction 

The overall objective of this work is to develop computer vision methods that are 
able to learn the dynamics of real world crowded scenes. "Dynamics" refers to 
the directions, velocity and diversions of people, and all the related information 

of the crowd in the scene. This chapter includes a concise introduction to the 
background of the problem, a discussion of the motivation for the work, the 
challenges which need to be overcome and a summary of the contributions to the 
state of the art. The structure of the thesis is presented at the end of this chapter. 

1.1 Background 

Crowd analysis work can be traced back to the I 9th century when the work was 
mainly from a psychology perspective (93) (85). During the last half of the 20th 

century, interpretations of crowd dynamics, including using computational de- 

scriptions of the crowd, were proposed by civil engineers and sociologists (58)(57). 
Human observations play a very important role in the above work; all the crowd 
features used in the analysing work are extracted manually, which is not efficient 
at all. 

The explosion of the global population, along with the world's urbanisation 
from the late 20" century, have had an impact on the frequent occurrence of the 
crowd phenomenon. Consequently, there is an increasing concern about people's 
quality of life. Crowd vision scientists have begun to seek a way of automatically 
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1.1 Background 

learning crowd dynamics; however, until now most of the work has been working 
with a group of people (around 10 people) rather than working with real crowd 
scenes. 

The definition of a crowd is introduced here as: "a temporary collection of a 
large number of individuals who come together in a common place for a common 
purpose" (125). This definition gives three elements of the crowd: "large num- 
ber of individuals", "common place" and "common purpose". In addition, this 
definition suggests that people in crowds are purposive, and their dynamics can 
be modelled. 

It is a common experience that in a crowded situation an individual has to 
consider space limitation, interactions with others and sometimes the information 
passed on by the crowd - all of which would not be of any consequence if they 
were walking alone. A crowd also increases the risks in public safety and security, 
especially when very dense. 

G. Keith Still, the founder of Crowd Dynamics Ltd, proposes the relationship 
between crowd speed and density as a major factor of crowd dynamics in his 
PhD thesis(128). The area of the relationship between crowd speed and density 
is from the work of John J. Fruin(45). Fruin defined the level of service concept 
where the density and speed relationship are stated as guidelines for comfort and 
safety. A brief summary of the level of service for a walkway can be found as 
follows: 

When the crowd density equals the plan area of a human body, individual 

control is lost, as a person becomes an "involuntary" part of the mass; 

With an occupancy of about 7 people per square metre, a crowd becomes 

almost a fluid mass; 

Shock waves can be propagated through the mass, sufficient to lift people 
off their feet and propel them a distance of 3 metres or more. 

According to the level of service, crowd dynamics is highly related to the 
density of the crowd. In this work, crowd video data is considered to have gravity 
in terms of the number of people included in the camera view. Particularly, videos 
with group scenes are defined as those recorded in the medium field of view, where 
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1.2 Motivation and Challenges 

T, -T ir 

(a) A frame from a group scene 

Figure 1.1: Example frames from videos with group and extremely crowded scenes. 

for every individual, most of his or her body parts can be isolated from all the 

others in the scene. Videos with crowd scenes are defined as recorded in the far 
field of view, where only some of the body parts (typically the head and shoulders) 
of each individual can be seen. Figure 1.1 illustrates two frames from group and 
extremely crowded scenesi. 

1.2 Motivation and Challenges 

The records on Legion's website (87) show that every year from 1990, there have 
been hundreds of people hurt or killed in crowd disasters. It is also concluded 
on the website that the failures in both the design and management and crowd 
"mis" behaviour can be the primary cause of accidents and incidents. Nowa- 
days, crowd safety is becoming a major public safety issue, meaning that better 
designs/management strategies and methods to avoid or prevent crowd "mis" 
behaviours are highly desired. Computer vision methods can provide an auto- 
matic way to determine crowd dynamics and an instantaneous way of validating 
and adjusting the captured dynamics. Furthermore, a visual surveillance system 

with knowledge of "normal" behaviour of crowd is able to detect crowd " mis" be- 

haviour and improve the crowd's safety. The increasing requirement of efficient 
'The video data with the extremely crowded scene used in this thesis is kindly provided by 

Legion Ltd. 
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1.2 Motivation and Challenges 

ways to improve crowd safety and security is one of the major reasons why the 
work of this thesis is being carried out. 

In addition, understanding crowd behaviour is a very important component 
for computer vision systems to understand the real world. With the information, 
models and crowd behaviours, a computer vision system will be able to provide 
a way of improving daily experiences for humans. Moreover, the study of crowd 
dynamics in the real world can be used in crowd simulations in computer graphics 
and virtual environments. 

In summary, an automatic framework of crowd dynamics analysis by computer 
vision methods is extremely useful for different kinds of applications, from visual 
surveillance and crowd management through to computer graphics. 

However, the analysis of crowd dynamics is a challenging topic in the field 
of computer vision research, not only because of the complicated nature of the 
problem but also because video data with real world crowded scenes are hard to 
find in the public domain. As a result, until recently the existing literature in 
computer vision was still rare and crowd analysis work in computer vision was 
still at an initial stage. Challenges mainly come from following different aspects: 
Crowd analysis itself is a challenging problem. For different types of video data, 

the desirable information is different. For video data with group scenes, 
individual activities are of the same importance for collective activities. 
Meanwhile, for video data with extreme crowded scenes, individual activi- 
ties are much less important, or even not important at all, when compared to 
collective activities. The problem is how to identify different requirements 
for the different types of video data and how to fulfil these requirements. 

Technically, there is a lack of motion extraction techniques. Traditional mo- 
tion detection techniques such as background removal and optical flow do 

not work well in medium and extremely crowded situations. In crowded 
scenes with an increasing number of foreground objects, the visibility of the 
background is decreases. Further, serious occlusions and the high density 

of the foreground objects make techniques such as optical flow and feature 

matching less efficient. 

The challenge also comes from the gap between computer vision crowd research 
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1.3 Contributions to the State of the Art 

and traditional crowd research. Most of the existing scene interpretation 

and behaviour analysis methods developed in computer vision techniques 
focus on individual behaviour. Crowd behaviour is very different from indi- 
vidual behaviour. Crowd dynamics has very distinctive properties and the 
literature from the computer vision of individual behaviour analysis can 
hardly be applied to it. On the other hand, existing crowd models from 

traditional research are being developed in an entirely different procedure, 
and it is not possible to apply the models directly to the computer vision 
approach. 

In a word, the challenges arise from the nature of the crowd analysis problem, from 

the lack of previous work and from how different crowd research methodologies 
(traditional research and computer vision research) can be bridged. 

1.3 Contributions to the State of the Art 

The main contributions this work brings are methods that can determine the 
dynamics from crowded scenes. The methods are developed for retrieving infor- 

mation and interpretations of crowd behaviour from video data captured in the 

real world. As discussed, the videos used in this work are roughly divided into 

two types: the medium field of view for a group situation and the far field of view 
for extreme crowded situations. Algorithms are designed to work with the two 

types of the situations and extract different kinds of information. The extracted 
information and the dynamics model can be used in many applications such as 

visual surveillance and ambient intelligence. By providing an online analysis of 
the dynamics of the crowd video, the methods can be used to avoid crowd emer- 

gencies in public events, to automatically monitor a crowded scene, or in assisting 
intelligent systems to help the crowd. Furthermore, the built model of a scene 

can be used in offline analysis for improving crowd management in the scene. In 

summary, the contributions of this PhD work are: 

A comprehensive review of related crowd analysis work from differ- 

ent research fields. Traditional crowd analysis, working in disciplines 

such as civil engineering or psychology, are based on human observations. 
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1.3 Contributions to the State of the Art 

The analysis work is focussed on investigating the rules of how different 

crowd features influence each other. In the area of computer vision, crowd 
analysis is a fairly new topic; most existing work is based on the previous 
work of tracking individuals. In this thesis, most of the existing work is dis- 

cussed and a framework of crowd analysis, in which the existing literature is 
functionally positioned, has been proposed. This is the first review work on 
crowd analysis from the computer vision perspective covering the different 

research areas. The review work gives a clear view of the relationship of 
the research from different fields. 

Methods for retrieving macro information from crowded scenes. In 

this thesis, macro information refers to the information that represents the 

collective information of a crowded scene. In this PhD, the retrieved macro 
information includes a scene cluttering level and the main path of a crowded 
scene. Entropy is employed to estimate the level of cluttering in the scene 
where the cluttering depends on the distribution of the people within the 

scene. The main path of a crowded scene is retrieved by combining fore- 

ground coverage and motion frequency information. Macro information 

refers to the properties of a crowded scene when the crowded scene is re- 
garded as a single research object. The chaotic level represents the current 
the status of the crowded scene while the main path preserves the dynamics 

of a crowded scene over time. 

Methods for retrieving micro information from crowded scenes. In 

contrast to macro information, micro information refers to the information 
that describes the individual/local information of a crowded scene. Instead 

of regarding a crowded scene as a single research object, information is pro- 
cessed and gathered separately to represent the different dynamics of differ- 

ent individuals and locations from the scene. In this PhD work, methods for 

retrieving micro information include an individual behaviour classifier for a 
group scene and two motion estimation algorithms for extremely crowded 
scenes. The individual behaviour classifier is able to estimate the degree of 
people's interest in the group scene by analysing the individual's trajectory. 
The classification of individual behaviour can help the computer vision sys- 
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1.3 Contributions to the State of the Art 

tem to analyse the group scene. For extremely crowded scenes where most 
tracking methods are not valid, two novel motion estimation methods em- 
ploying local descriptors and refined constraints are proposed. The motion 
estimation methods are able to work with videos of a crowded scene. These 
methods are able to work with the sort of low frame rate videos that most 
existing methods fail to work with. Moreover, the performance comparison 
of the two motion estimations is also presented. 

Methods for individual detection and counting people in a group 
scene. The number of people in the scene is a significant feature as the 
level of service can be inferred by the feature. In order to count people, 
individuals must be detected and separated from each other. As a result, 
the retrieved information includes both micro information (the locations 

of individuals) and macro information (the total number of individuals in 
the scene). In this thesis, besides the brief introduction of a simple and 
efficient counting method, a more accurate method is proposed, discussed 

and tested. The distinguishing advantage of the latter method is that it has 
only one assumption of the spatial distribution of the people in the scene, 
while it can work with a single static camera without any knowledge of the 
camera calibration, nor any other information. The proposed methods al- 
low the computer vision system to be able to automatically determine and 
learn the total number in the scene. 

Methods for crowd modelling. Crowd modelling captures and represents 
the recurrent dynamics of the crowded scene. In this thesis, a statistical 
approach for group modelling and a neural network approach for general 
crowd modelling are proposed. In the statistical approach, Probability Den- 

sity Functions (PDFs) are used for modelling the foreground objects and the 
motions of the foreground objects over time. Self Organizing Map (SOM)- 
based modelling methods are able to capture the main dynamics of the 
crowded scene and represent it in a grid format. The models can be used to 
classify different crowd scenes. Furthermore, the built models can produce 
a better image of the dynamics in a particular scene. 
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1.4 Synopsis of Chapter 2-6 

The new methods proposed in this thesis are to retrieve and model crowd 
dynamics. The retrieved macro information includes the level of cluttering and 
the main path of the scene. The retrieved micro information includes the clas- 
sifications of the individual behaviours and motions. In addition, methods are 
proposed for individual detection, counting people, and for the modelling of crowd 
dynamics. 

1.4 Synopsis of Chapter 2-6 

In chapter 2, a literature review covering all crowd related research is presented, 
although the focus is on computer vision methodologies. An overview of crowd 
research from all related disciplines is given, followed by a detailed review of the 
methodologies that can be adopted into computer vision-based crowd analysis. 
The review includes both computer vision and traditional methodologies. 

Chapter 3 presents the methods developed for extracting and analysing the 
dynamics for a group of people. In this chapter, research is mainly carried out 
for an experimental environment with complex human activities. The behaviour 

classifier, scene chaotic estimator and the two people counting algorithms are 
included in this chapter. 

Chapter 4 proposes the methods developed for measuring crowd dynamics. 
This chapter presents the two methods for retrieving motion from crowd scenes. 
The details of the methods, including the backgrounds of the local descriptors 

and the refined matching constraints, are introduced in the chapter. Moreover, a 
performance comparison of the two methods is also presented. 

Chapter 5 discusses the methods developed for modelling group and crowd dy- 

namics. The statistical approach using two Probability Density Functions (PDF) 
to model the group dynamics, and discovering the main path of the crowded 
scene, is based on the PDF models. The neuron network approach using Self- 
Organizing Maps to capture and model the major crowd dynamics is presented 
in this chapter. 

Chapter 6 draws from the previous chapters to reach a conclusion and to 
summarise the major achievements of the work. It also discusses potential im- 

provements to the work and, finally, future research. 
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Chapter 2 

Literature Review 

In 1999, the world population reached 6 billion - doubling the previous census 
estimate of 1960. Recently, the United States Census Bureau issued a revised 
forecast for the world population, showing a projected growth to 9.4 billion by 
2050 (137). Different research disciplines have studied the crowd phenomenon and 
its dynamics from a social, psychological and computational standpoint, respec- 
tively. This chapter presents a survey on the crowd analysis methods employed 
in computer vision research and discusses perspectives from other research disci- 
plines and how they can contribute to the computer vision approach. The aim of 
this chapter is to provide a comprehensive overview of the problems within the 
field before going on to the details of the PhD work. 

2.1 Introduction 

Steady population growth, along with worldwide urbanisation, has made the 
crowd phenomenon more frequent. It is not surprising, therefore, that crowd 
analysis has received attention from technical and social research disciplines. The 

crowd phenomenon is of great interest in a large number of applications: 

Crowd Management: Crowd analysis can be used for developing crowd man- 
agement strategies, especially for increasingly more frequent and popular 
events such as sports matches, large concerts, public demonstrations and so 
on, to avoid crowd related disasters and ensure public safety. 
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2.1 Introduction 

Automatic Feature Extraction 

Manuil Character Annotation 

Scenes 

Figure 2.1: A framework for Crowd analysis. 

Public Space Design: Crowd analysis can provide guidelines for the design of 
public spaces, e. g. to make the layout of shopping malls more convenient 
to customers or to optimise the space usage of an office. 

Virtual Environments: Mathematical models of crowds can be employed in 

virtual environments to enhance the simulation of crowd phenomena and 
to enrich the human life experiences. 

Visual Surveillance: Crowd analysis can be used for the automatic detection 

of anomalies and alarms. Furthermore, the ability to track individuals in a 
crowd could help the police to catch suspects. 

Intelligent Environments: In some intelligent environments that involve large 

groups of people, crowd analysis is a prerequisite for assisting the crowd or 
an individual in the crowd. For example, in a museum, deciding how to 
divert the crowd is based on the patterns of the crowd. 

Crowd management and public space design have been studied by sociologists, 

psychologists and civil engineers, virtual environments by computer graphic re- 
searchers, and visual surveillance and intelligent environments by computer vi- 
sion researchers. The approach favoured by psychology, sociology, civil engineer 
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2.1 Introduction 

and computer graphic research is an approach based on human observation and 
analysis. Sociologists, for instance, study the characters of a crowd as a social 
phenomenon, exploring human factors. For example, the computational model, 
developed by Seed Projects at Stanford University (136), incorporated human 
behaviour in environments with emergency exits. The Crowd - MAGS Project, 
which is funded by GEOIDE and the Canadian Network of Centers of Excellence 
in Geomatics, aims to develop micro-simulations of crowd behaviours and the 
impact of police or military groups (35). The Police Academy of the Netherlands 
and the School of Psychology of the University of Liverpool are cooperating on 
a project funded by the UK Home Office: "A European study of the interaction 
between police and crowds of foreign nationals considered to pose a risk to public 
order" (1). 

On the other hand, computational methods such as those employed in com- 
puter graphics and vision methods focus on extracting quantitative features and 
detecting events in crowds - synthesising the phenomenon with mathematical and 
statistical models. For example, early projects funded by the EPSRC in the UK 
were concerned with measuring crowd motion and density and, hence, potentially 
dangerous situations (38) (139) (146). The EU funded projects PRISMATICA 
(109) and ADVISOR (2), completed in 2003, were concerned with the manage- 
ment of public transport networks through CCTV cameras. The UK EPSRC 
funded project, BEHAVE, was concerned with pre-screening of video sequences 
for the detection of abnormal or crime-oriented behaviour (19). ISCAPS (70), 

started in 2005, is a consortium of 10 European ICT companies and academic 
organizations that aims to provide automated surveillance of crowded areas. SER- 
KET, a recently started EU project, aims to develop methods to prevent terrorism 
(67). 

Figure 2.1 illustrates the processes involved in crowd analysis. In a crowd 
scene, the attributes of importance are crowd density, location, speed, etc. This 
information can be extracted either manually or automatically using computer 
vision techniques. Crowd models can then be built based on the extracted infor- 

mation. Event discovery is achieved using pre-compiled knowledge of the scene or 
by using the computational model, although both approaches can be combined. 
In both cases, the model is updated with newly extracted information. 
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2.2 Crowd Information Extraction 

Moving/Static platform 
Sensor typology and topology Number of cameras 

Type of video sequenc: colour/gray scale, etc. 

Environmental conditions 

Scene typology 

Indoor/outdoor 
Level of clutter 

Light condition, etc. 
Individual characters 

location/velocity/etc. 
appearance, etc. 

Collectiv Average speM, etc. 
Crowd density 

Table 2.1: Features in crowd analysis by computer vision methods. 

This chapter is organised as follows. Section 2 introduces research in au- 
tomatic crowd feature extraction. Section 3 discusses existing work on crowd 
modelling and crowd event inference. Sections 4 and 5 provide some examples of 
how the two complementary approaches can be bridged. 

2.2 Crowd Information Extraction 

The components of crowd analysis from a computer vision perspective are de- 
scribed in Table 2.1. Essentially, the typology and topology of the sensors in- 
fluence the scene capture processes. Environmental conditions such as natural 
and artificial illumination changes often introduce noise, and the scene typology 
affects the type of process one requires to extract the most accurate information 

of a dynamics scene. 
Visual surveillance methods have been developed to estimate the motion of 

objects and people in a scene, in isolation or in groups; a review can be found 
in (62). When video is analysed for very crowded scenes, conventional computer 
vision methods are not appropriate. In these cases, methods must be designed to 
cope with extreme clutter. Features from conventional image processing are still 
employed such as colour, shape and texture etc. However, sophisticated methods 
have been developed to retrieve crowd information. In the following sections, the 
existing state of the art will be reviewed. 
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2.2 Crowd Information Extraction 

2.2.1 Density Measurement 

An important crowd feature is crowd density, and it is natural to think that 
crowds of different densities should receive a different level of attention. Polus 
et al. (108) provide a clear idea of the problem of the level of servtces for a 
pedestrian flow, defined as: free flow, restricted flow, dense flow, and jammed 
flow according to a density metric defined as the number of pedestrians per unit 
area. The research reviewed here either estimates the crowd density directly or 
counts the number of pedestrians that provide information for density estimation. 

Research methods have been proposed for crowd analysis which employ back- 
ground removal techniques. In (146), a reference image with only a background is 
used to classify image pixels as belonging to either pedestrians or the background. 
A functional relationship between the number of pedestrian-classified pixels and 
the number of people is then established manually for the measurement of crowd 
density. Another example is proposed by Ma et al. (92) using background re- 
moval. A mathematical relation for the geometric correction of the ground plane 
is derived. The authors prove that this can be directly applied to all foreground 

pixels. A linear relation between the number of pixels and people is derived by 

applying the geometric correction. These works have a typical assumption that 
the number of foreground pixels is proportional to the number of people, which is 
only true when there are not serious occlusions between people. (40) makes use 
of examples to directly map the global shape feature to configurations of humans. 
This training-based algorithm is quite a novel approach, but the problem of how 
to decide the size of the training dataset remains unclear. 

Image processing and pattern recognition techniques are also used for the 
analysis of the scene to estimate crowd density. Marana et al. (96) assume that 
images of low-density crowds tend to present a coarse texture, while images of 
dense crowds tend to present fine textures. Self-organising neural maps (97), 

combined with Minkowski fractal dimensions (95), are employed to deduce the 
crowd density from the texture of the image. The work by Marana is compared 
in (111) with another method that uses Chebyshev moments. An optimisation 
of performance under different illumination conditions is discussed. Lin et al. 
(90) present a system that estimates the crowd size through the recognition of 
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2.2 Crowd Information Extraction 

the head contour by using Haar wavelet transform (HWT) and support vector 
machines (SVM). 

The approach of information fusion has also be applied, e. g. Yang et al. (145) 
estimate the number of people directly from groups of image sensors. For each 
sensor, foreground objects are segmented from the background and the result- 
ing silhouettes are aggregated over the sensor network. A geometric algorithm 
is then introduced to limit the number and possible locations of people using 
silhouettes extracted by each sensor. Alternative methods combine several tech- 
niques to achieve more accurate and reliable measurements. For example, in 
(139), an edge-based technique is integrated with background removal using a 
Kalman filter. Marana et al. (94) use different methods, including Fourier and 
Fractal analysis and classifiers, to estimate the crowd density level. Kong et al., 
in (82)(83), employ background subtraction and edge detection; the work defines 
the extracted edge orientation and blob size histograms as features. The relation- 
ship between the feature histograms and the number of pedestrians is determined 
from labelled training data. Obviously, more cues may indicate a more accurate 
solution. 

2.2.2 Recognition 

Conventional visual surveillance focuses on object detection and tracking. In 
essence, image processing techniques are employed to extract the chromatic and 
shape information of the moving objects and the background for detecting and 
tracking purposes. 

For crowd dynamics modelling, detecting and tracking are also important as 
they provide the location and velocity features of the dynamics. Crowded scenes 
add a degree of complexity to the conventional detection and tracking problem of 
single individuals. In the following sections, the focus will be on methodologies 
for crowded situations. 

2.2.2.1 Near Field 

The face is the most discriminating feature of the human body, and many re- 
searchers try to detect pedestrians through face detection. The majority of the 
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2.2 Crowd Information Extraction 

existing research employs supervised learning methods. A few attempts to detect 
the faces in complex scenes are introduced in the following text. 

Early works such as (132) use a technique where genetic algorithms are em- 
ployed for face localisation in a complex scene. The system proceeds with a 
training phase to generate a simple object mean image using a single object im- 

age, and a test phase using arbitrary images. 
However, this previous work highly depends on the training set and if the faces 

appear at different sizes and orientations, it may require a very large training set 
and long processing time. Hence, different techniques have been developed to ad- 
dress the problem of multi-view face detection. (89) proposes a pyramid structure 
that adopts a coarse-to-fine strategy to handle pose variance. Another approach 
by Jones et al. (71) illustrates how different detectors are used for different views 
of the face, and a decision tree is trained to determine the viewpoint class. (64) 

uses a Width-First search tree structure to improve the performance in both 

speed and accuracy. This kind of work is quite likely to be adopted into crowd 
analysis, especially from a single camera view, as the problem of human pose and 
the perspective are both compensated here. 

Methodologies for stereo face detections in crowd have also been developed. 
For example, Huang et al. (65) propose a three-steps technique: first extracting 
the likelihood evidence of heads from the stereo image by scale-adaptive filtering 

and then spurious clues are suppressed from the extracted points according to 
the average human height. Finally, the human heads are located by applying a 
mean-shift algorithm to the likelihood map. 

2.2.2.2 Medium to Far Field 

Pedestrian detection and tracking is a well studied problem in computer vision. 
Many methods have been proposed such as using the afore mentioned background 

removal technique, or by combining the chromatic and shape information of the 

tracked pedestrians. The following sections discuss the methods that attempt to 

provide a solution for pedestrian detection in crowded scenes. 

* Occlusion handling. Occlusion caused by the high clutter of pedestrians 
in a crowd scene is the major challenge for the crowd detection problem. 
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2.2 Crowd Information Extraction 

Some research addresses the problem by using human body parts. Wu et 
al. (142) propose a method to detect multiple, partially occluded humans 
in a single image. Edgelet features are introduced in their work. Part de- 
tectors, based on edgelet features, are learned by a boosting method. The 

responses of part detectors are combined to form a joint likelihood model 
that includes cases of multiple, possibly inter-occluded humans. The hu- 

man detection problem is then formulated as one of a maximum a posteriori 
(MAP) estimation. The models of the group of people in (42) are initialised 
based on segmenting the body into regions by modelling their appearance 
and spatial distribution. A framework uses the maximum likelihood estima- 
tion to estimate the best arrangement of people in terms of a 2D translation 
that yields segmentation for the foreground region. Occlusion reasoning is 
then conducted to recover relative depth information. 

Leibe et al. (88) present a different algorithm that integrates evidence in 

multiple iterations and from different sources. The local cue is based on 
a scale-invariant extension of an Implicit Shape Model (ISM), and global 
consistency is enforced by adding the information from global shape cues. 
Local and global cues are combined via a probabilistic top-down segmenta- 
tion to detect the pedestrian. 

Moving Views. Special solutions are required for moving platforms for 

some of the applications, e. g. for an onboard vision system to assist a driver. 

Some of the implementations make assumptions of a human's appearance. 
In Broggi et al. 's work (26), a coarse detection of pedestrians is computed 
through the processing of a single image based on the assumption of the 

symmetry, size and ratio shape of a human body. Heisele et al. (52) apply 

spatio-temporal methodologies by recognising walking a pedestrian based 

on the characteristic motion of the legs of the pedestrian walking parallel to 

the image plane. Each image is segmented into region-like image parts by 

clustering pixels in a combined colour/position feature space. A classifier is 

then used to extract the clusters, which are most likely to be the pedestrian's 
legs. 

In contrast to the above, Shashua et al. (119) describe a functional and 
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2.2 Crowd Information Extraction 

architectural breakdown of the pedestrian detection system. Single clas- 
sification is based on a scheme of breaking down the class variability by 

repeatedly training a set of relatively simple classification performance re- 
sults. The path from single-frame to system level performance includes the 
integration of additional cues measured over time and situation specific fea- 

tures via building up additional object categories consisting of vehicles and 
stationary background structures. 

S patial- temporal methods. Besides conventional cues of pedestrian ap- 
pearance, space-temporal cues are used for detection. Brostow et al. (27) 

tackle the problem by tracking simple image features and probabilistically 
grouping them into clusters that represent independently moving entities. 
Space-time proximity and trajectory coherence through the image space are 
used as the only probabilistic criteria for clustering. Moreover, this motion- 
based detection could be easily extended to the tracking of individuals in 
dense crowds by merging the outcomes. 

In extremely cluttered scenes, individual pedestrians cannot be properly 
segmented in the image. However, sometimes the crowd within which the 

pedestrians share a similar purpose can be recognised. Reisman et al. (115) 

propose a scheme that uses slices in the spatial-temporal domain to detect 

inward motion, as well as intersections between multiple moving objects. 
The system calculates a probability distribution function for left and right 
inward motion and uses these probability distribution functions to infer a 
decision for crowd detection. 

2.2.3 Tý-acking 

Tracking has been proposed to localise the interested object in time-space. The 

velocity feature of tracked object also can be derived afterwards. As a natural 

extension of detection, though, tracking has its own problem in recognising and 
identifying pedestrians in the consecutive frames. Tracking could be regarded 

as the most popular topic in visual surveillance; however, currently for crowd 

analysis, most of the techniques are validated only for multiple (e. g. up to 10) 

people. 
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As discussed in the last subsection, occlusions could occur very frequently 

when there are many objects and people in the scene. Tracking techniques have 
to overcome the problem in order to continuously track before, during and after 
the occurrence of occlusions. A comprehensive review on occlusion handling can 
be found in (48). A formulation of the occlusion problem is provided, and the 
techniques are divided into two groups: the merge-split approach, which addresses 
the problem in re-establishing object identities following a split, and the straight- 
through approach, which maintains object identities at all times. 

The following text covers three aspects: the techniques that are developed to 
track multiple people (objects) without any assumptions of the dependence of 
their motion, e. g. interactions, the techniques that try to explain the interactions 
between the pedestrians, and some practical analysis of handling the problem of 
occlusion in a crowd situation. 

The following text covers three aspects: the techniques that are developed to 
track multiple people (objects) without any assumptions of the dependence of 
their motion, e. g. interactions, the techniques that try to explain the interactions 
between the pedestrians, and some practical analysis of handling the problem of 
occlusion in a crowd situation. 

2.2.3.1 Tracking Methodologies 

Crowd scenes increase the complexity of tracking because there are multiple mov- 
ing objects in the scene. Quite a few techniques have been developed based on 
the colour, geometry and other features for tracking. 

Likelihood. Colour, edge etc. are the most popular features in tracking. 
In a crowd, salient traceable image features are of particular interest for 

tracking. As one of the better candidates, interest points (IPs) are em- 
ployed in (48) and (99). In both works, the IPs are obtained by a popular 

colour Harris detector. Gabriel characterised IPs, by their position relative 
to the estimated centre of the object and Mathes, build a point distribution 

model between ASM and AAM. Both of the methods require a pre-defined 

region (or object) of interest. Their salient features benefit from their ro- 
bustness under different light conditions. The tracking inference using these 
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features can work better under occlusions than when using the entire con- 
tour. Therefore, the usage of those features could be more applicable to a 
large amount of people in the scene. 

Human body model. Methods using models of human bodies or hu- 

man body parts have been developed for tracking in complex crowded 
scenes, which are usually completed with probabilistic frameworks. Zhao 

et al. (147)(148) worked on the former approach, using explicit 3D human 

shape models. The problems of detection and tracking are formulated as a 
Bayesian inference to find the best interpretation given the image observa- 
tions. The latest one is the work of Wu et al. (143), who extend the previous 
detection work in (142) (which has been discussed) using edgelet features 

to human body part detectors. Tracking is implemented by probabilistic 
data association, i. e. matching the object hypotheses with the detected 

response. 

40 ][ýracking inference strategies. Tracking inference strategies have been 
developed for the problem of tracking multiple objects. For non-linear and 
non-Gaussian dynamic models, the particle filter technique - also known 

as CONDENSATION (69) - is one of the most popular. Particle filters 

are sequential Monte Carlo methods based upon point mass (or 'particle') 

representations of probability densities (41). A large portion of multiple 
object tracking work has employed this technique. For example, Venegas 

et al. (140) use a particle filter to track the moving objects by generating 
hypotheses on the top-view reconstruction of the scene. Okuma et al. (105) 

combine mixture particle filters and an Adaboost algorithm. Sidenbladh et 
al. (120) extend the particle filter formulation according to finite set statis- 
tics (FISST) for tracking. Cai et al. (28) tackle the problem by embedding 
the meanshift algorithm into the particle filter framework. Koller-Meier et 

al. (81) introduce an extension of the CONDENSATION algorithm that 

relies on a single probability distribution to describe the likely states of mul- 
tiple objects. Kang et al. (73) propose the discrete shape model and the 

competition rule to improve the performance of the condensation tracker 
for real time tracking. 

19 



2.2 Crowd Information Extraction 

The Multiple Hypotheses Tracker (MHT) and Joint Probabilistic Data As- 

sociation Filter (JPDAF) address the data association problem. MHT tries 
to keep the track of all the possible hypotheses over time (114). A detailed 

summary and discussion of MHT for multiple target tracking is included in 
(20). MHT suffers from the storage of the redundant track, hence some of 
the work proposes extensions and modifications to the algorithm to obtain 
better performances, e. g. (50). JPDAF computes a Bayesian estimation of 
correspondence between the different features and objects, e. g. Rasmussen 

and Hager (113) apply this technique with colour region and a snake-based 
tracker. Another approach has been introduced by Karlsson (74), which 
uses the Monte Carlo method. 

The fusion of the different cues from a number of detection and tracking 

algorithms is also used to produce a more robust tracker. Siebel et al. (121) 

propose a tracking system containing three cooperating parts: an Active 
Shape Tracker, a Region Tracker, and a Head Detector. (124) proposes an 
approach based on the principles of the self-organisation of the integration 

mechanism and self-adaptation of the cue models during tracking. Cues 
from different sensors and models can increase the dimension of information, 

which is preferable in the multiple objects situations. However, the goodness 
of integration scheme is very crucial in these algorithms. 

2.2.3.2 M-acking Interacting People 

In certain cases, interaction happens frequently in a crowded scene. Researchers 
have shown great interest in studying these interactions to derive new perspectives 

on tracking techniques. 
Some of the work formulates the interaction to enhance the tracking scheme. 

For example, both Smith et al. (122) and Khan et al. (76) propose to use the 
Markov Chain Monte Carlo (MCMC) and the particle filter. Smith used a joint 

multi-object state-space formulation and a trans-dimensional MCMC particle fil- 

ter to recursively estimate the multi-object configuration and to efficiently search 
the state-space. Khan developed a joint tracker that included a motion model to 

maintain the identity of targets throughout the interaction, thus reducing tracker 
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failure. Pre-defined motion models are used in this approach, with the trade-off 
between improving the tracking performance in a crowd with known interactions 

and the adoption of the motion model to an arbitrary crowd. 
Some researchers interpret interactions as relationships between pedestrians 

and a group (pedestrian merging/splitting into groups). Marques et al. (98) pro- 
pose a two-layer solution to overcome the problem. The first layer produces a set 
of spatial temporal strokes based on low level operations to track the active re- 
gions. The second layer performs a consistent labelling of detected segments using 
a statistical model based on Bayesian networks, which is recursively computed 
during the tracking operation. Mckenna et al. (101) perform tracking at three 
levels: regions, people and groups. Background subtraction is used to cope with 
shadows and unreliable colour cues. Colour information is used to disambiguate 

occlusions and to provide qualitative estimates of depth ordering and position. 
Pedestrian merging and group splitting are frequent phenomena in the crowded 
scene; however, the major challenge for these kind of methods is to recover the 

object label after splitting from the group. 
Sullivan et al. (130) label tracking targets by exploring the trajectories. Tra- 

jectories of when a target is isolated are found, and it is claimed that these 
trajectories end when targets interact. A graph structure is formed by the inter- 

actions of these trajectories. This method could be very useful for offline crowd 
analysing but for online processing it may have a bottleneck in the storage of the 

trajectories. 

2.2.3.3 M-acking from Multiple Views 

For large public areas, the use of a multi-camera system is required to cover most 

of the monitored areas. 
For the multi-camera system arrangement, Mittal et al. (102) present a system 

named " M21racker" , using multiple synchronised cameras located far from each 

other that segment, detect and track multiple people in a cluttered scene. First, a 

region-based stereo algorithm is introduced for finding 3D points inside an object. 
Then, a scheme is developed that dynamically assigns priors for different objects 

at each pixel. Finally, the evidences gathered from different camera pairs are 
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combined by using occlusion analysis to obtain a globally optimum detection and 
tracking of the objects. A different arrangement of cameras is used in (30). This 

method uses both static and Pan-Tilt-Zoom (PTZ) cameras. The static cameras 
are used to locate people in the scene, while the PTZ cameras lock-on to the 
individuals and provide visual attention. The underlying visual processes rely on 
colour segmentation, movement tracking and shape information to locate target 

candidates, and colour indexing methods to register these candidates with the 
PTZ cameras. 

Meanwhile, special techniques have been developed for the tracking from a 
multi-view; normally, a planar homography constraint would be included. For 

example, in (75), feet regions of the people are located by the constraint. The 

contiguous spatial-temporal region formed by the feet regions belonging to the 

same person are clustered as the track of the person. In (77), people's ground 
points are located and a multi-hypothesis framework using a particle filter is 
developed for tracking. 

2.2.4 Motion Extraction 

Crowd motion is a concept distinct from individual motion and it represents 
the overall motion of a crowd. In a very dense crowd individuals are restricted 

and constrained by the motion of the crowd. The extraction of crowd motion 
helps to understand these restrictions and constraints and their influence over 
the individuals in the crowd. Techniques for crowd motion extraction have been 

proposed quite recently in computer vision research. 
In (4) Lagrangian particle dynamics has been employed to segment crowd 

moton. Lagrangian Coherent Structures are constructed and used to divide crowd 
flow into regions of qualitatively different dynamics. Mathematical complexity 

might be a potential problem for efficient and fast computation. 
Motion patterns can be defined as groups of flow vectors that are part of 

the same physical process. From the same group of authors, two different tech- 

niques have been proposed for extracting motion patterns. The first method in 
(60) constructs super tracks, which are the collective representations of motion 

patterns, based on detecting the representative modes of motion vectors. The 
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second method in (61) formulates the problem as a clustering problem of the 

motion flow fields. A hierarchical agglomerative clustering algorithm is applied 
to group flow vectors into motion patterns. Both methods produce good visual 
results while the first one lacks quantitative results. Though extraction of crowd 
motion is very important in analysing very dense crowded scenes, the work on it 
is relatively rare, which is probably caused by the lack of reference and ground 
truthed video data. 

2.3 Crowd Modelling and Events Inference 

Dynamics in public spaces can indeed be recurrent. Crowd information can be 
better exploited to indicate the status of the crowd so its events can be inferred. 
Crowd models have been built to represent these statuses, either implicitly or ex- 
plicitly. On the other hand, some research makes direct use of crowd information 
instead of building models. In such cases, the events are usually inferred based 

on some prior knowledge of the properties of the particular scene and the crowd. 
In this section, the inference of crowd models and events in computer vision will 
be presented, as well as some crowd models from non-vision areas. 

2.3.1 Crowd models' and crowd events' inference in com- 
puter vision 

In computer vision, crowd modelling is achieved based on the extracted informa- 

tion from visual data and can normally be employed in crowd events inference. 

Meanwhile, there are also some approaches that attempt to infer events without 
the construction of models. Here, examples are given for both of the cases. 

* In the computer vision approach, crowd models are built as representations 

of recurrent behaviours by analysing video data of the crowd through vision 

methods. 
Andrade et al. (14)(13)(11) characterise crowd behaviour by observing 
the crowd's optical flow associated with the crowd and use unsupervised 
feature extraction to encode normal behaviour. The unsupervised feature 
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extraction applies spectral clustering to find the optimal number of models 
to represent normal motion patterns. The motion models are HNINIs to 

cope with the variable number of motion samples that might be present in 

each observation window. The objective of this model is to detect abnormal 
events in crowd scenes. 

Apart from building models, in computer vision crowd monitoring systems, 
the extracted information is used to recognise the event; usually under some 
assumptions of the involved crowds. Early work on crowd monitoring using 
image processing is reviewed by Davies et al. (38). 

In more recent work such as that by Boghossian et al. (21), a system 
is presented using computer vision techniques to estimate the paths and 
directions of crowd flows in CCTV images and to improve the perception 
of scene dynamics by offering online illustrations. 

Maurin et al. (100) propose a system to detect, track and monitor both 

pedestrians (crowds) and vehicles. The system contains a detection scheme 
based on optical flow that can locate vehicles, individual pedestrians and a 
crowd. The detection phase is followed by the tracking phase that tracks all 
the detected entities. Traffic objects are tracked and a rich set of descriptors 

are computed for each object that include a wealth of information (position, 

velocity, acceleration/deceleration, bounding box, and shape). 

Cupillard et al. carry out event recognition by means of behaviour. In 
(37)(36), an approach using multiple cameras is presented. The algorithm 

relies on both low level motion detection and tracking, and a high level 

module that recognises predefined scenarios corresponding to specific be- 

haviours. 

Michael et al. (29) present a method that jointly performs the recognition 

of complex events and links fragmented tracks. The recognition work is 

implemented by combing the appearance and kinematic constraints from 

tracking and constraints from a hypothesised event model. 

In these methods especially, assumptions of the crowd are usually involved - 
indicating that some prior knowledge is required for events inference. These 
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Figure 2.2: (left) Macroscopic, (centre) Mesoscopic, (right) Microscopic. 

methods may be very efficient and computationally inexpensive for some 
particular systems where the interested events are simple and clear, al- 
though this is not always the case in general situations. 

2.3.2 Crowd models from non vision approach 
Computational models aim to describe and predict the collective effects of crowd 
behaviour by identifying the relationship between crowd features. There are three 
distinct philosophies for modelling a crowd. Traffic analysis (44) proposes a cat- 
egorisation where crowd models can be defined as microscopic, mesoscopic and 
macroscopic. The microscopic model deals with pedestrians as discrete individu- 

als, the macroscopic model deals with the crowd as a whole and the mesoscopic 
model combines the properties of the previous two, either keeping a crowd as a 
homogeneous mass but considering an internal force, or keeping the characters 
of the individuals while maintaining a general view of the entire crowd (Figure 

2-2). In the following section, some typical techniques of crowd modelling will be 
introduced and some examples will be given. 

* Physics inspired models. Several quantitative factors of crowds and 
pedestrians are measurable. This fact encourages researchers to look for 

the mathematical models of crowd dynamics. 

Helbing has a series of work upon this topic. His first experiment is in (55), 

with a stochastic formulation at microscopic level, a gas kinetic formula- 

tion at the mesoscopic level, and fluid dynamic equations at the macroscopic 
level for the crowd model. Later, he (54) proposes another more popular 

microscopic model: the social force model based on social field theory. The 
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social force model represents the effect of the environment; it is a quantity 
that describes the concrete motivation to act. In (56), the model is used to 

reproduce the emergence of several empirically observed collective patterns 
of motion. Moreover, simulations of crowd dynamics based on a generalised 
force model for the escape panic phenomenon are presented in (53). Fur- 
thermore, quite a few other works have been developed upon this work. 
For example, in (32) an additional pattern is introduced by considering the 

unequal information distribution in a crowd. 

In contrast to the former works, macroscopic models often draw upon an 
analogy between the crowd and a continuum responding to local influence. 
Hughes (66) is more interested in modelling rational, goal-directed pedes- 
trians. His theory does not govern the behaviours of any individual pedes- 
trians, as it is a macroscopic model; instead, the crowd is divided into 
(approximate) pedestrian types where pedestrians in each type have the 

same walking habits. 

Physics-inspired models are widely used to study crowds from different per- 
spectives, e. g. to study the effects of introducing autonomous robots into 

crowds (79), or to model a historic scene (117). The interrelations of the 
factors and equations (e. g. employing the same factors in different levels 

of equations) imply the possibility of having a model encompassing all the 
levels. In addition, the quantitative analysis of crowd dynamics can be 

relatively easy to adapt into computer-based algorithms. 

Agent based models. These qualitative models include employing fuzzy 

methods to describe the relations of factors and crowd motion instead of 

pure mathematical methods. Agent-based models use agents to represent 
the pedestrian or the crowd. Many examples are from the former case, e. g. 
in (104), crowd individuals have their own emotional parameters to govern 
behaviour while they belong to a collection of goal-directed groups on a 

mesoscopic level. 

In (106), the agents are modelled following the concept of non-adaptive be- 

haviours. Non-adaptive crowd behaviours refer to the destructive actions 
that a crowd may experience in emergency situations. The human and social 

26 



2.3 Crowd Modelling and Events Inference 

Figure 2.3: A screenshot of XiaoShan Pan's work: human agents try to self-organise 
into exiting lines. 

Figure 2.4: Dwell analysis by Crowd Dynamics Ltd, using agents to assess the 
throughput of specific geometric designs. 

models are categorised into the individual, the interactions among individ- 

uals, and the group and the environment into three non-independent levels. 
(Figure 2-3). Brenner et al. (25) provide an example model by assuming 
that people at the same location experience the same psychological and 
environmental influences. 

