
An approach for designing a real-time intelligent distributed 
surveillance system 

By 

Maria Valera Espina 

A thesis submitted in partial fulfilment of the 
requirements for the degree of 

Doctor of Philosophy 
May, Year 2006 

KINGSTON UNIVERSITY LIBRARY 

Ace" No. Cj g .13 I Lt ~ ":f I f ~ E t 
C'.II No . .1fH5~s5 fS , fr''P / V 

Digital Imaging Research Centre 
Faculty of Computing, Information Systems and Mathematics 

Kingston University 



FIGURES 
2.2, 2.3, 24, 25, 2.6, 3.3, 3.4, 3.5, 3.6, 4.1 and 

4.2 
REDACTED BY UNIVERISTY 



ABSTRACT 

The main aim of this PhD is to investigate how a methodology rooted in systems 

engineering concepts can be established and applied to the design of distributed 

wide-area visual surveillance systems. Nowadays, the research community in 

surveillance systems tends to be mostly focused on the computer vision part of 

these systems, researching and developing more intelligent algorithms. The 

integration and finally the creation of the system per se, are usually regarded as a 

secondary priority. We postulate here that until a robust systems-centred, rather 

than algorithmic-centred approach is used, the realisation of realistic distributed 

surveillance systems is unlikely to happen. 

The future generation of surveillance systems can be categorised, from a system 

engineering point of view, as concurrent, distributed, embedded, real time systems. 

An important aspect of these systems is the inherent temporal diversity 

(heterogeneous timing) that arises from a variety of timing requirements and from 

the parallelisation and distribution of the processes that compose the system. 

Embedded, real-time systems are often naturally asynchronous. However, the 

computer vision part of these surveillance systems is commonly conceived and 

designed in a sequential and synchronous manner, in many cases using an object

oriented approach. Moreover, to cope with the distributed nature of these systems, 

technologies such as CORBA are applied. Designing processes in a synchronous 

manner plus the run-time overheads associated with object oriented 

implementations may cause communication bottlenecks. Perhaps more importantly, 

it may produce unpredictable behaviour of some components of the system and 

hence undetermined performance from a system as a whole. Clearly, this is a major 

problem on surveillance systems that can often be expected to be safety-critical. 

This research has explored the use of an alternative approach to object-orientation 

for the design and implementation of intelligent distributed surveillance systems. 

The approach is known as Real-Time Networks (exemplified by system engineering 

methodologies such as MASCOT and extensions such as DORIS). This approach is 

based conceptually on conceiving solutions as being naturally concurrent, from the 

highest level of abstraction, with concurrent activities communicating through well-



defined data-centred mechanisms. The methodology favours a disciplined approach 

to design, which yields a modular structure that has close correspondence between 

functional elements in design and constructional elements for system integration. It 

is such characteristics that we believe will become essential in overcoming the 

complexities of going from small-scale computer vision prototypes to large-scale 

working systems. 

To justify the selection of this methodology, an overview of different software 

approach methods that may be used for designing wide-area intelligent surveillance 

systems is given. This is then, narrowed down to a comparison between Real-Time 

Networks and Object Orientation. The comparison is followed by an illustration of 

two different design solutions of an existing real-time distributed surveillance 

system called ADVISOR. One of the design solutions, based on Object Oriented 

concepts, uses CORBA as a means for the integration and distribution 

characteristics of the system. The other design solution, based on Real-Time 

Networks, uses DORIS methodology as a solution for the design of the system. 

Once the justification over the selection is done, a novel design of a generic visual 

surveillance system using the proposed Real-Time Networks method is presented. 

Finally, the conclusions and future work are explained in the last chapter. 
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1 Introduction 

1.1 Motivation 

This research project was carried out as part of an EPSRC1-funded project referred to 

as Computational Heterogeneously Timed Networks (COHERENT). The aim of 

COHERENT was to model, design and verify embedded real-time systems on-chip 

systems (SoCs) with heterogeneous timing in order to improve timing and energy 

efficiency of systems with potential applications in control and image processing. As 

suggested in [COHERENT2005], the proposed hardware-oriented architecture called 

real-time network on a chip (RTNoC) should consist of computational units of diversity 

processing and response rates and communication components from (a finite set) of 

generic Asynchronous Communication Mechanisms (ACMs). COHERENT based the 

investigation on ACMs and asynchronous techniques to design and verify such systems 

rather than improving the performance of the computational units that constitute the 

system. Within that general context, the work reported here, investigated how 

potentially large scale distributed real-time visual surveillance systems might benefit 

from design and implementation techniques derived for asynchronous systems. 

The technological evolution of vision surveillance systems starts with video-based 

surveillance systems consisting of analogue Closed Circuit TeleVision (CCTV) 

systems, i.e. a number of cameras connected to a smaller number of monitors through 

switches. The technological improvement of these systems led to the development of 

semi-automatic systems. These systems are able, separately for one or more cameras, to 

attract the attention of a human operator by detecting unusual conditions and raising an 

alarm. Current research is towards the design of large-scale automatic surveillance 

systems. The usual design challenge for these advanced vision systems is to distribute 

sensors over geographically wide areas. This distribution, from the computational point 

of view, consists of distributing the processing capacities over the computer network 

and the use of embedded signal processing devices. 

1 United Kingdom's Engineering and Physical Sciences Research Council 
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Such surveillance systems can be categorised as concurrent, distributed, embedded, real 

time systems. An important aspect of these systems is their inherent temporal diversity 

(heterogeneous timing), arising from the variety of timing requirements from different 

response times and processing rates of the functional elements of these systems, and 

from the parallelisation and distribution in the implementation architectures. Moreover, 

embedded, real-time systems are often naturally asynchronous. Nevertheless, currently 

the computer vision part of these systems is largely designed in a sequential and 

synchronous manner using an object-oriented approach. Furthermore, Common Object 

Request Broker Architecture (CORBA) technology is the mechanism commonly used 

to deal with the integration and distribution of different parts that constitute the system. 

The design of these systems in a synchronous manner and the run-time overhead, that 

object oriented and CORBA approaches might produce, may cause exhaustion of 

resources caused by unpredictable behaviour of some components of the system. 

Moreover, forcing such systems to operate on a synchronous or semi synchronous 

manner when, as mentioned, they are often naturally asynchronous, might cause other 

important limitations at different levels. For example, at a network-level these 

limitations may reduce communications performance (i.e. bottlenecks) while at a chip 

level these limitations may increase manufacturing costs and reduce the effectiveness 

of the system in terms of speed. Currently, there are many ways to deal with these 

problems at both levels. For example, at a chip level, a possible hardware solution 

relies on distributing the computation between several processing elements (distributed 

System on Chip). 

Apart from developing a general hardware-oriented architecture, the aim of 

COHERENT project was also to develop a design methodology which would enable 

the solution of "distributed SoC (System on Chip)" to be more robust and more widely 

applicable, enhancing its advantages whilst eliminating some of its limitations. This 

methodology was expected to incorporate asynchronism throughout a full spectrum, 

from fully synchronised to fully asynchronous, in processing and data communication 
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aspects using heterogeneous timing. Therefore, the aim of this PhD, within the context 

of COHERENT, was to investigate and appraise the use of Modular Approach to 

Software Construction Operation and Test (MASCOT), which is a design method 

based on the Real Time Network (RTN) principles, and also to investigate the use of 

ACMs provided by RTN, to the design of generic wide-area visual surveillance 

systems. 

1.2 Context of the research 

Chapter 1 and chapter 2 present the context and background of this research. This 

research project has been carried out inside a research group called the Digital Imaging 

Research Centre (DIRC), which is concerned with computer vision solutions. The 

leading research activity and perhaps the most challenging one in this group, is visual 

surveillance in widespread geographical systems. Traditionally the effort has been 

concentrated on specific computer vision algorithms for one video source. More 

recently, due to the advance in the power and sophistication of computer vision 

algorithms, the research activities are focusing on issues such as the tracking of people 

in a small network of video sources including conditions where people move outside 

the field of view of one camera and into the field of view of a neighbouring one. 

Therefore, it has become useful to consider if it is feasible to deploy these algorithms in 

real large systems. At this point, the lack of a simple and powerful way of designing 

and implementing large distributed vision systems became evident and this project, 

linked with the COHERENT project, sought to address that question. Thus, chapter 1 

presents within the context of COHERENT, the background of three main fields: 

distributed systems, real-time systems and asynchronous design and communication 

techniques. The background of this research is continued in chapter 2 by presenting the 

literature review within the context of surveillance systems. 

1.2.1 Distributed systems 

A common distributed processing environment is constituted by several "nodes" that 

are interconnected forming a network and they communicate and coordinate their 
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actions by passing messages2
• These "nodes" may consist of one or more processors 

sharing memory. The "logical node" also called subsystem, can be defined as groups of 

concurrent executing tasks, which can be allocated in a same or in a different "physical 

node" [Gomaa 1993c]. An important design decision is to develop these subsystems in 

ways that minimise the number of interactions between subsystems (low coupling) and 

maximise the degree of interaction within the subsystem (high cohesion). If this design 

decision can be achieved, then an individual subsystem may be designed, coded and 

tested mostly in a standalone manner. Another beneficial effect of this design decision 

is that when an error occurs in a subsystem, the spread of damage to other subsystems 

may be limited. Once subsystems have been designed, the communication between 

parts is done by sending messages through the network, which implies that even though 

they should synchronise through signals to perform such communications, there is no 

single global notion of the correct time [Coulouris et at. 2001]. Thus, the characteristics 

that may define general distributed systems may be summarised as: concurrency 

between components that constitute the system, the lack of a global clock and some 

resilience to component failure. In the following subsections, approaches to distribution 

and integration of systems are presented. 

1.2.1.1 Distributed Kernel 
In distributed computing, a common assumption is that when a task sends a message to 

some other task it should not need to know where this task is situated, making the 

message communication transparent [Gomaa 1993c]. Some commercial operating 

systems (e.g. VAXlELN) provided a distributed kernel, which directly supports this 

transparency in the message communication. If this property is not available then a 

Distributed Task Manager (DTM) is usually developed to provide this transparency. 

The DTM is a layer of software that stands above each operating system on each node. 

See Figure 1-1. 

2 Message passing is a form of communication used in concurrent, parallel and object-oriented 
programming. It is also used in interprocess communication. Communication is made by the sending of 

messages. 
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Subsystem 1 (node 1) 

Distributed 
kernel 

Subsystem 2(node 2) 

Figure 1-1. Message communication between distributed entities. Tasks a and c from node 1 
communicate between them and with tasks d, e from node 2. 

1.2.1.2 Message Passing Interface (MPI) 
As claimed in [MPI 2003a], MPI technology tends to provide an efficient and portable 

standard for message passing communication programs used in distributed memory and 

parallel computing. It is also a specification (standard) for Message Passing 

Libraries3.The target platforms are systems which consist of massive parallel 

computing (the programmer is responsible for identifying the parallelism) such as 

workstation clusters or heterogeneous networks. There are currently several MPI 

implementations such as MPIIPro, IBM MPI, and LAM. It is stated in [MPI 2006b] 

that these implementations provide different communication modes such as 

asynchronous communication, virtual topologies and efficient message buffer 

management. 

3 [ ... ] refers to a collection of routines which are embedded in application code to accomplish send, 
receive and other message passing operations [MPI 2003]. 

5 



1.2.1.3 Remote Procedure Call 
Another technology that has been used to provide the communication in distributed 

systems is that of Remote Procedure Calls (RPC). This technology is based on a client

server model (local procedure call) where the client subsystem makes a request or 

"call" to the server subsystem and waits for the answer. In RPC the server subsystem is 

in a remote node hidden from the client subsystem. The procedure in the client 

subsystem is often called the client stub, and it handles the request with any relevant 

parameters, encapsulates them in a message and sends it to the server subsystem. The 

server procedure called server stub unpacks the message and calls the appropriate 

procedure to process the call. Once the request has been processed the sever stub packs 

the results in a response message and sends them back to the client. The client stub 

unpacks the message and sends the results as output parameters to the clients. Thus the 

functions of the client and server stubs are to make the remote procedure call look like 

a local procedure call. See Figure 1-2. 

Client side 

Call RPC function (1) 

Program continues (6) 

r 

Server side 

Call service (3) 
I 

Request completed (4) 

y ~~= I----+--Execute request (2)--------IHI~ s::;:r ~ 
T Return reply (5) I 

Figure 1-2. Remote procedure mechanism. The process is illustrated from step (1) to (6). 

1.2.1.4 Sockets 
A socket technology is an end-pair communication model between two processes 

across a network following a client-server communication model like that of the RPC. 

The client initiates the rendezvous communication by sending a connexion request to 

the server machine's port. If the server accepts the request, the connection creates 

another socket, which is bound to a new port, to connect with the client. Therefore, the 
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initial socket remains free to listen for new connection requests from other clients. 

Socket technology allows creating software packages like SocketPro [Yuancai 2002] to 

design the communication between the client and server process to operate in a non

blocking mode, thus allowing the client and server to carryon with their own 

processing tasks while they are communicating. 

1.2.1.5 Middleware technology 
One of the recent research areas in distributed systems is the use of technologies 

referred to as Middleware that are applied to facilitate and manage the communication 

between nodes and also to allow different platforms (operating systems) to be 

integrated in a distributed subsystem. Middleware is a layer of software between the 

network and the application, which provides services such as identification, 

authorization, directories and security. The philosophy of these technologies is similar 

to that of the distributed kernel. There are different types of middleware depending of 

the technology applied or the application system required [Carnegie Mellon Software 

Engineering Institute 2005]: 

• Object Oriented Middleware (OOM): The most popular middleware model. It 

extends the object oriented paradigm to distributed systems. The applications 

are potentially distributed objects that interact through a transparent method 

similar to RPC, but with the difference that in OOM instances of objects can be 

returned from remote call. Examples of OOM technology include Distributed 

Computing Environment (DCE), Common Object Request Broker Architecture 

(CORBA), Microsoft's Common Object Model (COM) and Java Remote 

Method Invocation (RMI). 

• Message-Oriented Middleware (MOM): Unlike RPC or OOM this middleware 

is based on asynchronous communications, thus the producer is not blocked 

waiting for the consumer to receive the message. Even though the caller and the 

receiver are loosely coupled, messages are addressed to their recipients and it 

can be disadvantageous in wide-area distributed systems for the overhead that it 

generates. The development of e.g. publisher-subscribers systems is a possible 

solution to decouple producer and consumer from the naming property. 
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Publishers publish to the entire network and subscribers subscribe to the 

message. 

• Event-Based Middleware: Refers to technology that is applied to systems that 

must react to events that can represent changes in the environment or process 

status. The request-reply paradigm that is commonly used in OOM is not 

suitable for this kind of system. Therefore, the communication pattern 

established in this middleware is based on a one-way or loosely coupled 

communication mechanism similar to MOM. 

• Reflexive Middleware: Refers to technology that tries to include a "reflection" 

property in the middleware to achieve openness, configurability and 

reconfigurability. Reflection understood to be the capacity of an entity to reason 

about and act upon itself, a reflective system contains a representation of its 

own behaviour and it is capable of change, therefore all changes made to the 

system's self-representation are immediately reflected [Middleware 2005]. 

Another current research area in distributed systems is based on the use of a called 

Component technology (conceptually similar to OOM). This technology considers a 

component entity as the fundamental building block of any application. CORBA 

technology and COM may also be considered Component technology. Other 

alternative Component technologies may be JavaBeans [JavaBeans 2006] and .NET 

[Microsoft .Net 2006] in a platform dependant application. JavaBeans is a component 

technology easy to integrate in java environments Uava platform). .NET is a 

component-oriented development that replaces COM technology; it allows the creation 

of components more easily than COM .. NET also allows greater interoperability than 

COM. Although it allows language independency it is still platform dependant 

(Microsoft technology). 

1.2.1.6 Message communication by ports 
In some distributed systems communication is based on a loosely-coupled 

communication pattern between source and sink by means of ports. Tasks are attached 

to ports, therefore the producer task does not send a message to an explicit consumer 

but sends the message to the output of its port and, consequently, the consumer does 
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not need to know who the producer is. This communication model contributes to a 

higher degree of flexibility in the design due to the decoupling in communication 

between tasks, and contributes to the possibility of re-use since tasks do not need to 

know who and where the consumers or producers are when there are designed. Some 

Architectural Description Languages (ADLs) use this communication model to define 

their architectural designs [Medvidovic and Taylor 2000]. In successive versions of 

MASCOT and further extensions of RTN such as the Data Oriented Requirements 

Implementation Scheme (DORIS), the communication model, which will be explained 

in chapter 3, is based not only on ports but also on what are called windows, paths and 

Intercommunication Data Area (IDAs). In MASCOT there are two basic types of 

components: the activity component, which is concerned with information processing 

and the passive component (IDA), which is concerned with information storage and 

transmission. Activities communicate through IDAs, which provide the necessary 

synchronisation, mutual exclusion and cross-stimulation facilities through appropriate 

access procedures. 

1.2.2 Real· Time systems 

In terms of computational timing, a Real Time System (RTS) not only has to produce 

its results but must produce the results within specified time intervals (response-time 

constraints) [Phillip 1996], [Naedele 2001]. "what is predictability for RTS" introduced 

in [Stankovic and Ramamritham 1990, pp.247], is an interesting question because the 

answer permits linking the predictability of RTS (in terms of timing requirements) with 

the underlying assumptions. The following list presents the definition of four important 

characteristics of any RTS. Thus, depending on these characteristics, the design of a 

RTS may vary significantly: 

• Granularity of the deadlines: in RTS some tasks have deadlines and/or periodic 

timing constraints. For example, when a task is executed and the period of 

execution must be short, the task has a tight deadline, which means that the 

operating system has to react promptly. Therefore, the scheduling algorithm 

should be fast and simple. 
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• How strict are these deadlines? This can depend on the RTS and the application 

of it. There are some tasks that can be classified as soft real time tasks. These 

tasks are defined as tasks that still could be executed when the deadline is 

passed. Hard real time or critical tasks are the ones that should be executed 

before the deadline is passed otherwise they may cause major problems, e.g., in 

a safety critical system to miss a deadline of a critical task may provoke a loss 

of life. 

• Size of the system and the degree of co-ordination: RTS vary considerably in 

size and consequently in complexity. For example, increasing the size and the 

degree of co-ordination between tasks may complicate the notion of 

predictability. Therefore, the ability to load entire systems into memory and to 

limit task interactions simplifies many aspects of building and analysing RTS. 

However, dynamic RTS with fully resident code and highly independent tasks 

may not always be practical. 

• Environment: the environment in which the RTS operates plays an important 

role on the design step. In small and well defined systems (e.g. a lab 

experiment), from the point of view of a designer, it is possible to think of these 

systems as deterministic even though they may not be intrinsically 

deterministic. For example, in hard real time or critical tasks, it is desirable to 

force the system to be fully deterministic, in the sense that it is imperative that 

the, system fulfils all the timing constraints. 

A common approach used to force a complex and distributed system to be deterministic 

is taken by imposing these systems to work in a synchronous manner. From a circuit 

design point of view, distributed RTSs working on synchronous modes impose the 

need for a common clock, which makes the practical design and implementation of 

these systems very difficult. Furthermore, the advance of Very Large Scale Integration 

(VLSI) technology, that allows the integration of large numbers of high-performance 

processors on one chip, makes the idea of synchronising these processors with a 

common clock even more difficult [COHERENT 2005]. Thus, currently there is 

substantial research work (including the COHERENT project) on ideas such as 
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applying asynchronous circuits instead of synchronous circuits, also on applying 

different design techniques to the building of distributed RTS, and finally, applying 

asynchronous communication techniques such as Globally Asynchronous, Locally 

Synchronous (GALS) and ACMs (especially in the COHERENT project). The next 

sections will briefly discuss these different lines of research. 

1.2.3 Asynchronous and Synchronous systems 

To simplify design, most of the designs of logic circuits are based on two major 

assumptions: all the signals are binary and time is a discrete function. By assuming that 

time is a discrete function, hazards (undesired signals transitions) and feedback can be 

ignored [Hauck 1995]. Asynchronous circuits keep the assumption that signals are 

binary, but remove the assumption that time is a discrete function. This, as suggested in 

[Hauck 1995], may imply several possible benefits such as: no clock skew (i.e. "the 

difference between arrival times of the clock signal at different parts of the circuit") 

since asynchronous circuits by definition have no globally distributed clock. Exploiting 

asynchronous mechanisms also can lead to lower power consumption because these 

circuits only need to have transitions in areas involved in the current computation. 

Asynchronous systems (circuits) indicate that when a computation is completed rather 

than waiting until all possible computations have completed, as is often necessary in 

synchronous systems. Moreover, in many asynchronous systems as suggested in 

[Hauck 1995], the migration to a new technology of only the most critical parts of the 

system may improve the overall performance, because performance in asynchronous 

systems tends to depend only on the current active path rather than the longest path as it 

happens in synchronous systems. Furthermore, asynchronous systems can wait an 

arbitrarily long time for an element to complete, allowing robust mutual exclusion. The 

last advantage of asynchronous circuits over synchronous circuits resides on the fact 

that, since there is no clock to which signals must be synchronised, asynchronous 

circuits may handle inputs from the outside word more elegantly than synchronous 

circuits, because the inputs usually are by nature asynchronous [Ghosh 2001]. 
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Nevertheless, asynchronous circuits also have some problems. Firstly, asynchronous 

circuits are more difficult to design in an ad-hoc fashion than synchronous circuits. In 

synchronous circuits, by setting the clock rate to a long enough period, all worries 

about hazards and dynamic states of the circuit are normally removed. Nevertheless, 

designers of asynchronous systems must pay a great deal of attention to the dynamic 

state of the circuit. Notice that as mentioned, asynchronous designs do not have 

assumption of taking time as a discrete function rather than a continuous function; 

therefore the hazards that occur between transitions have to be considered. Moreover, 

placement, routing, partitioning, logic synthesis and other existing CAD tools in 

synchronous systems have to be modified (or even are not applicable at all) for 

asynchronous design circuits. Furthermore, although most of the advantages of 

asynchronous circuits are towards higher performance, it is not clear that they are 

actually faster in practice [Hauck 1995]. 

1.2.3.1 Synchronous and asynchronous design styles 
The design methodologies to produce reliable (software) systems, address the problem 

in three different phases [O'Donoghue and Hull 1996], [Naedele 2001]: specification or 

definition, design and implementation. The first step is the creation of a logical or 

abstract model (process of specification). Secondly we have the process of design 

where the implementation model for a virtual machine is developed from the abstract 

model. The last phase corresponds to the process of implementation where virtual 

machine is placed in. a physical machine [Munoz 2002]. Design methodologies 

commonly require the support of CASE (Computer Aided Software Engineering) tools 

for their effective use. Some design methodologies are discussed further in chapter 3. 

At this point, a brief introduction to a formal description for designing embedded real

time systems is presented, because of the importance that this design methodology has 

in the research work. Modular Approach to Software Construction Operation and Test 

(MASCOT), as introduced earlier on, is one of the real-time software development 

methodologies that has been considered in this work. It incorporates design 

representation, a method of deriving the design, a way of constructing software 

consistent with the design and tools for executing the constructed software and for 
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testing it. The MASCOT method provides a design language (textual form) and a 

graphical notation (MASCOT network diagram). 

There are other design tools based on a given formalism (a "formal method"). Although 

these methodologies are not going to be discussed in further chapters, they are 

introduced for completeness here. These design tools, used also to design asynchronous 

circuits, could be grouped in three different categories based on their underlying 

models [Munoz 2002]: models based on logic such as Hardware Description 

Languages (HDL) descriptions, models that extend process algebra (both usually 

expressed in textual notation) like Signal Transition Graph (STG)! State Graph (SG) 

synthesis, and state machine models that are often expressed in graphical notations 

such as Petri Nets or Timed Transition models like the multiple-input change 

Asynchronous Finite State Machine (AFSM) synthesis (e.g. burst-mode). 

Petri Nets [Naedele 2001], [Mustafa 2000] is a mathematical model, which is used to 

specify the operations to be performed in a mUltiprocessing or multitasking 

environment, in others words; it is a model suitable to express concurrency. Petri Nets 

can be used to model systems and to analyse timing constraints and race conditions. 

However, if the system is highly complex, timing can become obscured. The method of 

STG is an interpreted free-choice Petri Nets (PN). The main goal of STG is to have the 

ability of expressing concurrency, but a weak point lies on its difficulty in specifying 

choices. This means that, future behaviour depends on a non-deterministic choice of 

equally likely choices. On the other hand, a burst-mode AFSM is specified by a state 

diagram which consists of a finite number of states, a set of labelled arcs connecting 

pair states, and a start state. Each arc is labelled with a set of possible signal transitions. 

Each transition consists of an input and an output burst. Given a state, when all of the 

specified sets of input transitions occur, the order of which is arbitrary, the machine 

generates a set of concurrent output changes and moves to a new state. Although the 

input choice of the burst-mode can be more flexible than STG, and e.g., it has been 

useful in specifying a number of controllers such as the Small Computer System 

Interface (SCSI) data transfer protocol [Yun et al. 1993], its main disadvantage is that 
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the burst-mode still does not allow input transitions to be concurrent with output 

transitions. 

The correctness of the RTS not only depends on the logical result of computations, but 

also on the time at which the results are produced. Therefore, the test for correctness of 

such systems is usually performed by formal proof (specification) and by verification, 

which is the process of proving that the system fits the assumptions made. Correctness 

proofs (sometimes called formal verification) are associated with formal methods. 

There are two techniques for going through the verification: analysis and synthesis. 

There is a fine distinction between them and sometimes they are intermingled 

(sometimes synthesis implies analysis). Analysis tries to verify all the properties of the 

RTS (e.g. timing constraints between tasks) by inspecting each part of the system and 

studying it. Synthesis tries to verify the properties of the system by building the system 

from the specification and then, examining all constraints. Then the analysis technique 

examines the different parts constituting the system in order to deduce its correct 

operation as a logical consequence of design decisions, while synthesis experiments 

with the behaviour of the system by examining if the built system accomplishes the 

expected results. 

Another formal description technique is called LOTOS (Language Of Temporal 

Ordering Specification). It is an ISO (International Standardisation Organisation) 

standard for designing services and protocols used in the communications of open 

systems [Munoz 2002], [Turner 1993]. It is generally applicable to distributed, 

concurrent processing systems. The behaviour of a system can be characterised by 

LOTOS as a sequence of events or actions that happen in an orderly way in time. These 

actions are stated by gates and in order to represent the temporary sequence of these 

gates there is a set of operators, which can be built by behaviour expressions. 

1.2.3.2 GALS 
Globally Asynchronous, Locally Synchronous (GALS) is an approach based on the 

idea of guiding the overall hardware design towards a global asynchrony, although 

each part, that integrates the system, works in synchronous manner. There is substantial 
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research work in GALS techniques, and as stated in [COHERENT 2005] "is widely 

expected to become popular". The next paragraph refers to an example of the GALS 

approach as a matter of illustration. 

In [Cristian and Fetzer 1999], the authors present a formal definition of a model called 

'timed asynchronous distributed system model' or 'timed model' in short. The authors 

believe that this model is a good descriptor for existing distributed systems built from 

networked workstations. The main reason for it is that the timed model allows the 

processes to have access to the hardware clocks in a local access. It means that all the 

processes that are in one workstation (which is called a node in terms of the network) 

are considered as local processes and they have access to the hardware clock of the 

machine, but they do not have access to the clocks of other nodes. Hence, there is a 

locally synchronous process, because local processes are synchronised with the local 

nodes' clock, but globally, the system is asynchronous because there is no global clock 

in the network. 

1.2.3.3 Asynchronous Communication Mechanisms (ACMs) 
ACMs may be defined as inter-process communication devices which allow writer and 

reader processes that are communicating, unconstrained access to the mechanism. In 

this way, the communicating processes do not share a clock. ACM are essentially 

implemented through shared variables or registers commonly as FIFO queue model. 

Even though there is significant research work conducted on the verification of existent 

ACMs [Clark 2000], [Xia 2000], [Mustafa 2000] or on the creation of new components 

which follow the ideas of ACMs like in [Cristian and Fetzer 1999]. The work here is 

focussed on the presentation and discussion of a specific taxonomy of ACMs [Simpson 

1994e] which is presented in chapter 3 and used in chapters 4 and 5. [Simpson 1990c] 

defined three main properties: asynchrony, data coherence and data freshness, which 

are important in order to define certain types of ACMs. Therefore, the taxonomy of 

protocols illustrated in chapter 3, depends on how these protocols deal with data 

asynchrony, coherence and freshness. The asynchrony property refers to the 

unconstrained access to the mechanism, in terms of "when" and at "what" rate the 

writer and the reader can access the mechanism. The data coherence property refers to 
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the atomicity of the data inside the mechanism, i.e. when the writer accesses the data 

the reader cannot read the same data at the same time. The data freshness property 

refers to the fact that the data that the reader and writer are dealing with is always the 

newest one. 

1.3 Aim and original contributions 

The aim of this project, within the context of COHERENT, has been the study of the 

application of specific ACMs and RTN principles to the system design of surveillance 

(multimedia) applications. The other aim of this work has been to try to overcome a 

major obstacle so as to enable the field (visual surveillance) to move forward by 

highlighting the need of a creation of a framework for designing surveillance systems. 

In chapter 2 a full review of the state-of-art in visual surveillance field has been 

presented, which has been published in a journal and included as the Introduction 

Chapter of a recent book. The original contributions of this work are presented in 

chapters 3, 4 and 5. The contributions presented in two workshops and two conferences 

correspond mainly to the work presented in chapters 4 and 5. The contribution of 

chapter 3 is based on establishing a comparison framework between two software 

techniques Object Oriented (00) and RTN; the conclusions of chapter 3 establish the 

theoretical ideas that can guide the creation of the framework for designing surveillance 

systems. Once the theoretical ideas for the framework are established, one of chapter 

4's contributions consists in applying these ideas to the design of an existing 

surveillance system. The other contribution of chapter 4 consists of the comparison of 

the architecture design of the same surveillance system using two different software 

approaches based on 00 and RTN concepts respectively. The bases for the creation of 

the framework are finally established in chapter 5 which presents and discusses an 

original design of a generic surveillance system. 

1.4 Structure of the thesis 

This thesis is structured into six chapters. Chapter 1 discusses the background of the 

research within the field from the point of view of the main areas addressed by the 

COHERENT project. In chapter 2, a brief introduction to computer vision systems is 
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given followed by a historical review of the evolution of visual surveillance, the 

general requirements for designing surveillance systems and concluding with an 

overview of currently popular image processing techniques and design approaches used 

in non-trivial surveillance systems. As mentioned, the main original contributions of 

the work are contained in chapters 3, chapter 4 and chapter 5. In chapter 3, an overview 

is given of different (software) system development methods that may be used for 

designing wide-area intelligent surveillance systems. We show that it is important to 

consider what is a major trend in current approaches, mainly the use of the object

oriented paradigm, against a methodology more firmly rooted in distributed safety

critical systems namely that of Real Time Networks (RTN). Then, we develop a 

framework, which is presented in chapter 4, to compare a popular object-oriented tool 

used to build these systems (CORBA) and those associated with the proposed method 

RTN method (MASCOT, DORIS through a case study. In chapter 5, a design of a new 

distributed surveillance system is proposed using the recommended method. 

Conclusions and future work are discussed in chapter 6. 
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2 The state of art of Intelligent Surveillance Systems 

2.1 Introduction 

In this chapter a preamble of vision systems is presented with an overview of 

surveillance systems mainly based on [Valera and Velastin 2005b]. The overview 

consists of three main parts: an historical introduction of these systems, a description of 

the general requirements and finally the state-of-art of the existing vision surveillance 

systems at the time of writing. The historical introduction looks at the wider picture of 

the evolution of these systems, starting from the first vision surveillance systems to the 

latest systems which are still a subject of current research. Then, an introduction of the 

general requirements in surveillance systems on different applications is presented, 

illustrating the essential functionality of such systems. After that, a survey of the state

of-art of different existing vision surveillance systems is presented, starting by an 

overview of conventional techniques used to build these systems, moving afterwards to 

the presentation of some examples of such systems and finishing with a discussion of 

some properties that we find very important to include in the analysis of these systems 

such as distribution and communication. 

2.2 Vision Systems 

One of the major historical society advances was industrialization and therefore the 

automation of certain processes. Since then, research and development has leant 

towards the automation of most activities in industry, reducing cost, time and use of 

human resources. Vision systems may increase, in some fields, the degree of 

automation in processes or even introduce a certain degree of automation in processes 

that were not automated. For instance, the application of vision system is widely used 

in the medical field for diagnostic purposes as in [Tierney et al. 2000], or to improve 

the efficiency in information cataloguing. High-speed data streams resulting from the 

operation of on-line instruments and imaging systems are important steps leading to a 

modem health care system in which the communication between centres allows one to 

exchange information and consequently improve the efficiency of health care. 
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Traditionally, surveillance systems were built for monitoring certain activities in 

military units such as planes and ships using sensors like radars or sonars. Recent 

events, including major terrorist attacks, have led to the increase in demand for security 

in society. This in tum has forced governments to make personal and asset security a 

priority in their policies. Vision systems are rapidly gaining more importance in the 

surveillance field, providing a form of automation within the surveillance task of the 

environment where it is applied. Therefore, the demand for remote monitoring for 

safety and security purposes has received particular attention in some areas like road 

traffic control and public or private installations such as car parks, airports or public 

transport installations such as bus or underground railway networks. To see more 

applications please refer to [Valera and Velastin 2005b]. 

2.3 Evolution of Intelligent Surveillance Systems 

As mentioned in chapter 1, the historical evolution of vision systems in surveillance 

applications goes from what literature in the field calls the first generation vision 

surveillance system through to the second and then third generation surveillance 

systems. Table 2-1 shows a summary of the evolution of such systems. Analogue 

Closed Circuit TeleVision (CCTV) systems are considered as the first generation of 

surveillance systems. These systems consisted of groups of cameras connected directly 

to monitors. In subsequent developments, the cameras were connected through a switch 

or matrix which distributed the analogue signal to one or more monitors. Initially the 

systems were installed in closed spaces, although rapidly they were installed in open 

spaces as well. In [Nwagboso 1998] the integration of these systems to monitor 

transport systems is discussed. As shown in Table 2-1, currently, the majority of CCTV 

systems use analogue techniques for image distribution and storage, even though 

conventional CCTV cameras generally use a digital Charge Coupled Device (CCD) to 

capture images. The digital image is then converted into an analogue composite video 

signal, causing some picture degradation, which is then connected to the CCTV matrix, 

monitors and recording equipment generally via coaxial cables. The current research on 

these systems is based on switching the analogue CCTV systems to digital technology. 
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The rapid increase in the use of CCTV systems implied an expansion in size and 

complexity. At the same time this expansion resulted, perhaps surprisingly, in a 

decrease in the relative effectiveness of surveillance and of recognition of activities of 

interest in real-time. The substantial improvement in the techniques of digital image 

processing and the low cost of dedicated PCs for these image processing techniques 

influenced the introduction of new technologies in surveillance systems. Then, a new 

second generation of surveillance system arose. The introduction of such systems has 

provided improvements in surveillance applications by providing certain automation, 

for example, as is the case for motion detection methods used to detect presence and to 

minimise recordings of uneventful (empty) scenes or the very successful introduction 

of automatic plate number recognition systems e.g. for road traffic congestion/offence 

charging. The type of image processing techniques ranges from simple change 

detection or the elimination of image noise to more complicated processing tasks like 

recognition and tracking of objects and the interpretation of scenarios. The current 

research in this second generation is based on improving the efficiency and robustness 

of computer vision algorithms such as event detection. There is also some research on 

automatic learning techniques for recognising patterns of behaviours and scene 

variations. 

The introduction of new technologies in the market such as high speed networks has 

led to the creation of remote control surveillance. These systems are based on the use of 

sensors, like cameras installed for the purpose of surveying where all the information is 

processed in a remote location. The third generation of surveillance systems consists of 

the integration of these new technologies with the processing techniques coming from 

previous systems. Therefore, such systems are based on the distribution and separation 

of the processing tasks into a low level and high level partly due to the proliferation of 

the devices called Digital Signal Processors (DSP), which allows building intelligent 

cameras or smart cameras with autonomous (local) processing capacities. 
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1st generation 

Techniques Analogue CCTV systems 

Advantages - They give good perfonnance in some 
situations. 

- Mature technology. 
Problems Use analogue techniques for image 

distribution and storage 

Current Research - Digital versus analogue 
- Digital video recording 
- CCTV video compression 

2nd generation 

Techniques Automated visual surveillance by 
combining computer vision technology 
with CCTV systems 

Advantages Increase the surveillance efficiency of 
CCTV systems 

Problems Robust detection and tracking 
algorithms required for behavioural 
analysis 

Current Research - Real-time robust computer vision 
algorithms. 

- Automatic learning of scene variability 
and patterns of behaviours. 

- Bridging the gap between the statistical 
analysis of a scene and producing natural 
language interpretations. 

3M generation 

Techniques Automated wide-area surveillance 
system 

Advantages - More accurate infonnation as a result of 
combining different kind of sensors. 

- Distribution 

Problems - Distribution of infonnation (integration 
and communication) 

- Design methodology 
- Moving platforms 
- Multi-sensor platforms 

Current Research - Distributed versus centralised intelligence 
- Data fusion 
- Probabilistic reasoning framework 
- Multi-camera surveillance techniques 

Table 2-1. Summary of the technical evolution of intelHgent surveillance systems (from Valera and 

Velastin 2005b]) 
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2.4 Requirements of an Intelligent Surveillance System 

To create and develop such systems it is essential to define the requirements of the 

system, which match the needs of the user enabling these demands to be satisfied. The 

main goal that is expected of third generation vision surveillance application, based on 

end-user requirements, is to provide cost effective good scene understanding (and 

learning) aimed at attracting the attention of human operators in real-time in a 

widespread geographic area, using a variety of sensors and sources of contextual 

information necessary for decision support (such as the availability of response units in 

an area where a problem has been detected). 

From the architectural design point of view, this requirement implies different 

constraints. In scene understanding, e.g., the high variability in the scene conditions 

and the poor structure of monitoring hint of the need to use more sophisticated image 

processing algorithms, pattern recognition methods and robust scene description. For 

example, the mounting position of the cameras in a metro-station and consequently the 

video-signal of the digital pictures are often not in optimal conditions. Problems may 

be caused by poor lighting, environments that cause reflections or by the heights and 

the perspective of the resulting mounted cameras (the position of the cameras is 

generally optimised to traffic monitoring or to give a human monitor maximum visual 

coverage and not necessarily to security or to machine monitoring). 

Good performance processing capacities are required in multi-sensor environments, 

especially when there are different kinds of sensors in diverse spatial locations 

acquiring the same type of real-time information in a monitored area. Therefore, 

spatially distributed multi-sensor environments present interesting opportunities and 

challenges for surveillance. Recently, there has been some investigation of data fusion 

techniques in surveillance to cope with the sharing of information obtained from 

different types of sensors [Collins et al. 2000a]. The communication aspects within 

different parts of the system play an important role either due to the bandwidth 

constraints or the asymmetric nature of the communication [Regazzoni et al. 2001]. 

Another relevant aspect is the security in the communications between modules. For 
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some vision surveillance systems, data needs to be sent over open networks and the 

information protection leads to a critical issue for ensuring privacy and for 

authenticating [Barni et al. 2000] conditions of these services. The trend in the 

requirements of such systems also tends to include the viability of adding an automatic 

learning capability in these systems to improve the end-user constraints factors, by 

automatically developing models of scenes to be recognised as potentially dangerous 

events from a training set of presented examples [Thonnat and Rota 2000], [Ivanov and 

Bobick 2000], [Gong and Xiang 2003]. 

2.4.1 Surveillance system requirements for transit applications 

Requirements may differ from one surveillance application to another. In surveillance 

systems for intelligent transport [Pellegrini and Tonani 1998], the continued increase in 

traffic density emphasises the need to take action on the deterioration of traffic 

congestion through competent traffic management, enhancing safety and security 

within the traffic network. Therefore, the functionality and the effectiveness of the 

measurement of traffic scenes by monitoring and collecting data using vision 

surveillance systems should substantially assist in better traffic control, incident 

management and traffic law enforcement. 

To achieve this, the system should be an integrated system which can link into incident 

monitoring system, in-:vehicle systems which are likely to accept information related to 

safety and security from the law enforcement and the existing traffic control systems. 

Most of the technology on the current traffic control systems in the UK is mainly 

CCTV linked into a control unit and generally used for passive traffic monitoring. The 

natural linkage that should be implemented is the control interface systems, the 

surveillance signal processing unit and the central processing systems, which 

encapsulates the database of the vehicle details in the traffic network. In extensive 

capability of the control and processing unit, the users needs, in terms of the 

organisational and personnel requirements will have to also be met. In [Pellegrini and 

Tonani 1998] it is considered that the response time of the whole system, including 
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human response to an accident in a highway shall be very fast (less than 5 min) in order 

to avoid another possible collision and minimise the false alarm rate (ideally to zero). 

The incident monitoring system can be a network of smart surveillance cameras that 

should automatically trigger image save routines in order to provide the footage of 

vehicle crashes on the computer. Five minutes of the recording prior to the incident and 

the incident itself are stored in a computer for a post analysis by the enforcement 

agencies or insurance companies [Pellegrini and Tonani 1998]. The surveillance should 

work by continuously monitoring accident black spots on the network by storing the 

video images uninterruptedly on a computer in a loop and re-recorded over the past 

scenes until the smart camera detects the start of vehicle collision. The localization of 

these cameras over the road network follows the same criteria as the CCTV cameras. 

Adverse weather conditions such as fog or dense rain may limit their efficacy. In closed 

areas like tunnels, because of geometrical constraints, fixed cameras should be used 

each covering no more than 300 metres of straight road in order to avoid possible 

occlusions. In non-straight roads, up to one camera every tOO m might be needed 

[Pellegrini and Tonani 1998]. The image acquisition and recording of air-pollution 

monitoring system should be triggered using the same techniques as that of incident 

monitoring system. 

2.4.2 Surveillance system requirements for port applications 

In another environment such as ports, security (in its boundaries and inner areas) is a 

growing issue as it represents the main gates for international trades around the world, 

where several personnel work day and night for different activities. In fact, port areas 

differ in the destination of use such as industrial, commercial, tourism or marinas for 

pleasure boats activities. All these activities are associated with different infrastructures 

and are carried out during different periods requiring specific personnel and equipment. 

Then surveillance is required to guarantee the "feeling of' security and control at gates 

or at public areas opening. Although usually the video-based control of cargo handling 

and transfer equipment exist in many port terminals, surveillance in the form of traffic 

control applications like truck access management and the control of their movements 
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inside ports and terminals is also applicable in this domain, as well as the surveillance 

of goods and workers. In this environment, the installation of an impressive amount of 

cameras is required because of the usual wide extension of surveillance area, providing 

great amounts of data to process and transmit. Therefore, bandwidth constraints 

requirements and good performance in the processing units are required. Moreover, the 

difficulty to survey increases depending on the kind of traffic, e.g. cargo is enclosed in 

containers which all look the same and furthermore, it is not possible to see the 

contents inside them, thus a multi-sensor environment is required. In this type of 

scenario, clearly an availability of 365 days per year, 24 hours a day is what is required. 

2.4.3 Metro and Railway Stations surveillance system requirements 

End-user requirements for Railway Station Surveillance Systems and Metro Stations 

are based on two principles obtained from statistical studies of real situations that occur 

in railway and metro stations [Ronetti and Dambra 2000]. The first principle is 

grounded on the need of the company; to survey the people, end-users and employees, 

and to survey their assets, which may be damaged as a cause of vandal behaviours or 

failures. The second principle is based upon the need to increase the perception (or 

feeling) of security; reducing the feeling of security tends to produce losses for the 

company because people choose not to travel in their networks. From these two basic 

end-user requirements consequent requirements can be extrapolated: to be able to 

detect and recognise certain events and to have a better scene understanding. A good 

monitored infrastructure and location is required giving a good view of all areas of the 

facilities. Therefore, a skilful management of all this information is required, in other 

words, the system should have a full-coverage, be extensible and may integrate 

different technologies and consequently bandwidth constrains should be taken into 

account and of course be usable by staff. For example, the linking of different 

technologies allows a wireless call from a train operator to generate its position on a 

display, hence it gives a better control and easier maintenance, because it is possible to 

know straightaway if there is any problem and sometimes to know which kind of 

problem it is because the operator is able to report it. 
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To reduce the passengers' feeling of insecurity and guarantee security, a fast response 

is vital in a dangerous situation. The system must produce the necessary alarms in real

time and provide the results with sufficient clarity to attract a human operator's 

attention by pre-selecting only the interesting outputs, which are usually images. For 

example, if an emergency call is made by the public or personnel when an incident 

occurs in the installation, the conversation may be coupled with the cameras in order to 

record pictures of the callers and their conversation. Thus, the operator can be alerted 

of this event with enough information to handle the incident in a proper way. It is 

assumed that the operator is not a computer expert so the machine interface needs to be 

simple. 

Therefore, the system requires good performance in terms of response time and low 

false alarm rates. From a safety point of view it is preferable to have a false alarm than 

a non-detected alarm. The system needs to be reliable enough to cope with long periods 

of loss of video inputs and failure-tolerant as a failure on a part of the system should 

not paralyse the entire system. In [London Underground Limited (n.d.)] reliability is 

defined in terms of Mean Time Between Failure (MTBF) and Mean Time To Repair 

(MTTR) assumed to be four hours. The MTBF has three different delimitations 

depending on the kind of failure: for a complete system failure the MTBF should be 

greater than 2.6x lOA4 hours, for a single failure with more than one output it should be 

greater than 1.8xlOA4 hours and finally for a single failure with one output the MTBF 

should be greater than lOA4. The availability should be 99%,24 hours per day, 365 days 

per year. The systems needs to be capable of storing all the information extracted from 

different sensors, especially the outputs from the cameras, with enough quality to allow 

them to be used in other fields like a police investigation or court of law. In countries 

like the UK, the surveillance videotapes may be used as evidence in court [Geradts and 

Bijhold 2000] or used in crime investigation by the police. 

The last important requirement in these applications is that the system should interface 

with existing equipment without much cost for a technical adaptation. This technical 

compatibility concerns the type of cameras (b/w, colour, pan-tilt-zoom), the 
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transmission types (fibre optical, coaxial, wire), switching matrix with possible special 

interfaces, monitor-places with associated panels and keyboards. 

2.5 State-ot-art in the design ot visual surveillance systems 

This section is divided in two main subsections: the first part (subsection 2.5.1) 

summarises research that addresses the main image processing tasks that were 

mentioned in the previous section i.e. object detection, object recognition, tracking, 

behaviour, activities analysis and databases. It is important to highlight that the 

availability of a given technique or set of techniques is necessary but not sufficient to 

deploy a potentially large surveillance system, which implies networks of cameras and 

distribution of processing capacities to deal with the signals from these cameras. 

