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Abstract 

The extraction of meaningful objects from video sequences is becoming increasingly impor­

tant in many multimedia applications such as video compression or video post-production. 

The goal of this thesis is to review, evaluate and build upon the wealth of recent work on the 

problem of video object segmentation in the context of probabilistic techniques for generic 

video object segmentation. 

Methods are suggested that solve this problem using formal probabilistic learning tech­

niques, this allows principled justification of methods applied to the problem of segmenting 

video objects. By applying a simple, but effective, evaluation methodology the impact of 

all aspects of the video object segmentation process are quantitatively analysed. 

This research focuses on the application of feature spaces and probabilistic models for 

video object segmentation are investigated. Subsequently, an efficient region-based ap­

proach to object segmentation is described along with an evaluation of mechanisms for 

updating such a representation. Finally, a hierarchical Bayesian framework is proposed 

to allow efficient implementation and comparison of combined region-level and object-level 

representational schemes. 
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Chapter 1 

Introduction 

The extraction of meaningful objects from video sequences is becoming increasingly impor­

tant in many multimedia applications such as video compression or video post-production. 

The type of objects to be extracted from a sequence is dependent on the application. The 

goal of this thesis is to review, evaluate and build upon the wealth of recent work on the 

problem of video object segmentation in the context of probabilistic techniques for motion 

segmentation of semantic video objects. In this chapter, Section 1.1 defines semantic video 

objects and Section 1.2 introduces the type of video sequence that the objects will be ex­

tracted from. Section 1.3 reviews the traditional approaches for extracting video objects 

previously used in the context of video post-production. Finally, Section 1.4 details the 

aims and objectives for this work. 

1.1 Semantic Video Objects 

A semantic video object is a visible entity within a video sequence that is meaningful in 

some way, the concept of such an object is dependent on the application. An object may 

have different significance for the human visual system than it would for video compression 

performance. Examples of extracted semantic video objects are shown in Figure 1.1. The 

objects of interest in the video sequence mayor may not represent real world objects (i.e. 

those seen by the human visual system). In general, real world objects cannot be extracted 

using automated analysis of simple features such as colour or motion. 

This work is developed in the context of video post-production where objects are de­

fined in a video sequence as the collection of pixels that correspond to the projection of a 
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Figure 1.1: Examples of semantically extracted objects. (Far Left) shows objects extracted 

using motion as semantics for the 'Flower Garden' sequence. (Centre Left) shows objects 

extracted using colour for the ' .J elly Beans 2' scene. (Centre Right) shows t.he extracted 

foreground object using t. he hUll1an visual system for the 'Parrot' sequence. Finally, (Far 

Right) shows objects extracted llsing land use as semantics for the 'Aerial' scene. 

real object into successive image planes of the video sequence [28]. This type of seman­

tic definition describes objects that the human visual system sees within a scene and is 

clemon::;trated by the extract.ed foreground object for t.he 'Parrot.' sequence in Figure 1.1. 

An object defined in this way may not exhibit any homogeneous properties and may only 

appear a separate object due to the prior information gained by experience of such objects. 

due to the complex nature of the human visual system, extracting this type of object is a 

nOll-trivial and challenging problem. 

1.2 Generic Video Sequences 

The properties exhibi ted by a video sequence can vary depending on t.he application. The 

term generic video sequence (or cene) is used to describe one where few parameters about 

the sequence can be assumed. The extraction of video objects from generic sequences 

therefore requires algorithms that operate with little prior knowledge about the sequence. 

A generic video sequence is defined as one with the propertics shown in bold in Table 1.1, 

beyond this few a,..<;sUlnpt ions arc made about the content of the video sequence to be 

processed. This prior knowledge docs not limit the algorithms proposed, indeed the same 
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algorithms can be applied, for example, to greyscale sequences with low signal-to-noise 

(SNR) ratio and compression artifacts. In this example a degradation in the quality of the 

extracted video objects would be expected. 

I Property I Examples 

Arrangement of Sensors Monocular, Binocular, Multiple with Overlapping FOV 

Signal Type Greyscale, Colour, IR 

Frame Size PAL, NTSC, CIF, QCIF, SIF 

Length Seconds, Minutes, Hours 

N umber of Channels 1,3 

Sensor Motion Stationary, Smooth, 'Jerky', Fast, Slow 

Digital Capture Quality High/Low Signal-to-Noise Ratio (SNR), Quantisation, Cinematic 

Compression Quality DV, MPEG, DivX, H.261/263, Cinepak, Raw 

Subject Natural, Man-Made, Augmented Reality, Computer Graphics, 

Near, Far, Large, Small 

Table 1.1: Properties exhibited by video sequences. The properties defined for generic video 

sequences are listed in bold. 

1.3 Video Object Extraction 

The video objects to be extracted are an application .dependent choice, information about 

a video object is often used in further processing or operator interaction. For example, an 

automatic vehicle registration plate recognition system can either extract an image of the 

number plate, a mask delimiting t.he registration plate or the vehicle registration number 

itself, depending onthe next. st.age in the process. In the context of cinematic post produc­

tion the object. information required is a pixel-wise segmentation of the current scene into 

its constituent semantic video objects. 

1.3.1 Traditional 

In film and t.elevisual industries there has long been the requirement to extract actors and 

props from one scene and place these into new composite sequences. In this section a brief 
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overview of traditional techniques for achieving this is given. 

Chroma-keying 

Chroma-keying is a well-established technique in video production. A large screen of uniform 

colour is placed behind the actors and props, a 'keying' unit built into the camera then 

removes any signal matching this colour from the scene, allowing the extracted objects to 

be superimposed on another video sequence to form a composite sequence. This approach 

has many drawbacks when used in film post production: 

• It does not allow objects to be extracted without the chroma-key screen, hence cannot 

be used to extract objects from, for example, outdoor scenes. 

• The screen must be well lit to ensure it has a uniform colour, this is difficult on large 

sets. 

• It is difficult to ensure the screen is well lit whilst allowing artistic light.ing on the 

objects wit.hin the scene. Scenes with low lighting levels pose particular problems. 

• Objects may cast shadows onto the screen, changing the observed colour of the screen. 

• The light. from t.he brightly-lit brightly-coloured background can scat.t.er, changing the 

hue of foreground objects giving an unnatural appearance 

For real-time object extraction chroma-keying remains one of the fundamental tech­

niques used, especially in televisual services. If real-t.ime extraction is not required the 

limitations of chroma-keying can be overcome by performing manual extraction (or roto­

scoping) of the video objects. This approach requires an operator to manually extract the 

video object by essentially drawing around the objects of interest. This is a time consuming 

and expensive approach, and has its own limitations due to t.he human interaction required. 

Rotoscoping is described in the following section. 

Rotoscoping 

Rotoscoping is the act of extracting objects from video sequences using human operators 

and computer based tools. Such tools (e.g. deformable geometric shape templates, "onion­

skinning") are often implemented to improve the efficiency of human operators at the ex­

pense of final segmentation quality, even with such tools this process is operator intensive 
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and can require a team of operators to convert a sequence. The problem with team-based 

manual video object segmentation approaches is a noticeable temporal incoherence {known 

as bubbling} as operators cannot define complex object boundaries efficiently and consis­

tantly in successive frames. An example of the problem of balancing efficiency and accuracy 

is shown in Figure 1.2, where accurate manual segmentation of the tree object is compro­

mised in favour of more efficient operator input. The figure on the right was generated using 

a tool that required operator supervision in the form of training points {i.e. image locations 

assigned object labels}. This label was subsequently propagated to the surrounding pixels 

using a nearest-neighbour based classifier using spatial and colour features. 

Figure 1.2: Manual extraction of video objects - efficiency vs. accuracy. (Left) A region 

of the original scene. (Centre) Manually extracted objects using Bezier curve based tools to 

approximate the boundary of the tree object. {Right} Extracted objects using supervised 

learning tool. (c)2004 DDD Group PIc 

1.3.2 Computer Vision 

With the predominant use of computers in the post-production industry, techniques for the 

extraction of semantic video objects can start to move away from time consuming, limited 

traditional approaches and instead utilise computer vision algorithms that can in many 

cases be used on a desktop computer. The extraction of video objects in the computer 

vision literature is often termed Video Object Segmentation and it is this terminology that 

will be adopted for the remainder of this thesis. The advantages of using computer vision 

methods to extract video objects are: 

• Objects can be extracted from any video sequence . 

• Reduces operator input by learning sparse supervised exemplars. 

• In some sequences the objects can be extracted automatically (e.g. motion based). 
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• Accurate object boundaries can be located with repeated accuracy, leading to tempo­

ral coherence of extracted objects. 

When inserting extracted objects into other sequences further processing is required to 

correct the appearance of the object to match the lighting conditions in the destination 

sequence. In this work the application of further processing stages is not considered and 

only the extraction of the objects from generic video sequences. While the work on computer 

vision based video object segmentation can be considered to be in its infancy; it is common 

sense to consider that in the longer term (with increased computational power and many 

years of research) there may well exist simple and easy to use programs that allow the 

accurate 'cutting and pasting' of objects between different video sequences. 

1.4 Aims and Objectives 

The principle aim of this thesis is to evaluate and propose methods to segment semantic 

video objects from generic video sequences. The work presented in this thesis aims to 

overcome problems associated with many existing approaches to video object extractiOli 

by applying formal methods in a well defined framework. The work is developed in the 

context of a supervised process, such that the objects are specified at key-frames by skilled 

operators. An important aspect of this work is to accurately and efficiently propagate these 

specified objects throughout the video sequence. 

Figure 1.3 shows the input and output of the video object segmentation algorithm. The 

input is a video sequence and the output is· a set of segmentation masks that delimit the 

semantic video objects to pixelwise precision. In this thesis methods are suggested that allow 

the solution of this problem using formal probabilistic representation techniques, this allows 

principled justification of methods applied to the problem of segmenting video objects. By 

applying a simple, but effective, evaluation methodology the impact of all aspects of the 

video object segmentation process can be analysed. 

As part of this process the feature space is defined within which the video object dis­

tribution is modelled using probabilistic methods. An efficient region based approach to 

video object segmentation is subsequently suggested along with an evaluation of mecha­

nisms for updating such a representation. Finally, a hierarchical framework is proposed 

to allow. the region based approach to be defined within the local co-ordinate system of 

17 



the parent object; this framework raises many interesting areas of future research for video 

object segmentation work. 

Figure 1.3: The input and output of the video object segmentation algorithm. (Top Row) 

Thc input to the tiystem is a video sequence that is processed by the video object segmenta­

tion algorithm to output (Bottom Row) a set of segmentation masks for the semantic video 

objects in the scene. 

Chapter 2 reviews the background material for video object segmentation using prob­

abilistic methods. Chapter 3 evaluates a selection of popular features for video object 

segmentation; these are evaluated using a principled methodology and supervised image 

based segmentation. Chapter 4 introduces probabilistic representative models for video ob­

ject segmentation and evaluates the performance ill terms of the qualit.y of the extracted 

segmentation mask. Chapter 5 improves the computational efficiency of object based seg­

mentation schemes by modelling at the localised region based level. A selection of mecha­

nisms for updating the region based representation are presented and evaluated over a range 

of test sequences. Chapter 6 introduces the hieracbical framework , methods are suggested 

to fulfil the requircments of this framework. Finally, Chapter 7 reviews the t.hesis and draws 

conclusions and future directions for this work. 
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Chapter 2 

Video Object Segmentation 

This chapter gives background information that is useful for the remainder of the thesis. 

Detail is given about the application of computer vision methods to the problem of extract­

ing video objects. The application of classifiers to learn the interaction of a human is first 

discussed, followed by a review of methods by which the object-based representation can 

be updated during the video sequence. 

An overview of a generalised video object segmentation algorithm is presented in Sec­

tion 2.1. Section 2.2 reviews the form of user input to the segmentation process. Section 2.3 

introduces existing techniques for video object segmentation organised into three broad tax­

anomic categories. Section 2.4 describes the feature spaces that can be used to describe 

objects within a video sequence and Section 2.5 introduces the representational schemes 

that can be used to model the video object in the feature space. Section 2.6 follows this by 

giving an overview of the evolution strategies for the representational model and Section 2.7 

reviews existing methods for evaluating the performance of a video object segmentation sys­

tem. Finally, Section 2.8 reviews the state of the art methods for video object segmentation. 

2.1 The Basics 

Video object segmentation refers to a process that takes as input a raw video stream and 

outputs segmentation masks that delimit the (semantic) objects within the scene. The video 

can be processed using batch or sequential algorithms - batch algorithms process a video 

volume (consisting of multiple frames) whereas sequential methods process on a per-frame 

basis with either forward or backwards propagation of the current frame into the next. A 
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Figure 2.1: Generalised framework showing the per-frame update process of a video object 

segmentation algorithm. 

review of video object/region segmentation methods is given by [151, 185]. 

In this section video object segmentation is introduced using a sequential framework with 

forward propagation of video objects. This is perhaps the most common type of framework 

and is easily modified to perform backwards propagation. Batch based processing schemes 

are not covered in this thesis due to the large data storage requirements of the video and 

the limited scalability of the approach. 

A generalised sequential framework for feed forward video object segmentation at a 

frame t in a video sequence is presented in Figure 2.1. There are four main components 

that form this framework - feature space extraction from the video frame data, video 

object representation (i.e. the per-object model), inter-frame prediction and intra-frame 

update of the representational model. The feature space extraction is the step that takes 

the raw video frame data (for the current frame) and converts this into a feature space 

within which the video objects can be delimited. The video object representation is the 

model of the objects of interest that are tracks in the scene. The inter-frame prediction 

stage updates the representational model between frames. The intra-frame update stage 

corrects the prediction with the newly observed video frame data. The model update scheme 

requires mechanisms to give robustness to object interactions and the ability to innovate 

new objects or parts of objects to maintain the representativeness of the model for the 

duration of the video sequence. Objects or parts of objects that are no longer supported 

by the observed video data are terminated as part of this process. 

The input to the system (on the left) is the output from the previous time step, that 

IS, the object representation at frame t - 1. This result is modified between the frames 
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(the inter-frame prediction step) to give the predicted object representation for the current 

frame. Using the current frame video data (which may be pre-processed) an intra-frame 

update stage is used to update the representative model for the video objects. This model 

subsequently becomes the output from frame t, along with the (final) segmentation mask 

of objects at that frame. Methods for representing the video objects are discussed in Sec­

tion 2.3 and Section 2.5. Techniques for updating the object representation are presented in 

Section 2.6. Many of the existing methods for video object segmentation can be fitted into 

this framework. For some algorithms there are trivial steps in this process e.g. [98, 135, 61] 

do not have an inter-frame prediction scheme and simply use the previous frame result in 

the current frame. 

The video can be pre-processed before application in the system to extract a multi­

dimensional feature space within which the video objects can be distinguished. This extrac­

tion process can convert the colour space in a linear or nOll-linear way, measure texture-like 

features, extract gradients, edges, corners 1 , measure motion over adjacent frames etc. The 

conversion of the raw data into such features is often neccessary to allow enhanced analysis 

of the video sequence. The popular features derived from video sequence data are discussed 

in Section 2.4. 

If the video objects of interest can be defined a priori using the features derived from 

the video data then an 'automated' process can be applied to extract them (although, as 

discussed in Section 2.2, these methods involve implicit supervision). For semantic objects in 

generic sequences there is no such automated extraction technique, therefore user interaction 

is required to delimit the object at frames of interest (termed key-frames) throughout the 

video sequence. The framework for the user interaction to such a process is shown in 

Figure 2.2. The operator interaction is used to drive (or constrain) the building of the 

object-based representation at the keyframe. This representation is the output from the 

supervision stage and subsequently forms the input to the next frame as shown in Figure 2.1. 

The operator supervision stage is discussed in Section 2.2. 

lThe term corner is traditionally used to represent feature points of interest extracted using the method 

of Harris [86]. 
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Figure 2.2: Generic framework showing the initialisation of a video object segmentation 

algorithm. 

2.2 Operator Supervision 

The type of objects to be extracted delimit real world objects captured in the video sequence. 

These types of objects to be extracted may hot exhibit any homogeneous properties and 

may only appear a separate object due to the prior information gained by experience of 

such objects. This definition of a semantic object is ill-posed mathematically, hence there 

is no 'automatic' scheme for extracting the objects from sequences. Indeed, the concept 

of an 'automatic' scheme does not exist, there are always parameters that define how the 

algorithm performs and these can be thought of as a form of user supervision; the parameters 

are located deep in the program structure and therefore are generally not intuitive to the 

end user [26]. 

If the object segmentation scheme is unsupervised in this manner then arbitrarily labelled 

regions are found by clustering the data to find natural groupings in the feature space. 

Natural clustering of data is commonly applied in motion based segmentation schemes (e.g. 

[98, 66, 128]), where regions are grouped based on motion homogeneity (often appended 

by, for example, spatial and colour information). The types of 'objects' extracted by such 

approaches may correspond to homogeneous regions within the video sequence. 

To allow real world semantic objects to be extracted many approaches to video object 

segmentation allow user supervision at key-frames throughout the video sequence [151]. 

This type of supervision allows the extraction of meaningful objects from video sequences 

and is common in video analysis techniques (e.g. [130, 186, 111, 61, 58, 83, 27, 88]); it 

also reduces the computational load by allowing the user to designate the semantically 

meaningful observations [145, 30]. The key-frame definition is analogous to the I-Frame 
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and P-Frames defined by ISO/MPEG-2 and applied to video analysis work (e.g. [83,46]) 

where I-Frames are essentially key-frames and P-F'l'ames are forward predictions from the 

I-F'l·ame. 

The key-frames can be chosen a priori by a human operator or using a temporal video 

segmentation algorithm that is capable of classifying shot types and hence extracting key­

frames (e.g. Porter et al [140]). An example of key-frame extraction is shown in Figure 

2.3, these were selected manually by a human operator. Manually extracted key-frames 

are generally frames selected to be representative of the interesting (i.e. semantic) content 

within a video sequence. The selected frame may be situated at a shot break (e.g. a camera 

change) or may contain a close up of one of the semantic objects within the scene. 

Figure 2.3: Examples of key-frames extracted from a test sequence. (Bottom Row) The 

extracted key-frames (Left-Right, frames 00000,00060 and 00100) from the 'Table Tennis' 

sequence (Top Row, resolution 176 x 120, length 150 frames). The key-frames arc chosen 

to be representative of the sequence, including the shot break that occurs'" 100 ii'ames into 

the sequence. 

The user supervision at the key-frames is generally 1lsed to perform one of two actions: 

• Top-down constraint 011 the location and quantity of video objects. £i'om which per 

object bottom-up models arc generated . 

• Labelling of bottom-up generated segments with object labels. 

The top-down cOllstraint method generally requires the user to create a dense (i .e. per 

pixel) segmentation map to delimit the object in the key-frame. The segmentation map 

usually takes one of three forms a precise label map, a t1"imap or a probabilistic map. 
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Examples of such maps are demonstrated in Figme 2.4 for two objects - object one (white 

pixels) or object two (black pixels). The precise label map and trimap are discretised 

representations of the probabilistic map i.e. the map of am belief in the object location. 

The precise label map is an optimistic discrete belief map where each pixel only belongs to 

one object. The trimap introduces a region where the pixels are not given a membership so 

that only trusted pixels are used to generate the object representations. The probabilistic 

map represents, with a negligible degree of qnantisation the belief of the memberships of 

each object at each pixel. In :;uch a map there is no provision for multiple objects per 

pixel, therefore a :;eries of probability maps would be required for multiple object scenarios. 

Alternatively. a higher level top-down constraint could be applied where only the quantity 

of video objects is determined a priori by the human operator [134]. 

Figure 2.4: Three examples of segmentation maps. (Left) 'Bream' sequence, Frame 00000, 

containing two distinct objects (Centre Left) shows the precise label map (Centre Right) 

shows the trimap and (Far Right) shows the probabilistic map. 

The labeUiug of bottom-up generated segments with object label:; is a form of user 

input that is very efficient since it only requires sparse supervised samples to be located on 

the key-frame. A :;imple approach to this form of supervision is to label each region with 

the obje(·t label denoted by operator sc'ribbles that fall within it (e.g. [91]). The objects 

are tlH'll found by taking the lillian of all regions that were scribbled by the operator and 

applying the appropriate labels, an example of this is shown in Figure 2.5. An alternative to 

this is to allow the user to define a ('oar:;e segmentation mask [95] (comprised of blocks) or 

approximate contour [27] from which the membership of the bottom up generated segments 

can be determined nsing set theory methodologies. The weakness of this approach is that 

the regiolls produced by the bottom-up proce:;s must contain at most. one of the scene 

objects; if they do not then there will be contention with more than one label within a 

single region, further supervision is required to split these regions. 
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Figure 2.5: Examples of labelling bottom-up generated segments with object labels. (Left) 

'Children' sequence Frame 00000 (operator input is shown in white). (Centre) shows the 

regions generated using the bottom-up segmentation algorithm (Right) shows the extracted 

objects formed from the union of the regions that were scribbled by the operator. 

After performing a suitable supervision process a set of suitably accurate masks are gen­

erated for each key-frame. These ma.sks delimit the vid€'o objects that are to be extracted 

from all the frame!:> in the video sequence. For the remainder of the thesis the presented 

test video sequences st.art. with a key-frame and contain all the frames upto, but not includ­

ing. the sllbsequellt. key-frame in the sequence. The remainder of this chapter focusses on 

reviewing the state of the art techniques for extracting objects from video sequences. 

2.3 Methods for Video Object Segmentation 

Method!:> for video object segmentation are generally categorised by the technique used to 

represent and hence extract the video object. In this sense the segmentation methods can 

be divided primarily into region-based or boundary-based methods. These two distinct 

approaches attempt to locate all object based on the homogeneity of feature vector regions 

or by measuring gradiellt information in the feature space to locate object boundaries. Other 

divisiolls of the techlliques divide the methods based on a mixture of the r€'presentational 

scheme and the feature space used; e.g. groupiug object segmentation methods into three 

classes [121J - region based met.hods using homogeneous colour criterion, object-based 

approaches utilising homogeneous motion criterion and object tracking (or object-based 

homogeneous colour and motion criterion [6, 8]). As stated in the previous section, the 

video object segmnetation algorithm has many component factors and therefore taxanomic 

separation of such methods is only possible using marginal aspects of each algorithm. Three 
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broad taxanomic categories are defined within which various state of the art methods are 

described. The three categories are: Morphological Operators, Image Plane Operators and 

Feature Space Classifiers, these definitions and associated algorithms are discussed in the 

following sections. 

2.3.1 Morphological Operators 

Morphological operators are tools to extract image components that are useful for describing 

the regional structure in an image. Examples of these are boundaries, skeletons and convex 

hulls [81]. Morphological filtering can also be applied to pre- and post-process images e.g. 

pruning and thinning. In the context of video object segmentation there is generally only 

one such morphological method that is readily applied, this is the well known watershed 

technique. 

Watersheds [169] are morphological processes commonly applied to the problem of image 

and video segmentation. To find the watershed segmentation a (smoothed) gradient image 

is first found, the analogy is that this gradient image consists of valleys and mountains. By 

placing a marker (or seed) point in the fiat-zones of tlie valleys the watershed algorithm. 

recreates the immersion process of flooding the valleys with water - where water from 

adjacent valleys meet a dam is placed, regions are then located by finding the areas enclosed 

by the dams in the image. The watershed algorithm generally oversegments images due to 

the abundance of local minima found by the gradient operators in generic sequences and is 

sensitive to image noise due to the lack of explicit noise modelling. The watershed algorithm 

also lacks a global analysis of the image which can lead to regions t.hat have little semantic 

meaning; in areas of low image gradient the dams can be placed in arbitrary locations due 

to the requirement of localised 'flooding' by the algorithm. The watershed algorithm (and 

variants) has been applied to video object segmentation both spatially [134, 52, 183, 83, 

110, 112,33, 152, 76] or spatio-temporally [150]. 

2.3.2 Image Plane Operators 

Image plane operators are determined to be the class of algorithms that are not morphologi­

cal operators or feature space classifiers (introduced in the following section). In general t.he 

distinction between these methods lies in the methodology from which they were devised; 

methods that apply rule based approaches, region growing like methods or heuristics are 
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deemed to be the former whereas methods with a strong leaning to 'traditional' classifica­

tion and feature spaces are chosen to be the latter. In essence, the image plane operators are 

those approaches that operate on (often raw) image data with the notion of pixels intact. 

Region growing algorithms are a class of algorithms that form region segmentations of 

images by measuring similarities in the between some property of the region and adjacent 

pixels (the search step). The similarities measured as the region grows can be classified into 

three categories [28]: 

• Single-linkage. Adjacent pixel similarity matching in search step - sensitive to noise. 

• Hybrid-linkage. Neighbourhood level similarity matching in growing of regions 

• Centroid-linkage. Region level statistics used in search step 

The initial points for region growing are usually placed in the most homogeneous im­

age regions, when all regions are found a Region Merging step (generally based on region 

statistics e.g. [126]) is often applied to reduce the total number of regions to a reason­

able limit. Like the watershed algorithm, region growing algorithms generally suffer from 

a lack of global analysis and can be sensitive to noise in the image. The position of the 

initial region seeds can also greatly affect the location of the final image regions, region 

growing algorithms are commonly applied as sub-processes in video object segmentation 

schemes [132, 138, 187]. 

Split and Merge based algorithms (of which region merging is a specific case) attempt 

to find meaningful regions in an image by merging or splitting an initial set of regions 

based on some measure of similarity. A region merging algorithm generally starts with 

an oversegrnentation of the current frame which is then proggresively merged based on 

similarity between regions - it can be seen that region growing can be thought of as a set of 

initial regions (seeds) that are then progressively merged with pixel sized regions. In general 

splitting and merging are both applied until some homogeneity criterion is met for the 

regions in the current frame. Region merging methods have been applied to spatiotemporal 

segmentation [124, 63] and for rule based merging of similar regions [138, 19, 149, 112]. 

Split and merge approaches have been applied to video object segmentation by [168]. 

Boundary based methods in the image plane attempt to find objects by locating the 

border pixels between adjacent pixels. Active contour models [122] (or snakes) allow a user 

27 



to specify an initial estimate of the location of the boundary of the object to be segmented; 

this boundary is subsequently refined to fit the local maxima in the gradient information. 

The effect of noise and quantisation errors generally make boundary based approaches an 

ill conditioned problem [28]. An extension to active contour models are active surface 

models [84] which can be used to extract the surface of the volume within which a video 

object lies. The region competition algorithm [162] presents a unifying algorithm for both 

active contours and region growing algorithms, and showed that these are both derived 

cases of the region competition approach. 

If the camera is stationary a background model for edge pixels can be generated, 

this allows foreground edge pixels to be located; the obj~cts are subsequently determined 

by looking for continuous sequences of horizontal and vertical pixels. Such approaches 

were shown in [119, 100, 99]' although it remains unclear whether global warping could 

be successfully applied in the case of a moving background. Other boundary based ap­

proaches [58, 83, 120, 121] parameterise the boundary (e.g. as a polygon [172]) and use mo­

tion information to warp either boundary segments or the whole boundary between frames. 

The boundaries are subsequently corrected using colour and motion information [58] or a 

colour watershed algorithm [83] in a trimap-like uncertain zone around the warped bound­

ary. In both these approaches the boundary correction results were only presented for 

relatively convex objects and may fail for non-convex shapes (where the search zones can­

not be determined as clearly). 

2.3.3 Feature Space Classifiers 

Many researchers have turned the problem of object-based video analysis into that of clas­

sification; the problem of classification is more general than that of video segmentation and 

can be applied to many related research areas for example, signal processing, object recog­

nition etc. An overview of the well known methods used in statistical pattern recognition 

is given by Jain et al [4]. 

Generally, the goal of classification is to generate efficient algorithms that have high 

accuracy when classifying previously unseen data; the classifiers may be supervised or un­

supervised depending on the application. In the context of video object segmentation the 

application of classifiers requires specification of the feature space (i.e. the signal to be 

classified), the classifier (of which there are countless types) and the decision rule. The 
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decision function used is often closely tied to the classifier, although the basic ideas behind 

the decision functions are generally similar. 

Classifiers can be combined into Mixtures-of-Experts [51] where several so-called experts 

are combined to form an overall classifier that out performs each of the individual component 

classifiers for a given test set. The classifiers themselves can be grouped into boundary and 

cluster (Le. region) based approaches. The output of the classifier can also be grouped 

into deterministic (e.g. K-Means clustering [51]) and probabilistic (e.g. Gaussian mixtures 

models [51]) methods. A deterministic output results in a discrete partition of the feature 

space into the constituent classes. A probabilistic output takes into account the uncertainty 

of the classification, resulting ina 'soft' or 'fuzzy' partition of the feature space into the 

constituent classes. 

Classification techniques for modelling video objects require three components to be 

defined - feature space extraction, video object representation and representational scheme 

update. In the following sections relevant background information and existing methods 

are reviewed for these components. Section 2.4 introduces a selection of feature spaces 

that are popular in video object segmentation. Section 2.5 reviews classification techniques 

(including decision rules) that can be used to represent the video objects within the specified 

feature space. Finally, Section 2.6 discusses existing methods that allow the representational 

models of video objects to be adapted to the evolving video sequence. 

The work presented in this thesis performs video object segmentation by applying prob­

abilistic methodologies; such techniques present a principled and formal solution to the 

problem of representing and extracting video objects from sequence. 

2.4 Feature Extraction from Video Sequences 

The multi-dimensional space in which classifiers are applied is known as the feature space. 

The choice of this feature space is an important consideration since the distribution of 

the feature vectors for each object should be discriminable within the space. All pattern 

recognition techniques will fail if there is not enough discriminatory evidence to separate 

such entities. The feature spaces comlllonly applied for video object segmentation use a 

combination of colour, texture, gradient and motion information to delimit the objects in 

the image plane. Implicit to this is a defined (linear or non-linear) mapping between the 
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raw image plane space (spatial and colour co-ordinates) and the feature space. The mapped 

pixels are represented as multi-dimensional feature vectors in the feature space. Within the 

feature space the concept of distance is required to allow the proximity of feature vectors 

to be measured, commonly applied distance metrics include the Manhattan, Euclidean and 

Mahalanobis distances [51]. 

Perhaps the simplest feature space applied in video sequence analysis is luminance (grey­

scale) information. This information provides an analytically simple feature space, although 

this information is sometimes not sufficient to provide even the human visual system with 

enough information to locate objects within the scene. Luminance information is generally 

used when computational power or available data storage is limited. 

The analysis of the colour distribution of a video object remains one of the funda­

mental ways to accurately delimit a video object from other objects within the scene. 

Colour has many desirable properties for video object segmentation, for example colour 

cues show robustness under partial occlusion, rotation in depth, scale changes and resolu­

tion changes [161]. The RGB colour space has been used in many image processing and 

video analysis applications, this space is split into three quantised channels - red, green and 

blue. The effect of the luminance on RG B measurements can be reduced by normalising 

the per channel signal with the combined signal strength over all the channels [130, 11]. 

Other video object segmentation approaches have applied the YU17 colour space to 

analyse video sequence information, the YUV colour space has a similarity with the human 

visual system in that it separates the luminance and chrominance hiformation into separate 

channels and it can be derived using a linear transformation from the RG B colour space. 

The main advantage of this space is that it allows the luminance (Y) and chrominance (UV) 

information to be used separately. A related colour space to YUV is YIQ, in this space 

U and 17 are re-aligned to match human perceptual color sensitivities. YUV 1 Y I Q and 

the related space YCbCr' are used in broadcasting and digital media standards - YUV 

is found in the PAL, NTSC and SECAM broadcasting systems, Y 1Q is optional for the 

NTSC broadcasting system and YCbCr is found in the JPEG digital image standard. 

To give a more intuitive description of colour and add robustness to light changes within 

the scene the RG B space can be transformed non-linearly to the H S-family of colour spaces. 

This transform splits the luminance and chromaticity information allowing the modelling of 

a chromatic signal without the influence of brightness (as with YU17), this gives algorithms 
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raw image plane space (spatial and colour co-ordinates) and the feature space. The mapped 

pixels are represented as multi-dimensional feature vectors in the feature space. Within the 

feature space the concept of distance is required to allow the proximity of feature vectors 

to be measured, commonly applied distance metrics include the Manhattan, Euclidean and 

Mahalanobis distances [51]. 

Perhaps the simplest feature space applied in video sequence analysis is luminance (grey­

scale) information. This information provides an analytically simple feature space, although 

this information is sometimes not sufficient to provide even the human visual system with 

enough information to locate objects within the scene. Luminance information is generally 

used when computational power or available data storage is limited. 

The analysis of the colour distribution of a video object remains one of the funda­

mental ways to accurately delimit a video object from other objects within the scene. 

Colour has many desirable properties for video object segmentation, for example colour 

cues show robustness under partial occlusion, rotation in depth, scale changes and resolu­

tion changes [161]. The RGB colour space has been used in many image processing and 

video analysis applications, this space is split into three quantised channels - red, green and 

blue. The effect of the luminance on RGB measurements can be reduced by normalising 

the per channel signal with the combined signal strength over all the channels [130, 11]. 

Other video object segmentation approaches have applied the YUF colour space to 

analyse video sequence information, the YUV colour space has a similarity with the human 

visual system in that it separates the luminance and chrominance information into separate 

channels and it can be derived using a linear transformation from the RG B colour space. 

The main advantage of this space is that it allows the luminance (Y) and chrominance (UF) 

information to be used separately. A related colour space to YUF is Y lQ, in this space 

U and V are re-aligned to match human perceptual color sensitivities. YUF, Y lQ and 

the related space Y CbCr· are used in broadcasting and digital media standards - YUF 

is found in the PAL, NTSC and SECAM broadcasting systems, Y lQ is optional for the 

NTSC broadcasting system and Y CbCr is found in the JPEG digital image standard. 

To give a more intuitive description of colour and add robustness to light changes within 

the scene the RGB space can be transformed non-linearly to the H S-family of colour spaces. 

This transform splits the luminance and chromaticity information allowing the modelling of 

a chromatic signal without the influence of brightness (as with YUF), this gives algorithms 
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based on H S (i.e. Hue and Saturation) colom signals a limited amount of robustness to 

appearance changes of an object. 

The YUV, H Sf and RG B colour spaces are non-uniform with respect to the human 

visual system, so that measured distances in the space may not always relate to the perceived 

colom difference by a human observer. 

A family of uniform colour paces that are popular in computer vision applications are 

those derived from the linear CIE-XY Z tristimulus values [180J. These colour spaces are 

lllouelled to have perceptual uniformity, this has the desired property that, in theory, a 

distance measured between two colours within this space will be equivalent to the difference 

perceived between the two colours. The CIE-L*a*b* colour space is a non-linear mapping of 

the CIE-XY Z tristimulus values, having separated luminance and chrominance information. 

In many applications there is a requirement for modelling of the spatial distribution of 

objects e.g. to aid the segmentation of multiple objects that exhibit chromatic homogeneity 

and spatial inhomogeinity. The simplest form of spatial moueHing is to apply connectivity 

constraints to the segmentation labelling process, and example of this can be seen in Figure 

2.6, an extension of this is to model the segmentation as a Markov random field and impose 

spatial connectivity via neighbourhood based probabilisitic label analysis. 

Figure 2.6: The effect of COlll1ectivity constraiuts on a foreground segmentation mask. 

(Left) Frame 00014 of the 'Children' sequence (Middle) object labelling re~mlt using only 

colour ba.c;ed segmentation (black is background, white is foreground) and (Right) modified 

labelling iucorporating connectivity constraints (the foreground object is now split into 

three distinct objects, denoted by their grey-level). 

Beyond the labelling constraints (to impose implicit spatial modelling), the usc of spatial 

information in the feature space can be useful to define explicit structure. The integration 

of chromatic and spatial information often involves heuristic feature weighting to combine 
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the features in a hybrid space [18, 154]. Spatial information can be incorporated at a higher 

level by using geometric or frequency domain models of objects to extract representative 

measurements e.g. region based fourier descriptors and bounding box [46]. 
/ 

Video objects of differing appearance can exhibit similar chromatic signals. In such cases 

text.ural information can be added to the feature space so that objects can be discriminated 

on t.he characteristics of the way the colour is distributed on the object. Generic methods 

for extracting texture do not exist, as the definition of texture is very much application 

dependent, a major problem is that the textures in the real world are often not uniform, 

due to changes in orientation, scale or other visual appearance. Figure 2.7 shows the 

problems of textural analysis of scenes - in the examples shown, the concept of texture is 

different and therefore prior decisions need to be made on which characteristics the texture 

is expected to exhibit in the scene. In many cases the measure of texturedness represents 

the variat.ion of t.he chromatic signal in a finite neighbourhood. 

Figure 2.7: Examples of texture encountered in image scenes. (Images courtesy (Left) 

Universit.y of Oulo Machine Vision Group, (Middle) the British Broadcasting Corporation 

and (Right) Corel) 

Therefore, the simplest form of texture analysis is to measure the colour signal variance 

in pixel neighbourhoods. This provides a single dimensional feature space representing the 

energy of the image at each pixel. The windowed second moment matrix [75] extends this 

principle with descriptors of texture using edge/bar polarity based scale selection. Gabor 

filters [69] decompose images into multiple orientated spatial frequency maps from which 

amplitude or phase analysis can be used to form the feature maps. 

Motion or temporal information about the video objects can also be introduced into 
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the feature space. According to the Gestalt "law of common fate" (an overview of Gestalt 

theory is given by Forsyth and Ponce [69], Chapter 14), meaningful regions are obtained if 

they are defined on the basis of temporal coherence. As objects move in the observed scene 

relative to camera motion there is a 2D vector field of velocity induced at each point in 

the image plane. This 2D vector field is termed the motion field. The goal of optical flow 

algorithms is to estimate the motion field by analysing the spatial and temporal variations 

of the image intensity within a sequence of images. This is achieved by modelling the 

link between the intensity and velocity to find the fundamental image intensity constancy 

equation2• 

A major drawback when utilising optical flow for video object segmentation is that, due 

to the neighbourhood based measurement of the flow and motion discontinuity, the object 

boundaries are not located accurately using only optical flow. It can also be unreliable 

in precense of occlusion and camera zooming, especially for non-rigid objects [91]; areas 

of homogeneous intensity in the image will also contain meaningless motion information. 

It is outside of the scope of this thesis to provide a comprehensive review of optical flow 

recovery techniques - well known algorithms for the recovery of optical flow include Lucas 

and Kanade [23], Horn and Schunk [89], Fleet and Jepson and Jenkin [68] and Black and 

Anandan [22]. An evaluation of several optical flow recovery techniques is given by Barron, 

Fleet and Beauchemin [17] and a treatment of motion models and motion field recovery 

techniques is given by Stiller and Konrad [160]. Barron, Fleet and Beauchemin arrived at 

the conclusion that the differential technique of Lucas and Kanade and the phase based 

approach of Fleet, Jepson and Jenkin give the most reliable optical flow computation. 

An alternative approach to extracting dense motion fields is to apply a block matching 

strategy (e.g. [171]) where pixels within a matched block are given the same motion label. 

Hierarchical block matching [20] improves the efficiency of a full search approach and the 

resulting motion field estimate can be more robust compared to optical flow when the scene 

has a high noise level [95]. 

A parametric model for 2-D motion fields can be derived from parametric models de­

scribing 3-D motion, 3-D surface function and camera projection geometry. The simplest 

motion model is a translational model, which displays feature space homogeinity only under 

similar object translations. The most commonly used motion model in video analysis work 

2In many works (e.g. Trucco and Verri [164]) this is termed the image brightness constancy equation. 
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is an affine motion model [155], this model exhibits feature space homogeneity for object 

regions undergoing similar translation, rotation and zoom in scale. Motion models are often 

applied to generating a layered representation of video frames (e.g. [173]). 

Some recent approaches to video analysis have used the concept of discrete time (i.e. 

the frame index) in the feature space [45, 150]. The use of temporal information is, at the 

time of writing, limited by the large computation and storage demands of multi-dimensional 

video processing. Fast moving objects within the scene may also exhibit discontinuities in 

the 3-D neighbourhood and there is little literature relating to how this may affect the final 

object segmentation result. 

The choice of feature space can be treated as a selection problem where the most efficient 

and discriminating feature space is sought from a much greater pool of feature spaces. The 

selection of the 'good' features can be approached by either optimising the segmentation 

performance of the feature space over a range of test data (e.g. Guo et al [95, 96]) or 

use a learning algorithm to select a small number of critical features that best describe the 

objects of interest (e.g. Viola and Jones [170]). Viola and Jones presented the application 

of the Adaboost learning algorithm [71] to select 'good' image-based features from a much 

greater pool (Le. image features that best discriminate a set of learning examples. A 

common problem with multiple feature space based approaches is that the multiple feature 

space transformations and analysis can make them computationally prohibitive and that 

the resulting (hybrid) feature space may contain illogical (and inefficient) combinations of 

features that represent the same visual characteristic. 

Chapter 3 evaluates a selection of popular feature spaces that can be applied to the 

problem of video object segmentation. 