Some of the work on agent-based models has already been commercialised, 
such as the work of Keith Still at Crowd Dynamics Ltd (34) and LEGION 

international LTD (87) - both provide pedestrian simulations for space de- 

sign and planning, based on agent technology. For example, the model 
developed by Crowd Dynamics Ltd aims to simulate how people react to 

their environment in a variety of conditions (Figure 2.4). 

Usually, these examples employ agents to act as individual pedestrians and 

are only concerned with the microscopic level. 

9 Cellular automation models. Another research approach employs the 
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construction of local models, where an active area has been virtually divided 
into cells. An example is the commercialised tool EGRESS, from AEA 
Technology Plc (3). In EGRESS, the floor area of an environment is covered 
with cells equivalent to the minimum occupancy area of a person. The used 
cells represent the free floor area, a wall or a blockage, a cell with a person, 
or a region with some other attributes. Pedestrians move between the cells, 
following pre-defined rules. Krez et al. (84) present a model of pedestrian 
motion using both the floor field and agents. The model consists of three 
floor fields: Static floor field for each cell contains information about the 
distance to the exit; Dynamic floor field changes with the motion of the 

pedestrians and the third floor field saves the distance of a cell to the next 
wall. 

Nature based models. Some of the models take their inspiration from na- 
ture. The emotional ant model (18) extends the psychological information 
by using biologically inspired ant agents as a crowd. Four different cogni- 
tive behaviours of a crowd have been modelled, and transition behaviour is 

modelled using fuzzy logic. 

Kirchner et al. (78) apply a bionics approach to the cellular automation 
model by describing the interaction between the pedestrians, using ideas 
from chernotaxis. The simulation of the evacuation from a large room is 

also presented to show the ability of the model to represent different types 

of behaviours. 

2.4 Examples of Bridging the Research 

Computer simulation can be used to evaluate the developed system's perfor- 

mance. Considering that real visual evidences for abnormal scenarios are rare or 

unsafe to reproduce in a controllable way, Andrade et al. (12) have developed an 

approach that generates simulations to allow for training and validation of com- 

puter vision systems applied to crowd monitoring. The simulation is generated 
by a pedestrian path model and a pedestrian body model. Vu et al. (141) con- 

ceive a test framework that generates 3D animations corresponding to behaviours 
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recognised by an interpretation system. In other words, this is a test system for 

a given interpretation system by generating test animations. Non-vision models 
can be borrowed for computer vision analysis. Antonini et al. (15) (16) propose 
a framework using a discrete choice model, which is widely used in traffic simula- 
tions, for pedestrian dynamics modelling. The framework models the short-term 
behaviours of individuals as a response to the presence of other pedestrians. The 

model is calibrated using data from actual pedestrian movements, manually taken 
from video sequences. The work is applied to the problem of target detection in 
the particular case of pedestrian tracking. More recent work by All et al. (5) 

employs the idea of floor field. In order to track a specific individual in the crowd, 
the probabilities of the directions of instantaneous movement of that person are 
modelled by taking into the consideration the floor fields. The introduction of the 

concept of floor field is to incorporate the factors of crowd flow and the structure 
of the scene. According to the reported results the method works well with very 
dense crowd. However the test data only contains crowds with unique collective 
motion, for example three of four testing sequences presented in the paper are 
videos of marathon running while the forth is of a scene where people are moving 

out of the train at a station. 

2.5 Discussion 

This chapter provides a review on current crowd analysis work in computer vision. 
Perspectives from sociology, psychology and computer graphics are presented, as 
these research fields have also contributed to an in-depth study on crowd analysis 

and modelling. Sociological and psychological studies on the crowd phenomenon 

make use of human observations. Their studies indicate various ways to repre- 

sent and model people's relationships in isolation and as part of a more or less 

large group. The microscopic, mesoscopic and macroscopic levels are defined to 

characterise people as individuals that are part of crowd. The computer vision 

approach tackles the problem of automatically extracting sufficient information 

to characterise some special crowd events. 
Antonini and Ali give good examples of employing a non-vision model; how- 

ever, the work only uses very limited information and only acts as a clever tracker 
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at the moment. The works of non-vision analysis presented in this chapter show 
that all of the factors or information extracted from the real world using computer 
vision techniques are inter-related. Moreover, they have proposed the probable 
relationships in their works, which represent the human understanding of crowd 
dynamics. On the other hand, computer vision techniques have the ability of 
exploiting special environmental constraints, which could be applied to calibrate 
the proposed models. The conclusion is that it is possible to develop intelligent 

systems by combining these works with computer vision approaches. The sys- 
tem would be capable of automatically understanding and modelling the crowd 
behaviours, which works at both the instantaneous and recurrent levels. 
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Chapter 3 

Group behaviour analysis 

This chapter describes the work of behaviour analysis in a group environment. 
Dynamics estimators are introduced not only at individual level for behaviour 

classification but also at a global level for estimating the level of cluttering in the 

scene. Following this, two people counting algorithms are developed based on 
the detection and tracking of colour patches. This chapter introduces methods 
that learn scene semantics from group environments, which can be used in a wide 
range of applications. 

3.1 Introduction 

Starting from colour modelling and colour tracking, the objective of the work in 

this chapter is mining semantic meaning from the group environment. The group 

environment is defined as an environment with up to tens of people. Under these 

circumstances, the individuals are free to walk all around the scene rather than 
following certain path constraints by the crowd flow. 

The scene semantic and/or automatic event understanding by computer vision 
has been proposed for different applications; for example (37), where the scene 

understanding is achieved through human crafted event models, (144) in which 
behaviour profiles are built that aim for 'anomaly' detection, and for applications 
like semantic-based retrieving and browsing of a video database - for example, 
(43)(63) - in which semantic information is employed to cluster and index the 
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video data. In this chapter, the techniques developed for Ambient Intelligence 
application and the experiment results are presented. 

Ambient Intelligence (AmI) is a term used to identify a paradigm to equip 
environments with advanced technology and computing so that they can respond 
to the presence of people (116). The Aml paradigm will be able to aid people's 
daily life and support everyday life activities. For example, intelligent dorms have 

computer-controlled heating and lighting systems (68), and in-vehicle Ambient 
Intelligence systems provide assistance to drivers (112). A number of technolo- 
gies involving modern computing hardware and software are required for the 

paradigm. Distributed sensors and actuators are employed to observe and in- 
terpret users' behaviour and the paradigm aims to learn these users' preferences 
and adapt the system parameters to improve the quality of life and work of the 

occupants. Ambient Intelligence has been a popular research topic since the 
late 1990s; research groups have been founded in both academic and industrial 

sectors. To mention a few: Kingston University (134), University of Essex (68), 
Autonomous University of Madrid (8), MIT (7), Mitsubishi Electric Research 
Laboratories (MERL) (6), Philips Research (10), and NTT Research (9). 

The methods presented in this chapter have been developed from two exper- 
iments. The first experiment was run in a University laboratory. A number of 

video sequences were recorded with individuals performing the same action re- 

peatedly. Mixtures of actions were then recorded with more people in the scene, 

performing either the same or different actions. The trajectories of people were 
built by skin colour tracking. The second experiment was for an inter-faculty 

nurse training project where student nurses are being trained in a simulated 

clinic environment. Computer vision techniques are being introduced to assist 
the instructors to better understand the behaviours of their students. To identify 

the different professions in the environment, different colour patches were applied 
in the scene. The behaviour analysis was based on the tracking of different colour 

patches. The underlying mechanisms for colour modelling and tracking were the 

same for both experiments. For both of the experiments, sample colour patches 

were learned by an expectation-maximisat ion algorithm and a mixture of Gaus- 

sian colour models were built. When processing the video sequence, the colour 
Probability Density Function (PDFs) of each frame was built according to the 
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colour models; colour blobs in the frame were picked up by running a connected 
component algorithm upon pixels with a high probability of being the target 
colour. The CAMSHIFT algorithm was then used to track the detected blobs 

over time. 
Based on the colour PDFs and the tracking of the colour blobs, the methods 

discussed in this chapter can provide semantic interpretation of the group envi- 
ronment and act as a prerequisite of ambient intelligence. Trajectories generated 
from colour tracking are used for individual level dynamics estimators; curvature 
and corresponding speed are analysed by applying a time window to classify an 
individual's behaviour. Scene entropy is measured by using the colour PDF and 
is used as an estimator of the global dynamics. A simple people counting algo- 
rithm is implemented by accumulating the colour PDF along the horizontal axis 
of the scene. The number of peaks of the resulting histogram is counted as the 

number of individuals. This is a very simple and low-cost algorithm; however, it 

can only work for limited situations. A more sophisticated method is proposed 
by establishing spatial relationships between the colour blobs; the blobs that are 
close to each other for most of their lifetimes are counted as a single colour patch, 
and the total number of the counted colour patches is regarded as the actual 
number of the people in the scene. 

This chapter is organised as follows: Section 3.2 introduces the nurse training 

project, Section 3.3 discusses the techniques for colour modelling and tracking, 

and Section 3.4 presents two dynamics estimators based on colour tracking. Sec- 

tion 3.5.1 proposes methods that aim to count the number of people in the group 
scene and, finally, Section 3.6 summarises the whole chapter. 

3.2 Nurse M-aining Project 

The nurse training project is an interdisciplinary project to aid professional skills' 

practitioners at Kingston University'. The project has engaged the computer 

vision team in the Faculty of Computing, Information Systems and Mathematics 

and the School of Nursing at Kingston University 

'The research was partially funded by the European Office of Aerospace Research and 
Development (EOARD) project FA8655-06-1-3013. 
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Figure 3.1: Pictures illustrating two individual skills, and two instances of a typical 
simulation. 

The School of Nursing at Kingston Hill campus trains student nurses, paramedic 
and medical students (in a joint degree with St. George's Medical School, Lon- 
don). The training consists of individual and group practical exercises based on 
taught techniques (Figure 3.1 illustrates examples of individual and team skills), 
entailing both medical and managerial skills. Group skills are tested in large 

simulations. During term time, skills training practice is organised in a series of 
morning and afternoon sessions. Simulations involve a preliminary preparatory 

round table discussion to introduce the practical exercises, the actual simulation 

where skills are tested at individual, and team level and a final round table discus- 

sion where the strengths and weaknesses of the assessed students as individuals 

and groups are discussed. 

Intelligent algorithms have been studied to enhance and automate the profes- 

sional training of nurses. The inter-faculty project is the first attempt at Kingston 

University to design an ambient Intelligence system for use in the training of pro- 
fessionals. In the context of the nurse training project, the paradigm is interpreted 

as a set of guidelines to develop algorithms capable of interpreting behaviour in 

a very complex environment, monitored by an array of cameras. 
Conventional training of nurses and medical students is very time consuming 
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and when large numbers of students are involved, it is very hard for an instruc- 
tor to assess correctly the performance of a student or a group of students. The 
School of Nursing runs a state-of-the-art training methodology, engaging students 
in individual and team work. Assessment is usually carried out during practice 
with on-the-fly verbal feedback and by recording video footage of students' per- 
formance. This is discussed in classes to illustrate best practice, encourage less 

capable students, and praise the best practice of better students. The skills lab- 

oratory, situated at Kingston Hill campus at Kingston University, can host up 
to 30 students at a time with instructors and role players engaged in large sim- 
ulations. The lab is currently endowed with a variety of medical equipment as 
well as mobile and fixed cameras. The images in Figure 3.2 illustrate the experi- 
mental setup, the large skills laboratory (medically equipped), and a round table 

example. 

:; 
7 

Figure 3.2: Pictures of the experimental setup, including two pan-tilt-zoom (PTZ) 

cameras, the used router, some views of the skills laboratory and an ex- 
ample of a roundtable meeting. 

The inter-faculty collaboration was established in 2001 thanks to a common 

research interest on human behaviour in complex scenes. Both partners were 
driven by complementary research interests: the nursing practitioners were inter- 

ested in an innovative educational methodology using video recordings and the 

computer vision team were interested in studying algorithms to automatically 
describe a scene in terms of human dynamics. 

35 



3.3 Colour tracking of people 

The computer vision techniques used in monitoring applications lend them- 
selves well to the automatic understanding of semantics (identification, classifi- 
cation and dynamics explanation of a simulation) in a professional training en- 
vironment. Automatic understanding of scenes has been studied in (37), where 
the scene understanding is achieved through the creation of event models, and in 
(144), where behaviour profiles are built to identify anomalous behaviour. In (43) 

and (63), semantic information is employed to cluster and index the video data. 
This application bears a resemblance to monitoring applications, as all scenes are 
extremely complex and the main goal is to model the nominal behaviour (best 

practice) and deviations (bad practice). The objectives of this project, described 
in this chapter, include the identification and classification of role players and 
algorithms to describe the dynamics in the environment. 

The algorithms described in this chapter are tested on video data where all role 
players in the scene wear a coloured tabard. Four colours are used to distinguish 

among the instructors (blue), student nurses (yellow), medical and paramedic 
students (green) and patients (red). The colour coding was introduced to sim- 
plify the computer vision processes. Four cameras (pan-tilt-zoom used as fixed 

cameras) are employed in the experiment. A preliminary study was carried out 
by analysing the four views independently, attempting to generate the automatic 

understanding of an evolving scene. 

3.3 Colour tracking of people 
A colour model can be estimated by acquiring video data of a given colour by using 
template patches, and via the training of a colour model using the expectation 

maximisation algorithm (33). In order to optimise the model, colour image data 

can be studied and an optimal initialisation defined in terms of the number of 

clusters and initial positions and approximating the functions. 

A colour model is fairly robust to changes in illumination but it has the 

weakness of being specific to the camera used to acquire the training data. In 

all the tests, a new video camera that is used to acquire video footage has its 

own colour model. As the training can be performed offline, the limitation is 

not prohibitive. Colour models were trained for the four different colours used 
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to recognise the categories of people. For the initial experiment, it is the skin 
colour. For the nurse training project, these include the student nurse (yellow), 
the instructor (blue), the patient (red) and the medical student (green). 

3.3.1 Colour Modelling 

Although background models can work in the group situation, problems arise 
when people or objects, after a period of time spent moving, stop and become 

stationary. In such cases, background models might not work well, as they are 
based on learning adaptation to changes. The learning variable regulates the rate 
by which the model adapts to changes in the scene: a faster adapting learning 

rate results in foreground objects and people not being detected if they do not 
move for short periods of time; a slow adapting learning rate has the opposite 
effect. 

The use of colour information makes possible the identification of people, even 
if they are not moving. Colour segmentation helps the process of identification 

of people in the scene, even if they stop and do not move for variable periods of 
time. A number of colour spaces invariant to illumination were tested, including 
HSV and YUV (118). A model for each of the selected colours was learned from 

sample colour images. These models were learned as a mixture of Caussians, 

using the expectation-maximisation algorithm. Once the training was complete, 

a probability density function could be estimated for each trained colour within 

each frame. Each pixel in a test image could then be probabilistically classified to 
belong to a specific trained colour. The modes of each density function could be 

interpreted as an image location with a very high probability of being a person. 
A connected component algorithm was then employed to build regions with a 
high probability of representing the target colour patches. Figure 3.3 shows some 

example colour PDFs from the nurse training project. 

3.3.2 Modified CAMSHIFT 

In order to track colour patches - identifying people's locations - the CAMSHIFT 

algorithm has been adapted. The CAMSHIFT algorithm was originally proposed 

in (24) as an evolution of the MEANSHIFT algorithm (46) (31). CANISHIFT 
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1 

Figure 3.3: Colour PDFs (Example frames from the nurse training project): Top 
row - the raw frames from the nurse training project; bottom row - the 
cumulative distribution for the colours. 

adapts to evolving a probability density function (PDF) by alternating cycles 
of the MEANSHIFT algorithm with a resizing of the search window. The win- 
dow size is a function of the centre of mass of the probability density map (Oth 

moment). 
Tracking colour patches entails running the CAMSHIFT algorithm for each 

patch. However, this is not sufficient to maintain hypotheses in a rapidly evolving 
scene. That is why the method here keeps track of a list of living patches by track- 
ing them throughout the scene with the CAMSHIFT algorithm, removing those 
that have too low a probability associated for a number of frames, and introduc- 
ing new patches whenever sufficiently large new patches appear in the scene with 
a sufficiently high probability (Algorithm 1). Instead of using a pre-selection of 

colour patches, the initialisation of the locations of the colour patches is achieved 

automatically by picking up the high probability patches of the colour PDF gen- 

erated by the colour model. In addition, in the original CAMSHIFT algorithm the 

method to generate the colour PDF was to back-project the colour distribution 

of the initial colour patch to the new frame. In the approach presented here, the 

colour PDF is generated directly by the learned colour model. This modification 
to the CAMSHIFT algorithm can improve the tracking under changing light con- 
ditions, as the colour models are built from the training dataset from the different 
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light conditions. Furthermore, this can also reduce the risk of introducing more 
noise during the tracking process, especially when the mis-tracking happens in 
several frames. Here, the tracker is instantiated each time a new region of inter- 

Algorithm 1 Colour Tracking 
Training: Learn Colour Model Ej wi - jyj, Ej I 
Tracking: 

for each frame do 
Estimate colour probability density images by the learned model. 
Track and assign likelihood to colour patches in the Ltrack; remove those that 
are lost from the tracking list Ltrack- 

Identify new colour patches (connected components) and add them to the 
tracking list Ltrack- 

end for 

est is recognised by the colour model, while regions with very low probability are 

removed from the list of active regions. The trajectories of the tracked objects 

and people can then be parametrised and annotated. The current implementa- 

tion goes as far as a spline fitting of the trajectory. Automatic annotation, not 

present in the current implementation, can be thought of as an additional process 

capable of providing the user with a natural language description of the scene in 

terms of people and objects present in the scene, their location, trajectory trends 

and their interactions. 
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3.4 Estimating Dynamics 

3.4 Estimating Dynamics 

The main goal of this research is to automatically estimate the dynamics in a 
complex scene, frequented by an unspecified number of people. Dynamics is 

estimated in two levels of detail: the individual level and global level. For an 
individual level scene, dynamics is represented by different classes of people's 
behaviour, i. e. in this case, the degree of interest of people to the environment. At 

global level, scene dynamics is judged by the distribution of people (represented by 
the detected colour patches) in the scene. This is important in applications where 
situational assessment is crucial to better inform people inhabiting a specific 
environment. For instance, in a shopping mall or in a museum, individuals and 
more or less large groups of people might pass or stop by to window shop or 
observe an exhibit. In such cases, information about the merchandise or exhibit 
could be delivered in a more efficient manner, for instance, with the aid of a 
robot. Automatic estimation dynamics is also important in crucial situations 
where people must be informed of exits and escape routes or where people's 
behaviour can be suspicious or dangerous. 

3.4.1 M-ajectory 

This method offers a means to classify people's behaviour as " interested" or 
"uninterested" in the scene. One can then imagine the degree of interest in a 

scene being used to inform a robotic platform to deliver a specific message to the 

user. The video data was captured in a simulated exhibition environment. Actors 

played different types of behaviours as they would act in a real exhibition. They 

stopped at the exhibits and looked around at the exhibits to show an interest. 

With uninterested behaviour, the actors just moved across the scene without 

stopping. Actors also pretended to be panicking in an emergency and walked in 

the scene swiftly and desperately looking for the exit(s). The last behaviour is 

referred to as "animated" behaviour in this section. 
Skin colour is used to extract exposed patches of the human body and these 

patches can be robustly tracked throughout a scene. The tracks are then employed 

to annotate the dynamics of individual patches and draw some qualitative and 

quantitative descriptions of the global evolution of the scene. 
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Figure 3.5: The two above frames show the low curvature trends of uninterested be- 
haviour: when people pass by an exhibit. 

Trajectories of skin patches identify people's trajectories and can be seen 
as signatures of their behaviour. For instance, people interested in exhibits in 
a museum or merchandise in a shopping mall have a more irregular signature, 
distinguished by a curvature that becomes higher and changes more frequently 

as the patches represent people looking around at an object. 
The amount of time spent in the scene also plays an important role: the 

shorter the time, the smaller the interest shown in the exhibit/object. Frames 

in Figure 3.5 illustrate two examples of uninterested behaviour, well correlated 
with a smoother (low curvature) trajectory, while frames in Figure 3.6 clearly 
illustrate how the interest in an object is correlated with a change in curvature. 
Dynamics can therefore be estimated by studying the trajectories of the tracked 

skin colour patches and making use of their trends. An in-depth study of the 
trajectories led us to the following conclusions, all based on the assumption that 
the extracted skin patches belong indeed to people in the scene: 

* Fast patch movements indicate that people in the scene are moving rapidly: 

43 



3.4 Estimating Dynamics 

Figure 3.6: The above frames show when people are interested in the shown exhibits 
and they stop by the exhibit. Trends of such trajectories have a higher 

curvature. 
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the speed of each patch is estimated by the distance in pixels of a patch 
between frames. 

The curvature of a trajectory is a good indicator of how many twists and 
turns the trajectory trend has. Changes in curvature might occur more 
frequently in some moments than in others: the frequency of change and 
the magnitude of curvature is an indicator of the person's interest in some 
parts of the scene. 

eA density signature of curvature peaks can therefore be estimated to de- 
scribe people's interest: the higher the density, the higher the attention a 
person has for an object. This study demonstrates that highly interested 
people will stop and move about in front of the object, whilst uninterested 
or vaguely interested people will move a lot in the scene and rarely stop - 
their curvature signature shows trends with a small number of high peaks. 
A suitable time window is defined to estimate the density: typically, a 
number of seconds are usually spent by a person observing an object in the 
scene. This parameter depends on the application and can be learned. 

Figure 3.7 illustrates the speed and curvature trends of a patch used to train 
the model of uninterested people. The speed becomes fairly high; however, the 
curvature remains lower than a low threshold, which is typically around 1. Figure 
3.8 illustrates the signature of a patch related to a person who is interested in 
the scene. The speed is lower, indicating the person pays more attention to the 
scene. The frame in Figure 3.8 clearly shows the close occurrence of curvature 
peaks in two points of the scene, indicating that the person stopped and then 
looked around for a while before moving to the next area of interest to stop again 
and observe, before leaving the scene. The yellow trajectory - associated with a 
hand was picked up too late to illustrate the curvature phenomenon typical of an 
interested behaviour. 

Figure 3.9 illustrates what are known as uninterested and animated behaviours, 

characterised by patches of people uninterested in the scene objects, but where 
those people stay for longer in the scene and move about without really focusing 

on any object and do not stand still in any particular position of the scene. 
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Figure 3.7: An uninterested behaviour: people who are not interested in the exhibit, 
passing by without stopping. 
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Figure 3.8: An interested behaviour: people who are interested in the exhibit, stop- 
ping and looking at the exhibit. 
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(a) Týrajectories of a person with animated 
behaviour and uninterested in the scene 
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Figure 3.9: An animated behaviour behaviour: people who stay for longer in the scene 
and move about without really focussing on any object and not standing 
still in any particular position of the scene. 
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3.4 Estimating Dynamics 

As can be seen in the above graph, such behaviour shows a large number of 
sparse high curvature peaks and also correlates with a higher speed, indicating 
that the person did not stop for longer than the short period of time required to 
change direction in the scene a few times and then leave the scene. 

The graphs in Figure 3.10 illustrate how the density of curvature maxima 
can be employed to disambiguate between interested, uninterested and animated 
behaviour. The graphs clearly indicate that whenever a person is interested in 
the scene objects, then they stop and spend time looking. While they do so, they 

move about, building up a density of curvature maxima. Completely uninter- 
ested behaviour shows no density at all for maxima above a threshold estimated 
by measuring the mean curvature of patches of uninterested people. Finally, ani- 
mated behaviour builds some density which, however, is not comparable with the 
density built for a focused behaviour. 

Experiments illustrate that curvature can be employed to analyse trajectories 

and classify behaviour. The amount of skin colour patches in the scene and their 
life spans can shed some light on the clutter in the scene, and their dynamics can 
be employed to assess a highly changing situation. 
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3.4 Estimating Dynamics 

3.4.2 Entropy 

The dynamics of people moving in a scene can be estimated at different degrees 

of accuracy. The current implementation makes use of the idea that the sparser 
a density function is, the higher the probability is that the scene has people 
scattered in the monitored environment. The degree of scatter does only identify 
that people are likely to be attending to their tasks around the scene, but it does 

not capture the degree of dynamics in the scene. In fact, it might be of greater 
interest to identify people moving frantically in the scene rather than people 
sparsely allocated at areas of the practice skills laboratory. Entropy is used as a 
measure of the dynamics in the scene (135)(17). At each frame, an entropy value 
can be measured as 

p(x, y) log p(x, y) 
y 

where p(x, y) is the value at (x, y) of the colour PDF generated by the colour 
model. A sequence of frames provides a signature for a given view of the scene. 
This signature can then be studied to establish an entropic metric (a baseline) 

and to determine variations in the signature. Peaks in entropy describe frames 

that have highly scattered density functions, and rapidly changing entropy values 
are an indication of movement in the scene from scattered to compact, and vice 

versa. 
Excerpts of sequences of interesting behaviour were extracted and analysed 

using the proposed algorithms. The testing was organised as follows. First of all, 
the colour density functions cannot be sufficient to identify correctly the number 

of people in the scene; however, they are sufficient to estimate the dynamics in 

the scene. As described in the previous section, entropy is used as a measure to 

provide an indication on how crowded a scene is. Figure 3.11 and Figure 3.12 

illustrate two scenes at different time stamps and the related entropy. Peaks and 
troughs are associated to the corresponding scene frame. Troughs tend to identify 

scenes with the compact assembly of people, while peaks refer to scenes with a 
high spread of people. 
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3.5 Counting People 

3.5 Counting People 

Colour segmentation generates fragmentation by identifying one person with more 
blobs. Segmentation could also cause false groupings by clustering together more 
people in close proximity. Both problems are due to occlusions (between people 
and objects) and self-occlusions (between people body parts), as well as by the 
reflections of artificial illumination on the monitored person. 

In this section, first, a simple algorithm is described that can provide a qualita- 
tive counting of the people acting in the monitored scene. Then, a more elaborate 
algorithm is introduced, whose performance is also quantified using conventional 
performance measures. In the second counting algorithm, spatial relationships 
group the blobs split from a single person. At first, a graph is created for each 
frame with links between all identified blobs. Each link is then evaluated to judge 
whether the linked blobs should be merged into a cluster to recover an individual 
or whether they should be kept separate - making the assumption that both blobs 
are disjointed and likely to be parts of different people in the scene. 

3.5.1 A Simple Algorithm 

As mentioned previously in this chapter, one of the main problems caused by the 
colour segmentation is the fragmentation or over-segmentation of people in the 
scene. When a person is close to the camera, he/she is usually represented by a 
number of blobs bearing the same colour. 

One way of solving the problem is by grouping the blobs by using a proximity 
constraint. A first attempt at providing the user with a rough count of people in 
the scene can be done by employing an accumulator along the horizontal axis of 
the scene. Such an accumulator will accrue information of the existing blobs of 
a given colour. The counting simply vertically accumulates the contributions of 
each blob and adds such contributions to the accumulator. This is illustrated in 
Figure 3.13. The rationale is that more blobs in close neighbourhood contribute 
to peaks in the 1D signature, and that the likelihood of blobs belonging to peo- 
ple next to one another is lower than the likelihood of belonging to the same 
person. The algorithm simply accumulates over time the blobs identified in the 

video sequence and it normalises the signature to a given maximum height. The 
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3.5 Counting People 

Figure 3.13: The bounding box of a blob representing a person or part of a person is 
collapsed onto the horizontal axis. This will contribute to the profile of 
the scene for that specific category of people. 

signature is then smoothed a few times with a Gaussian filter, and the modes are 
identified on this signature as the highest peaks. The signature works effectively 
as a probability density function of the presence of blobs in the scene. Peaks that 
are suboptimal as they are closer to higher peaks are eliminated, removing false 
alarms, and peaks that are sufficiently close are merged together by the Gaussian 

smoothing, effectively integrating information. 
By no means can this be claimed to be a perfect method. In fact, it clearly 

suffers from the loss of vertical dimension, collapsing each blob vertically and 
therefore losing the information of how far a person is in the scene. The algorithm 
also underestimates the people count by suppressing peaks that may be small, 
but still identify the presence of a person in the scene. The sparseness of blobs 

when segmenting a person could also introduce noise and identify more people 
than there are in the scene. 

Figure 3.14 illustrates the pros and cons of the developed algorithm. In the 
following, the frames in Figure 3.14 are referred to using an incremental num- 
bering, starting from the top left with frame 1. In frames 1,3 and 15, people 
are isolated and, thus, the algorithm is successful. In frame 11, for instance, the 

colour segmentation fails and introduces false alarms, which are in turn identified 
as peaks in the related PDFs. Frames in which people are at different distances 
from the camera - but not aligned - can be correctly interpreted as shown in 
frames 13 and 14. In other cases, the algorithm fails to perfectly disambiguate 
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Figure 3.14: From top left to bottom right, frames are numbered frame I to frame 
15. The above figure illustrates fifteen frames. The frames include the 
bounding rectangles, detected by the colour tracker, and the profiles 
representing the probability density functions of the defined categories 
of role players. The white vertical lines illustrate the detected peaks, 
corresponding to an estimate of the modes. Each mode represents a 
person in the monitored scene. 
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3.5 Counting People 

aligned people, as shown in frames 2 and 9. The algorithm might fail to detect 
people in the scene due to illumination problems or because people are too far 
from the camera, as shown in frame 1. 

3.5.2 Graphs of Blobs 

Graphs are generated from the previously detected blobs. The nodes in the graph 
represent blobs while the links in the graph joining the pairs of blobs represent the 
spatial relationship between the two blobs. The creation, deletion and updating 
of the links are required to be automatic according to the change of the situation. 
The algorithm links are enforced between a blob, say A, with all the other blobs 
in the scene during its life cycle. During the life cycle of A, another blob, say B, 
could appear in the scene and then leave the scene. Under such circumstances, A 
should then be linked to B once B has entered, and the link should be eliminated 
right after B has left the scene. The complexity of the problem increases when the 
number of people involved increases. The creation of the links is triggered by the 
appearance of blobs, deletions are triggered by the disappearance of blobs, while 
updating is carried out at regular intervals every At, taking into consideration 
all the blobs at that moment in time. 

Following in line with the above example, a link is created between A and 
B when B enters the scene. The link should be kept updated while B is in the 

scene. The link should then be removed when B is no longer in the scene. For 

algorithmic simplicity, a link is bi-directional, so each link between blob A, for 
instance, and any other blob also implies that all linked blobs keep track of the 

existence of A. When a blob leaves the scene, it sends a signal to all the links 

connected to it to release and delete them. At each frame sampled at a given 
At, the system checks the blobs to create, delete or update the existing links. 
Algorithm 2 illustrates this process. 

3.5.3 Estimation of Distance Between Blobs 

Spatial relationships between blobs are represented as distance information con- 
tained within the links connecting the nodes. The distance between blobs is 

calculated as the Euclidean distance between the blobs' centres. Because of the 
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Algorithm 2 The creation, deletion and update of the links 
if objects: 00 

... m are leaving the scene then 

for i=0 to m do 
Object Oi send signals to all the links connected with it 
Delete Oi- 

end for 
end if 
Delete links with signals 
if objects: 0+.. are entering the scene then 0. n 

for j=0 to n do 
Build links between object OJ' and all of the existing objects in the scene 

end for 
end if 
Update all of the existing links 

perspective distortion, the absolute value of the Euclidean distance cannot be 
used to estimate the spatial relation between the blobs. For instance, two blobs 

at an absolute distance of 50 pixels could be close to each other when they are 
in front of the camera, while they could be far from each other when they are 
distant from the camera. Hence, a method for calculating relative distance by 

comparing the absolute distance with the size of connected blob has been pro- 
posed here, i. e., the ratio of the absolute distance and the blob size was used. In 
this method, the variation of dimensions of blobs at different locations is consid- 
ered. The Euclidean distance used as the absolute distance between blob i and j 
is as below: 

D, j ý/ (xi - xj) I+ (yi - yj) 1 (3.2) 

where (xi, yi) and (xj, yj) are the coordinates of centre points of blob i, J, respec- 
tively, and the temporal relative distance of blob i and j is calculated as: 

di, - 
Dz3- 

k= 
j, if yj - 0.5hi < yj - 0.5hj 

(3-3) 
22 TQi, otherwise. 
2 Wk k 
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whereWk and hk are the width and height of the blob. The denominator is 
a measure of the size (its diagonal) of the blob and is used as a weight, as a 
compensating factor for the link. 

The above calculations are carried out in a single frame. A temporal average 
operator has been applied every At frames for each distance calculation. This 
operation can reduce the instability caused by the tracking algorithm, thus the 
video sequence has been sampled at fixed regular time intervals, i. e., each time 
segment contains distance information for At frames. Equation (3-4) describes 
the calculation of this distance, 

dij (T) -- At 
E dij (T - At) (3.4) 
At 

so the distance between blobs Z and j at time T is the average of the distances over 
the previous At frames. The main reason for this temporal smoothing operation 
is to stabilise the distance. At is a short time interval. For example, in this case 
an 8-frame At is used, which is equivalent to 0.5 seconds. 

3.5.4 Temporal Pyramid for Distance Estimation 

Short-term spatial relations are not sufficient for clustering blobs. The tempo- 

ral pyramid of a distance scheme has been introduced to maintain longer term 
distance information. In this algorithm, two blobs belong to the same cluster if 
they are close to each other during their life span. A coarse pyramid was used, 
where the current time frame is represented by the top of the pyramid, while the 

whole lifetime of the blob and half of its lifetime represent the other two layers. 
For each pair of blobs, the algorithm takes into account the distance information 
from each level of the pyramid and calculates the overall probability that they 
belong to the same cluster. This scheme is based on an assumption that two 

persons are not likely to stay next to one another for a very long time period. 
This is clearly not true in general, but it suits the application of nurse training 

where nurses, instructors and medical students are continuously moving about. 
The temporal pyramid consists of three levels: the bottom layer holds the 

overall distance information between two blobs from their appearance in the scene 
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Current 
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Half life (TPj 

Over all (TP, ) 

TP2 (CUrrent) 

Tlp, (T/2 frames) 

TPO (T frames) 

Figure 3.15: Temporal Distance Pyramid: The bottom layer represents the overall 
distance information from time 0 to time T, the middle layer represents 
the distance information from time 1: to T and the top layer holds the 2 
distance information for the current time slice T. 

to the present time, the top layer holds the present distance information and the 

middle layer holds the information from the half time to the present. This is 
illustrated in Figure 3.15. The generation of the temporal distance pyramid is: 

TPo(T) a(O T) = -1 d(t) (3.5) 
T 

ý: 

t=l 
T 

TP, (T) = d(T12 T) = -d(t) (3.6) 
2 t-T T 

TP2(T) = a(T) = a(T) (3.7) 

where TPo(T) to TP2(T) represents the distance information held from the bot- 

tom layer to the top layer at time T. In practice, to reduce the redundant calcu- 
lations of the top layer (TPo (T)) and middle layer (TP, (T)), a recursive method 
has been employed and the equations are modified as follows: 

T Po (T) -- T 
(TPo(T - 1) x (T - 1) + d(T)) 

T-1 -T TP, (T) = Tl (TP, (T - 1) x- d(- - 1) + d(T)) 
22 2 

TP2(T) = d(T) 

(3.8) 

(3-9) 

(3-10) 
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3.5.5 Probabilistic Estimation of Groupings 

A probabilistic clustering scheme was devised to eliminate over-segmentation in 
the scene. As mentioned earlier in the chapter, one person may be identified with 
more than one blob. 

Clustering is carried out for each category, so, if two blobs belong to colours / 

categories that refer to two different role players, for instance an instructor (blue) 

and a student nurse (yellow), then their link has a probability of zero and they 

cannot be linked to the same graph. In all other cases, spatial relation is the 

main criterion used for clustering. This means that the probability associated 
with the link between blobs is inversely proportional to their Euclidean distance. 
This rule is represented by a function ýo(d): 

1, when d=0 
P(d) = ýo(d) I- -I- x when 0< Od 

19d 

0, when d>Od 

where Od is the threshold of distance. When the distance falls below this value, 
the probability of clustering is equal to 0. When the distance is equal to 0, the 

probability is equal to 1. The probability of clustering two blobs with a distance 

that falls between 0 and Od is interpolated with a linear function. Each layer 

of the temporal distance pyramid provides a probability of clustering and the 

outcome of the three layers has been averaged as follows: 

Pdis =1 (P(TPo) + P(TP, ) + P(TP2)) 
3 

(3.12) 

The overall size of the blobs is also used to bias the probability of clustering 
blobs. A linear approximation of the blob size at different locations of the scene 
has been used as a reference. The size of the overall bounding box between blobs 

is compared against the estimated reference, according to their locations. This 

comparison is represented by the ratio: 

so 

Sr 
(3-13) 
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where S, is the size of the blobs and S, is the reference size from the linear 
approximation. The probability of clustering by area is calculated by: 

Psize = P(-ýý) = ý0(9) = 

1, when 3=0 
1--LX3 when 0<-ýý<O, 0,1 
o, when 3>0, 

(3.14) 

where 0, is the threshold of the ratio of the size ýp(3) is employed for the 
reason that smaller fragments should increase the probability to cluster. The 

overall probability of clustering is: 

P= Pdi8 X Psize = P(d) x P(ý; ) (3-15) 

3.5.6 Grouping Blobs 

For each frame, the clustering takes place in two steps, which are named as pair 
clustering and sub-clustering. Pair clustering checks all pairs of blobs, clustering 
together all the pairs with high probability. This rule ensures that all the blobs 

that potentially belong to the same person are clustered together. If two blobs 

are selected to be clustered and they already belong to two clusters, then the 

clusters can be merged, as shown in Figure 3.16(a). Pair clustering may generate 

Figure 3.16: Two frames of problems in clustering. 

bad clustering. In fact, blobs that belong to different people could be clustered 
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together as shown in Figure 3.16(b). The second step - sub-clustering - is used to 
obtain the scores of different numbers n (1 <n< N) of sub-clusters of a cluster 
C which contains N blobs. In a cluster generated in the pair clustering step, each 
pair of blobs is associated with the probability of clustering, which is generated 
by the method described in Section 3.5.5. The strength IF of a cluster is defined 
as: 

C2 

i=o 

(3.16) 

where N is the total number of blobs, so there are CNpairs of blobs. Connected 
and Unconnected are defined as the pairs of blobs with a probability of cluster- 
ing respectively higher and lower than a given threshold. Creating sub-clusters 
requires that every time the weakest Connected link is removed, the blobs are 
re-clustered by the remaining Connected list. The score of the operation is equal 
to the energy cost E of removing the Connected list and the related Unconnected 
list. 

EE+ 1 1: r 
nm 

(3.17) 

where the energy cost of removing a Connected list with the probability of clus- 
tering P is: 

E=1-P (3.18) 

This operation is continues until all the Connected are removed; meanwhile, all 
the blobs are isolated. Figure3.17 shows an example of the sub-clustering process 

of a cluster containing four blobs. 

During the operation, the scores are accumulated for different numbers of sub- 

clusters. In this case, the number of sub-clusters with highest score is selected to 

be added to the person-count and the sub-clusters are regarded as individuals. 

The total number of people is the sum of the selected numbers of sub-clusters of 

all the clusters in the frame. 

3.5.7 Experimental Results 

The counting algorithm has been tested with tens of video sequences consisting 

of at least 300 frames. The sequences are a selected sample from a large database 
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E9, 

Step 1 

*E 
Step 3 

Figure 3.17: An example of sub-clustering. Solid lines between blobs show the Con- 
nected and the dashed lines are the Unconnected. In each step, the black 
Connected is removed, and the related Unconnected are removed. This 
operation is updated until all the Connected are moved and all the blobs 
are isolated. 

of video data acquired at Kingston Hill during a number of simulation sessions. 
The selected excerpts of video sequences were ground-truthed. 

For a video sequence, the number of people as well as their locations is re- 
trieved for each frame. To access the system performance, ground truth is man- 
ually marked up by the ViPER Ground Truth Authoring Tool(ViPER-GT tool), 

which is a part of The Video Performance Evaluation Resource (ViPER) devel- 

oped by the Language and Media Processing Laboratory, University of Maryland 
1. The ground truthing process is carried out every frame, and each person is 

selected by a bounding box (Figure 3.18). In this counting work, performance 

was evaluated using measures borrowed from the information retrieval literature. 

Recall and Precision, which have been used in evaluating search strategies, are 

used here to test the results of the counting algorithm against ground truth in- 

formation. Recall is the ratio between the number of relevant records retrieved 

and the total number of relevant records in the database. Precision is the ratio 
between the number of relevant records retrieved and the total number of irrel- 

evant and relevant records retrieved. The Precision- Recall curve is employed to 

provide a quantitative assessment of the performance of the algorithm (39). The 

'The details of ViPER and ViPER Ground Truth Authoring Tool are available online at 
http: //viper-toolkit. soiirceforge. net/. 
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Figure 3.18: A ground truth example from ViPER-GT. 
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Figure 3.19: Precision-Recall curve. 
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bounding boxes of the ground truth GT and the bounding boxes generated by 
the presented algorithm RE are used to estimate the following measures- 

GTnRE Recall = GT (3.19) 

Precision = 
REnGT 

(3.20) RE 

Category information is also considered, i. e. the intersections of GTs and REs 
with different colours are not taken into account. The Recall and Precision esti- 
mates have been recorded along with time scale in all the video sequences, and 
each pair of measures contributes as a point on the Precision- Recall curve. Figure 
3.19 shows the Precision-Recall curve for a video sequence. The graphs in Figure 
3.20 illustrate the counting results from different situations with different num- 
bers of people and different numbers of professions. These results show that the 
system has a quite stable performance under the tested different circumstances. 

3.6 Summary 

The contribution of this chapter is in the design of an algorithm for the interpre- 
tation of a group scene. This chapter has described methods for a system that 
follows the guidelines of the Intelligent Environment paradigm. At present, only 
cameras are used to recognise behaviour and estimate the category and number 
of people in the scene. Colour models are used to track people in the scene and 
provide sufficient information for the system to generate graphs of detected and 
tracked colour patches. The generated graphs are then automatically analysed 
by an algorithm to estimate the scene dynamics and count the number of people 
in the scene. 