Therefore, in the second part of this section what has been done to propose surveillance 

systems that address these requirements is reviewed. The majority of the surveillance 

systems reviewed in this chapter are based on transport or parking lots applications 

[Valera and Velastin 2005b]. The reason as explained in [Valera and Velastin 2005b], 

is because most reported distributed systems tend to originate from academic research 

which has tended to focus on these domains (e.g. by using university campuses for 

experimentation or the increasing research funding to investigate solutions in public 

transport). 

2.5.1 Processing. components in surveillance systems 

A typical configuration of processing modules is illustrated in Figure 2- 1. These 

modules constitute the low-level building blocks necessary for any distributed 

surveillance system. Each of the following subsections outline the most popular image 

processing techniques used in each of these modules. 

Object .. Object r--- Tracking ---. Behaviour r-+ Database 
detection recognition and activities 

analysis 

Figure 2- t. Traditional flow of processing in visual surveillance from [Valera and Velastin 200Sb]. 
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2.5.1.1 Object detection 
There are two main conventional approaches to object detection: 'temporal difference' 

and 'background subtraction'. The first approach consists in the subtraction of two 

consecutive frames followed by thresholding. The second technique is based on the 

subtraction of a background or reference model and the current image followed by a 

labelling process. After applying one of these approaches, morphological operations are 

typically applied to reduce the noise of the image difference. The temporal difference 

technique has good performance in dynamic environments because it is very adaptive, 

but it has a poor performance on extracting all the relevant object pixels. On the other 

hand, the background subtraction has a better performance on extracting object 

information but it is sensitive to dynamic changes in the environment (see Figure 2- 2 

and Figure 2- 3). 

Figure 2- 2. Example of a temporal difference technique used in motion detection (from [Valera 

and Velastin 2005b D. 

Figure 2- 3. Example of a background subtraction technique used in motion detection. In this 

example a bounding box is drawn to lit the object detected (from [Valera and Velastin 2005bD. 
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An adaptive background subtraction technique involves creating a background model 

and continuously upgrading it to avoid poor detection when there are changes in the 

environment. There are different techniques to model the background, which are 

directly related to the application. For example, in indoor environments with good 

lighting conditions and stationary cameras, it is possible to create a simple background 

model by temporally smoothing the sequence of acquired images in a short time as 

described in [Haritaoglu et al. 2000], [Nguyen et al. 2003a], and [Jaynes 1999] 

Outdoor environments usually have high variability in scene conditions, thus it is 

necessary to have robust adaptive background models, even though these robust models 

are computationally more expensive. A typical example is the use of a Gaussian Model 

(GM) that models the intensity of each pixel with a single Gaussian distribution [Wren 

et al. 1997] or with more than one Gaussian distribution Gaussian Mixture 

Models(GMM). In [Boult et al. 2001], due to the particular characteristics of the 

environment (a forest), they use a combination of two Gaussian Mixture Models to 

cope with a bimodal background (e.g. movement of trees in the wind). The authors in 

[Stauffer et al. 2000] use a mixture of Gaussians to model each pixel. The method they 

adopted handles slow lighting changes by slowly adapting the values of the Gaussians. 

A similar method is used in [Pavlidis et al. 2001]. In [Ng et al. 1999] the background 

model is based on estimating the noise of each pixel in a sequence of background 

images. From the estimated noise the pixels that represent moving regions are detected. 

Other techniques use groups of pixels as the basic units for tracking, and the pixels are 

grouped by clustering techniques combining colour information (R,G,B) and spatial 

dimension (x, y) to make the clustering more robust. Algorithms as such Expectation 

Minimisation (EM) are applied to track moving objects as clusters of pixels 

significantly different from the corresponding image reference, e.g. in [Bennewitz et al. 

2002] the authors use EM to simultaneously cluster trajectories belonging to one 

motion behaviour and then to learn the characteristic motions of this behaviour. 
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In [Oren et al. 1997] the reported object detection technique is based on wavelet 

coefficients to detect frontal and rear views of pedestrians. By using a variant of Haar 

wavelet coefficients as a low-level process of the intensity of the images, it is possible 

to extract high-level information of the object (pedestrian) to detect, e.g. shape 

information. In a training stage, the coefficients that most accurately represent the 

object to be detected are selected using large training sets. Once the best coefficients 

have been selected, they use a Support Vector Machine (SVM) to classify the training 

set. During the detection stage, the selected features are extracted from the image and 

then the SVM is applied to verify the detection of the object. The advantage of using 

wavelet techniques is that of not having to rely on explicit colour information or 

textures. Therefore, they can be useful in applications where there is a lack of colour 

information (a usual occurrence in indoor surveillance). Moreover, using wavelets 

implies a significant reduction of data in the learning stage. However, the authors only 

model the front and the rear views of pedestrian. In the case of groups of people that 

stop, talk or walk perpendicular to the view of the camera, the algorithm is not able to 

detect the people. Furthermore, an object, with similar intensity characteristics as a 

frontal or rear human, is likely to generate a false positive. Another line of research is 

based on the detection of contours of persons by using principal component analysis 

(peA). Finally, as far as motion segmentation is concerned, techniques based on optic 

flow may be useful when a system uses moving cameras as in [Ferryman et al. 2000], 

although there are known problems when the image size of the objects to be tracked is 

small. 

2.5.1.2 Object recognition, tracking and performance evaluation 
Tracking techniques can be split in two main approaches: 2D models with or without 

explicit shape models and 3D models. For example in [Ferryman et al. 2000] the 3D 

geometrical model of a car, a van and a lorry is used to track vehicles in a highway. 

The model-based approach uses explicit a priori geometrical knowledge of the objects 

to follow, which in surveillance applications are usually people, vehicles or both. In 

[Zhi-Hong 2003] the author uses two 2D models to track cars: a rectangular model for 

a passing car that is close to the camera and a U-shape model for the rear of the car in 

the distance or just in front of the camera. The system consists of an image acquisition 
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module, a lane and car detection, a process co-ordinator and a multiple car tracker. In 

some multi-camera systems like [Jaynes 1999], the focus is on extracting trajectories, 

which are used to build a geometric and probabilistic model for long-term prediction, 

and not the object itself. The a priori knowledge can be obtained by computing the 

object's appearance as a function of its position relative to the camera. The scene 

geometry is obtained in the same way. In order to build the shape models, the use of 

camera calibration techniques becomes important. A survey of different techniques for 

camera calibration can be found in [Hemayed 2003]. Once a priori knowledge is 

available, it may be utilized in a robust tracking algorithm dealing with varying 

conditions such as changing illumination, offering a better performance in solving 

(self) occlusions or (self) collisions. It is relatively simple to create constraints in the 

objects' appearance model by using model-based approaches; e.g. the constraint that 

people appear upright and in contact with the ground is commonly used in indoor and 

outdoor applications. 

The object recognition task then becomes the process of utilising model-based 

techniques in an attempt to exploit such knowledge. A number of approaches can be 

applied to classify the new detected objects. The integrated system presented in 

[Remagnino et al. 1997] and [Ferryman et al. 2000] can recognise and track vehicles 

using a defined 3D model of a vehicle, giving its position in the ground plane and its 

orientation. It can also recognise and track pedestrians using a prior 2D model 

silhouette shape, based on B-spline contours. A common tracking method is to use a 

filtering mechanism to predict each movement of the recognised object. The filter most 

commonly used in surveillance systems is the Kalman Filter [Remagnino et al. 1997], 

[Nguyen et al. 2003a]. Fitting bounding boxes or ellipses, which are commonly called 

'blobs', to image regions of maximum probability performs another tracking approach 

based on statistical models. In [Wren et al. 1997] the author models and tracks different 

parts of a human body using blobs, which are described in statistical terms by a spatial 

and colour Gaussian distribution. In some situations of interest the assumptions made 

to apply linear or Gaussian filters do not hold, and then non-linear Bayesian filters, 

such as Extended Kalman filters (EKF) or particle filters have been proposed. Work 
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described in [Arulampalam et al. 2002] illustrates that in highly non-linear 

environments particle filters give better performance than EKF. A Particle Filter (PF) is 

a numerical method, which weights (or 'particle') a representation of posterior 

probability densities by resampling a set of random samples associated with a weight 

and computing the estimate probabilities based on these weights. Then, the critical 

design decision using particle filters relies on the choice of importance (the initial 

weight) of the density function. 

Another tracking approach consists in using connected-components [Boult et al. 2001] 

to segment the changes in the scene into different objects without any prior knowledge. 

The approach has a good performance when the object is small, with a low-resolution 

approximation, and the camera placement is chosen carefully. Hidden Markov Models 

(HMMs) have also been used for tracking purposes as presented in [Hai Bui et al. 

2001], where the authors use an extension of HMM to predict and track objects 

trajectories. Although HMM filters are suitable for dynamic environments (because 

there is no assumption in the model or in the characterisation of the type of the noise 

like as required when using Kalman Filters), off-line training data are required. Recent 

research has been carried out on the creation of semi-automatic tools that can help 

create a large set of ground truth data that is necessary for evaluating the performance 

of the tracking algorithms [Black et al. 2003]. 

2.5.1.3 Behavioural analysis 
The next stage of a surveillance system recognises and understands activities and 

behaviours of the tracked objects. This stage broadly corresponds to a classification 

problem of the time-varying feature data that are provided by the preceding stages. 

Therefore, it consists in matching a measured sequence to a pre-compiled library of 

labelled sequences that represent prototypical actions that need to be learnt by the 

system via training sequences. There are several approaches for matching time-varying 

data. Dynamic Time Warping (DTW) is a time-varying technique widely used in 

speech recognition, image pattern as in [Rath and Manmatha 2003] and recently in 

human movement patterns [Oates et al. 2000]. It consists of matching a test pattern 

with a reference pattern. Although it is a robust technique, it is now less favoured than 
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dynamic probabilistic network models like HMM (Hidden Markov Models) and 

Bayesian Networks [Nguyen et al. 2003b], [Ivanov and Bobick 2000]. The last time

varying technique that is not as widespread as HMM, because it is less investigated for 

activity recognition, is Neural Networks (NN). In [Thonnat and Rota 2000] the 

recognition of behaviours and activities is done using a declarative model to represent 

scenarios, and a logic-based approach to recognise predefined scenario models. 

2.5.1.4 Database 
One of the final stages in a surveillance system is storage and retrieval. Relatively little 

research has been done in how to store and retrieve all the obtained surveillance 

information in an efficient manner, especially when it is possible to have different data 

formats and type of information to retrieve. In [Makris et al. 2004] the authors 

investigate the definition and creation of data models to support the storage of different 

levels of abstraction of tracking data into a surveillance database. 

In [Decleir et al. 1999] the authors develop a data model and a rule-based query 

language for video content based indexing and retrieval. Their data model allows facts 

as well as objects and constraints. Retrieval is based on a rule-based query language 

that has declarative and operational semantics, which can be used to gather relations 

between information represented in the model. A video sequence is split into a set of 

fragments and each fragment can be analysed to extract the information (symbolic 

descriptions) of interest to store into the database. In [Stringa and Regazzoni 1998] 

retrieval is performed on the basis of object classification. A stored video sequence 

consists of 24 frames; the last frame is the key frame that contains the information 

about the whole sequence. Retrieval is performed using a feature vector where each 

component contains information obtained from the event detection module. 

2.6 Examples of surveillance systems 

In following sections examples of surveillance systems are presented although to read 

more examples refer to [Valera and Velastin 2005b] where an extend sample of 

examples of surveillance systems is presented. In this section a distinction between 

surveillance for indoor and outdoor applications is made. The reason is because of the 
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differences in the design at the architectural and algorithmic implementation levels. 

The topology of indoor environments is also different from that of the outdoor 

environments. 

2.6.1 Commercial surveillance system for outdoor applications 

An example of a commercial system intended for outdoor applications, is DETER 

[Paulidis and Morellas 2002], [Pavlidis et al. 2001] (Detection of Events for Threat 

Evaluation and Recognition). The architecture of the DETER system is illustrated in 

Figure 2- 4. It is aimed at reporting unusual moving patterns of pedestrians and 

vehicles in outdoor environments such as car parks. The system consists of two parts: 

the computer vision module and the threat assessment or alarms management module. 

The computer vision part deals with the detection, recognition and tracking of objects 

across cameras. In order to do this, the system fuses the view of multiple cameras into 

one view and then performs the tracking of the objects. The threat assessment part 

consists of feature assembly or high-level semantic recognition, the off-line training 

and the on-line threat classifier. The system has been evaluated in a real environment 

by end-users, and it had a good performance in object detection and recognition. 

However, as it is pointed out in [Pavlidis et al. 2001], DETER employs a relatively 

small number of cameras because it is a cost-sensitive application. It is not clear 

whether the system has the functionality for retrieval and even though the threat 

assessment has good performance, there is a lack of a feedback loop in this part that 

could help improve performance. 
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Figure 2· 4. Architecture of DETER system (from [Valera and Velastin 2005bJ). 

2.6.2 Surveillance systems for parking lots applications 

Another integrated visual surveillance for vehicles and pedestrians in parking lots is 

presented in [Remagnino et al. 1997]. This system presents a novel approach to deal 

with interactions between objects (vehicles and pedestrians) in a hybrid tracking 

system. The system consists of two visual modules capable of identifying and tracking 

vehicles and pedestrians in a complex dynamic scene. However, this is an example of a 

system that considers tracking as the only surveillance task, even though the authors 

pointed out in [Remagnino et aI. 1997] the need for a semantic interpretation of the 

tracking results for scene recognition. Furthermore, a "hand over" tracking algorithm 

across cameras has not been established. 

It is important to have a semantic interpretation of the behaviours of the recognised 

objects in order to build an automated surveillance system that is able to recognise and 

learn from the events and interactions that occur in a monitored environment. For 

example in [Ivanov et al. 1999], the authors illustrated a video-based surveillance 

system to monitor activities in a parking lot that performs a semantic interpretation of 

recognised events and interactions. The system consists of three parts: the tracker 
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which tracks the objects and collects their movements into partial tracks; the event 

generator which generates discrete events from the partial tracks according to a simple 

environment model and finally, a parser that analyses the events according to a 

Stochastic Context-Free Grammar (SCFG) model which structurally describes possible 

activities. This system, as the one in [Remagnino et al. 1997], is aimed at proving the 

algorithms more than at creating a surveillance system for monitoring a wide area (the 

system uses a single stationary camera). Furthermore, it is not clear how the system 

distinguishes between cars and pedestrians because the authors do not use any shape 

model. 

In [Jian-Guang et al. 2003] visual traffic surveillance for automatic identification and 

description of the behaviours of vehicles within parking lots scenes is presented. The 

system consists of a motion module, model visualisation and pose refinement, tracking 

and trajectory-based semantic interpretation of vehicle behaviour. The system uses a 

combination of colour cues and brightness information to construct the background 

model and applies connectivity information for pixel classification. Using camera 

calibration information they project the 3D model of a car onto the image plane and 

they use the 3D shape model-based method for pose evaluation. The tracking module is 

performed using EKF. The semantic interpretation module is realised by three steps: 

trajectory classification, then an on-line classification step using Bayesian classifiers 

and finally natural language descriptions are applied to the trajectories patterns of the 

cars that have been recognised. Although this system introduces a semantic 

interpretation for car behaviours, it is not clear how this system handles the interactions 

of several objects in the same scene at the time, and consequently the occlusions 

between objects. Another possible limitation is the lack of different models to represent 

different type of vehicles (c.f. [Remagnino et aI. 1997] includes separate 3D models for 

a car, van and lorry). 

2.6.3 Surveillance systems for traffic control application 

The author in [Nwagboso 1998] expresses the need to integrate video-based 

surveillance systems with existing traffic control systems to develop the next 
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generation of advanced traffic control and management systems. Most of the 

technologies in traffic control are based on CCTV technology linked to a control unit 

and in most cases for reactive manual traffic monitoring. However, there are an 

increasing number of CCTV systems using image processing techniques in urban road 

network and highways. Therefore, the author in [Nwagboso 1998] proposes to combine 

these systems with other existing surveillance traffic systems like surveillance system, 

which are based on networks of smart cameras. The term "smart camera" (or 

"intelligent camera") is normally used to refer to a camera that has processing 

capabilities (either in the same casing or nearby), so that event detection and storage of 

event video can be done autonomously by the camera. Thus, normally, it is only 

necessary to communicate with a central point when significant events occur. 

Usually integrated surveillance systems consist of a control unit system, which 

manages the outputs from the different surveillance systems, a surveillance signal 

processing unit and a central processing unit which encapsulates a vehicle ownership 

database. The suggestion in [Nwagboso 1998] of having a control unit, which is 

separated from the rest of the modules, is an important aspect in the design of a third 

generation surveillance system. However, to survey a wide-area implies geographical 

distribution of equipment and a hierarchical structure of the personnel who deal with 

security. Therefore for better scalability, usability, and robustness of the system, it is 

desirable to have more than one control unit. Their design is likely to follow a 

hierarchical structure (from low-level to high-level control) that mirrors what is done in 

image processing where there is a differentiation between low-level and high-level 

processing tasks. 

Following the aim of [Beymer et al. 1997], the authors in [Heikkila and Silven 1999] 

develop a vision-based surveillance system to monitor traffic flow on a road, but 

focusing on the detection of cyclists and pedestrians. The system consists of two main 

distributed processing modules: the tracking module which processes in real-time and 

is placed roadside on a pole and the analysis module which is performed off-line in a 

PC. The tracking module consists of four tasks: motion detection, filtering, feature 
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extraction using Quasi-Topological features (QTC) and tracking using first order 

Kalman filters. The shape and the trajectory of the recognised objects are extracted and 

stored in a removable memory card, which is transferred to the PC to achieve the 

analysis process using Learning Vector Quantization for producing the final counting. 

This system has some shortcomings. The image algorithms are not robust enough (the 

background model is not robust enough to cope with changing conditions or shadows) 

and depend on the position of the camera. The second problem is that even though 

tracking is performed in real time, the analysis is performed off-line, therefore it is not 

possible to do flow statistics or monitoring in real-time. 

2.6.4 Surveillance system for port applications 

In [Pozzobon et al. 1998] the architecture of a system for surveillance in a maritime 

port is presented. The system consists of two subsystems: image acquisition and 

visualisation. The architecture is based on a Client/Server design. The image 

acquisition subsystem has video server module, which can handle four cameras at the 

same time. This module acquires the images from camera streams, which are 

compressed, and then the module broadcasts the compressed images to the network 

using TCP/IP and at the same time records the images on hard disks. The visualisation 

module is performed by client subsystems, which are based on PC boards. This module 

allows the selection of any camera using a pre-configured map and the configuration of 

the video server. Using an internet server module it is possible to display the images 

through internet. The system is claimed to have the capability of supporting more than 

100 cameras and 100 client stations at the same time, even though the reported 

implementation had 24 cameras installed mainly at the gates of the port. This is an 

example of a simple video surveillance system (with no image interpretation), which 

only consists of image acquisition, distribution and display. The interesting point in this 

system is to see the use of a client and server architecture to deal with the distribution 

of the multiple digital images. Moreover, the acquisition and visualisation modules 

have been encapsulated in a way such that scalability of the system can be 

accomplished in a straightforward way, by integrating modules into the system in a 

"drop" operation. 

38 



2.6.5 Surveillance systems for public transport applications 

In [Ronetti and Dambra 2000] a railway station CCTV surveillance system in Italy is 

presented. The system has a hierarchical structure distributed between main (central) 

control rooms and peripheral site (station) control rooms. The tasks that are performed 

in the central control room are: acquisition and display of the live or recorded images. 

The system also allows the acquisition of images from all the station control rooms 

through communication links and through specific coding and decoding devices. 

Digital recording, storage and retrieval of the image sequences as well as the selection 

of specific CCTV camera and the deactivation of the alarm system are carried out in 

the central room. The main tasks performed in each station control room are: 

acquisition of the images from the local station CCTV cameras, the link with the 

central control room to transmit the acquired or archived images in real time and to 

receive configuration procedures. The station control room also handles the 

transmission of an image of a specific CCTV camera at higher rate under request or 

automatically when an alarm has been raised. The management and deactivation of 

local alarms is handled from the station control room. Apart from the central control 

room and the station control rooms, there is a crisis room for the management of 

railway emergencies. Although this system presents a semi-automatic, hierarchical and 

distributed surveillance system, the role played by human operators is still central 

because there is no processing (object recognition or motion estimation) to channel the 

attention of the monitoring personnel. 

Ideally, a third generation of surveillance system for public transport applications 

would provide a high level of automation in the management of information as well as 

that of alarms and emergencies. That is the stated aim of the following two surveillance 

systems research projects (other projects in public transportation that are not included 

here can be found in [Velastin 2003]). 

CROMATICA [CROMATICA 1999] (Crowd Monitoring with Telematic and 

Communication Assistance) was an ED-funded project whose main goal was to 

improve the surveillance of passengers in public transport, enabling the use and 
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integration of technologies like video-based detection and wireless transmission. This 

was followed by another EU-funded project called PRISMA TICA [Ping Lai Lo et at. 

2003] (Pro-active Integrated Systems for Security Management by Technological 

Institutional and Communication Assistance) that looked at social, ethical, 

organisational and technical aspects of surveillance for public transport. A main 

technical output was a distributed surveillance system. It is not only a wide-area video

based distributed system like ADVISOR (Annotated Digital Video for Intelligent 

Surveillance and Optimised Retrieval) [ADVISOR 2003], but it is also a wide-area 

multi-sensor distributed system, receiving inputs from CCTV, local wireless camera 

networks, smart cards and audio sensors. PRISM A TICA then consists of a network of 

intelligent devices (that process sensor inputs) that send and receive messages to/from a 

central server module (called "MIPSA") that co-ordinates device activity, 

archives/retrieves data and provides the interface with a human operator. Figure 2- 5 

shows the architecture of PRISMA TICA, which is a modular and scalable architecture 

approach using standard commercial hardware. PRISMA TICA employs a centralised 

approach. 

Figure 2- 5. Architecture of PRISMA TICA system (from [Valera and Velastin 2005b]). 
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PRISMA TICA is built with the concept of a main or central computer which controls 

and supervises the whole system. This server thus becomes a critical single point of 

failure for the whole system. 

In [Christensen and Alblas 2000] the authors report the design of a surveillance system 

with no server to avoid this centralisation, making all the independent subsystems 

completely self-contained, and then setting up all these nodes to communicate with 

each other without having a mutually shared communication point. This approach 

avoids the disadvantages of the centralised server, and moves all the processes directly 

to the camera making the system a group of smart cameras connected across the 

network. The fusion of information between "crunchers" (as they are referred to in the 

article) is done through a defined protocol, after the configuration of the network of 

smart cameras or "crunchers". The defined protocol has been validated with a specific 

verification tool called spin. The format of the information to share between 

"crunchers" is based on a common data structure or object model with different stages 

depending e.g. if the object is recognised or is migrating from the field of view of one 

camera to another. However, the approach to distributed design is to build using 

specific commercial embedded hardware (called EVS units). These embedded units 

consist of a camera, processor, frame grabber, network adapter and database. 

Therefore, in cost-sensitive applications where a large number of cameras are required, 

this approach might be unsuitable. 

2.6.6 Multi-camera surveillance system 

As part of the VSAM project, [Collins et al. 2001b] presents a multi-camera 

surveillance system following the same idea as [Yuan et al. 2003], i.e. the creation of a 

network of "smart" sensors that are independent and autonomous vision modules. 

Nevertheless in [Collins et al. 2001b], these sensors are capable of detecting and 

tracking objects, classifying the moving objects into semantic categories such as 

"human" or "vehicle" and identifying simple human movements such as walking, while 

in [Yuan et al. 2003], the smart sensors are only able to detect and track moving 

objects. Moreover, the algorithms in [Yuan et al. 2003] are based on indoor 
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applications. Furthermore, in [Collins et al. 2001b] the user can interact with the 

system. To achieve this interactivity, there are system-level algorithms which fuse 

sensor data, perform the processing tasks and display the results in a comprehensible 

manner. The system consists of a central control unit (OCU) which receives the 

information from multiple independent remote processing units (SPU). The OCU 

interfaces with the user through a Graphical User Interface (GUI) module. 

Monitoring wide areas requires the use of a significant number of cameras to cover as 

much area as possible and to achieve good performance in the automatic surveillance 

operation. Therefore, the need to co-ordinate information across cameras becomes an 

important issue. Current research points towards developing surveillance systems that 

consist of a network of cameras (monocular, stereo, static or PTZ (pan-tilt-zoom)) 

which perform the type of vision algorithms that we have reviewed earlier, but also 

using information from neighbouring cameras. The following sections highlight the 

main work in this field. 

2.6.7 Co-operative camera systems 

An example of co-operative camera system is Co-operative Camera Network (CNN) 

[Paulidis and Morellas 2002], which is an indoor application surveillance system 

consisting of a network of nodes. Each node is composed of a PTZ camera connected 

to a PC and a central console to be used by the human operator. The system reports the 

presence of a visually tagged individual inside the building by assuming that human 

traffic is sparse (an assumption that becomes less valid as crowd levels increase). Its 

purpose is to monitor potential shoplifters in department stores. 

In [Micheloni et al. 2003] a surveillance system for a parking lots application is 

described. The architecture of system consists of one or more Static Camera 

Subsystems (SCS) and one or more Active Camera Subsystems (ACS). Firstly, the 

target is detected and tracked by the static subsystems, once the target has been selected 

a PTZ, which forms the ACS, is activated to capture high resolution video of the target. 
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The data fusion for the multi-tracker is done using the Mahalanobis distance. Kalman 

filters are used for tracking, as in [Xu et al. 2004]. 

In [Krumm et al. 2000] the authors present a multi-camera tracking system that is 

included in an intelligent environment system called 'EasyLiving' which aims at 

assisting the occupants of that environment by understanding their behaviour. The 

multi-camera tracking system consists of two sets of stereo cameras (each set has three 

small colour cameras). Each set is connected to a PC that runs the "stereo module". The 

two stereo modules are connected to a PC which runs the tracker module. The output of 

the tracker module is the localisation and identity of the people in the room. This 

identity does not correspond to the natural identity of the person, but to an internal 

temporary identity which is generated for each person using a colour histogram that is 

provided by the stereo module each time. The authors use the depth and the colour 

information provided from the cameras to apply background subtraction and to allocate 

3D blobs, which are merged into person shapes by clustering regions. Each stereo 

module reports the 2D ground plane locations of its person blobs to the tracking 

module. Then, the tracker module uses knowledge of the relative locations of the 

cameras, field of view, and heuristics of the movement of people to produce the 

locations and identities of the people in the room. The performance of the tracking 

system is good when there are fewer than three people in the room and when the people 

wear different colour outfits, otherwise, due to the poor clustering results, performance 

is reduced drastically. 

In [Marchesotti et al. 2003] a multi camera surveillance system for face detection is 

illustrated. The system consists of two cameras (one of the cameras is a CCD pan-tilt 

and the other one is a remote control camera). The system architecture is based on three 

main modules using a client/server approach as a solution for the distribution. The three 

modules are: sensor control, data fusion and image processing. The sensor control 

module is a dedicated unit to control directly the two cameras and the information that 

flows between them. The data fusion module controls the position of the remote control 

camera depending on the inputs received from the image processing and sensor control 
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module. It is interesting to see how the authors use the information obtained from the 

static camera (the position of the recognised object) to feed the other camera. 

Therefore, the remote control camera can zoom to the recognised human to detect the 

face. 

An interesting example of a multi tracking camera surveillance system for indoor 

environments is presented in [Nguyen et al. 2003a]. The system is a network of camera 

processing modules, each of which consists of a camera connected to a computer, and a 

control module, which is a PC that maintains the database of the current objects in the 

scene. Each camera processing module realises the tracking process using Kalman 

filters. The authors develop an algorithm which divides the tracking task between the 

cameras by assigning the tracking to the camera which has better visibility of the 

object, taking into account the occlusions. This algorithm is implemented in the control 

module. In this way, unnecessary processing is reduced. Also, it makes it possible to 

solve some occlusion problems in the tracker by switching from one camera to another 

camera when the object is not visible enough. The idea is interesting because it shows a 

technique that exploits distributed processing to improve detection performance. 

Nevertheless, the way that the algorithm decides which camera is more appropriate is 

performed using a "quality service of tracking" function. This function is defined based 

on the sizes of the objects in the image, estimated from the Kalman filter, and the 

object occlusion status. Consequently, in order to calculate the size of the object with 

respect to the camera, all the cameras have to try to track the object. Moreover, the 

system has been built with the constraint that all the cameras have overlapping views 

(if there were topographic knowledge of the cameras the calculation of this function 

could be applied only to the cameras which have overlapping views). Furthermore, in 

zones where there is a gap between views, the quality service of tracking function 

would drop to zero, and if the object reappears it would be tracked as a new object. 

As it has been illustrated, in a distributed multi-camera surveillance system it is 

important to know the topology of the links between the cameras that make up the 

system in order to recognise, understand and follow an event that may be captured on 
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one camera and to follow it in other cameras. Most of the multi-camera systems that 

have been discussed in this review use a calibration method to compute the network 

camera topology. Moreover, most of these systems try to combine the tracks of the 

same target that are simultaneously visible in different camera views. 

Figure 2- 6. The architecture of a multi-camera surveillance system (from [Valera and Velastin 

2005bJ). 

In [Makris et al. 2004] the authors present a distributed multi camera tracking 

surveillance system for outdoor environments (its architecture can be seen in Figure 2-

6). An approach is presented which is based on learning a probabilistic model of an 

activity in order to establish links between camera views in a correspondence-free 

manner. The approach can be used to calibrate the network of cameras and does not 

require corresponderice information. The method correlates the number of incoming 

and outgoing targets for each camera view, through detected entry and exit points. The 

entry and exit zones are modelled by a GMM and initially these zones are learnt 

automatically from a database using an EM algorithm. This approach provides two 

main advantages: no previous calibration method is required and the system allows 

tracking of targets across the "blind" regions between camera views. The first 

advantage is particularly useful because of the otherwise resource-consuming process 

of camera calibration for wide-area distributed multi camera surveillance systems with 
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a large number of cameras [ADVISOR 2003], [Ronetti and Dambra 2000], [Pellegrini 

and Tonani 1998], [Velastin 2003]. 

2.7 Distribution and communication 

In section 2.5.1 different techniques that have been applied to develop more robust and 

adaptive algorithms have been exemplified. In section 2.5.2 a review of different 

architectures of distributed surveillance systems has been presented. Although the 

design of some of these systems can look impressive, there are some aspects where it 

will be advantageous to dedicate more attention for the development of distributed 

surveillance systems for the next years. These include the distribution of processing 

tasks, the use of new technologies as well as the creation of metadata standards or new 

protocols to cope with current limitations in bandwidth capacities. In [Berris et al. 

2003] the authors propose the use of MPEG-7 as the standard format data for 

surveillance systems. 

Other aspects that should be taken into consideration for the next generation of 

surveillance system are the design of scheduling control and more robust and adaptive 

algorithms. A field that needs further research is that of alarm management, which is an 

important part of an automatic surveillance system e.g. when different priorities and 

goals need to be considered. For example in [Garcia et al. 2000] the authors describe 

work carried out in a robotics field, where the robot is able to focus attention in a 

certain region of interest, extract its features and recognise objects in the region. The 

control part of the system allows the robot to refocus its attention in a different region 

of interest, and skip a region of interest that already has been analysed. Another 

example can be found in [ADVISOR 2003] where in the specification of the system, 

requirements of the system like "to dial an emergency number automatically if a 

specific alarm has been detected" are included. To be able to carry out these kinds of 

actions command and control systems must be included as an integral part of a 

surveillance system. 
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Other work worth mentioning in the context of large distributed systems has considered 

extracting information from compressed video [Norhashimah et aI. 2003], dedicated 

protocols for distributed architectures [Ye et al. 2001], [Wu et al. 2001], [Almeida et al. 

2002], and a real-time communications [Conti et al. 2002]. Work has also been 

conducted to build an embedded autonomous unit as part of a distributed architecture 

[Brodsky et al. 2001], [Saad and Smith 2003], [Christensen and Alblas 2000]. Several 

researchers are dealing with PTZ [Ng et al. 1999], [Marchesotti et al. 2003] because 

this kind of camera can survey wider areas and can interact in more efficient ways with 

the end-user who can zoom when necessary. It is also important to incorporate 

scheduling policies to control resource allocation as illustrated in [Jackson and Rouskas 

2002]. Work in mUltiple robot systems [Rybski et al. 2002] illustrates how limited 

communications bandwidth affects robot performance and how this performance is 

linked to the number of robots that share the bandwidth. A similar idea is presented in 

[Marcenaro et al. 2001] and [Valera and Velastin 2003a] for surveillance systems while 

in [Wu et al. 2001], an overview of the state-of-the-art of multimedia communication 

technologies and a standard is presented. 

2.8 Summary 

The growing demand for safety and security has led to more research in building more 

efficient and intelligent automated surveillance systems. This chapter has presented the 

state of development of intelligent distributed surveillance systems, including a review 

of current image processing techniques that are used in different modules that 

constitute part of surveillance systems and a short historical summary of surveillance 

systems. The main future challenge is to develop a wide-area distributed multi-sensor 

surveillance system which has robust, real-time computer algorithms able to perform 

with minimal manual reconfiguration on variable applications. Such systems should be 

adaptable enough to adjust automatically and cope with changes in the environment 

like lighting, scene geometry or scene activity. The system should be extensible 

enough, be based on standard hardware and exploit plug-and-play technology. 
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Such systems should be built through a combination of different disciplines being 

clearly needed such as computer vision, telecommunications and system engineering. 

Moreover, much could be borrowed from other fields such as autonomous robotic 

systems on the use of multi-agents, where non-centralised collections of relatively 

autonomous entities interact with each other in a dynamic environment. In a 

surveillance system, one of the principal costs is the sensor suite and payload. A 

distributed multi-agent approach may offer several advantages. First, intelligent co

operation between agents may allow the use of less expensive sensors and therefore a 

larger number of sensors may be deployed over a greater area. Secondly, robustness is 

increased, since even if some agents fail, others remain to perform the mission. Thirdly, 

performance is more flexible, there is a distribution of tasks at various locations 

between groups of agents. For example, the likelihood of correctly classifying an object 

or target increases if multiple sensors are focused on it from different locations. 

On the whole, the work on intelligent distributed surveillance systems has been led by 

computer vision laboratories perhaps at the expense of system engineering issues. It 

may be essential in the coming future for the development of distributed surveillance 

systems, to have available a well-defined framework to design distributed architectures 

firmly rooted on systems engineering best practice, as used routinely in other 

disciplines such as aerospace control systems. This is where we have concentrated on 

the work reported here. Therefore, the next chapter introduces the field of system 

engineering by focusing on design methodologies. Chapter 3, after presenting a brief 

historical review of different design methodologies used mainly to design real time 

systems, emphasises the discussion of design methodologies through the comparison 

between two design methodologies: Object Oriented methodologies and RTN. 
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3 Design methodologies for real-time distributed 
intelligent surveillance systems 

3.1 Introduction 

This chapter considers the methods that may be used for designing wide-area 

distributed intelligent surveillance systems. The design of these systems presents 

significant challenges, as they can be categorised as having distributed, concurrent, 

real-time and embedded properties. It is desirable, and indeed necessary, to apply 

sound systems engineering principles and practices in their specification, design and 

realisation in order to ensure that these complex systems operate as required 

(functionally and temporally). This chapter will outline the importance of design 

methods in the development of these systems. We start by summarising the 

conventional concepts required in software engineering to create the architecture for 

a system, followed by an overview of applicable software design methods. In this 

work, system architecture is defined as the underlying structure of a system (an 

abstract representation), i.e. the constituent components and the relationship 

between these various components. 

Chapter 2 contained examples of real-time distributed intelligent surveillance 

systems that have been realised without applying any specific methodical design 

approach. This is only feasible when the systems are relatively small and simple. 

More recently, Object Oriented (00) design approaches are starting to be widely 

used to design these systems. In this work, an alternative design approach called 

Real Time Networks (RTN) is considered for the design of such systems. The use 

of distributed object oriented technologies has led to the development of 

environments such as CORBA to deal with the design and integration of distributed 

systems. ADVISOR and PRISMA TICA are some of the latest surveillance systems 

at the time of writing that use CORBA, as has been mentioned in chapter 2. 

However, our survey of methods indicates that OO/CORBA may not be suitable for 

this kind of system and that the use of Real Time Networks (particularly MASCOT 

31D0RIS) may offer significant advantages, so the investigation of methods 

continues with a comparison of the conceptual models of OO/CORBA and 

RTNIDORIS. 
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To provide a historical context, the survey of design methods starts with a brief 

introduction to several well-known, but not strictly either 00 or RTN, real-time 

design methods such as HOOD, Yourdon and Constantine, Jackson System 

Development (JSD), NRL and DARTS. Even though these design methods do not 

appear to have been reported as being used in the design of surveillance systems, 

they are presented here because they highlight some important characteristics of 

real time systems, which are also significant for the third generation of surveillance 

systems. This is followed by an introduction to 00 design methods like ROOM, 

BOOCH, OMT and UML by giving a summary of the important features of each 

method. Subsequent sections will then introduce MASCOT 3 and DORIS in greater 

depth. 

This chapter finishes with a comparison between the essential concepts of Real

Time Networks (as embedded in MASCOT 2-31D0RIS), and 00 by discussing the 

abstract models, the communication models, functional aspects and performance 

aspects of both approaches. Chapter 4, through a case study, compares the structural 

design (architectural) level as well as run-time aspects of the two technologies: 

DORIS and CORBA. 

3.2 Design methods 

System or design system engineering may be defined as an interdisciplinary 

approach to build large and/or highly complex systems. This approach emerged 

around the World War II period especially in military systems. As stated in 

[Wikipedia 200lj "[] ... While hardware engineering typically deals with just 

hardware and software engineering deals typically with the software, the systems 

engineer is responsible for seeing that the software properly operates on the 

hardware, and that the system composed of the two entities is capable of properly 

interacting with its external environment, especially the user, while performing its 

intended function ... [l". System engineering will be necessary in the deployment of 

future generations of surveillance systems, which will be larger and more complex 

than those being researched at present. This work focuses upon the software design 

phase in the development cycle of a system, defining and characterising such 
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systems and subsystems and the interactions among them. Therefore, to 

successfully build a third generation surveillance system requires traceable design 

methods capable of encapsulating the different levels of abstraction that need to be 

handled (from a global view of the system down to the detailed implementation 

aspects). 

3.2.1 Design methods in surveillance systems 

Real-time systems such as surveillance systems must respond to external events 

within required time limits, therefore timing requirements are very important in the 

design of these systems. To meet critical response time requirements, the system is 

often composed of a hierarchy of concurrent processes that communicate and co

operate to perform the overall function of the system. Other attributes that are 

important for designing real-time systems are performance, reliability, traceability 

and dependability! constraints. 

There are four important objectives that design methods for distributed real-time 

systems (e.g. surveillance systems) should accomplish. First, these methods need to 

be able to deal with concurrent operations in the system. The second objective is the 

capability of developing reusable software through modularisation and information 

hiding. The third objective is to be able to define the behavioural aspects of the 

system in terms of timing constraints and functional aspects. The last objective is 

the analysis of the operation of the design by determining its performance and the 

fulfilment of requirements. 

00 has become .popular in computer vision. Particularly, 00 libraries, packages 

and programming languages like C++ and Java, and recently design notations like 

UML [Summer School 2004] have been common software tools to use to develop 

video-surveillance systems, see Table 3-1. The 00 approach is used in this field 

because of the advantages claimed for 00 in giving a modular approach to analysis 

and design. Another reason for using 00 is because experts in video-based 

surveillance are mainly familiar with 00 technology. Moreover, the design 

developers, who use object oriented techniques argue that 00 techniques reduce 

t In computer science dependability is defined as: "['.J the trustworthiness of a computing system 
which allows reliance to be justifiably placed on the service it delivers { .. J". 
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complexity within design and are suitable for prototyping. They also argue that 00 

implementations are flexible and easily accommodate changes so reducing 

maintenance costs, and that 00 techniques can provide other important benefits like 

extensibility and reusability; design and analysis results can be stored in libraries 

that can be used again at a later time. Many design patterns exist that can be used to 

find already proven structures reducing development time. 

Likewise, they believe that 00 techniques improve stability when the requirements 

change, they have good support for reliability and safety concerns and also that, 00 

techniques have an inherent support for concurrency. In later sections, a discussion 

of all these properties, through a comparison with the RTN design method proposed 

in this work, is presented. 

YEAR LANGUAGES PACKAGES 

2002 C,C++,Java, Lisp, Matlab, Python, Tcl Maple, Matlab, 

MathCAO, Mathematica, 

OpenGL, Statistica, VTR, 

WiT 

2003 C, C++, Java, Lisp, Matlab, Python, Matlab, OpenGL, VXL 

Verilog, Mathematica, Maple 

2004 C,C++, Java, Matlab, Mathematica, Matlab, OpenGL, VTR 

Maple, Python, Perl, 

Table 3·1. Different software tools used in computer vision. ThIs table is extracted from a 

Summer school in computer vision at Surrey University [ Summer School 2004] and shows the 

wide range of tools currently available. 

3.2.2 Classification by structural principles 

There are several design methods for real-time systems such as structured design 

methods (SO), Jackson System Design (JSO), MASCOT 2·3, DORIS or Object 

Oriented Design (ODD). Each of these design methods emphasises a particular set 

of criteria to characterise the components of the system [Peters and Pedrycz 2000] 

e.g. procedural modules in structured design, concurrent tasks in MASCOT, or 

objects in 000. Each item in the following list emphasises a particular in structural 
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principle supporting a particular method, even though each structured principle is 

not necessarily exclusive to anyone method. 

• Structured design: is based on applying algorithm decomposition to break a 

large problem down into smaller steps. The design method realises a top

down decomposition of a system into modules. 

• Parnas Information Hiding: is based on the decomposition of the software 

system into modules, where each module should hide a design decision that 

could change [Parnas 1972]. 

• Jackson design: is based on the idea that data structure is the key component 

of the software design. Hence, program structure, which reflects the problem 

structure, is best obtained from the consideration of the data structure 

[Jackson 1983]. 

• Data-driven design: consists of deriving the structure of a software system 

by mapping system inputs to outputs. This method has been applied to build 

a number of complex systems like management systems where there exists a 

direct relation between the inputs and the outputs of the system, but in which 

there is a little concern for time-critical events. 

• Event-driven design: generates the architecture of a system by mapping an 

event to a response of external stimulus depending not only on the stimuli 

itself but on what happened previously on the system. Such systems are 

called reactive systems and usually are state dependent. 

• Object-Oriented design: models the software system as a collection of 

cooperating objects. It can be considered as a bottom-up design approach 

[Graham 1994]. 

3.2.3 Current research in design methods 

A formal software development method, which addresses the problem of producing 

embedded, real-time, distributed, dependable systems, is normally made up of three 

important phases: specifications, architectural modelling and implementation. The 

different activities which are involved in these phases are: requirements capture, 

architectural description for large/small-scale design, coding, testing, validation and 

verification. Some significant ideas used in the current research into the 
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development of such methods, and tools that help to create good software for large 

complex, systems are the following [Carnegie Mellon Software Engineering 

Institute 2005]: 

• There is a wish to create methods that allow all stages of development to be 

carried out in a semi or fully automatic way (from the specification and 

requirements capture of the system to the implementation and building). 

One example is MDA (Model Driven Architecture) technology which is 

created by the OMG (Object Management Group). It puts forward the value 

of separating application logic from platform technology (i.e. CORBA, 

J2EE, .NET or Web Services). By having fully specified platform

independent models, it helps to insulate applications from technology 

evolution, supporting interoperability between platforms and applications 

and promoting the creation of a methodology to migrate from platform to 

platform. 

• Another theme in current research, which was discussed in one of the 

invited talks in [ICSE2004], is centred on AOSD, which stands for Aspect 

Object Software Development. AOSD is a new set of software development 

techniques that supports the modularisation of system properties or 

'crosscutting concerns' and their subsequent composition with other parts of 

software system. Typical crosscutting concerns are error handling, 

performance optimisation and design patterns. 

• Following the importance in creating methods in order to develop good 

software, there is a need for computer assistance to help the software 

development processes: software tools, software development environments, 

and Computer Aided Software Engineering (CASE). Without such tools, the 

methods become too laborious for use on large complex systems. 

• Emphasis on finding out exactly what the users of the system really want 

and need (requirements engineering) and validation and verification of the 

design using formal methods. 

• Formal specification of the requirements of a system. There is an emphasis 

as well on trying to ensure in an automatic way that the software is free of 

errors (verification). 
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3.2.4 General criteria for comparing design methods 

There are many different software methods at present. Each of them has its own 

advantages or disadvantages. It is not possible to identify a collection of tools and 

methods that are ideal in all circumstances; some development methods are not 

applicable to particular domains and can therefore be disregarded. Therefore, a 

relevant step is to establish and decide the most important criteria against which 

software methods could be compared. It is difficult to find a universal set of factors 

that allows comparison between any numbers of methods. However, comparison 

criteria applicable to the design methods relevant to this project and presented in 

sections 3.3 and 3.4 can be identified as: 

• Underlying concepts resulting from the application of a given set of structural 

principles. 

• Clarity of the proposed designs 

• Integration of the different development phases 

• How appropriate/inappropriate a method is for a given application area and 

scalability (good for small/large-scale design?) 

• Run-time support 

• Extent of tool support 

• Formalisation of the designs 

3.3 Traditional design methods for real-time systems 

As has been mentioned before, during the last forty years, increasing emphasis has 

been placed on formalising the process of specification, design and implementation 

resulting in the development of several methods. In the past twenty years several 

software design methods have been developed. Up to the 1980s most design 

methods followed the structured design approach. The following sections highlight 

some significant design methods that have been used to design industrial real time 

concurrent systems mainly based on control application. These include the Yourdon 

Systems Method, Jackson, NRL and DARTS. 
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3.3.1 The Yourdon Structure Method (YSM) 

The Y ourdon Structure Method (YSM) had its origins in structure methods back in 

the late 70s. YSM is the evolution of different Yourdon methods and it may be 

considered one of the most recent and extensive structure analysis design method 

for real-time systems [Yourdon and Constantine 1979]. The evolution of YSM 

starts with a first generation of Yourdon methods, which included structure analysis 

(contribution from DeMarco) where the system is modelled as a network of 

processes transforming data, and structure design (described by Constantine), which 

is based on a modular hierarchical system design approach. The main modelling 

components introduced were: 

• Data Flow Diagram (DFD): represents the communication between 

processes or components. There are five different kinds of DFD 

components: data stores, instantaneous/continuous control processes and 

instantaneous/ continuous data processes. 