2.5 Classification for Computer Vision 

The learning of patterns and subsequent classification of unseen data is a cornerstone of 

computer vision research. In this work classification (also pattern recognition, machine 

learning) is defined as the process by which an algorithm can learn patterns from a training 

data set by modelling the data in a representive manner. These models can then be applied 

to classify previously unseen data and feedback this result to update the stored model 

representation. In the literature there is a great volume of work on the problem of estimating 
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(using a mathematical model) the underlying density function that describes the patterns 

of interest. The functional form used to represent the density varies from model to model, 

some models are used for their inherent simplicity while other models are applied for their 

ability to adapt to complex density functions. In this section methods are reviewed for 

general modelling of data in feature spaces. 

When the homogeneity of data is not easily modelled parametrically or if modelling the 

data is analytically complicated beyond practical application it can often be more effective 

to model the partitions of heterogeneous regions within the image data. One of the simplest 

boundary-based methods is the k-Nearest Neighbour algorithm, kNN [50] is an algorithm 

designed to search for the k nearest labelled training data in a d dimensional feature space. 

From a prior generated labelled training data an extra feature dimension, or classification, 

can be assigned to the novel point on the basis of a weighted mean or mode calculated 

from the k-nearest training points. kNN explicitly defines boundaries from the classification 

labels of the training data and is an assignment algorithm rather than a modelling algorithm. 

Like all non-parametric methods kNN suffer from the curse of dimensionality, in that as 

the number of feature dimensions to be searched increases, the computational complexity 

increases in an exponential manner. Variations on kNN are often used in the assignment 

phase of other pattern recognition algorithms. 

Support vector machines [167] is a supervised method for finding the optimal dividing 

linear hyperplane between classes that minimises the classification error on unseen data; 

this is achieved by performing a non-linear map of the input data to a high dimensional 

feature space. The support vectors relate to the feature vectors in the training set that 

efficiently define the boundary between the classes. Support vector machines have been 

found to perform well on high dimensional classification problems although the complexity 

can become prohibitive for large data sets. 

The Adaboost learning algorithm [71] popularised in computer vision by the work of 

Viola and Jones [170] - is a method for improving the accuracy of a pool of weak classifiers. 

This is achieved by learning a weighted combination of the weak classifiers to improve the 

classification accuracy over a range of training data. This algorithm is part of a wider 

family of algorithms known as Boosting. The advantage of Boosting algorithms is that a 

large pool of very simple, computationally efficient, weak classifiers can be refined into a 

smaller pool that can be combined linearly to create a classifier with good accuracy over 
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a range of learning examples. Adaboost requires a sufficient quantity of labelled examples 

during the learning phase, which can limit its performance in some applications where only 

small quantities of labelled data are available. 

Decision trees are a well studied field for finding decision boundaries within data, a tree 

can be utilised for data generalisation, where a mapping is uncovered from independent 

(unlabelled) to dependent (labelled) values [179]. This can be used for predicting future 

dependent values. In boundary models the assignment of classes is straightforward once 

the boundaries between groups in the data have been defined. In model decision trees [70], 

data from the unlabelled set is followed from the root node down to the leaf node, where a 

smoothed linear regression function gives the predicted label assignment. 

Neural networks [21] are computer learning methods inspired by the biological processes 

that occur in the human brain. In the neural network neurons (or nodes) are organised into 

single or multiple layers to allow general parameterised non-linear mappings between a set 

of input and output variables. The iterative learning phase of a neural network can be 

a supervised or unsupervised process. The successful application of a neural network is 

somewhat of a black art, with experimentation required to determine a good structure for 

the network for a given problem. 

In the case where the data to be modelled exhibits modal or multi-modal homogeneity 

clustering algorithms can be applied to find an intrinsic classification or inherent structure 

in a data set using no prior information about the grouping [158]. Clustering is a very useful 

technique, especially in generalising large data sets into a more simplified form, and it can 

assist in [15, 62]: 

• Formulating hypotheses about the origin of data. 

• Data exploration and reduction. 

• Describe data in terms of typology. 

• Fit a model to the data. 

• Predict future behaviour of types of this data set. 

• Optimising a functional process. 

There are also present many non-exclusive paradigms of clustering, classically clustering 
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is split into just two distinct methods - Partitional clustering and Hierarchical clustering3 

techniques. The main paradigms of current cluster techniques are [59] heuristic techniques, 

deterministic analysis, probabilistic analysis, hierarchical analysis and objective function 

techniques. An example of crisp probabilistic analysis is the iterative hard k-Means al­

gorithm [51]. This classical clustering technique produces a crisp, or hard partition, as 

opposed to fuzzy c-Means which can produce soft boundaries between the clusters. The 

membership probability of a pixel to a cluster is equal to 1 or 0, hence each pixel is assigned 

membership to one cluster only, creating hard partitions. 

General problems associated with clustering techniques are that the number of clusters 

is generally defined a priori, the solutions gained are local minima, the number of iterations 

are unknown and also that the algorithms can be computationally expensive in higher 

dimensions. 

A related method to clustering is the graph theoretic Normalised Cut algorithm [156]. 

In this approach the (arbitrarily complex) feature vector set is viewed as a graph with nodes 

as data points and edge weights defined by a measure of similarity. In the application of 

this algorithm the criterion for cutting the graph can be thought of asa measure· of the 

goodness of an image partition. 

The underlying density function in the feature space can be estimated using probabilistic 

methods; these methods allow formal techniques to be applied to estimate and propagate 

the densities within the feature space of a video sequence. Modelling the feature space in 

this way allows analysis of the a posteriori probabilities to classify pixels as belonging to 

objects within the scene. There are two main categories for density estimation techniques 

- parametric and non-parametric. Parametric density estimation techniques attempt to 

define the functional form of the model to be fitted to the data, whereas in non-parametric 

density estimation the functional form of the model is the data itself. A third type of 

model, termed semi-parametr'ic allows a number of parametric models to be adapted to the 

observed data in a systematic way. Both types of density estimation have advantages and 

disadvantages for modelling video sequence feature spaces, and can be applied to labelled 

or unlabelled data. 

Perhaps the simplest (and computationally efficient) method for density estimation is the 

histogram [21]. In a histogram the range of data is binned (Le. quantised) and samples are 

3 A tree-like description of clustering structure 
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accumulated to form a discrete estimate of the density function. The main drawbacks with 

histograms are the number/placement of the bins, the generalisation to higher dimensions 

and the problems of discontinuities in the estimated density. An advantage of histograms is 

that, unlike some non-parametric methods, the data can be discarded once the histogram 

has been constructed leading to an efficient representation. 

Kernel density estimation (also known as the Parzen Window technique [21, 51]) is a 

non-parametric method that represents the observed data by centering a window function 

at each data point. This window function allows the density to be estimated for regions 

where no data was observed by performing a summation over all the windows that overlap 

the region of interest. The form of the window function can be discrete (e.g. a hypercube 

kernel [21]) or continuous (e.g. the Epanechnikov kernel [53]). Kernel density estimates 

share many similarities with histograms, and like histograms the estimate has discontinuities 

and does not scale well with dimensionality. 

A recently rediscovered robust non-parametric iterative method for density estimation is 

the mean shift (or mode-seeking) method. The mean shift method was originally proposed 

by Fukunaga and Hostetler [74] and was revisited by Cheng [32] with generalisation and 

application to clustering and optimisation. The use of mean shift was further popularised 

in the computer vision community by Comaniciu and Meer, with works primarily focussing 

on image segmentation(e.g. [44]) and tracking (e.g. [41]). In the former work, the mean 

shift algorithm was applied to discontinuity preserving smoothing and image segmentation; 

in the latter work, the mean shift kernels were used to match objects using non-parametric 

appearance models (histograms) and the Bhattacharyya metric. Like many non-parametric 

techniques, the mean shift method does not scale trivially with dimensionality, and care 

must be taken to ensure the kernels contain enough information to find the high density 

pockets in the feature space. Like standard kernel density techniques determining t.he size 

of the kernel is a drawback of this method, it must be chosen a priori or determined using 

an additional module [43]. 

Gaussian based distribut.ions are very useful for modelling data since t.hey can be up­

dated efficiently and allow a formal approach (i.e. probabilistic and model based) to video 

object extraction in contrast to other types of classifier. The simplest method for estimat­

ing the true probability densit.y function (PDF) of observed feature vectors is to fit a single 

Gaussian density function to the data, which results in an estimated model that has few 
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parameters and is fast to generate from a set of observation samples. 

The primary drawback of using a Gaussian distribution is, like all parametric methods, 

the functional form of the model is chosen a priori. If the underlying PDF does not match 

this form then the model is unlikely to be representative of the data. Hoti and Holm­

strom [90] attemped to improve the applicability of Gaussian models (to retain the efficient 

representation) by transforming the data to separate the Gaussian and non-Gaussian data 

then using a combination of a Gaussian and a non-parametric kernel density model to repre­

sent the data; the resulting algorithm is computationally complex and may be too complex 

to apply to high dimensional data. 

To overcome the drawbacks of parametric and non-parametric methods Gaussian mix­

tures models [51] represent a mixture of parametric models that are combined to form even 

more complex functional forms to estimate the true PDF of a data set. In statistical pattern 

recognition finite mixtures such as this allow a formal approach to the problem of unsu­

pervised learning (Le. clustering of data) or representation of arbitrarily complex PDF's. 

Gaussian Mixture Models, like clustering algorithms in general, have many drawbacks such 

as estimation of the number of components and convergence towards local minima and 

singular estimates in the feature space. Figueiredo and Jain [67] propose an unsupervised 

algorithm for finite mixtures overcoming many of these problems associated with mixture 

model initialisation and fitting. A principled technique for model order selection is the 

minimum description length criterion which was introduced for mixture models by Rissa­

nen [146]. The maximum likelihood solution for fitting a Gaussian mixture model to a data 

set can be estimated using the Expectation Maximisation (EM) algorithm [1]. 

With an representative model of the feature space decision theory can be applied to 

create a decision function that minimises a cost associated with such a decision (and hence 

improve the classification accuracy). Therefore, a classifier' consists of two fundamental 

stages - density estimation and a decision function. Decision rules are determined by 

the type of representative model that has been applied to the classification problem. For 

continuous probabily density models a commonly applied Bayesian decision rule is the 

Maximum A Posteriori (MAP) rule [51]. This rule minimises the expected (Bayesian) error 

of a decision by choosing the discrete labelling that has the maximum posterior probability, 

An alternative approach is to label points with the object label of the nearest cluster 

centroid - this decision rule is commonly used in non-probabilistic clustering methods 
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where the problem of labelling pixels can not be stated formally due to the heuristic nature 

of the algorithms. In many cases the labelling of the objects is implicit, for example in the 

watershed segmentation the region labelling is the representational form of the model. 

Chapter 4 applies probabilistic representational models to the problem of video object 

segmentation. Three approaches to PDF estimation are implemented in the object segmen­

tation framework - Gaussian density, kernel density and Gaussian mixture models. 

2.6 Propagation of Video Object Representational Schemes 

The methods for modelling video objects presented thus far are essentially supervised im­

age segmentation algorithms. For these methods to be applied to the problem of video 

object segmentation methods are required to allow the representational schemes to adapt 

to the evolving video sequence. The update process for the representational models in the 

segmentation scheme can be thought of as an estimation process comprising three stages: 

1. prediction - a model prediction made using previous observations. 

2. matching - the model prediction is associated with the current observations. 

3. correction - the current (corresponding) observations are used to correct the predic­

tion, giving the estimated model. 

This terminology is common in tracking literature (e.g. [16]). Using the framework presented 

in Figure 2.1 it can be seen that the prediction step is the inter-frame update step and the 

correction step is the intra-frame update of the representational model. In this section 

methods for updating representational schemes in the context of video object segmentation 

are reviewed. 

2.6.1 Inter-Frame Prediction Strategies 

The goal of the inter-frame prediction step is to determine the likely location and appearance 

of the object in the subsequent frame given the observations made in previous frames in 

the video sequence. Generally, this stage is used for updating the spatial component of the 

objects representation. The appearance of objects generally undergo relatively minor change 

between adjacent video frames (assuming the temporal resolution is high and the light 
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sources in the scene do not change dramatically). To allow the appearance representation 

of the object to adapt to the evolving video sequence it can be updated (along with the 

spatial representation) in the intra-frame update step. The inter-frame prediction step does 

not introduce new model components into the representational scheme [152]. 

It is common in video object segmentation schemes to propagate the representational 

models between frames by simply using the previous frame representation - unchanged -

in the current frame. Of course, this type of inter-frame update methodology is based on 

the assumption that the object does not move a significant amount in between frames and 

is therefore a sequence dependent assumption. For many standard test sequences this is 

found to be a reasonable assumption and has been used in video object extraction schemes 

by several researchers e.g. [98, 61, 135, 171, 91, 11]. 

An alternative strategy is to use the motion information extracted from the video se­

quence to perform model-based compensation of the objects. The motion field for a video 

frame is extracted as raw optical flow; optical flow fields are generally noisy with many 

outliers resulting from uncovered/covered background or the aperture problem. Some ap­

proaches to video object segmentation warp (i.e. motion compensate) the representational 

schemes using per pixel motion information (e.g. [128, 111, 112, 27, 6]). 

To limit the problem of unreliable motion information it can be beneficial to measure 

the motion within regions of the video sequence to estimate a parameterised model of 

the motion for that region. The parameters for the motion model are solved using an 

optimisation technique (e.g. least squares). The resulting model has a compact form that 

can be very useful in the context of video analysis. A parametric model for 2-D motion 

fields can be derived from parametric models describing 3-D motion, 3-D surface function 

and camera projection geometry (Stiller and Konrad [160] give a good introduction to the 

formation of motion models). These motion models assume rigidity within the region of 

interest, therefore objects undergoing non-rigid (Le. articulated) motion require further 

processing to robustly estimate the multiple rigid motions. 

The simplest motion model is a translational model, this is effectively the average mo­

tion vector measured over a region (or object) in the video sequence. It follows that an 

optical flow field can be thought of as a pixel level translational motion model. A trans­

lational motion model can model translational motions of objects, for objects undergoing 

non-translational motions the model will not be representative of the actual motion. 
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Perhaps the most popular motion model used in video based analysis is the affine motion 

model. This model is generally applied to sequences where the 3D scenes are sufficiently 

far from the camera to reduce the effect of perspective motions [94]. The affine model is 

generally seen as a trade off between model complexity and processing efficiency [125]. The 

affine model suffers from the problems common to many higher order motion models (and 

indeed modelling in general) in that a sufficient sized region must be used to allow reliable 

estimation of the motion model and that the simpler model may not sufficiently represent 

the motion of the video object. 

In the case of projective motion it is neccesary to use a planar projective motion model. 

The difficulty of using such a model is that the regions must be sufficiently large enough 

to allow robust estimation of the eight parameter model. If the expected motion in the 

scene cannot be determined a priori then a hierarchy of motion models can be evaluated 

to determine the simplest model that can accurately warp a region of an image [95]. In 

such a scheme the residue error after motion compensation is measured using the simplest 

(i.e. translational) motion model and compared to the next most expensive model to check 

if there is any improvement in the accuracy of the result. This can be performed upto 

the eight parameter planar projective motion model. In the case of minor improvement in 

warping accuracy between adjacent models the simpler motion model would be chosen. 

The prediction (and subsequent correction) of the video object representation can be 

performed using recursive filtering methods. Recursive filtering is used to estimate the 

current state of a model by combining the current observation with the previous observation 

history, essentially smoothing the estimate over a temporal window. Perhaps the most 

commonly applied recursive filter for tracking is the Kalman filter [97, 178]. The Kalman 

filter provides the optimal linear estimate of an unknown state by using known dynamics 

and the observable data. When the process noises in the system are Gaussian this filter 

will provide the optimal estimate. A Kalman filter can be applied to improve the estimate 

of, for example, affine motion parameters for a video region (e.g. [65]). In such a scenario 

the affine parameters are either assumed to be constant or to change according to some 

known model (e.g. constant change), and that any deviations from this model are due to 

the Gaussian process noise. 

Particle filtering [12] provides an alternative strategy to the Kalman filter when the 

process noise in the system are non-Gaussian or the state of the tracked object is non-
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Linear. Particle filter based tracking works by representing the posterior density (i.e. how 

likely a state given an observation) by a set of randomly sampled particles with associated 

weights. By res amp ling particles from a 'proposed' density (which should resemble the 

expected density) and injecting new ones, the posterior distribution can be evolved over 

time to track an objects state. A potential drawback when applying particle filters is the 

tradeoff between computational complexity· and drawing a sufficient number of samples to 

adequately describe (and hence propagate) the underlying density. 

2.6.2 Intra-Frame Matching Strategies 

The goal of the intra-frame matching step is to correspond the predicted object-based repre­

sentation with the observed objects in the current frame. In video object segmentation the 

observed objects are generally discovered using the predicted video objects by labelling the 

frame, therefore an explicit matching step is not required. The matching step is important 

when the object segmentation can be performed independently for each video frame i.e. 

using motion information [64]. In such a scenario mechanisms are required to correspond 

the video object representations from the previous frame with the newly discovered objects 

in the current frame [186, 187]. This can be performed using the appearance information 

(e.g. [171, 77, 76]) or filtered motion information for each object (e.g. [64]). 

2.6.3 Intra-Frame Update Strategies 

The goal of the inter-frame update step is to correct the estimated video object represen­

tation by updating the representational model for the object using the current frame data. 

The dynamic nature of video sequences makes this a challenging stage in the segmentation 

process, a balance must be sought between the adaptibility of the model and the robustness 

to noise in the underlying signal. For specific video sequences the assumption of constant 

object appearance [186] may result in the intra-frame update of the representational being 

a trivial step (e.g. [30]). This assumption is generally only valid for short video sequences. 

A common per frame update methodology for the object representational models is 

to find the region of support for the object in the current frame using the propagated 

models and then reinitialise the object representation based on this new found object region 

(e.g. [61]). For parametric representational schemes the per frame reini tialisation can be 

an expensive and time consuming technique for intra-frame updating of the models. For 
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non-parametric methods - where the functional form of the model is the data - this type 

of update can be computationally cheap. A better strategy for updating parametric models 

is to use the previous frame model as a seed to guide the reinitialisation of the models to 

the newly observed data. This type of approach has been applied by [27, 135, 145, 111]. 

Alternatively, the object representation can be adapted to take into account changes in 

the object appearance due to lighting, pose or motion changes etc. One possible technique 

to achieve this on a per frame basis is to apply a recursive filter to smooth the adaption of 

the model so that predicted object parameters are less susceptible to noise. For Gaussian 

mixture models the update equations can be expressed to allow sequential, as opposed to 

batch, processing. The incremental (or online) EM algorithm [49, 39] is a form of recursive 

filter such that the the model parameters are recursively updated by each newly observed 

feature vector, weighted by the probability that the feature vector belongs to that model. 

This allows the model estimate to slowly adapt to changes in the true PDF. 

2.6.4 Spatio-Temporal Representation 

If the video data is available for processing in batch mode then joint spatial and temporal 

grouping [45, 87, 150, 103, 104, 139] can be applied to perform grouping in the spatia­

temporal video volume. Using the temporal information explicitly in the object represen­

tation can alleviate the problem of how to update the video object on a per frame basis, as 

this is included in the representational model. These type of schemes have drawbacks such 

as fast moving small objects exhibiting discontinuities in the space, the large data storage 

requirements of the video and the limited scalability of the approach. 

Chapter 5 and Chapter 6 introduce methods for propagating representations. Chapter 

5 details and evaluates methodologies for propagation and iimovation of video regions and 

Chapter 6 extends these methods to propagate video object representations. 

2.7 Performance Evaluation of Video Object Segmentation 

It is important in any scientific discipline to define an evaluation scheme that characterises 

the algorithms in a clear and unbiased manner. There is limited work in the literature 

relating to the evaluation of video object segmentation algorithms. Since video object 

segmentation is the extension of image segmentation (a review of which can be found in 
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[131]) to video sequences, then it follows that image segmentation evaluation strategies can 

be extended to quantatively evaluation video object segmentation algorithms. 

Zhang [184] defines three main groups of analysis - analytical, empirical goodness and 

empirical discrepancy. Analytical analysis of segmentation considers the effectiveness of the 

algorithm itself, based on measures of the principles, requirements, and complexity. These 

methods fall short due to the lack of a general theory for image segmentation from which a 

true analytical comparison can be derived. 

The empirical methods aim to judge the quality of a segmentation based on quantitative 

evaluation. Quantitative evaluation is represented by either a goodness factor or a discrep­

ancy measure. The empirical goodness method computes the goodness of a segmentation 

without the a priori knowledge of a reference segmentation. 

Empirical discrepancy uses a reference segmentation to allow mathematical discrepancy 

evaluation of the output segmentation. This is very useful when the algorithm is complex 

and fully automated. The evaluation procedure for depth content generation was derived 

from this technique. Using the set of ground truth4 segmentation maps, the output depth 

map was quantitatively evaluated using a discrepancy measure between the output and the 

ground truth. 

In the realm of video object segmentation techniques have been developed to evaluate 

segmentation quality using measures of empirical goodness and empirical discrepancy. Vil­

legas et al [142] suggest the use of perceptive weights to attempt to quantitively evaluate 

desirable properties of a segmentation mask. This approach consists of a per frame spa­

tial quality measure and a second measure of temporal stability that is measured from two 

frames. In his thesis, Giaccone [79] suggests that the perceptual weightings have no grounds 

in any subjective studies. In post production the segmentation mask of a video object should 

exhibit accurate edge location and lllask density i.e. the degree to which connected pixels 

forming an object in a ground truth segmentation are represented by pixels forming object 

regions in the outputted segmentation mask exhibiting the same connectedness. 

The evaluation methodology adopted by the ISO /MPEG-4 [165], COST 211 [5] and 

ACTS/MoMuSys [110] projects was presented by Mech and Wollborn [118] where the spa­

tial accuracy and temporal stability of the segmentation mask is compared to a ground 

truth segmentation mask; although the temporal stability is poorly evaluated by this mea-

4In medical work these are often termed gold standards 
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sure since it does not accomodate object movement. Another problem with spatial based 

discrepancy measures are that the majority of the errors detected are from a few, larger, 

regions. In an attempt to capture information about the many, smaller, estimation errors 

at the object boundary Mech and Marques [115] suggest a measure of distance between 

the object contours and a ground truth contour, supplemented with temporal coherency 

measuring the variation of the gravity centres of the video objects and the variation of the 

spatial accuracy. This approach has many practical drawbacks due to the complexity and 

discrete nature of object boundaries, making distance measures .between two contours a 

difficult and somewhat inaccurate process. 

Erdem and Sankur [54] evaluate three distinct approaches to video object segmenta­

tion. To achieve this they evaluate four penalty measures with respect to a ground truth 

segmentation. A combined penalty measure is formed from a weighted average of the mis­

classified pixels (weighted by proximity to boundary), a shape penalty based on turning 

angle functions and a motion penalty based on motion trajectories. Erdem, Tekalp and 

Sankur [55, 56, 57] build on this work to suggest empirical goodness metrics to evaluate 

video object segmentation without ground-truth. This work uses three a priori assump­

tions that the object boundaries coincide with colour boundaries, that the colour histogram 

of an object is stationary and that the colour histogram of the background is different to 

the object (although not necessarily stationary). To provide per frame quantitative good­

ness analysis colour and motion differences are analysed along the boundary of the video 

object. To measure whether the object is tracked correctly in each frame the colour his­

togram differences are observed between the video object in two successive frames so that 

the introduction of background information into the object mask will increase the distance 

between the histograms. Due to the prior assumptions made, this method can not be readily 

applied to generic video object segmentation evaluation; in generic scenes the assumptions 

may be violated. This work is further integrated into a video object tracking algorithm [58] 

that uses a feedback of performance evaluation measures to evaluate the goodness of the 

segmentation. 

Correia and Pereira [36, 37] show a set of evaluation methodologies for both empirical 

goodness and empirical discrepancy methods. The empirical goodness based methods are 

split into two major categories - intra-object homogeneity measures and inter-object dis­

crepancy measures. Empirical discrepancy measures are also split into two major categories 
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- spatial accuracy and temporal accuracy. They propose the addition of a further metric, 

Criticality, that combines the spatial and temporal information into a spatio-temporal eval­

uation of video sequence complexity. These metrics are applied to video object segmentation 

evaluation for both individual objects and overall evaluation. Many of the performance met­

rics shown in this work have perceptual weight terms based on informal subjective tests, 

this could affect the objectivity of the evaluation work. 

Performance evaluation is performed in all chapters in this thesis. It is crucial that 

existing and proposed methods are evaluated to give a more thorough understanding of the 

characteristics of the algorithms. 

2.8 State of the Art Video Object Segmentation 

In this section the state-of-the-art approaches to video object segmentation and related 

fields are reviewed. There have been some recent developments in spatio-temporal based 

approaches to video object segmentation. Ahmed et at [3, 2] evolve the previous work of 

Greenspan et at [87] to perform automated segmentation of video objects using spatia­

temporal Gaussian mixture models. Ahmed et at extend the basic approach to account for 

the relatively poor representation of object shape by the multi~dimensional GMM represen­

tation. To improve this, they analyse the spatial distribution to generate a uniform density 

based spatial model using the concept of chords passing between the object boundary and 

the object centre. It is unclear whether the resulting PDF representation of the object 

is similar to that which can be achieved by kernel density estimation (i.e. a binary mask 

with a 'fuzzy' boundary). Ristivojevic and Konrad [147] present an alternative approach to 

analysing video volumes using the concept of object tunnels. Their approach is interesting 

in that it only applies motion information (affine motion models) within a volume competi­

tion framework (a generalisation of region competition [162]). Explicit occlusion reasoning 

is applied using occlusion volumes within the 3D space of the video volume. The approach 

is only demonstrated for scenes with stationary backgrounds, and further work is required 

to apply the technique to general image sequences. 

Mezaris et at [171] present a per-frame approach to automated region segmentation 

using colour and motion features. Regions are tracked using frame differencing to locate 

changed pixels and then normalised histograms are used to classify the pixel to the neigh-
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bouring (unchanged) regions. New regions are detected using a rule-based approach based 

on the homogeneity of the region colours and motion models are applied when merging 

neighbouring regions with similar appearance. A limitation of the new region detection 

step is that misassociation can occur with previous (extinct) regions in the case that their 

appearances are similar. Kolmogorov et al [102] present two novel approaches to the prob­

lem of segmenting video layers when using a stereo camera. The two approaches (based on 

layered dynamic programming and layered graph cuts) both fuse stereo information with 

colour and contrast, captured by a stable probabilistic model. It is demonstrated that the 

fusion of stereo and colour/contrast is a more powerful descriptor than either alone and 

that good quality stability can be achieved without imposing temporal constraints. 

In the related field of video matting, Li et al [108] build on the work of Chuang et al 

[35, 34] to present a system for extracting smooth object maps from video sequences. In 

their approach they apply a novel 3D graph cut based approach on the spatio-temporal video 

volume. The 3D graph cut approach partitions a per-frame· watershed segmentation into 

foreground and background regions, preserving the temporal conherence. Feature tracking 

between key-frames is used to refine the segmentation using a local colour-based 2D graph 

cut. A user interaction step allows the operator to refine the boundary where necessary. 

A further area of work is the extension of such techniques to extracting alpha mattes for 

multiple objects. In a similar appraoch Wang et al wang2005ioa, wang2005ivc extend a 

per-frame watershed segmentation that is extended over time using graph cut. The user 

interacts via a novel spatial-temporal manipulation tool. 

Apostoloff and Fitzgibbon [10] present an automated approach to spatio-temporal object 

segmentation using sparse features in the 3D video volume. These features (spatiotemporal 

T-junctions) are used as indicators of occlusion edges, which are learned by an occlusion 

edge model and a foreground/background appearance model. Finally, the segmentation is 

solved using a graph cut MRF that combines appearance and occlusion edge terms to give 

a global solution. Han ct al [85] propose a related approach based on sequential clustering 

of sparse edge and corner points. Sparse motion layers are extracted using a joint spatia­

temporal linear regression method. Finally, dense motion layers are create by using MRF 

to assign the remaining image pixels using colour and spatial proximity to the local sparse 

features. Xiao and Shah [181] apply the graph cut algorithm within a spatio-temporal video 

volume to generate a motion-based segmentation. A general occlusion constraint is used to 
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determine the object and occlusion segmentations. Finally, Wang and Ji [176] introduce a 

method to integrate contextual constraints into object based segmentation, with spatial and 

temporal dependencies unified within a probabilistic framework. The segmentation method 

combines intensity and motion cues with video frame history and spatial interaction of the 

data. This combination of features was shown to improve the accuracy of video object 

segmentation. 

An alternative strategy to extract video objects is to use a priori 3-D models to deter­

mine the presence of objects at each frames. Everingham and Zisserman [60] demonstrate 

such an approach for detecting and extracting people from video sequences. The first step 

of this approach is to match the pose of a (tracked) face region using the 3D model for 

all the faces in the training set. Once the pose is estimated, the target can be identified 

by matching the proposed faces from the training data. The use of 3D textured training 

models may not be suitable for tracking articulated objects, since extra free parameters 

will be introduced into the matching process. This may make the resulting algorithm com­

putationally prohibitive. An alternative approach to using high quality training data is to 

attempt to train object categories using features extracted from a large pool of labelled 

images (e.g. pictures of cars etc). Liebe et al [105, 106] presented a method combining the 

capabilities of both object categorisation and segmentation within a common probabilistic 

framework. Features extracted from an image frame are first matched (via a codebook) to 

those extracted from the training set. The hypothesis of the object type / location is then 

determined using localised probabilistic voting. This allows the backprojection of the ob­

ject hypothesis into the image, which is refined into a category specific segmentation mask 

using the local image appearance. Such an approach is of great interest for the future of 

video object segmentation, since it allows labelled imagesto be used to segment images on a 

per-pixel basis. It is not unfeasible that such an approach could be trained used an internet 

based search engine (e.g. Google Image Search [82]) leading to near-automated methods 

for semantic video object segmentation / categorisation. 

In the field of video object segmentation evaluation, Gelasca et al [78] presented an 

automatic evaluation framework incorporating quantitat.ive measures chosen to incorporate 

perceptual factors associated with the end application. A drawback with this approach is 

that the perceptual factors have to be attained by subjective application-specific tests using 

human subjects, which may limit its wider application. 
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Chapter 3 

Feature Spaces for Video Object 

Segmentation 

The choice of feature space and the extraction of it from the raw image data is a fundamental 

part of the video object segmentation process. A feature space is defined as being a multi­

dimensional space that wholly encloses a finite set of feature vectors. An example of a 2D 

feature space is shown in Figure 3.1. In this example the set offeature vectors is divided into 

two classes - triangles and circles. In this simple example the classes are well separated -

the feature space is said to provide enough discriminatory evidence to classify observations 

as belonging to one of the two classes. In this example it is noted that there are also two 

outlier vectors (i.e. pixels that have erroneous values); such outliers are often generated by 

extraneous signals in the measurement of the feature vector or from insufficient sampling 

of the data (Le. not seeing the complete structure of the feature space). 

A model-based representation can be built using the information contained within this 

feature space,allowing further observations to be classified as belonging to one of the two 

classes. The representation of the data can primarily be region or boundary based i.e. a 

model of intra-region homogeinity or inter-region heterogeinity. The actual classes associ­

ated with the feature vectors may be provided by a human operator or derived automatically, 

for many classifiers it is imperative that the training data is labelled a priori. The represen­

tation of this space is discussed in depth in Chapter 4. In the current chapter the choice and 

extraction of the feature space are focussed on with respect to video object segmentation. 

For image and video analysis a feature vector set can be extracted for all the pixels 
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Figure 3.1: An example of a 2D feature space containing vectors representing two distinct 

classes. 

available (dense) or a subset (sparse), the extraction process itself can be an operation on 

the individual pixels (e.g. colour) or the surrounding pixel neighbourhood (e.g. motion). It 

is possible that the pixel neighbourhood contains more than one object and hence features 

extracted in this region may not be representative of the individual objects.' The feature 

vector a extracted at a pixel is a function of the spatial and temporal pixel location i.e. 

a = a (x, y, t). This D-dimensional feature vector is formed from the D scalar values that 

are the extracted quantities at that pixel, sHch that: 

a = [al,'" ,aD] (3.1) 

The feature vectors extracted from an image or video therefore form aD-dimensional 

feature space. To perform model-based analysis of the feature space a distance metric needs 

to be defined which defines the measurement of the distance between two feature vectors 

and allows the distributions of feature vectors in the space to be described in a principled 

manner. 
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An example of feature space analysis in video sequences is presented in Figure 3.1. In 

this example, the feature vectors contain the translational motion information measured at 

sub-sampled pixels in a video frame. It is clear that there are two distinct clusters which 

represent two dominant motions in the frame. Using a model based representation of these 

clusters all the remaining image pixels can be classified as belonging to one of the two 

dominant motions and hence a layered representation of the scene can be found (e.g. Ayer 

and Sawlmey [14]). 

3.1 Distance Metric in the Feature Space 

Within the feature space the concept of distance is required i.e. the proximity of two feature 

vectors. One of the simplest distance metrics is the Manhattan (or city-block) metric. The 

Manhattan distance between two D-dimensional feature vectors, al and a2, is given by: 

D 

dist (aI, a2) = lal - a21 1 = I: lal,d - a2,dl (3.2) 
d=l 

The Manhattan distance is relatively efficient to compute, although it could over-

estimate what is termed the 'direct' or Euclidean distance. The Euclidean distance in 

the feature space between two D-dimensional feature vectors, al and a2, is given by: 

D 

" 2 dist (aI, a2) = Iial - a211z = ~ (al,d - a2,d) (3.3) 
d=l 

The vector a can be a hybrid feature vector, that is, it can be comprised of several 

features combined into a multi-dimensional vector. Each dimension in the feature vector is 

characterised by a different scalar range and therefore the Euclidean distance may not be 

meaningful when using hybrid feature vectors. To accomodate the scale differences in the 

dimensions it is common to use the Mahalanobis distance [109]. In this distance metric the 

data is normalised using the covariance of the feature dimensions over the entire feature 

vector data set. These covariances are stored in a covariance matrix, :E, such that: 

1 N 
(3.4) :E - - I: [aj - JL] [ai - JLf 

N i=l 
1 N 

(3.5) where JL - - I:ai 
N i=l 
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Given the covariance matrix :E, the Mahalanobis distance between two feature vectors 

al and a2 is given by: 

1 

dist (aI, a2) = Iial - a21i 2 = [(a1 - a2f ~-l (al - a2)] "2 (3.6) 

The Mahalanobis distance is the same as the Euclidean distance if the covariance matrix 

is the identity matrix. It is common to assume that the feature vector dimensions are 

independent, that is, they are uncorrelated. Under this assumption the covariance matrix 

is block diagonal, containing only the intra-dimension variances of the feature vector data 

set. Therefore the uncorrelated Mahalanobis distance between two feature vectors, al and 

a2, out of a set of N feature vectors is given by: 

(3.7) 

1 2-w lere (Jd - (3.8) 

where /-Ld is the mean value of the feature scalar ad over the N measurements in the 

data set. 

3.2 Previous Work 

In Section 2.4 popular feature spaces for video based analysis were reviewed. In this section 

the feature spaces are discussed in the context of existing work on video object segmentation. 

The feature spaces commonly applied for video object segmentation use a combination of 

colour, texture, gradient and motion information to delimit the objects in the image plane; 

implicit to this is a defined mapping between the raw image plane space (spatial and RG B 

colour co-ordinates) and the feature space. 

Several approaches to video object segmentation [138, 183, 52, 124, 120, 121, 116, 117, 

135, 33, 6, 5, 134] use luminance (grey-scale) information to provide an analytically simple 

feature space component. The main advantage of using luminance information is that it 

simplifies the representation of object appearance compared to colour information. The 

main disadvantage is that the luminance information is often not sufficient to provide even 

the human visual system with enough information to distinguish objects within the scene. 
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The RGB colour space has been applied in many object detection and tracking algo­

rithms [72, 19, 18, 145, 154, 128, 83, 13, 150, 96, 76]. The effect of the luminance on RGB 

measurements can be reduced by normalising the per channel signal with the combined 

signal strength over all the channels [130, 11]. 

Other approaches to video object segmentation [103, 104, 111, 98, 139, 96, 27, 31, 149, 

112] have applied the YUV colour space to analyse video sequence information. The main 

advantage of this space is that it allows the luminance (Y) and chrominance (UV) informa­

tion to be used separately and hence can be used to overcome some of the problems with 

the RGB colour space (e.g. [80]). A related colour space to YUV is YfQ, applied in [30] 

for video object segmentation. To give a more intuitive description of colour and add ro­

bustness to light changes within the scene the RGB space is often transformed non-linearly 

to the H S-family of colour spaces. This transform splits the luminance and chromaticity 

information allowing the modelling of a chromatic signal without the influence of brightness 

(as with YUV), this gives algorithms based on HS (i.e. Hue and Saturation) colour signals 

a limited amount of robustness to appearance changes of an object, although the problems 

of measuring colour value at the extrema of the luminance scale and the fact that different 

light sources emit different chromatic signals mean that the use of H S is often used in 

controlled enviroments with limited light sources (e.g. [143]).To give a more intuitive de­

scription of colour and add robustness to light changes within the scene the RG B space is 

often transformed non-linearly to the H S-family of colour spaces. When modelling the H Sf 

colour space it is important to take into account the cyclic property of the hue (including 

a discontinuity in the space) and the relationship between the hue and the saturation. One 

way to achieve this is to convert the hue and saturation to cartesian co-ordinates to form 

cartesian Hue-Saturation-Intensity (XY I) space [42]. A similar technique has been applied 

to content based image retrieval [153], where it is proposed that this type of encoding caters 

for the fact that at small saturations (i.e. near the intensity axis) the hue differences are 

meaningless (since little useful colour can be measured). It does not, however, weight the 

hue as more relevant for larger saturations and intensities of colour i.e. at the widest part 

of the colour cone. 

Several approaches to video analysis (e.g. [29, 61, 171, 87]) include CIE-L * a * b* in 

the feature space, due to the preference of perceptual uniformity. CIE-L * u * V*, a uniform 

colour space similar to CIE-L * a * b*, has been applied to video based segmentation by 
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[186,47, 95, 96, 91]. 

Several approaches to video object segmentation and tracking are based solely on colour 

(for example, [72, 143, 145]) although in many applications there is a requirement for 

modelling of the spatial distribution of the object. The use of spatial information in the 

feature space can be useful to define explicit structure. [30] combined spatial, textural and 

chromatic information to help delimit multiple objects with similar chromatic signals. There 

are many techniques that apply spatial cues to aid the segmentation of video objects [111, . 

61,87, 28, 103, 104, 135, 27, 91, 11]. 

Textural analysis can be added to the feature space so that objects can be discriminated 

on the characteristics of the way the colour information is spatially distributed on the object. 

Texture descriptors extracted from the windowed second moment matrix have been applied 

to content based image retrieval [153], detection of repeated scene elements [107] and video 

object segmentation [61]. Gabor filters decompose images into multiple orientated spatial 

frequency maps from which amplitude or phase analysis can be used to form the feature 

maps [177, 11]. For video object analysis they have been found to offer neglible advantage 

over the simpler windowed second moment matrix scheme given the higher feature vector 

dimensionality and greater computational expense [61]. 

Motion or temporal information about the video objects can also be introduced into 

the feature space, describing the motion of pixels and regions between frames. Per pixel 

motion information can be applied in video object segmentation approaches as an additional 

discrimantory feature in the space (e.g. [27,28,30,128,171,98,8]), in this form the motion 

information is often weighted to account for the fact that it tends to be unreliable at the 

edges of scene objects and in areas of constant intensity in the image. The recovered per 

pixel motion field only displays homogeneity between pixels that are undergoing similar 

translation in the image plane; the optical flow information does not display homogeneity 

for pixels undergoing rotation, zoom or other complex movement. 

A parametric model for per pixel (2-D) motion fields can be derived from parametric 

models describing 3-D motion under projective geometry. The simplest motion model is 

a translational model, which displays feature space homogeinity only under similar object 

translations. The most commonly used motion model in video analysis work is an affine 

motion model (used in [186, 124, 63, 52, 173, 120, 121, 66, 24, 58, 7, 46, 166, 134]) that ex­

hibits feature space homogeneity for object regions undergoing similar translation, rotation 
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and zoom in scale. Motion models are often applied to generating a layered representation 

of video frames (e.g. [173]). 

Some recent approaches to video analysis have used the concept of discrete time (i.e. 

the frame index) in the feature space [45, 150]. The use of temporal information is, at the 

time of writing, limited by the large computation and storage demands of multi-dimensional 

video processing. Fast moving objects within the scene may also exhibit discontinuities in 

the 3-D neighbourhood and there is little literature relating to how this may affect the final 

object segmentation result. 

The choice of feature space can be treated as a selection problem where the most efficient 

and discriminating feature space is sought from a much greater pool of feature spaces. The 

selection of the 'good' features can be approached by either optimising the segmentation 

performance of the feature space over a range of test data (e.g. Guo et al [95, 96]) or 

use a learning algorithm to select a small number of critical features that best describe the 

objects of interest (e.g. Viola and Jones [170]). Viola and Jones presented the application 

of the Adaboost learning algorithm [71] to select 'good' image-based features out of a much 

greater pool. In this work, the Adaboost algorithm is applied to find the 'good' weak 
-

classifiers out of a much larger pool of weak classifiers that each depend on a single feature. 