Two dynamics estimators are presented in the chapter. In the first work, 
people's behaviour is classified by analysing their trajectories. Curvature of the 
trajectory is accumulated in a time window to generate curvature density. Ex- 

perimental results show that the curvature density can be used as a signature of 
people's behaviour. In the second work, entropy is calculated upon colour PDFs; 

the value of the entropy in a specific time frame indicates the level of cluttering 
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0ý 

40 

Figure 3.20: Counting people: ellipses represent the original blobs. Thick outlines 
of shapes show the existences of individuals. If a single colour blob is 
counted as an individual, the blob is displayed as an ellipse with thick 
outline; otherwise it is displayed with thin outline. For example, in the 
first graph of second row, the big yellow rectangle on the left with thick 
outlines is to show the existence of a nurse while the ellipses with thin 
outlines inside it are to show the original detected colour blobs. 
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at that time. 
For counting the algorithms, the major challenge is to identify individuals 

from the colour segments in a complex dynamics environment. An algorithm 
that recognizes individuals as peaks of a colour PDF histogram has been pro- 
posed. The implementation of this algorithm is simple and it can work fairly well 
with not too complicated scenes, i. e. the scenes without occlusions or dramatic 
light changing. For more general situations, another algorithm is developed by 
analysing the spatial relationships between blobs. The basic assumption is that 
two individuals will not always remain in close proximity over a long period of 
time. Spatial relationships between blobs are judged to determine if two blobs 

should be merged or not. The current system provides a good estimation of the 

number of people. High precision values in quantitative results suggest that the 

system has a low false alarm rate. This is also confirmed by observing the quali- 
tative results. However, as the analysis is limited to 2D information, the system 
would fail to count a person when seriously occluded and most of their patch is 

not visible from the view. As a result, Recall sometime drops to relatively low 

values. To tackle the problem of mis-counting, the next step for performance 
improvement is either to introduce an occlusion handling scheme or to fuse infor- 

mation from different views. 
In terms of algorithm development, future work will focus on the description 

of the level of cluttering of the scene, and dynamics descriptions of the scene 

such as descriptions of people interactions. Furthermore, evidence from all the 

cameras can be combined to provide 3D information. In terms of technology, 

radio frequency technology will be introduced to help with the recognition of 

positional information of scene actors. 
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Chapter 4 

Measuring Crowd Dynamics 

In this chapter, computer vision techniques are used to automatically observe 
and measure crowd dynamics. The problem is studied in order to offer methods 
to measure the complex movements of a crowd. The refined matching of local 
descriptors was used to measure crowd motion. This chapter presents two novel 
algorithms to measure crowd dynamics; furthermore, a performance comparison 
of these two algorithms is also provided. 

4.1 Introduction 

The objective of this part of the work is to devise methods to automatically mea- 
sure the crowd phenomenon. Crowded public places are increasingly monitored 
by security and safety operators. There are companies (for example LEGION 
(87)) that employed large resources to study the phenomenon and generate real- 
istic simulations: for instance to optimize the flow of people of a public space. 

Computer Vision research offers a large number of techniques to extract and 
combine information of a video sequence acquired to observe a complex scene. 
The life cycle of a computer vision system includes the acquisition of the moni- 
tored scene with one or more homogeneous or heterogeneous cameras, the extrac- 
tion of features of interest and then the classification of objects, people and their 
dynamics. In simple scenes the background is extracted with statistical meth- 

ods and then foreground data and related information are inferred to describe 
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and model the scene. The background is usually defined as stationary data, for 
instance a man-made structure such as buildings, in a typical video surveillance 
application, or the indoor structure of a building in a safety application, for in- 
stance deployed to monitor and safeguard elderly people in a home. 

Unfortunately, background modelling becomes rapidly less effective in com- 
plex scenes and its usefulness seems to be inversely proportional to the clutter 
measured in the scene. Figure 4.1 shows a small experiment testing the effec- 
tiveness of background modelling with different types of scenes. The adaptive 
mixture of the Gaussian background models proposed in (126) is employed in 
the experiment. Three frames per chosen sequence and the resulting background 
image built with roughly 1000 frames are illustrated. The background modelling 
works well with the first scene but fails to recover the background of some regions 
in the second scene because of the frequent occupancy over these regions. In the 
third scene, due to the continuous clutter, the background model can be barely 

recovered. The failure of background modelling in extremely crowded situations 
is foreseeable, as the core of current background estimation is that the frequency 

of background is significantly higher than that of the foreground. When the mon- 
itored scene becomes very cluttered, then one could think of measuring dynamics 

with optical flow methods, designed to extract information about the dynamics of 
the scene and typically using gradient information. Unfortunately, popular and 
conventional optical flow techniques such as Horn and Schunck (59)and Lucas and 
Kanade (91) also work poorly with heavily crowded scenes. On the other hand, 
feature-based optical flow techniques using multi-resolution work quite well with 

relatively high frame rate (typically around 25fps) video sequences (23). Algo- 

rithms exist to analyse simple scenes, where a few people enter and exit the field 

of view of the deployed cameras. In such scenes, people and objects are identified 

and tracked throughout the network of cameras. People and objects such as ve- 
hicles are tracked between frames land their trajectories are also predicted using 

conventional Kalman filters, or more sophisticated particle filter techniques. The 

problem with tracking in very cluttered and complex scenes is that matching is 

not always possible and tracks are frequently lost, creating fragmentation in the 

tracking process. In highly crowded scenes, tracking is not a viable option and 

I'D-acking refers to matching and predicting the position of identical objects over time. 
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4.1 Introduction 

Figure 4.1: The example frames and the built background images from three different 
scenes. Left to right: three different scenes; top to bottom, three example 
frames and the built background images, respectively. 

it is more interesting and valuable to retrieve the global crowd motion instead of 
individual motion. The proposed method is to track for short periods of time, 

and two algorithms are proposed to provide matching between the frames for use 
in short-time tracking. The extracted and matched dynamics features can then 
be directly used in the process of crowd understanding and dynamics modelling. 

This chapter presents two methods that can automatically measure crowd 
dynamics. The methods are feature-based and employ constraints to refine the 

matching. Both methods have been assessed with video sequences capturing dif- 

ferent types of crowded situations. A comparison of the two methods is carried 

out and also described in this chapter. The performances of both methods pro- 
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duce satisfactory results, even with low frame rate video sequences (typically 4 
to 8 fps). 

This chapter is organised as follows: Section 4.2 describes the algorithm that 
uses Harris corner points and topological constraints and Section 4.3 describes 
the algorithm that uses maximum curvature as local descriptors and edgelet con- 
straints. Section 4.4 illustrates the quantitative comparison of the two algorithms 
and Section 4.5 gives some comments on both of the algorithms. 

4.2 Method I: Pyramid-based Interest Points 
Topological Matching 

In order to devise algorithms to automatically derive complex crowd dynamics, 
local descriptors, classified as interest points, have been extracted using colour 
gradient information at the scale space. Furthermore, besides the use of the ex- 
tracted descriptors, an advanced matching improved by incorporating topological 

constraints has been developed. 

4.2.1 Extraction of the local descriptor: Harris detector 

The first method employs a modified version of the Harris interest point detector 

(49)). The Harris interest point detector provides a repeatable and distinctive 

descriptor of the image features and is view-point and illumination invariant. This 

detector extracts feature points by making use of the three chromatic channels 
defined as the M matrix: 

G(a) 
cx cx cx CY 
CY CX CY CY 

In the operation, the image is firstly smoothed using a standard Gaussian oper- 

ator (of deviation a). C., and Cy are the gradients in x and y directions of the 

pixel chromatic triplet, respectively. They are estimated by applying the Gaus- 

sian derivative operator G(a) of (deviation o-) to the smoothed image, which is 

efficiently implemented by using the method from (138). The interest points are 
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Bottom Layer Top Layer 

Figure 4.2: Interest Point Generation, from bottom layer to top layer 

then extracted using term R, which is calculated as a combination of the Eigen 

values of the M matrix: 

R= det(M) + KtraCe2(M) (4.2) 

where K is a constant where 00.4 < r, < 0.06. The points with a local maximum 
are selected as interest points. A multi-scale approach is used, generating the 
interest points at the lowest (finest scale) layer and then projecting them up to 
the top (coarsest scale) layer of the generated pyramid (Algorithm 3). 

Algorithm 3 Creation of Interest Points 

for for N images in (for temporal smoothing in Section 4.2.3) 
Generate pyramid image gradient 
Detect interest points at bottom layer 
Project interest point to top layer 

end for 

4.2.2 Point Matching 

do 

The matching is carried out in two steps: searching for the candidate matching 

points by similarity and then applying the topological constraints described later. 

The similarity is given by the formula (given a, b as two interest points): 

sim(a, b) - 
min(Ra, Rb) 

max(Ra, Rb) 
(4.3) 

73 
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as introduced in (72), consisting of aRxR --+ [0,1] mapping. Frequent oc- 
clusions reduce the probability of identifying correct matches and as a result, 
without local support, similar gradient local regions might be found as plausi- 
ble matches generating false positives. A topological constraint is implemented 
to make the search for correspondences more robust. Gabriel (47) proposed a 
similar method using topological information; however, in his algorithm the area 
(object) of interest was pre-defined and the topological information was evaluated 
by the already known centre of the object. Gabrie's work is for the purpose of 
tracking individuals, which is focused on the motion of a particular object over 
a long period. In the approach described here, the motion of all objects between 

two consecutive frames is more desirable. Therefore, the necessary local support 
is derived from local windows centred at the interest points and the relative lo- 

cations of the interest points in such windows are used. Support is estimated for 

the matched interest point pair Pto (the point at time tO) and Pt(the point at 
time t) - 

Support vectors are calculated as: 

vto -- P; 10- Ptol 
vi -Pi-P t-tt. 

(4.4) 

where P; O and Pt' are the interest points inside the support window at times tO 

and t, respectively. The matched support is then quantified in terms of the error 
by measuring the standard deviation of the ensemble of found correspondence. 

IE = (0,0, up) (4-5) 

where 

0' =N (Vto - Vt), 

Pi = llvtioll - llvtill 
- 

(4.6) 

are, respectively, the orientation difference (doc product) and the length difference 

between the support vectors. 
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4.2.3 Temporal pyramidal analysis 
Temporal smoothing and matching is also carried out by comparing a number of 
N spatial pyramids, corresponding to a specific time window. Thus, a spatial- 
temporal pyramidal analysis of the sequence is generated for a number of frames. 
Temporal smoothing is employed to enforce time consistency on matches, reduc- 
ing the false alarms generated by unstable interest points. 

So matching is carried out in both space and time, starting at the highest 
level (coarsest level) of each pyramid, searching interest point correspondences 
between the initial frame of the N frames and each other's frames within the 

given time period (corresponding to N-I matches) - 
Spatial matching works 

from the top (finest scale) of a pyramid to the bottom (coarsest level) - Then 

temporal integration of pyramidal matches of the interest point j in Oth frame 

can then be applied by combining the N matches. 

4.2.4 Evaluation 

A series of experiments were run on different video sequences. The assessment of 

results is not a trivial task, given that it is virtually impossible to generate ground 
truth data. However, a quantitative evaluation of results can also be provided. 
For a window of interest in an image of a given sequence, all interest points are 

retrieved and then their displacements are estimated against the image at the 

next frame. All displacements are then combined into a resulting vector that 

indicates the position of the window of interest in the next frame. Comparing 

structures cannot work, because background structures would generate a large 

amount of noise. Therefore, Receiver Operating Characteristic (ROC) curves 
(133) are generated for performance evaluation. A series of points is estimated 

to produce the ROC curves, using the following two formulae: 

FP 
Pfp 

TN + FP7 

ptp 
TP (4.7) 

TP + FN 
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Table 4.1: The definitions of parametei 
ROC Predicted 

for the ROC curve 

II Positive Negative 

Signal True Tp TN I 
False 

[FTP'p 
FN 

where the definitions of the parameters are shown in Table 4.1. Hence, Ptp repre- 
sents the fraction of positives correctly predicted and Pfp represents the fraction 

of negatives incorrectly predicted. 
Figure 4.3 contains ROC curves for two image sequences. The ROC curves are 

generated by comparing the predicted positions of all interest points against the 
actual interest points found. If an interest point has been found in the location 

where it is predicted, it counts as a true positive (TP), otherwise it counts as a 
false positive (FP). 

4.3 Method H: using Edge Continuity Constrains 

of Interest Points 

The second method is developed using local descriptors, as well as incorporating 

shape information. Inspired by the methodology used in deformable object track- 
ing, edge information is extracted and descriptor points are extracted as points 

along an edge with local maximum curvature. The information about an edge 
is maintained and used to impose the edgelet constraint and refine the estimate. 
Here, edgelet refers to equal length segments of the edge in the image. Thus, 

the advantages of using point features that are flexible to track and using edge 
features that maintain structural information are combined here. 

4.3.1 Edge Retrieval 

The Canny edge detector is employed to extract the edge information of a given 
frame. Each Canny edge is a chain of points, and all the edges are stored in 

an edge list. Figure 4.4 shows an example image frame and the extracted edge 

chains with associated bounding boxes, respectively. It can be observed that even 
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Figure 4.3: ROC curves of two image sequences (with the vertical axis as Ptp, the 
horizontal axis as Pfp) 
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in a scene that depicts a crowd of moderate density, edge chains can occlude each 
other, increasing the descriptor matching complexity. 

'fJ 

!kI 

Figure 4.4: Edge Chain 

4.3.2 Curvature Estimation and Interest Point Extraction 

Interest points can be quickly extracted for a sequence of frames, for instance, 

with the Harris corner operator used in the previous section. However, Harris 

interest points can only represent the local characteristics of an image in isola- 

tion, while the shape information of the moving person/people is lost. In this 

implementation, the interest points are selected as the local maxima of curvature 

of the edges and then the constraint is imposed that they lie on a specific edge. 
Each edge can be represented by a parametrised curve: 

X(t), 

y(t). (4.8) 

The curve is smoothed with a Gaussian filter, as follows: 

X(t) = G(t) 0 x(t), Y(t) = G(t) 0 y(t); 

X'(t) = G'(t) 0x (t), Y(t) 1 -- G'(t) 0y (t); 

X"(t) = G"(t) & x(t), Y"(t) = G"(t) 0 y(t). (4.9) 
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Figure 4.5: Two scenes of different complexity levels are illustrated. The original 
frames (left) and the extracted corner points (right) that are marked with 
red crosses on grey edges. 

The curvature of each edgelet at corner point C can then be given by (103): 

r, (C) = 
X/Y// 

- 
Yfxf/ 

(X12 + yf2) 2 
(4.10) 

Corner points are defined and extracted as the local maxima of the absolute value 
of curvature on each edge. Thus, the edge representation is changed from a point 
sequence to a corner point sequence, resulting in a list of corner point sequences 
for all the edges of the image. 

4.3.3 Point Matching and the Edgelet Constraint 

Given two consecutive frames It and It+,, the motion is estimated for each ex- 
tracted point of interest. For each corner point with the coordinate (x, y) in It, a 
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rectangular search window is defined centring at (x, y) in It+,. A look-up table 
(LUT) containing corner point and edge information is generated to enhance the 
matching. The correspondence is matched by using the curvature information of 
corner points in the search window in LUT against a reference point. The error 
is calculated by the curvature defined in Equation 4.10. 

Complex dynamics and frequent occlusions generated in crowd scenes make 
the estimation of motion a very complex task. Point matching in isolation is too 
fragile and prone to errors to provide a good motion estimator. If the interest 

points are extracted on edge chains, then the edge constraint can be imposed and 
used. 

For an image frame It, every edge is split to uniform length edgelets, repre- 
sented by sub-sequences (so called edgelet). There are two reasons for this: to 

avoid a very long edge that could be generated by several different objects, and 
to enhance the matching of the edge fragments generated by occlusions. For each 
corner point there are n candidate matching points. Each candidate point be- 
longs to an edgelet, thus there are m(m <= n) candidate matching edgelets. To 
find the best match, three parameters are used: energy cost, variation of displace- 

ments and the match length for each candidate, and these are combined into a 

single matching score. The length of the edgelet is assumed to be small enough so 
that it will not split again to two or more matches. This is so that their candidate 

points correspond to the same candidate sequence. The parameters are defined 

below: 

Energy cost E This refers to the deformable object match that is calculated 
by accumulating the errors e (again, calculated by the difference of the 

curvatures along the matching point pairs of the reference sequence and all 

the candidate match points that belong to the same candidate sequence). 

F- =EEW=EIr, (Cto W) - rl (Ct (0) 1 

where E(Z) denotes the error at reference corner point Ct, 
)(Z') and Ct(O de- 

notes the matching corner point on the candidate sequence. 

e Variation of disPlacements V For each matching point pair there is a 
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displacement pair dxi and dyi. The combination of the variation between 
the two displacement vectors is as follows: 

x j 
(dxi - 

dX) 2 dy)2 Lm N 
(dyj (4.12) 

where dx and dy are the average displacements between the matched point 
pairs, N is the size of the match window, and LM is the number of to- 
tal matched points of from the reference sequence to candidate sequence. 
Hence, V lies in the range between 0 and 1. 

* Match length parameter M: 

Lm 
LE (4.13) 

Where LE is the total number of points on the reference sequence, M is 
between 0 to 1. 

So, the overall matching score is given by: 

8=e +V+ (I -M) (4.14) 

The candidate sequence of the minimum matching score will be selected. How- 

ever, if the match length parameter M<0.5, the result will be discarded. Figure 
4.6 illustrates the process of applying edgelet constraints. 

The matching is carried out over every point of the interested edgelet and an 
overall matching will be examined to determine the matched edgelet. 

4.3.4 Evaluation 

The video data used for this part of the evaluation is from the European project 
CAVIAR (110); the advantage of the CAVIAR dataset is that the ground truth 
information for this data is provided in XML format. To test the result) the 
foreground object position for each frame is estimated (by means of a bounding 

box) and translates every corner point in the bounding box to the consecutive 
frame by its estimated motion. All the translated points still in the box are 
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edge 

edge 
-let 

Figure 4.6: Applying edgelet constraints 

Figure 4.7: Two test data sets. The first column samples initial frames from both 
data sets, with the corner points indicated by white dots inside the ground 
truth box; the second column is the matched frame, with correct matched 
points CRM marked by a blue circle and incorrect matched points ICRM 
marked by a cross 
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Figure 4.8: Correct match rate R along the frames of the sequences shown in 4.7. 
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counted as a correct match CRM, and those falling outside the box as an incorrect 
match ICRM- The correct match rate is calculated as: 

R= 
CRm 

(4.15) CRm + ICRm 

The value of R should be between [0,1] and the optimal value is 1. 

4.4 Comparison of the two methods 
The two described motion estimation methods were validated and compared. 
When the scene is very complex, occlusions make it virtually impossible not 
only to track individuals but also to estimate a stochastic background model. 
In both of the algorithms, constraints are applied to improve the robustness of 
the matching between individual descriptors. The first algorithm checks locally 

the spatial temporal consistency of the colour gradient supported by the local 

topology constraints and the second one uses the points of local extreme curvature 
along Canny edges and applies contour constraints. 

4.4.1 Testing Data 

The two motion estimation algorithms are tested using three types of sequences 
taken from a crowded public space on the London Underground and quantitative 

results are generated. In the following, a brief description of the test dataset used 
in the experiments is given. Then the details of the testing methods adopted 

are expanded on and, finally, an explanation of the results generated from the 

tests is introduced. Again, additional visual results are included at the end of 

the section. Sample frames from the three sequences are shown in Figure 4.9: 

sequence I (left) is a mid field scene with people scattered across the field of 

view; sequence 2 (middle) is a mid field scene with major motions taking place in 

certain areas; and sequence 3 (right) is a far field scene with pedestrians present 

in all parts of the field of view, with some predominant trajectories. 
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(a) (b) (c) 

Figure 4.9: Sample frames from 3 testing sequences 

4.4.2 Testing based on local descriptors 

In this test, only the quality of the matching of individual local descriptors is 

considered. For each pair of consecutive frames, local descriptors in the initial 
frame are compared with their corresponding local descriptors, found by the two 

presented algorithms, in the target/other frame, respectively. Two measures - 
Mean Similarity (MS) and Mean Absolute Error (MAE) - are used to compare 
the performance of the two algorithms. 

The images in Figures 4.10 and 4.11 represent the plots of NIS and MAE 
for the two algorithms tested against the three sequences. MS and MAE are 
calculated for every frame along the sequence. MS is designed to assess the 

relative similarity of the matched local descriptors. 

MS =, 

n 
m'n (X", X') 

-Z 
Zii (4.16) 

n 
=, max (Xi `, X, ) 

where n is the total number of the local descriptors in the initial frame. MS 

is defined as the average of the similarity, and the similarity is calculated by 

the minimum of the two matched local descriptors' pixel value divided by the 

maximum. The result is a value that falls in the (0,1) range. Another measure, 
MAE, is commonly used for the testing of motion estimation algorithms (129) as 
it returns an error measure. MAE is defined as follows: 

In 
MAE =-E lIXi'- Xi'll (4.17) 

n i=O 

where Xil is the pixel value at the ith corner in the first frame, and Xi is the 
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corresponding local descriptor in the next frame. In each plot, the x axis repre- 
sents time (the number of the frame) and the y axis represents the values of MS 
and MAE, respectively. Hence, for the two algorithms the MS and MAE for the 
three testing sequences are both good, although in most of the cases the second 
algorithm has a higher MS and a lower MAE. Meanwhile, along the time scale 
the MS and the MAE produced from the first algorithm fluctuate a lot while the 
second one produces more stable results. It can be concluded that the second 
algorithm has a more desirable performance than the first one. 

4.4.3 Testing based on Motion Connect Component 

The testing here makes use of the connected components algorithm based on mo- 
tion vectors (the so called MCC - Motion Connected Component). The algorithm 
groups together motion vectors that are in close proximity and have common mo- 
tion properties. The result of the MCC algorithm segments the motion field into 

clusters of a uniform motion group (e. g. a (part of a) pedestrian or a group of 

pedestrians), and the testing is based on each MCC to assess the two algorithms. 
In order to assess the two algorithms with MCC, Recall and Precision - used in 

Chapter 3- are adapted again. In the proposed implementation, the bounding 

box of each MCC is taken and the average motion of MCC is calculated. Thus, 

the bounding box is mapped to the next frame. The number of "relevant records 
in the data base" should be the number of local descriptors of the MCC in the 

initial frame (Nt,, ), while the number of " retrieved records" is the number of 
local descriptors in the mapped bounding box in the second frame (Nt). The 

definitions of the two measures are given by: 

Recall - 
N,,, nN, (4.18) 

Nto 

N,,, nN, 
Precision = Nt 

(4.19) 

Both of the values fall in the range [0,1]. For every frame, an average Recall 

value and an average Precision value are calculated. Figure 4.12 gives the plots 

of Recall and Figure 4.13 gives the plots of Precision; the layouts of these plots 
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Figure 4.10: MS along time for the 3 testing sequences, red lines for Algorithm 1; 
green lines for Algorithm 2. Algorithm 2 keeps higher in MS. 
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Figure 4.10: Continued: MS along time for the 3 testing sequences. 

remain similar to the previous ones, although the y axis represents Recall and 
Precision, respectively. 

From the plots, the results of Recall and Precision of both of the algorithms, 
especially the results of Recall, are again satisfied. It can be observed that the 
results of Precision for sequence 3 is lower than the other three. One possible 
reason could be that as sequence 3 is a far field view for a crowded scene, when 
mapping the bounding box of the MCCs to the second frame, local descriptors 

of other MCCs could be included and noise could be introduced. 
When comparing the results of Recall, it can be seen that the values for 

Algorithm 2 are always higher, though for sequence 2 and sequence 3 Precision 

values for Algorithm 1 are only slightly higher. Here, another measure is taken 
into consideration, which is the number of the MCCs detected by each algorithm. 
According to the plots in Figure 4.14, in sequence I the average number of MCCs 
detected by Algorithm I is around 20, while by Algorithm 2 the number is around 
100. In sequence 2, the numbers are around 20 and 200, respectively and in 

sequence 3 the numbers are around 40 and 280, respectively. Algorithm 2 detects 

much more MCC, especially for sequence 2 and 3. Due to the above fact and the 
fact that Algorithm 2 produces higher Recall, it can be deduced that the slight 
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Figure 4.11: MAE along time for the 3 testing sequences, red lines for Algorithm 1; 
green lines for Algorithm 2. Algorithm 2 keeps lower in MAE. 
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Figure 4.11: Continued: MAE along time for the 3 testing sequences 

drawback of Precision only indicates that more noise has been introduced to the 
assessment. 

4.5 Summary 

Two novel algorithms to estimate the motion of a crowd in complex scenes are 
presented, evaluated and compared in this chapter. Both of the algorithms are 
based on the refined matching of local descriptors. The first algorithm employs 
Harris corner points, and topological constraints are applied to make the matching 
of the points more robust. The second algorithm makes use of shape informa- 

tion. Local maximum curvatures are used as local descriptors and the edgelet 
constraints are enforced for the refined matching. 

The two algorithms are compared by using three surveillance video sequences 

and quantitative results are generated based on an individual local descriptor 

and MCC (Motion Connected Component). MS and MAE are used as criteria 
for the local descript or- based assessment. The values of MS generated by the two 

algorithms are all above 0.6 and for Algorithm 2, the values are all above 0.7. 

For the values of MAE, those generated by Algorithm 2 are always below those 
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Figure 4.12: Recall along time for the 3 testing sequences. Algorithm 2 has higher 

values of Recall, red lines for Algorithm 1; green lines for Algorithm 2. 
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Figure 4.12: Continued: Recall along time for the 3 testing sequence. 

generated by Algorithm 1. In the MCC-based assessment, for the ratio of Recall 
almost all of the values generated by Algorithm 1 are above 0.6, while those 
generated by Algorithm 2 are close to 0.8. For the ratio of Precision, the values 
generated by both are above 0.6. It can be concluded that the experimental results 
show the Algorithm 2 works better with most of the experimental sequences, 
but both outcomes are acceptable. The crowd dynamics estimation provides a 
suitable precursor to processes for determining the modes of complex dynamics, 
describing behaviour and acting as a support for work in high-level vision and 
socio-dynamics modelling. 
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Chapter 5 

Group and Crowd Modelling 

This chapter provides methods that learn semantics from an extremely crowded 
scene. Two methods have been proposed on crowd dynamics modelling. The 
first focuses on defining the main path of the crowded scene. In this approach, 
statistical analysis based on Probability Density Functions (PDFs) is employed. 
The second approach is based on a neural network. Self-Organizing Maps are 
proposed to capture the crowd dynamics with a reduction of the dimensions of 
the input data. The results have been generated for different types of crowded 
scenes. 

5.1 Introduction 

A crowd is a familiar phenomenon studied in a variety of research disciplines 
including sociology, civil engineering and physics. Over the last two decades, 

computer vision has become increasingly interested in studying crowds and their 
dynamics because the phenomenon is of great scientific interest and offers new 
challenges. Moreover, an increase in video surveillance technology in public spaces 
has also led to its rise in popularity. A crowded scene is a huge challenge for com- 

puter vision techniques to be able to retrieve individual motion. On the other 
hand, in a crowded situation an individual's behaviour is most likely to be in- 

fluenced by the overall crowd flow. In terms of crowd dynamics analysis, this 

chapter presents methods for capturing and learning the macro dynamics of the 
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whole crowd flow. The proposed work is implemented with simple machine vi- 
sion algorithms that do not require sophisticated image understanding processing 
algorithms and that can be eventually implemented in hardware. 

The overall objective of the research in this chapter is to model crowd dynam- 
ics in a macro scope. Statistical methods and self-organized maps are used to 
learn the dominant crowd dynamics. The statistical approach builds two Proba- 
bility Density Functions(PDFs) - the occurrence PDF (PDF,,, ) and orientation 
PDF(PDF,, ) - accumulatively to represent the dynamics of the crowd. The 
method has provided a way to recover the major path of a crowded scene based 
on the PDFs. Experimental results and the evaluations are also presented. 

A Self-Organizing Map (SOM) is widely used in mapping multidimensional 
data onto a low-dimensional map. Examples of applications include the analysis 
of banking data, linguistic data (80) and image classification (86). In this chapter, 
location and optical flow, a whole image frame and a whole motion field are used 
as input features to train the SOMs. Visualisation methods of the relevant SOMs, 

or neurons of the SOMs, are developed. The resulting SOMs from the location 

and optical flow inputs are compared structurally to classify the different scenes. 
Meanwhile, the resulting SOMs from the whole image frame and motion field are 
classified by the tracking of winning neurons. 

This chapter is organised as follows: In Section 5.2, the statistical approach is 

presented, Section 5.3 introduces the Self-Organizing Maps approach and Section 
5.4 gives the conclusion. 

5.2 Statistical Approach 

Crowds appear to move randomly within a scene. In fact, this is not exactly true 
because people move purposefully and their movements are guided by intentions. 
For instance, in a railway station or at an airport, people tend to enter and exit 
the scene at the gates and usually stop in front of a timetable, a shop or a cash 

point. Although at first chaotic, the video of a crowded place, if observed atten- 
tively, reveals main trajectories. In the following text, some crowd modelling work 

is introduced and statistical analysis that employs two Probability Density Minc- 

tions (PDFs) is applied. The proposed method has the following two elements: 
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an occurrence PDF (PDF,,, ), which is an accumulator of the foreground pixels, 
and an orientation PDF (PDF, ), which is an accumulator of block matching. 

5.2.1 Occurrence PDF 

This method assumes that the scene is not too crowded and the Gaussian mix- 
ture model (127) is used to build a model of the background of the scene. The 
foreground data is further processed to reduce noise. In particular, connected 
components have been implemented. Connectivity of the foreground pixels gives 
more accuracy to the foreground data and assures that only large foreground 
blobs are accepted for further analysis, while smaller blobs are rejected as likely 
noise. 

For each frame foreground, features are accumulated for every pixel, so that 
after a relatively long video sequence the accumulator of the foreground occur- 
rence throughout the whole image will have some information. The occurrence 
PDF (PDF,,, ) is thus constructed. 

5.2.2 Orientation PDF 

The image plane is segmented into a regular grid of cells (N x M). The dimension 

of each cell is a multiple of 2 pixels and each cell is square-shaped (K x K). The 
idea is to speed up the matching process employed as a coarse estimator of mo- 
tion between the frames. Motion is estimated between consecutive frames, using 
the foreground blocks of the first frame as a reference/template and searching 
for an optimal match in the second frame. In the current implementation, block 

matching is carried out in a3x3 neighbourhood, around the selected foreground 

cell. A cell is labelled as the foreground if the majority of its pixels are indeed 
foreground. Matching performance is improved by matching only between fore- 

ground cells and ignoring background cells. A correlation measure (123) is used 
to calculate the distance between cells. The correlation method used for each 

pixel is: 
I 

C(PI 
i P2) : -- I+ (Pl - P2)' 

(5.1) 
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where pi and P2 are respectively the pixel in the reference cell and the pixel in the 
neighbouring cell. Correlation for an entire cell is then calculated by summing 
over all the pixels of the cell: 

C(celli, cell2) --:: ý 
E C(Pi 

I Pj) - (5.2) 

Each cell is therefore associated with a histogram, representing the eight possible 
directions of motion. The intention here is to build a local representation of 
motion, similar to a discrete reinforcement learning technique (131), where each 
cell of the table is associated with a quality array, indicating the likelihood of 
a transition from the current cell to a neighbouring cell. The final outcome is 
an orientation PDF, which could be interpreted as the global optical flow of the 
scene. 

5.2.3 Path Discovery 

The work described in the previous sections provides two PDFs - one for the oc- 
currence and one for the orientation of a scene. To discover the main paths, the 
information and extracts of those corresponding to a higher likelihood/probability 

need to be combined. Ideally, the paths are identified that correspond to the 

modes of a probability density function that combines both occurrence and ori- 
entation information. 

In order to estimate the main paths, a number of assumptions were made. 

Path oTWM: The assumption is that all paths originate from the bound- 

aries of the scene. Consequently, path discovery starts from a cell on the 
boundary of the scene and has a high occurrence probability. This assump- 
tion would not work if the scene had an entrance or exit in the middle of 
the image, but this can be overcome relatively easily by using user-defined 
boundaries. 

Graceful conhnuation/Smooth trajectory: As observed, the paths have a 
high probability to maintain their orientation (e. g. people are more likely 

to go in a straight line, and seldom go backwards. ) So the expected direction 
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0 1 1 2 -3 4, 
0.6830 0.1335 0. 02 0.0045 

_ý. 
00)01 

Table 5.1: Likelihood as a function of orientation distance 

of motion is modelled with a Poisson distribution with its maximum in the 
neighbouring cell along the current direction of motion. 
The idea is to spread the likelihood of a change in direction unevenly, main- 
taining the previous orientation as the one at the highest probability and 
forcing the other directions (change in direction) to have a lower likelihood. 
Table 5.1 illustrates the probabilities used given the distance from the cur- 
rent orientation. From the start point, the probability is calculated for each 
neighbouring block using the occurrence PDF (PDF,, ), the block matching 
accumulator (Pb) and the orientation probability (PDF, ). Furthermore, 
to avoid repeating calculations from the same block, the visited cells are 
marked, and their probability is set to to 0 each time the path discovery 

process has to deal with them. The probability is defined as: 

Mi ... pb 
i ... PDFio" - PDFor 

Pi =i-kE [0,8], mi 
0, marked 

Mk Plb PDFkOll ... PD FkO' 1, unmarked. 
(5.3) 

The process will follow the highest probability block. In addition, a way 
of deciding when to split a trajectory into two or more sub-trajectories is 
devised. This technique works on a threshold that estimates whether two or 
more paths are viable given their associated likelihood. However, in order 
not to generate too many branches, only a single split along a trajectory is 

admitted. 

Once all the paths are identified, a fitting process takes place. This serves two 

purposes: (i) to have a compact representation of the path, and (ii) to have a faster 

way of estimating the distance between a blob/bounding rectangle, identified by 

new foreground data and the spline, and consequently estimating an error. The 

final path is represented as a curve by fitting a uniform Cubic B-spline. 
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5.2.4 Evaluation 

The paths extracted using the method described in the previous sections cor- 
responds to the main modes of trajectories followed by people in the analysed 
scene. Rather than using the two PDFs (occurrence and orientation) to estimate 
an error and evaluate the performance of the technique, a simplified evaluation 
is provided. The idea of a stripe, which is along the discovered paths using a 
decay factor (a Gaussian weighting) along the perpendicular to the trajectory, is 
employed. 

The stripe is illustrated pictorially in Figure 5.1. Suppose the black area 
represents the discovered path f=f (x, y, t). A Gaussian distribution G(p, 0-) is 
then centred on the trajectory (p corresponding to the generic path pixel), and is 
a pre-determined standard deviation directly proportional to the size of the blobs 
estimated by the connected component process. An approximated estimate of 
the error between a new sequence of the same scene and the built model can 
then be calculated by weighting the contribution of a foreground blob, making 
use of the described weighting scheme. Since error estimation can be performed 
offline, when the model already exists a mask for the entire image can be built 
before testing. Masks for all are built only once at the end of the path modelling 
process. 

An image look-up table (LUT) is built, where each pixel is assigned a label, 
identifying the closest path in the scene. 

For each path a stripe mask is built. The mask contains the weights, in- 

versely proportional to the distance between a pixel and the path/spline. 
To calculate the weights the curve of the path is sampled at equally spaced 
intervals At and uses the line segment between samples to calculate the 

weight. 

Each FG blob detected is examined pixel-by-pixel with the image label LUT, 

and determines the closest path by taking the most frequent label of its pixels. 
The following two tables show the results achieved by using the current evaluation 

methods. Table 5.2 illustrates tests on 10 short video sequences of equal periods of 

time (50 frames) from two types of videos (5 sequences each). The first row (" FG 
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Figure 5.1: Stripe 

Table 5.2: Results usinv striDe evahinfion 
Scene A FG size 47680 76835 99574 112968 

Fit 0.849 0.850 0.851 0.848 0.853 
Scene B FG size 32835 44663 -66736 -ý8387 134316 

Fit 0.838 0.833 0.838 0.849 0.848 

size") of each sequence represents the total amount of foreground pixels tested in 
that period, while the second row ("Fit") is the normalised fit rate (1: perfect fit). 
The fit rate keeps at more than 0.8 in all the test sequences, and is not affected by 
the amount of the foreground pixels (which represent the cluttered levels in the 
sequences). In the second test, a number of scenes have been analysed. Following 
the conventional machine learning approach, each sequence was split in two halves 
to build and test the model. Different percentages of frames were used to build 
the model and to test the robustness of the approach. The Kullback-Leibler (KL) 
dissimilarity measure is chosen to estimate the similarity between the PDF,, and 
PDF, of the model and the corresponding PDFs built using a fixed percentage 
of test data. For the two probability functions p and q, Kullback-Leibler (KL) 

dissimilarity measures the expected difference between them. This is defined as: 

D (p II q) PM 1092 ( p(t) (5.4) 
q(t) 

And it is applied here as: 

DKL ý (D(PDF model JJPDF test (D(PDF test I JPDF model (5.5) 
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Table 5.3: Table of KL distance 
Scene A 

11 PDFcr PnF-- 
Nfrarnes D(pllq) D(ql 1p) D(pllq)(DD(qrlp--) D(pllq) D(qllp) 

I 
D(pllq) E) D(qllp) 

200 1.38744 6.41181 3.89963 0.992265 3.71003 2.35115 
400 1.22145 4.72941 2.97543 0.74336 2.3779 1.56063 
600 1.30149 4.22187 2.76168 0.550128 0.870776 0.710452 
800 5.32319 1.50177 3.41248 0.960938 0.405281 0.68311 
1000 5.43141 1.27666 3.40404 1.61853 0.448835 1.03368 
1200 5.83901 1.39313 3.61607 2.20614 0.508669 1.3574 
1400 5.87275 1 1.38677 3.62976 2.48443 1 0.547993 1.51621 

ýicene 13 
11 PDFcc PDF, 

Nfraines D(pl jq) D(ql 1p) D(pl jq) (D D(ql 1p) D(pllq) D(qllp) D(pl jq) (D D(ql 1p) 
200 1.76456 4.49901 3.13179 1.07256 6.88155 3.97705 
400 1.75548 3.60504 2.68026 0.665695 2.40205 1.53387 
600 1.9543 2.89671 2.42506 0.434972 0.825922 0.630447 
800 2.15736 2.32519 2.24128 0.395621 0.502728 0.449173 
1000 3.9971 1.39806 2.69758 0.529596 0.429419 0.479507 
1200 3.65854 1.29503 2.47678 0.653405 0.403238 0.528322 
1400 3.62649 1.30134 2.46391 0.680506 0.403089 0.541798 

and, for PDF,, the sum is over the entire image, and for PDF,, is a weighted 
sum over all the cells. 

Table 5.3 illustrates some preliminary results. The table illustrates results 
for two scenes, indicating the dissimilarity for PDF,,, and PDF,, independently. 
The composite, shown with the symbol E), is a type of balanced non-negative 
dissimilarity measure that, in theory, should decrease as the model is refined; this 
better represents the studied scene. These preliminary outcomes illustrate that 

a decreasing trend is present for PDF, but not quite for PDF,,,,. The number 

of frames used is still fairly low due to the lack of video data. A longer sequence 

would be used if Possible: 
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5.3 Self-Organizing Map Approach 
The approach in Section 5.2is based on background modelling, which cannot work 
properly under extremely crowded situations. Also, the number of dimensions is 
WxH for PDF,,, and WxHx2 for PDF, (where W is the width and H is the 
height of the image sequence). As a result, the dimension of the model is depen- 
dent on the dimension of the image sequence. These, however, are disadvantages 
that can be overcome by the method described in this section. 

In this section, a Self-Organizing Map is proposed to learn the dominant crowd 
dynamics. The Self-Organizing Map (SOM) model (51) is a well known dimen- 
sionality reduction method, proven to bear a resemblance to some of the features 
of the human brain that represent different sensory inputs by topologically or- 
dered computational maps. SOMs are widely used in mapping multidimensional 
data onto a low-dimensional map, examples of which include applications such 
as the analysis of banking data, linguistic data (80) and image classification (86). 
This section proposes a system that learns crowd dynamics with the SOM. The 

system uses dynamics information as an input and generates SOMs that capture 
the dominant recurrent dynamics. 

5.3.1 Background 

The most common SOMs have neurons organised as nodes in a one- or two- 
dimensional lattice. The neurons of an SOM are activated by input patterns in 

the course of a competitive learning process. At any moment in time, only one 
output neuron is active - the so called winning neuron. Input patterns come from 

a n-dimensional input space and are then mapped to the one- or two-dimensional 

output space of the SOM. Every neuron has a weight vector that belongs to the 
input space (51). 

There are two phases for tuning the SOM with an input pattern X: competing 

and updating. In the competing phase, every neuron is compared with X, the 

similarity of X and the weights of all of the neurons are computed, and the 

neuron N(i, j,, ) (denoted by the neuron's coordinates of the lattice) with the 

highest similarity is selected as the winning neuron. In the work discussed in 

this chapter, a two-dimensional lattice is used. For each neuron N(i, j), Ecludian 
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distance is employed: 
d2 iw)2 + jw)2 (5-6) 

the topological neighbourhood function is then defined as: 

h(n) = exp( _d (5.7) 20,2(n)) 

where n denotes the time, which can also be explained as the number of iterations. 
and o, '(n) decreases with the time. In this work the dependence of a on discrete 
time n is chosen as: 

u(n) = ao exp( _n) Ti 
(5.8) 

where ao is the initial value of a andT, is a time constant. The weight of each 
neuron N(i, j) at time n+1 is then defined by: 

w(n + 1) == w(n) + TI(n)h(n)(x - w(n)) (5.9) 

where w(n) and w(n + 1) is the weight of the neuron at times n and n+1. 
, q(n) is the function of the learning rate, which always decreases with time. The 
decreasing of q has been defined similarly as for o-, where: 

71 (n) = 770 exp 
n (5.10) 
T2 

where qo is the initial value of 71 and -F2 is another time constant. 

5.3.2 Optical Flow Input 

The SOM in this approach should capture the two major components of the 

crowd dynamics, occurrence and orientation. Thus, a four-dimensional input 

space is chosen to be the weight space of the SOM, which can be represented 

as f: (x, y, 0, p). Each piece of data from the input space can be explained as 
the location where the crowd moves and motion vectors in the form of an angle 
(0) and magnitude (p). To reduce the computation load from a dense flow, a 
feature-based optical flow is employed (22). The dimension of the weight space is 

Nx4, where N equals the number of features in the frame. In this approach, N is 
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Figure 5.2: HSV representation of the orientations of motion vectors, relative orien- 
tations are the tangents anticlockwise: e. g. red for moving left. 

WxH related to the dimension of the image sequence, and typically equals K, where 
K is a constant. Moreover, the dimension of the output space of the SOM is nxn, 
which is equal to the dimension of the lattice. In the experiments presented here, 
N is normally between 5000 and 10000 and n is 10-20. The dimensional reduction 
is from Nx4 to nxn. 