• Context diagram: represents external communications, where one node 

represents the system and the rest of the nodes represent other systems in its 

environment. 

Later on, system dynamics (using State Transition Diagrams), semantic information 

modelling and subject domain orientation were added to the second generation of 

Yourdon methods: 

• Entity Relationship Diagram (ERD): uses Entity Relationship Attribute 

ideas and shows the conceptual structure of the data processes and each 

entity type (object type) and its relationship. It also shows the contents of 

data stores and dataflow. 

• State Transition Diagram (STD): along with state transition table, it 

specifies the transitions that occur in the state machine of each continuous 

control process. Therefore, STD along with "minispecs", which represent 

the behaviour of a continuing data process, is used to represent the 

behaviour of the component of the system. 
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Major advances were achieved in 1984 by McMenamin and Palmer who introduced 

event partitioning. By using event partitioning, it is possible to define the 

functionality of the system in terms of event-response pairs, where each defined 

event has a response that the system has to complete. Thus, it is possible to draw a 

DFD fragment for each event-response pair. Finally, other advances were achieved 

by Ward and Mellor (1985) who introduced real-time specifications. YSM is 

configured by the structure analysis which is defined by ERD, context diagrams, 

DFD and STD and by the structure design, which is defined by DFD and STD. 

3.3.2 Jackson System Development (JSD) 

The Jackson System Development (JSD) [Jackson 1983a] [Jackson 1994b] is a 

design modelling (analysis) approach [Cameron 1986]. This method is based on the 

Jackson Structured Programming (JSP) approach. that is a program design method 

and that assumes that the specification of a program is defined by its data inputs and 

its data outputs. JSD designs model the system as a combination of functions. data 

and events. The first step in this method is to consider that the design models the 

real world and that the system is just a simple simulation of the real world. Each 

real world entity is mapped to a concurrent task. functions (executable operations) 

are added to this simulation of the real world to produce the system outputs The 

basic components and the notation of this method are the following (the graphical 

notation can be found in Appendix A): 

• Action Structure Diagram: this presents the modelled real world entity 

structure in the form of a time ordered sequence of the events received by it. 

The order of this sequence of events is described by three basic concepts: 

sequence. iteration and selection. The graphical notation is similar to 

Structure Diagrams in JSP diagrams. 

• System Specification Diagram: this shows the structure of the different tasks 

that constitute the designed system plus the interfaces between them. These 

interfaces are represented by two different diagrams: data stream and state 

vector notation. Data stream shows the message communication between 

tasks. State vector shows the internal data accessed by a task itself or 
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accessed by other tasks. Only the task that maintains the data can write on it, 

the rest of the tasks can only read it. 

In summary, the JSO method constitutes a complete development process for 

designing and building a system. This development process is defined in three 

phases: the modelling, the network and the implementation phase. In the modelling 

phase real world entities are identified and hence the entity structure diagram is 

configured. The attributes of each event received by an entity and the attributes of 

the entity itself are also defined. Therefore, for each entity a software model task is 

defined. In the network phase the message communication between the identified 

tasks is defined and also the internal data of these tasks. Thus, in the network phase, 

an initial network diagram is derived. Finally, at the implementation phase two 

issues are discussed: firstly, how these tasks are to be mapped onto a directly 

executable implementation version and scheduled, and secondly, how to organise 

and manage the data (the process state vectors). 

The JSO development process imposes a clear and systematic mapping of the 

designed tasks to their implementation through the integration of these three phases. 

Concurrency is the main design concept in JSO, making it an appropriate method 

for designing concurrent systems. On the other hand, the concept of partitioning the 

system into subsystems or modules is not sufficiently developed, making it difficult 

to have a clear picture of the whole designed system. Besides, it may be quite 

arduous sometimes to represent complex timing behaviour of some entities in the 

system with the sequence events model in any of the diagrams. 

3.3.3 NRL 

The Naval Research Laboratory created the NRL [Gomaa 1993c] method to fulfil 

the perceived gap between software engineering from academia and software 

practising engineering coming from industry. In NRL "the system is viewed as a 

finite state machine whose outputs define the system outputs as functions of the 

state of the system's environment" [Gomaa 1993c]. The main concept in this 

method is to apply information hiding and modularisation to the design of systems. 

Therefore, modules that represent different parts of the system are designed 
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following the information hiding concept [Parnas 1972]. Thus, design decisions of 

the module that are expected to be changed are hidden from the rest of the modules. 

Therefore, if a change, e.g. of an attribute in the module, is made, the rest of the 

modules are unaffected by this change. The visible parts of the module are defined 

by the abstract interface specification. Furthermore, the modules are designed and 

implemented to be stored in libraries and therefore to be reused. NRL organises the 

information hiding modules (lHM) in a tree-hierarchical structure to overcome the 

complexity of the design of large-scale systems where there is a substantial number 

of modules, making it easier to trace the modules through subsequent development 

phases of the project. The software in NRL is structured in three main orthogonal 

structures: 

• Module Structure: this is achieved by information hiding. There are three 

different categories of IHM: Hardware and Behaviour hiding modules and 

Software decision modules. Two different modules define the hardware 

hiding module: extended computer modules and device interface modules. 

• Uses Structure: shows the executables subsets of the software. 

• Tasks Structure: determines the number of activities required at run-time, 

contributing to more flexible scheduling. The tasks are determined by 

analysing the operations provided by the module. 

The NRL method has no graphical notation and the designs are expressed through 

tables which are used to summarise the design decision and the IHMs. The states of 

the system also are represented through what are called state transition tables. The 

main steps in the development process associated to this method are: 

• The establishment of the requirements of the system: in this phase the 

method considers the specifications of the system as a white box. 

• Module structuring phase: in this phase the module structure is identified 

from the specifications i.e. the hardware hiding module, the behaviour 

hiding module and the software decision module. Once the module structure 

is identified the abstract interface and the operations required by this module 

are defined. 
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• Module internal structures: in this phase further decompositions of the 

module may be done and the structure task is established and therefore the 

implementation of the design. 

In conclusion, NRL emphasises the information hiding concept in the design and 

the creation of modules that are relatively modifiable and reusable. Although the 

complexity of designing large scale of systems is reduced by allowing hierarchy in 

the design of these modules, it is difficult to have a full picture of the whole system. 

Besides, in NRL there is not a clear definition of the stages of the development 

process, even though there exists a clear differentiation between requirements and 

design. Moreover, it is not straightforward to go from the specification document to 

task structure. 

3.3.4 ADARTS 

Ada based Design Approach for Real Time Systems (ADARTS) is a refinement of 

a previous method called Design Approach for Real Time Systems (DARTS) to 

support Ada based design [Gomaa 1984a], [Gomaa 1989b]. The DARTS and 

ADARTS methods originated to tackle a common problem in industrial real-time 

systems development, namely that the majority of design methods do not take into 

account the important characteristic that real-time systems usually consist of a 

group of concurrent tasks. ADARTS combines NRL and Object Oriented Design 

(OOD) to design a system by applying the module criteria from NRL to identify 

mM structures. Moreover, ADARTS then uses the object structuring criteria from 

OOD to identity concurrent tasks and defining their interfaces, which then define 

the communication and also the synchronisation interfaces between tasks. 

Therefore, the basic components in ADARTS are the mMs, which are defined 

through information hiding module structure criteria, and the concurrent tasks 

which are defined through the task structure criteria. Both criteria are applied to 

functions (transformations) on the data/control flow diagrams. Each transformation 

is perceived as a dynamic structure if the function is executed under the control of a 

task. The transformation is perceived as a static structure if the function is related to 
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operations into a module based on hiding structure criteria. The steps that define the 

development process in ADARTS are the following: 

• Firstly, the behaviour of the system being designed is described through 

what is referred as structure analysis specification for real time systems 

(RTSA). The RTSA notation (please refer to Appendix A) is used for 

modelling the problem domain. At the end of this step hierarchical 

controVdata flow decomposition is performed using state transitions, data 

flow and system context diagrams. 

• The second step consists in identifying concurrent tasks by applying task 

structure criteria. Inter-task communications and synchronisation interfaces 

between tasks are also identified. Tasks interfaces represent loosely/tightly 

coupled message communication, events synchronisation or IHMs. 

• Once the concurrent tasks are defined the next step is to identify the 

modules by applying the hiding module structure criteria. 

• At this stage the Ada support tasks and the Ada task interfaces are added. 

• The last step consists in defining the interfaces specifications for the tasks 

and the modules. These specifications are the external view of the task or the 

module which they represent. 

3.4 Survey of some Important 00 design methods 

From the beginning of the nineties, most of the new design methods have followed 

an object oriented approach. Since 1988, more than twenty different object oriented 

methods have been developed [Graham 1994].00 approaches can be differentiated 

between those which are based on Analysis (OOA) and those which are based on 

Design (000). This work focuses on the underlying structural principles (i.e. 

conceptual structure) of the model. The conceptual structure of 00 models is 

usually based on the concept of "class" (abstract type) and the use of component 

called "objects" which are instances of class types. In addition to the concepts of 

class and object, there is a property called inheritance, universally important in 00 

methods, which may be applied to classes or objects. This will be discussed in later 

sections. The application domain plays an important role in the decomposition 

principles expressed in 00 methods (e.g. "use case" diagrams). 
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The majority of 00 approaches tend to have been published in conferences or 

workshops papers, and relatively few are comprehensively documented in books or 

manuals. The following subsections present some of these design methods like 

ROOM, BOOCH, HOOD, OMT and finally UML, which although is not a design 

method per se, is likely to become a standard modelling language based on an 00 

approach (for further details of these 00 methods, please refer to the References 

and to Appendix A). The survey here presents BOOCH and OMT because they are 

considered to be the main methods from which UML has originated. The HOOD 

and ROOM methods are summarised because they are examples of 00 based 

methods used specifically to create real-time, distributed systems. Moreover, the 

ROOM design method is presented to show an example of an 00 method which 

has the semantics to express and execute its models through a virtual machine. 

3.4.1 ROOM 

Real-time Object-Oriented Modelling (ROOM) is a modelling language which was 

developed to design real-time systems. Abstraction is the driving mechanism in 

ROOM, which is handled by recursion or functional decomposition, incremental 

modelling and reuse. ROOM notation is consistent through the three main phases of 

the design process: specification, design modelling and implementation. The 

ROOM method supports hierarchical structure modelling. The object paradigm in 

ROOM is based on defining the object as an encapsulated entity that communicates 

to other objects through its interface. Thus, ROOM represents models by classes 

which are incarnated by objects. Even though ROOM supports inheritance 

relationships between classes, it does not support multiple inheritance, using 

aggregation instead, which is a "part-of' relationship. Object communication is 

based on a message passing port-to-port connection. Its metamodel consists of six 

basic elements (to see the graphical notation, please refer to Appendix A): 

Actor: it represents an active object which may have its own thread of execution 

(similar to an agent object) and is used to define high-level structures of the 

system. Actors are created by actor class definitions. 
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Passive Data Object: it is an element complementary to an actor as its 

functionality has to be activated through actors. For this reason, it is defined 

as passive. Passive Data Objects are also defined as data objects and 

represent an abstract data type. They are created from a data class definition. 

They are not part of the high-level structure of a system and only exist in the 

context of execution: only the active object (actor) that encapsulates this 

data can access it. 

Message Object: it is used by Actors to send information via a communication 

service. A message is a data type containing a signal and a priority attribute 

and an optional message data object. 

Protocol: messages are grouped and structured by a protocol class definition. A 

protocol element is defined by a signal that identifies each message in 

addition to possible Passive Data Objects that are sent or received by the 

message. It is also defined by characterising a given direction for each 

message sent (in or out). There are also two optional specifications: the 

validity and the quality of service of the message. The Protocol is defined by 

one of the Actors in the communication. In the ROOM model the concept of 

data sharing between concurrent threads (Actors) does not exist. The Passive 

Data Objects are copied and sent by messages through the interface of an 

Actor. 

Interface element: it allows the communication between Actors. There are three 

types of interface elements: Port, Service Access Point (SAP) and Service 

Provision Point (SPP). The interface of an Actor is defined by ports which 

are used for communication. Ports define the set of messages, which are part 

of a protocol and are constituent of the Actor's interface. 

Behaviour element: this defines the behaviour of an Actor, which is part of its 

specification, through a ROOMChart. A ROOMChart is basically a finite 

state machine and a variant of an extended state machine. It supports nested 

hierarchical states. 

The structure concept described in the metamodel of ROOM is simple and easy to 

understand. It consists of active software entities called Actors and passive software 

entities called Passive Data Objects. Actors communicate using port-to-port 

connection. These entities are modelling in a hierarchical manner, thus some 

elements are grouped in one layer and communicate with other higher or lower 
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level layers. Because ROOM is a design method based on an object paradigm 

approach, the software entities are represented as objects. It is claimed in [Erik 

Wyke 2000] that in ROOM there is consistency in the development process. At the 

design phase, the objects are encapsulated in a shell that defines an interface to 

communicate with the rest of the elements and at the operational phase all the 

elements are treated as executable parts of the whole model. 

Therefore, objects are considered as programs written in a high-level language that 

can be executed. The run-time support is provided by a ROOM virtual machine that 

provides the services that the system needs and where it is possible to execute the 

design model. The operating system kernel does not necessarily support thread 

synchronisation. ROOM is a non-shared memory model, only the object that 

encapsulates the data can access it. Because data is not shared, only copies of this 

data are shared. The scheduling policy is based on assigning priorities to events 

rather than tasks using a pre-emptive approach. Therefore, ROOM is appropriate for 

modelling and implementing real-time event-driven systems (in these systems 

priorities are assigned to events instead of tasks). However, many of the scheduling 

policies used in real time systems are based on task (threads) rather than event

priorities. One of the drawbacks as highlighted in [Erik Wyke 2000] is that 

implementation decisions of structural parts have to be taken before the design 

starts. Moreover, even though some behaviours are well captured through 

ROOMCharts, how to express explicit timing requirements is not straightforward. 

3.4.2 BOOCH 

The Booch design method [Booch1991], [Booch1994] represents a software system 

by means of class diagrams and the behaviour between objects by state transition 

diagrams. The metamodel is based on four static or structural diagrams (class 

diagram, object diagram, module diagram and process diagram) and two additional 

diagrams: state transition and sequence diagrams, which represent the dynamics or 

behaviour of the designed system. These diagrams may represent parts of the 

architecture design of the system and furthermore, the architecture design of the 

whole system. Each of these diagrams has a template component associated with it, 

where the important aspects of the components in the diagram are captured. For 
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example, the class diagram has an associated class template. The graphical notation 

of all these diagrams is presented in Appendix A. The following list summarises the 

purpose of each diagram: 

• Class diagram: it represents the classes and their relationships. Classes can 

be parameterised and there is a distinction between class, superclass and 

metaclass which is expressed in the class template. 

• Object diagram: it represents the objects that compose the system and their 

relationships. A single object diagram is like a snapshot in time of a 

transitory event because objects can be created and discarded at run-time. 

• Module diagram: this is used to illustrate the number of classes and objects 

in the module. There is a special module diagram called subsystem which is 

almost like a class diagram (please refer to Appendix A). The difference lies 

in a conceptual distinction: a class diagram is classified as a ("kind of') 

hierarchy; all of the classes which appear in the same class diagram have an 

inheritance ("type of') relationship with one another. By contrast, a 

subsystem is categorised as ("part of a") hierarchy, because the classes 

appearing in the diagram have an aggregation ("part of') relationship with 

one another. 

• Process diagram: it shows how the processes (not objects) are going to be 

mapped to processors. This diagram represents a part of or the whole of the 

physical architecture of the system. 

• State transition diagram: this uses a state chart-like notation and represents 

the events that cause a transition of a state and the actions that result from 

that state change. 

• Sequence diagram: this illustrates the interactions between objects occurring 

at run-time, e.g. if one object asks for data from another object in order to 

continue working, then, this cooperation is illustrated by the sequence 

diagram. 

As discussed, in the Booch method the software entities are conceptually 

decomposed into objects represented by class diagrams. The behaviour of these 

entities is shown in object diagrams and the communication is represented by 

sequence diagrams. Even though the Booch method is expressed using six separate 
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diagrams, the full notation includes a large number of icons and symbols which may 

produce an unclear graphical design. 

A systematic way to go from the specification to the design and finally to the 

implementation and construction of the system does not seem to exist yet. A class 

diagram may be seen as a representation of the abstract entities that will compose 

the system, which have been captured from the specification. At the same time the 

class diagram is seen as a design part of the system. The process diagram may give 

an approximate idea of the physical architecture of the system but in an informal 

way. Furthermore, run-time facilities are not carefully explored although 

[Booch 1991] mentions that the scheduling policies can be designed using the timing 

diagrams. 

3.4.3 Rumbaugh (OMT) 

This subsection summarises a design method which was quite popular some years 

ago, created by Loomis in 1987, and popularised by James Rumbaugh in 1991 

[Rumbaugh et al. 1991]: the Object Modelling Technique (OMT) (please refer to 

the References and to Appendix A for more information). OMT has some influence 

from structure methods and has a detailed notation. OMT basically consists of three 

phases: 

• Analysis: produces three models: the object, the dynamic and the functional 

model. These models progress from the initial requirements specifications. 

The object model is similar to an UML object diagram, as described in the 

following subsection, and is a diagram illustrating the relationships among 

objects and classes constituting the system: please refer to Appendix A to 

see the OMT object diagram and its notation. The dynamic model presents 

the state transition diagram for each object. Subclasses inherit the state 

transition diagram of their superclasses adding states and transitions. The 

functional model is a dataflow diagram used at a high abstraction level with 

passive objects as data stores. 
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• System design: subsystems, tasks and processes composing the system are 

described and the concurrency between each other is identified using the 

dynamic model. 

• Object design: the object model is completed using the information 

extracted in the functional and in the dynamic model. Some implementation 

aspects such as the design of the algorithms, packaging and documentation 

are included in this phase. 

3.4.4 HOOD 

The Hierarchical Object Oriented Design (HOOD) method was developed in 1987 

by CISI, CRI A/S and Matra Marconi Space under a European Space Agency 

project to build large real time systems [HOOD 1986a]. HOOD was developed as 

an integral part of a full development process for a software system. Therefore, it 

aimed to support all of development from requirements analysis through to 

integration. It claims to bring the possibility of parallel development of different 

parts as well as automated code generation and testing, and also a post-partitioning 

support. It is stated in [HOOD 2004b] that HOOD is a design method which helps 

the designer to partition the software into different modules with well defined 

interfaces by decomposing the software units hierarchically. These units are based 

upon identification of objects, classes and operations. HOOD [HOOD 1989a] 

integrates principles from other approaches such as Abstract Machines [Diehl et al. 

2000], and also assimilates some OOD concepts from the Booch method and some 

hierarchy principles found in General Object Oriented Design (GOOD) [Seidewitz 

and Stark 1986] to enforce its hierarchical structure design such as the use of senior 

hierarchy concepts, which deal with the organisation of several objects into "layers" 

which define (each of them) a virtual machine. It incorporates functional 

approaches by supporting modular programming, object based approaches by 

supporting encapsulation and object identity, and object oriented approaches by 

supporting inheritance properties. The HOOD method comprises textual and 

graphical notation and its main concepts can be summarised as follows (for the 

graphical notation of the components please refer to Appendix A): 
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• Object: this component is equivalent to a module of software. The 

formalism of its graphical and textual notation is supported by what is called 

Object Description Skeleton. The static HOOD Object properties are the 

object interface, which is the visible part of the object, and the internals of 

the object, which are the hidden part of the object. The interface defines the 

operations provided by the object with the associated parameters and 

resources. In addition, it provides types and the operations required from 

other objects. The object internals define the implementation of the provided 

interface. 

The communication between objects is made through service requests, by executing 

operations (similar to procedure calls). A client object requests an execution of an 

operation and the object that performs the execution is called a server object. 

Threads, which have a control flow, activate operations on objects. There may be 

several threads executing simultaneously in the same object. One key feature in 

HOOD is that these threads of execution can be specified one by one using the 

concept of constrained operation, which can be defined through state constraints, 

concurrency constraints, protocol constraints or time constraints. Moreover, HOOD 

defines the dynamic properties of an object by describing the effects on a client 

object: 

o Sequential execution: control flow, which is executed within the internals 

defined in OPeration Control Structure (OPCS), is transferred from the 

client to the server directly. Once the server is finished control is transferred 

back to the client. 

o Concurrent execution: control flow is not transferred directly to the server. 

On the server side, the OBject Control Structure (OBCS) protocol deals with 

the incoming requests from the clients and the execution of these requests 

depends on its internal state as well as on the control protocol. 

• Class: is defined as an abstract data type of an object. The difference in HOOD 

between type and a class lies in the fact that a class may inherit other properties 

and operations from other classes, whereas type cannot inherit properties or 
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operation from other types. Classes are object oriented elements that define the 

shared-code for all the instances of the class. 

HOOD defines the concept of a virtual node to deal with distributed systems. The 

virtual node symbol represents a cluster of HOOD objects for a given HOOD 

design tree which can be allocated into software blocks and executed in a given 

physical local or remote memory. HOOD defines a symbol to represent the use 

relationship which indicates required services from one object to the other, thus the 

use relationship defines client-server associations. To represent the top-down design 

that is defined in HOOD as the decomposition of the parent object into child 

objects, providing the same functionality to its child objects, HOOD defines an 

"include" relationship symbol which represents these hierarchies broken down into 

relationships between objects. 

In summary, the concept of structure in HOOD approach is basically guided by a 

separation of concerns. Each software partition entity that is represented by an 

object has well defined interfaces and data modelling and its own description of 

functional and behavioural aspects, promoting the reuse of software modules and 

the support to repartition the software. To express these concepts HOOD has a set 

of formal textual and graphical notations. One of the differences between HOOD 

and other 00 design approaches resides on the reduction of number of symbols 

used to express the design, making HOOD designs clearer at first sight and easier to 

use from the designer point of view. The approach of hierarchical decomposition of 

the modules, where high level structures are refined into more detail by other 

structures, makes this a feasible approach to deal with the complexity that a large 

real-time system has by nature, because the designer does not have to deal with all 

the details of the system at once. 

A number of rules can be applied to HOOD design which can be reviewed by 

automated tools to check consistency and completeness. These rules can be 

categorised into "definition" rules, "methodological" rules, "usage" rules and "code 

generator" rules. For example, the "definition" rules (i.e. include relationship rules, 

use relationship rules, break-down rules, operation rules or consistency rules) are 

statements to check the basic definitions and properties of the elements of the 
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method. The methodical rules check for the completeness in the design phase (Le., 

to check and ensure consistency between representations). Therefore, HOOD 

supports a development process that encompasses the different design phases and 

helps ensuring consistency and traceability in the design. 

Run-time support in HOOD is approached by applying the constrained operation 

concept which, as it has been outlined before, allows the independent specification 

of the functional and temporal behaviour of each thread of execution allowing 

therefore the possibility of scheduling analysis. However, in [Bums and Wellings 

1994], the authors state that HOOD has a lack of explicit support for common hard 

time abstractions. 

There are several tools available from different vendors for designing systems using 

HOOD approach. As explained in [HOOD 1986a] "HOOD was designed right from 

the start with consideration for tools support", therefore the notation and rules have 

been designed for being produced and reviewed by tools. As discussed, HOOD is a 

design method derived from industrial experience and it has been considered for 

serious real-time software development even though it applies the concept of 

inheritance to design, which will be discussed later on, and this may contribute to 

difficulties in the traceability, performance and testing of the designs. 

3.4.5 UML (Unified Modelling Language) 

UML is a modelling language rather than a method, which is the OMG's most-used 

specification for modelling application structures, architectures, data structures and 

business processes. Even though UML is a modelling language and not a design 

method it tends to be considered as the successor of 00 design and analysis and it 

can be seen as being the result of the combination of the Booch, OMT and Jacobson 

OOSE (Object Oriented Software Engineering) approaches. It is expected to be the 

standard modelling language in the future and also provides the key foundation for 

OMG's Model-Driven Architecture, a technology which has been introduced in 

section 3.2.3. At the time of writing, its current developed version was UML 2.0. 

For a more detailed description of this modelling language please refer to [Booch et 

al. 2000]. UML defines a notation and a metamodel. The metamodel is one of the 
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layers of a four-layer metamodel architecture which are the following [UML 2 

MetamodeI2005]: 

• Meta-metamodel 

• Metamodel 

• Model 

• User objects 

The UML metamodel is defined as an instance of a meta-metamodel which defines 

the language for specifying a model (i.e. class, attributes, operations and 

components). The complexity of the UML meta-model is managed by organising it 

into logical packages. 

The notation is the syntax of the modelling language and is represented by the 

graphical components in the models (to see the graphical notation for these 

components please refer to Appendix A). The principal elements that compose the 

modelling language can be classified into two groups based on whether they model 

the structure or the behaviour of a system. They are introduced in the following list: 

Structural modelling 

• Actor: it represents a set of roles that a user plays with respect to the system. 

In the metamodel, an actor is a subclass of Classifier; it has a name and may 

communicate with a set of Use Cases. 

• Class or static structure diagram: presents the UML metamodel and 

illustrates the static structure of the model such as classes and types and 

their internal structure and also their relationships, but not the temporal 

information. 

• Object diagram: is a schema of specifications of instances, including objects 

and data values. It presents an instance of a class diagram at a point in time. 

• A state chart diagram: shows the behaviour of an interaction or instances 

such as an object. It illustrates possible sequences of states and actions from 

which these instances react to discrete events such as signals. In other 

words, it represents a state machine diagram. 
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• Component diagram: illustrates the dependencies among software 

components and also describes the classifiers that specify them and the 

artifacts that implement them, e.g. implementation classes, source code files, 

executable files or scripts. 

• Package diagram: illustrates the packages classes and the dependencies 

among them. 

• Composite structure diagram: shows the composition of different elements, 

which are going to be run-time instances that are interconnected through 

communication links. 

• Deployment diagram: a graph of nodes connected by communication 

associations. It describes the configuration of run-time processing elements 

and the software components, processes and objects that execute on them. 

Components that do not exist at run-time do not appear on this diagram. 

Behavioural modelling 

• Use Case diagram: a schema of actors, a set of use cases, perhaps some 

interfaces, and the representation of relationships between these elements 

i.e. associations and generalisations between actors and the use cases, and 

generalisations, includes, aggregations and extensions (variations of the 

main success scenario) between the use cases. In essence, a use case may be 

considered a technique for capturing the functional requirements of a 

system. 

• Activity diagram: is a special case of a state chart diagram where states 

represent the performance of actions or "subactivities" and the transitions 

are triggered by the completion of the actions. 

• State Machine package: may be used to model discrete behaviour through a 

finite state transition system. There are two types of state machine packages: 

the behavioural state machine and the protocol state machine. 

• Timing diagrams: represents changes of the states or other conditions of a 

structural element over time. 

• Interaction diagrams (sequence or collaboration diagrams): describe how 

groups of objects collaborate and interact. There are two kinds of interaction 

diagrams: the sequence diagram and the collaboration diagram. The 

sequence diagram presents the explicit sequence of communication between 
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objects making it more suitable for the design of real-time systems and 

complex scenarios [UML 2 Metamodel 2005]. The collaboration diagram 

represents an interaction established around the roles and also represents 

their relationship. 

It is important emphasise that for the design of Real-Time systems, UML provides 

other components that are not mentioned on the previous list. These components are 

called Ports (capsule) and Connectors and are used in composite structure diagrams. 

Ports components are linked by Connectors and isolate the component which makes 

it independent of its environment. The Connectors are not necessarily a bundle of 

software on its own but are protocols to which Ports conform. In [UML 2 

Metamodel 2005] it is pointed out that a good design decision is to design these 

ports as objects on their own to guarantee the decoupling between Ports and 

Connectors. 

3.4.5.1 Discussion 
With regards to the structure concept and the UML designs formalism, the four

layer architecture which defines UML language architecture is claimed in [UML 2 

Metamodel 2005] to be an architecture for defining the semantics required by 

complex models. The UML graphical notation shows a wide range of different 

definition components and relationships, giving freedom for modelling a system. 

On the other hand, even though the graphical notation is presented in a clear way, to 

have such a wide choice of diagrams can make the design decisions difficult. There 

is no mapping of different diagrams in a model which induce inconsistency in the 

modelling design. At the same time, some of the semantics are hard to understand at 

first sight and can lead to different interpretations of the same model. 

Hierarchy in the composition of models is not fully explored; therefore it is difficult 

to represent the design of a large system. In [Christensen and Alblas 2000] they 

used UML to represent the design of small distributed surveillance system (with 

three cameras). Even though the internal structure of different system components is 

well-defined through UML diagrams, there are no diagrams that illustrate the 

integration of these components to build the whole system. Therefore, it is not 

possible to see the design of the whole system at once. In [Hull et al. 2004] even 
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though the authors presented a mapping in UML of the internal structure of 

different components of Real Time Networks, presented in next section, they do not 

illustrate any mapping in UML of a whole Real Time Network system design. 

Therefore, there is no diagram that presents the whole system at once. 

At the time of writing, there is a large amount of research conducted to polish and 

extend UML because it is supposed to be the standard modelling language of OMG. 

Furthermore, it is also considered one of the kernels of OMG's Model Driven 

Architecture. Thus, there is a large range of tools to support the use of UML to 

design although there is not an official list, e.g. ARTiSAN's Real-time studio or 

Metamatrix Metabase Modeler (for more information please refer to [UML 2006]). 

There are also some UML tools like Rational Rose that systematically creates UML 

models from 00 languages like C++ and UML CASE tools like Visio Studio or 

Artiso Visual Case. 

A compromise exists between clarity of the models and formal specification 

languages. The current UML description is not a completely formal specification 

language but it is easier to understand. The UML specification is based on a 

combination of languages: a subset of UML components, and OCL and natural 

language to describe the abstract syntax and semantics of the full UML. The syntax 

is described in UML in Abstract Syntax [UML 2 Metamodel 2005]. The static 

semantics of a language are defined in Well-Formedness Rules [UML 2 Metamodel 

2005] and the dynamic semantics in the Semantics section of UML specification 

[UML 2006]. The static semantics are defined as a set of invariants of an instance of 

the metaclass, and each of them is defined by an OCL expression with an informal 

explanation of the expression. 

UML has been considered to be an appropriate modelling technique for business 

applications. It is claimed in [UML 2 Metamodel 2005] that this technique is 

suitable for real-time applications because behaviours of different components can 

be defined through state, activity, collaboration and sequence diagrams and further 

real-time extensions like defining queuing orders or priority mechanisms based on 

different approaches like ARTiSAN's or through the definition of Ports and 

Connectors. However, these behaviours and actions represent behaviours between 
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objects or activities and not between different parts, components or modules that 

compose the system. Thus, there is not a clear overall picture of the behaviour of 

the system. Even though there is a useful diagram called the deployment diagram, 

that shows all the components that will exist at run-time, there is a lack of support 

for scheduling techniques. 

The deployment diagrams just show "what" and "who" will exist at run-time but 

they do not show "how" these components will interact at run-time, a property that 

is important in a real-time system. Furthermore, as it is discussed also in [Erik 

Wyke 2000], even though UML is a good technique to represent the structure of the 

data of the system, it has a lack of representation of the flow or the quantity of data 

information, which are directly linked to the performance of the system. Besides, 

even though UML tries to represent time using different type of diagrams e.g. 

timing diagrams or sequence diagrams, these representations are based on 

expressing the internal time of the element on its own or time as a sequence 

interaction between elements, but there is no explicit time interaction between the 

element and its environment. 

3.5 Real Time Networks (RTN) 

RTN is strongly based on a shared data model. This approach consists of conceiving 

a system as a network of active2 (internally sequential) processing components 

(called activities) interconnected through dedicated passive elements (called IDAs). 

Activities cannot distinguish one network context from another. Therefore, this 

provides reusable software components and allows the inclusion of these activities, 

without change, in special test systems for prototyping or integration testing 

proposes, if necessary in execution environments, which differ from the final target 

configuration. The network is per se a spatial form of representation (Le. the 

activities may be mapped in several processors) and so it may be suitable for use in 

a wide range of distributed application areas [Simpson 1992d]. However, it is 

possibly best suitable for real-time embedded systems where the software has a 

degree of complexity and is highly interactive. 

2 Each active process has its own thread of control 
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3.5.1 MASCOT· RTN principles 

MASCOT (Modular Approach to Software Construction Operation and Test) is an 

extension of Real Time Networks [Phillips 1967]. MASCOT is a software design 

method for the design and implementation of large real-time concurrent systems. 

Ken Jackson and Hugo Simpson originated its essential concepts at the UK Royal 

Signals and Radar Establishment (RSRE) during the period 1971-5 [Bate 1986]. 

The first technical notes (MASCOT 1) were published in 1978 [IECCA and MUF 

1978a]. The first official handbook was issued in 1983 (MASCOT-2) [IECCA and 

MUF 1983b]. Further refinements and extensions were continued until the official 

standard for MASCOT-3 [IECCA and MUF 1987c] was published in 1987. The 

RTN approach in MASCOT/ DORIS differs from most other design methods, 

because design solutions are expressed in terms of a set of concurrent components, 

which work independently and interact through explicitly identified data areas. This 

structures the logical design and provides an early natural temporal partitioning of 

the different components that compose the whole system. It provides the means for 

temporal and physical (spatial) decoupling, aiming at maintaining at the same time 

predictable temporal properties. The proponents of the MASCOT approach for 

software development believe that it [lECCA and MUF 1983b]: 

• Defines a formal method (Le. every step in the process to obtain the final 

software structure is clearly defined) of expressing the software structure. 

• Imposes a disciplined approach to design by ensuring a close 

correspondence between functional elements in design and constructional 

elements for system integration. 

• Provides' a highly modular structure supporting a program acceptance 

strategy based on the test and verification of single modules and group 

closely related modules. 

• Provides for a small easily implemented executive for execution of the 

program at run time. 

• Provides for a straightforward and flexible method for system building. 

• Can be applied through all stages of the software life of the project. 
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The dominant RTN principle embodied in MASCOT is that the flow of data 

through the system is controlled solely by a set of concurrent software process 

[IECCA and MUF 1978a], which means that MASCOT uses the concept of data 

flow network between concurrent processes that constitute the network, as the 

means for expressing software structure. It emphasises the importance of structure, 

data, communication and the production of systems as a real-time networks, as 

opposed to programs. Moreover, it is also stated by its proponents that MASCOT 

addresses the important issues of dependability, flexibility (by allowing the designer 

to easily accommodate the continuous changes that may occur during the design 

process, into the system design) and re-use (by using template facilities which are 

discussed in other sections here). The MASCOT method provides a design language 

(textual form) and a graphical notation (MASCOT network diagram), which are two 

complementary forms for representing the network architecture and controlling an 

evolving design structure. The method provides the visibility necessary to support 

management and control of the design during development and subsequent 

maintenance. This visibility can be achieved by the use of CASE tools to process 

the design, supported by a database to hold the design details providing the status 

progression feature of MASCOT. 

MASCOT aims to support strong design features; safety critical functions are 

protected from interference and corruption by enforcing strong partitioning of the 

overall design task. MASCOT allows distribution of system functionality to be 

represented, by explicitly providing small independent units of execution which can 

beidentified early on (through the need to define activities). These units are suitable 

for distribution in a multiprocessor environment, which can be analysed for their 

temporal properties in terms of information propagation. 

3.5.2 The MASCOT network design 

The Real-Time Network approach of MASCOT applies concurrency as a direct 

solution of the problem. The main distinguishing feature, based on the RTN 

principles, is the explicit recognition of Intercommunication Data Area (IDA) 

components located between concurrent processes, which are known as ACTIVITY 

components. An activity is an active element, which is the fundamental processing 
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element in a MASCOT network. It is a single sequential processing thread that can 

be scheduled independently so that, conceptually, all activities may be executed in 

parallel and concurrently [Simpson 1986a]. An IDA is a passive element, which is 

used either for independent information storage or for information transmission. An 

IDA is effectively an encapsulated data type whose detailed physical representation 

is hidden from its users. An IDA component allows several independently 

scheduled single sequential program threads (activities) to be simultaneously active 

or temporarily suspended. The IDA safeguards the integrity of data by using the 

minimum amount of mutual exclusion needed to avoid critical data clashes. The 

IDA maintains the propagation of data in the network by providing cross

stimulation between activities. 

MASCOT takes requirement specifications obtained by other means as its starting 

point [Simpson 1986a]. MASCOT data flow networks should be static. Activities 

should not be created dynamically and the system network should remain invariant 

at run time to avoid hazards in terms of unconstrained resource demands and non

deterministic timing. However, it seems that special measures can be used for those 

applications that cannot be implemented without dynamic network creation 

[Mustafa 2000]. Even though these measures are not published, one of them (taken 

from a private conversation [H. Simpson2005]) may consist in creating and building 

a new component, and then it is inserted into the network. Once it is established, the 

old component is removed from the network. Another measure may be the use of a 

protocol that is discussed in section 3.6.4.1, called Remote Thread Invocation 

(RTI), which activates a thread at run-time. MASCOT assumes that the software 

system is being" designed for a particular virtual machine called the MASCOT 

kernel, and the implementation of this virtual machine on a specific computer or a 

set of computers (depending on the configuration) is a separate problem. The kernel 

is a set of procedures, constants and data-types, which provides the run-time 

executive level facilities for purposes such as process scheduling, synchronisation, 

interrupt handling, execution control and monitoring. These facilities are defined in 

a context interface specification. 

During development, the structure of the application software evolves as a set of 

interconnected but independent components that make no direct reference to each 
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other. The components in MASCOT such as IDAs or activities are defined as 

templates during the design process. The idea of a template idea in RTN could be 

associated to the idea of a class in 00. A component is an instantiation of a 

template. Specifications define an interface (a type of connection) so that 

connections between components are established from the corresponding interface 

specification. Components contain definitions which describe a set of data-types 

and named constants. MASCOT templates are reusable so they can enable the 

creation of multiple components derived from the same template or the creation of 

the same component in different execution environments (different system designs). 

The definitions of the textual forms of the design structure (modules) are inserted 

into a MASCOT database, which supports the development process. The textual 

forms of modules (template) are subdivided into three parts: 

• Name: defines its class (note that it does not have the same meaning as 

"class" in 00) and it gives the template a unique identification. 

• Specification: consists of the information required for components of that 

type to be included in inter-module dependencies. 

• Implementation: defines the internal details of the template. For simple 

active templates (such as those for activities) this defines the executable 

program, and for IDAs it defines the data attributes and access mechanisms. 

Designs in MASCOT are expressed in a hierarchical manner rather than in terms of 

a flat network. At the lowest level, MASCOT entities are software objects capable 

of.either performing data processing functions (activities or active entities) or data 

communication functions (IDAs or passive entities). A system defines a self

contained set of interconnected components. Some of these components can be 

grouped together to form a composite form of a processing function and are thus 

known as subsystem. Other components can be grouped together to form a 

composite form of a communication function and are thus called composite IDA. A 

system differs from a subsystem only in having, by definition, no external 

dependencies other than those, which may be satisfied during system building 

[IECCA and MUF 1987c]. The system is the outermost level of the network design, 

which encompasses the whole of the application. Explicitly or implicitly, it 

constitutes a complete description of the software. 
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In MASCOT (as indeed in any branch of engineering or the management of 

complex systems), it is good practice to apply the principle of "containment of 

complexity" during the elaboration of the design structure. The final hierarchical 

design structure should contain the minimum number of levels consistent with the 

ability to easily see how each component, at any level, plays its role to satisfy the 

requirements generated by the next level up. The final hierarchical design structure 

should be composed as a network of subsystems that communicate through 

different forms of IDAs: channels, pools or generalised IDAs. However, what is 

executed is a flat network of primitive elements (activities). 

3.5.3 MASCOT communication model 

As has been mentioned in the previous subsection, a MASCOT network design is 

represented as a set of concurrent operations such as subsystems, activities, IDAs or 

servers, which are the components that allow all the interactions of the system with 

the environment, e.g. the action of capturing images coming from the cameras in 

any surveillance system is performed by server components in this work. Notice 

that the server component in MASCOT differs significantly from a server object in 

00, because in 00, the server object is commonly an active element that processes 

requests coming from clients. Therefore, it does not necessarily interact with the 

environment but with the elements that constitute the system. All these operations 

are interconnected to form a data flow network. The combination of different 

individual operations produces the overall system processing function and the data 

flow between these operations through the network takes place in accordance with 

the MASCOT communication model [Mustafa 2000], which is discussed in the 

following paragraphs. 

The communication (between activities through IDAs as adjacent activities never 

occur), takes place along the paths of a MASCOT network. A path or connector 

between a pair of entities such as activities is a specification (Access-Interface) 

defining a set of operations (mainly reading and writing operations) implemented 

by the IDA. Every path in a MASCOT network is connected at one end to a port 

(provided action) of a component. Ports are belong to active entities such as 
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activities and are represented by a solid circle. At the other end of each path a 

window (required action) is connected, which is represented by a solid rectangle 

(see Figure 3-1). Windows exist only within passive entities such as communication 

components (IDAs). However, sometimes it is necessary for data to be passed 

directly from one IDA (passive entity) to another. Therefore, an RTN extension 

such as DORIS, allows IDAs to possess ports as well as windows. Ports and 

windows refer to the access interfaces that are connected, to obtain a full 

characterisation of how the components are connected to one another in a unique 

manner, which is decided by the designer. 

Figure 3-1 shows a basic MASCOT communication model which is a 

representation of a network design of two activities connected by a "channel" IDA 

(different types of IDAs are discussed later). The graphical representation of an 

activity is a rounded shape whereas that of the IDA is a rectangular shape (see 

Figure 3-1). The names inside these shapes are template names and the ones outside 

are component names. As mentioned, a component is an instantiation of a 

template. In the example, activity prod has a port PI that is connected by the path 

Put to a window WI in the IDA idacom. In path Put, data flows from port PI (data 

source) to window WI (data sink). However, a port can act as a sink and a window 

can act as a source as shown in the path Get. This figure tries to illustrate that there 

is not dependency between the processing functions (defined in the activities which 

can be seen as a thread of executions) and data flow execution (realised in the IDA 

component). 

idaoom consu 

IDA 

M W2 ~----~~----.. 

Figure 3-1. Simple communication model between two activities (producer, consumer) through 

an IDA component. 

The interaction and communication within systems modelled on RTN principles are 

achieved by the reading and writing operations that are applied to the data in IDAs. 
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When an active partner (such as activity) invokes these operations, data is 

transmitted in one or both directions. The path or connector is not a resource that is 

dynamically created or allocated. If it were, then this would mean that not enough 

attention to the required nature of the communications would be given at design 

time and therefore full characterisation of the system architecture cannot be 

achieved. MASCOT defines a basic classification form of IDAs or interaction 

protocol based on how these operations act upon the shared data: destructive writing 

or reading operation and non-destructive writing or reading operation. Notice that 

the term protocol used here "is not a type of colloquy defining a message dialogue 

between two processes" [Simpson 2003f, pp.158] (protocols, in RTN, have no 

relation to the concept of a layered protocol hierarchy as in Open Systems 

Interconnection). Another important remark is that in RTN, the functional and 

design models emphasise the difference between protocol and connector. A 

protocol is a set of rules whereas a connector implements and enforces the rules. 

Consequently, operations of opening/closing access or connectors are not included 

in the protocol [Simpson 2003f]. This implies an easy association of the two models 

without compromising the distinction between functionality and design. 

Furthermore, a connector is at the same level as the entities (such as activities or 

IDAs) that use it ( the connector is not seen as a property or "method" in 00 argot 

inside the entity) and the components that use it remain attached to the connector 

following the construction of the RTN network at build time. 

3.5.3.1 Communication mechanisms 
In RTN the protocols define the dynamic effects arising from the interaction 

operations themselves. Destructive writing means that new data can freely 

overwrite existing data by destroying it (writer cannot be held up), while non

destructive writing means that new data can only be placed in a vacant space (writer 

can be held up). Whereas destructive reading will destroy current data and hence it 

will make a vacant space and non-destructive reading leaves the current data in 

place. These operations reflect four basic forms of interaction between 

communicating processes that are expressed in three basic types of protocols: Pool, 

Signal, Channel and in one special form of interaction called Constant. These 

protocols provide a sufficient set of characteristics for implementing a range of 
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applications, by identifying all possible dynamic interactions between a reader and a 

writer. The basic parts of the protocol taxonomy are shown in Figure 3-2. 

Interaction of basic operations Destructive reading Non-destructive reading 

Temporal interaction effects Reader can be held Reader cannot be held 

up up 

Destructive writing + + 
Writer cannot be held up Signal Pool 

(Event data) (Reference data) 

Non-destructive writing + ~ 
Writer can be held up Channel Constant 

(Message data) (Configuration data) 

Figure 3-2. Basic protocol taxonomy refers to effects on data from read and write operations 

Earlier versions of MASCOT supported just two different forms of IDA: pool and 

channel. Later versions of MASCOT incorporate another form of IDA called a 

signal. Figure 3-2 summarises the temporal interaction and which can be described 

as follows: 

• Pool (non-destructive read and destructive write): It allows reference data (a 

single coherent record) to be consulted at any time by the reader or updated 

at any time by the writer like a table or a dictionary [Simpson 199Oc]. 

Neither the reader nor writer process can be held up; therefore it is possible 

to lose the oldest data if the writer process is faster than the reader process. 

This protocol provides the opportunity to implement an explicit fully 

asynchronous communication between the entities that communicate with 

one another. Although this asynchronous communication is necessary in the 

real word, it has not been fully explored in the design methods discussed 
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earlier. However, some of these methods claim to present mechanisms 

where the communication between elements is asynchronous, although this 

communication mechanism is not explicit in the form of a defined protocol 

as the "pool" in RTN. Moreover, as discussed, this protocol may be used in 

a range of applications, e.g. in surveillance systems this protocol can be used 

to send background images data to the rest of activities that need this kind of 

data or raw images from sensor devices. 

• Signal (destructive read and destructive write): It allows event or control 

data (a single coherent record) to be overwritten at any time by the writer, 

but only consulted once by the reader. Some data may not be consulted at 

all if the reader is too slow and the writer overwrites the event data before it 

has been read. The writer cannot be held up, but the reader can be held up. 

In surveillance systems this protocol can be used to send control data like 

variable operational parameters (i.e. thresholds, ROI or lighting changes) or 

event data like changing orientation of the cameras, where it is important for 

the reader process to act upon the last available (most current) data and not 

waste time with what has become obsolete (perhaps due to the slowness of 

the reader which could otherwise bring the system to a halt by delaying the 

producer of such data). 