In this way the selection of the 'good' weak classifiers will in turn select the 'good' features 

from the pool that best discriminate a set of learning examples. A common problem with 

multiple feature space based approaches is that the multiple feature space transformations 

and analysis can make them computationally prohibitive and that the resulting (hybrid) 

feature space may contain illogical (and inefficient) combinations of features that represent 

the same visual characteristic. 

3.3 Feature Vector Extraction 

Section 3.2 gave an insight into the myriad of features that can be applied to video object 

segmentation. In this section the feature space components to be evaluated are discussed. 

The raw video data is RGB and hence the feature spaces are derived using transformations 

of the RGB colour space and in Section 3.4 the discriminatory evidence gained or lost 

by each transformation is exploited using a clustering algorithm. Since there are many 

potential feature space components that can be applied to this problem the choice is limited 
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to feature components that are well known in video object segmentation or content based 

media retrieval work. Section 3.3.1 discusses the four principle colour spaces chosen - RG B, 

YUV, XY I and CIE-L * a * b*. Section 3.3.2 discusses the extension of these colour spaces 

with spatial information, Section 3.3.3 exploits motion features, and finally Section 3.3.4 

shows the calculation of textural features that can aid the segmentation of video objects. 

3.3.1 Colour 

When extracting or recognising objects within a scene, colour is a powerful descriptor -

one which is fundamental to the human perception of scene objects. There are two main 

classes of colour models predominant in computer vision - linear and non-linear spaces. 

Linear colour spaces are based on the principle of linear combination of the three primary 

colours. Non-linear colour spaces attempt to describe colour in more intuitive terms and 

are thought to most closely relate to human colour perception. There is also a class of 

uniform non-linear spaces where colour differences measured in the space relate to percieved 

differences by humans. 

Linear colour spaces 

The most common linear colour space, as mentioned previously, is the RG B space. This 

space is commonly used in computer vision since it is the space used by computers to display 

colour information. As the values of each channel of this colour space are bounded in the 

range 0-255, each channel can be represented by a single byte - an important consideration 

in early work on vision algorithms. Each channel of the colour space represents a primary 

spectral component (Le. red, green and blue) and the space is formed in a cartesian co­

ordinate system - the RGB cube. A colour in this space is defined by a vector extending 

from the origin (O, 0, 0) (black) to (255, 255, 255) (white), although the colour space is often 

scaled to the range (0.0-1.0) prior to conversion to other colour spaces. It should be noted 

that the RG B colour space is intuitively non-uniform, such that a proximity between two 

colours in the space may not necessarily represent two colours that are of similar appearance 

with respect to the human visual system. An RGB colour feature vector frgb is defined as: 

frgb = [ 1" 9 b f 

A major disadvantage with the RG B space is that the luminance and cllrominance 
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channels are combined such that an object colour will not appear to be uniform over time if 

there are lighting intensity changes in the scene. The effect of lighting intensity changes on 

a colour measurement is not to be confused with colour constancy, this is an area of image 

processing concerned with measuring uniform object appearance under differing lighting 

intensities and temperatures i.e. the perceived chromatic content of the light. 

There are three colour spaces based on a linear transform of the RG B space commonly 

found in broadcast and picture systems, these are namely YUV, Y fQ and YCbCr. The 

YUV colour space has one luminance(Y) channel and two chrominance channels (UV). 

The transformation from an ROB feature vector to the YUV vector fyuv is performed as 

follows: 

y [ 0.299 0.587 0.114 [ : I fyuv = u -0.147 0.289 0.436 

v 0.615 -0.515 -0.100 

The YUV colour space is advantageous over the RGB space due to the fact that the 

luminance and chrominance information is separated which can make the modelling of video 

objects more robust to lighting intensity changes in the scene. A major drawback with both 

the RGB and YUV colour spaces is that they are not well suited to describing colours in 

human terms. This consideration is important in video object segmentation if an operator 

is required to directly manipulate the colour information of the objects to be extracted. 

Non-linear colour spaces 

A more intuitive system is to describe colour in terms of the hue, saturation and brightness. 

The hue is the attribute of the colour that distinguishes, for example, blue paint from red 

paint. The saturation describes the quantity of the hue property - for example, varying 

quantities of red paint to white paint can be mixed such that the hue remains constant 

while the saturation (or amount) of red paint added to the white produces a range of 

colours encompassing pinks and reds. The brightness, or physical intensity of the perceived 

light, is SUbjective and is practically impossible to measure. This is often substituted for 

the intensity, a property that can be measured, although there are numerous examples in 

which an object of uniform intensity appears not to be of uniform brightness [141]. 

This description of colour leads us to the HSf colour space, a member of the HS-family 

of colour spaces. The HSf space is calculated by standing the ROB colour cube on it's 
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black vertex. To achieve this, the conversion from frgb to fhsi is calculated as follows, with 

hue measured with respect to the red axis: 

1 - "+;+b [:in (r, g, b)] I 
i(1'+g+b) 

s 

h 

{ 

27r - () (b> g) 
where h = ., 

() otherwise 

() = cos -1 { ! [(1' - g) + (1' - b)] } 
[(1' - g)2 + (1' - b)(g - b)]~ 

It is assumed that the RG B values. are normalised in the range [0, 1] prior to applica­

tion in this equation. The H S I space is often used in applications where intuitive colour 

descriptors are required. Like YUV space the luminance and chrominance is separated in 

the I and H S channels respectively. When modelling this space it is also important to take 

into account the cyclic property of the hue (including a discontinuity in the space) and the 

relationship between the hue and the saturation. One way to achieve this is to convert 

the hue and saturation to cartesian co-ordinates to form cartesian Hue-Saturation-Intensity 

(XY I) space [42], the X and Y co-ordinates are given by: 

x = scosh 

y = ssinh 

Converting H S to cartesian X and Y caters for the fact that at small saturations (i.e. 

near the intensity axis) the hue differences are meaningless (since little useful colour can 

be measured) and that at large saturations the hue value is more relevant (the arc length 

between hue values on the chromatic plane increase with saturation). In common with 

RGB and YUV spaces this space is non-uniform with respect to human perception of 

colour differences. 

Uniform non-linear colour spaces 

Uniform colour spaces are designed to be perceptually uniform - a distance measured in the 

colour space will be proportional to the subjective difference perceived between the colours 

by a human observer. The CIE-L * a * b* colour model [180], proposed in 1976, provides an 
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approximately perceptually uniform colourmetric space in which colours that are perceived 

to be identical are encoded identically and that colour differences among various hues are 

perceived uniform. As the gamut of L * a * b* contains the entire visible spectrum it is 

commonly used as a device independent space to convert colours between different systems. 

The L* co-ordinate represents the luminance, whilst the a* co-ordinate represents red minus 

green and b* represents green minus blue. As with HSI and YUV, this space allows the 

chrominance and luminance information to be separated. 

The conversion from RG B to L * a * b* is achieved by first converting to the CIE-XY Z 

tristimulus values. This allows the CIE spectral primary colour co-ordinate system (P.65, 

Pratt [141]) to be described in a co-ordinate system where all tristimulus values are positive. 

The transformation from an RGB feature vector to the CIE-XYZ vector fxyz is performed 

as follows: 

= [~:::~:~: ~:;::::: ::~:~::: I [: I 
0.019334 0.119193 0.950227 b 

The conversion from the XY Z tristimulus values to the CIE-L * a * b* vector fL*a*b* is 

subsequently performed as: 

where h(q) = { 

[ 

116 h ( }~~, ) - 16 I 
500 [h (,y;,. ) - h (}~, ) ] 
200 [h ( ~. ) - h (z~,. ) ] 

f/(j (q > 0.008856) 

7.787q + A6
6 (q:::; 0.008856) 

where XlV, Yiv and Zw are reference white tristimulus values that are typically constants. 

The reference white commonly used in video object segmentation is that observed from a 

perfectly reflecting diffuser under a CIE standard D65 illumninant. L * a * b* is commonly 

used in video object segmentation to provide an approximately uniform colour space, al­

though the CIE standards on which it is based are usually regarded by professional col­

orimetrists as out of date [69]. 

In video object segmentation there is often little justification given for choosing one 

colour space over another. Extending this to general image segmentation, it is still an 
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unsolved and open issue as to which colour space will give the 'best' performance with 

respect to the segmentation criteria. Evaluating the four colour spaces presented in this 

section will allow one colour space to be chosen in a principled manner as being the 'best' 

for video object segmentation with respect to an evaluation methodology. 

In video sequences where different video objects contain patches of similar colour, colour 

alone is often not enough to accurately and consistently segment video objects. In such cases 

spatial information can be appended to the feature vector to add spatial coherence to the 

video object representation. 

3.3.2 Spatial Co-ordinates 

As mentioned previously, colour alone is often not complete as a descriptor of a video object. 

To add spatial coherence to the object model spatial information can be appended to the 

feature vector. A spatial feature vector is given by: 

x = [x, y]T 

where x and yare the spatial co-ordinates of the pixel in the video frame. Adding spatial in­

formation into video object segmentation algorithms generally decreases over-segmentation 

and leads to smoother regiOlis. 

3.3.3 Motion 

Motion information is commonly used for segmenting moving video frame regions in video 

sequences. As objects move in the scene relative to the camera motion there is a 2D 

vector field of motion induced at each pixel in the video frame plane. This motion field is 

estimated by analysing the spatial and temporal variations of the image intensity within a 

video sequence. 

The many methods for estimating the motion field can be roughly divided into t.wo main 

classes - differential techniques and feature-based techniques [164]. Differential techniques 

produce a dense estimate of the motion field based on per pixel analysis of the spatial and 

temporal variations of the image intensity at each video frame. Feature-based techniques 

produce a sparse estimate of the motion field, restrict.ing the analysis to image points 

that can be reliably matched and then tracked through an image sequence. Video object 
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extraction requires per pixel segmentation accuracy therefore the motion field estimated 

using a differential technique is preferential for inclusion in the feature space. 

There are a multitude of differential techniques available for the estimation of the motion 

field. The differential technique of Lucas and Kanade [23] is used to estimate the motion 

field, principally because the gradient information can be reused in other aspects such as 

the texture measures presented in Section 3.3.4. This method is also applied to video object 

segmentation by Castagno et at [27] and Cavallaro [28] and has the added advantage that 

it is implemented in the Intel OpenCV image processing library [92, 93]. The technique 

of Lucas and Kanade is based on the standard differential formulation of the motion field 

estimation problem. This formulation itself is based on the assumption that the image 

intensity I is conserved over time: 

dI =0 
dt 

(3.9) 

where the image intensity I = I (x, t) is a function of the spatial and temporal co-ordinates 

at frame t. Using the fact that x is also a function of t, the differential chain rule can be 

applied to rewrite (3.9) as: 

dI = aI dx + aI dy + aI = 0 
dt ax dt ay dt at 

(3.10) 

8I / ax and aI/ ay are simply the horizontal and vertical components of the image intensity 

gradient i.e. \7 I, such that: 

(3.11) 

Given the gradients of the image intensity \7 I and the motion field u - u (x, t) = 

[(dx/dt) (dy/dt)r = [u vr then (3.10) can be rewritten as the image intensity constancy 

equation: 

(\7 If u + It = 0 (3.12) 

where It denotes aI/at, the gradient of the image intensity with respect to time. This 

temporal gradient is computed by considering a temporal window centered in the current 

frame and extending to the adjacent frames. To estimate the motion field efficiently the 

temporal window can be extended between the current and next frame. Since (3.12) is an 
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underconstrained equation with two unknowns further constraints are added by assuming 

the motion is constant within a local neighbourhood N to give the estimate of the motion 

field u at pixel (x, y) as: 

L [(\7If u + It] 
2 

xEN 

(3.13) 

The approach of Lucas and Kanade [23] modifies this to be a weighted least-squares fit, 

such that: 

L W2 [(\7If u + It] 
2 

xEN 

(3.14) 

where W = G (x, 0-) denotes a window function that weights the constraints at the centre 

of the window more than at the periphery. The solution to this least squares problem is 

found by solving: 

where, for the N points in the neighbourhood N (Le. N = card{N)) at time t: 

A 

lV - diag [W {xd, ... , W (XN)], 

b - - [Idxr), ... ,IdXN)r 

The solution to this overconstrained linear system is therefore given by: 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

This is solved when the windowed second moment matrix M = ATYV2 A is nonsingular: 

[ 

"lV2 12 L W2Ix1y ] 
M = ATW2A = L- x 

L H!2IxIy L W2 I~ 
(3.20) 

Repeating this procedure at all the points in the current frame yields a dense optical flow 

with a value for u at each pixel. Dense motion estimation techniques using this approach 

suffer from the aperture problem - the optical flow estimated based on the constraint in 
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(3.12) only determines the component in the direction of the spatial image gradient i.e. the 

component orthogonal to the spatial image gradient is not constrained. Equation (3.1O) 

is only true for small displacements, the optical flow method applied in this work extends 

this simple methodology with a laplacian pyramid to allow larger motions to be recovered. 

The reader is referred to n·ucco and Verri [164] or Barron, Fleet and Beauchemin [17] for 

a more in-depth discussion on motion field estimation in video sequences. 

The optical flow recovered can be appended to the feature vector at each video frame 

pixel. With the addition of this motion information meaningful regions (i.e. video frame 

regions with homogeneous motion) can be segmented from the video sequence using an 

unsupervised scheme. However, these regions often do not represent semantic video objects 

since objects often exhibit articulated or smoothly varying non-translational motion and 

are therefore inhomogeneous in the motion space. Worse, there are often sequences where a 

video object exhibits minor motion relative to other scene objects i.e. a static object against 

a static background. In such a scenario the optical flow will not add any discriminatory 

evidence. 

A major drawback when utilising optical flow for .video object segmentation is the fact 

that the calculation of motion is based on neighbourhoods. Motion discontinuities (i.e. the 

boundaries of moving objects) cannot be determined accurately when using motion infor­

mation. However it is hoped that the motion information often complements the colour 

information present in the scene. Motion information is considered more 'reliable' in tex­

tured areas whereas colour information is more 'reliable' in textureless areas, and both 

features are 'unreliable' at the boundaries of moving video objects in the scene. There­

fore when using optical flow in the feature space it is beneficial to use a feature \veighting 

methodology (see Section 3.3.5) such that only 'reliable' feature vectors are used in the 

segmentation of the video objects. 

3.3.4 Texture 

Texture is added to the feature space of video object segmentation schemes to aid the 

discrimination between video objects that exhibit similar colour signals but differ in the 

way these signals are distributed in localised image regions. Whether constituent elements 

of images are described as texture or not depends on the scale at which that element is 

being viewed [69] and also the presence of neighbouring elements of similar size such that 
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the elements together appear distributed by a repetitive process. For example, in Figure 3.2 

the pebble in the image on the left can be described as being an element of an area of texture 

(the pebbled beach). If the scale at which the textured area is viewed is changed then the 

interpretation may now be that the image contains textured surfaces on the pebbles, and the 

pebbles may be interpreted as individual video objects. Finally, the image can be viewed 

again at the original scale, removing the neighbouring pebbles in the textured area and 

replacing them by the 'water' texture. In the absence of neigbouring objects of similar size 

the pebble becomes more distinct and it may be interpreted once more as being a video 

object element in the scene. 

Figure 3.2: Factors affecting texture description. (Left) The highlighted pebble is a con­

stituent element of a textured image region (Middle) Closer up, the image contains textured 

surfaces on the pebbles, which is now a distinct scene object (Right) Replacing the neigh­

bouring pebbles with a 'water' texture the pebble becomes more distinct at the orginal 

scale. 

Based on these simple observations, the analysis of texture is an ill-posed problem and 

the description of the texture should be performed in a neighbourhood with an appropriate 

scale to the local structure being described. Texture descriptors (i.e. filter operations) are 

used to filld certain properties of the texture e.g. one might look for textons 1 of a particular 

spatial frequency alld orientation using a Gabor filter. The problem of scale selection 

(i.e. the finite sized neighbourhood over which the descriptors are integrated) requires 

that the region within which the texture is described should be large enough such that it 

is represelltive of the texture pattern. Carson et al [29] used this concept of representing 

texture in their seminal content based image retrieval (CBIR) work Blobworld using texture 

descriptors and scale selection techniques derived from earlier work by Leung and Malik [107] 

ITextons are defined as regular subelements of images that form organised patterns. 
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and Garding and Lindeberg [75]. 

The texture descriptors applied in this work are based on those proposed by Carson et al 

[29]. The feature vector w extracted using this texture descriptor contains the anisotropy 

and normalised texture contrast which represent the number of dominant directions and 

'strength' of the texture respectively for each image pixel. This approach uses the windowed 

second moment matrix presented in (3.20) and the scale of the texture is determined to 

be the integration scale of the window function in this procedure and this is determined 

separately for each pixel in the video frame. 

To select the integration scale of the window Carson et al measure the polarity of the 

local texture and attempt to find the scale at which this measurement stabilises. This is 

achieved by first computing the gradient of the image intensity values, \1 J, where, as III 

(3.11): 

(3.21) 

The windowed second moment matrix, M, is calculated as shown in equation (3.20). The 

image intensity J = J (x) is a function of the spatial image co-ordinates and the windowed 

weight function is a smoothing kernel such thatW = G (x, a). Therefore the windowed 

second moment matrix M = M (x, a) within a local neighbourhood N is a function of the 

spatial co-ordinates and the variance a2 such that: 

M = ATnr2 A = L W2 (\7 J) (\7 J)T (3.22) 
xEf./ 

Leung and Malik suggest the use the eigenvalues )q and A2 (such that Al ;::: A2) of .!vI 

to determine the orientation of the texture at a pixel (x, y) for a fixed scale a. If Al is 

much larger than A2 then the local neighbourhood has a 1-D texture structure, such as an 

edge or a flow, specified by </>, the argument of the principal eigenvector of .!vI. When the 

two eigenvalues are of neglible size the local neighbourhood is approximately constant, and 

when the eigenvalues are of comparable size then there is a 2-D texture structure, with no 

preferred orientation exhibited. 

In order to determine the 'best' scale a (for each pixel i.e. a = a (x)) at which M is 

computed the local image property known as polarity can be used; the polarity is a measure 

of the extent that the gradient vectors in a neighbourhood all point in the same direction. 
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The scale selection is described in more detail in [29]. Once the 'best' scale a* has been 

selected at a pixel three texture descriptors can be computed: 

• The polarity Pu· 

• The anisotropy, a = 1 - ~ 

• The normalised texture contrast c = 2) .. 1 + )..2 

The last two measures are taken from the matrix lvIu •. The anisotropy and polarity are 

modulated by the normalised texture contrast since it is meaningless in regions with low 

texture contrast. The use of texture analysis in the feature space aims to add discriminatory 

evidence about the video objects based on the patterned distribution of intensity within 

localised image regions. The texture descriptors used in the 'Blobworld' work are fairly 

simple, although they benefit from scale selection such that the finite regions in which they 

are calculated are chosen to be representive of the underlying texture pattern. In the texture 

feature space the measure of polarity is not used, since it is generally only large along the 

edges within the scene and therefore does not add discriminatory evidence in a feature space 

region descriptor [25]. 

In the segmentation of video objects the 2-D texture feature space therefore allows 

grouping across different polarity, orientation and scale of texture, since this information 

is not contained in the feature space. This measure has advantages over simpler texture 

descriptors based on the local, windowed, variance (as applied to video object segmentation 

by Cavallaro [28] and Castagno [27] amongst others) in that it uses the concept of scale 

selection whereas local variance based approaches commonly predetermine a global size 

for the window region using empirical means; the 'Blobworld' measure also includes the 

anisotropy, a descriptor of the orientedness of the underlying texture pattern. 

It can be shown that the polarity descriptor is near zero when a neighbourhood contains 

I-D bar texture with small gradient variations perpendicular to the dominant orientation 

axis such that the small variations are approximately symmetrical about the axis. In such 

a case, the neighbourhood will contain gradient vectors that are predominantly orientated 

in one of two directions, but this will not be reflected in the measure of polarity, with the 

possibility of causing an incorrect scale to be chosen. In practice this situation is rare, 

therefore the computation of the polarity is generally representive of the extent that the 

gradient vectors in a neighbourhood all point in the same direction. 
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3.3.5 Associating Confidence with Dimensions in Hybrid Feature Spaces 

When motion, colour and spatial features are combined into hybrid feature vectors the 

knowledge about the reliability of the features can be imparted by weighting the influence 

of the feature dimensions [18, 154, 27, 28]. In generic video object segmentation schemes 

that contain motion and colour information the following can be observed: 

• Motion information is more reliable in regions with high intensity variance. 

• Colour information is the complement of the motion information, and is more accurate 

in regions of homogeneous colour. 

• Neither colour or motion information is accurate at the edges of moving scene objects. 

• Motion vectors of video objects are generally inhomogeneous. 

To formalise these observations into a feature weighting methodology the work of Si­

moncelli et at [159] is followed. The eigenvalues (AI 2:: A2) of the windowed second moment 

matrix, (3.20), are used to determine the reliability of the motion information (i.e. the 

matrix is well conditioned). Simoncelli et at proposed that the sum of these eigenvalues 

provides a reliability measure for the motion estimates, and that the use of this reliability 

measure in optical flow computation can reduce the aperture effect. Barron, Fleet and Beau­

chemin [17] found that the smaller eigenvalue was a more reliable measure of the motion 

estimates. In their implementation of the Lucas and Kanade algorithm the velocity mea­

sured by solving (3.19) is deemed reliable if both eigenvalues are greater than a threshold 

T. 

Shi and Tomasi [157] also use the eigenvalues to find good features (Le. textured areas, 

corners) to track in video sequences. They propose that for the motion to be deemed reliable 

for an image neighbourhood two requirements should be met - the matrix should be well 

conditioned and above the noise level for the video frame. The noise requirement implies 

that the eigenvalues should both be large, whereas the conditioning requirement means that 

they cannot differ by several orders of magnitude. Relating this to the texture measure in 

Section 3.3.4 two small eigenvalues represent an area of roughly constant intensity over the 

windowed area, one large and one small eigenvalue represent a 1-D flow of texture or an 

edge. Two large eigenvalues represent 'trackable' features - for example, corners or 2-D 
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texture stucture. Since the eigenvalues are bounded by the maximum allowable intensity 

value then neither of the eigenvalues can be arbitrarily large. Therefore Shi and Tomasi, like 

Barron, Fleet and Beauchemin, propose the requirement that the smaller eigenvalue should 

be larger than some threshold r. The use of the smaller eigenvalue has the added advantage 

that it is generally small valued on the edges of video objects since these areas commonly 

contain I-D texture flow with the result that the windowed second moment matrix will have 

one large and one small eigenvalue as per Section 3.3.4. 

Incorporating the confidence of feature observations can be a beneficial step when the 

features are complimentary. To add this confidence into the motion-spatial-colour hybrid 

feature space (introduced in Section 3.5.1) a weight is assigned to each dimension of each 

feature vector extracted from the video, this weighting represents the belief that the mea­

surement is reliable. This confidence weighting is subsequently used to bias classification 

algorithms to favour the more reliable feature vectors, with lower confidence vectors having 

a reduced influence on the representational model. For the motion and colour components 

the smaller eigenvalue '\2 is used to represent the motion reliability confidence wi at a pixel, 

scaled to the range [O,!]. The colour reliability is defined as the complement of this such 

that w{ = ! - wi. The spatial featllfe information is equally weighted with the combination 

of motion and colour information such that wi + w{ + wi = 1 at every pixel, this is similar 

to the confidence ratio suggested by Heisele et al [18]. 

The texture information is not included in this analysis of weighted hybrid feature spaces 

since there is little theoretical reasoning for the reliability/importance of this feature relative 

to the other features implemented. A potential weakness for this confidence measure is that 

in the edge regions the colour information will generally be given a higher reliability than the 

motion information where it would be preferential to give both measures a low reliability, 

this could perhaps be overcome by analysing a colour gradient map to determine the strong 

edges in the colour image where the colour reliability is reduced. 

3.3.6 Pre/Post-processing 

Video sequences, like images, can contain extraneous signals (noise) from several sources 

for example, electrical sensor noise, photographic grain noise or channel errors. The types 

of noise encountered can be primarily divided into two categories - additive noise and 

multiplicative noise. Additive noise includes impulse noise (Le. salt and pepper noise) and 
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Gaussian noise, whilst multiplicative noise includes variable illumination 

To limit the effect of impulse noise a rank-order filter can be used [81], that is, a filter 

that operates on a neighbourhood, N, of pixels based on a ranking of the pixels. An 

example of an rank-order filter is the median filter [81]. The median filter replaces the 

pixel value at the centre of N with the median value of the N pixels that comprise that 

neighbourhood. This type of filter is often found in the pre-processing stages of video object 

segmentation since it forces points with distinct intensities to be more like their neighbours, 

yet attempts to preserve the edge information, an important consideration. In the case of 

multi-dimensional data the rank-order filter is applied separately to each dimension. 

Filtering can also be applied to the output segmentation in an attempt to 'clean-up' the 

segmentation by removing art.ifacts from the masks. One way to achieve this is to apply a 

median filter to the extracted object masks. In t.he experiments the effect of both pre- and 

post-processing operations on t.he feature space will be demonstrated using a median filter. 

In this section the feature spaces intended for video object segmentation evaluation 

have been presented. In Section 3.4 the evaluation met.hodology is described, this is used to 

evaluate these hybrid feature spaces formed from the constit.uent feature spaces presented 

in this section. 

3.4 Performance Evaluation of Feature Spaces 

The aim of this evaluation is to find the feature space that performs the 'best' with respect 

to some evaluation criterion. For video object. segmentation the choice of feature space 

and its evaluatioll is nOll-trivial due to the multimodal nature of the objects themselves. 

Due to this it is difficult to perform evaluation of t.he feature spaces without. having a 

representational model of the multimodal aspects of the object appearance in the feature 

space. For example, modelling the PDF dist.ance between the objects requires that the PDF 

itself is estimated. To circumvent this difficulty the ground truth mask is used to build a 

compact representational model in the feature space. This model can subsequently be used 

to reclassify the image from which the performance of the feature space can be evaluated in 

terms of the segmentation quality when compared to the ground trut.h mask. An advantage 

of this procedure is that the result is more meaningful in terms of the effect it has on the 

segmentation and that the same evaluation procedure can be applied to other aspects of 
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the video object segmentation process. 

Section 3.4.1 shows the data-sets used for the evaluation. Section 3.4.2 contains an 

overview of the procedure for the evaluation and shows the representation used as a model 

of the video object and finally Section 3.4.3 details the performance metric and experiments 

that will be performed. 

3.4.1 Datasets 

In any evaluation methodology it is important to use test datasets that are sufficient for 

the proposed evaluation. The datasets should be chosen such that they are representative 

of the challenges facing the algorithm. For video object segmentation the main challenges 

relate to: 

1. Video object motion relative to the camera motion and other video objects. 

2. The colour and texturedness of video objects. 

3. The proximity, quantity and size of video objects (including inter-object occlusion). 

4. Video objects entering or leaving the scene. 

5. Video objects changing pose relative to the camera (including self-occlusion) 

The results of any experiments must be statistically significant. To accomplish this the 

results of video object segmentation will be evaluated over multiple test sequences that 

encompass the challenges facing video object segmentation. To allow comparison against 

previous and future work only standard test sequences are used. 

In this evaluation methodology feature spaces are analysed with respect to the effect 

on video object segmentation quality. Evaluation is consequently performed on individual 

frames of the test sequences (although motion information is derived from the surrounding 

frames in the sequence). To quantify the performance of the different feature spaces indi­

vidual frames were chosen from several well known test sequences. The ten test frames used 

in the evaluation are shown in Figure 3.3 ('Akiyo' frame 00240) and Figure 3.4 (nine other 

well known sequences). 

To reduce the computational burden of evaluating over so many test sequences and to 

reduce the ground truth requirement, a sub-region of the video frames is used (i.e. not using 
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the whole image); an example of such a sub-frame is shown in Figure 3.3 and the sub-frame 

is marked by a rectangle for each sequence in Figure 3.4. The addition of the sub-frame 

also, perhaps more importantly, allows the evaluation to be performed locally around video 

objects. This overcomes one of the major drawbacks in many video object segmentation 

evaluation methodologies; poor segmentation (with respect to the human visual system) can 

be reported as accurate when using a frame-wide quantitative measure in the evaluation. 

This effect is due to the focus of human attention to the boundaries of the objec.:ts, in many 

sequences the proportion of video frame pixels is large compared to the object boundary 

regions. 

Figure 3.3: An example of a :->ub-frame extracted from a video frame. (Left) Frame 002-10 

froll1 the 'Akiyo' fiequence (Right) A 150 x 150 pixel :->ub-frame. This sub-frame is semanti­

cally important due to the perceived boundary betweell the hair and the dark background. 

For each frame, ground truth is required. Video objects are :->egmcnLed by a. human 

operator, allowing segmentation resul ts to bc subsequently eval uatcd quanti tavely against 

t.he ground truth. This grouud t.ruth takes tlw form of biuary masks delimiting each video 

obj ct. Binary masks are commonly uscd in the evaluat.ion of segmentation due to the time 

consuming process of generating full alpha-mattes. In translucent areas such as hair or 

motion blur the crisp nature of the binary mask may not be truly reprcsentative of the soft 

video object boundaries. In the longer term recent developments in alpha-matte generat.ion 

(e.g. Chuang et al [35]) could make 'soft' ground truth masks feasible for use in evaluation 

methodologies. The ground truth segmentation for each sub-frame is shown in Figure 3.5. 
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Figure 3.4: Tested video ii-ames with the evaluatcd sub-frame marked by a rectangle. The 

frames are (from Top-Left to Bottom-Right) 'Shields' frame 00200, 'Bream' frame 00100, 

'Foreman' frame 00021. 'Carphone' framc 00120, 'Ping-Pong' frame 00005, 'Parrot' frame 

00010, 'Flower Garden' frame 00010, 'Mobile' frame 00090 and 'Container' frame 00220. 

3.4.2 Feature Space Representation 

To comparatively evaluate the different featurc spaces over the test sequences a feature 

space representation is requircd to allow the video objcct to be modelled in the fcature 

Space. There are two maill types: boundary models which model the extcnt of an object in 

the feature space or region based models which attempt to capture the density function of 

an object in the fcature space. The evaluation procedure must be designed such that it does 

not exhibit bias towards any of the fcature space configurations. In this section a clustcr 

based representational form is prcsented, based around a K-Means clustering algorithm. 

The proposed procedure (see Figure 3.6) has three stages - fcatme extraction, K-
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Figure 3.5: Ground truth segmentation for the ten evaluated sub-frames. 
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Figure 3.6: The evaluation procedure for a video frame at time t. 

Means clustering and performance evaluation. The feature vectors from the video frame'
o 

are used to form the initial clusters using the K-Means algorithm. The K-Means algorithm 

is an iterative optimisation procedure that minimises a squared-error criterion function. 

After applying the K-Means algorthm each pixel in the current frame can be assigned to 

one of the K clusters which results in a crisp segmentation of the frame. By mapping the 

K clusters onto the labels of the video objects (as shown in Figure 3.8) a segmentation 

mask of the video objects can be created. This can be compared quantitively to the ground 

truth mask. The metrics used to compare masks (and hence evaluate the feature spaces) 

are presented in Section 3.4.3. In this section the stages in modelling the video objects is 

described. 

Feature Extractor 

The feature extractor is the part of the evaluation procedure that takes the video frame 

and Converts the raw data into the various feature spaces described in Section 3.3. 
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K-Means Clustering 

The goal of clustering is to form the data into natural groups using a feature space distance 

metric as described in Section 3.1. The method of K-Means clustering, like all clustering 

techniques, employs three distinct procedures [62]: 

1. A method for initialising the cluster prototypes. 

2. A method for allocating entities to initialising cluster prototypes. 

3. A method of reallocating some or all of the entities to other cluster prototypes as part 

of an optimisation process. 

The cluster prototypes are themselves represented by K centroids, denoted by J.Ll ... J.Lg, 

representing the mean vector of the cluster. Partitional clustering methods are designed to 

minimise an objective function, in the case of K-Means clustering, the objective function is 

shown in (3.23) 

(3.23) 

In this equation, Sk is the partition of the image feature space corresponding to cluster 

prototype k; J is therefore a sum of squares error for a given cluster prototype, the K -Means 

algorithm is used to minimise this for all the cluster prototypes within the feature space. 

To determine the mean vector centroid for a prototype: 

J.Lk = L.~ 1Li,kai (3.24) 
L.i=l Ui,k 

The value of Ui,k represents the membership of the feature vector, ai to the cluster 

prototype k - Ui,k takes the value 0 or 1 based on this crisp membership. (3.24) is therefore 

found by setting the gradient of J with respect to each J.Lk to zero; Using t,hese definitions, 

the K-Means algorithm takes the following form: 

1. Choose a value for the number of clusters K. 

2. Randomly initialise the K prototypes { J.Ll' ... , J.L g } • 

3. Each feature vector ai is assigned to the nearest cluster prototype. 
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4. End if no change occurs in cluster membership between iteration steps. 

5. Re-calculate prototype centroids using membership and repeat from step 3. 

When the iterative scheme is complete, K clusters define the partitions of data within 

the feature space which relate to homogeneous feature vector regions. The homogeneity of 

the partitions increase as the number of clusters increases and the number of feature vectors 

assigned to each cluster decreases. 

Initialisation of Cluster Prototypes 

To allow valid quantitative evaluation of the various feature space components the number 

of clusters for the K-Means algorithm is chosen such that it does not bias any of the config­

urations that we want to evaluate. To achieve this uniform sub-sampling of the sub-frame 

is proposed. This gives the initialisation positions and quantities of the K clusters. The 

rate of sub-sampling is chosen such that the number of clusters is much greater than that 

required to represent the video object in the feature space, thus generating an overseg­

mentation of the current sub-frame. An example of the pixels chosen for sub-sampling are 

shown in Figure 3.7, again for the 'Akiyo' sequence. 

Figure 3.7: Sub-sampled seed pixels for the cluster prototypes. The seed pixels are uniformly 

sampled at 15 pixel steps, used to form initial seeds for the cluster prototypes for Frame 

00240 of the 'Akiyo' sequence. 
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From the sub-sampled region K seeds are obtained from which the initial cluster proto­

types are formed. The k'th cluster centroid mean can be set to the feature vector observed 

at the prototype seed such that: 

Il'k = a(xk) for {O, ... , k, ... ,K} (3.25) 

Given that K is much greater than required to represent the feature space the resulting 

label map after applying the K-Means algorithm will over-segment the current scene, and 

the segmentation result will be a function of the feature space and distance metric used. 

Distance Metric 

The distance metric used in the K-Means algorithm is the Mahalanobis distance shown 

in (3.7). The reasoning for this is that in hybrid feature spaces the features can have 

different scales and ranges, the Mahalanobis distance provides a way to combine the different 

dimensional ranges in a principled manner. 

For the weighted hybrid feature space (motion-spatial-colour information, Section 3.5.1) 

the method of Castagno et al [27] is followed to incorporate the reliability weighting of the 

feature dimensions into the clustering algorithm. The weighting strategy was discussed in 

Section 3.3.5. The Mahalanobis distance is modified to include the per feature weight w 

when computing the distance between a feature ai and a prototype centroid ILk, such that: 

:- (~{ai'd -ILk,d)2) t 
dlSt (ai, ILk) = ~ Wi,d 2 

d=l. ad 

(3.26) 

where Wi,d represents the feature weight of the d'th dimension of the feature vector extracted 

at pixel i. It is clear that this distance function is no longer a symmetrical metric since the 

weighting implies that it is directed (i.e. the weight used is different if the reverse distance 

is computed). For the K-Mealls algorithm (and fuzzy C-Means [27]) this is sufficient since 

a membership function replaces the reverse distance computation. The feature weighting 

strategy is used when a hybrid feature space (including colour, spatial and motion informa­

tion) is applied. For the feature space experiments where the feature weighting strategy is 

not used the weights are removed from the distance measure. 
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Segmentation of Objects 

To evaluate the performance of the segmentation scheme the segmentation result is com­

pared to a ground truth segmentation for each evaluated feature space. The labels k E 

{I, ... , K} of the clusters are mapped onto those of the ground truth segmentation by us­

ing the ground truth label at the initial cluster prototype seed points. An example of this 

is shown in Figure 3.8 where K region labels are mapped onto binary label values for the 

ground truth; this mapping allows quantitative measures of discrepancy to be made between 

the resulting segmentation and the ground truth mask. 

Figure 3.8: Mapping duster regions to a binary mask. (Left) K mapped cluster regions, 

represented by their mean colour (Right) The re~mlting binary mask. This is shown for 

Frame 00240 of the' Akiyo' sequence. 

3.4.3 Evaluation Metrics 

Using the ground truth reference and the a.lgorithm output segmentation the performance of 

the sy.tem is qnantitively evaluated by measuring discrepancy. Two measures are proposed 

- one measurillg the quality of the output segmentation for the entire sub-frame and one 

measuring the quality of the segmentation at the boundaries bet.ween the video objects in 

the sub-frame. To evaluate the performance of the algorithm for a given feature space, the 

two measures are derived from the work of Villegas et al [142], who introduce the ideas 
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of spatial accuracy and temporal coherency. It was argued that a simple error measure 

between a ground truth reference and output segmentation is too limited since it does 

not take into account perceptual factors in the segmentation quality. It is suggested that 

boundary errors are more important with respect to segmentation quality. The influence 

of an error is weighted based on the distance from the edge. Giaccone [79] omits the 

perceptual factors introduced by Villegas et al based on the reasoning that the weights are 

based on the authors subjective opinion of what constitu:tes perceptual segmentation quality. 

Since only single frame segmentation is evaluated the measures of temporal conherency 

are ignored, concentrating on the spatial accuracy. In both the evaluation metrics the 

logarithmic signal to noise ratio form of the measures is not used as the evaluation measures 

of object segmentation should be meaningful to a human operator - signal to noise ratio 

measures are difficult to quantify and needlessly complicate the evaluation of algorithm 

performance. The first measure suggested is the spatial quality of density (SQD): 

SQD _ ~~=1 (Nr - .6r ) 

- ~~=lNr 
(3.27) 

This is a similar measure to that suggested by Giaccone, extended to be applicable to 

mUltiple scene objects . .6r is the number of pixels in the output segmentation that belong to 

an object label, r, but have been incorrectly labelled compared to a ground-truth reference 

segmentation. N r is the number of pixels that have object label r in the ground-truth 

reference segmentation. This measure is therefore the proportion of labels that are correct 

for an evaluation frame. 

Giaccone also suggests an edge based modification to this measure (the spatial quality of 

the edge, SQE), where the edge is defined as being the video frame regions that are predicted 

as transitioning from background to foreground (covered) or foreground to background 

(uncover'ed) using the optical flow information at that frame. A problem with this approach 

is that, in the case of a moving camera, the majority of covered and uncovered pixels tend 

to be located at the edges of the image, as new, unseen, frame information comes into 

view. Giaccone fails to take these artefacts into account in the ground truth reference 

segmentation and therefore in these circumstances the SQE will not be a reliable measure 

of edge based segmentation quality. 

To measure the segmentation quality at the edges of the video objects a Gaussian 

region is defined, centered on the video object boundary within which the accuracy of the 
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segmentation is calculated. This approach is preferential to SQE since it does not suffer 

from the camera motion artifacts and it does not require understanding of optical flow 

terminology to produce the ground truth, hence, reducing the subjective reasoning required 

by the human operator when generating the reference frames. This type of measure also 

allows the evaluation of video object segmentation where the object is stationary in the 

scene, whereas the SQE measure would undoubtably fail in such a scenario since there 

would be no covered or uncovered regions located near the boundary of the video object. 

The suggested measure, the spatial quality of edge density (SQED), is separated into 

three main stages - definition of the video object boundary, generation of the smooth edge 

region and finally computation of the SQED. First, the boundary of the video object 

is defined in the analysed sub-frame, this is achieved by applying a morphological filter 

to extract the boundary from a binary ground truth reference sub-frame image. Given 

the set B (AT) of ground truth reference pixels that encompass the r'th object AT) then 

the boundary of the video object (3 (AT) = B (AT) - [B (AT) e M] where lYJ is a 3 x 3 

structuring element and e is the morphological erosion operation [81]. 

This process gives the boundary of the video object as shown in Figure 3.9. The next step 

is to define the region of the suh-frame that contains the semantically important edge. This 

edge region contains the edge and an area of the sub-fra:i.nein which the edge is prominent 

(this area also contains edge pixels that are smooth due to motion blur or translucency). 