5.3.2.1 Visualization 

Figure 5.3 illustrates three different video sequences with different dynamics. 
These video sequences have been input into the system, and Figure 5.4 shows 
the output SOMs. In the figure, SOMs are visualised in the input space, i. e. 
showing the weight vector of each neuron. In the visualisation, the coloured 
arrows and their locations are derived from the weight vector of the neurons, and 
the locations of the arrows are from the first two components of the weight vectors 
(x, y). The arrows show the second two components - the components of motion 
(0, p). The different colours of the arrows also indicate the different orientation 

of the motion. The visualisation of the motion vectors is based on a HSV colour 

space representation, which is illustrated in Figure 5.2. In the first video (the 

left column in Figure 5.3), the major crowd is moving from the bottom left to 

the top right of the scene. There is another crowd flow from the bottom right of 
the scene which joins the major flow. In its SOM (the first one in Figure 5.4), 
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the neurons with green arrows are clearly from the major flow and the ones with 
red and purple arrows are from the minor flow. The second video (the middle 
column in Figure 5.3 is the area of an entrance to a public space. Most of the 
people move from the top to the bottom of the scene. The crowd in the upper 
part of the scene is sparser and moves faster when compared to the crowd in the 
lower part of the scene. There is also a minor flow, which joins the major flow 
from the right of the scene. In the built SOM (the second SOM in Figure 5.4), 
again the flows are clearly indicated. Furthermore, the SOM takes an "umbrella" 
shape, which represents the shape of the flow constrained by the obstacles in the 
scene. In the third video (the right column in Figure 5.3), the scene is of a large 
open area with multiple crowd flows. The major flow moves from right to left; 
however, there are several minor flows, most of which are in the lower part of the 
scene. Again, the SOM (the third in Figure 5.4) captures the major dynamics 

and also some minor flows. From the three examples, it can be concluded that 
the SOMs not only preserve the dominant motion vector, but also represent the 
shape of the regions with a dominant motion of the scenes. 

5.3.2.2 Scene classification 

Visualisations of the SOMs have already provided some information on recurrent 
motion and scene classification has been carried out using the characters captured 
by the SOMs. To achieve this, comparisons with the SOMs built for different 

scenes have been carried out. The classification is based on the similarities of 
the SOMs. The topological structures of the lattice of SOMs, as well as the 

weights of the neurons of the SOMs, are used for the comparison. The topological 

structure is an important feature of SOM, and a large number of methods have 

been proposed to measure it (107). In this work a C-Measure is used, which is 

defined as: The similarity of the C-Measures of two different SOMs is calculated 

as: 
FA (i, 1) Fv (wi, wj) 

(ij ci 
ggýj) AxA 

where FAand FV are the similarities between the input space (i. e. weight space) 

and output space (Le. SOM lattice), respectively. The i and j are the indexes of 
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Figure 5.3: The example frames from three different scenes. 

�4 

the neurons and wi and wj are the weights of the indexed neurons. The similarity 
between corresponding SOM neurons is calculated using the same method as in 
Equation 4.3 in Chapter 4: 

Stm,, = Fv (wi, wj) = 

k<Dimw kk 
mln(wi , Wj) 
max(w 

kIw k) 
k=O ii 

(5.12) 

where Dim,, is the dimension of the weight space, and wk and ý are the k- th i Wý 

element of the weights wi and wj, respectively. An average over the lattice has 

been calculated. This equation is used for calculating the similarity of the weights 

of two neurons. The similarity of the structure is calculated as the similarity of 
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Figure 5.4: The visualisation of built SOMs for the scene illustrated in the left row 
of 5.3 
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Figure 5.4: The visualisation of built SOMs for the scene illustrated in the middle 
row of 5.3 
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Figure 5.4: The visualisation of built SOMs for the scene illustrated in the right row 
of 5.3 
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the C-Measures: 

Sim.,, and Sim, are in the range [0,1]. A combination of the two similarities 
- weight similarity and structure similarity - are calculated by: 

Sim = 
ýS-imc 

x szmw (5.14) 

where Sim,,, is the average of Sim,, over the lattice. Again, Sim falls in the [0,1]. 
The correspondence of the neurons is defined by the closeness of the values of their 
weights. Particularly for neuron (i) in SOM A, the corresponding neuron in SOM 
B is the one with the closest weight value. The matching could be asymmetrical. 
For example, assuming for neuron in SOM A, its corresponding neuron in 
SOM B is neuron (J); however, for the neuron (j) its corresponding neuron in 
SOM A is not necessarily neuron (0. This can be caused by the situation whereby 
the neurons from SOM A and B are not in the same value scale. In some extreme 
cases, all the neurons in one SOM could even be matched to the same neuron in 
the other SOM. As a result, another interesting figure is the number of matched 
neurons in SOM B. The value number of matched N,,,,, tched neurons is normalised 
by dividing the total number of neurons Nt, t,,,. This figure will indicate if the 

values of the weights in SOM A are in the same scale as SOM B, and is combined 

S, m, _ 
min(Ci, Cj) 
max (Ci, Cj) (5.13) 

with the last measure by: 

s= 
SiM + NmatchedINtotal 

(5.15) 
2 

S falls in the range [0, I] as well. The comparison is not symmetric, which also 

means that if SOM A is compared with SOM B, the result will be different 

from using SOM B to compare with SOM A. Consequently, two similarities are 

generated from the comparison of the two SOMs. This experiment takes three 

scenes, and two sequences are extracted from each scene so that there are 6 

sequences in total in the experiment. The following confusion matrix illustrates 
the relative results. In Table 5.3.2.2, each row has the similarity value of an 
SOM with the other sequences. There are two values: the similarity of SOM A 

compared to SOM B and the similarity of SOM B compared to SOM A. The values 
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Table 5.4: Confusion matrix of SOMs from different scenes (Scn abbreviates Scene) 

Scn A-1 Scn A-2 Scn B-1 Scn B-2 Scn C-1 Sen C-2 
Scerie A- 1 1 0.653097 0.484192 0.433234 0.468101 0.458993 
Scene A- 2 0.633261 1 0.372017 0.315155 0.426438 0.400024 
Scene B- 1 0.330897 0.33033 1 0.645102 0.4264 0.465297 
Scene B- 2 0.35838 0.332804 0.641464 1 0.467114 0.455613 
Scene C- 1 0.369259 0.400326 0.443745 0.426589 1 0.715606 
Scene C- 2 0.366577 0.318921 0.414272 0.429349 0.687943 1 

above 0.5 are in bold font in the table, and they are all from the video sequences 
from the same scenes. From both visualisation and quantitative comparison, 
it can be concluded that the SOMs have captured the major dynamics of the 
crowded scenes. 

5.3.3 Raw image as Input 

In this application, the whole image is regarded as an input feature for the SOM. 
The raw data has been used with three channel colour images. In other words, 
the weight of the SOM is in aWxHx3 space, where W and H are the width 
and height of the image, respectively. The dimensions of the input video data are 
reduced from WxHx3 (Image space) to (n x n) (lattice space). The neurons 
of the SOMs retain the different status of the particular scene. Some selected 
neurons from SOMs constructed by raw images are illustrated in Figure 5.5 and 
5.6. In the first scene, the neurons illustrate the different crowd status of the 

square, as well as some trajectories of the crowd. In the second case, the changes 
in position of the camera are captured, which can be inferred from the changing 

of locations of the grid on the floor. The above experiments are carried out over a 

video sequence with only one single crowded scene. In the following experiment, 
the SOM is built from video sequences consisting of more than one crowd scene. 
Figure 5.7 shows two neurons from the SOM built by a video sequence that 

contains two different crowded scenes. The two neurons indicate that the built 

SOM has modelled the two different scenes (Example frames from the two scenes 

can be found in the first two columns of Figure 5.3). 
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5.3 Self-Organizing Map Approach 

Figure 5.7: Two neurons from the SOM built by a video sequence which contains the 
first and second scenes in 5.3 

Different neurons of the SOM represent different dynamics in the video se- 

quence. The tracking of the winning neurons indicates the transition between 

dynamics. Figure 5.8(a) shows the changes of the winning neurons on the SOM 

lattice when using the training video sequence (the coordinates are shown on the 

vertical plane on the left side. The axis with numbers from 0 to 5000 is the time 

line. ) There is an obvious transition between the winning neurons in the mid- 

dle of the time line where it represents the changing of the scenes. New image 

sequences from the two scenes are used as inputs to the SOM to test its ability 
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for scene classification. Figures 5-8(b) and 5.8(c) are the result of tracking the 
winning neuron over time. The winning neurons of the first scene are on the same 
plane, and for the second scene the winning neurons never get to the previous 
plane. Figure 5.9 and Figure 5.10 illustrate the results from another test, with 
another video consisting of two crowded scenes. 

5.3.4 Motion field input 

This time motion field for every frame is selected as the input feature. For 

example, if there are N frames in a video sequence and each frame is compared 
with the next frames to generate a motion field, there will be N-1 inputs for 

the SOM. The motion field is pixel-based, so each pixel has a pair of motion 

vectors < vx, vy >. Consequently, the dimension of the weight space is Dim = 
WxHx2. By using the SOM, the dimensions of the input video data are reduced 
from WxHx4 (motion field space) to (n x n) (lattice space). Some selected 

neurons from the built SOMs are visualised in Figure 5.11 and Figure 5.12, which 

represent the different dynamics statuses of the crowded scene. As with the 

visualisation method in the optical flow input section, the different colours show 

the different orientation of the motion (which uses the representation in Figure 

5.2). Trajectories can be easily observed from the visualized neurons. 
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(a) Train video sequence containing two scenes 

(c) Test video sequence from scene B 

Figure 5.8: Tracking of the winning neuron over time: with the right vertical plane 
as the plane of the indices of the neurons (from (0,0) to (3,3). Different 

scenes produce different winning neurons. 

119 



5.3 Self-Organizing Map Approach 

Figure 5.9: Two neurons from the SOM built by a video sequence that contains two 
crowded scenes: Experiment 2 
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(a) Týain video sequence containing two 
scenes 
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(b) Test video sequence from the first scene 

(c) Test video sequence from the second scene 

Figure 5.10: Týracking of the winning neuron over time: with the right vertical plane 
as the plane of indices of neurons (from (0,0) to (3,3). Different scenes 
active different winning neurons. Experiment 2 
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5.4 Summary 

In the following experiments, again the SOMs are built from video sequences 
consisting of more than one crowd scene. The experiments use the same sequences 
as those used in the raw image input experiments. Figure 5.13 shows two neurons 
from the first video sequence. Figure 5.14(a) shows the changes in the winning 
neurons on the SOM lattice when using the training video sequence (the coordi- 
nates are shown by the left sided vertical plane. The axis with numbers from 0 
to 5000 is the time line. ) The results of testing the image sequences are included 
in Figures 5.14(b) and 5.14(c). Figure 5.15 and Figure 5.16 illustrate the results 
from another test with another video consisting of two crowded scenes. 

5.4 Summary 

This chapter presented crowd analysis work using the Probability Density Rinc- 
tion and Self-organizing Maps. For the first approach, a statistical concept 
was used to accumulate both the occurrence and the motion information of the 

crowded scene; two PDFs (PDF,,, and PDF,, ) were generated during this pro- 
cess. Foreground blobs were extracted and accumulated to generate PDF, 

which represents the accumulated probability of occurrence over the scene. PDF, 

represents the accumulated probability of the orientations that the motion would 
take place. A path recovering method was developed by calculating the probabil- 
ity along the path using the PDFs. The results show that this work is a simple 
approach with reasonable results. Compared to the SOM approach, its scalability 
is limited by its high dimensional results. 

For the SOM approach, the experiments were carried out using optical flow 

and location, raw image frames and a whole motion field to train the SOM. With 

adequate samples, the SOM were expected to capture the distribution of the 

input data. In the first case, the visualisation of the built SOM of each crowded 

scene showed its capability of capturing the major dynamics. Scene classification 

was carried out by quantitatively comparing the built SOMs. Both values of the 

neurons and the structure of the SOMs were taken into account in the comparison. 
In the latter cases, a SOM can capture major dynamics from more than one 

scene. Experimental results show that the frames from different scenes activate 

the neurons from different locations of the lattice so that they can be labelled 
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5.4 Summary 

Figure 5.13: Two neurons from the SOM built by the video sequence also used in 5.7 

and classified. The tracking of the winning neuron can be a solution for video 

segmentation. The work on the SOM is the first attempt to employ an SOM in 

crowd analysis applications. It reveals the great potential of an SOM in handling 

this problem. 
The major contribution of this chapter is the provision of computer vision 

techniques to learn semantics from crowded scenes. The analysis is based on a 
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(a) Týain video sequence 

(b) Test video sequence from scene A 
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(c) Test video sequence from scene B 

Figure 5.14: Tracking of the winning neuron 
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do 

Lil 

Figure 5.15: Two neurons from the SOM built by the video sequence also used in 5.9 

global scope rather than an individual scope. Dominant dynamics is captured 

and represented for each crowded scene and can be used in different applications. 
More experiments, for example with different input features, can be carried out. 
In addition, a deeper analysis of the relationships between neurons can be involved 

to build a better dynamics model. 
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(a) Týain video sequence 

(b) Test video sequence from scene A (c) Test video sequence from scene B 

Figure 5.16: 'E-acking of the winning neuron 
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Chapter 6 

Conclusions and Future Work 

In this chapter, the achievements of the thesis work are summarised, followed by 

a discussion of the thesis work. Future work is suggested after the discussion. At 
the end of the chapter, final remarks are made to conclude the whole thesis. 

6.1 Achievements 

The body of the PhD work presents computer vision methods to learn seman- 
tics from crowded scenes. A crowd is a distinct social phenomenon and a lot of 
literatures exist on crowd analysis in disciplines such as psychology, civil engi- 
neering etc. In recent years, the frequent occurrence of the crowd phenomenon, 

aligned with the development of computer vision techniques, has made computer 

vision-based crowd both possible and desirable. 

State of the art Chapter 2 reviews the state of the art of crowd analysis - 
the process of crowd analysis is broken down to feature extraction, crowd 

modelling and event interpretation. The reviewed computer vision tech- 

niques on crowd analysis include density measurement, individual detec- 

tion and tracking. The reviewed traditional work on crowd analysis was 
derived from areas such as civil engineering and social science that in- 

clude physical-based, agent-based, cellular-based and nature-based crowd 

modelling methods. The review also discusses some crowd modelling using 
HMM and event interpretation work with pre-compiled crowd models from 
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the computer vision sector that are still at an initial stage. However, the 
review of the work indicates that there are lots of possibilities of connecting 
with existing work. 

Group behaviour analysis In Chapter 3, a group behaviour analysis work 
is presented, including methods that extract both micro and macro group 
information and count people in a group scene. The motion extraction for 
group analysis is based on colour modelling and tracking. An expectation- 
maximisation algorithm is used to determine colour models from sample 
images. A map of the colour Probability Density Function (PDF) can be 
generated by comparing the image data with the built models. The de- 
tected connected components are then used as an input box for a modified 
CAMSHIFT tracking algorithm. Micro information is retrieved by an in- 
dividual level dynamics estimator, which is based on the analysis of the 

curvature of the trajectories and the speed of the individual. The density 

of the local curvature maxima of each individual trajectory is accumulated 
and the different behaviours are classified by the resulting density. Macro 
information is retrieved by a global level dynamics estimator, which em- 
ploys entropy to estimate the distribution of the colour in the scene, so as 
to estimate the level of cluttering of the scene. 

A simple counting algorithm is used to build a histogram of colour PDF over 

a horizontal axis. The peaks of the histogram are picked up and each peak is 

counted as an individual. The algorithm is very easy to implement and the 

results are fair when the light condition is stable and there are no severe 

occlusions in the scene. However, when more people and structures are 
involved in the scene and/or there are more interactions between people, this 

algorithm is fragile and the results can only be used as a rough estimation. 
A more accurate counting algorithm is developed based on the assumption 
that two persons are not likely to stay next to one another for a very long 

time period. The counting is achieved by monitoring the spatial relations 
between blobs. The distance between every pair of blobs is calculated for 

each frame. A temporal distance pyramid is then constructed for each pair 

of the blobs, and a probabilistic clustering scheme is devised to bound the 
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blobs in the scene. The blobs that stick to one another in their life time are 
regarded as individual. The number of the individual is then retrieved by 
the algorithm. 

Crowd motion estimation Although tracking and optical flow have been 
proposed in many applications to extract dynamics from the video datal a 
crowded scene offers new challenges for computer vision to measure the mo- 
tion vectors. Chapter 4 proposed two methods for measuring crowd motion. 
Both of the algorithms can be explained as matching local descriptors with 
refined constraints. The first algorithm adapts Harris corners as local de- 
scriptors; after an initial matching by the R value, a topological matching is 
carried out to refine the matching results. The second algorithm makes use 
of shape information by extracting local descriptors as the local maxima 
of curvature of detected edges in the image. The refining matching uses 
the original connections between the local descriptors on the same edge, 
and compare them in groups as "edgelets". The performance of the two 

algorithms is compared by testing based on local descriptors and on Mo- 
tion Connected Components (MCCs). Testing based on local descriptors 

employs two measures: Mean Similarity (MS) and Mean Absolute Error 
(MAE), where the second algorithm has a higher MS and lower MAE over 
all the testing sequences. For testing based on MCCs, the employed mea- 
sures are Precision and Recall, where the second algorithm has high Recalls 

over all the testing sequence and lower Precision over two of the testing se- 

quences. Both of the algorithms generated satisfied results while in general, 
the second one worked better. 

Crowd modelling Chapter 5 introduces crowd modelling work. For a group 

scene where background modelling is still possible, foreground objects are 

extracted and accumulated to form a Probability Density Function (PDF,, ). 

Meanwhile, the motion of the foreground objects is extracted by block 

matching, and another Probability Density Function (PDF,, ) is built. Thus, 

the two PDFs capture the dynamics of the scene by modelling the fore- 

ground occupation of the scene and the foreground motion. With a ded- 

icated path discovery algorithm the main path, as macro information of 
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the group scene, can be found. In the second half of this chapter, a neural 
network approach is proposed to capture the main dynamics of a crowd 
scene. Optical flows are used as a feature in the format of f: (x, y, 0, p) - For each pair of frames, the features are generated by the optical flow al- 
gorithm, and input into a Self-Organizing Map. The visualisation of the 
resulting SOMs is developed by placing coloured arrows to represent the 
last two dimensions of the input space, explained as motion (0, p) over the 
location (x, y). With the SOMs from optical flow inputs, scene classification 
is carried out by comparing the resulting SOMs. In addition to the first 

experiment, raw images and a motion field are used as input features to 
feed the Self-Organizing Maps (SOMs). Scene classification is carried out 
based on tracking the winning neurons in the resulting SOMs. 

In summary, the achievements of this work include algorithms that are able 
to extract macro and micro information from a group and extremely crowded 
scenes, as well as algorithms that model group and crowd dynamics. 

6.2 Discussion 

A crowd is a complex dynamic; studying crowd dynamics is going to improve the 
life experiences of humans. Computer vision techniques have the advantage of 

automatic information extraction, which would highly accelerate the process of 
building crowd models, and accessing and calibrating these built models. On the 

other hand, crowd analysis offers big challenges to computer vision techniques. 

In this thesis, learning about crowd dynamics is achieved by extracting crowd 
information and modelling crowd dynamics. The methods in this work are based 

on 2D information from a single static camera without any calibration. As a 

result, the original methods presented in this thesis could be invalid when there 

is a serious problem caused by perspective. However, the algorithms are not 
limited to 2D data and they can be extended to work with 3D information. 

A wide variety of research has been combined in this work: image processing 

techniques, statistical concepts, machine learning, neuron networking and con- 

cepts from traditional research such as "Level of service" - The work in this thesis 
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certainly opens doors to more research opportunities. Future research includes 
employing more crowd analysis reviews from a traditional research area such as 
civil engineering in computer vision crowd research. In particular, scene geometry 
effects can be further adapted. For example, trajectory analysis can be used to 
infer the geometry information of the scene. In addition, the concept of "Level 
of Service" can be also connected to crowd modelling, and the influence of the 
number of people retrieved by the counting algorithm to the dynamics can be 
further investigated. 

6.3 Future Work 

Based on existing literatures of crowd analysis, the novel approach described in 
this thesis retrieves semantic information from crowded scene. For group scenes, 
two dynamics estimators, two people counting algorithms and a modelling al- 
gorithm are proposed. For a general crowded situation, motion extraction and 
dynamics modelling methods are presented. Though the performance of the ap- 
proach is fairly good, in this section some possible development and improvement 
is discussed. 

For the group behaviour analysis, colour modelling and tracking has been suc- 
cessful in extracting individual behaviour. However, in the general applications, 
building models for particular colours should be extended to building colour mod- 
els for randomly selected people. When choosing equipment, a stereo camera or 
multiple camera view can be adapted to provide 3D information. The behaviour 

analysis and dynamics estimation can then be projected into a 3D space. The 

spatial relationships of the blobs used for counting can also be used in analysing 
the collective behaviour of the group, i. e. the interactions of an individual. A 

possible extension of the work could be to combine the information about the 

spatial relationships of the blobs and the curvature of trajectories of the blobs; 

thus, the analysis of individual and collective behaviour can be connected. 
For crowd motion measurement, the second algorithm works better than the 

first. This is as a result of using shape information in the second algorithm. In 

the second algorithm, unique length segments of the edge are used as edgelets 
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for reducing the problem of edge merging and splitting caused by occlusions. 
However, for the long edges that are not split, the matching of small segments 
causes a lot of redundant calculations. To solve this problem, pyramid-based 
matching can also be employed in the second algorithm so that the matching can 
take place from the coarse scale to the fine scale. For both of the algorithms, 
instead of matching, a short-period tracking of the local descriptors, which can 
generate trajectories' fragments, could be useful to the dynamics analysis. 

For the statistical approach of group dynamics modelling, the concept of 
PDF,, could be far beyond the accumulation of foreground objects. All the 
features that are used in motion extraction, for example the colour blobs and 
local descriptors, can be used to build PDF,,,. Furthermore, 3D PDFS (PDF,, 

and PDF, ) can be built up by 3D information, which can contribute to dis- 
covering a major path in 3D space. For the neuron network approach, more 
investigations about the topological properties need to be carried out. A greater 
number of different scenes can be input into the SOM to test its ability to classify 
a scene, and the probable relationship between the different numbers of neurons 
and scenes can be an interesting topic. 

6.4 Final Remarks 

The overall aim of this work is to develop crowd analysis methods that are able to 

automatically learn about crowd dynamics from video data. This thesis proposes 

algorithms for group behaviour analysis, modelling, crowd motion estimation, and 

crowd dynamic modelling. This is the first known work on computer vision-based 

crowd analysis employing traditional crowd analysis work and a neuron network. 
This work allows a new stage of automatic crowd analysis to be possible, and to 

be further developed. 
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Crowd Analysis: A Survey 

Abstract in the year 1999 the world population reached 
6 billion, doubling the previous census estimate of 1960. 
Recently, the United States Census Bureau issued a re- 
vised forecast for world population showing a projected 
growth to 9.4 billion by 2050 [881. Different research dis- 
ciplines have studied the crowd phenomenon and its dy- 
namics from a social, psychological and computational 
standpoint respectively. This paper presents a survey 
on crowd analysis methods employed in computer vision 
research and discusses perspectives from other research 
disciplines and how they can contribute to the computer 
vision approach. 

Keywords crowd studies - crowd dynamics - socio- 
dynamics - crowd simulations - computer vision. 

I Introduction 

The steady population growth, along with the worldwide 
urbanization, has made the crowd phenomenon more fre- 
quent. It is not surprising, therefore, that crowd analysis 
has received attention from technical and social research 
disciplines. The crowd phenomenon is of great interest 
in a large number of applications: 
Crowd Management: Crowd analysis can be used for 

developing crowd management strategies, especially 
for increasingly more frquent and popular events such 
as sport matches, large concerts, public demonstra- 
tions and so on, to avoid crowd related disasters and 
insure public safety. 

Public Space Design: Crowd analysis can provide guic 
lines for the design of public spaces, e. g. to make 
the layout of shopping malls more convenient to cos- 
tumers or to optimize the space usage of an office. 
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Virtual Environments: Mathematical models of crowds 
can be employed in virtual environments to enhance 
the simulation of crowd phenomena, to enrich the hu- 
man life experience. 

Visual Surveillance: Crowd analysis can be used for 
automatic detection of anomalies and alarms. Fur- 
thermore, the ability to track individuals in a crowd 
could help the police to catch suspects. 

Intelligent Environments: In some intelligent envi- 
ronments which involve large groups of people, crowd 
analysis is a pre-requisite for assisting the crowd or 
an individual in the crowd. For example, in a mu- 
seum deciding how to divert the crowd based on to 
the patterns of crowd. 

Crowd management and public space design are stud- 
ied by sociologists, psychologists and civil engineers; vir- 
tual environments are studied by computer graphic re- 
searchers; visual surveillance and intelligent environments 
are of interest to computer vision researchers. The ap- 
proach favored by psychology, sociology, civil engineer 
and computer graphic research is an approach based 
on human observation and analysis. Sociologists, for in- 
stance, study the characters of a crowd as a social phe- 
nomenon, exploring human factors. For example, the com- 
putational model developed by Seed Projects at Stan- 
ford University[l], incorporated human behavior in en- 
vironments with emergency exits. The Crowd - MAGS 
Project, whiche is funded by GEOIDE and the Canadian 
Network of Centers of Excellence in Geornatics, aims 
to develop micro- simulations of crowd behaviours and 

le- 
the impact of police or military groups [23]. The Police 
Academy of the Netherlands and School of Psychology 
of University of Liverpool are cooperating on a project 
funded by the UK Home Office: "A European study of 
the interaction between police and crowds of foreign na- 
tionals considered to pose a risk to public order" [2]. 

On the other hand, computational methods such as 
those employed in computer graphics and vision meth- 
ods focus on extracting quantitative features and detect- 
ing events in crowds, synthesizing the pelmomenon with 
mathematical and statistical models. For example, early 
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project funded by the EPSRC in the UK were concerned 
with measuring crowd motion and density and hence po- 
tentially dangerous situations[26][89][951. The EU funded 

project PRISMATICA[751 and ADVISOR[3], completed 
in 2003, were concerned with the management of pub- 
lic transport networks through CCTV cameras. The UK 
EPSRC funded project BEH"E, was concerned with 
pre - screening of video sequences for the detection of 
abnormal or crime-oriented behaviour[12]. ISCAPS[441 

started in 2005, a consortium of 10 European ICT com- 
panies and academic organizations, aims to provide au- 
tornated surveillance of crowded areas. SERKET, a re- 
cently started EU project aims to develop methods to 
prevent terrorism [42]. 

Figure 1 illustrates the processes involved in crowd 
analysis. In a crowd scene the attributes of importance 

are crowd density, location, speed, etc. This information 

can be extracted either manually or automatically us- 
ing computer vision techniques. Crowd models can then 
be built based on the extracted information. Event dis- 

covery is achieved using pre-compiled knowledge of the 
scene or using the computational model, although both 

approaches can be combined. In both cases the model is 
updated with newly extracted information. 

The paper is organised as follows. Section 2 intro- 
duces research in automatic crowd feature extraction. 
Section 3 discusses existing work on crowd modelling and 
crowd event inference. Section 4 and 5 provide some ex- 
amples of how the two complementary approaches can 
be bridged. 

2 Crowd Information Extraction 

The components of crowd analysis from a computer vi- 
sion perspective are described in Table 1. Essentially, 
the typology of sensors and their topology influence the 
scene capture processes; environmental conditions, such 
as natural and artificial illumination changes often intro- 
duce noise; the scene typology affects the type of process 
one requires to extract the most accurate information of 
a dyanmic scene. 

Visual surveillance methods have been devloped to 
estimate motion of objects and people in the scene, in 
isolation or in groups; a review can be found in [38). 
When video is analysed for very crowded scenes, con- 
ventional computer vision methods are not appropriate, 
in these cases methods must be designed to cope with 
extreme clutter. Features from conventional image pro- 
cessing are still employed, such as colour, shape and tex- 
ture etc. However, sophisticated methods have been de- 
veloped to retrieve crowd information. In the following 
sections we will review the existing state of the art. 

2.1 Crowd DensitY Measurement 

An important crowd feature is crowd density and it is 
natural to think that crowd of different density should 
receive a different level of attention. Polus et al. [741 pro- 
vide a clear idea of the problem of level of services for 
a pedestrian flow defined as: free flow, restricted flow, 
dense flow, and jammed flow according to a density met- 
ric defined as the number of pedestrians per unit area. 
scene. Here we review some research either estimating the 
crowd density directly or counting number of pedestrians 
which provide information for density estimation. 
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Table I Features in crowd analysis by computer vision methods. 

Research methods have been proposed for crowd anal- 
ysis which employ background removal techniques. In 
[95] a reference image with only background is used to 

classify image pixels as belonging to either pedestrians or 
background. A functional relationship between the nuni- 
ber of pedestrian-classified pixels and number of peo- 
ple is then established manually for the measurement of 
crowd density. Another example is proposed by Ma et 
al. [611 using background removal. A mathematical re- 
lation for geometric correction for the ground plane is 
derived. The authors proved that it can be directly ap- 
plied to all foreground pixels. A linear relation between 

the number of pixels and number of persons was derived 
by applying the geometric correction. These works have a 
typical assumption that the number of foreground pixels 
are proportional to the number of people, which is only 
true when there are not serious occlutions between peo- 
ple. [271 makes use of examples to map the global shape 
feature to configurations of humans directly. This train- 
jug based algorithm is a quite novel approach but the 

problem of how to decide the size of the training dataset 

remains unclear. 
Image processing and pattern recognition techniques 

are also used for the analysis of the scene to estimate 
the crowd density. Marana et al. [64] assume that im- 

ages of low-density crowds tend to present coarse tex- 
ture, while images of dense crowds tend to present fine 

textures. Self-organising neural maps [65] combined with 
Minkowski fractal dimensions [63] are employed to de- 
duce the crowd density from the texture of the image. 
The work by Marana is compared in [76] with another 
method that uses Chebyshev moments. An optimization 

of performance under different illumination conditions is 
discussed. Lin et al. [60] present a system that estimates 
the crowd size through the recognition of the head con- 
tour using Haar wavelet transform (HWT) and support 

vector machines (SVM). 

Approach of information fusion has also be applied, 

e. g. Yang et al. [941 estimate the number of people di- 

rectlY from groups of image sensors. For each sensor, 
foreground objects are segmented from the background, 

and the resulting silhouettes are aggregated over the sen- 
sor network. A geometric algorithm is then introduced to 
limit the number and possible locations of people using 
silhouettes extracted by each sensor. Alternative meth- 
ods combine several techniques, to achieve more accurate 
and reliable measurements. For example, in [891, an edge- 
based technique is integrated with background removal 
using a Kalman filter. Marana et al. [62) use different 

methods including Fourier and Fractal analysis and clas- 

sifiers to estimate the crowd density level. Kong et al. in 
[54][551 employ background subtraction and edge detec- 
tion are employed; the work defined the extracted edge 
orientation and blob size histograms as features. The re- 
lationship between the feature histograms and the nuni- 
ber of pedestrian is learned from labelled training data. 
Obvious more cues may indicate a more accurate solu- 
tion. 

2.2 Recognition 

Conventional visual surveillance focuses on object de- 
tection and tracking. [it essence, image, processing tech- 
niques are employed to extract the chromatic and shape 
information of the moving objects and the background 
for detecting and tracking purposes. 

For crowd dynamics modeling, detecting and track- 
ing are also important as they provide the location ; tit([ 
velocity features of the dynamics. Crowded scenes add a 
degree of complexity to tit(! conventional detection and 
tracking problem of single individuals. fit tit(! following 
sections we concentrate on methodologies for crowded 
situations. 

2.2.1 Face and 11cad Rccoynition 

Face is the most discriminating 1'eature of' the human 
body and many researchers try to detect pedestrian through 
face detection. Majority of the existing research employs, 
supervised learning methods. Ifere we review a few at- 
tempts to detect the faces in complex sceno. s. 

Early works like [871 in which a technique using ge- 
netic algorithms is employed for face localization ill a 
complex scene. The systern proceeds with a training phwie 
to generate a simple object inean iniage using a single 
object image, and a test phase using arbitrary images. 

However the previous work highly depends oil the 
training set and if the faces appear at difFerent sizes and 
orientations, it may require a very large training set and 
long processing time. flence difrerent techniques have 
been developed to address the problem of multi-view face 
detection. [591 proposes a pyramid structure that adopts 
coarse-to-fine strategy to handle pose variance. Another 
approach is by Jone et al. [45], in this work difrerent de- 
tectors are for different views of the face, (in([ a decision 
tree is trained to determine the viewpoint class. [391 uses 
Width-First Search tree structure to improve the perfor- 
malice in both speed and accuracy. These kind of work 
is quite likely to be adopt into crowd analysis, espeically 
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from a single camera view, as the problem of human pose 
and the perspective are both compensated here. 

Methodologies for stereo face detections in crowd have 
also been developed. For example Huang et al. [40] pro- 
pose a three steps technique: first extracting the likeli- 
hood evidence of heads from the stereo image by scale- 
adaptive filtering; then spurious clues are suppressed from 
the extracted points according to the average human 
height; finally the human heads are located by applying 
a mean-shift algorithm to the likelihood map. 

2.2.2 Pedestrian and Crowd recognition 

Pedestrian detection and tracking is a well studied prob- 
lem in computer vision. Many methods have been pro- 
posed, such as using the afore mentioned background re- 
moval technique, or combining chromatic and shape in- 
formation of the tracked pedestrians. The following sec- 
tions discuss the methods that try to provide a solution 
for pedestrian detection in crowded scenes. 

Occlusion handling. Occlusion caused by the high 
clutter of the pedestrian in crowd scene is the major 
challenge for crowd detection problem. 
Some research addresses the problem by using hu- 
man body parts. Wu et al. [92] propose a method to 
detect mult iple- partially occluded human in a single 
image. Edgelet features are introduced in their work. 
Part detectors based on edgelet features are learned 
by a boosting method. Responses of part detectors 
are combined to form a joint likelihood model that 
includes cases of multiple, possibly inter-occluded hu- 
mans. The human detection problem is then formu- 
lated as one of maximum a posteriori (MAP) estima- 
tion. The models of group of people in [29] are ini- 
tialised based on segmenting the body into regions by 
modelling their appearance and spatial distribution. 
A framework uses maximum likelihood estimation to 
estimate the best arrangement of people in term of a 
2D translation that yields segmentation for the fore- 
ground region. Occlusion reasoning is then conducted 
to recover relative depth information. 
Leibe et al. [58] present a different algorithm that in- 
tegrates evidence in multiple iterations and from dif- 
ferent sources. Local cue is based on a scale-invariant 
extension of Implicit Shape Model (ISM), and global 
consistency is enforced by adding the information 
from global shape cues. Local and global cues are 
combined via a probabilistic top-down segmentation 
to detect the pedestrian. 
Moving Views. Special solutions are required for 
moving platforms for some of the applications e. g. 
for on-board vision system to assist a driver. 
Some of the implementations make assumptions of 
human appearance-In Broggi et al. 's work [16] a coarse 
detection of pedestrian is computed through the pro- 
cessing of a single image based on shape of human 
body assumption of symmetry, size and ratio. Heisele 

et al. [33] apply spatio-temporal methodologies by 
recognizing walking pedestrian based on the charac- 
teristic motion of the legs of a pedestrian walking 
parallel to the image plane. Each image is segmented 
into region-like image parts by clustering pixels in a 
combined color/postion feature space. A classfier is 
then used to extract the clusters which are mostly 
like to be the pedestrian's legs. 
Different from above, Shashua et al. [81] describe 
a functional and architectural breakdown pedestrian 
detection system. Single classification is based on a 
scheme of breaking down the class variability by re- 
peatedly training a set of relatively simple classifica- 
tion performance results. The path from single-frame 
to system level performance includes the integration 
of additional cues measure over time, situation spe- 
cific features and via building up additional object 
categories consisting of vehicles and stationary back- 
ground structures. 
Spatial-temporal methods. Besides conventional 
cues of pedestrian appearance, space-temporal cues 
are used for detection. Brostow et al. [17] tackle the 
problem by tracking simple image features and prob- 
abilistically grouping them into clusters representing 
independently moving entities. Space-time proximity 
and trajectory coherence through image space are 
used as the only probabilistic criteria for clustering. 
Moreover, this motion-based detection could be easily 
extended to tracking of individuals in dense crowds 
by merging the outcomes. 
In extremely cluttered scenes, individual pedestrian 
cannot be properly segmented in the image. How- 
ever sometimes the crowd within which the pedestri- 
ans share a similar purpose can be recognizad. Reis- 
man et al. [79] propose a scheme that uses slices in 
the spatio-temporal domain to detect inward motion 
as well as intersections between multiple moving ob- 
jects. The system calculates a probability distribu- 
tion function for left and right inward motion and 
uses these probability distribution functions to infer 
a decision for crowd detection. 

2.3 Tracking 

Tracking has been proposed to localize the interested 
object in time-space. Also the velocity feature can be 
derived afterwards. Though as a natural extension of de- 
tection, tracking has its own problem to recognize and 
identify pedestrians in the consecutive frames. Tracking 
could be regarded as the most popular topic in visual 
surveillance, however currently for crowd analysis, most 
of the techniques are validated only for multiple (e. g. up 
to 10) people. 

As discussed in the last subsection, occlusions could 
occur very frequently when there are many objects and 
people in the scene. Tracking techniques have to over- 
come the problem in order to continuously track before, 
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during and after the occurrence of occlusions. A com- 
prehensive review on occlusion handling can be found 
in [31]. A formulation of the occlusion problem is pro- 
vided, and the techniques are divided in two groups: 
merge-split approach, which addresses the problem to re- 
establish object identities following a split, and straight- 
through approaches, which maintains object identities at 
all times. 

The following text covers three aspects: the tech- 
niques which are developed to track multiple people(objects) 
without any assumptions of the dependence of their mo- 
tion, e. g. interactions etc.; the techniques which try to ex- 
plain the interactions between the pedestrians; and also 
some practical analysis of handling the problem of oc- 
clusion in the crowd situation. 

2.3.1 Tracking Methodologies 

Crowd scenes increase the complexity of tracking because 
there are multiple moving objects in the scene. Quite a 
few techniques are developed based on the colour, geom- 
etry and other features for tracking. 

Likelihood. Color, edge etc. are the most popular 
features in tracking. In crowd salient traceable im- 
age features are particular interested for tracking. As 
one of the good candidates, interest points (IPs) are 
employed in [31] and [67]. In both works the IN are 
obtained by a popular colour Harris detector. Gabriel 
characterized IN by their position relative to the es- 
timated centre of the object and Mathes built a point 
distribution model between ASM and AAM. Both of 
the methods require a pre-defined region (or object) 
of interest. There salient features are benefit from 
their robustness under different light conditions. The 
tracking inference using these features can work bet- 
ter under occlusions than using the entire contour. 
Therefore the usage of those features could be more 
appliable to large amount of people in the scene. 
Human body model. Methods using models of hu- 

man bodies or human body parts have been devel- 

oped for tracking in complex crowded scenes, which 
are usually completed with probabilistic frameworks. 
Zhao et al. [99][100] have been working on the for- 

mer approach, using explicit 3D human shape mod- 
els. The problem of detection and tracking are for- 

mulated as one of Bayesian inference to find the best 
interpretation given the image observations, The lat- 
ter one as the work from Wu et al. [93] extend the 

previous detection work in [92] (which has been dis- 

cussed) using edgelet features to human body part 
detectors. Tracking is implemented by probabilistic 
data association, i. e. matching the object hypotheses 

with the detected response. 
Tracking inference strategies. Tracking inference 

strategies have been developed for the problem of 
tracking multiple objects. For non-linear and non- 
Gaussian dynamic models, particle filter technique 

, also known as CONDENSATION [43], is one of the 
most popular among those. Particle filters are sequen- 
tial Monte Carlo methods based upon a point mass 
(or 'particle') representations of probability densities 
[281. Large portion of multiple object tracking work 
have employed this technique. For example, Venegas 
et al. [90] use particle filter to track the moving ob- 
jects by generating hypotheses on the top-view re- 
construction of the scene . Okuma et al. [72] com- 
bine mixture particle filters and Adaboost algorithm. 
Sidenbladh et al. [821 extend the particle filter formu- 
lation according to finite set statistics (FISST) for 
tracking. Cai et al. [18] tackle the problem by em- 
bedding the meanshift algorithm into the particle fil- 
ter framework. Koller-Meier et al. [53] introduce an 
extension of the CONDENSATION algorithm that 
relied on a single probability distribution of describe 
the likely states of multiple objects. Kang et al. [46] 
propose the discrete shape model and the competi- 
tion rule to improve the performance of the conden- 
sation tracker for real time tracking. 
To address data association problem, There are Mul- 
tiple Hyphotheses Tracker (MHT)and Joint Proba- 
bilistic Data Association Filter(JPDAF). MHT tries 
to keep the track of all the possible hyphotheses over 
time [78]. A details summary and a discussion of MHT 
for multiple target tracking is included in [13]. MHT 
suffers from the storage of the redundant track, hence 
some of the work propose extensions and modifica- 
tions to the algorithm to get better performances, e. g. 
[32]. JPDAF computes a Bayesian estimation of cor- 
respondence between the different features and the 
different objects, e. g. Rasmussen and Hager [771 ap- 
ply this technique with color region and snake-based 
tracker. An approach has been introduced by Karls- 
son [471, which uses Monte Carlo method. 
The fusion of the different cues from a number of 
detection and tracking algorithms are also used to 
produce a more robust tracker. Siebel et al. [83] pro- 
pose a tracking system containing three co-operating 
parts: an Active Shape 'Iýracker, a Region Tracker, 
and a Head detector. [851 proposes an approach based 
on the principles of self-organization of the integra- 
tion mechanism and self-adaptation of the cue mod- 
els during the tracking. Cues from different sensors 
and models can increase dimension of information, 
which is preferable in the multiple objects situations. 
However the goodness of integration scheme is very 
crucial in these algorithms. 

2.3.2 Racking Interacting People 

In certain cases, interaction happens frequently in crowded 
scene. Researchers have shown great interest in studying 
these interactions to get the new perspectives on tracking 
techniques. 
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Some of the work formulate the interaction to en- 
hance the tracking scheme. For example both Smith et 
at. (841 and Khan et al. (491 propose to use Nlarkov Chain 
Nlonte Carlo (MCNIC) and the particle filter. Smith used 
a joint multi-object state-space formulation and a trans- 
dimensional MCNIC particle filter to recursively estimate 
the multi-object configuration and search efficiently the 

state-space. Khan developed a joint tracker that included 

a motion model to maintain the identity of targets through 

out and interaction, thus to reduce tracker failure. Pre- 
defined motion models are used in this approach, with 
the trade-off between improving the tracking performance 
in crowd with known interations and the adaption of the 

rnotion model to arbitrary crowd. 
Some researchers interpret interactions as relation- 

ships between pedestrians and a group (pedestrian merg- 
ing/splitting into groups). N/larques et al. (661 propose a 
two-layer solution to overcome the problem. The first 
layer produces a set of spatio temporal strokes based on 
low level operations to track the active regions. The sec- 
ond layer performs a consistent labelling of detected seg- 
tnents using a statistical model based on Bayesian net- 
works which is recursively computed during the tracking 

operation. Mckenna et al. (691 perform tracking at three 
levels: regions, people and groups. Background subtrac- 
tion is used to cope with shadows and unreliable colour 
cues. Colour information is used to disambiguate occlu- 
sions and to provide qualitative estimates of depth order- 
ing and position. Pedestrian merging and group splitting 
are frequent phenomena in the crowded scene, however 

the Inajor challenge for this kind of methods is to recover 
the object table after splitting from the group. 

Sullivan et al. [86] label tracking targets by exploring 
the trajectories. Trajectories of when a target is isolated 

are found and it is claimed that these trajectories end 
when targets interact. A graph structure has been formed 
by the interactions of these trajectories. This method 
could be very useful for offline crowd analyzing but for 

online processing it may have a bottleneck in the storage 
of the trajectories. 