• Channel (destructive read and non-destructive write): It allows one message 

data item to be passed between producers and consumers. The read 

operation is destructive, since it removes an item from the channel in a FIFO 

manner. Either the reader or writer processes can be held up corresponding 

to a case where reader and writer need to synchronise on the presence of 

data. This protocol may be used in surveillance systems to send data that 

cannot be lost like the resulting tracking positions of the objects on the scene 

that are being followed. 

• Constant (non-destructive read and non-destructive write): It is regarded as 

configuration data. The value of a constant is established at build time and 

may not be re-written. In surveillance systems there are some initial 

parameters like camera calibration parameters, thresholds for background 

detection or motion capture that need to be set up at the configuration step. 
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3.6 DORIS- further extension of RTN principles 

Further successful developments of MASCOT continued until DORIS, which is the 

acronym of Data Oriented Requirements Implementation Scheme. DORIS is an 

integrated set of methods and associated tools for development of hard real-time, 

embedded multiprocessor systems. It consists in a design notation based on Real 

Time Networks and various implementation techniques for system construction, 

implementation and analysis [Simpson 1992d]. Features of the DORIS design 

notation, as in MASCOT, include [Simpson 1990b]: support for a wide range of 

synchronous and asynchronous communication protocols (which are appropriate for 

both shared-memory and distributed implementations), features that support the 

partitioning of the design amongst large design teams, and support for the re

mapping of a design to the hardware platform, as it evolves during the life of the 

project. DORIS extends MASCOT -3 with an augmented set of pre-defined 

protocols, which are aimed for distributed real-time systems. 

Figure 3-3 shows the DORIS coverage for the three stages of the development life 

cycle. They are Definition, Design, and Implementation (in software and 

hardware) [Simpson 1992d]. Different methods are used for each of these stages 

and each can be used in isolation, but the strength in DORIS comes from their 

integration. For the definition and design stages, DORIS uses extended versions of 

two existing well-established methods based on the concept of data flow. Controlled 

Requirements Expression (CORE) [Mullery 1979] is used for the capture, analysis 

and specification requirements and MASCOT is used for designing. For the 

implementation stage, DORIS it uses a new architectural approach known as DIA 

(Data Interaction Architecture) [Simpson 1990b]. DORIS data flow networks 

should be static but flexible. The network should be static because, as in MASCOT, 

dynamic creations should not be allowed, but flexible to allow for many changes in 

a design, which occur during development and subsequent maintenance. Dynamic 

process creation should not be allowed so as to guarantee the performance of the 

system, due to its consequent hazards in terms of unconstrained resource demands 

and non-deterministic timing. 
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Figure 3·3. DORIS development process from [Simpson 1994e] 

As discussed, Real·time Networks are characterised by the explicit recognition of 

shared data areas for communication and interaction between processes. DORIS 

uses the concept of Shared Data Area to provide a unifying theme through the three 

stages of Definition, Design, and Implementation. This ensures traceability 

during the development process, where the general concept of shared data area 

describes "shared information" at the Functional level, "shared data" at the Design 

level and "shared memory" at the Implementation level. 

3.6.1 Definition: COntrolled Requirements Expression (CORE) 

The definition stage of design is requirement analysis, where the examination of 

requirements produces a top-level system description. This provides the basis for 

formal or informal reasoning about the behaviour of the system and it is called the 

Functional Definition of the system. The Functional Definition is a representation 

of the system expressed in terms of component functions (transformers of 
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information) and their interactions (information transfers), such as would be 

generated by the application of CORE. The level of definitions should be sufficient 

to analyse the behaviour and performance of the system to the extent necessary to 

ensure that the given requirements can be met. 

The aim of CORE is to establish a full understanding of the problem and associated 

requirements for a system solution, reducing ambiguities and inconsistencies. It 

consists of a set of defined steps helping to ensure a correct transition from the 

problem through to a system design definition. The Functional Definition in 

DORIS draws on the CORE method, but the CORE notation is not used. Instead 

design notational forms similar to MASCOT-3 are used, consisting of round corner 

shapes used for active processing functions and rectangular shapes used for 

information storage functions. 

The definition phase begins with gathering information and analysing it, which 

leads to the definition of the problem domain and to the identification of a set of 

viewpoints from which the operating environment of the system is characterised. 

These viewpoints form the definition elements of the system design. The next stage 

is defining the function of each viewpoint and the information passed between 

viewpoints (data flow based analysis). Analysis of viewpoints is the basis for the 

formation of a Functional Definition of the system. The Functional Definition is a 

graphical description of a system design as a network of functional elements 

(viewpoints) linked by the information flows, and it is annotated with any identified 

route protocols. The role of the Functional Definition Diagram (FDD) is to act as a 

bridge that helps achieve a smooth flow from the definition phase into the design 

phase in DORIS. Its network format is consistent with the notation used for the 

DORIS design phase, and hence encourages propagation of requirements and 

ensures traceability of requirements and design information between these two 

phases. 

3.6.2 Design: MASCOT 

During Functional Definition, a network of interacting component functions is 

identified in detail for two reasons [Simpson 1992d]. First, the aim is to ensure that 

such a network of functions will indeed meet the system requirements. Second, to 
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allow some of the functions to be partitioned according to the most appropriate 

implementation technology, which are among others the Software System, the 

Processing Infrastructure, and the Hardware Instances. The design of the Software 

System is expressed in terms of the MASCOT Network application as a hierarchical 

set of MASCOT-3 components. The notations and conventions of MASCOT-3 are 

restricted and expanded. The design follows the same "principle of the 

containment" applied in MASCOT, with continuing emphasis on parallelism, 

communication and hierarchical breakdown. 

The Functional Definition of the DORIS definition phase becomes the top-level 

system of the MASCOT design and its elements become MASCOT subsystems. 

Each successive level of decomposition is an implementation to some degree of the 

functionality and communication defined in the level above. Consistency and 

traceability are ensured by the continued satisfaction of Access Interfaces defined at 

higher levels of the design structure. Design visibility is enhanced by a graphical 

representation and the ability to display multiple levels of the design hierarchy on a 

single diagram. The MASCOT textual representation is the formal description of 

the system. Graphical and textual forms are equivalent and may be derived from 

each other. For the design phase of DORIS, the following three languages have 

been provided to aid the user in the design procedure of a system: 

• DORIS Design Language (DDL): a subset of MASCOT-3 with additional 

syntax to allow the parameterisation of subsystems, activities, IDAs and 

access interfaces, and the definition of route IDAs (see section 3.6.4). 

Hardware Description Language (HDL): used to represent the hardware 

components and the interconnection between these components, which 

make up the hardware system. Typical components for the HDL are 

processors, private memory and shared memory in Asynchronous Dual Port 

Memory (ADPM). 

• Mapping Description lAnguage (MDL): used to map the abstract software 

design (software components) onto the system hardware. The activity 

instances and private IDA instances are mapped onto processor private 

memory and the shared-IDA instances are mapped onto ADPM. MDL 

contains also all priority rules and information for activities. 
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3.6.3 Implementation: DIA 

RTN can be set in an operating environment which offers supporting services to 

concurrent processing, such as interrupts, pre-emptive scheduling, co-operative 

scheduling and multiple processors [IECCA and MUF 1987c]. The principles of 

RTN of shared memory, shared data, and shared information provide essential 

visibility of independent threads of execution, whose interaction between them is 

decoupled. In addition, the RTN approach encourages additional design 

partitioning by expressing a design solution in terms of a set of concurrent 

asynchronous processing threads that are suitable for flexible distribution in a 

multiprocessor hardware configurations. This addresses concurrency and 

parallelism at the highest and earliest level of definition and design, and it regards 

concurrency and parallelism as part of the solution rather than as part of the 

problem. Therefore, appropriate execution environments for supporting real-time 

networks based designs are those that reflect the network principles of independent 

processors communicating through shared memory. The Data Interaction 

Architecture (DIA) [Simpson 1990b] is based on the explicit recognition of shared 

memory as a means of communication between concurrent processes, thus its 

implementation form gives direct support for network design concepts. 

3.6.4 Communication mechanisms 

The concept of Route has been conceived to express communication designs and its 

symbols provide notational conventions to express basic and extended 

communication protocol designs. A route can be mapped into the hardware in a 

variety of forms to meet the communication requirement regardless of the relative 

location of the activities connected by the route. The dynamics of the route can be 

preserved over any degree of distribution, regardless of the communication medium 

(private memory, shared memory, serial link, multiplexed bus, etc.). Therefore, 

route interconnections between application functions can be established once the 

location of each end of the route is fixed and the dynamic properties of the route 

remain unchanged. Based on the DIA implementation of shared memory between 

adjacent processors, DORIS provides three forms of route distributions as follows: 
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Private distribution, when the two activities that use the route are both in 

the same processor. See Figure 3-5. 

Shared distribution, when the two activities that use the route are in 

different processors, connected by shared memory. 

Remote distribution, when the two activities that use the route are in 

different processors, not directly connected by shared memory. 

Therefore, the explicit definition of route protocols gives the following two crucial 

advantages: 

• It provides a complete set of communication protocols, which describes a 

variety of dynamic interactions between writer and reader. 

3.6.4.1 

The ability to "stretch" the route over any distance in a distributed execution 

environment to allow communication to take place wherever the processes 

connected by the route may be located, including a Private distribution 

where connection is made between processes located in the same processor 

configuration. See Figure 3-5. 

Route extensions 
The extension of the first protocol classification [Simpson 2003f] is based on two 

main concepts: the number of intermediate items and void data. The former relaxes 

the capacity constraint established in the basic protocol where the intermediate item 

is limited to one. Then, it is possible in these extended protocols to vary the amount 

of intermediate data buffering, including no buffering at all, but "whatever the 

degree of buffering, items are always read in the order that they are written" 

[Simpson 2003f, pp. 161]. When there is no buffering, the interactions are 

interlocked with a mandatory overlap of read and write operations if the data is to 

be transferred. The void data concept allows the item to carry no information, so 

that the protocol describes a pure stimulus function (note the terminology borrowed 

from engineering applications). This provided new notations that are added to a 

route symbol to indicate special meaning. A small hollow circle at the centre of a 

route symbol indicates that no data is transferred. An integer next to a route symbol 

indicates the amount of buffering within the route. The absence of an integer 

implicitly means unity and a zero means no buffering. The principle of concurrency 

90 



is applied to route access operations [Simpson 2003f]. Such operations can be as 

concurrent as possible preserving always the capacity constraint of the protocol 

(please refer to Figure 3-2 to see these constraints). 

Figure 3-4. The Extended communications of Route protocols [Simpson 2003f]. 

Figure 3-4 summarises the extension communication protocols of the two basic 

protocols mentioned in section 3.5.3 and illustrated in Figure 3-2: the signal and 

channel protocols. The extension introduced additional routes, which allowed the 

explicit representation of these commonly occurring communication protocols and 

which are explained below. Note that in the previous basic protocols list (Le. 

channel, signal, pool and constant protocols) and in the following list, RTN presents 

an extensive range of explicit communication mechanisms, defining all the possible 

interactions between communication elements. None of the reviewed methods 

present such a wide range of communication mechanisms. 

• Flash data: Flash data is a signal route with zero buffer capacity. It is used 

to denote that the item will be passed only if the reader is waiting for it 

while the writer is inserting it, otherwise the item will be lost because there 

is no place to retain it. 
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• Overwriting buffer: An overwriting buffer is a signal route with a buffer 

capacity of more than zero. When the writer attempts to insert data in an 

already full buffer, instead of waiting for a vacant space to be released by 

the reader, the oldest data is overwritten and the writer is able to continue. 

The integer "n" indicates the size of the buffer. The purpose of the 

overwriting buffer is to smooth the flow of message data at a variable rate 

without the (non-deterministic) hazard of a possible hold up to the writer. 

• Rendezvous: A rendezvous is a bounded buffer with a capacity of zero. It 

uses the channel notation with an added integer "0". The rendezvous is used 

to denote the meeting of two processes for the sole purpose of 

communicating information. Its dynamics of destructive reading and non

destructive writing are simultaneous. The temporal implication is that both 

processes must request to communicate before data can be transferred. This 

is the implicit communication mechanism that is commonly supported by 

most of the design methods. 

• Bounded buffer: A bounded buffer is a channel route with a buffer capacity 

of more than zero. It uses the notation of the channel with an added integer 

"n". The integer "n" is more than zero and indicates the size of the buffer. 

Data is not lost in a bounded buffer. The writing process is held up when 

the bounded buffer is full, and the reading process is held up when the 

bounded buffer is empty. The bounded buffer provides a smooth flow of 

message data when it is generated or processed at variable rates. 

• Prod: Prod is equivalent to the flash data route, but with no data. Therefore 

is an event with no data. By using prod the reader is held up until the writer 

finishes "writing" the next void data. The prod uses the notation of a signal 

with a small hollow circle at the centre to indicate the absence of data. 

• Stimulusl/nte"upt: A stimulus or interrupt is equivalent to the signal route, 

but with no data. Like Prod, it is an event without data. The process raising 

a stimulus, or interrupt can never be held up. The stimulus/interrupt uses the 

notation of a signal with a small hollow circle at the centre to indicate the 

absence of data. 

• Overwriting stim buffer: An overwriting stim buffer is equivalent to the 

overwriting buffer, but with no data. It uses the overwriting buffer notation 

with a small filled circle at the centre to indicate the absence of data. This 
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route has the effect of storing remaining stimulus to a maximum "n", and 

overwriting thenceforth. 

• Directional handshake: A directional handshake is equivalent to the 

rendezvous, but with no data. It uses the rendezvous notation with a small 

hollow circle at the centre to indicate the absence of data. The handshake is 

used to denote a synchronisation point between two processes. No data is 

passed, but neither process can proceed until both have arrived. 

• Dataless channel: A dataless channel is equivalent to channel route but with 

no data. It uses the channel annotation with small hollow circle at the centre 

to indicate the absence data. This protocol gives the effect equivalent to the 

raising of a single request or response with no value. 

• Bounded stim buffer: A bounded stirn buffer is equivalent to bounded 

buffer but with no data. It uses the bounded buffer notation with a small 

hollow circle at the centre to indicate the absence of data. This protocol has 

the effect of storing remaining stimulis up to an "n", and thenceforward not 

allowing further insertion. 

The following list presents four "response" protocols which are illustrated in the last 

row of Figure 3-4. These protocols are called "response" because they are modelled 

as a result of different pair-combination of data and dataless channels, and 

correspond to closed bidirectional protocols which model the client-server 

relationship. The bi-directional nature of these protocols, represents an interaction, 

where each process writes on the protocol symbol nearest to it and reads on the 

protocol symbol furthest away. The small narrow indicates the direction from client 

to server. These are asymmetric and the client uses a single operation to send and 

receive the results while the server uses two different operations to receive the 

parameters and to send the results [Simpson 2003f]. 

• Remote function call: The dynamics effects of a remote function call are 

achieved by a bi-directional channel through which parameters are passed in 

one direction with the results being returned in the other direction, allowing 

them to pass two different types of message data (parameters and results). 

The effects of this protocol are equivalent to a client process transmitting 

parameters through one of the channels and waiting for the server to take the 

parameters to carry out an action and return the result through the other 
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channel. Data cannot be lost in this form of protocol [Simpson 2003f]. The 

notational symbol of the remote function call contains a data flow line with 

an arrowhead at each end. 

• Remote data send: This protocol is the combination of a channel and a 

dataless channel. No results are expected and the effects that this protocol 

raises are equivalent to an explicit acknowledgement that the data item has 

arrived. The client is held until the acknowledgement is received. The 

notational symbol of the remote data send contains a data flow line with an 

arrowhead at each end, together with small filled circle at one end to 

indicate the absence of data. 

• Remote data fetch: This protocol is the combination of a dataless channel 

and a channel. The effects that the protocol raises are equivalent to request 

data from another process. In this protocol the client is held until the data is 

received. The notational symbol of this protocol contains a data flow line 

with an arrowhead at each end, together with small filled circle at one end to 

indicate the absence of data. 

• Remote thread invocation: This protocol is the combination of two dataless 

channel. No parameters, no results are expected. The effects that the 

protocol raises are equivalent to invoking a thread of execution. The 

notational symbol of this protocol contains a data flow line with an 

arrowhead at each end, together with small filled circle at one end to 

indicate the absence of data on both sides. 

3.6.4.2 Communication model 
The protocols presented in Figure 3-2 and in Figure 3-4 represent the different types 

of communications between two processes. These figures illustrate that each 

element of the protocol taxonomy presents a different temporal interaction within 

the communication of the active parts (processes), giving coverage of the dynamic 

constraints (Le. destructive and non-destructive data capacity) that may occur 

between the processes in the network. These protocols are used in a distributed 

environment where processes are allocated in the same physical node sharing 

memory. These protocols have a stretched form (routes) to allow communication 

between nodes that are physically allocated in different places and therefore do not 

have a common visibility of shared memory. These remote routes project the data 
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shared from one place to the other place by introducing an active element (activity) 

between them. Figure 3-5 shows how the data that is placed in a visible shared 

memory (b) is projected by the active element (a) which invokes the same operation 

applied to (b). In DORIS the concept of a link element is introduced in order to 

stretch the "response" protocols illustrated in Figure 3-2 and Figure 3-4. The link 

element basically projects the response protocol used to the other side, i.e. the 

interface becomes a remote one. The symbol annotation of the link element is 

presented in Figure 3-6. 

Figure 3·5. Example of the stretched form of the channel protocol [Simpson 1994e), [Simpson 

2003f]. 

Figure 3·6.Distributed model of remote function caD [Simpson 2003f]. 

3.7 Comparison between the 00 and the MASCOT/DORIS 
approaches 

00 and MASCOTIDORIS approaches can be suitable for a range of distributed 

applications, and they can provide a degree of reusability and extensibility because 

95 



of the modularity of their designs. Both approaches have different key aspects, 

which are described in the subsequent subsections, see Table 3-2. These differences 

are based on the essential concepts and the structural design model, and 

consequently, based on how each approach develops its concepts in order to design 

distributed concurrent real-time systems. 

00 Real Time Networks 
Abstract model Classes/Objects Templates/components 

Communication message passing Shared data ( protocols taxonomy) 
model 
Concurrency Not inherent in the Inherent in the design 

design. 
Information Hiding Encapsulation Access procedures, access 

mechanisms 

S Modularisation Objects, classes Activities, IDAs, subsystems, 

@" servers 
Inheritance Yes No 

~ 
0 
Co) Dynamism Through late MASCOT 2-Yes (although it is not 
~ bindings, advisable) 
'.;:1 inheritance and MASCOT 3IDORIS- No 
B polymorphism. 
(/) 
(/) Timing behaviour Non-explicit Partially explicit through the 
~ temporal interaction effects on the 

operations (reading and writing) 

Table 3·2. Summary of the aspects to compare at the conceptual model. 

3.7.1 The difference of abstract model between the two 
approaches 

Conceptually one of the main differences between 00 and RTN is how both 

approaches tackle the problem of modelling real-world entities. The 00 approach 

abstracts the problem by modelling the real-world entities as objects. An 00 design 

tries to reincarnate objects from the problem domain into the computer models, 

giving the objects in an 00 program (OOP) equivalent characteristics and 

capabilities as the real-world entities that they are modelling. These objects are 

commonly grouped to simplify design and reduce code, by defining a relationship 

between these objects such as inheritance. For example a car object, a lorry object 
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and a motorcycle object can be inherited from an abstract class called vehicle, 

because these three objects have some common attributes that can be grouped in an 

abstract class called vehicle. Therefore, by creating this inheritance relationship 

between these objects dependency behaviour between these objects is created, while 

real-world entities may not express this dependency relation between them. Besides 

in [Boas son 2002] it is pointed out that the real-world entities usually have their 

own autonomous behaviour. 

Moreover, 00 methodologies focus on system components rather than the actions 

that the system has to perform. Therefore, 00 designers make decisions on 

subdividing rather early, whilst RTN designers focus on the tasks that the system 

should perform and the interaction between these tasks. On the other hand, the 

shared data model in RTN represents the concept of the entities in the real world as 

independent active activities which communicate through independent passive 

components. These activities, that have their own autonomous behaviour, can be 

grouped forming a subsystem which along with other subsystem constitutes the 

system. This is a hierarchical design which describes decomposition within 

functional components rather than a hierarchical relationship between components 

as it is described in 00 design. Moreover, the boundaries of the system designed 

are exposed more explicitly in RTN than in 00 designs. 

Modularity is reached in each approach in different ways. In 00, modularity is 

achieved through the concept of object, which encapsulates certain attributes and 

operations or methods in an entity (called class in 00 nomenclature). In RTN, the 

system is partitioned into smaller independently operating subsystems, which only 

interact through explicitly defined intercommunication areas. 

3.7.2 Communications 

The term encapsulation, used to describe information hiding in an object, plays an 

important role in the 00 communication pattern. Encapsulation can be considered 

as the process of hiding all the details of an object that need not to be visible to the 

other objects. In 00, an object is characterised by a condensed list of abstract 

attributes and a list of encapsulated procedures, which are defined as methods, 

operations and services. Data from an object, in 00 systems, is obtained by sending 
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a message to the object. A message consists of the address (reference) of the object 

which it will send to and an instruction which consists of a method name and the 

required parameters. 

By using information hiding, the implementation detail of a method is private to the 

object and hidden from the rest of the objects, only its behaviour is visible to other 

objects. Thus, objects have internal state but it is not directly accessible. 

Consequently, clients of the object are not exposed to danger when its 

implementation is changed as long as the interface is not also changed. Note that in 

00 the hiding information is necessary only if the designer wants to incorporate it 

in the design. It is therefore possible for the designer to make everything visible, 

despite this being accepted bad practice. Methods are defined as a procedure or 

function that alters the state of an object or causes the object to send a message, i.e. 

return values. Moreover, the syntax of methods defines which messages an object is 

able to process successfully. A message, which is often implemented as a function 

call, may be interpreted in different ways by different receivers which decide what 

will happen. The set of messages that the object can respond to is sometimes called 

its protocol. For each message there is an operation. The name of the message is the 

name of the operation and the parameters on the message are the parameters of the 

operation. 

The communication pattern in 00 is based on a client-server model where in some 

Object-Oriented Programming (OOP) such as C++ or Java, the client and server 

objects communicate by message passing. In a well designed 00, its items should 

be strongly coupled. The object as a whole should possess high cohesion or high 

modularity. It is stated by the 00 community, that a message passing 

communication model creates weak coupling between objects and uses information 

hiding to ensure the access validity (interfaces) to data structures that are 

encapsulated in an object. Nevertheless, if there is still coupling between parts that 

communicate using message passing, then synchronism between communicating 

parts (objects) is required and to decouple the objects that communicate with one 

another, external mechanisms (or services) such as "time out" need to be added to 

the communication model. Moreover, the interaction effects between 

communicating objects through the use of the message passing model are not 
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explicitly captured like it is done in the RTN taxonomy protocols. In other words, 

the important nature of the required communications between different parts of the 

system is difficult to capture with 00 approaches (where this aspect tends to be 

implicit rather than explicit) whereas it lies at the core of the RTN approach. 

3.7.2.1 Differences between MASCOl3/DORIS and 00 
communication model 

The communication process in both approaches promotes modularity and re-usable 

software by promoting weak coupling between modules or software entities as 

mentioned before. Nevertheless, it is addressed in a different manner. In 

MASCOT31D0RIS the communication model is based on shared data between 

active processing data entity (activities) through the passive communication entity 

(IDAs). Therefore, the basic functionality of IDAs is to allow communication, then 

in RTN the communication tends to place emphasis on a visible shared component 

between entities, while in 00 approaches, it may be said that the communication 

tend to look "inwards" (the "state" of an object). As illustrated in Figure 3-2 and 

Figure 3-4, MASCOTIDORIS provides a rich set of explicit data communications 

primitives (protocols taxonomy) that really reflects what one is likely to encounter 

in real-time systems typified by distributed visual surveillance systems, e.g. 

depending on the data type used in the system or on the dynamic interactions 

required between the processes to communicate, a different functional behaviour is 

needed, which is possible to obtain from this set of communications primitives. The 

temporal behaviour inherent in the protocols is regarding the effects arising from 

resource scheduling as an implementation concern [Simpson 2003f]. 

Therefore, the taxonomy protocols presented in MASCOT31D0RIS reflects the 

functional behaviour and temporal properties of the communication between the 

processes in the system design. For example, in Figure 3-1 the communication 

between two activities (producer and consumer) is a rendezvous communication 

(rendezvous protocol, see Figure 3-4). The producer can only send the data if the 

consumer is waiting for it. Instead of using a rendezvous protocol to connect 

producer and consumer it could be designed to use a signal protocol (see Figure 

3-2). Therefore, the producer can send the data whenever is ready without waiting 

for the consumer to read it. It is possible to see that the essential interaction between 
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the producer and consumer activities has changed since the communication protocol 

has changed but without changing the implementation of the access interface and 

activities themselves. Moreover, in RTN the access interfaces are completely 

independent from their attached components. In RTN two components (e.g. two 

activities) can communicate with each other without opening/closing access, with 

complete independence of the "method" itself. Moreover, the type of interactions 

e.g. synchronism or asynchronism is determined by the communication protocol 

used. 

RTN shifts the emphasis from the "state" view (internal and publicly available) as it 

is done usually in 00 approaches to the "communications" view. Thus, in RTN the 

internal may be considered a simple sequential activity or data processing function 

(the smaller the better, generally speaking to "contain complexity", that does not 

require all the sophistication and complication of 00). Therefore, the behaviour of 

a system depends on the temporal performance of these processes (data processing 

functions) plus the communications between processes. 

In 00 it is possible to represent a communication entity by creating an object with a 

given set of methods allowing the communication between two objects to be 

separated but without being able to represent explicitly the temporal properties of 

this communication. Therefore, it is possible to speculate that in 00 the 

communication scheme core is not capable of reproducing the temporal essence of 

the real world requirements. On the other hand, if the implementation of this 

communication object is changed as far as the interfaces (methods) are not changed, 

it is not necessary to change the implementation of the two objects which are 

communicating through this object. This is achieved by encapsulating and hiding 

the methods which are part of the implementation information of the 

communication object. Nevertheless, in 00 access interfaces are separated but not 

independent because they lie in the object that implements them, see Figure 3-7. 
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Communication model in RTN 

{'hAn< 

Communication m 

Figure 3-7. Example of different approaches to the communication model; in 00 objects 
communicate to objects. In RTN communication is from/to activity tolfrom IDA. 

The example shown in Figure 3-7 illustrates another difference between the two 

communication models. In RTN the communication components (e.g. channel) and 

the two processing activities are thread independent. while in the 00 

communication model the active objects and the communication object are not by 

nature thread independent. i.e. in order to design these objects to be thread 

independent each of the objects must be specifically designed as separate threads in 

a multithread programming environment. Moreover. even though in 00 it is 

possible to represent a communication entity by creating an object having the 

functionality to communicate between two objects. there is no established distinct 

communication component. as is the case in MASCOT31D0RIS with IDAs. let 

alone a defined taxonomy of protocols. As discussed. the taxonomy of protocols in 

MASCOT31D0RIS defines a different functional behaviour in the communication 

depending on the type of interaction required. The design decision of the type of 

interaction should be determined by the subsystem in which is embedded. For 

example. the pool protocol defined in MASCOT31D0RIS allows a completely 

asynchronous communication between two active components. which means that 

the writer and reader work concurrently and they are never held up. The data to 

transfer in this protocol is a reference data type ("dictionary" data). This data may 

be lost because the writer can be faster than the reader. Therefore. this protocol can 

be used as an explicit design decision that it is better to lose data than degrading 

(possibly in a non-deterministic manner) the performance of the system. 
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These design discussions on the type of interactions between active processes that 

are done in MASCOT3IDORIS are not possible in 00. Furthermore, in 

MASCOT3IDORIS by separating the processing components from the 

communication components it is possible to describe in a natural way and explicitly 

the dynamic interactions the processes should have to communicate and also it 

allows to explicitly identify the data processing function primitives (processes), 

which is important from a system functional view point. This information, which is 

extracted at the design level, is important at the implementation stage but also has a 

major significance at run-time when scheduling policies have to be applied in order 

to build the real-time system. 

In MASCOT3IDORIS the activities as active processes are assigned with different 

priorities and the communication IDAs (the protocols) usually are mapped as a 

shared resource between the active processes if they are allocated at the same 

physical node. In other words, RTN provides a strong form of design partitioning 

which gives a sound basis for working allocation and allows good visibility of 

progress during development. Activities, subsystems, IDAs can be embodied in 

special test systems for prototyping or integration testing purposes, if necessary in 

execution environments which differ from the final target configuration. Further 

development aspects of MASCOT3IDORIS are discussed in the next chapter. On 

the other hand, in 00 the visibility of the communication between objects 

components and the explicit definition of their dynamics interactions and the data 

exchanged is not regarded as a crucial design decision and it is usually left to an 

implementation stage. Therefore, specific temporal properties and also functional 

behaviours, which real-world requirements have, are not reflected in the design. 

From a systems engineering view point, it is important to force the specification of 

these properties and the reflectivity of these behaviours at the design stage for 

example to avoid un-deterministic hazards. 

3.7.3 Concurrency and Information hiding 

Defining the temporal and functional behaviour of the different parts that form the 

whole system, is essential in order to design and build the desired system. Although 
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most of the temporal and functional properties are defined at the stage of 

specification of the system like requirements and constraints, to infer and verify 

these properties at the design stage is not a trivial task. In MASCOT, functional 

properties are made clearly visible in the design process due to the close 

correspondence between the functional specification of the components and the 

designed components at the design stage. The temporal behaviour of the activities 

in RTNs is mostly established by their own processing time and the nature of the 

interactions between them through the intercommunication data area (IDA). So, as 

it is explained in [Simpson 2003f, pp.157], "the overall timing properties of a 

system are therefore determined by a complex combination of the timing of 

processing operations within individual processes, taken together with the timing 

effects of process interaction". 

In the 00 approach, although the functional behaviour can be illustrated at an initial 

stage of design by means of classes and objects and their relations between other 

classes or objects, derived designs can include more objects or relations whose 

functionality is not shown or is not clear. The temporal properties in the 00 

approach, as is mentioned in the previous subsection, are generally quite difficult to 

define (in fact, they are effectively ignored because time properties cannot be fully 

determined until the temporal interactions nature between processes is defined). 

Consequently 00 usually does not support the verification of timing deadlines 

effectively, which is an important requirement in real-time systems. 

The approach to concurrency, which in real time systems and especially in real time 

embedded systems is usually an essential property, differs in the two methods. In 

the 00 approach concurrency is applied by implementing objects using for 

example. multi-threaded 00 programming (effectively using a class library that 

includes thread classes). RTN assumes that the concurrency comes from the 

problem, from the solution in hardware (i.e. multi-processing) and from the design 

approach. The network of activities communicating through defined communication 

components IDAs are presupposed to be independent and concurrent. In 

MASCOTIDORIS it is assumed that if concurrency can be exploited, then 

concurrency is part of your design. 
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Information hiding was introduced by Parnas [Parnas 1972] as a procedure for 

decomposing a system into modules. According to Parnas, information hiding is a 

design decision, which consists of the following idea "any design decision that is 

susceptible to change should be hidden". Therefore, each key design decision 

should be known to only one module and then information shared between modules 

is kept to minimum [Gomaa 1984a]. 00 and RTN both hide information although 

they use different approaches. In 00 the object can be considered as an information 

hiding module if the designer does not decide to make the module visible, which is 

considered bad programming practice. Therefore, attributes, operations and 

methods, (especially the attributes) are often designed in a way that only the object 

which defines them, can access them. In MASCOTIDORIS information hiding is 

provided by means of "access procedures". Therefore, the details of the data 

structure and the synchronisation of the access to this data are hidden from the 

active processes. 

3.7.4 Inheritance 

As mentioned, 00 has an essential component called an object which is defined by 

its state, identity and behaviour. The state of an object comprises all the static 

properties of the object and the current dynamic values of each of these properties. 

The identity is the property of an object which distinguishes it from all other 

objects. The behaviour is how an object acts and reacts, in terms of its state changes 

and message passing, i.e. the operations that its clients may perform upon it, also 

the operations that it may perform upon other objects. The relationship between 

objects can determine which operations can be performed and what behaviour 

results from the relation. There are two main kinds of relationships between objects: 

• Using relationships the object involved in this type of relationship may only 

operate upon other objects, it may only operate by other objects or it may 

operate by and upon other objects. 

Containing relationships (inheritance) the object has a "is-a" relationship 

with other objects. This containing relationship can be called inheritance. 

Another main relationship in 00 languages is called instantiation, which defines the 

relation e.g. between objects and their classes. As discussed, there are also other 
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relationships among classes based on a "kind of' or "part of' class relationship, i.e. 

respectively generalisation and aggregation. Lastly, association is the relationship 

which denotes some semantic connection among unrelated classes. Currently, 

several approaches have evolved in programming languages to express these kinds 

of relationships among classes. 

Inheritance is a relationship that may affect the determinism and performance of the 

system. As mentioned in previous section 3.7.1, inheritance at the implementation 

level, is a mechanism for sharing and reusing code between classes. The notion of 

an inheritance or classification hierarchy is that it deals with the structural and 

semantic relationships between objects and between classes (i.e. subclass inherits 

from one or more super-classes) and eliminates the redundancy of storing the same 

data or procedure more often than necessary. A subclass typically redefines the 

existing structure and behaviour of its super-classes. Normally, in OOP, objects 

inherit methods and attributes from their superior classes, but they do not inherit the 

values of attributes, merely the ability to have a certain type of value. Therefore, at 

the design level, inheritance allows concise definitions of subclasses which are 

described only in terms of how they are different from their super-classes. 

It is possible to have classes with a single or multiple inheritance relationships. The 

difficulty with multiple inheritance is that sometimes the properties inherited from 

two (or more) parents may be directly or partially contradictory, which may create 

conflicts. Therefore, there exists a compromise between complexity and reusability; 

the more complex a system is, the more difficult it is to maintain, and the more 

semantically rich it is, the more specific and therefore less reusable its components 

will be. 

Inheritance is supported in 00 systems but it is not supported in RTN approach. 

The problem that arises is that the increase of coupling between modules due to 

inheritance creates an additional type of coupling between a class and its super

class. It is also necessary to be extremely cautious about this reusability; by 

exposing implementation details to an object's clients it may be difficult to reuse 

the code after applying some changes. Moreover, the hierarchy itself may be 
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exposed, so changes cannot be safely made and it is not possible to guarantee that 

the interface of an object has not been changed. 

However, at this point it is possible to ask if RTN does not include inheritance, how 

does RTN provide reusability and extensibility, features that 00 systems claim to 

have through inheritance? MASCOT uses the concept of templates and instances. 

For example, in Figure 3-1 "producer" is the template of the activity on the left of 

the Figure 3-1 and "prod" is the name of the instance of the template called 

producer. In RTN, instances are executed at run-time. It is possible in RTN to have 

more than one instance of the same template in the same design, providing then, the 

reusability of modules. However, in RTN, the relationship between templates and 

instances is unique. If the template is changed the instance is also changed. 

In the 00 approach, extensibility is not only an extension of the system by 

upgrading with new modules or new instances but refers as well to the property of 

extending a module or creating a different module from a primitive one, using the 

inheritance property. In RTN extensibility it is seen only as an upgrade or extension 

of the network design by adding new modules. 

3.7.5 Polymorphism and dynamic binding 

Another mechanism in the 00 approach, that is linked to the concept of inheritance 

and is used to share and reuse code, is called polymorphism. Polymorphism, 

(literally "having many forms"), means the ability of a variable or method to have 

different behaviours at run-time, or more specifically the ability to refer to instances 

of various classes. For example, the same named method can behave differently 

depending on the parameters that it receives or can behave in the same way even 

though it has received different type of parameters. This form is normally called 

"overloading". A form of polymorphism also may be used when the features of 

inheritance and dynamic binding interact. Dynamic or late binding means that the 

types of all variables and expressions are not known until run-time. In this case, 

polymorphic methods can be thought of as late-bound procedure calls, where the 

actual method or procedure to be invoked is not determined until the method is 

actually applied to a specific object. As pointed out in [Graham 1994] 
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polymorphism considerably enhances the information hiding feature of OOP. So the 

linking to the method can only be done at very last moment. Further, it promotes 

encapsulation by allowing general-purpose classes to be written that will work 

successfully with different types of objects. 

In RTN approach, one of the forms of polymorphism mentioned can be found when 

some predefined access interfaces (e.g. put or get) are used in different subsystems, 

and therefore these access interfaces deal with different type of data but behave in 

the same way: put write the data no matter which type it is. The other form of 

polymorphism related to inheritance and dynamic binding is not explored in RTN, 

because it increases the non-determinism of the behaviour of the components. The 

behaviour of the method is not known till the last moment at run-time, because the 

class of the object being operated upon may not be known until run-time. Therefore, 

it is not possible to predict its behaviour in some critical situations and the 

scheduling policies are not easy to apply due to this uncertainty. In safety-critical 

applications the ability to predict system behaviour (or at least bound it) is 

obviously crucial. 

3.7.6 Performance 

The advantages most often put forward in favour of the 00 systems are the inherent 

reusability of the objects and the extensibility of 00 systems. It is asserted that 

[Graham 1994J, [Booch 1991J the features of inheritance, polymorphism and 

dynamic biding can contribute to simplify and to reduce development time and the 

size of the resulting source code, which are important features in real-time 

embedded systems. Nevertheless, other features in 00 like dynamic linking and 

garbage collection imply extra run-time support, introducing run-time performance 

overhead on the speed of 00 programs. Garbage collection is a mechanism that 

allows the freeing of heap space for dynamically-created objects that are no longer 

needed so that the space in the heap is made available for subsequent new objects. 

The garbage collector somehow determines which objects are not referenced by the 

program anymore and releases the heap from such objects. Moreover, the design of 

a system using these mechanisms implies difficulty in testing due to the lack of 

determinism for example in the schedule predictability or determinism in the 
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behaviours of the components of the system. Moreover, when there is more than 

one thread of control it is more difficult to control predicted behaviours and 

sometimes unpredicted behaviours are arisen which may trigger deadlock situations. 

Dynamic invocations in 00 may imply time performance cost on the 

communication between objects. For example, an implementation of an invocation 

method, that cannot be resolved statically, must do a dynamic lookup in order to 

find the method, which has been defined, for the class of the receiving object. 

[Booch 1991] indicates that dynamic invocations clearly take much more time than 

simple subprogram calls that are made when the invocation of a method is done 

statically. Moreover, the 00 approach allows the design of system components 

using more than one layer of abstraction. Hence, invoking a method at the high

level of abstraction may result in a cascade of invoking methods (high-level 

methods usually invoke lower-level methods, and so on), reducing the overall 

system performance. Therefore, for applications in which time is a limited resource 

such as in real-time systems, so many invocations may be unacceptable. 

Another performance risk in 00 is derived from deep class hierarchies. Many 

inheritance relationships provoke many super-classes, whose code must be included 

when they are linked into the most specific class. Thus, an excessive amount of 

object code is produced. The last remaining performance risk with 00 systems 

comes from the dynamic allocation and deallocation of objects. Allocating an object 

on a heap is a dynamic action as opposed to statically allocating an object either 

globally or on a stack frame and heap allocation usually costs more computing 

resources. Again, for time-critical applications, the cycles needed to complete a 

heap allocation are not affordable. 

As mentioned in previous sections, the features of inheritance, polymorphism and 

dynamic linking do not exist in MASCOT-31D0RIS and for reasons of good 

engineering practice. The main reason for this is because in RTN all the 

components, which constitute the network system, must be defined before starting 

up the system avoiding dynamic creations (as mentioned, in RTN the design 

network should be static) . In other words, at the design level the network is 

completely described and defined. Then, at the physical mapping stage the network 
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is created by physically allocating the activities and routes. Therefore, at run-time 

the network is as fully determined as possible, not allowing the possibility of late

dynamic creation of activities or routes. However, as mentioned in section 3.5.2, for 

a system with "imperative" dynamic requirements RTN proponents provide 

solutions to establish this dynamism in the RTN network. 

Defining and describing, at the design level, all the communications and 

relationships between all the components which constitute the whole system, can be 

seen as a time consuming task. However, this is consistent with good engineering 

practice and it provides understanding of the whole system, giving the designer 

control over the system, as well as making the system more deterministic and 

predictable. Deterministic in terms of knowing before run-time how many 

components will exist, avoiding the possibility of resource exhaustion, because the 

resources are fixed before the start up process of the system. Predictability, in terms 

of scheduling the activities e.g. by knowing how many processes will exist it is 

possible to predict processing times of tasks and apply one of the known tactics for 

scheduling these tasks. Predictability, in terms of deadlines of the tasks, can be 

partially determined by the use of MASCOTIDORIS protocols. These protocols 

imply different temporal interaction effects on the activities that communicate, and 

therefore it is possible to predict e.g. when the activity will start its own process, by 

examining the type of protocol used. 

3.8 Summary 

One of the conclusions in chapter 2 was that to design a large distributed real-time 

surveillance system, it is necessary to establish a framework from a point of view of 

solid system engineering principles, which allows the creation of a system, instead 

of building such system as integration of different algorithms placed in different 

computers. Therefore, in this chapter an introduction to software design methods to 

create such systems has been presented. Furthermore, a comparison between the 

00 approach and the proposed approach RTN in this work has been presented. 

Even though 00 design methods are wide-spread and are the technology commonly 

used to design systems, in this work we present RTN as a design approach for 

surveillance systems because it is a mature technology inspired by hard engineering 
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applications and that partitions the software giving complete visibility of the 

different components that constitute the system. Besides the similarities and 

differences between 00 and RTN approaches, which have been highlighted in 

section 3.7, there are two main differences that we present in this work, RTN as a 

design approach for surveillance systems. The first difference lies in the fact that the 

OO's philosophy is to consider software as multiple-purpose flexible artefacts. 

However, RTN's philosophy is to consider software as an engineering fit-for 

purpose product (an engineering system does what it is supposed to do and nothing 

more). A clear example that illustrates this statement is taken from a private 

conversation [So A. Velastin 2006] "[] ... A civil engineer would not construct a 

bridge thinking that eventually it could also be used as a ferry! At the same time, a 

user of the bridge crosses it with confidence that it has been built using solid 

engineering principles and that it is not a multiple-purpose appliance ... []". 

The second main difference, which has been stressed through this chapter, lies in 

the communication model of 00 and RTN. RTN explicitly expresses, through a 

rich set of protocols (taxonomy), the functional behaviour and the timing properties 

of the communication between elements in the system, because the communication 

is considered a crucial part in the specification of the system. In 00 the 

communication between elements is considered an additional part of what it is 

important (the elements that communicate with one to another). Therefore, in 00, 

there does not exist any taxonomy or explicitly characterisation of the functional 

behaviour and the timing properties of the communication between elements in the 

system. 

Moreover, RTN imposes a disciplined approach to design, which yields a highly 

modular structure, ensuring close correspondence between functional elements in 

design and constructional elements for system integration. DORIS also allows 

different interactions between the components through its protocols extensions, 

providing the possibility of creating an asynchronous communication between 

different processes. The following chapter will now present a comparison between 

two different specific design solutions using CORBA (00) and DORIS (RTN) for 

an existing real time surveillance system. 
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4 Case study: ADVISOR 

4.1 Introduction 

This chapter describes a comparative study between two key technologies: CORBA 

and DORIS. Each of these two technologies embodies the principal concepts of 00 

and RTN, respectively. CORBA and DORIS technologies are used for designing 

and implementing solutions mainly in distributed environments. Moreover, 

CORBA, at the time of writing, has been presented in OMG (Object Management 

Group) documents as the multi-platform and multi-language solution for 

distribution and system integration. The OMG has also stated that CORBA will 

continue to expand as the particular platform for real-time, embedded, large, 

mission-critical enterprise computing systems using 00 technology. Therefore, this 

chapter is centred on a comparison of the distributional properties and the 

architectural design that the third generation of surveillance systems require. This 

comparative study is done through a case-study of an existing research solution for 

a real-time distributed surveillance system called Annotated Digital Video for 

Intelligent Surveillance and Optimised Retrieval (ADVISOR). This choice has been 

made because a prototype of this system (called in this chapter ADVISOR 

Prototype) used CORBA as a system integration and distribution solution and it 

represented a major effort in investigating distributed surveillance systems. 

Therefore, this chapter firstly presents a brief introduction to CORBA in section 4.2 

(note that this section does not intend to give a comprehensive description of 

CORBA, but just to give a brief introduction to it by highlighting some of the 

features and components that make up CORBA and that are used in the ADVISOR 

Prototype). Section 4.3 presents a generic solution of a distributed surveillance 

described in terms of its aims, requirements and specifications, which is called 

ADVISOR system. Section 4.3 also highlights the differences between the 

ADVISOR system and a particular implementation of ADVISOR system that is 

called ADVISOR Prototype. This Prototype is the specific system used in this case

study. 
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Following a brief introduction to CORBA and the description of the ADVISOR 

system and the prototype, section 4.4 discusses and illustrates graphically the 

CORBA architecture design used in the ADVISOR Prototype. It is important to 

mention that in this chapter, in order to illustrate the different designed 

architectures, the DORIS graphical notation is used. The reason for this is the need 

to illustrate, in a graphical manner, the CORBA and DORIS solutions for 

subsequent comparisons, but CORBA does not have any specific graphical notation. 

Although it may be argued that it is possible to specify a CORBA solution using 

UML notation, it is easier to depict the differences in both technologies using the 

same graphical tool (Le. DORIS graphical notation). The next section 4.5 presents 

the architectural design of the ADVISOR Prototype using CORBA. Therefore, it is 

important to stress that the fact that the DORIS graphical notation has been used to 

represent a CORBA architecture solution does not necessarily mean that such a 

solution uses underlying RTN concepts. 

Section 4.6 presents a new architecture design solution of ADVISOR using RTN 

concepts (Le. from the same requirements presented in section 4.3, a new solution is 

presented using only the fundamental RTN concepts). Having then presented and 

discussed the two architecture designs that use CORBA and DORIS approaches, 

section 4.7 compares the two approaches by first highlighting their differences and 

then by focusing on three aspects: communication, distribution and development 

process. 

For example, we highlight that the main difference in communication between 

distributed processes is that while CORBA is based on a client-server relationship, 

MASCOTIDORIS uses a passive element. We then show that this and other 

differences in communication have a direct and significant effect on the architecture 

designs. Distribution in CORBA is based on the design and posterior distribution of 

CORBA objects over a distributed processing environment. These objects represent 

the servers that, through static/dynamic invocations, handle the requests from the 

client. By contrast, in MASCOTIDORIS the distribution is centred on a template 

substitution, which allows distribution of the elements that constitute the application 

network while maintaining the defined communication protocols. To end this 

comparison, there is a discussion of integration policy and development aspects, 
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such as how CORBA manages all the interactions between objects created statically 

or dynamically at run-time. A brief summary of these differences is depicted in 

Table 4-1. 