The edge region is defined as being a smooth region around the bouildary. The smooth 

edge region for the r'th object is calculated by convolving the extracted object boundary 

with a Gaussian window, G (0"), to form the edge region weight image E (AT) such that: 

(3.28) 

where (3 (AT) is the binary image containing the r·'th object boundary. The final edge region 

is shown in Figure 3.9. For all scene objects, each having an edge region weight image E (AT), 

ground truth reference B (AT) and observed (i.e. output) binary segmentation mask iJ (AT), 

the spatial quality of edge density can be calculated as follows: 

l:~=1 (N! - Ll~) 
SQED = "R NE 

L...T=l T 
(3.29) 
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where .6.f = L [1 - B (AT, x)] B (AT, x) E (AT, x) 
XEB(Ar) 

and N; = L B (AI" x) E (AT ) x) 
x EB(A,.) 

Comparing (3.29) and (3.27) the SQED is weighted such that errors close to an object 

edge will be penalised more than errors further away. The SQD and SQED both take 

values in the range [0, 1] where higher values indicate fewer incorrectly labelled pixels and 

a value equal to 1 means that the output segmentation is identical to the ground truth 

reference for the given measure (i.e. scene or edge based). The edge region uncertainty 

ill (3.28) is set empirically to () = 5, this defines a meaningful regioll that encompasses 

approximately ±15 pixels arollnd the object boundary. 

Figure 3.9: Object boundaries and smoothed edge regions extracted from a sub-frame. 

(Left) The sub-frame for Fl"ame 00240 of the 'Akiyo ' sequence (Centre) The extracted 

object boundary and (Right) The smoothed edge rE'gion. 

3.5 Evaluating Feature Spaces 

Feature spaces are evaluated in the same order as they were presented in Section 3.3. The 

colour features will be analysed first followed by the appended spatial information motion 

and texture information, before looking at weighting and preprocessing the feature space. 

The feature spaces and sYlllbols used are shown in Table 3.1. 
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Feature Vector Space Name Space Type Dimensions 

frgb RGB Colour 3 

fyuv YUV Colour 3 

fhsi XYI Colour 3 

fL*a*b* CIEL*a*b* Colour 3 

x Cartesian image co-ordinates Space 2 

u Lucas-Kanade optical flow Motion 2 

w Blobworld Texture 2 

Table 3.1: Evaluated feature spaces. 

The feature spaces shown in Table 3.1 can be combined together to form hybrid spaces. 

To simplify the experiments all feature combinations are not exhaustively searched. A sub­

optimal approach is taken, in which the 'best' colour feature (with respect to the evaluation 

metric) will give the 'best' performance when combined with other features. The 'best' 

spatio-chromatic feature space will subsequently be appended with motion and texture in­

formation since in generic sequences it is seldom practical to segment objects based solely 

on texture or motion. An exhaustive analysis of colour and spatio-chromatic feature spaces 

is used to validate these assumptions. 

In this section a methodology has been presented for evaluating the performance of 

feature spaces for video object segmentation. This methodology implements the I<-Means 

based procedure presented in Section 3.4.2 to evaluate the use of the feature space compo­

nents presented in Section 3.3 for video object segmentation. The methodology has been 

designed such that the results are purely a function of the feature space, and the results 

capture the edge- and scene-based accuracy of the video object segmentation. In the fol­

lowing section the results of this quantitative evaluation are presented alongside qualitative 

discussion. 

3.5.1 Results 

The experiments presented in Section 3.5 were completed for the data-sets presented in 

Section 3.4.1. In this section the results of the experiments are presented, these show that 

some features can make significant differences to the quality of the output segmentation, 
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whilst other features may introduce undesirable side effects such as poor edge quality. Sec­

tion 3.5.1 shows the results for a colour feature space, Section 3.5.1 appends this colour 

information with spatial information. Section 3.5.1 adds motion information and finally 

Section 3.5.1 shows the effect of adding texture information. Following these core exper­

iments two further sections are added detailing the effect of the weighting methodology 

presented in Section 3.3.5 and the preprocessing stage discussed in Section 3.3.6. 

Colour feature space 

Referring to Table 3.1 in Section 3.4.3, four color spaces were evaluated for video object 

segmentation - RGB, YUV, XYI and CIEL * a * b*. Table 3.2 shows the mean (Jl) and 

standard deviation (a) of the SQD and SQED for the ten test sequences in the test data. 

I a II JlSQD I aSQD \I JlSQED I aSQED I 
fTgb 0.8841 0.0795 0.7640 0.1069 

fyuv 0.9005 0.0702 0.7925 0.0972 

fhsi 0.8956 0.0708 0.7557 0.0944 

flab 0.9019 0.0672 0.7931 0.0918 

Table 3.2: Colour based feature space SQD and SQED results. Mean (Jl.) and standard 

deviation (a) results are computed over the ten test sequences. 

The results demonstrate that all the colour spaces perform reasonably well for video 

object segmentation based on these scene and edge based error measures. The YUV and 

CIEL*a*b* show notable improvements in accuracy when compared to the other two colour 

spaces, with CIEL * a* b* being statistically the most accurate (highest mean) and least 

variable (lowest standard deviation) of the four colour spaces tested. Figure 3.10 shows the 

segmentation results for the ten test frames. Comparing these results to the ground truth 

segmentation shown in Figure 3.5 it is clear that the colour based segmentation lacks spatial 

coherence and that similar colours on the video objects cannot be differentiated even if they 

are spatially separated. 

The RG B space shows sensitivity to changes in intensity, for example in the foreman 

sequence (fourth row) the RGB feature space results in poor segmentation of the shaded 

areas around the foreground persons eyes. Subjectively, the CIEL * a * b* and YUV spaces 

84 



appear to give the best edge quality in the segmentation. This subjective analysis is con­

firmed by the quantitative results, where these two colour spaces are the most accurate in 

the edge region. Based on these results the 'best' colour space for video object segmentation 

from the four evaluated is the CIEL * a * b* space, although the advantage between this 

space and the YUV colour space is marginal. 

Spatial-Colour feature space 

The lack of spatial coherency demonstrated by using only colour information is rectified 

by appending the spatial information to the feature vector. Table 3.3 shows a significant 

increase in the scene wide SQD accuracy compared to Table 3.2; due to the use of spatial 

information, pixels further away from the foreground video object are no longer assigned 

based on colour proximity since the colours are well separated spatially. The edge based 

(SQED) accuracy and variability is also improved for all of the colour spaces evaluated by 

appending the spatial information, again this is due to the spatial coherence given by this 

extra information, allowing segmentation based on more localised distributions of colour. 

Figure 3.11 shows the results for all the evaluated spatio-chromatic feature spaces, compared 

to Figure 3.10 the segmentation of the video objects are subjectively more pleasing, with 

less distracting artifacts around the borders and inside the video objects. The benefit of 

spatial information can be seen most clearly for the 'Shields' test frame (second row) where 

the foreground object is segmel1tated with improved accuracy compared to the extraction 

based only on colour. 

a "flSQD C7SQD" flSQEDI C7SQED 

[f~b' xTf 0.9426 0.032 0.7977 0.091 

r~v, XTJl 0.9596 0.0264 0.8425 0.0726 

JjT Tf f hsi ' x 0.9474 0.0317 0.8191 0.0734 

[fl~b' XTJl 0.9574 0.0251 0.8331 0.0708 

Table 3.3: Spatial-Colour based feature space SQD and SQED results. Mean (fl) and 

standard deviation (a) results are computed over the ten test sequences. 

Based on these results the 'best' performing Spatial-Colour based feature spaces are 

XYL*a*b* and XYYUV, mirroring the 'best' colour feature spaces. Again the differences 
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Figure 3.10: Ext.racted video objects using (Left-Right) RGB,YUV,XY I and CIEL*a*b* 

colour spaces. 86 



between the two spaces are somewhat marginal, with XYYUV performing better for both 

the scene wide and edge based measures, although the XY L * a * b* measure is less variable. 

From these experiments XY L * a * b* was chosen as the spatio-chromatic feature space 

to which additional features will be appended for evaluation. The choice of XY L * a * 
b* is made over XYYUV due to the fact that it is both subjectively more accurate for 

semantic object segmentation over the range of test sequence frames, and also because it is 

an approximately perceptually uniform space which may have benefits in subsequent work. 

It can be seen in some of the segmentation results - specifically, 'Shields' (second row) 

- that the inclusion of spatial information has highlighted a potential weakness with our 

evaluation methodology. On the right edge of the foreground object there lies a thin region of 

background that is not represented by any clusters in the initialisation procedure resulting 

in arbitrary assignment to foreground. As this problem affects all the feature spaces to 

different extents, it is anticipated that it does not invalidate any conclusions drawn from 

the comparative evaluation. 

Motion.;.Spatial-Colour feature space 

In this experiment motion information is appended to the XY L * a * b* feature vector. The 

results show that motion information can both improve and reduce the segmentation quality, 

depending on the application semantics required. The quantitative results in Table 3.4 show 

that, compared to Table 3.3, there is a negligible improvement in scene based accuracy 

and variability, but a reduction in the edge based accuracy and variability. This confirms 

for video object segmentation the theory that a neighbourhood based operator such as 

optical flow estimators generally reduce the edge quality when used in the feature space of 

segmentation schemes. 

a II j1.SQD ClSQD II JLSQED I ClSQED 

rfl~b' xTr 0.9574 0.0251 0.8331 0.0708 

1fT T Tf lab' X , U 0.9578 0.0215 0.8073 0.0835 

Table 3.4: Motion-Spatial-Colour based feature space SQD and SQED results. Mean (j1.) 

and standard deviation (Cl) results are computed over the ten test sequences. 

These measurements are subjectively reinforced by the resultant segmentations shown 
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Figure 3.11: Extracted video objects using spatial informatioll, XY, appended to (Left-
R' 88 

19ht) RGB,YUV,XYI and CIEL*a*b* colour paces. 



in Figure 3.12. The addition of motion information in the feature space improves the 

differentiation of moving objects where the background and foreground contain similar 

colours and are spatially close. A good example of this is the 'Foreman' sequence where the 

background artifacts are reduced with the addition of motion information, creating a more 

cohesive object segmentation. However, the motion information significantly degrades the 

edge quality of the video object segmentation. This is demonstrated well by the 'Parrot' and 

'Akiyo' results, where the segmentation result has unsightly artifacts due to poor motion 

estimation at the edges of the video objects (where motion discontinuities occur). It is 

observed that motion information, whilst perhaps still useful in the inter-frame update 

scheme for object models, generally adds unsightly artifacts to the segmentation mask that 

reduce the visual appeal of the segmentation. 

Texture-Spatial-Colour feature space 

The use of texture appended to the spatio-chromatic feature space also reduces the ac­

curacy of general object segmentation when compared to a spatio-chromatic scheme. Ta­

ble 3.5 shows a reduction in both the scene and edge based accuracy measures compared 

to Table 3.3. Subjectively, looking at the results in Figure 3.13, the addition of texture 

information does not show any significant benefit to the segmentation quality and in many 

cases reduces the visual appeal of the resultant segmentation. 

a " f-LSQD I aSQD " f-LSQED I aSQED 

rfl~b' xTf 0.9574 0.0251 0.8331 0.0708 

[j T T Tf flab' X , W 0.9499 0.0301 0.8191 0:0687 

Table 3.5: Texture-Spatial-Colour based feature space SQD and SQED results. Mean (f-L) 

and standard deviation (a) results are computed over the ten test sequences. 

To place the results in context the use of texture information was investigated for a se­

quence containing animals exhibiting natural camouflage. This sequence, 'Leopard' is shown 

in the middle image in Figure 2.7. In this sequence a leopard walks against a background 

that has a similar colour distribution to the foreground object, but significantly different 

texture. As expected, the addition of texture information into the feature space provides 

improved discrimation between the foreground and background objects. Based on these 
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Figure 3.12: Extracted video objects using motion information UV, appended to 

XY L*a*b* (Right Column), compared to X1PL*a*b* spatio-chromatic feature space (Mid­

dle COlumn). 



observations the use of this texture measure is not essential in generic video object segmen­

tation, although it can be applied to more specific applications such as the segmentation of 

animals exhibiting natural camouflage. 

Weighted Motion-Spatial-Colour feature space 

The Motion-Spatial-Colour space results shown in Section 3.5.1 confirm that the use of 

motion information in the feature space can degrade the quality of the segmentation since 

motion is a neighbourhood operation and is not reliable at every point in the image. To 

counter this a feature weighting methodology was introduced in Section 3.3.5 that modifies 

the influence of motion and colour information based on a reliability estimate for the optical 

flow. The feature vectors used in this experiment consist of colour, spatial and motion 

information, i.e. 

[ 
T T T]T a = flab' X , U 

Table 3.6 shows that the accuracy of segmentation for the weighted feature space is 

improved over the unweighted space. These results demonstrate that both the edge based 

and scene based measures show an increase in accuracy when a weighting methodology is 

used for the motion and colour information. However by comparing these results to the 

Spatial-Colour feature spaces (Table 3.3), it can be seen that even with feature weighting 

the addition of motion into the feature space shows little improvement and that the motion 

information still degrades the edge quality of the objects to a significant degree. 

a I j.LSQD I (YSQD I ItSQED I (YSQED I 
Weighted 0.9586 0.0237 0.8222 0.0745 

Unweighted 0.9578 0.0215 0.8073 0.0835 

Table 3.6: Weighted Motion-Spatial-Colour based feature space SQD and SQED results. 

Mean (Jt) and standard deviation ((Y) results are computed over the ten test sequences. 

Figure 3.14 confirms the results shown in the table. Whilst the weighted feature space 

segmentation results (right column) exhibit desirable improvements over the unweighted 

Space (middle column) there are still noticeable artifacts when compared to the results of 

the XY L * a * b* space shown in Figure 3.11. These artifacts are most apparent on the 
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helmet of the foreman (fourth row) and the beak of the parrot (seventh row). Most of 

the sequences show an improvement in these unsightly artifacts between the unweighted 

and weighted feature spaces. Based on these observations it is suggested that the use of 

motion information in the feature space (even when weighted based on reliability) does not 

significantly improve the results of the segmentation. The motion information also results 

in significant edge artifacts despite the fact that it can produce more cohesive interior 

segmentation when the object is exhibiting simple, relatively small, motions in relation to 

the camera. 

Effect of median filtering 

To analyse the effect of pre-processing colour information or post-processing the segmen­

tation mask a median filter was applied to the Spatial-Colour feature space. The pre­

processing median filter was only applied to the individual channels of the colour infor­

mation, since motion and textural information are already generated using neighbourhood 

processes. The median filter used was empirically set to size 5 x 5, this size was found 

to be large enough to filter out image noise but small enough to not significantly degrade 

the appearance of objects in the video frames. Table 3.7 shows the effect of the median 

filtering. The main advantage is the removal of spurious artifacts in the segmentation mask, 

which improves the scene-based accuracy for both pre- and post-filtering. The edge-based 

accuracy for the test frames is reduced slightly by the median filter. This effect is less 

pronounced for the pre-process filtering. 

Operation II /-LSQD I (JSQD " ILSQED I (JSQED 

Median Pre-Filter 0.9648 0.0205 0.8271 0.0642 

Median Post-Filter 0.9683 0.0161 0.8221 0.0641 

No Filtering 0.9574 0.0251 0.8331 0.0708 

Table 3.7: Median filtered Spatial-Colour based feature space SQD and SQED results. 

Mean (/-L) and standard deviation ((J) results are computed over the ten test sequences. 

Looking at the results in Figure 3.15, the use of a median filter does, in most cases, 

result in a segmentation that is smoother with fewer spurious artifacts in the mask. The 

pre-processing filtering appears to perform better than the post-processing - although this 
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is at the expense of having more artifacts in the segmentation masks. To improve the 

pre-processing filter results a further post-processing step could be applied, for example 

a connected components based algorithm could be used to filter out artifacts that are 

not connected to the video objects, followed by a median filter or morphological closing 

operation (which closes gaps in the contours of the objects). The size of the filter used 

is an important consideration. Choosing a filter that is ill-matched to the size of video 

objects sought can result in degraded segmentation quality. An example of this can be seen 

for the 'Container' sequence (bottom row), where the application of 5 x 5 median filtering 

has removed the relatively small, yet important, background region identifying the flagpole 

object. 

The post-process filtering results appear to be subjectively less pleasing than the pre­

process -perhaps due to small unconnected regions being smoothed into connected regions 

by the median filter. Based on these results it is proposed that pre- and post-filtering of 

segmentation results is a useful tool for generating object masks that appear semantically 

pleasing to the human visual system. However, the smootlmess that this filtering imparts 

on the final segmentation result can reduce the quality of segmentation at the edges and 

may remove small objects. The filtering of the output segmentation is preferential to motion 

information for generating more cohesive object masks. In general the motion information 

significantly degrades the edges of the extracted objects such that it results in a semantically 

poor segmentation result. 

In this section the results from the experiments to find the 'best' feature spaces for video 

object segmentation have been presented. It has been demonstrated both quantitatively 

and subjectively that the choice of feature space can make a significant difference to the 

quality of the output segmentation. It. has been shown that the use of colour and spatial 

information is essential to accurately locate video objects, and that motion and texture 

information can degrade the edge quality of the segmentation and in generic sequences 

often make negligible difference to the output segmentation. The benefits of pre- and post­

processing using a median filter have also been shown, this results in a cohesive object 

segmentation at the expense of edge accuracy, although the edges are not degraded as much 

as when adding motion information to the feature space. 
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Figure 3.13: Extracted video objects using text1ll'c informat.ion, AC, appended to 

XY L*a*b* (Right Column), compared to X~L*a*b* spatio-chromatic £ ature space (Micl.­

cUe COlumn). 
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Figure 3.14: Extracted video objects using weighted Motion-Spatial-Colour feat me space 

(Right Column) compared to the equivalent 9JnweighLed space (Middle Column). 



Figure 3.15: Extracted video objects using median filtering as a pre-proce s (Third Column) 

and a post-process (Fourth Column) rompal~e~ to no median filtering (Second Column). 



3.6 Conclusions 

In this chapter a methodology has been presented for the evaluation of feature space perfor­

mance for video object segmentation. This methodology implements a K-Means clusterer 

from which video object segmentation masks can begenerated. These masks are a function 

of the feature space and distance metric used. Two measures for comparing the output 

segmentation to a ground truth segmentation were presented, and showed over a range of 

standard data-sets that these two measures are sufficient for describing the performance of 

a feature space with regards to scene-based and edge-based accuracy. 

Using the proposed methodology spatial information appended to a colour feature vector 

has been demonstrated to be a powerful descriptor allowing a representational scheme to 

segment an object with sufficient accuracy. The comparison of different colour spaces for 

object segmentation showed that the YUV and CIEL * a * b* colour spaces show notable 

improvements in accuracy when compared to the other two colour spaces, with CIEL * a * b* 

being statistically the most accurate and least variable of the four tested. The addition 

of spatial information to the colour descriptor was demonstrated to improve the scene and 

edge based segmentation accuracy for all the colour spaces evaluated. The 'best' performing 

combined spatial and colour feature spaces were shown to be XYL * a * b* and XYYUV, 

mirroring the 'best' colour feature spaces. 

Motion information was shown to be beneficial to the feature space for some scenarios 

(although the main strength of motion information is perhaps in the inter-frame update 

scheme for the video object representation). It was shown that weighting the motion infor­

mation does improve the scene and edge segmentation accuracy compared to unweighted 

motion, and that it can create more coherent object segmentations if the object is moving. 

However, the addition of weighted motion information to the spatial-colour feature space 

was found to decrease the scene and edge segmentation quality. 

Texture information was shown t.o make negligible difference for generic object segmen­

tation and t.hat it is best applied to specific applications. Finally, the effect of pre- and 

post-processing the data using a median filter was presented. From the results this appears 

to be a superior met.hod for generating coherent object segment.ations since it does not. 

degrade edge quality as much as the use of motion information in the feature space. 

In summary, the following contributions have been made in this chapter: 
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• Proposed an evaluation methodology for video object extraction. 

• Proposed two quantitative measures that give both scene and edge based measures of 

video object segmentation accuracy. 

• Proposed and evaluated a feature weighting methodology that is based on the optical 

flow reliability. 

• Evaluated a sufficient range of feature spaces on test sequences using the methodology. 

• Demonstrated that spatial and colour information together forms a powerful descriptor 

for generic video object segmentation. 

• Demonstrated that the inclusion of motion information can give more coherent objects 

at the expense of edge-based segmentation accuracy. 

• Demonstrated that feature weighting improves the accuracy of the segmentation when 

using motion and colour information. However, the inclusion of weighted motion still 

decreases the segmentation accuracy at the object edges when added to a spatial­

colour feature space. 

• Demonstrated that the inclusion of texture information is suited to specific applica­

tions rather than generic object segmentation. 

• Demonstrated that pre/post-processing filters are a superior method to using motion 

information for improving the cohesiveness of the extracted objects. 

Analysing the results gained from the evaluation methodology it can be arguably stated 

that the assumptions and decisions made in this chapter are valid. Many of the features 

commonly used in video analysis work have been shO\vn to be either valid or optional for 

the extraction of video objects, combinations of these features were formed into hybrid 

feature spaces and evaluated. The chosen data-sets were sufficient for testing the challenges 

facing generic video object segmentation. The main challenges include variations in the 

objects motion, colour, texturedness, size, proximity to other objects and quantity; as 

well as objects entering/exiting the scene or changing pose relative to the camera. The 

results demonstrated that some features only contribute to the final segmentation in specific 

applications. 
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The method for initialising the K-Means based video object representation has a poten­

tial weakness in that the initial cluster positions may be too sparse and that minor regions of 

video objects may be arbitrarily assigned to another object. However, this weakness affects 

all the feature spaces equally and it is envisaged that the effect is negligible for comparative 

evaluation if the cluster spacing is chosen such that the affected regions are semantically 

insignificant. A better solution to this problem would be to find an optimal spacing of the 

clusters for a given video frame by analysing statistical information about the video objects 

spatial distribution, or an alternative seeding method (e.g. sampling strategies [163]). 

The application of a modelling algorithm in the evaluation scheme was used due to the 

multimodal nature of the objects. An interesting topic for future work would be to mea­

sure how disjoint (e.g. distant) the objects are in the feature space using only the ground 

truth segmentation and the input image frame i.e. with no modelling step. This could be 

achieved using, for example, by treating the objects as sets of points in the feature space, 

between which a metric such as the Hausdorff distance [48] can be computed. Retaining 

the modelling algorithm, the K-Means algorithm could be replaced by a probabilistic rep­

resentation. This would allow the distance between the object PDF's to be measured using 

the Kullback-Leibler distance [51]. An advantage of using the object segmentation in the 

evaluation procedure is that the results are more representative of the problem. Further 

work would be required to determine whether the disjointedness of objects in a feature 

space is representative of how that feature space will perform when applied to the problem 

of video object segmentation. 

The proposed evaluation metrics allowed a quantitative comparison of the feature spaces 

that was confirmed by subjective analysis of the results. The metrics were also easy to 

interpret unlike the logarithmic signal to noise ratios [79] where it can be difficult to relate 

the results to the observed segmentation masks. A more principled manner is required to 

choose the width of the Gaussian window used to find the edge region. Perhaps plotting the 

edge-based accuracy against the window size would clarify the nature of the convergence 

between the edge-based and scene-based measures. A more justifiable method for weighting 

spatial and texture information in a hybrid feature space is also required - although the 

suggested spatial weighting appeared to give good results. Further investigation is required 

to determine a suitable size for the median filters used in the pre- and post- processing 

stages. The size of this filter may have an optimal value similar to the optimal size of the 
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Gaussian window used in the edge-based evaluation metric. 

The choice of feature space and it's extraction is a fundamental part of the segmentation 

process for video objects. In this chapter an evaluation methodology has been developed 

that has enabled a more reasoned choice to be made based on the characteristics exhibited 

by the hybrid feature spaces presented. It has been shown that the feature space can have 

a detrimental effect on the accuracy with which the object edges are extracted. As a conse­

quence neighbourhood based descriptors in the feature space will not be used. Whilst the 

presented results are valid for the feature spaces and data sets shown, it is also important to 

remember that there are application domains where different features to those shown here 

may provide more powerful discriminatory evidence for the extraction of semantic video 

objects. The choice of feature space to be used in the representation of the video objects 

has been evaluated in a justified manner and the results of this evaluation can be used to 

determine which feature spaces give the 'best' performance for generic video object seg­

mentation. The following chapter describes the application of probabilistic representational 

schemes to video object segmentation. 
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Chapter 4 

Probabilistic Representation for 

Video Obj~ct Segmentation 

The previous chapter gave an insight into the myriad feature spaces that can be applied to 

video object segmentation. Several hybrid feature spaces were comparatively evaluated to 

find the 'best' performing space with regards to scene and edge based quantitative measures 

of segmentation quality. Within the chosen feature space there exists a partition of the 

feature vector set I into the R objects in the current video frame such that: 

I = U Ir where r = 1, ... , R (4.1) 

Therefore, Ir is the r'th partition of the set of feature vectors, I, relating to object r in the 

current frame. The partition Ir therefore corresponds to a region of the current frame that 

delimits the semantic object r from the other scene objects. 

The sub-set of feature vectors extracted for each object are generated by an unknown 

process (i.e. the density function). If the form of the density function that generates this 

observed data (either from prior knowledge or by estimation) was known then decision 

theor·y can be applied to create a decision function that minimises a cost associated with 

such a decision. Therefore, a classifier consists of two main stages - density estimation 

and a decision function. 

To apply this to video object segmentation indices r = 1, ... , R are taken to be object 

category (or class) labels and estimate the true density of the object in the feature space 

based on feature vector observations. Using an estimate for the density unseen feature 
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vectors can be assigned to the most likely class based on the decision function. For a new 

feature vector observation a, belonging to object class r*, the decision function hr> (a) is 

chosen such that: 

hr> (a) > hr (a) for all r i= r* (4.2) 

The decision function is therefore maximised over the R possible object labels to find 

the most probable category label r* for a feature vector observation a. Using this decision 

function it is also possible to locate the decision boundary, which is a boundary in the 

decision space such that observed values of a on the boundary are equally likely for two or 

more categories. 

In generic video object segmentation the distributions of feature vectors are often com­

plex and can overlap between the different classes (since objects can exhibit similar feature 

patterns), so methods must be employed which minimise the expected error from the classi­

fication. The true density functions of video objects can be estimated using either supervised 

or unsupervised methods. In the supervised case, where a human operator provides training 

data, the number of classes and initial partition of the feature space into component ob­

jects are known a priori, in the unsupervised case this information is not known and natural 

groupings of the entire data are found using a clustering algorithm. 

The type of model used to estimate the density function can be parametric, nOTl­

parametric or semi-parametric. In parametric methods a given form for the density function 

is assumed a priori and the parameters of the function are found by fitting this model to 

the observed data set. In non-parametric methods the functional form of the true density is 

not specified and is the density estimate is driven directly from the data. Semi-parametric 

methods specify a functional form for a component part of the true density. A sufficient 

quantity of component models are fitted to the set of data observations using au itera­

tive optimisation scheme which results in a global estimate of the density. In Section 4.1 

an overview of representational schemes applied to the problem of abstracting video into 

component regions/objects was given. 
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4.1 Previous Work 

A video object, when decomposed into a feature space, can be thought of as a density 

function that has been generated by some (unknown) process. Classification techniques (an 

overview of which is given in Section 2.5) can be applied to generate representative models 

of the video objects, allowing them to be found in subsequent frames by classifying regions 

of the video frame with the labels of the scene objects. In this section the previous work 

on the use of classifiers for video based analysis is reviewed. 

Clustering techniques have been applied in many object based applications in computer 

vision. Heisele et al [18] showed a method for using crisp K-Means clustering for tracking 

objects over a series of video frames. They found that clustering within a spatio-chromatic 

feature space allows robust modelling (and hence tracking) of non-rigid objects without the 

need for heuristics. Similarly, Schiele [154] implements a method to extract and track ho­

mogeneous image regions within a video sequence. This method again uses a crisp K-Means 

cluster analysis and they find the method is adaptable considering the fact that no priori 

assumptions are made about the data to be modelled. Naturally, clustering techniques 

have also been applied to image segmentation [131], where the unsupervised grouping of 

homogeneous image pixels into regions is the main objective. The K-Means algorithm (and 

variants) have been applied to the problem of video object extraction and spatiotemporal 

segmentation by [186, 175, 128, 7, 58] where it is used to determine the homogeneous fea­

ture space regions within the video data. A natural extension to using the crisp K-Means 

algorithm for video region extraction is to apply the fuzzy C-Means algorithm, which allows 

a pixel to have a soft membership of all the clusters in the model. The fuzzy C-Means algo­

rithm was integrated into a multiple feature video object segmentation scheme by Castagno 

et al [27]. Another extension to the K-Means approach is the K-Means with connectivity 

constraint algorithm (KMCCjKMC), this was applied by [171, 103, 104] in the context of 

unsupervised video region segmentation. 

A segmentation scheme applying graph cluster'ing to perform spatiotemporal region 

merging was presented by Moscheni et al [124]. In such a scheme regions from an over­

segmentation of the video frame are merged based on affine motion and spatial similarity 

until some merging threshold is reached. A similar clustering based region merging approach 

is taken by Dufaux et al [63] where regions from an initial luminance-based oversegmentation 
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(using the K-Means algorithm) are sequentially merged into homogeneous motion regions 

using a K-Medoids clusterer (essentially a median based K-Means algorithm). 

Histograms remain a popular technique iIi computer vision for density estimation and 

have been applied to aspects of video object segmentation and tracking algorithms [61, 41]. 

The discontinuities in the histogram density estimate can be reduced by using smoothed 

Gaussian bins (e.g. [61]). Mezaris et al [171] use normalised histograms to perform Bayesian 

classification of pixels in uncertain regions of the video frame by assigning them to neigh­

bouring (certain) regions to maximise the a posteriori probability. 

Everingham and Thomas [61] showed a Gaussian kernel shape model to be a valid 

technique for fine modelling of an object's boundary in a joint distribution with a coarse 

spatio-chromatic mixture of histograms. The problem associated with separation of the 

colour and spatial information (i.e. spatially variant colour distributions) was alleviated 

by including the spatial information into the mixture of histograms. The discontinuities 

between the histogram bins were smoothed using a Gaussian window centred at each bin. 

Khan and Shah [98] also applied kernel density models to estimate the spatial distribution 

of regions of homogeneous motion in the video sequence. 

The mean shift algorithm has been applied to the problem of video object segmentation 

by Hsu and Hsieh [91]. In this approach the prior model for the object in a new frame 

is determined by iteratively estimating the centroid of the object followed by the mem­

bership of pixels to that centroid. A weakness with this approach is that the kernel used 

is evaluated in a colour and spatial feature space resulting in the centroid of the object 

being implicitly assumed be a representative colour for the video object. In the case of 

objects with multimodal colour appearance, it is uncertain whether such a method could 

be applied. DeMenthon [45] suggests a spatiotemporal segmentation scheme in which a 

7-D spatiotemporal chromatic feature space is created; within which hierarchical mean shift 

clustering is perform to extract homogeneous regions: 

Parametric Gaussian distributions are generally used to model regions that display ho­

mogeneity in the feature space where the intra-region variation of the feature vectors is 

Gaussian in the feature space. Fablet et al [66] modelled colour regions using a Gaus­

sian distribution within a Markovian framework to provide a coarse to fine segmentation 

of a video sequence. In addition to using kernel density models Khan and Shah [98] also 

used Gaussian distributions to model the colour and motion components of video regions. 
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These regions were initialised using a Gaussian mixture model and subsequently split into 

individual component Gaussians for each region. 

Clustering using Gaussian mixture models for segmentation and tracking of semantic 

scene objects has been explored in many papers. Raja et al (143, 113] and Marlow and 

Connor (111] showed how a Gaussian mixture model, combined with a Bayesian decision 

rule, could be applied to the problem of segmentating video objects from generic sequences. 

Rares and Reinders (11] applied a spatial-colour-texture Gaussian mixture model to the 

problem of analysing objects in video sequences, with a goal of tracking regions as opposed 

to pixel level segmentation. Oliver et al (130] applied Gaussian mixtures to the problem 

of face recognition, where they are used to find general descriptors of face and mouth 

characterisitics which are then used in a Hidden Markov Model [51] to recognise individual 

expressions. Another common application for Gaussian mixture models is to model per 

pixel colour or greyscale background observations over a temporal period in the case of a 

static camera (40, 72]. This model of observed pixel values allows newly observed pixels to 

be classified as foreground and background using a probabilistic framework. Chalom and 

Bove Jr. [30] propose a method for choosing the number of clusters based on the relative 

improvement in entropy between running EM for a range of values of the number of clusters. 

Apostoloff and Fitzgibbon [9] take a different approach to the problem of representing 

and extracting video objects. The principle behind their work is to first find the background 

layer of the current scene using a layer extraction technique such as that by Wang and Adel­

Son (174] or Irani etal (94]. Once the background layer is known background subtraction can 

be used to generate a coarse predicted segmentation, prior models trained on the spatiotem­

poral gradients of the image sequence and alpha mattes are then applied to regularise the 

solution. This smoothing requires that the gradients are significant, if not then the alpha­

matte solution may be over-smoothed at a boundary between objects. Earlier approaches 

by Chuang (35] and RUZOll and Tomasi (148] do not require that the entire background 

be extracted and instead use estimated (local) colour distributions of the background and 

foreground to recover the alpha matte relationship. In later work Chuang et al [34] ex­

tended their method using optical flow to propagate the predicted maps throughout the 

video sequence. 

PopUlar decision rules applied in classification based video object segmentation and 

tracking work are the MAP rule (e.g. applied in (61, 143, 113, 111, 130, 98, 66, 135, 30, 87, 
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171,91, 11, 76]) and the nearest cluster rule (e.g. applied in [103, 104, 186, 128, 154]). For 

video object extraction the resulting segmentation from such a decision rule may exhibit 

discontinuities and holes due to noise or subtle changes in the underlying density function. 

To improve the subjective quality of the masks a post-processing step is often applied such 

as morphological operators (e.g. applied in [168, 27]), Markov random fields (e.g. applied 

in [66, 134]) or probabilistic relaxation of the segmentation result [137]. 

4.2 Probabilistic Representation 

In this section the problem of classification using a probabilistic framework is investigated, 

that is, the density functions are probability density functions (PDF's), and the decision 

function is determined by applying Bayesian decision theory [51]. Bayesian decision theory 

is based on the assumption that the decision problem is posed in probabilistic terms and that 

the relevant probability values are completely known. Following this, attention is turned to 

the problem of estimating the true PDF of observed data that arises when the probabilistic 

structure is not completely known. 

4.2.1 Bayesian Decision Theory 

Bayesian decision theory is a fundamental statistical approach that has been applied to 

the problem of pattern recognition, the two main assumptions on which Bayesian theory 

are based are that the decision is posed in probabilistic terms and that all the relevant 

probability values are known. A probability density function obeys the axioms of probability. 

Let a be an observed feature vector (Le. a measurement) generated from some unknown 

probability density function. Object based video segmentation is an R-category problem 

(i.e. there are R objects) in which the measured feature vector may be generated by one of R 

probability density functions. The (joint) probability density of finding an observation that 

belongs to object r and has a feature vector a can be written in two ways [51]: p(Ar, a) = 

P (ArIa) p (a) = p (alAr) P (Ar) where Ar denotes object r. Rearranging this leads to Bayes 

theorem: 

P{Arla) = p(aIAr)P(Ar) = :(aIAr)P(Ar) 
p(a) I:;j=lP(aIAj)P(Aj) 

(4.3) 

The a posteriori probability P{Arla) represents the probability that the object category 

106 



is r given the feature vector a has been measured. Bayes theorem provides a method for 

computing the posterior probability from the prior belief - denoted P{A r ) - that the 

observed feature belongs to an object category r and the class-conditional probability -

denoted p{ alAr) - which is the likelihood that the observed feature a was formed by object 

f. 

For a given feature vector observation the posterior probabilities for each object category 

can be computed and a decision can be made on the true state of nature (i.e. category) 

of the pixel from which the observation was made. Due to the fact that the true density 

functions for the different categories often overlap then this decision will also contain an 

average probability of error, equal to 

P(er1'orla) = 1 - P(A r * la) if we decide category r* (4.4) 

The Bayes decision function seeks to minimise this average probability of error by selecting 

the category that maximises the posterior probability such that: 

Decide category 1'* if P(Ar * la) > P{Arla) for all T =1= r* (4.5) 

This decision function, known as the MAP (Maximum A E.osteriori) rule, is formed by 

assuming that the cost! associated with making a decision is zero for a correct decision and 

equally costly (=1) for any errors2. In some applications it may be beneficial to weight 

some errors as being more costly than others, in which case a different loss function may 

be used. 

Therefore if the true density is known function and the prior probability for each object 

category, the decision function shown in equation (4.5) can be calculated. This is evaluated 

at each pixel in the current frame to generate a crisp segmentation, delimiting the objects 

in the scene. 

In video object segmentation (like many computer vision problems) only the observed 

data at each pixel is known, therefore representational schemes must be applied to estimate 

the density function in the feature space for each video object, allowing the decision function 

to be computed. 

1 Referred to as loss or risk. 
2 A zero-one loss function. 
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4.2.2 Probabilistic Estimation of Density Functions 

Bayesian decision theory assumes that all the relevant probability values are known, which 

is often not the case. Typically it is neccessary to estimate the true conditional PDF's of 

the video objects in the feature space based on the available vector observations. Training 

observations - from which the object PDF's are modelled - may not actually contain the 

label information for different objects. In this case, natural groupings within the entire set 

of observations are found using a clustering algorithm. In the supervised case, the number 

of classes and initial partition of the observation data set into component object sets are 

known a priori. 

There are three main strategies available for probabilistic density estimation [21] -

parametric, non-parametric or semi-parametric methods. 

In parametric methods a functional form for the density model is chosen a priori, con­

taining a specific number of paraineters that need to be optimised by fitting this model to 

the observed data sets. A problem often encountered with parametric density estimation is 

that the form of the model chosen might be incapable of providing a good representation 

of the true density. 

With non-parametric methods the functional form of the model is determined directly 

from the observed data. In this approach, however, as the number of data points grows 

then the number of parameters can quickly become lmwieldy. 

Semi-parametric approaches attempt to take the best features of parametric and non­

parametric methods. These methods allow the number of adaptive parameters of parametric 

models to be increased in a way such that ever more flexible models can be built. In this 

approach the total number of parameters is independent of the size of the dataset and is 

instead based on the complexity of the structure of the dataset in the feature space (i.e. 

how well the functional form of the model can represent the true density). 

A problem affecting all approaches to density estimation is that in high dimensions the 

feature space is often sparsely populated by the observed data sets. This problem - known 

as the 'curse of dimensionality' - requires the quantity of training data required to grow 

exponentially with the number of dimensions. A possible solution to this problem is to first 

find strong correlations between the different dimensions of the data and therefore reduce 

the data to a lower dimension feature space {e.g. by applying principle component analysis 
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techniques [51]). 

In the following sections the three flavours of probabilistic density estimation techniques 

are described in the context of modelling observed video object data within a feature space. 

In the process of density estimation a set of feature vectors, I, are extracted from an initial 

'training' video frame. Methods are sought to estimate the probability density functions of 

the data points in this space that are members of the individual objects within the scene. To 

achieve this, the feature space is split into the component sub-sets Ir (where r = 1, ... , R) 

and then use the above modelling techniques to estimate the true conditional density p( alAr) 

(i.e. the probability that the feature vector observation a was formed by the true density 

estimated by the object model Ar). With an estimate for each video object's PDF for each 

new video frame Bayesian decision theory can be applied to classify the new feature vector 

observations a into the most likely category r*, giving the minimum error classification. 

4.2.3 Gaussian Density Functions 

The simplest and most widely used probabilistic parametric model is the Gaussian (or 

normal) distribution, which is so frequently applied due to it's suitability and mathematical 

tractibility. In one dimension the Gaussian probability density function is defined by 

p(a) = ~<T exp ( _ (a ;,,~)2) (4.6) 

Therefore the distribution of the scalar a is determined by the two parameters of the 

Gaussian, the mean J1. and the standard deviation (T. The Gaussian distribution is 'bell­

shaped' with the peak of the bell occuring at a = J1. and the distribution symetrical about 

this with a width proportional to the standard deviation (T. 

The general form for a multivariate Gaussian density function (Le. the multi-dimensional 

case of (4.6)) is given by 

p(a) = ; 1 exp [-~ (a - J.Ll :E-1 (a - J.L)] 
(21f) zl:El2" 

(4.7) 

Where J.L is the mean vector parameter of the multivariate Gaussian model, and :Eis the 

Covariance. Maximum likelihood techniques attempt to find the optimum values for these 

parameters by maximising a likelihood function that is derived from the observed data. Let 

the set of parameters for the Gaussian distribution be specified by the vector () == {J.L,:E} 
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such that p(aIO) is given by (4.7). If the data set of N vectors A == {al,"" aN} are drawn 

independently from the distribution p(aIO) then the joint probability density of the whole 

data set A is given by 

N 

p(AIO) = II p(anIO) == £. (0) (4.8) 
n=l 

The function £. represents the likelihood of the chosen parameters 0 for a (fixed) data 

set A. The technique of maxumum likelihood parameter selection sets the parameter values 

by maximising the likelihood £. (0) i.e. the most likely parameters given the observed data 

A. In practice it is more convenient to consider the negative log likelihood such that 

N 

-In £. (0) = - I: lnp (anIO) (4.9) 
n=l 

Minimising this expression is equivalent to maximising £. (0) since the negative logarithm 

is a monotonically decreasing function. In most cases of probability density estimation the 

optimum 0 will have to be found via an iterative optimisation procedure; in the case of 

Gaussian densities the maximum likelihood parameters can be found by differentiating 

(4.9). This involved differentiation leads to the following well known solutions 

1 N 
J.L - NI:an 

n=l 
(4.10) 

N 

:E ~ I: (an - jl) (an - jlf 
n=l 

(4.11) 

The covariance matrix in (4.11) is a symmetrical matrix and if the dimensions are 

uncorrelated such that they can be treated as statistically independent distributions then 

the covariance matrix is a diagonal matrix. 