2.3.3 Racking from Multiple Views 

and Pan-, riit-zooni (ru) cam(ýr., i. ni(! st, ai(ý calti(ýrws 
are used to locate people ill the sc(qle, wjlij(ý t, 11v J)'I'Z 
cameras lock-on to the indivi(huds and provi(le visual at- 
tention. The underlying vismat processes, rely ()it colour 
segmentation, movement trackingandshape information 
to locate target candidates and colour indexing methods 
to register these candidates with the PTZ cameras. 

Meanwhile special techniques have been developed 
for the tracking front nuiltiview, normally a planar Ito- 
mography constraint would be include(l. For example in 
[481, feet regions of the people. are located by the con- 
straint. The contiguous spatio-temporat rcgion formed 
by the feet regoins belonging to the same person are chis- 
tered as the track of the person. In [501 people's ground 
points are located and a multi-hypothesis framework its- 
ing particle filter is developed for Cracking. 

3 Crowd modelling and events inference 

Dynamics ill public spaces cill ill(l(! (! (l he recurrent. Crowd 
information can be better exploited to indicate the sta- 
tus of the crowd so that crowd events (-, in be infi, rred. 
Crowd models have been bililt to repres(ý11t t. jj(ýse statils, 
either implicitly or explicit, ly. Oil the other hand, some 
research makes direct use of crowd information in'stva(l of 
building models. In such cases, the events are nsilally ill- 
ferred based oil some prior knowledge of the properties of 
the particular scene and the crowd. ln this section, crow(l 
models and events inference in computer vision will he 
presented as well as son, (, cri)wd jll()djq. S front non vision 
areas. 

: 3.1 Crowd models and crow(l (ývejlt., j jill, el-plice ill 
computer vision 

In computer vision crowd modelling is achieved based oil 
the extracted information front visual data and normally 
call be employed in crowd events infer(! nce. M(ý, tjlwjlilcý 
there are also some approaches attempt to infer events 
without construction of models. I fere oxajjlpl(ýsare given for both of the cases. 

For large public areas the use of a multi-camera system 
is required to cover most of the monitored areas. 

For the multi-camera system arrangement, Mittal et 
al. 1701 present a system named M2'1'racker using niul- 
tiple synchronized cameras located far from each other 
for segmenting, detecting arid tracking multiple people 
in a cluttered scene. First, a region-based stereo algo- 
rithyn is introduced for finding 3D points inside an ob- 
ject. Then, a scheme is developed dynamically assigning 
priors for different objects at each pixel. Finally, the ev- 
idences gather from different camera pairs are combined 
using occlusion analysis to obtain a globally optimum de- 

tection and tracking of objects. A different arrangement 
of cameras is used in [201. The method uses both static 

In computer vision approa(ill crowd 111odelj are 1), jilt 
as representations of recurrent behaviotirs by alialy"'ilig 
video data of the crowd throilgh visioll methods. 
Man et al. [96][98)[971 propose a crowd model us- 
ing accumulated motion and foreground (moving ob- 
jects) information of a crowded scene. This was im- 
plernented by two probability density functions, 
Occurrence PDF and Orientation PDF associated with 
every non-overlapped block (7t x it pixels) of the i'll- 
age. The Occurrence model indicates the frequency of 
the block covered by the foreground featnres, and the 
Orientation PDF indicates the probability of each ori- 
entation of the foreground feature on that block cmild 
take. A preliminary data mining of the PDF models 
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(left) Macroscopic, (centre) Mesoscopic, (right) Microscopic. 

is given to find the major (most frequent) path of the 
crowd. 
Andrade et al. [7] [6] [8] characterize crowd behaviour 
by observing the crowd optical flow associated with 
the crowd and use unsupervised feature extraction to 
encode normal crowd behaviour. The unsupervised 
feature extraction applies spectral clustering to find 
the optimal number of models to represent normal 
motion patterns. The motion models are HMMs to 
cope with the variable number of motion samples that 
might be present in each observation window. The 
objective of this model is to detect abnormal event 
in crowd scenes. 
Apart from building models, in crowd monitoring 
systems of computer vision, the extracted informa- 
tion is used to recognize the event, usually under 
some assumptions of involved crowds. Early work on 
crowd monitoring using image processing is reviewed 
by Davies et al. [26]. 
More recent work like in Boghossian et al. [14], a 
system is presented using computer vision techniques 
to estimate the paths and directions of crowd flows in 
CCTV images and improve the perception of scene 
dynamics by offering on-line illustrations. 
Maurin et al. [68] propose a system to detect, track, 
and monitor both pedestrians (crowds) and vehicles. 
The system contains a detection scheme based on op- 
tical flow that can locate vehicles, individual pedes- 
trians and crowd. The detection phase is followed by 
the tracking phase that tracks all the detected en- 
tities. Traffic objects are tracked and a rich set of 
descriptors are computed for each object including 
a wealth of information (position, velocity, accelera- 
tion/deceleration, bounding box, and shape). 
Cupillard et al. carry out event recognition by means 
of behaviour, in [25][24] an approach using multiple 
cameras is presented. The algorithm relies on both 
low level motion detection and tracking, and a high 
level module which recognizes pedefined scenarios cor- 
responding to specific behaviours. 
Michael et al. [19] present a method jointly perform- 
ing recognition of complex events and linking frag- 

mented tracks. The recognition work is implemented 
by combing appearance and kinematic constraints 

from tracking and constraints from a hypothesized 
event model. 
In these methods specially assumptions of crowd are 
usually involved, indicating that some prior knowl- 
edge are required for events inference. These methods 
may be very efficient and computational unexpensive 
for some particular systems that the interested events 
are simple and clear, though this is not always the 
case in general situations. 

3.2 Crowd models from non vision approach 

Computational models aim at describing and predicting 
the collective effects of crowd behaviour by identifying 
the relationship between crowd features. There are three 
distinct philosophies for modelling a crowd; traffic anal- 
ysis [30] proposes a categorisation, where crowd models 
can be defined as microscopic, mesoscopic and macro- 
scopic. The microscopic model deals with pedestrians as 
discrete individuals; the macroscopic model deals with a 
crowd as a whole and the mesoscopic model combines the 
properties of the previous two, either keeping a crowd as 
a homogeneous mass but considering an internal force 
or keeping the characters of the individuals while main- 
taining a general view of the entire crowd (Figure 2). In 
the following some typical techniques of crowd modelling 
will be introduced and some examples will be given. 

Physics inspired models. Several quantitative fac- 
tors of crowds and pedestrians are measurable. This 
fact encourages researchers to look for the mathemat- 
ical models of crowd dynamics. 
Helbing has a series of work upon this topic. His first 
experiment is in [34], with a stochastic formulation 
at microscopic level, a gas kinetic formulation at the 
mesoscopic level, and fluid dynamic equations at the 
macroscopic level for the crowd model. Later he [36] 

proposes another more popular microscopic model: 
social force model based on the social field theory. 
The social force represents the effect of the environ- 
ment; it is a quantity that describes the concrete mo- 
tivation to act. In [37] the model is used to repro- 
duce the emergence of several empirically observed 
collective patterns of motion. Moreover, simulations 
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Fig. 3A screenshot of XiaoShan Pan's work: human agents 
try to self-organise into exiting lines. 

of crowd dynamics based on a generalized force model 
for the escape panic phenomenon are presented in 
[35]. Also quite a few works have been developed upon 
this work, for example in [21] additional pattern is 
introduced by considering the unequal information 
distribution in a crowd. 
In contrast to the former works, macroscopic mod- 
els often draw an analogy between the crowd a con- 
tinuum responding to local influence. Hughes [411 is 
more interested in modelling rational, goal-directed 
pedestrians. His theory does not govern the behaviours 
of any individual pedestrians, as it is a macroscopic 
model; instead the crowd is divided into (approx- 
imate) pedestrian types where pedestrians in each 
type have the same walking habits. 
Physics inspired models are widely used to study 
crowds from different perspectives, e. g. to study the 
effects of introducing autonomous robots into crowds 
[521, or to model a historic scene [80]. The interre- 
lations of the factors and equations (e. g. employing 
the same factors in different level equations) imply 
the possibility of having a model encompassing all 
the levels. Also the quantitative analysis of crowd 
dynamics can be relatively easy to be adapted into 
computer-based algorithms. 
Agent based models. These are qualitative mod- 
els include employing fuzzy methods to describe the 
relations of factors and crowd motion instead of pure 
mathematical methods. Agent-based models use agents 
to represent the pedestrian or the crowd. Many ex- 
amples are from the former, e. g. in [71] crowd, crowd 
individuals have their own emotional parameter to 
govern behaviour while they belong to a collection of 
goal-directed groups on mesoscopic level. 
In [73] the agents are modelled following the concept 
of non-adaptive behaviours. Non-adaptive crowd be- 
haviours refer to the destructive actions that a crowd 
may experience in emergency situations. The human 

and social models are categorised into the individual, 
the interactions among individuals, and the group 
and the environment three non-independent levels. 
(Figure 3). Brenner et al. [15] provide an example 

model by assuming that people at the same location 
experience the same psychological and environmental 
influences. 
Some work of the agent-based models have already 
been commercialised, such as the work of Keith Still 
at Crowd Dynamics Ltd [22] and LEGION interna- 
tional LTD [57], both provide pedestrian simulations 
for space design an planning, based on agent tech- 
nology. For example the model developed by Crowd 
Dynamics Ltd aims to simulate how people react to 
their environment in a variety of conditions (Figure 
4). 
Usually, these examples employ agent to act as indi- 
vidual pedestrians and only concern the microscopic 
level. 
Cellular automation models. Another research 
approach employs the construction of local models, 
where active area has been virtually devided into 
cells. An example is a commercialized tool EGRESS 
of AEA Technology Plc [4]. In EGRESS the floor area 
of an environment is covered with cells equivalent to 
the minimum occupancy area of a person. The used 
cells can represent free floor area, a wall or a block- 
age, a cell with a person, or a region with some other 
attributes. Pedestrians move between cells following 
predefined rules. Krez et al. [56] present a model of 
pedestrian motion using both floor field and agents. 
The model consists of three floor fields: Static floor 
field for each cell contains the information of the dis- 
tance to the exit; Dynamic floor field changes by the 
motion of the pedestrains and the third floor fields 
saves the distance of a cell to the next wall. 
Nature based models. Some of the models take 
their inspiration from nature. The emotional ant model 
[11] extends the psychological information using bi- 
ologically inspired ant agent as a crowd. Four dif- 
ferent cognitive behaviours of crowd have been mod- 
elled and transition behaviour is modelled using fuzzy 
logic. 
Kirchner et al. [51] apply a bionics approach to the 
cellular automation model by describing the interac- 
tion between the pedestrians using ideas from chemo- 
taxis. The simulation of the evacuation from a large 
room is also presented to show the ability of the 
model to represent different types of behaviours. 

4 Examples of bridging the research 

Computer simulation can be used to evaluate the de- 
veloped system's performance. Considering that real vi- 
sual evidences for abnormal scenarios are rare or unsafe 
to reproduce in a controllable way, Andrade et al. [5] 
have developed an approach generating simulations to 
allow training and validation of computer vision systems 
applied to crowd monitoring. The simulation is gener- 
ated by a pedestrian path model and a pedestrian body 
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ig. 4 Dwell analysis by Crowd Dynamics Ltd, using agent to assess the throughput of specific geometric designs. 

model. Vu et al. [91] conceive a test framework that gen- 
erats 3D animations corresponding to behaviours recog- 
nised by an interpretation system. In other words, this is 
a test system for a given interpretation system by gen- 
erating test animations. 

Non-vision models can be borrowed for computer vi- 
sion analysis. Anotonini et al. [9](10] propose a frame- 
work using discrete choice model, which is widely used 
in traffic simulations, for pedestrian dynamics modelling. 
The framework models short-term behaviours of individ- 
uals as a response to the presence of other pedestrians. 
The model is calibrated using data from actual pedes- 
trian movements, manually taken from video sequences. 
The work is applied to the problem of the target detec- 
tion in the particular case of pedestrian tracking. 

system would be capable of automatically understand- 
ing and modelling the crowd behaviours which works at 
both instantaneous and recurrent level. 
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The Analysis of Crowd Dynamics: From 
Observations to Modelling 

B. Zhan, P. Rernagnino, D. N. Monekosso and S. Velastin 

Abstract Crowd is a familiar phenomenon studied in a variety of research disci- 
plines including sociology, civil engineering and physics. Over the last two decades 
computer vision has become increasingly interested in studying crowds and their dy- 
namics: because the phenomenon is of great scientific interest, it offers new compu- 
tational challenges and because of a rapid increase in video surveillance technology 
deployed in public and private spaces. In this chapter computer vision techniques, 
combined with statistical methods and nerual network, are used to automatically ob- 
serve, measure and learn crowd dynamics. The problem is studied to offer methods 
to measure crowd dynamics and model the complex movements of a crowd. The 

refined matching of local descriptors is used to measure crowd motion and statical 
analysis and a kind of neural network, self-organizing maps were employed to learn 

crowd dynamics models. 

1 Introduction 

We are interested in devising methods to measure and model automatically the 

crowd phenomenon. Crowded public places are increasingly monitored by security 
and safety operators. There are companies (for example LEGION) that employed 
large resources to study the phenomenon and generate realistic simulations: for in- 

stance to optimize the flow of people of a public space. Section 2 presents some 
details about crowd related work, including the applications, research in computer 

vision and research in other areas like civil engineering and socialogy. The purpose 

of Section 2 is to give an overview to the state of are on crowd analysis and to in- 
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vestigate the probability to bridge the research from computer science to areas ike 
civil engineering and socialogy. 

Computer Vision research offers a large number of techniques to extract and 
combine information of a video sequence acquired to observe a complex scene. The 
life cycle of a computer vision system includes the acquisition of the monitored 
scene with-one or more homogeneous or heterogeneous cameras, the extraction of 
features of interest and then the classification of objects, people and their dynamics. 
In simple scenes the background is extracted with statistical methods and then fore- 
ground data and related information are inferred to describe and model the scene. 
Background is usually defined as stationary data, for instance man made structure, 
such as buildings, in a typical video surveillance application, or the indoor structure 
of a building in a safety application, for instance deployed to monitor and safeguard 
elderly people in a home. 

Unfortunately, background modeling becomes rapidly less effective in complex 
scenes and its usefulness seems to be inversely proportional to the clutter measured 
in the scene. Figure I shows a small experiment testing the effectiveness of back- 
ground modeling with different types of scenes. Three frames per chosen sequence 
and the resulting background image built with roughly 1000 frames, are illustrated. 
The background modeling works well with the first scene; it fails to recover the 
background of some regions in the second scene because of the frequent occupancy 
over these regions; and in the third scene, due to the continuous clutter, the back- 

ground model can be barely recovered. When the monitored scene becomes very 
cluttered, then one could think of measuring dynamics with optical flow methods, 
designed to extract information about the dynamics of the scene, typically using gra- 
dient information. Unfortunately, popular and conventional optical flow techniques 
such as Horn and Schunck [36]and Lucas and Kanade [601 also work poorly with 
heavily crowded scenes. On the other hand, feature based optical flow techniques 

using multi-resolution work quite well with relatively high frame rate (typically 

around 25fps) video sequences [15]. Section 3 presents two methods that can au- 
tomatically measure crowd dynamics. The methods are feature based and employ 
more sophisticated constraints. They are briefly presented in the chapter and for 

more details the reader is referred to [981 [100]. Both methods have been assessed 
with video sequences capturing different types of crowded situations. A compari- 
son of the two methods was carried out and also described in the chapter, for more 
details the reader should refer to [991. The performances of both methods produce 

satisfactory results, even with low frame rate video sequences (typically 4 to 8 fps). 

Optical flow or optic flow is the pattern of apparent motion of objects, sur- 
faces, and edges in a visual scene caused by the relative motion between an 

observer (an eye or a camera) and the scene. In the survey of Beauchernin 

[11] existing optical flow techniques are investigated, including: 1) differential 

methods; 2) frequency based methods; 3)correlation based method; 4)multiple 

motion methods and 5) template refined methods. 
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Fig. I The example frames and the built background images from three different scenes. Left to 
fight: three different scenes; top to bottom, three example frames and the built background images, 

respectively. 

Section 4 describes the methods used to model crowd dynam-ics. First a statisti- 
cal method is introduced. This method is focused on defining the main path of the 
crowded scene [95]. Then a neural network based approach is proposed to capture 
the crowd dynam-ics with a reduction of the dimensions of the input data. The self- 
organizing map technique is employed for this purpose and the results have been 

generated for different types of crowded scenes. Section 5 discusses the obtained 
results and sheds some light on the future directions of the work on crowd analysis. 
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2 Background 

The steady population growth, along with the worldwide urbanization, has made 
the crowd phenomenon more frequent. It is not surprising; therefore, that crowd 
analysis has received attention from technical and social research disciplines. The 
crowd phenomenon is of great interest in a large number of applications: 

Crowd Management: Crowd analysis can be used for developing crowd man- 
agement strategies, especially for increasingly more frequent and popular events 
such as sport matches, large concerts, public demonstrations and so on, to avoid 
crowd related disasters and insure public safety. 

Public Space Design: Crowd analysis can provide guidelines for the design of 
public spaces, e. g. to make the layout of shopping malls more convenient to 
costumers or to optimize the space usage of an office. 

Virtual Environments: Mathematical models of crowds can be employed in vir- 
tual environments to enhance the simulation of crowd phenomena, to enrich the 
human life experience. 

Visual Surveillance: Crowd analysis can be used for automatic detection of 
anomalies and alarms. Furthermore, the ability to track individuals in a crowd 
could help the police to catch suspects. 

Intelligent Environments: In some intelligent environments which involve large 

groups of people, crowd analysis is a pre-requisite for assisting the crowd or an 
individual in the crowd. For example, in a museum deciding how to divert the 
crowd based on to the patterns of crowd. 

Scenes 

Fig. 2A framework for Crowd analysis. 

Crowd management and public space design are studied by sociologists, psychol- 

ogists and civil engineers; virtual environments are studied by computer graphic 

researchers; visual surveillance and intelligent environments are of interest to com- 

puter vision researchers. The approach favored by psychology, sociology, civil en- 

gineer and computer graphic research is an approach based on human observation 
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and analysis. Sociologists, for instance, study the characters of a crowd as a so- 
cial phenomenon, exploring human factors. For example, the computational model 
developed by Seed Projects at Stanford University [86], incorporated human be- 
haviour in environments with emergency exits. The Crowd - MAGS Project, which 
is funded by GEOIDE and the Canadian Network of Centers of Excellence in Ge- 
ornaties, aims to develop micro- simulations of crowd behaviours and the impact of 
police or military groups [22]. The Police Academy of the Netherlands and School 
of Psychology of University of Liverpool are cooperating on a project funded by the 
UK Home Office: "A European study of the interaction between police and crowds 
of foreign nationals considered to pose a risk to public order" [1]. 

On the other hand, computational methods such as those employed in computer 
graphics and vision methods focus on extracting quantitative features and detecting 
events in crowds, synthesizing the pehnomenon with mathematical and statistical 
models. For example, early project funded by the EPSRC in the UK were con- 
cerned with measuring crowd motion and density and hence potentially dangerous 
situations [25] [87] [93]. The EU funded project PRISMATICA [75] and ADVISOR 
[2], completed in 2003, were concerned with the management of public transport 
networks through CCTV cameras. The UK EPSRC funded project BEHAVE, was 
concerned with pre - screening of video sequences for the detection of abnormal 
or crime-oriented behaviour [12]. ISCAPS [42] started in 2005, a consortium of 10 
European ICT companies and academic organizations, aims to provide automated 
surveillance of crowded areas. SERKET, a recently started EU project aims to de- 

velop methods to prevent terrorism [401. 
Figure 2 illustrates the processes involved in crowd analysis. In a crowd scene 

the attributes of importance are crowd density, location, speed, etc. This information 

can be extracted either manually or automatically using computer vision techniques. 
Crowd models can then be built based on the extracted information. Event discovery 
is achieved using pre-compiled knowledge of the scene or using the computational 
model, although both approaches can be combined. In both cases the model is up- 
dated with newly extracted information. 

Moving or Static platform 
Sensor typology and topology Number of cameras 

T'vi)e of video sequence: colour or gray scale, etc. 

Environmental conditions Level of clutter I 
Light condition, etc. 

Scene typology 
Col ective . Average speed, etc. 

Table I Features in crowd analysis by computer vision methods. 
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2.1 Crowd Information Extraction 

The components of crowd analysis from a computer vision perspective are described 
in Table 1. Essentially, the typology of sensors and their topology influence the scene 
capture processes; environmental conditions, such as natural and artificial illumina- 
tion changes often introduce noise; the scene typology affects the type of process 
one requires to extract the most accurate information of a dynamics scene. 

Visual surveillance methods have been developed to estimate motion of objects 
and people in the scene, in isolation or in groups; a review can be found in [37]. 
When video is analysed for very crowded scenes, conventional computer vision 
methods are not appropriate, in these cases methods must be designed to cope with 
extreme clutter. Features from conventional image processing are still employed, 
such as colour, shape and texture etc. However, sophisticated methods have been 
developed to retrieve crowd information. In the following sections review the exist- 
ing state of the art will be reviewed. 

2.1.1 Density Measurement 

An important crowd feature is crowd density and it is natural to think that crowd of 
different density should receive a different level of attention. 

Research methods have been proposed for crowd analysis which employs back- 
ground removal techniques such like [93] [61] and [26] makes use of examples to 
map the global shape feature to configurations of humans directly. These works 
have a typical assumption that the number of foreground pixels are proportional 
to the number of people, which is only true when there are not serious occlusions 
between people. 

Image processing and pattern recognition techniques are also used for the anal- 
ysis of the scene to estimate the crowd density. Marana et al. [64] assume that im- 
ages of low-density crowds tend to present coarse texture, while images of dense 
crowds tend to present fine textures. Self-organizing neural maps [651 combined 
with Nfinkowski fractal dimensions [63] are employed to deduce the crowd density 
from the texture of the image. The work by Marana is compared in [76] with an- 
other method that uses Chebyshev moments. An optimization of performance under 
different illumination conditions is discussed. Lin et al. [591 present a system that 
estimates the crowd size through the recognition of the head contour using Haar 

wavelet transform (HWT) and support vector machines (SVM). 
Alternative methods combine several techniques, to achieve more accurate and 

reliable measurements. For example, in [87], an edge-based technique is integrated 

with background removal using a Kalman filter. Marana et al. [62] use different 

methods including Fourier and Fractal analysis and classifiers to estimate the crowd 
density level. Kong et al. in [52][531 employ background subtraction and edge de- 

tection is employed; the work defined the extracted edge orientation and blob size 
histograms as features. The relationship between the feature histograms and the 
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number of pedestrian is learned from labelled training data. Obvious more cues 
may indicate a more accurate solution. 

2.1.2 Recognition 

Conventional visual surveillance focuses on object detection and tracking. In essence, 
image processing techniques are employed to extract the chromatic and shape infor- 
mation of the moving objects and the background for detecting and tracking pur- 
poses. 

For crowd dynamics modelling, detecting and tracking are also important as they 
provide the location and velocity features of the dynamics. Crowded scenes add 
a degree of complexity to the conventional detection and tracking problem of sin- 
gle individuals. In the following sections the focus will be on methodologies for 
crowded situations. 

Face is the most discriminating feature of the human body and many researchers 
try to detect pedestrian through face detection. Majority of the existing research em- 
ploys supervised leaming methods to detect face in crowded situation, for example 
[851 [581 [43][381. 

Pedestrian detection and tracking is a well studied problem in computer vision. 
Many methods have been proposed, such as using the afore mentioned background 
removal technique, or combining chromatic and shape information of the tracked 
pedestrians. The following sections discuss the methods that try to provide a solution 
for pedestrian detection in crowded scenes. 

Occlusion caused by the high clutter of the pedestrian in crowd scene is the ma- 
jor challenge for crowd detection problem. Research is carried out to addresses 
the problem by using human body parts like [91] [28] [57]. Besides conventional 
cues of pedestrian appearance, space-temporal cues are used for detection. Bros- 
tow et al. (17] tackle the problem by tracking simple image features and proba- 
bilistically grouping them into clusters representing independently moving entities. 
In extremely cluttered scenes, individual pedestrian cannot be properly segmented 
in the image. However sometimes the crowd within which the pedestrians share a 

similar purpose can be recognized. Reisman et al. [791 propose a scheme that uses 

slices in the spatial-temporal domain to detect inward motion as well as intersections 
between multiple moving objects. The system calculates a probability distribution 

function for left and right inward motion and uses these probability distribution 

functions to infer a decision for crowd detection. 

2.1.3 Tracking 

Tracking has been proposed to localize the interested object in time-space. Also 

the velocity feature can be derived afterwards. Though as a natural extension of 

detection, tracking has its own problem to recognize and identify pedestrians in 

the consecutive frames. Tracking could be regarded as the most popular topic in 
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visual surveillance, however currently for crowd analysis, most of the techniques 
are validated only for multiple (e. g. up to 10) people. 

As discussed in the last subsection, occlusions could occur very frequently when 
there are many objects and people in the scene. Tracking techniques have to over- 
come the problem in order to continuously track before, during and after the occur- 
rence of occlusions. A comprehensive review on occlusion handling can be found 
in [30]. A formulation of the occlusion problem is provided, and the techniques are 
divided in two groups: merge-split approach, which addresses the problem to re- 
establish object identities following a split, and straight-through approaches, which 
maintains object identities at all times. 

Crowd scenes increase the complexity of tracking because there are multiple 
moving objects in the scene. Different techniques r are developed to improve the 
continuous tracking of an individual in a crowd. 

" Likelihood. Colour, edge etc. are the most popular features in tracking. In crowd 
salient traceable image features are particular interested for tracking. For exam- 
ple, as one of the good candidates, interest points (lPs) are employed in [301 and 
[671. 

" Human body model. Methods using models of human bodies or human body 
parts have been developed for tracking in complex crowded scenes, which are 
usually completed with probabilistic frameworks, examples like Zhao [ 10 1] [ 102] 
[921 (91]. 

" 715racking inference strategies. Tracking inference strategies have been devel- 
oped for the problem of tracking multiple objects. For non-linear and non- 
Gaussian dynamic models, particle filter technique, also known as CONDENSA- 
TION [4 1 ], is one of the most popular among those. Particle filters are sequential 
Monte Carlo methods based upon a point mass (or 'particle') representations of 
probability densities (271. Large portion of multiple object tracking work have 
employed this technique, for example [88][73] [801 [18][511 [441. 

" Data assoication. To address data association problem, there are Multiple Hy- 

photheses Tracker (MRT) and Joint Probabilistic Data Association Filter (JPDAF). 
M11T tries to keep the track of all the possible hypotheses over time [78]. A de- 
tails summary and a discussion of MfIT for multiple target tracking is included 
in [13]. JPDAF computes a Bayesian estimation of correspondence between the 
different features and the different objects, e. g. [77] [451. 

In certain cases, interaction happens frequently in crowded scene. Researchers 
have shown great interest in studying these interactions to get the new perspectives 
on tracking techniques. For example both Smith et al. [81] and Khan et al. [47] 

propose to use Markov Chain Monte Carlo (MCMC) and the particle filter. Some 

researchers interpret interactions as relationships between pedestrians and a group 
(pedestrian merging/splitting into groups) [66] (69]. 

Furthermore, for large public areas the use of a multi-camera system is required 
to cover most of the monitored areas, for exmaple (701 [20] [461 [48]. 
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2.2 Crowd Modelling and Events Inference 

Dynamics in public spaces can indeed be recurrent. Crowd information can be bet- 
ter exploited to indicate the status of the crowd so that crowd events can be inferred. 
Crowd models have been built to represent these statuses, either implicitly or ex- 
plicitly. On the other hand, some research makes direct use of crowd information 
instead of building models. In such cases, the events are usually inferred based on 
some prior knowledge of the properties of the particular scene and the crowd. In this 
section, crowd models and events inference in computer vision will be presented as 
well as some crowd models from non vision areas. 

2.2.1 Crowd models and crowd events inference in computer vision 

In computer vision crowd modelling is achieved based on the extracted information 
from visual data and normally can be employed in crowd events inference. Mean- 
while there are also some approaches attempt to infer events without construction 
of models. 

Crowd model as representations of recurrent behaviours. Zhan et al. [94] 
[97] [96] propose a crowd model using accumulated motion and foreground 
(moving objects) information of a crowded scene. A preliminary data mining 
of the PDF models is given to find the major (most frequent) path of the crowd. 
Andrade et al. [6][5][7] characterize crowd behaviour by observing the crowd 
optical flow associated with the crowd and use unsupervised feature extraction to 
encode normal crowd behaviour. 
Event inference. Early work on crowd monitoring and crowd event inference 

using image processing is reviewed by Davies et al. [25]. More recent work like 
in [14] [681 [241 [23] [191.1n. these methods especially assumptions of crowd 
are usually involved, indicating that some prior knowledge is required for events 
inference. 

2.2.2 Crowd models from non vision approach 

Computational models aim at describing and predicting the collective effects of 

crowd behaviour by identifying the relationship between crowd features. 

Physics inspired models. Several quantitative factors of crowds and pedestrians 

are measurable. This fact encourages researchers to took for the mathematical 

models of crowd dynamics. For example Helbing [34][35][331 proposes social 
force model based on the social field theory. Hughes [39] describes the crowd by 

"types" where pedestrians in each type have the same walking habits. 

Agent based models. These are qualitative models include employing fuzzy 

methods to describe the relations of factors and crowd motion instead of pure 



10 B. Zhan, P. Remagnino, D. N. Monekosso and S. Velastin 

mathematical methods. Agent-based models use agents to represent the pedes- 
trian or the crowd, examples like [72][74] [16]. Some work of the agent-based 
models have already been commercialised, such as the work of Keith Still at Crowd Dynamics Ltd [21] and LEGION international LTD [56], both provide 
pedestrian simulations for space design and planning, based on agent technol- 
ogy. 
Cellular automation models. Another research approach employs the construc- 
tion of local models, where active area has been virtually divided into cell such 
as [3] [54]. 
Nature based models. Some of the models take their inspiration from nature. 
The emotional ant model [10] extends the psychological information using bio- 
logically inspired ant agent as a crowd and Kirchner et al. [491 applying a bionics 
approach to the cellular automation model. 

2.3 Examples of Bridging the Research 

Computer simulation can be used to evaluate the developed system's performance. 
Considering that real visual evidences for abnormal scenarios are rare or unsafe 
to reproduce in a controllable way, Andrade et al. [41 have developed an approach 
generating simulations to allow training and validation of computer vision systems 
applied to crowd monitoring. The simulation is generated by a pedestrian path model 
and a pedestrian body model. Vu et al. [90] conceive a test framework that generates 
3D animations corresponding to behaviours recognised by an interpretation system. 
In other words, this is a test system for a given interpretation system by generating 
test animations. Non-vision models can be borrowed for computer vision analysis. 
Anotonini et al. [8][9] propose a framework using discrete choice model, which is 
widely used in traffic simulations, for pedestrian dynamics modelling. 

The works of non-vision analysis show that all of the factors or information 
extracted from the real world using computer vision techniques are inter-related. 
Moreover, they have proposed the probable relationships in their works, which rep- 
resent the human understanding of crowd dynamics. On the other hand, computer vi- 
sion techniques have the ability of exploiting the special environmental constraints, 
which could be applied to calibrate the proposed models. We can claim that it is 

possible that to develop intelligent systems combining these works with computer 
vision approaches. The system would be capable of automatically understanding 
and modelling the crowd behaviours which works at both instantaneous and recur- 
rent level. 
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3 Measuring Crowd Motion 

Algorithms exist to analyze simple scenes, where a few people enter and exit the 
field of view of the deployed cameras. In such scenes, people and objects are iden- 
tified and tracked throughout the network of cameras. People and objects, such as 
vehicles are tracked between frames 1 and their trajectories are also predicted us- 
ing conventional Kalman filters, or more sophisticated particle filter techniques. 
We studied algorithms that use refined matching methods exploiting local descrip- 
tors to derive the dynamics features instead of providing a conventional tracking of 
pedestrians. The problem with tracking in very cluttered and complex scenes is that 
matching is not always possible and tracks are frequently lost, creating fragmenta- 
tion in the tracking process. What we propose is the tracking for short periods of 
time and we provide two algorithms to provide robust matching between frames for 

use in short-time tracking. The extracted and matched dynamics features can then 
be directly used in the process of crowd understanding and dynamics modeling. 

3.1 Method 1: Pyramid-based Interest Points Topological Matching 

In order to devise algorithms to automatically derive complex crowd dynamics, local 
descriptors, classified as interest points, have been extracted using color gradient 
information at scale space. Furthermore, besides the use of the extracted descriptors, 

an advanced matching improved by incorporating topological constraints has been 
developed. 

3.1.1 Extraction of Local descriptor: Harris Detector 

The first method employs a modified version of the Harris interest point detector 

[31]). The Harris interest point detector provides a repeatable and distinctive de- 

scriptor of the image features and it is view-point and illumination invariant. The 

Harris interest point detector provides a repeatable and distinctive descriptor of the 

image features and it is view-point and illumination invariant. This detector extracts 
feature points making use of the three chromatic channels defined as M matrix: 

M= G(a) (9 
cx - cx cx - CY (CY-CX 

CY-CY) 

In the operation the image is firstly smoothed using a standard Gaussian operator (of 

deviation cy). C, and Cy are respectively the gradient in x and y directions of the pixel 

chromatic triplet. They are estimated by applying the Gaussian derivative operator 

G(a) of (deviation a) to the smoothed image, this is efficiently implemented by 

I Tracking refers to matching and predicting position and form of extracted features between time 

frames. 
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Bottom Layer 

Fig. 3 Interest Point Generation, from bottom layer to top layer 

Top Layer 

using the method from [891. The interest points are then extracted using term R, 
which is calculated as a combination of the Eigen values of the M matrix: 

R= det(M) + Ktrace 2 (M) 

Where K is a constant where 00.4 <K<0.06. The points with local maximum 
are selected as interest points. A multi-scale approach is used, generating the inter- 
est points at the lowest (finest scale) layer and then projecting them up to the top 
(coarsest scale) layer of the generated pyramid. 

3.1.2 Point Matching 

The matching is carried out in two steps: searching for the candidate matching points 
by similarity and then applying the topological constrains described later. Frequent 

occlusions reduce the probability of identifying correct matches, as a result without 
local support, similar gradient local regions might be found as plausible matches 
generating false positives. In this implementation proposes a topological constraint 
to make the search for correspondences more robust. Gabriel [29] proposed a similar 
method using topological information, however in his algorithm the area (object) of 
interest was predefined and the topological information was evaluated by the already 
know center of the object. In this approach, instead of detail tracking a particular 
object over long period, the motion of two consecutive frames is more desirable. 

Therefore the necessary local support is derived from local windows centered at the 
interest point and the relative location of the interest points in such windows is used. 
Support is estimated for the matched interest point pair inside the support window. 
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3.1.3 Temporal pyramidal analysis 

Temporal smoothing and matching is also carried out by comparing a number of N 
spatial pyramids, corresponding to a specific time window. Thus a spati al- temporal 
pyramidal analysis of the sequence is generated for a number of frames. Tempo- 
ral smoothing is employed to enforce time consistency on matches, reducing false 
alarms generated by unstable interest points. 

So matching is carried out in both space and time, starting at the highest level 
(coarsest level) of each pyramid, searching interest point correspondences between 
the initial frame of the N frames and each other frame within the given time period 
(corresponding to N-I matches). Spatial matching works from the top (finest scale) 
of a pyramid to the bottom (coarsest level). Then temporal integration of pyramidal 
matches of interest point j in 0 frame can then be applied by combining the N 
matches. 

3.2 Method 2: using Edge Continuity Constrains of Interest Points 

The second method is developed using local descriptors, but also incorporating 
shape information. Inspired by the methodology using in deformable object track- 
ing, edge information is extracted and descriptor points are extracted as points along 
an edge with local maximum curvature. The information about an edge is main- 
tained and used to impose the edgelet constraint and refine the estimate. Thus the 
advantage of using point features which are flexible to track and the advantage of 
using edge features which maintain structural information are combined here. 

3.2.1 Edge Retrieval 

The Canny edge detector is employed to extract the edge information of a given 
frame. Each Canny edge is a chain of point, and all the edges are stored in an edge 
list. Figures. 4 show an example image frame and the extracted edge chains with 
associated bounding boxes respectively. It can be observed that even in a scene 
which depicts a crowd of moderate density, edge chains can occlude each other, 
increasing the descriptor matching complexity. 

Canny edge detector is an approach which is optimal for step edge corrupted 
by white noise. The optimality of the detector is related to three criteria. The 
detection criterion is about low error rate. It is important that edges occuring 
in images should not be missed and that there be no responses to non-edges. 
The second criterion is that the edge points be well localized. The distance 
between the edge pixels as found by the detector and the actual edge is to 
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be at a minimum. A third criterion is to minin-fize multiple responses to a 
single edge. Thus based on these criteria, Canny edge detector is proposed 
and become one of the most popular edge detectors [82]. 

Fig. 4 Edge Chain 

3.2.2 Curvature Estimation and Interest Point Extraction 

Interest points, can be quickly extracted for a sequence of frames, for instance with 
the Harris comer operator used in last section. However Harris interest points can 
only represent the local characteristics of an image in isolation, while the shape 
information of the moving person/people is lost. In this implementation the interest 

points are from the edges and then the constraint is imposed that they lie on a specific 
edge. Each edge can be represented by a parameterized curve: 

X(t), (3) 

y (t) - 
(4) 

The curve is smoothed with a Gaussian filter, as follows 

X(t) G(t) 0x(t), (5) 

X'(t) G'(t) (9 x (t), (6) 

X" (t) :: -- G" (t) 0x (t) 
- 

(7) 

The curvature of each edgelet can then be given by [711 : 

X/y/f Yfxf/ (8) 
3 (Xf2 yf2 )I 

(a) Original frwne. 
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(b) Edge chains and their bounding boxes). 
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Comer points are defined and extracted as the local maxima of the absolute value 
of curvature on each edge. Thus the edge representation is changed from a point 
sequence to a comer point sequence, resulting in a list of comer point sequences for 
all the edges of the image. 

(a) (b) 

K 

Q, 

:,... c ýe ., 

(c) (d) 

Fig. 5 Two scenes of different complexity levels are illustrated. The original frames (left) and the 
extracted comer points (fight) which are marked with red crosses on grey edges. 

3.2.3 Point Matching and the Edgelet Constraint 

Given two consecutive frames It and 11+1, the motion is estimated for each extracted 
point of interest. For each comer point with coordinate (x, y) in It a rectangular 
search window is defined centering at (x, y)in It+,. A look-up table (LUT) contains 
comer point and edge information is generated to enhance the matching. The corre- 
spondence is matched by using curvature information of comer points in the search 
window in LUT against the reference point. The error is calculated by the curvature. 

Complex dynamics and frequent occlusions generated in crowd scenes make the 

estimation of motion a very complex task. Point matching in isolation is too fragile 
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and prone to errors to provide a good motion estimator. If the interest points are 
extracted on edge chains, then the edge constraint can be imposed and used. 

For an image frame It, every edgelet is split to a uniform length edgelets; repre- 
sented by sub-sequences (so called edgelet). There are two reasons for doing this: 
to avoid a very long edge that could be generated by several different objects, and to 
enhance the matching of the edge fragments that are generated by occlusions. For 
each comer point there are n candidate matching points. Each candidate point be- 
longs to an edgelet, thus there are m(m <= n) candidate matching edgelets. To find 
the best match, three parameters are used: energy cost, variation of displacements 
and the match length for each candidate and combine them into a single matching 
score. The length of th edgelet is assumed to be small enough so that it would not 
split again to two or more matches. This is so that their candidate points correspond 
to the same candidate sequence. 

The matching is carried out over every point of the interested edgelet and an 
overall matching will be exam to determine the matched edgelet. 

3.3 Comparison of the two methods 

When the scene is very complex, occlusions make it virtually impossible not only 
to track individuals but also to estimate a stochastic background model. The two 
described motion estimation methods were validated and compared. In both of the 

algorithms, constraints are applied to improve the robustness of the matching be- 

tween individual descriptors. The first algorithm checks locally the spatial temporal 

consistency of color gradient supported by the local topology constraints and the 

second one uses the points of local extreme curvature along Canny edges and ap- 
plies contour constraints. 

3.3.1 Testing Data 

The two motion estimation algorithms are tested using three sequences taken from 

crowded public space and quantitative results are generated. In the following a brief 

description of the test dataset used in the experiments is given. Then the details 

of the testing methods adopted and explain the results generated from the tests are 
introduced. Again additional visual results are included at the end of the section. 
Sample frames from the three sequences are shown in Figure 6: sequence 1 (left) is 

a mid field scene with people scattered across the field of view; sequence 2 (middle) 

is a mid field scene with major motions taking place in certain areas; sequence 3 

(right) is a far field scene with pedestrians present in all parts of the field of view, 

with some predominant trajectories. 
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Fig. 6 Sample ftames from 3 testing sequences 

3.3.2 Testing based on local descriptors 
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Fig. 7 NIS (left column) and MAE (right column) along time for the 3 testing sequence (From top 

to the bottom: sequence 1, sequence 2 and sequence 3), red lines for Algorithm I-, green lines for 

Algorithm 2. Algorithm 2 keeps higher in NIS and lower in MAE. 



18 B. Zhan, P. Remagnino, D. N. Monekosso and S. Velastin 

In this testing only the quality of matching of individual local descriptors is con- 
sidered. For each pair of consecutive frames, local descriptors in the initial frame are 
compared with their corresponding local descriptors, found by the two presented al- 
gorithms, in the target/second frame, respectively. Two measures, Mean Similarity 
(MS) and Mean Absolute Effor (MAE), are used here. 

The images in Figure 7 represent the plots of MS and MAE for the two algorithms 
tested against the three sequences. MS and MAE are calculated every frame along 
the sequence. In each plot the x axis represents time (the number of the frame) and 
the y axis represents the values of MS and MAE, respectively. Hence, for the two 
algorithms the MS and MAE for the three testing sequences are both good, though 
in most of the cases the second algorithm has a higher MS and a lower MAE. Also, 
along the time scale the MS and the MAE produced from the first algorithm fluctuate 
a lot while the second one produces more stable results. It can be concluded that the 
second algorithm has a more desirable performances than the first one. 

3.4 Testing based on Motion Connect Component 

The testing here makes use of connected components algorithm based on motion 
vectors (so called MCC - Motion Connected Component). The algorithm groups 
together motion vectors that are in close proximity and have common motion prop- 
erties. The result of the MCC algorithm segments the motion field into clusters of 
uniform motion group (e. g. a (part of) pedestrian or a group of pedestrians), and 
the testing is based on each MCC to assess the two algorithms. In order to assess 
the two algorithms with MCC, two measures, which are from in evaluating search 
strategies: Recall and Precision, are adapted here. For every frame an average Recall 

value and an average Precision value are calculated. Figure 8 gives the plots of Re- 

call and plots of Precision; the layouts of these plots remain similar to the previous 
ones, though the y axis represents Recall and Precision, respectively. 