This case study then leads to, as presented in Chapter 5, a general proposal for a 

large scale real-time distributed intelligent surveillance system architecture, using 

DORIS as the chosen design method. This proposed design addresses some aspects 

of this complex domain, highlighting one of the aims of this work: to demonstrate 

the importance of creating a framework to design these complex systems. A global 

picture of a general distributed surveillance system is given. The system is 

constituted by a diversity of components whose integration requires a complex 

analysis of the different requirements and functionalities. 

CORDA MASCOT3IDORIS 

Communication - Client/Server - Paths and IDAs; Protocol 

13 techniques taxonomy 

'C Distribution of - Static/dynamic - Template substitution 

a components invocations - Distributed protocol 

fD 
- CORDA objects taxonomy 

- Subsystem/Activities 
.~ Partitioning 
'C Run-time and Yes (a variant of Yes, the choice of scheduling 

I 
scheduling policies CORBA called TAO algorithm is left to the 

ORB Core uses pre- designer 
emptive strategy with 

S priority based-
connection) 

rL1 Development aspects No Status progression and 
system building including 
mapping to distributed 
hardware. 

Table 4-1. The concepts that will be compared between CORDA and MASCOT3IDORIS. 

4.2 CORBA (Common Object Request Broker Architecture) 

As mentioned in the Introduction, this chapter is concerned with a comparative 

study between CORBA and DORIS. The latter has being extensively introduced in 

chapter 3, therefore in this chapter only CORBA will be introduced. 
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The Object Management Group is an international organisation founded in 1989, 

whose purpose is to define a set of interfaces for interoperable software. The OMG 

promotes the theory and practice of 00 technology in software development 

[CORBA 2005]. The aims of OMG are the reusability, portability, and 

interoperability of object-based software in distributed, heterogeneous 

environments. 

The first specification produced by OMG was CORBA [Henning and Vinoski 

1999], which is an industry consensus standard and it can be considered as a 

possible solution for interoperability between applications. CORBA, at the time of 

writing, represents the next generation of client-server relationship that provides 

highly distributed systems and applications. CORBA assists in the creation of 

software architectures, but it does not design the software architecture itself 

[Mowbray and Zahavi 1995]. The distribution solution is defined using the 00 

paradigm, hiding different implementation languages, operating systems differences 

and object locations. 

4.2.1 CORBA components 

The main components that participate in the communication mechanism in 

CORBA, are listed next: 

• CORBA object: is a "virtual" entity, which is located by the ORB, and it is 

able to deal with the requests coming from the client. 

• Target object: is a CORBA object, which represents the object that has to 

deal with requests coming from the client side. This object exists in the 

context of CORBA invocations. 

• Client object: represents the object that calls the CORBA object. There is a 

spatial decoupling between the client object and the CORBA object. 

• Server object: is an application where one or more CORBA objects exist 

(see Figure 4-1 ).Like the target object, the server object only exists on the 

context of CORBA invocations. 

• Object Reference: is a handle used to identify a CORBA object. For the 

client the object reference is an opaque entity (i.e. "black box" entity). 
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• Servant object: is a programming language entity (i.e. an instance) that 

incarnates a CORBA object. See Figure 4-1. 

Figure 4-1 presents the different states that a CORBA object, in a server 

application, goes through to establish the communication between the server object 

and the client object. When the CORBA object is created an object reference is also 

created. Once the object is created, its state may alternate between an active status 

or a deactivated status, as is shown in Figure 4-1. While the object is in its active 

state and the servant is incarnated, it is able to receive and process requests coming 

from the client object. A CORBA object is incarnated only by a single servant at 

any point in time, although several instances of a servant can be created to represent 

the same CORBA object. 

Note that the life cycle of the CORBA object and the servant are different; the 

CORBA object only exists in the context of creation and destruction whereas the 

servant object only exists when it is incarnated and it is destroyed when it is 

etherealisei. 

Figure 4-1.The states of a CORBA object and servant object life cycle [Henning and Vinoski 

1999]. 

I Terminology used by [Henning and Vinoski 1999] to describe the servant state when is destroyed. 
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4.2.2 CORBA features 

CORBA includes features aimed at accomplishing reusability, portability and 

interoperability between distributed integrated applications. The main features can 

be summarised in the following list and Figure 4-2 illustrates the relation between 

these features: 

OMG IDL (Interface Definition Language) 

Language mapping facilities and Application Program Interface (API) 

Static and dynamic method invocation 

Object Adapters 

Inter-ORB protocol 

Figure 4-2.Common Object Request Broker Architecture (CORBA)[ Henning and Vinoski 

1999]. 

The OMG IDL is a strongly typed declarative language and an important notational 

tool for the software architecture in CORBA [Mowbray and Zahavi 1995]. OMG 

IDL specifies a coherent definition of interfaces. IDL provides a separation between 

design and implementation because it has no implementation information, providing 

encapsulation of the different components and isolation between subsystems. Then, 

the question where to place OMG IDL interfaces becomes a design decision. The 

OMG IDL can be layered on top of any communication layer making then the 
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application software independent from these underlying layers. The language 

mappings or bindings specify how IDL is translated into different programming 

languages, by defining which facilities of the programming language are used 

[Mowbray and Zahavi 1995]. 

The static and dynamic invocation facilities in CORBA allow the creation of 

method invocations at compile time or at run-time. In both types of invocation the 

client needs the object reference (e.g. ID object) of the remote object (server object) 

to create a request and to call the method that performs the service. The 

mechanisms to discover remote objects in CORBA can be achieved in three 

different ways (at the time of writing). First, it is possible to give the client directly 

a string with the CORBA object reference. The second way is done by obtaining the 

reference from the name of the object (through an intermediary provided by 

CORBA called a Naming Service). The third way is done by obtaining the reference 

from the type of service that the server provides (through an intermediary also 

provided by CORBA called the Trader Service). Object services like the Naming 

Services are a collection of system-level service interfaces that are included into the 

functionality of the ORB; these services are used to create a component, to name it, 

and introduce it to the system. CORBA provides run-time metadata for describing 

the server interfaces known by the system, which the client uses to invoke services 

at run-time. The IDL pre-compilers create this metadata automatically. The static 

method invocation can be defined like a conventional RPC but with polymorphism 

and inheritance properties included; e.g. the same method invocation can have 

different results depending on which server object deals with the call. The static 

interface in the client side is directly created through the client stubs by the IDL 

pre-compiler. Equally, at the server side, the static interface is created through the 

skeletons. 

An Object Adapter is an object that allows the client to invoke requests on an object 

whose interface is unknown to the client (CORBA provides in its latest 

specification [CORBA 2005] the Portable Object Adapter (POA», see Figure 4-3. 

In a server application, the Object Adapter creates object references and ensures 

that each target object is incarnated by a servant object (see Figure 4-1). 
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Finally, an Object Adapter captures dispatched requests from the server side and 

redirects them to the corresponding servant, which incarnates the target object. The 

POA is illustrated in Figure 4-3, in which another component appears, apart from 

the ORB, called the POA manager that controls the requests that are sent to the 

POA. 

Server Application 

Incoming 
requests 
---I~ORB 

POA 
Manager 

Dispatch 
requests 

Figure 4-3. The flow of requests to the server side and how POA dispatches them. 

Servants 

The ORB can be defined as the object bus of CORBA. It lets the objects invoke and 

receive requests transparently; the client is not aware of the mechanisms used to 

communicate with the server objects. When a client invokes an operation, the ORB 

locates the target object, activates the server application and a servant if they are not 

activated. Furthermore, it transmits the arguments of the requests, waits for the 

results and returns the values of the call to the client, raising an exception when 

appropriate. Moreover, the ORB provides a variety of distributed middleware 

services as presented in the previous section and in [CORBA 2005]. The ORB 

allows objects to discover each other at run-time and to invoke services. 

Furthermore, each ORB must support an Interface Repository (see Figure 4-2), 

which is a run-time repository of interfaces specifications of all the objects that the 
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ORB2 recognises. On the other hand, the Implementation Interface (Figure 4-2) is a 

run-time database, which contains the actual implementation of the objects. 

4.3 ADVISOR 

ADVISOR represents, at the time of writing, one of the most advanced examples of 

a large distributed real-time surveillance system using 00 technology. This section 

presents a description, i.e. requirements and system architecture, of this existing 

distributed real-time system. The first two sections explain the main features of the 

system as well as the overall goals of the system and present the requirements of the 

system based on the official specifications [ADVISOR 2003]. The following 

sections present the overall design of the system modules within ADVISOR. 

Finally, the last two sections explain the communication between the different 

modules that constitute ADVISOR, as well as explaining the type of data that the 

system has to deal with and the communication structure between the modules. 

ADVISOR was developed as part of an EU-funded project on innovative 

architectures for public transport systems, focused mainly in metro stations. 

ADVISOR was created to provide assistance to the operators by increasing their 

efficiency to survey with many cameras available at the same time, but with a 

limited number of monitors (though the ADVISOR Prototype only worked with 

four cameras simultaneously). Therefore, ADVISOR was created to generate better 

use of transport infrastructure by improving safety and security environment e.g. in 

metro stations. 

4.3.1 Specifications of the ADVISOR system 

The ADVISOR system is intended to fulfil a set of requirements. The following list 

represents some of the initial requirements: 

• ADVISOR is a machine vision system, capable of monitoring all CCTV 

cameras in an installation. The computer vision techniques operate on 

compressed digital video inputs. 

2 To create interoperability between CORBA software architectures. the CORBA specification 
includes Inter-ORB protocols like General Inter-ORB Protocol (GlOP) or Internet Inter-ORB 
Protocol (HOP). which specify a set of message formats and common data representations for 
communications between ORBs [Henning and Vinoski 1999]. 
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• The goal of ADVISOR consists in assisting human operators by automatic 

selection, recording and annotation of "interesting" images as far as 

"abnormal" crowd and individual behaviours are concerned. The system is 

intended to enhance the effectiveness of the surveillance operation of any 

installation. 

• The ADVISOR system uses an open and scalable architecture approach so 

that it is possible to develop algorithms, which can be "plugged into" the 

system, taking appropriate inputs and generating appropriate outputs. 

• ADVISOR runs on standard commercial hardware with an interface to a 

wide bandwidth video distribution network. The software is implemented on 

a local network of processors communicating via an open software standard 

for distributed processing. An Object Request Broker (ORB) for the 

software environment is used to develop a scalable system suitable for 

installation in a wide range of locations using a distributed computing 

environment. 

• ADVISOR interprets shapes and movements in scenes being viewed by the 

CCTV in order to build up a picture of the behaviour of people in the scene. 

• That means the system is capable of interpreting the behaviour and deciding 

whether such behaviour represents a significant event. 

• ADVISOR detects the anomalous events with high probability with low 

false alarm rate. The system alerts operators in real time. 

• ADVISOR stores all video output from cameras. Storage capability allows 

continuous recording. In parallel with recording multiple video inputs, the 

archive. function stores commentary of associated sequences (known as 

annotations). Therefore, the archive can search for video sequences, which 

match keywords in the notation data or according to specific times. Retrieval 

of video sequences takes place alongside continuous recording. 

4.3.2 Specifications that ADVISOR Prototype did not accomplish 

As mentioned, ADVISOR was developed as a part of an EU-funded project, 

therefore at the end of the project; a prototype had to be built. Some of the initial 

requirements of ADVISOR system that are not accomplished by the prototype, are 

presented in the following list: 
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• ADVISOR system is able to improve the perfonnance in detection and 

recognition of anomalous events by learning via operator's feedback. This 

requirement is not carried out by the ADVISOR prototype; because in the 

prototype, the user (i.e. operator) is not able to change any parameter of the 

system. 

• The requirement states that ADVISOR is immune to long periods of loss of 

video inputs. It is also immune from step changes in scene so that, a number 

of short video sequences can be assembled and replayed into the algorithms 

to demonstrate certain kind of behaviours. 

Therefore, ADVISOR was the paper design in the EU-funded project of the same 

name, while the ADVISOR Prototype was its practical realisation that involved 

some limitations to the original paper design. Sections 4.3.3 and 4.3.4 present the 

design of ADVISOR specifications, because the ADVISOR Prototype does not 

accomplish all mentioned specifications, any modification to the final ADVISOR 

Prototype design is reported in the presented ADVISOR design sections. Note that 

in sections 4.5 and 4.6, the final designs correspond to the design of ADVISOR 

Prototype rather than the ADVISOR system, which are slightly different. 

4.3.3 ADVISOR system architecture design 

ADVISOR is a semi-automatic surveillance system that can be made up of one or 

more Human Computer Interfaces (HCI) and one or more Advisor System Units 

(ASU) as illustrated in Figure 4-4. Each HCI can be connected with up to four 

ASUs and each ASU can be connected up to two HCIs. The ADVISOR prototype 

(a demonstrator tested at Barcelona's Sagrada Familia metro station) consists of two 

HCIs and one ASU unit. One HCI is installed at a remote control centre and the 

other HCI, which is used mainly for debugging purposes, is installed at the same 

place of the ASU module, see Figure 4-5. The hardware platfonn of the ADVISOR 

prototype consists of six PCs. In the prototype, the HCIs were designed to run on a 

PC as a standalone process. The ASU software module consists of two software 

modules: the Image Processing Unit (IPU) and the Symbol Processing Unit (SPU), 

see Figure 4-6. The IPU consists of four software modules and the SPU consists of 
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two software modules, as shown in Figure 4-7 and Figure 4-8. Each of these 

software modules inside the IPU and SPU were originally designed to run on a 

standalone PC. However, the final hardware mapping in the prototype, consisted in 

having three software modules in one PC and each of the three remaining software 

modules on a separate PC. All the controllers in the ASU module (the ASU 

controller, the SPU controller and the IPU controller) resided together in an ASU 

control process in one of the PCs. The system has a "hub" topology whereby an 

ASU does not have links with other ASUs, thus there is no communication between 

them. In the same way, HCIs do not communicate between them either (see Figure 

4-4). An ASU has both a maximum processing capability and storage capacity, 

therefore there is an upper limit to the number of cameras that one ASU can handle 

(in [ADVISOR 2003] is stated that the limit is around 10). The ADVISOR 

prototype system is capable of operating with up to four camera inputs 

simultaneously at 5 frames per second. 
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Figure 4-4. Logical view of ADVISOR system. 
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Figure 4·5. The logical view of the ADVISOR Prototype (tested at Barcelona). 

To an operator, the ADVISOR system presents itself as a single application that 

resides on their computer, i.e. the HCI. Therefore, only an HCI is configured to 

control and start the system up. Moreover, an HCI may dynamically configure 

selected ASU parameters. The HCI in the ADVISOR Prototype only starts-up the 

system and requests archived or live images from the system to visualise. Therefore, 

the HCI of the ADVISOR Prototype is unable to change any configurable parameter 

of the system but can only change the parameters related to the visualisation of live 

or archived images. 

Each ASU could contain one ASU controller, one SPU module and one or more 

IPU modules. However, the ASU of the Prototype only contains one IPU module, 

as can be seen in Figure 4-6. In the ASU module, the SPU and IPU are slaves (i.e. 

clients) and they are not aware of each other's presence in the ASU. The IPU 

module contains one IPU controller, one Image Capture module, one Motion 

Detector module, one People Tracker module and one Crowd Monitor module, see 
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Figure 4-6. The SPU module contains one SPU controller, one Behaviour 

Recognition module and one Archive module, see Figure 4-8. 

In terms of the communication between the HCI and modules that reside inside the 

ASU, the HCI communicates directly with all the modules that are inside an SPU 

module (Le. the Archive module and the Behaviour module). On the other hand, an 

HCI can only communicate directly with one of the IPU module's (Le. Image 

Capture module). Therefore, an HCI may take live camera feeds, which are in 

compressed form, from the Image Capture module, it may also take live annotations 

such as alarm messages raised by the recognition of a given situation, from the 

Behaviour module. Moreover, HCI may also take recording sequences and 

annotations from the Archive module. An HCI may search in an Archive module 

using different criteria: by time, by camera, by type of event, station or date. 

4.3.3.1 ASU module 
As mentioned before, each ASU operates independently of any other ASU. The 

ASU can only communicate with the HCI through one bidirectional control 

channel3 and several data channels. The ASU Controller has a management role and 

its job is to control its SPU and its IPUs. The ASU Controller: 

• Supervises the start-up and close-down of the SPU and the IPUs through the 

SPU/IPU controllers. 

• Establishes the appropriate connectivity (channels) between the SPU and the 

IPUs. 

• Provides the primary point of contact with the HCI through a single 

bidirectional control channel. 

3 Bear in mind that in ADVISOR, the communication links are called "channels" even though they 
do not have any connection with the channel protocols of MASCOTIDORIS discussed in chapter 3. 
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Figure 4·6. Top level design of ADVISOR System Unit (ASU). Note that, the ADVISOR 

Prototype consists of one HeI that is connected to one ASU. 

4.3.3.2 IPU module 
Figure 4-7 illustrates an Image Processing Unit or IPU module, whose functionality 

is based on capturing the output from a number of cameras as sequences of JPEG 

(Joint Photographic Experts Group) images, and then on running various 'machine 

vision algorithms' on these sequences generating low-level observations. The low

level observations are expressed in XML (Extensible Markup Language) format, 

and sent through a data channel to the SPU. The IPU module (in ADVISOR 

system) consists of five distinct components: The IPU Controller, Image Capture 

module (Image Capture CORBA Object), Motion Detector module (Motion 

Detector CORBA Object), People Tracker module (People Tracker CORBA 

Object) and Crowd Monitor module (Crowd Monitor CORBA Object). Although in 

ADVISOR Prototype, the People Tracker and the Motion Detector module are 

implemented in the same module. As mentioned before, the IPU Controller is a 

slave to the ASU Controller, as shown in Figure 4-6 and Figure 4-7. At the start up 

of the system, the IPU Controller dynamically configures selected IPU parameters, 

such as camera state, that relates to a single component such as Capture module. 

Therefore, to configure a parameter of the Capture module (for example), the 

controller simply calls the appropriate method. This is shown by the dashed lines in 
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Figure 4-7. Note that as mentioned, the specification of changing parameters 

dynamically is not implemented in the ADVISOR Prototype, only the dynamic 

configuration of parameters (at the start up of the system) is implemented. 
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Figure 4-7. Top level design of Image Processing Unit (IPU). 
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4.3.3.2.1 Description of different parts in the [PU module 
Different parts that constitute the IPU module are described by diagrams in 

Appendix B (pp. 280-293), to give an appreciation of the amount of processing 

capacity and data requirements that a small distributed surveillance system like the 

one presented in this case study can require. Bear in mind that this case study is a 
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surveillance system with a maximum of four cameras. The description of each part 

is followed by design diagrams representing the imp\ementation of the vision 

algorithms that appear in each submodule inside an IPU module. Therefore, the 

diagrams presented in Appendix B (from Appendix B-1 to Appendix B-lO) show 

each of these sub modules as a white box. These diagrams have been made from the 

information extracted from the specification documents of ADVISOR [ADVISOR 

2003]. Therefore, they outline the information that has been extracted from the 

specification documents. Note that the Tracker module is not represented because it 

did not appear in these specification documents of ADVISOR. 

4.3.3.3 SPU module 
Figure 4-8 illustrates the three components inside the Symbol Processing Unit 

(SPU): a master SPU Controller that manages the rest of components (Le. The 

Behaviour Recognition CORBA object and the Archive CORBA object). The SPU 

stores JPEG image sequences on disk that are sent by the IPU to the Archive 

module. In the Behaviour Recognition module, machine vision algorithms are run 

to generate high-level observations from the low-level observations that are sent to 

the SPU by the IPU. The obtained higher-level observations are also stored in the 

Archive module, which sends them to the HCI on demand, in XML format, through 

a single data channel. The last functionality of an SPU module consists in allowing 

the HC! to do search and retrieval operations with stored image sequences and 

observations. Various control and data channels are used to support this facility. 

As mentioned before, the SPU Controller is slave of the ASU Controller. In the 

same way as the IPU Controller, the SPU could configure dynamically selected 

SPU parameters. See discontinuous arrows in Figure 4-8. As mentioned in the 

previous section, the specification of changing parameters dynamically is not 

implemented in the ADVISOR Prototype. 
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4.3.4 Data types in the system and communication between 
modules 

All the communications occurring between an HCI and an ASU could be 

categorised as either control communication or data communication. 

• Control communications, also called transactions, have the following 

constraints: 

Only an HCI initiates transactions. All messages are in XML based 

format. 

When the HCI requests an ASU to do something, the ASU attempts to 

do it and responds appropriately. Only an HCI initiates transactions (at 

the operator's request, even though as mentioned in the specifications, 

the HCI in ADVISOR Prototype only initiates transactions related to 

data visualisation, to retrieve archived or live images from the system). 

No more than one transaction can be in progress. 

As mentioned before, an HCI might dynamically configure selected 

ASU parameters. 

A control communication has priority above data communication. 
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• Data communication consists in large amount of information sent from the 

modules, usually over a long period of time. The information takes the form 

of compressed images and annotations. It only goes from ASU to HCI. 

Control channels have been designed to transmit control data, sent in XML format, 

from/to the ASU to/from the HCr. The traffic relating to the control channel 

consists in command traffic (from the HCI to the ASU), responses traffic (from the 

ASU to the HCI) and events traffic (from the ASU to the HCI). Events might be 

configured to trigger alarms. Once an alarm is triggered, the HCI screen is 

automatically switched to the scene view, where the event is recognised. 

Data channels have been designed to transmit data from/to the ASU to/from the 

HCUASU. The following list describes the number of data channels that each 

module has and also the type and format of this data and from/to which modules the 

data are sent: 

From the Archive to the HCI: Up to four pairs of channels (one pair per HCI 

client). Each channel pair had one playback image channel and one playback 

annotation channel in XML format. The transmission of Playback image 

channels are realised at five frames per second (fps) in JPEG format. 

From the Image Capture module (IPU) to the HCI: Up to four data channels 

(one per camera). The transmission of data channels in JPEG format at five 

fps using YUV colour format, is done through Internet Protocol (IP) 

multicast communication. 

From the IPU to the SPU: Up to nine data channels of low-level annotation 

in XML data format. Each output stream has its own data channel going to 

the SPU; e.g. the output stream resulting from the detection of people in the 

scene, is sent to the SPU through data channel (see Figure 4-7). The objects 

detected and marked as so-called 'blobs' are sent through other data 

channels. The outputs resulting from the detection of crowd situations in the 

scene are also sent through data channels. Each data channel is linked to 
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specific image input channel (i.e. one channel per camera). Only the data 

channel that sends the detection of people in the scene, sends the 

information of all image input channels through only one channel. 

Several instances of each type of channel may be active simultaneously. However, 

at any point in time any given HCI may listen to a maximum of eight data channels. 

Therefore, as mentioned before, any HCI can only be connected to up to four ASUs 

(this is shown in Figure 4-4). Consistent with the overall ADVISOR architecture, 

CORBA has been used in the ADVISOR Prototype as an integration platform of 

each module. Events, alarms and control data are also sent to the corresponding 

module through the distributed object computing ability of CORBA. Therefore, the 

next section presents and discusses the CORBA architecture design used in the 

ADVISOR Prototype. 

4.4 The CORBA architecture design Implemented In 
ADVISOR Prototype using DORIS graphical notation 

Following the brief introduction of the main features and components of CORBA, 

Figure 4-9 illustrates the CORBA elements described in Figure 4-2 that have been 

used in the design of ADVISOR. Bear in mind that, as mentioned in the 

Introduction, the DORIS graphical notation is used because CORBA does not have 

any graphical notation associated to express its architecture designs. The DORIS 

graphical notation also has been used allowing to compare, using the same 

graphical tools, the different architecture designs of ADVISOR system using both 

technologies (CORBA and DORIS). One design decision in ADVISOR is that only 

static invocations are implemented. Therefore, there is no need to use an interface 

repository (see Figure 4-2) on the client side. However, the main design decision is 

to consider the ASU, IPU and SPU controllers as servant objects (i.e. CORBA 

objects). The other modules, i.e. the IPU and the SPU modules are considered as 

'clients'. In this way, the IPU consists of three client objects (camera object, crowd 

monitor object and motion object) and the SPU consists of two more client objects 

(Le. archive and behaviour object). The HCIs (Le. the local and central HCI) are 

designed as objects that communicate between them or with the archive and 

behaviour client objects; they do not have any direct relationship with servant 

objects. This decision is derived from the fact that client objects in the IPU and the 
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SPU modules need information that is needed by the appropriate CORBA objects 

(i.e. camera CORBA object, crowd monitor CORBA object, moti on CORBA 

object, archive CORBA object and behaviour CORBA object). 

Client 
IDL 

Stubs 

HCICENTRI\L 

Object Request Broker core 
o SPU 0 

LOCALHCI 
(for debug 
porpose) 

Figure 4-9. Links between the CORBA features illustrated in Figure 4-2 with the CORBA 

design of ADVISOR. 

Figure 4- 10 illustrates the representation of ADVISOR CORBA design using the 

DORTS graphical notation. The client objects are represented as subsystem 

components grouped in a subsys tem called ASUSUBSYSTEM (see top of Figure 

4- 10). The HCIs objects are represented as activities inside other subsystems called 

HCICENTRAL and LOCALHCIST ATION, which are presented in further 

sections. Notice that the subsystems inside ASUSUBSYSTEM communicate via 

IDAs as seen in Figure 4- 10 (see the rectangle components that appear inside 

ASUSUBSYSTEM figure). These components are added because it is not poss ible 

to connect directly two active components (i.e. each of the subsystems that appear 

inside ASUSUBSYSTEM) directly using MAscot Design Generator (MADGE) 

tools which follows the RTN principles. One of the principles established in RTN 

states that the communication between two active components is always established 

through a passive element ca lled IDA. Therefore, MADGE does not allow 

designing architectures connecting two acti ve elements directly. 
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On the other hand, the servants are represented as activities inside the subsystem 

called CORBA_SUBSYSTEM (see bottom of Figure 4- 10). The Object Adapter 

(i.e. POA) is represented by two other activities inside the CORBA_SUBSYSTEM 

ca lled OA_IN and OA_OUT. These two activities receive and send the requests 

from the client objects in ASUSUBSYSTEM. The implementation repository, 

whose function is to store information about the locating servants, is used by the 

OA_fN activity and is represented by a "datarepository" component called 

lMPLREPOSITORYSUBS subsystem (see Appendix C-22, pp. 306, Figure C-22). 

Finally, the ORB inte rface and the ORB core (see Figure 4-10), which as mentioned 

represent the objec t "bus" of CORBA, whose functionality and implementation is 

transparent to the CORBA designer, is represented by components inside the 

subsystem called COM (see section 4.4. I ). This subsystem consists of a group of 

distributed protocols introduced in chapter 3. Some of these protocols represent the 

c lient-server re lationship used in CORBA. 

132 



I 

L -

-
COM 

ORR 
interface 

Figure 4-10. The CORBA design of ADVISOR using DORIS graphical notation. ASU_ 

SUBSYSTEM (Appendix C-14, pp. 298), COM (Appendix C-13, pp. 297), 

CORDA_SUBSYSTEM (Appendix C-15, pp. 299), IMPLREPOSITORYSUBS (Appendix C-

22, pp. 306), CONFCPARAMETERS (Appendix C-21, pp. 305), CROWD_MONITOR 

(Appendix C-20, pp.304). 

133 



4.4.1 ORB and COM subsystem 

As mentioned in the previous section, the COM subsystem (see Figure 4-10) 

represents the ORB CORBA bus. Figure 4-11 presents the configuration of the 

COM subsystem using a DORIS notation. One of the main differences between 

both technologies (CORBA and DORIS) is based on the communication 

mechanisms. On one hand, DORIS provides, as discussed in chapter 3, an extensive 

taxonomy of protocols that allows the designer to choose the communication 

mechanisms that are best suited for that application. The CORBA's architecture is 

based on different layers [Mowbray and Zahavi 1995]; one of these layers is called 

the communication layer that is handled by the ORB. The communication layer 

deals with the communication in distributed environments between the components 

in the application layers. Thus, the ORB technology deals with the communication 

between objects in any CORBA application. Therefore, the designer is unaware of 

the type of communication mechanisms used. From a commercial point of view, 

this fact may be taken as an advantage, but from a system engineering point of 

view, it is always important to know what and how the system is designed to have a 

great understanding of the system (not everything may be suitable for each 

application). Therefore, we tried to illustrate the ORB architecture design by using 

only the DORIS graphical notation. In other words, how the ORB communication 

mechanism should be established (its architecture) for ADVISOR application (the 

Prototype) to be able to compare in section 4.7 both technologies. Once again, some 

elements presented in this section and in section 4.5 have been added for tool 

constraints. The COM subsystem consists of three other subsystems called 

COMSUBSYSTEM, MULTIDISTRmUTION and DISTRmUTSIGNAL. The 

composition of these subsystems is included in Figure 4-11, although to see the 

details of each subsubsystem it is best to refer to Appendix C-13, C-I9, C-17 and C-

18 respectively. The functionality of the COM subsystem is to transmit signals 

coming to and/or from CORBA_SUBSYSTEM and HCIs to and/or from the 

ASUSUBSYSTEM. Moreover, the COM subsystem de-multiplexes/multiplexes the 

signals coming to and/or from the CORBA_ SUBSYSTEM to and/or from the 

ASUSUBSYSTEM. 
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Figure 4-11. The configuration of COM subsystem ( Appendix C-13, pp. 297 ). See Appendix C 

for more detailed view of each of the components that appear In this figure: 

COMSUBSYSTEM (Appendix C-19, pp. 303), MULTIDISTRIBUTION (Appendix C-17, pp. 

301), DISTRIBUTSIGNAL (Appendix C-1S, pp.302 ). 

COM deals with two types of signal coming from the CORBA_SUBSYSTEM: the 

signals coming from the OA_IN activity and the signals coming from OA_OUT. 

OA_IN activates the corresponding servant whose function is to send the 

information that is in CONFIG_PARAMETERS subsystem (see Figure 4-10) to the 

corresponding client. Therefore, OA_IN activates an activity and OA_OUT sends 

the required data to the client. These two interactions are represented by two 

different protocols. The first interaction is represented by a RTI protocol and the 

second interaction is represented by a RDF protocol (please see Protocol Taxonomy 

in chapter 3). The use of RTI implies a "thread activation" on the server side i.e. the 
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client does not send data but a request of a thread activation. Therefore, when 

OA_IN receives a request from the client side, it activates the corresponding 

servant. Once the servant is activated and does the work, the client can receive the 

data that it needs through the RDF protocol. The use of this protocol implies that the 

client sends a request of data and waits until it receives the data from OA_OUT 

activity. 

Figure 4-12 presents the components used in COM to transmit the signal coming 

from OA_OUT activity. The bottom of the Figure 4-12 illustrates the idea that the 

functionality of all these components is reduced to the use of one RDF protocol. 

Nevertheless, the graphical design presents all these components for many reasons: 

firstly, because it is a distributed solution (Le. CORBA_SUBSYSTEM resides in 

one computer and ASUSUBSYSTEM resides in other computer) and therefore the 

protocol needs to be stretched (see DISTRffiUTRDF). Secondly, because the signal 

is demultiplexed (there are more than one client and server). Finally, because of the 

tool constraints (e.g. it is necessary to use four subsystems instead of grouping all 

these components in one subsystem like in Figure 4-12). 
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Figure 4·12. The whole path of one of the signals coming from CORBA_SUBSYSTEM to 

ASUSUBSYSTEM. This signal comes from OA_OUT inside CORBA_SUBSYSTEM (see 

interface called Sync_put) to one of the objects inside the ASUSUBSYSTEM (see interface 

called Sync~et). 

4.5 The ADVISOR Prototype architecture using CORBA 
platform technology In DORIS notation 

The ADVISOR Prototype discussed in this chapter was demonstrated in the 

Barcelona Underground in March 2002. As mentioned before, it consisted of two 

physical nodes: one node was placed in the Central Transport Control Room and it 
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consisted of one HCI unit. The other node was located in one of the underground 

stations (Sagrada Familia) and it consisted of one ASU unit and another HCI that 

was installed on a standalone PC, as shown in Figure 4-5. The ASU unit was made 

up of four CPUs: one CPU hosted Capture module, another CPU hosted Crowd 

Monitor module, another hosted Archive module and the last CPU hosted the 

Motion and Tracker modules altogether. 

In section 4.3.1, the overall requirements of the ADVISOR system have been 

presented. In section 4.4 and 4.4.1, the CORBA architecture design used in 

ADVISOR system has been presented using the graphical DORIS notation (as 

mentioned, used just as a graphical tool). As mentioned in the Introduction, in 

sections 4.5 and 4.6, two different ADVISOR system architecture designs are 

presented, which have been created in this thesis. In section 4.5, the ADVISOR 

system architecture design using CORBA is discussed and illustrated using the 

DORIS graphical notation. In section 4.6, a new ADVISOR system architecture 

design is presented using this time RTN concepts and also the DORIS graphical 

notation. Both architectures are created from the same requirements taken from the 

ADVISOR Prototype presented early in this work. The reason behind this is to 

depict, in section 4.7 using the same graphical notation, the differences between the 

two architectures, which use different conceptual principles. 

A variation in both architecture designs of the presented ADVISOR Prototype has 

been introduced to discuss properties such as distribution; it would have been rather 

difficult to dis~uss with only two nodes (one data processing node and one HCI) as 

it is on ADVISOR Prototype. The variation consists of using four nodes distributed 

in different physical places instead of two nodes (see the blue line on the left of 

Figure 4-13). 

4.5.1 The decomposition of ADVISOR architecture design 

ADVISOR has been created in a way that reflects the human hierarchical structure 

of transport surveillance systems, which have a central control node, situated 

usually in the central control room of the transport system, and local control units 

located across the area covered by the transport network. Figure 4-13 illustrates the 
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ADVISOR system and ADVISOR Prototype and also the decisions that have been 

taken to present the designs of ADVISOR Prototype using MADGE tools (i.e. 

ADVISORSYSTEM in section 4.5 and in section 4.6). Note that, as mentioned in 

section 4.3.2, in section 4.5 and 4.6 the ADVISOR Prototype system (with some 

added variations) is used instead of ADVISOR system. Moreover, in Figure 4-13, a 

blue line represents one of the variations added into the illustrated design (as 

mentioned at the end of the previous section). One variation consists in representing 

four nodes in ADVISORSYSTEM instead of the two nodes that the ADVISOR 

Prototype has. The other variation is to consider an HCI central like in ADVISOR 

system but also, to consider a local HCI in each ASU node, representing the HCI 

that ADVISOR Prototype has for debugging purposes. 

Therefore, the modules used to represent the design of ADVISORSYSTEM are the 

following: 

• The HCICENTRAL module, which represents the HCI central in ADVISOR 

system (see left of Figure 4-13). 

• The ASUSUBSYSTEM module, which represents the IPU and SPU 

modules of ADVISOR system. 

• The LOCALHCISTATION that represents the ASU, IPU and SPU 

controllers and the local HCI that the ADVISOR Prototype uses for 

debugging. 

• The LOCALHCISTA TION and ASUSUBSYSTEM that are grouped to 

constitute the LOCALDATAPROCESSING module, which represents the 

ASU module in the ADVISOR system. 

139 



Logical view of 
ADVISOR system 

Hunmn 
Cornt>uht 

r 
'ntfHiaCIl 

(He l) 

LOCALDATAPROCESSING 

ADVISOR prototype 

HCICENTRAL -4------, 

0»1. 

Doto 

LOCALHCISTATION ASUSUBSYSTEM 

Figure 4-13. The links between the modules used below to express the architecture design of 

ADVISOR Prototype using MAGDE tool. Moreover, this figure illustrates the differences 

between the ADVISOR system and the ADVISOR Prototype (see also Figure 4-4 and Figure 

4-5). 

Figure 4- 14 illustrates the whole system architecture design using MADGE and also 

shows the modules that are discussed in this section. Some of these modules 

illustrate how CORBA creates elements and manages them to establish transparent 

communications between client and server objects within the application. The arc 

arrows illustrated in Figure 4- 14 indicate the communication between modules 

which belong to different levels of the architecture. 

The COM and COMUHCTSUBSYSTEM subsystems (see Figure 4- 12 and 

Appendix C- 13, pp. 297 and Appendix C-4, pp. 288) are designed inside 

LOCALASU and LOCALDATAPROCESSING respectively. 
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COMUHCISUBSYSTEM (see Appendix C-4, pp. 288) is a communication 

subsystem that appears in the design because of the mentioned tool restrictions. 

Therefore, the appearance of COMUHCISUBSYSTEM is unreadable in Figure 

4-14. As mentioned, COM (see Figure 4-12) is a communication template 

subsystem, which groups all the protocols used to model the communication 

between the submodules that represent the client objects and the server CORBA 

objects. 
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Figure 4-14. Most of the levels of decomposition of the ADVISOR Prototype system. The figure 

also illustrate the modules that represent the CORBA solution for ADVISOR Prototype. All 

the subsystems that are represented in this figure are described in more detail in the main text. 

All the subsystems can also be found, in clearer separate diagrams, in Appendix C. The 

bidirectional arrows illustrate the data communication flow between modules of different 

levels. Bear in mind, that some modules have been introduced due to tool restrictions even 

though they are not needed to model CORBA (e.g. COMUHCISUBSYSTEM in Appendix C-4, 

pp.288). 

The following figures illustrate the designs in a hierarchical functional manner 

because DORIS notation imposes a scale up/down design structure . Table 4-2 
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shows this structure by grouping the components in hierarchical order and also 

indexes each component with a level number to help the reader in the perception of 

this structure. The figures have been generated using MADGE that is the CASE tool 

that allows diagrammatic capture of RTN designs. 

ADVISOR using DORIS notation 

Archlteturallevel structure Name of the component Rgure 
Number 

First level ADVISORSYSTEM Figure 4-15 ( Appendix C-1 , pp.285 ) 

Second level HCICENTRAL Figure 4-16 ( Appendix C-2, pp.286 ) 
LOCALDATAPROCESSING Figure 4-17( Appendix C-3, pp.287) 

Third level COMUHCISUBSYSTEM Refer Appendix C-4, pp.288 
DATAPROCESSINGNODE Figure 4-17 ( Appendix C-5, pp.286) 

PLA YBACKCHANNEL Refer Appendix C-6, pp.290 
IMAGECHANNEL Refer Appendix C-7, pp.291 
XMLCHANNEL Refer Appendix C-8, pp.292 
DISTRIBUTRDS Refer Appendix C-9, pp.293 
LOCALASU Figure 4-17 (Appendix C-10, pp.294) 
LOCALHCISTATION Figure 4-17 ( Appendix C-11, pp.295 ) 

RDSLINK Refer Appendix C-12, pp.296 
COM Figure 4-12 ( Appendx C-13, pp.297 ) 
ASUSUBSYSTEM Figure 4-22 ( Appendix C-14, pp.298 ) 
CORBA_SUBSYSTEM Figure 4-19 ( Appendix C-15, pp.299 ) 
HUMANINTERFACE Figure 4-21 (Appendix C-16, pp. 300 ) 

Fourth level MUL TlDISTRIBUTION Refer Appendix C-17, pp. 301 
DISTRIBUTSIGNAL Refer Appendix C-18, pp. 302 
COMSUBSYSTEM Refer Appendix C-19, pp. 303 
CROWD_MONITOR Figure 4-23 (Appendix C-20, pp.304 ) 
CONFI_PARAMETERS Figure 4-20 ( Appendix C-21 , pp. 305 ) 
IMPLREPOSITORYSUBS Refer Appendix C-22, pp.306 

Fifth level DISTRIBUTRDF Refer Appendix C-23, pp. 307 
DISTRIBUTRTI Refer Appendix C-24, pp. 308 
MONITOR Figure 4-24 ( Appendix C-25, pp.309 ) 
DEVICE Figure 4-25 ( Appendix C-26, pp. 310 ) 
CORBA_SUB Figure 4-26 (Appendix C-27, pp.311 ) 
INTERFACEREPOSITORY Refer Appendix C-28, pp. 312 
RPCLlNK Refer Appendix C-29, pp. 313 

RDFLINK Refer Appendix C-30, pp. 314 
RTlLlNK Refer Appendix C-31 , pp. 315 
IMAGEPROCESSING Figure 4-27 ( Appendix C-32, pp. 316 ) 

Number 
level 

1,1 
1,2 

1.2.1 
1.2.2 

1.2.1.1 
1.2.1.2 
1.2.1.3 
1.2.1.4 
1.2.2.1 
1.2.2.2 

1.2.1.4.1 
1.2.2.1.1 
1.2.2.1.2 
1.2.2.2.1 
1.2.2.2.2 

1.2.2.1.1.1 
1.2.2.1.1.2 
1.2.2.1.1.3 
1.2.2.1.2.1 
1.2.2.2.1.1 
1.2.2.2.1.2 

1.2.2.1.1.3.1 
1.2.2.1.1.3.2 
1.2.2.1.2.1.1 
1.2.2.1.2.1.2 
1.2.2.1.2.1.3 
1.2.2.1.2.1.4 
1.2.2.2.1.2.1 

1.2.2.1.1.3.1.1 
1.2.2.1.1.3.2.1 
1.2.2.1.2.1.2.1 

Table,4-2. The following figures in their respective level are indexed, assigning a level number 

to each figure to assist in following the hierarchical designs. For a clearer representation of the 

figures see Appendix C. 
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4.5.2 First level of the Architecture design: ADVISORSYSTEM 

Figure 4-15 presents ADVISORSYSTEM, which is a template of the ADVISOR 

Prototype system. This template is composed of four instances of templates that are 

called HCICENTRAL and LOCALDATAPROCESSING respectively. The 

template is depicted by having the name in the middle of the graphical component 

and the instance is represented by a name written in the bottom-right comer outside 

the corresponding template. Accordingly, ADVISORSYSTEM consists of one 

instance called HCICC from a HCICENTRAL template subsystem, and three 

instances of the LOCALDATAPROCESSING subsystem template called L_DP1, 

L_DP2 and L_DP3. 
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HClCENTRAl 

UUII. 
tJu 

Figure 4-16 U" 

U'lr'AI 'J" )~ <y .. ~"f" ~ 
~ , 11(I[I 't i • 
~ ~ a ~ l ~ ~ ~ ~ i ~ • ~ § 

~ ~ ~ i ~ i ~ ~ 

§ ! . 
i 

\§ 
~ ~ 
• ! 

"" 
RIIIOI '_I'A IIIJIl "'_PlAY ,\/III VOtXl''' '1" II'J~.AT WIJII. 11'-'"" II_PUT 

LO[AlOATAPROCESSIN; 
LOCALOATAPIlO([SSNG LOCALOA TAPROUSSING 

Figur~4-17 

l_DPl 
ljlP2 LJlP3 

Figure 4·15. ADVISOR Prototype system using DORIS notation. This figure represents the 

first level of ADVISORSYSTEM. This ADVISORSYSTEM consists of three human interface 

subsystems and one central human interface subsystem. 

In this section, MADGE has been used only as a CASE tool. MADGE imposes 

RTN principles in the diagram designs. Therefore, some of the components that 

appear in Figure 4-15 have been created to satisfy the constraints that MADGE tool 
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imposes. One constraint that MADGE imposes, following RTN rules, consists in 

not allowing connection of two active components directly. Bear in mind that active 

components in RTN have ports as terminators, and that passive components are 

characterised by having windows as terminators. Therefore, in Figure 4-15 

although all the instances represented in ADVISORSYSTEM diagram are active 

components (nodes). The HCICENTRAL has been featured with ports. The rest of 

the nodes (i.e. LOCALDATAPROCESSING instances), even though are active 

components, have been featured with windows because as mentioned, MADGE 

does not allow to connect directly two active components. HCICENTRAL has been 

featured with ports to illustrate that HCICENTRAL has the functionality of a server 

when it deals with control signals (see PUT_SYNC interface in Figure 4-15). At the 

same time, the LOCALDATAPROCESSING has been featured with windows 

because acts as a client. Therefore, the HCICENTRAL provides (puts) control data 

to the client (i.e. LOCALDATAPROCESSING). However, HCICENTRAL may act 

as a client when requires (gets) non-control data from 

LOCALDATAPROCESSING, which then acts as a server. Following subsections 

discuss the functionality of these components and also present further levels of 

decomposition of the ADVISOR Prototype architecture design presented in section 

4.5. 

4.5.3 Second level of the Architecture design: HCICENTRAL 

Figure 4-16 presents the HCICENTRAL subsystem. HCICENTRAL represents the 

central control unit in the system. It enables interactions with the user through a 

server compoRent called USER_INTERFACE (see Figure 4-16). It captures control 

signals coming from the user and it distributes these signals to the local control 

units such as L_DPI (see Figure 4-17), if required. HCICENTRAL also deals with 

the user interface, displaying the live images from the installations where the 

cameras are located or displaying recorded events. 
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Figure 4-16. The second level of decomposition of the ADVISOR Prototype system. It 

represents the internal composition of the HCICENTRAL subsystem. HCICENTRAL deals 

with the control signals coming from the central control user. 

4.5.4 Second level of the Architecture design: 
LOCALDATAPROCESSING 

Figure 4-17 presents the decomposition of LOCALDAT APROCESSING, which as 

illustrated in the figure, consists of primarily one subsystem called 

DATAPROCESSINGNODE. The other subsystem (COMUHCISUBSYSTEM) is 

unreadable and smaller than DATAPROCESSINGNODE because, as mentioned, it 

has been added due to tool constraints (it is not possible to connect directly two 

active components). At the same time, COMUHCISUBSYSTEM is represented as 

small as it illustrates Figure 4-17, because it represents the following idea in 00 

and CORBA; the communication between objects (active components) is 

represented by a simple link (line that connects both objects). The definition of the 

link is not important (usually become transparently for the designer) in 00 and 

CORBA. Therefore, COMUHCISUBSYSTEM that represents "the link" between 

the two active components (DATAPROCES-SINGNODE and HCICENTRAL) is 
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shown very small. Nevertheless, by representing with DORIS notation the 

ADVISOR Prototype using CORBA, it is possible to discuss how this "link" may 

be defined. COMUHCISUBSYSTEM consists of three channel protocols: 

IMAGECHANNEL (see Appendix C-7, pp. 291), PLAYBACKCHANEL 

(Appendix C-6, pp. 290) and XMLCHANNEL (Appendix C-8, pp. 292) that 

communicate HCICENTRAL with the HUMANINTERFACE subsystems. 

In this case study, the designs have been created after the implementation. 