4.2.4 Kernel Density Functions 

In non-parametric density estimation methods the functional form of the model is deter­

mined directly from the observed data. A possible direct estimate of the probability density 

function is [21]: 

J{ 

p(a) ~ NV 
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where K is the number of feature vectors out of a possible N that lie within a region n of 

volume V. This region (and hence PDF estimate) is localised around a feature vector a. 

A strategy for density estimation is to hold the volume constant and determine the 

number of feature vectors that fall within that volume from the observed data. To formalise 

this into a method for density estimation, suppose that the region n is a hypercube with 

sides length h centered at the feature vector a such that 

(4.13) 

Where D is the number of dimensions in the feature space. Therefore, the expression 

for K, the number of points falling within the region n can be defined by a kernel function 

(also known as a parzen window), <p (u), such that 

~(u) = { ~ ·!Ud! ::; 1/2; d = 1, ... ,D 
(4.14) 

otherwise 

hence <p (u) represents a unit hypercube centered at the origin. For all training data points 

an, cp ((a - an) Ih) is equal to unity if the point an falls within a hypercube of side length 

h centered on a and zero otherwise. The number of points falling within this hypercube, 

K, can therefore be defined as 

N 
K= L<P(a-an

) 
n=l. h· 

(4.15) 

Combining (4.15) with (4.12) and (4.13) the probability density fUllction at the point a 

is estimated as: 

1 N 1 ·(a -an) 
jJ(a) = N L hD<P h 

n=l 

(4.16) 

This density estimate can be thought of as the superposition of N cubes of side h, with 

each cube centered on one of the data points. Due to the use of bins this estimate still 

has discontinuities, this can be smoothed by assuming a continuous form for the kernel, for 

example, a Gaussian kernel such that 

( 4.17) 
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where h == (Y i.e. the standard deviation of the Gaussian kernel. To ensure the approximation 

of the probability density obeys the axioms of probability (Le. p (a) ~ 0 and J p (a) da = 1) 

it is imperative that the kernel function satisfies <p (u) ~ 0 and J <p (u) du = 1. 

4.2.5 Gaussian Mixture Models 

Gaussian mixture models are by far the most popular type of semi-parametric approach to 

density estimation. To fit a mixture model to a set of observed data methods are required 

for [67]: 

• inferring parameters of the component source models, and 

• identifying which source model produced which observation. 

Since mixture models are not based on heuristic principles, many of the issues associated 

with this type of model (e.g. cluster parameters) can be approached in a principled and 

formal way. In the non-parametric kernel-based approach for estimating the true density 

function of observed data (Section 4.2.4), the PDF is represented as a linear superposition 

of kernel functions with individual kernels centered on each data point. Mixture models are 

formed from a similar combination of parametric functions, except that K, the number of 

component functions, is a parameter itself that is typically much less than the number of 

data points N. Using this definition a mixture distribution can be written: 

J( 

p(a) = LP(al(h)P(lh) (4.18) 

k=l 

The prior probabilities (or mixing parameters) of the component density functions are sub-

ject to the probabilistic constraints that ~~~l P(lh) = 1 and 0::; P( (h) ::; 1; similarly, 

f p(aIOk)da = 1. Bayes theorem allows us to compute the posterior probability that a 

component k was responsible for generating the observation a: 

(4.19) 

As with all probabilities ~~~l P(Okla ) = 1, due to the scale factor p(a). Each component 

in the mixture density therefore has an associated prior P(Ok) and the Gaussian parameters 

Ok == {J.Lkl:Ed . 
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The EM algorithm [1] is the usual technique for obtaining (local) maximum likelihood 

solutions for the mixture parameters. For Gaussian mixture models the convergence prop­

erties of the EM algorithm is a well researched topic that has led to many extensions and 

improvements to the standard algorithm. The generalised version of EM for Gaussian 

mixture models (with arbitrarily complex covariance matrices) is defined by the following 

iterative update equations: 

1. E-Step: Evaluate the posterior probability for every mixture component k. 

(4.20) 

2. M-Step: Update the model parameters to their new values using ML decision crite-

rion 

(4.21) 

(4.22) 

N 

pnew(fh) = ~ L pold (Ok\an) 
n=l 

(4.23) 

3. Convergence criterion: Stop when log likelihood is improved by less than some 

threshold T from one iteration to the next. 

Whilst EM is the de facto method for fitting mixture models to sets of observed data there 

still exists three well known problems: 

1. Estimating the number of components: there exists some optimal choice for the num­

ber of component density models given the observed data. 

2. Sensitivity to initialisation: Small groups of points close together can give rise to local 

minima in the error function. 

3. The boundary of the parameter space: there exists parameter values for which the 

likelihood goes to infinity. This occurs when a Gaussian collapses onto a single feature 

vector such that the variance becomes zero. 
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In the following sections methods are described for overcoming these problems, although 

it is outside of the scope of this work to give an exhaustive overview of the different tech-

niques. 

Estimating the number of components 

There are two main classes of model order selection algorithms for mixture models - de­

terministic and stochastic methods [67]. Deterministic methods evaluate a set of candidate 

models (from Kmin to Kmax) within which the optimal value for the number of clusters 

K* exists. The number of components K* is then found by minimising a model selection 

criterion function f (0 (K) ,K) where 0 (K) is the estimated mixture model containing K 

clusters. A common form for the criteria is: 

f (0 (K) , K) = -logp (AIO (K)) + P (K) ( 4.24) 

where A = {aI, ... ,aN} is the observed dataset. P (K) is a function that increases with K, 

therefore penalising higher numbers of clusters in the model. A broad review of deterministic 

methods for model order analysis can be found in McLachlan and Peel [114]. 

A class of deterministic methods use information theor'lJ to pose the problem in terms 

of a minimum encoding length criterion (e.g. Minimum Description Length (MDL) [146] or 

Minimum Message Length{MML) [129]). The idea behind these methods is that a dataset 

A that has been generated from a function p (AlB) which is then encoded and transmitted. 

From Shannon theory [38] the shortest code length for A is given by -lnp (AlB) (measured 

in nats, or bits if the logarithm is base-2). If the model parameters B a not known a priori by 

the receiver then they also have to be transmitted, this leads to a two component message 

of Length (B, A) = Length (9) + Length (AlB). The minimum encoding length schemes like 

MDL and MML find a parameter estimate by minimising the two component message length 

Length (B, A). The main issue with this approach to model order selection is that since the 

parameters are real valued then the message length required to transmit them is infinite 

unless the parameters are sent quantised (0) to some finite precision. Therefore there is a 

trade off between having a large Length (0) (i.e. fine precision) but smaller Length (AIO) 
(i.e. close to shortest code length) or vice versa and it is this that the methods such as 

MDL and MML seek to formalise. 
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In the case of MDL applied to Gaussian mixture models, the value for K is chosen such 

that it minimises: 

If( 
-lnp (AIO) + "2 InN (4.25) 

where If( is the number of free parameters needed in a K component mixture model. For 

Gaussian mixtures with full covariance If( = (K -1) + KD + K (~D (D + 1)). 

Sensitivity to Initialisation 

The EM algorithm is highly dependent on initialisation - minor perturbations in the initial­

isation procedure can result in the algorithm converging to local maxima in the likelihood 

function. Solutions proposed to solve this method include multiple initialisation followed 

by sleection of model with highest likelihood, initialisation by clustering algorithms or the 

addition of split and merge operations to the mixture model optimisation criterion. The 

random start method for initialising mixture models assigns each cluster an uninformative 

(high entropy) prior value such as P (Ok) :::::l 1/ K. This method has been found to give good 

performance [114] due to the self-annealing [144] properties of the EM algorithm i.e. the 

EM algorithm with automatically anneal without imposing a cooling schedule. The general 

idea behing annealing algorithms is to force the entropy of the model (Le. the uncertainty 

of the covariance matrices) to decrease slowly over a time period to prevent it prematurely 

settling into a local maxima of the likelihood function. 

The boundary of the parameter space 

One of the main problems researchers face when implementing the EM algorithm is also 

one of the most infrequently mentioned in computer vision texts. When fitting a Gaussian 

mixture with unconstrained covariance matrices to an observed data set one of the compo­

nent Gaussialls can have a prior probability approaching zero and hence the corresponding 

covariance matrix can be close to beingsingular. To limit this problem soft constraints can 

be applied to the covariance matrices to enforce an annealing schedule [101] or to annihilate 

weak component models from the mixture. 
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4.3 Performance Evaluation of Video Object Representation 

In this section a framework is presented to implement the representational schemes described 

in this chapter. The framework will be used to demonstrate the characteristics of these 

representational schemes when applied to the problem of segmenting objects from video 

frames and video sequences. In Section 4.3.1 the dataset that is used is introduced. In 

Section 4.3.2 the framework for video object segmentation is introduced. In Section 4.3.3 

two different approaches to estimating the PDF of objccts in an XY L * a * b* feature space 

are discussed. 

4.3.1 Datasets 

Duc to the lack of grOll110 tru th for many video sequences (a problem that has yet to be 

resolvcd by the research community). quantitative analysis is limited to publicly ava.ilable 

~cqucnccs where groullcl tru t.h is known for every frame. The reprcscntational schemes 

introduced in this chapter are evaluat.ed for the 'Parrot' sequence (256 x 180. 18 frames. 

shown in Figure 4.1). This scqllPnce contains a. complcx . yet colourful, foreground obje t 

moving approximately 30 pixels per fra.me against a cluttered, tationary. background. This 

sequencc is useful for performance evaluation since it demonstratcs problems such as the 

prescncc of silllilar colours in the forcgrouud and background and moving foreground object 

without introducing the problems associated with moving backgrounds and object/scene 

inllovatioll (i.e. new objects enteriug the sccnc etc). 

Figurc 4.1: Frames with associated ground truth segmentation. (Top-Row) The 'Parrot 

sequence Frames 1,5,10,14 ancl18 (Bottom-Row) The associated ground truth scgmentation. 

The associated ground truth for the 'Parrot' sequcnce is hown ill Figure 4.1, thi will 

be used to quantatively evaluate the results of the segmentation using an extension to the 
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measures presented in Chapter 3. To evaluate the segmentation quality the spatial quality 

of density SQD and the spatial quality of edge density SQED are computed at each frame 

(as introduced in Section 3.4.3). These measures provide an quantitative representation 

of the quality of the segmentation both scene-wide and at the edges of video objects. To 

characterise the temporal coherency of the object segmentation the variance of the SQD and 

SQED measures is used (although the variance is meaningless without the accompanying 

SQD and SQED measures, since a poor segmentation can exhibit frame to frame stability 

using this metric) 

4.3.2 Framework 

The framework applied to demonstrate the representational schemes is shown in Figure 4.2, 

this framework is based on the generic framework presented in Section 2.1. This framework 

consists of per object PDF models in an XY L * a * b* feature space that are updated using 

a simple strategy. The inter-frame prediction is a 'null' step in that the object models from 

the previous frame are used - unchanged - as the estimated models in the current frame 

(assnming minor object motion between frames). The intra-frame update step consists of 

reinitialising the object models to the newly found regions of support for that object in the 

cnrrent frame. At each frame the 'final' segmentation is extracted by applying the MAP 

rule presented in equation (4.5). 
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I Rebuild object 
I 

Per object PDF I Per object PDF I 
estimates frame t.1 Bayesian labelling PDF estimates estimates frame t 

i offramet using new regions I - ....... - I of support 

--------I I 
I I 
I I 
I I 
I ( '\ I 
I ! Feature vectors (Final) Bayesian I 
I framet , labelling of frame t I 
I \ J I 

Figure 4.2: The framework used to demonstrate the representational schemes for video 

object segmentation. 

Using this framework the characteristics of the representational schemes can be com­

pared. The process shown in Figure 4.2 is initialised using the strategy presented Figure 4.3; 
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this is essentially the same as the intra-frame update procedure except that the initial object 

based segmentation is provided by the supervised user input (detailed in Section 2.2). 

I I Key Fr,Jt;:{! .. " i 

Build Object PDF Object PDF I 
User provided 

estimates from estimates for key I 
object labelling for 

user provided frame I key frame. 
regions of support ~ J 

J 
I 
I 

1\ I 
( Feature vectors ( 1 I 

frame! I 
\ V I 

Figure 4.3: The key-frame based initialisation procedure for the representational models. 

4.3.3 Independent Feature Space Representation 

Applying density estimation techniques to the problem of video object segmentation imposes 

specific requirements such as whether the functional form of the estimated density gives a 

good representation of the true PDF; the ease of integration of the model into video object. 

segmentation algorithms; the scalability of the model to higher dimensional spaces; and the 

computational complexity of the model. 

The chosen feature space determines the nat.ure of the true PDF of the video objects. 

In the spatial-colour XY L * a * b* space the colour and spatial features can be combined 

into a hybrid feature space such that a single density estimate is made for the spatial-colour 

space. Alternatively, the problem of density estimation can be simiplified by assuming 

that the correlation between the colour and spatial information is neglible. Separating the 

feature space in such a way reduces t.he effect of t.he curse of dimensionality and allows for 

computat.ionally cheaper algorit.hms, although this may reduce the generality of the model, 

especially when intra-feature t.ype correlation is present. 

Under the assumption of independence the PDF of the a = XY L * a * b* feature space 

can be estimated by independently estimating the x = XY and f = L * a * b* distribut.ions 

such that: 

p{a) =p{f,x) =p{f)p{x) (4.26) 
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The advantage of modelling the data in this way is that different forms for the PDF 

estimate can be used, although generality will be lost and be unable to model spatially 

variation in the colour distribution (Everingham and Thomas [61] circumvented this problem 

using an explicit coarse spatial component in a colour/texture model). 

The assumption of independence between the features is explored for the foreground 

object in the 'Parrot' sequence. For this object XY L * a * b* feature vectors are extracted 

from which the correlation matrix between the spatial and chromatic information can be 

estimated. 

To determine the correlation between the spatial and colour distributions the correlation 

coefficient is computed: 

(Jij 
Pij = -~­

V(JiiCljj 
(4.27) 

where (Jij is element (i, j) taken from the covariance matrix :E and Pij is similarly an element 

of the correlation matrix p. The correlation matrix is therefore equal to: 

pxx PXY PXL* PXa* PXb* 

PYX PYY PYL* PYa* PYb* 

Pr = PL*X PL*Y PL*L* pL*a* PL*b* 
(4.28) 

Pa*X Pa*Y Pa*L* Pa*a* Pa*b* 

Pb*X Pb*Y Pb*L* Pb*a* Pb*b* 

For the 'Parrot' sequence presented in Section 4.3, the covariance of the 5-D XY L*a* b* 

feature space over the foreground object is given by 

915.4607 -331.6967 45.1229 76.7905 183.7702 

-331.6967 563.5937 -12.4783 -113.1061 -37.7940 

:Er = 45.1229 -12.4783 316.0589 ....,60.7345 196.4601 (4.29) 

76.7905 -113.1061 -60.7345 215.7918 11.0012 

183.7702 -37.7940 196.4601 11.0012 426.7657 

The correlation matrix computed from the covariance matrix is thus 
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1.0 -0.4617 0.0838 0.1727 0.2940 

-0.4617 1.0 -0.0295 -0.3243 -0.0770 

PParrot = 0.0838 -0.0295 1.0 -0.2325 0.5349 (4.30) 

0.1727 -0.3243 -0.2325 1.0 0.0362 

0.2940 -0.0770 0.5349 0.0362 1.0 

From this matrix it can be seen that, even at a 'global' level, there exists correlations 

between the colour and spatial distributions. The strongest (anti-)correlation between the 

spatial and colour information occurs between the Y and a* feature values. If the Y and U* 

variables are plotted (see Figure 4.4) it can be seen that there indeed exists this correlation, 

although the data also exhibits local correlations due to the multimodal nature of the 

distribution. 
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Figure 4.4: Y and a* values plotted for the foreground object. An (anti-) correlation can be 

observed between the two features. 

Not SUrprisingly, the assumption of independence between the spatial and colour infor-
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mation in a video frame is likely to impact the segmentation accuracy since the correlation 

between the features is not explicitly modelled. There are many factors that affect the 

spatial and colour information observed over a video frame (e.g. camera, illuminant and 

object properties). The spatial and colour information observed for a given image region 

of finite size can only truly be viewed as independent if the region itself is homogeneous 

in colour from all viewing positions - as such the colour observed is independent from all 

factors that affect the 2-D shape. In generic video sequences intra-feature correlation is 

expected - homogeneous regions in the feature generally exhibit spatially and temporally 

varying appearance. 

4.4 Results 

In this section the three types of representational models presented in Sections 4.2.3, 4.2.4 

and 4.2.5 are used to estimate the spatial-colour probability density function of objects in 

video frames and video sequences. In Section 4.4.1 and Section 4.4.2 the PDF of a video 

object is estimated in spatial and colour feature spaces to demonstrate the characteristics 

of the representational schemes. In Section 4.4.3 the framework presented in Section 4.3.2 

is used to perform evaluation of the segmentation accuracy when using the different rep­

resentational models. Finally, Section 4.4.4 repeats the evaluation with an independent 

representation of the spatial-colour feature space. 

4.4.1 Spatial PDF Estimation in a Video Frame 

The spatial distribution of a video object is often stored as a binary mask. An example 

of this is shown in Figure 4.5 for the foreground object in the 'Parrot' sequence. The first 

step in estimating the probability dellsity of this object in the spat.ial feat.ure space is to 

first assume that the spat.ial measurements are continuous and as such form a continuous 

probabilit.y density to be estimated. The high resolution of our video ensures t.hat. t.he 

quantised nature of the spatial samples is negligible. 

It is assumed that. t.he mask in Figure 4.5 has been generated by some unknown proba­

bility densit.y funct.ion from which observat.ions of the spatial information at. each foreground 

pixel are generated. Therefore at each pixel a feature vector containing the spatial infor­

mation is extracted i.e. 
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Figure 4.5: Distribution of spatial features extracted from the video object. (Left) 'Parrof 

sequence Frame 00010 (Middle) The foreground object extracted as a binary mask (Right) 

The spatial fcature vector distribution. 

a = x = [x, y f (-1.31) 

First. a parametric Gaussian density model is fitted to the observcd data for the fore­

ground object. A map of the result.ing class conditional probabilities can be seen in Fig­

ure 4.6; it can be clcarly scen that the parametric form does not accurately describe the 

spatial distribution of the objccts, although it does provide a unimodal descriptor for the ob­

ject scale and posit.iOll in the image, which may be uscful for higher levcl object description 

e.g. in content-bascd imagc retrieval applications. 

The spatiallllodelling of the foreground object is much improved by the use of the kernel 

density model (again shown in Figure 4.6)' which in the 2-D form is equivalent to the binary 

llllage cOllvolved with a Gaussian mask. This form of model captures thc uncertainty of 

labelling arouud t.hc edges of the vidco objects. The non-parametric form of the kernel 

density model appears to adequately represent the complex spatial PDF of tlw foreground 

video object. 

Modclling the observed data as a Gaussian mixture density (applying the miuimum 

message length based EM variallt proposed by Figneiredo and Jain [67]) allows a more 

compact repre::lcntation of the spatial distribution of the video object than the kernel density 

model (i.e. the model contains less parameters), although this is achieved at the expense 

of reduced modelling capability of the more complex spatial ob ervations that are not well 

described by a parameterised mixture model. The conditional probability map is shown 

in Figure 4.6. The component Gaussian densities can clearly be 'cen in this imag and 

whilst the number of component densitics appears high (K =23), the overall (estimated) 
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PDF represents the mask efficiently with K « N. 

Figure 4.6: The conditional probability maps for the foreground video object spatial obser­

vations. (Top Left) Foreground object spatial observat.ions for Frame 00010 from the 'Par­

rot' t('l-)t sequence (Top Right) Modelled as a Gaussian distribution (Bottom Left) Modelled 

a.s a kernel density distribution (Bottom Right) Modelled as a Gaussian mixture model. 

4.4.2 Colour PDF Estimation in a Video Frame 

In the previous section the concepts of PDF estimation were applied to object shape rep­

resentation. III this t)('ction the sallle methods are applif'd to model the colour informat.ion 

oheserved for the parrot objPct. shown in Figure 4.5. The observed feature vectors contain 

L * a * b* colour infonnatjon, i.c. 

( 4.32) 

It call be seen in Figure 4.7 that colour observations taken from the foreground object 

form clouds in the 3-D fcat.ure space; the distribution of these feature vector are generally 
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multimodal and have a higher intra-class variance. A fundamental difference between colour 

and spatial distributions of video objects is that the colour distributions for different objects 

in the same scene can intersect in the feature space whereas the spatial distributions do 

not generally exhibit this property (except for quantisation errors at the object edges and 

translucent object regions). This effect will increase the Bayes error rate for colour based 

modelling compared to spatial based modelling. 

A video object can also contain multiple pixels having the same extracted feature vector 

values. This effect will generate dense non-Gaussian regions in the PDF of the feature space, 

and commonly occurs when the observed colour is at the limits of the cameras sensitivity 

range. The dense regions in the PDF can be reduced by limiting the maximum number of 

observations that can be made for each colour value. In this work it is assumed that the 

quantity of pixels having the same colour value is small compared to the size of the image 

and hence this effect is negligible. 
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Figure 4.7: The L * a * b* colour space distribution for the foreground video object. The 

object is extracted from Frame 00010 of the 'Parrot' sequence. 
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To visualise the modelling of the chromatic information models are built for both the 

foreground and background object for Frame 00010 of the 'Parrot' sequence. At each pixel 

in the video frame the posterior probability of the foreground object is computed using 

equation (4.3). Figure 4.8 shows the posterior probability maps for the three different 

techniques applied to estimate the object PDF's. 

Modelling the (multimodal) foreground object using a single trivariate Gaussian distri­

bution results in a reasonable segmentation quality. It is believed that this is due to the 

separation between the colour distributions of the two video objects, although errors are 

evident in the yellow and grey regions of the foreground object and the blue regions of the 

background object. Using kernel density models and Gaussian mixture models improves the 

discrimination between foreground and background colours, although there are still notice­

able deviations from the expected posteriors due to the inevitable colour similarity between 

some foreground and background regions (e.g. the Parrot objects beak). 

It can be seen that the three types of representational schemes all perform adequately 

at modelling the foreground and background colours iil this video frame, and that using 

colour alone the Parrot object can be located and tracked in the video sequence. In the 

next section the application of the models to video object segmentation is demonstrated by 

performing spatial-colour feature space based video object extraction for the full 'Parrot' 

sequence on a per frame basis. 

4.4.3 Spatial-Colour PDF Estimation in a Video Sequence 

The performance of the PDF estimation techniques within the proposed framework was 

evaluated by segmenting the "Parrot" test sequence into foreground and background video 

objects. The first step of this evaluation was to find the 'best' performing value of a 

(the uncertainty in the PDF representation) to be used for the kernel density model. To 

determine the value of a it was varied in the range 0.5 - 9 and for each value the average 

SQD and SQED measures over the test sequence was computed. The results are shown in 

Figure 4.9. 

It can be seen that a has to be large enough to incorporate any temporal changes in 

the underlying PDF. The effect of this requirement is that for Iowa values the accuracy of 

the video object segmentation drops dramatically. Above a ~ 3.0 the segmentation (both 

scene and edge based) is reasonably stable. A value of a = 3.0 was therefore selected. 
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Figure 4.8: The posterior probability maps for the foreground video object chromatic obser­

vations. (Top Left) Colour observations for Frame 00010 of the 'Parrot" te t sequence (Top 

Right) Modelled as a Gaussian distribution (Bottom Left) Modelled as a kernel density 

distriblltion (Bottom R.ight) Modelled as a Gaussian mixture model. 

The two experilllents above reinforce the lllessage that scene based evaluation of object 

segmentation is generally not representative of the perceived segmentation quality (see 

Figure 4.11 for the segment.ation result). For the case whcre a = 1 the average SQD is 

measnrecl at 94% yet the segmclltatioll for these frames is visually poor. The edge based 

SQED measure determines thc average accmacy over thc sequence to be 70% at (J = 1 

which is morc in line with a subjective assessment of the segment.ation quality. 

The Gaussian mixture Illodelused in this evaluation contained ~ 30 component densities 

per object, this number was determined automatically using an EM based algorithm with 

minllmUlll message length criterion [67]. 

A comparison of the SQD and SQED mean and standard deviation scores for the dif­

ferent representational techniques are shown in Table 4.1. It can be seen that kernel density 

model outperforms both the Gaussian mixture model and the Gaus ian density model on 
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Figure 4.9: Plots showing the average segmentation accuracy for a range of a- values when 

using kernel density models to represent the video objects. (Top Left) SQD (Top Right) 

SQED. These results are averaged over all the frames in the 'Parrot' sequence. 

the 'Parrot' test sequence. The Gaussian density performs much better than expected, per­

haps due to the fact that a colourful object is being tracked which is generally well separated 

in colour space from the background and hence a single multivariate provides a reasonable 

representation of the foreground and background objects. The Gaussian mixture model 

and kernel density model report a similar performance at scene level, with approximately 

98% of the scene pixels correctly labelled as foreground or background. At the edges of the 

video objects the SQED measure demonstrates that the segmentation quality degrades to 

82% for the kernel density and 79% for the Gaussian mixture model. This is probably due 

to the parametric form of the Gaussian mixture being unable to successfully represent the 

true spatial distribution of the Parrot object. 

[ /I J.LSQD I a-SQD I J.LSQED I a-SQED 

Gaussian mixture model 0.9828 0.0065 0.7910 0.0336 

Kernel density model 0.9871 0.0039 0.8210 0.0249 

Gaussian 0.9588 0.0022 0.7031 0.0159 

Table 4.1: Average SQD and SQED results for the three probabilistic representational 

methods. These results are averaged over all the frames in the 'Parrot' sequence. 

Whilst the results presented in Tables 4.1 show the avaerage performance of the rep-
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resentational schemes over the 18 frames of the 'Parrot' sequence they do not characterise 

the relative performance of the algorithms on a per frame basis. To achieve this per frame 

charaterisation the evaluation measures for each frame are plotted. The resulting plots for 

the SQD and SQED measures can be seen in Figures 4.10. In these plots it can be seen 

that the Gaussian mixture model based method not only gives a lower segmentation quality 

than the kernel density model, but that the segmentation degrades at a faster rate ov~r the 

18 frames largely due to the spatial mis-adaption of the model as the parametric form of the 

model inadequatly describes the spatial distribution of the foreground object. Interestingly, 

the Gaussian distribution appears to not degrade significantly over the course of the 18 

frames although its performance overall is not as good. This result suggests that the model 

may be useful as a technique for approximately locating the video object on a per frame 

basis. 
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Figure 4.10: Plots showing the per-frame segmentation accuracy for the three representa­

tional methods. (Top Left) SQD (Top Right) SQED. The segmentation accuracy at each 

frame in the 'Parrot' sequence. 

Figure 4.11 shows five resulting segmentation frames when using the proposed repre.,. 

sentational schemes. The kernel density model result is shown with various values of (J 

representing under smoothing (= 1.0), a near optimal smoothing (::::: 3.0) and over smooth­

ing (== 5.0) of the estimated PDF. Subjectively the most accurate segmentation results are 

given by the Gaussian mixture model and the kernel density model. These two methods 

generally track the majority of the object accurately with few false positives/negatives de­

tected due to misadaption of the representational models. With (J set too tightly the kernel 
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Ground-truth 

Gaussian density model 

Kernel density model for (J = 1 (top) 3 (middle) and 5 (bottom) 

Gau sian mixture model 

Figure 4.11: Video object seglllcntation and ground truth results demonstrating the differ­

ent represcntational models . These are shown for frame 1,5,1014 and 18 of the 'Parrot 

sequence. 
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model cannot adapt to the temporal change in the spatial PDF of the foreground object, 

this has the effect that the region of support for the object diminishes over time. The 

Gaussian density model gives reasonable localisation, but subjectively poor segmentation, 

of the foreground object; this is due to the representation of the underlying multimodal 

PDF with 30 parameters, which is not enough to capture the nuances in the distribution. 

4.4.4 Independent Spatial-Colour PDF Estimation in a Video Sequence 

The effect of independent spatial and colour modelling of video objects is demonstrated 

for the foreground object in the 'Parrot' sequence (frame 1, shown in Figure 4.1). In 

the independent model the PDF of the colour observations is estimated using a Gaussian 

mixture model. It is reasoned that, in general, the colour distributions are adequately 

represented by a Gaussian mixture model distribution under the assumption that a mixture 

of observed colours on an object are distorted by Gaussian noise. The spatial PDF of the 

object is estimated using a non-parametric kernel density model, this representational model 

has been demonstrated to give good performance for modelling the spatial distribution 

around the edges of video objects; 

The average SQD accuracy over the test sequence is measured to be 97%, which is 

marginally lower than joint PDF modelling using the Gaussian mixture model and kernel 

density model. The edge based SQED accuracy is measured at an average of 74%, which is 

significantly lower than the joint PDF modelling using Gaussian mixture or kernel density 

models (shown in Table 4.1). 

The resulting segmentation can be seen in Figure 4.12. Subjectively the segmentation 

result contains a coherent foreground object, although on closer inspection the mask contains 

a high proportion of false positives especially around the claw region. Comparing this result 

to Figure 4.11 the quality of the segmentation is between that of the Gaussian density 

model and the Gaussian mixture and kernel density models. This observation agrees with 

the measured SQD and SQED accuracy. 

4.5 Conclusions 

In this chapter probabilistic models have been applied to the problem of video object seg­

mentation. Three approaches to PDF estimation were described, implemented and eval-
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Figure 4.12: Segmentation result using independent models. 

uated in the context of video object segmentation. These three estimation methods were 

the Ganssian density. kernel density and Gaussian mixture models. It was demonstrated 

how these arc applied to the problem of ll10dellillg spatial and colour based distributions. 

The performance of these three methods was evaluated using a framework for video object 

segmentation and the metrics present.ed in the previous chap·ter. Finally, the performance 

of the joint spatial-colour PDF models were compared to an independent model where the 

Rpatial and colour components were modelled individually. 

The performance of the three types of PDF model was evaluated using a publicly avail­

able sequellre. The llIodels were implemented within a common framework to allow C0111-

par'ison between the lJleasured accmacy for t.he three approaches. This framework used a 

'uull' prediction step such that the previous frame models were used as the initial estimate 

ill the current frame. The models were subsequently adapted t.o the new observations using 

a per-frame reinitialisatioll strategy. 

Modelling a spatial-colour feature space, it was determined that the kernel density model 

achieves the 'best' accuracy for segmentation arollnd the edges of video objects. Kernel den­

sity models alld Gaussian lllixtme models were found to give similar segmentation accuracy 

wlleu measured at the scene lpvel. It was also found that. as expected. the average error 

per pixel is greater at the edges of video objects than when measured over the whole image. 

The impact of different kernel density model smoothing values was also evaluated. This 

parameter was found t.o give a reasonably stable segmentation accuracy above a reasonable 

minimulll value. 

The independent modelling of the spatial and colour PDF's of video objects was also 

quantatively evaluated alld was fonnd to decrease the edge- and scene-based accuracy of 

the segmented video object when compared to the joint spatial-colour PDF models. This 

reduction in accuracy was due to the spatially variant distribution of colom over the surface 

of the video objects, which could not be well represented by the independent spatial-colour 
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PDF model. 

In this chapter the following contributions were made: 

• Kernel density models were found to give more accurate segmentation around the 

edges of video objects than Gaussian density and Gaussian mixture models. 

• Kernel density and Gaussian mixture models were found to give similar segmentation 

accuracy when measured at the scene level. 

• The smoothing factor in the Kernel density models was found to give a stable seg­

mentation accuracy above a reasonable minimum value. 

• The separation of colour and spatial modelling was found to decrease the accuracy of 

the resulting object segmentation. 

• The SQED edge-based segmentation accuracy was found to be closer to the perceived 

segmentation quality than the scene-based SQD measure. 

The choice of representational scheme used to model a video object in the feature space 

has been demonstrated to have a significant effect on the resulting segmentation accuracy. 

Using a representational model that is ill-suited to the task will most likely degrade the 

accuracy of the segmentation of the object. From the evaluated representational schemes it 

appears that non-parametric distributions may be better suited to modelling the complex 

functional form of video objects. 

A key issue when performing probabilistic modelling of video objects in multi-dimensional 

Space is the computational efficiency of the algorithms. The computational requirements 

are reduced by dividing the modelling task into lower dimensional spaces that suffer less 

from the curse of dimensionality. Modelling marginal distributions of an object PDF is 

problematic due to the inherent spatially variant colour distributions of objects. In such 

circumstances the independent modelling of spatial and colour signals reduces the output 

accuracy of the video object segmentation algorithm. 

The representational scheme for video objects has a significant effect on the result­

ing segmentation accuracy. In this chapter probabilistic methods have been evaluated for 

representing video objects in multi-dimensional feature spaces. A key advantage of using 

probabilistic techniques is that they allow a principled video object segmentation framework 
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to be built, so that different representational algorithms can be directly compared. Further 

work is required to evaluate the presented methods on more varied test sequences, although 

the creation of per pixel ground-truth is required for many standard test sequences. In the 

following chapter sub-regions of objects that exhibit homogeneity in both the colour and 

spatial feature dimensions are modelled and updated in video sequences. This property 

allows independent PDF estimates to be evaluated in localised image regions, leading to 

more efficient algorithms, overcoming the problems experienced when performing this type 

of independent feature space modelling. 
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Chapter 5 

Propagation Strategies for Video 

Region Segmentation 

In the previous chapter the concept of modelling video objects in a feature space was 

demonstrated using a selection of probabilistic representational schemes. It was found that 

the kernel density model achieved the 'best' accuracy for segmentation around the edges of 

video objects and that both kernel density models and Gaussian mixture models gave similar 

segmentation accuracy when measured at the scene level. The independent modelling of 

the spatial-colour PDF of video objects was quantatively evaluated and found to reduce the 

edge- and scene-based accuracy of the segmented video object when compared to the joint. 

PDP models. 

In this chapter the modelling is performed at a region-level, dividing each object (and 

hence each video frame) into homogeneous regions within the feature space. The application 

of region models overcomes some of the disadvantages of using the type of object-level model 

applied in the previous chapter: 

• The objects to be defined have semantic meaning, and it is difficult to capture this 

semantic information at the object-level since it is commonly highly complex and 

exhibits a multi-modal character in the feature space. 

• The probabilistic models required arc generally computationally expensive when ap­

plied to the modelling of joint feature spaces. 

• The separation of some feature components (e.g. spatial and colour information) is 
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not a valid assumption due to the intrinsic multimodal properties of the probability 

density distribution in the feature space. 

Descriptions of regions and objects can be ambiguous in video analysis work. The 

incoming data in an video sequence is commonly quantised both spatially and temporally. 

The discrete unit of temporal quantisation is the image and the discrete unit of spatial 

quantisation is the pixel. A video-frame can be further divided into different levels of 

representation between the image-level (coarsest) and pixel-level (finest). Two such levels 

of representation are the aforementioned region- and object-levels. The definition of a region 

is chosen such that it is homogeneous due to some criteria (which is similar to the definition 

used by Deng and Manjunath [46]). 

Based on this definition the modelling of regions may be more beneficial than modelling 

at the object-level since regions are homogeneous with respect to some criteria that can 

be defined mathematically. Therefore, the advantages of using an explicit region based 

modelling approach are that: 

• The features can be assumed independently distributed between the taxanomic cate­

gories (e.g. motion, colour, space) 

• The processing of regions is more localised, leading to faster, more efficient algorithms 

• It is a well defined problem to innovate new regions in the scene 

• Region-level based descriptors can be tracked between frames 

Methods are introduced in this chapter for segmentating homogeneous regions of video 

sequences and a range of techniques for updating the region-based representation are pre­

sented. There exists a partition of the current video frame feature space I into S constituent 

regions Is such that: 

I = U Is where s = 1, ... , S (5.1) 

This mirrors the splitting of the feature space into constinuent objects in the previous 

chapter as shown in equation (4.1). The regions that are defined have parallels to the work 

of motion segmentation where sequences with abundant motion of objects are segmented 

into homogeneous regions in motion and colour feature space. However as demonstrated in 
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Chapter 3, the addition of motion information reduces the quality of the segmentation at the 

edges of the regions (although motion information can be beneficial in certain sequences). 

The video frames (and implicitly the video sequence) will therefore be decomposed into 

constituent regions by applying statistical modelling, adaption and innovation techniques. 

Applying a region labelling scheme it is possible to extend this work to the problem of 

extracting semantic video objects. 

5.1 Previous Work 

It is common in video object segmentation schemes to propagate the representational models 

between frames by simply using the previous frame representation - unchanged - in the 

current frame. Of course, this type of inter-frame prediction methodology is based on the 

assumption that the object does not move a significant amount in between frames and is 

therefore a sequence dependent assumption. For many standard test sequences this is found 

to be a reasonable assumption and has been used in video object extraction schemes by 

several researchers e.g. [98,61,135,171,91,11]. 

Castagno et al [27] use the motion information to warp the current frame labelled 

segments to the next frame, from these warped segments markers are derived to allow 

guided initialisation of the cluster based representational models for the regions (and hence 

objects). Marlow and Connor [111] apply a similar method except that the statistics for the 

segments in the new frame are calculated from the motion projected partition of the regions. 

The approaches of [128, 112,6] motion compensate regions forwards to find correspondances 

using set relationships between the projected regions and the homogeneous regions detected 

in the current frame. The regions in the work of Chalom and Bove Jr. [30] are defined by a 

set of training points provided by the user. In their work the inter-frame prediction stage 

warps the individual points to the next video frame from which pixel-wise classification of 

the scene is performed. 

[149,77, 76] apply translational motion models to warp regions between adjacent frames 

to find correspondances using pixel-wise set relationships between the projected regions and 

the current frame regions in an approach similar to [112, 128]. 

Wang [52] performs affine motion based region projection and merging, the projection 

error is used to resolve any conflicting regions. These projected regions are used to extract 
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watershed markers from which the new regions of support can be found. Fablet et al [66] 

apply the affine motion model in a slightly different approach. Instead of applying the model 

to warp the object representation they instead use it to determine the dominant motion in 

the video frame (assumed to be the camera). Colour regions that do not follow this dominant 

motion are found and assumed to belong to the moving objects in the scene. Deng and 

Manjunath [46] use affine motion models to warp homogeneous regions forwards through 

sequences between key framees. At the key frame the warped regions are matched to a colour 

and texture segmentation of the scene to determine the correspondance and hence allow 

long term tracking. Heuristic rules are subsequently applied to assign uncovered regions 

to the tracked regions in the scene. Salembier et al [152] peforms region tracking using 

affine projections with connectivity constraints of the regions at the previous frame, these 

are subsequently used as markers for a watershed based region growing algorithm. Patras 

et al [134] use an affine motion model to propagate watershed regions to be used as a prior 

temporal constraint on an iterative motion estimations / labelling process. [120, 121, 65, 64) 

applied the affine motion model with a geometric filter to allow the affine parameters of 

tracked video regions to be recursively estimated. Pateux [133] applies the affine motion 

model to perform backwards propagation of regions to the previous object segmentation 

map, the motion model estimate is smoothed using the motion estimates of neighbouring 

regions to give a more. stable result. 

Mech and Wollborn [117] apply a projective motion model to motion compensate ad­

jacent frames t.o bring them into correspondance (in the case of a moving camera); after 

this a change detection is applied to find the regions of the image frame that belong to 

a moving object. Gu and Lee [83) apply the projective motion model to warp the object 

boundary between frames, they assume that the object itself is near-rigid does not undergo 

any significant non-rigid (Le. articulated) motion between frames. To accomodate any 

non-rigid motion a boundary adjustment stage is used to correct the boundary estimate in 

the current frame. 

If the expected motion in the scene cannot be determined a priori then a hierarchy of 

motion models can be evaluated to determine the simplest model that can accurat.ely warp 

a region of an image. Guo et al [95] apply a hierarchy of motion models t.o determine the 

simplest model t.hat can be used to warp t.he boundary represent.ation of an object. The 

residue error after motion compensation is measured using t.he simplest. (i.e. translational) 
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motion model and compared to the next most expensive model to check if there is any 

improvement in the accuracy of the result. This is performed upto the eight parameter 

planar projective motion model. In the case of minor improvement in warping accuracy 

between adjacent models the simpler motion model is chosen. 