From the plots again the results of Recall and Precision of both of the algorithms, 
especially the results of Recall, are satisfied. It can be observed that the results of 
Precision for sequence 3 is lower than the other three, one possible reason could 
be that as sequence 3 is a far field view for a crowded scene, when mapping the 
bounding box of the MCC to the second frame local descriptors of other MCC could 
be included and noise could be introduced. 

When comparing the results of Recall, it can be seen values for Algorithm 2 

are always higher, though for sequence 2 and sequence 3 Precision values for Algo- 

rithm I are slightly higher. Here another measure should be taken into consideration, 

which is the number of the MCC detected by each algorithm. According to the plots 
in Figure 9, in sequence I the average number of MCC detected by Algorithm I 

is around 20, while by Algorithm 2 the number is around 100; in sequence 2, the 

numbers are around 20 and 200, respectively; in sequence 3 the numbers are around 
40 and 280, respectively. Algorithm 2 detects much more MCC, especially for se- 

quence 2 and 3. Due to the above fact and the fact Algorithm 2 produces higher 
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Fig. 8 Recall (left column) and Precision (right column) along time for the 3 testing sequence 
(From top to the bottom: sequence 1, sequence 2 and sequence 3), red lines for Algorithm 1; green 
lines for Algorithm 2. Algorithm 2 has higher values of Recall. 

Recall, it can be deduced that the slight drawback of the Precision only indicates 

more noise has been introduced to the assessment. 

4 Modelling Crowd Dynamics 

Crowds appear to move at random in a scene. In fact, this is not exactly true: people 
move purposively and their movements are guided by intentions. For instance, in a 

railway station or at an airport, people tend to enter and exit the scene at the gates and 

usually stop in front of a timetable, a shop or a cash point. Although at first chaotic, 
the video of a crowded place, if observed attentively, reveals main trajectories. We 

have studied two methods to extract the main paths or directions of motion of a 

crowded scene. They are described in the following sections of the chapter. 



20 

I. ' 

MI za 

Q, lk iAlk ink 2& lik 

220 

200 

180 

ISO 

140 

so 

40 

20 

ML lul 

(a) 

120 

100 

00 

is 
I "' 

2D 

B. Zhan, P. Remagnino, D. N. Monekosso and S. Velastin 

- . -� --� /" 
- 

"1 

KIL I%L vx IML 

(C) 

390 

250 

1 "0 

log 

so 

Fig. 9 Number of MCCs along time for the 3 testing sequence, red lines for Algorithm 1; green 
lines for Algorithm 2 (From top to bottom: sequence 1, sequence 2 and sequence 3). Algorithm 3 
detects much more MCCs for all of the three video sequences. 

4.1 Sta&tical Analysis 

The proposed method can be summarized in the following steps: 

" Occurrence PDF: foreground detection, connected components, accumulator, 
" Orientation PDF: correlation matrix, accumulator of block matching, 
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* Path discovery: previous orientation, probability calculation, path split. 

4.1.1 Occurrence PDF 

It is unrealistic to precompile a background model of a complex real world scene, 
such as those video recorded by security cameras in public spaces. This is because 
of sudden or continuous changes in illumination, shadows and noise in the video 
signals. This method assumes that the scene is not too crowded and the Gaussian 
mixture model [83] is used to build a robust model of the background of the scene. 
The foreground data is further processed to reduce noise. In particular, connected 
components have been implemented. Connectivity of foreground pixels gives more 
robustness to the foreground data and assures that only large foreground blobs are 
accepted for further analysis, while smaller blobs are re ected as likely noise. i 

Background model is essential for video analysis to separate foreground data 
from the scene. There is a standard background adaptation carried out by aver- 
aging images over time, creating a background approximation which is similar 
to the current static scene except where motion occurs. While this is effective 
in situations where objects move continuously and the background is visible 
a significant portion of the time, it is not robust to scenes with many moving 
objects particularly if they move slowly. Gaussian mixture model is proposed 
in [831. It is an adaptive tracking system that is flexible enough to handle vari- 
ations in lighting, moving scene clutter, multiple moving objects and other 
kinds of changes to the observed scene. Rather than explicitly modeling the 
values of all the pixels as one particular type of distribution, the values of 
a particular pixel are simply modelled as a mixture of Gaussians. Based on 
the persistence and the variance of each of the Gaussians of the mixture, the 

model determines which Gaussians may correspond to background colors. 
Pixel values that do not fit the background distributions are considered fore- 

ground until there is a Gaussian that includes them with sufficient, consistent 
evidence supporting it. 

For each frame foreground, features are accumulated for every pixel, so that af- 
ter a relatively long video sequence the accumulator of the foreground occurrence 
throughout the whole image will have some information. 

4.1.2 Orientation PDF 

The image plane is segmented into a regular grid of cells (N x M). The dimen- 

sion of each cell is a multiple of 2 and each cell is square-shaped (K x K). The 

idea is to speed up the matching process employed as a coarse estimator of mo- 

tion between frames. Motion is estimated between consecutive frames, using the 
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foreground blocks of the first frame as a reference/template and searching for an 
optimal match in the second frame. In the current implementation, block matching 
is carried out in a 3A neighborhood, around the selected foreground cell. A cell 
is labeled as foreground if the majority of its pixels are indeed foreground. Match- 
ing performance is improved by matching only between foreground cells, ignoring 
background cells. 

Each cell is therefore associated with a histogram representing the eight possible 
directions of motion. The intention here is to build a local representation of motion, 
similar to a discrete reinforcement leaming technique [84], where each cell of the 
table has associated a quality array, indicating the likelihood of transition from the 
current cell to a neighboring cell. The final outcome is an orientation PDF, which 
could be interpreted as the global optical flow of the scene. 

4.2 Path Discovery 

The work described in the previous sections provides two PDFs: one for the oc- 
currence and one for the orientation of a scene. To discover the main paths, the 
information and extract those corresponding to higher likelihood/probability need 
to be combined. Ideally the paths are identified corresponding to the modes of a 
probability density function that combines both occurrence and orientation infor- 
mation. 

In order to estimate the main paths make a number of assumptions was made. 
Path origin: The assumption is that all paths originate from the boundaries of 

the scene. Consequently path discovery is started from a cell the boundary of the 
scene and having high occurrence probability. This assumption would not work if 
the scene had an entrance or exit in the middle of the image, but this can be overcome 
relatively easily by using user-defined boundaries. 

Graceful continuation/Smooth trajectory: As observed, the paths have a high 

probability to maintain their orientation (e. g. people are more likely to go on a 
straight line, and seldom go backwards. ) So the expected direction of motion is 

modeled with a Poisson distribution with its maximum in the neighboring cell along 
the current direction of motion. 

The idea is to spread the likelihood of change in direction unevenly, maintaining 
the previous orientation as the one at highest probability and forcing the other direc- 

tions (change in direction) to have a lower likelihood. From the start point, the prob- 
ability is calculated for each neighboring block using the occurrence PDF (PDFocc), 

the block matching accumulator (Pb) and the orientation probability (PDFor). Fur- 

thermore, to avoid repeating calculations from the same block, the visited cells is 

marked, their probability is set to to 0 each time the path discovery process has to 
deal with them. 

The process will follow the highest probability block. Also a way of deciding 

when to split a trajectory in two or more sub-trajectories is devised. This technique 

works on a threshold that estimates whether two or more paths are viable given their 
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associated likelihood. However, as not to generate too many branches, only a single 
split along a trajectory is admitted. 

Once all paths are identified, a fitting process takes place. This serves two pur- 
poses: (i) to have a compact representation of the path, (ii) to have a faster way of 
estimating the distance between a blob/bounding rectangle, identified by new fore- 
ground data, and the spline, and consequently estimating an error. The final path is 
represented as a curve by fitting a uniform Cubic B-spline. 

4.3 Self-Organizing Mapfor Learning Crowd dynamics 

The previous approach is based on background modeling, which can not work prop- 
erly under extremely crowded situations. The crowd PDFs derived by the described 
method are not global statistics. Also, the number of dimensions of the model is 
relatively high, especially for the orientation PDF. Those are disadvantages can be 
overcome by the method described in this section. 

Here we describe some work carried out applying self-organized maps to learn 
the dominant crowd dynamics. The self-organized map (SOM) model [32] is a well 
known dimensionality reduction method proved to bear resemblance with some fea- 
tures of the human brain, which represent different sensory input by topologically 
ordered computational maps. SOMs are widely used in mapping multidimensional 
data onto a low-dimensional map, example of applications include the analysis of 
banking data, linguistic data [501 and image classification [55]. This section pro- 
poses a system learning the crowd dynamics with the SOM. The system uses dy- 
namics information as input; and it generates SOM which captures the dominant 
recurrent dynamics. 

4.3.1 Building SOM for a Crowded Scene 

The most common SOMs have neurons organized as nodes in a one- or two- 
dimensional lattice. The neurons of a SOM are activated by input patterns in the 
course of a competitive learning process. At any moment in time only one out- 
put neuron is active, the so called winning neuron. Input patterns are from a n- 
dimensional input space and are then mapped to the one- or two- dimensional out- 
put space of the SOM. Every neuron has a weight vector which belongs to the input 

space. 
The desirable SOM in this application should capture the two major components 

of the crowd dynamics: occurrence and orientation. Thus a four dimensional in- 

put space is chosen to be the weight space of the SOM, which can be represented 
as f: (x, y, 0, p). Each data from the input space can be explained as the location 

where crowd moves and the motion vectors in the form of angle (0) and magnitude 
(p). The SOM used in this experiment is organized in a two-dimensional space and 

represented by a square lattice. 
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There are two phases for tuning the SOM with an input pattern 1, competing 
and updating. In the competing phase every neuron is compared with 1; the sim- 
ilarly of I and the weights of all of the neurons are computed; and the neuron 
N(i,,, j,, )(denoted by the neuron's coordinates of the lattice) with highest similarity 
is selected as the winning neuron. In the update phase, for each neuron N(ij), a 
distance is calculated as: 

2= (i 
_ iw)2 + (j 

_ jw)2 

the topological neighborhood function is then defined as: 

d2 (n) = exp -2) 
cy (n) 

where n denotes the time, which can also be explained as the number of iterations. 
and a2 (n) decreases with the time. The weight of each neuron N(i, j) at time n+I 
is then defined by: 

w(n + 1) = w(n) + rl (n)h(n) (x - w(n)) (11) 

where w(n) and w(n+ 1) is the weight of the neuron at time n and n+1.77 (n) is the 
function of learning rate, which always decreases with time. 

4.3.2 Visualization 

Figure 10 illustrates three different video sequences with different dynamics. These 
video sequences have been input into the system, and Figure II shows the output 
SOMs. In the figure SOMs are visualized in the input space, i. e. showing the weight 
vector of each neuron. In the visualization, the color arrows and their locations are 
from the weight vector of neurons; the location of the arrows are from the first 

two components of the weight vectors (x, y), and the arrows show the second two 
components - the components of motion (19, p). The different colors of the arrows 
are also indicating the different orientation of the motion. 

In the first video (the left column in Figure 10) the major crowd is moving from 
bottom left to top right of the scene. There is another crowd flow from bottom right 
of the scene which joins the major flow. In its SOM (the first one in Figure 11) the 

neurons with green arrows are clearly from the major flow and the ones with red and 

purple arrows are from the minor flow. In the second video (the middle column in 

Figure 10 it is an area of an entrance to a public space. So most of the people move 
from top to bottom of the scene. The crowd in the upper part of the scene is more 

sparse and moves faster when compared to the crowd in the lower part of the scene. 
There is also a minor flow, which joins the major flow from right of the scene. In 

the built SOM (the second SOM in Figure 11), again the flows are clearly indicated. 

Furthermore the SOM takes an umbrella shape, which represents the shape of the 
flow constrained by the obstacles in the scene. In the third video (the right column in 
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Figure 10) the scene is a large open area with multiple crowd flows. The major flow 
is moving from right to left; however there are several minor flows, most of which 
are in the lower part of the scene. Again the SOM (the third in Figure I I)captures 
the major dynamics and also some minor flows. From the three examples, it can be 
concluded that the SOMs not only preserves the dominant motion vector, but also 
represents the shape of the regions with dominant motion of the scenes. 

Fig. 10 The example frames from three different scenes. 
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Fig. 11 The visualization of built SOMs 
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5 Discussion 

This chapter has described novel methods for the automatic analysis of the crowd 
phenomenon. They are based on computer vision techniques. In particular local de- 
scriptors matching with refined constraints are proposed to tackle the problem of 
crowd motion measurements. Statistical methods using Probability Density Func- 
tions are employed to learn the crowd dynamics by mining the main path of the 
crowded scene. Another approach of crowd dynamics learning adapts Self Organiz- 
ing Maps to capture the main recurrent dynamics. There are a couple of possible 
extensions of the work. Especially for latter approach, analyzing the organization of 
the SOM would make it possible to understand the characters of the dynamics. Also 
the development of a metric of comparing SOMs could be very useful to enhance 
the automatic classification of crowded scenes. 
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1 Introduction 

This chapter summarizes research developed for an inter-disciplinary project on 
computer vision methods applied to enhance and automate the professional train- 
ing of nurses 1. The project has engaged the computer vision team in the Faculty 
of Computing, Information Systems and Mathematics and the School of Nursing at 
Kingston University. 

The inter-faculty project is the first attempt at Kingston University to design an 
Ambient Intelligence system, for use in the training of professionals. Ambient In- 
telligence is a paradigm introduced by the European community in 2000 [7], to 
describe a user centric intelligent system, capable of serving the generic or specific 
user, responding to the needs of the individual and the group. In the context of our 
project, the paradigm is interpreted as a set of guidelines to develop algorithms ca- 
pable of interpreting behavior in a very complex environment monitored by an array 
of cameras. 

The School of Nursing at Kingston Hill campus trains student nurses, paramedic 
and medical students (St. George's Medical school). The training consists of in- 
dividual and group practical exercises based on taught techniques, entailing both 

medical and managerial skills. Group skills are tested in large simulations. During 

term time, practice skills training is organized in series of morning and afternoon 
sessions. Simulations entail a preliminary preparatory round table, the actual sim- 

B. Zhan, D. N. Monekosso, P. Remagnino and S. A. Velastin 
Faculty of Computing, Information Systems and Mathematics, Kingston University, e-mail: 
B. Zhan@kingston. ac. uk 

S. Rush 
School of Nursing, Kingston University e-mail: srush@hscs. sgul. ac. uk 

I The research was partially funded by the European Office of Aerospace Research and Develop- 

ment (WARD) project FA8655-06-1-3013. 

I 



2 B. Zhan, D. N. Monekosso, , S. Rush, P. Remagnino, S. A. Velastin 

ulation where skills are tested at individual and in groups and a final round table 
discussion, where strengths and weaknesses of the assessed student are discussed. 

All scenes are extremely complex and cluttered, including crowded situation with 
clutter and frequent occlusions. The scenes are very crowded and occlusions are 
very frequent. In order to simplify the computer vision processing all individuals 
in the scene are asked to wear a colored tabard. Four colors are used to distinguish 
among instructors (blue), student nurses (yellow), medical and paramedic students 
(green) and patients (red). Tabards were to be worn for the entire duration of the 
exercise. 

Conventional training of nurses and medical students is very time consuming and 
when large numbers of students are involved, it is very hard for an instructor to as- 
sess correctly the performance of a student or a group of students. The School of 
Nursing runs state of the art training methodology, engaging students in individual 
and team work. Assessment is usually carried out on the fly and by recording footage 
of students' performance and illustrating to individuals and classes best practice, en- 
couraging less capable students, praising best practice of better students. The Skills' 
laboratory situated at Kingston Hill campus at Kingston University can host up to 
30 students at a time with instructors and role players engaged in large simulations. 
The lab is currently endowed with a variety of medical equipment and mobile and 
fixed cameras. The following two figures illustrate a round table example and one 
of the installed cameras, used to acquire video footage. In our experiments, we have 

771- M-, 

Thble 1 figure: 

employed four cameras (pan-tilt-zoom used as fixed cameras). A preliminary study 
was carried out by analyzing the four views independently, attempting at generating 
the automatic understanding of an evolving scene. 

Section 2 describes the algorithm used to track people in the environment, Sec- 

tion 3 describes the algorithm designed to deliver an automatic reasoning about the 

scene. Section 4 illustrates some results and Section 5 summarizes the proposed 

method and introduces some future work. 
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2 Color tracking of people 

As already shown in other research, a skin color model can be estimated by acquir- 
ing video data of a given color using template patches and via the training of a color 
model using the expectation maximization algorithm [4]. In order to optimize the 
model, the skin color data can be studied and an optimal initialization defined in 
terms of number of clusters and initial positions and approximating functions. 

A color model is fairly robust to changes in illumination but it has the weakness 
of being specific to the camera used to acquire the training data. In all our tests, each 
new video camera we have used to acquire video footage had its own color model. 
As the training can be performed off line, the limitation is not prohibitive. Color 
models were trained for the four different colors used to recognize the categories 
of people. these include the student nurse (yellow), the instructor (blue), the patient 
(red) and the medical student (green). 

In order to track color patches, identifying body parts, we have implemented the 
CAMSE= algorithm. The CAMSHIFT algorithm was originally proposed in [1], 
as an evolution of the MEANSHMT algorithm [6,3]. CAMSHIIFT adapts to evolv- 
ing a probability density function (PDF) by alternating cycles of the MEANSHIFT 
algorithm with a resizing of the search window. The window size is a function of 
the center of mass of the probability density map (Oth moment). 

Tracking color patches entails running the CAMSHIFF algorithm for each patch. 
However, this is not sufficient to maintain hypotheses in a rapidly evolving scene. 
That is why our method keeps track of a list of alive patches, by tracking them 
throughout the scene with the CAMSHIFr algorithm, removing those which have 

too low a probability associated for a number of frames and introducing new 
patches, whenever sufficiently large new patches appear in the scene with a suffi- 
ciently high probability. 

More details of the developed algorithm can be found in [2]. 

3 Counting people by spatial relationship analysis 

Colour segmentation generates fragmentation, by identifying one person with more 
blobs. This is mainly due to occlusions and self-occlusions, but also by the reflec- 
tions on the person. In our algorithm spatial relationships is employed to group the 
blobs split from a single person. At first, for each frame a graph is created with links 

between all identified blobs. Each link is then evaluated to judge whether the linked 

blobs should be merged into a cluster to recover an individual or they should be kept 

separate, making the assumption both blobs are disjoint, likely to be part of different 

people in the scene. 
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3.1 Links Between Blobs 

Links are built between each pair of blobs to estimate the spatial relations. For real 
scenario with people entering and exiting at random in the scene. The creation, 
deletion and updating of the links are required to be automatic according to the 
changing of the situations. In this system a specified framework has been designed 
for tackling the problem. The system requires that a blob A has links with all the 
other blobs in the scene during its life cycle. However during the life cycle of A, 
blob B could entered and the leave the scene. Under such circumstance, A should 
then be linked to B onces B has entered and the link should be released right after 
B has left the scene. The complexity of the problem increases when the number of 
people involved increases. 

As a result, the crucial phases of this process are creation, deletion and updating. 
The solution has been designed as creation of the links are triggered by the entering 
of blobs, deletions are triggered by the exiting of blobs and for each time segment 
At links are updated by the situation at that moment in time. 

Using the above example, a link is created between A and B, when B enters 
the scene. The link should be kept updated while B is staying in the scene. The 
link should then be released when B is no longer in the scene. In the real world 
situation it is difficult and unreliable to predict which blob is A and which is B, 
that is, to predict among two blobs in the scene which one is going to exit earlier. 
for algorithmic simplicity, a link is bi-directional, so each link between blob A, for 
instance, and any other blob, also implies that all linked blobs keep track of the 
existence of A. Creation of the link has been proposed to be: when a blob A enters 
the scene, links are created between A and all the other blobs in the scene, the 
access of a link are added to A and to the other end of the link. When a blob leaves 
the scene, it sends a signal to all the links connected to it, to release and delete them. 
At each frame, sampled at a given At, the system checks the blobs to create, delete 
or update the existing links. Algorithm I illustrates this process. 

3.2 Distance Calculation 

Distance information is held by the built links to represent the spatial relations be- 

tween different blobs. The distance between blobs is calculated as the Euclidean 
distance between the blob's centers. Because of the perspective distortion, the abso- 
lute value of the Euclidean distance cannot be used to estimating the spatial relation 
between the blobs. For instance, two blobs at an absolute distance of 50 pixels, could 
be close to each other when they are in front of the camera while they could be far 

from each other when they are distant from the camera. Hence, a method of calculat- 
ing relative distance by comparing the absolute distance with the size of connected 
blob has been proposed here, i. e. the ratio of the absolute distance and the blob size 

was used. In this method the variation of sizes of blobs in different locations needs 
is considered. So the size of blob which has upper bound is used in this calculation, 



Augmenting Professional Training, an Ambient Intelligence approach 5 

Algorithm 1 The creation, deletion and update of the links in a frame 

if objects: 00 
... m are leaving the scene then 

for i=O tomdo 
Object Oi send signals to all the links connected with it 
Delete 0,7 

end for 
end if 
Delete links with signals 
if objects: 00+... are entering the scene then 

for j=0 ton do 
Build links between object Oj+ and all objects existing objects in the scene 

end for 
end if 
Update all the existing links 

as in theory that the blob is further from the camera and in it should has a smaller 
size. The Euclidean distance is used as the absolute distance between blob i and j is 
as below: 

Dij = ýF(xi - xjj)ý2 + (y, - yj )2 

Where (xi, yi) and (xj, yj) are the coordinates of center points of blob i, j, respec- 
tively. And the temporal relative distance of blob i and j is calculated as: 

dij 
Dij 

k= 
ýjl if yj - 0.5hi < yj - 0.5hj (2) 

i, otherwise. 
ýFW2 + h2 

kk 

where Wk and hk are the dimensions of the blob. insight. 
The above calculations are carried out in a single frame. A temporal average 

operator has been applied over every At frames for each distance calculation. This 

operation can reduce the instability caused by the tracking algorithm, thus the video 
sequence has been divided into fixed length time segments, i. e. each time segment 
contains distance information for At frames. Equation 2) describes the calculation 
of this distance, 

dij(T) Idij(T 
- At) (3) 

At At 

so the distance between blobs i and j at time T is the average of the distances 

over the previous At frames. The major purpose of this operation is to stabilize the 
distance and At is a short time segment, for example in our case we use a8 frame 

At, which is equivalent to 0.5 seconds. 
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3.3 Temporal Pyramid of distance 

Short term spatial relations are not sufficient for clustering blobs. A temporal pyra- 
mid of distance scheme has been introduced to maintain the long term distance in- 
formation. Essentially, two blobs belong to the same cluster if they are close to each 
other from the moment they both appear in the scene to the moment they are clus- 
tered together. For each pair of blobs, the scheme will take into account the distance 
information from each level of the pyramid and calculate the overall probability that 
they belong to the same cluster. This scheme is based on an assumption that two 
persons are not likely to stay next to one another during a very long time period. 

TP, (Current) 

Current 
(TP2) 

1: 

1 

Half life (TP,, ) II Possummems 

Over all (TP. ) 

TP, (T/2 frames) 

Tpo (T fram-) 

Fig. 1 Temporal Distance Pyramid: The bottom layer holds the overall distance information from 
time 0 to time T; the mýiddle layer holds the distance information from time T/2 to T and the top 
layer holds the distance information for the current time slice T. 

The temporal pyramid consists of three levels : the bottom layer holds the overall 
distance information between two blobs from their appearance in the scene to the 
present time, the top layer holds the present distance information and the middle 
layer holds the information from the half time to the present; this is illustrated in 
Fig. I. The generation of the temporal distance pyramid is: 

iT 
TPo(T) = d(O --ý T) - 1, d(t) (4) 

T. t=l 
T 

TPI (T) = d(T/2 
--4T) 

d(t) (5) 

t= T 
I 

TP2(T) = d(T) = d(T) (6) 

where TPo(T) to TP2(T) represents the distance information held from the bottom 

layer to the top layer at time T. In practice to reduce the redundant calculations of top 

layer(TPO (T)) and middle layer(TPI (T)), a recursive method has been employed 

and the equations are modified as follows: 
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TPo(T) =I (TPO (T - 1) x (T - 1) + d(T)) 
T 

I 
TPi (T) (TPI (T - 1) 

T-1 -T - d(- - 1) + d(T)) 
22 

TP2(T) = d(T) 

3.4 Probability of clustering 

7 

(7) 

(8) 

(9) 

Clustering is carried out for each category, so, if two blobs belong to colors that 
refer to two different role players, for instance instructor (blue) and student nurse 
(yellow), then their link has probability zero and they cannot be linked to the same 
graph. In all other cases, spatial relation is the main criterion used for clustering. 
This means that the probability associated to the link between blobs is inversely 
proportional to their Euclidean distance. This rule is represented by a function ýp(d): 

I, when d=0; 
P(3) = (PA 1--Lxd, when O<d<Od; Od 

0, when d> Od. 

where Od is the threshold of distance, when the distance falls beyond this value, the 

probability of clustering is equal to 0. When the distance is equal to 0, the proba- 
bility is equal to 1. The probability of clustering two blobs with a distance that falls 
between 0 and Od is interpolated with a linear function. Each layer of the temporal 
distance pyramid provides a probability of clustering and the outcome of the three 
layers has been averaged as follows: 

Pdi, =I (P(TPo) + P(TPI) + P(TP2)) 
3 

The overall size of the blobs is also used to bias the probability of clustering blobs. 
A linear approximation of the blob size at different locations of the scene has been 

used as reference. The size of the overall bounding box between blobs is compared 
against the estimated reference, according to their locations. This comparison is 

represented by the ratio: 
- 

so 
S=- (12) 

Sr 

where So is the size of the blobs and Sr is the reference size from the linear approx- 
imation. The probability of clustering by area is calculated by ýp (3): 

(I, when Y=O; 
1-1 xY, when 0<9< 0,; (13) Psize ---: = PM : --= (P M =-= os 

JO, 

when 9>0,. 
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where 0, is the threshold of the ratio of the size (-s). ý0(ý) is employed for the rea- 
son that smaller fragments should increase the probability to cluster. The overall 
probability of clustering is: 

Pdis x Psize P(d) x P(9) 

3.5 Clustering 

For each frame, the clustering takes place in two steps: pair clustering and sub clus- 
tering. Pair clustering checks all pairs of blobs, clustering together all the pairs with 
high probability. This rule ensures that all the blobs which potentially belong to the 
same person are clustered together. If two blobs are selected to be clustered and they 
already belong to two clusters, then the clusters can be merged (Fig. 2(a)). Pair clus- 

Fig. 2 Two frames of problems in clustering 

tering may generate bad clustering. In fact, blobs which belong to different persons 
could be clustered together (Fig. 2(b)). The second step - sub clustering is used to 

get the scores of different number n (I <n< N)of sub clusters of a cluster C which 
contains N blobs. To achieve the best number of sub clusters, a process of sub clus- 
tering has been carried out. In a cluster generated from the pair clustering step, each 

pair of blobs is associated with a probability of clustering which is generated by the 

method described in 3.4. The strength F of a cluster is defined as: 

ck 

2 P' 
ck i=O 

(a) A frame in which multiple blobs 
(illustrated with a black oval) should be 
clustered together. 

(b) A frame in which blobs belong to 
different persons and could be clus- 
tered together (illustrated with a black 
oval). 
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where N is the total number of blobs, so there are C, 2 
'N pairs of blobs. The pairs of 

blobs that with high probability of clustering which make them connected are called 
Connections; in contrast, the pairs of blobs without Connections between them are 
called Unconnections. The basic rule of sub clustering is that every time the weakest 
Connection is removed, the blobs are reclustered by the remaining Connections. The 
score of the operation equals the energy cost E of removing the Connection and the 
related Unconnection. 

1 JE+ 11 

nm -j 
F (16) 

where the energy cost of removing a Connection of probability of clustering P is 

I -P (17) 

This operation is kept to carry on until all the Connections are removed, meanwhile 

Eff] 
EP] 

Step 1 

EP E 
E 2] m'Ep: ] 

Step 2 

o*E 
P, 

-ý E :1 
Step 3 

Fig. 3 An example of subclustering. Solid lines between blobs show the Connections and the 
dash lines are the Unconnections. In each step, the black Connections is removed, and the related 
Unconnections are removed. This operation is carried out until all the Connections are moved and 
all the blobs are isolated. 

all the blobs are isolated . Fig. 3. shows an example of the subclustering process of a 
cluster containing 4 blobs. 

During the operation, the scores are accumulated for different number of sub- 
clusters. In this case the number of sub clusters with highest score is selected to be 

added to the number of the people and the subclusters are regarded as individuals. 
The total number of people is the sum of the selected numbers of sub clusters of all 
the clusters in the frame. 
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4 Experimental Results 

For a video sequence, each frame a number of people as well as locations of people 
are retrieved. To access the system performance, ground truth is manually marked 
up by the The ViPER Ground Truth Authoring Tool(ViPER-GT tool), which is a part 
of The Video Performance Evaluation Resource (ViPER) developed by Language 
and Media Processing Laboratory, University of Maryland 2. The ground truthing is 
carried out frame by frame, and each person is selected by a bounding box (Fig. 4). 
In our work, performance was evaluated using measures borrowed from the infor- 

Fig. 4A ground truth example from ViPER-GT 

mation retrieval literature. Recall and Precision, which have been used in evaluating 
search strategies, are used here to test the results of our algorithm against ground 
truth information. Recall is the ratio of the number of relevant records retrieved to 
the total number of relevant records in the database. Precision is the ratio of the 
number of relevant records retrieved to the total number of irrelevant and relevant 
records retrieved. The Precision-Recall curve is employed to give a informative pic- 
ture of system peirformance[5]. For a video sequence, each time the bounding boxes 

of the ground truth (GT) represent the relevant records; the bounding boxes gener- 
ated by the system (RE) are considered the retrieved records. Therefore the Recall 

and Precision of each frame are calculated by comparing GT and RE. 

Recall = 
GTnRE (18) 

GT 

Precision = 
REnGT (19) 

RE 

2 The detail of ViPER and ViPER Ground Truth Authoring Tool are available online at http: //viper- 

toolki t. sourceforge. net/. 
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Profession information is also considered, i. e. intersections of GTs and REs with 
different colors do not count. The Recall and Precision estimates have been recorded 
along time scale for the video whole sequences, and each pair of the measures con- 
tributes as a point on the Precision-Recall curve. Fig. 5 shows the Precision-Recall 
curve for a video sequence. The curve shows that Precision keeps above 0.8 and 
Recall increases to up to 0.8 without a large drop on Precision. Fig. 6 illustrates 
the counting results from different situations with different number of people and 
different number of professions. These results show that the system has a stable 
performance under different circumstance. 

5 Conclusions 

This chapter has described an intelligent system that follows the guidelines of the 
Ambient Intelligence paradigm. At present, only cameras are used to recognize be- 
havior and estimate the category and number of people in the scene. Color models 
are used to track people in the scene and provide sufficient information to the system 
to generate graphs of detected and tracked color patches. The color patches are then 

used to generate a graph that is automatically analyzed by an algorithm, which can 
cluster blobs and estimate the number of people in the scene. 

The contribution of this chapter is mainly the design of a robust algorithm for the 
interpretation of a complex scene. Future work will include the combination of evi- 
dence from all the cameras, the use of stereo cameras for occlusion disambiguation 

and the introduction of radio frequency technology following the zigbee standard 
to help with the recognition of positional information of scene actors and a better 

description of the scene. 

U. 4 U. 4b U. 5 0.55 0.6 0.65 0.7 0.75 0.0 0.86 0.9 
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Fig. 6 Counting People: In these figures, ellipses represent the original blobs; thick outlines of 
shapes (rectangles, ellipses) show the existences of individuals; thin outlines of ellipses show the 
existences of clustered blobs. 
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Abstract. This paper introduces the use of self-organizing maps for the 
visualization of crowd dynamics and to learn models of the dominant mo- 
tions of crowds in complex scenes. The self-organizing map (SOM) model 
is a well known dimensionality reduction method proved to bear resem- 
blance with characteristics of the human brain, representing sensory in- 
put by topologically ordered computational maps. This paper proposes 
algorithms to learn and compare crowd dynamics with the SOM model. 
Different information is employed as input to the used SOM. Qualitative 
and quantitative results are presented in the paper. 

1 Introduction 

We are interested in devising methods to automatically measure and model 
the crowd phenomenon. Crowded public places are increasingly monitored by 
security and safety operators. There are companies (for example LEGION [1]) 
that employed large resources to study the phenomenon and generate realistic 
simulations: for instance to optimize the flow of people of a public space. 

Computer Vision research offers a large number of techniques to extract 
and combine information of a video sequence acquired to observe a complex 
scene. The life cycle of a computer vision system includes the acquisition of the 

monitored scene with one or more homogeneous or heterogeneous cameras, the 

extraction of features of interest and then the classification of objects, people 
and their dynamics. In simple scenes the background is extracted with statisti- 
cal methods and then foreground data and related information are inferred to 
describe and model the scene. Background is usually defined as stationary data, 
for instance man made structure, such as buildings, in a typical video surveil- 
lance application, or the indoor structure of a building in a safety application, 
for instance deployed to monitor and safeguard elderly people in a home. 

Unfortunately, background modeling becomes rapidly less effective in com- 

plex scenes and its usefulness seems to be inversely proportional to the clutter 

measured in the scene. Figure 1 shows a small experiment testing the effective- 

ness of background modeling with different types of scenes. Three frames per 

chosen sequence and the resulting background image built with roughly 1000 

frames are illustrated. The background modeling works well with the first scene; 



2 Authors Suppressed Due to Excessive Length 

it fails to recover the background of some regions in the second scene because 
of the frequent occupancy over these regions; and in the third scene, due to the 
continuous clutter, the background model can be barely recovered. Although 

Fig. 1. The example frames and the built background images from three different 

scenes. Left to right: three different scenes; top to bottom, three example frames and 
the built background images, respectively. 

sophisticated methods have been proposed for tracking crowded environments, 

such as the Particle Filter [2][3] and the Joint Probabilistic Data Association 

Filter (JPDAF) [4], the state of art describes only scenes with a limited num- 
ber of people. In highly crowded scenes, tracking is not a viable option and it 

is more interesting and valuable to retrieve the global crowd motion instead of 
individual motion. Crowd motion estimation algorithms have been proposed us- 
ing local descriptors [5] [6]. The overall objective of our research is to model 
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crowd dynamics. This is normally achieved based on the extracted information 
from visual data. Andrade [7][8][9] characterizes crowd behavior by observing 
the crowd optical flow associated with the crowd and use unsupervised feature 
extraction to encode normal crowd behavior. Zhan [ 101 [ 111 [ 12] proposes a crowd 
model using accumulated motion and foreground (moving objects) information 
of a crowded scene. 

In this paper we describe some work carried out applying self-organized maps 
to learn the dominant crowd dynamics. SOMs are widely used in mapping mul- 
tidimensional data onto a low-dimensional map, example of applications include 
the analysis of banking data, linguistic data [13] and image classification [14]. 
In this paper, optical flow and raw image have been used as input to SOM; the 
result SOMs are then employed to classify different crowded scenes. 

This paper is organized as follow: In Section 2 some background of Self Or- 
ganizing Map is given; in Section 3 the usage of optical flow input is introduced; 
in Section 4 the usage of raw image input is presented; and Section 5 gives the 
conclusion and a discussion on further work. 

Self Organizing Map 

The most common SOMs have neurons organized as nodes in a one- or two- 
dimensional lattice. The neurons of a SOM are activated by input patterns in 
the course of a competitive learning process. At any moment in time, only one 
output neuron is active, the so called winning neuron. Input patterns are from an 
n-dimensional input space and are then mapped to the one- or two- dimensional 

output space of the SOM. Every neuron has a weight vector which belongs to 
the input space[15]. 

There are two phases for tuning the SOM with an input pattern I, competing 
and updating. In the competing phase every neuron is compared with I; the 
similarity between I and the weights of all of the neurons are computed; and 
the neuron N(i,,,, j,,, ) (denoted by the neuron's coordinates of the lattice) with 
highest similarity is selected as the winning neuron. In the update phase, for 

each neuron N(i, j), a distance is calculated as 

d2= (i 
_ iw)2 + (j 

_ jw)2 (1) 

the topological neighborhood function is then defined as: 

h(n) = exp( 
d 

20,2(n) 
(2) 

where n denotes the time, which can also be explained as the number of itera- 

tions. and o, 2(n) decreases with the time. The weight of each neuron N(ij) at 
time n+1 is then defined by: 

w(n + 1) = w(n) + il(n)h(n)(x - w(n)) 

where w(n) and w(n + 1) are the weights of a neuron at time n and n+1, while 

, q(n) is the learning parameter, which decreases with time. 
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Optical Flow as Input 

In this application, a SOM should capture the two major components of the 
crowd dynamics: spatial occurrence and orientation. Thus a four dimensional 
input space is chosen to be the weight space of the SOM, which can be repre- 
sented as f: (x, y, 0, p) . Each data from the input space can be explained as the 
location where crowd moves and the motion vectors in the form of angle 0 and 
magnitude p. The SOM used in this experiment is organized in a two-dimensional 
space and represented by a regular square lattice. 

3.1 Visualization 

Figure 2 illustrates three different video sequences with different dynamics. These 
video sequences have been input into the system, and Figure 3 shows the output 
SOMs. In the figure SOMs are visualized in the input space, i. e. showing the 
weight vector of each neuron. In the visualization, the color arrows and their 
locations are from the weight vector of neurons; the location of the arrows are 
from the first two components of the weight vectors (x, y), and the arrows show 
the second two components - the components of motion (0, p). The different 
colors of the arrows are also indicating the different orientation of the motion. 
In the first video (the left image in Figure 2) the major crowd is moving from 
bottom left to top right of the scene. There is another crowd flow from bottom 

right of the scene which joins the major flow. In its SOM (the first one in Figure 
3) the neurons with green arrows are clearly from the major flow and the ones 
with red and purple arrows are from the minor flow. In the second video (the 

middle image in Figure 2) it is an area of an entrance to a public space. Most of 
the people move from top to bottom in the illustrated scene. The crowd in the 

upper part of the scene is sparser and moves faster when compared to the crowd 
in the lower part of the scene. There is also a minor flow, which joins the major 
flow from right of the scene. In the built SOM (the second SOM in Figure 3), 

again the flows are clearly indicated. Furthermore, the SOM takes an umbrella 
shape, which represents the shape of the flow constrained by the obstacles in 
the scene. In the third video (the right image in Figure 2) the scene is a large 

open area with multiple crowd flows. The major flow is moving from right to 
left; however there are several minor flows, most of which are in the lower part of 
the scene. Again the SOM (the third in Figure 3) captures the major dynamics 

and also some minor flows. From the three examples, it can be concluded that 

the SOMs not only preserves the dominant motion vector, but also represents 
the shape of the regions with dominant motion of the scenes. 

3.2 Classification 

Visualizations of the SOMs have already provided information of recurrent mo- 
tion. Scene classification has been carried out using the characters captured by 

the SOMs. To achieve this, comparisons of the SOMs built for different scenes 
have been carried out. The classification is based on the similarities of the SOMs. 
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Fig. 2. The example frames from three different scenes. 

The topological structures of the lattice of SOMs, as well as the weights of the 
neurons of the SOMs are used for the comparison. Topological structure is an 
important feature of SOM, a large number of methods have been proposed to 
measure it [161. In this work a C- Measure is used, which is defined as: The 
similarity of the C- Measures of two different SOMs is calculated as 

FA (i j) Fv (wi, wj) 
(iJCi7lj) 

AXA 

where FA and FV are the similarity on input space (i. e. weight space) and 
output space (i. e. SOM lattice), respectively. The i and j are the index of the 
neurons and wi and wj are the weight of the indexed neurons. The similarity of 
correspondent SOM neurons is calculated: 

k<Dirn. 
min(wik, wjk) 

Simw = Fv (wi, wj) =Ez (5) 
max(wik, wjk) k=O zI 

where Dim,, is the dimension of the weight space, wý and wj" are the k- th 
element of the weights wi and wj, respectively. An average over the lattice has 
been calculated. This equation is used for calculating the similarity of the weights 
of two neurons. The similarity of the structure is calculated as the similarity of 
the C-Measures: 

Sim, = 
min (Ci, Cj) (6) 
max (Ci, Cj) 

A combination of the two similarities - weight similarity and structure simi- 
larity are calculated by: 

Sim = \/Sim, x Sim,, 

The correspondence of the neurons is defined by the closeness of the values of 
their weights. Particularly for neuron (i) in SOM A, the correspondent neuron 
in SOM B is the one with the closest weight value of it. The matching could be 

asymmetrical, for example assuming for neuron (i) in SOM A, its correspondent 
neuron in SOM B is neuron (j); however for the neuron (j) its correspondent 

(a) Scene A (c) Scene C (b) Scene B 
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Fig. 3. Three different scenes and their visualization using SOM. 
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neuron in SOM A is not necessarily neuron (i). This can be caused by the 
situation that the neurons from SOM A and B are not in the same value scale. 
In some extreme case, all the neurons in one SOM could even be matched to 
the same neuron in the other SOM. As a result another interesting figure is the 
number of matched neurons in SOM B. The figure will indicate if the values of 
weights in SOM A are in the same scale of SOM B. It is combined with the last 
measure by: 

S 
SiM + Nmatched/Ntotal 

(8) 
2 

The comparison is not symmetric also means that if SOM A is comparing with 
SOM B, the result will be different from using SOM B to compare with SOM A. 
Consequently, two similarities are generated the comparison of two SOMs. This 
experiment basically takes three scenes, and two sequences are extracted from 
each scene, so that there are 6 sequences in total in the experiment. The following 
confusion matrix illustrates the relative results. In Table 3.2, each row has the 
similarity value of a SOM with the other sequences. There are two values: i. e. 
similarity of SOM A comparing to SOM B and similarity of SOM B comparing 
to SOM A. The values above 0.5 are in bold font in the table, and they are all 
from the video sequences from the same scenes. 

Table 1. Confusion matrix of SOMs from different scenes (Scn abbreviates Scene) 

Sen A-1 Scn A-2 Scn B-1 Scn B-2 Scn C-1 Scn C-2 
Scene A- 1 1 0.653097 0.484192 0.433234 0.468101 0.458993 
Scene A- 2 0.633261 1 0.372017 0.315155 0.426438 0.400024 
Scene B- 1 0.330897 0.33033 1 0.645102 0.4264 0.465297 
Scene B- 2 0.35838 0.332804 0.641464 1 0.467114 0.455613 
Scene C- 1 0.369259 0.400326 0.443745 0.426589 1 0.715606 
Scene C- 2 0.366577 0.318921 0.414272 0.429349 0.687943 1 

4 Raw image as Input 

In this application the whole image is regarded as input feature for the SOM. 

The raw data has been used with three channel color image. In other word, the 

weight of the SOM is in aWxHx3 space, where W and H are the width and 
the height of the image, respectively. Dimensional of the input video data are 

reduced from WxHx3 (Image space) to (n x n) (lattice space). 
The neurons of the SOMs retain the different status of the particular scene. 