Therefore, it is known that the nodes communicate remotely, therefore the template 

substitution has been used and IMAGECHANNEL, PLA YBACKCHANEL and 

XMLCHANNEL are three distributed channel protocols that stretch out the channel 

protocols. COMUHCISUBSYSTEM also consists of a DISTRffiUTRDS (see 

Appendix C-9, pp. 293) communication subsystem that stretches out the RDS 

protocol used to transmit control data between HCICENTRAL and 

HUMANINTERFACE (see RDSLINK element also in Appendix C-12, pp. 296). 
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Figure 4·17. Three levels of decomposition of the ADVISOR Prototype system (following the 

hierarchical DORIS notation). It starts with the internal composition of 

LOCALDATAPROCESSING (Appendix C·3, pp. 287) subsystem, which is presented in the 

second level of this hierarchical structure. This is followed by the decomposition of 

DATAPROCESSINGNODE (Appendix C·S, pp. 289), which corresponds to the third level and 

it finishes with the decomposition of LOCALASU (Appendix C·10, pp.294) and LOCALHCI· 

STATION (Appendix C·lt, pp. 295) that are the third level of the hierarchical structure. 
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4.5.5 Third level of the Architecture design: 
CORBA_SUBSYSTEM, HUMANINTERFACE and 
ASUSUBSYSTEM 

The DATAPROCESSINGNODE subsystem consists of two subsystems: 

LOCALASU and LOCALHCISTATION, see Figure 4-18. LOCALASU consists of 

two subsystems: COM (see Figure 4-11) and ASUSUBSYSTEM (see 

Figure 4-22) which represents a group of processes inside 

LOCALDATAPROCESSING, whose functionality is to carry out the image 

processing tasks. As mentioned in section 4.5.4, the communication between these 

image processing tasks is represented by channel protocols (e.g. 

IMAGECHANNEL). The multicast4 communication is represented by connecting 

more than one interface to the same window). On the other hand, 

LOCALHCISTATION subsystem in Figure 4-18 (see also Appendix C-ll, pp. 295) 

represents a local control unit and consists of two subsystems 

CORBA_SUBSYSTEM (see Figure 4-19) and HUMANINTERFACE (see Figure 

4-21). 

4 "[ •.• lis the delivery of information to a group of destinations simultaneously using the most 
efficient strategy to deliver the messages over each link of the network only once and only create 
copies when the links to the destinations split. .. [)"[ Wikipedia 2001]. 
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Figure 4·18. The three subsystems (CORBA_SUBSYSTEM, HUMANINTER·FACE and 

ASUSUBSYSTEM), which belong to the third level of the ADVISOR Prototype system design 

decomposition. 

4.5.5.1 Third level of the Architecture design: CORBA_SUBSYSTEM 
CORBA_SUBSYSTEM represents part of the CORBA ORB design of ADVISOR 

Prototype. As mentioned, in this work the internal CORBA bus structure (i .e. 

ORB) is illustrated by COM subsystem and the POA component in ORB by OA_IN 

and OA_OUT activities (see Figure 4- 19). Therefore, each client object defined in 

ASUSUBSYSTEM (see 

Figure 4-22) communicates with the servant objects in Figure 4- L9 through the same 

middle component, i.e. the OA_IN and OA_OUT activities. There are several 

strategies to implement CORBA ORB [Marsden and Fabre 200 I] such as kernel

based, where the ORB is implemented as part of the operating system, making the 
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location of the objects known. Another strategy is called daemon5 strategy, where 

the ORB is implemented on a dedicated daemon process that mediates between 

clients and servants. The other strategy called application-resident, provides ORB as 

a shared library that is linked with CORBA applications. In this strategy, the ORB 

functionality runs in the same context as the client and the servant. In ADVISOR 

Prototype, the application-resident strategy has been used for implementing 

CORBA ORB. Therefore, the computing node called LOCALHCISTATION is 

represented by a group of several CORBA objects (sharing the same executing 

context). The designed CORBA objects are called: Capture, Motion, Crowd, 

Archive and Behaviour CORBA objects. 

In the ADVISOR Prototype, these client objects (Le. the software modules defined 

in ADVISOR system (see Appendix B, pp.280), which implement the image 

processing algorithms required) are located in different CPUs. These software 

modules are represented in 

Figure 4-22 as the subsystems called CAMERA, CROWD _MONITOR, ARCHIVE, 

MOTION, and BEHAVIOUR respectively. The clients need to know the necessary 

information (in the ADVISOR Prototype this information is defined as the Internet 

Protocol (IP) address of each software module that is hosted in a separated PC). The 

reason of this needed information is because the software modules, which represent 

each of them an "image processing" algorithm, in ADVISOR prototype are 

implemented to communicate with the rest of the modules directly via sockets and 

therefore, the.IP address is needed. The way the clients obtain this information is 

through the Naming Service and it is explained in next paragraph. 

The clients request to CORBA objects their IP addresses through CORBA methods. 

The CORBA objects are presented in Figure 4-19. To initiate the request to the 

correct CORBA object incarnated as servant object, any of these clients needs to 

know the reference of the specific servant object. This reference is provided by 

Naming Service in the ADVISOR Prototype CORBA implementation. As 

mentioned in section 4.2, the functionality of the ORB is defined through its 

5 A daemon is a standalone operating system process that runs in the background and provides some 
services 
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services. Therefore, we represent the service used in ADVISOR Prototype to 

illustrate the functionality of the ORB. The implementation of this service is shown 

in Figure 4-19 and it works in the following way. The OA_IN template activity 

receives a request, i.e. the reference of a servant, from one of the clients. The 

OA_IN searches this reference in IMPLREPOSITORYSUBS (see Appendix C-22, 

pp. 306). Once OA_IN obtains the reference, it sends the reference through the 

NAMESERVICE instance channel to OA_OUT. The OA_OUT sends back the 

reference to the client that previously asked for the reference in ASUSUBSYSTEM. 

Once the client has the reference, it is able to call the CORBA method to the 

specific servant. OA_IN also routes the petitions to the servants. Then, when the 

client requests an IP address from a servant, the servant obtains the requested IP 

address from CONFIG_FILE instance (inside the CONFC PARAMETERS 

subsystem, see Figure 4-20). The servant sends the obtained IP address back to the 

OA_OUT. Then, the OA_OUT activity sends this information to the corresponding 

client in the ASUSUBSYSTEM through the COM subsystem. 
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Figure 4·19. Following the hierarchical MASCOTJDORIS notation, CORDA_SUBSYSTEM 

represents the fifth level of the ADVISOR Prototype system. CORBA_SUBSYSTEM 

subsystem illustrates the communication functionality of an ORB In CORDA technology. 

4.5.5.1.1 Fourth level of the Architecture design: 
CONFCPARAMETERS 

The CONFCPARAMETERS subsystem represents a datarepository, which servants 

from CORBA_SUBSYSTEM access to get the information that the clients require. 

In CORBA_SUBSYSTEM there is another subsystem that has a similar 

functionality called IMPLREPOSITORYSUBS (see Appendix C-22, pp.306). 

IMPLREPOSITORYSUBS as introduced in section 4.4.1, is also a datarepository 

that stores the references or IDs of the different servants that are used in this 
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CORBA implementation, allowing then, the client to communicate with a servant 

without having prior knowledge of the ID of the servant. 