Posing the inter-frame prediction and intra-frame update schemes in the context of 

tracking allows recursive filtering methods to be applied to the problem of predicting and 

correction the video object representational schemes. Raja et al [143, 113] applied this 

methodology to estimate the bounding box location of a new object by recursively filtering 

the mean position of the component Gaussians in a mixture model. Once the bounding box 

location had been estimated a coarse-to-fine strategy was applied to find the object support 

on a per pixel basis. 

Oliver et al [130] applied a zero-order Kalman filter to update the spatial parameters 

for each video object (e.g. face and lips); the state vector (blob centroid and bounding box 

dimensions) of this filter were updated in the MAP decision rule based on the newly observed 

object support. The object segmentation was found to be much more stable when using 

this type of filtering. A similar application of the Kalman was used by Chen and Huang [31] 

for tracking regions of interest in video sequences. Meyer and Bouthemy [120, 121] applied 

the Kalman filter with an affine parameter state vector to track the convex hull of spatio­

temporal regions. The per region affine parameter measurements are made by solving for 

the affine motion model within the region from a dense motion field. The matching process 

is achieved by minimising the distance between the predicted and observed polygons by 

varying the translation and rotation of the predicted region polygon and allowing some 

vertices to be in an occluded state. The tracking of affine regions in this way assumes that 

3-D motion terms are negligible in region tracking since accurate 3-D reconstruction is not 

required. 

Similarly, Ziliani and Moscheni [65] investigated the use of Kalman filtering of affine 

motion information to track the location of spatio-temporal video regions, allowing accurate 

position and motion predictions to be made. The predicted and observed regions at a frame 

are dffi' . t fl corresponded using the affine motion parameters, moment base a ne mvanan spa Ia 

featUres and trajectory information. The use of the Kalman filter is proposed as being 

advantageous during occlusions since the object location can be estimated during such an 

event. In earlier work [64] a similar recursive estimate was used to both guide the motion 

138 



segmentation process and perform multi-hypothesis correspondance of regions. 

Particle filtering [12] provides an alternative strategy to the Kalman filter when the 

process noise in the system are non-Gaussian or the state of the tracked object is non­

Linear. Particle filtering has been applied to the problem of colour based region tracking in 

video sequences by [136, 127, 182]. In such approaches, objects are identified on a per-frame 

basis using some form of colour similarity (extended with edge based features in [182]) and 

then tracked between frames using a particle filter tracker. A potential drawback when 

applying particle filters is the tradeoff between computational complexity and drawing a 

sufficient number of samples to adequately describe (and hence propagate) the underlying 

density (which, if arbitrarily complex, may require a prohibitive number of samples). 

The goal of the intra-frame update step is to correct the estimated video object represen­

tation by updating the representational model for the object using the current frame data. 

The dynamic nature of video sequences makes this a challenging stage in the segmentation 

process, a balance must be sought between the adaptibility of the model and the robustness 

to noise in the underlying signal. For specific video sequences the assumption of constant 

object appearance [186] may result in the intra-frame update of the representational being 

a trivial step (e.g. [30]). This assumption is generally only valid for short video sequences. 

A common per frame update methodology for the object representational models is 

to find the region of support for the object in the current frame using the propagated 

models and then reinitialise the object representation based on this new found object region 

(e.g. [61 D. For parametric representational schemes the per frame reinitialisation can be 

an expensive and time consuming technique for intra-frame updating of the models. For 

nOil-parametric methods - where the functional form of the model is the data - this type 

of update can be computationally cheap. A better strategY for updating parametric models 

is to use the previous frame model as a seed to guide the reinitialisation of the models to 

the newly observed data. This type of approach has been applied by [27, 135, 145, 111]. 

Meyer and Bouthemy [120, 121] track affine regions by imposing that the convex hull of the 

region always has the same number of vertices, if the distance between the predicted and 

observed objects is large the region representation (a polygon) is reinitialised to the most 

recent observation. 

Alternatively, the object representation can be adapted to take into account changes in 

the ob· . 0 . ·bl t I . Ject appearance due to lighting, pose or motIon changes etc. ne pOSSI e ec lllIque 
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to achieve this on a per frame basis is to apply a recursive filter to smooth the adaption 

of the model so that predicited object parameters are less susceptible to noise. Raja et 

al [143, 113] applied a recursive filter of this type to adapt the parameters of a Gaussian 

mixture model to the dynamically changing scene properties due to illumination and viewing 

conditions etc. 

5.2 A Region-Based Segmentation Algorithm 

In this section a region based segmentation algorithm is developed in the context of video 

sequences. Like video object segmentation this algorithm comprises three main components 

- feature space, representational model and model update. The feature space applied in 

this algorithm is the XY L * a * b* spatial-colour space (introduced in Chapter 3). The 

representational model, presented in Section 5.2.1, takes advantage of the region based pro­

cessing by combining both parametric and non-parametric models for each homogenenous 

region. Finally the model update methodology is presented in Section 5.4, Section 5.5 and 

Section 5.3. These sections detail the inter-frame prediction and intra-frame update for the 

regions on a per-frame basis, followed by a description of the innovation and termination 

criteria for regions and finally the special case of initialisation of such regions in the first 

frame of a sequence. 

5.2.1 Representation of Spatial-Colour Regions 

The segmenting of regions by estimating the PDF in a high dimensional feature space 

can be computationally prohibitive (and suffer from the curse of dimensionality). To effi­

ciently model the joint spatial-colour PDF distribution of video regions the properties of 

region-based representation are exploited. The main advantage of using a region-based rep­

resentational scheme is that some feature space dimensions can be assumed independently 

distributed between the taxonomic categories. Video frame labelling using region-based 

representational schemes can be more efficient than an equivalent object-based representa­

tion by implicitly localising the labelling process to areas around the regions (which also 

have less complex representational models than objects). 

Object-level models do not take into account articulated motion i.e. significant differ­

ences in the motion of individual regions belonging to a parent object. The ability to model 

140 



the varying motion over an object can improve the prediction of the representational scheme 

(particularly the spatial distribution) between frames. In the proposed reprensentational 

scheme the modelled regions represent spatial areas with colour homogeneity in the video 

using independent colour and spatial models. 

The joint distribution of the spatial x and chromatic f components of an XY L * a * b* 

feature vector a is given by: 

p(a) = p(f)p(x) (5.2) 

The form of this expression assumes an independence between the chromatic information 

of a region and its spatial distribution. The PDF p(a) is modelled for each region using 

parametric and non-parametric models in each colour or spatial component respectively. 

The observed chromatic distribution for a region As is modelled using a multivariate normal 

density of the form: 

P(fiIAs) = } I exp [-~ (fi - Ps)T~;l(fi - Ps)] 
(21[)2I~sI2 

(5.3) 

fi is the chromatic L * a * b* observation at the i'th pixel and ~s is the covariance matrix 

and /-Ls is the chromatic mean of the s'th region model. The a posteriori probability that 

this observation, fi' belongs to region As is given by Bayes theorem. 

The observed spatial PDF of a region As is modelled using a Gaussian kernel density 

model of the form shown in equation (4.17) i.e. 

1 N 1 {IiXi - xn 112} 
p(XiIAs) = N]; (21[(j2) exp - 2(j2 . 

(5.4) 

where Xi is the spatial feature vector extracted at the i'th pixel and Xn represent the N 

spatial feature vectors extracted at pixels within the region As. Evaluating this function will 

be expensive if the value of N is large. A faster evaluation of the spatial distribution can 

be achieved by forming a binary image for each region and convolving with a 2-D Gaussian 

kernel. Changing the value of (j in the model allows the uncertainty of the region shape to 

be changed, in scenes with large motion setting (j higher allows the spatial model to adapt 

to such motions. 

The MAP decision rule is applied to find the per frame support for the regions as they 

propagate throughout the video sequences. At each pixel observation vector 3.i the pixel i 
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is labelled by choosing the region index s* such that 

(5.5) 

where, from equation (5.2), 

(5.6) 

p(xiIAs) is obtained from the spatial model of equation (5.4) and p(fiIAs) is obtained using 

the Gaussian density model of the L * a * b* colour distribution in the s'th region defined in 

equation (5.3). As the spatial model has a known uncertainty, 0", therefore equation (5.5) 

can be evaluated for regions local to the pixel that have a non-zero spatial probability. This 

leads to a very efficient algorithm for finding the region of support. The prior probability of 

the regions P(As) can be set as equiprobable for all regions or approximated by the relative 

area of the region to the video frame. 

5.3 Initialisation of Regions 

At the first key-frame in a video sequence, the region based representational scheme is 

initialised to provide models for the homogeneous regions in that key-frame. Once the 

models are initialised these regions are then propagated through the video sequence using 

inter- and intra- frame strategies, presented in Section 5.4. 

The regions are initialised using a colour based representational scheme. Figure 5.1 

provides an overview of this process. The initial image is first segmented based on L * a * b* 

colour information by learning the natural clusters in the data (applying a variant of the 

expectation maximisation algorithm for Gaussian mixture models [67]). The segmented 

image consists of disjoint clusters, therefore connectivity analysis is applied to find the 

individual homogeneous colour regions within the scene. A minimum region size is enforced 

to remove insignificant regions. Each remaining colour region is subsequently analysed to 

generate the colour and spatial PDF representational models. The initial prior probability 

for each region-level representation P(As) is computed as 1/ S where S is the number of 

regions created (i.e. equiprobable). 
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Figure 5.1 : Overview of the initialisation process for video region segmentation. 

5.3.1 Choosing a Minimum Area Threshold 

The minimum area threshold N min used to remove insignificant regions can influence how 

well the region models represent the PDF of the video frame. It is found that the majorit.y 

of the regions generated by the initial connectivity constrained colour segmentation of the 

scene are insignificant and can be removed, improving the computational demands of the 

algorithm. This culling st.ep is designed such that the removed regions are small enough to 

be absorbed by the remaining regions in subsequent update steps. Any unclassified pixels 

in the output segmentation lllask at each frame are either left unprocessed or labelled using 

a mode filter, depending on the application. 

To demonstrate, the number of initial regions per unit area is measured for different min­

IInum size thresholds Nmin for three different key-frames from well known test sequences -

'Table Tennis ' , 'Parrot" and 'Coastguard'. The 'Table Tennis' (25,344 pixel) and 'Coast­

guard' (25 ,344 pixel) key-frames are shown in Figure 5.10. The 'Parrot' (46.080 pixel) 

keY-fralll . I . . I 1 t' e IS s lOwn III Figure 4.5. Figure 5.2 shows the decreasing exponentl(l, re a lon-

ship between the minimum region size (scaled by t.he video frame area) and t.he number 

of connected . , f . t ' t) It b reglOns p er unit area (i.e. an area denSIty unctIOn es llna ,e . can e seen 

that the '. . . . II . .' t . lllaJollty of regIons for all three test sequences are sma legIOns represen ,lllg a 

Small 1)1'0 ·t' d b t th s a e por 1011 of the overall image. The small offsets evi ent e ween e curve r 

a function of the textured ness of each video frame i.e. a scene containing large amounts 

of texture 'II b . . ff b . lIe WI e segmellted mto smaller regIOns. The trade-o etween removmg Sllla r 

regions and retaining the representativeness of the region-based models is an important 
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Figure 5.2: The number of connected regions plotted against the minimum region size for 

three video frame. The frames are taken from the 'Table Tennis', 'Parrot' and 'Coastguard' 

sequences. The minimum region size and number of regions are scaled by the area of the 

video frame. 

factor. For the 'Table Tennis' it is found that a minimum region size of N rnin ~ 7 pixels 

removes approximately 92% of the initial regions accounting for 15% of the video frame. 

5.4 Propagation of Probabilistic Spatial-Colour Regions 

To exploit the temporal information in video sequences, methods are required for prop­

agating the homogeneous regions on a per-frame basis. In the case of the independent 

spatial-colour PDF's methods are sought that propagate the independent density models. 

Within a dynamic video sequence new, previously unseen, regions often appear in the video 

frame. The model adapt ion is therefore required to be constrained to prevent misadaption 

to new regions. The consequence of this constraint is that methods are also required to 

detect new candidate regions in the unassigned portion of the video frame. 

Figure 5.3 shows a framework for a region-based video segmentation algorithm. The 

region models from frame t -1 are propagated in the inter-frame prediction stage to become 
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Figure 5.3: Framework for inter-frame prediction and intra-frame update of probabilistic 

region-level models. The regions are propagated on a per frame basis in this framework. 

the initial estimate for the models in frame t. These models are subsequently updated in the 

intra-frame update step using the observed video data at frame t. New models are innovated 

in this intra-frame update step. This figure can be compared to the earlier object-based 

Figure 4.2 where the inter-frame prediction simply uses the models at frame t - 1 without 

explicit propagation and the intra-frame update applies a MAP based decision rule followed 

by a stage of model reinitialisation. 

Updating the regions on a per-frame basis is required to allow the temporal evolution of 

the representational models, and hence account for dynamic changes in the incoming video 

data and ensuring the representation of the video is meaningful. The goal when updating 

the regions is to seek a balance between the following factors: 

1. Preserve existing region homogeneity i.e. minimise misadaption of existing regions 

2. Minimise the innovation of new regions i.e. maximise lifespan and size of existing 

regions 

A video region segmentation scheme that does not preserve region homogeneity will 

extract what are likely to be semantically inhomogeneous regions. Similarly, a scheme that 

has a large volume of short-lived new regions will be a difficult scheme within which to 

add object level labelling or temporal analysis. It is within this context that methods 

for adapting the PDF models of spatial-colour regions throughout the video sequence are 

introduced. 
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5.4.1 Inter-frame Prediction of Regions 

The goal of the inter-frame! prediction, step is to propagate the previous frame represen­

tational models to obtain a predicted model for the current frame. This predicted model 

is not expected to correlate perfectly with the observed feature vector information, but it 

is expected to be a better match than simply using the previous frame models. This dif­

ference becomes increasingly important for regions that move significant distances between 

the sampled time slots of the video sequence. 

In this section three strategies are introduced that can be applied to the problem of 

propagating independent spatial-colour video regions. These techniques commonly analyse 

the spatial trajectory information of the regions to propagate the spatial model of the 

regions between frames. A related set of techniques for propagating regions are appearance 

analysis methods which make predictions of object appearance using the feature space PDF 

model information. 

In this work the inter-frame prediction is performed in the spirit of trajectory analysis 

methods. This is based on the reasoning that the spatial motion of objects is more significant 

inter-frame than the appearance 'motion' of objects i.e. the colour information of an object 

is generally slow moving per-frame and can be adapted to in the intra-frame update step. In 

some sequences (e.g. with fast lighting changes) this may not be the case and recursive filters 

can be applied to help predict the lighting change per-frame. Due to the dynamic nature 

of many video sequences such techniques often only work well in constrained environments 

i.e. stationary cameras viewing a near-stationary scene. In scenes with moving objects and 

lighting changes it is an incredibly complex problem to classify changes in region appearance 

as being due to lighting change or, for example, partial occlusion. 

In this section strategies for inter-frame prediction of video regions are introduced. The 

three strategies encompass the popular methods by which region models are propagated 

from frame to frame. The first method - 'Frame t -1 Models at Frame t' - is really a null 

step, in that the regions at the previous frame are not explicitly propagated between frames 

and retain the estimated spatial model from the previous frame. The second method -

motion model based compensation - warps the video regions between frames by estimating 

a per-region motion model using pre-computed optical flow information. The final method 

IOften referred to as tracking, warping, motion compensating in the literature. 
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- recursive filtering - assumings a trajectory model for the video region and attempts to 

predict the next frame model using the previously observed spatial information within a 

temporal window. 

'Frame t - 1 Models at Frame t' Strategy 

This type of inter-frame prediction methodology is based on the assumption that the regions 

present in the scene do not move a significant amount in between frames (and is therefore 

a sequence dependent assumption). The propagated region PDF models at time t are the 

estimated PDF models from the previous frame t -1 i.e. 

(5.7) 

where p' (aIAs,t) is the propagated PDF formed from the model parameters belonging to the 

8'th video region As at frame t. This type of 'null' prediction strategy is used as a control 

to compare the performance of other more complex strategies. 

This method is only applicable to sequences with low motion between frames, in the case 

of high motion sequences the propagated models generally will not match the observed data. 

Figure 5.4 shows examples of this phenomenon for the differences between two consecutive 

object-level spatial representations (binary masks). The difference image for the 'Claire' 

sequence shows minor differences between the spatial distribution of the foreground object, 

for this sequence the update mechanism suggested in (5.7) is likely to be sufficient. For the 

'Children' sequence, the Illajority of the moving ball region does not overlap between the 

consecutive frames presented therefore the propagated region model using this strategy is 

likely to reduce in size and diminish over a short period. 

Motion-Model Based Compensation Strategy 

This inter-frame prediction scheme projects the spatial component of the region models 

between frames such that the models are geometrically transformed to account for the 

motion of the regions between temporal observations within the scene. Figure 5.5 shows 

a general framework for motion based compensation of regions in the spatial plane. The 

motion-model is fitted to per pixel optical flow for each region to generate per region motion 

models. The optical flow is computed from two (or more) frames in an independent process 
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Frame t-1 Spatial mask difference image Framet 

LOW MOTION 

HIGH MOTION 

Figure 5.4: Examplcs of two qualit.ative levels of motion encountcred in video sequenccs. 

(Top-R.ow) A lower Illotion scquence showing frames 00020 and 00021 from t.hc ·Claire· 

sequence. (Bot.tom-now) A higher motion scqucnce showing frames 00019 and 00020 from 

the ·Children· sequence. The binary masks show the difference in the object. segmcntat.ion 

masks between these two frames. 
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Figure 5.5: Inter-frame prediction of probabilistic region models using a motiolllllOdcl based 

scheme. 

148 



to the region tracking module. To generate this optical flow the Lucas Kanade method 

introduced in Section 3.3.3 is re-used. For each region the motion model parameters are 

estimated to describe the general motion of the region between adjacent video frames. This 

motion model can then be used to transform the spatial PDF model for each region. 

A common motion model in the inter-frame prediction stage is the six parameter affine 

model - this type of motion model preserves parallel lines and allows for rotation, scaling, 

shearing and translational motions [155]. A general affine transform is defined by [155, 73] 

y' =A y 
Ul U2 U3] [ x 
U4 U5 U6 Y 

o 0 1 1 

(5.8) 

x' x 

1 1 

In the matrix A are the model parameters Ul ..• U6. This transform displaces a point from 

position (x, y) in the source frame to the location (x', y') in the destination frame. This 

transform is defined around a spatial reference point, in (5.8) this is assumed to be at the 

origin of the co-ordinate system, if a different spatial reference point is used (for example, 

the spatial mean of a video region) then the relevant translation is made to the image 

co-ordinates to compute their position relative to the spatial reference point. 

In general the affine transformation is defined by six parameters which are determined 

by fitting the transform to at least three (but often more) motion measurements using a 

least squares method. The per region affine motion model are estimated by fitting the 

transformation to the per pixel optical flow information in that region. Since the transform 

of discrete pixel locations often results in discontinuities in the transformed image a bilinear 

interpolation scheme is often applied to estimate the missing pixel values in the warped 

Image. 

Recursive Filtering Strategy 

Inter-frame prediction of regions can be performed using recursive filtering techniques that 

are popular in the field of visual surveillance. In this work the Kalman filter is applied to 

the problem of inter-frame propagation of video regions i.e. 'tracking' the regions through 

the video sequence on a per-frame basis. A general framework for using a recursive filter in 

the inter-frame prediction step of video region segmentation schemes is shown in Figure 5.6. 

The per frame PDF models found at frame t-l are first used to update the state information 
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of the recursive filter (e.g. the velocity based on a centroid measurement). This per region 

trajectory model is subsequently used to transform (i.e. propagate) the region spatial 

models based on a predicted trajectory 'between the two frames. Therefore the resulting 

region models after this inter-frame prediction have the colour model from frame t - 1 and 

a propagated spatial model at time t. 

Frarne [-1 

Per region PDF 
models frame t-1 

Per region 
trajectory update 

Motion 

t-----------.i compensation of 
per region PDF 

models 

Per region 
trajectory 
prediction 

Propagated per 
region PDF 

models frame t 

-----------. 

Figure 5.6: Inter-frame prediction of probabilistic region models using a recursive based 

scheme. 

Let us define a D-dimensional state vector qt for a region being tracked at time t. This 

state vector cannot be directly measured and the goal of all tracking algorithms is to make 

an estimation of this state based on noisy observations. At each discrete time instance 

a noisy observation vector at is made for each of the region being tracked; the contents 

of this vector are commonly trajectory related measurements describing the region e.g. 

bounding box information [xc, Yc, w, h]T. Tracking algorithms generally seek to estimate 

the state vector at a current time instance based on the set of observations and to predict 

future observations to constrain the subsequent region tracking, increasing the efficiency 

and reliability. 

In a Kalman filter the probability of the state vector p (qt I {aI, ... , ad) is modelled 

by a single Gaussian function i.e. {J.Lt, :Et } where ILt is the most probable state and the 

uncertainty is characterised by :Et . This Gaussian density is propagated over a period 

of time by fusing the parameters and the prediction of the observation with the actual 

observation at. This fusion weights the predictions and the observations by their relative 
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uncertainty, stored in the Kalman gain matrix K t. The estimated state vector, <It, is given 

by: 

(5.9) 

the associated uncertainty of the state estimate is given by 

(5.10) 

where K t is the Kalman gain matrix: 

(5.11) 

and H is the measurement matrix that transforms a state vector to an observation vector 

i.e. at = Hqt. The predicted observations and uncertainty are given by 

a* = Hq* (5.12) 

~* = H~*HT a q {5.13} 

If the state vector includes the first order derivatives i.e. q = [qb til, ... ,qD, tiDr then 

the prediction for the state at time t + t:::..t is given by q;+Clt = A<It with uncertainty 

~~,t+Clt = Af:q,tAT + Gq,tt:::..t4• The (2D x 2D) state transition matrix A is given by: 

BOO 

A= 
o B o 

[0

1 
t:::..1t 1 where B = (5.14) 

o 0 B 

To predict the regions per frame the Kalman filter is configured using the following state 

vector (holding first order derivatives of the centroid): 

(5.15) 

where Xc and Yc represent the centroid of a region's bounding box, which is of width wand 

height h. The observation vector for the filter contains the observable information about 

the bounding box: 

(5.16) 
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The bounding box dimensions are tracked to allow the system to adapt to limitcd changes 

in the object appearance due to motion. Alternatively, a sct of affine parameters could bc 

estimated using the filter (e.g. [65]). An affine parameter Kalman filter of this type is 

not evaluated in this chapter due to the reliance on the output of the affine motion-model 

estimation. 

5.4.2 Intra-frame Update of Regions 

The goal of intra-frame aciaption is to update predicted region models to the new observed 

feature vectors in the current video frame. This adaption can be performed for either the 

colour Blodel. the spatial model or both. In t.his section two strategies for intra-frame 

updating of video regions are introduced. 

Reinitialisation Strategy 

A COUlltlOn npdate methodology for region-based represent.ational models is to find thc area 

of support in the current frame using the propagated models ami then reinitialise thc models 

to represcnt thc new observations. Such a schellle is presented ill Figure 5.7. 

Propagated per Rebuild per region Esllmaled per 

.1 region PDF Bayesian region PDF models USing region PDF 
models frame I labelling 01 frame I new regions of models frame I 

~ support 

~ i 
Fealure veClors (\ 

(Final) BayeSian 

I reglOO labelling of 
frame I V frame I 

Figure 5.7: Framcwork for intra-fralllc update of probabilistic region models llsillg a rcini­

lialisation ba .. 'led schemc. 

In this scheme the propagated (i.e. pTedicted) models from time index t - 1 are used 

to generate a labell ing of the newly observed frame t. The rcgion models arc Teset and 

initialised to the newly observed feature vectors 'belonging' to each region. This process is 

a simple and effective technique for updating the feature space PDF modeL on a per frame 

basis. 
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Figure 5.8: Propagat.ed regions resulting from constrained and unconstrained intra-frame 

reinitialisation strategies. (Centre) Misadapted regions due to unconstrained intra-frame 

reinitialisatioll strategy for frame 00016 taken from the 176 x 144 QCIF sequence 'Table 

Tennis ' (Left). (Right) A constrained intra-frame reinitialisation strategy. Notice that 

the regions in the constrained rcinitialisation strategy do not 'spill-over' colour boundaries 

in the scene. For example, the background and poster objects are merged into a single 

inhomogeneous rcgioll using t.he uncollst.rained strategy. III tllf' constrained strat.egy the 

poster object relllaillS nndefined, with 110 repn'sentative match found within the set of 

existillg regiolls. 

A major drawback of t.his method is that without constraints on the adaption the regions 

can 'drift' due to the "winner takes all" nature of the MAP decision rule. The effect of this 

misaciaption is d mon ' tI·ated for the 'Table-Tennis ' sequence frame 00016 in Figure 5.8. It is 

rIear that. lllany of the regions are HO longer homogeneous in colour. To red lice misadaption 

of the representational models a constraint can be introduced in the intra-frame update 

scheme. This constraint is a distance threshold on the MAP decision rule step. A pixel is 

only cOllsidered ill the MAP update step jf the colour feature vector is within a Mahalanobis 

distance threshold T of the colour cluster mean belonging to the n'gion under consideration. 

This has the efrect that. regions arc> only initialised to new observations that are illliers to 

the modelled colour PDF of that region. 

The effect of this updated decision rule is shown (right) in Figure 5.8. This method 

preserves the homogeneity of the existing regions at the expense of having large areas of the 

final image unassigned since the Mahalanobis distance of these observed feature vectors from 

the mean feature vector of all regions has exceeded the threshold T. For such a constrained 

technique to be applicable to video region (and object) segmentation a methodology is 

required to innovate new regions to model the unassigned areas of the video frame. 
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Recursive Filtering Strategy 

For a newly observed frame in the video ,sequence the region-based model can be adapted to 

take into account changes in the object appearance due to lighting, pose or motion changes 

etc. One possible technique to achieve this on a per frame (i.e. sequential) basis is to apply 

a recursive filter to smooth the estimation of the model so that predicted parameters are 

less susceptible to misadaption caused by erroneous data. The observations are therefore 

assumed to be made from a slowly varying (non-stationary) signal. 

Figure 5 .. 9 shows one type of recursive strategy for estimating model parameters. This 

strategy is based on methods using recursive estimation methods. In such a scheme the 

current frame t is again partitioned using the models propagated from frame t - 1 in a 

Bayesian decision process. New 'observation models' are created and fitted to these newly 

detected image regions. The predicted region models are subsequently updated using a 

recursive strategy to estimate the model parameters from the prediction and the observation. 

One such strategy is to regularise the estimated model parameters (h using a rolling average 

of the form: 

Os,t = aOs,t-1 + (1 - a)Bs,t (5.17) 

(}s,t represents the set of model parameters for the region As at time t. Os,t represents the 

set of 'observation models' and Os,t-1 represents the set of model parameters recursively 

estimated in the previous frame. To reduce the effect of misadaption a constraint can be 

applied in the labelling scheme similar to that shown for reinitialisation. 

A different form of recursive filtering is to use the region models in the previous frame 

t - 1 as seeds to find the models in the current frame t. This approach is generally only 

applicable to clustering based algorithms. An example of this is the incremental (or online) 

EM algorithm where the model parameters are recursively updated by each newly observed 

feature vector, weighted by the probability that the feature vector belongs to that model, 

which allows the model to slowly adapt to changes in the true PDF. 

The two techniques presented above for intra-frame model update allow online adaption 

to the unfolding scene in a video sequence. This leads to algorithms that can be used 

for representation of dynamic sequences. If constraints are imposed on the intra-frame 

adaption, a methodology is required to allow new region-based models to be generated to 
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Figure 5.9: Framework for intra-frame update of probabilistic region models using a recur­

sive strategy. 

represent previously unseen video regions that are not well modelled by the existing regions. 

Such a methodology is presented in Section 5.5. 

5.5 Termination and Innovation of Regions 

The labelling of the current frame t with the propagated regions from frame t -1 may result 

in region models that are not supported by any observations or observations that are not 

supported by any region models. When regions are no longer supported by the observed 

data, a mechanism is required to terminate such regions since they are no longer active 

in the representational scheme. A constrained intra-frame update methodology results in 

areas of the current video frame that are not modelled by any of the existing regions. In 

such a scenario methods are required to innovate new regions to model these previously 

unseen areas of the unfolding video sequence. 

5.5.1 Termination 

In the case where an existing region model is not supported by the data in the current frame 

the membership of observations to the s'th region is a null-set. Two termination strategies 

can be adopted in this event. Either region As is terminated at the frame at which there 

is no supporting evidence or the predicted trajectory information can be used for tf frames 

before deciding to ten~Jnate the track (if no further observations supporting the track are 

made). 

In this work regions are terminated at the frame where there is no supporting evidence, 
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this leads to a more efficient algorithm since 'blind' tracking (i.e. without observation) 

often fails to recover a temporarily occluded regions due to the complex, dynamic, nature 

of video sequences. The total number of regions is updated after the termination stage as 

S = S - 5' where 5' is the number of regions terminated. 

5.5.2 Innovation 

The constrained intra-frame update of regions results in pixels that are not well described 

by any of the existing region models. A method is required to innovate new region models 

that represent the newly formed (disjoint) unassigned region. This innovation is achieved by 

localised application of the initialisation strategy presented in Section 5.3. Let the disjoint 

unassigned region of video frame t feature space be denoted by I0. A method is required 

to partition this unassigned region into a set of 5" new homogeneous regions i.e. 

I0 = U Is where s = 1, ... , 5" (5.18) 

The 5" innovated regions are found by applying the technique presented in Section 5.3 

with a difference that the processing is confined to the unassigned region I0 (as opposed to 

the entire video frame feature space I). This innovation step is reasonably efficient due to 

the relatively small size of I0 per frame. The total number of regions is updated after the 

innovation stage as 5 = 5 + 5" where 5" is the number of regions innovated. 
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5.6 Performance Evaluation of Region-Based Video Segmen­

tation 

When performing region-based segmentation of video sequences the type of segmentation 

extracted depends on the requirements of the application. For the proposed region-based 

segmentation algorithm the following factors are deemed important: 

• Fidelity: Ensure that the region PDF models are representative of the video data. 

• Efficiency: Preserve region homogeneity whilst maximising the area of each region. 

• Stability: Minimise the innovation of ilew regions. 

These criteria are used as the basis of the metrics by which the performance of the video 

region segmentation algorithm (and its variants) will be evaluated on a per-frame basis. 

To measure the representativeness of the region model, an image-wide error metric is 

proposed based on the reconstruction error when regenerating the scene from the colour 

information of the regions. The error metric implicitly models region homogeneity in this 

context since inhomogeneous (and hence non-:-Gaussian) regions will not be representative 

of the underlying colour PDF. The innovation of new regions is measured by analysing 

the innovation rate and termination rate of regions. To improve the analysis, these two 

measures are supplemented by the average size and quantit.y of the regions per frame in the 

video sequence. 

This section presents t.he test. sequences, performance measurements and experiments 

that will be applied to evaluat.e t.he region-based segmentation algorithm presented in Sec­

tion 5.2. The actual evaluation results are presented in Section 5.7. 

5.6.1 Test Sequences 

To evaluate the performance of region-based video segmentat.ion a set of representative 

test sequences are sought. To allow comparison against previous and future work only 

standard test sequences that. are available freely on the Internet are used. The region­

based segment.ation algorithni is evaluated for a representative set of four video sequences 

that present different cHallenges due to t.he content in the sequence (e.g. motion, spatial 

distribution of colour etc). 
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The first sequence in the test set is the 'Parrot' sequence (18 frames, 256 x 180) that 

was shown in Figure 4.1, this sequence contains a complex object moving approximately 30 

pixels per frame against a cluttered background with a predominantly transitional motion. 

Ft'ames from the remaining three sequences are shown ill 5.10. The second evaluated 

sequence is 'Table Tennis' (88 frames, 176 x 120), this sequence contains a large ZOOlll 

motion with many new video region candidates introduced as the scene changes. The third 

seqnence is the 'Foreman' sequence (300 frames, 176 x 144), this sequcnce is shot from it 

handheld camera viewing exhibiting minor motion fro111 the camera shaking followed by 

a major Illotion as the camera turns to view land adjacellt to the individual. The final 

sequence tested is the 'Coastguard' sequence (100 frames, 176 x 144). this scquence shows 

t.wo boats (one small , one large) passing each other on a stretch of river. predominantly 

exhibiting traulational Illotion of the objects. 

Figure 5.10: Three video sequences used in the evaluation. (Left) frame 00001 from the 

QCIF sequence 'Table Tennis' (Centre) frame 0000 1 from the QCIF seql1ence 'Foreman' 

aud (Right) frame 00001 fro111 the QCIF sequence 'Coastguard'. 

5.6.2 Experiments 

The experimental analysis of the region-based segmentation algorithm focllsses on the inter­

fi'ame prediction and iut.ra-frame update mechallislll' and the innovation methodology to 

discover new regions as the video sequence unfolds. More specifically the variations of the 

algorithm (introduced in Sections 5.2-5.5) to be evaluated are: 

• Intra-u-ame update of regions: 

- Reinitialisation Strategy (Sectioll 5.4.2). 

- Recursive Filtering Strategy (Section 5.4.2). 
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• Intra-frame update constraint and innovation of new regions (Sections 5.4.2 and 5.5) . 

• Inter-frame prediction of regions: 

- Motion-model based compensation strategy (Section 5.4.1). 

- Recursive filtering strategy (Section 5.4.1). 

These variants will be evaluated in a sequential manner in that the previous "best" result 

will be used as a benchmark comparison for the current experiment. From these experiments 

the characteristics of the different model update strategies can be quantified in the context 

of video region segmentation (on a per-frame basis). 

5.6.3 Performance Metrics 

The factors to be evaluated relate to the representativeness, homogeneity, size and lifespan 

of the video regions. The metrics for the performance evaluation are designed to access these 

factors without a need for ground-truth segmentation of the image. Ground-truth is avoided 

since the definition and creation of a definitive region-based ground-truth segmentation is a 

difficult, if not impossible, task. A human abstracts an image into regions using information 

not available from a video sequence and as such the ground-truth regions would be unlikely 

to give a good performance measure of the proposed region based segmentation algorithm. 

To measure the fidelity of the representative models and the homogeneity of the video 

regions a per pixel deviation is computed between the original frame and a frame recon­

structed from the models. The reconstructed frame is formed by first segmenting the image 
\-

into non-overlapping regions using the MAP decision rule per pixel. The pixel value for 

each segmented region is taken to be equal to the mean colour value of the colour model 

of that region. The deviation between a pair of observed and reconstructed video frames is 

measured using a image-wide euclidean RMS error in the colour space i.e. 

N D . 

Error (I, R) = ~ L L [R (i, d) - I (i, d)]2 
i=l d=l 

(5.19) 

where I is the source video frame and R is the reconstruction from the region-based models. 

The pixel index~(i,d) represents the d'th colour space dimension of the i'th pixel (out of N 
"'. total) in the image~ The source video frame is converted to the L * a * b* colour space to 
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match the feature space of the region-based representative models. This measure represents 

the deviation of the euclidean error between the reconstructed and source video frames. 

The average size and average quantify of regions in the video sequences is accessed with 

the view that a segmentation strategy that generates fewer, larger regions is a more efficient 

representation of the video data. The average region size for a video frame is computed as 

N / S where S is the number of extracted regions in the video frame. This result is averaged 

over the video sequence resulting in the "average average region size" per frame, in the 

following this is simply referred to as the average region size per frame. 

To analyse the stability of the system the innovation and termination rates of regions are 

included. These innovation and termination rates are determined to be the average number 

of regions innovated and terminated per frame in the sequence. For a given sequence the 

innovation and termination rates satisfy the following equality: 

Sl + cpT = ST + pT (5.20) 

where cp is the average number of innovated regions per frame, p is the average number of 

terminated regions per frame and T is the number of frames in the sequence. Sl and ST are 

the number of regions in frame 1 and frame T respectively. Therefore, the innovation and 

termination rates do not include the regions 'innovated' and 'terminated' in the first and 

last frames of the video sequence. The effect of this is that the innovation and termination 

rates are not neccesarily equal over a video sequence. Inequalities between these two values 

can be used to determine if the representation is becoming more or less efficient during 

the sequence e.g. if the innovation rate is higher than the termination rate the number of 

regions representing the sequence will increase over time. 

For region-based segmentation it is ideal to have regions that are mature with minimal 

innovation and termination of new regions relative to the amount of variability in the 

sequences. 

5.6.4 Algorithm Parameters 

To perform the experiments presented in Section 5.6.2 the set of algorithm parameters are 
... [ . 

defined. Many'Or these parameters are set empirically to values that gave reasonable per-

formance over a set of training data. The representational model for the regions (described 

in Section 5.2) uses the default values presented in table 5.1. 
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Parameter I Description I Value I 
Nrnin Minimum region size 7 

a Kernel density shape model uncertainty 3.0 

Table 5.1: The algorithm parameters used in the representational model in the region-based 

segmentation scheme. 

The intra-frame update scheme for the regions (described in Section 5.4.2) uses the 

default values presented in Table 5.2. The constraint threshold T = 3 was found to be 

a good compromise between the representativeness of the model and the preservation of 

existing regions. Setting T = 1 allows only observations to be added to the models that will 

decrease the uncertainty. In practice this was found to remove too many pixels in the MAP 

update with only minor improvement in the fidelity of the model. 

Parameter Description 

T Mahalanobis distance threshold in constraint 

Table 5.2: The algorithm parameters used in the intra-frame update strategies in the region­

based segmentation scheme. 

The inter-frame update strategies have no configurable parameters. In the next section 

the results of the performance evaluation are presented. 

5.7 Results 

In Section 5.6.2 the five variations of the segmentation algorithm to be evaluated were in­

troduced. These variations incorporate intra-frame update strategies (reinitialisation and 

recursive filtering), intra-frame update constraint with region innovation and finally inter­

frame prediction strategies (motion-model and recursive filtering)~ In this section the perfor­

mance evaluation results are presented in a sequential manner in that the 'best' intra-frame 

update strategy:will be used in the next step etc. 
" 
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5.7.1 Intra-frame Update Of Regions 

The intra-frame update strategies evaluated were the reinitialisation (Section 5.4.2) and 

recursive (Section 5.4.2) strategies that adapt the spatial and colour models using the region 

of support at each frame. The update method is unconstrained in both cases (see Section 

5.4.2 for an explanation). An advantage of reinitialising the feature space models per frame 

is that the model is able to adapt to large appearance changes. For the recursive method the 

results may be less prone to noise since the models are estimated over a temporal window. 

For both these methods the 'frame t - 1 models at frame t' inter-frame prediction strategy 

(Section 5.4.1) is used. 

The RMS reconstruction error for the intra-frame update strategies are shown in Fig­

ure 5.11. The reinitialisation and recursive strategies are demonstrated to have similar 

reconstruction error over the test sequences. For three of the four sequences ('Coastguard', 

'Foreman' and 'Parrot') the two strategies appear to offer little advantage over each other 

in terms of the fidelity and homogeneity of the region-based representation. For the 'Table 

Tennis' sequence the reinitialisation reconstruction error is lower, this is perhaps due to 

the motion of the camera zoom requiring a rapid adaption of the model to the previously 

unseen scene. 

The mean and standard deviations of the RMS reconstruction error arc shown in Ta­

ble 5.3 for the two intra-frame update strategies. It is can be seen that reinitialisation 

based method of intra-frame update has the lowest reconstruction error for three of the 

four sequences, although the difference between the two strategies is marginal. 

Intra-Frame Update Strategy 

Sequence Reini tialisation Recursive Filtering 

Jt a Jt a 

'Coastguard' 8.12 1.70 7.83 1.71 

'Foreman' 9.40 3.13 9.70 3.27 

'Parrot' 8.23 0.09 8.38 0.15 

'Table Tennis' 11.16 3.26 12.35 4.00 

Table 5.3: Average RMS reconstruction error per pixel with unconstrained MAP labelling of 

regions and reinitialisation/recursive strategy for intra-frame update of the feature models. 
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Figure 5.11: Average per pixel RMS reconstruction error with unconstrained MAP labelling 

of regions and reinitialisation/recursive strategy for intra-frame update of the feature mod­

els. 
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The average size and quantity of regions per frame are shown in Table 5.4. For all the 

sequences the regions increase in size (and decrease in quantity) over the duration of the 

sequence, this is due to the unconstrained adaption and lack of innovation for the regions. 

For the 'Foreman' sequence both update strategies result in large poorly-fitted regions, the 

higher average size of regions reflects this. For the three of the sequences ('Coastguard', 

'Parrot' and 'Table Tennis') the reinitialisation strategy results in fewer, larger regions. 

Given that the fidelity of the models was comparable for the two update strategies, the 

reinitialisation strategy has been demonstrated to result in a more efficient representation 

than the recursive update strategy. 

Intra-Frame Update Strategy 

Sequence Reini tialisation Recursive Filtering 

Av. Size Av. Quant. Av. Size Av. Quant. 

'Coastguard' 305.36 87.18 296.62 89.57 

'Foreman' 986.79 83.98 1339.95 93.34 

'Parrot' 153.14 320.56 129.42 366.55 

'Table Tennis' 437.91 59.63 398.30 70.33 

Table 5.4: Average size and quantity of regions per frame with unconstrained MAP labelling 

of regions and reinitialisation/recursive strategy for intra-frame update of the feature mod­

els. 