Some selected neurons from SOM constructed by raw images are illustrated in 

Figure 4. The neurons illustrated the different crowd status of the square, and 

also some trajectories of the crowd. 
The above experiment is carried out over video sequence which contains only 

one single crowded scene. In the following experiment, the SOM is built from 
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Fig. 4. Selected SOM neurons built from a single scene 

video sequences consisting of more than one crowd scene. Figure 5 shows two 
neurons from the SOM built by a video sequence which contains two different 
crowded scenes. The built SOM has modeled the two different scenes (Example 
frames from the two scenes can be found in Figure 2(a) and 2(b)). 

Fig. 5. Two neurons from SOM built by a video sequence which contains scene A and 
B 

Different neurons of the SOM represent different dynamics in the video se- 
quence. The tracking of the winning neurons indicates the transition between 
dynamics. Figure 6(a) shows the changes of the winning neurons on the SOM 
lattice when using the training video sequence (the coordinates are shown by the 
left side vertical plane. The axis with numbers from 0 to 5000 is the time line. ) 
There is an obvious transition between the winning neurons in the middle of the 
time line where it represents the changing of the scenes. New image sequences 
from the two scenes are used as input to the SOM to test its ability of scene 
classification. Figure 6(b) and 6(c) are the result of tracking the winning neuron 
over time. The winning neurons of the first scene are on the same plane, and for 
the second scene the winning neurons never get to the previous plane. 
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(a) Týain video sequence 

(b) Test video sequence from (c) Test video sequence from 
scene A scene B 

Fig. 6. Tracking of the winning neuron 

Conclusion and Future Works 

9 

This paper presented crowd analysis work using Self-organizing Maps. experi- 
ments were carried out testing optical flow and raw images to train the SOM. 
In the first case the built SOM of each crowded scene shows its capability of 
capturing the major dynamics. Scene classification is carried out by quantita- 
tively comparing the built SOMs. In the second cases, the SOM can capture 
major dynamics from more than one scene. Experiment shows that the frames 
from different scenes activate the neurons from different locations of the lattice 

so that they can be labeled and classified. This work is, to our knowledge, the 
first attempt to employ SOM in crowd analysis applications. It reveals the great 
potential of SOM in handling this problem. More experiments, for example with 
different input features can be carried out. Also a deeper analysis of relationships 
between neurons can be involved to build a better model of the dynamics. 
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Abstract. This paper proposes a comparison of two motion estimation 
algorithms for crowd scene analysis in video sequences. The first method 
uses the local gradient supported by neighbouring topology constraints. 
The second method makes use of descriptors extracted from points lying 
at the maximum curvature along Canny edges. Performance is evaluated 
using real-world video sequences, providing the reader with a quantita- 
tive comparison of the two methods. 

1 Introduction and Previous Work 

A pedestrian scene normally introduces different levels of difficulty, e. g. for visual 
surveilance the number of pedestrians in the field of view could varies from one 
to several hundred. When the scene is very complex, occlusions make it virtually 
impossible not only to track individuals but also to estimate stochas-tic back- 

ground model. Robust and reliable descriptors must be employed to describe 

atomic features of underlying dynamics. The descriptors must be able to work 
under different levels of difficulty to extract the motion information, so as to 
enchance the higher level analysis of the scene dynamics. Extensive literature 

exists on local descriptors that have been used in in deformable object tracking 
[11, image retrieval applications, e. g. SIFT[2], Harris Corner[3]. Recently years 
it has also been applied to analysis of image sequences in sport and monitoring 
applications [4] [5]. Two novel motion estimation methods extended the usage 
of such local descriptors to esimate crowd motion are validated and compared 
in this paper. In both of the algorithms, constraints are applied to improve the 

robustness of the matching between individual descriptors. The first algorithm 
checks locally spatial temporal consistency of color gradient supported by local 

topology constraints and the second one uses the points of local extreme curva- 
ture along Canny edges and applies contour constraints. Overall dynamics of the 

scene can then be leant from the short term motion estimated from these algo- 

rithms. Section 2 describes the two algorithms , 
Section 3 gives the experimental 

results of both algorithms, and Section 4 draws some conclusions. 
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The Proposed Algorithms 

Video sequences involving crowds are very complex to analyze, mainly because 
conventional background subtraction algorithms and motion estimation methods 
might not deliver expected results. Given the problem of interpreting crowd 
motion, we choose to use refined matching of local image descriptors to derive 
the dynamics features. Our aim is to recognise points of interests which can be 
tracked for some periods of time, and then combine their tracks into meaningful 
crowd trajectories. The following two subsections summarize the two algorithms, 
published in [61 [7]. 

2.1 Algorithm 1 

The first approach, proposes a topological matching of interest points extracted 
in the evolving scene. Points of interest are extracted using a color variant of the 
Harris detector as described in [3]. The matching between frames is carried out in 
two steps: (i) searching of the candidate matching points by similarity and then 
(ii) applying the topological constrains. Briefly, for each selected interest point 
in the reference image, corresponding candidate matching point is searched in 

the matching image inside a given search window using the gradient similarity 

measure given by sim(a, b) = 
in(R., RQ (g iven a, b as two interest points). 

max(R., Rb) 
This basic matching does not provide a robust solution, due to the instability of 
interest points in a highly complex scene. Frequent occlusions reduce the proba- 
bility of identifying correct matches and, without local support, similar gradient 
localities might be found as acceptable matches generating false positives. To 

tackle this problem, we introduced an effective topological constraint into the 

search process. The necessary local support is derived from local window cen- 
tred at the interest point and we make use of the relative location of the interest 

points in such window. Support is estimated for the matched interest point pair 
inside the support windows. All interest points found in the support window are 
then matched. Support is then quantified in terms of the error by measuring the 

standard deviation of the ensemble of found correspondences (see [61 for more 
details on the algorithm). 

2.2 Algorithm 2 

The results of Algorithml for crowd dynamics measurement turns out to be 

good, however there is still a room for further improvement, as certain false 

positives still exist. The reason could be that the relationships between the in- 

terest points provided by topological constraints are still not very reliable, so we 

proposed another method [7] using local descriptors which provide additional 
information. We choose Canny edge information and extracted the curvature 

along each edge to retrieve descriptor points (those with local maximum curva- 

ture) as salient features along an edge. Besides the points, edge information is 

maintained by "edgelet constraint" to refine the estimate. Thus, we combine the 
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advantage of using point features that are flexible to track with the advantage 
of using edge features that maintain structural information. Each Canny edge 
is a chain of points Sp, and all the edges are stored in an edge list Lp. It can 
be observed that even in a scene which depicts a crowd of moderate density, 
edge chains can occlude one another, increasing the descriptor matching com- 
plexity. Given two consecutive frames, we estimate the motion of the extracted 
local descriptors (matching within a window of interest). The best n matches are 
then selected as candidate points and considered for the next step. For an image 
frame, we divide every chain S to a uniform length edgelets represented by sub 
sequences E. There are two reasons for doing this: to avoid a very long edge that 
could be generated by several different objects, and to enhance the matching of 
the edge fragments that are generated by occlusions. For each local descriptor 
in E we have as result from the first step, the n candidate matching points. 
Each candidate point belongs to a sub sequence S. To find the best match of E, 
we use three parameters: energy cost, variation of displacements and the match 
length for each candidate and combine them into a single matching score. Here 
we assume that the length of E is small enough so that it would not split again 
to two or more matches. This is so that their candidate points correspond to the 
same candidate sequence. Details on the second algorithm can be found in [7]. 

Comparison of the two methods 

The two motion estimation algorithms are tested using three sequences taken 
from crowded public space and quantitative results are generated. As we are 
concerned about extraction of short term motion instead of tracking, measures 
are defined based on two consecutive images instead of whole sequence. In the 
following we first give a brief description of the test dataset used in our experi- 
ments, then go through the details of the testing methods adopted and explain 
the results generated from the tests; some visual results are also included at the 

end of the section. 

Fig. 1. Sample frames from 3 testing sequences 
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3.1 Testing data 

Sample frames from the three sequences are shown in Figure 1: sequence 1 (left) 
is a mid field scene with people scattered across the field of view; sequence 2 
(middle) is a mid field scene with major motions taking place in certain areas; 
sequence 3 (right) is a far field scene with pedestrians present in all parts of the 
field of view, with some predominant trajectories. 

3.2 Testing based on local descriptors 
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Fig. 2. MS (left column) and MAE (right column) along time for the 3 testing se- 

quence (Rom top to the bottom: sequence 1, sequence 2 and sequence 3), red lines for 

Algorithm 1; green lines for Algorithm 2. Algorithm 2 keeps higher in MS and lower 

in MAE. 
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In this testing only the quality of matching of individual local descriptors is 
considered. For each pair of consecutive frames) local descriptors in the initial 
frame are compared with their corresponding local descriptors, found by the two 
presented algorithms, in the target/second frame, respectively. Two measures, 
Mean Similarity (MS) and Mean Absolute Error (MAE), are used here. MS is 
designed to assess the relative similarity of the matched local descriptors. 

n 
ms =1E 

min(Xit', X! ) 

n max(XtO i=O i, Xjt) 

Where n is the total number of the local descriptors in the initial frame. MS 
is defined as the average of the similarity, and the similarity is calculated by 
the minimum of the two matched local descriptors' pixel value divided by the 
maximum. The result is a value which falls in the (0,1) range. Another measure, 
MAE is commonly used for the testing of motion estimation algorithms [81 as it 
returns an error measure. MAE is defined as follows 

n 
MAE E IlXi'o - Xi'll 

i=O 

Where Xý' is the pixel value at the i" corner in the first frame, and Xý is the 
cor-respond local descriptor in the next frame. 

The images in Figure 2 represent the plots of MS and MAE for the two 
algorithms tested against the three sequences. MS and MAE are calculated every 
frame along the sequence. In each plot the x axis represents time (the number 
of the frame) and the y axis represents the values of MS and MAE, respectively. 
Hence, for the two algorithms the MS and MAE for the three testing sequences 
are both good, though in most of the cases the second algorithm has a higher 
MS and a lower MAE. Also, along the time scale the MS and the MAE produced 
from the first algorithm fluctuate a lot while the second one produces more stable 
results. It can be concluded that the second algorithm has a more desirable 

performances than the first one. 

3.3 Testing based on Motion Connect Component 

The testing here makes use of connected components algorithm based on mo- 
tion vectors (so called MCC - Motion Connected Component). The algorithm 
groups together motion vectors that are in close proximity and have common 

motion properties. The result of the MCC algorithm segments the motion field 

into clusters of uniform motion group (e. g. a (part of) pedestrian or a group of 

pedestrians), and the testing is based on each MCC to assess the two algorithms. 
In order to assess the two algorithms with MCC, we adopted two measures which 

are used in evaluating search strategies: Recall and Precision. Recall is the ra- 
tio of the number of relevant records retrieved to the total number of relevant 

records in the database. Precision is the ratio of the number of relevant records 

retrieved to the total number of irrelevant and relevant records retrieved [9]. 
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In the proposed implementation we take the bounding box of each MCC, and 
calculate the average motion of MCC, thus map the bounding box to the next frame. The number of "relevant records in the data base" should be the number 
of local descriptors of the MCC in the initial frame (Nt,, ) while the number of "retrieved records" should be the number of local descriptors in the mapped bounding box in the second frame (Nt). The definitions of the two measures are 
given by 

Recall == 
Nto n N, 

(3) Nto 

Precision = 
N,,, nN, 

(4) 
Nt 

Both of the values are in the range [0,1]. For every frame an average Recall 
value and an average Precision value are calculated. Figure 3 gives the plots of 
Recall and plots of Precision; the layouts of these plots remain similar to the 
previous ones, though the y axis represents Recall and Precision, respectively. 
From the plots again we can claim the results of Recall and Precision of both of 
the algorithms, especially the results of Recall, are satisfied. It can be observed 
that the results of Precision for sequence 3 is lower than the other three, one 
possible reason could be that as sequence 3 is a far field view for a crowded 
scene, when mapping the bounding box of the MCC to the second frame local 
descriptors of other MCC could be included and noise could be introduced. When 
comparing the results of Recall, it can be seen values for Algorithm 2 are always 
higher, though for sequence 2 and sequence 3 Precision values for Algorithm 1 are 
slightly higher. Here another measure should be taken into consideration, which 
is the number of the MCC detected by each algorithm. According to the plots 
in Figure 4, in sequence 1 the average number of MCC detected by Algorithm 
I is around 20, while by Algorithm 2 the number is around 100; in sequence 2, 
the numbers are around 20 and 200, respectively; in sequence 3 the numbers are 
around 40 and 280, respectively. Algorithm 2 detects much more MCC, especially 
for sequence 2 and 3. Due to the above fact and the fact Algorithm 2 produces 
higher Recall, it can be deduced that the slight drawback of the Precision only 
indicates more noise has been introduced to our assessment. 

Conclusions 

Two novel algorithms to estimate the motion of a crowd in complex scenes 
are presented, evaluated and compared in this paper. The two algorithms are 
compared using three surveillance video sequences and quantitative results are 
generated based on individual local descriptor and MCC (Motion Connected 
Component). MS and MAE are used as criteria for local descriptor based assess- 
ment. The values of MS generated by the two algorithms are all above 0.6 and 
for Algorithm 2 the values are all above 0.7. For the values of MAE, those gen- 
erated by Algorithm 2 are always below those generated by Algorithm 1. In the 
MCC based assessment, for ratio of Recall almost all of the values generated by 
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Fig. 4. Number of MCCs along time for the 3 testing sequence, red lines for Algorithm 
1; green lines for Algorithm 2 (Rom top to bottom: sequence 1, sequence 2 and sequence 
3). Algorithm 3 detects much more MCCs for all of the three video sequences. 

Algorithm 1 are above 0.6 while those generated by Algorithm 2 are close to 0.8, 

and for ratio of Precision, the values generated by both two are above 0.6. We 

can conclude that the experimental results show the Algorithm 2 works better 

with most of the experimental sequences while both outcomes are acceptable. 
The crowd dynamics estimation provides a suitable precursor to processes for 
learning modes of complex dynamics, describing behaviour and supporting for 

work in high-level vision and socio-dynamics modelling. Based on the two algo- 
rithms presented, our future work will be focused on developing novel method of 
building mature and reliable crowd dynamics model through computer vision. 
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Abstract 

There is an increasing interest in the concept of intel- 
ligent environments where a closed or delimited public 
space (shopping mall, station, museum, hospital etc) is 
endowed with some automatic ability to interpret human 
behavior Intelligent environments interact with their 
users, aiding, serving andpre-emptying them. In a not too 
distantfUture, this paradigm - in Europe called ambient 
intelligence - will soon include robotic plaffiorms. Both 
intelligent environment and robotic plaffiorms will col- 
laborate to better inform the inhabiting or visiting user 
This paper presents some steps towards that direction, 
describing a study on some scene descriptors, which can 
be employed to provide an automatic interpretation of the 
clutter and dynamics of a complex scene. 

1. Introduction 

The main goal of this research is to estimate auto- 
matically the amount of clutter and the level of dynamics 
in a complex scene, frequented by an unspecified number 
of people. 

This is important in applications where situation as- 
sessment is crucial to better inform people inhabiting a 
specific environment. For instance, in a shopping mall or 
in a museum, individuals and more or less large groups of 
people might pass or stop by to window shop or to ob- 
serve an exhibit. In such cases information about 
merchandise or exhibit could be delivered in a more effi- 
cient manner, for instance with the aid of a robot. 

An automatic estimation of clutter and dynamics is 
also important in crucial situations, where people must be 
informed of exits and escape routes. 

What in Europe is now called ambient intelligence and 
in the United States goes under the name of smart or 
intelligent environments, is a paradigm which has been in 
the mind of artificial intelligence researchers for some 
time [9]. The idea is of a living environment, able to in- 
teract with the user to make their lives easier. The 
emerging phenomenon of robotic platforms, seen more as 
companions than mechanical machines, inspires the idea 
of a living environment, where both the surroundings and 
robots collaborate between them and with the user to 
improve productivity (factory or office), security (public 
space), safety (nursing home or hospital). This symbiotic 
existence actively assists the user, seen either as a casual 
passenger or pedestrian in the environment, or as a fre- 
quent visitor (station or shopping mall) or even the person 
inhabiting (home) the intelligent space. 

This paper presents a method to estimate dynamics, 
offering a means to evaluate its amount and classify peo- 

ple behavior as interested or uninterested in the scene. 
One can them imagine the degree of interest in a scene 
being used to inform a robotic platform to deliver a spe- 
cific message to the user. 

The next sections describe the proposed method and 
illustrate some examples of how it could be employed to 
assess a situation. 

2. Methodology 

Conventional cameras, used in museums and shopping 
malls can capture full human figures and sometimes hu- 
man faces. Video data of this kind can be employed to 
recognize and track people in a complex environment. 
Full figure chromatic and structure models can be built [7], 
and people physiognomy, gait and shape characteristics 
have indeed been used to suit this purpose. In this paper 
we use skin color to extract exposed patches of the human 
body figure and we show that those can be robustly 
tracked throughout a scene. The tracks are then employed 
to annotate the dynamics of individual patches and draw 
some qualitative and quantitative description of the global 
evolution of the scene. 

The following sections describe in detail our method, 
employed to extract and track skin color patches, and 
estimate tra . ectory trends. j 

Robust skin color detection 

This part of our method makes use of the already 
proved idea that skin color can be indeed modeled across 
races so long as a suitable color space is employed. In our 
experiments we convert the color frames from the RGB to 
the YUV space. The choice of the YUV color space is 
justified by a fast conversion and the factorization of 
chromatic and illumination features. The illumination Y 
component is easily factored out, and the chromatic UV 
plane is employed to estimate the skin color model (an 
example of color probability density function - PDF - of 
skin color is shown in Figure 1). 

Figure 1: The PDF of skin color patch. 



As already shown in other research, a skin color model 
can be estimated by acquiring video data of skin color 
patches and via the training of a color model using the 
expectation maximization algorithm [8]. In order to op- 
timize the model, the skin color data can be studied and an 
optimal initialization defined in terms of number of 
clusters and initial positions and approximating functions. 

Figure I illustrates the PDF of image data used to train 
the skin color d All data is constrained in a small 
region of the 

TU, ' 
plane and a mixture of Gaussians 

01 - 
VI 

(, uj, Zjj can serve as a good explicit approximation of 
the distribution. 

Figure 2: PDF of data used to train the skin color model. 

Figure 2 illustrates the probability masks of some of the 
data used to build the skin color model. The model is 
fairly robust to changes in illumination but it has the 
weakness of being specific to the camera used to acquire 
the training data. In all our tests, each new video camera 
we have used to acquire video footage had its own color 
model. As the training can be performed off line, the 
lirnitation is not prohibitive. 

2.2. Color patch tracking 
The MEANSHIFT method, based on an old idea of 

Fukunaga [I] and resurrected by Cheng [2] and Comini- 
ciu [31, has been proven very robust for the tracking of 
objects and people in cluttered scenes. The MEANSHIFT 
algorithm tracks an object by estimating the drift of the 
underlying density function representing the evolving 
process. The limitation of the MEANSHIFT method 
stems from its inability to deal with time varying density 
fiinctions. The CAMSHIFT algorithm proposed in [4] 
adapts to evolving PDFs by alternating cycles of the 
MEANSHIFT algorithm with a resizing of the search 
window. The window size is a function of the center of 
mass of the probability density map (zeroth moment). 

Figure 3: LEFT: frame with bounding rectangles of rec- 
Ognized skin patches and RIGHT: related probability map. 

Tracking color patches entails running the CAMSHIFT 
algorithm for each patch. However, this is not sufficient to 
maintain hypotheses in a rapidly evolving scene. That is 
why our method keeps track of a list of alive patches, by 
tracking them throughout the scene with the CAMSHIFT 

algorithm, removing those which have too low a prob- 
ability associated for a number of frames and introducing 
new patches, wlienever sufficiently large new patches 

appear in the scene ývith a sufficiently high probability. 
Figures 4 and 5 illustrate four frames where skin color 

patches are identified and tracked throughout the scene. 

Figure 4: The two above frames show the low curvature 
trends of uninterested behavior: when people pass by an 
exhibit. 

Figure 5: The above frames show when people are in- 
terested in the shown exhibits and they stop by the 
exhibit. Trends of such trajectories have higher curva- 
ture. 

The trajectories of Figure 4 and 5 also illustrate two 
occasional problems: (i) FALSE NEGATIVES: some- 
times not all exposed skin is recognized (because of the 
small size of the patch and because of the limitation of the 
color model) and (11) FALSE POSITIVES: at times 
patches not of skin color are detected, these are commonly 
stationary objects and their stationary position can be used 
to eliminate niisrecognition cases. 

2.3. Dynamics estimators 
Trajectories of skin patches identify people trajectories 

and can be seen as signatures of people behavior. 
For instance, people interested in exhibits or mer- 

chandise have a more irregular signature, distinguished by 
curvature that becomes higher and changing more fre- 
quently, when the patches represent people looking at an 
object. 

The amount of time spent in the scene also plays an 
important role: the shorter the time the smaller the interest 
shown in the exhibit/object. Frames in Figure 4 illustrate 
two examples of uninterested behavior, well correlated 
with a smoother (low curvature) trajectory, while Frame 5 
clearly illustrates how the interest in an object is corre- 
lated with a change in curvature 

Dynamics can therefore be estimated by studying the 
trajectories of the tracked skin color patches and making 
use of their trends. An in depth study of the trajectories led 
us to the following conclusions, all based on the assump- 
tion that the extracted skin patches belong indeed to 
people in the scene: 

Average number of patches and their speed over a 
period of time can be used to estimate the entropy 
of the scene: the higher the number of patches the 
more people are in the scene and the histogram of 
speed values over time and its change illustrates 
the amount of movement in the scene (the flatter 



the spread the higher the entropy), 
Fast patch movements indicate people in the scene 
are moving rapidly: the speed of each patch is es- 
timated by the distance in pixels of a patch 
between frames, 
The curvature of a trajectory is a good indicator of 
how many twists and turns the trajectory trend has. 
Changes in curvature might occur more frequently 
in some moments then others: the frequency of 
change and the magnitude of curvature is an in- 
dicator of the person interest in some parts of the 
scene, 
A density signature of curvature peaks can there- 
fore be estimated to describe people interest: the 
higher the density the higher the attention a person 
has for an object. Our study demonstrates that 
highly interested people will stop and move about 
in front of the object, uninterested or little inter- 
ested people will move a lot in the scene and stop 
rarely and their curvature signature shows trends 
with small number of peaks of small number of 
high peaks. A suitable time window is defined to 
estimate the density: typically a number of seconds 
usually spent by a person to observe an object in 
the scene. This parameter depends on the applica- 
tion and can be leamt. 

The figure below (Figure 6) illustrates the speed and 
curvature trends of a patch used to train the model of 
uninterested people. The speed becomes fairly high, 
however, the curvature remains lower than a low thresh- 
old; typically around 1. 
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Figure 7: Speed (green) and curvature (red) of a path of a 
person interested in the object in the scene. 

The following graph (Figure 8) illustrates what we call 
uninterested and animated behavior, characterized by 

patches of people uninterested in the scene objects, but 

where those people stay for longer in the scene and move 
about without really focusing on any object and they do 

not stand still in any particular position of the scene. 
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Figure 6: Speed (green) and curvature (red) of a patch of a 
person uninterested in the monitored scene. 

The following graph (Figure 7) illustrates the signature 
of a patch related to a person who is interested in the 
scene. The speed is lower, indicating the person pays 
more attention to the scene. The frame in Figure 7 
clearly shows the close occurrence of curvature peaks 
in two points of the scene, indicating that the person 
stopped, they looked around for a while, before moving 
to the next area of interest to stop again and observe, 
before leaving the scene. The yellow trajectory - asso- 
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Figure 8: Speed (green) and curvature (red) of a patch of a 
person with animated behavior and uninterested in the 
scene. 

As can be seen in the above graph, such behavior 

shows a large number of sparse high curvature peaks and 
it also correlates with a higher speed, indicating that the 
person did not stop for longer than the short penod of time 
required to change direction in the scene a few times and 



then leave the scene. 

Trajectory classifleation 

Experiments were run in a University laboratory and all 
scenes filmed from a single camera. 

A number of experiments were run with individuals 
performing the same action repeatedly more times. Mix- 
tures of actions were then recorded with more people in 
the scene performing either the same or different actions. 

The following graphs (Figure 9) illustrate how the 
density of curvature maxima can be employed to disam- 
biguate between an interested, uninterested and animated 
behavior. 

Figure 9: Examples of curvature density, estimated in a 
time windows of 100 frames. TOP: uninterested behavior; 
BOTTOM LEFT: animated behavior, BOTTOM RIGHT: 
interested/focused behavior 

The graphs clearly indicate that whenever a person is 
interested in the scene objects, then they stop and spend 
time looking and while they do so they move about, 
building up a density of curvature maxima. Completely 
uninterested behavior shows no density at all for maxima 
above a threshold estimated by measuring the mean cur- 
vature of patches of uninterested people. Finally, 
animated behavior builds some density which, however, 
is not comparable with the density built for a focused 
behavior. 

Conclusions 

The paper has presented dynamics descriptors that 
make use of a skin color tracker and the trends of the 
tracked trajectories to infer a simple description of be- 
havior in the scene. Preliminary experiments illustrate 
that curvature can be indeed employed to analyze trajec- 
tories and classify behavior. The amount of skin color 
patches in the scene and their life spans can shed some 
light on the clutter in the scene and their dynamics can be 
employed to assess a highly changing situation. The next 
step will be to further test our proposed method, provide a 
more automatic way to categorize scenes and the inclu- 

sion of robotic platforms, whose introduction in the scene is selected by the classification of dynamics. The intro- duction of robots and their interaction with the people 
present in the scene will then modify the dynamics and 
part of our future work will be to measure the dynamics 
"gradient" the human-robot interaction has caused. 
Briefly, one can envisage a robot being introduced to 
make an announcement, illustrate an exhibit or guide 
people in the scene. It is expected that a robot will reduce 
the entropy of the scene, and increase the interested of 
people. 
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Abstract 

Understanding complex crowd scenes involves many 
dimensions: level of clutter, density of pedestrians, 
globat/detail dynamics of the scene, etc. Socio-dynamics has 
tackled the problem by providing prototypes of crowd 
behaviour based on human observations and then explaining 
them by certain physical models. We are interested in 
automatic learning the factors involved in complex scenes for 
different dimensions and deriving a physical model from the 
real world via computer vision methods. In this paper we 
propose a solution to extract the motion of complex crowd 
which could be very difficult for conventional trackers. The 
method is based on a matching of local gradient descriptor 
supported by local topology constraints. Spatial pyramid and 
temporal smoothing are employed for optimizing the 
algorithm. Dynamics can then be accumulated over time so as 
to derive a higher level understanding of the scene. 

I Introduction 

Visual scene dynamics can be analyzed at different 
resolutions e. g tracking of moving object, describing 
behaviour therein. The rationale of this paper is based on the 
assumption that people dynamics are purposive, and that the 
presence of many people has a clear conscious or unconscious 
influence over people's motion. 

Our aim is to be able to identify the main motion patterns in a 
very complex scene automatically, making use of computer 
vision methods and based on automatic machine observation, 
rather than human observation and inference. We can infer 
these important characteristics by modelling the flow of 
people and objects in the scene. 

Socio-Dynan-iics researchers have made extensive use of 
physical models for mathematical descriptions of interactions 
between people. Perhaps the most interesting concept is 
captured by the so-called "Master Equation" [6] (Equation 
(1)): 

P(x, t) W, (X 1 x') P(x' t) - W, (x' 1 x)P(x, t) 
X,; tx 

In the case of people flow observed through a single camera, 
P(x, t) represents the temporal variation of the stochastic 
process associated with given local characteristics x of 
image It , The right hand side of Eq. (1) indicates that the 
flow differential can be estimated by integrating the all 
possible transitions related to state x. If we limit the 
integration to being over a defined region of the image, we 
have a Markov process that can be easily estimated by 
accumulating local estimates of dynamics' variations. This 
can be implemented through reinforcement learning [I I], 
using an iterative scheme. 

Figure 1. Two examples of complex scenes 

Currently our focus is on the problem of extracting local 

characteristics like scene motion. Background modelling [13] 
has been used to remove the static background. However, it 

gradually loses effect when the foreground/motion density 

increases, or when people gather in specific places (localized 
high density) most of the time. Also occlusion can become 

serious due to the complex structures in the scene. Thus it is 

crucial to have a descriptor that is robust and reliable to 
describe atomic features for retrieving the dynamics under 
such circumstances. To address these problems we propose a 
new method to derive local estimates of motion patterns by 
locally checking spatial temporal consistency of colour 
gradient in terms of interest points. This is further improved 
by adding local topology constraints. Extensive literature 

exists on spatial and sp atial- temporal descriptors that have 
been used in image retrieval applications [10] as well as for 

analyzing image sequences in sport and monitoring 
applications [8][3]. In this paper we validate the Harris colour 
detector [5] and make use of local topology to make the 



matching between frames more robust for cases of extreme 
clutter. To optin-dze computational load and to allow for a 
wider search a pyramidal search was also employed [9][2]. 
The paper is organised as follows: section 2 describes the 
matching method we propose, section 3 shows the 
experimental results, and section 4 explains how we could 
reconstruct the main path of the scene by the extracted 
displacement. 

2 Proposed Method 

fn order to devise algorithms that automatically learn 
crowd/complex dynamics, local descriptors, or interest points, 
have been extracted using colour gradient information at the 
scale space. Besides the use of such descriptors, an advanced 
matching scheme is developed that provides improvement 
through the incorporation of topological constraints. Spatial 
pyramid is also used to enable fast matching for a large 
number of interest points across a sparse area, and to ensure 
time consistency of the matching results, a temporal 
smoothing procedure is adopted. 
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Figure 2. The related pyramids representations of the image 
frames in Figure 1, the bottom layers show the interest point 

with red dots. 

2.1 Extraction of local descriptors 

The proposed method makes use of the Harris interest point 
detector modified as in [4]. The Harris interest point detector 
is selected because it provides a repeatable and distinctive 
descriptor of the image features, which also has the 
advantages of being excellent repeatable under various 
conditions like view-point and illumination changes as a 
cOlOur operator. The modified M matrix in such detector 
extracts feature points making use of the three chromatic 
channels C= (R, G, B) (Equation (2)): 

2r Ve 

kq XlWarlmli 

M=G(c)O 
CX - CX CX - CY 

(2) CY - CX CY - CY 

In the operation the image is firstly smoothed using a standard 
Cr CX Gaussian operator G of deviation and 

CY 
are 

respectively the gradient in the x and y directions of the pixel 
chromatic triplet. They are estimated by applying the 

Gaussian derivative operator G, of deviation 0-0 
, to the 

smoothed image, this is efficiently implemented by using the 
method from [ 15 ]. The interest points are then extracted using 
the termR , calculated as a combination of the Eigen values 
of the M matrix: 

R= det(M) + idrace 
2(M) (3) 

Where K is a constant in the range 0.04 <= /C <=0.06. The 

points with local maximum R are selected as interest points. 
This procedure takes place at the lowest (finest scale) layer 
and then the interest points are projected up to the top 
(coarsest scale) layer of the pyramid (Algorithm 1). 

Algorithm 1: Creation of Interest Points 
for N images in At (for temporal smoothing in 2.2) do 

generate pyramid image gradient 
detect interest points at bottom layer 

project interest point to top layer 

end for 

2.2 Advanced Scale Space Matching by topological 
constraints 

Matching is carried out in two steps: for interest point in 
reference image searching of the candidate matching points in 
matching image by similarity and then applying topological 
constraints by comparing the neighbour interest points' 

i arrangement. For each selected interest point Pi(t) in the 

reference image 
It 

corresponding candidate matching point 
ipj(t + At) is searched in the matching image 

I"I 
inside a 

given search window 
ýy X Wsearch 

(indicated as a blue 
rectangular window in Figure 3) using the gradient similarity 
measure given by the formula: 

_; _/ _ L, min(R,,, Rb ) 

atrrlkuýu) - M, qy(p P-) 
'a I "b .1 (4) 

as introduced in [7], consisting of a 912 ___ý [0, I] mapping 

(The term R is the same as defined in equation (3)). 

The matching thus far is not robust, due to the instability of 
interest points in a highly complex scene. Frequent occlusions 



reduce the probability of identifying correct matches and, 
without local support, similar gradient localities might be 
found as feasible matches generating false positives. 

-x 
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It 

Figure 3. Topological Matching Window (the blue rectangle is the 
search window in the second frame to search for corresponding 
interest points. The circle point is the corresponding interest 

pointiPl(o 'Pj(t+'ý't), the crosses are the local support interest points 
ip kt i kI., & 

i and 
Pi . (the local support window Win x Win, and 

WinxWin,,, are illustrated as solid grey window). 

This paper proposes a topological constraint to make the 
search for correspondences more robust. Gabriel et al. [3] 
proposed a similar method using topological information, 
however in their algorithm the area (object) of interest was 
predefined and the topological information was evaluated by 
an already known centre of the object. In our approach, we 
are not aiming to track in detail a particular object at this 
stage. Instead, we are interested in the local motions 
Therefore, the necessary local support is derived from local 
windows centred at the interest point and we make use of the 
relative location of the interest points in such windows. 
Support is estimated for the matched interest point pair 
QPi(t), ipj(t+At)) inside the support window WinxWin, and 

Win x Winý+, centred at ip, (t) and ipj (t + At) , respectively in It 

and 1,., A, 
(grey windows in Figure 3). All interest points found 

in Win x Win, (let us call them generic ip*1 ) are then matched. 
Support is then quantified in tenns of the error by measuring 
the standard deviation of the ensemble of found 
correspondences 

Eij =f (0-ou 
1) a PY 

) 

where 
Ok, 

k,., 
(. ) = 

X(Vik, 
- Vjk,., ) 

Pk, k,, & 
Vikt 

are, respectively, the orientation difference (dot product) and 
length difference between the vectors (indicated as arrows in 
Figure 3): 

Algorithm 2: Topology Matching 
Matching: 
for all ip, (t) (=- j, do 

search 'Pj(t + 1ý0'ýý I, +A, 
in WX Wsearch 

for all (jp, (t)jpj (t +At)) do 

define a topology window Win x Win,, P 
centre Win x Wint at ip, (t) and Win x win,, at 

ipj(t + At) 
for all ipi' E=- Win x Win, and ip, ' (=- Win x Win, 

+, 
do 

(i ko i k, find best matches pi pi 

let Vik, --": 'AýI - 'Pi W 

let v. -k, +At ipj t +At) Ip 4+61 
define 0��+, (-) =- vj4., ) 

pk"+, 
u () =11 vi" 11 - 11 vj,,.,, 11 

end for 
estimate derivation 

(T Ou < 
toko 

, 
0'. 

1 

07 
Py < 

tPko 
91 PkI 

I 

end for 
define . 6ij = (aco + 8u,, simij 

choose the smallest 6, 

end for 

*kq (t) and Vj = ip kj+, V _ ip - (t + At). Vik, = 'Pi' 1) k"' ii 

These vectors represent the relative position of the generic 

point and the centre point. Deviation for both 0 
and P are 

estimated for all interest points matches found in local 
support windows. In the proposed algorithm, deviations are 
also weighted by the similarity between interest points. The 
pair (ip, (t), ipj (t + At)) that attains the smallest deviation is 
then chosen as the candidate matching pair. However, we 
discard the pair where deviation is higher than a pre-defmed 
maximum, to cater for completely disagreeing displacement 
vectors, e. g., generated by two people moving away from one 
another. The estimated motion vector is then propagated to 
the bottom layer of the pyramid. 

2.3 Temporal Smoothing 

We also carry out temporal smoothing and matching by 

comparing a number of N spatial pyrarruds (estimated with 
Algorithm 1), corresponding to a specific Iýt time window. 
Thus a spatial- temporal pyramidal analysis of the sequence is 
generated for a number of frames. Temporal smoothing is 



ernployed to enforce time consistency on matches, reducing 
false alarms generated by unstable interest points. To avoid 
the large change of the motion vector, At is chosen 
proportional to the employed frame rate. 

So matching is carried out in both space and time, starting at 
the highest level (coarsest level) of each pyramid, searching 
interest point coff espondences between the initial frame 10 of 

the N frames and each other frame Ik within the given time 

period At (corresponding to N-I matches). Spatial matching 
works from the top (finest scale) of a pyramid to the bottom 
(coarsest level). Then temporal integration of pyramidal 
matches of interest point j in O'h frame can then be applied by 
combining the N matches as 

N 

.^I =a 
k (8) P Y" 

* S'MOk QPjO 
5Pjk) * MPj 

k=1 

ip k 

where a is a normalization constant, mi is the match vector 

with the kth frame, S'MOk QPjO 
9 'Pjk ) is the similarity of the 

matched interest points again using the definition in (4). 

Algorithm 3 Matching over At 
for all images in the sequence do 

for N image pyramid do 

for all interest points ipjO E: -: 10 and 'Pik C Ik do 

Mi 
k 

pj = argmax(simQpjO, ipjk )) 

end for 
combine matches 

mi 
k 

1P OC SlMOk (PiO 
"Pik) pi 

end for 
end for 

3 Results 

A series of experiments were run on different video 
sequences. The assessment of results is not a trivial task, 
given that it is virtually impossible to generate ground truth 
data. However, results can be judged qualitatively, by 
overlapping the flow of dynamics to the image frames (Figure 
4). A quantitative evaluation of results can also be provided. 
For a window of interest Winkt selected in an image of a k 

given sequence Si, all interest points are retrieved and then 

their displacements were estimated against the image at the 

next frame 11+At 
* All displacements are then combined to a 

reSulting vector that indicates the position of the window of 
interest in the next frame. Comparing structure cannot work, 
because background structure would generate noise that could 
even be larger than the information we wish to compare. 
Therefore we decided to generate Receiver Operating 
Characteristic (ROC) curves [12]. A series of points 
(P 

, 
PfP ) is estimated to produce the ROC curve using the 

1P 
following two formulas: 

Pfp - 
FP 

ptp -:: -- 
TP 

(9) 
7W + FP TP + FN 

where the definitions of the parameters are shown in Table 1. 
Hence P represents the fraction of positives correctly tP 
predicted and PfP represents the fraction of negatives 
incorrectly predicted. 

pre icted 
ROC Positive Negative 

signal True TP TN 
False FP FN 

Table I The definitions of parameters for ROC curve 

a-1 (a) a-2 

(b) 

Figure 4 Motion vectors overlapped on the image frames ( (a) shows 

the global motion flows a- I and a-2 are two frames spans At and (b) 

shows a focus on a group of four pedestrians in (a). Tbe group is 
illustrated with a circle in (a) to indicate their global position 

change in the two frames, while (b) gave the motion from a- I to a-2. 
The red parts of the motion vectors are the start, while the green ones 

are the end). 

'v ,V 

Figure 5 ROC curve of two image sequences (with the vertical axis 
as TP, the horizontal axis as FP) 

In our case the work is done by comparing the predicted 

positions of all interest points in Win' against the actual k 

/(\[\[\PJ 



interest points found in Win+A' 
. If an interest point has been k 

found in the location where we predicted, it counts as a true 
positive (TP), else it counts as a false positive (FP). An image 
sequence can be scanned every frame or more sparsely, m 
windows within the same frame placed at k random position 
(in the random process we could probably have a window 
which contains two objects that have opposite moving 
direction, so to avoid the error caused by this, we discard the 
window if we detect that the direction of the motion vectors 
are not uniform inside the window), and if this is carried out 
for n frames we would end up with mxkxn ROC 
measurements (Figure 5). 

4 From displacement to paths 
Ongoing work concerns the reconstruction of the main paths 
of a scene (modal paths or trajectories) based on a grouping 
of the estimated local displacements accrued over time. 

During the sequence analysis two probability density 
functions can be built modelling the crowd dynamics of the 
scene from both global and local dimensions: a global 
probability density function incrementally modelling the 
motion presence across the entire view of the scene, and local 
density functions built over time that model the displacement 
for a local unit (e. g. a pixel or cell), depending on how the 
view is tessellated. 

The estimated ensemble of density functions can be used as a 
Reinforcement Learning (RL) solution to cast the solution to 
interpret the dynamics. Formally, the basic reinforcement- 
learning model consists of a set of environment states S and a 
set of actions A. At each time t, the agent perceives its state s 

S and the set of possible actions A (s). It chooses an action 
a a- A(S) and receives from the environment the new state 

[141. 

Rather than building the solution following the stochastic 
dynamic recurring formula provided by the RL method, we 
use the solution as an RL solution to estimate the modal scene 
paths. 

An analogy can be drawn between density ftrnctions and RL 
model, and in theory the ensemble of density functions could 
also be incrementally built following the RL updating 
equation. At the building stage, each displacement will count 
toward the quality of a (s, a) (state and action pair), and in the 
end the set of density functions can be used to cast the 
solution as an RL solution to the given stochastic problem. 

Problems solved following the RL method, allow the 
retracing of the optimal path by starting, either at a random 
state or at a predefined starting state and then following 
sequentially all the actions (a) at higher probability among the 
available and feasible actions (a) to the new state. In similar 
fashion, our solution can be used to trace the optimal 
trajectory among all possible trajectories, by starting from a 
Peripheral state (border of the image, or entrance of the scene 

within the image), and then following the path at higher 
probability. One constraint must be imposed to the tracing, 
enforcing low probability to cyclic paths in the scene (in 
theory the tracing could bounce back and forth between a 
small number of states). This can be easily implemented by 
assuming that the current direction is the most likely one 
(another analogy to the RL term policy will not vary much in 
a suitably defined neighbourhood (a small window), making 
straight paths more likely than turning paths). 

The above description explains how paths can be extracted 
using the ensemble of density functions. This is not the end of 
the story. In fact, the classification of modal trajectories based 
on likelihood of occurrence is of significant interest. This can 
be implemented by assuming a finite starting number of paths 
and a parallel tracing of such paths in the manifold defined by 
the ensemble of the estimate density functions (for instance 
following a dynamic programming scheme). Tracing can then 
be implemented with distributed modules keeping track of the 
path likelihood, and at the same time, classes can be defined 
by considering how far apart fall traced paths, for instance 
using a distance measure function of the Euclidean distance 
between paths and their lengths. 

5 Conclusions and future work 
In this paper we have introduced a novel method capable of 
automatically extracting the dynamics of crowd movements. 
The qualitative results obtained show that the estimated 
motion vectors can visually describe pedestrian motion. The 
resulting ROC curves indicate that the probability of true 

positive ( PtP ) raises high when the PfP is still low showing 
the robustness of the algorithm. However, improvements can 
still be made if more knowledge about local support can be 
extracted, and tracking methods like particle filter could be 
employed to get better perfon-nance. 
We feel this is a suitable precursor to processes for learning 
modes of complex dynamics, describing behaviour and 
supporting for work in high-level vision and socio-dynamics 
modelling. As a result, it is expected that the method 
presented here to extract dynamics is likely to find use for 
building up crowd dynamics models. 
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Abstract. We present in this paper a new motion estimation method aiming at 
crowd scene analysis in complex video sequences. The proposed technique 
makes use of image descriptors extracted from points lying at the maximum 
curvature on the Canny edge map of an analyzed image. Matching between two 
consecutive frames is then carried out by searching for descriptors that satisfy 
both a well-defined similarity metric and a structural constraint imposed by the 
edge map. A preliminary assessment using real-world video sequences gives 
both qualitative and quantitative results. 