[ONFI PARAMETERS 

--) 

~~~'~------~~~~-----------------

Flgure 4-20. CONFCPARAMETERS (the sixth level of the ADVISOR Prototype 

decomposition) is introduced in the fifth level of the hierarchical structure in 

CORDA_SUBSYSTEM. CONFCPARAMETERS gives the configuration parameters required 

for other components outside the subsystem. 

4.5.5.2 Third level of the Architecture design: HUMANINTERFACE 
HUMANINTERFACE represents the control unit process of the HCISTATION, 

which interacts with the user through the server component called SCREEN (see 

Figure 4-21). HUMANINTERFACE also makes possible the communication 

between ASUSUBSYSTEM and HCICENTRAL. HUMANINTERFACE deals 

with the control signals that are coming from the HCICENTRAL subsystem and 

with the image data and XML results that are coming from the ASUSUBSYSTEM. 

Depending on the control signals coming from HCICENTRAL, the 

HUMANINTERF ACE subsystem sends back to HCICENTRAL live images from 

the CCTV, or archive images, or events that have been archived or events that just 

have occurred. HUMANINTERFACE also does the same with the control signals 

coming from the user through the SCREEN server component. 
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Figure 4-21. HUMANINTERF ACE subsystem presented in the third level of the hierarchical 

structure of the ADVISOR Prototype system. HUMANINTERFACE is introduced in 

LOCALHCISTA TION subsystem. HUMANINTERFACE deals with the control signals 

coming from the HCICENTRAL and it also deals with local control signals coming from the 

user in the local HCI subsystem. 

4.5.5.3 Third level of the Architecture design: ASUSUBSYSTEM 

IiIMIIIIIIIlJIU' 

The ASUSUBSYSTEM module accomplishes the required image processing tasks 

as mentioned. ASUSUBSYSTEM consists of five active subsystems: CAMERA, 

CROWD_MONITOR, ARCHIVE, MOTION and BEHAVIOUR. Accordingly, the 

final decomposition of ASUSUBSYSTEM may be seen as a network of activities 

that perform image processing algorithms, which are described in the Appendix B, 

pp. 280. In this section, only the decomposition on further levels of 

CROWD_MONITOR module is presented (see Figure 4-23, Figure 4-24, Figure 

4-25 and Figure 4-26). 

The CAMERA subsystem inside the ASUSUBSYSTEM (see Figure 4-22), carries 

out the capture, digitalisation and compression of CCTV images and sends the 
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compressed images to the rest of the modules in ASUSUBSYSTEM. The MOTION 

subsystem takes the current images coming from CAMERA, and applies motion 

and tracking algorithms on them. Afterwards, the MOTION subsystem sends the 

results in XML format to the BEHAVIOUR subsystem. In parallel, the MOTION 

subsystem extracts the background images from the current images and sends them 

to the CROWD_MONITOR module. The BEHAVIOUR subsystem takes all the 

results from the rest of the modules and applies semantics to these results obtaining 

a description of events in English language text. The ARCHIVE subsystem receives 

the results from the processed images and archives them. Depending on the 

received control signals, the ARCHIVE subsystem sends the archived images or 

events to the local or to the central HCI station. 
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Figure 4.22. ASUSUBSYSTEM is presented in the third level of the decomposition of 

ADVISOR Prototype system. ASUSUBSYSTEM is composed of image processing subsystems. 
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4.5.5.3.1 Fourth level of the Architecture design: 
CROWD_MONITOR 

The CROWD_MONITOR subsystem is also designed using CORBA. See Figure 

4-23. CROWD_MONITOR handles two DSPs (Digital Signal Processing) that 

perform a low level processing optical flow algorithms to the obtained images from 

CAMERA subsystem. It applies afterwards, some algorithms to the outputs from 

the DSPs and sends the results in XML format to the BEHAVIOUR subsystem. 

CROWD_MONITOR is composed of five subsystems; MONITOR (see Figure 

4-24), two DEVICEs (see Figure 4-25), INTERFACEREPOSITORY (see 

Appendix C-28, pp.312) and CORBA_SUB (see Figure 4-26). 
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Figure 4·23. The CROWD_MONITOR subsystem (the fourth level of ADVISOR Prototype 

system). It performs an image processing task detecting crowds. 

4.5.5.3.1.1 Fifth level of the Architecture design: MONITOR 
The MONITOR subsystem gets the information that has requested from the 

LOCALHCISTATION (from CORBA_SUBSYSTEM) and puts this obtained 

157 



information to the INTERFACE-REPOSITORY in CROWD_MONITOR, see 

Figure 4-24. 

MONITOR "'" "J' 
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Figure 4-24. The MONITOR subsystem (the nfth level of ADVISOR Prototype system) deals 

with control signal coming from upper levels and petitions from lower levels. 

4.5.5.3.1.2 Fifth level of the Architecture design: DEVICE 

DEVICE, which acts as a client object, is composed of two activities and the 

IMAGEPROCESSING subsystem (see Figure 4-27). The INTERFACES activity 

activates the corresponding servant and the PA activity obtains the IP address from 

the activate servant (see Figure 4-25). 
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Figure 4-25. DEVICE (fifth level of the decomposition of the ADVISOR Prototype system) is a 

subsystem that deals with the control signals coming from upper levels. It also deals with the 

signals of a subsystem where the low-level image processing tasks are carried out. 

4.5.5.3.1.3 Fifth level of the Architecture design: CORDA_SUB 
CORBA_SUB like CORBA_SUBSYSTEM represents the CORBA ORB design 

used in the ADVISOR Prototype. It has two CORBA objects that deal with the 

requests coming from the DEVICE subsystems. As mentioned, MONITOR in 

CROWD_ MONITOR (see Figure 4-23) acts as a client object, requesting the IP 

information from LOCALHCISTATION (see Figure 4-17). Once MONITOR 

receives the information, it sends it to INTERFACEREPOSITORY, which stores 

the IP address information obtained previously by MONITOR subsystem. The 

SERV ANT_DEV in CORBA_SUB then sends the IP address to the DEVICE client, 

every time that the DEVs require it. 
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Figure 4·26. CORBA_SUB subsystem (fifth level of decomposition of the ADVISOR Prototype 

system) illustrates the communication functionality of an ORB in CORBA technology Hke in 

CORBA_SUBSYSTEM. 

4.5.5.3.1.4 Fifth level of the Architecture design: IMAGEPROCESSING 
IMAGEPROCESSING (see Figure 4-27) interacts with the DSPs through the server 

components called DSP. providing the raw images to the DSPs and obtaining the 

results. After applying defined thresholds to the obtained results from the DSP. 

IMAGEPROCESSING sends the XML results to the BEHA VIOUR module. 
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Figure 4-27. The IMAGEPROCESSING (the Dfth level of decomposition the ADVISOR 

Prototype system) subsystem, which performs the image processing tasks. 

4.6 The ADVISOR Prototype architecture using the DORIS 
method and its concepts 

This section presents the ADVISOR Prototype system design, with the mentioned 

variations, applying RTN concepts using MASCOT-3 and DORIS extensions, to 

continue the comparison between CORBA and MASCOT-3/DORIS approaches, 

established in'Table 4-1. In Table 4-3, the hierarchical structures of the ADVISOR 

designs are presented, indexing each design component with its corresponding 

figure. 
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ADVISOR using RTN concepts 

Architectural level structure Name of the component Figure Number 
Number level 

First level ADVISORSYSTEM Figure 4-28 (Appendix C-33, pp. 317) 

Second level COMMUNICATION Figure 4-29 (Appendix C-35, pp. 319) 
HCICENTRAL Figure 4-30 (Appendix C-34, pp. 318) 
HCINODE Figure 4-31 (Appendix C-36, pp. 320) 

Third level CROWD_MONITOR Figure 4-32 (Appendix C-37, pp. 321) 

Table 4-3. The following figures in their respective level are indexed, assigning a number level 

to clarify the hierarchical designs. 

4.6.1 First level of the architecture design: ADVISORSYSTEM 

Figure 4-28 presents the design of the ADVISOR system, which consists of a 

communication element called COMMUNICATION (see Figure 4-29) and four 

computing nodes: one HCICENTRAL subsystem (see Figure 4-30) and three 

HCINODE subsystems (see Figure 4-31). The HCICENTRAL subsystem 

communicates with the rest of the modules through the composite IDA called 

COMMUNICATION. A single communication element is used to communicate 

HCICENTRAL with the rest of HCINODEs because all identical interfaces in each 

HCINODE subsystem are connected to the same window; e.g. the 

RA WIMAGEOUT interface in each HCINODE subsystem is connected to the same 

window called CA_IN in the COMMUNICATION element. MADGE allows the 

connection of a number of interfaces to the same window if the interfaces are the 

same type. The IDA, then, will provide a mechanism to deal with each interface 

separately (Le. multicast). 
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Figure 4-28. This figure represents the ADVISOR system using RTN concepts. 

ADVISORSUBSYSTEM (Appendix C-33, pp. 317) represents the first level of the design 

system. The system is composed of four computing nodes and one communication element. 

The following subsections discuss the functionality of the components illustrated in 

Figure 4-28 and also present further levels of decomposition of the ADVISOR 

architecture design presented in section 4.6. 

4.6.2 Second level of the architecture design: COMMUNICATION 

Figure 4-29 represents the decomposition of the composite IDA element 

COMMUNICATION. This element has two data inputs coming from the 

HCINODE that are transmitted to HCICENTRAL using a distributed form of a 

channel, which consists of a simple channel connected to an active agent (e.g. the 

TRANSCHANEL activity in Figure 4-29) that stretches out the data to another 

channel. In this section, the idea of template substitution has also been used because 

it is known from the implementation that the communication between the 

HCICENTRAL node and the HCINODEs is remote. In this case, TRANSCHANEL 

also multiplexes the data coming from two different interfaces (RA WIMAGEOUT 

and ARCDATAOUT) to a unique interface called DATAIN. On the other hand, the 

TRANSGN and TRANSGN_IN activities only stretch out the route of control data 
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coming from the HCICENTRAL to the HCINODE and the returned signals coming 

from a HCINODE to HCICENTRAL. 
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Figure 4·29. COMMUNICATION (Appendix C·3S, pp. 319) composite IDA (second level of 

decomposition of the ADVISOR Prototype system), is shown in the first level of the 

hierarchical structure of ADVISOR. This communication element Hnks the HCICENTRAL 

subsystem with. each HCINODE. 

4.6.3 Second level of the architecture design: HCICENTRAL 

Figure 4-30 presents the internal composition of HCICENTRAL subsystem. This 

subsystem consists of two activities: the TC_HCI activity and the DISPLAY 

activity. TC_HCI merely deals with control signals coming from any HCINODE or 

from the server element called SCREEN, which allows the subsystem 

HCICENTRAL to interact with the environment (in this case, it allows the 

interaction of the HCICENTRAL subsystem with a user). TC_HCI may also 

interact with the DISPLAY activity through a signal protocol to manage, if needed, 

what should be displayed on the screen. Therefore, the DISPLAY activity sends to 
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the SCREEN server, if required, the received data from any HCINODE, to be 

displayed in the console. 
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Figure 4·30. The HCICENTRAL (Appendix C·34, pp. 318) subsystem purely displays, If a 

user requires, data coming from any HCINODE. It also deals with control signals coming 

from any HCINODE. 

4.6.4 Second level of the architecture design: HCINODE 

Figure 4-31 represents the image processing node. Following the structure of 

ADVISOR, HCINODE is composed merely of five image processing tasks: capture 

and digitalisation, motion detection and background subtraction, crowd motion 

detection, behaviour analysis and finally archiving. Capture and digitalisation of the 

CCTV images operations are carried out by the CAMERA subsystem. Motion 

detection and background subtraction operations are performed in the MOTION 

subsystem. Another image processing task consisting in the detection of crowd 

situations is carried out in the CROWD_MONITOR subsystem (see Figure 4-32). 

The creation of natural language messages with the results coming from the 

CROWD_MONITOR and MOTION subsystems is performed in the BEHAVIOUR 
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subsystem. The ARCHIVE subsystem merely stores the results coming from the 

CAMERA and CROWD_MONITOR subsystems. HCINODE also consists of a 

control subsystem called HCILOCAL, whose internal composition is merely the 

same as the HCICENTRAL subsystem. This subsystem deals with control signals; 

it distributes to the different subsystems the control signals coming from the 

HCICENTRAL subsystem, and it also may send control signals coming from the 

local user to the HCICENTRAL subsystem. HCILOCAL also displays data coming 

from the CAPTURE, BEHAVIOUR and ARCHIVE subsystems to the local 

console. 
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Figure 4-31. The HCINODE (Appendix C-36, pp. 320) is the second level of the hierarchical 

structure of the ADVISOR Prototype system. It is composed of six subsystems, which 

communicate between them through IDAs: channels, pools and signals. 

4.6.5 Third level of the architecture design: CROWD_MONITOR 

In this section, as in the previous section 4.5, only the decomposition of CROWD_ 

MONITOR is presented (see Figure 4-32). Figure 4-32 presents 

CROWD_MONITOR subsystem, which consists of two activities and two server 

components called DSPI and DSPO that interact with a dedicated hardware. 
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CONTROL_CONFIG activity receives control signals coming from HCILOCAL 

subsystem such as changing thresholds parameters or changing AOIs and sends 

them back to OPTIC_FLOW activity or DSP servers, depending on the type of 

control signal to be sent. CONTROL_CONFIG activity also receives the digitalised 

images and the background images from CAPTURE and MOTION subsystem 

respectively and sends them to each Digital Signal Processing (DSP) dedicated 

hardware, where specific image processing algorithms are applied to these images. 

Each DSP server sends the results to the OPTIC_FLOW activity, which after 

performing specific operations, sends the final results to the BEHA VIOUR 

subsystem. 
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Figure 4-32. The CROWD_MONITOR (Appendix C·37, pp. 321) represents the third level of 

the hierarchical structure of the ADVISOR Prototype system. It Is composed of two activities 

and two servers which communicate between them through a channel, a pool and a signal. 

4.7 Comparison between the two architectures 

In section 4.5 and 4.6 the designs of the ADVISOR system, expressing different 

solutions have been presented. In this section, the discussion of design differences 

between both approaches is focused on the functional partition of the system and on 
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the divergence of architecture designs. Therefore, the following figures present 

graphical dissimilarities at some design levels of ADVISOR architecture solution 

using the two approaches. 

-
ADVISORSYSTEM using RTN 

(Figure 4-28) 
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ADVISORSYSTEM using CORBA 
(Figure 4-15) 
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Figure 4·33. Comparison at a first level of design of ADVISOR Prototype system using the two 

approaches. 

The functionality at the first level of the architecture in both approaches is the same 

because they are coming from the same specifications and, in this case study, from 

the same implemented system (see Figure 4-33); i.e. the ADVISOR system design 

presented in this chapter, is subdivided primarily into four active nodes (see Figure 

4-15 and Figure 4-28). One of these active nodes represents the primary control 

node, i.e. the HCICENTRAL (see Figure 4-16 and Figure 4-30), which is the node 

that interacts with the user of the system and with the rest of the data processing 

nodes. The functionality of the rest of the nodes is divided into local control 

functions and data (e.g. images) processing functions. In this section, nodes that 

have control functionality are called central or local control nodes, and nodes that 

have data processing functionality are called data processing nodes. 

4.7.1 Communication techniques 

Even though the functionality at the first level of the architecture design is the same 

in both approaches, the architecture design in the following levels is quite different, 
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mainly because of the communication techniques. In RTN, communication is 

symmetric (both components that communicate have the same roles). It uses an 

extra explicit component (IDA) to allow this independent communication. RTN 

solution presents independence between pairs of communicating nodes (i.e. data 

processing nodes and control node). This is represented in the design by using only 

one IDA for the communication of HCICENTRAL (the control node) and the rest 

of the HCINODE (data processing) nodes. In CORBA, communication is 

asymmetric (the components that are communicating have different roles i.e. 

usually one is a client and the other is a server). In the presented CORBA 

architecture design, there is a certain dependency between the control component 

and the client components, which is expressed in the design by drawing each time 

the communication links between each HCICENTRAL-LOCALDATA

PROCESSING pair of nodes (see Figure 4-33). 

Therefore, in the ADVISOR Prototype architecture design using CORBA, there is 

an explicit coupling of control signals between data processing nodes and control 

nodes; the data processing nodes need some setup data from the local control nodes 

in order to work. Therefore, the data processing nodes require these data at the start

up time, e.g. to be able to communicate with the other modules. In contrast, in the 

ADVISOR Prototype architecture design using RTN concepts, the data processing 

nodes do not have this control coupling with the control nodes because the activities 

in RTN work independently from each other. The activities are only aware of 

sending and receiving information from their ports. Therefore, even though they can 

receive control signals from their local control nodes, they do not depend on this 

control information to work. 

Another difference between the two approaches in the architecture design is 

illustrated in Figure 4-34. Even though the functional design of data processing 

nodes in both approaches is the same i.e. ASUSUBSYSTEM, the design of the local 

control node and the design communications between the ASUSUBSYSTEM and 

its local control node (i.e. LOCALHCIST ATION) are different in each approach. 

The LOCALHCISTATION in RTN (called HCILOCAL), has the same functional 

decomposition as HCICENTRAL (see Figure 4-30 and Figure 4-34); i.e. two thread 

activities and a server component. One of these activities deals with data control 
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and the other activity with the visualisation of data coming from the data processing 

node and also interacts with the central control node. The design of the LOCAL

HCIST A TION using CORBA is more complicated; as seen in Figure 4-34. The 

control data between the local control node and the data node ASUSUBSYSTEM, 

is done through the CORBA_SUBSYSTEM. The servants inside CORBA_ 

SUBSYSTEM represent the control functions and the CORBA clients in 

ASUSUBSYSTEM represent the data functions. The other subsystem, i.e. HUMAN 

INTERFACE, visualise the data coming from the CORBA clients and also interacts 

with the central control node. 

On the other hand, it may be stated that the last point is strongly dependant upon the 

implementation of CORBA. In other words, CORBA systems may be defined as 

peer-to-peer systems (Le. all nodes have identical capabilities and responsibilities 

and all the communications are symmetric) or end-systems rather than client-server 

systems like ADVISOR Prototype. CORBA provides a service called Event 

Service, to obtain symmetry in the communication. Event Service allows the 

application to use decoupled communication between parts rather than strict client

to-server synchronous request invocations. The basic architecture of Event Service 

[Henning and Vinoski 1999] consists in Supplier and Consumer Modules, which 

can play passive or active roles, and Event channel, which plays the role of 

mediator. An event data can be delivered from the suppliers to the consumers with a 

decoupling of physical knowledge. Note that conceptually this idea is very similar 

to the simple communication model in RTN illustrated in section 3.5.3 chapter 3. 
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LOCALHCISTATION using CORBA 
(Figure 4. 17) 
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" 
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Figure 4-34. Comparison of LOCALHCISTATION subsystem designs using the two 

approaches, 

In CORBA, as mentioned, the communication is established transparently to the 

designer (through the ORB layer), but as illustrated in Figure 4-34 and Figure 4-35, 

this communication requires extra components e.g. CORBA_SUBSYSTEM, 

making the architecture design more complex than the illustrated architecture 

design using RTN concepts (section 4.6). Moreover, the CORBA architecture 
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design of e.g. CORBA_SUBSYSTEM also illustrates the complexity of these 

interactions between different components inside the subsystems. Some of these 

activities require a tight relation with other activities , producing some coupling that 

it is not necessary as seen in section 4.6 using RTN. This is the result of having 

these dynamic interactions between the objects that constitute the CORBA design 

system, which are needed to allow the integration of objects to the system without 

extra effort. However, allowing the integration of objects to the system without 

adding effort to the programmer implies more dynamic interactions between objects 

are created, even though they are transparent to the programmer (as illustrated in 

Figure 4- 19, Figure 4-20, Figure 4-23 and Figure 4-26). Some of these interactions 

may be strongly coupled and in some systems, such as real-time surveillance 

systems, such coupling may have costly effects such as producing deadlock 

situations. 
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ADVISOR using CORBA technology: 
CROWD_ MONITOR(Figure 4-23),CORBA_SUB(Figure 4-26),DEVICE(Figure 4-25), 

IMAGEPROCESSING(Figure 4-27) 

ADVISOR using RTN 
CROWD_MONITOR(Figure 4-32) 

Figure 4-35. Comparison of CROWD_MONITOR subsystem designed using both approaches. 

4.7.2 Concurrency and distribution 

The key issue for developing concurrent systems is focused on structuring the 

system into the right number of concurrent tasks, It is also focused on giving the 

mechanisms to support inter-communication tasks and on allowing tasks to 

synchronise their operations (producer/consumer problem) and the access to shared 

data (mutual exc lusion). It is also important to assure support for concurrent 

execution in the programming language or by the Operating System. In a single 

processor environment, tasking may provide an improvement m performance by 

allowing VO operations to be executed in parallel. In a mUlti -processor 
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environment, tasking may improve the performance by allowing different tasks to 

execute in parallel on different processors. 

A distributed application is a concurrent application. Thus, in a distributed 

application there are necessarily multiple threads of control. As mentioned in the 

previous chapter, any design in RTN is conceived as a network of concurrent 

threads called activities. Therefore, RTN bounds the resources by knowing 

beforehand the resources that are going to be required, because when the network is 

finally designed, the number of threads is automatically determined by the number 

of activities that appear in the design. These threads or activities communicate 

through passive components called IDAs that provide the necessary mechanisms to 

allow the inter-communication between activities, and the synchronisation of the 

access data (see the Taxonomy of the protocols in chapter 3). To apply the basic 

communication principle between different components in a distributed system, 

RTN uses a template substitution. Template substitution is a technique applied once 

the network is instantiated and mapped into hardware at the building process time. 

If the activities that communicate through an IDA are distributed in different places; 

the designed IDA is substituted by a new IDA template that allows the distribution 

by stretching6 the already designed IDA. 

In a conventional 00 distributed application, each server object when distributed 

should operate in a different thread of control, because a distributed server object 

may have multiple concurrent clients, see e.g. Figure 4-19. Therefore, it is 

necessary to. apply synchronisation mechanisms to control concurrent access to 

shared objects being distributed, which are provided by the threads themselves and 

not by external components as in RTN. CORBA, which is a standard for a 

distributed object systems, allows either single-thread or multi-thread ORB 

architecture. Therefore, if the single-thread ORB architecture is chosen, even 

though a distributed object may have more than one client, requests are forced to be 

processed in a sequential mode instead of concurrent mode as they naturally should 

6 As mentioned in chapter 3, the stretching technique in RTN, consists of introducing an activity in 
the IDA, which moves the data from the IDA to the next one, and therefore projecting the IDA to the 
other side. See extension taxonomy protocols in chapter 3 or e.g. IMAGE CHANNEL, 
PLA YBACKCHANNEL or XMLCHANNEL templates (in Appendix C-7, C-6 and C-8), which are 
stretched by using activities between simple IDA channels and forming by this means, the new 
templates called e.g. IMAGECHANNEL, PLA YBACKCHANNEL or XMLCHANNEL. 
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be; as mentioned before, a distributed system should be concurrent system. If the 

chosen CORBA architecture is multi-thread, CORBA provides three different 

design approaches: thread-per-request, thread-per-connection and pool-of-threads. 

Thread-per-request, as its name specifies, creates a thread at every incoming 

request; if there are many requests the server application may run out of resources 

because it has to deal with many threads. In thread-per-connection approach, a 

thread is created for every connection, forcing a server application to deal with 

many threads if the server has many clients, and it may incur in a thread creation 

overhead if the petitions are too frequent. In the last approach (pool-of-threads), at 

the start-up period of a system, a pool of threads is created; any non-busy thread can 

deal with a request: if all threads are busy the incoming request is queued. From the 

three approaches discussed, this is the most distributed approach and it follows the 

concept in RTN to bound the resources by knowing beforehand the resources that 

are going to be needed. 

4.7.3 Run-time 

Run-time support mechanisms, which are necessary in the construction of any real

time concurrent system, are focused on providing task scheduling policies, as well 

as mechanisms to support task communications and synchronisation. Also, these 

mechanisms need to provide support in the management of 110 interrupts and 

memory. The run-time support for concurrent tasks may be provided by the run

time support system provided by the concurrent language used or by the kernel of 

the operating system (e.g. in RTN this is called the MASCOT machine). These 

concurrent languages also handle task scheduling. On the other hand, if the run-time 

support is provided by a kernel, the kernel provides the task scheduling, it also 

provides the mechanisms for communication tasks and the synchronisation. In 

RTN, the scheduling strategy is left to the designer to allow the optimal algorithm 

for the application to be used, even though the MASCOT kernel machine usually 

applies a co-operative scheduling policy. 

In RTN, the MASCOT machine provides primitive operations for timing, 

synchronisation and control of the execution of activities. The scheduler (in the 

MASCOT machine) controls the execution of the activities and also it allocates the 
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processing time for each activity [IECCA and MUF 1983b]. MASCOT-3 provides 

two primitive operations for timing: DELAY (i.e. specifies the period of time, 

which the activity may be stopped) and TIMENOW (i.e. returns the value of time). 

The synchronisation only takes place at the access to IDAs and servers (i.e. in the 

access procedures). This synchronisation achieved by four primitive operations that 

provide the mechanisms for mutual exclusion of competing processes (JOIN and 

LEAVE primitives) and cross-stimulation of co-operating processes (STIM and 

WAlT). 

In CORBA, the run-time mechanisms to control the execution of clients and servers 

are specified in the ORB run-time properties, making these mechanisms highly 

dependent on each vendor. TAO is considered [CORBA 2005], at the time of 

writing, the high-performance real-time ORB for applications with deterministic 

and statistical Quality of Service (QoS). The TAO ORB Core uses multi-threaded, 

pre-emptive strategy with priority-based connection. The TAO's I/O subsystem 

assigns priorities to real-time threads. In [Marsden and Fabre 200 1] it is illustrated 

with empirical results how latency, throughput and the CPU processing overhead 

behaviour drifts using the same real-time ORB middleware (TAO) architecture in 

different real-time operating systems such as VxWorks, LynxOs and other 

operating systems with real-time extensions like Windows NT, Solaris or Linux. 

TAO uses Real-Time Event Service from CORBA to alleviate some restrictions 

with CORBA standard invocations. 

To apply efficient scheduling strategies, it is important to determine the boundaries 

of the endsystems (in CORBA terminology) or components of the system, to avoid 

non-deterministic behaviours from these components. In RTN designs, there is a 

restriction to the dynamic creation of components to bound the non-determinism, 

enforcing the minimisation of dynamic resources scheduling at run-time in the 

designs. Moreover, RTN designs are also thought of as mUlti-processor 

configuration to reduce process contention and with distributed shared memory to 

avoid memory access contention (dynamic invocations in DORIS notation implies 

'datarepository' elements, see Figure 4-20 and IMPLREPOSITORY in Appendix 

C-21, pp.305). On the other hand, in CORBA designs, there are no restrictions to 

the dynamic creation of components. In Figure 4-19, it is difficult to bound the 
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dynamic resources consumed in the interactions between the 'servant' activities 

inside CORBA_ SUBSYSTEM with the 'client' activities outside the subsystem. 

Note that in Figure 4-21 or Figure 4-26, the 'servants' activities have been drawn to 

express the existence of these servants, but they could be created dynamically. 

Therefore, it is not possible to determine e.g. how many servants are going to be 

created and active at certain point of time, arisen a possible non-deterministic 

behaviour in the boundaries of the CORBA_ SUBSYSTEM. 

4.7.4 Development aspects 

In MASCOT and DORIS, the development of an application from its design to its 

creation is defined in three stages [lECCA and MUF 1987c]: the status progression, 

the system building and the development configurations which includes a mapping 

process to distributed hardware. 

In the status progression stage, there are two main features: the modules that 

facilitate the elaboration of the design and the creation of an application software 

and a database which has an important contribution in the creation of these 

modules. In the status progression, a formal recognition of the development of the 

modules is carried out. The status value associated to each module provides a 

measure of this recognition. They are five different status values: registered, 

partially introduced, fully introduced, partially enrolled and fully enrolled. Once all 

the modules that constitute a system are fully enrolled it is possible to move to the 

second stage. Therefore, system building starts from a fully enrolled system 

template, and it produces a representation of this system in an executable form 

[IECCA and MUF 1987c]. There are different strategies employed in this stage and 

the target configuration for which the application needs to be built is considered: 

e.g. the number and type of processors available, the accessibility of memory from 

each processor and other requirements. In the last stage (i.e. development 

configurations) different hardware configurations appropriate for the MASCOT 

software might be discussed. 

As mentioned in the introduction of this chapter; at the time of writing, CORBA 

does not provide any appropriate development environment. Even though there are 
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some tools provided by different companies such as Rational Rose and ArtiSAN 

and recommended by the OMG, to help design CORBA applications, basically 

using UML, they do not provide an environment to develop the application from the 

design to the execution. 

4.8 Summary 

This chapter has further compared RTN and 00 approaches. The comparison in 

chapter 4 has been conducted by means of a case study. Therefore, a distributed 

real-time surveillance system solution called ADVISOR has been presented. This 

comparison focuses on the architecture design viewpoint for a distributed real-time 

system; issues such as communication, distribution, concurrency and run-time have 

been discussed. ADVISOR used a CORBA approach, which is an OO-based 

technology, as a solution to the design of its distributed architecture. Therefore, to 

continue the comparison discussed in chapter 3, this chapter has based the 

comparison between DORIS (the latest extension of RTN) and CORBA. It has been 

shown that even though CORBA may be a suitable solution for some real-time 

distributed applications like telecom systems, allowing an integration of different 

language platforms, it presents for the system requirements like ADVISOR, a more 

complex architecture design than RTN, as reflected in the figures presented here. 

The communication CORBA design of ADVISOR also illustrates that there is a 

strong coupling between the server and the client components (objects). In contrast, 

RTN avoids this coupling by using specific communication components that 

provide decoupling of the connected components. RTN designs attempt to create a 

network as . deterministic as possible by explicitly defining the number of 

components constituting the real-time network system at run-time. It has also been 

shown that RTNIDORIS provides a full development environment for the creation 

of software applications but not CORBA. As discussed, RTN solutions are intended 

for concurrent, distributed, real-time complex applications. RTN gives the 

principles and the tools to create them. For these reasons, RTN can provide the 

basis for the creation of a framework to help the development of distributed real

time surveillance systems. To explore this further, in chapter 5 a proposed generic 

distributed real-time surveillance system using RTN is presented. 
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5 Design of a Real-Time Distributed Surveillance 
System with multiple cameras 

5. 1 Introduction 

As mentioned in chapter 2, one of the requirements of 3GSSs consists in the on-line 

processing of data streams in real-time. Nowadays, this on-line processing may be 

possible to achieve thanks to the use of low cost imaging devices and embedded 

devices like Digital Signal Processors (DSPs) and to the steady increase of general

purpose computing power. As concluded in chapter 4, to meet real-time requirements, 

these systems should manipulate data streams in concurrent environments, designed by 

taking into account scheduling and synchronization issues. In the visual surveillance 

field, until now this has been mainly solved by building specialised systems using ad

hoc designs and implementations which sacrifice flexibility and performance [Fran~ois 

and Medioni 2001]; issues which are important in large scale systems. This chapter 

proposes a generic, extensible modular software architecture design of a 3GSS using 

RTNIDORIS. 

In this chapter, the designed system is presented graphically, following its hierarchical 

structure. Thus, the system is illustrated level by level to finish with the final network 

of activities and passive elements used to communicate (like IDAs) or to storage 

information (called repository data elements). In section 5.2, the first level of the design 

is illustrated by' presenting the functional definition of the system. Moreover, all the 

RTNIDORIS elements used to design the system are also introduced in this section to 

give a reference to the reader. In section 5.3, the different functional definition of the 

modules that compose the system are presented and discussed. These modules are 

grouped in three main parts depending on their functionality; data processing, control 

and feedback parts. A distinction between the different types of data that are used in the 

system is also presented in this section. 

In section 5.4, the design of the system architecture is presented. Note that the proposed 

designed system expresses how the software structure of the system (the system 
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architecture) should be designed, but the physical structure of the system is not 

discussed. In section 5.5, different topologies for multimedia system applications are 

presented, based on the networking literature. After this introduction to network 

topologies, section 5.5 presents a discussion on different network topologies that were 

proposed for the system design. After the discussion, a final network topology for the 

software structure proposed in previous sections 5.3 and 5.4 is then presented. 

Following this section, section 5.5.2 discusses the representation and design in RTN of 

a specific traffic behaviour (multicasting) heavily used in surveillance systems. In 

section 5.6, the management of the Quality of Service (QoS), which is an important 

issue for distributed multimedia systems, is discussed. There, QoS is discussed in terms 

of bandwidth and the selection of scheduling polices. Finally, section 5.7 finishes this 

chapter by summarising the obtained conclusions from the creation of the design of a 

large-scale surveillance system using RTN. 

5.2 First level of the system design 

This section describes the functionality of the proposed system architecture design 

focusing on functional definition (section 5.2.1) and then on a brief discussion of the 

RTN components used in this design (section 5.2.2). 

5.2.1 Functional definition of the system 

Figure 5-1 illustrates the functional definition of the system. It presents the system as a 

network of three functionally different types of subsystems or nodes: 

• The Data Processing Unit node (DPU): is the node where the sensors (e.g. 

cameras) are connected. Most of the on-line and off-line data processing 

coming from the sensors is done in these nodes. 

• The Communication Control 0 node (CCO): this node interfaces users with a 

DPU. Therefore, a user can change a configuration parameter of a DPU through 

a CCO. The CCO node also stores the information of all DPUs connected to the 

same CCO and allows the user to visualise the outputs coming from any DPU 

node that is connected to the CCO. 
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• The Communication Control 1 (CC1): this node visualises any output coming 

from any DPU. The CCI node also provides storage for the information of all 

CCO nodes that are connected to the CC 1. 

Similar to ADVISOR in chapter 4, in the functional design of the system there is a 

local node (CCO) that visualises the data processing outputs from the nodes that are 

connected to it, and there is another central node (CC1), which can visualise the 

outputs coming from all data processing nodes. Therefore, even though the nodes are 

functionally independent, the system has a hierarchical structure from the visualisation 

and the structural organisation (system user control) points of view. Figure 5-1 

illustrates this hierarchical network structure. The system is designed as having three 

different levels. The top-level is represented by CCI nodes, the second level by CCO 

nodes and the low-level of the hierarchy is represented by DPU nodes. DPUs only 

process the signals coming from the sensors. The rest of the nodes (i.e. CCO and CC 1) 

analyse the alarms and visualise the data coming from the sensors. The system follows 

the user hierarchical structure that wide-area surveillance systems have (there are local 

control operators that survey a local area). In first upper level (CCO), the operators 

control one zone, i.e. more than one local area. In the following upper level (CCI), the 

operators survey all zones. Figure 5-1 describes two levels of surveillance control 

through CCO and CC 1. The distinction of two main functionalities in the system i.e. 

data processing expressed in the design through a DPU node and visualisation and 

organisational control through the design of CCx 1 nodes, is a similar idea that appears 

in some research work reported in [Marcenaro et al. 2001] and in [Christensen and 

Alblas 2000]. 

In [Marcenaro et al. 2001], the functionality of the system is mainly divided by sensor 

and hub nodes. All sensor nodes are connected to hubs. They present an empirical 

discussion in terms of performance and bandwidth allocation, about the distribution of 

the data processing tasks in the sensor or hub nodes. The authors state that in a 

1 In this chapter, because the functionality is similar in CCO and CCI, these nodes are generalised by the 
terrnCCx. 
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surveillance system that is constituted of several cameras (with embedded DSPs) 

connected to a hub and which remotely sends processed data to an operator, it is better 

(empirically proved) to allocate the embedded lowlhigh-Ievel signal processing tasks 

performed in the system, on the hub node if the number of cameras is less than two (for 

a high processing power of the cameras (i.e. the embedded DSP of the cameras) like 

e.g. 450 MHz). It is also better to allocate the tasks in the hub node if the number of 

cameras is less than six (for low processing power cameras such as 200MHz). 

Otherwise, it is better to allocate the tasks on the cameras rather than in the hub. 

[Christensen and Alblas 2000], as mentioned in chapter 2, present the design of a 

surveillance system with three cameras. The design consists of three "crunchers" nodes 

that realise the low-processing of the signals corning from the three cameras. Thus, 

each node is attached to a camera. In that work, the functionality of the design system 

is also divided in two main parts: the "crunchers" nodes and the "hub" or "data 

analyzer" node. Each cruncher is also attached to a local database. The nodes are 

communicated between them in a fault tolerant way using a mesh network structure. 

There is another (i.e. the "data analyzer") node that analyses the processed data coming 

from the crunchers and this node is connected to a global database. Apart from all this 

nodes, there is a monitor node that is connected to one "cruncher" and that allows to 

visualize the signals coming from the crunchers. In this case, the authors follow the 

idea of embedding the low-level tasks including a local archive in each camera (three in 

their case) and to allocate the high-level processing tasks, including a global archive, to 

a "hub" node. 

The network structure of the system proposed here consists in a hybrid of three 

different network architectures, which is discussed in more detail in section 5.5. The 

design decision of the network structure comes from a compromise between fault 

tolerance and scalability. Note that, even though in Figure 5-1 only CCO and CCI 

appear, the design of this system is intended to be as scalable as possible. Therefore, it 

is possible to scale the system by introducing a CC2 node, which introduces another 

level in the structure of the system, allowing the integration of another hierarchical 
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level in the system. However, this might not be necessary nor advisable, because the 

system can, in fact, grow without introducing another level (with the consequent 

complexity that this implies). 

The main difference between what is proposed in [Marcenaro et al. 2001] and 

[Christensen and Alblas 2000] and what is proposed here, lies on the functional 

definition of the "hub" node. In [Marcenaro et al. 2001] and [Christensen and Alblas 

2000] the functionality of the "hub" node is to concentrate the signals coming from 

"sensor" nodes, and to apply some high-level processing tasks (depending on the 

number of sensors that are attached and on their power capaCities). In this proposed 

design, the "hub" node or CCx node does not only concentrate the signals but 

visualises and controls the signals coming from the "sensor" nodes or DPU nodes. 

Moreover, the CC1 nodes also control the signals coming from the CCOs. 

Furthermore, [Christensen and Alblas 2000] work relates to the design of a specific 

system using three cameras with high processing capacity, while the design proposed in 

this chapter is independent of the number of cameras and their power capacity, because 

these matters are more appropriately dealt with in the physical mapping phase instead 

of the design phase. Therefore, note that in the proposed design, there is no discussion 

of the physical distribution of the tasks at this level of the design because as, mentioned 

in chapter 3 and chapter 4, the design phase of a system using Real Time Networks is 

transparent to the physical distribution of the tasks. This is in fact, a strength of the 

method. 
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Figure 5·1. Functional representation of the system. 
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5.2.2 RTN components used in the design 

Table 5-1 lists some of the components used in the design of the system. The 

component that represents the system as a whole is called LSNSS (an acronym for 

Large Scale Intelligent Visual Surveillance System). Inside this system there are other 

subsystems, which represent the previously mentioned eeo, eel and DPU nodes. The 

design of the system is intended to be as modular as possible. The subsystems are 

designed as groups of elements that have the same functionality and that are 

independent of the rest of elements than do not belong to the same subsystem. The only 

connexion to the outside of the subsystem it is done through ports, windows and 

servers. The server components are used to represent the interaction of the system with 

the outside world. The system interacts with the user through a server called e.g. 

Screen, which represents a computer to visualise the outputs, and a server called e.g. 

Kboard, which represents a computer to allow the user to send commands to the 

system. 

RTN COMPONENTS MAIN DESIGN TEMPLATES NAMES 

System 

Subsystem 

Activities 

Protocols 

Protocols 

datarepository 

Server 

LSNSS 

eeo, eel,VISUAL 

OD_OR 

A_E(signal), CC(pool), S_I(channel), TRIGGER (flash) 

S_DATA_IN(RPC), S_DATA_OUT(RDS) 

LocaCDPU_Info, LAR, DPU_info_Module. 

Screen, Kboard, camera 

Table S-I.Summary of some of the RTN components that appear in the proposed design system. 

Therefore, one of the design decisions has been to group each node in different 

subsystems representing the different functionality of each node in the initial functional 

design. The eeo node is represented by the subsystem called eeo, the ee 1 node is 

represented by the eel subsystem and the DPU node is represented by the subsystem 
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called DPU. Inside each of these subsystems there are more subsystems. For example, 

the subsystem called VISUAL (part of CCO) represents the visualisation part of the 

system. The description of the different components of each subsystem is presented in 

section 5.3. 

Another important design decision corresponds to the final number of activities into 

which each subsystem is decomposed. As mentioned in chapter 4, a network that is 

designed with too many activities may carry out a penalty in the performance of the 

system, because each activity that represents a thread also involves a context switch. To 

design the system with too many activities implies a system with a possibly 

unnecessary number of context switches which may reduce its performance. Even 

though there seems to be no method that allows the calculation of the number of 

activities that is required in a specific application design, as a rule of thumb [IECCA 

and MUF 1983b] advice that the activities should have few ports. If an activity has 

more than two input and output ports it may be necessary to decompose the activity 

further. However, some of the designed activities that are presented in this chapter have 

more than two inputs or ports, because in order to carry their work, the activities need 

more than two inputs (which it is quite common for the design of surveillance systems 

architectures) or because the output resulting from these activities should be sent to 

different parts of the system. 

In the design presented in this chapter, each required image processing algorithm such 

as motion detection, tracking or behaviour recognition has been represented by an 

activity. Therefore, some of these activities have more than two input ports or more 

than two output ports, such as the activity that represents the motion detection 

algorithm. This algorithm for example requires (as an input) the image from which the 

algorithm has to detect the motion parts, and it also requires (as an input) the 

background image to be able to extract the motion components (please see the 

diagrams in Appendix B). Therefore, the activity that represents the motion detection 

algorithm has at least two input ports. 
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The actual nature of the communication between activities orland subsystems 

determines the types of protocol should be used. It is possible to reflect such needs 

clearly in the design, because RTN provides a rich family of possible protocols (e.g. 

compared to CORBA). Therefore, the use of the protocols that appear in Table 5-1 (e.g. 

signal and flash) to communicate the subsystems and the activities, becomes another 

important design decision. [Haveman 1997] illustrates through mathematic analysis the 

difference in time performance between using a pool or a signal protocol to 

communicate two subsystems. The protocols used in the proposed design are the signal, 

flash data, channel, pool, constant, RPC and RDS protocols (please refer to Figure 3-3 

and Figure 3-5 to see the taxonomy of the RTN protocols). As presented in Figure 3-3, 

the writer is never blocked but the reader may be blocked using a signal protocol. 

Therefore, this protocol is used when the data to transmit between activities or 

subsystems is sporadic such as alarm events or control signals. Flash protocol, as 

mentioned in chapter 3, is a variation of signal protocol and represents a signal protocol 

with zero buffer capacity. In the pool protocol, neither the writer nor the reader are 

blocked, then this protocol is used with periodic signals such as the input signals 

coming from the sensors or background actualisations. Moreover, the use of a pool 

protocol implies full asynchronous communication between the activities and therefore 

the use of this protocol provides temporal independence between the communicating 

activities. Finally, in the channel protocol, either writer or reader can be blocked. This 

is used to represent message passing communication between the activities, or used 

when a synchronisation on the communication is required such as the communication 

of configuration data parameters. 

The last component used in this proposed design is the datarepository component ( 

Table 5-1). This component is used as an archive to permanently store data such as the 

information of each node (location. ID) and to storage images coming from the sensors 

and events detected by the system. To put and obtain data stored in this datarepository 

component in a synchronous manner other types of RTN protocols are used i.e. RDS 

and RPC (please see Figure 3-5). 
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5.3 Functional description of different parts of the design 

In terms of requirements, surveillance systems should transmit video effectively, 

should allow the visualisation of video scenes to aid real-time monitoring, should 

facilitate the extraction, processing and access of objects and events in real-time, and 

should recognise scenarios. All these requirements are grouped in different parts in the 

proposed system design. 

The system has five different constituting parts: monitoring units, data processing and 

archive units, communication units, control units and feedback units. Apart from 

section 5.3.1, which describes the type of data used in this system, the following 

sections describe in detail each of these parts of the system but not the communication 

unit because each communication unit is defined separately as a group of some of the 

protocols mentioned in the previous section. 

5.3.1 Classification of data used in the system 

To design a system it is important to define and to classify the type of data that the 

system requires and uses. Apart from the input data coming from the outside world, 

there is some data that it is used inside the system, which may suffer transformations 

while is used or transmitted through the different parts that constitute the system. These 

transformations may be important and therefore they are required to be stored even 

wh,en the system is not working. This type of data is defined as persistent data. If these 

transformations· are used as intermediate data between modules then these data are 

defined as a volatile data. As mentioned in chapter 2, there is a growing research on 

establishing standard formats data for surveillance systems. For example, in ADVISOR 

the input images data coming from the sensors or from the archive are JPEG images 

while the rest of the data corresponding to the description of events or the system 

information setup are defined as XML streams. A poor selection of the input format 

data of the system may reduce the performance of the system. In [Mahonen and 

Saaranen 2000] the authors classify the use of different image formats such JPEG or 

MPEG2, MPEG4 for different multimedia applications. 
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5.3.1.1 Persistent data and local storage 
Different types of persistent data that exist in the system, produce the creation of 

subsystems that are different depending on the use of this data and on the number and 

the ways in which this persistent data needs to be accessed. There is persistent data that 

it is used only by some algorithms that are implemented in the system; e.g. a 

background estimation algorithm produces the background of an image, which is 

required by other algorithms such as motion detection or tracking. Therefore, the 

background image data should remain in the system permanently so that other 

components in the system can consult and obtain the data. The background estimation 

algorithm not only creates the background image but it also actualises it. Therefore, this 

type of data such as background image data, should not only remain in the system but 

should be constantly updated. In this design, the pool protocol is used to store this type 

of persistent data (because the reader cannot destroy the data (Le. reference data) but 

the writer can always update, destroying previous values). 

Another type of persistent data that should remain in the system but in this case which 

is not necessarily updated, is data that has been obtained from an off-line process such 

as the 3D scene model of the place from where sensors are capturing the data. In the 

case that the sensor is a camera, the camera calibration parameters may be considered 

as persistent data, which also do not require to be updated (if the camera is fixed). For 

this type of persistent data, the constant protocol is used, because once the data is 

inserted in the protocol only the reader can interact with the data without being able to 

destroy the data. 

The persistent data that not only is used by the system but by the user too, is stored in 

the archive component illustrated in Figure 5-2. This component represents the archive 

of images and events recorded by the system that the user can consult and visualise. As 

seen in Figure 5-2, the LAR component has one incoming signal and two output 

signals. The Trigger signal is used to register error signals from the archive component 

such as "the archive is full" (see Gar_Data in Appendix D). The Asynchln, as the name 

implies, is used to insert data in the datarepository component in an asynchronous 
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manner. The signal called AsynchOut is used to retrieve data, also in an asynchronous 

manner. 

A sync hO t u As hI mc n T· n gar 

LAR 

In8·'Ufa1a I I I ...... 

I 
.." 

:data repository 

Figure 5·2. Local ARchive (LAR) component. Note that in Appendix D this subsystem the signal 

Trigger does not appear. 

Another type of persistent data is used either by the user or by the system to have 

information of the organisational structure of the system includes information such as: 

the number of cameras in the system, the number of DPUs, the number of eeo and the 

number of eel nodes, or the links of coverage areas between DPUs (this is explained 
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below). As mentioned, several designed subsystems contain different datarepository 

components that store this type of information (Figure 5-3, Figure 5-4, Figure 5-5 and 

Figure 5-6) as explained in some more detail now. 

Figure 5-3 presents the LocaCDPU_info_MODULE subsystem. This subsystem has a 

data repository component that contains the local information of a DPU node. As 

shown in Figure 5-3, this local information consists of the ID of the DPU node, the 

number of sensors (e.g. cameras) connected to the DPU node, camera parameters, 

parameters needed by some algorithms like thresholds and a description of the zones 

covered by the cameras. If there is a zone covered by more than one camera, i.e. a link 

between cameras, the link information and the cameras ID that are linked are stored. 

Finally, the link between DPUs and the ID of the DPUs linked is also stored. All this 

information is used by the CCO node to which a DPU is connected and it is also used 

by different activities that a DPU contains. Therefore, there are two different types of 

access to the datarepository component. One of the accesses is done by the three 

activities that appear in Figure 5-3, i.e. CIUcc, CIUdpu and L_ToDPU that deal with 

requests to get and put information. The requests to CIUcc and CIUdpu come from the 

CCO and the requests to L_ToDPU come from another DPU. The CIUcc is waiting for 

a sporadic control signal coming from the CCO asking for some information stored in 

the datarepository. Once the CIUcc receives the signal, it gets the required information 

and sends it back to the CCO. At the same time the CIUdpu inserts the information that 

receives from the CCO. The other type of access to the datarepository is coming from 

the activities that the DPU contains (see Asynch out and Asynch in signals in Figure 

5-3). This is similar to the access processes in the local archive illustrated in Figure 5-2. 
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Figure 5-3. The design of LOCAL_DPU_info_MODULE. 

Figure 5-4 presents the subsystem called DPU_info_MODULE. This subsystem deals 

with the information needed by the CCO node. The data information that this subsystem 

retains is similar to the data information stored in Local_DPU_info_MODULE. 

However, data such as the camera parameters or constant parameters that some 

algorithms in a DPU require, are not stored in the data repository component of the 

DPU_info_MODULE subsystem, but instead are stored in the LocaCDPU_info_ 

MODULE module. In the DPU_info_MODULE subsystem, the data is inserted by the 

two activities that appear in Figure 5-4; i.e. CItoDPU and addInfoDPU, and the data is 

retrieved by a CCI node through the ToCCI activity, (see Figure 5-4). CItoDPU sends 
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sporadic signals to each OPU that is connected to the CCO node. Once CItoOPU sends 

one signal to one OPU, it checks periodically when the data information coming from 

that OPU has arrived (through the data channel, see Figure 5-4). The data information 

consists in the ID of the OPU, the number of cameras attached to this OPU, the links 

that this OPU has with other OPUs and the areas that this OPU shares with other OPUs. 

Therefore, the functionality of the CItoOPU activity is to collect and store all the 

information of the OPUs that are attached to the CCO node. Once this information is 

received, the CItoOPU stores this data in the data repository component. In parallel, the 

addInfoOPU activity may receive data coming from a CCI node, for example if a user 

in the CCI node needs to change a parameter such as a threshold or a camera position 

in a specific OPU, the signal containing this change information is sent to the 

addInfoOPU activity (through the ToaddInfoOPU interface, see Figure 5-4). 

Afterwards, addInfoOPU stores the received information and at the same time it 

transmits the information to the corresponding opu. At the same time, CCI may 

retrieved data from the CCO node (e.g. number of OPUs that are connected to the CCO 

node) in asynchronous manner (please see Asynch Out and Asynch In from ToCCI 

activity in Figure 5-4). 
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Figure 5·4. Decomposition of DPU_info_MODULE subsystem. 

Figure 5-5 illustrates the design of the CCO_info_MODULE subsystem. This 

subsystem deals with data that is used by CC 1 nodes. The data information, that the 

datarepository component of this subsystem stores, consists of: number of CCO 

connected to the CCI node, the ID of each CCO and the DPU information of the each 

DPU connected to this CCO. There are two types of access. One of the accesses is done 

by the activity called CIUcc. This activity sends a signal sporadically, to each CCO 

node that is connected to the CCI node asking for the information of the CCO (i.e. the 

information stored in the DPU_info_MODULE subsystem). Then, CIUcc checks 

periodically for the arrived data. Once the data is in the buffer, CIUcc reads the data 
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and stores it in the datarepositorty component. The other type of access is used by 

another subsystem that it is contained in the same CCI node (i.e. VISUAL_CC 

subsystem), which is discussed later on. This access is the same as the local archive 

shown in Figure 5-3 (see CCO_PetiVisual activity in Figure 5-5). 
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Figure 5-5. Design of CCo_info_MODULE. 
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Figure 5-6 represents the subsystem called CC1_info_MODULE. This subsystem also 

deals with data that is required by CCI nodes. The information archived in this 

subsystem corresponds to information of the CCI node itself, information about other 
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CC1 nodes that the CC1 has been able to retrieve and also information about the DPUs 

that are connected to these neighbours CCI. This information is stored because it may 

be used when the CC1 node needs to get some data from a DPU that is not connected 

directly to it, but connected to another CC 1. All these datarepository subsystems and 

their connections are needed to communicate for example, a Station A, which is 

attached to a CCC1 node (that surveys zone 1), with a CCC2 node (which surveys 

zone 2, but requires information from Station A). Note that, one or more DPUs are 

located in Station A. 

At the same time, this information may be used if the system is scaled and upper level 

control nodes are added such as CC2. A CC2 subsystem would use afterwards this 

information to get the information of the organisational structure of the system and to 

know which CC1 nodes are connected and consequently which CCOs and DPUs are 

connected directly to the CC2. 

There are three different types of access. One of the accesses is done by the activity 

called TPC. When this activity receives sporadically a signal requiring information, 

TPC retrieves the information from the datarepository component and sends it back to 

the CC1 node that asked for the data. In parallel (i.e. the second type of access), a 

CIUdpu activity puts in asynchronous manner the data that it had previously required 

from another CC 1 node. This information consists of the ID and the location of a DPU. 

This information is used by the CC 1 node to connect to the DPU. Therefore, when 

CIUdpu gets the information, it not only stores it, but it also sends it back to another 

subsystem in a CC1 node (i.e. the VISUAL_CC subsystem) through PetiVisual 

activity, which uses this information to connect with the specific DPU that is attached 

to another CC1 node. The third type of access is the same as the local archive access 

that Figure 5-3 and Figure 5-5 illustrate. See Asynch In and Asynch out in Figure 5-6. 
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Figure S-6.Design decomposition of CCCinfo_MODULE. 

The last type of persistent data that is found in the system is, as Figure 5-7 illustrates, 

the data information about the profiles of any user connected to the system. This data 
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information is important to control access to system information by different types of 

users. Moreover, this information can also be used to track the number of mobile users 

that are connected to a CCx node at any time. Therefore, if any alarm happens, the CCx 

can warn any user connected at this time, if the user has the right permissions. Then, 

when a user connects to the system, it sends a signal with hislher profile to the 

DB_User activity in Figure 5-7. Then, this activity registers this user in the CCx node 

by inserting the user information in the datarepository component. Once an alarm event 

is raised, a signal to the Search_User activity is sent and then this activity looks up into 

the datarepository component if there is any user connected at that moment, who 

should be warned by this alarm. If there is any user, then it sends the alarm through a 

toDA signal to the user or users. 
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Figure 5·7. Composition of the subsystem called Locator_user. 

5.3.1.2 Volatile data 
Volatile data is by definition transient and there is no need to store it, as occurs with 

persistent data. In the design, data that is used between activities, is considered volatile. 

For example, the data that any of the activities in the CCLinfo_module (see Figure 

5-6) receives from other subsystems such as TPC through the flash protocol, is 

considered volatile data, until it is stored in the datarepository component. 

5.3.2 Monitoring part of the design 

The functionality of the monitoring part of the system consists in visualising: the 

processed data such as alarm events, archived images or live images. There are three 
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subsystems in this design whose functionality is to monitor signals in the system. This 

is shown in Figure 5-8, Figure 5-9 and Figure 5-10 and described in some detail below. 

As mentioned in section 5.2, besides the data processing functionality represented by 

DPU nodes, there are other functionalities which are grouped and represented in eex 

nodes. One of these functionalities is to monitor the outputs from DPUs. Therefore, 

each eex contains at least one subsystem whose functionality consists in allowing a 

user to visualise constantly the results produced by the system. Figure 5-8 illustrates 

one of these subsystems, contained in ceo, called the VISUAL subsystem. This 

subsystem allows the visualisation of real time images from any DPU connected to this 

ceo, if and only if the user that is connected has the permissions to do it (see the server 

component called "Kboard to user permissions" in Figure 5-8). The VISUAL 

subsystem also allows monitoring archive images and the alarms that are raised by the 

system. There is another server called "Kboard to choose DPU" that allows a user to 

change the visualisation to a specific DPU. If the user chooses this option, this "Kboard 

to choose DPU" server receives a signal that will send it to the "choosen DPU" activity. 

This activity will send this signal to the right DPU so that the VISUAL subsystem can 

start to receive inputs from this specific DPU. 

Moreover, the VISUAL subsystem may receive either real time data or alarm event 

data and also playback data from other eeos if the user sends through "Kboard to 

choose DPU" server a signal (see "send a signal to eel to visualise a DPU from 

another ceo" in Figure 5-8) to the ee 1 asking for data of a DPU that is connected to 

another ceo. Note that this data comes from the eel instead of the ceo, where the 

DPU is connected, because there is no direct connection between eeos. 
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Figure 5·8. The design of the subsystem called VISUAL. 

Figure 5-9 represents the visual subsystem called VISUAL_CC used in CCI nodes. 

The main difference with the previous VISUAL subsystem is that, in VISUAL_CC it is 

possible to visualise data from other CCls (i.e. from other DPUs that are not connected 

directly to the CCI node). The DPUs that are connected directly to a CCI are the ones 

that are connected to one of the CCOs, which is connected to the CCI directly. In 
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Figure 5-9, for example, three different "real time image data" signals are shown. One 

of these three signals represents the data that may come from any of the OPUs that is 

connected to the CCI directly. The other signal represents the data that is received from 

a different CC 1. The third signal represents the real-time data that the CC 1 sends to 

another CCI node that had required it. This real-time data comes from one of the OPUs 

connected directly to the CCI. This data is sent only if the CCI receives a request 

signal illustrated in Figure 5-9 as "Gets request from another CC 1 to send data". 

Therefore, in VISUAL_CC subsystem, a user can ask for data coming from a OPU that 

belongs to another CCI. To do that, a signal is sent to the "Choosen OPU" activity to 

look for the location and ID of the OPU, from which that user wants to monitor, in the 

CCCinfo_module and the CCO_info_module. If the information is not stored into the 

CC1_info_module and the CCO_info_module yet, the CCI communicates directly with 

each neighbour CC1, until it gets the information. Once it receives the information, it 

archives the data in both subsystems i.e. CCCinfo_module and the CCO_info_module. 

It establishes then the connexion with the CC1, where the OPU is connected, to get the 

data. 
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Figure 5-10 illustrates the subsystem called MOBIL_USER that represents the 

interaction of the system with a mobile (roaming) user. Any CCx node contains this 

subsystem. The subsystems presented above in Figure 5-8 and Figure 5-9, represent the 

interaction of the system with fixed users e.g. through desktop computers. Besides 

these subsystems, a user may be monitoring areas outside these fixed monitoring 

points. Therefore, it should be necessary to allow the system to interact with these 

mobile users, who may be anywhere in the coverage area of the CCx node. A user 

connects to the system and then, sends hislher user ID and profile user to Val activity, 

see Figure 5-10. This activity checks the received information with the information 

stored in the constant protocol; i.e. the constant protocol has the information of all 

possible user profiles in the system. Therefore, depending on the type of profile, the 

user will have one or more access rights. After comparing the inserted data with the 

persistent data, the Val activity sends a signal to the DA and CIU activities. The DA 

activity will receive a signal that indicates that the user can or cannot receive alarms of 

one type or another (e.g. the user may be interested to receive alarms concerning 

crowd situations but not concerning security situations such as people being in 

forbidden areas). In the same way, the crn activity will receive a signal indicating 

which data the user can visualise. 
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Figure 5-10. The design of a subsystem that represents a visual subsystem for any mobile user. 

5.3.3 Data processing part of the design 

Although this part of the system deals with all data processing coming from the sensors 

that are particularised to cameras in this chapter, it does not reduce the generality of the 

system design as the sensors still can be of different types such as audio or fire 

detectors. The cameras are represented by servers that the CA subsystem contains, see 

Figure 5-11. Some of the image processing algorithms that have been taken into 

account in the design of the system are the ones that are represented in the image data 

processing flow introduced in chapter 2 (see Figure 2-1). As presented in Figure 5-11, 

object detection and object recognition algorithms are represented by the OD&OR 

activity. The tracking algorithm is represented by the TR activity. The behaviour and 

activities analysis algorithms are represented by the scenario recognition activity (SR). 

Moreover, the background actualisation algorithm is represented by BU activity. 
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The rest of the activities that appear in Figure 5-11 do not correspond to image 

processing algorithms but to the control and also to the analysis of the results coming 

from these image processing algorithm activities; e.g. if the RA activity gets a signal 

from the SR activity it means that the SR activity had recognised an alarm event. When 

RA receives this signal, it checks if it has any control data coming from the CCO node 

through the PC_AL activity such as: feedback alarm data, indicating that this kind of 

alarm event is not an alarm, or new configuration alarm parameters. After checking this 

data, if the RA activity still considers that this is an alarm event, it sends a control 

signal to the TI activity allowing it to send (to the VISUAL subsystem in CCO node) 

the images that the sensor is capturing while the alarm is occurring. Moreover, the RA 

activity also sends this data alarm event to the archive component to store it. If TI does 

not receive a signal from RA, it will not send any data to CCO node. TI receives the 

images coming from a SA activity, which only gets the capturing images at the same 

time that OD&OR activity. The SA activity sends the images to TR and TI; it does not 

do any processing action in the received images. Therefore, this activity only maintains 

coherence between the inputs (i.e. the images received from the CA subsystem), from 

the OD&OR, TR and TI activities. The TR activity, for example, requires the outputs 

from the OD&OR activity and also requires the same input image that the OD&OR 

used to obtain the outputs. On the other hand, if there is any recognised event, the TI 

activity should get the same input image that the OD&OR and TR activity have used to 

detect the event. 
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Figure 5-B. DPU subsystem. The sensors are attached to this subsystem through the CA 

subsystem. 

The PB, PBUI and PBC activities in Figure 5-11, manage the archive component as 

explained above. The PBUI activity receives sporadic control signals coming from a 

ceo node. Once the PBUI activity receives one of these control signals, it sends a 

signal to PB to send archive data to the monitoring subsystem in ceo. The PBC 
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activity controls if the archive component is working properly; e.g. if the archive 

component is full, it triggers a signal to PBC indicating that the archive cannot store 

more data. 

The FA, PC_AL, TPC_SR, PC_SR, PC_TR, TPC_TR, TPC_OR and PC_OR activities 

communicate the image processing algorithm activities such as SR (Scene 

Recognition), with the control part of the CCO node or with other DPUs. Therefore, 

from the CCO node it is possible to change control parameters related to the algorithms 

such as thresholds through the PC_OR, PC_TR, PC_SR and FA activities. Moreover, a 

DPU may also send to the corresponding activity that belongs to another DPU, data 

that may be important to run the corresponding algorithm more accurately. If two 

DPUs overlap areas, or their cover area is defined as dependant, i.e. one DPU covers 

the corridor that connects with a platform and the other DPU covers the platform and 

they are tracking an object, then it is necessary to provide communication between 

these two DPUs. This is a very important feature of a distributed surveillance system. 

Therefore, the TPC_TR, TPC_OR, TPC_SR and PC_AL allow sending information 

from one DPU to the other (see the bidirectional arrow in these activities in Figure 

5-11). 

On the other hand, TPC_TR, TPC_OR and TPC_SR store the information received 

from either the image processing algorithm activities or other DPUs, in the local 

archive i.e. LOCAL_DPU _info_MODULE (see Figure 5-11). In the case of FA, the 

information to be stored may come from either the CCO node or other DPUs. 

5.3.4 Feedback part of the design 

As mentioned above, the FA activity receives a signal from a CCO node. This signal is 

sent by the Alarm Feedback Control subsystem that is inside the CCO subsystem. 

Figure 5-12 presents the Alarm Feedback Control subsystem. The signal called 

"feedback alarm to DPU" indicates if the alarm, that has been detected by the system 

and sent back to the user, is considered to be a real alarm or not; i.e. if a user considers 

the alarm a true or false positive. Therefore, this signal is important because it allows 
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the system to learn through this feedback. If a user considers that this alarm event 

received is a false positive it sends a feedback signal to the DPU, so that next time 

when the same conditions happen, the RA activity in a DPU subsystem (see Figure 

5-11) might decide not to send any alarm event. It is also possible that this feedback 

signal comes from the CC1 node instead of coming from the user in CCO node (see 

"feedback alarms from CC1" from Figure 5-12). 

The Alarm Feedback Control subsystem also sends a signal to the PBUI activity in a 

DPU (see Figure 5-11). Therefore, if a user wants to monitor data stored in the archive 

component in a DPU, it sends a signal through the "Kboard Alarms" server component 

and consequently through the CUI activity to PBUI. As mentioned, if PBUI receives a 

signal, it then sends another signal forcing the PB activity to start sending the images 

back to VISUAL subsystem in CCO (see Figure 5-8). The design of this system takes 

into account the existence of a global archive data of true positive alarm events per 

node; i.e. each CCO subsystem has an archive component that stores the alarms that 

have been checked out previously by the user as a true positive alarm event. The reason 

behind this is that, with the same size as the rest of archives, the global archive (called 

GAR data) is able to store more interesting data, because it only stores the alarm events 

and not the constant recording data as the local archives do. Therefore, a global archive 

of an alarms event per zone is designed. 
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Figure 5-12. The ALARM FEEDBACK CONTROL subsystem that represents a feedback part of 

the system. 

Figure 5-13 presents the ALARM FEEDBACK CONTROL CC1 subsystem, which is 

contained by a CC 1 node. As is the case for the CCO node, the CC 1 node may be 

alerted by any alarm event that occurs in any of the DPUs under its control. For that 

reason, a CC1 node is also able to give a feedback on these alarm events, see "feedback 

alarms from CC1" signal in Figure 5-13. The ALARM FEEDBACK CONTROL CC1 

SUbsystem, through its "Kboard Confi~parameters" server component, may also send 

a configuration parameters control signal to any DPU that is under its control. This 

signal, called "From CC1 to AddinfoDPU" (see Figure 5-13), sends the information to 
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the archive module explained before, called DPU_info_MODULE (see Figure 5-4), 

which all eeo nodes have. These new parameters are archived in the 

DPU_info_MODULE, and at the same time, sent back to the corresponding DPU. So, 

through this subsystem the eel node may also change parameters of configuration of 

any DPU that is under its control. 
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Figure 5-13. The ALARMS FEEDBACK CONTROL CCI subsystem that represents a feedback 

part of the system. 

5.3.5 Control part of the design 

Another important design decision is related to the design of the control parts of the 

system. By this, we mean the control signals that enable the system to add or change 
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parameters, monitor different outputs of the system and to get information about the 

whole structure of the system. The control nodes CCx raise most of these control 

signals. These control signals are different from data signals, in that they are created to 

activate an action (event) such as to visualise outputs from the system, change or add 

parameters. 

Figure 5-14 presents the CONFlG_MODULE subsystem that deals with the processing 

of all the signals that are coming from the outside of the system. These signals are 

generally related to adding or changing parameters of any of the components in the 

system. Therefore, through this subsystem a user is able to reconfigure some 

parameters of different parts of the system. A user may change the parameters of the 

cameras through the "Kboard to control camera" server in Figure 5-14. Moreover, a 

user may also, for example, want to change the thresholds that some algorithms use 