Reviewing these results, the reinitialisation intra-frame update strategy appears to out­

perform the rec~lrsive filtering strategy for the test data shown. It is proposed that this is 

due to the temporal variability in the test sequences being such that the recursive strategy 

does not efficiently adapt the region models to the changes within the unfolding scene. 

5.7.2 Intra-Frame Update Constraint and Innovation of New Regions 

The use of constraints and region innovation in the intra-frame update step (Sections 5.4.2 

and 5.5) is demonstrated in this section by modifying the reinitialisation intra-frame update 
", 

strategy that 'Yas found to give the 'best' performance when applied in an unconstrained 
:"_'J 

update method. 

The advantage of constraining the intra-frame update strategy is that previously unseen 
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scene regions are no longer arbitrarily classified and subsequently used to update the model. 

The disadvantage is that previously unseen scene regions will be unassigned leaving portions 

of the image undefined, therefore a met1lOd is also required to innovate new regions to fill 

these unassigned 'null' regions. 

The average RMS scene reconstruction error per pixel is shown in Figure 5.7.2, this 

demonstrates the improvement in the fidelity of the model that the constrained update 

provides. The RMS error measure is significantly lower for all the test sequences where 

there is significant changes in the content of the scene ('Coastguard','Foreman' and 'Table 

Tennis'). This trend can be seen clearly for the 'Foreman' sequence where new regions 

are innovated in the final f'V 100 frames to represent previously unseen scene regions as the 

camera pans to the right, resulting in a lower RMS reconstruction error. 

The RMS error appears to be slowly increasing over the duration of the sequences when 

using the constrained reinitialisation with innovation strategy. This increase in error is 

perhaps due to limited mis-adaption of the region models due to a conservative estimate 

of the constraint t.hreshold T. Alternatively, it is due to an increase in the t.exturedness of 

the video sequence resulting in a 'natural' increase in the RMS error. To confirm this a 

single gaussian was used to model the colour distribution of the 'Table Tennis' sequence 

as a single region, the average RMS error bet.ween the mean of this distribution and the 

observed pixels was found to increase from 19.3 to 29.0 during the sequence. This result 

implies that, as expected, the t.exturedness of the video sequence has a direct effect on the 

measured scene reconstruction error. To limit this effect it is possible that the RMS error 

of the region based reconstruction can be normalised by this 'base' RMS error measured 
, 

when using a single region to represent the video frames. 

For the 'Parrot' sequence the constrained and unconstrained update strategies are ap­

proximately equivalent with a maximum error discrepancy of 0.4 between the two ap­

proaches. Unexpectedly, the constrained method actually results in an increased scene 

reconstruction error, although the differences between the two methods are marginal. 

The mean and standard deviations of the RMS reconstruction error are shown in Ta­

ble 5.5 for the two intra-frame update strategies. The table confirms the trends identified 

in Figure 5.12,' with the constrained update strategy having a significantly lower recon-
~ ~c 

struction error that the unconstrained strategy over the test sequences. From these results 

it can be concluded that the constrained strategy results in a higher fidelity region-based 
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Figure 5.12: Average per pixel RMS reconstruction error for the test data with constrained 

MAP labelling, innovation of regions and reinitialisatioll strategy for intra-frame update of 

the feature models. The comparison plot is the unconstrained MAp labelling reinitialisation 

strategy. 
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representation that is a better model of the underlying image data. 

~ntra-Frame Update Strategy 

Sequence Unconstrained Constrained with Innovation 

jJ, a jJ, a 

'Coastguard' 8.12 1.70 7.13 1.19 

'Foreman' 9.40 3.13 6.78 0.81 

'Parrot' 8.23 0.09 8.32 0.12 

'Table Tennis' 11.16 3.26 7.75 1.15 

Table 5.5: Average RMS reconstruction error per pixel for the test data with constrained 

MAP labelling, innovation of regions and reinitialisation strategy for intra-frame update of 

the feature models. This is compared to the unconstrained results presented in Table 5.3. 

Table 5.6 shows the average size and quantity per frame of regions over the test se­

quences. It can be seen that the constrained MAP labelling strategy reduces the average 

region size and increases the quantity of regions when compared to the unconstrained strat­

egy. The average size of the regions for the constrained MAP labelling strategy are all in a 

similar range between 100-150 pixels, which is an interesting observation given the differing 

nature of the test sequence content. 

Intra-Frame Update Strategy 

Sequence Unconstrained Constrained with Innovation 

Av. Size Av. Quant. Av. Size Av. Quant. 

'Coastguard' 305.36 87.18 144.12 173.87 

'Foreman' 986.79 83.98 113.51 224.28 

'Parrot' 153.14 320.56 112.62 411.61 

'Table Tennis' 437.91 59.63 129.82 163.04 

Table 5.6: Average size and quantity of regions per frame for the test data with constrained 

MAP labelling, innovation of regions and reinitialisation strategy for intra-frame update of 

the feature models. This is compared to the unconstrained results presented in Table 5.4. 

Table 5.7 shows the average innnovation and termination per frame of regions over the 
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test sequences. It can be seen that with the exception of the 'Parrot' sequence the number 

of regions created and lost per frame is relatively low when compared to the number of 

regions at each frame (shown in Table 5'.6). This result demonstrates that the constrained 

MAP labelling strategy coupled with innovation and termination mechanisms produces a 

reasonably stable representation. 

Sequence II <p p 

'Coastguard' 15.71 15.6 

'Foreman' 28.33 29.0 

'Parrot' 56.83 73.55 

'Table Tennis' 7.55 7.94 

Table 5.7: Average innovation (<p) and average termination (p) ofregions per frame for the 

test data with constrained MAP labelling, innovation ofregions and reinitialisation strategy 

for intra-frame update of the feature models. 

The 'Parrot'sequence has characteristics not present in the other test sequences. The 

resolution is the largest of the four test sequences and the objects to be segmented are 

closer to the camera and are therefore more detailed. This has the effect that the repeated 

texture in the background takes many region elements to represent and hence while the 

localised processing is efficient, the algorithm uses more memory to store the region-based 

representation. The majority of regions that are innovated are terminated represent the 

smaller scene structures or quantisationj JPEG compression artifacts that are present in the 

original sequence, this type of noise requires pre-processing of the input image to reduce 

the effect on the segmentation algorithm. 

The benefit of constraining the map update rule and innovating regions is demonstrated .. 

further in Figure 5.13. This figure shows the final frame for the 'Table Tennis' and 'Foreman' 

test sequences. Both of these test sequences undergo a large change in the video content 

between the first and final frames and hence in the unconstrained reinitialisation scheme the 

regions represent arbitrary patches of the image due to the nature of the MAP decision rule. 

With the constrained MAP labelling and innovation the resultant regions qualitatively bet­

ter represent the data. From these examples the constrained MAP labelling and innovation 

criteria appear sufficient to model any sequence of arbitrary length, due to th~ relatively 
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small number of regions innovated in each frame the algorithm is reasonably efficient. 

5.7.3 Inter-Frame Prediction Of Regions 

The intra-frame update scheme evaluated in the previous section was demonstrated to 

preserve the representativeness of the region based representation and effectively constrained 

the maximum region size to ensure region homogeneity. In the inter-frame prediction scheme 

a method is sought to predict the region spatial models to minimise the innovation of new 

regions i.e. improve the matching of regions to observations using prediction of the spatial 

location. The strategies evaluated were a motion-model based compensation (Section 5.4.1) 

and a recursive filter (Section 5.4.1). For comparison, the 'frame t - 1 models at frame t' 

null prediction step is also evaluated. 

The results demonstrate that the inter-frame prediction of the spatial representation of 

the regions is not a trivial matter. The mean and standard deviations of the RMS recon­

struction error are shown in Table 5.8 for the two inter-frame update strategies. It can be 

seen that the two strategies do not have a major influence the fidelity of the representa­

tional scheme, the plotted results (not shown) confirm this with minor fluctuations in error 

between the strategies. 

Inter-Frame Update Strategy 

Sequence Frame t - 1 . at t Motion-Model Recursive Filter 

fL ()" fL ()" fL ()" 

'Coastguard' 7.13 1.19 7.38 1.09 7.32 1.40 

'Foreman' 6.78 0.81 6.61 0.71 6.89 0.72 

'Parrot' 8.32 0.12 8.28 0.12 8.35 0.13 

'Table Tennis' 7.75 1.15 7.56 1.11 7.66 1.17 

Table 5.8: Average RMS reconstruction error per pixel for the test data with motion-model 

based compensation and recursive filtering inter-frame prediction of regions. 

Table 5.9 shows the average size and quantity per frame of regions over the test se­

quences. Again, it can be seen that the two strategies for inter-frame update of video 

regions have only minor influence on the resulting size and quantity of the regions. There­

fore, the inter-frame strategies are an unnecessary layer that does not improve the efficiency 
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(a) 'Foreman' frame 00209 

(d) 'Ta ble Tennis' frame 00088 

(b) Unconstrained Reinit.iali-

satioll 

(e) Unconstrained Reinitialisa­

tion 

(c) Const.rained ReinitiaJisa-

tion \\'ith Innovat.ion 

(f) Constrained Reinitialisa­

tion with InuO\-ation 

Figlll'e 5.13: Final region based segmentation for each test sequence_ (Right) constrained 

MAP laoellillg and innovation ofregions and reinitialisatioll strategy for intra-frame update 

of the featme models. This result. is compared to the ullcollstrained reinitialisation strategy 

(shown Centre). The regions are represented by the average RGB colour inside the region. 

Insignificant regions are shown in black for the constrained strategy. 
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of the region-based representation. 

Inter-Frame Update Strategy 

Sequence Frame t - 1 at t Motion-Model Recursive Filter 

Av. Size Av. Quant. Av. Size Av. Quant. Av. Size Av. Quant. 

'Coastguard' 144.12 173.87 147.04 171.69 141.13 179.12 

'Foreman' 113.51 224.28 120.63 212.65 122.68 210.47 

'Parrot' 112.62 411.61 116.70 399.11 115.30 404.33 

'Table Tennis' 129.82 163.04 133.01 159.01 139.12 153.92 

Table 5.9: Average size and quantity of regions per frame for the test data with motion­

model based compensation and recursive filtering inter-frame prediction of regions. 

Table 5.10 shows the innovation and termination rates of regions when using the motion­

model and recursive filtering strategies for inter-frame region propagation. It can be seen 

that there is no general overall 'best' met.hod from t.hose evaluated for updating the regions 

in terms of the stability of the region-based representation (Le. innovation and termina­

tion rates). The performance of the inter-frame prediction schemes is determined by the 

content of the video sequence, out of the three methods tested there is no generic scheme 

that improves the stability of the representation for all the test sequences. For example, the 

sequence 'Parrot' contains an object with well defined colour regions undergoing approxi­

mately linear trajectory, therefore it seems reasonable that the Kalman filter minimises the 

innovation and termination of regions. 

The different methods have a relatively minor influence on the resulting region segmen­

tation, with the change in innovation and termination rates relatively insignificant when 

compared to the number of regions in a frame. In general, it is difficult to draw conclu­

sions about which is the 'best' method for updating homogeneous regions with respect to 

improving the stability of the region based representation. It has been shown that there is 

no general technique (out of the three tested) that efficiently updates the regions over all 

the test sequences, in lieu of a priori information about t.he sequence content the simpler 

'frame t - 1 models at. frame t' strat.egy is preferable over the more complex motion-model 

compensation and recursive filter strategies. 
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Inter-Frame Update Strategy 

Sequence Frame t - 1 at t Motion-Model Recursive Filter 

rp p rp p rp p 

'Coast guard , 15.71 15.6 13.44 13.34 18.97 18.7 

'Foreman' 28.33 29.0 23.98 24.62 25.49 26.21 

'Parrot' 56.83 73.55 52.78 69.89 54.94 72.11 

'Table Tennis' 7.55 7.94 7.33 7.63 7.48 8.15 

Table 5.10: Average innovation (rp) and average termination (p) of regions per frame for 

the test data with motion-model based compensation and recursive filtering inter-frame 

prediction of regions. 

5.8 Conclusions 

In this chapter a region-based segmentation algorithm has been adapted to the problem 

of video representation. Developing on the probabilistic models introduced in the previous 

chapter, the per region PDF representation as estimated using an assumption of indepen­

dence between the colour and spatial features. This region-based representational scheme 

was adapted to the problem of video-based representation by incorporating inter-frame 

prediction and intra-frame update mechanisms. The variants of the region-based segmen­

tation algorithm were quantitatively evaluated on a range of representative test data using 

performance metrics that do not require ground-truth segmentations. 

The representational scheme for the spatial-colour regions split the feature space repre­

sentation into a spatial model and a colour model, using the assumption of independence 

between these features. The colour feature space PDF for the regions were estimated using 

Gaussian density models, taking advantage of the homogeneous colour distributions of such 

regions. The spatial feature space was modelled using an efficient implementation of kernel 

density models. The initialisation mechanism for the region models required a minimum 

region size threshold to remove insignificant regions, this minimulll threshold was found to 

be a function of the texturedness of each video frame. 

Variations on the intra- and inter-frame algorithms were evaluated on a range of repre­

sentative test data. These variations incorporate inter-frame prediction strategies (motion­

model and recursive filtering) and intra-frame update strategies (reinitialisation and recur-
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sive filtering). The reinitialisation based intra-frame update strategy was modified with a 

constraint mechanism to prevent regions misadapting to form inhomogeneous regions. This 

mechanism presented a requirement for' innovation of new video regions in the sequence to 

model new scene elements not well modelled by the existing representations. 

In this chapter the following contributions were made: 

• The intra-frame update constraint with innovation was found significantly change the 

fidelity and efficiency of the representative scheme. 

• A selection of intra- and inter-frame strategies offered discernible benefit over the 

simpler strategies when updating regions on a per frame basis 

• Introduced criteria for the decision rule constraint with innovation and termination 

procedures. This has been demonstrated to be well suited to the problem of modelling 

video sequences. 

• Evaluated the region-based representation without ground-truth using measures of 

fidelity, efficiency and stability. Demonsti:ated the use of an RMS reconstruction 

error to measure the fidelity of the representation. 

The variations of the propagation mechanisms for the region-based segmentation scheme 

were evaluated quantitatively without using ground-truth. The evaluation process measured 

the fidelity, efficiency and stability of the region-based representation. The more complex 

intra- and inter-frame strategies offered discernible benefit over the simpler strategies when 

updating regions on a per frame basis. This is due to tlie temporal variability of the regions, 

which makes the evolution of region-based representational models a challenging task. It 

was found that the intra-frame update constraint with termination and innovation ofregions 

made the niost significant change in the fidelity and efficiency of the representative scheme. 

By limiting the adaption of the regions the resulting region-based representation was more 

representative of the content of the video, at the expense of reducing the average lifespan 

of regions through termination and innovation of regions. 

A key issue when performing region-based modelling of video sequences is how to predict 

the regions on a per frame basis to minimise the adaption, innovation and termination of 

regions. This problem is difficult due to the sensitivity of the region's spatial location to 
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the changing appearance of the video, this makes it difficult to propagate such regions on 

a per frame basis. A better strategy may be to predict the region-based representation by 

analysing higher-level information in the video sequence e.g. the motion of objects formed 

by grouping regions into higher-level entities with semantic meaning. 

The update of region-based representational schemes in the context of video region seg­

mentation has been demonstrated to be a challenging problem. It has been shown that 

the prediction and update of regions is not significantly improved by using more complex 

strategies. The constraint of the model update step was found to have the largest influence 

on the representativeness of the models. This constraint required mechanisms for hmo­

vation and terminating algorithms, which were demonstrated to retain the fidelity of the 

overall region-based representation. In the following chapter the inter-frame prediction of 

regions is performed using object-level information in an attempt to overcome the difficulties 

found when performing the prediction at the region-level. This is applied in a hierarchical 

framework to allow different levels of interaction between the regions and parent objects. 

The criteria for innovation and termination is extended to video objects, the problem of 

automatically innovating new video objects in an unfolding scene is one of the fundamental 

challenges in video object segmentation. 
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Chapter 6 

Hierarchical Bayesian Framework 

for Video Object Segmentation 

In the previous chapter a region-based segmentation algorithm was presented. This segmen­

tation algorithm used the representational models presented in Chapter 4 and the 'best' 

performing feature space evaluated in Chapter 3. Popular methods for propagating the 

regions were investigated along with a methodology for innovating and terminating regions 

as the video sequence unfolds. It was found that while the innovation and termination 

components of the algorithm were adequate, more sophisticated methods for propagating 

the regions were found to give little advantage over simpler techniques. It is believed that 

this was due to the sensitivity of spatial-colour regions to the motion of objects within the 

scene, making such regions difficult to propagate on a per frame basis. 

In this chapter methods are sought for propagating the region-based representation in an 

efficient way to perform video object segmentation. The membership between objects and 

regions can be determined for the first frame in the sequence using the mask information 

provided by the user. A key issue in the object-based segmentation algorithm is how to 

update the region-to-object memberships with the newly innovated regions, and how to 

innovate new objects in the process. 

To solve these problems a hierarchical framework is proposed, within which relation­

ships between video objects and regions are employed to improve the propagation of the 

representational models. It is envisaged that such a hierarchical framework allows variants 

of the region-based propagation strategies to be evaluated, some of which use object-based 
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tracking and/or motion compensation. Algorithms presented in the previous three chapters 

will be implemented in this framework. 

6.1 Previous Work 

There is limited prior work on hierarchical modelling of video objects. Such modelling 

can apply to any technique where the object is represented at a coarser or finer paritition 

of the video frame than object level. In some approaches the term 'hierarchy' is often 

used to describe algorithms where there is a label correspondence between a region-level 

representation and parent object e.g. Marques and Llach [112]. Salembier et al [152] 

introduced the concept of a parition tree to give a hierarchical description of the video 

scene where regions at a level in the hierarchy can be split to give regions at the next lower 

level. 

For some approaches the hierarchical description is intrinsic to the algorithm used to 

represent the video objects. For example, Piroddi and Vlachos [138] applied a Recursive 

Shortest Spanning Tree [123] (RSST) region merging algorithm to grow intensity-motion­

texture regions which are merged within motion boundaries using the RSST algorithm 

and then a set of rules are applied to merge regions across motion boundaries. Similarly 

Cooray et al [149] applied a RSST to find homogeneous colour regions from which a Binary 

Partition Tree was created to enable efficient browsing of video regions by a user. Tuncel 

and Onural [166] applied the RSST algorithm to find the motion segmentation of a video by 

estimating the parameters of an affine motion model while in earlier work Alatan, Tuncel 

and Onural [6, 5] applied the RSST algorithm with a rule-based approach to perform joint 

colour and motion segmentation. 

A similar hierarchical clustering scheme is applied by Porikli [139] to group regions based 

on motion similarity and other constraints to allow the analysis of object properties using 

graph theory methods. Another advantage of such a structure is that the segmentation at 

the lowest (region) level does not require recomputation when new definitions of objects are 

introduced at the higher level. Content-based video retrieval work by Fu et al [73] explored 

the use of hierarchy to describe scenes using an interactive mapping of low-level motion 

features into semantic descriptors and also used co-ordinate system transforms to measure 

the temporal consistency of motion. 
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None of these previous approaches set out to describe a hierarchical Bayesian framework 

where distinct model levels are combined to perform video object segmentation and tracking. 

6.2 From Regions to Objects 

In the previous chapter techniques were presented for the segmentation of video using regions 

that mayor may not have semantic meaning. In this chapter the original problem of video 

object segmentation is considered. Therefore it is important to define the set relationships 

between these layers. Objects are defined to be sets of regions and the video frame is defined 

to be sets of objects. The current video frame I decomposes into the set of video objects 

i.e. 

I = U Ir where l' = 1,.,., R (6.1) 

Where Ir is the portion of t.he video frame assigned to the 1"th object (with R objects 

in total). In the hierarchy the video objects have a membership to this parent video frame 

i.e, 

(6.2) 

where M2 represents the member set between objects A and the parent image I. Meinber­

ship of regions to a parent object Ar can be written as: 

(6.3) 

where MA represents the member set between regions A and the parent object Ar . Sr Ar 

represents the total number of regions that have membership of the r'th object Ar . Similarly 

individual pixels also have membership of the video objects within the scene. In the following 

section a hierarchical framework is introduced to exploit the sharing of information between 

object and region level representations. 
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6.3 Hierarchical Bayesian Framework for Video Object Seg­

mentation 

In this section a hierarchical Bayesian framework encompassing region- and object-level 

video object segmentation is proposed. Within the hierarchy two distinct layers are com­

bined to perform video object segmentation. The higher layer in the hierarchy is the object­

based representational model and propagation, whereas the lower layer contains the region­

based representation. Implicitly, there are two extra layers (image and pixel level) in the 

hierarchical framework that can be defined by simple label memberships of the region and 

object layers. The proposed hierarchical framework is shown in Figure 6.1. The framework 

contains information flow between the two levels of the hierarchy which are termed the 

feed-downward and feed-upward links. The form of these information links is dependent 

on the implementation of the framework. For example the object-level prediction can be 

used to modify the region-level models prior to prediction. This framework provides the 

flexibility for the integration of new algorithms for video object segmentat.ion. 

For t.he case where t.he object- and region-level processes are independent there is no 

interaction between the representative models of the two levels i.e. the feed-down and feed­

up links are removed from Figure 6.1. The t.wo level processes could then be combined 

at the labelling stage to generate a partition of the current video frame into objects. An 

example of an independent hierachical framework is an object-level motion segmentation 

algorithm that uses label correspondence with a region-level colour segmentation scheme to 

improve the boundary accuracy based on the assumption that colour segments are subsets 

of motion segments e.g. Altunbasak et al [7]. 

In the scenario where the object-level representional model is the less accurate approx­

imation of the underlying density and the region-level is the more accurate approximation 

then it would be expected that the region-level segmentation would generate a more ac­

curate segmentation of the object (given per-object correspondence for the regions). In 

this case it is clear that the feed-upward of the region-level segmentation to update the 

object-level model would make the object-level a closer representation of the true object 

location. 

Conversely, it is envisaged that the object inter- or intra-frame representation could 

also be used to improve the update of the regions, for example, object level descriptors 
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Figure 6.1: Hierarchical video object segmentation framework showing both feed-down and 

feed-up information links between the layers and joint labelling of the output result. The 

intermediate representational models and feature vector extraction process are not included 

for clarity. 

(e.g. dominant colours) can be used to assign newly generated regions as belonging to that 

object representation. In such a scenario the sharing of information may be a two way 

process, with the possibility of optimisation schemes to perform iterative estimation of the 

representational models between the two layers. 

The application of Bayesian methods to the framework allows the issues of video object 

tracking to be approached in a principled and formal way. At a frame in the video sequence 

an observed feature vector at(x, y) is measured at each pixel (x,y) in frame t ofthe sequence. 

For brevity the subscripts are dropped such that this referred to as a in equations. 

By applying Bayes rule the probability that a pixel belongs to one of the R video objects 

can be computed for each level of the hierarchy. At the object-level (denoted by a subscript 

A), the probability of a pixel observation, a, belonging to a particular object, Ai, is given 

by: 
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(6.4) 

where PA(aIAr) represents the conditional probability of the r'th object in the video scene. 

At the region-level (denoted by a subscript A), the probability that an observed feature 

vector at a pixel, a, belongs to a particular region Ai can be computed thus: 

(6.5) 

Given that each region also has membership of an object (see section 6.2 for the set relation­

ships) it follows that object-level probabilities can be computed by combining region-level 

. probabilities. At the region-level (denoted by a subscript A), the probability of a pixel 

observation, a, belonging to a particular object, Ai, is given by: 

P,\(Aila) = !,\(aIAdP,\(Ai ) 

I:r~1 P'\ (alAr )P,\ (Ar) 

where the conditional probability is computed using the total probability theorem: 

Si 

p,\(aIAi ) ;::: LP,\(aIAs)P,\(As) 
s=1 

(6.6) 

(6.7) 

where As is the 8'th region out of the Si regions that have membership of the object Ai. 

To combine the two layers in the hierarchy (denoted by no subscript) the joint probability 

that a pixel observation 'belongs' to an object can be computed. This is simplified under 

the assumption that the processes at each layer are statistically independent i.e . 

.... 

(6.8) 

Applying Bayes rule the probability that a newly observed pixel 'belongs' to an object 

is therefore computed as: 

(6.9) 

where, as before: 

R 

p(a) = LP(aIAr)P(Ar) (6.10) 
r=1 
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For all hierarchical layers the prior probabilities can be computed directly from the 

representational models, although it is more efficient to calculate these from the most recent 

observed label maps. In the next section the representational models and intra-linter-frame 

update schemes are described. 

In the next section implementations of the hierarchical framework are presented. These 

algorithms contain various configurations of the hierarchical framework. A mechanism 

for innovating new objects in the scene is also introduced. This mechanism allows the 

segmentation algorithm to run as an automated process and can be used in focus of attention 

strategies to alert the human operators that the segmentation process requires a new key­

frame segmentation (e.g. a new object has appeared in the scene). 
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6.4 Variants of the Hierarchical Bayesian Framework 

In this section several implementational,aspects of the hierarchical framework are considered 

in the context of semantic video object segmentation. These variants focus on the problem 

of updating the representational models of the video objects so that they can be adapted 

to the changing object appearance over time. The four main implementational aspects to 

be addressed in this chapter are: 

• Feature Space and Representational Models (section 6.4.1). 

• Region-level representational models with object-level prediction (section 6.4.2). 

• Interacting region-level and object-level representational models (section 6.4.3). 

• Object-level innovation (section 6.5). 

The feature space and representational models described in section 6.4.1 are chosen 

using the prior work in Chapters 3 and 4. The feature space and representational models 

are common to all configurations of the framework. The configurations of the framework 

described in sections 6.4.2 and 6.4.3 represent alternative techniques to achieve the same 

goal, that is, the segmentation of video into objects. The final configuration (section 6.5) 

deals with the innovation (i.e. creation) and termination of video objects during a video 

sequence, this is a difficult challenge for any segmentation algorithm where the objects to 

be segmentated are defined by semantics. 

6.4.1 Feature Space and Representational Models 

The feature space used is the XY L * a * b* space. This combination of colour and spatial 

information was determined to give the 'best' object segmentation accuracy in Chapter 3. 

This feature space is modelled as a joint distribution of the chromatic signal, f, and the 

spatial signal, x i.e. 

p(a) = p(f)p(x) = p(L*, M, b* )p(x, y) (6.11) 

In this chapter the assumption of statistical independence between the colour and spatial 

information is made for both the object-level and region-level models. For the test sequences 

used, this assumption has a negligible effect on the resulting segmentation of the video 
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sequence. It follows that in sequences with several objects of similar appearance and spatial 

location, such models for locating the objects may fail. In such a scenario extra processing 

(perhaps feature tracking methods e.g: [157]) may be required to separate the objects. 

The variants of the framework apply models to represent the appearance and location the 

object- or region-level components, although in some configurations these models are not 

required e.g. section 6.4.2 does not model appearance or location at the object-level of the 

hierarchy. 

Object-Level 

At the object-level of the hierarchy, a parametric model is used when describing the appear­

ance and location of the object. For an object Ai the observed chromatic distribution at 

the object level is modelled using a Gaussian mixture model. The Gaussian mixture model 

is chosen since it allows an efficient representation of the multi-modal colour distribution 

of the object, with fewer parameters required than the equivalent kernel density model. 

Section 4.4.2 demonstrated that the two modelling techniques were both suitable for mod­

elling the colour dist.ribut.ion of video objects. The chromatic GMM contains J( trivariate 

densities of the form: 

exp [-! (f - ILkf ~kl (f - ILk)] 
p(fllh) = 3 1 

(21r)2I:EkI 2 
(6.12) 

where :Ek is the covariance matrix and ILk is the chromatic mean of the k'th Gaussian 

cluster, (h. At the object level the class conditional probability of a pixel observation, f, 

given the colour density model for object Ai is therefore given by: 

J(i 

PA(fIAi ) = LP(fIBk)P(Bk) (6.13) 
k=l 

where J(i represents the number of clusters in the GMM that represents the object Ai. The 

spatial information of the object is represented using a single bivariate Gaussian distribu­

tion. This model is selected since it provides reasonable localisation of the object for the 

tested sequences, as demonstrated in Section 4.4.1. The conditional probability of a spatial 

observation, x, given the spatial density model for object Ai is therefore given by: 

(6.14) 
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where J-L and ~ are the mean and covariance of the bivariate Gaussian distribution. 

Region-Level 

At the region-level of the hierarchy, a combined parametric and non-parametric representa­

tional model is used to achieve accurate pixel-wise segmentation. For each region the spatial 

distributions are modelled using non-parametric kernel density models and the chromatic 

distributions are modelled using a multivariate normal density. This type of combined 

representational model was applied to the problem of video region segmentation in the pre­

vious chapter. The observed chromatic distribution for a region /\, given a observation f, 

is modelled using a trivariate normal density of the form: 

exp [-~ (f - J.Li)T ~il (f - J-Li)] 
p(fl/\) = 3 I 

(21f)2 l~il2 
(6.15) 

where ~i is the covariance matrix and J.Li is the chromatic mean of the representation of the 

colour distribution for the region Ai. The probability density of a spatial observation x for 

a particular region Ai is calculated using a bivariate Gaussian kernel density of the form: 

1 Ni 1 {"X - xnll2} 
p). (x I Ad = -N0 ~ -21f-(J-2 exp - -=-=----2-(J-,-2 -"-

t n=l 

(6.16) 

where Xn are chosen as Ni pixel observations made within the crisp partition of the region 

Ai· Bayes theorem is applied to classifying pixels in the scene with the most probable object 

or region label using the MAP rule (presented previously in 4.5). 

To initialise the representational models the user provides binary masks to define the 

semantic object regions at the first key-frame in the sequence. From the frame data and 

object masks the object-level models are formed. To initialise the regions a method based 

on that shown in the previous chapter is used, except that the regions are generated per 

object mask as opposed to over the whole video frame. 

6.4.2 Region-Level Representational Models with Object-Level Predic­

tion 

In this section one variant of the hierarchical framework is described. In this variant the 

object-level does not have a representational model for the appearance and location of the 

object. Instead, the object-level spatial and colour representation is described using the 
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membership information that allows the conversion between regions and objects (described 

in section 6.3). In this way, the regions are aggregated into objects from which higher level 

analysis can be performed to extract other forms of object-level representation (e.g. the 

motion parameters of the object). The region level representation can then be predicted in 

the video sequence by applying this higher level information extracted at the object-level. 

In this section three distinct strategies are discussed for performing this type of prediction: 

• 'Frame t - 1 Models at Frame t' (COpy variant). 

• Motion-Model Based Compensation (AFFINE variant). 

• Recursive Filtering (KALMAN variant). 

Figure 6.2 shows the implementation of the framework for these approaches. The object­

level representation contains either nothing, the motion model parameters or the recursive 

filter parameters. This information is fed-downward to be used in the region-level prediction 

strategy. The region models are used to label the video frame at the region-level and 

at the object-level (using the membership information). The region-level segmentation is 

used to re-initialise the region-based representational models in the (constrained) intra­

frame update stage. The object-level segmentation is used to re-estimate the object-level 

representation (if it exists). 

The three strategies are based on the region-level prediction strategies described 111 

section 5.4.1 in the previous chapter: 

'Frame t - 1 Models at Frame t' (COPY variant) 

In this strategy the region models are not predicted. The propagated region PDF models 

at time t are the estimated PDF models from the previous frame t - 1. 

Motion-Model Based Compensation (AFFINE variant) 

This prediction strategy projects the spatial component of the region models between frames 

such that the models are geometrically transformed to account for the motion of the objects 

within the scene. The motion-model is fitted to per pixel optical flow for each object to 

generate per object motion models. For each object the motion model parameters are 
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Figure 6.2: A hierarchical framework configuration for object-level prediction of region-level 

models. In the case where the prediction strategy 'Frame t - 1 Models at Frame t' is used, 

the object-level prediction components (dark-grey in the framework) are not used. 

estimated to describe the general motion of the object between adjacent video frames. This 

motion model can then be used to transform the spatial PDF model for each region using 

the location of the region relative to the parent object. A suitable motion model is the six 

parameter affine model(see section 5.4.1 for a detailed explanation of this motion model). 

Recursive Filtering (KALMAN variant) 

Alternatively, the prediction of regions can be performed using recursive filtering techniques. 

The Kalman filter is applied to propagate regions using object level state estimation. The 

object information found at frame t - 1 are used to update the state information of the 

recursive filter (which contains centroid and bounding box information). The parent object 

trajectory model is subsequently used to transform (i.e. propagate) the region spatial models 

using the predicted object trajectory between the two frames. See section 5.4.1 for more 

information. 

These three distinct strategies enable the region-level spatial models to be predicted 

using higher level information recovered from the object membership information. In the 

following section an implementation of the hierarchy is proposed where dual representational 

models at the region- and object-level are interacted to introduce higher-level information 
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into the region-level process. 

6.4.3 Interacting Region-Level and Object-Level Representational Mod­

els (INTERACTING variant) 

In this second implementation of the framework a combination of non-parametric and para­

metric models are applied with local co-ordinate systems to perform video object tracking. 

The implemented framework is shown in Figure 6.3. In this framework the feed-downward 

step of the algorithm uses the object-level models to compute a co-ordinate system for the 

region models that is localised on the object. The regions are therefore propagated by the 

object-level to a predicted location in the new frame assuming a rigid transformation. Fi­

nally, these regions are reinitialised in the intra-frame update and the resulting object-level 

label map is used to reinitialise the object-level models to provide a precise localisation of 

the object. 
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Figure 6.3: A hierarchical framework configuration for interacting object- and region-level 

spatial-colour models. 

Co-ordinate System Transform 

The inter-frame update step at the object level is a 'null' step, in that the objects at frame 

t - 1 are used to locate the object in frame t with no explicit propagation. The result of 

this is used to label the current observed feature vectors in frame t. The spatial moments of 
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the video object can subsequently be estimated from the labell1lask, which can be llsed to 

derive a co-ordinate system with the co-ordinate system aligned with the lllajor and lllinor 

axes of object.. The spatial location of the feature vectors observed at t.he region-level are 

subsequently pre-processed using a HoteHing transform (the discrete form of the Karhunen­

Loeve transform [51]) to locate them in the co-ordinate system of the moments of the spatial 

distribution of the parent object. This transformation provides invariallce to rotation, scale 

and translation of the parent object. Figure 6.4 shows the effect of the transform on a vidro 

object extracted from the 'Parrot' sequence: 

x 

x 

y y 

Figure 6.4: Hotelling transform on the foreground objcct"s spatial-colour regions. (Left) A 

fi·amc from the 'Parrot" seqeullce (Right) The result of the transformation. 

The Hotelling transform is computed as follows. For an object Ai ill the scene we calcu­

late, at the object level, the mean vector and covariance matrix of the spatial distrihution 

of the object . Because the covariance matrix, :E.\" is real and sYlllmetric. finding a set 

of orthogonal eigenvectors is possible. Let. E be a matrix composed of t./w eigcnvcctors of 

:Ei\; in descending order of eigenvalue magnitude, then E is a transformation that maps a 

spatial vector x from the scene co-ordinate system to that of the object Ai as follows: 

x.\, = E (x - /-LA j) (6 .17) 

Equation 6.17 represents the Hotelling transform. The mean vector of the distribution 

of the spatial vectors resulting from this transformation is zero, and the covariance matrix 

is a decorrelated matrix whose elements along the main diagonal are the eigenvalues of :EA,. 
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The reverse of the Hotelling transform allows a pixel value to be transformed back into the 

scene co-ordinate system from the object coordinate system using the relation: 

-ET x - XAj + J..LAj (6.18) 

Therefore the region models in the co-ordinate system of the object can be tracked, 

updated and innovated; this gives invariance to rotation, scale and translation of the parent 

object. Of course, it is clear than when objects do not have clearly defined major and minor 

axes (Le. the object is near-circular in its distribution) then the co-ordinate transform may 

be unstable. To counter this the co-ordinate system can be 'frozen' if the minimum and 

maximum eigenvalues of the covariance matrix :E are of a similar magnitude. This method 

of co-ordinate system localisation will also be unreliable in the case of severe occlusion of the 

object or rapid changes in object pose. The spatial distribution will not be representative 

of the shape of the object and hence the minor and major axes (defined by the eigenvectors) 

may not correspond to the object in a consistent manner. 

Prediction of the Region-Level Models 

With the models from frame t - 1 (under the assumption that the objects do not move a 

significant distance between frames) an object level MAP rule is applied to calculate the 

object support in frame t. From the newly observed object moments the reverse Hotelling 

transform is performed on the region spatial models, from which a pixel-wise segmentation is 

determined in the image plane. From this partition of the frame the region and object level 

models are updated and both hierarchical level models are subsequently propagated to the 

next frame. The final segmentation result for the frame is taken from the sub-object layer 

since this is the more accurate representation of the video object (using the membership 

relationships between layers). 

These variants of the hierarchical framework provide mechanisms for tracking video 

objects on a per-frame basis. A problem encountered is that with dynamic changes in 

the video content, the appearance of objects can change and objects can be removed from 

or added to the sequence. In section 5.5 a mechanism for region-level innovation and 

termination was described, this allowed the representation of the video frame to evolve to 

changes in the content. In the following section this mechanism is expanded to provide 

object-level innovation i.e. to discover new objects in the video sequence. 
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6.5 Termination and Innovation of Objects 

In a video sequence objects are continually added and removed from the cameras field-of­

view. This poses a problem for supervised approaches to object segmentation since the 

user is required to intervene to manually add and remove such objects. To reduce such 

intervention (or, in the longer term, remove it completely) mechanisms are required to 

automatically innovate and terminate objects during the sequence. 

An additional problem in innovating and terminating objects is the problem of occlu­

sion. An object undergoing total occlusion will be terminated and subsequently re-innovated 

within the scene. To prevent the creation of an extra object a long term tracking algorithm 

could be implemented to 'stitch' the new and old objects together into a continuous trajec­

tory. The problem of complete occlusion is outside the scope of this work. The innovation 

algorithm presented below does provide limited robustness to partial occlusion. The region 

to object association algorithm allows occluded object regions to be correctly re-associated 

with the parent object when they become visible. 

In the following, methods are presented to perform the termination and innovation of 

objects within the video sequence. These algorithms allow the video object segmentation 

algorithm to run on sequences of arbitrary length, although the extracted objects may only 

have semantic meaning in constrained scenarios. 

Termination 

An object is terminated when no child regions remain i.e. lvI~r = 0. The total number of 

objects is updated after the termination stage as R = R - R' where R' is the number of 

objects termilmted. 

Innovation 

A major difficulty with innovating objects is that the objects are defined to have semantic 

meaning, and as such may not exhibit any homogeneous properties in the feature space. The 

objects are segmented at key frames in the video sequence by human operators, described in 

section 2.2. It is currently impossible to develop a system to segment objects that correspond 

to those seen by the human visual system except for highly constrained scenarios. To 

achieve such segmentation the system would need greatly improved interpretation of the 
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scene, perhaps with complex 3D modelling and abstraction of object types. Without loss 

of generality, it is possible to circumvent many of these difficulties by making assumptions 

about the underlying properties of the objects. It is proposed that any newly visible regions 

of an object will match appearance with at least one other visible part of the object. This 

assumption is only valid when the object viewed has a hidden appearance similar to the 

appearance that is currently visible. 

To apply this assumption in the framework the visible object parts are taken to be the 

region-level models (each with a parent object membership) such that new object parts are 

formed from newly innovated regions. These new regions are created using the tedlliique 

described in section 5.5, where unlabelled areas of the image are segmented into new homo­

geneous regions. In this wayan intra-frame mechanism is required to match (i.e. associate) 

newly generated regions to existing regions. Once matched, the new region will inherit the 

parent object membership information from the existing region. Any remaining unmatched 

regions are clustered into new objects. 

A validation gate is used to associate newly innovated regions to existing regions by 

comparing the proximity of the regions in the multi-dimensional feature space. The effective 

size of the gate is determined by a threshold T on the normalised squared distance between 

two regions Ai and Aj (i.e. a new and existing region): 

(6.19) 

where S = ~>'i + ~>'j is the combined covariance of the two regions. J.L and ~ represent 

the mean and covariance of colour and spatial Gaussian models for each region. For the 

spatial distribution of a region, the mean and covariance of the kernel density model were 

computed from the observed kernel distribution. For the colour distribution the region's 

model was a Gaussian, hence the mean and covariance estimates were known. 

An appropriate gate threshold for equation (6.19) can be determined from tables of the 

Chi-sqlIared distribution, with the degrees of freedom given by the dimensionality (= 5) 

and required significance (= 0.95). A newly innovated region Ai is matched with an existing 

region Aj if: 

d2 (Ai' Aj) < T 

d2 (Ai' Aj) < d2 (Ai' As) 

and 
(6.20) 

Vs=/=j;sE{l, ... S} 
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This nearest neighbour matching strategy is evaluated between the newly innovated region 

/\ and the S existing regions. The new region will inherit the parent object information of 

the closest region found to be within the gate (i.e. the validated nearest neighbour). 