1 Introduction 

Understanding crowd behavior is a relatively new research topic in computer vision 
and can be applied to a variety of domain problems, including space optimization, 
ambient intelligence and visual surveillance. In this paper we describe a new tech- 
nique that combines image descriptors and edge information to estimate the crowd 
motion of video sequences to better support behavior analysis. 

Pedestrians' behavior differs when they walk as individuals and when they are part 
of a crowd. Crowds have been studied by sociologists and civil engineers and physics 
models were proposed to describe quantitatively complex behavior dynamics [1][2]. 
Le Bon compares a crowd to a chemical compound as it displays properties quite 
different from those of the bodies that have served to form it [3]. Methods normally 
employed to describe the behavior of an individual would fail in crowd situations, 
especially when the level of clutters is very high. 

Computer vision methods have been used to focus on extracting information from 

video sequences of crowded scenes, for instance, to estimate crowd density, e. g., [4], 
[5]. In order to model behavior, the tracking of individuals and groups of people must 
be implemented. Two categories of tracking can be broadly defined: one for detecting 

and tracking single persons in a crowd, which requires a window of interest area to 

start with like the work of [6], employing Harris interest points detector and point 
distribution model; the second one is for detecting and tracking a few (3 to 10) people 
using sophisticated tracking techniques like the particle filter [7], Markov Chains [8] 

and probabilistic frameworks [9]. Furthermore, recent work has focused on the inter- 

pretation of highly crowded scenes [10] employing statistical methods to extract the 



main paths of a crowded scene or using hidden Markov models to describe the normal behavior of a crowded scene [I I]. 
Our main goal is to employ computer vision methods to develop robust motion es- 

timation methods and model statistically both the instantaneous and recurrent dynam- 
ics of a highly crowded scene. 

In this paper we propose an algorithm to estimate crowd motion in scenes of differ- 
ent level of density and clutter. Inspired by deformable object tracking techniques [12], 
we make use of the edge information and its curvature to extract descriptor points (those with local maximum curvature) as salient features of an edge. Instead of using 
points, edge information is maintained by "edgelet constraint' 'to refine the estimation. 
Thus we combine the advantage of using point features which are flexible to track and 
the advantage of using edge features which maintain structural information. 

The paper is organized as follows. Section 2 describes our proposed method in de- 
tail; Section 3 presents selected results of applying the method to different dense vis- 
ual scenes, and in Section 4 we give concluding remarks and discuss future work. 

2 Proposed Method 

The motion estimation between frames is carried out in four steps: 
-A conventional Canny edge detector is run over each image frame and the edge 

chains are retrieved; 
- the curvature is calculated for every point on an edge chain, and along each chain 

the interest points at maximum curvature are chosen; 
- then, for all the extracted points in the first frame of each frame pair, we search for 

matching candidate points in the second frame; 
- and finally the edgelet constraint is applied to obtain the best point matches. 

Sections 2.1 to 2.4 describe the above steps in detail; Section 2.5 explains the role 
of the background model so as to improve the performance of the proposed method. 

2.1 Edge Retrieval 

The Canny edge detector is employed to extract the edge infon-nation of a given 
frame. Each Canny edge is a chain of point Sp, and all the edges are stored in an edge 
list Lp. Fig. I (a) and (b) show, respectively, an example image frame and the extracted 
edge chains with associated bounding boxes. It can be observed that even in a scene of 
medium density crowd, edge chains can occlude each other, increasing the descriptor 
matching complexity. 



(a) 

Fig. 1. (a) Original frame, (b) Edge chains and their bounding boxes 

2.2 Curvature Estimation and Corner Point Extraction 

Interest points can be quickly extracted for a sequence frame, for instance, with the 
Harris comer operator ( 13 ]. Although interest points can represent the local character- 
istics of an image in isolation, they cannot represent a shape. We therefore propose the 
extraction of interest points from edges and then impose the constraint that they lie on 
a specific edge. 

Each edge can be represented by a parameterized curve: 

x(t) and y= y(t) 

We smooth the curve with a Gaussian filter, as follows 

X(t) = G(t) 0 x(t) 

X'(t) =: G'(t) 0 x(t) 

(b) 

(1) 

(2) 

G" (t) 0 y(t) 
The curvature of each edgelet can then be given by [ 14]: 

K= (Xly 
If-YIXII) (3) 

(X'2 +Y'2 ) 
The Gaussian filter, the first- and second-order derivative filters can be easily imple- 

mented using the method described in [ 15]. 
Comer points are defined and extracted as the local maxima of the absolute value 

of curvature on each edge. 
Thus we convert the edge representation from a point sequence Sp to a comer point 

sequence S,, resulting in a list Lc of S, for all the edges of the image. 
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Fig. 2. Original frame (left) and extracted comer points (right), marked with red 
crosses on grey edges. Two scenes of different complexity levels are illustrated. 

2.3 Point Matching by Curvature 

Given two frames 1(to) and 1(t) and we estimate the motion of the points from 1(to) to 
1(t). For each comer point Co 6J), with coordinate (xy) from every So(tj) of L, (to), 
we search in I(t) the area inside a rectangular search window W centered at (xy). A 
look-up table (LUT) contains comer point information of L, (t) is generated to enhance 
the matching. (Illustrated in Fig. 3). 

The correspondence is matched by using curvature infonnation of comer points in 
W in LUT against the reference point CO 6, i). The error is calculated by the curvature 

error(j, i) =1 ic(Cto (j, i)) - K(Ct U, il)) I (4) 

The best n matches are then selected as candidate points and considered for the 
next step. 

:: 



LUM generated by L, (t) contains comer 
point and edge infonuation 

Fig. 3. The procedure of matching comer points 

2.4 Applying the Edgelet Constraint 

Complex dynamics and frequent occlusions generated in crowd scenes make the esti- 
mation of motion a very complex task. Point matching in isolation is too fragile and 
prone to errors to provide a good motion estimator. If interest points are extracted on 
edge chains, then the edge constraint can be imposed and used. 

For image frame I(to), we divide every S, 06)to uniform length edgelets represented 
by sub sequences Eo6, k). There are two reasons for doing this: to avoid a very long 
edge that could be generated by several different objects, and to enhance the matching 
of the edge fragments that generated by occlusions. For each comer point Co 6, k, i) in 
E, O 6, k) we have as result from the first step, n candidate matching points. Each candi- 
date point belongs to a sequence S, 6) in L, (t), thus we have m (m<=n) candidate 
matching sequences (or pieces of sequence) for each edgelet. 

To find the best match of EO 6, k), we use three parameters: energy cost, variation 
of displacements and the match length for each candidate and combine them into a 
single matching score. Here we assumes that the length of Eo 6, k) is small enough that 
it would not split again to two or more matches, it is, that their candidate points should 
belong to the same candidate sequence. 

, gy cost due to deformable object matching is calculated by accumulating the Ener 
errors (again calculate by difference of the curvatures as in (4)) along matching point 
pairs of Eto 6, k) and all the candidate match points that belong to the same candidate 
sequence. 

Energy error(i, j, k) = 1] i, k)) - ic(Ct (j, P, k'))) (K(Ct,, (j, 



Variation of displacements For each matching point pair we have a displacement 
pair &rj and dyi, combination of the variation of the two displacement vectors: 

x 
Lm ., 

( §1 (dxi - dx))' + (-§' (dyi - dy))' 

where dx and dy are the average displacements between the matched point pairs, S 
is the size of the match window, Lm is the number of total matched points of from E, o 6, k) to candidate sequence. Hence V lies in the range between 0 and 1. 

And match length parameter: 

LM (7) 
M= 

LE 

Where LE is the total number of points on EO a, k), M between 0 to 1. 

So the overall matching score is given by: 

Score = Energy +V+ (I -M) (8) 

The candidate sequence of minimurn matching score will be selected. However, if 
the match length parameter M< 50%, we will discard the result. 

2.5 Improving Results with Background Model 

Background modeling is cornmonly employed to segment foreground, though here 

we use it to reduce noise. When a scene is very crowded and people frequently oc- 
clude one another, it is not practical to segment foreground solely with background 

modeling. However, on the other hand there could be still some parts of the scene 
never covered by foreground objects (e. g. ceiling) which we can call permanent back- 

ground. Here what we want is to use the background model to eliminate the noise 
generated by the permanent background. We adopted the Gaussian mixture model 
proposed by Stauffer [ 16] which builds an adaptive and updatable background model 
on a pixel by pixel basis to generate a foreground (FG) mask. In some cases a FG 

mask may lose some edge points, which could cause some of the FG edges to be bro- 
ken by the background and lose their consistency. To avoid this we do not apply the 
FG mask directly on the image, but apply the mask when we extract the comer points, 
that is, eliminating the comer points that fall into background while keeping the con- 

nect infonnation. 



3 Experimental Results 

We have tested our algorithm against a few of video data, which contain different 
densities of crowd, with different frame rates, and different pedestrian sizes (different 
camera set-ups and therefore perspectives). We chose to assess some results quantita- 
tively, those including video sequences with a few people (3 to 4), for which the 
ground truth is known, and to asses others qualitatively, illustrating the flow of 
crowded scenes. 

:: 

Fig. 4. Two test data set (a) and (b). The left two sample initial frames from both data set, with 
comer points indicated by white dots inside ground truth box; the middle two are the matched 
frame, with correct matched points CRm marked by blue circle and incorrect matched points 
ICRm marked by cross, the right two are the correct match rate R along the frames of the se- 
quences. 

3.1 Motion Estimation of Multiple People 

The video data we use here are from the European project CAVLkR [ 17 ], ground truth 
information for these data is provided in XML format. 

To test the result, for I(tO) we estimate the foreground object position (by means of 

a bounding box) and translate every comer point in the bounding box to the matching 
frame I(t) by its estimated motion, we then count all translated points still in the box as 



a correct match CRm, and those falling outside of the box as an incorrect match ICRm, 
and the correct match rate is calculated as: 

R= 
CRm 

CRm + ICRm 

(9) 

It is easy to see that in the optimal situation R should always be equal to 1. 

3.2 Motion Estimation of More Complex Video Sequences 

We tested our algorithm on different types of video sequences, including different 
number of people and frame rate. Fig. 5-(a) is a snapshot of a high frame rate se- 
quence with medium density of people while Fig 5-(b) and (c) are low frame rate 
sequence (typically I frame/sec or less) with high density of people. Results are com- 
pared against those obtained using optical flow method run on the same sequences. A 
detailed illustration from sequence (c) is given in Fig. 6, with one of the two consecu- 
tive frames being overlaid on top of the other, which gives us an expression of loca- 
tion of the pedestrians in the two frames. The comer points in both frames and their 
correspondence are indicated on the figures. 

(a) 

(b) 



(C) 

Fig. 5. Visualized Results from different types of video sequences (left ones), against the 
results from optical flow method run on same sequences (right ones). 

Fig. 6. A detailed illustration of a sequence (c): The figure is the overlapping of two consecu- 
tive images, with the initial comer points indicated by blue crosses and the matched points 
indicated by red circles. 

4 Conclusions & Future Work 

In this paper we have introduced a novel method to estimate the motion of a crowd in 
complex scenes and thus provided the basis for a high level description of a crowd for 
interpretation and modeling. The method in its essence relies on edge information for 
the extraction of image descriptors and their matching between frames. Comer points 
are selected as salient features and edgelets are employed to maintain the local edge 
information, an adaptive background model is associated with the system to reduce the 
noise. 

Future work will entail the clustering of the extracted comer points and the edgelets 
to groups that represent a pedestrian or a group with common movement, and thus the 
method can be extended to the actual tracking of individuals or groups of people in 

very complex scenes. 
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Abstract. Crowded environments are extremely interesting to analyse 
and model. Scenes of crowds appear to be chaotic; our main research in- 
terest is to demonstrate that crowd dynamics is inherently intelligent and 
their dynamics follow the modes of a density function apparently very 
noisy but hiding well defined paths. This work falls within the category 
of automatic scene understanding. In extreme conditions only moving 
people are visible from monitoring cameras and it is virtually impossible 
or unrealistic to model the static background. This makes very hard the 
detection of motion in the scene, and the analysis of its dynamics. We 
present a method, based on optical flow that can capture the dynamics 
of a complex scene and we employ a technique to identify the main paths 
of people frequenting a very busy environment. Ambient Intelligence can 
benefit from such an automatic analysis by keeping track of a very busy 
shopping mall, concourse, street, station, to draw statistics for business 
dynamics, laying optimal paths for disabled people or identifying and 
flagging unanomalous behaviour. 

1 Introduction 

A large number of publications focus on basic and robust image processing tech- 
niques to identify events of interest and track them throughout a more or less 

complex network of cameras, installed to monitor a public or private area (shop- 

ping malls are a classic example). There are two main problems with current 
methods: (i) they make the crucial assumption that video data streams can be 

split in two stochastic processes, one for the background signal and the other one 
for the foreground signal, (ii) they use video data streams where an individual 

can be identified and tracked, more or less easily. 
Although tracking methods have evolved during the last decade - particle 

filters superseded banks of Kalman filters [1], techniques such as MeanShift have 

proved robust and reliable in complex scenes (American football examples) [2] - 
one can not possibly ignore that in highly crowded scenes, such as those in metro 
or train stations, the background signal can rarely be learned, and, although, in 

theory this is possible by using a very long video footage, one can not trust its 

reliability under continuous changes in illumination and/or variable atmospheric 
conditions. 

The understanding and simulation of crowd dynamics is not new, chaos the- 

ory and complex dynamic models have been proposed in the literature, examples 



include the work of Still [3], Helbing [4][5] and Musse [6]. Our approach is com- 
plementary, as we are interested in discovering and learning dynamics' models 
from raw video data. Our research is in line with some previous work of the 
authors on behaviour analysis [7] and some existing work on modelling complex 
behaviours [8] [9]. In this new context, the concept of behaviour is generalised to 
complex dynamics. 

In this paper we propose a method that discovers the main paths (modes) 
of a crowded scene, and builds two density functions, that keep track of the 
occurrence (PDF") of the signal and the local direction (PDFO), simply using 
a conventional block matching technique. Once the two PDF are built, then 
a recovering algorithm combines the stochastic information to reconstruct the 
main paths. These are then evaluated using an information theoretic dissimilarity 
measure. Two examples are shown in Figure 1. In these scenes the background 

Fig. 1. Two frames of typical video data. 

model might be learned, but the lighting conditions and video data quality make 
it extremely hard to rely on the built model. 

The paper is organised as follows. Section 2 describes the algorithm; Section 
3 discusses how paths can be extracted, while Section 4 describes an alternative 
method to estimate the density functions. Section 5 reports on preliminary re- 
sults of the proposed algorithm tested on a few scenes. Concluding remarks are 
given in Section 6. 

Conventional method 

A probability density function for occurrence of foreground is constructed. This 

entails building the now well known pixel-based multivariate model of image 

dynamics, use of connected components to remove noise and the populating of 

an accumulator that, normalised to unit volume, represents a discrete probabil- 
ity density function of the occurrence of the foreground from the single view. 



Attempts to segment such PDF have been tried before, but in this paper we 
leave the PDF as is. This is because segmenting continuous paths is not par- 
ticularly interesting or useful. Also, we split the image into cells which might 
be interpreted as a fine and unorganised segmentation of the PDF. Finally, we 
prefer to keep an implicit representation of the PDF. In step 2a PDF is built 
on the direction of structure. Structure for us are foreground connected compo- 
nents that move in the scene and whose local motion can be estimated by some 
similarity measure between consecutive frames. In this first implementation, a 
conventional block matching technique was implemented to identify the next 
position of the foreground data. Each cell/block in the image is then associated 
with a discretised orientation histogram, representing the occurrence of direction 
over the analysed sequence. In step 3 paths are discovered, by merging the in- 
formation of both PDFs. In step 4 paths are approximated by spline curves and 
masks generated to rapidly calculate the FG blob-path distance and estimate 
fitting error. 

The rationale of the outlined approach is justified by the need to identify 
main paths of direction in a complex scene, regardless of individual dynamics. 
Discovering modes of dynamics in a complex scene could be employed to build 
a coarse natural language narration of the scene and used to identify anomalies, 
such as people going in an unusual direction. 

2.1 Occurrence PDF (PDF') 

It is unrealistic to precompile a background model of a complex real world scene, 
such as those video recorded by security cameras in public spaces. This is because 

of sudden or continuous changes in illumination, shadows and noise in the video 

signals. We have therefore adopted the Gaussian mixture model proposed by 

Stauffer [10] [11] that builds a dynamic and updatable background scene model 

on a pixel basis. The use of Stauffers algorithm allows a robust identification 

of foreground data. This foreground detector assumes background can be built, 

and therefore that the background stationary part of the scene can be seen over 

a large number of frames. This might not be the case in more complex scenes, 
for which a crowd might make invisible the background. In such cases other 

techniques will need to be employed. The foreground data is further processed 
to reduce noise. In particular, connected components have been implemented. 

Connectivity of foreground pixels gives more robustness to the foreground data 

and assures that only large foreground blobs are accepted for further analysis, 

while smaller blobs are rejected as likely noise. 

For each frame we accumulate foreground features for every pixel, so that 

after a relatively long video sequence we have the accumulator of the foreground 

occurrence throughout the whole image. Figure 2 illustrates a typical occurrence 

PDF. The image can be segmented into cells, to speed the process of estimation 

of the PDF- 
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Fig. 2. Typical occurrence PDR 

2.2 Orientation PDF (PDFO) 

The image plane is segmented into a regular grid of cells (NxM). The dimension 
of each cell is a multiple of 2 and each cell is square-shaped (KxK). The idea is to 
speed up the matching process employed as a coarse estimator of motion between 
frames. Motion is estimated between consecutive frames, using the foreground 
blocks of the first frame as a reference/ template and searching for an optimal 
match in the second frame. In the current implementation, block matching is 
carried out in a 3A neighbourhood, around the selected foreground cell. A cell 
is labelled as foreground if the majority of its pixels are indeed foreground. 
Matching performance is improved by matching only between foreground cells, 
ignoring background cells. 

A correlation measure [12] is used to calculate the distance between cells. 
The correlation method we used, for each pixel: 

C(pixel) - 
1 

(1) 11P1 - P211 

Where p, and P2 are respectively the pixel in the reference cell and the 
pixel in the neighbouring cell. Correlation for an entire cell is then calculated 
by summing over all the pixels of the cell: C(cell) = EC(pixel). Each cell is 
therefore associated with a histogram representing the eight possible directions 

of motion. The intention here is to build a local representation of motion, similar 
to a discrete reinforcement learning technique [13] 

, where each cell of the table 
has associated a quality array, indicating the likelihood of transition from the 

current cell to a neighbouring cell. The final outcome is an orientation PDF, 

which could be interpreted as the global optical flow of the scene. 

Path discovery 

The work described in the previous sections provides two PDFs: one for the 

occurrence and one for the orientation of a scene. To discover the main paths, 



we need to combine the information and extract those corresponding to higher 
likelihood/ probability. Ideally we would like to identify the paths corresponding 
to the modes of a probability density function that combines both occurrence 
and orientation information. 

In order to estimate the main paths we make a number of assumptions. 
Path origin: we make the assumption that all paths originate from the 

boundaries of the scene. Consequently path discovery is started from a cell the 
boundary of the scene and having high occurrence probability. This assumption 
would not work if the scene had an entrance or exit in the middle of the image, 
but this can be overcome relatively easily by using user-defined boundaries. 

Graceful cont inuat ion/ Smooth trajectory: We observed that paths have 
a high probability to maintain their orientation (e. g. people are more likely to 
go on a straight' line, and seldom go backwards. ) So we model the expected 
direction of motion with a Poisson distribution [14], with its maximum in the 
neighbouring cell along the current direction of motion. 

The idea is to spread the likelihood of change in direction unevenly, main- 
taining the previous orientation as the one at highest probability and forcing 
the other directions (change in direction) to have a lower likelihood. Table I 
illustrates the probabilities used given the distance from the current orientation. 

From the start point, we calculate the probability for each neighbouring block 
using the occurrence pdf (PDFo,, ), the block matching accumulator (Pb) and the 
orientation probability (PDFO, ). Furthermore, to avoid repeating calculations 
from the same block, we mark the visited cells, and set their probability to 0 
each time the path discovery process has to deal with them. The probability of 
each neighbouring cell i: iE [0.. 81 to be the next path cell is: 

mi - PDF: '. PP - PDFý 
Pi =2%2 Ek Mk - PDFk" - 

Pkb - PDFko 

where 
kc [0. . 8], mi 

1 marked (3) ý0 
unmarked 

The process will follow the highest probability block and stop at a probability 

c: c --+ 0. We also devised a way of deciding when to split a trajectory in two 

or more sub-trajectories. This technique works on a threshold that estimates 

whether two or more paths are viable given their associated likelihoods. However, 

we enforrce only a single split along a trajectory, so as not to generate too many 
branches. 

4 The Alternative method 

This section describes an alternative method. This applies the conventional block 

matching technique described in Section 2.2 to estimate a coarse estimation of 

the motion field. The magnitude of such field is used to build the PDF'. 



In a very complex scene it may be very hard or impossible to discriminate 
between the foreground and the background stochastic processes. In order to 
analyse the dynamics of the scene, we developed an alternative method to esti- 
mate the occurrence and orientation density functions, using the optical flow to 
build the densities. 

4.1 Optical Flow in brief 

An image f (x, y, t) refers to the grey level of (x, y) at time t. Representing a 
dynamic image as a function of position and time permits it to be expressed as 
a Taylor series. 

f (x + dx, y +, Ay) t+ 'At)= f(X, Y, t) +f x ýAx +fy Ay +ft 'At + 0(62) 

f, fy and f, can be approximated, from f (x, y, t). The brightness constraint 
equation is thus 

f (X +'AX' y +'AY) t +, At) = I(X' Y, t) (5) 

The motion velocity can then be estimated as 

-ft = fu + fyv (6) 

As this is only one equation for two flow components, the optical flow is not 
uniquely determined by this constraint. Many optical flow estimation techniques 
exist. In this paper we employed the method proposed by Horn and Schunck [15], 
in which the optic flow constraint is embedded in the global energy functional. 

Es «f--u + fyv + ft) 2+ 
a(I3U1 

2+ IAVI 2 »dxdy 
0 

4.2 Occurrence PDF 

Occurrence PDF is built using an accumulator of the motion occurrence 

VFU2 + V2 (8) 

For each frame we accumulate the motion value for every pixel, so that after 

a relatively long video sequence we have the accumulator of the foreground 

occurrence throughout the whole image. 

4.3 Orientation PDF 

We have a horizon velocity map and a vertical velocity map for each pixel. To 

evaluate the orientation information we employed a 8-direction scheme. 
We calculate the tangent of the direction angle by (u, v), and fit them to the 

8-direction area according to the angle 

a= arctan , 
(u 7ý 

u 

We accumulate the motion vector corresponding to the current direction. 



5 Experimental results 

Fig. 3. Two examples of extracted paths. 

Paths extracted using the method described in the previous sections corre- 
spond to the main modes of trajectories followed by people in the analysed scene. 
Rather than using the two PDFs (occurrence and orientation) to estimate an 
error and evaluate the performance of the technique, we provide a simplififed 
evaluation. We employed the idea of a stripe along the discovered paths using a 
decay factor (a Gaussian weighting) along the perpendicular to the trajectory. 

Examples of automatically extracted paths are shown in Figure 3. These are 
preliminary and qualitative results, that indicate that some of the paths are 
identified and some others are misclassified as paths, mainly due to recurring 
noise, partially caused by regular illumination changes. 

5.1 Support masks 

The stripe is illustrated pictorially in the Figure I Suppose the black area rep- 
resents the discovered path f=f (x, y, t) .A 

Gaussian distribution G(JI, 0') is 
then centred on the trajectory (y corresponding to the generic path pixel), and 
o, being a predetermined standard deviation directly proportional to the size of 
the blobs estimated by the connected component process. 

An approximated estimate of the error between a new sequence of the same 
scene and the built model can then be calculated by weighting the contribution 
of a foreground blob, making use of the described weighting scheme. Since error 
estimation can be performed off-line, when the model already exists, a mask for 
the entire image can be built before testing. 

Masks are built once for all at the end of the path modelling process. 

- We build an image look-up table (LUT), where each pixel is assigned a label, 
identifying the closest path in the scene. 



- For each path we build a stripe mask. The mask contains the weights, in- 
verselY proportional to the distance between a pixel and the path/spline. To 
calculate the weights we sampled the curve of the path at equally spaced 
intervals At and used the line segment between samples to calculate the 
weight. 

For each FG blob we detected, we examine it pixel by pixel with the image label 
LUT, and determine the closest path by taking the most frequent label of its 
pixels. 

5.2 Measuring goodness of fit: an information theoretic approach 
A number of scenes have been analysed and following the conventional machine 
learning approach each sequence was split in two halves, to build and test the 
model. Different percentages of frames to build the model were used, and to test 
the robustness of the approach. We chose the Kullback-Leibler (KL) dissimilarity 
measure to estimate the similarity between the PDF,,,, and PDF, of the model 
and the corresponding PDFs built using a fixed percentage of test data. 

DKL ý (D(PDFmodel JJPDF test) (1) D(PDF test JJPDF model)) (10) 

where 
DLK (PI Jq) =E p(t) log2 p(t) 

t q(t) 

and, for PDF,,,, the sum is over the entire image, and for PDF,,, is a weighted 
sum over all the cells. The following table illustrates some preliminary results. 
The table illustrates results for two scenes, indicating the dissimilarity for PDF, 

and PDFO independently. The composit, shown with the symbol ED, is a type 

of balanced non-negative dissimilarity measure that, in theory, is zero for p -= q, 
and should decrease as the model is refined and better represents the studied 
scene. These preliminary outcomes illustrate that a decreasing trend is present 
for PDFO but not quite for PDF,. The number of frames we used is still fairly 

low. Our next goal will be to use longer sequences, for instance as long as hours. 

Conclusions and Future Work 

Ambient Intelligence requires the use of machine vision to interpret visual dy- 

namics and produce a natural language description of unfolding events in a 

complex scene. This is possible only if an automatic interpretation is in place. 
In this paper we wanted to prove that a spat ial- temporal model of the main 

modes of dynamics can be captured simply, without the use of a tracker. This is 

important, as a tracker might not work in very cluttered scenes. Approximating 

the main paths, means generating a model of normality which can in turn be 

used to identify anomalies. 
This is the very first step towards a formalisation of crowd dynamics. We 

firmly believe that density estimation of dynamics can be built and left in implicit 



Scene 1 
PDF, PDFO 

D(pl j q) D(ql 1p) D(pl jq) E) D(ql 1p) D(pl jq) D(ql 1p) D(pllq) (D D(qllp) 
200 1.38744 6.41181 3.89963 0.992265 3.71003 2.35115 
400 1.22145 4.72941 2.97543 0.74336 2.3779 1.56063 
600 1.30149 4.22187 2.76168 10-550128 0.870776 0.710452 
800 1 15.32319 1.50177 3.41248 10.960938 0.405281 0.68311 
1000 5.43141 1.37666 3.40404 1.61853 0.448835_ 1.03368 
1200 

- i- 
5.83901 1.39313 3.61607 2.20614 0-50ý ý 1.3574 

i4 00 15-87275 1.38677 3.62976 2.48443 0.5479931 1.51621 

Scene 2 
PDF, PDFO 

Nframes D(pllq) D(qllp) D(pllq) E) D(qllp) D(Pll q) D(qllp) D(pllq) E) D(qllp) 
200 1.76456 4.49901 3.13179 1.07256 6.88155 3.97705 
400 1.75548 3.60504 2.68026 0.665695 2.40205 1.53387 
600 1.9534 2.89671 2.42506 0.434972 0.825922 0.630447 
800 1 

12.15736 2.32519 2.24128 0.395621 0.502726 0.449173 
1000 3.9971 1.39806 2.69758 0.529596 0.429419 0.479507 
1200 3.65854 1.29503 2.47678 0.653405 0.403238 0.528322 
1400 13.62649 11.30134 2.46391 10.680506 0.403089 0.541798 

form, the table shows some preliminary results and a possible way of evaluating 
the goodness of fit of the estimated functions. 

Future work will include the refinement of the current model and a clustering 
of the paths. 
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Abstract. The Ambient Intelligence (AmI) paradigm requires a robust 
interpretation of people actions and behaviour and a way for automat- 
ically generating persistent spatial-temporal models of recurring events. 
This paper describes a relatively inexpensive technique that does not re- 
quire the use of conventional trackers to identify the main paths of highly 
cluttered scenes, approximating them with spline curves. An Aml system 
could easily make use of the generated model to identify people who do 
not follow prefixed paths and warn them. Security, safety, rehabilitation 
are potential application areas. The model is evaluated against new data 
of the same scene. 

1 Introduction 

This paper describes the first steps towards automatic crowd analysis. Machine 
Vision research has been mainly concerned with accurate measurements of ob- 
ject dynamics and many algorithms have been proposed to track one of more 
individuals in more or less complex scenes. Not so long ago some researchers 
started to work on behaviour analysis, mainly concerned with the building of 
a reusable spatial-temporal model of a scene. Notable work is research carried 
out to identify patterns in time series of people working in an office, people and 
vehicles moving in a car park [1][2]. The basic problem with these approaches 
is that they tend to rely on accurate information extracted by trackers [3], or 
they make use of coarse information, extracted from video data of individuals or 

small numbers of people frequenting the analysed environment. What we are in- 

terested in are highly cluttered scenes, with many people moving about, with no 

apparent structure, such as those of large crowds recorded in highly frequented 

public spaces, such as railway or metro stations. This paper presents an ini- 

tial study on how to tackle the described scenarios with simple machine vision 

algorithms that do not require sophisticated image understanding processing al- 

gorithms and that can be eventually implemented in hardware. Two examples 

are shown in Figure 1. 
The paper is the first step to bridge two worlds: on the one hand machine 

vision research that attempts to deliver stochastic models of dynamics while on 

the other hand mathematical modelling of dynamics, such as fluid or aerodY- 

namics, recently employed to describe the complex and apparent chaotic crowd 

dynamics [4][5][6][7]. Here we make use of simple image processing techniques 

to extract foreground data of a dynamic scene. We then build the probability 

G. Bebis et al. (Eds. ): ISVC 2005, LNCS 3804, pp. 126-133,2005. 

Cc) Springer-Verlag Berlin Heidelberg 2005 
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Fig. 1. Two frames of typical video data 

distribution function (PDF) of the occurrence of the detected foreground and 
the motion orientation of the foreground so as to build a local model for it. We 
then make use of the two PDFs to trace the main paths of people who frequented 
the scene. These paths are then considered as the modes of paths in the scene 
and uncertainty around them is used to estimate an error measure to evaluate 
the performance of the proposed algorithm. 

The paper is organised as follows. Section 2 describes the algorithm; Section 
3 discusses how paths can be extracted, and spline curves can be employed to 
interpolate the extracted paths. Section 4 reports on preliminary results of the 
proposed algorithm tested on a few scenes. Concluding remarks are given in 
Section 5. 

Proposed Method 

The proposed method can be surnmarised in the following steps, described in 
later sections of the paper: 

Occurrence PDF: foreground detection, connected components, accumulator, 
Orientation PDF: correlation matrix, accumulator of block matching, 
Path discovery: previous orientation, probability calculation, path split. 
Path fitting: spline interpolators, path masks. 

In step Ia probability density function for occurrence of foreground is con- 
structed. This entails building the now well known pixel-based multivariate 
model of image dynamics, use of connected components to remove noise and 
the populating of an accumulator that, normalised to unit volume, represents a 
discrete probability density function of the occurrence of the foreground from 

the single view. Attempts to segment such PDF have been tried before, but in 

this paper we leave the PDF as is. This is because segmenting continuous paths 
is not particularly interesting or useful. Also, we split the image into cells which 
might be interpreted as a fine and unorganised segmentation of the PDF. Fi- 

nally, we prefer to keep an implicit representation of the PDF- In step 2a PDF 
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is built on the direction of structure. Structure for us are foreground connected 
components that move in the scene and whose local motion can be estimated by 
some similarity measure between consecutive frames. In this first implementa- 
tion, a conventional block matching technique was implemented to identify the 
next position of the foreground data. Each cell/block in the image is then asso- 
ciated with a discretised orientation histogram, representing the occurrence of direction over the analysed sequence. In step 3 paths are discovered, by merging 
the information of both PDFs. In step 4 paths are approximated by spline curves 
and masks generated to rapidly calculate the foreground blob-path distance and 
estimate fitting error. 

The rationale of the outlined approach is justified by the need to identify 
main paths of direction in a complex scene, regardless of individual dynamics. 
Discovering modes of dynamics in a complex scene could be employed to build 
a coarse natural language narration of the scene and used to identify anomalies, 
such as people going in an unusual direction. 

2.1 Occurrence PDF 

It is unrealistic to precompile a background model of a complex real world scene, 
such as those video recorded by security cameras in public spaces. This is because 
of sudden or continuous changes in illumination, shadows and noise in the video 
signals. We have therefore adopted the Gaussian mixture model proposed by 
Stauffer [8] [91 that builds a dynamic and updatable background scene model 
on a pixel basis. The use of Stauffers algorithm allows a robust identification 
of foreground data. This foreground detector assumes background can be built, 
and therefore that the background stationary part of the scene can be seen over 
a large number of frames. This might not be the case in more complex scenes, 
for which a crowd might make invisible the background. In such cases other 
techniques will need to be employed. The foreground data is further processed 
to reduce noise. In particular, connected components have been implemented. 
Connectivity of foreground pixels gives more robustness to the foreground data 

and assures that only large foreground blobs are accepted for further analysis, 
while smaller blobs are rejected as likely noise. 

For each frame we accumulate foreground features for every pixel, so that 

after a relatively long video sequence we have the accumulator of the foreground 

occurrence throughout the whole image. Figure 2 illustrates a typical occurrence 
PDF. The image can be segmented into cells, to speed the process of estimation 
of the PDF. 

2.2 Orientation PDF 

The image plane is segmented into a regular grid of cells (N x All). The dimension 

of each cell is a multiple of 2 and each cell is square-shaped (K x K). The idea is to 

speed up the matching process employed as a coarse estimator of motion between 

frames. Motion is estimated between consecutive frames, using the foreground 

blocks of the first frame as a reference/ template and searching for an optimal 
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"1 

Fig. 2. Typical occurrence PDF 

match in the second frame. In the current implementation, block matching is 
carried out in a3x3 neighbourhood, around the selected foreground cell. A 
cell is labelled as foreground if the majority of its pixels are indeed foreground. 
Matching performance is improved by matching only between foreground cells, 
ignoring background cells. 

A correlation measure [10] is used to calculate the distance between cells. 
Correlation for an entire cell is then calculated by summing over all the pixels 
of the cell: 

-L 

1+ Ilp - Pill 
X, YEC 

where P and P are respectively the pixel in the reference cell and the pixel 
in the neighbouring cell. The measurement of the correspondence between two 
cells uses the normalised cross correlation. This results in a distance falling in 
the (0,11 range. The distance is I when the two cells are exactly the same and 
becomes very small when the two cells bear large differences. 

Each cell is therefore associated with a histogram representing the eight pos- 
sible directions of motion. The intention here is to build a local representation 
of motion, similar to a discrete reinforcement learning technique [11] 

, where 
each cell of the table has associated a quality array, indicating the likelihood of 
transition from the current cell to a neighbouring cell. The final outcome is an ori- 
entation PDF, which could be interpreted as the global optical flow of the scene. 

Path Discovery 

The work described in the previous sections provides two PDFs: one for the 

occurrence and one for the orientation of a scene. To discover the main paths, 
we need to combine the information and extract those corresponding to higher 
likelihood/ probability. Ideally we would like to identify the paths corresponding 
to the modes of a probability density function that combines both occurrence 
and orientation information. 

In order to estimate the main paths we make a number of assumptions. 

Path origin: we make the assumption that all paths originate from the bound- 

aries of the scene. Consequently path discovery is started from a cell the bound- 
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ary of the scene and having high occurrence probability. This assumption would 
not work if the scene had an entrance or exit in the middle of the image, but 
this can be overcome relatively easily by using user-defined boundaries. 

Graceful cont inuat ion/ Smooth trajectory: We observed that paths have a 
high probability to maintain their orientation (e. g. people are more likely to go 
on a straight line, and seldom go backwards. ) So we model the expected direction 
of motion with a Poisson distribution, with its maximum in the neighbouring 
cell along the current direction of motion. 

The idea is to spread the likelihood of change in direction unevenly, main- 
taining the previous orientation as the one at highest probability and forcing 
the other directions (change in direction) to have a lower likelihood. Table I 
illustrates the probabilities used given the distance from the current orientation. 

Table 1. Likelihood as function of orientation distance 

1d1011121314 
1 Pd 10.683010.133510.0210.0045 10.00011 01 

From the start point, we calculate the probability for each neighbouring block 

using the occurrence pdf (PDF,,,, ), the block matching accumulator represents 
the orientation probability, that is PDF,,,, and also the direction likelihood P". 
Furthermore, to avoid repeating calculations from the same block, we mark the 

visited cells, and set their probability to 0 each time the path discovery process 
has to deal with them. The probability of each neighbouring cell i: Z' C [0.. 81 to 
be the next path cell is: 

mi - PDR"' - Pid - PDFior 1 marked 
Pi = 71 

. pd. PDFor where kC [0.. 81, mi 0 unmarked Ek Mk - PDFko" kk 

The process will follow the highest probability block and stop at a probability 

e: c -4 0. We also devised a way of deciding when to split a trajectory in two 

or more sub-trajectories. This technique works on a threshold that estimates 

whether two or more paths are viable given their associated likelihoods. However, 

we enforce only a single split along a trajectory, so as not to generate too many 
branches. 

Once all paths are identified, a fitting process takes place. This serves two 

purposes: (i) to have a compact representation of the path, (ii) to have a faster 

way of estimating the distance between a blob/bounding rectangle, identified by 

new foreground data, and the spline, and consequently estimating an error. The 

following figure (Figure 3) illustrates splines approximating the identified paths. 

The scene of Figure 3 left is highly complex, due to clutter, poor illumination 

and reflections. Although some of the paths are incorrect, most paths reflect 

the main dynamics of the scene: people moving from the gates to the exit and 

viceversa. Future implementations will include a refining process of the paths. 

Apriori knowledge about the scene might also help, if semi-automatic analysis 

was enabled. 
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Fig. 3. Left: spline interpolators superimposed on a sequence frame. Right: The stripe. 

4 Experimental Results 

Paths extracted using the method described in the previous sections correspond 
to the main modes of trajectories followed by people in the analysed scene. 
Rather than using the two PDFs (occurrence and orientation) to estimate an 
error and evaluate the performance of the technique, we provide a simplififed 
evaluation. We employed the idea of a stripe along the discovered paths using a 
decay factor (a Gaussian weighting) along the perpedicular to the trajectory. 

4.1 Support Masks 

The stripe is illustrated pictorially in the Figure 3 right. Suppose the black area 
represents the discovered path f=f (x, y, t) .A Gaussian distribution G(, U, a) is 
then centred on the trajectory (ti corresponding to the generic path pixel), and 
or being a predetermined standard deviation directly proportional to the size of 
the blobs estimated by the connected component process. 

An approximated estimate of the error between a new sequence of the same 
scene and the built model can then be calculated by weighting the contribution 
of a foreground blob, making use of the described weighting scheme. Since error 
estimation can be performed off-line, when the model already exists, a mask for 
the entire image can be built before testing. 

Masks are built once for all at the end of the path modelling process. 

We build an image look-up table (LUT), where each pixel is assigned a label, 
identifying the closest path in the scene. 
For each path we build a stripe mask. The mask contains the weights, in- 
versely proportional to the distance between a pixel and the path/spline. To 
calculate the weights we sampled the curve of the path at equally spaced 
intervals At and used the line segment between samples to calculate the 
weight. 

For each FG blob we detected, we examine it pixel by pixel with the image label 
LUT, and determine the closest path by taking the most frequent label of its 
pixels. 
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4.2 Measuring Goodness of Fit: An Information Theoretic 
Approach 

A number of scenes have been analysed and following the conventional Inachine 
learning approach each sequence was split in two halves, to build and test the 

model. Different percentages of frames to build the model were used, and to test 
the robustness of the approach. We chose the Kullback-Leibler (K L) dissimilarity 

measure to estimate the similarity between the PDI, ',,,, and PDF, ), of the Inodel 
and the corresponding PDFs built using a fixed percentage of test data. 

ý)Kl, 
= (D(PDF model JJPDF test) (D D(PDFes'jjPDFo`1odel)) (2) 

where DLK(pllq) ý Y: 
t PM 1092 P-ýýI and, for the suin is over the entire 

q(t) 
image, and for PDF, is a weighted surn over all the cells. The following ta- 

ble illustrates sonic preliminary results. Table 2 illustrates results for a scene, 

Table 2. Result of goodness of fit 

PDF,, II' 1) 14', 

Nf,,,, Ie 
U(-Ip-ll-q))- F D-(qllp) F D(pllq) (D D(qllp) I D(pllq) 1)(qllp) 1)(pllq) (D D(qjjp) 

200 11.387441 1 . 38744 6.41181 3.89963 10.992265 3.71003 2.35115 
400 1.22145 1 22 1 45 4.72941 2.97543 0.74: 336 2.3779 1.56063 
600 1.30149 1 30 1 49 4.22187 2.76168 0.550128 0.870776 0.7 1 Oif, ) 2 
800 5-. -32319 

V 

1.50177 3.41248 0.960938 0.405281 0.683 1t 

10001 5-. -43141 5 1.37666 3.40404 1.6185 0.4488- ISY3368 
1200 ý5-. -83901 1.313 3.61607 2.20614 0.508669 1.3574 
1400 5.87275 1.38677 3.62976 L2.4844.3 0.54799: 1 1.51621 

indicating the dissimilarity for PDF,,,, and PDF,,,. independently. The coln- 
posit, shown with the symbol 0, is a type of balanced non-negative dissimilarity 

measure that, in theory, is zero for p -- q, and should decrease as the niodel 
is refined and better represents the studied scene. These preliminary outcomes 
illustrate that a decresing trend is present for II'DF',, r but not quite for I'M ......... 
The number of frames we used is still fairly low. Our next goal will be to 11se 
longer sequences, for instance as long as hours. 

Conclusions and Future Work 

In this paper we wanted to prove that a spatial- tem poral model of the main 
modes of dynamics can be captured simply, without the use of a tracker. '['his is 
important, as a tracker might not work in very cluttered scenes. Approximating 
the main paths, means generating a model of normality which call in turn be 

used to identify anomalies. This is the very first step towards a fornialisation of 
crowd dynamics. We firmly believe that density estimation of dynamics can be 
built and left in implicit form, the table shows some preliminary results and a 
possible way of evaluating the goodness of fit of the estimated functions. 
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