through "Kboard to Confi~parameters" server. If one of the scene recognition tasks is 

to detect crowded situations, the SR activity (see Figure 5-11 or the crowd detection 

algorithm design diagram in Appendix B) applies appropriate thresholds to determine if 

the scene (i.e. crowded situations) is recognised. Therefore, if the user changes these 

parameters the SR activity has to change the thresholds to the new ones to recognise 

the scene according to the new parameters. 

Another parameter that a user may want to change or add is the location of a DPU 

through the "Kboard to info location" server in Figure 5-14. Note that, all these 

changes alter persistent data, so that the Confi~module subsystem sends these 

parameters to the corresponding DPU and camera, and at the same time it stores the 

data in the DPU_info _MODULE (see Figure 5-4 and Figure 5-14). The ToCCI 

activity that appears in Figure 5-14, gets the data sent by the DPU_info_ MODULE 

when it gets a control signal from a CC1 node asking for a DPU's information, as 

explained before. 
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Figure 5-14. Design of the confiLmodule used by the CCo to change configuration parameters. 

Figure 5-15 presents the CCO subsystem that consists of a global archive component, 

three subsystems, a server and two activities. The activity called CAr connects the 

global archive component called GAR data with a "screen" server component, so that if 

the archive triggers a signal (e.g. "the archive is full") then the user may be warned 

through the server. The three subsystems as seen in Figure 5-15 are: the VISUAL 

subsystem and the Locatocuser and MU subsystems. The MU subsystem groups two 

subsystems as explained in section 5.3: the Config..module and the ALARM 

FEEDBACK CONTROL. Therefore, the MU subsystem does not have any 

functionality other than to group these two subsystems that have a related control 
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functionality. When the lookup activity, (see Figure 5-15), receives a sporadic signal 

from the RA activity in a DPU (see Figure 5-11), consisting of an alarm event data, the 

lookup activity sends the alarm to the Locatocuser subsystem. When Locatocuser 

receives this type of signal, it searches if there is any mobile user connected to the 

system that may be interested in being warned with this alarm event. If there is any 

such user, then the Locatocuser sends them the alarm event data. 
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Figure 5-15. The ceo subsystem, which represents the first level of hierarchical control structure 

of the system. 

Figure 5-16 illustrates the design of CC 1 subsystem, which corresponds to the outmost 

level of the hierarchical network structure. Nevertheless, as mentioned earlier, if the 

system needs to be scaled up to another level of hierarchical control, subsequent CCx 

subsystems will have the same architecture design, as the CC1 subsystem. However, 
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the subsystems will need to be called differently because they will interact with 

different level of nodes (see Figure 5-17). For example, the subsystem called 

"CC1_info_module" will be changed to "CC2_info_module" subsystem. These 

changes occur because the CC2 node will communicate with CC2 and CCI nodes 

directly, instead of communicating with CCI and CCO directly as CCI does. Moreover, 

if another level like CC2 is introduced, then the CCI node will undergo some minor 

changes. Changes that should be introduced in CC 1 in such a case are illustrated in red 

in Figure 5-18. 

The CC1 subsystem consists of four other subsystems and two activities. The 

subsystems, which have been introduced in previous sections, are the following: 

CCo_info_MODULE, VISUAL_CC, CCCinfo_MODULE, Locator_User and 

ALARM_FEEDBACK_CONTROL_CCI. The look up activity in Figure 5-16 has 

exactly the same functionality as the look up activity in Figure 5-15, which has been 

also introduced. The activity called "DATA_TO_CCo" sends (to another CCO) the data 

that is required by one of these CCOs. When "DATA_TO_CCo" receives a request 

from a CCO, it sends a signal to Choosen_DPU activity to look for the DPU. Once the 

DPU is found and the CC1_module subsystem starts to receive the data, the 

CC I_module subsystem sends the required data back to the CCO that asked for it. 

The functionality of a CC 1 subsystem is to get the information about the number of 

connected CCO subsystems, the number of DPUs connected to each CCO, and also the 

number of cameras connected to each DPU. This information is used by the system to 

get the whole structure of the system. Therefore, a user connected to e.g. a CC 1 

subsystem may monitor data from any CCO and consequently, from any DPU node. 

The user may also change information of any DPU or give feedback about an alarm 

event. 
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Figure 5·16. The CCI subsystem, which represents the second level of the hierarchical structure of 

the system. 
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Figure 5-18. The changes that should be applied to eel (shown in red) if a ee2 subsystem is 

introduced in the design of the system. 
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5.4 Design of the system 

In section 5.3, the different functional parts of the system have been described. 

Appendix D presents the design of the different components using the MADGE 

graphical representation tool. Note that, although we tried to preserve in the system 

design the names of the components presented in previous sections, some of the names 

of the components have been changed. To make the presentation clearer, the design 

illustrated in Appendix D, corresponds to only one leaf of the whole network design 

structure illustrated in Figure 5-1 (see Figure 5-19). Therefore, the design presented in 

this section consists of: one CC 1 subsystem, one ceo subsystem, one communication 

subsystem between CC 1 and ceo, one communication subsystem between CC 1 s, one 

DPUs, one communication subsystem between DPU and ceo, 
communication subsystem between DPUs and a mobile user subsystem. 

and one 
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Figure 5-19. Design represented using MADGE tools in Appendix D. 
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Note that one design decision is to communicate DPU subsystems, eel subsystems but 

not ceo subsystems. The network structure that is created from this design decision is 

discussed in section 5.5. The reason for that design decision comes from a compromise 

between scalability and performance. With this design, depending on where a user is 

connected, performance may slow down. If the user is connected to a ceo node and 

asks for data corresponding to a DPU that is connected directly to this ceo, the user 

will get the data faster. However, if the user connects to a ceo node and asks for data 

from a DPU that is not connected to the ceo node directly, the user will not get the 

data as fast; because the data is received through a eel node rather than through the 

specific ceo node. Therefore, by introducing this restriction on the communication 

between ceo nodes, the monitoring of the zone assigned to the user has priority over 

that of other zones. 

On the other hand, with this design, it should be quite straightforward to scale the 

system up by increasing the number of ceo without considerably decreasing the 

performance of the system from a network point of view. The bandwidth does not 

decrease dramatically and the routing policies are easier, because communication only 

occurs between ee I and ceo, and not between eeos. This does not occur when 

another DPU is introduced. Bandwidth allocation decreases significantly by 

overloading the network with packets through different paths. Moreover, the routing 

policies may get more complex. 

5.4.1 Partitioning 

In sections 5.3 and 5.4, the functional definition and the system design have been 

presented and discussed. Note that the system is partitioned into multiple subsystems 

that consist of other subsystems, at the same time. Through each subsection, parts of 

the system have been presented and decomposed into a network of activities 

communicating through protocols. As mentioned, the selection of each protocol has 

been done according to the needed interaction between the activities. Once the system 

is decomposed as a network of activities, the design phase of the system may be 

considered finished but not over, because the design in DORIS is an iterative process. 
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Therefore, the design can undergo some changes at any time in the system creation 

process. Note that the phases introduced in the next paragraphs do not belong to the 

design part of the system, but they are introduced to give a logical continuity to the 

creation of the system. 

Once the design phase finishes, the implementation phase of the system starts. For 

example, this would include the implementation of the image algorithms into the 

corresponding activities, the implementation of the control communication algorithms, 

the implementation of algorithms to archive and to access to the storage data, and the 

implementation of the communication mechanisms of the IDAs. Moreover, the choice 

of the scheduling strategies is also included in this phase. 

Once all the activities and communication areas are implemented, the mapping phase 

process starts. By knowing the number of resources such as CPUs and memory 

available, the physical mapping of the network of activities to the physical resources 

starts and a prototype can be built. By using the DORIS methodology, the system may 

be partitioned into several independent modules that communicate between them 

through designated areas. Therefore, it is possible to prototype and test each module on 

its own. 

In the next section a discussion of the design of the system is presented, but this time 

from a network topology design point of view, instead of a software network design 

point of view. 

5.5 Network Design of the system 

This section discusses the proposed system design from the logical network design 

topology point of view. At the time of writing, there are three main types of 

architectural design network models: flat networks, hierarchical networks and mesh 

networks. Network topologies such as bus, start, tree, start-wired ring or Fiber 
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Distributed Data Interface (FOOl) can be classified in one of these architectural design 

models; e.g. the FOOl can be classified as a flat network. 

Each of these architectural design models has its pros and cons. Flat networks are 

adequate for small networks; each node has the same functionality and the network is 

not divided into layers. Flat networks are easy to design, implement, and maintain as 

long as they remain small. However, changes in this type of network tend to have a 

high-impact in the network itself. Mesh designs are recommended to meet availability 

requirements. There are two types of mesh topologies: full-mesh, where all nodes are 

connected to all nodes, and partial-mesh, which has fewer connections between nodes. 

Full-mesh gives complete redundancy to the design and also gives good performance, 

because there is only one single-link delay between nodes. The same does not occur 

with partial-mesh architectures, because a node may traverse more than one link to 

reach the other node. Even though mesh topologies give good reliability, they may be 

expensive to design and maintain. Moreover, this type of network may be difficult to 

troubleshoot, scale and optimise; it is possible to overload the network with packets 

through different paths. As pointed out in [Macmillan Technical Publishing and Cisco 

Systems 1998], with mesh topologies it may be also difficult to contain network 

problems, because of the lack of modularity. On the other hand, hierarchical 

architectures divide the network into layers or modules. Therefore, hierarchical designs 

impose a modular design helping with control management. Moreover, this type of 

architecture is more scalable and flexible, because it allows the creation of design 

structures that can be replicated as the networks grows; each instance of the module is 

consistent, and the expansion is easy to plan and implement. 

There is a rule of thumb to design network systems presented in different CISCO books 

such as [Paquet and Teare 2001] and [Macmillan Technical Publishing and Cisco 

Systems 1998]. The network should be designed following a hierarchical architecture. 

CISCO design methodology based on simplicity, suggests that the design does not 

require more than three layers that following CISCO terminology, are called: access 

layer, distribution layer and core layer. Once each layer is designed using modular and 
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hierarchical techniques, the following step is to design the intercommunication layers 

based on the analysis of traffic load, flow, and behaviour. After completing the logical 

topology, the logical design phase continues by designing network addressing and 

naming models, selecting routers and bridging protocols, and developing network 

management and security areas. 

5.5.1 Logical design topology 

As mentioned in section 5.2.1, the final logical topology of the system design 

presented, is a hybrid of these three architecture design models. Please see Figure 5-1 

and Figure 5-21. Before arriving at the final topology, others topologies were proposed 

as illustrated by Figure 5-20. Once the functional definition of the system was defined 

into data processing units and monitoring units, a first proposed network topology was 

to connect the monitoring units using a FDDI ring topology and then, to attach the data 

processing units to the monitoring units as shown in the top design topology in Figure 

5-20. The main problems with this topology is the lack of scalability and the lack of 

distribution, because only one node (CC in Figure 5-20) communicates with the rest of 

CCO, therefore a single point-of-failure was created. After disregarding this topology, a 

second topology was proposed based on a hierarchical design model as illustrated by 

the bottom topology in Figure 5-20; the reasons for the election of a hierarchical 

architecture model are explained in section 5.5. Nevertheless, to scale this proposed 

topology, new upper level nodes should be designed and created; adding more 

complexity into the structure and into the modules that constitute the system. 
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Figure 5-20. Two previous candidate topologies of the system design, before the final topology. 

The final structure of the system, following the second proposed topology, is also based 

on a hierarchical structure, but divided into three layers. The upper layer corresponds to 

the CC 1 nodes, the second layer is represented by ceo and the lower layer is 
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represented by the DPUs. In reference to the CISCO design methodology, DPUs may 

correspond to the local access layer, where services like multicasting are established. A 

partial-mesh architecture is used in this layer, because the traffic between nodes is 

higher and therefore, it is better to have a redundant topology; DPU nodes need to 

communicate between them to get more accurate results. CCO nodes may represent the 

distribution layer; each CCO groups a number of DPUs. Therefore, a user is able to 

monitor, from each CCO, this group of DPUs. The CCO nodes use a flat network 

architecture i.e. star-wired ring architecture because, as has been discussed, there is no 

communication between CCO nodes. Finally, CC1 nodes may correspond to the core 

layer. The architecture used is also partial-mesh, because it needs to be redundant. 

These nodes allow the communication of any CC1 with any DPU in the system. 

The traffic that begins in any DPU is only allowed to be forwarded to the upper levels 

(i.e. CCO) if and only if it meets the following criteria: if an alarm event occurs in the 

lower level or if data is required from upper levels such CCO or CC 1. This design 

decision comes from the suggestion made in [Paquet and Teare 2001] that says that 

traffic that begins in a lower layer of the hierarchy should be only allowed to be 

forwarded through the upper levels if it meets defined criteria. 
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CC1 CC1 

CC1 

Figure 5.21. The final logical design network topology of the system. 

5.5.2 Traffic behaviour- Multicasting 

In terms of network design, it is important to characterise the behaviour of the network 

to plan the network level and its expansion, to quantify the network performance and to 
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be able to verify network services. Therefore, to analyse the behaviour of the network, 

the traffic flow, the traffic load and also the traffic behaviour should be determined. To 

characterise the traffic flow is to specify the type of traffic flow that the system 

supports such as client/server traffic flow, peer-to-peer, server/server or distributed 

traffic flow. To characterise the traffic load means to study the number of stations that 

constitutes the network, the average time that a station is idle between frames, and the 

time required to transmit a message once the medium access is gained. Finally, to 

characterise the traffic behaviour includes the analysis of broadcast traffic, i.e. a 

message that is sent to everybody, or multicast traffic in the network, and the analysis 

of the network efficiency with the study of frame size, protocol interactions, window 

and flow control and error-recovery mechanisms. 

Here, the behaviour of the network has been analysed in terms of traffic flow and 

traffic behaviour. The traffic flow of the system design presented has been 

characterised as distributed traffic because the communication between nodes is 

modelled as a non-symmetric communication between independent nodes with the 

same importance role. 

From a network perspective, a multicast behaviour dramatically reduces the overall 

bandwidth consumption as pointed out in [Macmillan Technical Publishing and Cisco 

Systems 1998] and allows more scalable network topologies solutions, because it 

allows organising the traffic per groups. In surveillance systems, multicast traffic is 

constantly used. For example, inputs captured by the sensors are sent simultaneously to 

many modules and then the corresponding processed data retransmitted, also 

simultaneously, to other parts of the system. 

In the system design presented here, multicast communication is represented by the 

IDAs components that have a window input where the data is put and then the data is 

distributed to different components through different windows-outputs. See Appendix 

D. IDAs can have the mechanisms to be able to replicate and distribute the data to more 

than one component at the same time. 
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5.6 Quality of Service (QoS) 

As seen in this chapter, and also reported in many articles mentioned in chapter 2, 

surveillance systems usually require the monitoring of data coming from remote units 

such as sensors. Therefore, transmission becomes an issue; e.g. transmission media 

selection, security in the transmission and Quality of Service (QoS). Even though in 

this chapter transmission media and security in the transmission are not discussed, in 

[Mahonen and Saaranen 2000] the authors list, as possible transmission media for 

surveillance systems, the following technologies: microwave, ISDN, ATM, optical 

fiber, broadband networks and wireless networks. 

Quality of service in surveillance systems can be defined as the ability of the network 

management to distinguish various actions and to assign different levels of quality and 

transmission guarantees to these actions. For example, the QoS when a CCO node 

requires to visualise data from a DPU that is connected directly to it, should be better 

than the QoS when the required data comes from a DPU that is not connected directly 

to the CCO. The parameters that specify the QoS are usually: bandwidth, latency and 

loss rate. Latency is defined as the accumulated delay between the start of a 

transmission of a message from one process and the beginning of its reception of this 

message by another process [Coulouris et al. 2001]. When the network delivers with a 

variable latency, this is called jitter. Surveillance systems should be designed to 

minimise jitter. 

Quality of Service management is based on organising the allocation and scheduling of 

resources to meet the requirements. Therefore, the allocation of processing capacity, 

network bandwidth, and also the allocation of memory for buffering data are important 

to obtain the required QoS. As mentioned, by using an RTN methodology, the final 

network system design allows controlling the allocation of the processing capacities, 

i.e. the activities needed, and also allows controlling the memory space required even 

in the communication between the activities, through the communication protocols. 

Therefore, by deploying RTN to the system design, it is possible to provide more 

guaranties to obtain the QoS required. 
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5.6.1 Bandwidth 

As mentioned in the previous section, bandwidth is one of the critical parameters that 

QoS depends on. In [MahOnen and Saaranen 2000] the authors illustrate the effects on 

bandwidth in a Local Area Network (LAN) and in a Wide Area Network (WAN) 

depending on the multimedia application; e.g. the bandwidth required to transmit 

standard TV video uncompressed is around 120Mbps. Therefore, it is important for the 

network design of the system, to apply policies that take into account bandwidth 

requirements such as: bandwidth reservation, quality of service negotiation, 

compressed algorithms to reduce data transmission or the use of protocols like 

Resource Reservation Protocol (RSVP) or Real-Time Transport Protocol (RTP). In 

terms of network design topology, switch elements can be used to guarantee high

bandwidth requirements. Hubs, which shared media access, may be used to guarantee 

an inexpensive access but they do not guarantee high-bandwidth requirements. Finally, 

Router elements may be used to isolate broadcast traffic, and therefore they may be 

good to control bandwidth requirements. 

Although the use of compressed algorithms works to reduce the bandwidth 

requirements, it increases the load on the processing resources because these algorithms 

usually are quite demanding on computing resources. As mentioned, the tendency in 

surveillance systems is to use specialises hardware such as DSPs embedded on or near 

the camera to compute these algorithms, or to use software such as codecs/decodecs 

allocated on the CPU where all the processing is done. The system design in terms of 

software architecture, presented in this chapter, allocates these software algorithms in 

the activity attached to the server that is connected to a camera device in the subsystem 

called CA. See Appendix D. As said, the actual physical allocation of each activity, in 

DORIS, is left to the next phase of the design of the system; i.e. the physical mapping 

of the RTN network design. 

5.6.2 Resource management- Scheduling 

In surveillance systems (as in any multimedia application), each process must be 

allocated adequate CPU time, memory capacity and network bandwidth to perform its 
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designed task and must be scheduled to use the resources frequently enough to enable it 

to deliver the data to the corresponding process on time. Surveillance systems have to 

handle both discrete (e.g. alarm events) and continuous data (e.g. images captured in 

real-time). It becomes a challenge to provide sufficient service to time-dependent data 

streams without causing starvation of discrete-media. Therefore, scheduling policies 

need to be applied to all resources that may affect the performance of the system. 

As mentioned in chapter 4, in RTN the choice of the scheduling policies is not 

imposed, even though it requires documenting the reason of the selected strategy. In 

[IECCA and MUF 1987c], the selection of the scheduling strategy is based on the idea 

of optimising the response to external events for a given amount of processing power. 

Several real-time scheduling algorithms have been developed to meet CPU scheduling 

needs for the applications. The priority-based pre-emptive algorithm is the most 

common scheduler used in commercial real-time operating systems. As mentioned in 

chapter 4, a MASCOT kernel machine usually uses a co-operative scheduler. Each 

process has assigned a CPU time slot with a co-operative scheduler, so as to ensure that 

each process will complete the task on time. However, if an interrupt occurs, the 

scheduler ensures that there is no re-schedule once the interrupt is handled; thus control 

returns to the process that had it before the interruption. Co-operative scheduling may 

then limit the ability of the scheduler to optimise the response. This issue is avoided 

with a priority-based pre-emptive policy, because if an interrupt occurs, the scheduler 

has the option to be re-scheduled. The scheduler then has the ability to optimise the 

response of the system to the external event. On the other hand, with priority-based pre

emptive policy a priority inversion may occur and provoke a failure of the system as 

illustrated in [Kalinsky and Barr 2002]. The priority inversion is a scenario where the 

high-priority task fails to run when it should. Therefore, the choice of one of the 

schedule policies implies a compromise between performance and fault tolerance 

properties. 

In [Coulouris et at. 2001], the authors introduced several scheduling policies that are 

suitable for multimedia applications, where they also state that traditional real-time 
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algorithms are suitable for continuous data stream multimedia applications. The 

Earliest-Deadline-First (EDF) scheduler uses a deadline associated with the task, to 

determine which tasks should be processed next. The same authors say that EDF 

scheduling is proven to be optimal for allocating a single resource based on timing 

criteria. Nevertheless, EDF requires a scheduling decision for each message; to make 

the scheduling policy last longer. Alternatively, in the Rate Monotonic (RM) scheduler, 

which is a real-time scheduling algorithm for periodic processes, messages are assigned 

priorities according to their rate. 

Therefore, real-time scheduling algorithms should be adjusted to distinguish between 

time-critical and non-critical tasks to cope with bursty real-time traffic, which is 

characteristic in surveillance systems. By designing the system as a network of 

activities, and then, analysing which type of task each one of them is (critical or non

critical), it is possible to select the schedule strategy that suits the best. 

In terms of network design, there are some protocols such as RSVP, that prioritise 

traffic by applying "fair" scheduling policies to the network such as: priority queuing, 

custom queuing, weighted fair queuing, custom queuing or low-latency queuing (LLQ). 

These methods may be applied in the core layer, presented in section 5.5.1. They are 

used to give critical data priority over less critical data transmission during peak traffic 

conditions. 

5.7 Summary 

In the first part of this chapter, a proposed architectural model for a large-scale 

distributed real-time surveillance system has been presented. This chapter tried to focus 

on the idea that the architectural model of a distributed system is concerned with the 

placement of its parts and the relationships between them, which have been discussed 

through sections 5.2 and 5.3. The architectural model determines not only the 

appearance of the system but its structure, providing a consistent frame of reference for 

the design, which has been presented in sections 5.4. Because the proposed design 
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solution is for a large-scale system, the solution tries to be as modular and generic as 

possible to allow easy scalability and management of the system. 

Note that, this chapter tried to focus the discussion on the logical design phase, because 

it is one of the most important phases to the creation of the system. A clear definition of 

proposal of a system design can ease the transition into the design of the physical 

implementation of the system. In section 5.4.1 descriptions of the phases that follow the 

design process have been mentioned. Apart from the architecture design model of 

system in terms of software structure, this chapter, through sections 5.5 and 5.6, 

presented and discussed a possible network topology of the system, coherent with the 

software design structure proposed. The reason for that has been, to give a hint of how 

the proposed RTN solution may be mapped to a real solution. 

Through the presentation of the proposed architecture design of a generic surveillance 

system, this chapter tended to concentrate in one of the main ideas for the whole work, 

namely that although image processing algorithms are crucial in surveillance 

applications, there are other important parts of the design of these systems that need to 

be also designed and discussed. Without a design methodology that guides the 

designers to design each part step by step and understand the whole system, it is not 

possible to build a system with such characteristics. Even more, it is not possible to 

control and manage the system without having a global picture of the system and 

knowing what the system actually does. Therefore, it is crucial to apply a design 

methodology to the creation of a system, apart from the creation of its vision 

algorithms. Moreover, by using a design methodology, it is possible to define what 

specific activities may be of interest in surveillance system and therefore to even 

improve the required vision algorithms. 

The next chapter will now present the conclusions gained through all this work carried 

out and also will identify possible future lines of research. 
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6 Conclusions and Future work 

6.1 Introduction 

This chapter concludes this thesis by giving a summary and conclusions of the work 

carried out through this project. The main emphasis of this work consisted in 

investigating how systems engineering could be applied in the conception, design and 

building of large-scale intelligent distributed real-time surveillance systems (usually 

called 3GSS in the literature in the field). To summarise the results of using such 

emphasis, this chapter has been divided in two main parts i.e. summaries of the 

investigation of existing design methodologies (section 6.2.2) and the application of 

one of them (RTN) to the design of a generic 3GSS (section 6.2.3). Section 6.3 

highlights possible lines of research that may arise from the conclusions, presenting at 

the same time, the drawbacks found in this work. 

6.2 Conclusions 

The context of this work, as explained in chapter 1, was that it formed part of an 

EPSRC-funded project referred to as COHERENT (Computational Heterogeneously 

Timed Networks). The aim of COHERENT was to sketch and verify an architecture 

design to construct embedded real-time systems as on-chip systems (SoCs), called real

time networks on a chip (RTNoC), with potential applications in control and data 

processing [COHERENT 2005]. To design this architecture the DORIS methodology 

was proposed given its relevance in the design and construction of embedded real-time 

distributed system used in control applications. Moreover, as mentioned in Chapter 1, 

because the research was focused on heterogeneous systems, the inherent temporal 

diversity of these systems naturally led to the study of asynchronous communication 

mechanisms (ACM) to link different parts of the system, and asynchronous techniques 

applied into design and verification tools. Another reason for including RTNIDORIS in 

this project was, as explained in chapter 3 and 4, that RTN provides an asynchronous 

communication mechanism known as the four slot mechanism [Simpson 1990c] (in a 
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pool protocol) which allows fully asynchronous communication between the activities 

that are connected to the protocol. 

6.2.1 How this research linked to COHERENT 

The contribution of this work to the COHERENT project was to investigate the use of 

RTN and DORIS as a design methodology, to a specific important application domain 

namely the design of 3GSS. These systems, as mentioned on various occasions, are 

naturally heterogeneous, arising from the variety of timing requirements from diverse 

response times and processing rates of different parts of the system. Moreover, 3GSS 

are also inherently real-time and concurrent as discussed in chapter 2 and 4. It is also 

likely that some parts of these systems will even be embedded in DSPs, such as data 

processing parts, which are integrated into what are called "smart cameras", as 

discussed in chapter 5. These systems have data processing parts as well as control 

parts, as demonstrated in Chapter 5. Therefore, because RTNIDORIS has been 

successfully used in designing and building embedded real-time distributed systems, 

the use of RTN for the design of these systems was proposed. 

Moreover, as mentioned in chapter 2 and 5, the research field of surveillance systems 

has tended to be centred on the study of these systems from the vision algorithm point 

of view. Therefore, there is a lack of research based on the creation of these systems 

from system engineering point of view. Consequently, as illustrated in Chapter 5, it has 

proved difficult to successfully build robust large-scale systems without having 

available a methodology (or at least the practice of using a methodology) that helps the 

designers to understand and to build the system. Therefore, the main contributions of 

this work to the surveillance systems research field and to similar fields are: the 

identification of the need to find a system design framework appropriate to 3GSS, to 

develop and check the conceptual basis for such a framework, and to assess such a 

framework against the specific requirements of such systems. 

236 



) 

6.2.2 Design methodologies 

The research literature in design methodologies presented in chapter 3, was focused on 

discussing some of the most important object oriented (00) methodologies. The reason 

for centring the review on 00 methodologies is because 00 technology is nowadays 

the most used technology to build most of the distributed real-time systems such as 

telecommunications or financial systems. Consistent with this tendency, most 

surveillance systems aimed at scalability and reported in the literature are also 

implemented using 00 technology. Moreover, recent vision algorithms used in 

surveillance systems have tended to be implemented, using 00 technology. 

Nevertheless, different design methodologies for distributed real-time systems used 

mainly in the 60s and 70s were mentioned briefly. These methodologies were applied 

mostly for the creation of control systems [Gomaa 1993c). RTN may be categorised 

inside these group. It was created on the 70s for the design and building of distributed 

real-time embedded systems for avionics control applications. 

Once the review of some design methodologies is conducted, the study was centred on 

the justification of the selection of RTNIDORIS in preference to 00, which was based 

on a consideration of the conceptual basis of such methods. To justify the choice and to 

illustrate the conceptual differences between methodologies based on 00 or RTN, a 

discussion on theoretical or conceptual ideas between the two technologies was 

presented. Then, for example, it was seen that these two technologies have conceptual 

ideas in common, such as the concept of object in 00 and the concept of activity in 

RTN, which is the representation of an active software entity. Nevertheless, these ideas 

are expressed differently, e.g. an activity is an active task, therefore usually represents 

more than one object at the same time. The comparison between RTN and 00 

emphasised the differences in the basic concepts such as the one just explained, and in 

the communication model, especially the protocols taxonomy and the asynchronous 

communications that RTN provides. The properties that 00 provides like inheritance 

or polymorphism and the properties that RTN provides like concurrency were also 

compared. 
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One of the conclusions extracted from the discussion of conceptual ideas between RTN 

and 00 lies on the fact that, in RTN the system is conceived as a set of (relatively 

simple) active tasks (activities) that interact with one another through 

intercommunication data areas (IDAs), which altogether constitute the RTN network. 

When considered in detail, this is quite different to the object-centric view of 

synchronised message passing tied up to passive tasks (methods) when objects need to 

interact with one another. 

From the point of view of design methodologies, one of the conclusions extracted from 

the comparison is that 00 is a well known technology widely used and without any 

doubt, it will carryon being used. There is so much research going on, documentation, 

technical papers, books which help to improve 00 day by day. Moreover, there are 

many tools that help designers implement easily simple systems. Furthermore, the 

design methodologies based on 00 are suitable to build systems for different 

application domains. On the other hand, the 00 design methodologies are more 

focused on the design of the system from the implementation point of view rather than 

from system engineering point of view, which is explained in following paragraphs. 

As mentioned, one of the conceptual ideas in 00 technology is the object. Therefore, a 

primary focus in these methodologies, consists in trying to find the objects (and hence 

classes) required to represent the system. The typical next step, once the nature and 

number of the· objects have been found, is to define the internal structure of these 

objects, i.e. the values that each object should have and the methods that each object 

needs to access its values or to communicate with other objects. When each object is 

characterised, it usually follows a step consisting in defining the relationship between 

objects, if any relationship exists. Then if possible, the design consists of high cohesion 

relationships inside the object and low coupling relationships between objects. At the 

same time, design decisions are taken on grouping some objects depending on their 

functionality. Therefore possible components are defined. This is one of the most 

difficult parts of the 00 design. Because 00 defines several kinds of relationships 
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between objects, as mentioned in chapter 3, a bad choice may strongly affect the 

architectural design of the system. Notice that, this largely a bottom-up design process; 

by the time all objects are defined and their relationships established, the system design 

as a whole may be very difficult to picture. Moreover, if the language used to carry the 

design is, for example, UML, it can get even more difficult to readily understand a 

design, because there are too many diagrams and graphical components to depict 

elements of the design. 

On the other hand, in the design methodologies proposed and used as far back as the 

60s and 70s including RTN and further later extensions such as DORIS, the design of a 

system is focused on a system engineering point of view. Notice that, DORIS, which 

extended RTN concepts as mentioned in Chapter 3, is a complete framework to design 

real-time embedded systems In RTNIDORIS the design is the solution to the system. 

Therefore, it is necessary to understand what the system has to do. The first step is to 

define the functionality of the system, what it tries to do. Once the functional definition 

has been done, the next question to answer is how to model what the system intends to 

do. Then, further refinements from the functional definition of the system are done to 

get the final solution, i.e. the RTN network. Therefore, in RTN the process through 

which a solution is arrived, enables the designer to have a better understanding of the 

whole system design compared to 00. The RTN design process starts firstly as a top

down but after it becomes a typical bottom-up process, because from these refinements 

it is possible to discover that more functionality is required, so the system functional 

definition can also be refined. 

We can also note that most of the 00 design methodologies reviewed here do not have 

a completely defined process that allows moving smoothly from the requirements and 

specifications of the system to the design and implementation of the system. However, 

the current research in Object Management Group (OMG) through a Model Driven 

Architecture (MDA) technology, tends to the creation of a framework to accomplish 

this. RTNIDORIS as mentioned in chapter 4, put special emphasis on a strong link 

between the different stages of design and development so that implementation 
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decisions can be traced back to the design. This is a very important practical 

consideration as otherwise; it is difficult to ensure that a particular implementation 

(perhaps when there is most pressure to deliver) is consistent with an agreed design. 

This break of the link between design and implementation may be an important source 

of errors and lack of project control when creating a complex system/software. 

6.2.3 RTN/CORBA for designing real-time distributed surveillance 
systems 

In chapter 4, the discussion of DORIS as a proposed design methodology to use in a 

possible framework to build 3GSS systems was extended. Chapter 4 presented further 

discussions and comparisons, through a case study, between RTN and 00 technologies 

from an architecture design point of view. In chapter 4, an existing real-time 

distributed surveillance system called ADVISOR was studied. The first prototype 

version of ADVISOR used CORBA as middleware architecture solution to integrate 

the different parts of the system. CORBA as mentioned in chapter 4 is middleware 

based on 00 concepts and it is aimed at easing the integration of heterogeneous 

platforms. Even though CORBA may be considered an architecture design framework 

to build distributed event real-time systems, rather than a design methodology, it was 

studied because one of the aims of this work has been to provide the theoretical basis to 

create a framework for building 3GSS. Therefore, CORBA could be a candidate to be 

used in such a framework. In fact, in some research work as in ADVISOR [ADVISOR 

2003], the authors proposed the use of CORBA as the key component to create 

surveillance systems. Therefore, chapter 4 focused on comparing two different 

architecture designs of ADVISOR system: a middleware architecture design solution 

provided by CORBA and the architecture design solution provided by RTN, so that an 

insight into their weakness and strengths could arise. 

After illustrating the differences at the architectural design level between the two 

solutions, the discussion continued based on three issues: concurrency and distribution, 

run-time facilities and finally development aspects. Because 3GSS are strongly 

concurrent and distributed, it is clear that it is mandatory to use technologies that 
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provide architecture solutions which are concurrent and which may be distributed. 

Therefore, part of the discussion in chapter 4, was centred on how both approaches deal 

with distribution and concurrency. On the other hand, run-time facilities and 

development aspects are important issues to consider in technologies which are 

possible candidates for their use in a framework to design and to create such systems. 

Moreover, if the system to be created has to be a real-time one, run-time facilities are 

crucial. 

One of the outcomes of this comparison, which is connected with the conclusion 

explained in previous section 6.2.2, is that even though CORBA provides an easy 

solution to the integration of heterogeneous parts of the system, the architectural design 

solution is focused on a solution from an implementation point of view rather than from 

a system engineering point of view. See Table 6-1.The last statement is based on the 

fact that, in CORBA, a solution is based on defining the CORBA objects needed and 

the relationship between them (this is clearly a result of its 00 roots). Because 

CORBA is a middleware technology the way CORBA components actually 

communicate is completely transparent to the designer. Therefore, although CORBA 

reduces the difficulty at the implementation level, it inevitably also reduces the full 

understanding of the solution as a system, as illustrated in chapter 4. The designer does 

not really know how this transparent communication is done, because it is left to the 

chosen vendor. It is like the structure of a house, where it is important to know and 

build each component inside the room like the sink, table so on, but it is also important 

to know which and how rooms need to be connected in the house. If the architect does 

not show (explicitly) what the structure of the all house is, i.e. the functional plan of the 

house, and how each room should be connected, e.g. where each door should be located 

to connect one room with another, then it is not possible to understand how the house is 

structured. Furthermore, if there is a problem or change to do, it will be very difficult to 

solve the problem or to realise the convenient change. The transparent communication 

that CORBA provides (normally accepted as a good feature because it makes the 

process of implementation easier and faster), might prevent the designer from 

conceiving the different interactions between parts of the system in such a way that 
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better reflects the problem (as a loose interconnection of concurrent and possibly 

asynchronous communicating processes). Therefore, a CORBA architecture design 

solution might work against a simpler and hence potentially more robust design 

solution of a distributed real-time system, as presented in chapter 4. 

The other outcome (see Table 6-1) is that, as mentioned in chapter 4, CORBA, at the 

time of writing, has a lack of development facilities, to help the designer to go through 

the design and construction of the system. Moreover, the run-time facilities are strongly 

dependant on the ORB vendor. Therefore, although CORBA technology has been used 

in many real-time applications even critical applications such as telecommunications 

systems, these two conclusions are significant enough to question the inclusion of this 

technology to the framework for designing large surveillance systems. 

Advantages Disadvantages 

The designer need not worry about The designer does not have 

CORBA these details which are transparent to complete information to 

Underlying to the designer. gain system knowledge. 

communication Greater understanding of the Communication design 

details 
RTNIDORIS 

system. between activities proves 

difficult at the design stage 

for the designer. 

It is carried out by the vendor that Lack of control of system 

implements the ORB and is management. 

CORBA transparent to the designer. Thus, 

allowing easy integration of 
Run time support 

different platforms. 

Conducted through the MASCOT 

RTN/DORIS machine. Full control of system 

management. 

It does not guide the 

CORBA designer through the design 

Development and implementation process. 

aspects Provides consistency in system 
RTNIDORIS 

design. 
. sin CORDA and RTNIDORI Table 6-1. Summary of advantages and dISadvantages u g S. 
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Once the justification of the inclusion of RTN methodology in the framework had been 

argued, chapter 5 presented a generic design of a large-scale distributed semi-intelligent 

real-time surveillance system to illustrate the importance of applying system 

engineering to the design of such systems. The most important outcome of this chapter 

5, apart from the presentation of a proposed architectural design, is that even though 

these systems have data processing tasks based on computer vision algorithms, these 

algorithms are just one part of the whole system. The rest of the parts that constitute the 

system are equally important. Therefore, the proposed system design illustrates that 

surveillance systems are not just a cluster of vision algorithms that are grouped to 

create a system. The creation of the functional definition of the system, the definition of 

different types of data and the distinction between the control parts of the system and 

data processing parts of the system, provides enough elements to understand how a 

system of such characteristics should work. 

Since one of the main goals in chapter 5 was to propose a generic design for a generic 

3GSS, after presenting and discussing the proposed software architecture design using 

RTN, a discussion on the logical network design was conducted. As mentioned several 

times, the RTN solution provides a naturally concurrent and distributed solution. 

Therefore, once the network is defined, the designer can assume that the solution may 

be distributed. To understand the distribution of the real-time network solution, it was 

convenient to propose a logical network design for the designed system. Therefore, a 

logical network design solution, that could map the software real-time network design 

presented previously, was presented and discussed in Chapter 5. Notice that the 

proposed logical network design was strongly influenced by the suggestions taken from 

network designs books from CISCO [Paquet and Teare 2001]. 

Surveillance systems like any multimedia application, have an important requirement 

in terms of Quality of Service (QoS) that the system should be able to provide at any 

given time. Three parameters are of primary interest for QoS when it comes to 

processing and transporting multimedia data: bandwidth, latency and loss rate. One 

way to manage the QoS and guarantee a good QoS, is to know the number of processes 
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and memory, which are required for the application for allocating enough resources and 

for applying the right scheduling polices. Then, another conclusion extracted from 

chapter 5 is that, by using RTN it is possible to directly quantify at the end of the 

design phase (i.e. when the network is determined), the number of tasks and an 

approximation of the memory that will be required to communicate certain tasks. Note 

that, after the design of the system using MASCOT, the next process, following DORIS 

methodology (as illustrated in Figure 3-3), corresponds to mapping the activities and 

the IDAs to hardware. Therefore, the activities may be mapped to different processors 

in a mUlti-processor environment. If the activities are in a co-processor environment 

with shared memory, the IDA that the activities use might be mapped to the shared 

memory hardware component. If the activities are located in a mUlti-processor 

environment without shared memory, then, the IDA might be mapped, through the 

template substitution, to an external shared memory with an active element, i.e. a 

thread that moves the data from one side to the other. 

6.3 Future work 

In this section some possible lines of research obtained from the conclusions extracted 

at the end of this work are presented. These are presented in two different sections. 

Section 6.3.1 is related to the framework to design and build 3GSS and section 6.3.2 

presents the idea of applying formal methods to the framework. Moreover, in these 

sections the drawbacks found during this work are also presented. 

6.3.1 Framework for designing real-time distributed surveillance 
systems 

The framework for designing these systems should consist in a design methodology 

associated with CASE tools, which may help provide consistence to the process of 

design, including a library of designed components for surveillance systems defined in 

chapter 5. Also, the framework may include a semi-automatic translation to a 

predefined language code of the designed components. Finally, to verify and to 

formalise the consistency of the final design it may be necessary to add to the 

framework some mathematical techniques that allow by formalism to validate the final 
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design solution.. Following paragraphs in section 6.3.1 and 6.3.2 expand each 

mentioned idea for the framework. 

Although, as concluded in chapter 3 and 4, this work proposed the use of RTN 

concepts into the framework, a significant drawback to the use of RTN and DORIS 

technology lies in the fact that the tools that MATRA BAe Dynamics (MBDA) use, are 

not part of a standard and thus, only the company is benefiting from the use of RTN 

concepts. The use of this tool outside the company is done only through a few 

collaborative research projects with universities like COHERENT, and only one part of 

the CASE tool (i.e. MADGE) is provided. Therefore, it is not possible to use DORIS 

directly as a framework to the design of surveillance systems. 

In chapter 5, the bases for the creation of this framework were established. The 

definition and encapsulation of different RTN components into subsystem 

moduleswere presented and we showed how these subsystems can be used in the 

design of a generic surveillance system. Thus, these generic subsystems can be held in 

libraries and then can be added to the framework making them available for the design 

of such systems. Nevertheless, an important drawback that has been found using RTN 

concepts to design such systems is that RTN networks are by nature static, although 

RTN has the tools to allow dynamic RTN network designs. On the other hand, 00 

methodologies and technologies based on 00 concepts such as CORBA, claim that 

tbey provide good scalability to the system, by allowing the creation of dynamic 

components and their integration into the system "on-the-fly". It is usually through the 

use of data repository components, which contain the required information to create 

components dynamically. Nevertheless, it is strongly recommended by RTN 

practitioners that the activities should not be created dynamically and the network 

should remain invariant at run-time. This is because the dynamism in the network as 

explained in chapter 3 and 4 may provoke unexpected behaviours, which may affect the 

stability of the system. It may also increase the lack of control management over the 

system and over the resources raising possible failures within the system. 
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However, surveillance systems can be by nature very dynamic. It is common to find the 

need to add new components like sensors or data processing units to the system within 

its lifecyc1e. Therefore, research needs to be conducted into the study of the extension 

of RTN, i.e. DRTN (Dynamics in RTN), to the design of dynamic systems. In this case, 

a possible solution to combine the dynamism of surveillance systems and the static 

nature of RTN network designs is obtained by following what RTN practitioners 

recommend: once the design of the upgraded component is done, it should be 

integrated to the RTN network by turning on the new component and then, turning off 

the old component without switching down the whole RTN network. Moreover at the 

design phase, e.g., if the designer wants to attach more than one DPU to the CCO 

subsystem defined in Chapter 5 (see Figure 6-1), then the new component has to be 

extended easily to allow the attachment of a new DPU. In other words, the creation of 

extended components from the static components (templates) found in the library of the 

framework in the same design, should be a straightforward process. Once the new CCO 

is extended, it should replace the old component in the network. Therefore, the RTN 

network may be upgraded under the management control over the new components that 

have been inserted, avoiding then, the dynamic creation of new upgraded components. 
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CC1 ) 

This ceo node has five DPUs 
attached 

~--____ This ceo node has two DPUs 
attached 

Figure 6-1. Topological network view of the generic 3GSS presented in chapter 5. 

An ideal framework helps the designer to go step by step from the capturing 

requirements process through the design, implementation and building process. 

Unfortunately, there is no a current methodology that can accomplish this, not even 

with DORIS methodology. Besides the substantial research in developing modelling 

tools to execute designs allowing the evaluation of the design decisions, there is 

research in software engineering to make the process of capturing requirements an 

automatic process. However, this process requires significant interaction with the users 

therefore; it is extraordinarily difficult to capture this process automatically .. Even 

though the work reported in this thesis has focused on the design phase, the capture of 

the requirements and specifications of a generic surveillance system was necessary, and 

was done through the research and study of several existing surveillance systems. 

Therefore, the requirements for a generic surveillance system are captured and 

expressed through the functional definition of a generic surveillance system, illustrated 

in chapter 5. Even though requirements were captured, it was a laborious process that 

required the research and the review of many existing surveillance systems to conclude 

with the obtained possible generic requirements for such systems. Therefore, like in 
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DORIS methodology which as explained in chapter 3, it uses the CORE method to 

capture the requirements of a system. Thus, it should be interesting to research the 

building of a semi-automatic process (instead of automatic process, because the 

interaction with the users is still necessary) to help to capture the requirements for 

specific surveillance application. 

As mentioned, the design phase of the framework proposed here follows the RTN 

concepts and DORIS methodology. Therefore, the CASE tool for this framework 

should be consistent with the standard notations as DORIS. Moreover, connections 

between these components should use the same RTN concepts of paths, ports and 

windows; ports components used by active elements, windows used by passive 

elements and paths to define the connection between port/windows. 

Once the design is realised, as mentioned in chapter 3 and 4, MADGE tool checks the 

(internal) consistency of the design through the stages defined as part of the 

development aspects in MASCOT-3: Introduced, Register and Enrolled. In the last 

stage, the modules are completed and coded (in ADA programming language). As 

discussed above, nowadays 00 programming languages have a strong popularity in the 

implementation of visual surveillance systems. Many programmers know at least one 

00 programming language only a few of them know the ADA programming language. 

In MBDA, as deduced from a private conversation [H. Simpson 2005], some 

programmers tend to carryon the design and the implementation of a corresponding 

activity in a subsystem using UML and then an 00 programming language, once they 

are assigned the implementation of a specific task, which has been obtained from the 

design of the whole system using RTN/OORIS. Furthermore, in Newcastle University, 

some research has been conducted to map some RTN concepts like the pool protocol 

using agent programming languages. Thus, a possible research line could be to carryon 

the study of the generation of a library of RTN components to conventional 00 

programming language like C/C++ to generate then the code in such a language instead 

of using ADA language. Although as mentioned in chapter 3, the use of these kinds of 

languages into the implementation of the design of surveillance systems may not be a 
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pragmatic approach; it may provide less control management over the system, and 

unexpected behaviours could arise. There is also for example the possibility of bringing 

up unwanted effects such as memory leaks. 

6.3.2 Inclusion of Formal Methods to the framework 

As introduced in chapter 1, there is research work to apply formal methods to the 

requirements and to high-level designs where most of the details are abstracted, or to 

apply them only to the most critical components. Formal methods may be defined as 

the mathematically rigorous techniques and tools for the specification, design and 

verification of software and hardware systems. In other words, a formal method is a 

formal proof that verifies that the created system accomplishes its specifications. The 

value of formal methods is that they provide a means to symbolically examine the 

entire state space of a digital design (whether hardware or software) and establish a 

correctness or safety property that is true for all possible inputs. However, this is rarely 

done in practice today (except for the critical components of safety critical systems) 

because of the enormous complexity of real systems and the lack of understanding of 

what formalism can be associated with a particular representation or problem domain 

(for example, we talk about real-time throughout this work but temporality is never 

represented explicitly). 

The textual notation and the graphical notation in RTNIDORIS are the two forms that 

help to control the evolving design structure, wherein each stage must reflect precisely 

the definitions set out in previous stages. As suggested by [Mustafa 2000], 

RTNIDORIS practitioners use contingency analysis'. This analysis technique is time 

and resource consuming, but does not provide an exhaustive test. In other words, at the 

time of writing, RTNIDORIS methodology does not apply any formal method directly 

to the verification of the high-level designs. 

On the other hand, RTN/DORIS practitioners claim [IECCA and MUF 1983b] that the 

method is formal enough to provide the necessary visibility to support management and 

I Approach which consist in prototyping a component, testing it and simulate over time domain if it 

works. 
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control of the design during development and subsequent maintenance. Note that this 

formalism on the design process is concerned with the idea of applying rigorous 

techniques to the design process rather than defining the designs using mathematical 

tools. However, drawing from a private conversation [H. Simpson 2003], RTNIDORIS 

practitioners also claim that a design using DORIS is formal, because the design is 

constituted by a network of basic RTN components, which have already been verified 

using a formal verification technique such as RTL2, which models the design of these 

components to evaluate their design. Nevertheless, as stated in [Mustafa 2000], it is not 

the same to say that "as far as we can tell, there are no errors" than to say "there are no 

errors in the design". The last statement implies the proof of the design. 

The following formal modelling languages have been used in the past to try to verify 

some RTN components or some RTNIDORIS designs. In [Simpson 2003f] a formalism 

using RTL is applied to the definition of the four protocols and the routers of RTN 

illustrated in chapter 3. In [Clark 2000], [Feixa 2000], [Mustafa 2000] the authors 

applied Petri nets3 and Coloured Petri nets to verify the three and four slot 

communication mechanisms. In [Haveman 1997] the author verified a simple system 

that receives data through two different sources, using RTL. In [Paynter 2000] the 

authors research on the integration of new formal notation for the specification of the 

temporal and functional behaviour of the concurrent processes, to supplement and 

formalise DORIS method. In [Munoz 2002] the author modelled RTN components 

using LOTOS and pointed to possible ways in which RTN designs could also be 

modelled and verified using this technique. Therefore, it should be interesting to carry 

on with the research work established in [Munoz 2002], researching further more into 

the mapping of RTNIDORIS components to the E-LOTOS language to obtain the 

formalism required in the designs, and then, to include this into the framework to 

design surveillance systems. 

2 I . th fi t dec logic language for reasoning in system events about time occurrences. 
tis e lfS Of! th 'fi' d aI . f 

3 . & I hl'cal and executable technique for e Specl Ication an an YSls 0 concurrent, It IS a lorma ,grap 
discrete-events. 
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Appendix A 

Jackson System Development 

Action Structure Diagram- illustrates the structure of the different actions. 

Sequential actions Iterative actions Selected actions 

* o o 

System Specification Diagram- illustrates the specification of the system as a model 

of the real world. 

Real world System 

DataFlow 

~O ~I 

State Vector 

-0 ~I 
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State Transition Diagram- illustrates the states and the transitions that occur in the 

system. 

State n 

Event (condition)/Action 

State m 

Data Flow/Control Flow Diagram- shows the relationship between the control and 

data transformations. 

-------+ 

o 
, 
" 

T: 
E: 
D: 

Discrete DataFlow 

Event DataFlow 

Data Transformation 

Control Transformation 
(executes State transition diagram) 

Trigger 
Enable 
Disable 
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Message Communication Module and Information Hiding module- represents 

respectively all the possible communication cases among tasks and the data stores or 

state transition tables. 

MESSAGE COMMUNICA nON MODULE 

l~Sk 

!msk / 

7 

/ 
I 

Message communication 
loosely coupled 

Message communication 
closely coupled 

Task synchronisation 
(event) 

INFORMATION HIDING MODULE (lHM) 

ROOM 

ROOM Charts- represents the finite state machine of the system 

Initial state transition 

Transitions (entry or exit 
actions) 

states 
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ROOM entities- the graphical notation of the elements used in ROOM. 

ExampleSystem 

I Actor I R~7ort ~ Actor 2 

External port 

p-. _____ .,.Internal port 

Actor 2 
Actor I Datacom 

,...., protocol class: 
ExampleSystem classes ~ Datacom 

in: { inputl } 

Actor 
.It:' out: { outputl } 

Protocol Data .. 
classes classes Classes ~ 

(Passive Data 

Actor 1 Datacom Object) class: Parameters{ 
Actor 2 ... Public: int pal; 

Parameters } ... 
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Class Diagram- represents the classes and their relationships. 

, ....... 
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( class name 1 
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· ... \attributes . 
operationsO ( 
{constraints} j 

I
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/ ... j formal j 

( i arauments j 

····1 paramet~ri~;d T -. -. -' 
class name f 

, ................. .1 

\ / .......... 

Class icons 

/ 
...... \ ............. /' ,..... . ................. . 

( class utility name 
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attributes 
operations{) 
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_III 

/ .... ~ ....... / ..... ~. -·~~t;;~I· -. _. -

(" L. -~~~~'!lJ-~~!~' 
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\ Class ~.~.~ ..... ..J 
'. / 
\ ........•. 

Class relationships 

class category name 

classes 

association has _. - .-. _.-. -.~ instantiation 

---~~. inheritance 

Class relationships 
label cardinality 

Role 
[key] 
{constraint} 

'. 
attribute class 

Class relationships 
9 abstract class \f! friend 

"i static '9 virtual 

Nes~~!,g 
, ..... / \ / ~....... . ................ \ 

( class..name ! ..... ./, .... , . ..1 \. ... ~ .... 

~ ... nested 

~ 
\ class \ / .. : ............ -

...... '/ 
\ ......... . 

using ----.- metaclass 

Class relationships 
, • by value 

-'---0 by reference 

Class relationships 

public 

protected 

Notes 

II private 
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Object Diagram- represents the objects that make up the system and their 

relationships. 

Object Icon Synchronisation Visibility 

--+ simple [Q] global 

--+ synchronous 
~ parameter 

~ balking 
~ field 

~ timeout 
~ order: mess~ local 

object/value --,.. asynchronous 

role 
[key] 
{ constraint} 

Module Diagram- illustrates the number of classes and objects in the module. 

Module Icons 

main program specification body 

subsystem 

Dependency 
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Process Diagram- shows how the processes are going to be mapped to processors. 

processor 

process 1 
process 2 

process n 

Icons 

device 

Connection 

label 

State Transition Diagram- illustrates the events that cause a transition of a state and 

the actions that result from that state change. 

State Icon 

name 

actions 

History 

State transitions Nesting 

event [guard] taction. 

start 

stop 
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Sequence Diagram - illustrates the interactions between objects occurring at run-time. 

script 

object 1 

event 

event 

object 2 object 3 object 4 

operation(~ 

o erationO 
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OMT - the graphical notation of OMT entities 

Class 

Class name 

Attributes 

Operations 

Object 

[Class Name] 
Attribute 
Values 

[Class Name] 

Association Attribute 
Values 

Class name Class name 

Attributes Attributes 
Lin k 

[Class Name] 
Attribute Operations Operations 

Values 

Class name Class name 

Attributes Attributes ffi . 1 qua 1 IcaUon I 
Operations Operations 

Class name Class name 

Attributes ( ') Attributes 

Operations Operations 

attributes 

Line terminators 

one aggregation 

optional inheritance ------0 

• many 

---~ 

• Multiple inheritance 
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Summary of HOOD entities- using OMT notation [HOOD 1986a] 

Object 
(module) 

I 

I I 
VN Instantiated 
(virtual class generic Object 
nodes) 

~ A 

Basic Generically generic generic 
class Instantiated class object 

class 

constraint link 6. inheritance 

simple link D entity 

260 



HOOD Object- the graphical notation Object Description Skeleton 

provided 
interface 

ObjecCName 

Pro ided 
Operations 

internals 

V environment 
I'..~------

required 
interface 

USED OBJECTS 

Graphical representation of Active Object and Passive Object respectively. 

Operation 1 
Operation2 

\_---

HOOD Class and instances implementation 

(Passive Obiect '\ 
I 

Operation 1 
Operation2 

\~---

CLASS VARIABLES ClASS TARGET CODE 
CLASS UNIQUE FOR THE CLASS COMMON TO AU 

AND ALL INSTANCES INSTANCES OF THE 
ClASS 

~ INSTANC~VAR~~j 
FOR EACH INTANCE 

HOOD Class representation Target Implementation 
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HOOD generic instance 

A ParenCObject 

( ObiectA "" ( 
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I 

" ~ 
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~ 
..... 
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HOOD relationships 

inheritance 

I ,WlRrTASS 

I 
Uses relationship 

LObiectA "'" 
Operation] 

\. 

Include relationship 

Operation! 
Operation2 
Operation3 

ParencObject 

Operation] 
Operation2 
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263 



UML 

UML entities- the graphical notation of different UML entities from [UML2003] 

Class 
Association 

Class Name Class A 
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Class B 
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Class Name 
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Class exactly one 
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UML entities- the graphical notation of different UML entities from [UML2003] 

template c1ass-----j 
, T , , 

Set !..--r--' 

bound element 

Set<lnteger> 

Actor 

Composite Structure 

~ part:Class 

Component 

port connector 

Class diagram- shows the properties and operations of a class and the constraints that 

apply to the connected objects. 

Abstract «interface» Client 
. Class Interface <_._._._. Class 

l, ~ dependency , , , 
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Implementing 
, 

-'-'-'-'-'-'-' 

)required interface 
Class 

provided interface 
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Object Diagram- illustrates a picture of the objects in a system at a point time. 

Example taken from [UML 2003,pp.88] 
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Component Diagram- shows the connection between the components 
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Statechart Diagram- Example taken from [UML 2 MetamodeI2005,pp.129] 
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..-
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0 . .1 exit 
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0 . .1 doActivit) 

0 .. * 
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deferrableEvent 0 .. 1 

kind:PseudostateKind referenceState:Name Event 
0 .. * 

I I 
container 

CompositeS tate SimpleState Final State 

......... --0 . .1 

SubmachineState -
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Package Diagram- Illustrates the packages and their dependencies 

I 
Package 1 

D. , , 

1 

~ ______________________ L _____ , 

, , 
, , I ' , 

..-.------,----,'---, 1 : 
Package 3 

Package 4 

Deployment Diagram- illustrates which software pieces run on which hardware 

pieces. Example taken from [UML 2003, pp.98] 

tagged value 
I /I 7 

/ / / t/ Application Server 

BrowserCUen fuch Client • 
browser OS=Windows 

0 V hercutesClient.exflA JoveGL.exe 
{vendor=romanSoft } 

I {component = General Ledger} 
communication path 

r 
I 

~ I 
\ I , 

\ I , 
I 

, 
:. I 

, 

/ 7 http/lnternet 
I , I httplLAN 
I , 
I , 

deployed EJB container 

/ / artifact herculesBase.ear 
herculesAR.ear V Web Server hp.rr.nlp.s A P p.lIr ~ 

OS=Solaris} Java RMIILAN , 

JDBe 1 , 
, 

web Server=a ach( } , 
, 

number deplo ed= ~} 
, 

/ 7 execution 
lherculesWeb. war V environment node 

~ OracleDBMf 
I 

1/ device node 
D 
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Use Case Diagram- illustrates the actors, the use cases, and the relationships among 

them. 

, 
«include» \ 

Actor 
C;c~ 

Activity Diagram- states the essential sequencing rules. 

fork 

[else} 

branch 

merge 

, start 

Activity 
Class: : method) 

join .... ______ .... ___ ... __ 

end 
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Timing diagram- shows the timing constraints between state changes either for a 

single object or for different objects. Example taken from [UML 2003, pp.150]. 

Pump ~' 

Hotplate 
~ 

\ 
\ 
\ 

, 
9bject 

" ,', 

states , 

,/ / ~ 
event 

It':! waterEmpty .. --

~; ~r--T-~~I~ ____________ __ 
On 

Off 

Object 

~i i~ 
{>lOs} 

I 
\ 
\ 

state 
.'/ change 

timing constraint 

Interaction Diagram- illustrates how group of objects collaborate in some behaviour. 

The most common interaction diagram is called sequence diagram. 

sd name 

name:Class 

create new object 

return 
'.'-'.'-'.'-'.'-' 

delete 

synchronous ~ 

asynchronous[UM~ >= 1.4] 

asynchronous[UML <=1.3] 
7 

loop ) [for all thingies] 
~....;;.a;._-/ 

It-o ..... p ..... t----') [condition] 

alt ) [condition] 

[other condition] 

[else] 

ref ) 
1------' 

name of interaction (args) 

*: iteration messageO 
[condition] messageO [UMLl] 

270 



Appendix B 

Capture module of ADVISOR 

The capture module captures and digitises the video input data taken by cameras. It 

sub-samples and compresses the video information into JPEG format to maximise 

storage capability and adds time stamping information to the captured images. The 

capture module outputs, which are raw image sequences, are transmitted to several 

other components in the ADVISOR system. The capture functionality also includes a 

mode of operation that allows playback of previously captured video sequences into the 

system from the hard drive. 
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Image Capture module 

II\IIIpOIaliOII 
facIor 2 

JP£G 

GOI COIllrol 
Int8lfac:e 

AID 

Inlefpolelicn 
facIor 2 

Figure B- 1 Diagrammatic representation of the low level design of the capture module. 

272 



Image Capture module 

~ _01 
Iniohing 
dl91110lng 

Figure B- 1. Capture module 
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Motion detection module of ADVISOR 

The Motion Detector submodule detects image changes when objects move and 

generates a description for each moving region. The Motion Detector module also 

classifies the moving regions into mobile object classes such as Person, Group, Metro

train and Noise. 

The Motion Detector component can be viewed as a two-stage algorithm. The first 

stage separates an image sequence into a 'relatively' stable background and a varying 

foreground overlay. The second stage identifies the moving regions belonging to the 

foreground overlay and classifies them in a predefined mobile object class as described 

previously. The identified moving objects are framed by fitting 'blobs' around the 

group of pixels belonging to the same moving object. For each input image, the motion 

detector submodule generates three outputs: 

• The background image: this module performs the task of upgrading the 

background. The upgraded background is transmitted infrequently (the frame 

rate was one image per minute per camera) because of the relatively low 

changing nature of the image intensities. 

• The foreground image: this output was transmitted at the same rate as the 

incoming image sequences per camera, i.e. 5fps. 

• Blob descriptions: one set per incoming image per camera, which is sent in 

XMLformat. 

Figure B- 2 shows a diagram for the motion detection module. Figure B- 3, 4, 5 and 

Figure B- 6 illustrate the diagrams of moving regions detection algorithms, for the 

update reference image algorithm and for the merging of detected moving regions and 

reclassification algorithm respectively. 
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Motion Detection Module 

/ 

Input: 7-JPeG 
image 

'-----J 

I::: 

-

I~ 
data 
blob 

I 

L 

Figure B. 2. Diagram of the motion detection module (extracted from the ADVISOR specification 

documents [ADVISOR 2003]). 
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Detection of moving regions 

Read pIlII/poI €A 

For I-----------~ -(XJ1IIId 
~ltAIUireii'" ~x,) 

ALl 
(enoodId) 

IinIge 

Figure B- 3.Diagram of the submodule for the detection of moving regions. 
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label refenInce image 
with value: (1-0)11, '" ox. 

THEN 

Update reference image 

ELSE 

Figure B· 4. Diagram of the submodule to Update the reference image (or commonly called 

''background'' in computer vision). 
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Classification of detected regions 

S4IIIc:t for,. lIS 

M----i hiCt«degrwd .... -------1 
belonging 

l:w"~, .• ""'.) 
D.(~.I .... .)-"""''--.__--I_---~ 

~ __ -tD~ 

Figure D- 5. Diagram of the submodule for the classification of detected regions. 
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Merge of detected moving regions 

Ca..~.o 

ELSE 

00(11.)- -'-"+~"lOOgIog 
..... at • ...,.. 

Figure B- 6. Diagram of the submodule to merge detected moving regions. 

THEN 
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) 

Crowd Monitor module of ADVISOR 

The ADVISOR crowd monitoring module measures crowd related properties such as 

direction of flow and density and motion, based on the video images that are sent by 

the capture module over the LAN. The crowd monitor module attempts to detect 

specific potentially dangerous situations. This module is designed to deal with four 

areas of abnormal behaviour based on the motion information extracted by a motion 

detection board (hardware called STM1300 and based on a TriMedia 1300 Digital 

Signal Processor): 

• Unusual or forbidden direction of motion. 

• Objects that are stationary for unusually long periods of time. 

• Individuals inside a forbidden area. 

• Overcrowding detection. 

The detection of any of these situations makes the crowd module generate and send a 

message in XML format to the Behaviour Analysis module which generates an alarm. 

The Behaviour Analysis module then deals with the event, including the fusion with 

other events if necessary, and routes the event to other relevant parts of the system such 

as the HCI or the archive. Figure B- 7, 8, 9 and Figure B- 10 present diagrams of the 

module called Crowd Monitor Module. This module, as seen in Figure B- 7, consists of 

two main submodules: one of them is called the Load Motion program and is illustrated 

in Figure B- 8. One of the key functions of the DSP in the STM1300 card is to compute 

image motion vectors in real-time .. Therefore, the output from this card is sent to 

another submodule (see Figure B- 9 and Figure B- 10) that together with some 

thresholds is able to detect the pre-defined events which have been listed above. 
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Crowd Monitor Module 

/:!./ 
,......I "'-------I CrowdDeviceModuIe 1-------. 

'------0+1 Set ThreehoIds /1r7 
I 

Trimedla Intefface 

/=/ 
.... ~_· .. ~_: ... 1I-I'-7-1 ~ / 

-

Ctowd Mon/Ior L-______ .... DIvIcI 

........ 1 :r../ 
Figure B· 7. Diagram of the Crowd Monitor Module, which has two main submodules: Crowd 

Device program and Load Motion program in the STM1300 card. 
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Input: 
curr.nt Image 

TranaIaIiofI to )(.Y 
coordeI1ale8 

IVIUUUIl 

~ 
output 

Median and mean 
filters 

I 

Inllializatlon 
olal 

needed 
variables 

For 
y<VNumbIocks 

Motion Detection Program 
Load in STM1300 board 

/ " rl x<XN:':"ocks 

4 FSBM algorithm 1------' 

Figure B- 8. Diagram of the submodule called Load Motion Program. 
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ELSE 

Crowd monitor device 
Program (I) 

Figure B. 9. First part of the diagram corresponding to the submodule called Crowd Monitor 

Device program. 
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THEN 

Crowd monitor device 
Program (II) 

Updates~ 
Upda18tl statlonary'--___ ~ level (percentage I--____ .....J 

counts I d forIground 
objects) 

THEN 

ELSE 

Figure B- 10. Second part of the diagram that describes the submodule called Crowd Monitor 

Device program. 
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Figure C-3. LOCALDATAPROCESSING. 
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Figure C-7. IMAGECHANNEL. 
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Figure C-12. RDSLINK. 
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Figure C-30. RDFLINK. 
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Figure C-31. RTILINK. 
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Figure D-S. M_VSER. 
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Figure D-ll. ALGORITHMS. 
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Figure D-19. L_USER. 
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