Regions not matched by this process are now clustered into potential new objects using 

the following suboptimal algorithm: 

1. Unmatched regions are visited in descending order of size. 

2. For the current unmatched region, a new object is created. 

3. The nearest neighbour strategy (described above) is used to match any remaining 

regions to this new object. 

4. Repeat until no unmatched regions remain. 

The mechanisms described allow new (innovated) regions to be added to existing or new 

(innovated) objects. The totai number of objects is updated after the innovation stage as 

R = R + R" where R" is the number of objects created. 

The ability to innovate and terminate objects in the video sequence allows the seg­

mentation algorithm to adapt to complex dynamic changes in the scene. The mechanism 

described here innovates new objects using co-homogeneity between regions, therefore the 

newly innovated objects may not relate to objects seen by the human visual system. Such 

an innovation strategy could be used to form the basis of a focus of attention strategy to 

alert the operator that further interaction is required to group the automatically generated 

objects into semantic entities. 
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6.6 Performance Evaluation of the Hierarchical Bayesian Frame­

work 

In this section the performance of the hierarchical framework is characterised over repre­

sentative test data. The evaluation metrics applied at each frame are the spatial quality 

of density (SQD) and the spatial quality of edge density (SQED) as introduced in sec­

tion 3.4.3. Following the evaluation approach of Chapter 4, the temporal coherency of the 

object segmentation is characterised as the variance of the SQD and SQED measures. This 

variance should be viewed with the accompanying SQD and SQED measures, since a poor 

segmentation can exhibit frame to frame stability using this metric. 

6.6.1 Datasets 

A hindering factor in the performance evaluation of video object segmentation is the re­

quirement of pixel-accurate ground truth segmentations of objects against to which object 

segmentation performance can be compared. The number of standard test sequences avail­

able with ground truth is surprisingly low. From the MPEG-4 test sequences only 'Children', 

'Akiyo', 'News' and 'Bream' are complete with ground truth, as is the 'Parrot' sequence 

used by Erdem et at [58]. The creation of ground truth for performance evaluation of video 

object segmentation is a time consuming task, and as a consequence, evaluation is limited 

to the test sequences with available ground truth. This has the advantage that the results 

reported in this paper can be compared to other works in video object segmentation. The 

'News' sequence is omitted from the evaluation due to its similarity to the 'Akiyo' sequence 

(i.e. newsreaders against a stationary backdrop). A selection of frames from the chosen test 

sequences are shown in Figure 6.5 along with the ground truth result at each frame. 

6.6.2 Experiments 

The following variants of the proposed hierarchical Bayesian framework were evaluated over 

all the test sequences: 

• Region-Level representational models with Object-Level prediction using 'Frame t-1 

Models at Frame t' strategy (COPY variant, section 6.4.2). 
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Figure 6.5: The test sequcnccs wit.h ground t.rut.h seglllcllt.ation llsed to evaluate the pcrfor­

mance of the hierarchical fralllework. Ground truth is shown as a biliary mask. Top three 

sequcnces: frames 0, 30. 106, 120 and 134 from 'Akiyo' 'Bream' and ·Children'. Bottom 

sequence: frames 1,5,10,14 and 18 from 'Parrot' . 
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• Region-level representational models with object-level prediction using affine motion 

compensation strategy (AFFINE variant, section 6.4.2). 

• Region-level representational models with object-level prediction using Kalman filter­

ing strategy (KALMAN variant, section 6.4.2). 

• Interacting region-level and object-level representational model (INTERACTING vari­

ant, section 6.4.3). 

The termination and innovation of objects (section 6.5) was also evaluated using the 

region-level representational models with object-level prediction implementation. These ex­

periments are designed to demonstrate the potential of the hierarchical Bayesian framework 

for the development and evaluation of a wide range of video object segmentation algorithms. 

To perform these experiments, the algorithm parameters are set to values that gave rea­

sonable performance over a set of training data. Only the parameters introduced in this 

chapter are detailed. The innovation algorithm (described in section 6.5) uses the default 

value presented in Table 6.1. 

Parameter Description 

T Squared distance threshold 

Table 6.1: The algorithm parameters used in t.he object innovation algorithm for the per­

formance evaluation. 
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6.7 Results 

In this section the performance evaluation results are presented for various variants of the 

hierarchical Bayesian framework. These implementations demonstrate the potential of the 

framework to allow development and evaluation of a wide range of video object segmentation 

algorithms using both object- and region-level representations. 

6.7.1 Region-Level Representational Models with Object-Level Predic­

tion 

Three strategies were implemented to perform region-level representational models with 

object-level prediction (described in section 6.4.2): 

• 'Frame t - 1 Models at Frame t' (COpy variant). 

• Affine motion-model based compensation (AFFINE variant). 

• Kalman filtering (KALMAN variant). 

These three strategies were quantatively evaluated for the four test sequences (presented 

in section 6.6.1). At this stage termination or innovation of objects is not performed (see 

section 6.7.3 for the evaluation of termination and innovation strategies). The intra-frame 

update strategy for the region-level representation is the unconstrained reinitialisation up­

date strategy (described in section 5.4). 

The SQD and SQED accuracy ofthe segmentation for the different strategies are shown 

in Figures 6.6 and 6.7. It can be seen that the prediction strategy generally has a minor 

effect on the SQD and SQED segmentation accuracy for all but the 'Children' sequence. 

The 'Children' sequence exhibits a significantly lower SQD score when using the AFFINE 

strategy. On closer inspection this is due to the foreground object containing three objects 

- two children and a ball. The motion model prediction is not robust to multiple motions 

and herice the predicted affine motion does not represent the actual motion of the three 

individual objects, this results in segmentation error. The SQED accuracy is less adversely 

affected by the inaccurate motion model since the majority of errors occur away from the 

object edges. 

For the 'Bream' sequence it can be seen that the KALMAN variant also reduces the 

SQD and SQED accuracy at key points in the sequence corresponding to the turning of the 
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Figure 6.6: SQD accuracy for the three region prediction strategies over the test data. 
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Figure 6.7: SQED accuracy for the three region prediction strategies over the test data. 
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fish. The event where the fish turns can be seen by a dip in segmentation accuracy (at frame 

rv 110) due to an uncovered background object that is incorrectly classified as foreground. 

Due to the estimation process the KALMAN variant introduces a latency between a change 

of object direction and a state update, reducing the ability of the models to adapt to the 

changing video. The result of this latency is that the SQD and SQED accuracy for the 

KALMAN approach is lower before the fish turn event and at the end of the sequence. The 

'Akiyo' and 'Parrot' sequences show little difference between the three prediction strategies, 

although for the 'Parrot' sequence the AFFINE method causes a minor reduction in the 

segmentation accuracy. Again, this may be due to a lack of robust estimation in the model. 

,Table 6.2 shows the mean and variance SQD accuracy over the four test sequences. 

It can be seen that the prediction strategies generally have a minor effect on the out­

put segmentation quality, especially for the sequences 'Parrot', 'Bream' and 'Akiyo'. The 

'Children' sequence reflects the problems encountered when applying a single affine motion 

model to estimate the motion of three distinct objects. This results in a significantly lower 

segmentation accuracy when using the motion-model. 

Object-Level Prediction Strategy 

Sequence COpy AFFINE KALMAN 

Il 0- ft 0- Il 0-

'Akiyo' 0.9983 0.0001 0.9983 0.0001 0.9983 0.0001 

'Bream' 0.9991 0.0028 0.9991 0.0028 0.9988 0.0030 

'Children' 0.9577 0.0123 0.8222 0.0271 0.9549 0.0139 

'Parrot' 0.9835 0.0042 0.9827 0.0046 0.9832 0.0046 

Table 6.2: Average SQD error per pixel for the test data with motion-model based com­

pensation and recursive filtering inter-frame prediction of regions at the object-level of the 

hierarchical framework. 

Table 6.3 shows the mean and variance SQED accuracy over the four test sequences. It 

can be seen that the quality of the segmentation at the edges of the objects is generally lower 

than the scene-wide measure, which is to be expected due to the difficulty of segmenting 

the edges between occluding objects. For the 'Bream' sequence the KALMAN variant has a 

lower average accuracy and higher deviation, due to the inability of the strategy to adapt to 
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the fast change in the object appearance. The segmentation accuracy for the 'Children' and 

'Parrot' sequences are significantly lower than the accuracies for the 'Akiyo' and 'Bream' 

sequences. The 'Akiyo' and 'Bream' are created by merging a blue screen sequence with a 

new background whereas the 'Children' and 'Parrot' are the original recordings. Taking the 

foreground and background objects from separate sequences appears to reduce problems 

such as motion blur, translucency and sampling such that the edge accuracy is artificially 

higher. Even so, the intra-sequence patterns of the segmentation accuracy are expected to 

hold. 

Object-Level Prediction Strategy 

Sequence COPY AFFINE KALMAN 

fL (J fL (J fL (J 

'Akiyo' 0.9836 0.0041 0.9836 0.0024 0.9845 0.0030 

'Bream' 0.9941 0.0167 0.9937 0.0168 0.9890 0.0213 

'Children' 0.6060 0.0346 0.5720 0.0153 0.6103 0.0220 

'Parrot' 0.7746 0.0276 0.7595 0.0366 0.7733 0.0291 

Table 6.3: Average BQED error per pixel for the test data with motion-model based com­

pensation and recursive filtering inter-frame prediction of regions at the object-level of the 

hierarchical framework. 

Finally, Figure 6.8 shows some segmentation results for the 'Bream' test sequence. It 

can be seen that all the segmentation results are on the whole similar to the ground-truth 

segmentation. It can be seen that there are a few false positive detections in frames 106 

and 120 as the fish object moves to uncover a background object. To remove these false 

positives the mechanism for innovating and terminating objects needs to be added, this 

is evaluated in the following section. The KALMAN variant also introduces some false 

negative detections (in frames 106 and 134, marked in red) where the filter state cannot 

update to match the rapid motion of the foreground object. 

From these results it can be seen that, in general, the use of KALMAN and AFFINE 

object-level prediction of regions has minor effect on the segmentation quality for the test 

sequences. At best, these more complex prediction strategies are no better than the COpy 

variant. It is likely that this is due to the complex sp<,ttio-temporal content of the test 
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(a) 

(b) 

(') 

(d) 

(c) 

frame 0 frame 30 frame 106 frame 120 frame 13-1 

Figure 6.8: Segmented objects using object-level predictiOll of the region-level represen­

tational lllodels. (a) Original video, showing frames 0, 30, 106, 120, and 134 of the test 

sequence 'Bream'. (b) Grollnd-trnt.h object segment.ation (c) COpy variant (d) AFFI E 

variant and (r) KALMAN variant. Rpd pixels represellt Hilder-segmented regions which 

are not detected. The cyan areas correspond to over-segmentreI regiolls (i.e. false positive 

detections) . 
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sequences, making the prediction of object regions difficult. In the next section the combined 

region- and object-level configuration is evaluated. 

6.7.2 Interacting Region-Level and Object-Level Representational Mod­

els 

In this section the performance of the INTERACTING strategy is demonstrated. This con­

figuration of the framework (as described in section 6.4.3) contained an object-level model 

that was subsequently used to generate a local co-ordinate system for each object. This 

co-ordinate system implicitly modified the spatial location of the region-level representa­

tional models to match the newly discovered object in the scene. In this evaluation the 

SQD and SQED segmentation accuracy is measured over the four test sequences. This 

is compared to the best performing variant found in the previous section, found to be the 

COpy prediction strategy. Again, no termination or innovation of objects is performed, the 

intra-frame update strategy for the region-level models is the unconstrained reinitialisation 

strategy described in section 5.4. 

Figures 6.9 and 6.10 show the SQD and SQED segmentation accuracy over the range 

of test data. It can be seen that for the 'Parrot' sequence the segmentation accuracy is 

generally higher when using the INTERACTING variant of the framework, when compared 

to the 'frame t - 1 at t' object-level region prediction strategy. For this sequence, with 

a parrot undergoing translational motion, the use of a local co-ordinate system improves 

the adaption of the spatial-colour regions to the moving object with good localisation of 

the regions in relation to the parent object. For the 'Bream' sequence the COPY strategy 

outperforms the INTERACTING approach during the fish turn event. On closer inspection 

this is due to the changing shape of the fish object, causing instability in the predicted local 

co-ordinate system. This has the effect that the regions modelling the object are mis-located 

and a significant proportion are lost. To solve this problem the local co-ordinate system 

could be estimated in a more robust manner, perhaps by using the observed colour features 

of the object to locate the axes. 

The 'Children' sequence shows an improvement in the segmentation quality compared 

to the COpy prediction strategy. This is misleading. The improvement appears to be due 

to a 'wobble' induced on the co-ordinate system by the moving ball object, which filters out 

some small false positive regions further from the centre of the co-ordinate system. The local 
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Figure 6.9: SQD accuracy for the INTERACTING framework implementation compared 

to the COpy region prediction strategy over the test data. 

co-ordinate system is ill-suited to modelling multiple objects undergoing different motions. 

For the' Akiyo' sequence the segmentation accuracy is similar for both two methods. 
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Figure 6.10: SQED accuracy for the INTERACTING framework implementation compared 

to the COpy region prediction strategy over the test data. 
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Table 6.4 shows the mean and deviation SQD accuracy over the four test sequences. 

These results confirm the trends observed in the graphical analysis. The INTERACTING 

implementation produces a higher SQD segmentation accuracy for the 'Children' sequence 

with similar accuracy noted for the 'Akiyo' and 'Parrot' sequences. The 'Bream' sequence 

suffers from reduced segmentation accuracy and increased deviation due to the instability 

of the local co-ordinate system. 

Strategy 

Sequence COpy INTERACTING 

fL cr fL cr 

'Akiyo' 0.9983 0.0001 0.9992 0.0001 

'Bream' 0.9991 0.0028 0.9877 0.0148 

'Children' 0.9577 0.0123 0.9794 0.0042 

'Parrot' 0.9835 0.0042 0.9861 0.0025 

Table 6.4: Average SQD error per pixel for the INTERACTING and COpy prediction 

strategies over the test data. 

Table 6.5 shows the mean and deviation SQED accuracy over the four test sequences. 

These results demonstrate an improvement in segmentation accuracy at the edges of the 

objects for three of the four test sequences. Again, the 'Bream' sequence suffers due to the 

instability of the local co-ordinate system. As shown in the previous section the segmenta­

tion accuracy at the edge is higher for the 'Akiyo' and 'Bream' sequences, this is due to the 

way these sequences were generated. The 'Parrot' sequence is perhaps the most suited to 

this type of local co-ordinate system transform (an elongated object with translational mo­

tion) and this is reflected by the improved segmentation accuracy compared to the COpy 

strategy. The 'Children' sequence shows the greatest improvement when using the INTER· 

ACTING variant, the reason for this is most likely due to the filtering effect caused by the 

'wobbling' co-ordinate system that removes smaller false positive regions. 

Finally, Figure 6.11 shows segmentation results for the test sequences. Subjectively the 

best results are for the 'Akiyo' and 'Bream' sequences. The 'Parrot' sequence suffers false 

positive and negative detections around the parrot objects beak and claws due to the colour 

similarity between the foreground and background regions. Such a problem may be resolved 
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Strategy 

Sequence COpy INTERACTING 

J-L (J J-L (J 

'Akiyo' 0.9836 0.0041 0.9883 0.0037 

'Bream' 0.9941 0.0167 0.9811 0.0242 

'Children' 0.6060 0.0346 0.7066 0.0183 

'Parrot' 0.7746 0.0276 0.7976 0.0182 

Table 6.5: Average SQED error per pixel for the INTERACTING and COpy prediction 

strategies over the test data. 

by using a contour based model and subsequently using local contour prediction to refine 

the estimate of the objects boundary. The 'Children' sequence is a reasonable result for 

the two person objects, although the ball is lost due to the changes in motion/appearance, 

partial occlusions and the instability of the moments of the foreground object (causing the 

local co-ordinate system to 'wobble'). 

In this section the INTERACTING framework variant has been demonstrated to im­

prove the segmentation accuracy for some test sequences when compared to the COpy 

variant. These distinct implementations of the same framework demonstrates the flexibility 

of the frame,,":,ork to compare and evaluate different video object segmentation algorithms. 

The INTERACTING variant has been shown to decrease in segmentation accuracy when 

the prediction of the local co-ordinate system becomes unstable due to appearance changes 

or occlusions of the objects. To improve this the local co-ordinate system can perhaps be 

estimated robustly using the local colour features of the objects. 

In the following section an object innovation and termination mechanism is added to 

allow newly discovered regions to be added to existing or new - innovated - objects. 
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frame 0 frame 30 frame 106 framc 120 frame 13-1 

--I 

frame 1 frallll' 5 frame 10 frame 1-1 framc 1 

Figure 6.11: Segment.ed objects llsing the INTERACTING variant of the framework. (Top) 

Objects extracted for frames 0,30, 106.120, and 134 from the test sequences 'Akiyo , 'Bream' 

and Children'. (Bottom) Objects extracted for fraIlles 1, 5, 10, 14. and 18 from the test 

sequences 'Parrot'. Red pixels represent ullder-segmeuted regions which are not detected. 

The cyan areas correspond to over-segmented regions (i.e. fabe positive detections). 
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6.7.3 Termination and Innovation of Objects 

In this section the performance of the object termination and object innovation mechanisms 

is demonstrated. The object termination and object innovation mechanisms are described 

in section 6.5. The innovation mechanism uses a validation gate to match newly innovated 

regions with the current set of video objects. If no match is found a new object is inno­

vated. If an existing object has no support in the current frame then it is terminated. The 

innovation mechanism cannot be expected to match the performance of a human operator, 

and hence the newly innovated objects are those that cannot be matched to existing objects 

using spatial-colour information. The termination and innovation strategy is compared to 

a strategy with no termination or innovation, where unconstrained adaption of the existing 

models is used. In both cases the prediction scheme used is the COPY variant presented in 

section 6.4.2. 

The termination and innovation mechanism is evaluated in a qualitative manner for five 

test sequences - 'Dinosaur', 'Ping Pong', 'Coastguard', 'Foreman' and 'Bream'. The 'Ping 

Pong' sequence is spatially and temporal subsampled to decrease the number of pixels to 

be processed. Gromid truth is not used in this evalution due to the ambiguity of labelling 

new objects in the video sequences, and to allow a greater range of test sequences to be 

used to demonstrate the performance of the proposed approach. 

The first sequence to be evaluated is the 'Dinosaur' sequence, shown in Figure 6.12. 

This sequence contains a model dinosaur spinning on a turntable against a blue background. 

The challenge in this sequence is to update the foreground and background representational 

models by adding and removing newly innovated regions to and from these objects. No new 

objects should be introduced by the innovation mechanism. 

The results (also shown in Figure 6.12) show that the newly innovated regions (created 

as the dinosaur rotates) are mostly added to the existing objects. In this sequence the 

unseen parts of the objects are similar in colour appearance to the objects appearance in 

the first frame, therefore the colour and spatial based matching correctly adds most of the 

regions to the objects. A new object has been innovated in the shaded areas at the base of 

the dinosaur due to a significant difference in appearance compare to the rest of the dinosaur 

object. It is possible that further higher-level processing (using contextual knowledge) could 

be used to merge these two objects. 
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It can be seen that when not using the termination / innovation strategy the object is 

well segmented, with few false positive/false negative detections apparent. This segmenta­

tion is achievable due to the separation between foreground and background in the feature 

space, even though the foreground model has degraded, it is still representative of the fore­

ground object relative to the background model. The COpy variant when not using the 

termination / innovation strategy is not as representative of the object in the final frame 

compared to the termination/innovation strategy. 

It is noticeable that some pixels remain unassigned in the termination/innovation (shown 

as black pixels), particularly in the first frame~ The reason for this is that the constrained 

labelling rule (presented in section 5.4) and removal of small regions leaves a small propor­

tion of the image undefined by any existing region models. This problem is amplified for 

the first frame due to the relatively large number of small regions that are removed. This 

is a potential weakness of the region initialisation strategy (described in section 5.3). The 

problem is not rectified since for the first frame the key-frame segmentation is available. 

For subsequent frames the pixels tend to be isolated and as such could be labelled using a 

neighbourhood mode filter or Markov random field labelling process. 
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(a) 

(b) 

(c) 

(<I) 

frame 0 frame 10 frame' 20 frame 30 franl(' 36 

Figure 6.12: Segmentation results for region- and ob jeci-level i llllovation / term i nat.ioll 

11tratcgi(~s . (a)' Dinosaur' sequencc framcs 0, 10, 20, 30. and 36. (b) Region-level repre-

11entation without regioll- or object-level innovation / terminatioll st.rat.egies (c) Segmentcd 

object.s (false colour, reprcsentillg object. ID) without. regioll- or objcct-kvcl illllovat.ion / 

t.erminat.ioll st.rat.egies (d) Region-level represellt.atioll with region-level iunovation / tenui­

llation strategies (e) Segmented objects (false colour. represent ing oJ> jed. ID) with region­

and object-level innovation / terminat.ion strategies. 
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The second sequence evaluated is the 'Ping Pong' sequence, shown in Figure 6.13. In 

this sequence the camera starts zoomed on the players hand, the camera then zooms out 

revealing more objects in the scene. The challenge in this sequence is to correctly identify 

the newly revealed objects including a poster. At the same time the player and table should 

be correctly innovated such that new regions are correctly added to the existing objects. 

The results (also shown in Figure 6.13) show the limitation of using colour and spatial 

homogeneity as a criteria for object-level innovation. The newly innovation objects are 

sensitive to lighting variations in the scene (e.g. shadows and highlights) and as such the 

table object is split into three components. Encouragingly, the players clothing is correctly 

updated during the sequence, and the poster object is detected as a distinct object (although 

the lettering is detected as a separate object. The players face is merged with the background 

due to the colour similarity, although the hair and beard are detected as a further object. 

This sequence demonstrates the requirement for region- and object-level innovation in video 

object segmentation algorithms. Without termination and innovation, the representation of 

the scene degrades during this sequence due to the inabilit.y to adapt to t.he newly int.roduced 

element.s. The final frame segment.ation still gives a reasonable localisation of the players 

red jersey, although most other elements (the players head, the poster etc) are consumed 

by the background object representation. The representation of the final frame is higher 

fidelity (i.e. more representative) for the termination / innovation strategy when compared 

to the result without.. 

211 



(a) 

(h) 

(c) 

(c1) 

frame 1 frame ..J: frame 8 frallle 12 framE' 16 

Figure 6.13: Segmentation results for region- and object-level innovation / termination 

strategies. (a) 'Ping Pong' sequence frames I, 4, 8, 12, and 16. (b) Regiou-Ievel repre­

sentat.ion without region- or object-level innovation / tenninaLion st.rategies (c) Segmented 

objects (false colour, reprcscntillg object ID) without rcgioll- or object-level iUllovatioll / 

termiuation strategies (d) Region-level representation wi tb regioll-lC'vcl innovation / t.enlli­

na.tion strategies (e) Segmentec! objects (false colour, representing object. ID) with region­

anc! object-level innovation / termination strategies. 
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The third sequence evaluated is the 'Coastguard' sequence, shown in Figure 6.14. In 

this sequence a boat is tracked along a river and a second boat appears in the scene and 

passes behind the first boat. The main challenge in this sequence is to correctly detect the 

second boat and detect it as it passes the first boat. The remainder of the scene undergoes 

relatively minor change in appearance. 

The results (also shown in Figure 6.14) show that the second boat is not detected as a 

separate object. This is perhaps due to the similarity between the second boats appearance 

and some of the background object elements (e.g. the wake around the first boat). Looking 

at the first frame in the sequence, it can be seen that the second boat is partially visible 

and incorrectly identified as a background object, this error may be propagated throughout 

the sequence. This highlights a difficulty when using key-frame initialisation in that the 

human perception of the scene may be incorrect, in which case further processing may be 

required to correct the error (e.g. by detecting the second boat as a new object). Also, the 

representational model of the boat does not appear distinct, this is perhaps due to an under­

constrained matching step at the region-level. The result when not using the termination / 

innovation strategy is subjectively similar to that with, this demonstrates that even when 

the innovation strategy fails the result is at worst similar to the result when not using the 

strategy. 
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Figure 6.14: Seglllentation results for rcgion- and object-level innovation / termination 

strategies. (a) 'Coastgllard' seqllcncc frames 0, 20. 40, 60, and 98. (b) Region-level repre­

sentation without region- or object-level iUllovation / termination st.rategies (c) Segmented 

objects (false colour. representing object ID) without rpgion- or object-level innovation / 

tC'rmina.tion strategies (c1) Region-level represent ation wi th region-level illllOvation / termi­

nation strategies (e) Segmented objects (false colour. represent.ing object ID) with region­

and object-level inllovat.ion / termination strategics. 
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The fourth sequence evaluated is the 'Foreman' sequence, shown in Figure 6.15. This 

sequence contains an individual talking to a shaking camera which subsequently pans to 

the right to show a construction site. The challenge in this sequence is to not innovate any 

new objects until the point where the camera pans to the right 

The results (also shown in Figure 6.15) generally show the result expected. The majority 

of the foreground person object is segmented except for the shoulders which are incorrectly 

added to the background object, due to appearance similarity with elements of the back­

ground. When the camera pans to the right the crane and sky regions (visible during the 

entire sequence) allow the background model to be propagated. When the construction site 

is visible it is correctly identified as a set of new, previously unseen, objects. Again, further 

processing could be used to determine if the component regions of the construction site 

can be merged based on feature space similarity, perhaps using more features in the space. 

This sequence again demonstrates the importance of using an innovation st.rategy for scenes 

where the content changes greatly. The result without the termination / innovat.ion st.rat­

egy provides a reasonable segmentation of the foreground person object, when the camera 

pans to the right the background representation dominates and consumes t.he foreground 

representation. For an application where the person object is to be segmented this result. 

is adequate. For an application where the construction site is also to be segmented the 

termination / innovation strategy is required to correctly identify the new scene elements. 

Again, the representation of the final frame is closer to the scene content for the termination 

/ innovation strategy when compared to the result without. 
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(c) 

frallle 0 frame 100 frame 150 frame 200 frame 299 

Figure 6.15: Segmentation results for region- and object-level inllovation / termination 

strategies. (a) 'Foreman' sequence frames 0, 100, 150, 200, and 299. (b) Region-level repre­

sentatioll without regiOlI- or object-level innovation / tcrl1linatioll strategies (c) Segment.ed 

objects (false colour. representillg object ID) without region- or object.-lev('l illllovatioll / 

teunillatioll st.rategies (d) Rcgioll-lcvpl representation with regiol1-lpvel inllovatioll / t.erlni­

lIation strategies (e) Segmentf'd objects (fa.lse colour, represf'lItiug object ID) with regioll­

and object-level innovation / termillatioll strategies. 
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The final sequence to be evaluated is the 'Bream' sequence, shown in Figure 6.16. This 

sequence contains an fish turning against a background containing moving planets. The 

challenge in this sequence is to correctly add the uncovered planets to the background 

object as the fish moves, and also retain the fidelity of the representation of the fish as it 

turns. 

The results (also shown in Figure 6.16) show advantages and disadvantages introduced 

when using the termination and innovation strategy. The strategy correctly associates the 

newly innovated planet in frame 120 with the background representation, demonstrating 

explicit handling of problems associated with occlusion. Without the strategy this uncovered 

planet is incorrectly added to the foreground model. Another planet and portion of sky are 

also identified as a new object in frame 106, without using the termination / innovation 

strategy they are added to the background object. In general, it is incredibly complex 

to have semantic knowledge imparted on a segmentation algorithm, for this sequence it 

is ambigious whether or not the planets in the background constitute independent scene 

elements. In all cases the segmentation is application dependent, and as such the distinction 

between the different objects requires user intervention. The innovated objects in most 

cases can be merged into higher-level objects with semantic meaning. The representation 

of the final frame is closer to the scene content for the termination / innovation strategy 

when compared to the result without. This is especially noticeable around the tail of the 

fish, although a small region on the head of the fish has been incorrectly associated with 

the background representation even though it has adapted correctly to the appearance 

of the fish. As stated earlier, it is noticeable that some pixels remain unassigned in the 

termination/innovation (shown as black pixels), particularly in the first frame. This is 

again due to the constraint mechanisms in the termination / innovation strategy and can 

be fixed using local filtering of the segmentation result. 
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Figure 6.16: Segmentation resnlts for region- and object-level inllovation / termination 

strategies. (a) 'Dream' sequence frames 0, 30, 106, 120, and 134. (b) Region-level repre­

sentat.ion without region- or object-level innovation / t.cnnil1ation strategiC's (c) Segmented 

object.s (false colour, r('prcsent.il1g object. ID) wit.hont regioll- or object.-level il1novation / 

tenninatioll strategies (d) Region-level representatioll wi til region-level innovation / termi­

nation strategies (e) Segmented objects (false colour, rcprcscntillg object ID) with region­

and object-level innovation / termination strategies. 
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In this section a strategy for innovating and terminating objects has been demonstrated 

on a range of representative test data. The innovated objects are formed by detecting 

regions with homogeneous distribution in the spatial-colour feature space. As such, they do 

not represent semantic objects, but can often be grouped at a higher-level to give semantic 

meaning. This innovation and termination mechanism can be used as a focus of attention 

strategy in an application of the segmentation process. It also improves the ability of the 

system to handle partial (and even full) occlusions, uncovered background can be correctly 

associated with the existing background in many cases. In the case of total occlusion the 

hidden object may be redetected as a new object, in which case higher-level spatia-temporal 

processing is required to restore the original label. In the following section this chapter is 

concluded. 

6.8 Conclusions 

In this chapter a hierarchical Bayesian framework for video object segmentation has been 

proposed. This framework has been applied to the problem of updating the video object 

representational models on a per-frame basis, both at the region- and object-level of the hi­

erarchy. Three region prediction strategies were implemented within the framework (COPY, 

AFFINE and KALMAN variants) and compared in a quantitative manner on well known 

test sequences. The hierarchical nature of the framework was further explored with the 

INTERACTING variant. An object termination and innovation strategy was subsequently 

introduced and evaluated over a range of test data. 

The~proposed hierarchical framework can be used to efficiently implement and compare 

object prediction strategies, interacting representational models at different hierarchical lay­

ers and termination and innovation strategies for video object segmentation. The Bayesian 

description of the framework allows further modules to be incorporated in a principled man­

ner. Three distinct region prediction strategies were implemented within this framework to 

take advantage of the higher-level information in the scene. In these prediction strategies 

the object-level representation was limited to motion models or filtered spatial information 

(e.g. bounding box). 

To explore the framework further the INTERACTING variant was implemented. In this 

framework a local per-object co-ordinate system was used to share information between the 
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object- and region-levels in the framework. The innovation and termination of regions at 

the region-level was extended to assign these regions to the video objects in the scene. 

If the region cannot be matched to any existing objects then new objects are innovated, 

this mechanism uses feature space homogeneity as the criteria for matching. The proposed 

implementations of the framework were implemented both qualitatively and quantitatively 

over a range of standard test data. 

In this chapter the following contributions have been made: 

• Introduced a hierarchical framework for video object segmentation. 

• Introduced a Bayesian implementation of the hierarchical framework. 

• Evaluated three methodologies for region prediction (COPY, AFFINE and KALMAN 

variants) over a range of test data. 

• Evaluated a novel INTERACTING variant of the framework over a range of test data. 

• Proposed an object termination and innovation strategy for video object segmentation. 

• Evaluated the object termination and innovation strategy over a range of test data. 

It was found that predicting the region-level models using the motion information at 

the object-level offered negligible benefit over using the simpler COpy strategy. The IN­

TERACTING variant was found to be sensitive to changes in the local co-ordinate system 

of the parent object, which was used to locate the region-level models. The spatial-colour 

based innovation strategy was demonstrated to have the potential to be used as a focus 

of attention strategy for higher level processing, however the problem of finding semantic 

objects remains a fundamental challenge in video object segmentation. 

This chapter has demonstrated the applicability of the hierarchical framework to video 

object segmentation. A key benefit to this approach is that many of the issues associated 

with video object segmentation can be approached using expliCit modules in the Bayesian 

framework, simplifying the implementation and evaluation. 

Future work includes implementing shape priors (built up over a temporal window) and 

graph-like structures to improve tracking of objects through occlusion (by allowing nodes 

to be hidden and predicted based on some local structural analysis). Occlusion makes 
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it difficult to predict and update region-based representative models of the video objects, 

explicit modelling of this is an important consideration in future video object segmentation 

work. The innovation of semantically important objects may never be solved completely, 

since the definition of semantics requires knowledge about the application which implies 

human intervention is required. In the following chapter the outcomes of this thesis are 

discussed along with the future directions for work on video object segmentation. 
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Chapter 7 

Final Discussion 

The aim of the work presented in this thesis was to segment semantic video objects from 

video sequences. Video object segmentation comprises three main components - feature 

space extraction, video object representation and representational scheme update. The work 

in this thesis presents algorithms and results that demonstrate the applicability of existing 

and novel algorithms to these three fundamental components. The research conducted 

during the course of this investigation is summarised in Section 7.1. The main contributions 

of this thesis are given in Section 7.2 and finally future research directions are discussed in 

Section 7.3. 

7.1 Summary of Research 

The research performed in this thesis is summarised in this section. The research is sum­

marised in the order in which it was presented in the thesis. Feature spaces that can 

be applied to the problem of video object segmentation (Chapter 3) are discussed first. 

Following this the work completed on probabilistic representational models (Chapter 4) is 

reviewed. Chapter 5 presented methods for maintaining a region-based representation of a 

video sequence and finally Chapter 6 proposed a hierarchical Bayesian framework within 

which object-level prediction and innovation strategies were explored. 

Feature Spaces for Video Object Segmentation 

Using an evaluation procedure methodology it was demonstrated that spatial information 

appended to a colour feature vector is a powerful descriptor allowing a representational 
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scheme to segment an object with sufficient accuracy. It was demonstrated that motion 

information can also be beneficial to the feature space for specific sequences. Weighting 

the motion information was shown to improve the scene and edge segmentation accuracy 

compared to an unweighted strategy, creating more coherent object segmentations if the 

object is moving. However, the addition of weighted motion information to the spatial­

colour feature space was found to decrease the scene and edge segmentation quality. Texture 

information was shown to make negligible difference for generic object segmentation and it 

is best applied to specific applications. Finally, the effect of pre- and post-processing the 

data was presented. From the results this appears to be a superior method for generating 

coherent object segmentation since it does not degrade edge quality as much as the use of 

motion information in the feature space. 

Probabilistic Representation for Video Object Segmentation 

Probabilistic modelling was applied to the problem of video object segmentation. Three 

distinct approaches to PDF estimation were implemented and applied to the problem of 

modelling spatial, colour and joint spatial-colour distributions. The performance of these 

three methods were evaluated within a common framework. It was determined that the 

kernel density model achieves the best accuracy for segmentation around the edges of video 

objects. The independent modelling of the Spatial-Colour PDF of video objects was subse­

quently evaluated and was found to reduce the accuracy of the extracted video object when 

compared to the joint PDF models. 

Propagation Strategies for Video Region Segmentation 

In Chapter 5 methods were introduced for segmenting video frames into homogeneous colour 

regions. An efficient spatial-colour region-based representative scheme was evaluated using 

a range of inter- and intra-frame model update strategies. The intra-frame update strategy 

was constrained to improve the homogeneity of the propagated regions, this required medl­

anisms for innovating and terminating the video regions. It was found that this constraint 

mechanism improved the representativeness of the models. The more complex inter- and 

intra-frame update strategies were found to offer little advantage over the simpler strategies 

due to the sensitivity of the regions to the appearance changes in the video. 

223 



Hierarchical Bayesian Framework for Video Object Segmentation 

In Chapter 6 a hierarchical Bayesian framework for video object segmentation was pro­

posed. The framework was used to propagate region-level models by using higher-level 

object information. Three implementations of the framework used object-level prediction 

of the region-level models. The hierarchical nature of the framework was further exploited 

in an interacting region- and object-level implementation where the region models where 

located in a co-ordinate system centered on the parent video objects. Additionally, methods 

were presented for innovating and terminating video objects to allow new scene elements 

to be modelled as the video content changes. It was found that the complex inter-frame 

prediction of region-level models offered little advantage over the simpler strategy. The 

interacting region- and object-level implementation was found to be sensitive to changes in 

the local co-ordinate system of the parent object. The video object innovation strategy was 

demonstrated to find objects in the scene using a spatial and colour homogeneity criteria, 

forming the basis of a focus of attention strategy to alert human operators to new scene 

elements. 

7.2 Contributions 

This section describes the work contributed in each chapter. 

Review of Methods for Video Object Segmentation 

Chapter 2 thoroughly reviewed the wealth of work that has been applied to the problem of 

video object segmentation. Three main types of approach to video object segmentation were 

identified - morphology based, image-plane based and feature space classifiers. Morphology 

based approaches are a popular subset of the image-plane based methods and were separated 

for clarity. The techniques for updating the representational models were also reviewed. 

Evaluation of Feature Spaces 

In Chapter _3 an evaluation methodology for video object extraction was proposed. This 

methodology incorporated two quantitative measures that give both scene- and edge-based 

measures of video object segmentation accuracy. The methodology was applied over a 
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sufficient range of feature spaces on test sequences to determine the 'best' performing feature 

space. 

The 'Best' Feature Space 

In Chapter 3 the 'best' performing feature space for video object segmentation was selected. 

It was demonstrated that spatial and colour information together forms a powerful descrip­

tor for generic video object segmentation. Motion and Texture information was found to 

generally decrease the accuracy of the video object segmentation. 

Video Object Representation 

In Chapter 4 the use of existing probabilistic models for video object segmentation was 

researched. Three different representational schemes for video object segmentation were 

evaluated using the scene- and edge-based accuracy. Joint and independent modelling of 

the Spatial-Colour PDF of video objects was also evaluated using the same procedure. It 

was found that kernel density models gave the highest segmentation accuracy at the edges 

of the video objects. 

Region Based Video Representation 

In Chapter 5 aspects of region based modelling in video sequences were researched. An 

efficient independent spatial-colour region model was proposed. Following this existing 

methodologies were applied to the problem of inter-frame prediction, intra-frame update, 

termination and innovation of per-region representational models. These methods were 

evaluated using performance measures that did not require ground truth segmentation. 

It was found that constraining the intra-frame update of the models gave a significant 

improvement in the representativeness of the models. 

Hierarchical Framework for Video Object Segmentation 

In Chapter 6 a hierarchical Bayesian framework for video object segmentation was described. 

This framework was implemented using both object-level prediction of region models and 

interacting object- and region-level representative models. Methods for innovating and 

terminating video objects were described. It was found that the different methodologies 
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for updating the representative models all had comparable performance. The innovation 

strategy was shown to generate objects homogeneous in the colour space, which could be 

used for further higher-level processing to recover semantic objects. 

7.3 Future Research 

The problem of video object segmentation is complex, one which the human visual system 

can solve in many cases without difficulty. The future directions for research on this topic 

touch on many areas of computer vision - from learning to estimation, image analysis to 

geometry. The three main limitations of the work presented are the proposal of an update 

mechanism for regions, a method for innovating previously unseen semantic objects and the 

problem of tracking through severe occlusions. In this section some directions are proposed 

for this research. 

Update mechanism for regions 

The strategies evaluated for predicting region-based representations were generally found to 

have little improvement over simply using the previous estimate of the region location. 



to limit potential matches. Finally, unmatched regions can be gathered into potential new 

objects using connectivity constraints within the scene. A part of this work would be the 

mechanisms for merging and splitting objects that are thought to belong the same physical 

object. 

Occlusion 

The problem of occlusion is present in many real-world applications of computer vision. For 

video-object segmentation it is important to explicitly handle the interaction of objects, 

specifically the covered and uncovered regions of such objects. It is proposed that this 

can be achieved by using mesh based methods where the regions are treated as nodes in 

a graph formed from the mesh. By allowing nodes to be covered or uncovered and using 

physical constraints on the warping of the mesh it may be possible to allow a region of 

the mesh to be tracked during occlusion using the partial observation. For full occlusions 

a mechanism is required to store descriptors of the video objects such that matching is 

possible on reappearance. 

Prior Knowledge 

Humans can efficiently see objects in images and video because they have a priori knowledge 

of objects that can exist in the world. This prior knowledge helps group together features 

and regions to perceive meaningful semantic objects. In video object segmentation it would 

be interesting to incorporate prior knowledge about objects to help constraint the solution 

for the segmentation. This could be achieved perhaps by starting with simple primitive 

shapes before looking at full object representations. Since the world is 3D it is logical that 

the prior knowledge would take the form of 3D models, developing a top-down paradigm 

for video object segmentation. Top-down modelling is often used for tracking and recog­

nition in constrained scenes and the sheer quantity of objects (not to mention complexity 

e.g. articulated structures) would complicate the creation of a generic 3D database of ob­

jects. This requirement limits top-down modelling of video objects to specific constrained 

applications. 
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Chapter 8 

Personal publications 

The work described in this thesis has been presented in the following publications: 

• D.J. Thirde and G.A. Jones, H 
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